premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
listlengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Gladys is the only person in the room. Everyone in the room does not enjoy camping and organizing outdoor survival workshops. Not everyone anywhere who neither is a client of Costco nor is an active member of a local robotics club enjoys landscape photography. Everyone in the room enjoys landscape photography if and only if they enjoys camping and organizing outdoor survival workshops. Everyone in the room does not enjoy macrame or does not read mystery novels. Someone in the room neither is a client of Costco nor is an active member of a local robotics club.
Gladys enjoys landscape photography.
contradiction
room(gladys)&(![X]:(room(X)=>(X='gladys')))& (![X]:(room(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))& (~![X]:(anywhere(X)=>(((~((is_a_client_of_Costco(X))|(is_an_active_member_of_a_local_robotics_club(X))))=>(enjoys_landscape_photography(X))))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(does_not_enjoy_macrame(X))))))& (?[X]:(room(X)&(~((is_a_client_of_Costco(X))|(is_an_active_member_of_a_local_robotics_club(X))))))
room(gladys)&(![X]:(room(X)=>(X='gladys')))& enjoys_landscape_photography(gladys)
[ "p0", "p1", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 522540321848500256995316 % SZS output start Proof for 522540321848500256995316 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ~predc(X0)) [input p1] 47. ! [X0] : (room(X0) => (prede(X0) <=> predc(X0))) [input p3] 50. prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 129. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 130. ! [X0] : (~predc(X0) | ~room(X0)) [ennf transformation 45] 132. ! [X0] : ((prede(X0) <=> predc(X0)) | ~room(X0)) [ennf transformation 47] 133. prede(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 50] 137. ! [X0] : (((prede(X0) | ~predc(X0)) & (predc(X0) | ~prede(X0))) | ~room(X0)) [nnf transformation 132] 220. room(mary) [cnf transformation 129] 222. ~predc(X0) | ~room(X0) [cnf transformation 130] 224. predc(X0) | ~prede(X0) | ~room(X0) [cnf transformation 137] 229. prede(mary) [cnf transformation 133] 230. ~prede(X0) | ~room(X0) [subsumption resolution 224,222] 231. ~room(mary) [resolution 230,229] 232. $false [subsumption resolution 231,220] % SZS output end Proof for 522540321848500256995316 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.297068
Douglas, Marcus, Darryl are the only persons in the room. Everyone in the room is patient if they is not a wise person, is a quiet kind person or is a old person. Everyone in the room is patient only if they is a curious wise person. More than one person outside the room is a humble curious tall strong patient brave person. Douglas is the least old in the room. Everyone in the room is generous if they is a patient person. Douglas is patient. Everyone in the room who is wise is generous. Someone who is a tall person is older than someone who is not a wise person, is a quiet kind person or is a old person. Everyone in the room is not a tall calm person only if they is a calm quiet person. All funny persons are kind. All old persons are wise. Everyone in the room is a humble kind person, is tall and is not calm, not humble, not happy if they is not a patient generous person. Marcus is not a wise person, is a quiet kind person or is a old person. Everyone in the room is quiet if they is not tall, not wise, not happy, not strong, not generous, not brave. All curious persons are happy. Everyone in the room is a strong humble patient brave person, is not not not old and is not a kind person if and only if they is quiet.
Douglas is generous.
entailment
room(douglas)&room(marcus)&room(darryl)&(![X]:(room(X)=>(X='douglas'|X='marcus'|X='darryl')))& (![X]:(room(X)=>(((((~(wise(X)&person(X)))|(quiet(X)&kind(X)&person(X))|(old(X)&person(X))))=>(patient(X))))))& (![X]:(room(X)=>(((curious(X)&wise(X)&person(X))<=(patient(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(humble(X)&curious(X)&tall(X)&strong(X)&patient(X)&brave(X)&person(X)&humble(Y)&curious(Y)&tall(Y)&strong(Y)&patient(Y)&brave(Y)&person(Y))&(X!=Y))))& (![X]:((room(X)&(X!=douglas))=>older(douglas,X)))& (![X]:(room(X)=>(((patient(X)&person(X))=>(generous(X))))))& (patient(douglas))& (![X]:(room(X)=>(((wise(X))=>(generous(X))))))& (?[X,Y]:((tall(X)&person(X))&(((~(wise(Y)&person(Y)))|(quiet(Y)&kind(Y)&person(Y))|(old(Y)&person(Y))))&(older(X,Y))))& (![X]:(room(X)=>(((calm(X)&quiet(X)&person(X))<=(~(tall(X)&calm(X)&person(X)))))))& (![X]:(funny(X)=>kind(X)))& (![X]:(old(X)=>wise(X)))& (![X]:(room(X)=>(((~(patient(X)&generous(X)&person(X)))=>(((humble(X)&kind(X)&person(X))&(tall(X))&(~calm(X)&~humble(X)&~happy(X))))))))& (((~(wise(marcus)&person(marcus)))|(quiet(marcus)&kind(marcus)&person(marcus))|(old(marcus)&person(marcus))))& (![X]:(room(X)=>(((~tall(X)&~wise(X)&~happy(X)&~strong(X)&~generous(X)&~brave(X))=>(quiet(X))))))& (![X]:(curious(X)=>happy(X)))& (![X]:(room(X)=>(((((strong(X)&humble(X)&patient(X)&brave(X)&person(X))&(~~~old(X))&(~(kind(X)&person(X)))))<=>(quiet(X))))))
room(douglas)&room(marcus)&room(darryl)&(![X]:(room(X)=>(X='douglas'|X='marcus'|X='darryl')))& generous(douglas)
[ "p0", "p1", "p2", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 922676980368705695916103 % SZS output start Proof for 922676980368705695916103 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (((person(X0) & old(X0)) | (person(X0) & kind(X0) & quiet(X0)) | ~(person(X0) & wise(X0))) => patient(X0))) [input p1] 46. ! [X0] : (room(X0) => (patient(X0) => (person(X0) & wise(X0) & curious(X0)))) [input p2] 51. ! [X0] : (room(X0) => (wise(X0) => generous(X0))) [input p7] 61. ~(generous(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 140. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 140] 142. ! [X0] : ((patient(X0) | ((~person(X0) | ~old(X0)) & (~person(X0) | ~kind(X0) | ~quiet(X0)) & (person(X0) & wise(X0)))) | ~room(X0)) [ennf transformation 45] 143. ! [X0] : (patient(X0) | ((~person(X0) | ~old(X0)) & (~person(X0) | ~kind(X0) | ~quiet(X0)) & person(X0) & wise(X0)) | ~room(X0)) [flattening 142] 144. ! [X0] : (((person(X0) & wise(X0) & curious(X0)) | ~patient(X0)) | ~room(X0)) [ennf transformation 46] 145. ! [X0] : ((person(X0) & wise(X0) & curious(X0)) | ~patient(X0) | ~room(X0)) [flattening 144] 150. ! [X0] : ((generous(X0) | ~wise(X0)) | ~room(X0)) [ennf transformation 51] 151. ! [X0] : (generous(X0) | ~wise(X0) | ~room(X0)) [flattening 150] 163. ~generous(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 164. ~generous(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 163] 179. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 180. ~generous(mary) | (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 164,179] 261. room(mary) [cnf transformation 141] 262. room(paul) [cnf transformation 141] 263. room(fred) [cnf transformation 141] 264. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 141] 265. ~room(X0) | wise(X0) | patient(X0) [cnf transformation 143] 270. wise(X0) | ~patient(X0) | ~room(X0) [cnf transformation 145] 290. generous(X0) | ~wise(X0) | ~room(X0) [cnf transformation 151] 334. ~generous(mary) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 180] 335. ~generous(mary) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 180] 336. ~generous(mary) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 180] 337. ~generous(mary) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 180] 343. ~room(X0) | wise(X0) [subsumption resolution 270,265] 345. ~room(X0) | generous(X0) [subsumption resolution 290,343] 392. ~generous(mary) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 337,263] 393. ~generous(mary) | fred != sK7 | ~room(mary) [subsumption resolution 392,262] 394. ~generous(mary) | fred != sK7 [subsumption resolution 393,261] 396. 11 <=> fred = sK7 [avatar definition] 398. fred != sK7 <- (~11) [avatar component clause 396] 400. 12 <=> generous(mary) [avatar definition] 403. ~11 | ~12 [avatar split clause 394,400,396] 404. ~generous(mary) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 336,263] 405. ~generous(mary) | paul != sK7 | ~room(mary) [subsumption resolution 404,262] 406. ~generous(mary) | paul != sK7 [subsumption resolution 405,261] 408. 13 <=> paul = sK7 [avatar definition] 410. paul != sK7 <- (~13) [avatar component clause 408] 411. ~13 | ~12 [avatar split clause 406,400,408] 412. ~generous(mary) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 335,263] 413. ~generous(mary) | mary != sK7 | ~room(mary) [subsumption resolution 412,262] 414. ~generous(mary) | mary != sK7 [subsumption resolution 413,261] 416. 14 <=> mary = sK7 [avatar definition] 418. mary != sK7 <- (~14) [avatar component clause 416] 419. ~14 | ~12 [avatar split clause 414,400,416] 420. ~generous(mary) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 334,263] 421. ~generous(mary) | room(sK7) | ~room(mary) [subsumption resolution 420,262] 422. ~generous(mary) | room(sK7) [subsumption resolution 421,261] 424. 15 <=> room(sK7) [avatar definition] 426. room(sK7) <- (15) [avatar component clause 424] 427. 15 | ~12 [avatar split clause 422,400,424] 449. generous(mary) [resolution 345,261] 454. 12 [avatar split clause 449,400] 652. paul = sK7 | mary = sK7 | fred = sK7 <- (15) [resolution 264,426] 653. mary = sK7 | fred = sK7 <- (~13, 15) [subsumption resolution 652,410] 654. fred = sK7 <- (~13, ~14, 15) [subsumption resolution 653,418] 655. $false <- (~11, ~13, ~14, 15) [subsumption resolution 654,398] 656. 11 | 13 | 14 | ~15 [avatar contradiction clause 655] 657. $false [avatar sat refutation 403,411,419,427,454,656] % SZS output end Proof for 922676980368705695916103 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0
Lindsey, Alfred, Ray are the only persons in the room. If “everyone in the room does not work as a freelance web developer specializing in e-commerce sites” then “not everyone in the room either does not play eSports competitively or does not enjoy making ceramics but not both”. If “not everyone in the room either does not play eSports competitively or does not enjoy making ceramics but not both” then “everyone in the room is not a cybersecurity expert”. Either “everyone anywhere either does not enjoy logic puzzles or does not watche fantasy movies but not both” or “everyone in the room does not enjoy wildlife photography” but not both. If “everyone in the room does not enjoy making ceramics” then “not everyone in the room neither does not regularly goes on multi-day backpacking trips in national parks nor does not enjoy logic puzzles”. If “not everyone in the room neither does not regularly goes on multi-day backpacking trips in national parks nor does not enjoy logic puzzles” then “Lindsey does not create bespoke furniture pieces from reclaimed wood”. Either “Ray either does not play eSports competitively or does not own an Android phone but not both” or “not everyone in the room does not collect first edition books” but not both. Someone in the room is not a tea enthusiast and does not collect action figures. Alfred neither does not create bespoke furniture pieces from reclaimed wood nor does not enjoy wildlife photography. Only one person in the room neither does not practice digital art nor does not use an ios phone.
Ray plays eSports competitively.
contradiction
room(lindsey)&room(alray)&room(ray)&(![X]:(room(X)=>(X='lindsey'|X='alray'|X='ray')))& (((![X]:(room(X)=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))=>(~![X]:(room(X)=>(((does_not_play_eSports_competitively(X))<~>(does_not_enjoy_making_ceramics(X)))))))& ((~![X]:(room(X)=>(((does_not_play_eSports_competitively(X))<~>(does_not_enjoy_making_ceramics(X))))))=>(![X]:(room(X)=>(is_not_a_cybersecurity_expert(X))))))& ((![X]:(anywhere(X)=>(((does_not_enjoy_logic_puzzles(X))<~>(does_not_watche_fantasy_movies(X))))))<~>(![X]:(room(X)=>(does_not_enjoy_wildlife_photography(X)))))& (((![X]:(room(X)=>(does_not_enjoy_making_ceramics(X))))=>(~![X]:(room(X)=>(~((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_enjoy_logic_puzzles(X)))))))& ((~![X]:(room(X)=>(~((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_enjoy_logic_puzzles(X))))))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(lindsey))))& ((((does_not_play_eSports_competitively(ray))<~>(does_not_own_an_Android_phone(ray))))<~>(~![X]:(room(X)=>(does_not_collect_first_edition_books(X)))))& (?[X]:(room(X)&(((is_not_a_tea_enthusiast(X))&(does_not_collect_action_figures(X))))))& (~((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(alray))|(does_not_enjoy_wildlife_photography(alray))))& (((?[X]:(room(X)&~((does_not_practice_digital_art(X))|(does_not_use_an_ios_phone(X)))))&(![X,Y]:((room(X)&room(Y)&(~((does_not_practice_digital_art(X))|(does_not_use_an_ios_phone(X))))&(~((does_not_practice_digital_art(Y))|(does_not_use_an_ios_phone(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(does_not_enjoy_logic_puzzles(X))))& (does_not_write_a_travel_blog(lindsey))& (![X]:(room(X)=>(does_not_write_a_travel_blog(X))))& (does_not_own_a_television(lindsey))& ((![X]:((((does_not_watche_fantasy_movies(X))<~>(does_not_write_a_travel_blog(X))))=>(does_not_play_eSports_competitively(X)))))& (does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(alray))
room(lindsey)&room(alray)&room(ray)&(![X]:(room(X)=>(X='lindsey'|X='alray'|X='ray')))& plays_eSports_competitively(ray)
[ "b4", "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7895640566591809497660369 % SZS output start Proof for 7895640566591809497660369 5. ! [X0] : anywhere(X0) [input b4] 44. ~predm(paul) & ! [X0] : ((~preds(X0) <~> ~predc(X0)) => ~predn(X0)) & ~predw(mary) & ! [X0] : (room(X0) => ~predc(X0)) & ~predc(mary) & ! [X0] : (room(X0) => ~preda(X0)) & ! [X0,X1] : ((~(~predg(X1) | ~predj(X1)) & ~(~predg(X0) | ~predj(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~(~predg(X0) | ~predj(X0)) & room(X0)) & ~(~prede(paul) | ~predz(paul)) & ? [X0] : (~predh(X0) & ~predx(X0) & room(X0)) & ((~predn(fred) <~> ~predk(fred)) <~> ~! [X0] : (room(X0) => ~predd(X0))) & (~! [X0] : (room(X0) => ~(~preda(X0) | ~predu(X0))) => ~predz(mary)) & (! [X0] : (room(X0) => ~predf(X0)) => ~! [X0] : (room(X0) => ~(~preda(X0) | ~predu(X0)))) & (! [X0] : (anywhere(X0) => (~preda(X0) <~> ~preds(X0))) <~> ! [X0] : (room(X0) => ~prede(X0))) & (~! [X0] : (room(X0) => (~predn(X0) <~> ~predf(X0))) => ! [X0] : (room(X0) => ~predb(X0))) & (! [X0] : (room(X0) => ~predm(X0)) => ~! [X0] : (room(X0) => (~predn(X0) <~> ~predf(X0)))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. predn(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. ~predm(paul) & ! [X0] : ((~preds(X0) <~> ~predc(X0)) => ~predn(X0)) & ~predw(mary) & ! [X1] : (room(X1) => ~predc(X1)) & ~predc(mary) & ! [X2] : (room(X2) => ~preda(X2)) & ! [X3,X4] : ((~(~predg(X4) | ~predj(X4)) & ~(~predg(X3) | ~predj(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(~predg(X5) | ~predj(X5)) & room(X5)) & ~(~prede(paul) | ~predz(paul)) & ? [X6] : (~predh(X6) & ~predx(X6) & room(X6)) & ((~predn(fred) <~> ~predk(fred)) <~> ~! [X7] : (room(X7) => ~predd(X7))) & (~! [X8] : (room(X8) => ~(~preda(X8) | ~predu(X8))) => ~predz(mary)) & (! [X9] : (room(X9) => ~predf(X9)) => ~! [X10] : (room(X10) => ~(~preda(X10) | ~predu(X10)))) & (! [X11] : (anywhere(X11) => (~preda(X11) <~> ~preds(X11))) <~> ! [X12] : (room(X12) => ~prede(X12))) & (~! [X13] : (room(X13) => (~predn(X13) <~> ~predf(X13))) => ! [X14] : (room(X14) => ~predb(X14))) & (! [X15] : (room(X15) => ~predm(X15)) => ~! [X16] : (room(X16) => (~predn(X16) <~> ~predf(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ~predm(paul) & ! [X0] : ((~preds(X0) <~> ~predc(X0)) => ~predn(X0)) & ! [X1] : (room(X1) => ~predc(X1)) & ~predc(mary) & ! [X2] : (room(X2) => ~preda(X2)) & ! [X3,X4] : ((~(~predg(X4) | ~predj(X4)) & ~(~predg(X3) | ~predj(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(~predg(X5) | ~predj(X5)) & room(X5)) & ~(~prede(paul) | ~predz(paul)) & ? [X6] : (~predh(X6) & ~predx(X6) & room(X6)) & ((~predn(fred) <~> ~predk(fred)) <~> ~! [X7] : (room(X7) => ~predd(X7))) & (~! [X8] : (room(X8) => ~(~preda(X8) | ~predu(X8))) => ~predz(mary)) & (! [X9] : (room(X9) => ~predf(X9)) => ~! [X10] : (room(X10) => ~(~preda(X10) | ~predu(X10)))) & (! [X11] : (anywhere(X11) => (~preda(X11) <~> ~preds(X11))) <~> ! [X12] : (room(X12) => ~prede(X12))) & (~! [X13] : (room(X13) => (~predn(X13) <~> ~predf(X13))) => ! [X14] : (room(X14) => ~predb(X14))) & (! [X15] : (room(X15) => ~predm(X15)) => ~! [X16] : (room(X16) => (~predn(X16) <~> ~predf(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ~predm(paul) & ! [X0] : ((~preds(X0) <~> ~predc(X0)) => ~predn(X0)) & ! [X1] : (room(X1) => ~predc(X1)) & ~predc(mary) & ! [X2] : (room(X2) => ~preda(X2)) & ! [X3,X4] : ((~(~predg(X4) | ~predj(X4)) & ~(~predg(X3) | ~predj(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(~predg(X5) | ~predj(X5)) & room(X5)) & ~(~prede(paul) | ~predz(paul)) & ? [X6] : (~predx(X6) & room(X6)) & ((~predn(fred) <~> ~predk(fred)) <~> ~! [X7] : (room(X7) => ~predd(X7))) & (~! [X8] : (room(X8) => ~(~preda(X8) | ~predu(X8))) => ~predz(mary)) & (! [X9] : (room(X9) => ~predf(X9)) => ~! [X10] : (room(X10) => ~(~preda(X10) | ~predu(X10)))) & (! [X11] : (anywhere(X11) => (~preda(X11) <~> ~preds(X11))) <~> ! [X12] : (room(X12) => ~prede(X12))) & (~! [X13] : (room(X13) => (~predn(X13) <~> ~predf(X13))) => ! [X14] : (room(X14) => ~predb(X14))) & (! [X15] : (room(X15) => ~predm(X15)) => ~! [X16] : (room(X16) => (~predn(X16) <~> ~predf(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ~predm(paul) & ! [X0] : ((~preds(X0) <~> ~predc(X0)) => ~predn(X0)) & ! [X1] : (room(X1) => ~predc(X1)) & ~predc(mary) & ! [X2] : (room(X2) => ~preda(X2)) & ! [X3,X4] : ((~(~predg(X4) | ~predj(X4)) & ~(~predg(X3) | ~predj(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(~predg(X5) | ~predj(X5)) & room(X5)) & ~(~prede(paul) | ~predz(paul)) & ? [X6] : room(X6) & ((~predn(fred) <~> ~predk(fred)) <~> ~! [X7] : (room(X7) => ~predd(X7))) & (~! [X8] : (room(X8) => ~(~preda(X8) | ~predu(X8))) => ~predz(mary)) & (! [X9] : (room(X9) => ~predf(X9)) => ~! [X10] : (room(X10) => ~(~preda(X10) | ~predu(X10)))) & (! [X11] : (anywhere(X11) => (~preda(X11) <~> ~preds(X11))) <~> ! [X12] : (room(X12) => ~prede(X12))) & (~! [X13] : (room(X13) => (~predn(X13) <~> ~predf(X13))) => ! [X14] : (room(X14) => ~predb(X14))) & (! [X15] : (room(X15) => ~predm(X15)) => ~! [X16] : (room(X16) => (~predn(X16) <~> ~predf(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ~predm(paul) & ! [X0] : ((~preds(X0) <~> ~predc(X0)) => ~predn(X0)) & ! [X1] : (room(X1) => ~predc(X1)) & ~predc(mary) & ! [X2] : (room(X2) => ~preda(X2)) & ! [X3,X4] : ((~(~predg(X4) | ~predj(X4)) & ~(~predg(X3) | ~predj(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(~predg(X5) | ~predj(X5)) & room(X5)) & ~(~prede(paul) | ~predz(paul)) & ? [X6] : room(X6) & ((~predn(fred) <~> ~predk(fred)) <~> ~! [X7] : (room(X7) => ~predd(X7))) & (~! [X8] : (room(X8) => ~(~preda(X8) | ~predu(X8))) => ~predz(mary)) & (! [X9] : (room(X9) => ~predf(X9)) => ~! [X10] : (room(X10) => ~(~preda(X10) | ~predu(X10)))) & (! [X11] : (anywhere(X11) => (~preda(X11) <~> ~preds(X11))) <~> ! [X12] : (room(X12) => ~prede(X12))) & (! [X15] : (room(X15) => ~predm(X15)) => ~! [X16] : (room(X16) => (~predn(X16) <~> ~predf(X16)))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 122. ~predm(paul) & ! [X0] : (~predn(X0) | (~preds(X0) <=> ~predc(X0))) & ! [X1] : (~predc(X1) | ~room(X1)) & ~predc(mary) & ! [X2] : (~preda(X2) | ~room(X2)) & ! [X3,X4] : (X3 = X4 | ((~predg(X4) | ~predj(X4)) | (~predg(X3) | ~predj(X3)) | ~room(X4) | ~room(X3))) & ? [X5] : ((predg(X5) & predj(X5)) & room(X5)) & (prede(paul) & predz(paul)) & ? [X6] : room(X6) & ((~predn(fred) <~> ~predk(fred)) <~> ? [X7] : (predd(X7) & room(X7))) & (~predz(mary) | ! [X8] : ((preda(X8) & predu(X8)) | ~room(X8))) & (? [X10] : ((~preda(X10) | ~predu(X10)) & room(X10)) | ? [X9] : (predf(X9) & room(X9))) & (! [X11] : ((~preda(X11) <~> ~preds(X11)) | ~anywhere(X11)) <~> ! [X12] : (~prede(X12) | ~room(X12))) & (? [X16] : ((~predn(X16) <=> ~predf(X16)) & room(X16)) | ? [X15] : (predm(X15) & room(X15))) & ! [X17] : ((fred = X17 | paul = X17 | mary = X17) | ~room(X17)) & room(fred) & room(paul) & room(mary) [ennf transformation 50] 123. ~predm(paul) & ! [X0] : (~predn(X0) | (~preds(X0) <=> ~predc(X0))) & ! [X1] : (~predc(X1) | ~room(X1)) & ~predc(mary) & ! [X2] : (~preda(X2) | ~room(X2)) & ! [X3,X4] : (X3 = X4 | ~predg(X4) | ~predj(X4) | ~predg(X3) | ~predj(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predg(X5) & predj(X5) & room(X5)) & prede(paul) & predz(paul) & ? [X6] : room(X6) & ((~predn(fred) <~> ~predk(fred)) <~> ? [X7] : (predd(X7) & room(X7))) & (~predz(mary) | ! [X8] : ((preda(X8) & predu(X8)) | ~room(X8))) & (? [X10] : ((~preda(X10) | ~predu(X10)) & room(X10)) | ? [X9] : (predf(X9) & room(X9))) & (! [X11] : ((~preda(X11) <~> ~preds(X11)) | ~anywhere(X11)) <~> ! [X12] : (~prede(X12) | ~room(X12))) & (? [X16] : ((~predn(X16) <=> ~predf(X16)) & room(X16)) | ? [X15] : (predm(X15) & room(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 122] 124. predn(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 125. predn(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 124] 127. ~predm(paul) & ! [X0] : (~predn(X0) | ((~preds(X0) | predc(X0)) & (~predc(X0) | preds(X0)))) & ! [X1] : (~predc(X1) | ~room(X1)) & ~predc(mary) & ! [X2] : (~preda(X2) | ~room(X2)) & ! [X3,X4] : (X3 = X4 | ~predg(X4) | ~predj(X4) | ~predg(X3) | ~predj(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predg(X5) & predj(X5) & room(X5)) & prede(paul) & predz(paul) & ? [X6] : room(X6) & ((! [X7] : (~predd(X7) | ~room(X7)) | ((~predn(fred) | predk(fred)) & (~predk(fred) | predn(fred)))) & (? [X7] : (predd(X7) & room(X7)) | ((predk(fred) | predn(fred)) & (~predk(fred) | ~predn(fred))))) & (~predz(mary) | ! [X8] : ((preda(X8) & predu(X8)) | ~room(X8))) & (? [X10] : ((~preda(X10) | ~predu(X10)) & room(X10)) | ? [X9] : (predf(X9) & room(X9))) & ((? [X12] : (prede(X12) & room(X12)) | ? [X11] : (((~preda(X11) | preds(X11)) & (~preds(X11) | preda(X11))) & anywhere(X11))) & (! [X12] : (~prede(X12) | ~room(X12)) | ! [X11] : (((preds(X11) | preda(X11)) & (~preds(X11) | ~preda(X11))) | ~anywhere(X11)))) & (? [X16] : (((~predn(X16) | predf(X16)) & (~predf(X16) | predn(X16))) & room(X16)) | ? [X15] : (predm(X15) & room(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [nnf transformation 123] 128. ~predm(paul) & ! [X0] : (~predn(X0) | ((~preds(X0) | predc(X0)) & (~predc(X0) | preds(X0)))) & ! [X1] : (~predc(X1) | ~room(X1)) & ~predc(mary) & ! [X2] : (~preda(X2) | ~room(X2)) & ! [X3,X4] : (X3 = X4 | ~predg(X4) | ~predj(X4) | ~predg(X3) | ~predj(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predg(X5) & predj(X5) & room(X5)) & prede(paul) & predz(paul) & ? [X6] : room(X6) & (! [X7] : (~predd(X7) | ~room(X7)) | ((~predn(fred) | predk(fred)) & (~predk(fred) | predn(fred)))) & (? [X7] : (predd(X7) & room(X7)) | ((predk(fred) | predn(fred)) & (~predk(fred) | ~predn(fred)))) & (~predz(mary) | ! [X8] : ((preda(X8) & predu(X8)) | ~room(X8))) & (? [X10] : ((~preda(X10) | ~predu(X10)) & room(X10)) | ? [X9] : (predf(X9) & room(X9))) & (? [X12] : (prede(X12) & room(X12)) | ? [X11] : ((~preda(X11) | preds(X11)) & (~preds(X11) | preda(X11)) & anywhere(X11))) & (! [X12] : (~prede(X12) | ~room(X12)) | ! [X11] : (((preds(X11) | preda(X11)) & (~preds(X11) | ~preda(X11))) | ~anywhere(X11))) & (? [X16] : ((~predn(X16) | predf(X16)) & (~predf(X16) | predn(X16)) & room(X16)) | ? [X15] : (predm(X15) & room(X15))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 127] 129. ~predm(paul) & ! [X0] : (~predn(X0) | ((~preds(X0) | predc(X0)) & (~predc(X0) | preds(X0)))) & ! [X1] : (~predc(X1) | ~room(X1)) & ~predc(mary) & ! [X2] : (~preda(X2) | ~room(X2)) & ! [X3,X4] : (X3 = X4 | ~predg(X4) | ~predj(X4) | ~predg(X3) | ~predj(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predg(X5) & predj(X5) & room(X5)) & prede(paul) & predz(paul) & ? [X6] : room(X6) & (! [X7] : (~predd(X7) | ~room(X7)) | ((~predn(fred) | predk(fred)) & (~predk(fred) | predn(fred)))) & (? [X8] : (predd(X8) & room(X8)) | ((predk(fred) | predn(fred)) & (~predk(fred) | ~predn(fred)))) & (~predz(mary) | ! [X9] : ((preda(X9) & predu(X9)) | ~room(X9))) & (? [X10] : ((~preda(X10) | ~predu(X10)) & room(X10)) | ? [X11] : (predf(X11) & room(X11))) & (? [X12] : (prede(X12) & room(X12)) | ? [X13] : ((~preda(X13) | preds(X13)) & (~preds(X13) | preda(X13)) & anywhere(X13))) & (! [X14] : (~prede(X14) | ~room(X14)) | ! [X15] : (((preds(X15) | preda(X15)) & (~preds(X15) | ~preda(X15))) | ~anywhere(X15))) & (? [X16] : ((~predn(X16) | predf(X16)) & (~predf(X16) | predn(X16)) & room(X16)) | ? [X17] : (predm(X17) & room(X17))) & ! [X18] : (fred = X18 | paul = X18 | mary = X18 | ~room(X18)) & room(fred) & room(paul) & room(mary) [rectify 128] 130. ? [X5] : (predg(X5) & predj(X5) & room(X5)) => (predg(sK0) & predj(sK0) & room(sK0)) [choice axiom] 131. ? [X6] : room(X6) => room(sK1) [choice axiom] 132. ? [X8] : (predd(X8) & room(X8)) => (predd(sK2) & room(sK2)) [choice axiom] 133. ? [X10] : ((~preda(X10) | ~predu(X10)) & room(X10)) => ((~preda(sK3) | ~predu(sK3)) & room(sK3)) [choice axiom] 134. ? [X11] : (predf(X11) & room(X11)) => (predf(sK4) & room(sK4)) [choice axiom] 135. ? [X12] : (prede(X12) & room(X12)) => (prede(sK5) & room(sK5)) [choice axiom] 136. ? [X13] : ((~preda(X13) | preds(X13)) & (~preds(X13) | preda(X13)) & anywhere(X13)) => ((~preda(sK6) | preds(sK6)) & (~preds(sK6) | preda(sK6)) & anywhere(sK6)) [choice axiom] 137. ? [X16] : ((~predn(X16) | predf(X16)) & (~predf(X16) | predn(X16)) & room(X16)) => ((~predn(sK7) | predf(sK7)) & (~predf(sK7) | predn(sK7)) & room(sK7)) [choice axiom] 138. ? [X17] : (predm(X17) & room(X17)) => (predm(sK8) & room(sK8)) [choice axiom] 139. ~predm(paul) & ! [X0] : (~predn(X0) | ((~preds(X0) | predc(X0)) & (~predc(X0) | preds(X0)))) & ! [X1] : (~predc(X1) | ~room(X1)) & ~predc(mary) & ! [X2] : (~preda(X2) | ~room(X2)) & ! [X3,X4] : (X3 = X4 | ~predg(X4) | ~predj(X4) | ~predg(X3) | ~predj(X3) | ~room(X4) | ~room(X3)) & (predg(sK0) & predj(sK0) & room(sK0)) & prede(paul) & predz(paul) & room(sK1) & (! [X7] : (~predd(X7) | ~room(X7)) | ((~predn(fred) | predk(fred)) & (~predk(fred) | predn(fred)))) & ((predd(sK2) & room(sK2)) | ((predk(fred) | predn(fred)) & (~predk(fred) | ~predn(fred)))) & (~predz(mary) | ! [X9] : ((preda(X9) & predu(X9)) | ~room(X9))) & (((~preda(sK3) | ~predu(sK3)) & room(sK3)) | (predf(sK4) & room(sK4))) & ((prede(sK5) & room(sK5)) | ((~preda(sK6) | preds(sK6)) & (~preds(sK6) | preda(sK6)) & anywhere(sK6))) & (! [X14] : (~prede(X14) | ~room(X14)) | ! [X15] : (((preds(X15) | preda(X15)) & (~preds(X15) | ~preda(X15))) | ~anywhere(X15))) & (((~predn(sK7) | predf(sK7)) & (~predf(sK7) | predn(sK7)) & room(sK7)) | (predm(sK8) & room(sK8))) & ! [X18] : (fred = X18 | paul = X18 | mary = X18 | ~room(X18)) & room(fred) & room(paul) & room(mary) [skolemisation 129,138,137,136,135,134,133,132,131,130] 140. anywhere(X0) [cnf transformation 5] 222. room(paul) [cnf transformation 139] 223. room(fred) [cnf transformation 139] 232. ~prede(X14) | ~room(X14) | preds(X15) | preda(X15) | ~anywhere(X15) [cnf transformation 139] 253. prede(paul) [cnf transformation 139] 258. ~preda(X2) | ~room(X2) [cnf transformation 139] 260. ~predc(X1) | ~room(X1) [cnf transformation 139] 262. ~preds(X0) | ~predn(X0) | predc(X0) [cnf transformation 139] 268. predn(fred) [cnf transformation 125] 274. 2 <=> predn(fred) [avatar definition] 275. predn(fred) <- (2) [avatar component clause 274] 351. ~prede(X14) | ~room(X14) | preds(X15) | preda(X15) [subsumption resolution 232,140] 353. 18 <=> ! [X15] : (preds(X15) | preda(X15)) [avatar definition] 354. preds(X15) | preda(X15) <- (18) [avatar component clause 353] 356. 19 <=> ! [X14] : (~prede(X14) | ~room(X14)) [avatar definition] 357. ~prede(X14) | ~room(X14) <- (19) [avatar component clause 356] 358. 18 | 19 [avatar split clause 351,356,353] 390. 2 [avatar split clause 268,274] 391. ~room(paul) <- (19) [resolution 357,253] 392. $false <- (19) [subsumption resolution 391,222] 393. ~19 [avatar contradiction clause 392] 403. ~predn(X0) | predc(X0) | preda(X0) <- (18) [resolution 262,354] 414. predc(fred) | preda(fred) <- (2, 18) [resolution 403,275] 416. 28 <=> preda(fred) [avatar definition] 418. preda(fred) <- (28) [avatar component clause 416] 420. 29 <=> predc(fred) [avatar definition] 422. predc(fred) <- (29) [avatar component clause 420] 423. 28 | 29 | ~2 | ~18 [avatar split clause 414,353,274,420,416] 424. ~room(fred) <- (28) [resolution 418,258] 425. $false <- (28) [subsumption resolution 424,223] 426. ~28 [avatar contradiction clause 425] 428. ~room(fred) <- (29) [resolution 422,260] 430. $false <- (29) [subsumption resolution 428,223] 431. ~29 [avatar contradiction clause 430] 432. $false [avatar sat refutation 358,390,393,423,426,431] % SZS output end Proof for 7895640566591809497660369 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0.390669
Georgia, Betty, Ashley are the only persons in the room. Either Betty is a calm patient person or everyone in the room is not a kind person but not both. Betty and Ashley are not quiet, not generous, not funny, not happy only if everyone in the room is funny only if they is older than Charles, is a funny person and is not a quiet patient person. If Charles is quieter than Betty then someone in the room is not a curious person. If someone in the room is not a curious person then everyone in the room is older than Charles only if they is quieter than Gilbert.
Betty and Georgia are not a funny quiet tall generous wise persons.
neutral
room(georgia)&room(betty)&room(ashley)&(![X]:(room(X)=>(X='georgia'|X='betty'|X='ashley')))& ((calm(betty)&patient(betty)&person(betty))<~>(![X]:(room(X)=>(~(kind(X)&person(X))))))& ((~quiet(betty)&~generous(betty)&~funny(betty)&~happy(betty)&~quiet(ashley)&~generous(ashley)&~funny(ashley)&~happy(ashley))=>(![X]:(room(X)=>(((((older(charles,X))&(funny(X)&person(X))&(~(quiet(X)&patient(X)&person(X)))))<=(funny(X)))))))& (((quieter(betty,charles))=>(?[X]:(room(X)&(~(curious(X)&person(X))))))& ((?[X]:(room(X)&(~(curious(X)&person(X)))))=>(![X]:(room(X)=>(((quieter(gilbert,X))<=(older(charles,X))))))))& ((~(strong(ashley)&brave(ashley)&patient(ashley)&person(ashley)))=>(((kind(betty)&humble(betty)&calm(betty)&person(betty))|(older(charles,betty))|(~old(betty)))&((kind(ashley)&humble(ashley)&calm(ashley)&person(ashley))|(older(charles,ashley))|(~old(ashley)))))& (~?[X]:(tall(X)=>humble(X)))& ((![X]:((quieter(gilbert,X))=>(wise(X)))))& (![X]:(kind(X)=>funny(X)))& (((richer(charles,betty))<~>(curious(betty))))& (![X]:(room(X)=>(((((richer(charles,X))&(quieter(charles,X))&(strong(X)&creative(X)&person(X))))=>(funny(X)&happy(X)&person(X))))))
room(georgia)&room(betty)&room(ashley)&(![X]:(room(X)=>(X='georgia'|X='betty'|X='ashley')))& ~(funny(betty)&quiet(betty)&tall(betty)&generous(betty)&wise(betty)&person(betty))&~(funny(georgia)&quiet(georgia)&tall(georgia)&generous(georgia)&wise(georgia)&person(georgia))
[]
null
0
Gladys is the only person in the room. If “Gladys practices archery” then “it is not the case that “Gladys collects foreign coins””. Gladys is a wine connoisseur. Gladys has lived in exactly three countries. At least one person in the room practices graffiti art. Gladys dreamt that “Gladys is a culinary enthusiast who experiments with international cuisines”. Gladys streams on Twitch.
It is not the case that “Gladys is a wine connoisseur”.
contradiction
room(gladys)&(![X]:(room(X)=>(X='gladys')))& ((practices_archery(gladys))=>(~(collects_foreign_coins(gladys))))& (is_a_wine_connoisseur(gladys))& (has_lived_in_exactly_three_countries(gladys))& (((?[X]:(room(X)&practices_graffiti_art(X)))))& ((gladys_dream=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(gladys))))& (streams_on_Twitch(gladys))& (hosts_a_YouTube_channel_dedicated_to_art_tutorials(gladys))& (enjoys_spelunking(gladys))& (frequently_participates_in_hackathons_and_coding_competitions(gladys))& (practices_graffiti_art(gladys))& (practices_zumba(gladys))& (creates_YouTube_content(gladys))& (~(((?[X]:(~room(X)&collects_foreign_coins(X))))))& (is_a_drone_photographer(gladys))& (hosts_regular_workshops_on_creative_writing(gladys))& ((![X]:((is_a_drone_photographer(X))<=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))& (owns_an_Android_phone(gladys))& (~(practices_archery(gladys)))& (collects_rare_minerals(gladys))& (~(plays_video_games(gladys)))& ((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(is_a_drone_photographer(X)))))
room(gladys)&(![X]:(room(X)=>(X='gladys')))& ~(is_a_wine_connoisseur(gladys))
[ "p2", "hypothesis" ]
% SZS status Unsatisfiable for 4540271314761403008996102 % SZS output start Proof for 4540271314761403008996102 46. preda(mary) [input p2] 66. ~preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 156. ~preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 66] 244. preda(mary) [cnf transformation 46] 254. ~preda(mary) [cnf transformation 156] 255. $false [subsumption resolution 254,244] % SZS output end Proof for 4540271314761403008996102 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.478187
Barbara is the only person in the room. If "Barbara is an expert in identifying and foraging wild edible plants" then "Barbara practices pilates" otherwise "Barbara owns an Android phone". If "everyone anywhere is a chess master who participates in national tournaments or is not an avid mountain climber who has scaled several peaks" then "Barbara is allergic to anything".
Barbara is an active member of a local robotics club.
neutral
room(barbara)&(![X]:(room(X)=>(X='barbara')))& (((is_an_expert_in_identifying_and_foraging_wild_edible_plants(barbara))=>(practices_pilates(barbara)))&((~(is_an_expert_in_identifying_and_foraging_wild_edible_plants(barbara)))=>(owns_an_Android_phone(barbara))))& ((![X]:(anywhere(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))=>(is_allergic_to_anything(barbara)))& ((is_an_expert_in_identifying_and_foraging_wild_edible_plants(barbara))<~>(~(enjoys_spelunking(barbara))))& ((![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(can_play_the_flute(X))))))=>(![X]:(room(X)=>(((practices_pilates(X))=>(is_allergic_to_anything(X)))))))& ((maintains_a_large,_organic_vegetable_garden_year-round(barbara))<=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(barbara)))& ((is_an_active_member_of_a_local_robotics_club(barbara))=>(![X]:(room(X)=>(((creates_YouTube_content(X))<=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))))& (((is_allergic_to_anything(barbara))=>(![X]:(room(X)=>(((((collects_classic_novels(X))|(enjoys_coding_in_Python(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))<=(is_a_chess_master_who_participates_in_national_tournaments(X)))))))&((~(is_allergic_to_anything(barbara)))=>(![X]:(room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))|(is_a_night_owl(X))))))))& ((![X]:(anywhere(X)=>(((does_not_practice_zumba(X))|(does_not_own_an_Android_phone(X))))))=>(~![X]:(room(X)=>(((does_not_own_an_Android_phone(X))=>(enjoys_coding_in_Python(X)))))))& ((![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(practices_kickboxing(X))))))=>(can_play_the_flute(barbara)))& ((has_a_specialized_collection_of_handmade_artisan_pottery(barbara))=>(![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(enjoys_coding_in_Python(X)))))))& ((is_a_chess_master_who_participates_in_national_tournaments(barbara))=>(enjoys_wildlife_photography(barbara)))& (enjoys_spelunking(barbara))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (?[X]:(room(X)&(((works_on_fridays(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((practices_pilates(X))=>(enjoys_windsurfing(X))))))& (enjoys_windsurfing(barbara))& ((((owns_an_Android_phone(barbara))|(practices_kickboxing(barbara))))&(enjoys_coding_in_Python(barbara)))& (~![X]:(room(X)=>(((creates_YouTube_content(X))=>(can_play_the_flute(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(is_right-handed(X))))))& (enjoys_wildlife_photography(barbara))& (~![X]:(room(X)=>(((creates_YouTube_content(X))=>(practices_kickboxing(X))))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(is_right-handed(X))))))& (maintains_a_large,_organic_vegetable_garden_year-round(barbara))
room(barbara)&(![X]:(room(X)=>(X='barbara')))& is_an_active_member_of_a_local_robotics_club(barbara)
[]
null
0.277135
There is a room. “Everyone anywhere does not make intricate hand-cut paper art for exhibitions or is not a drone photographer” if “everyone in the room makes intricate hand-cut paper art for exhibitions or does not enjoy macrame” and vice versa. Either “everyone in the room makes intricate hand-cut paper art for exhibitions or does not collect antique clocks” or “no one in the room collects vintage vinyl records or is not a Linux enthusiast” but not both. “Everyone in the room who neither collects antique clocks nor collects action figures is an expert in identifying and foraging wild edible plants” unless “not everyone in the room collects vintage vinyl records or does not collect action figures”. If “everyone in the room is a tea enthusiast or does not develop open-source software projects in their free time” then “everyone in the room is a drone photographer or does not enjoy macrame”. If “everyone in the room develops open-source software projects in their free time or does not collect comic books” then “everyone in the room does not collect comic books or develops open-source software projects in their free time”. Either “everyone in the room collects antique clocks or is not an expert in identifying and foraging wild edible plants” or “no one in the room is not a tea enthusiast or is not a Linux enthusiast” but not both. Everyone outside the room who is not a tea enthusiast collects antique clocks. Everyone in the room is a drone photographer if they collects antique clocks. Everyone in the room makes intricate hand-cut paper art for exhibitions if they is a drone photographer. If someone neither collects vintage vinyl records nor develops open-source software projects in their free time then he/she is not a tea enthusiast and vice versa. If someone either enjoys macrame or collects antique clocks but not both then he/she is a tea enthusiast. Everyone in the room collects vintage vinyl records if they develops open-source software projects in their free time and vice versa. Everyone in the room collects antique clocks or is not a tea enthusiast. Everyone in the room is a tea enthusiast.
Everyone in the room enjoys macrame.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))<=>(![X]:(anywhere(X)=>(((is_not_a_drone_photographer(X))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X)))))))& ((![X]:(room(X)=>(((does_not_collect_antique_clocks(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))<~>(~?[X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(collects_vintage_vinyl_records(X)))))))& (~(~![X]:(room(X)=>(((does_not_collect_action_figures(X))|(collects_vintage_vinyl_records(X))))))=>(![X]:(room(X)=>(((~((collects_antique_clocks(X))|(collects_action_figures(X))))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))& ((![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(is_a_tea_enthusiast(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(is_a_drone_photographer(X)))))))& ((![X]:(room(X)=>(((does_not_collect_comic_books(X))|(develops_open-source_software_projects_in_their_free_time(X))))))=>(![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))|(does_not_collect_comic_books(X)))))))& ((![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(collects_antique_clocks(X))))))<~>(~?[X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(is_not_a_tea_enthusiast(X)))))))& (![X]:(~room(X)=>(((is_not_a_tea_enthusiast(X))=>(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& ((![X]:((~((collects_vintage_vinyl_records(X))|(develops_open-source_software_projects_in_their_free_time(X))))<=>(is_not_a_tea_enthusiast(X)))))& ((![X]:((((enjoys_macrame(X))<~>(collects_antique_clocks(X))))=>(is_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))<=>(develops_open-source_software_projects_in_their_free_time(X))))))& ((![X]:((is_a_tea_enthusiast(X))<=>(collects_action_figures(X)))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(is_a_tea_enthusiast(X))))& (![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(collects_antique_clocks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_macrame(X)))
[ "b4", "p0", "p1", "p2", "p8", "p9", "p10", "p12", "p14", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 790820840727244444507748 % SZS output start Proof for 790820840727244444507748 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 45. ! [X0] : (room(X0) => (prede(X0) | ~predc(X0))) <=> ! [X0] : (anywhere(X0) => (~prede(X0) | ~predj(X0))) [input p1] 46. ! [X0] : (room(X0) => (prede(X0) | ~predh(X0))) <~> ~? [X0] : (room(X0) => (predd(X0) | ~preda(X0))) [input p2] 52. ! [X0] : (room(X0) => (predh(X0) => predj(X0))) [input p8] 53. ! [X0] : (room(X0) => (predj(X0) => prede(X0))) [input p9] 54. ! [X0] : (~(predb(X0) | predd(X0)) <=> ~predg(X0)) [input p10] 56. ! [X0] : (room(X0) => (predd(X0) <=> predb(X0))) [input p12] 58. ! [X0] : (room(X0) => (predh(X0) | ~predg(X0))) [input p14] 62. ! [X0] : (room(X0) => predg(X0)) [input p18] 64. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 65. ! [X0] : (room(X0) => (prede(X0) | ~predc(X0))) <=> ! [X1] : (anywhere(X1) => (~prede(X1) | ~predj(X1))) [rectify 45] 66. ! [X0] : (room(X0) => (prede(X0) | ~predh(X0))) <~> ~? [X1] : (room(X1) => (predd(X1) | ~preda(X1))) [rectify 46] 143. ! [X0] : ((prede(X0) | ~predc(X0)) | ~room(X0)) <=> ! [X1] : ((~prede(X1) | ~predj(X1)) | ~anywhere(X1)) [ennf transformation 65] 144. ! [X0] : (prede(X0) | ~predc(X0) | ~room(X0)) <=> ! [X1] : (~prede(X1) | ~predj(X1) | ~anywhere(X1)) [flattening 143] 145. ! [X0] : ((prede(X0) | ~predh(X0)) | ~room(X0)) <~> ! [X1] : ((~predd(X1) & preda(X1)) & room(X1)) [ennf transformation 66] 146. ! [X0] : (prede(X0) | ~predh(X0) | ~room(X0)) <~> ! [X1] : (~predd(X1) & preda(X1) & room(X1)) [flattening 145] 157. ! [X0] : ((predj(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 52] 158. ! [X0] : (predj(X0) | ~predh(X0) | ~room(X0)) [flattening 157] 159. ! [X0] : ((prede(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 53] 160. ! [X0] : (prede(X0) | ~predj(X0) | ~room(X0)) [flattening 159] 161. ! [X0] : ((~predb(X0) & ~predd(X0)) <=> ~predg(X0)) [ennf transformation 54] 163. ! [X0] : ((predd(X0) <=> predb(X0)) | ~room(X0)) [ennf transformation 56] 164. ! [X0] : ((predh(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 58] 165. ! [X0] : (predh(X0) | ~predg(X0) | ~room(X0)) [flattening 164] 172. ! [X0] : (predg(X0) | ~room(X0)) [ennf transformation 62] 175. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 64] 176. sP0 <=> ! [X0] : (prede(X0) | ~predh(X0) | ~room(X0)) [predicate definition introduction] 177. sP0 <~> ! [X1] : (~predd(X1) & preda(X1) & room(X1)) [definition folding 146,176] 181. (! [X0] : (prede(X0) | ~predc(X0) | ~room(X0)) | ? [X1] : (prede(X1) & predj(X1) & anywhere(X1))) & (! [X1] : (~prede(X1) | ~predj(X1) | ~anywhere(X1)) | ? [X0] : (~prede(X0) & predc(X0) & room(X0))) [nnf transformation 144] 182. (! [X0] : (prede(X0) | ~predc(X0) | ~room(X0)) | ? [X1] : (prede(X1) & predj(X1) & anywhere(X1))) & (! [X2] : (~prede(X2) | ~predj(X2) | ~anywhere(X2)) | ? [X3] : (~prede(X3) & predc(X3) & room(X3))) [rectify 181] 183. ? [X1] : (prede(X1) & predj(X1) & anywhere(X1)) => (prede(sK2) & predj(sK2) & anywhere(sK2)) [choice axiom] 184. ? [X3] : (~prede(X3) & predc(X3) & room(X3)) => (~prede(sK3) & predc(sK3) & room(sK3)) [choice axiom] 185. (! [X0] : (prede(X0) | ~predc(X0) | ~room(X0)) | (prede(sK2) & predj(sK2) & anywhere(sK2))) & (! [X2] : (~prede(X2) | ~predj(X2) | ~anywhere(X2)) | (~prede(sK3) & predc(sK3) & room(sK3))) [skolemisation 182,184,183] 186. (sP0 | ? [X0] : (~prede(X0) & predh(X0) & room(X0))) & (! [X0] : (prede(X0) | ~predh(X0) | ~room(X0)) | ~sP0) [nnf transformation 176] 187. (sP0 | ? [X0] : (~prede(X0) & predh(X0) & room(X0))) & (! [X1] : (prede(X1) | ~predh(X1) | ~room(X1)) | ~sP0) [rectify 186] 188. ? [X0] : (~prede(X0) & predh(X0) & room(X0)) => (~prede(sK4) & predh(sK4) & room(sK4)) [choice axiom] 189. (sP0 | (~prede(sK4) & predh(sK4) & room(sK4))) & (! [X1] : (prede(X1) | ~predh(X1) | ~room(X1)) | ~sP0) [skolemisation 187,188] 190. (? [X1] : (predd(X1) | ~preda(X1) | ~room(X1)) | ~sP0) & (! [X1] : (~predd(X1) & preda(X1) & room(X1)) | sP0) [nnf transformation 177] 191. (? [X0] : (predd(X0) | ~preda(X0) | ~room(X0)) | ~sP0) & (! [X1] : (~predd(X1) & preda(X1) & room(X1)) | sP0) [rectify 190] 192. ? [X0] : (predd(X0) | ~preda(X0) | ~room(X0)) => (predd(sK5) | ~preda(sK5) | ~room(sK5)) [choice axiom] 193. ((predd(sK5) | ~preda(sK5) | ~room(sK5)) | ~sP0) & (! [X1] : (~predd(X1) & preda(X1) & room(X1)) | sP0) [skolemisation 191,192] 211. ! [X0] : (((~predb(X0) & ~predd(X0)) | predg(X0)) & (~predg(X0) | (predb(X0) | predd(X0)))) [nnf transformation 161] 212. ! [X0] : (((~predb(X0) & ~predd(X0)) | predg(X0)) & (~predg(X0) | predb(X0) | predd(X0))) [flattening 211] 214. ! [X0] : (((predd(X0) | ~predb(X0)) & (predb(X0) | ~predd(X0))) | ~room(X0)) [nnf transformation 163] 216. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK11) & room(sK11)) [choice axiom] 217. (~predc(sK11) & room(sK11)) | ~there_is_a_room [skolemisation 175,216] 218. anywhere(X0) [cnf transformation 5] 299. there_is_a_room [cnf transformation 44] 300. ~prede(X2) | ~predj(X2) | ~anywhere(X2) | room(sK3) [cnf transformation 185] 302. ~prede(X2) | ~predj(X2) | ~anywhere(X2) | ~prede(sK3) [cnf transformation 185] 306. prede(X1) | ~predh(X1) | ~room(X1) | ~sP0 [cnf transformation 189] 312. ~predd(X1) | sP0 [cnf transformation 193] 332. ~predh(X0) | predj(X0) | ~room(X0) [cnf transformation 158] 333. ~predj(X0) | prede(X0) | ~room(X0) [cnf transformation 160] 334. ~predg(X0) | predb(X0) | predd(X0) [cnf transformation 212] 340. ~predb(X0) | predd(X0) | ~room(X0) [cnf transformation 214] 343. ~predg(X0) | predh(X0) | ~room(X0) [cnf transformation 165] 347. ~room(X0) | predg(X0) [cnf transformation 172] 349. room(sK11) | ~there_is_a_room [cnf transformation 217] 364. ~prede(X2) | ~predj(X2) | ~prede(sK3) [subsumption resolution 302,218] 366. 4 <=> prede(sK3) [avatar definition] 368. ~prede(sK3) <- (~4) [avatar component clause 366] 370. 5 <=> ! [X2] : (~prede(X2) | ~predj(X2)) [avatar definition] 371. ~predj(X2) | ~prede(X2) <- (5) [avatar component clause 370] 372. ~4 | 5 [avatar split clause 364,370,366] 379. ~prede(X2) | ~predj(X2) | room(sK3) [subsumption resolution 300,218] 381. 7 <=> room(sK3) [avatar definition] 383. room(sK3) <- (7) [avatar component clause 381] 384. 7 | 5 [avatar split clause 379,370,381] 390. 9 <=> sP0 [avatar definition] 405. 12 <=> ! [X1] : (prede(X1) | ~room(X1) | ~predh(X1)) [avatar definition] 406. ~predh(X1) | ~room(X1) | prede(X1) <- (12) [avatar component clause 405] 407. ~9 | 12 [avatar split clause 306,405,390] 422. 16 <=> ! [X1] : ~predd(X1) [avatar definition] 423. ~predd(X1) <- (16) [avatar component clause 422] 424. 9 | 16 [avatar split clause 312,422,390] 530. room(sK11) [subsumption resolution 349,299] 532. predg(sK11) [resolution 347,530] 536. predb(sK11) | predd(sK11) [resolution 334,532] 539. 40 <=> predd(sK11) [avatar definition] 541. predd(sK11) <- (40) [avatar component clause 539] 543. 41 <=> predb(sK11) [avatar definition] 545. predb(sK11) <- (41) [avatar component clause 543] 546. 40 | 41 [avatar split clause 536,543,539] 552. predd(sK11) | ~room(sK11) <- (41) [resolution 340,545] 553. predh(sK11) | ~room(sK11) [resolution 343,532] 556. predh(sK11) [subsumption resolution 553,530] 559. predj(sK11) | ~room(sK11) [resolution 556,332] 561. predj(sK11) [subsumption resolution 559,530] 562. prede(sK11) | ~room(sK11) [resolution 561,333] 563. ~prede(sK11) <- (5) [resolution 561,371] 564. prede(sK11) [subsumption resolution 562,530] 565. $false <- (5) [subsumption resolution 563,564] 566. ~5 [avatar contradiction clause 565] 569. 42 <=> predg(sK3) [avatar definition] 571. predg(sK3) <- (42) [avatar component clause 569] 573. 43 <=> predh(sK3) [avatar definition] 575. predh(sK3) <- (43) [avatar component clause 573] 577. predg(sK3) <- (7) [resolution 383,347] 578. predh(sK3) | ~room(sK3) <- (42) [resolution 571,343] 581. predh(sK3) <- (7, 42) [subsumption resolution 578,383] 582. 43 | ~7 | ~42 [avatar split clause 581,569,381,573] 592. 42 | ~7 [avatar split clause 577,381,569] 607. ~room(sK3) | prede(sK3) <- (12, 43) [resolution 406,575] 608. prede(sK3) <- (7, 12, 43) [subsumption resolution 607,383] 609. $false <- (~4, 7, 12, 43) [subsumption resolution 608,368] 610. 4 | ~7 | ~12 | ~43 [avatar contradiction clause 609] 625. $false <- (16, 40) [resolution 423,541] 626. ~16 | ~40 [avatar contradiction clause 625] 627. ~room(sK11) <- (16, 41) [subsumption resolution 552,423] 628. $false <- (16, 41) [subsumption resolution 627,530] 629. ~16 | ~41 [avatar contradiction clause 628] 630. $false [avatar sat refutation 372,384,407,424,546,566,582,592,610,626,629] % SZS output end Proof for 790820840727244444507748 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.530732
Gerry, David, Margaret are the only persons in the room. Either “everyone in the room does not practice urban gardening or is not a cybersecurity expert” or “David collects vintage vinyl records” but not both. “David either collects vintage vinyl records or does not practice urban gardening but not both” if “Gerry maintains a personal blog focused on cybersecurity tips”. Either “David is a professional photographer specializing in portrait photography” or “Gerry either practices urban gardening or creates large-scale murals for public art installations but not both” but not both. Gerry either is not a night owl or is not a cybersecurity expert but not both. Gerry does not create large-scale murals for public art installations, maintains a personal blog focused on cybersecurity tips and does not own a microscope. Gerry is not a night owl. David is not a professional photographer specializing in portrait photography.
David practices urban gardening.
entailment
room(gerry)&room(david)&room(margaret)&(![X]:(room(X)=>(X='gerry'|X='david'|X='margaret')))& ((![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(does_not_practice_urban_gardening(X))))))<~>(collects_vintage_vinyl_records(david)))& (~(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(david))<~>(does_not_collect_action_figures(david))))=>(uses_contact_lenses(gerry)))& (~(~((writes_a_travel_blog(gerry))|(practices_tai_chi(gerry))))=>(collects_first_edition_books(gerry)))& ((collects_rare_and_antique_scientific_instruments(gerry))<=>(does_not_practice_urban_gardening(david)))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(gerry))=>(((collects_vintage_vinyl_records(david))<~>(does_not_practice_urban_gardening(david)))))& ((is_a_professional_photographer_specializing_in_portrait_photography(david))<~>(((practices_urban_gardening(gerry))<~>(creates_large-scale_murals_for_public_art_installations(gerry)))))& (~(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(david))&(does_not_own_a_microscope(david))&(enjoys_camping_and_organizing_outdoor_survival_workshops(david))))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(gerry)))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(david))<~>(~(does_not_write_a_travel_blog(gerry))))& ((does_not_collect_first_edition_books(gerry))<=>(does_not_collect_first_edition_books(david)))& (~(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(david))=>(collects_action_figures(david)))& (((is_not_a_night_owl(gerry))<~>(is_not_a_cybersecurity_expert(gerry))))& (((does_not_create_large-scale_murals_for_public_art_installations(gerry))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(gerry))&(does_not_own_a_microscope(gerry))))& (owns_a_microscope(david))& (![X]:(room(X)=>(((((is_not_a_cybersecurity_expert(X))<~>(owns_a_microscope(X))))<=(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (((plays_eSports_competitively(gerry))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(gerry))))& (is_not_a_night_owl(gerry))& (is_not_a_professional_photographer_specializing_in_portrait_photography(david))& (((cannot_play_the_harmonica(gerry))|(plays_eSports_competitively(gerry))))& (does_not_play_eSports_competitively(david))& (![X]:(anywhere(X)=>(((is_a_night_owl(X))=>(owns_a_microscope(X))))))& (((does_not_create_large-scale_murals_for_public_art_installations(david))<~>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(david))))
room(gerry)&room(david)&room(margaret)&(![X]:(room(X)=>(X='gerry'|X='david'|X='margaret')))& practices_urban_gardening(david)
[ "p0", "p1", "p5", "p6", "p11", "p12", "p16", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 1797703758096308799284796 % SZS output start Proof for 1797703758096308799284796 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predd(X0) | ~predk(X0))) <~> predx(paul) [input p1] 49. predg(mary) => (predx(paul) <~> ~predd(paul)) [input p5] 50. predz(paul) <~> (predd(mary) <~> predn(mary)) [input p6] 55. ~predw(mary) <~> ~predk(mary) [input p11] 56. ~preds(mary) & predg(mary) & ~predn(mary) [input p12] 60. ~predw(mary) [input p16] 61. ~predz(paul) [input p17] 66. ~(predd(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 145. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 145] 147. ! [X0] : ((~predd(X0) | ~predk(X0)) | ~room(X0)) <~> predx(paul) [ennf transformation 45] 148. ! [X0] : (~predd(X0) | ~predk(X0) | ~room(X0)) <~> predx(paul) [flattening 147] 150. (predx(paul) <~> ~predd(paul)) | ~predg(mary) [ennf transformation 49] 156. ~predd(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 157. ~predd(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 156] 159. (~predx(paul) | ? [X0] : (predd(X0) & predk(X0) & room(X0))) & (predx(paul) | ! [X0] : (~predd(X0) | ~predk(X0) | ~room(X0))) [nnf transformation 148] 160. (~predx(paul) | ? [X0] : (predd(X0) & predk(X0) & room(X0))) & (predx(paul) | ! [X1] : (~predd(X1) | ~predk(X1) | ~room(X1))) [rectify 159] 161. ? [X0] : (predd(X0) & predk(X0) & room(X0)) => (predd(sK0) & predk(sK0) & room(sK0)) [choice axiom] 162. (~predx(paul) | (predd(sK0) & predk(sK0) & room(sK0))) & (predx(paul) | ! [X1] : (~predd(X1) | ~predk(X1) | ~room(X1))) [skolemisation 160,161] 164. ((predd(paul) | ~predx(paul)) & (~predd(paul) | predx(paul))) | ~predg(mary) [nnf transformation 150] 165. (((predd(mary) | ~predn(mary)) & (predn(mary) | ~predd(mary))) | ~predz(paul)) & (((~predn(mary) | ~predd(mary)) & (predn(mary) | predd(mary))) | predz(paul)) [nnf transformation 50] 168. (predk(mary) | predw(mary)) & (~predk(mary) | ~predw(mary)) [nnf transformation 55] 171. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 172. ~predd(paul) | (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 157,171] 254. room(mary) [cnf transformation 146] 255. room(paul) [cnf transformation 146] 256. room(fred) [cnf transformation 146] 257. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 146] 258. predx(paul) | ~predd(X1) | ~predk(X1) | ~room(X1) [cnf transformation 162] 266. predd(paul) | ~predx(paul) | ~predg(mary) [cnf transformation 164] 267. predn(mary) | predd(mary) | predz(paul) [cnf transformation 165] 277. predk(mary) | predw(mary) [cnf transformation 168] 278. ~predn(mary) [cnf transformation 56] 279. predg(mary) [cnf transformation 56] 285. ~predw(mary) [cnf transformation 60] 286. ~predz(paul) [cnf transformation 61] 291. ~predd(paul) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 172] 292. ~predd(paul) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 172] 293. ~predd(paul) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 172] 294. ~predd(paul) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 172] 300. 2 <=> predx(paul) [avatar definition] 315. 5 <=> ! [X1] : (~predd(X1) | ~room(X1) | ~predk(X1)) [avatar definition] 316. ~predd(X1) | ~room(X1) | ~predk(X1) <- (5) [avatar component clause 315] 317. 5 | 2 [avatar split clause 258,300,315] 328. 8 <=> predd(paul) [avatar definition] 338. 10 <=> predg(mary) [avatar definition] 341. ~10 | ~2 | 8 [avatar split clause 266,328,300,338] 344. 11 <=> predz(paul) [avatar definition] 348. 12 <=> predn(mary) [avatar definition] 352. 13 <=> predd(mary) [avatar definition] 354. predd(mary) <- (13) [avatar component clause 352] 358. 11 | 13 | 12 [avatar split clause 267,348,352,344] 381. 18 <=> predw(mary) [avatar definition] 385. 19 <=> predk(mary) [avatar definition] 387. predk(mary) <- (19) [avatar component clause 385] 388. 18 | 19 [avatar split clause 277,385,381] 390. 10 [avatar split clause 279,338] 391. ~12 [avatar split clause 278,348] 402. ~18 [avatar split clause 285,381] 403. ~11 [avatar split clause 286,344] 415. ~predd(paul) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 294,256] 416. ~predd(paul) | fred != sK1 | ~room(mary) [subsumption resolution 415,255] 417. ~predd(paul) | fred != sK1 [subsumption resolution 416,254] 419. 24 <=> fred = sK1 [avatar definition] 421. fred != sK1 <- (~24) [avatar component clause 419] 422. ~24 | ~8 [avatar split clause 417,328,419] 423. ~predd(paul) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 293,256] 424. ~predd(paul) | paul != sK1 | ~room(mary) [subsumption resolution 423,255] 425. ~predd(paul) | paul != sK1 [subsumption resolution 424,254] 427. 25 <=> paul = sK1 [avatar definition] 429. paul != sK1 <- (~25) [avatar component clause 427] 430. ~25 | ~8 [avatar split clause 425,328,427] 431. ~predd(paul) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 292,256] 432. ~predd(paul) | mary != sK1 | ~room(mary) [subsumption resolution 431,255] 433. ~predd(paul) | mary != sK1 [subsumption resolution 432,254] 435. 26 <=> mary = sK1 [avatar definition] 437. mary != sK1 <- (~26) [avatar component clause 435] 438. ~26 | ~8 [avatar split clause 433,328,435] 439. ~predd(paul) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 291,256] 440. ~predd(paul) | room(sK1) | ~room(mary) [subsumption resolution 439,255] 441. ~predd(paul) | room(sK1) [subsumption resolution 440,254] 443. 27 <=> room(sK1) [avatar definition] 445. room(sK1) <- (27) [avatar component clause 443] 446. 27 | ~8 [avatar split clause 441,328,443] 447. ~room(mary) | ~predk(mary) <- (5, 13) [resolution 316,354] 448. ~predk(mary) <- (5, 13) [subsumption resolution 447,254] 449. $false <- (5, 13, 19) [subsumption resolution 448,387] 450. ~5 | ~13 | ~19 [avatar contradiction clause 449] 520. paul = sK1 | mary = sK1 | fred = sK1 <- (27) [resolution 257,445] 534. mary = sK1 | fred = sK1 <- (~25, 27) [subsumption resolution 520,429] 535. fred = sK1 <- (~25, ~26, 27) [subsumption resolution 534,437] 536. $false <- (~24, ~25, ~26, 27) [subsumption resolution 535,421] 537. 24 | 25 | 26 | ~27 [avatar contradiction clause 536] 538. $false [avatar sat refutation 317,341,358,388,390,391,402,403,422,430,438,446,450,537] % SZS output end Proof for 1797703758096308799284796 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.050879
Jesse is the only person in the room. If everyone in the room does not create augmented reality experiences for mobile applications or is a client of Costco then more than one person in the room owns a microscope. If someone is dedicated to sustainable living and zero-waste practices, is a cybersecurity expert or creates augmented reality experiences for mobile applications then he/she collects limited-edition art prints from contemporary artists and vice versa. Everyone anywhere who regularly contributes to tech forums and online communities is an active member of a local robotics club. Everyone in the room who is not a client of Costco is dedicated to sustainable living and zero-waste practices. Everyone in the room who is dedicated to sustainable living and zero-waste practices is a coffee connoisseur.
Jesse is a coffee connoisseur.
entailment
room(jesse)&(![X]:(room(X)=>(X='jesse')))& ((![X]:(room(X)=>(((is_a_client_of_Costco(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))=>((?[X,Y]:(room(X)&room(Y)&(owns_a_microscope(X)&owns_a_microscope(Y))&(X!=Y)))))& ((![X]:((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_cybersecurity_expert(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))<=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))& (![X]:(anywhere(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (?[X]:(room(X)&(is_a_cybersecurity_expert(X))))& (![X]:(~room(X)=>(((is_a_client_of_Costco(X))=>(owns_a_microscope(X))))))& (((?[X]:(anywhere(X)&designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& ((![X]:((creates_augmented_reality_experiences_for_mobile_applications(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (?[X]:(~room(X)&(watches_fantasy_movies(X))))& (~![X]:(anywhere(X)=>(((((is_a_cybersecurity_expert(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(~room(X)=>(((is_a_client_of_Costco(X))|(is_not_a_client_of_Costco(X))))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(is_a_coffee_connoisseur(X))))))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(collects_foreign_coins(X))))))
room(jesse)&(![X]:(room(X)=>(X='jesse')))& is_a_coffee_connoisseur(jesse)
[ "p0", "p1", "p11", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 6229996683006452690520535 % SZS output start Proof for 6229996683006452690520535 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predb(X0) | predm(X0))) => ? [X0,X1] : (X0 != X1 & predj(X1) & predj(X0) & room(X1) & room(X0)) [input p1] 55. ! [X0] : (room(X0) => (~predm(X0) => predp(X0))) [input p11] 56. ! [X0] : (room(X0) => (predp(X0) => predo(X0))) [input p12] 58. ~(predo(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 59. ! [X0] : (room(X0) => (~predb(X0) | predm(X0))) => ? [X1,X2] : (X1 != X2 & predj(X2) & predj(X1) & room(X2) & room(X1)) [rectify 45] 68. ! [X0] : (room(X0) => (~predb(X0) | predm(X0))) => ? [X1,X2] : (X1 != X2 & room(X2) & room(X1)) [pure predicate removal 59] 146. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 147. ? [X1,X2] : (X1 != X2 & room(X2) & room(X1)) | ? [X0] : ((predb(X0) & ~predm(X0)) & room(X0)) [ennf transformation 68] 148. ? [X1,X2] : (X1 != X2 & room(X2) & room(X1)) | ? [X0] : (predb(X0) & ~predm(X0) & room(X0)) [flattening 147] 152. ! [X0] : ((predp(X0) | predm(X0)) | ~room(X0)) [ennf transformation 55] 153. ! [X0] : (predp(X0) | predm(X0) | ~room(X0)) [flattening 152] 154. ! [X0] : ((predo(X0) | ~predp(X0)) | ~room(X0)) [ennf transformation 56] 155. ! [X0] : (predo(X0) | ~predp(X0) | ~room(X0)) [flattening 154] 156. ~predo(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 58] 157. ? [X0] : (predb(X0) & ~predm(X0) & room(X0)) | ~sP0 [predicate definition introduction] 158. ? [X1,X2] : (X1 != X2 & room(X2) & room(X1)) | sP0 [definition folding 148,157] 160. ? [X0] : (predb(X0) & ~predm(X0) & room(X0)) | ~sP0 [nnf transformation 157] 161. ? [X0] : (predb(X0) & ~predm(X0) & room(X0)) => (predb(sK1) & ~predm(sK1) & room(sK1)) [choice axiom] 162. (predb(sK1) & ~predm(sK1) & room(sK1)) | ~sP0 [skolemisation 160,161] 163. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) | sP0 [rectify 158] 164. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) => (sK2 != sK3 & room(sK3) & room(sK2)) [choice axiom] 165. (sK2 != sK3 & room(sK3) & room(sK2)) | sP0 [skolemisation 163,164] 172. ? [X0] : (mary != X0 & room(X0)) => (mary != sK7 & room(sK7)) [choice axiom] 173. ~predo(mary) | (mary != sK7 & room(sK7)) | ~room(mary) [skolemisation 156,172] 254. room(mary) [cnf transformation 146] 255. ~room(X0) | mary = X0 [cnf transformation 146] 256. room(sK1) | ~sP0 [cnf transformation 162] 257. ~predm(sK1) | ~sP0 [cnf transformation 162] 259. room(sK2) | sP0 [cnf transformation 165] 260. room(sK3) | sP0 [cnf transformation 165] 261. sK2 != sK3 | sP0 [cnf transformation 165] 267. ~room(X0) | predm(X0) | predp(X0) [cnf transformation 153] 268. ~predp(X0) | predo(X0) | ~room(X0) [cnf transformation 155] 269. ~predo(mary) | room(sK7) | ~room(mary) [cnf transformation 173] 270. ~predo(mary) | mary != sK7 | ~room(mary) [cnf transformation 173] 272. 1 <=> sP0 [avatar definition] 281. 3 <=> predm(sK1) [avatar definition] 283. ~predm(sK1) <- (~3) [avatar component clause 281] 284. ~1 | ~3 [avatar split clause 257,281,272] 286. 4 <=> room(sK1) [avatar definition] 288. room(sK1) <- (4) [avatar component clause 286] 289. ~1 | 4 [avatar split clause 256,286,272] 291. 5 <=> sK2 = sK3 [avatar definition] 293. sK2 != sK3 <- (~5) [avatar component clause 291] 294. 1 | ~5 [avatar split clause 261,291,272] 296. 6 <=> room(sK3) [avatar definition] 298. room(sK3) <- (6) [avatar component clause 296] 299. 1 | 6 [avatar split clause 260,296,272] 301. 7 <=> room(sK2) [avatar definition] 303. room(sK2) <- (7) [avatar component clause 301] 304. 1 | 7 [avatar split clause 259,301,272] 305. ~predo(mary) | mary != sK7 [subsumption resolution 270,254] 307. 8 <=> mary = sK7 [avatar definition] 309. mary != sK7 <- (~8) [avatar component clause 307] 311. 9 <=> predo(mary) [avatar definition] 314. ~8 | ~9 [avatar split clause 305,311,307] 315. ~predo(mary) | room(sK7) [subsumption resolution 269,254] 317. 10 <=> room(sK7) [avatar definition] 319. room(sK7) <- (10) [avatar component clause 317] 320. 10 | ~9 [avatar split clause 315,311,317] 322. mary = sK2 <- (7) [resolution 255,303] 323. mary = sK3 <- (6) [resolution 255,298] 325. mary != sK3 <- (~5, 7) [backward demodulation 293,322] 327. $false <- (~5, 6, 7) [subsumption resolution 323,325] 328. 5 | ~6 | ~7 [avatar contradiction clause 327] 332. mary = sK1 <- (4) [resolution 288,255] 334. ~predm(mary) <- (~3, 4) [backward demodulation 283,332] 336. predm(mary) | predp(mary) [resolution 267,254] 337. predp(mary) <- (~3, 4) [subsumption resolution 336,334] 339. predo(mary) | ~room(mary) <- (~3, 4) [resolution 268,337] 352. predo(mary) <- (~3, 4) [subsumption resolution 339,254] 353. 9 | 3 | ~4 [avatar split clause 352,286,281,311] 355. mary = sK7 <- (10) [resolution 319,255] 365. $false <- (~8, 10) [subsumption resolution 355,309] 366. 8 | ~10 [avatar contradiction clause 365] 367. $false [avatar sat refutation 284,289,294,299,304,314,320,328,353,366] % SZS output end Proof for 6229996683006452690520535 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.110305
Diane, Ty, Destiny, Ronald are the only persons in the room. If “everyone anywhere is wise” then “someone in the room enjoys writing detailed reviews of new and classic board games”. If “someone in the room enjoys writing detailed reviews of new and classic board games” then “someone in the room is quiet”. “Someone in the room is not liked by Lori” only if “everyone in the room is brave”. “Someone outside the room is not creative” only if “more than one person in the room collects antique jewelry”. Someone who designs and sews custom cosplay costumes for conventions is a sibling of someone who does not compete in national level swimming championships. Everyone in the room is tall. Ronald enjoys origami. Everyone anywhere enjoys origami. All strong persons are wise. All funny persons are strong. All patient persons are happy. Ty is calm. Tonya and Ronald hate each other. Someone in the room is a humble european. Everyone anywhere is wise. Someone in the room is quiet. Everyone in the room is a creative european. More than one person in the room collects antique jewelry.
Diane is creative.
entailment
room(diane)&room(ty)&room(destiny)&room(ronald)&(![X]:(room(X)=>(X='diane'|X='ty'|X='destiny'|X='ronald')))& (((![X]:(anywhere(X)=>(wise(X))))=>(?[X]:(room(X)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& ((?[X]:(room(X)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(?[X]:(room(X)&(quiet(X))))))& ((?[X]:(room(X)&(~like(X,lori))))=>(![X]:(room(X)=>(brave(X)))))& ((?[X]:(~room(X)&(~creative(X))))=>((?[X,Y]:(room(X)&room(Y)&(collects_antique_jewelry(X)&collects_antique_jewelry(Y))&(X!=Y)))))& (?[X,Y]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(does_not_compete_in_national_level_swimming_championships(Y))&(sibling(X,Y))))& (![X]:(room(X)=>(tall(X))))& (enjoys_origami(ronald))& (![X]:(anywhere(X)=>(enjoys_origami(X))))& (![X]:(strong(X)=>wise(X)))& (![X]:(funny(X)=>strong(X)))& (![X]:(patient(X)=>happy(X)))& (calm(ty))& ((hate(tonya,ronald) & hate(ronald,tonya)))& (?[X]:(room(X)&(humble(X)&european(X))))& (![X]:(anywhere(X)=>(wise(X))))& (?[X]:(room(X)&(quiet(X))))& (![X]:(room(X)=>(creative(X)&european(X))))& ((?[X,Y]:(room(X)&room(Y)&(collects_antique_jewelry(X)&collects_antique_jewelry(Y))&(X!=Y))))
room(diane)&room(ty)&room(destiny)&room(ronald)&(![X]:(room(X)=>(X='diane'|X='ty'|X='destiny'|X='ronald')))& creative(diane)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 4325542197225604635454770 % SZS output start Proof for 4325542197225604635454770 44. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (european(X0) & creative(X0))) & ? [X0] : (quiet(X0) & room(X0)) & ! [X0] : (anywhere(X0) => wise(X0)) & ? [X0] : (european(X0) & humble(X0) & room(X0)) & hate(alice,lucy) & hate(lucy,alice) & calm(paul) & ! [X0] : (patient(X0) => happy(X0)) & ! [X0] : (funny(X0) => strong(X0)) & ! [X0] : (strong(X0) => wise(X0)) & ! [X0] : (anywhere(X0) => predi(X0)) & predi(alice) & ! [X0] : (room(X0) => tall(X0)) & ? [X0,X1] : (sibling(X0,X1) & ~predt(X1) & predq(X0)) & (? [X0] : (~creative(X0) & ~room(X0)) => ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0))) & (? [X0] : (~like(X0,susan) & room(X0)) => ! [X0] : (room(X0) => brave(X0))) & (? [X0] : (predn(X0) & room(X0)) => ? [X0] : (quiet(X0) & room(X0))) & (! [X0] : (anywhere(X0) => wise(X0)) => ? [X0] : (predn(X0) & room(X0))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(creative(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & humble(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & calm(paul) & ! [X6] : (patient(X6) => happy(X6)) & ! [X7] : (funny(X7) => strong(X7)) & ! [X8] : (strong(X8) => wise(X8)) & ! [X9] : (anywhere(X9) => predi(X9)) & predi(alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & calm(paul) & ! [X6] : (patient(X6) => happy(X6)) & ! [X7] : (funny(X7) => strong(X7)) & ! [X8] : (strong(X8) => wise(X8)) & ! [X9] : (anywhere(X9) => predi(X9)) & predi(alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ! [X6] : (patient(X6) => happy(X6)) & ! [X7] : (funny(X7) => strong(X7)) & ! [X8] : (strong(X8) => wise(X8)) & ! [X9] : (anywhere(X9) => predi(X9)) & predi(alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ! [X7] : (funny(X7) => strong(X7)) & ! [X8] : (strong(X8) => wise(X8)) & ! [X9] : (anywhere(X9) => predi(X9)) & predi(alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ! [X8] : (strong(X8) => wise(X8)) & ! [X9] : (anywhere(X9) => predi(X9)) & predi(alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ! [X9] : (anywhere(X9) => predi(X9)) & predi(alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ! [X10] : (room(X10) => tall(X10)) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ? [X11,X12] : (sibling(X11,X12) & ~predt(X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ? [X11,X12] : (sibling(X11,X12) & predq(X11)) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. ? [X0,X1] : (X0 != X1 & predv(X1) & predv(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ? [X11,X12] : sibling(X11,X12) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & predv(X15) & predv(X14) & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ? [X11,X12] : sibling(X11,X12) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & room(X15) & room(X14))) & (? [X16] : (~like(X16,susan) & room(X16)) => ! [X17] : (room(X17) => brave(X17))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & hate(alice,lucy) & hate(lucy,alice) & ? [X11,X12] : sibling(X11,X12) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & room(X15) & room(X14))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 60. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (room(X2) => (european(X2) & creative(X2))) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : (european(X5) & room(X5)) & ? [X11,X12] : sibling(X11,X12) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & room(X15) & room(X14))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 63. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (room(X2) => creative(X2)) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (anywhere(X4) => wise(X4)) & ? [X5] : room(X5) & ? [X11,X12] : sibling(X11,X12) & (? [X13] : (~creative(X13) & ~room(X13)) => ? [X14,X15] : (X14 != X15 & room(X15) & room(X14))) & (? [X18] : (predn(X18) & room(X18)) => ? [X19] : (quiet(X19) & room(X19))) & (! [X20] : (anywhere(X20) => wise(X20)) => ? [X21] : (predn(X21) & room(X21))) & ! [X22] : (room(X22) => (alice = X22 | fred = X22 | paul = X22 | mary = X22)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 60] 131. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (creative(X2) | ~room(X2)) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (wise(X4) | ~anywhere(X4)) & ? [X5] : room(X5) & ? [X11,X12] : sibling(X11,X12) & (? [X14,X15] : (X14 != X15 & room(X15) & room(X14)) | ! [X13] : (creative(X13) | room(X13))) & (? [X19] : (quiet(X19) & room(X19)) | ! [X18] : (~predn(X18) | ~room(X18))) & (? [X21] : (predn(X21) & room(X21)) | ? [X20] : (~wise(X20) & anywhere(X20))) & ! [X22] : ((alice = X22 | fred = X22 | paul = X22 | mary = X22) | ~room(X22)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 132. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (creative(X2) | ~room(X2)) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (wise(X4) | ~anywhere(X4)) & ? [X5] : room(X5) & ? [X11,X12] : sibling(X11,X12) & (? [X14,X15] : (X14 != X15 & room(X15) & room(X14)) | ! [X13] : (creative(X13) | room(X13))) & (? [X19] : (quiet(X19) & room(X19)) | ! [X18] : (~predn(X18) | ~room(X18))) & (? [X21] : (predn(X21) & room(X21)) | ? [X20] : (~wise(X20) & anywhere(X20))) & ! [X22] : (alice = X22 | fred = X22 | paul = X22 | mary = X22 | ~room(X22)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 131] 133. ~creative(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 134. ~creative(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 133] 136. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (creative(X2) | ~room(X2)) & ? [X3] : (quiet(X3) & room(X3)) & ! [X4] : (wise(X4) | ~anywhere(X4)) & ? [X5] : room(X5) & ? [X6,X7] : sibling(X6,X7) & (? [X8,X9] : (X8 != X9 & room(X9) & room(X8)) | ! [X10] : (creative(X10) | room(X10))) & (? [X11] : (quiet(X11) & room(X11)) | ! [X12] : (~predn(X12) | ~room(X12))) & (? [X13] : (predn(X13) & room(X13)) | ? [X14] : (~wise(X14) & anywhere(X14))) & ! [X15] : (alice = X15 | fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 132] 137. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) => (sK0 != sK1 & room(sK1) & room(sK0)) [choice axiom] 138. ? [X3] : (quiet(X3) & room(X3)) => (quiet(sK2) & room(sK2)) [choice axiom] 139. ? [X5] : room(X5) => room(sK3) [choice axiom] 140. ? [X6,X7] : sibling(X6,X7) => sibling(sK4,sK5) [choice axiom] 141. ? [X8,X9] : (X8 != X9 & room(X9) & room(X8)) => (sK6 != sK7 & room(sK7) & room(sK6)) [choice axiom] 142. ? [X11] : (quiet(X11) & room(X11)) => (quiet(sK8) & room(sK8)) [choice axiom] 143. ? [X13] : (predn(X13) & room(X13)) => (predn(sK9) & room(sK9)) [choice axiom] 144. ? [X14] : (~wise(X14) & anywhere(X14)) => (~wise(sK10) & anywhere(sK10)) [choice axiom] 145. (sK0 != sK1 & room(sK1) & room(sK0)) & ! [X2] : (creative(X2) | ~room(X2)) & (quiet(sK2) & room(sK2)) & ! [X4] : (wise(X4) | ~anywhere(X4)) & room(sK3) & sibling(sK4,sK5) & ((sK6 != sK7 & room(sK7) & room(sK6)) | ! [X10] : (creative(X10) | room(X10))) & ((quiet(sK8) & room(sK8)) | ! [X12] : (~predn(X12) | ~room(X12))) & ((predn(sK9) & room(sK9)) | (~wise(sK10) & anywhere(sK10))) & ! [X15] : (alice = X15 | fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 136,144,143,142,141,140,139,138,137] 146. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK11 & fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) [choice axiom] 147. ~creative(mary) | (alice != sK11 & fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 134,146] 229. room(mary) [cnf transformation 145] 230. room(paul) [cnf transformation 145] 231. room(fred) [cnf transformation 145] 232. room(alice) [cnf transformation 145] 233. ~room(X15) | fred = X15 | paul = X15 | mary = X15 | alice = X15 [cnf transformation 145] 248. ~room(X2) | creative(X2) [cnf transformation 145] 252. ~creative(mary) | room(sK11) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 253. ~creative(mary) | mary != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 254. ~creative(mary) | paul != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 255. ~creative(mary) | fred != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 256. ~creative(mary) | alice != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 294. ~creative(mary) | alice != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,232] 295. ~creative(mary) | alice != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 294,231] 296. ~creative(mary) | alice != sK11 | ~room(mary) [subsumption resolution 295,230] 297. ~creative(mary) | alice != sK11 [subsumption resolution 296,229] 299. 8 <=> alice = sK11 [avatar definition] 301. alice != sK11 <- (~8) [avatar component clause 299] 303. 9 <=> creative(mary) [avatar definition] 306. ~8 | ~9 [avatar split clause 297,303,299] 307. ~creative(mary) | fred != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,232] 308. ~creative(mary) | fred != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 307,231] 309. ~creative(mary) | fred != sK11 | ~room(mary) [subsumption resolution 308,230] 310. ~creative(mary) | fred != sK11 [subsumption resolution 309,229] 312. 10 <=> fred = sK11 [avatar definition] 314. fred != sK11 <- (~10) [avatar component clause 312] 315. ~10 | ~9 [avatar split clause 310,303,312] 316. ~creative(mary) | paul != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 254,232] 317. ~creative(mary) | paul != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 316,231] 318. ~creative(mary) | paul != sK11 | ~room(mary) [subsumption resolution 317,230] 319. ~creative(mary) | paul != sK11 [subsumption resolution 318,229] 321. 11 <=> paul = sK11 [avatar definition] 323. paul != sK11 <- (~11) [avatar component clause 321] 324. ~11 | ~9 [avatar split clause 319,303,321] 325. ~creative(mary) | mary != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 253,232] 326. ~creative(mary) | mary != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 325,231] 327. ~creative(mary) | mary != sK11 | ~room(mary) [subsumption resolution 326,230] 328. ~creative(mary) | mary != sK11 [subsumption resolution 327,229] 330. 12 <=> mary = sK11 [avatar definition] 332. mary != sK11 <- (~12) [avatar component clause 330] 333. ~12 | ~9 [avatar split clause 328,303,330] 334. ~creative(mary) | room(sK11) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 252,232] 335. ~creative(mary) | room(sK11) | ~room(paul) | ~room(mary) [subsumption resolution 334,231] 336. ~creative(mary) | room(sK11) | ~room(mary) [subsumption resolution 335,230] 337. ~creative(mary) | room(sK11) [subsumption resolution 336,229] 339. 13 <=> room(sK11) [avatar definition] 341. room(sK11) <- (13) [avatar component clause 339] 342. 13 | ~9 [avatar split clause 337,303,339] 343. creative(mary) [resolution 248,229] 356. 9 [avatar split clause 343,303] 428. fred = sK11 | paul = sK11 | mary = sK11 | alice = sK11 <- (13) [resolution 233,341] 565. paul = sK11 | mary = sK11 | alice = sK11 <- (~10, 13) [subsumption resolution 428,314] 566. mary = sK11 | alice = sK11 <- (~10, ~11, 13) [subsumption resolution 565,323] 567. alice = sK11 <- (~10, ~11, ~12, 13) [subsumption resolution 566,332] 568. $false <- (~8, ~10, ~11, ~12, 13) [subsumption resolution 567,301] 569. 8 | 10 | 11 | 12 | ~13 [avatar contradiction clause 568] 570. $false [avatar sat refutation 306,315,324,333,342,356,569] % SZS output end Proof for 4325542197225604635454770 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.086013
Joseph, Maria are the only persons in the room. All curious persons are calm. Everyone in the room is a wise person. Everyone outside the room is a wise person. Not everyone in the room is a humble person. Everyone in the room is a kind person. Everyone in the room is a calm person. More than one person anywhere is a calm person. More than one person in the room is a tall person. Not everyone in the room is funny. Everyone outside the room is a kind person. Only one person anywhere is a brave person.
All calm persons are humble.
contradiction
room(joseph)&room(maria)&(![X]:(room(X)=>(X='joseph'|X='maria')))& (![X]:(curious(X)=>calm(X)))& (![X]:(room(X)=>(wise(X)&person(X))))& (![X]:(~room(X)=>(wise(X)&person(X))))& (~![X]:(room(X)=>(humble(X)&person(X))))& (![X]:(room(X)=>(kind(X)&person(X))))& (![X]:(room(X)=>(calm(X)&person(X))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(calm(X)&person(X)&calm(Y)&person(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(tall(X)&person(X)&tall(Y)&person(Y))&(X!=Y))))& (~![X]:(room(X)=>(funny(X))))& (![X]:(~room(X)=>(kind(X)&person(X))))& (((?[X]:(anywhere(X)&brave(X)&person(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(brave(X)&person(X))&(brave(Y)&person(Y)))=>(X=Y)))))
room(joseph)&room(maria)&(![X]:(room(X)=>(X='joseph'|X='maria')))& ![X]:(calm(X)=>humble(X))
[ "p2", "p3", "p4", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 6492881883801042442444731 % SZS output start Proof for 6492881883801042442444731 46. ! [X0] : (room(X0) => (person(X0) & wise(X0))) [input p2] 47. ! [X0] : (~room(X0) => (person(X0) & wise(X0))) [input p3] 48. ~! [X0] : (room(X0) => (person(X0) & humble(X0))) [input p4] 50. ! [X0] : (room(X0) => (person(X0) & calm(X0))) [input p6] 56. ! [X0] : (calm(X0) => humble(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 58. ! [X0] : (calm(X0) => humble(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 56] 63. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 46] 64. ! [X0] : (~room(X0) => person(X0)) [pure predicate removal 47] 139. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 63] 140. ! [X0] : (person(X0) | room(X0)) [ennf transformation 64] 141. ? [X0] : ((~person(X0) | ~humble(X0)) & room(X0)) [ennf transformation 48] 143. ! [X0] : ((person(X0) & calm(X0)) | ~room(X0)) [ennf transformation 50] 148. ! [X0] : (humble(X0) | ~calm(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 58] 149. ! [X0] : (humble(X0) | ~calm(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 148] 151. ? [X0] : ((~person(X0) | ~humble(X0)) & room(X0)) => ((~person(sK0) | ~humble(sK0)) & room(sK0)) [choice axiom] 152. (~person(sK0) | ~humble(sK0)) & room(sK0) [skolemisation 141,151] 245. ~room(X0) | person(X0) [cnf transformation 139] 246. person(X0) | room(X0) [cnf transformation 140] 247. room(sK0) [cnf transformation 152] 248. ~person(sK0) | ~humble(sK0) [cnf transformation 152] 250. ~room(X0) | calm(X0) [cnf transformation 143] 273. ~calm(X0) | humble(X0) [cnf transformation 149] 274. person(X0) [subsumption resolution 246,245] 275. ~humble(sK0) [subsumption resolution 248,274] 288. calm(sK0) [resolution 250,247] 297. humble(sK0) [resolution 288,273] 298. $false [subsumption resolution 297,275] % SZS output end Proof for 6492881883801042442444731 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.199324
Christine, Janet, Anthony, Glenn, Anna are the only persons in the room. Christine and Anna are respectively old and kind. Janet is a quiet person. If someone is a kind quiet person then he/she is quiet and is a old person. Anna is the least rich outside the room. All quiet persons are old. At least one person in the room is a quiet kind person. More than one person in the room is kind.
Janet is old.
entailment
room(christine)&room(janet)&room(anthony)&room(glenn)&room(anna)&(![X]:(room(X)=>(X='christine'|X='janet'|X='anthony'|X='glenn'|X='anna')))& ((old(christine))&(kind(anna)))& (quiet(janet)&person(janet))& ((![X]:((kind(X)&quiet(X)&person(X))=>(((quiet(X))&(old(X)&person(X)))))))& (![X]:((~room(X)&(X!=anna))=>richer(anna,X)))& (![X]:(quiet(X)=>old(X)))& (((?[X]:(room(X)&quiet(X)&kind(X)&person(X)))))& ((?[X,Y]:(room(X)&room(Y)&(kind(X)&kind(Y))&(X!=Y))))& (?[X]:(~room(X)&(tall(X))))& (![X]:(room(X)=>(((tall(X))<=>(old(X)&person(X))))))
room(christine)&room(janet)&room(anthony)&room(glenn)&room(anna)&(![X]:(room(X)=>(X='christine'|X='janet'|X='anthony'|X='glenn'|X='anna')))& old(janet)
[ "p0", "p2", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 4759182853078443576244945 % SZS output start Proof for 4759182853078443576244945 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. person(paul) & quiet(paul) [input p2] 49. ! [X0] : (quiet(X0) => old(X0)) [input p5] 54. ~(old(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 127. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 127] 133. ! [X0] : (old(X0) | ~quiet(X0)) [ennf transformation 49] 135. ~old(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 54] 136. ~old(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 135] 146. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 147. ~old(paul) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 136,146] 228. room(mary) [cnf transformation 128] 229. room(paul) [cnf transformation 128] 230. room(fred) [cnf transformation 128] 231. room(alice) [cnf transformation 128] 232. room(john) [cnf transformation 128] 233. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 128] 236. quiet(paul) [cnf transformation 46] 242. ~quiet(X0) | old(X0) [cnf transformation 133] 257. ~old(paul) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 258. ~old(paul) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 259. ~old(paul) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 260. ~old(paul) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 261. ~old(paul) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 262. ~old(paul) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 263. ~old(paul) | john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,232] 264. ~old(paul) | john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,231] 265. ~old(paul) | john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 264,230] 266. ~old(paul) | john != sK4 | ~room(mary) [subsumption resolution 265,229] 267. ~old(paul) | john != sK4 [subsumption resolution 266,228] 269. 1 <=> john = sK4 [avatar definition] 271. john != sK4 <- (~1) [avatar component clause 269] 273. 2 <=> old(paul) [avatar definition] 276. ~1 | ~2 [avatar split clause 267,273,269] 277. ~old(paul) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 261,232] 278. ~old(paul) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,231] 279. ~old(paul) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 278,230] 280. ~old(paul) | alice != sK4 | ~room(mary) [subsumption resolution 279,229] 281. ~old(paul) | alice != sK4 [subsumption resolution 280,228] 283. 3 <=> alice = sK4 [avatar definition] 285. alice != sK4 <- (~3) [avatar component clause 283] 286. ~3 | ~2 [avatar split clause 281,273,283] 287. ~old(paul) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,232] 288. ~old(paul) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 287,231] 289. ~old(paul) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 288,230] 290. ~old(paul) | fred != sK4 | ~room(mary) [subsumption resolution 289,229] 291. ~old(paul) | fred != sK4 [subsumption resolution 290,228] 293. 4 <=> fred = sK4 [avatar definition] 295. fred != sK4 <- (~4) [avatar component clause 293] 296. ~4 | ~2 [avatar split clause 291,273,293] 297. ~old(paul) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,232] 298. ~old(paul) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,231] 299. ~old(paul) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 298,230] 300. ~old(paul) | paul != sK4 | ~room(mary) [subsumption resolution 299,229] 301. ~old(paul) | paul != sK4 [subsumption resolution 300,228] 303. 5 <=> paul = sK4 [avatar definition] 305. paul != sK4 <- (~5) [avatar component clause 303] 306. ~5 | ~2 [avatar split clause 301,273,303] 307. ~old(paul) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 258,232] 308. ~old(paul) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 307,231] 309. ~old(paul) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 308,230] 310. ~old(paul) | mary != sK4 | ~room(mary) [subsumption resolution 309,229] 311. ~old(paul) | mary != sK4 [subsumption resolution 310,228] 313. 6 <=> mary = sK4 [avatar definition] 315. mary != sK4 <- (~6) [avatar component clause 313] 316. ~6 | ~2 [avatar split clause 311,273,313] 317. ~old(paul) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 257,232] 318. ~old(paul) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 317,231] 319. ~old(paul) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 318,230] 320. ~old(paul) | room(sK4) | ~room(mary) [subsumption resolution 319,229] 321. ~old(paul) | room(sK4) [subsumption resolution 320,228] 323. 7 <=> room(sK4) [avatar definition] 325. room(sK4) <- (7) [avatar component clause 323] 326. 7 | ~2 [avatar split clause 321,273,323] 327. old(paul) [resolution 242,236] 331. 2 [avatar split clause 327,273] 532. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (7) [resolution 233,325] 596. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (~3, 7) [subsumption resolution 532,285] 597. paul = sK4 | mary = sK4 | john = sK4 <- (~3, ~4, 7) [subsumption resolution 596,295] 598. mary = sK4 | john = sK4 <- (~3, ~4, ~5, 7) [subsumption resolution 597,305] 599. john = sK4 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 598,315] 600. $false <- (~1, ~3, ~4, ~5, ~6, 7) [subsumption resolution 599,271] 601. 1 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 600] 602. $false [avatar sat refutation 276,286,296,306,316,326,331,601] % SZS output end Proof for 4759182853078443576244945 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.133425
Viola is the only person in the room. Everyone in the room is not a certified yoga instructor teaching classes weekly or is a member of a local theater group specializing in improv if Viola enjoys deep-sea diving and exploring underwater caves. Viola is a certified yoga instructor teaching classes weekly unless no one in the room does not regularly goes on multi-day backpacking trips in national parks or enjoys writing detailed reviews of new and classic board games. If everyone in the room does not enjoy macrame or drives a hybrid car then Viola drives a hybrid car. If someone enjoys virtual reality gaming then he/she collects action figures. Viola does not collect action figures. Everyone in the room does not enjoy macrame or drives a hybrid car. Everyone in the room is not a professional photographer specializing in portrait photography or is a member of a local theater group specializing in improv. Everyone outside the room is a member of a local theater group specializing in improv if they is not a professional photographer specializing in portrait photography. Viola is a certified yoga instructor teaching classes weekly or enjoys deep-sea diving and exploring underwater caves or both. Someone in the room is an avid hiker.
Viola can play the guitar.
neutral
room(viola)&(![X]:(room(X)=>(X='viola')))& ((enjoys_deep-sea_diving_and_exploring_underwater_caves(viola))=>(![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& (~(~?[X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(viola)))& ((![X]:(room(X)=>(((drives_a_hybrid_car(X))|(does_not_enjoy_macrame(X))))))=>(drives_a_hybrid_car(viola)))& ((![X]:((enjoys_virtual_reality_gaming(X))=>(collects_action_figures(X)))))& (does_not_collect_action_figures(viola))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))|(does_not_enjoy_macrame(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(~room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (((is_a_certified_yoga_instructor_teaching_classes_weekly(viola))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(viola))))& (?[X]:(room(X)&(is_an_avid_hiker(X))))& (is_an_avid_hiker(viola))& (![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(is_not_right-handed(X))))))& (drives_a_hybrid_car(viola))& ((![X]:((collects_vintage_stamps(X))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(viola))& (![X]:(room(X)=>(enjoys_spelunking(X))))& (((is_a_member_of_a_local_theater_group_specializing_in_improv(viola))|(does_enjoy_trail_running(viola))))& (![X]:(room(X)=>(((is_right-handed(X))=>(((develops_open-source_software_projects_in_their_free_time(X))|(enjoys_spelunking(X))))))))& (![X]:(room(X)=>(((((develops_open-source_software_projects_in_their_free_time(X))|(enjoys_spelunking(X))))=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& ((![X]:((((does_not_develop_open-source_software_projects_in_their_free_time(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))<=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))<=>(((can_play_the_guitar(X))|(does_not_watche_fantasy_movies(X))|(cannot_play_the_guitar(X))))))))& (![X]:(~room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(enjoys_macrame(X))))))& (is_not_right-handed(viola))
room(viola)&(![X]:(room(X)=>(X='viola')))& can_play_the_guitar(viola)
[]
null
0
There is a room. Everyone in the room creates YouTube content. Everyone in the room enjoys rooftop gardening, does not participate in citizen science projects related to wildlife monitoring or creates YouTube content if they practices pilates, hosts regular workshops on creative writing and enjoys rooftop gardening. If someone enjoys rooftop gardening then he/she practices pilates. Everyone in the room practices pilates if they does not create YouTube content. Someone anywhere either participates in citizen science projects related to wildlife monitoring or does not host regular workshops on creative writing but not both. Everyone in the room who enjoys rooftop gardening neither does not host regular workshops on creative writing nor creates YouTube content. Everyone in the room who does not participate in citizen science projects related to wildlife monitoring does not host regular workshops on creative writing. Everyone in the room who does not host regular workshops on creative writing either participates in citizen science projects related to wildlife monitoring or enjoys rooftop gardening but not both. Everyone in the room either participates in citizen science projects related to wildlife monitoring or enjoys rooftop gardening but not both only if they enjoys rooftop gardening or practices pilates or both. Everyone outside the room does not create YouTube content. Everyone in the room hosts regular workshops on creative writing only if they creates YouTube content. Everyone in the room who creates YouTube content practices pilates. Gloria dreamt that “everyone in the room practices pilates if and only if they participates in citizen science projects related to wildlife monitoring”. If someone does not enjoy rooftop gardening then he/she creates YouTube content. Everyone in the room does not create YouTube content if they practices pilates, enjoys rooftop gardening and creates YouTube content.
Everyone outside the room does not participate in citizen science projects related to wildlife monitoring.
neutral
(there_is_a_room)& (![X]:(room(X)=>(creates_YouTube_content(X))))& (![X]:(room(X)=>(((((practices_pilates(X))&(hosts_regular_workshops_on_creative_writing(X))&(enjoys_rooftop_gardening(X))))=>(((enjoys_rooftop_gardening(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(creates_YouTube_content(X))))))))& ((![X]:((enjoys_rooftop_gardening(X))=>(practices_pilates(X)))))& (![X]:(room(X)=>(((does_not_create_YouTube_content(X))=>(practices_pilates(X))))))& (?[X]:(anywhere(X)&(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<~>(does_not_host_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(~((does_not_host_regular_workshops_on_creative_writing(X))|(creates_YouTube_content(X))))))))& (![X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(does_not_host_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<~>(enjoys_rooftop_gardening(X))))))))& (![X]:(room(X)=>(((((enjoys_rooftop_gardening(X))|(practices_pilates(X))))<=(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<~>(enjoys_rooftop_gardening(X))))))))& (![X]:(~room(X)=>(does_not_create_YouTube_content(X))))& (![X]:(room(X)=>(((creates_YouTube_content(X))<=(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(practices_pilates(X))))))& ((gloria_dream=>(![X]:(room(X)=>(((practices_pilates(X))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))))& ((![X]:((does_not_enjoy_rooftop_gardening(X))=>(creates_YouTube_content(X)))))& (![X]:(room(X)=>(((((practices_pilates(X))&(enjoys_rooftop_gardening(X))&(creates_YouTube_content(X))))=>(does_not_create_YouTube_content(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X)))
[]
null
0
Elizabeth, Garrett, Judith, James, Mary are the only persons in the room. Elizabeth who is a cybersecurity expert is a night owl. Everyone in the room enjoys camping and organizing outdoor survival workshops if they hosts regular game nights featuring complex strategy games. Garrett is a night owl. Everyone in the room does not enjoy windsurfing, mentors a youth basketball team on weekends and develops open-source software projects in their free time if they is a cybersecurity expert. Everyone in the room enjoys camping and organizing outdoor survival workshops if they does not enjoy windsurfing. Judith is a cybersecurity expert. Judith trains for and competes in international triathlons. Everyone anywhere who is a wine connoisseur with a private cellar of vintage wines does not mentor a youth basketball team on weekends. Judith is a night owl. Elizabeth does not enjoy windsurfing. Not everyone in the room hosts regular game nights featuring complex strategy games. Everyone in the room who does enjoy mountain biking hosts regular game nights featuring complex strategy games. Everyone in the room does enjoy mountain biking if they hosts regular game nights featuring complex strategy games. Judith develops open-source software projects in their free time. Everyone in the room hosts regular game nights featuring complex strategy games if they enjoys windsurfing. Garrett develops open-source software projects in their free time. If someone enjoys camping and organizing outdoor survival workshops then he/she is not a tea enthusiast. Everyone in the room who enjoys windsurfing is a cybersecurity expert. Elizabeth hosts regular game nights featuring complex strategy games. If someone is a night owl then he/she is not a tea enthusiast, is a wine connoisseur with a private cellar of vintage wines or does not host regular game nights featuring complex strategy games. Elizabeth trains for and competes in international triathlons.
Judith is a tea enthusiast.
contradiction
room(elizabeth)&room(garrett)&room(judith)&room(james)&room(mary)&(![X]:(room(X)=>(X='elizabeth'|X='garrett'|X='judith'|X='james'|X='mary')))& ((is_a_cybersecurity_expert(elizabeth))&(is_a_night_owl(elizabeth)))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (is_a_night_owl(garrett))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(((does_not_enjoy_windsurfing(X))&(mentors_a_youth_basketball_team_on_weekends(X))&(develops_open-source_software_projects_in_their_free_time(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (is_a_cybersecurity_expert(judith))& (trains_for_and_competes_in_international_triathlons(judith))& (![X]:(anywhere(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))& (is_a_night_owl(judith))& (does_not_enjoy_windsurfing(elizabeth))& (~![X]:(room(X)=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(does_enjoy_mountain_biking(X))))))& (develops_open-source_software_projects_in_their_free_time(judith))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (develops_open-source_software_projects_in_their_free_time(garrett))& ((![X]:((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(is_not_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(is_a_cybersecurity_expert(X))))))& (hosts_regular_game_nights_featuring_complex_strategy_games(elizabeth))& ((![X]:((is_a_night_owl(X))=>(((is_not_a_tea_enthusiast(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X)))))))& (trains_for_and_competes_in_international_triathlons(elizabeth))
room(elizabeth)&room(garrett)&room(judith)&room(james)&room(mary)&(![X]:(room(X)=>(X='elizabeth'|X='garrett'|X='judith'|X='james'|X='mary')))& is_a_tea_enthusiast(judith)
[ "p0", "p4", "p5", "p6", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 6177626897865854321154239 % SZS output start Proof for 6177626897865854321154239 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (predb(X0) => (predj(X0) & predh(X0) & ~predi(X0)))) [input p4] 49. ! [X0] : (room(X0) => (~predi(X0) => predc(X0))) [input p5] 50. predb(fred) [input p6] 61. ! [X0] : (predc(X0) => ~preda(X0)) [input p17] 66. preda(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 70. ! [X0] : (room(X0) => (predb(X0) => (predh(X0) & ~predi(X0)))) [pure predicate removal 48] 143. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143] 147. ! [X0] : (((predh(X0) & ~predi(X0)) | ~predb(X0)) | ~room(X0)) [ennf transformation 70] 148. ! [X0] : ((predh(X0) & ~predi(X0)) | ~predb(X0) | ~room(X0)) [flattening 147] 149. ! [X0] : ((predc(X0) | predi(X0)) | ~room(X0)) [ennf transformation 49] 150. ! [X0] : (predc(X0) | predi(X0) | ~room(X0)) [flattening 149] 160. ! [X0] : (~preda(X0) | ~predc(X0)) [ennf transformation 61] 165. preda(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 66] 166. preda(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 165] 253. room(fred) [cnf transformation 144] 261. ~predi(X0) | ~predb(X0) | ~room(X0) [cnf transformation 148] 263. ~room(X0) | predi(X0) | predc(X0) [cnf transformation 150] 264. predb(fred) [cnf transformation 50] 273. ~preda(X0) | ~predc(X0) [cnf transformation 160] 283. preda(fred) [cnf transformation 166] 286. ~predc(fred) [resolution 273,283] 295. predi(fred) | predc(fred) [resolution 263,253] 308. predi(fred) [subsumption resolution 295,286] 355. ~predb(fred) | ~room(fred) [resolution 308,261] 360. ~room(fred) [subsumption resolution 355,264] 361. $false [subsumption resolution 360,253] % SZS output end Proof for 6177626897865854321154239 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.342023
Billy, Kim, Suzanne, Richard are the only persons in the room. Everyone anywhere who streams on Twitch is a member of a local theater group specializing in improv. Everyone in the room cannot play the harmonica or is a member of a local theater group specializing in improv. Everyone in the room cannot play the harmonica only if they enjoys stand-up paddleboarding. Everyone anywhere enjoys stand-up paddleboarding if they owns a high-end gaming PC with custom-built components and vice versa. Everyone anywhere is a member of a local theater group specializing in improv if they owns a high-end gaming PC with custom-built components. Everyone in the room can play the harmonica if they is a member of a local theater group specializing in improv. Everyone anywhere who collects antique clocks is a member of a local theater group specializing in improv and collects vintage vinyl records. Everyone in the room collects vintage vinyl records or practices urban gardening or both if and only if they is a certified yoga instructor teaching classes weekly. Everyone in the room collects vintage vinyl records if they is a certified yoga instructor teaching classes weekly. Everyone in the room collects vintage vinyl records if and only if they is not a certified yoga instructor teaching classes weekly, collect rare sneakers and practices urban gardening. Everyone in the room collects antique clocks if they collect rare sneakers and vice versa.
Kim collect rare sneakers.
contradiction
room(billy)&room(kim)&room(suzanne)&room(richard)&(![X]:(room(X)=>(X='billy'|X='kim'|X='suzanne'|X='richard')))& (![X]:(anywhere(X)=>(((streams_on_Twitch(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(cannot_play_the_harmonica(X))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))<=(cannot_play_the_harmonica(X))))))& (![X]:(anywhere(X)=>(((enjoys_stand-up_paddleboarding(X))<=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(anywhere(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=(enjoys_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(does_not_collect_modern_art(X))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))<=(((is_a_cybersecurity_expert(X))&(collects_antique_clocks(X))&(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(collects_antique_clocks(X))))))& (![X]:(anywhere(X)=>(((collects_antique_clocks(X))=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))&(collects_vintage_vinyl_records(X))))))))& (![X]:(room(X)=>(((((is_a_member_of_a_local_theater_group_specializing_in_improv(X))&(collects_vintage_vinyl_records(X))))=>(((collects_vintage_vinyl_records(X))|(collect_rare_sneakers(X))))))))& (((?[X]:(room(X)&((does_not_stream_on_Twitch(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& (((?[X]:(anywhere(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& (![X]:(room(X)=>(((((collects_vintage_vinyl_records(X))|(practices_urban_gardening(X))))<=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))<=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))&(collect_rare_sneakers(X))&(practices_urban_gardening(X))))))))& (![X]:(room(X)=>(((((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))&(collect_rare_sneakers(X))&(practices_urban_gardening(X))))<=>(((collects_modern_art(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))<=>(collect_rare_sneakers(X))))))& (((?[X]:(~room(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& (![X]:(~room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(((does_not_stream_on_Twitch(X))|(streams_on_Twitch(X))))))))& (((is_a_member_of_a_local_theater_group_specializing_in_improv(kim))|(practices_urban_gardening(kim))))& (![X]:(~room(X)=>(((((is_a_cybersecurity_expert(X))&(enjoys_stand-up_paddleboarding(X))))<=(((collects_vintage_vinyl_records(X))&(practices_urban_gardening(X))))))))& (((?[X]:(room(X)&((streams_on_Twitch(X))&(does_enjoy_trail_running(X)))))&(![X,Y]:((room(X)&room(Y)&(((streams_on_Twitch(X))&(does_enjoy_trail_running(X))))&(((streams_on_Twitch(Y))&(does_enjoy_trail_running(Y)))))=>(X=Y)))))& ((((collect_rare_sneakers(kim))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(kim))))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(kim)))& (![X]:(room(X)=>(((does_not_collect_modern_art(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))
room(billy)&room(kim)&room(suzanne)&room(richard)&(![X]:(room(X)=>(X='billy'|X='kim'|X='suzanne'|X='richard')))& collect_rare_sneakers(kim)
[ "b4", "p0", "p11", "p15", "p16", "p17", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 1355966751492893309957471 % SZS output start Proof for 1355966751492893309957471 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 55. ! [X0] : (anywhere(X0) => (predj(X0) => (prede(X0) & predb(X0)))) [input p11] 59. ! [X0] : (room(X0) => ((predl(X0) | prede(X0)) <=> preda(X0))) [input p15] 60. ! [X0] : (room(X0) => (preda(X0) => prede(X0))) [input p16] 61. ! [X0] : (room(X0) => (prede(X0) <=> (predl(X0) & predi(X0) & ~preda(X0)))) [input p17] 63. ! [X0] : (room(X0) => (predj(X0) <=> predi(X0))) [input p19] 71. predi(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 146. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146] 166. ! [X0] : (((prede(X0) & predb(X0)) | ~predj(X0)) | ~anywhere(X0)) [ennf transformation 55] 167. ! [X0] : ((prede(X0) & predb(X0)) | ~predj(X0) | ~anywhere(X0)) [flattening 166] 170. ! [X0] : (((predl(X0) | prede(X0)) <=> preda(X0)) | ~room(X0)) [ennf transformation 59] 171. ! [X0] : ((prede(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 60] 172. ! [X0] : (prede(X0) | ~preda(X0) | ~room(X0)) [flattening 171] 173. ! [X0] : ((prede(X0) <=> (predl(X0) & predi(X0) & ~preda(X0))) | ~room(X0)) [ennf transformation 61] 175. ! [X0] : ((predj(X0) <=> predi(X0)) | ~room(X0)) [ennf transformation 63] 184. predi(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 185. predi(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 184] 192. ! [X0] : ((((predl(X0) | prede(X0)) | ~preda(X0)) & (preda(X0) | (~predl(X0) & ~prede(X0)))) | ~room(X0)) [nnf transformation 170] 193. ! [X0] : (((predl(X0) | prede(X0) | ~preda(X0)) & (preda(X0) | (~predl(X0) & ~prede(X0)))) | ~room(X0)) [flattening 192] 194. ! [X0] : (((prede(X0) | (~predl(X0) | ~predi(X0) | preda(X0))) & ((predl(X0) & predi(X0) & ~preda(X0)) | ~prede(X0))) | ~room(X0)) [nnf transformation 173] 195. ! [X0] : (((prede(X0) | ~predl(X0) | ~predi(X0) | preda(X0)) & ((predl(X0) & predi(X0) & ~preda(X0)) | ~prede(X0))) | ~room(X0)) [flattening 194] 198. ! [X0] : (((predj(X0) | ~predi(X0)) & (predi(X0) | ~predj(X0))) | ~room(X0)) [nnf transformation 175] 203. anywhere(X0) [cnf transformation 5] 285. room(paul) [cnf transformation 147] 301. prede(X0) | ~predj(X0) | ~anywhere(X0) [cnf transformation 167] 307. ~predl(X0) | preda(X0) | ~room(X0) [cnf transformation 193] 309. ~preda(X0) | prede(X0) | ~room(X0) [cnf transformation 172] 310. ~preda(X0) | ~prede(X0) | ~room(X0) [cnf transformation 195] 312. ~prede(X0) | predl(X0) | ~room(X0) [cnf transformation 195] 322. ~predi(X0) | predj(X0) | ~room(X0) [cnf transformation 198] 340. predi(paul) [cnf transformation 185] 345. ~predj(X0) | prede(X0) [subsumption resolution 301,203] 356. ~preda(X0) | ~room(X0) [subsumption resolution 310,309] 362. 4 <=> predl(paul) [avatar definition] 363. ~predl(paul) <- (~4) [avatar component clause 362] 364. predl(paul) <- (4) [avatar component clause 362] 367. 5 <=> predi(paul) [avatar definition] 369. predi(paul) <- (5) [avatar component clause 367] 376. 5 [avatar split clause 340,367] 468. preda(paul) | ~room(paul) <- (4) [resolution 307,364] 469. preda(paul) <- (4) [subsumption resolution 468,285] 489. predj(paul) | ~room(paul) <- (5) [resolution 322,369] 497. ~room(paul) <- (4) [resolution 469,356] 499. $false <- (4) [subsumption resolution 497,285] 500. ~4 [avatar contradiction clause 499] 547. predj(paul) <- (5) [subsumption resolution 489,285] 551. prede(paul) <- (5) [resolution 547,345] 552. predl(paul) | ~room(paul) <- (5) [resolution 551,312] 555. ~room(paul) <- (~4, 5) [subsumption resolution 552,363] 556. $false <- (~4, 5) [subsumption resolution 555,285] 557. 4 | ~5 [avatar contradiction clause 556] 559. $false [avatar sat refutation 376,500,557] % SZS output end Proof for 1355966751492893309957471 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.504176
Jesse, Betty, Barbara, David, Janice are the only persons in the room. “Everyone in the room has a curated collection of mid-century modern furniture only if they is dedicated to sustainable living and zero-waste practices” unless “everyone in the room is not an active member of a local robotics club or is dedicated to sustainable living and zero-waste practices”. Everyone in the room has a curated collection of mid-century modern furniture if they does not have a curated collection of mid-century modern furniture. David who owns an extensive assortment of vintage comic book memorabilia and is an active member of a local robotics club has a curated collection of mid-century modern furniture. Barbara is not dedicated to sustainable living and zero-waste practices.
David is dedicated to sustainable living and zero-waste practices.
entailment
room(jesse)&room(betty)&room(barbara)&room(david)&room(janice)&(![X]:(room(X)=>(X='jesse'|X='betty'|X='barbara'|X='david'|X='janice')))& (~(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))=>(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<=(has_a_curated_collection_of_mid-century_modern_furniture(X)))))))& ((~?[X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(betty))&(has_a_curated_collection_of_mid-century_modern_furniture(betty)))))& ((((?[X]:(anywhere(X)&is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(janice)))& ((![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(![X]:(room(X)=>(hosts_regular_workshops_on_creative_writing(X)))))& (![X]:(room(X)=>(hosts_regular_workshops_on_creative_writing(X))))& (has_a_curated_collection_of_mid-century_modern_furniture(jesse))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (((is_dedicated_to_sustainable_living_and_zero-waste_practices(betty))&(is_an_active_member_of_a_local_robotics_club(betty))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (hosts_regular_workshops_on_creative_writing(jesse))& (is_an_active_member_of_a_local_robotics_club(jesse))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(janice))& ((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(david))&(is_an_active_member_of_a_local_robotics_club(david))))&(has_a_curated_collection_of_mid-century_modern_furniture(david)))& (is_not_dedicated_to_sustainable_living_and_zero-waste_practices(barbara))
room(jesse)&room(betty)&room(barbara)&room(david)&room(janice)&(![X]:(room(X)=>(X='jesse'|X='betty'|X='barbara'|X='david'|X='janice')))& is_dedicated_to_sustainable_living_and_zero-waste_practices(david)
[ "p0", "p1", "p10", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 1607352545548256878170461 % SZS output start Proof for 1607352545548256878170461 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~! [X0] : (room(X0) => (~predc(X0) | predd(X0))) => ! [X0] : (room(X0) => (predb(X0) => predd(X0))) [input p1] 54. ! [X0] : (room(X0) => (~predb(X0) => predb(X0))) [input p10] 58. predb(alice) & predc(alice) & prede(alice) [input p14] 59. ~predd(fred) [input p15] 60. ~(predd(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 61. ~! [X0] : (room(X0) => (~predc(X0) | predd(X0))) => ! [X1] : (room(X1) => (predb(X1) => predd(X1))) [rectify 45] 137. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 138. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 137] 139. ! [X1] : ((predd(X1) | ~predb(X1)) | ~room(X1)) | ! [X0] : ((~predc(X0) | predd(X0)) | ~room(X0)) [ennf transformation 61] 140. ! [X1] : (predd(X1) | ~predb(X1) | ~room(X1)) | ! [X0] : (~predc(X0) | predd(X0) | ~room(X0)) [flattening 139] 148. ! [X0] : ((predb(X0) | predb(X0)) | ~room(X0)) [ennf transformation 54] 149. ! [X0] : (predb(X0) | predb(X0) | ~room(X0)) [flattening 148] 150. ~predd(alice) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60] 151. ~predd(alice) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 150] 153. ! [X0] : (predd(X0) | ~predb(X0) | ~room(X0)) | ! [X1] : (~predc(X1) | predd(X1) | ~room(X1)) [rectify 140] 156. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 157. ~predd(alice) | (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 151,156] 239. room(mary) [cnf transformation 138] 240. room(paul) [cnf transformation 138] 241. room(fred) [cnf transformation 138] 242. room(alice) [cnf transformation 138] 243. room(john) [cnf transformation 138] 244. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 138] 245. predd(X0) | ~predb(X0) | ~room(X0) | ~predc(X1) | predd(X1) | ~room(X1) [cnf transformation 153] 254. predb(X0) | predb(X0) | ~room(X0) [cnf transformation 149] 258. predc(alice) [cnf transformation 58] 260. ~predd(fred) [cnf transformation 59] 261. ~predd(alice) | room(sK1) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 262. ~predd(alice) | mary != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 263. ~predd(alice) | paul != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 264. ~predd(alice) | fred != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 265. ~predd(alice) | alice != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 266. ~predd(alice) | john != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 267. ~room(X0) | predb(X0) [duplicate literal removal 254] 269. 1 <=> ! [X1] : (~predc(X1) | ~room(X1) | predd(X1)) [avatar definition] 270. ~predc(X1) | ~room(X1) | predd(X1) <- (1) [avatar component clause 269] 272. 2 <=> ! [X0] : (predd(X0) | ~room(X0) | ~predb(X0)) [avatar definition] 273. predd(X0) | ~room(X0) | ~predb(X0) <- (2) [avatar component clause 272] 274. 1 | 2 [avatar split clause 245,272,269] 284. ~predd(alice) | john != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 266,243] 285. ~predd(alice) | john != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,242] 286. ~predd(alice) | john != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 285,241] 287. ~predd(alice) | john != sK1 | ~room(mary) [subsumption resolution 286,240] 288. ~predd(alice) | john != sK1 [subsumption resolution 287,239] 290. 5 <=> john = sK1 [avatar definition] 292. john != sK1 <- (~5) [avatar component clause 290] 294. 6 <=> predd(alice) [avatar definition] 297. ~5 | ~6 [avatar split clause 288,294,290] 298. ~predd(alice) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 265,243] 299. ~predd(alice) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,242] 300. ~predd(alice) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 299,241] 301. ~predd(alice) | alice != sK1 | ~room(mary) [subsumption resolution 300,240] 302. ~predd(alice) | alice != sK1 [subsumption resolution 301,239] 304. 7 <=> alice = sK1 [avatar definition] 306. alice != sK1 <- (~7) [avatar component clause 304] 307. ~7 | ~6 [avatar split clause 302,294,304] 308. ~predd(alice) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,243] 309. ~predd(alice) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 308,242] 310. ~predd(alice) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 309,241] 311. ~predd(alice) | fred != sK1 | ~room(mary) [subsumption resolution 310,240] 312. ~predd(alice) | fred != sK1 [subsumption resolution 311,239] 314. 8 <=> fred = sK1 [avatar definition] 316. fred != sK1 <- (~8) [avatar component clause 314] 317. ~8 | ~6 [avatar split clause 312,294,314] 318. ~predd(alice) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,243] 319. ~predd(alice) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,242] 320. ~predd(alice) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 319,241] 321. ~predd(alice) | paul != sK1 | ~room(mary) [subsumption resolution 320,240] 322. ~predd(alice) | paul != sK1 [subsumption resolution 321,239] 324. 9 <=> paul = sK1 [avatar definition] 326. paul != sK1 <- (~9) [avatar component clause 324] 327. ~9 | ~6 [avatar split clause 322,294,324] 328. ~predd(alice) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,243] 329. ~predd(alice) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,242] 330. ~predd(alice) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 329,241] 331. ~predd(alice) | mary != sK1 | ~room(mary) [subsumption resolution 330,240] 332. ~predd(alice) | mary != sK1 [subsumption resolution 331,239] 334. 10 <=> mary = sK1 [avatar definition] 336. mary != sK1 <- (~10) [avatar component clause 334] 337. ~10 | ~6 [avatar split clause 332,294,334] 338. ~predd(alice) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 261,243] 339. ~predd(alice) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,242] 340. ~predd(alice) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 339,241] 341. ~predd(alice) | room(sK1) | ~room(mary) [subsumption resolution 340,240] 342. ~predd(alice) | room(sK1) [subsumption resolution 341,239] 344. 11 <=> room(sK1) [avatar definition] 346. room(sK1) <- (11) [avatar component clause 344] 347. 11 | ~6 [avatar split clause 342,294,344] 350. ~room(X0) | predd(X0) <- (2) [subsumption resolution 273,267] 358. predd(fred) <- (2) [resolution 350,241] 361. $false <- (2) [subsumption resolution 358,260] 362. ~2 [avatar contradiction clause 361] 373. ~room(alice) | predd(alice) <- (1) [resolution 270,258] 375. predd(alice) <- (1) [subsumption resolution 373,242] 378. 6 | ~1 [avatar split clause 375,269,294] 423. alice = sK1 | fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (11) [resolution 244,346] 424. fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (~7, 11) [subsumption resolution 423,306] 425. paul = sK1 | mary = sK1 | john = sK1 <- (~7, ~8, 11) [subsumption resolution 424,316] 426. mary = sK1 | john = sK1 <- (~7, ~8, ~9, 11) [subsumption resolution 425,326] 427. john = sK1 <- (~7, ~8, ~9, ~10, 11) [subsumption resolution 426,336] 428. $false <- (~5, ~7, ~8, ~9, ~10, 11) [subsumption resolution 427,292] 429. 5 | 7 | 8 | 9 | 10 | ~11 [avatar contradiction clause 428] 430. $false [avatar sat refutation 274,297,307,317,327,337,347,362,378,429] % SZS output end Proof for 1607352545548256878170461 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.066685
Merlin is the only person in the room. Merlin collects rare minerals. Everyone in the room who either writes in-depth travel guides for off-the-beaten-path destinations or is an avid collector of autographed memorabilia from famous musicians but not both is not an avid collector of autographed memorabilia from famous musicians, is an avid collector of autographed memorabilia from famous musicians or does not enjoy trail running. Merlin volunteers for local environmental conservation projects. Someone in the room either collects limited-edition art prints from contemporary artists or does not participate in citizen science projects related to wildlife monitoring but not both. Merlin can play the guitar. Everyone in the room who builds model airplanes enjoys origami. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they enjoys origami. Merlin is a culinary enthusiast who experiments with international cuisines. Merlin is a tea enthusiast.
Merlin collects vintage stamps.
neutral
room(merlin)&(![X]:(room(X)=>(X='merlin')))& (collects_rare_minerals(merlin))& (![X]:(room(X)=>(((((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_enjoy_trail_running(X))))))))& (volunteers_for_local_environmental_conservation_projects(merlin))& (?[X]:(room(X)&(((collects_limited-edition_art_prints_from_contemporary_artists(X))<~>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (can_play_the_guitar(merlin))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(enjoys_origami(X))))))& (![X]:(room(X)=>(((enjoys_origami(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(merlin))& (is_a_tea_enthusiast(merlin))& (?[X]:(room(X)&(practices_urban_gardening(X))))& (![X]:(room(X)=>(((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))|(practices_urban_gardening(X))))=>(practices_zumba(X))))))& (((?[X]:(room(X)&enjoys_origami(X)))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (((?[X]:(room(X)&practices_tai_chi(X)))))& (((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(merlin))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(merlin))))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(builds_model_airplanes(X))))))& (((collects_limited-edition_art_prints_from_contemporary_artists(merlin))|(uses_a_Windows_laptop(merlin))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(merlin))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(collects_vintage_stamps(X))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(is_a_tea_enthusiast(X))))))& (~(enjoys_wildlife_photography(merlin)))& ((![X]:((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(merlin))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))
room(merlin)&(![X]:(room(X)=>(X='merlin')))& collects_vintage_stamps(merlin)
[]
null
0.252141
Joseph, Brandon are the only persons in the room. “Everyone in the room does not practice calligraphy if they does not enjoy wildlife photography, practices tai chi or is dedicated to sustainable living and zero-waste practices” unless “Brandon neither uses a Windows laptop nor does not practice calligraphy”. Everyone outside the room hosts themed dinner parties featuring gourmet home-cooked meals if they does not practice calligraphy. Someone in the room neither is dedicated to sustainable living and zero-waste practices nor hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals, is a Linux enthusiast and plays eSports competitively if they practices tai chi and vice versa. Everyone in the room neither is dedicated to sustainable living and zero-waste practices nor is not an avid hiker. Everyone in the room who does not practice calligraphy neither does not practice tai chi nor hosts themed dinner parties featuring gourmet home-cooked meals. If someone collects limited-edition art prints from contemporary artists then he/she uses a Windows laptop or practices calligraphy or both and vice versa. Brandon is not a Linux enthusiast. Someone in the room does not collect limited-edition art prints from contemporary artists.
Joseph uses a Windows laptop.
contradiction
room(joseph)&room(brandon)&(![X]:(room(X)=>(X='joseph'|X='brandon')))& (~(~((uses_a_Windows_laptop(brandon))|(does_not_practice_calligraphy(brandon))))=>(![X]:(room(X)=>(((((does_not_enjoy_wildlife_photography(X))|(practices_tai_chi(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(does_not_practice_calligraphy(X)))))))& (![X]:(~room(X)=>(((does_not_practice_calligraphy(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (?[X]:(room(X)&(~((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(is_a_Linux_enthusiast(X))&(plays_eSports_competitively(X))))<=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(~((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_not_an_avid_hiker(X))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(has_a_tattoo(X)&has_a_tattoo(Y))&(X!=Y))))& (plays_eSports_competitively(brandon))& (![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(bakes_bread_at_home(X))&(practices_calligraphy(X))))=>(does_not_practice_calligraphy(X))))))& (![X]:(room(X)=>(((does_not_practice_calligraphy(X))=>(~((does_not_practice_tai_chi(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))& ((![X]:((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(((uses_a_Windows_laptop(X))|(practices_calligraphy(X)))))))& (is_not_a_Linux_enthusiast(brandon))& (![X]:(room(X)=>(((((does_not_enjoy_wildlife_photography(X))|(practices_tai_chi(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(does_not_practice_calligraphy(X))))))& ((![X]:((plays_eSports_competitively(X))<=>(((practices_calligraphy(X))|(does_not_enjoy_wildlife_photography(X)))))))& (((does_not_enjoy_wildlife_photography(joseph))|(practices_tai_chi(joseph))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(joseph))))& (?[X]:(room(X)&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))& (![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))=>(bakes_bread_at_home(X))))))
room(joseph)&room(brandon)&(![X]:(room(X)=>(X='joseph'|X='brandon')))& uses_a_Windows_laptop(joseph)
[ "p0", "p4", "p9", "p10", "p11", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 817670476706492744168091 % SZS output start Proof for 817670476706492744168091 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => ((predo(X0) & predn(X0) & ~predb(X0)) <=> predf(X0))) [input p4] 53. ! [X0] : (room(X0) => (~prede(X0) => ~(predb(X0) | ~predf(X0)))) [input p9] 54. ! [X0] : (predj(X0) <=> (prede(X0) | predm(X0))) [input p10] 55. ~predn(paul) [input p11] 59. ? [X0] : (~predj(X0) & room(X0)) [input p15] 61. predm(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 63. ! [X0] : ((prede(X0) | predm(X0)) => predj(X0)) [unused predicate definition removal 54] 141. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 141] 149. ! [X0] : (((predo(X0) & predn(X0) & ~predb(X0)) <=> predf(X0)) | ~room(X0)) [ennf transformation 48] 151. ! [X0] : (((~predb(X0) & predf(X0)) | prede(X0)) | ~room(X0)) [ennf transformation 53] 152. ! [X0] : ((~predb(X0) & predf(X0)) | prede(X0) | ~room(X0)) [flattening 151] 153. ! [X0] : (predj(X0) | (~prede(X0) & ~predm(X0))) [ennf transformation 63] 156. predm(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 61] 157. predm(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 156] 161. ! [X0] : ((((predo(X0) & predn(X0) & ~predb(X0)) | ~predf(X0)) & (predf(X0) | (~predo(X0) | ~predn(X0) | predb(X0)))) | ~room(X0)) [nnf transformation 149] 162. ! [X0] : ((((predo(X0) & predn(X0) & ~predb(X0)) | ~predf(X0)) & (predf(X0) | ~predo(X0) | ~predn(X0) | predb(X0))) | ~room(X0)) [flattening 161] 167. ? [X0] : (~predj(X0) & room(X0)) => (~predj(sK3) & room(sK3)) [choice axiom] 168. ~predj(sK3) & room(sK3) [skolemisation 59,167] 251. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 142] 264. ~predf(X0) | predn(X0) | ~room(X0) [cnf transformation 162] 269. ~room(X0) | prede(X0) | predf(X0) [cnf transformation 152] 271. ~predm(X0) | predj(X0) [cnf transformation 153] 272. ~prede(X0) | predj(X0) [cnf transformation 153] 273. ~predn(paul) [cnf transformation 55] 281. room(sK3) [cnf transformation 168] 282. ~predj(sK3) [cnf transformation 168] 286. predm(mary) [cnf transformation 157] 288. 1 <=> prede(paul) [avatar definition] 290. prede(paul) <- (1) [avatar component clause 288] 325. predj(mary) [resolution 271,286] 331. prede(sK3) | predf(sK3) [resolution 269,281] 352. 13 <=> predf(sK3) [avatar definition] 354. predf(sK3) <- (13) [avatar component clause 352] 356. 14 <=> prede(sK3) [avatar definition] 358. prede(sK3) <- (14) [avatar component clause 356] 359. 13 | 14 [avatar split clause 331,356,352] 361. predj(paul) <- (1) [resolution 290,272] 375. predn(sK3) | ~room(sK3) <- (13) [resolution 354,264] 377. predn(sK3) <- (13) [subsumption resolution 375,281] 392. mary = sK3 | paul = sK3 [resolution 251,281] 403. 17 <=> paul = sK3 [avatar definition] 405. paul = sK3 <- (17) [avatar component clause 403] 407. 18 <=> mary = sK3 [avatar definition] 409. mary = sK3 <- (18) [avatar component clause 407] 410. 17 | 18 [avatar split clause 392,407,403] 412. predn(paul) <- (13, 17) [backward demodulation 377,405] 416. ~predj(paul) <- (17) [backward demodulation 282,405] 419. $false <- (13, 17) [subsumption resolution 412,273] 420. ~13 | ~17 [avatar contradiction clause 419] 422. $false <- (1, 17) [subsumption resolution 416,361] 423. ~1 | ~17 [avatar contradiction clause 422] 441. prede(paul) <- (14, 17) [forward demodulation 358,405] 442. 1 | ~14 | ~17 [avatar split clause 441,403,356,288] 450. ~predj(mary) <- (18) [backward demodulation 282,409] 453. $false <- (18) [subsumption resolution 450,325] 454. ~18 [avatar contradiction clause 453] 471. $false [avatar sat refutation 359,410,420,423,442,454] % SZS output end Proof for 817670476706492744168091 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.694972
Patrick, Robert, Marie, Charles, Stacy are the only persons in the room. It is not the case that at least one person in the room is a generous curious person. Only one person in the room is a patient person. More than one person outside the room is patient. Only one person in the room is happy. Someone in the room is a generous person. If someone is patient then he/she is calm and vice versa. Patrick is brave. Stacy is a strong person. Everyone in the room is creative if they is generous and vice versa. Charles and Marie are respectively brave and humble. More than one person in the room is brave. All curious persons are old. Someone anywhere is a calm person. All kind persons are old. If someone is a quiet person then he/she is quiet and vice versa.
Everyone in the room is not a curious person.
neutral
room(patrick)&room(robert)&room(marie)&room(charles)&room(stacy)&(![X]:(room(X)=>(X='patrick'|X='robert'|X='marie'|X='charles'|X='stacy')))& (~(((?[X]:(room(X)&generous(X)&curious(X)&person(X))))))& (((?[X]:(room(X)&patient(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(patient(X)&person(X))&(patient(Y)&person(Y)))=>(X=Y)))))& ((?[X,Y]:(~room(X)&~room(Y)&(patient(X)&patient(Y))&(X!=Y))))& (((?[X]:(room(X)&happy(X)))&(![X,Y]:((room(X)&room(Y)&(happy(X))&(happy(Y)))=>(X=Y)))))& (?[X]:(room(X)&(generous(X)&person(X))))& ((![X]:((patient(X))<=>(calm(X)))))& (brave(patrick))& (strong(stacy)&person(stacy))& (![X]:(room(X)=>(((creative(X))<=>(generous(X))))))& ((brave(charles))&(humble(marie)))& ((?[X,Y]:(room(X)&room(Y)&(brave(X)&brave(Y))&(X!=Y))))& (![X]:(curious(X)=>old(X)))& (?[X]:(anywhere(X)&(calm(X)&person(X))))& (![X]:(kind(X)=>old(X)))& ((![X]:((quiet(X)&person(X))<=>(quiet(X)))))& (((?[X]:(room(X)&generous(X)))&(![X,Y]:((room(X)&room(Y)&(generous(X))&(generous(Y)))=>(X=Y)))))& ((![X]:((~wise(X))<=>(old(X)&person(X)))))& (?[X]:(room(X)&(old(X))))& (?[X]:(room(X)&(tall(X))))
room(patrick)&room(robert)&room(marie)&room(charles)&room(stacy)&(![X]:(room(X)=>(X='patrick'|X='robert'|X='marie'|X='charles'|X='stacy')))& ![X]:(room(X)=>(~(curious(X)&person(X))))
[]
null
0.156979
Queen is the only person in the room. Someone who is quieter than Christopher is quieter than someone who is quiet and is richer than Julieta. All quiet person is happy. Queen is richer than Robert. Queen neither is older than Robert nor is richer than Christopher. All creative person is old. Queen is quieter than Julieta. Queen is quiet. Only one person outside the room neither is quieter than Christopher nor is older than Christopher. Queen either is kind or is older than Christopher but not both. All patient person is wise. Someone who is richer than Christopher is older than someone who is older than Christopher. Someone who is creative is older than someone who either is generous or is patient but not both. Robert is quieter than Queen.
Queen is creative.
neutral
room(queen)&(![X]:(room(X)=>(X='queen')))& (?[X,Y]:((quieter(christopher,X))&(((quiet(Y))&(richer(julieta,Y))))&(quieter(X,Y))))& (![X]:(quiet(X)=>happy(X)))& (richer(robert,queen))& (~((older(robert,queen))|(richer(christopher,queen))))& (![X]:(creative(X)=>old(X)))& (quieter(julieta,queen))& (quiet(queen))& (((?[X]:(~room(X)&~((quieter(christopher,X))|(older(christopher,X)))))&(![X,Y]:((~room(X)&~room(Y)&(~((quieter(christopher,X))|(older(christopher,X))))&(~((quieter(christopher,Y))|(older(christopher,Y)))))=>(X=Y)))))& (((kind(queen))<~>(older(christopher,queen))))& (![X]:(patient(X)=>wise(X)))& (?[X,Y]:((richer(christopher,X))&(older(christopher,Y))&(older(X,Y))))& (?[X,Y]:((creative(X))&(((generous(Y))<~>(patient(Y))))&(older(X,Y))))& (quieter(queen,robert))& (((quieter(julieta,queen))&(richer(julieta,queen))))
room(queen)&(![X]:(room(X)=>(X='queen')))& creative(queen)
[]
null
0.662167
There is a room. Everyone anywhere who does not participate in long-distance cycling events across the country, enjoys snowboarding or enjoys windsurfing is passionate about collecting and restoring classic cars. Everyone in the room participates in long-distance cycling events across the country if they is passionate about collecting and restoring classic cars. Everyone in the room who participates in long-distance cycling events across the country collects historical artifacts related to ancient civilizations.
Everyone in the room collects historical artifacts related to ancient civilizations.
entailment
(there_is_a_room)& (![X]:(room(X)=>(((collects_modern_art(X))=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(~room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((((participates_in_long-distance_cycling_events_across_the_country(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))|(does_not_enjoy_windsurfing(X))))=>(~((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_enjoy_bird_watching(X))))))))& (![X]:(room(X)=>(((~((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_enjoy_bird_watching(X))))=>(does_practice_yoga(X))))))& (![X]:(anywhere(X)=>(((does_practice_yoga(X))=>(does_not_play_the_violin(X))))))& (![X]:(room(X)=>(((does_not_play_the_violin(X))=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(enjoys_snowboarding(X))|(enjoys_windsurfing(X))))))))& (![X]:(anywhere(X)=>(((((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(enjoys_snowboarding(X))|(enjoys_windsurfing(X))))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(plays_video_games(X))))))& (~![X]:(~room(X)=>(((plays_video_games(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(does_not_practice_yoga(X))))))& (![X]:(room(X)=>(((does_not_practice_yoga(X))=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(~room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(is_a_Linux_enthusiast(X))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(is_not_a_Linux_enthusiast(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((does_not_play_eSports_competitively(X))=>(enjoys_bird_watching(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(is_a_scotch_connoisseur(X))))))
(there_is_a_room)& ![X]:(room(X)=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))
[ "b4", "p0", "p10", "p18", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 7997744364687006566393476 % SZS output start Proof for 7997744364687006566393476 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 54. ! [X0] : (anywhere(X0) => ((predm(X0) | predn(X0) | ~predc(X0)) => predr(X0))) [input p10] 62. ! [X0] : (room(X0) => (predr(X0) => predc(X0))) [input p18] 64. ! [X0] : (room(X0) => (predc(X0) => predk(X0))) [input p20] 68. ~(! [X0] : (room(X0) => predk(X0)) & there_is_a_room) [input hypothesis] 161. ! [X0] : ((predr(X0) | (~predm(X0) & ~predn(X0) & predc(X0))) | ~anywhere(X0)) [ennf transformation 54] 162. ! [X0] : (predr(X0) | (~predm(X0) & ~predn(X0) & predc(X0)) | ~anywhere(X0)) [flattening 161] 172. ! [X0] : ((predc(X0) | ~predr(X0)) | ~room(X0)) [ennf transformation 62] 173. ! [X0] : (predc(X0) | ~predr(X0) | ~room(X0)) [flattening 172] 174. ! [X0] : ((predk(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 64] 175. ! [X0] : (predk(X0) | ~predc(X0) | ~room(X0)) [flattening 174] 178. ? [X0] : (~predk(X0) & room(X0)) | ~there_is_a_room [ennf transformation 68] 182. ? [X0] : (~predk(X0) & room(X0)) => (~predk(sK1) & room(sK1)) [choice axiom] 183. (~predk(sK1) & room(sK1)) | ~there_is_a_room [skolemisation 178,182] 184. anywhere(X0) [cnf transformation 5] 265. there_is_a_room [cnf transformation 44] 277. predr(X0) | predc(X0) | ~anywhere(X0) [cnf transformation 162] 286. predc(X0) | ~predr(X0) | ~room(X0) [cnf transformation 173] 287. predk(X0) | ~predc(X0) | ~room(X0) [cnf transformation 175] 289. room(sK1) | ~there_is_a_room [cnf transformation 183] 290. ~predk(sK1) | ~there_is_a_room [cnf transformation 183] 296. predc(X0) | predr(X0) [subsumption resolution 277,184] 298. ~room(X0) | predc(X0) [subsumption resolution 286,296] 299. ~room(X0) | predk(X0) [subsumption resolution 287,298] 300. ~predk(sK1) [subsumption resolution 290,265] 301. room(sK1) [subsumption resolution 289,265] 305. predk(sK1) [resolution 299,301] 306. $false [subsumption resolution 305,300] % SZS output end Proof for 7997744364687006566393476 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.155755
Connie is the only person in the room. Everyone in the room who watches fantasy movies collects rare and antique scientific instruments. At least one person in the room watches fantasy movies.
Connie collects rare and antique scientific instruments.
entailment
room(connie)&(![X]:(room(X)=>(X='connie')))& (has_a_curated_collection_of_mid-century_modern_furniture(connie))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(connie))& (enjoys_cross-country_skiing(connie))& (![X]:(anywhere(X)=>(((enjoys_kayaking(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(room(X)=>(((watches_fantasy_movies(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (((?[X]:(room(X)&watches_fantasy_movies(X)))))& (does_enjoy_mountain_biking(connie))& (owns_a_telescope(connie))& (?[X]:(room(X)&(enjoys_cross-country_skiing(X))))
room(connie)&(![X]:(room(X)=>(X='connie')))& collects_rare_and_antique_scientific_instruments(connie)
[ "p0", "p5", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 372227581073072799614438 % SZS output start Proof for 372227581073072799614438 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (predj(X0) => predw(X0))) [input p5] 50. ? [X0] : (predj(X0) & room(X0)) [input p6] 54. ~(predw(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 134. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 135. ! [X0] : ((predw(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 49] 136. ! [X0] : (predw(X0) | ~predj(X0) | ~room(X0)) [flattening 135] 137. ~predw(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 54] 139. ? [X0] : (predj(X0) & room(X0)) => (predj(sK0) & room(sK0)) [choice axiom] 140. predj(sK0) & room(sK0) [skolemisation 50,139] 143. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 144. ~predw(mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 137,143] 225. room(mary) [cnf transformation 134] 226. ~room(X0) | mary = X0 [cnf transformation 134] 227. ~predj(X0) | predw(X0) | ~room(X0) [cnf transformation 136] 228. room(sK0) [cnf transformation 140] 229. predj(sK0) [cnf transformation 140] 231. ~predw(mary) | room(sK2) | ~room(mary) [cnf transformation 144] 232. ~predw(mary) | mary != sK2 | ~room(mary) [cnf transformation 144] 233. ~predw(mary) | mary != sK2 [subsumption resolution 232,225] 235. 1 <=> mary = sK2 [avatar definition] 237. mary != sK2 <- (~1) [avatar component clause 235] 239. 2 <=> predw(mary) [avatar definition] 242. ~1 | ~2 [avatar split clause 233,239,235] 243. ~predw(mary) | room(sK2) [subsumption resolution 231,225] 245. 3 <=> room(sK2) [avatar definition] 247. room(sK2) <- (3) [avatar component clause 245] 248. 3 | ~2 [avatar split clause 243,239,245] 250. mary = sK0 [resolution 226,228] 253. predj(mary) [backward demodulation 229,250] 255. predw(mary) | ~room(mary) [resolution 227,253] 259. predw(mary) [subsumption resolution 255,225] 260. 2 [avatar split clause 259,239] 261. mary = sK2 <- (3) [resolution 247,226] 262. $false <- (~1, 3) [subsumption resolution 261,237] 263. 1 | ~3 [avatar contradiction clause 262] 264. $false [avatar sat refutation 242,248,260,263] % SZS output end Proof for 372227581073072799614438 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.576153
Kay, Tiffany are the only persons in the room. “Kay either enjoys writing detailed reviews of new and classic board games or enjoys rooftop gardening but not both” only if “Kay collects classic novels”. If “Kay maintains a large, organic vegetable garden year-round” then “Tiffany does not practice digital art”. If “Tiffany enjoys kayaking” then “more than one person in the room practices calligraphy, enjoys kayaking or does not enjoy skydiving”. If “someone in the room mentors a youth basketball team on weekends” then “Kay either practices calligraphy or does not enjoy kayaking but not both” otherwise “Kay enjoys kayaking”. “Someone in the room does not enjoy kayaking or does not enjoy coding in Python or both” only if “Kay mentors a youth basketball team on weekends”. “Someone in the room collects classic novels” only if “if someone practices calligraphy and practices digital art then he/she has a tattoo”. If “Kay practices digital art” then “Kay enjoys rooftop gardening”. “Kay does not enjoy rooftop gardening or enjoys kayaking or both” if “Kay maintains a large, organic vegetable garden year-round” and vice versa. If “someone in the room mentors a youth basketball team on weekends” then “Kay collects classic novels”. “Kay enjoys skydiving” if “at least one person in the room neither maintains a large, organic vegetable garden year-round nor does not have a tattoo” and vice versa. Kay does not have a tattoo, practices digital art or collects classic novels. Kay enjoys writing detailed reviews of new and classic board games. If someone collects classic novels, does not enjoy kayaking or enjoys coding in Python then he/she collects classic novels and vice versa. Tiffany either enjoys coding in Python or practices calligraphy but not both. Tiffany practices calligraphy. Someone in the room neither collects classic novels nor has a tattoo. At least one person in the room does not enjoy writing detailed reviews of new and classic board games. Tiffany enjoys skydiving. Kay maintains a large, organic vegetable garden year-round. Kay has a tattoo. Someone outside the room does not enjoy coding in Python.
Kay collects classic novels.
entailment
room(kay)&room(tiffany)&(![X]:(room(X)=>(X='kay'|X='tiffany')))& ((((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(kay))<~>(enjoys_rooftop_gardening(kay))))=>(collects_classic_novels(kay)))& ((maintains_a_large,_organic_vegetable_garden_year-round(kay))=>(does_not_practice_digital_art(tiffany)))& ((enjoys_kayaking(tiffany))=>((?[X,Y]:(room(X)&room(Y)&(((practices_calligraphy(X))|(enjoys_kayaking(X))|(does_not_enjoy_skydiving(X)))&((practices_calligraphy(Y))|(enjoys_kayaking(Y))|(does_not_enjoy_skydiving(Y))))&(X!=Y)))))& (((?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))=>(((practices_calligraphy(kay))<~>(does_not_enjoy_kayaking(kay)))))&((~(?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X)))))=>(enjoys_kayaking(kay))))& ((?[X]:(room(X)&(((does_not_enjoy_kayaking(X))|(does_not_enjoy_coding_in_Python(X))))))=>(mentors_a_youth_basketball_team_on_weekends(kay)))& ((?[X]:(room(X)&(collects_classic_novels(X))))=>((![X]:((((practices_calligraphy(X))&(practices_digital_art(X))))=>(has_a_tattoo(X))))))& ((practices_digital_art(kay))=>(enjoys_rooftop_gardening(kay)))& ((maintains_a_large,_organic_vegetable_garden_year-round(kay))<=>(((does_not_enjoy_rooftop_gardening(kay))|(enjoys_kayaking(kay)))))& ((?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))=>(collects_classic_novels(kay)))& ((((?[X]:(room(X)&~((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_have_a_tattoo(X)))))))<=>(enjoys_skydiving(kay)))& (((does_not_have_a_tattoo(kay))|(practices_digital_art(kay))|(collects_classic_novels(kay))))& (enjoys_writing_detailed_reviews_of_new_and_classic_board_games(kay))& ((![X]:((((collects_classic_novels(X))|(does_not_enjoy_kayaking(X))|(enjoys_coding_in_Python(X))))<=>(collects_classic_novels(X)))))& (((enjoys_coding_in_Python(tiffany))<~>(practices_calligraphy(tiffany))))& (practices_calligraphy(tiffany))& (?[X]:(room(X)&(~((collects_classic_novels(X))|(has_a_tattoo(X))))))& (((?[X]:(room(X)&does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& (enjoys_skydiving(tiffany))& (maintains_a_large,_organic_vegetable_garden_year-round(kay))& (has_a_tattoo(kay))& (?[X]:(~room(X)&(does_not_enjoy_coding_in_Python(X))))
room(kay)&room(tiffany)&(![X]:(room(X)=>(X='kay'|X='tiffany')))& collects_classic_novels(kay)
[ "p0", "p5", "p9", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 7037650871949752856586342 % SZS output start Proof for 7037650871949752856586342 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ? [X0] : ((~predf(X0) | ~predc(X0)) & room(X0)) => predi(mary) [input p5] 53. ? [X0] : (predi(X0) & room(X0)) => predd(mary) [input p9] 58. predf(paul) <~> predg(paul) [input p14] 59. predg(paul) [input p15] 66. ~(predd(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 141. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 141] 147. predi(mary) | ! [X0] : ((predf(X0) & predc(X0)) | ~room(X0)) [ennf transformation 49] 151. predd(mary) | ! [X0] : (~predi(X0) | ~room(X0)) [ennf transformation 53] 156. ~predd(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 66] 157. ~predd(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 156] 174. (~predg(paul) | ~predf(paul)) & (predg(paul) | predf(paul)) [nnf transformation 58] 181. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 182. ~predd(mary) | (paul != sK7 & mary != sK7 & room(sK7)) | ~room(paul) | ~room(mary) [skolemisation 157,181] 263. room(mary) [cnf transformation 142] 264. room(paul) [cnf transformation 142] 265. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 142] 279. predi(mary) | predf(X0) | ~room(X0) [cnf transformation 147] 285. predd(mary) | ~predi(X0) | ~room(X0) [cnf transformation 151] 297. ~predg(paul) | ~predf(paul) [cnf transformation 174] 298. predg(paul) [cnf transformation 59] 309. ~predd(mary) | room(sK7) | ~room(paul) | ~room(mary) [cnf transformation 182] 310. ~predd(mary) | mary != sK7 | ~room(paul) | ~room(mary) [cnf transformation 182] 311. ~predd(mary) | paul != sK7 | ~room(paul) | ~room(mary) [cnf transformation 182] 321. 3 <=> predd(mary) [avatar definition] 395. 19 <=> ! [X1] : (~predi(X1) | ~room(X1)) [avatar definition] 396. ~predi(X1) | ~room(X1) <- (19) [avatar component clause 395] 404. 21 <=> ! [X0] : (predf(X0) | ~room(X0)) [avatar definition] 405. ~room(X0) | predf(X0) <- (21) [avatar component clause 404] 407. 22 <=> predi(mary) [avatar definition] 409. predi(mary) <- (22) [avatar component clause 407] 410. 21 | 22 [avatar split clause 279,407,404] 430. 19 | 3 [avatar split clause 285,321,395] 461. 33 <=> predf(paul) [avatar definition] 463. ~predf(paul) <- (~33) [avatar component clause 461] 465. 34 <=> predg(paul) [avatar definition] 468. ~33 | ~34 [avatar split clause 297,465,461] 470. 34 [avatar split clause 298,465] 473. ~predd(mary) | paul != sK7 | ~room(mary) [subsumption resolution 311,264] 474. ~predd(mary) | paul != sK7 [subsumption resolution 473,263] 476. 35 <=> paul = sK7 [avatar definition] 478. paul != sK7 <- (~35) [avatar component clause 476] 479. ~35 | ~3 [avatar split clause 474,321,476] 480. ~predd(mary) | mary != sK7 | ~room(mary) [subsumption resolution 310,264] 481. ~predd(mary) | mary != sK7 [subsumption resolution 480,263] 483. 36 <=> mary = sK7 [avatar definition] 485. mary != sK7 <- (~36) [avatar component clause 483] 486. ~36 | ~3 [avatar split clause 481,321,483] 487. ~predd(mary) | room(sK7) | ~room(mary) [subsumption resolution 309,264] 488. ~predd(mary) | room(sK7) [subsumption resolution 487,263] 490. 37 <=> room(sK7) [avatar definition] 492. room(sK7) <- (37) [avatar component clause 490] 493. 37 | ~3 [avatar split clause 488,321,490] 509. mary = sK7 | paul = sK7 <- (37) [resolution 265,492] 546. paul = sK7 <- (~36, 37) [subsumption resolution 509,485] 547. $false <- (~35, ~36, 37) [subsumption resolution 546,478] 548. 35 | 36 | ~37 [avatar contradiction clause 547] 584. ~room(mary) <- (19, 22) [resolution 396,409] 585. $false <- (19, 22) [subsumption resolution 584,263] 586. ~19 | ~22 [avatar contradiction clause 585] 588. predf(paul) <- (21) [resolution 405,264] 589. $false <- (21, ~33) [subsumption resolution 588,463] 590. ~21 | 33 [avatar contradiction clause 589] 591. $false [avatar sat refutation 410,430,468,470,479,486,493,548,586,590] % SZS output end Proof for 7037650871949752856586342 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.340149
Greg, Stanley, Stephen, William are the only persons in the room. If "Stanley maintains a large, organic vegetable garden year-round" then "everyone outside the room does not participate in long-distance cycling events across the country if they is a wine connoisseur". At least one person anywhere plays eSports competitively. Everyone in the room is a wine connoisseur with a private cellar of vintage wines if they maintains a large, organic vegetable garden year-round. Everyone in the room who is a wine connoisseur with a private cellar of vintage wines is a member of a local theater group specializing in improv. Everyone in the room maintains a large, organic vegetable garden year-round or does not participate in long-distance cycling events across the country. William is a wine connoisseur with a private cellar of vintage wines. Everyone in the room is not a wine connoisseur if they is a member of a local theater group specializing in improv and vice versa. Someone in the room is a wine connoisseur. Everyone in the room who participates in long-distance cycling events across the country does not play eSports competitively. William maintains a large, organic vegetable garden year-round.
Everyone anywhere is a member of a local theater group specializing in improv.
contradiction
room(greg)&room(stanley)&room(stephen)&room(william)&(![X]:(room(X)=>(X='greg'|X='stanley'|X='stephen'|X='william')))& ((maintains_a_large,_organic_vegetable_garden_year-round(stanley))=>(![X]:(~room(X)=>(((is_a_wine_connoisseur(X))=>(does_not_participate_in_long-distance_cycling_events_across_the_country(X)))))))& (((?[X]:(anywhere(X)&plays_eSports_competitively(X)))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(william))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))<=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (?[X]:(room(X)&(is_a_wine_connoisseur(X))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(does_not_play_eSports_competitively(X))))))& (maintains_a_large,_organic_vegetable_garden_year-round(william))
room(greg)&room(stanley)&room(stephen)&room(william)&(![X]:(room(X)=>(X='greg'|X='stanley'|X='stephen'|X='william')))& ![X]:(anywhere(X)=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))
[ "b4", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2927211980677715146553787 % SZS output start Proof for 2927211980677715146553787 5. ! [X0] : anywhere(X0) [input b4] 51. ! [X0] : (room(X0) => (~predf(X0) <=> predb(X0))) [input p7] 52. ? [X0] : (predf(X0) & room(X0)) [input p8] 55. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 56. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 55] 138. ! [X0] : ((~predf(X0) <=> predb(X0)) | ~room(X0)) [ennf transformation 51] 139. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 140. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139] 144. ! [X0] : (((~predf(X0) | ~predb(X0)) & (predb(X0) | predf(X0))) | ~room(X0)) [nnf transformation 138] 145. ? [X0] : (predf(X0) & room(X0)) => (predf(sK1) & room(sK1)) [choice axiom] 146. predf(sK1) & room(sK1) [skolemisation 52,145] 147. anywhere(X0) [cnf transformation 5] 238. ~predb(X0) | ~predf(X0) | ~room(X0) [cnf transformation 144] 239. room(sK1) [cnf transformation 146] 240. predf(sK1) [cnf transformation 146] 247. predb(X0) | ~anywhere(X0) [cnf transformation 140] 248. predb(X0) [subsumption resolution 247,147] 256. ~predf(X0) | ~room(X0) [resolution 238,248] 257. ~room(sK1) [resolution 256,240] 258. $false [subsumption resolution 257,239] % SZS output end Proof for 2927211980677715146553787 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.007383
Margarita, Maria, Steven, Kyle, Andrew are the only persons in the room. “Margarita is an amateur astronomer who builds and uses custom telescopes” unless “Kyle is a scotch connoisseur”. “Everyone in the room owns a smartwatch or does not develop open-source software projects in their free time” unless “Kyle makes homemade pastries, creates augmented reality experiences for mobile applications and plays video games”. If “Maria neither has a pet dog nor collects modern art” then “Maria makes homemade pastries”. If “Maria plays video games” then “Kyle is a scotch connoisseur”. “Maria composes and performs experimental electronic music” if “Margarita drives a hybrid car” and vice versa. Only one person in the room collects classic novels. Steven who is a certified yoga instructor teaching classes weekly, uses a Windows laptop and is an avid mountain climber who has scaled several peaks creates augmented reality experiences for mobile applications. Steven collects first edition books. Steven is a certified yoga instructor teaching classes weekly. Kyle is an amateur astronomer who builds and uses custom telescopes. Everyone in the room develops open-source software projects in their free time if and only if they drives a hybrid car. If someone is a wine connoisseur then he/she collects classic novels, makes homemade pastries and hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who does not own a smartwatch and uses a Windows laptop enjoys spelunking and plays video games. Margarita does not own a smartwatch. Kyle does not develop open-source software projects in their free time. Steven can play the harmonica. Maria designs and sews custom cosplay costumes for conventions, drives a hybrid car and creates augmented reality experiences for mobile applications. Steven creates augmented reality experiences for mobile applications and has a pet dog. Steven designs and sews custom cosplay costumes for conventions. Steven is an avid mountain climber who has scaled several peaks. If someone hosts themed dinner parties featuring gourmet home-cooked meals and owns a smartwatch then he/she plays video games and vice versa. Everyone outside the room who plays video games and collects modern art collects modern art. Margarita is a wine connoisseur.
More than one person in the room owns a smartwatch.
entailment
room(margarita)&room(maria)&room(steven)&room(kyle)&room(andrew)&(![X]:(room(X)=>(X='margarita'|X='maria'|X='steven'|X='kyle'|X='andrew')))& (~(is_a_scotch_connoisseur(kyle))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(margarita)))& (~(((makes_homemade_pastries(kyle))&(creates_augmented_reality_experiences_for_mobile_applications(kyle))&(plays_video_games(kyle))))=>(![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(owns_a_smartwatch(X)))))))& ((~((has_a_pet_dog(maria))|(collects_modern_art(maria))))=>(makes_homemade_pastries(maria)))& ((plays_video_games(maria))=>(is_a_scotch_connoisseur(kyle)))& ((drives_a_hybrid_car(margarita))<=>(composes_and_performs_experimental_electronic_music(maria)))& (((?[X]:(room(X)&collects_classic_novels(X)))&(![X,Y]:((room(X)&room(Y)&(collects_classic_novels(X))&(collects_classic_novels(Y)))=>(X=Y)))))& ((((is_a_certified_yoga_instructor_teaching_classes_weekly(steven))&(uses_a_Windows_laptop(steven))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(steven))))&(creates_augmented_reality_experiences_for_mobile_applications(steven)))& (collects_first_edition_books(steven))& (is_a_certified_yoga_instructor_teaching_classes_weekly(steven))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(kyle))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))<=>(drives_a_hybrid_car(X))))))& ((![X]:((is_a_wine_connoisseur(X))=>(((collects_classic_novels(X))&(makes_homemade_pastries(X))&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))& (![X]:(room(X)=>(((((does_not_own_a_smartwatch(X))&(uses_a_Windows_laptop(X))))=>(((enjoys_spelunking(X))&(plays_video_games(X))))))))& (does_not_own_a_smartwatch(margarita))& (does_not_develop_open-source_software_projects_in_their_free_time(kyle))& (can_play_the_harmonica(steven))& (((designs_and_sews_custom_cosplay_costumes_for_conventions(maria))&(drives_a_hybrid_car(maria))&(creates_augmented_reality_experiences_for_mobile_applications(maria))))& (((creates_augmented_reality_experiences_for_mobile_applications(steven))&(has_a_pet_dog(steven))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(steven))& (is_an_avid_mountain_climber_who_has_scaled_several_peaks(steven))& ((![X]:((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(owns_a_smartwatch(X))))<=>(plays_video_games(X)))))& (![X]:(~room(X)=>(((((plays_video_games(X))&(collects_modern_art(X))))=>(collects_modern_art(X))))))& (is_a_wine_connoisseur(margarita))
room(margarita)&room(maria)&room(steven)&room(kyle)&room(andrew)&(![X]:(room(X)=>(X='margarita'|X='maria'|X='steven'|X='kyle'|X='andrew')))& (?[X,Y]:(room(X)&room(Y)&(owns_a_smartwatch(X)&owns_a_smartwatch(Y))&(X!=Y)))
[ "b42", "p0", "p2", "p7", "p11", "p13", "p17", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 8936494220643419525552125 % SZS output start Proof for 8936494220643419525552125 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ~(predk(alice) & predf(alice) & predu(alice)) => ! [X0] : (room(X0) => (predo(X0) | ~predh(X0))) [input p2] 51. predf(fred) & predb(fred) & predj(fred) & predl(fred) [input p7] 55. ! [X0] : (room(X0) => (predh(X0) <=> predq(X0))) [input p11] 57. ! [X0] : (room(X0) => ((predj(X0) & ~predo(X0)) => (predk(X0) & predg(X0)))) [input p13] 61. predf(paul) & predq(paul) & prede(paul) [input p17] 65. ! [X0] : ((predo(X0) & predc(X0)) <=> predk(X0)) [input p21] 68. ~(? [X0,X1] : (X0 != X1 & predo(X1) & predo(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 70. ~(? [X0,X1] : (X0 != X1 & predo(X1) & predo(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (john = X2 | alice = X2 | fred = X2 | paul = X2 | mary = X2)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 68] 72. predf(paul) & predq(paul) [pure predicate removal 61] 74. ! [X0] : (room(X0) => ((predj(X0) & ~predo(X0)) => predk(X0))) [pure predicate removal 57] 76. predf(fred) & predj(fred) & predl(fred) [pure predicate removal 51] 78. predf(fred) & predj(fred) [pure predicate removal 76] 82. predq(paul) [pure predicate removal 72] 83. ~(predk(alice) & predu(alice)) => ! [X0] : (room(X0) => (predo(X0) | ~predh(X0))) [pure predicate removal 46] 84. predj(fred) [pure predicate removal 78] 86. ~predk(alice) => ! [X0] : (room(X0) => (predo(X0) | ~predh(X0))) [pure predicate removal 83] 163. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 164. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 163] 165. ! [X0] : ((predo(X0) | ~predh(X0)) | ~room(X0)) | predk(alice) [ennf transformation 86] 166. ! [X0] : (predo(X0) | ~predh(X0) | ~room(X0)) | predk(alice) [flattening 165] 169. ! [X0] : ((predh(X0) <=> predq(X0)) | ~room(X0)) [ennf transformation 55] 171. ! [X0] : ((predk(X0) | (~predj(X0) | predo(X0))) | ~room(X0)) [ennf transformation 74] 172. ! [X0] : (predk(X0) | ~predj(X0) | predo(X0) | ~room(X0)) [flattening 171] 175. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) | ? [X2] : ((john != X2 & alice != X2 & fred != X2 & paul != X2 & mary != X2) & room(X2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 70] 176. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) | ? [X2] : (john != X2 & alice != X2 & fred != X2 & paul != X2 & mary != X2 & room(X2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 175] 181. ! [X0] : (((predh(X0) | ~predq(X0)) & (predq(X0) | ~predh(X0))) | ~room(X0)) [nnf transformation 169] 182. ! [X0] : (((predo(X0) & predc(X0)) | ~predk(X0)) & (predk(X0) | (~predo(X0) | ~predc(X0)))) [nnf transformation 65] 183. ! [X0] : (((predo(X0) & predc(X0)) | ~predk(X0)) & (predk(X0) | ~predo(X0) | ~predc(X0))) [flattening 182] 184. ? [X2] : (john != X2 & alice != X2 & fred != X2 & paul != X2 & mary != X2 & room(X2)) => (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 185. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) | (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 176,184] 237. paul != fred [cnf transformation 43] 244. fred != alice [cnf transformation 43] 266. room(mary) [cnf transformation 164] 267. room(paul) [cnf transformation 164] 268. room(fred) [cnf transformation 164] 269. room(alice) [cnf transformation 164] 270. room(john) [cnf transformation 164] 271. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 164] 272. predo(X0) | ~predh(X0) | ~room(X0) | predk(alice) [cnf transformation 166] 278. predj(fred) [cnf transformation 84] 280. ~predq(X0) | predh(X0) | ~room(X0) [cnf transformation 181] 283. ~predj(X0) | predk(X0) | predo(X0) | ~room(X0) [cnf transformation 172] 286. predq(paul) [cnf transformation 82] 289. ~predk(X0) | predo(X0) [cnf transformation 183] 292. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 293. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 294. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 295. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 296. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 297. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 299. 1 <=> predk(alice) [avatar definition] 301. predk(alice) <- (1) [avatar component clause 299] 303. 2 <=> ! [X0] : (predo(X0) | ~room(X0) | ~predh(X0)) [avatar definition] 304. ~predh(X0) | ~room(X0) | predo(X0) <- (2) [avatar component clause 303] 305. 1 | 2 [avatar split clause 272,303,299] 316. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,270] 317. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 316,269] 318. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 317,268] 319. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(mary) [subsumption resolution 318,267] 320. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 [subsumption resolution 319,266] 322. 5 <=> john = sK1 [avatar definition] 324. john != sK1 <- (~5) [avatar component clause 322] 326. 6 <=> ! [X0,X1] : (X0 = X1 | ~room(X0) | ~room(X1) | ~predo(X0) | ~predo(X1)) [avatar definition] 327. ~predo(X1) | ~room(X0) | ~room(X1) | ~predo(X0) | X0 = X1 <- (6) [avatar component clause 326] 328. ~5 | 6 [avatar split clause 320,326,322] 329. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,270] 330. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 329,269] 331. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 330,268] 332. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(mary) [subsumption resolution 331,267] 333. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 [subsumption resolution 332,266] 335. 7 <=> alice = sK1 [avatar definition] 337. alice != sK1 <- (~7) [avatar component clause 335] 338. ~7 | 6 [avatar split clause 333,326,335] 339. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,270] 340. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 339,269] 341. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 340,268] 342. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(mary) [subsumption resolution 341,267] 343. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 [subsumption resolution 342,266] 345. 8 <=> fred = sK1 [avatar definition] 347. fred != sK1 <- (~8) [avatar component clause 345] 348. ~8 | 6 [avatar split clause 343,326,345] 349. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 294,270] 350. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 349,269] 351. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 350,268] 352. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(mary) [subsumption resolution 351,267] 353. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 [subsumption resolution 352,266] 355. 9 <=> paul = sK1 [avatar definition] 358. ~9 | 6 [avatar split clause 353,326,355] 359. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 293,270] 360. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 359,269] 361. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 360,268] 362. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(mary) [subsumption resolution 361,267] 363. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 [subsumption resolution 362,266] 365. 10 <=> mary = sK1 [avatar definition] 367. mary != sK1 <- (~10) [avatar component clause 365] 368. ~10 | 6 [avatar split clause 363,326,365] 369. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 292,270] 370. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 369,269] 371. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 370,268] 372. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(mary) [subsumption resolution 371,267] 373. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) [subsumption resolution 372,266] 375. 11 <=> room(sK1) [avatar definition] 377. room(sK1) <- (11) [avatar component clause 375] 378. 11 | 6 [avatar split clause 373,326,375] 381. predh(paul) | ~room(paul) [resolution 280,286] 382. predh(paul) [subsumption resolution 381,267] 385. ~room(paul) | predo(paul) <- (2) [resolution 304,382] 386. predo(paul) <- (2) [subsumption resolution 385,267] 387. predk(fred) | predo(fred) | ~room(fred) [resolution 283,278] 388. predk(fred) | predo(fred) [subsumption resolution 387,268] 389. predo(fred) [subsumption resolution 388,289] 436. ~room(X0) | ~room(fred) | ~predo(X0) | fred = X0 <- (6) [resolution 327,389] 438. ~predo(X0) | ~room(X0) | fred = X0 <- (6) [subsumption resolution 436,268] 449. ~room(paul) | paul = fred <- (2, 6) [resolution 438,386] 450. paul = fred <- (2, 6) [subsumption resolution 449,267] 451. $false <- (2, 6) [subsumption resolution 450,237] 452. ~2 | ~6 [avatar contradiction clause 451] 453. alice = sK1 | fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (11) [resolution 377,271] 454. fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (~7, 11) [subsumption resolution 453,337] 455. paul = sK1 | mary = sK1 | john = sK1 <- (~7, ~8, 11) [subsumption resolution 454,347] 460. paul = sK1 | john = sK1 <- (~7, ~8, ~10, 11) [subsumption resolution 455,367] 461. paul = sK1 <- (~5, ~7, ~8, ~10, 11) [subsumption resolution 460,324] 462. 9 | 5 | 7 | 8 | 10 | ~11 [avatar split clause 461,375,365,345,335,322,355] 467. predo(alice) <- (1) [resolution 301,289] 471. ~room(X0) | ~room(fred) | ~predo(X0) | fred = X0 <- (6) [resolution 327,389] 473. ~predo(X0) | ~room(X0) | fred = X0 <- (6) [subsumption resolution 471,268] 476. ~room(alice) | fred = alice <- (1, 6) [resolution 473,467] 477. fred = alice <- (1, 6) [subsumption resolution 476,269] 478. $false <- (1, 6) [subsumption resolution 477,244] 479. ~1 | ~6 [avatar contradiction clause 478] 480. $false [avatar sat refutation 305,328,338,348,358,368,378,452,462,479] % SZS output end Proof for 8936494220643419525552125 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.710917
There is a room. Everyone in the room plays eSports competitively only if they is passionate about collecting and restoring classic cars. Not everyone in the room does not enjoy wildlife photography or is passionate about collecting and restoring classic cars. Everyone in the room who does not enjoy wildlife photography enjoys camping and organizing outdoor survival workshops, can play the flute or is passionate about collecting and restoring classic cars.
Everyone in the room cannot play the flute or is a certified yoga instructor teaching classes weekly.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<=(plays_eSports_competitively(X))))))& (~![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))|(does_not_enjoy_wildlife_photography(X))))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(can_play_the_flute(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(((enjoys_wildlife_photography(X))|(collects_modern_art(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(((collects_modern_art(X))&(can_play_the_flute(X))))))))& (((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(Y)))=>(X=Y)))))& (![X]:(~room(X)=>(((collects_action_figures(X))=>(((plays_eSports_competitively(X))&(enjoys_wildlife_photography(X))))))))& (![X]:(anywhere(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))|(owns_a_3D_printer(X))))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(collects_modern_art(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(has_a_pet_dog(X))))))& ((![X]:((creates_augmented_reality_experiences_for_mobile_applications(X))<=>(collects_modern_art(X)))))& (![X]:(room(X)=>(((owns_a_3D_printer(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))& (((?[X]:(~room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(can_play_the_flute(X))&(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))& (![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(can_play_the_flute(X))&(is_passionate_about_collecting_and_restoring_classic_cars(X))))<=>(mentors_a_youth_basketball_team_on_weekends(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(cannot_play_the_flute(X)))))
[]
null
0.162977
Jeffrey, Gary, James, Jason are the only persons in the room. “Everyone in the room does not enjoy kayaking and exploring remote waterways or collects luxury watches” unless “Jason and Tamika hate each other”. If “everyone in the room does not collect rare minerals or bakes bread at home” then “everyone in the room does not have completed a triathlon or does not collect rare minerals” otherwise “everyone in the room does not collect rare minerals or does not have completed a triathlon”. “Tamika and James hate each other” unless “everyone in the room does not bake bread at home or has completed a triathlon”. “Gary and Jason are liked by Ralph” unless “Ralph and Jeffrey hate each other”. “Gary has completed a triathlon” if “everyone outside the room works as a freelance web developer specializing in e-commerce sites or is not a member of a local theater group specializing in improv” and vice versa. “Jason composes and performs experimental electronic music” unless “no one in the room does not collect historical artifacts related to ancient civilizations or is a craft beer aficionado”. “Jeffrey is a Linux enthusiast” unless “Ralph and Jeffrey like each other”. “No one in the room does not enjoy mountain biking or is not wise, not patient, not brave” unless “Ralph and Jeffrey hate each other”. “Everyone in the room does not collect rare minerals or does enjoy mountain biking” unless “Tamika and James like each other”. Someone in the room collects rare minerals, is hated by Lauren and is a member of a local theater group specializing in improv. If someone does not hate Ralph then he/she does enjoy mountain biking and vice versa. Ralph and Jason hate each other. If someone collects rare minerals then he/she is liked by Tamika, is old and builds model airplanes. Someone in the room is hated by Tamika. Everyone in the room does not enjoy kayaking or is funny. Jason bakes bread at home. If someone does not like Lauren then he/she enjoys kayaking and exploring remote waterways. If someone does not work as a freelance web developer specializing in e-commerce sites then he/she hosts a YouTube channel dedicated to art tutorials, is hated by Ralph and does not have completed a triathlon. James who bakes bread at home is not humble, not quiet, not creative.
Jeffrey and James are respectively old and quiet.
contradiction
room(jeffrey)&room(gary)&room(james)&room(jason)&(![X]:(room(X)=>(X='jeffrey'|X='gary'|X='james'|X='jason')))& (~((hate(jason,tamika) & hate(tamika,jason)))=>(![X]:(room(X)=>(((collects_luxury_watches(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))))& (((![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_collect_rare_minerals(X))))))=>(![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(does_not_have_completed_a_triathlon(X)))))))&((~(![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_collect_rare_minerals(X)))))))=>(![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))|(does_not_collect_rare_minerals(X))))))))& (~(![X]:(room(X)=>(((has_completed_a_triathlon(X))|(does_not_bake_bread_at_home(X))))))=>((hate(tamika,james) & hate(james,tamika))))& (~((hate(ralph,jeffrey) & hate(jeffrey,ralph)))=>(like(gary,ralph)&like(jason,ralph)))& ((![X]:(~room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))<=>(has_completed_a_triathlon(gary)))& (~(~?[X]:(room(X)=>(((is_a_craft_beer_aficionado(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))=>(composes_and_performs_experimental_electronic_music(jason)))& (~((like(ralph,jeffrey) & like(jeffrey,ralph)))=>(is_a_Linux_enthusiast(jeffrey)))& (~((hate(ralph,jeffrey) & hate(jeffrey,ralph)))=>(~?[X]:(room(X)=>(((~wise(X)&~patient(X)&~brave(X))|(does_not_enjoy_mountain_biking(X)))))))& (~((like(tamika,james) & like(james,tamika)))=>(![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_collect_rare_minerals(X)))))))& (?[X]:(room(X)&(((collects_rare_minerals(X))&(hate(X,lauren))&(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& ((![X]:((~hate(ralph,X))<=>(does_enjoy_mountain_biking(X)))))& ((hate(ralph,jason) & hate(jason,ralph)))& ((![X]:((collects_rare_minerals(X))=>(((like(X,tamika))&(old(X))&(builds_model_airplanes(X)))))))& (?[X]:(room(X)&(hate(X,tamika))))& (![X]:(room(X)=>(((funny(X))|(does_not_enjoy_kayaking(X))))))& (bakes_bread_at_home(jason))& ((![X]:((~like(lauren,X))=>(enjoys_kayaking_and_exploring_remote_waterways(X)))))& ((![X]:((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))&(hate(X,ralph))&(does_not_have_completed_a_triathlon(X)))))))& ((bakes_bread_at_home(james))&(~humble(james)&~quiet(james)&~creative(james)))
room(jeffrey)&room(gary)&room(james)&room(jason)&(![X]:(room(X)=>(X='jeffrey'|X='gary'|X='james'|X='jason')))& (old(jeffrey))&(quiet(james))
[ "p19", "hypothesis" ]
% SZS status Unsatisfiable for 1482214846477959816409809 % SZS output start Proof for 1482214846477959816409809 63. ~creative(fred) & ~quiet(fred) & ~humble(fred) & predx(fred) [input p19] 64. quiet(fred) & old(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 68. ~quiet(fred) & ~humble(fred) & predx(fred) [pure predicate removal 63] 69. ~quiet(fred) & predx(fred) [pure predicate removal 68] 167. quiet(fred) & old(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 168. quiet(fred) & old(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 167] 303. ~quiet(fred) [cnf transformation 69] 310. quiet(fred) [cnf transformation 168] 412. $false [subsumption resolution 310,303] % SZS output end Proof for 1482214846477959816409809 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.209958
Don is the only person in the room. Someone in the room does not enjoy cross-country skiing. Someone in the room can play the piano. If someone is a night owl then he/she practices archery, is a skilled home brewer experimenting with craft beer recipes or does not host a popular podcast about emerging technologies. It is not the case that “someone in the room is not a skilled home brewer experimenting with craft beer recipes”. If someone enjoys cross-country skiing then he/she competes in national level swimming championships. It is not the case that “someone outside the room mentors a youth basketball team on weekends”. If someone practices digital art then he/she is a scotch connoisseur. Someone outside the room can play the piano. At least one person in the room can play the piano. It is not the case that “someone in the room competes in national level swimming championships”. Someone in the room practices pilates. At least one person anywhere enjoys skydiving. If someone hosts a popular podcast about emerging technologies, collects first edition books or composes and performs experimental electronic music then he/she is a night owl. At least one person outside the room practices archery. Someone in the room creates YouTube content. If someone enjoys windsurfing then he/she creates YouTube content.
Don collects historical artifacts related to ancient civilizations.
neutral
room(don)&(![X]:(room(X)=>(X='don')))& (?[X]:(room(X)&(does_not_enjoy_cross-country_skiing(X))))& (?[X]:(room(X)&(can_play_the_piano(X))))& ((![X]:((is_a_night_owl(X))=>(((practices_archery(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))))& (~(?[X]:(room(X)&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))& ((![X]:((enjoys_cross-country_skiing(X))=>(competes_in_national_level_swimming_championships(X)))))& (~(?[X]:(~room(X)&(mentors_a_youth_basketball_team_on_weekends(X)))))& ((![X]:((practices_digital_art(X))=>(is_a_scotch_connoisseur(X)))))& (?[X]:(~room(X)&(can_play_the_piano(X))))& (((?[X]:(room(X)&can_play_the_piano(X)))))& (~(?[X]:(room(X)&(competes_in_national_level_swimming_championships(X)))))& (?[X]:(room(X)&(practices_pilates(X))))& (((?[X]:(anywhere(X)&enjoys_skydiving(X)))))& ((![X]:((((hosts_a_popular_podcast_about_emerging_technologies(X))|(collects_first_edition_books(X))|(composes_and_performs_experimental_electronic_music(X))))=>(is_a_night_owl(X)))))& (((?[X]:(~room(X)&practices_archery(X)))))& (?[X]:(room(X)&(creates_YouTube_content(X))))& ((![X]:((enjoys_windsurfing(X))=>(creates_YouTube_content(X)))))& (~(~(?[X]:(room(X)&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& ((![X]:((practices_digital_art(X))=>(collects_first_edition_books(X)))))& ((![X]:((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(composes_and_performs_experimental_electronic_music(X)))))& ((![X]:((can_play_the_piano(X))=>(practices_digital_art(X)))))
room(don)&(![X]:(room(X)=>(X='don')))& collects_historical_artifacts_related_to_ancient_civilizations(don)
[]
null
0.310164
Colette, Bob, Derek are the only persons in the room. “Colette is kind” if “Colette is tall”. Either “Colette is kind” or “Colette is not a old brave person” but not both. Colette neither is calm nor is not a humble creative curious wise person. More than one person in the room is not curious, not funny. Colette neither is old nor is not old, not calm, not wise, not generous.
Bob and Colette are not a funny quiet tall generous wise persons.
entailment
room(colette)&room(bob)&room(derek)&(![X]:(room(X)=>(X='colette'|X='bob'|X='derek')))& ((~(curious(colette)&creative(colette)&brave(colette)&strong(colette)&tall(colette)&person(colette)))<~>(funny(colette)))& ((tall(colette))=>(kind(colette)))& ((wise(colette))=>(~(calm(colette)&person(colette))))& ((kind(colette))<~>(~(old(colette)&brave(colette)&person(colette))))& (quiet(colette))& (patient(colette))& (generous(colette))& (![X]:(kind(X)=>tall(X)))& (~(old(colette)&tall(colette)&creative(colette)&wise(colette)&patient(colette)&person(colette)))& (~(humble(colette)&strong(colette)&wise(colette)&generous(colette)&person(colette)))& (~((calm(colette))|(~(humble(colette)&creative(colette)&curious(colette)&wise(colette)&person(colette)))))& ((?[X,Y]:(room(X)&room(Y)&(~curious(X)&~funny(X)&~curious(Y)&~funny(Y))&(X!=Y))))& ((![X]:((~(humble(X)&person(X)))=>(~(happy(X)&person(X))))))& (![X]:((room(X)&(X!=colette))=>older(colette,X)))& ((colette_dream=>(wise(colette))))& (((?[X]:(anywhere(X)&~(creative(X)&person(X))))&(![X,Y]:((anywhere(X)&anywhere(Y)&(~(creative(X)&person(X)))&(~(creative(Y)&person(Y))))=>(X=Y)))))& ((![X]:((happy(X))=>(~(curious(X)&creative(X)&strong(X)&person(X))))))& ((![X]:((~quiet(X)&~calm(X))=>(old(X)))))& (![X]:((anywhere(X)&(X!=colette))=>richer(colette,X)))& (~((old(colette))|(~old(colette)&~calm(colette)&~wise(colette)&~generous(colette))))& (~(old(colette)&brave(colette)&humble(colette)&person(colette)))
room(colette)&room(bob)&room(derek)&(![X]:(room(X)=>(X='colette'|X='bob'|X='derek')))& ~(funny(bob)&quiet(bob)&tall(bob)&generous(bob)&wise(bob)&person(bob))&~(funny(colette)&quiet(colette)&tall(colette)&generous(colette)&wise(colette)&person(colette))
[ "p0", "p2", "p4", "p11", "p12", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 6059537060103453172170976 % SZS output start Proof for 6059537060103453172170976 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. tall(mary) => kind(mary) [input p2] 48. kind(mary) <~> ~(person(mary) & brave(mary) & old(mary)) [input p4] 55. ~(~(person(mary) & wise(mary) & curious(mary) & creative(mary) & humble(mary)) | calm(mary)) [input p11] 56. ? [X0,X1] : (X0 != X1 & ~funny(X1) & ~curious(X1) & ~funny(X0) & ~curious(X0) & room(X1) & room(X0)) [input p12] 64. ~((~generous(mary) & ~wise(mary) & ~calm(mary) & ~old(mary)) | old(mary)) [input p20] 66. ~(~(person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) & ~(person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 142. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 145. kind(mary) | ~tall(mary) [ennf transformation 46] 148. kind(mary) <~> (~person(mary) | ~brave(mary) | ~old(mary)) [ennf transformation 48] 152. (person(mary) & wise(mary) & curious(mary) & creative(mary) & humble(mary)) & ~calm(mary) [ennf transformation 55] 153. person(mary) & wise(mary) & curious(mary) & creative(mary) & humble(mary) & ~calm(mary) [flattening 152] 162. (generous(mary) | wise(mary) | calm(mary) | old(mary)) & ~old(mary) [ennf transformation 64] 164. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 165. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 164] 166. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP0 [predicate definition introduction] 167. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP1 [predicate definition introduction] 168. sP1 | sP0 | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 165,167,166] 172. ((person(mary) & brave(mary) & old(mary)) | ~kind(mary)) & ((~person(mary) | ~brave(mary) | ~old(mary)) | kind(mary)) [nnf transformation 148] 173. ((person(mary) & brave(mary) & old(mary)) | ~kind(mary)) & (~person(mary) | ~brave(mary) | ~old(mary) | kind(mary)) [flattening 172] 174. ? [X0,X1] : (X0 != X1 & ~funny(X1) & ~curious(X1) & ~funny(X0) & ~curious(X0) & room(X1) & room(X0)) => (sK2 != sK3 & ~funny(sK3) & ~curious(sK3) & ~funny(sK2) & ~curious(sK2) & room(sK3) & room(sK2)) [choice axiom] 175. sK2 != sK3 & ~funny(sK3) & ~curious(sK3) & ~funny(sK2) & ~curious(sK2) & room(sK3) & room(sK2) [skolemisation 56,174] 178. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP1 [nnf transformation 167] 179. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP0 [nnf transformation 166] 180. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 181. sP1 | sP0 | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 168,180] 263. room(mary) [cnf transformation 143] 264. room(paul) [cnf transformation 143] 265. room(fred) [cnf transformation 143] 266. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 143] 274. kind(mary) | ~tall(mary) [cnf transformation 145] 277. old(mary) | ~kind(mary) [cnf transformation 173] 289. curious(mary) [cnf transformation 153] 292. room(sK2) [cnf transformation 175] 293. room(sK3) [cnf transformation 175] 294. ~curious(sK2) [cnf transformation 175] 295. ~funny(sK2) [cnf transformation 175] 296. ~curious(sK3) [cnf transformation 175] 297. ~funny(sK3) [cnf transformation 175] 298. sK2 != sK3 [cnf transformation 175] 308. ~old(mary) [cnf transformation 162] 313. tall(mary) | ~sP1 [cnf transformation 178] 317. funny(paul) | ~sP0 [cnf transformation 179] 323. sP1 | sP0 | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 324. sP1 | sP0 | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 325. sP1 | sP0 | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 326. sP1 | sP0 | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 337. 3 <=> tall(mary) [avatar definition] 357. 7 <=> curious(mary) [avatar definition] 359. curious(mary) <- (7) [avatar component clause 357] 363. 8 <=> kind(mary) [avatar definition] 366. ~3 | 8 [avatar split clause 274,363,337] 379. 11 <=> old(mary) [avatar definition] 382. ~8 | 11 [avatar split clause 277,379,363] 394. 7 [avatar split clause 289,357] 414. ~11 [avatar split clause 308,379] 417. 15 <=> sP1 [avatar definition] 422. ~15 | 3 [avatar split clause 313,337,417] 425. 16 <=> sP0 [avatar definition] 454. 22 <=> funny(paul) [avatar definition] 457. ~16 | 22 [avatar split clause 317,454,425] 458. sP1 | sP0 | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 326,265] 459. sP1 | sP0 | fred != sK5 | ~room(mary) [subsumption resolution 458,264] 460. sP1 | sP0 | fred != sK5 [subsumption resolution 459,263] 462. 23 <=> fred = sK5 [avatar definition] 464. fred != sK5 <- (~23) [avatar component clause 462] 465. ~23 | 16 | 15 [avatar split clause 460,417,425,462] 466. sP1 | sP0 | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 325,265] 467. sP1 | sP0 | paul != sK5 | ~room(mary) [subsumption resolution 466,264] 468. sP1 | sP0 | paul != sK5 [subsumption resolution 467,263] 470. 24 <=> paul = sK5 [avatar definition] 472. paul != sK5 <- (~24) [avatar component clause 470] 473. ~24 | 16 | 15 [avatar split clause 468,417,425,470] 474. sP1 | sP0 | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 324,265] 475. sP1 | sP0 | mary != sK5 | ~room(mary) [subsumption resolution 474,264] 476. sP1 | sP0 | mary != sK5 [subsumption resolution 475,263] 478. 25 <=> mary = sK5 [avatar definition] 480. mary != sK5 <- (~25) [avatar component clause 478] 481. ~25 | 16 | 15 [avatar split clause 476,417,425,478] 482. sP1 | sP0 | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 323,265] 483. sP1 | sP0 | room(sK5) | ~room(mary) [subsumption resolution 482,264] 484. sP1 | sP0 | room(sK5) [subsumption resolution 483,263] 486. 26 <=> room(sK5) [avatar definition] 488. room(sK5) <- (26) [avatar component clause 486] 489. 26 | 16 | 15 [avatar split clause 484,417,425,486] 609. paul = sK2 | mary = sK2 | fred = sK2 [resolution 266,292] 610. paul = sK3 | mary = sK3 | fred = sK3 [resolution 266,293] 612. 33 <=> fred = sK2 [avatar definition] 616. 34 <=> mary = sK2 [avatar definition] 618. mary = sK2 <- (34) [avatar component clause 616] 620. 35 <=> paul = sK2 [avatar definition] 622. paul = sK2 <- (35) [avatar component clause 620] 623. 33 | 34 | 35 [avatar split clause 609,620,616,612] 625. 36 <=> fred = sK3 [avatar definition] 627. fred = sK3 <- (36) [avatar component clause 625] 629. 37 <=> mary = sK3 [avatar definition] 631. mary = sK3 <- (37) [avatar component clause 629] 633. 38 <=> paul = sK3 [avatar definition] 635. paul = sK3 <- (38) [avatar component clause 633] 636. 36 | 37 | 38 [avatar split clause 610,633,629,625] 640. fred != sK2 <- (36) [backward demodulation 298,627] 641. ~33 | ~36 [avatar split clause 640,625,612] 646. ~curious(mary) <- (34) [backward demodulation 294,618] 648. $false <- (7, 34) [subsumption resolution 646,359] 649. ~7 | ~34 [avatar contradiction clause 648] 653. ~funny(paul) <- (35) [backward demodulation 295,622] 657. ~22 | ~35 [avatar split clause 653,620,454] 658. paul = sK5 | mary = sK5 | fred = sK5 <- (26) [resolution 488,266] 659. mary = sK5 | fred = sK5 <- (~24, 26) [subsumption resolution 658,472] 660. fred = sK5 <- (~24, ~25, 26) [subsumption resolution 659,480] 661. $false <- (~23, ~24, ~25, 26) [subsumption resolution 660,464] 662. 23 | 24 | 25 | ~26 [avatar contradiction clause 661] 665. ~funny(paul) <- (38) [backward demodulation 297,635] 667. ~22 | ~38 [avatar split clause 665,633,454] 676. ~curious(mary) <- (37) [backward demodulation 296,631] 679. $false <- (7, 37) [subsumption resolution 676,359] 680. ~7 | ~37 [avatar contradiction clause 679] 681. $false [avatar sat refutation 366,382,394,414,422,457,465,473,481,489,623,636,641,649,657,662,667,680] % SZS output end Proof for 6059537060103453172170976 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.360422
Joseph, Florencio are the only persons in the room. Either “Florencio is a client of Jeri” or “Rosa is a client of Joseph” but not both. “Florencio is a client of Theresa” if “it is not the case that “Florencio is a happy person”” and vice versa. “Florencio is a wise european” if “Florencio makes homemade pastries”. If “Joseph is patient” then “Joseph participates in citizen science projects related to wildlife monitoring”. If “Joseph participates in citizen science projects related to wildlife monitoring” then “someone in the room is not generous”. “Florencio is a calm tourist” if “someone in the room enjoys stand-up paddleboarding” and vice versa. Either “Joseph is funny” or “Joseph is a wine connoisseur with a private cellar of vintage wines” but not both. Joseph is humble. Florencio who is a calm person owns a telescope.
Joseph is a professional photographer specializing in portrait photography.
contradiction
room(joseph)&room(florencio)&(![X]:(room(X)=>(X='joseph'|X='florencio')))& ((client(jeri,florencio))<~>(client(joseph,rosa)))& ((~(happy(florencio)&person(florencio)))<=>(client(theresa,florencio)))& ((makes_homemade_pastries(florencio))=>(wise(florencio)&european(florencio)))& (((patient(joseph))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(joseph)))& ((participates_in_citizen_science_projects_related_to_wildlife_monitoring(joseph))=>(?[X]:(room(X)&(~generous(X))))))& ((?[X]:(room(X)&(enjoys_stand-up_paddleboarding(X))))<=>(calm(florencio)&tourist(florencio)))& ((funny(joseph))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph)))& (humble(joseph))& ((calm(florencio)&person(florencio))&(owns_a_telescope(florencio)))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(florencio))& (![X]:(calm(X)=>strong(X)))& (?[X,Y]:((owns_a_telescope(X))&(humble(Y)&european(Y))&(sibling(X,Y))))& (![X]:(tall(X)=>creative(X)))& (?[X]:(anywhere(X)&(funny(X))))& (is_a_client_of_LVMH(joseph))& (~(quiet(florencio)&person(florencio)))& (is_not_a_professional_photographer_specializing_in_portrait_photography(joseph))& (![X]:(creative(X)=>happy(X)))& (![X]:(creative(X)=>funny(X)))& ((?[X,Y]:(room(X)&room(Y)&(creative(X)&european(X)&creative(Y)&european(Y))&(X!=Y))))& (![X]:(generous(X)=>curious(X)))& (![X]:(calm(X)=>curious(X)))& (funny(florencio)&tourist(florencio))& (sibling(william,florencio))& (![X]:(patient(X)=>generous(X)))& (![X]:(humble(X)=>kind(X)))
room(joseph)&room(florencio)&(![X]:(room(X)=>(X='joseph'|X='florencio')))& is_a_professional_photographer_specializing_in_portrait_photography(joseph)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 6705006392019050524690721 % SZS output start Proof for 6705006392019050524690721 44. ! [X0] : (humble(X0) => kind(X0)) & ! [X0] : (patient(X0) => generous(X0)) & sibling(john,paul) & tourist(paul) & funny(paul) & ! [X0] : (calm(X0) => curious(X0)) & ! [X0] : (generous(X0) => curious(X0)) & ? [X0,X1] : (X0 != X1 & european(X1) & creative(X1) & european(X0) & creative(X0) & room(X1) & room(X0)) & ! [X0] : (creative(X0) => funny(X0)) & ! [X0] : (creative(X0) => happy(X0)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & predd(mary) & ? [X0] : (funny(X0) & anywhere(X0)) & ! [X0] : (tall(X0) => creative(X0)) & ? [X0,X1] : (sibling(X0,X1) & european(X1) & humble(X1) & predm(X0)) & ! [X0] : (calm(X0) => strong(X0)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & humble(mary) & (funny(mary) <~> predh(mary)) & (? [X0] : (predr(X0) & room(X0)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X0] : (~generous(X0) & room(X0))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predc(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (humble(X0) => kind(X0)) & ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ! [X2] : (calm(X2) => curious(X2)) & ! [X3] : (generous(X3) => curious(X3)) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & predd(mary) & ? [X8] : (funny(X8) & anywhere(X8)) & ! [X9] : (tall(X9) => creative(X9)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & humble(X11) & predm(X10)) & ! [X12] : (calm(X12) => strong(X12)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & humble(mary) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [rectify 44] 47. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ! [X2] : (calm(X2) => curious(X2)) & ! [X3] : (generous(X3) => curious(X3)) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & predd(mary) & ? [X8] : (funny(X8) & anywhere(X8)) & ! [X9] : (tall(X9) => creative(X9)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & humble(X11) & predm(X10)) & ! [X12] : (calm(X12) => strong(X12)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & humble(mary) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ! [X2] : (calm(X2) => curious(X2)) & ! [X3] : (generous(X3) => curious(X3)) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & predd(mary) & ? [X8] : (funny(X8) & anywhere(X8)) & ! [X9] : (tall(X9) => creative(X9)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & predm(X10)) & ! [X12] : (calm(X12) => strong(X12)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & predd(mary) & ? [X8] : (funny(X8) & anywhere(X8)) & ! [X9] : (tall(X9) => creative(X9)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & predm(X10)) & ! [X12] : (calm(X12) => strong(X12)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ! [X9] : (tall(X9) => creative(X9)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & predm(X10)) & ! [X12] : (calm(X12) => strong(X12)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & predm(X10)) & ! [X12] : (calm(X12) => strong(X12)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & predm(X10)) & predu(paul) & predm(paul) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11) & predm(X10)) & predm(paul) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X1] : (patient(X1) => generous(X1)) & sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (patient(mary) => predj(mary)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 53] 55. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : (~generous(X14) & room(X14))) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 54] 56. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predj(mary) => ? [X14] : room(X14)) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 55] 57. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predz(paul) => (european(paul) & wise(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 56] 58. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (predz(paul) => european(paul)) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 57] 59. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : (funny(X8) & anywhere(X8)) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 58] 60. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (creative(X6) => funny(X6)) & ! [X7] : (creative(X7) => happy(X7)) & ~predc(mary) & ~(person(paul) & quiet(paul)) & ? [X8] : funny(X8) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & (~(person(paul) & happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 59] 133. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (funny(X6) | ~creative(X6)) & ! [X7] : (happy(X7) | ~creative(X7)) & ~predc(mary) & (~person(paul) | ~quiet(paul)) & ? [X8] : funny(X8) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & ((~person(paul) | ~happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : ((paul = X15 | mary = X15) | ~room(X15)) & room(paul) & room(mary) [ennf transformation 60] 134. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (funny(X6) | ~creative(X6)) & ! [X7] : (happy(X7) | ~creative(X7)) & ~predc(mary) & (~person(paul) | ~quiet(paul)) & ? [X8] : funny(X8) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (funny(mary) <~> predh(mary)) & (? [X13] : (predr(X13) & room(X13)) <=> (tourist(paul) & calm(paul))) & ((~person(paul) | ~happy(paul)) <=> client(susan,paul)) & (client(alice,paul) <~> client(mary,lucy)) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [flattening 133] 135. predc(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 136. predc(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 135] 138. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (funny(X6) | ~creative(X6)) & ! [X7] : (happy(X7) | ~creative(X7)) & ~predc(mary) & (~person(paul) | ~quiet(paul)) & ? [X8] : funny(X8) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & ((~predh(mary) | ~funny(mary)) & (predh(mary) | funny(mary))) & ((? [X13] : (predr(X13) & room(X13)) | (~tourist(paul) | ~calm(paul))) & ((tourist(paul) & calm(paul)) | ! [X13] : (~predr(X13) | ~room(X13)))) & (((~person(paul) | ~happy(paul)) | ~client(susan,paul)) & (client(susan,paul) | (person(paul) & happy(paul)))) & ((~client(mary,lucy) | ~client(alice,paul)) & (client(mary,lucy) | client(alice,paul))) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [nnf transformation 134] 139. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X4,X5] : (X4 != X5 & european(X5) & creative(X5) & european(X4) & creative(X4) & room(X5) & room(X4)) & ! [X6] : (funny(X6) | ~creative(X6)) & ! [X7] : (happy(X7) | ~creative(X7)) & ~predc(mary) & (~person(paul) | ~quiet(paul)) & ? [X8] : funny(X8) & ? [X10,X11] : (sibling(X10,X11) & european(X11)) & person(paul) & calm(paul) & (~predh(mary) | ~funny(mary)) & (predh(mary) | funny(mary)) & (? [X13] : (predr(X13) & room(X13)) | ~tourist(paul) | ~calm(paul)) & ((tourist(paul) & calm(paul)) | ! [X13] : (~predr(X13) | ~room(X13))) & (~person(paul) | ~happy(paul) | ~client(susan,paul)) & (client(susan,paul) | (person(paul) & happy(paul))) & (~client(mary,lucy) | ~client(alice,paul)) & (client(mary,lucy) | client(alice,paul)) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [flattening 138] 140. sibling(john,paul) & tourist(paul) & funny(paul) & ? [X0,X1] : (X0 != X1 & european(X1) & creative(X1) & european(X0) & creative(X0) & room(X1) & room(X0)) & ! [X2] : (funny(X2) | ~creative(X2)) & ! [X3] : (happy(X3) | ~creative(X3)) & ~predc(mary) & (~person(paul) | ~quiet(paul)) & ? [X4] : funny(X4) & ? [X5,X6] : (sibling(X5,X6) & european(X6)) & person(paul) & calm(paul) & (~predh(mary) | ~funny(mary)) & (predh(mary) | funny(mary)) & (? [X7] : (predr(X7) & room(X7)) | ~tourist(paul) | ~calm(paul)) & ((tourist(paul) & calm(paul)) | ! [X8] : (~predr(X8) | ~room(X8))) & (~person(paul) | ~happy(paul) | ~client(susan,paul)) & (client(susan,paul) | (person(paul) & happy(paul))) & (~client(mary,lucy) | ~client(alice,paul)) & (client(mary,lucy) | client(alice,paul)) & ! [X9] : (paul = X9 | mary = X9 | ~room(X9)) & room(paul) & room(mary) [rectify 139] 141. ? [X0,X1] : (X0 != X1 & european(X1) & creative(X1) & european(X0) & creative(X0) & room(X1) & room(X0)) => (sK0 != sK1 & european(sK1) & creative(sK1) & european(sK0) & creative(sK0) & room(sK1) & room(sK0)) [choice axiom] 142. ? [X4] : funny(X4) => funny(sK2) [choice axiom] 143. ? [X5,X6] : (sibling(X5,X6) & european(X6)) => (sibling(sK3,sK4) & european(sK4)) [choice axiom] 144. ? [X7] : (predr(X7) & room(X7)) => (predr(sK5) & room(sK5)) [choice axiom] 145. sibling(john,paul) & tourist(paul) & funny(paul) & (sK0 != sK1 & european(sK1) & creative(sK1) & european(sK0) & creative(sK0) & room(sK1) & room(sK0)) & ! [X2] : (funny(X2) | ~creative(X2)) & ! [X3] : (happy(X3) | ~creative(X3)) & ~predc(mary) & (~person(paul) | ~quiet(paul)) & funny(sK2) & (sibling(sK3,sK4) & european(sK4)) & person(paul) & calm(paul) & (~predh(mary) | ~funny(mary)) & (predh(mary) | funny(mary)) & ((predr(sK5) & room(sK5)) | ~tourist(paul) | ~calm(paul)) & ((tourist(paul) & calm(paul)) | ! [X8] : (~predr(X8) | ~room(X8))) & (~person(paul) | ~happy(paul) | ~client(susan,paul)) & (client(susan,paul) | (person(paul) & happy(paul))) & (~client(mary,lucy) | ~client(alice,paul)) & (client(mary,lucy) | client(alice,paul)) & ! [X9] : (paul = X9 | mary = X9 | ~room(X9)) & room(paul) & room(mary) [skolemisation 140,144,143,142,141] 248. ~predc(mary) [cnf transformation 145] 264. predc(mary) [cnf transformation 136] 310. $false [subsumption resolution 264,248] % SZS output end Proof for 6705006392019050524690721 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.646999
Pete is the only person in the room. Pete neither reads mystery novels nor is a client of LVMH. Pete either reads mystery novels or is an expert in identifying and foraging wild edible plants but not both. Everyone in the room uses a Windows laptop only if they knows morse code. Everyone in the room who knows morse code mentors a youth basketball team on weekends. Everyone in the room mentors a youth basketball team on weekends if and only if they neither has completed a triathlon nor is a client of LVMH. Everyone in the room collects foreign coins or does not make homemade pastries. Everyone in the room collects foreign coins only if they uses a Windows laptop. Pete practices graffiti art. Pete does not make homemade pastries. Pete mentors a youth basketball team on weekends. Everyone in the room who enjoys watercolor painting collects rare minerals. Everyone in the room competes in national level swimming championships if they enjoys deep-sea diving and exploring underwater caves and vice versa. Everyone in the room who enjoys deep-sea diving and exploring underwater caves is a client of LVMH. Everyone in the room has a vast collection of first-edition science fiction novels only if they neither reads mystery novels nor hosts a popular podcast about emerging technologies. Everyone in the room who neither reads mystery novels nor hosts a popular podcast about emerging technologies watches fantasy movies. Pete can play the piano.
Pete has completed a triathlon.
contradiction
room(pete)&(![X]:(room(X)=>(X='pete')))& (~((reads_mystery_novels(pete))|(is_a_client_of_LVMH(pete))))& (((reads_mystery_novels(pete))<~>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(pete))))& (![X]:(room(X)=>(((knows_morse_code(X))<=(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((knows_morse_code(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))<=>(~((has_completed_a_triathlon(X))|(is_a_client_of_LVMH(X))))))))& (![X]:(room(X)=>(((does_not_make_homemade_pastries(X))|(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))<=(collects_foreign_coins(X))))))& (practices_graffiti_art(pete))& (does_not_make_homemade_pastries(pete))& (mentors_a_youth_basketball_team_on_weekends(pete))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))<=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(is_a_client_of_LVMH(X))))))& (![X]:(room(X)=>(((~((reads_mystery_novels(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))<=(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(((~((reads_mystery_novels(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))=>(watches_fantasy_movies(X))))))& (can_play_the_piano(pete))
room(pete)&(![X]:(room(X)=>(X='pete')))& has_completed_a_triathlon(pete)
[ "p0", "p5", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 6857044568840933092962273 % SZS output start Proof for 6857044568840933092962273 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (predz(X0) <=> ~(predi(X0) | predx(X0)))) [input p5] 54. predz(mary) [input p10] 61. predx(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 145. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 147. ! [X0] : ((predz(X0) <=> (~predi(X0) & ~predx(X0))) | ~room(X0)) [ennf transformation 49] 151. predx(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 61] 154. ! [X0] : (((predz(X0) | (predi(X0) | predx(X0))) & ((~predi(X0) & ~predx(X0)) | ~predz(X0))) | ~room(X0)) [nnf transformation 147] 155. ! [X0] : (((predz(X0) | predi(X0) | predx(X0)) & ((~predi(X0) & ~predx(X0)) | ~predz(X0))) | ~room(X0)) [flattening 154] 237. room(mary) [cnf transformation 145] 243. ~predx(X0) | ~predz(X0) | ~room(X0) [cnf transformation 155] 246. predz(mary) [cnf transformation 54] 252. predx(mary) [cnf transformation 151] 255. ~predz(mary) | ~room(mary) [resolution 243,252] 256. ~room(mary) [subsumption resolution 255,246] 257. $false [subsumption resolution 256,237] % SZS output end Proof for 6857044568840933092962273 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.40519
Leslie, Keith are the only persons in the room. “Leslie does not enjoy rooftop gardening, does not have a saltwater aquarium and does not collect action figures” unless “Leslie does not practice calligraphy”. Either “Leslie either is not passionate about collecting and restoring classic cars or does not volunteer for local environmental conservation projects but not both” or “Leslie neither does not own a telescope nor does not play video games” but not both. Leslie who does not collect comic books enjoys writing detailed reviews of new and classic board games. Leslie does not collect action figures. Leslie who does not collect action figures does enjoy mountain biking, enjoys watercolor painting and does not collect comic books. Everyone in the room does not participate in long-distance cycling events across the country, does not enjoy writing detailed reviews of new and classic board games and is a tea enthusiast if they is not a tea enthusiast. Everyone in the room does not participate in long-distance cycling events across the country. Keith does not collect action figures, does not collect comic books and does not collect rare and antique scientific instruments. Keith does not collect foreign coins. At least one person in the room does not enjoy kayaking and exploring remote waterways. Everyone in the room is not passionate about collecting and restoring classic cars if they collects foreign coins. Everyone in the room does not collect comic books. Everyone in the room is passionate about collecting and restoring classic cars only if they does not enjoy making ceramics. Keith who does not own a television does not practice calligraphy. Keith does not collect comic books. Leslie collects rare and antique scientific instruments. Keith travels domestically frequently. If someone enjoys rooftop gardening then he/she does not collect action figures.
Leslie enjoys watercolor painting.
entailment
room(leslie)&room(keith)&(![X]:(room(X)=>(X='leslie'|X='keith')))& (~(does_not_practice_calligraphy(leslie))=>(((does_not_enjoy_rooftop_gardening(leslie))&(does_not_have_a_saltwater_aquarium(leslie))&(does_not_collect_action_figures(leslie)))))& ((((is_not_passionate_about_collecting_and_restoring_classic_cars(leslie))<~>(does_not_volunteer_for_local_environmental_conservation_projects(leslie))))<~>(~((does_not_own_a_telescope(leslie))|(does_not_play_video_games(leslie)))))& ((does_not_collect_comic_books(leslie))&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(leslie)))& (does_not_collect_action_figures(leslie))& ((does_not_collect_action_figures(leslie))&(((does_enjoy_mountain_biking(leslie))&(enjoys_watercolor_painting(leslie))&(does_not_collect_comic_books(leslie)))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))&(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))&(is_a_tea_enthusiast(X))))))))& (![X]:(room(X)=>(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))& (((does_not_collect_action_figures(keith))&(does_not_collect_comic_books(keith))&(does_not_collect_rare_and_antique_scientific_instruments(keith))))& (does_not_collect_foreign_coins(keith))& (((?[X]:(room(X)&does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(does_not_collect_comic_books(X))))& (![X]:(room(X)=>(((does_not_enjoy_making_ceramics(X))<=(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((does_not_own_a_television(keith))&(does_not_practice_calligraphy(keith)))& (does_not_collect_comic_books(keith))& (collects_rare_and_antique_scientific_instruments(leslie))& (travels_domestically_frequently(keith))& ((![X]:((enjoys_rooftop_gardening(X))=>(does_not_collect_action_figures(X)))))
room(leslie)&room(keith)&(![X]:(room(X)=>(X='leslie'|X='keith')))& enjoys_watercolor_painting(leslie)
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 265189802390526842722480 % SZS output start Proof for 265189802390526842722480 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ~prede(mary) & predu(mary) & predr(mary) & ~predn(mary) [input p5] 63. ~(predu(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 74. ~prede(mary) & predu(mary) & ~predn(mary) [pure predicate removal 49] 79. predu(mary) & ~predn(mary) [pure predicate removal 74] 82. predu(mary) [pure predicate removal 79] 160. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 160] 163. ~predu(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 63] 164. ~predu(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 163] 170. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 171. ~predu(mary) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 164,170] 252. room(mary) [cnf transformation 161] 253. room(paul) [cnf transformation 161] 254. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 161] 261. predu(mary) [cnf transformation 82] 265. ~predu(mary) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 171] 266. ~predu(mary) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 171] 267. ~predu(mary) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 171] 290. paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 267,261] 291. paul != sK1 | ~room(mary) [subsumption resolution 290,253] 292. paul != sK1 [subsumption resolution 291,252] 293. mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 266,261] 294. mary != sK1 | ~room(mary) [subsumption resolution 293,253] 295. mary != sK1 [subsumption resolution 294,252] 296. room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 265,261] 297. room(sK1) | ~room(mary) [subsumption resolution 296,253] 298. room(sK1) [subsumption resolution 297,252] 302. mary = sK1 | paul = sK1 [resolution 254,298] 312. paul = sK1 [subsumption resolution 302,295] 313. $false [subsumption resolution 312,292] % SZS output end Proof for 265189802390526842722480 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.510532
Viola, Virgina are the only persons in the room. “Everyone in the room either is not a wine connoisseur or cannot play the flute but not both” only if “Viola does not own a smart tv and does not host a YouTube channel dedicated to art tutorials”. Everyone anywhere does not practice and performs acrobatic dance routines.
Virgina practices and performs acrobatic dance routines.
contradiction
room(viola)&room(virgina)&(![X]:(room(X)=>(X='viola'|X='virgina')))& ((![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))<~>(cannot_play_the_flute(X))))))=>(((does_not_own_a_smart_tv(viola))&(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(viola)))))& (cannot_play_the_flute(virgina))& (![X]:(room(X)=>(((does_not_use_an_ios_phone(X))&(does_not_collect_vintage_stamps(X))))))& (~((does_not_enjoy_stand-up_paddleboarding(virgina))|(does_not_practice_zumba(virgina))))& (![X]:(room(X)=>(does_not_have_lived_in_exactly_three_countries(X))))& (does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(virgina))& (![X]:(~room(X)=>(does_not_enjoy_stand-up_paddleboarding(X))))& (![X]:(anywhere(X)=>(does_not_practice_and_performs_acrobatic_dance_routines(X))))
room(viola)&room(virgina)&(![X]:(room(X)=>(X='viola'|X='virgina')))& practices_and_performs_acrobatic_dance_routines(virgina)
[ "b4", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 423244927836374683293713 % SZS output start Proof for 423244927836374683293713 5. ! [X0] : anywhere(X0) [input b4] 52. ! [X0] : (anywhere(X0) => ~preda(X0)) [input p8] 53. preda(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 137. ! [X0] : (~preda(X0) | ~anywhere(X0)) [ennf transformation 52] 138. preda(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 53] 139. preda(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 138] 141. anywhere(X0) [cnf transformation 5] 227. ~preda(X0) | ~anywhere(X0) [cnf transformation 137] 231. preda(paul) [cnf transformation 139] 232. ~preda(X0) [subsumption resolution 227,141] 233. $false [subsumption resolution 231,232] % SZS output end Proof for 423244927836374683293713 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.678004
Joyce, Debora, Francisco, Muriel are the only persons in the room. If "Francisco is a certified yoga instructor teaching classes weekly" then "everyone anywhere is a coffee connoisseur if they builds model airplanes" otherwise "Francisco is an expert in identifying and foraging wild edible plants". If "Francisco builds model airplanes" then "everyone in the room is a dedicated advocate for digital privacy and encryption". Either "Francisco owns an extensive assortment of vintage comic book memorabilia" or "Debora builds model airplanes" but not both. If "Debora practices tai chi" then "Francisco neither does not practice pilates nor is a coffee connoisseur". Everyone in the room is a coffee connoisseur if they collects comic books. Joyce neither collects vintage vinyl records nor makes homemade pastries. Debora practices tai chi. At least one person anywhere is a professional photographer specializing in portrait photography. Francisco is a drone photographer. Francisco designs and sews custom cosplay costumes for conventions. Debora collects vintage vinyl records. If someone practices pilates then he/she collects vintage vinyl records and vice versa. Everyone in the room who does not participate in long-distance cycling events across the country and participates in long-distance cycling events across the country is a coffee connoisseur. Joyce is a dedicated advocate for digital privacy and encryption. If someone is a drone photographer, practices pilates or owns an extensive assortment of vintage comic book memorabilia then he/she neither is a professional photographer specializing in portrait photography nor makes homemade pastries and vice versa. Everyone in the room enjoys cross-country skiing if they is a dedicated advocate for digital privacy and encryption. Everyone in the room enjoys cross-country skiing if they is a coffee connoisseur or practices pilates or both and vice versa. Debora is an expert in identifying and foraging wild edible plants.
Joyce is a coffee connoisseur.
entailment
room(joyce)&room(debora)&room(francisco)&room(muriel)&(![X]:(room(X)=>(X='joyce'|X='debora'|X='francisco'|X='muriel')))& (((is_a_certified_yoga_instructor_teaching_classes_weekly(francisco))=>(![X]:(anywhere(X)=>(((builds_model_airplanes(X))=>(is_a_coffee_connoisseur(X)))))))&((~(is_a_certified_yoga_instructor_teaching_classes_weekly(francisco)))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(francisco))))& ((builds_model_airplanes(francisco))=>(![X]:(room(X)=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& ((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(francisco))<~>(builds_model_airplanes(debora)))& ((practices_tai_chi(debora))=>(~((does_not_practice_pilates(francisco))|(is_a_coffee_connoisseur(francisco)))))& (![X]:(room(X)=>(((collects_comic_books(X))=>(is_a_coffee_connoisseur(X))))))& (~((collects_vintage_vinyl_records(joyce))|(makes_homemade_pastries(joyce))))& (practices_tai_chi(debora))& (((?[X]:(anywhere(X)&is_a_professional_photographer_specializing_in_portrait_photography(X)))))& (is_a_drone_photographer(francisco))& (designs_and_sews_custom_cosplay_costumes_for_conventions(francisco))& (collects_vintage_vinyl_records(debora))& ((![X]:((practices_pilates(X))<=>(collects_vintage_vinyl_records(X)))))& (![X]:(room(X)=>(((((does_not_participate_in_long-distance_cycling_events_across_the_country(X))&(participates_in_long-distance_cycling_events_across_the_country(X))))=>(is_a_coffee_connoisseur(X))))))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(joyce))& ((![X]:((((is_a_drone_photographer(X))|(practices_pilates(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))<=>(~((is_a_professional_photographer_specializing_in_portrait_photography(X))|(makes_homemade_pastries(X)))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(enjoys_cross-country_skiing(X))))))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))<=>(((is_a_coffee_connoisseur(X))|(practices_pilates(X))))))))& (is_an_expert_in_identifying_and_foraging_wild_edible_plants(debora))
room(joyce)&room(debora)&room(francisco)&room(muriel)&(![X]:(room(X)=>(X='joyce'|X='debora'|X='francisco'|X='muriel')))& is_a_coffee_connoisseur(joyce)
[ "p0", "p6", "p12", "p14", "p16", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 4831412776393378126198619 % SZS output start Proof for 4831412776393378126198619 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. ~(predq(mary) | predl(mary)) [input p6] 56. ! [X0] : (predb(X0) <=> predl(X0)) [input p12] 58. predp(mary) [input p14] 60. ! [X0] : (room(X0) => (predp(X0) => predj(X0))) [input p16] 61. ! [X0] : (room(X0) => (predj(X0) <=> (predb(X0) | preda(X0)))) [input p17] 63. ~(preda(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 142. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 146. ~predq(mary) & ~predl(mary) [ennf transformation 50] 150. ! [X0] : ((predj(X0) | ~predp(X0)) | ~room(X0)) [ennf transformation 60] 151. ! [X0] : (predj(X0) | ~predp(X0) | ~room(X0)) [flattening 150] 152. ! [X0] : ((predj(X0) <=> (predb(X0) | preda(X0))) | ~room(X0)) [ennf transformation 61] 153. ~preda(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 63] 154. ~preda(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 153] 159. ! [X0] : ((predb(X0) | ~predl(X0)) & (predl(X0) | ~predb(X0))) [nnf transformation 56] 162. ! [X0] : (((predj(X0) | (~predb(X0) & ~preda(X0))) & ((predb(X0) | preda(X0)) | ~predj(X0))) | ~room(X0)) [nnf transformation 152] 163. ! [X0] : (((predj(X0) | (~predb(X0) & ~preda(X0))) & (predb(X0) | preda(X0) | ~predj(X0))) | ~room(X0)) [flattening 162] 164. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 165. ~preda(mary) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 154,164] 246. room(mary) [cnf transformation 143] 247. room(paul) [cnf transformation 143] 248. room(fred) [cnf transformation 143] 249. room(alice) [cnf transformation 143] 250. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 143] 256. ~predl(mary) [cnf transformation 146] 262. ~predb(X0) | predl(X0) [cnf transformation 159] 265. predp(mary) [cnf transformation 58] 273. ~predp(X0) | predj(X0) | ~room(X0) [cnf transformation 151] 274. ~predj(X0) | preda(X0) | predb(X0) | ~room(X0) [cnf transformation 163] 277. ~preda(mary) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 278. ~preda(mary) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 279. ~preda(mary) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 280. ~preda(mary) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 281. ~preda(mary) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 315. ~preda(mary) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,249] 316. ~preda(mary) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 315,248] 317. ~preda(mary) | alice != sK1 | ~room(mary) [subsumption resolution 316,247] 318. ~preda(mary) | alice != sK1 [subsumption resolution 317,246] 320. 8 <=> alice = sK1 [avatar definition] 322. alice != sK1 <- (~8) [avatar component clause 320] 324. 9 <=> preda(mary) [avatar definition] 326. ~preda(mary) <- (~9) [avatar component clause 324] 327. ~8 | ~9 [avatar split clause 318,324,320] 328. ~preda(mary) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,249] 329. ~preda(mary) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 328,248] 330. ~preda(mary) | fred != sK1 | ~room(mary) [subsumption resolution 329,247] 331. ~preda(mary) | fred != sK1 [subsumption resolution 330,246] 333. 10 <=> fred = sK1 [avatar definition] 335. fred != sK1 <- (~10) [avatar component clause 333] 336. ~10 | ~9 [avatar split clause 331,324,333] 337. ~preda(mary) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,249] 338. ~preda(mary) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 337,248] 339. ~preda(mary) | paul != sK1 | ~room(mary) [subsumption resolution 338,247] 340. ~preda(mary) | paul != sK1 [subsumption resolution 339,246] 342. 11 <=> paul = sK1 [avatar definition] 344. paul != sK1 <- (~11) [avatar component clause 342] 345. ~11 | ~9 [avatar split clause 340,324,342] 346. ~preda(mary) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,249] 347. ~preda(mary) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 346,248] 348. ~preda(mary) | mary != sK1 | ~room(mary) [subsumption resolution 347,247] 349. ~preda(mary) | mary != sK1 [subsumption resolution 348,246] 351. 12 <=> mary = sK1 [avatar definition] 353. mary != sK1 <- (~12) [avatar component clause 351] 354. ~12 | ~9 [avatar split clause 349,324,351] 355. ~preda(mary) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,249] 356. ~preda(mary) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 355,248] 357. ~preda(mary) | room(sK1) | ~room(mary) [subsumption resolution 356,247] 358. ~preda(mary) | room(sK1) [subsumption resolution 357,246] 360. 13 <=> room(sK1) [avatar definition] 362. room(sK1) <- (13) [avatar component clause 360] 363. 13 | ~9 [avatar split clause 358,324,360] 372. predj(mary) | ~room(mary) [resolution 273,265] 373. predj(mary) [subsumption resolution 372,246] 378. preda(mary) | predb(mary) | ~room(mary) [resolution 274,373] 379. predb(mary) | ~room(mary) <- (~9) [subsumption resolution 378,326] 380. predb(mary) <- (~9) [subsumption resolution 379,246] 384. predl(mary) <- (~9) [resolution 380,262] 385. $false <- (~9) [subsumption resolution 384,256] 386. 9 [avatar contradiction clause 385] 436. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (13) [resolution 250,362] 437. paul = sK1 | mary = sK1 | alice = sK1 <- (~10, 13) [subsumption resolution 436,335] 438. mary = sK1 | alice = sK1 <- (~10, ~11, 13) [subsumption resolution 437,344] 439. alice = sK1 <- (~10, ~11, ~12, 13) [subsumption resolution 438,353] 440. $false <- (~8, ~10, ~11, ~12, 13) [subsumption resolution 439,322] 441. 8 | 10 | 11 | 12 | ~13 [avatar contradiction clause 440] 442. $false [avatar sat refutation 327,336,345,354,363,386,441] % SZS output end Proof for 4831412776393378126198619 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.12865
There is a room. Everyone in the room does not use an ios phone or reads mystery novels if someone in the room does enjoy trail running and vice versa. Everyone in the room does not read mystery novels or enjoys stand-up paddleboarding if everyone outside the room is not a cybersecurity expert or hosts regular workshops on creative writing and vice versa. Everyone outside the room does not enjoy deep-sea diving and exploring underwater caves or plays the drums if everyone in the room does not play the drums or is an avid hiker and vice versa. If everyone in the room does not enjoy deep-sea diving and exploring underwater caves or is a client of LVMH then everyone in the room plays the drums, collects historical artifacts related to ancient civilizations and does not collect historical artifacts related to ancient civilizations if they is dedicated to sustainable living and zero-waste practices and vice versa. Everyone in the room does not enjoy deep-sea diving and exploring underwater caves or is a client of LVMH. Everyone in the room who is not passionate about collecting and restoring classic cars hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals collects historical artifacts related to ancient civilizations. If someone plays the drums then he/she is an avid hiker. Everyone in the room who uses an ios phone is passionate about collecting and restoring classic cars. Everyone outside the room is a cybersecurity expert or hosts regular workshops on creative writing or both if they is passionate about collecting and restoring classic cars. Everyone anywhere who is a cybersecurity expert or hosts regular workshops on creative writing or both plays the drums. Everyone in the room does enjoy trail running if they plays the drums. Everyone in the room does enjoy trail running if they is dedicated to sustainable living and zero-waste practices and vice versa.
Everyone in the room is a cybersecurity expert.
contradiction
(there_is_a_room)& ((?[X]:(room(X)&(does_enjoy_trail_running(X))))<=>(![X]:(room(X)=>(((reads_mystery_novels(X))|(does_not_use_an_ios_phone(X)))))))& ((![X]:(~room(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(is_not_a_cybersecurity_expert(X))))))<=>(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_read_mystery_novels(X)))))))& ((![X]:(room(X)=>(((is_an_avid_hiker(X))|(does_not_play_the_drums(X))))))<=>(![X]:(~room(X)=>(((plays_the_drums(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))))& ((![X]:(room(X)=>(((is_a_client_of_LVMH(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))=>(![X]:(room(X)=>(((((plays_the_drums(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))<=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& ((![X]:((plays_the_drums(X))=>(is_an_avid_hiker(X)))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(~room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(((is_a_cybersecurity_expert(X))|(hosts_regular_workshops_on_creative_writing(X))))))))& (![X]:(anywhere(X)=>(((((is_a_cybersecurity_expert(X))|(hosts_regular_workshops_on_creative_writing(X))))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(does_enjoy_trail_running(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))<=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_a_cybersecurity_expert(X)))
[ "b4", "p1", "p4", "p5", "p11", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 1929885753771629582552434 % SZS output start Proof for 1929885753771629582552434 5. ! [X0] : anywhere(X0) [input b4] 45. ? [X0] : (preda(X0) & room(X0)) <=> ! [X0] : (room(X0) => (~prede(X0) | predp(X0))) [input p1] 48. ! [X0] : (room(X0) => (~predh(X0) | predf(X0))) => ! [X0] : (room(X0) => ((~predg(X0) & predg(X0) & predn(X0)) <=> predc(X0))) [input p4] 49. ! [X0] : (room(X0) => (~predh(X0) | predf(X0))) [input p5] 55. ! [X0] : (anywhere(X0) => ((predd(X0) | predk(X0)) => predn(X0))) [input p11] 56. ! [X0] : (room(X0) => (predn(X0) => preda(X0))) [input p12] 57. ! [X0] : (room(X0) => (preda(X0) <=> predc(X0))) [input p13] 58. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 59. ? [X0] : (preda(X0) & room(X0)) <=> ! [X1] : (room(X1) => (~prede(X1) | predp(X1))) [rectify 45] 62. ! [X0] : (room(X0) => (~predh(X0) | predf(X0))) => ! [X1] : (room(X1) => ((~predg(X1) & predg(X1) & predn(X1)) <=> predc(X1))) [rectify 48] 63. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 58] 136. ? [X0] : (preda(X0) & room(X0)) <=> ! [X1] : ((~prede(X1) | predp(X1)) | ~room(X1)) [ennf transformation 59] 137. ? [X0] : (preda(X0) & room(X0)) <=> ! [X1] : (~prede(X1) | predp(X1) | ~room(X1)) [flattening 136] 142. ! [X1] : (((~predg(X1) & predg(X1) & predn(X1)) <=> predc(X1)) | ~room(X1)) | ? [X0] : ((predh(X0) & ~predf(X0)) & room(X0)) [ennf transformation 62] 143. ! [X1] : (((~predg(X1) & predg(X1) & predn(X1)) <=> predc(X1)) | ~room(X1)) | ? [X0] : (predh(X0) & ~predf(X0) & room(X0)) [flattening 142] 144. ! [X0] : ((~predh(X0) | predf(X0)) | ~room(X0)) [ennf transformation 49] 145. ! [X0] : (~predh(X0) | predf(X0) | ~room(X0)) [flattening 144] 155. ! [X0] : ((predn(X0) | (~predd(X0) & ~predk(X0))) | ~anywhere(X0)) [ennf transformation 55] 156. ! [X0] : (predn(X0) | (~predd(X0) & ~predk(X0)) | ~anywhere(X0)) [flattening 155] 157. ! [X0] : ((preda(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 56] 158. ! [X0] : (preda(X0) | ~predn(X0) | ~room(X0)) [flattening 157] 159. ! [X0] : ((preda(X0) <=> predc(X0)) | ~room(X0)) [ennf transformation 57] 160. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 63] 161. ! [X1] : (((~predg(X1) & predg(X1) & predn(X1)) <=> predc(X1)) | ~room(X1)) | ~sP0 [predicate definition introduction] 162. sP0 | ? [X0] : (predh(X0) & ~predf(X0) & room(X0)) [definition folding 143,161] 164. (? [X0] : (preda(X0) & room(X0)) | ? [X1] : (prede(X1) & ~predp(X1) & room(X1))) & (! [X1] : (~prede(X1) | predp(X1) | ~room(X1)) | ! [X0] : (~preda(X0) | ~room(X0))) [nnf transformation 137] 165. (? [X0] : (preda(X0) & room(X0)) | ? [X1] : (prede(X1) & ~predp(X1) & room(X1))) & (! [X2] : (~prede(X2) | predp(X2) | ~room(X2)) | ! [X3] : (~preda(X3) | ~room(X3))) [rectify 164] 166. ? [X0] : (preda(X0) & room(X0)) => (preda(sK1) & room(sK1)) [choice axiom] 167. ? [X1] : (prede(X1) & ~predp(X1) & room(X1)) => (prede(sK2) & ~predp(sK2) & room(sK2)) [choice axiom] 168. ((preda(sK1) & room(sK1)) | (prede(sK2) & ~predp(sK2) & room(sK2))) & (! [X2] : (~prede(X2) | predp(X2) | ~room(X2)) | ! [X3] : (~preda(X3) | ~room(X3))) [skolemisation 165,167,166] 179. ! [X1] : ((((~predg(X1) & predg(X1) & predn(X1)) | ~predc(X1)) & (predc(X1) | (predg(X1) | ~predg(X1) | ~predn(X1)))) | ~room(X1)) | ~sP0 [nnf transformation 161] 180. ! [X1] : ((((~predg(X1) & predg(X1) & predn(X1)) | ~predc(X1)) & (predc(X1) | predg(X1) | ~predg(X1) | ~predn(X1))) | ~room(X1)) | ~sP0 [flattening 179] 181. ! [X0] : ((((~predg(X0) & predg(X0) & predn(X0)) | ~predc(X0)) & (predc(X0) | predg(X0) | ~predg(X0) | ~predn(X0))) | ~room(X0)) | ~sP0 [rectify 180] 182. ? [X0] : (predh(X0) & ~predf(X0) & room(X0)) => (predh(sK7) & ~predf(sK7) & room(sK7)) [choice axiom] 183. sP0 | (predh(sK7) & ~predf(sK7) & room(sK7)) [skolemisation 162,182] 184. ! [X0] : (((preda(X0) | ~predc(X0)) & (predc(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 159] 185. anywhere(X0) [cnf transformation 5] 266. ~prede(X2) | predp(X2) | ~room(X2) | ~preda(X3) | ~room(X3) [cnf transformation 168] 267. room(sK1) | room(sK2) [cnf transformation 168] 268. room(sK1) | ~predp(sK2) [cnf transformation 168] 269. room(sK1) | prede(sK2) [cnf transformation 168] 270. preda(sK1) | room(sK2) [cnf transformation 168] 271. preda(sK1) | ~predp(sK2) [cnf transformation 168] 272. preda(sK1) | prede(sK2) [cnf transformation 168] 287. predg(X0) | ~predc(X0) | ~room(X0) | ~sP0 [cnf transformation 181] 288. ~predg(X0) | ~predc(X0) | ~room(X0) | ~sP0 [cnf transformation 181] 289. sP0 | room(sK7) [cnf transformation 183] 290. sP0 | ~predf(sK7) [cnf transformation 183] 291. sP0 | predh(sK7) [cnf transformation 183] 292. ~predh(X0) | predf(X0) | ~room(X0) [cnf transformation 145] 298. predn(X0) | ~predk(X0) | ~anywhere(X0) [cnf transformation 156] 300. ~predn(X0) | preda(X0) | ~room(X0) [cnf transformation 158] 301. ~preda(X0) | predc(X0) | ~room(X0) [cnf transformation 184] 303. ~room(X0) | predk(X0) [cnf transformation 160] 305. 1 <=> prede(sK2) [avatar definition] 307. prede(sK2) <- (1) [avatar component clause 305] 309. 2 <=> preda(sK1) [avatar definition] 311. preda(sK1) <- (2) [avatar component clause 309] 312. 1 | 2 [avatar split clause 272,309,305] 314. 3 <=> predp(sK2) [avatar definition] 316. ~predp(sK2) <- (~3) [avatar component clause 314] 317. ~3 | 2 [avatar split clause 271,309,314] 319. 4 <=> room(sK2) [avatar definition] 321. room(sK2) <- (4) [avatar component clause 319] 322. 4 | 2 [avatar split clause 270,309,319] 324. 5 <=> room(sK1) [avatar definition] 326. room(sK1) <- (5) [avatar component clause 324] 327. 1 | 5 [avatar split clause 269,324,305] 328. ~3 | 5 [avatar split clause 268,324,314] 329. 4 | 5 [avatar split clause 267,324,319] 331. 6 <=> ! [X3] : (~preda(X3) | ~room(X3)) [avatar definition] 332. ~preda(X3) | ~room(X3) <- (6) [avatar component clause 331] 334. 7 <=> ! [X2] : (~prede(X2) | ~room(X2) | predp(X2)) [avatar definition] 335. ~prede(X2) | ~room(X2) | predp(X2) <- (7) [avatar component clause 334] 336. 6 | 7 [avatar split clause 266,334,331] 410. 24 <=> sP0 [avatar definition] 414. 25 <=> ! [X0] : (~predg(X0) | ~room(X0) | ~predc(X0)) [avatar definition] 415. ~predg(X0) | ~room(X0) | ~predc(X0) <- (25) [avatar component clause 414] 416. ~24 | 25 [avatar split clause 288,414,410] 418. 26 <=> ! [X0] : (predg(X0) | ~room(X0) | ~predc(X0)) [avatar definition] 419. predg(X0) | ~room(X0) | ~predc(X0) <- (26) [avatar component clause 418] 420. ~24 | 26 [avatar split clause 287,418,410] 426. 28 <=> predh(sK7) [avatar definition] 428. predh(sK7) <- (28) [avatar component clause 426] 429. 28 | 24 [avatar split clause 291,410,426] 431. 29 <=> predf(sK7) [avatar definition] 433. ~predf(sK7) <- (~29) [avatar component clause 431] 434. ~29 | 24 [avatar split clause 290,410,431] 436. 30 <=> room(sK7) [avatar definition] 439. 30 | 24 [avatar split clause 289,410,436] 441. ~predk(X0) | predn(X0) [subsumption resolution 298,185] 442. ~predc(X0) | ~room(X0) <- (25, 26) [subsumption resolution 415,419] 444. ~room(sK1) <- (2, 6) [resolution 332,311] 445. $false <- (2, 5, 6) [subsumption resolution 444,326] 446. ~2 | ~5 | ~6 [avatar contradiction clause 445] 466. predc(sK1) | ~room(sK1) <- (2) [resolution 301,311] 467. predc(sK1) <- (2, 5) [subsumption resolution 466,326] 469. ~room(sK1) <- (2, 5, 25, 26) [resolution 467,442] 470. $false <- (2, 5, 25, 26) [subsumption resolution 469,326] 471. ~2 | ~5 | ~25 | ~26 [avatar contradiction clause 470] 472. predf(sK7) | ~room(sK7) <- (28) [resolution 428,292] 473. ~room(sK7) <- (28, ~29) [subsumption resolution 472,433] 486. ~30 | ~28 | 29 [avatar split clause 473,431,426,436] 491. predk(sK2) <- (4) [resolution 321,303] 492. predn(sK2) <- (4) [resolution 491,441] 493. ~room(sK2) | predp(sK2) <- (1, 7) [resolution 335,307] 494. predp(sK2) <- (1, 4, 7) [subsumption resolution 493,321] 495. $false <- (1, ~3, 4, 7) [subsumption resolution 494,316] 496. ~1 | 3 | ~4 | ~7 [avatar contradiction clause 495] 497. preda(sK2) | ~room(sK2) <- (4) [resolution 492,300] 499. preda(sK2) <- (4) [subsumption resolution 497,321] 506. ~room(sK2) <- (4, 6) [resolution 499,332] 508. $false <- (4, 6) [subsumption resolution 506,321] 509. ~4 | ~6 [avatar contradiction clause 508] 511. $false [avatar sat refutation 312,317,322,327,328,329,336,416,420,429,434,439,446,471,486,496,509] % SZS output end Proof for 1929885753771629582552434 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.29708
Joseph, Ella, Dorothea are the only persons in the room. Either "at least one person outside the room either is quiet or is old but not both" or "at least one person in the room is not a generous happy old calm person" but not both. Either "it is true that "at least one person in the room is tall"" or "at least one person in the room either is curious or is not a tall brave person but not both" but not both. "Joseph is the least old in the room" unless "at least one person in the room is not a funny humble wise person". "At least one person in the room either is tall or is not a calm person but not both" unless "it is true that "it is true that "at least one person in the room is not a wise curious person""". "No calm person is brave" if "at least one person in the room is not a brave old person". "Joseph is the least old in the room" unless "at least one person outside the room is curious". No happy person is funny. No old person is kind. It is true that "no old person is curious". All patient persons are curious. Joseph is the least old in the room. Joseph is the richest outside the room. If someone is brave then he/she is old. At least one person in the room is not a tall old person. Joseph is the least old anywhere. No humble person is quiet. All humble persons are calm.
It is not the case that "Ella is a calm person".
contradiction
room(joseph)&room(ella)&room(dorothea)&(![X]:(room(X)=>(X='joseph'|X='ella'|X='dorothea')))& ((((?[X]:(~room(X)&((quiet(X))<~>(old(X)))))))<~>(((?[X]:(room(X)&~(generous(X)&happy(X)&old(X)&calm(X)&person(X)))))))& ((((?[X]:(room(X)&tall(X)))))<~>(((?[X]:(room(X)&((curious(X))<~>(~(tall(X)&brave(X)&person(X)))))))))& (~(((?[X]:(room(X)&~(funny(X)&humble(X)&wise(X)&person(X))))))=>(![X]:((room(X)&(X!=joseph))=>older(joseph,X))))& (~(((?[X]:(room(X)&~(wise(X)&curious(X)&person(X))))))=>(((?[X]:(room(X)&((tall(X))<~>(~(calm(X)&person(X)))))))))& ((((?[X]:(room(X)&~(brave(X)&old(X)&person(X))))))=>(~?[X]:(calm(X)=>brave(X))))& (~(((?[X]:(~room(X)&curious(X)))))=>(![X]:((room(X)&(X!=joseph))=>older(joseph,X))))& (~?[X]:(happy(X)=>funny(X)))& (~?[X]:(old(X)=>kind(X)))& (~?[X]:(old(X)=>curious(X)))& (![X]:(patient(X)=>curious(X)))& (![X]:((room(X)&(X!=joseph))=>older(joseph,X)))& (![X]:((~room(X)&(X!=joseph))=>richer(X,joseph)))& ((![X]:((brave(X))=>(old(X)))))& (((?[X]:(room(X)&~(tall(X)&old(X)&person(X))))))& (![X]:((anywhere(X)&(X!=joseph))=>older(joseph,X)))& (![X]:(wise(X)=>generous(X)))& (![X]:(brave(X)=>happy(X)))& (![X]:(wise(X)=>funny(X)))& (![X]:(patient(X)=>kind(X)))& (~?[X]:(humble(X)=>quiet(X)))& (![X]:(generous(X)=>calm(X)))& (![X]:(humble(X)=>calm(X)))& (![X]:(curious(X)=>quiet(X)))& (![X]:(patient(X)=>humble(X)))& (![X]:(funny(X)=>patient(X)))
room(joseph)&room(ella)&room(dorothea)&(![X]:(room(X)=>(X='joseph'|X='ella'|X='dorothea')))& ~(calm(ella)&person(ella))
[ "b42", "p0", "p1", "p8", "p20", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 8930886286022042505134110 % SZS output start Proof for 8930886286022042505134110 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ? [X0] : ((quiet(X0) <~> old(X0)) & ~room(X0)) <~> ? [X0] : (~(person(X0) & calm(X0) & old(X0) & happy(X0) & generous(X0)) & room(X0)) [input p1] 52. ~? [X0] : (old(X0) => kind(X0)) [input p8] 64. ~? [X0] : (humble(X0) => quiet(X0)) [input p20] 66. ! [X0] : (humble(X0) => calm(X0)) [input p22] 70. ~(person(paul) & calm(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 71. ? [X0] : ((quiet(X0) <~> old(X0)) & ~room(X0)) <~> ? [X1] : (~(person(X1) & calm(X1) & old(X1) & happy(X1) & generous(X1)) & room(X1)) [rectify 45] 86. ~? [X0] : ~old(X0) [pure predicate removal 52] 158. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 159. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 158] 160. ? [X0] : ((quiet(X0) <~> old(X0)) & ~room(X0)) <~> ? [X1] : ((~person(X1) | ~calm(X1) | ~old(X1) | ~happy(X1) | ~generous(X1)) & room(X1)) [ennf transformation 71] 169. ! [X0] : old(X0) [ennf transformation 86] 180. ! [X0] : (~quiet(X0) & humble(X0)) [ennf transformation 64] 182. ! [X0] : (calm(X0) | ~humble(X0)) [ennf transformation 66] 184. (~person(paul) | ~calm(paul)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 185. (~person(paul) | ~calm(paul)) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 184] 186. sP0 <=> ? [X1] : ((~person(X1) | ~calm(X1) | ~old(X1) | ~happy(X1) | ~generous(X1)) & room(X1)) [predicate definition introduction] 187. ? [X0] : ((quiet(X0) <~> old(X0)) & ~room(X0)) <~> sP0 [definition folding 160,186] 191. (sP0 | ! [X1] : ((person(X1) & calm(X1) & old(X1) & happy(X1) & generous(X1)) | ~room(X1))) & (? [X1] : ((~person(X1) | ~calm(X1) | ~old(X1) | ~happy(X1) | ~generous(X1)) & room(X1)) | ~sP0) [nnf transformation 186] 192. (sP0 | ! [X0] : ((person(X0) & calm(X0) & old(X0) & happy(X0) & generous(X0)) | ~room(X0))) & (? [X1] : ((~person(X1) | ~calm(X1) | ~old(X1) | ~happy(X1) | ~generous(X1)) & room(X1)) | ~sP0) [rectify 191] 193. ? [X1] : ((~person(X1) | ~calm(X1) | ~old(X1) | ~happy(X1) | ~generous(X1)) & room(X1)) => ((~person(sK2) | ~calm(sK2) | ~old(sK2) | ~happy(sK2) | ~generous(sK2)) & room(sK2)) [choice axiom] 194. (sP0 | ! [X0] : ((person(X0) & calm(X0) & old(X0) & happy(X0) & generous(X0)) | ~room(X0))) & (((~person(sK2) | ~calm(sK2) | ~old(sK2) | ~happy(sK2) | ~generous(sK2)) & room(sK2)) | ~sP0) [skolemisation 192,193] 195. (~sP0 | ! [X0] : (((quiet(X0) | ~old(X0)) & (old(X0) | ~quiet(X0))) | room(X0))) & (sP0 | ? [X0] : (((~old(X0) | ~quiet(X0)) & (old(X0) | quiet(X0))) & ~room(X0))) [nnf transformation 187] 196. (~sP0 | ! [X0] : (((quiet(X0) | ~old(X0)) & (old(X0) | ~quiet(X0))) | room(X0))) & (sP0 | ? [X0] : ((~old(X0) | ~quiet(X0)) & (old(X0) | quiet(X0)) & ~room(X0))) [flattening 195] 197. (~sP0 | ! [X0] : (((quiet(X0) | ~old(X0)) & (old(X0) | ~quiet(X0))) | room(X0))) & (sP0 | ? [X1] : ((~old(X1) | ~quiet(X1)) & (old(X1) | quiet(X1)) & ~room(X1))) [rectify 196] 198. ? [X1] : ((~old(X1) | ~quiet(X1)) & (old(X1) | quiet(X1)) & ~room(X1)) => ((~old(sK3) | ~quiet(sK3)) & (old(sK3) | quiet(sK3)) & ~room(sK3)) [choice axiom] 199. (~sP0 | ! [X0] : (((quiet(X0) | ~old(X0)) & (old(X0) | ~quiet(X0))) | room(X0))) & (sP0 | ((~old(sK3) | ~quiet(sK3)) & (old(sK3) | quiet(sK3)) & ~room(sK3))) [skolemisation 197,198] 299. mary != lucy [cnf transformation 43] 300. paul != lucy [cnf transformation 43] 301. fred != lucy [cnf transformation 43] 306. room(paul) [cnf transformation 159] 308. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 159] 315. sP0 | person(X0) | ~room(X0) [cnf transformation 194] 320. ~sP0 | quiet(X0) | ~old(X0) | room(X0) [cnf transformation 199] 347. old(X0) [cnf transformation 169] 357. humble(X0) [cnf transformation 180] 358. ~quiet(X0) [cnf transformation 180] 360. calm(X0) | ~humble(X0) [cnf transformation 182] 366. ~person(paul) | ~calm(paul) [cnf transformation 185] 368. 1 <=> ! [X0] : (person(X0) | ~room(X0)) [avatar definition] 369. ~room(X0) | person(X0) <- (1) [avatar component clause 368] 371. 2 <=> sP0 [avatar definition] 374. 1 | 2 [avatar split clause 315,371,368] 418. 13 <=> ! [X0] : (quiet(X0) | room(X0) | ~old(X0)) [avatar definition] 419. quiet(X0) | room(X0) | ~old(X0) <- (13) [avatar component clause 418] 420. 13 | ~2 [avatar split clause 320,371,418] 541. 40 <=> ! [X0] : calm(X0) [avatar definition] 542. calm(X0) <- (40) [avatar component clause 541] 568. calm(X0) [subsumption resolution 360,357] 569. 40 [avatar split clause 568,541] 571. 45 <=> calm(paul) [avatar definition] 573. ~calm(paul) <- (~45) [avatar component clause 571] 575. 46 <=> person(paul) [avatar definition] 577. ~person(paul) <- (~46) [avatar component clause 575] 578. ~45 | ~46 [avatar split clause 366,575,571] 579. room(X0) | ~old(X0) <- (13) [subsumption resolution 419,358] 580. room(X0) <- (13) [subsumption resolution 579,347] 583. $false <- (40, ~45) [resolution 573,542] 584. ~40 | 45 [avatar contradiction clause 583] 658. fred = X0 | mary = X0 | paul = X0 <- (13) [resolution 308,580] 688. fred != fred | mary = lucy | paul = lucy <- (13) [superposition 301,658] 698. mary = lucy | paul = lucy <- (13) [trivial inequality removal 688] 711. paul = lucy <- (13) [subsumption resolution 698,299] 712. $false <- (13) [subsumption resolution 711,300] 713. ~13 [avatar contradiction clause 712] 835. person(paul) <- (1) [resolution 369,306] 837. $false <- (1, ~46) [subsumption resolution 835,577] 838. ~1 | 46 [avatar contradiction clause 837] 839. $false [avatar sat refutation 374,420,569,578,584,713,838] % SZS output end Proof for 8930886286022042505134110 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.653385
Nicole, Anna, Herbert, Janice are the only persons in the room. Everyone in the room uses contact lenses if they is a chess master who participates in national tournaments. At least one person in the room is an amateur astronomer who builds and uses custom telescopes. Everyone in the room who does enjoy mountain biking practices kickboxing. Everyone in the room who practices kickboxing does enjoy mountain biking. Everyone anywhere who enjoys landscape photography is a cybersecurity expert. Everyone in the room is an amateur astronomer who builds and uses custom telescopes if they is a cybersecurity expert. Everyone anywhere who is an amateur astronomer who builds and uses custom telescopes does not use contact lenses. Everyone in the room enjoys landscape photography if they is a chess master who participates in national tournaments.
Janice is a chess master who participates in national tournaments.
contradiction
room(nicole)&room(anna)&room(herbert)&room(janice)&(![X]:(room(X)=>(X='nicole'|X='anna'|X='herbert'|X='janice')))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(uses_contact_lenses(X))))))& (((?[X]:(room(X)&is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(practices_kickboxing(X))))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(does_enjoy_mountain_biking(X))))))& (((?[X]:(anywhere(X)&is_a_cybersecurity_expert(X)))))& (![X]:(room(X)=>(((enjoys_spelunking(X))=>(does_not_enjoy_trail_running(X))))))& (![X]:(anywhere(X)=>(((enjoys_landscape_photography(X))=>(is_a_cybersecurity_expert(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(anywhere(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(does_not_use_contact_lenses(X))))))& (![X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(enjoys_landscape_photography(X))))))
room(nicole)&room(anna)&room(herbert)&room(janice)&(![X]:(room(X)=>(X='nicole'|X='anna'|X='herbert'|X='janice')))& is_a_chess_master_who_participates_in_national_tournaments(janice)
[ "b4", "p0", "p1", "p7", "p8", "p9", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 2160983088880576451354184 % SZS output start Proof for 2160983088880576451354184 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (preds(X0) => predd(X0))) [input p1] 51. ! [X0] : (anywhere(X0) => (predv(X0) => predl(X0))) [input p7] 52. ! [X0] : (room(X0) => (predl(X0) => predp(X0))) [input p8] 53. ! [X0] : (anywhere(X0) => (predp(X0) => ~predd(X0))) [input p9] 55. ! [X0] : (room(X0) => (preds(X0) => predv(X0))) [input p11] 56. preds(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 130. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130] 132. ! [X0] : ((predd(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 45] 133. ! [X0] : (predd(X0) | ~preds(X0) | ~room(X0)) [flattening 132] 138. ! [X0] : ((predl(X0) | ~predv(X0)) | ~anywhere(X0)) [ennf transformation 51] 139. ! [X0] : (predl(X0) | ~predv(X0) | ~anywhere(X0)) [flattening 138] 140. ! [X0] : ((predp(X0) | ~predl(X0)) | ~room(X0)) [ennf transformation 52] 141. ! [X0] : (predp(X0) | ~predl(X0) | ~room(X0)) [flattening 140] 142. ! [X0] : ((~predd(X0) | ~predp(X0)) | ~anywhere(X0)) [ennf transformation 53] 143. ! [X0] : (~predd(X0) | ~predp(X0) | ~anywhere(X0)) [flattening 142] 144. ! [X0] : ((predv(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 55] 145. ! [X0] : (predv(X0) | ~preds(X0) | ~room(X0)) [flattening 144] 146. preds(alice) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 147. preds(alice) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146] 153. anywhere(X0) [cnf transformation 5] 237. room(alice) [cnf transformation 131] 239. ~preds(X0) | predd(X0) | ~room(X0) [cnf transformation 133] 246. predl(X0) | ~predv(X0) | ~anywhere(X0) [cnf transformation 139] 247. ~predl(X0) | predp(X0) | ~room(X0) [cnf transformation 141] 248. ~predd(X0) | ~predp(X0) | ~anywhere(X0) [cnf transformation 143] 249. ~preds(X0) | predv(X0) | ~room(X0) [cnf transformation 145] 255. preds(alice) [cnf transformation 147] 256. ~predv(X0) | predl(X0) [subsumption resolution 246,153] 257. ~predp(X0) | ~predd(X0) [subsumption resolution 248,153] 259. predd(alice) | ~room(alice) [resolution 239,255] 260. predd(alice) [subsumption resolution 259,237] 271. predv(alice) | ~room(alice) [resolution 249,255] 272. predv(alice) [subsumption resolution 271,237] 273. predl(alice) [resolution 272,256] 274. predp(alice) | ~room(alice) [resolution 273,247] 275. predp(alice) [subsumption resolution 274,237] 276. ~predd(alice) [resolution 275,257] 277. $false [subsumption resolution 276,260] % SZS output end Proof for 2160983088880576451354184 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0.488467
Melissa is the only person in the room. Only one person in the room is richer than Lori. Donald is quieter than Melissa. If someone is older than Donald then he/she is quieter than Carol. If someone is quieter than Donald then he/she is richer than Lori. If someone is older than Donald then he/she is richer than Lori. If someone is older than Donald then he/she is quieter than Donald. If someone is quieter than Lori then he/she is older than Donald. Donald is older than Melissa. Carol is quieter than Melissa.
Melissa is quieter than Lori.
contradiction
room(melissa)&(![X]:(room(X)=>(X='melissa')))& (((?[X]:(room(X)&richer(lori,X)))&(![X,Y]:((room(X)&room(Y)&(richer(lori,X))&(richer(lori,Y)))=>(X=Y)))))& (quieter(melissa,donald))& ((![X]:((older(donald,X))=>(quieter(carol,X)))))& ((![X]:((quieter(donald,X))=>(richer(lori,X)))))& ((![X]:((older(donald,X))=>(richer(lori,X)))))& ((![X]:((older(donald,X))=>(quieter(donald,X)))))& ((![X]:((quieter(lori,X))=>(older(donald,X)))))& (older(melissa,donald))& (quieter(melissa,carol))& (((?[X]:(room(X)&richer(donald,X)))&(![X,Y]:((room(X)&room(Y)&(richer(donald,X))&(richer(donald,Y)))=>(X=Y)))))& (older(melissa,lori))& ((![X]:((richer(carol,X))=>(richer(donald,X)))))& (![X]:((room(X)&(X!=melissa))=>richer(melissa,X)))& (![X]:((room(X)&(X!=melissa))=>older(melissa,X)))& (older(melissa,carol))& (![X]:((anywhere(X)&(X!=melissa))=>older(melissa,X)))
room(melissa)&(![X]:(room(X)=>(X='melissa')))& quieter(lori,melissa)
[ "b13", "b42", "p2", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1986403498601023938787928 % SZS output start Proof for 1986403498601023938787928 14. ! [X0,X1] : (X0 != X1 => (quieter(X0,X1) => ~quieter(X1,X0))) [input b13] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 46. quieter(mary,fred) [input p2] 50. ! [X0] : (older(fred,X0) => quieter(fred,X0)) [input p6] 51. ! [X0] : (quieter(alice,X0) => older(fred,X0)) [input p7] 61. quieter(alice,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 82. ! [X0,X1] : ((~quieter(X1,X0) | ~quieter(X0,X1)) | X0 = X1) [ennf transformation 14] 83. ! [X0,X1] : (~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1) [flattening 82] 141. ! [X0] : (quieter(fred,X0) | ~older(fred,X0)) [ennf transformation 50] 142. ! [X0] : (older(fred,X0) | ~quieter(alice,X0)) [ennf transformation 51] 152. quieter(alice,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 61] 168. ~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1 [cnf transformation 83] 209. mary != fred [cnf transformation 43] 244. quieter(mary,fred) [cnf transformation 46] 248. ~older(fred,X0) | quieter(fred,X0) [cnf transformation 141] 249. ~quieter(alice,X0) | older(fred,X0) [cnf transformation 142] 263. quieter(alice,mary) [cnf transformation 152] 272. older(fred,mary) [resolution 249,263] 273. quieter(fred,mary) [resolution 272,248] 285. ~quieter(fred,mary) | mary = fred [resolution 168,244] 290. mary = fred [subsumption resolution 285,273] 291. $false [subsumption resolution 290,209] % SZS output end Proof for 1986403498601023938787928 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.673364
Greg is the only person in the room. If “Kevin is quieter than Greg” then “someone who is richer than Leona is quieter than someone who is older than Kevin”. If “Thomas is richer than Greg” then “if someone is quieter than Thomas then he/she is quieter than Kevin”. If “Leona is quieter than Greg” then “if someone is richer than Kevin then he/she is richer than Thomas”. If “Kevin is richer than Greg” then “Leona is older than Greg”. If “Thomas is older than Greg” then “only one person anywhere is quieter than Thomas”. If “Thomas is quieter than Greg” then “Kevin is richer than Greg”. If “Thomas is older than Greg” then “only one person in the room is older than Thomas”. Kevin is quieter than Greg. Someone who is richer than Kevin is older than someone who is older than Kevin. Kevin is richer than Greg. If someone is quieter than Thomas then he/she is quieter than Kevin. If someone is older than Kevin then he/she is richer than Leona. If someone is older than Kevin then he/she is quieter than Kevin. Kevin is quieter than Greg. Greg is the least old in the room. Someone who is richer than Kevin is quieter than someone who is older than Kevin and is richer than Thomas. Kevin is older than Greg. If someone is richer than Kevin then he/she is quieter than Kevin.
Leona is quieter than Greg.
neutral
room(greg)&(![X]:(room(X)=>(X='greg')))& ((quieter(greg,kevin))=>(?[X,Y]:((richer(leona,X))&(older(kevin,Y))&(quieter(X,Y)))))& ((richer(greg,thomas))=>((![X]:((quieter(thomas,X))=>(quieter(kevin,X))))))& ((quieter(greg,leona))=>((![X]:((richer(kevin,X))=>(richer(thomas,X))))))& ((richer(greg,kevin))=>(older(greg,leona)))& ((older(greg,thomas))=>(((?[X]:(anywhere(X)&quieter(thomas,X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(quieter(thomas,X))&(quieter(thomas,Y)))=>(X=Y))))))& ((quieter(greg,thomas))=>(richer(greg,kevin)))& ((older(greg,thomas))=>(((?[X]:(room(X)&older(thomas,X)))&(![X,Y]:((room(X)&room(Y)&(older(thomas,X))&(older(thomas,Y)))=>(X=Y))))))& (quieter(greg,kevin))& (?[X,Y]:((richer(kevin,X))&(older(kevin,Y))&(older(X,Y))))& (richer(greg,kevin))& ((![X]:((quieter(thomas,X))=>(quieter(kevin,X)))))& ((![X]:((older(kevin,X))=>(richer(leona,X)))))& ((![X]:((older(kevin,X))=>(quieter(kevin,X)))))& (quieter(greg,kevin))& (![X]:((room(X)&(X!=greg))=>older(greg,X)))& (?[X,Y]:((richer(kevin,X))&(((older(kevin,Y))&(richer(thomas,Y))))&(quieter(X,Y))))& (older(greg,kevin))& ((![X]:((richer(kevin,X))=>(quieter(kevin,X)))))& (?[X,Y]:((quieter(kevin,X))&(((quieter(kevin,Y))&(older(kevin,Y))))&(richer(X,Y))))& (?[X,Y]:((older(kevin,X))&(quieter(kevin,Y))&(richer(X,Y))))& ((![X]:((richer(kevin,X))=>(older(kevin,X)))))& (![X]:((room(X)&(X!=greg))=>richer(greg,X)))& ((![X]:((older(leona,X))=>(quieter(leona,X)))))& (richer(greg,leona))& (![X]:((anywhere(X)&(X!=greg))=>richer(greg,X)))& (?[X,Y]:((richer(kevin,X))&(quieter(thomas,Y))&(quieter(X,Y))))& (older(greg,kevin))& (?[X,Y]:((quieter(leona,X))&(quieter(kevin,Y))&(quieter(X,Y))))
room(greg)&(![X]:(room(X)=>(X='greg')))& quieter(greg,leona)
[]
null
0.604229
There is a room. Either “everyone in the room enjoys virtual reality gaming or does not collect antique jewelry” or “not everyone anywhere enjoys virtual reality gaming or does not collect antique jewelry” but not both. If “everyone in the room has a tattoo or does not enjoy virtual reality gaming” then “not everyone outside the room does not enjoy virtual reality gaming if they has a tattoo” otherwise “everyone anywhere enjoys virtual reality gaming if and only if they collects antique jewelry, enjoys virtual reality gaming and creates bespoke furniture pieces from reclaimed wood”. If “everyone in the room collects antique jewelry or does not create bespoke furniture pieces from reclaimed wood” then “everyone anywhere does not enjoy virtual reality gaming or collects antique jewelry” otherwise “everyone in the room who does not create bespoke furniture pieces from reclaimed wood has a tattoo”. Everyone in the room who has a tattoo does not create bespoke furniture pieces from reclaimed wood. Everyone in the room who does not create bespoke furniture pieces from reclaimed wood collects antique jewelry. Everyone outside the room collects antique jewelry or does not collect antique jewelry. Not everyone in the room who enjoys virtual reality gaming does not enjoy virtual reality gaming. No one in the room who creates bespoke furniture pieces from reclaimed wood has a tattoo. Everyone in the room neither has a tattoo nor creates bespoke furniture pieces from reclaimed wood if they has a tattoo. Everyone anywhere who neither has a tattoo nor creates bespoke furniture pieces from reclaimed wood enjoys virtual reality gaming or has a tattoo or both. Everyone in the room enjoys virtual reality gaming or has a tattoo or both only if they enjoys virtual reality gaming. Everyone in the room who enjoys virtual reality gaming collects antique jewelry.
Everyone outside the room creates bespoke furniture pieces from reclaimed wood.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(enjoys_virtual_reality_gaming(X))))))<~>(~![X]:(anywhere(X)=>(((does_not_collect_antique_jewelry(X))|(enjoys_virtual_reality_gaming(X)))))))& (((![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(has_a_tattoo(X))))))=>(~![X]:(~room(X)=>(((has_a_tattoo(X))=>(does_not_enjoy_virtual_reality_gaming(X)))))))&((~(![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(has_a_tattoo(X)))))))=>(![X]:(anywhere(X)=>(((enjoys_virtual_reality_gaming(X))<=>(((collects_antique_jewelry(X))&(enjoys_virtual_reality_gaming(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))))& (((![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(collects_antique_jewelry(X))))))=>(![X]:(anywhere(X)=>(((collects_antique_jewelry(X))|(does_not_enjoy_virtual_reality_gaming(X)))))))&((~(![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(collects_antique_jewelry(X)))))))=>(![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(has_a_tattoo(X))))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(collects_antique_jewelry(X))))))& (![X]:(~room(X)=>(((does_not_collect_antique_jewelry(X))|(collects_antique_jewelry(X))))))& (~![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(does_not_enjoy_virtual_reality_gaming(X))))))& (~?[X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(~((has_a_tattoo(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(anywhere(X)=>(((~((has_a_tattoo(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))=>(((enjoys_virtual_reality_gaming(X))|(has_a_tattoo(X))))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=(((enjoys_virtual_reality_gaming(X))|(has_a_tattoo(X))))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(collects_antique_jewelry(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))
[ "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2956106374662696892254257 % SZS output start Proof for 2956106374662696892254257 44. there_is_a_room [input p0] 52. ~? [X0] : (room(X0) => (predc(X0) => predd(X0))) [input p8] 57. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 146. ! [X0] : ((~predd(X0) & predc(X0)) & room(X0)) [ennf transformation 52] 147. ! [X0] : (~predd(X0) & predc(X0) & room(X0)) [flattening 146] 156. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 57] 184. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK8) & ~room(sK8)) [choice axiom] 185. (~predc(sK8) & ~room(sK8)) | ~there_is_a_room [skolemisation 156,184] 267. there_is_a_room [cnf transformation 44] 297. predc(X0) [cnf transformation 147] 306. ~predc(sK8) | ~there_is_a_room [cnf transformation 185] 421. ~there_is_a_room [subsumption resolution 306,297] 422. $false [subsumption resolution 421,267] % SZS output end Proof for 2956106374662696892254257 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.63822
May is the only person in the room. If 'everyone in the room is older than Margart or does not enjoy camping and organizing outdoor survival workshops' then 'everyone in the room is older than Margart only if they is not a old person'. Everyone outside the room who is older than Margart is a old brave person. Everyone in the room cannot play the guitar or does not practice tai chi. Everyone in the room enjoys camping and organizing outdoor survival workshops if they cannot play the guitar. Everyone in the room who is a brave old person is a brave person. Everyone in the room is older than Margart. Everyone in the room is older than Margart if and only if they is not old, not brave. Everyone in the room who is older than Margart is not old. Everyone in the room who does not practice tai chi is a old brave person. Everyone in the room is older than Margart only if they is not a old person. Everyone outside the room is older than Margart if they does not enjoy camping and organizing outdoor survival workshops. Everyone in the room is a old brave person if they does not enjoy camping and organizing outdoor survival workshops. Everyone in the room who is a brave person enjoys fishing.
May can play the guitar.
contradiction
room(may)&(![X]:(room(X)=>(X='may')))& ((![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(older(margart,X))))))=>(![X]:(room(X)=>(((~(old(X)&person(X)))<=(older(margart,X)))))))& (![X]:(~room(X)=>(((older(margart,X))=>(old(X)&brave(X)&person(X))))))& (![X]:(room(X)=>(((does_not_practice_tai_chi(X))|(cannot_play_the_guitar(X))))))& (![X]:(room(X)=>(((cannot_play_the_guitar(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((brave(X)&old(X)&person(X))=>(brave(X)&person(X))))))& (![X]:(room(X)=>(older(margart,X))))& (![X]:(room(X)=>(((older(margart,X))<=>(~old(X)&~brave(X))))))& (![X]:(room(X)=>(((older(margart,X))=>(~old(X))))))& (![X]:(room(X)=>(((does_not_practice_tai_chi(X))=>(old(X)&brave(X)&person(X))))))& (![X]:(room(X)=>(((~(old(X)&person(X)))<=(older(margart,X))))))& (![X]:(~room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(older(margart,X))))))& (![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(old(X)&brave(X)&person(X))))))& (![X]:(room(X)=>(((brave(X)&person(X))=>(enjoys_fishing(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(older(margart,X))))))& (![X]:(room(X)=>(((~(old(X)&brave(X)&person(X)))<=>(older(margart,X))))))& (![X]:(room(X)=>(((old(X)&brave(X)&person(X))=>(old(X)&person(X))))))& (![X]:(room(X)=>(((older(margart,X))=>(~(brave(X)&person(X)))))))
room(may)&(![X]:(room(X)=>(X='may')))& can_play_the_guitar(may)
[ "p0", "p3", "p6", "p7", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 5374899166361841431345630 % SZS output start Proof for 5374899166361841431345630 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (~predn(X0) | ~predo(X0))) [input p3] 50. ! [X0] : (room(X0) => older(fred,X0)) [input p6] 51. ! [X0] : (room(X0) => (older(fred,X0) <=> (~brave(X0) & ~old(X0)))) [input p7] 53. ! [X0] : (room(X0) => (~predo(X0) => (person(X0) & brave(X0) & old(X0)))) [input p9] 62. predn(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 141. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 146. ! [X0] : ((~predn(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 47] 147. ! [X0] : (~predn(X0) | ~predo(X0) | ~room(X0)) [flattening 146] 150. ! [X0] : (older(fred,X0) | ~room(X0)) [ennf transformation 50] 151. ! [X0] : ((older(fred,X0) <=> (~brave(X0) & ~old(X0))) | ~room(X0)) [ennf transformation 51] 154. ! [X0] : (((person(X0) & brave(X0) & old(X0)) | predo(X0)) | ~room(X0)) [ennf transformation 53] 155. ! [X0] : ((person(X0) & brave(X0) & old(X0)) | predo(X0) | ~room(X0)) [flattening 154] 165. predn(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 62] 170. ! [X0] : (((older(fred,X0) | (brave(X0) | old(X0))) & ((~brave(X0) & ~old(X0)) | ~older(fred,X0))) | ~room(X0)) [nnf transformation 151] 171. ! [X0] : (((older(fred,X0) | brave(X0) | old(X0)) & ((~brave(X0) & ~old(X0)) | ~older(fred,X0))) | ~room(X0)) [flattening 170] 254. room(mary) [cnf transformation 141] 261. ~predn(X0) | ~predo(X0) | ~room(X0) [cnf transformation 147] 264. older(fred,X0) | ~room(X0) [cnf transformation 150] 266. ~brave(X0) | ~older(fred,X0) | ~room(X0) [cnf transformation 171] 270. brave(X0) | predo(X0) | ~room(X0) [cnf transformation 155] 283. predn(mary) [cnf transformation 165] 297. ~brave(X0) | ~room(X0) [subsumption resolution 266,264] 299. ~room(X0) | predo(X0) [subsumption resolution 270,297] 301. predo(mary) [resolution 299,254] 303. ~predo(mary) | ~room(mary) [resolution 261,283] 304. ~room(mary) [subsumption resolution 303,301] 305. $false [subsumption resolution 304,254] % SZS output end Proof for 5374899166361841431345630 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.016973
Valorie, Tracy, Michael, William, Robin are the only persons in the room. “Everyone in the room is not a client of Costco or is a drone photographer” if “Valorie is a drone photographer”. “Everyone in the room does not bake bread at home or does not have a saltwater aquarium” if “Valorie owns a high-end gaming PC with custom-built components”. If “it is true that “everyone in the room does not own a high-end gaming PC with custom-built components or is an amateur astronomer who builds and uses custom telescopes”” then “everyone in the room collects modern art if they owns a significant collection of rare gemstones and minerals”. Michael enjoys stargazing. Everyone anywhere who enjoys stargazing is a drone photographer. Someone in the room bakes bread at home or plays as a goalkeeper for a local amateur soccer team or both. More than one person in the room is an avid hiker. Everyone in the room collects modern art if they owns a significant collection of rare gemstones and minerals. If someone owns an extensive assortment of vintage comic book memorabilia then he/she writes poetry. Not everyone in the room who regularly goes on multi-day backpacking trips in national parks writes and illustrates their own graphic novels. It is not the case that “it is not the case that “Valorie designs and sews custom cosplay costumes for conventions””. No one anywhere is a drone photographer if and only if they does not own an extensive assortment of vintage comic book memorabilia. Everyone anywhere enjoys coding in Python only if they is an amateur astronomer who builds and uses custom telescopes. Valorie does not own a significant collection of rare gemstones and minerals. Tracy who owns a high-end gaming PC with custom-built components watches fantasy movies. Everyone in the room is a drone photographer only if they is not an amateur astronomer who builds and uses custom telescopes. Everyone in the room is not a client of Costco or is not an amateur astronomer who builds and uses custom telescopes. More than one person in the room is a client of Costco.
Michael does not write poetry.
contradiction
room(valorie)&room(tracy)&room(michael)&room(william)&room(robin)&(![X]:(room(X)=>(X='valorie'|X='tracy'|X='michael'|X='william'|X='robin')))& ((is_a_drone_photographer(valorie))=>(![X]:(room(X)=>(((is_a_drone_photographer(X))|(is_not_a_client_of_Costco(X)))))))& ((owns_a_high-end_gaming_PC_with_custom-built_components(valorie))=>(![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(does_not_bake_bread_at_home(X)))))))& ((![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(collects_modern_art(X)))))))& (enjoys_stargazing(michael))& (![X]:(anywhere(X)=>(((enjoys_stargazing(X))=>(is_a_drone_photographer(X))))))& (?[X]:(room(X)&(((bakes_bread_at_home(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_an_avid_hiker(X)&is_an_avid_hiker(Y))&(X!=Y))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(collects_modern_art(X))))))& ((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(writes_poetry(X)))))& (~![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (~(~(designs_and_sews_custom_cosplay_costumes_for_conventions(valorie))))& (~?[X]:(anywhere(X)=>(((is_a_drone_photographer(X))<=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(anywhere(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=(enjoys_coding_in_Python(X))))))& (does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(valorie))& ((owns_a_high-end_gaming_PC_with_custom-built_components(tracy))&(watches_fantasy_movies(tracy)))& (![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_not_a_client_of_Costco(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_client_of_Costco(X)&is_a_client_of_Costco(Y))&(X!=Y))))
room(valorie)&room(tracy)&room(michael)&room(william)&room(robin)&(![X]:(room(X)=>(X='valorie'|X='tracy'|X='michael'|X='william'|X='robin')))& does_not_write_poetry(michael)
[ "b4", "p4", "p5", "p9", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 6610013117919398061372235 % SZS output start Proof for 6610013117919398061372235 5. ! [X0] : anywhere(X0) [input b4] 48. preda(fred) [input p4] 49. ! [X0] : (anywhere(X0) => (preda(X0) => predd(X0))) [input p5] 53. ! [X0] : (preds(X0) => predc(X0)) [input p9] 56. ~? [X0] : (anywhere(X0) => (predd(X0) <=> ~preds(X0))) [input p12] 63. ~predc(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 156. ! [X0] : ((predd(X0) | ~preda(X0)) | ~anywhere(X0)) [ennf transformation 49] 157. ! [X0] : (predd(X0) | ~preda(X0) | ~anywhere(X0)) [flattening 156] 158. ! [X0] : (predc(X0) | ~preds(X0)) [ennf transformation 53] 160. ! [X0] : ((predd(X0) <~> ~preds(X0)) & anywhere(X0)) [ennf transformation 56] 161. ~predc(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 162. ~predc(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 170. ! [X0] : (((preds(X0) | ~predd(X0)) & (~preds(X0) | predd(X0))) & anywhere(X0)) [nnf transformation 160] 171. ! [X0] : ((preds(X0) | ~predd(X0)) & (~preds(X0) | predd(X0)) & anywhere(X0)) [flattening 170] 174. anywhere(X0) [cnf transformation 5] 262. preda(fred) [cnf transformation 48] 263. predd(X0) | ~preda(X0) | ~anywhere(X0) [cnf transformation 157] 268. ~preds(X0) | predc(X0) [cnf transformation 158] 272. ~predd(X0) | preds(X0) [cnf transformation 171] 284. ~predc(fred) [cnf transformation 162] 293. ~preda(X0) | predd(X0) [subsumption resolution 263,174] 294. predd(fred) [resolution 293,262] 295. preds(fred) [resolution 294,272] 297. predc(fred) [resolution 295,268] 298. $false [subsumption resolution 297,284] % SZS output end Proof for 6610013117919398061372235 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0
Linda, Jeffrey, Kelly, George are the only persons in the room. Everyone in the room who enjoys watercolor painting does not enjoy watercolor painting. Linda collects comic books. More than one person anywhere frequently participates in hackathons and coding competitions. Everyone in the room works as a freelance web developer specializing in e-commerce sites if they hosts themed dinner parties featuring gourmet home-cooked meals, practices archery and maintains a large, organic vegetable garden year-round. Everyone outside the room watches fantasy movies if they works as a freelance web developer specializing in e-commerce sites. Everyone in the room enjoys watercolor painting if they hosts a popular podcast about emerging technologies. Linda frequently participates in hackathons and coding competitions. Everyone outside the room who has a pet dog, is a craft beer aficionado or watches fantasy movies enjoys fishing. Everyone in the room does not collect comic books if they is a craft beer aficionado. Everyone in the room who does not collect comic books practices digital art, does not enjoy coding in Python or does not have a pet dog.
Jeffrey enjoys watercolor painting.
contradiction
room(linda)&room(jeffrey)&room(kelly)&room(george)&(![X]:(room(X)=>(X='linda'|X='jeffrey'|X='kelly'|X='george')))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(does_not_enjoy_watercolor_painting(X))))))& (collects_comic_books(linda))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(frequently_participates_in_hackathons_and_coding_competitions(X)&frequently_participates_in_hackathons_and_coding_competitions(Y))&(X!=Y))))& (![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(practices_archery(X))&(maintains_a_large,_organic_vegetable_garden_year-round(X))))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(~room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(enjoys_watercolor_painting(X))))))& (frequently_participates_in_hackathons_and_coding_competitions(linda))& (![X]:(~room(X)=>(((((has_a_pet_dog(X))|(is_a_craft_beer_aficionado(X))|(watches_fantasy_movies(X))))=>(enjoys_fishing(X))))))& (![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(does_not_collect_comic_books(X))))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))=>(((practices_digital_art(X))|(does_not_enjoy_coding_in_Python(X))|(does_not_have_a_pet_dog(X))))))))
room(linda)&room(jeffrey)&room(kelly)&room(george)&(![X]:(room(X)=>(X='linda'|X='jeffrey'|X='kelly'|X='george')))& enjoys_watercolor_painting(jeffrey)
[ "p0", "p1", "hypothesis" ]
% SZS status Unsatisfiable for 5147011245434790561924824 % SZS output start Proof for 5147011245434790561924824 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (predy(X0) => ~predy(X0))) [input p1] 55. predy(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 138. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 138] 140. ! [X0] : ((~predy(X0) | ~predy(X0)) | ~room(X0)) [ennf transformation 45] 141. ! [X0] : (~predy(X0) | ~predy(X0) | ~room(X0)) [flattening 140] 142. predy(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 143. predy(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 228. room(paul) [cnf transformation 139] 232. ~predy(X0) | ~predy(X0) | ~room(X0) [cnf transformation 141] 239. predy(paul) [cnf transformation 143] 240. ~predy(X0) | ~room(X0) [duplicate literal removal 232] 241. ~room(paul) [resolution 240,239] 242. $false [subsumption resolution 241,228] % SZS output end Proof for 5147011245434790561924824 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.015121
There is a room. “Everyone in the room plays eSports competitively or does not enjoy logic puzzles” only if “not everyone in the room who plays eSports competitively is allergic to anything”. “Everyone in the room who does not play eSports competitively does not enjoy wildlife photography” if “everyone in the room does not play eSports competitively or is a culinary enthusiast who experiments with international cuisines”. If “at least one person in the room enjoys logic puzzles” then “someone in the room does not use a Windows laptop and is a culinary enthusiast who experiments with international cuisines” otherwise “everyone in the room who does not enjoy wildlife photography enjoys logic puzzles”. If “everyone outside the room enjoys spelunking or does not enjoy bird watching” then “everyone in the room enjoys bird watching or is not a culinary enthusiast who experiments with international cuisines”. If “everyone in the room enjoys bird watching or is not a culinary enthusiast who experiments with international cuisines” then “no one in the room is a craft beer aficionado if they is allergic to anything”. “Everyone in the room who works on fridays is a craft beer aficionado” unless “everyone in the room owns a smartwatch or is not a craft beer aficionado”. Only one person in the room is a night owl.
Everyone in the room enjoys wildlife photography or does not enjoy wildlife photography.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))|(plays_eSports_competitively(X))))))=>(~![X]:(room(X)=>(((plays_eSports_competitively(X))=>(is_allergic_to_anything(X)))))))& ((![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(does_not_play_eSports_competitively(X))))))=>(![X]:(room(X)=>(((does_not_play_eSports_competitively(X))=>(does_not_enjoy_wildlife_photography(X)))))))& (((((?[X]:(room(X)&enjoys_logic_puzzles(X)))))=>(?[X]:(room(X)&(((does_not_use_a_Windows_laptop(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))&((~(((?[X]:(room(X)&enjoys_logic_puzzles(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(enjoys_logic_puzzles(X))))))))& (((![X]:(~room(X)=>(((does_not_enjoy_bird_watching(X))|(enjoys_spelunking(X))))))=>(![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_bird_watching(X)))))))& ((![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_bird_watching(X))))))=>(~?[X]:(room(X)=>(((is_allergic_to_anything(X))=>(is_a_craft_beer_aficionado(X))))))))& (~(![X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))|(owns_a_smartwatch(X))))))=>(![X]:(room(X)=>(((works_on_fridays(X))=>(is_a_craft_beer_aficionado(X)))))))& (((?[X]:(room(X)&is_a_night_owl(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_night_owl(X))&(is_a_night_owl(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(does_not_collect_foreign_coins(X))))))& (((?[X]:(room(X)&does_not_enjoy_wildlife_photography(X)))))& (~![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(uses_a_Windows_laptop(X))))))& (?[X]:(~room(X)&(enjoys_spelunking(X))))& (![X]:(room(X)=>(((is_a_night_owl(X))=>(works_on_fridays(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(enjoys_wildlife_photography(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 4402352582704378906767555 % SZS output start Proof for 4402352582704378906767555 44. ! [X0] : (room(X0) => (predf(X0) => preda(X0))) & ? [X0] : (predg(X0) & ~room(X0)) & ~! [X0] : (room(X0) => (predj(X0) => predl(X0))) & ? [X0] : (~predm(X0) & room(X0)) & ! [X0] : (room(X0) => (~predd(X0) | ~predm(X0))) & ! [X0,X1] : ((predf(X1) & predf(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predf(X0) & room(X0)) & (~! [X0] : (room(X0) => (prede(X0) | ~predj(X0))) => ! [X0] : (room(X0) => (preda(X0) => predj(X0)))) & (! [X0] : (room(X0) => (predb(X0) | ~predp(X0))) => ~? [X0] : (room(X0) => (predn(X0) => predj(X0)))) & (! [X0] : (~room(X0) => (predg(X0) | ~predb(X0))) => ! [X0] : (room(X0) => (predb(X0) | ~predp(X0)))) & (~? [X0] : (predk(X0) & room(X0)) => ! [X0] : (room(X0) => (~predm(X0) => predk(X0)))) & (? [X0] : (predk(X0) & room(X0)) => ? [X0] : (predp(X0) & ~predl(X0) & room(X0))) & (! [X0] : (room(X0) => (~predi(X0) | predp(X0))) => ! [X0] : (room(X0) => (~predi(X0) => ~predm(X0)))) & (! [X0] : (room(X0) => (predi(X0) | ~predk(X0))) => ~! [X0] : (room(X0) => (predi(X0) => predn(X0)))) & there_is_a_room [input p0] 45. ~(! [X0] : (room(X0) => (predm(X0) | ~predm(X0))) & there_is_a_room) [input hypothesis] 46. ! [X0] : (room(X0) => (predf(X0) => preda(X0))) & ? [X1] : (predg(X1) & ~room(X1)) & ~! [X2] : (room(X2) => (predj(X2) => predl(X2))) & ? [X3] : (~predm(X3) & room(X3)) & ! [X4] : (room(X4) => (~predd(X4) | ~predm(X4))) & ! [X5,X6] : ((predf(X6) & predf(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predf(X7) & room(X7)) & (~! [X8] : (room(X8) => (prede(X8) | ~predj(X8))) => ! [X9] : (room(X9) => (preda(X9) => predj(X9)))) & (! [X10] : (room(X10) => (predb(X10) | ~predp(X10))) => ~? [X11] : (room(X11) => (predn(X11) => predj(X11)))) & (! [X12] : (~room(X12) => (predg(X12) | ~predb(X12))) => ! [X13] : (room(X13) => (predb(X13) | ~predp(X13)))) & (~? [X14] : (predk(X14) & room(X14)) => ! [X15] : (room(X15) => (~predm(X15) => predk(X15)))) & (? [X16] : (predk(X16) & room(X16)) => ? [X17] : (predp(X17) & ~predl(X17) & room(X17))) & (! [X18] : (room(X18) => (~predi(X18) | predp(X18))) => ! [X19] : (room(X19) => (~predi(X19) => ~predm(X19)))) & (! [X20] : (room(X20) => (predi(X20) | ~predk(X20))) => ~! [X21] : (room(X21) => (predi(X21) => predn(X21)))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => (predf(X0) => preda(X0))) & ? [X1] : (predg(X1) & ~room(X1)) & ~! [X2] : (room(X2) => (predj(X2) => predl(X2))) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : ((predf(X6) & predf(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predf(X7) & room(X7)) & (~! [X8] : (room(X8) => (prede(X8) | ~predj(X8))) => ! [X9] : (room(X9) => (preda(X9) => predj(X9)))) & (! [X10] : (room(X10) => (predb(X10) | ~predp(X10))) => ~? [X11] : (room(X11) => (predn(X11) => predj(X11)))) & (! [X12] : (~room(X12) => (predg(X12) | ~predb(X12))) => ! [X13] : (room(X13) => (predb(X13) | ~predp(X13)))) & (~? [X14] : (predk(X14) & room(X14)) => ! [X15] : (room(X15) => (~predm(X15) => predk(X15)))) & (? [X16] : (predk(X16) & room(X16)) => ? [X17] : (predp(X17) & ~predl(X17) & room(X17))) & (! [X18] : (room(X18) => (~predi(X18) | predp(X18))) => ! [X19] : (room(X19) => (~predi(X19) => ~predm(X19)))) & (! [X20] : (room(X20) => (predi(X20) | ~predk(X20))) => ~! [X21] : (room(X21) => (predi(X21) => predn(X21)))) & there_is_a_room [pure predicate removal 46] 48. ! [X0] : (room(X0) => (predf(X0) => preda(X0))) & ? [X1] : (predg(X1) & ~room(X1)) & ~! [X2] : (room(X2) => (predj(X2) => predl(X2))) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : ((predf(X6) & predf(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predf(X7) & room(X7)) & (! [X10] : (room(X10) => (predb(X10) | ~predp(X10))) => ~? [X11] : (room(X11) => (predn(X11) => predj(X11)))) & (! [X12] : (~room(X12) => (predg(X12) | ~predb(X12))) => ! [X13] : (room(X13) => (predb(X13) | ~predp(X13)))) & (~? [X14] : (predk(X14) & room(X14)) => ! [X15] : (room(X15) => (~predm(X15) => predk(X15)))) & (? [X16] : (predk(X16) & room(X16)) => ? [X17] : (predp(X17) & ~predl(X17) & room(X17))) & (! [X18] : (room(X18) => (~predi(X18) | predp(X18))) => ! [X19] : (room(X19) => (~predi(X19) => ~predm(X19)))) & (! [X20] : (room(X20) => (predi(X20) | ~predk(X20))) => ~! [X21] : (room(X21) => (predi(X21) => predn(X21)))) & there_is_a_room [pure predicate removal 47] 49. ? [X1] : (predg(X1) & ~room(X1)) & ~! [X2] : (room(X2) => (predj(X2) => predl(X2))) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : ((predf(X6) & predf(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predf(X7) & room(X7)) & (! [X10] : (room(X10) => (predb(X10) | ~predp(X10))) => ~? [X11] : (room(X11) => (predn(X11) => predj(X11)))) & (! [X12] : (~room(X12) => (predg(X12) | ~predb(X12))) => ! [X13] : (room(X13) => (predb(X13) | ~predp(X13)))) & (~? [X14] : (predk(X14) & room(X14)) => ! [X15] : (room(X15) => (~predm(X15) => predk(X15)))) & (? [X16] : (predk(X16) & room(X16)) => ? [X17] : (predp(X17) & ~predl(X17) & room(X17))) & (! [X18] : (room(X18) => (~predi(X18) | predp(X18))) => ! [X19] : (room(X19) => (~predi(X19) => ~predm(X19)))) & (! [X20] : (room(X20) => (predi(X20) | ~predk(X20))) => ~! [X21] : (room(X21) => (predi(X21) => predn(X21)))) & there_is_a_room [pure predicate removal 48] 50. ? [X1] : (predg(X1) & ~room(X1)) & ~! [X2] : (room(X2) => ~predj(X2)) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : ((predf(X6) & predf(X5) & room(X6) & room(X5)) => X5 = X6) & ? [X7] : (predf(X7) & room(X7)) & (! [X10] : (room(X10) => (predb(X10) | ~predp(X10))) => ~? [X11] : (room(X11) => (predn(X11) => predj(X11)))) & (! [X12] : (~room(X12) => (predg(X12) | ~predb(X12))) => ! [X13] : (room(X13) => (predb(X13) | ~predp(X13)))) & (~? [X14] : (predk(X14) & room(X14)) => ! [X15] : (room(X15) => (~predm(X15) => predk(X15)))) & (? [X16] : (predk(X16) & room(X16)) => ? [X17] : (predp(X17) & room(X17))) & (! [X18] : (room(X18) => (~predi(X18) | predp(X18))) => ! [X19] : (room(X19) => (~predi(X19) => ~predm(X19)))) & (! [X20] : (room(X20) => (predi(X20) | ~predk(X20))) => ~! [X21] : (room(X21) => (predi(X21) => predn(X21)))) & there_is_a_room [pure predicate removal 49] 123. ? [X1] : (predg(X1) & ~room(X1)) & ? [X2] : (predj(X2) & room(X2)) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : (X5 = X6 | (~predf(X6) | ~predf(X5) | ~room(X6) | ~room(X5))) & ? [X7] : (predf(X7) & room(X7)) & (! [X11] : ((~predj(X11) & predn(X11)) & room(X11)) | ? [X10] : ((~predb(X10) & predp(X10)) & room(X10))) & (! [X13] : ((predb(X13) | ~predp(X13)) | ~room(X13)) | ? [X12] : ((~predg(X12) & predb(X12)) & ~room(X12))) & (! [X15] : ((predk(X15) | predm(X15)) | ~room(X15)) | ? [X14] : (predk(X14) & room(X14))) & (? [X17] : (predp(X17) & room(X17)) | ! [X16] : (~predk(X16) | ~room(X16))) & (! [X19] : ((~predm(X19) | predi(X19)) | ~room(X19)) | ? [X18] : ((predi(X18) & ~predp(X18)) & room(X18))) & (? [X21] : ((~predn(X21) & predi(X21)) & room(X21)) | ? [X20] : ((~predi(X20) & predk(X20)) & room(X20))) & there_is_a_room [ennf transformation 50] 124. ? [X1] : (predg(X1) & ~room(X1)) & ? [X2] : (predj(X2) & room(X2)) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : (X5 = X6 | ~predf(X6) | ~predf(X5) | ~room(X6) | ~room(X5)) & ? [X7] : (predf(X7) & room(X7)) & (! [X11] : (~predj(X11) & predn(X11) & room(X11)) | ? [X10] : (~predb(X10) & predp(X10) & room(X10))) & (! [X13] : (predb(X13) | ~predp(X13) | ~room(X13)) | ? [X12] : (~predg(X12) & predb(X12) & ~room(X12))) & (! [X15] : (predk(X15) | predm(X15) | ~room(X15)) | ? [X14] : (predk(X14) & room(X14))) & (? [X17] : (predp(X17) & room(X17)) | ! [X16] : (~predk(X16) | ~room(X16))) & (! [X19] : (~predm(X19) | predi(X19) | ~room(X19)) | ? [X18] : (predi(X18) & ~predp(X18) & room(X18))) & (? [X21] : (~predn(X21) & predi(X21) & room(X21)) | ? [X20] : (~predi(X20) & predk(X20) & room(X20))) & there_is_a_room [flattening 123] 125. ? [X0] : ((~predm(X0) & predm(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 45] 126. ? [X0] : (~predm(X0) & predm(X0) & room(X0)) | ~there_is_a_room [flattening 125] 127. ? [X20] : (~predi(X20) & predk(X20) & room(X20)) | ~sP0 [predicate definition introduction] 128. ? [X10] : (~predb(X10) & predp(X10) & room(X10)) | ~sP1 [predicate definition introduction] 129. ? [X1] : (predg(X1) & ~room(X1)) & ? [X2] : (predj(X2) & room(X2)) & ? [X3] : (~predm(X3) & room(X3)) & ! [X5,X6] : (X5 = X6 | ~predf(X6) | ~predf(X5) | ~room(X6) | ~room(X5)) & ? [X7] : (predf(X7) & room(X7)) & (! [X11] : (~predj(X11) & predn(X11) & room(X11)) | sP1) & (! [X13] : (predb(X13) | ~predp(X13) | ~room(X13)) | ? [X12] : (~predg(X12) & predb(X12) & ~room(X12))) & (! [X15] : (predk(X15) | predm(X15) | ~room(X15)) | ? [X14] : (predk(X14) & room(X14))) & (? [X17] : (predp(X17) & room(X17)) | ! [X16] : (~predk(X16) | ~room(X16))) & (! [X19] : (~predm(X19) | predi(X19) | ~room(X19)) | ? [X18] : (predi(X18) & ~predp(X18) & room(X18))) & (? [X21] : (~predn(X21) & predi(X21) & room(X21)) | sP0) & there_is_a_room [definition folding 124,128,127] 139. ? [X0] : (predg(X0) & ~room(X0)) & ? [X1] : (predj(X1) & room(X1)) & ? [X2] : (~predm(X2) & room(X2)) & ! [X3,X4] : (X3 = X4 | ~predf(X4) | ~predf(X3) | ~room(X4) | ~room(X3)) & ? [X5] : (predf(X5) & room(X5)) & (! [X6] : (~predj(X6) & predn(X6) & room(X6)) | sP1) & (! [X7] : (predb(X7) | ~predp(X7) | ~room(X7)) | ? [X8] : (~predg(X8) & predb(X8) & ~room(X8))) & (! [X9] : (predk(X9) | predm(X9) | ~room(X9)) | ? [X10] : (predk(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) | ! [X12] : (~predk(X12) | ~room(X12))) & (! [X13] : (~predm(X13) | predi(X13) | ~room(X13)) | ? [X14] : (predi(X14) & ~predp(X14) & room(X14))) & (? [X15] : (~predn(X15) & predi(X15) & room(X15)) | sP0) & there_is_a_room [rectify 129] 140. ? [X0] : (predg(X0) & ~room(X0)) => (predg(sK4) & ~room(sK4)) [choice axiom] 141. ? [X1] : (predj(X1) & room(X1)) => (predj(sK5) & room(sK5)) [choice axiom] 142. ? [X2] : (~predm(X2) & room(X2)) => (~predm(sK6) & room(sK6)) [choice axiom] 143. ? [X5] : (predf(X5) & room(X5)) => (predf(sK7) & room(sK7)) [choice axiom] 144. ? [X8] : (~predg(X8) & predb(X8) & ~room(X8)) => (~predg(sK8) & predb(sK8) & ~room(sK8)) [choice axiom] 145. ? [X10] : (predk(X10) & room(X10)) => (predk(sK9) & room(sK9)) [choice axiom] 146. ? [X11] : (predp(X11) & room(X11)) => (predp(sK10) & room(sK10)) [choice axiom] 147. ? [X14] : (predi(X14) & ~predp(X14) & room(X14)) => (predi(sK11) & ~predp(sK11) & room(sK11)) [choice axiom] 148. ? [X15] : (~predn(X15) & predi(X15) & room(X15)) => (~predn(sK12) & predi(sK12) & room(sK12)) [choice axiom] 149. (predg(sK4) & ~room(sK4)) & (predj(sK5) & room(sK5)) & (~predm(sK6) & room(sK6)) & ! [X3,X4] : (X3 = X4 | ~predf(X4) | ~predf(X3) | ~room(X4) | ~room(X3)) & (predf(sK7) & room(sK7)) & (! [X6] : (~predj(X6) & predn(X6) & room(X6)) | sP1) & (! [X7] : (predb(X7) | ~predp(X7) | ~room(X7)) | (~predg(sK8) & predb(sK8) & ~room(sK8))) & (! [X9] : (predk(X9) | predm(X9) | ~room(X9)) | (predk(sK9) & room(sK9))) & ((predp(sK10) & room(sK10)) | ! [X12] : (~predk(X12) | ~room(X12))) & (! [X13] : (~predm(X13) | predi(X13) | ~room(X13)) | (predi(sK11) & ~predp(sK11) & room(sK11))) & ((~predn(sK12) & predi(sK12) & room(sK12)) | sP0) & there_is_a_room [skolemisation 139,148,147,146,145,144,143,142,141,140] 150. ? [X0] : (~predm(X0) & predm(X0) & room(X0)) => (~predm(sK13) & predm(sK13) & room(sK13)) [choice axiom] 151. (~predm(sK13) & predm(sK13) & room(sK13)) | ~there_is_a_room [skolemisation 126,150] 238. there_is_a_room [cnf transformation 149] 265. predm(sK13) | ~there_is_a_room [cnf transformation 151] 266. ~predm(sK13) | ~there_is_a_room [cnf transformation 151] 394. ~predm(sK13) [subsumption resolution 266,238] 395. ~there_is_a_room [subsumption resolution 265,394] 396. $false [subsumption resolution 395,238] % SZS output end Proof for 4402352582704378906767555 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0
There is a room. “Everyone in the room does not use contact lenses or writes a travel blog” only if “no one in the room is an active member of a local robotics club if they does not use contact lenses”. “Everyone in the room does not collect comic books or does not write a travel blog” if “everyone in the room does not own an extensive assortment of vintage comic book memorabilia or owns an Android phone” and vice versa. “Everyone in the room hosts regular workshops on creative writing or does not write a travel blog” if “not everyone in the room has completed a triathlon or does not host a popular podcast about emerging technologies” and vice versa. If “someone in the room neither uses contact lenses nor does not enjoy kayaking and exploring remote waterways” then “everyone in the room does not host regular workshops on creative writing or does not own a telescope”. Everyone in the room who does not host regular workshops on creative writing enjoys deep-sea diving and exploring underwater caves. At least one person in the room neither hosts themed dinner parties featuring gourmet home-cooked meals nor hosts regular workshops on creative writing. Someone in the room owns an Android phone. No one in the room neither composes and performs experimental electronic music nor owns an extensive assortment of vintage comic book memorabilia if they plays as a goalkeeper for a local amateur soccer team. Everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals if they is an amateur astronomer who builds and uses custom telescopes and vice versa.
Everyone in the room does not enjoy deep-sea diving and exploring underwater caves or is an amateur astronomer who builds and uses custom telescopes.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((writes_a_travel_blog(X))|(does_not_use_contact_lenses(X))))))=>(~?[X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))))& ((![X]:(room(X)=>(((owns_an_Android_phone(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))<=>(![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(does_not_collect_comic_books(X)))))))& ((~![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(has_completed_a_triathlon(X))))))<=>(![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(hosts_regular_workshops_on_creative_writing(X)))))))& ((?[X]:(room(X)&(~((uses_contact_lenses(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))=>(![X]:(room(X)=>(((does_not_own_a_telescope(X))|(does_not_host_regular_workshops_on_creative_writing(X)))))))& (![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (((?[X]:(room(X)&~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(hosts_regular_workshops_on_creative_writing(X)))))))& (?[X]:(room(X)&(owns_an_Android_phone(X))))& (~?[X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(~((composes_and_performs_experimental_electronic_music(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))))& (?[X]:(room(X)&(builds_model_airplanes(X))))& (![X]:(anywhere(X)=>(((((enjoys_snowboarding(X))&(does_not_host_regular_workshops_on_creative_writing(X))&(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))<=(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& ((![X]:((is_an_active_member_of_a_local_robotics_club(X))<=>(~((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))& (((?[X]:(room(X)&((is_an_active_member_of_a_local_robotics_club(X))&(owns_a_telescope(X))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& (![X]:(room(X)=>(((((does_not_own_an_Android_phone(X))&(enjoys_kayaking_and_exploring_remote_waterways(X))))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(((uses_contact_lenses(X))<~>(does_enjoy_mountain_biking(X))))))))& (![X]:(room(X)=>(((((collects_comic_books(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(enjoys_snowboarding(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))))& (![X]:(anywhere(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(enjoys_snowboarding(X))))))& (~![X]:(room(X)=>(((enjoys_snowboarding(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& ((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))& (~![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(collects_comic_books(X))))))& (![X]:(anywhere(X)=>(((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))
[ "p5", "p6", "p8", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 2312790177279289516211496 % SZS output start Proof for 2312790177279289516211496 49. ! [X0] : (room(X0) => (~predm(X0) => predd(X0))) [input p5] 50. ? [X0] : (~(predm(X0) | predn(X0)) & room(X0)) [input p6] 52. ~? [X0] : (room(X0) => (predr(X0) => ~(predq(X0) | predk(X0)))) [input p8] 64. ! [X0] : (room(X0) => (predn(X0) <=> predj(X0))) [input p20] 68. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room [input hypothesis] 81. ~? [X0] : (room(X0) => ~predr(X0)) [pure predicate removal 52] 84. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) [pure predicate removal 68] 163. ! [X0] : ((predd(X0) | predm(X0)) | ~room(X0)) [ennf transformation 49] 164. ! [X0] : (predd(X0) | predm(X0) | ~room(X0)) [flattening 163] 165. ? [X0] : ((~predm(X0) & ~predn(X0)) & room(X0)) [ennf transformation 50] 166. ? [X0] : (~predm(X0) & ~predn(X0) & room(X0)) [flattening 165] 167. ! [X0] : (predr(X0) & room(X0)) [ennf transformation 81] 174. ! [X0] : ((predn(X0) <=> predj(X0)) | ~room(X0)) [ennf transformation 64] 180. ! [X0] : ((~predd(X0) | predj(X0)) | ~room(X0)) [ennf transformation 84] 181. ! [X0] : (~predd(X0) | predj(X0) | ~room(X0)) [flattening 180] 204. ? [X0] : (~predm(X0) & ~predn(X0) & room(X0)) => (~predm(sK7) & ~predn(sK7) & room(sK7)) [choice axiom] 205. ~predm(sK7) & ~predn(sK7) & room(sK7) [skolemisation 166,204] 217. ! [X0] : (((predn(X0) | ~predj(X0)) & (predj(X0) | ~predn(X0))) | ~room(X0)) [nnf transformation 174] 321. ~room(X0) | predm(X0) | predd(X0) [cnf transformation 164] 322. room(sK7) [cnf transformation 205] 323. ~predn(sK7) [cnf transformation 205] 324. ~predm(sK7) [cnf transformation 205] 327. room(X0) [cnf transformation 167] 342. ~predj(X0) | predn(X0) | ~room(X0) [cnf transformation 217] 348. ~predd(X0) | predj(X0) | ~room(X0) [cnf transformation 181] 377. 7 <=> ! [X0] : room(X0) [avatar definition] 378. room(X0) <- (7) [avatar component clause 377] 458. 7 [avatar split clause 327,377] 466. predd(X0) | predm(X0) <- (7) [resolution 321,378] 540. 31 <=> predd(sK7) [avatar definition] 541. ~predd(sK7) <- (~31) [avatar component clause 540] 542. predd(sK7) <- (31) [avatar component clause 540] 567. predj(sK7) | ~room(sK7) <- (31) [resolution 542,348] 570. predj(sK7) <- (31) [subsumption resolution 567,322] 572. predn(sK7) | ~room(sK7) <- (31) [resolution 570,342] 574. ~room(sK7) <- (31) [subsumption resolution 572,323] 575. $false <- (31) [subsumption resolution 574,322] 576. ~31 [avatar contradiction clause 575] 577. predm(sK7) <- (7, ~31) [resolution 541,466] 578. $false <- (7, ~31) [subsumption resolution 577,324] 579. ~7 | 31 [avatar contradiction clause 578] 580. $false [avatar sat refutation 458,576,579] % SZS output end Proof for 2312790177279289516211496 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Joseph, Ella, Ellen are the only persons in the room. "Everyone in the room is a old person" if "everyone outside the room is not a tall person" and vice versa. "Joseph is a old person" only if "Joseph is a quiet person". "Everyone in the room is a old person" if "Joseph neither is a quiet person nor is a old person". "Ella is quiet" if "everyone in the room is not old". If someone is a old person then he/she is a tall person and vice versa. Everyone in the room is a kind person. Someone who is not a kind person is quieter than someone who is tall. Ella is a quiet person. Ella is the oldest in the room. It is not the case that "someone outside the room is not a tall person". Joseph is not tall.
Joseph is quiet.
entailment
room(joseph)&room(ella)&room(ellen)&(![X]:(room(X)=>(X='joseph'|X='ella'|X='ellen')))& ((![X]:(~room(X)=>(~(tall(X)&person(X)))))<=>(![X]:(room(X)=>(old(X)&person(X)))))& ((old(joseph)&person(joseph))=>(quiet(joseph)&person(joseph)))& ((~((quiet(joseph)&person(joseph))|(old(joseph)&person(joseph))))=>(![X]:(room(X)=>(old(X)&person(X)))))& ((![X]:(room(X)=>(~old(X))))=>(quiet(ella)))& ((![X]:((old(X)&person(X))<=>(tall(X)&person(X)))))& (![X]:(room(X)=>(kind(X)&person(X))))& (?[X,Y]:((~(kind(X)&person(X)))&(tall(Y))&(quieter(X,Y))))& (quiet(ella)&person(ella))& (![X]:((room(X)&(X!=ella))=>older(X,ella)))& (~(?[X]:(~room(X)&(~(tall(X)&person(X))))))& (~tall(joseph))
room(joseph)&room(ella)&room(ellen)&(![X]:(room(X)=>(X='joseph'|X='ella'|X='ellen')))& quiet(joseph)
[ "p0", "p2", "p3", "p6", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 8659573784279779736521207 % SZS output start Proof for 8659573784279779736521207 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. (person(mary) & old(mary)) => (person(mary) & quiet(mary)) [input p2] 47. ~((person(mary) & old(mary)) | (person(mary) & quiet(mary))) => ! [X0] : (room(X0) => (person(X0) & old(X0))) [input p3] 50. ! [X0] : (room(X0) => (person(X0) & kind(X0))) [input p6] 54. ~? [X0] : (~(person(X0) & tall(X0)) & ~room(X0)) [input p10] 56. ~(quiet(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 130. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 130] 134. (person(mary) & quiet(mary)) | (~person(mary) | ~old(mary)) [ennf transformation 46] 135. (person(mary) & quiet(mary)) | ~person(mary) | ~old(mary) [flattening 134] 136. ! [X0] : ((person(X0) & old(X0)) | ~room(X0)) | ((person(mary) & old(mary)) | (person(mary) & quiet(mary))) [ennf transformation 47] 137. ! [X0] : ((person(X0) & old(X0)) | ~room(X0)) | (person(mary) & old(mary)) | (person(mary) & quiet(mary)) [flattening 136] 139. ! [X0] : ((person(X0) & kind(X0)) | ~room(X0)) [ennf transformation 50] 143. ! [X0] : ((person(X0) & tall(X0)) | room(X0)) [ennf transformation 54] 144. ~quiet(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 56] 145. ~quiet(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 144] 158. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 159. ~quiet(mary) | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 145,158] 240. room(mary) [cnf transformation 131] 241. room(paul) [cnf transformation 131] 242. room(fred) [cnf transformation 131] 243. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 131] 252. quiet(mary) | ~person(mary) | ~old(mary) [cnf transformation 135] 254. old(X0) | ~room(X0) | old(mary) | quiet(mary) [cnf transformation 137] 269. person(X0) | ~room(X0) [cnf transformation 139] 277. room(X0) | person(X0) [cnf transformation 143] 279. ~quiet(mary) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 280. ~quiet(mary) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 281. ~quiet(mary) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 282. ~quiet(mary) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 307. 6 <=> ! [X2] : (person(X2) | ~room(X2)) [avatar definition] 308. person(X2) | ~room(X2) <- (6) [avatar component clause 307] 321. 9 <=> ! [X2] : (old(X2) | ~room(X2)) [avatar definition] 322. ~room(X2) | old(X2) <- (9) [avatar component clause 321] 327. 10 <=> old(mary) [avatar definition] 331. 11 <=> person(mary) [avatar definition] 333. ~person(mary) <- (~11) [avatar component clause 331] 335. 12 <=> quiet(mary) [avatar definition] 338. ~10 | ~11 | 12 [avatar split clause 252,335,331,327] 346. 12 | 10 | 9 [avatar split clause 254,321,327,335] 361. 6 [avatar split clause 269,307] 372. ~quiet(mary) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 282,242] 373. ~quiet(mary) | fred != sK5 | ~room(mary) [subsumption resolution 372,241] 374. ~quiet(mary) | fred != sK5 [subsumption resolution 373,240] 376. 18 <=> fred = sK5 [avatar definition] 378. fred != sK5 <- (~18) [avatar component clause 376] 379. ~18 | ~12 [avatar split clause 374,335,376] 380. ~quiet(mary) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 281,242] 381. ~quiet(mary) | paul != sK5 | ~room(mary) [subsumption resolution 380,241] 382. ~quiet(mary) | paul != sK5 [subsumption resolution 381,240] 384. 19 <=> paul = sK5 [avatar definition] 386. paul != sK5 <- (~19) [avatar component clause 384] 387. ~19 | ~12 [avatar split clause 382,335,384] 388. ~quiet(mary) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 280,242] 389. ~quiet(mary) | mary != sK5 | ~room(mary) [subsumption resolution 388,241] 390. ~quiet(mary) | mary != sK5 [subsumption resolution 389,240] 392. 20 <=> mary = sK5 [avatar definition] 394. mary != sK5 <- (~20) [avatar component clause 392] 395. ~20 | ~12 [avatar split clause 390,335,392] 396. ~quiet(mary) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 279,242] 397. ~quiet(mary) | room(sK5) | ~room(mary) [subsumption resolution 396,241] 398. ~quiet(mary) | room(sK5) [subsumption resolution 397,240] 400. 21 <=> room(sK5) [avatar definition] 402. room(sK5) <- (21) [avatar component clause 400] 403. 21 | ~12 [avatar split clause 398,335,400] 404. person(X2) <- (6) [subsumption resolution 308,277] 417. old(mary) <- (9) [resolution 322,240] 425. 10 | ~9 [avatar split clause 417,321,327] 428. $false <- (6, ~11) [subsumption resolution 333,404] 429. ~6 | 11 [avatar contradiction clause 428] 575. paul = sK5 | mary = sK5 | fred = sK5 <- (21) [resolution 243,402] 589. mary = sK5 | fred = sK5 <- (~19, 21) [subsumption resolution 575,386] 590. fred = sK5 <- (~19, ~20, 21) [subsumption resolution 589,394] 591. $false <- (~18, ~19, ~20, 21) [subsumption resolution 590,378] 592. 18 | 19 | 20 | ~21 [avatar contradiction clause 591] 593. $false [avatar sat refutation 338,346,361,379,387,395,403,425,429,592] % SZS output end Proof for 8659573784279779736521207 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.291026
Larry, Linda are the only persons in the room. “Larry who is a certified scuba diver with advanced underwater photography skills practices and performs acrobatic dance routines” unless “everyone in the room does not own a smartwatch or enjoys stand-up paddleboarding”. “Everyone in the room who collects action figures hosts a YouTube channel dedicated to art tutorials or is an avid hiker or both” if “everyone anywhere does not know morse code or enjoys skydiving”. Everyone in the room who hosts a YouTube channel dedicated to art tutorials or is an avid hiker or both is a certified scuba diver with advanced underwater photography skills. Not everyone in the room who is a certified scuba diver with advanced underwater photography skills hosts a YouTube channel dedicated to art tutorials, enjoys origami and practices pilates. Someone in the room knows morse code. Everyone in the room who collects action figures hosts a YouTube channel dedicated to art tutorials or is an avid hiker or both. Everyone in the room does not enjoy writing detailed reviews of new and classic board games or develops open-source software projects in their free time. Everyone outside the room has completed a triathlon if they does not enjoy writing detailed reviews of new and classic board games. Everyone in the room who has completed a triathlon enjoys stand-up paddleboarding. Not everyone in the room who enjoys stand-up paddleboarding owns a 3D printer, is a certified scuba diver with advanced underwater photography skills and enjoys skydiving. Not everyone in the room volunteers for local environmental conservation projects. Larry who enjoys skydiving is not an avid hiker. Everyone outside the room owns a smartwatch if they does not enjoy macrame. Someone in the room collects action figures and collects foreign coins. Someone in the room is a certified scuba diver with advanced underwater photography skills. Everyone in the room who enjoys stand-up paddleboarding does not practice and performs acrobatic dance routines and enjoys origami. Linda who enjoys skydiving enjoys origami. Someone in the room does not read mystery novels. Everyone in the room has completed a triathlon if they mentors a youth basketball team on weekends, practices pilates and hosts a YouTube channel dedicated to art tutorials. Everyone anywhere who owns a 3D printer volunteers for local environmental conservation projects. Everyone in the room does not own a 3D printer or volunteers for local environmental conservation projects. Someone in the room does not own a 3D printer.
Larry enjoys skydiving.
entailment
room(larry)&room(linda)&(![X]:(room(X)=>(X='larry'|X='linda')))& (~(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_own_a_smartwatch(X))))))=>((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(larry))&(practices_and_performs_acrobatic_dance_routines(larry))))& ((![X]:(anywhere(X)=>(((enjoys_skydiving(X))|(does_not_know_morse_code(X))))))=>(![X]:(room(X)=>(((collects_action_figures(X))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_an_avid_hiker(X)))))))))& (![X]:(room(X)=>(((((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_an_avid_hiker(X))))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (~![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))&(enjoys_origami(X))&(practices_pilates(X))))))))& (?[X]:(room(X)&(knows_morse_code(X))))& (![X]:(room(X)=>(((collects_action_figures(X))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_an_avid_hiker(X))))))))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(enjoys_stand-up_paddleboarding(X))))))& (~![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(((owns_a_3D_printer(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(enjoys_skydiving(X))))))))& (~![X]:(room(X)=>(volunteers_for_local_environmental_conservation_projects(X))))& ((enjoys_skydiving(larry))&(is_not_an_avid_hiker(larry)))& (![X]:(~room(X)=>(((does_not_enjoy_macrame(X))=>(owns_a_smartwatch(X))))))& (?[X]:(room(X)&(((collects_action_figures(X))&(collects_foreign_coins(X))))))& (?[X]:(room(X)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))&(enjoys_origami(X))))))))& ((enjoys_skydiving(linda))&(enjoys_origami(linda)))& (?[X]:(room(X)&(does_not_read_mystery_novels(X))))& (![X]:(room(X)=>(((((mentors_a_youth_basketball_team_on_weekends(X))&(practices_pilates(X))&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(has_completed_a_triathlon(X))))))& (![X]:(anywhere(X)=>(((owns_a_3D_printer(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))|(does_not_own_a_3D_printer(X))))))& (?[X]:(room(X)&(does_not_own_a_3D_printer(X))))
room(larry)&room(linda)&(![X]:(room(X)=>(X='larry'|X='linda')))& enjoys_skydiving(larry)
[ "p0", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 8673549737776689461770930 % SZS output start Proof for 8673549737776689461770930 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 56. ~predx(mary) & preds(mary) [input p12] 67. ~(preds(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 94. preds(mary) [pure predicate removal 56] 168. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 169. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 168] 173. ~preds(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 67] 174. ~preds(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 173] 192. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 193. ~preds(mary) | (paul != sK8 & mary != sK8 & room(sK8)) | ~room(paul) | ~room(mary) [skolemisation 174,192] 274. room(mary) [cnf transformation 169] 275. room(paul) [cnf transformation 169] 276. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 169] 281. preds(mary) [cnf transformation 94] 287. ~preds(mary) | room(sK8) | ~room(paul) | ~room(mary) [cnf transformation 193] 288. ~preds(mary) | mary != sK8 | ~room(paul) | ~room(mary) [cnf transformation 193] 289. ~preds(mary) | paul != sK8 | ~room(paul) | ~room(mary) [cnf transformation 193] 290. paul != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 289,281] 291. paul != sK8 | ~room(mary) [subsumption resolution 290,275] 292. paul != sK8 [subsumption resolution 291,274] 293. mary != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 288,281] 294. mary != sK8 | ~room(mary) [subsumption resolution 293,275] 295. mary != sK8 [subsumption resolution 294,274] 296. room(sK8) | ~room(paul) | ~room(mary) [subsumption resolution 287,281] 297. room(sK8) | ~room(mary) [subsumption resolution 296,275] 298. room(sK8) [subsumption resolution 297,274] 309. mary = sK8 | paul = sK8 [resolution 276,298] 382. paul = sK8 [subsumption resolution 309,295] 383. $false [subsumption resolution 382,292] % SZS output end Proof for 8673549737776689461770930 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.205247
Joseph is the only person in the room. Joseph hosts regular workshops on creative writing unless Joseph is a drone photographer. Joseph collects historical artifacts related to ancient civilizations only if everyone in the room either enjoys windsurfing or uses an ios phone but not both only if they either owns an Android phone or can play the guitar but not both. Everyone in the room does not train for and competes in international triathlons or does not own an Android phone. If someone is a drone photographer then he/she owns an Android phone. Joseph is a drone photographer.
Joseph trains for and competes in international triathlons, writes in-depth travel guides for off-the-beaten-path destinations and makes homemade pastries.
contradiction
room(joseph)&(![X]:(room(X)=>(X='joseph')))& (~(is_a_drone_photographer(joseph))=>(hosts_regular_workshops_on_creative_writing(joseph)))& ((collects_historical_artifacts_related_to_ancient_civilizations(joseph))=>(![X]:(room(X)=>(((((owns_an_Android_phone(X))<~>(can_play_the_guitar(X))))<=(((enjoys_windsurfing(X))<~>(uses_an_ios_phone(X)))))))))& ((~?[X]:(~room(X)=>(((practices_digital_art(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(enjoys_salsa_dancing(X)))))))& (enjoys_skydiving(joseph))& (collects_historical_artifacts_related_to_ancient_civilizations(joseph))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))& (enjoys_windsurfing(joseph))& (![X]:(~room(X)=>(((can_play_the_guitar(X))=>(((enjoys_windsurfing(X))&(makes_homemade_pastries(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(practices_digital_art(X))))))& ((![X]:((is_a_drone_photographer(X))=>(owns_an_Android_phone(X)))))& (![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (((enjoys_windsurfing(joseph))<~>(uses_an_ios_phone(joseph))))& (![X]:(room(X)=>(((((is_a_drone_photographer(X))|(collects_modern_art(X))|(enjoys_salsa_dancing(X))))<=(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(((enjoys_windsurfing(X))<~>(uses_an_ios_phone(X)))&((enjoys_windsurfing(Y))<~>(uses_an_ios_phone(Y))))&(X!=Y))))& (is_a_drone_photographer(joseph))& (![X]:(anywhere(X)=>(((collects_modern_art(X))=>(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(practices_and_performs_acrobatic_dance_routines(X))))))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& ((trains_for_and_competes_in_international_triathlons(joseph))&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(joseph))&(makes_homemade_pastries(joseph)))
[ "p0", "p6", "p10", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 1649299755891153255896918 % SZS output start Proof for 1649299755891153255896918 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (~prede(X0) | ~predy(X0))) [input p6] 54. ! [X0] : (predf(X0) => predy(X0)) [input p10] 59. predf(mary) [input p15] 63. predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 73. preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [pure predicate removal 63] 76. prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [pure predicate removal 73] 149. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 152. ! [X0] : ((~prede(X0) | ~predy(X0)) | ~room(X0)) [ennf transformation 50] 153. ! [X0] : (~prede(X0) | ~predy(X0) | ~room(X0)) [flattening 152] 156. ! [X0] : (predy(X0) | ~predf(X0)) [ennf transformation 54] 157. prede(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 76] 245. room(mary) [cnf transformation 149] 252. ~prede(X0) | ~predy(X0) | ~room(X0) [cnf transformation 153] 256. ~predf(X0) | predy(X0) [cnf transformation 156] 266. predf(mary) [cnf transformation 59] 269. prede(mary) [cnf transformation 157] 313. predy(mary) [resolution 256,266] 315. ~predy(mary) | ~room(mary) [resolution 252,269] 316. ~room(mary) [subsumption resolution 315,313] 317. $false [subsumption resolution 316,245] % SZS output end Proof for 1649299755891153255896918 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.074045
Jane, Beatriz, Patricia, Nancy, William are the only persons in the room. Either "everyone in the room uses an ios phone or is not a member of a local theater group specializing in improv" or "Beatriz has a vast collection of first-edition science fiction novels" but not both. Everyone outside the room who uses an ios phone has a saltwater aquarium. Jane neither uses an ios phone nor mentors a youth basketball team on weekends. Everyone in the room who collect rare sneakers has a vast collection of first-edition science fiction novels. Everyone in the room who is an avid hiker has a curated collection of mid-century modern furniture. Jane plays the violin. Everyone in the room who does enjoy trail running is a dedicated volunteer for local community service projects. Everyone in the room does enjoy trail running or does not play the violin.
Jane does enjoy trail running.
entailment
room(jane)&room(beatriz)&room(patricia)&room(nancy)&room(william)&(![X]:(room(X)=>(X='jane'|X='beatriz'|X='patricia'|X='nancy'|X='william')))& ((![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(uses_an_ios_phone(X))))))<~>(has_a_vast_collection_of_first-edition_science_fiction_novels(beatriz)))& (![X]:(~room(X)=>(((uses_an_ios_phone(X))=>(has_a_saltwater_aquarium(X))))))& (~((uses_an_ios_phone(jane))|(mentors_a_youth_basketball_team_on_weekends(jane))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (plays_the_violin(jane))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(has_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(practices_digital_art(X))))))& (?[X]:(room(X)&(can_play_the_piano(X))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(can_play_the_piano(X))))))& (is_a_client_of_Costco(beatriz))& (~![X]:(room(X)=>(((is_an_avid_hiker(X))=>(owns_a_smart_tv(X))))))& (~((does_enjoy_trail_running(patricia))|(practices_urban_gardening(patricia))))& (((?[X]:(room(X)&collect_rare_sneakers(X)))&(![X,Y]:((room(X)&room(Y)&(collect_rare_sneakers(X))&(collect_rare_sneakers(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_play_the_violin(X))|(does_enjoy_trail_running(X))))))
room(jane)&room(beatriz)&room(patricia)&room(nancy)&room(william)&(![X]:(room(X)=>(X='jane'|X='beatriz'|X='patricia'|X='nancy'|X='william')))& does_enjoy_trail_running(jane)
[ "p0", "p6", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 6695075477510653157532538 % SZS output start Proof for 6695075477510653157532538 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. predq(mary) [input p6] 60. ! [X0] : (room(X0) => (predt(X0) | ~predq(X0))) [input p16] 61. ~(predt(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 147. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147] 158. ! [X0] : ((predt(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 60] 159. ! [X0] : (predt(X0) | ~predq(X0) | ~room(X0)) [flattening 158] 160. ~predt(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 161. ~predt(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 160] 173. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 174. ~predt(mary) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 161,173] 255. room(mary) [cnf transformation 148] 256. room(paul) [cnf transformation 148] 257. room(fred) [cnf transformation 148] 258. room(alice) [cnf transformation 148] 259. room(john) [cnf transformation 148] 260. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 148] 267. predq(mary) [cnf transformation 50] 274. ~predq(X0) | predt(X0) | ~room(X0) [cnf transformation 159] 275. ~predt(mary) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 276. ~predt(mary) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 277. ~predt(mary) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 278. ~predt(mary) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 279. ~predt(mary) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 280. ~predt(mary) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 304. ~predt(mary) | john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,259] 305. ~predt(mary) | john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,258] 306. ~predt(mary) | john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 305,257] 307. ~predt(mary) | john != sK4 | ~room(mary) [subsumption resolution 306,256] 308. ~predt(mary) | john != sK4 [subsumption resolution 307,255] 310. 6 <=> john = sK4 [avatar definition] 312. john != sK4 <- (~6) [avatar component clause 310] 314. 7 <=> predt(mary) [avatar definition] 317. ~6 | ~7 [avatar split clause 308,314,310] 318. ~predt(mary) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,259] 319. ~predt(mary) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,258] 320. ~predt(mary) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 319,257] 321. ~predt(mary) | alice != sK4 | ~room(mary) [subsumption resolution 320,256] 322. ~predt(mary) | alice != sK4 [subsumption resolution 321,255] 324. 8 <=> alice = sK4 [avatar definition] 326. alice != sK4 <- (~8) [avatar component clause 324] 327. ~8 | ~7 [avatar split clause 322,314,324] 328. ~predt(mary) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,259] 329. ~predt(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,258] 330. ~predt(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 329,257] 331. ~predt(mary) | fred != sK4 | ~room(mary) [subsumption resolution 330,256] 332. ~predt(mary) | fred != sK4 [subsumption resolution 331,255] 334. 9 <=> fred = sK4 [avatar definition] 336. fred != sK4 <- (~9) [avatar component clause 334] 337. ~9 | ~7 [avatar split clause 332,314,334] 338. ~predt(mary) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,259] 339. ~predt(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,258] 340. ~predt(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 339,257] 341. ~predt(mary) | paul != sK4 | ~room(mary) [subsumption resolution 340,256] 342. ~predt(mary) | paul != sK4 [subsumption resolution 341,255] 344. 10 <=> paul = sK4 [avatar definition] 346. paul != sK4 <- (~10) [avatar component clause 344] 347. ~10 | ~7 [avatar split clause 342,314,344] 348. ~predt(mary) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 276,259] 349. ~predt(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 348,258] 350. ~predt(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 349,257] 351. ~predt(mary) | mary != sK4 | ~room(mary) [subsumption resolution 350,256] 352. ~predt(mary) | mary != sK4 [subsumption resolution 351,255] 354. 11 <=> mary = sK4 [avatar definition] 356. mary != sK4 <- (~11) [avatar component clause 354] 357. ~11 | ~7 [avatar split clause 352,314,354] 358. ~predt(mary) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 275,259] 359. ~predt(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 358,258] 360. ~predt(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 359,257] 361. ~predt(mary) | room(sK4) | ~room(mary) [subsumption resolution 360,256] 362. ~predt(mary) | room(sK4) [subsumption resolution 361,255] 364. 12 <=> room(sK4) [avatar definition] 366. room(sK4) <- (12) [avatar component clause 364] 367. 12 | ~7 [avatar split clause 362,314,364] 370. predt(mary) | ~room(mary) [resolution 274,267] 374. predt(mary) [subsumption resolution 370,255] 375. 7 [avatar split clause 374,314] 430. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (12) [resolution 260,366] 515. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (~8, 12) [subsumption resolution 430,326] 516. paul = sK4 | mary = sK4 | john = sK4 <- (~8, ~9, 12) [subsumption resolution 515,336] 517. mary = sK4 | john = sK4 <- (~8, ~9, ~10, 12) [subsumption resolution 516,346] 518. john = sK4 <- (~8, ~9, ~10, ~11, 12) [subsumption resolution 517,356] 519. $false <- (~6, ~8, ~9, ~10, ~11, 12) [subsumption resolution 518,312] 520. 6 | 8 | 9 | 10 | 11 | ~12 [avatar contradiction clause 519] 521. $false [avatar sat refutation 317,327,337,347,357,367,375,520] % SZS output end Proof for 6695075477510653157532538 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.584644
There is a room. More than one person in the room does not enjoy watercolor painting. Cody dreamt that “if someone collects limited-edition art prints from contemporary artists then he/she participates in citizen science projects related to wildlife monitoring”. Not everyone in the room who is a night owl does not work on fridays, does not enjoy snowboarding or does not enjoy origami. At least one person in the room does not enjoy origami, is not right-handed or owns a 3D printer. Everyone in the room does not create bespoke furniture pieces from reclaimed wood if they participates in citizen science projects related to wildlife monitoring. No one in the room does not enjoy windsurfing. Everyone in the room does not collect limited-edition art prints from contemporary artists if they does not own an Android phone. If someone does not enjoy snowboarding then he/she does not enjoy coding in Python. No one in the room is a night owl, is not a skilled home brewer experimenting with craft beer recipes and creates bespoke furniture pieces from reclaimed wood if they does not participate in citizen science projects related to wildlife monitoring, enjoys origami and maintains a personal blog focused on cybersecurity tips. At least one person anywhere does not own an Android phone. Not everyone in the room is right-handed.
Everyone in the room enjoys origami or does not enjoy origami.
entailment
(there_is_a_room)& ((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_watercolor_painting(X)&does_not_enjoy_watercolor_painting(Y))&(X!=Y))))& ((cody_dream=>((![X]:((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))))& (~![X]:(room(X)=>(((is_a_night_owl(X))=>(((does_not_work_on_fridays(X))|(does_not_enjoy_snowboarding(X))|(does_not_enjoy_origami(X))))))))& (((?[X]:(room(X)&((does_not_enjoy_origami(X))|(is_not_right-handed(X))|(owns_a_3D_printer(X)))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~?[X]:(room(X)=>(does_not_enjoy_windsurfing(X))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& ((![X]:((does_not_enjoy_snowboarding(X))=>(does_not_enjoy_coding_in_Python(X)))))& (~?[X]:(room(X)=>(((((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))&(enjoys_origami(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))=>(((is_a_night_owl(X))&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (((?[X]:(anywhere(X)&does_not_own_an_Android_phone(X)))))& (~![X]:(room(X)=>(is_right-handed(X))))& (((?[X]:(room(X)&is_not_a_night_owl(X)))))& ((![X]:((((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(practices_graffiti_art(X))))=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))& (![X]:(room(X)=>(does_not_own_an_Android_phone(X))))& (~![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(practices_graffiti_art(X))))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))=>(((does_not_own_a_3D_printer(X))&(does_not_have_a_tattoo(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(((does_not_enjoy_origami(X))|(enjoys_origami(X)))))
[ "p0", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 2951118183289989192445689 % SZS output start Proof for 2951118183289989192445689 44. there_is_a_room [input p0] 53. ~? [X0] : (room(X0) => ((predp(X0) & predm(X0) & ~predw(X0)) => (predz(X0) & ~predu(X0) & predr(X0)))) [input p9] 61. ~(! [X0] : (room(X0) => (predm(X0) | ~predm(X0))) & there_is_a_room) [input hypothesis] 70. ~? [X0] : (room(X0) => ((predp(X0) & predm(X0)) => (predz(X0) & ~predu(X0) & predr(X0)))) [pure predicate removal 53] 75. ~? [X0] : ((predp(X0) & predm(X0)) => (predz(X0) & ~predu(X0) & predr(X0))) [pure predicate removal 70] 80. ~(! [X0] : (predm(X0) | ~predm(X0)) & there_is_a_room) [pure predicate removal 61] 82. ~? [X0] : (predm(X0) => (predz(X0) & ~predu(X0) & predr(X0))) [pure predicate removal 75] 85. ~? [X0] : ~predm(X0) [pure predicate removal 82] 165. ! [X0] : predm(X0) [ennf transformation 85] 166. ? [X0] : (~predm(X0) & predm(X0)) | ~there_is_a_room [ennf transformation 80] 174. ? [X0] : (~predm(X0) & predm(X0)) => (~predm(sK4) & predm(sK4)) [choice axiom] 175. (~predm(sK4) & predm(sK4)) | ~there_is_a_room [skolemisation 166,174] 256. there_is_a_room [cnf transformation 44] 260. predm(X0) [cnf transformation 165] 263. ~predm(sK4) | ~there_is_a_room [cnf transformation 175] 264. ~there_is_a_room [subsumption resolution 263,260] 265. $false [subsumption resolution 264,256] % SZS output end Proof for 2951118183289989192445689 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.011234
Elbert, Anthony, Rufus, Robert are the only persons in the room. If “everyone in the room enjoys salsa dancing or does not host a popular podcast about emerging technologies” then “Elbert is a night owl” otherwise “everyone in the room is an active member of a local robotics club and hosts a popular podcast about emerging technologies if they enjoys salsa dancing”. “Rufus enjoys salsa dancing” only if “everyone in the room who bakes bread at home neither is a coffee connoisseur nor bakes bread at home”. Everyone in the room who uses contact lenses, is a cybersecurity expert or is a night owl is a coffee connoisseur. Rufus bakes bread at home. Elbert is a night owl. Rufus hosts a popular podcast about emerging technologies. Rufus is a cybersecurity expert. Everyone in the room enjoys salsa dancing or is not a night owl or both.
Elbert is an active member of a local robotics club.
entailment
room(elbert)&room(anthony)&room(rufus)&room(robert)&(![X]:(room(X)=>(X='elbert'|X='anthony'|X='rufus'|X='robert')))& ((~((has_a_pet_dog(rufus))|(does_not_enjoy_salsa_dancing(rufus))))=>(enjoys_salsa_dancing(anthony)))& ((is_not_a_night_owl(elbert))=>(![X]:(room(X)=>(((enjoys_spelunking(X))=>(enjoys_salsa_dancing(X)))))))& ((((bakes_bread_at_home(anthony))&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(anthony))&(is_not_an_active_member_of_a_local_robotics_club(anthony))))=>(enjoys_spelunking(rufus)))& ((![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))=>(~(participates_in_citizen_science_projects_related_to_wildlife_monitoring(elbert))))& (((![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(enjoys_salsa_dancing(X))))))=>(is_a_night_owl(elbert)))&((~(![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(enjoys_salsa_dancing(X)))))))=>(![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(((is_an_active_member_of_a_local_robotics_club(X))&(hosts_a_popular_podcast_about_emerging_technologies(X))))))))))& ((![X]:(anywhere(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_enjoy_spelunking(X))))))=>(![X]:(anywhere(X)=>(((enjoys_salsa_dancing(X))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))))& (~(bakes_bread_at_home(elbert))=>(![X]:(room(X)=>(((is_not_a_night_owl(X))|(is_not_an_active_member_of_a_local_robotics_club(X)))))))& ((enjoys_salsa_dancing(rufus))=>(![X]:(room(X)=>(((bakes_bread_at_home(X))=>(~((is_a_coffee_connoisseur(X))|(bakes_bread_at_home(X)))))))))& ((![X]:(room(X)=>(((is_a_night_owl(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))=>(![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(((is_an_active_member_of_a_local_robotics_club(X))&(is_a_cybersecurity_expert(X))&(enjoys_spelunking(X)))))))))& ((is_a_cybersecurity_expert(rufus))=>(![X]:(room(X)=>(((((uses_contact_lenses(X))|(is_a_cybersecurity_expert(X))|(is_a_night_owl(X))))=>(is_a_coffee_connoisseur(X)))))))& ((uses_contact_lenses(elbert))<=>(![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(uses_contact_lenses(X)))))))& (![X]:(~room(X)=>(((uses_contact_lenses(X))=>(has_a_pet_dog(X))))))& (bakes_bread_at_home(anthony))& (![X]:(room(X)=>(((((uses_contact_lenses(X))|(is_a_cybersecurity_expert(X))|(is_a_night_owl(X))))=>(is_a_coffee_connoisseur(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(is_a_night_owl(X))))))& (bakes_bread_at_home(rufus))& (is_a_night_owl(elbert))& (has_a_pet_dog(rufus))& (hosts_a_popular_podcast_about_emerging_technologies(rufus))& (is_a_cybersecurity_expert(rufus))& (is_an_active_member_of_a_local_robotics_club(anthony))& (![X]:(room(X)=>(((uses_contact_lenses(X))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))|(is_not_a_night_owl(X))))))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(anthony))& (((?[X]:(~room(X)&is_a_coffee_connoisseur(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_a_coffee_connoisseur(X))&(is_a_coffee_connoisseur(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))
room(elbert)&room(anthony)&room(rufus)&room(robert)&(![X]:(room(X)=>(X='elbert'|X='anthony'|X='rufus'|X='robert')))& is_an_active_member_of_a_local_robotics_club(elbert)
[ "p0", "p5", "p8", "p14", "p16", "p17", "p19", "p20", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 2766505018964303649983113 % SZS output start Proof for 2766505018964303649983113 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. (~! [X0] : (room(X0) => (predf(X0) | ~predg(X0))) => ! [X0] : (room(X0) => (predf(X0) => (predg(X0) & predd(X0))))) & (! [X0] : (room(X0) => (predf(X0) | ~predg(X0))) => predk(mary)) [input p5] 52. predf(fred) => ! [X0] : (room(X0) => (predb(X0) => ~(predb(X0) | predc(X0)))) [input p8] 58. ! [X0] : (room(X0) => ((predk(X0) | preda(X0) | predi(X0)) => predc(X0))) [input p14] 60. predb(fred) [input p16] 61. predk(mary) [input p17] 63. predg(fred) [input p19] 64. preda(fred) [input p20] 67. ! [X0] : (room(X0) => (~predk(X0) | predf(X0))) [input p23] 71. ~(predd(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 72. (~! [X0] : (room(X0) => (predf(X0) | ~predg(X0))) => ! [X1] : (room(X1) => (predf(X1) => (predg(X1) & predd(X1))))) & (! [X2] : (room(X2) => (predf(X2) | ~predg(X2))) => predk(mary)) [rectify 49] 150. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 150] 158. (! [X1] : (((predg(X1) & predd(X1)) | ~predf(X1)) | ~room(X1)) | ! [X0] : ((predf(X0) | ~predg(X0)) | ~room(X0))) & (predk(mary) | ? [X2] : ((~predf(X2) & predg(X2)) & room(X2))) [ennf transformation 72] 159. (! [X1] : ((predg(X1) & predd(X1)) | ~predf(X1) | ~room(X1)) | ! [X0] : (predf(X0) | ~predg(X0) | ~room(X0))) & (predk(mary) | ? [X2] : (~predf(X2) & predg(X2) & room(X2))) [flattening 158] 164. ! [X0] : (((~predb(X0) & ~predc(X0)) | ~predb(X0)) | ~room(X0)) | ~predf(fred) [ennf transformation 52] 165. ! [X0] : ((~predb(X0) & ~predc(X0)) | ~predb(X0) | ~room(X0)) | ~predf(fred) [flattening 164] 172. ! [X0] : ((predc(X0) | (~predk(X0) & ~preda(X0) & ~predi(X0))) | ~room(X0)) [ennf transformation 58] 173. ! [X0] : (predc(X0) | (~predk(X0) & ~preda(X0) & ~predi(X0)) | ~room(X0)) [flattening 172] 178. ! [X0] : ((~predk(X0) | predf(X0)) | ~room(X0)) [ennf transformation 67] 179. ! [X0] : (~predk(X0) | predf(X0) | ~room(X0)) [flattening 178] 184. ~predd(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 71] 185. ~predd(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 184] 191. (! [X0] : ((predg(X0) & predd(X0)) | ~predf(X0) | ~room(X0)) | ! [X1] : (predf(X1) | ~predg(X1) | ~room(X1))) & (predk(mary) | ? [X2] : (~predf(X2) & predg(X2) & room(X2))) [rectify 159] 192. ? [X2] : (~predf(X2) & predg(X2) & room(X2)) => (~predf(sK2) & predg(sK2) & room(sK2)) [choice axiom] 193. (! [X0] : ((predg(X0) & predd(X0)) | ~predf(X0) | ~room(X0)) | ! [X1] : (predf(X1) | ~predg(X1) | ~room(X1))) & (predk(mary) | (~predf(sK2) & predg(sK2) & room(sK2))) [skolemisation 191,192] 208. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 209. ~predd(mary) | (alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 185,208] 291. room(mary) [cnf transformation 151] 292. room(paul) [cnf transformation 151] 293. room(fred) [cnf transformation 151] 294. room(alice) [cnf transformation 151] 295. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 151] 304. predd(X0) | ~predf(X0) | ~room(X0) | predf(X1) | ~predg(X1) | ~room(X1) [cnf transformation 193] 313. ~predc(X0) | ~predb(X0) | ~room(X0) | ~predf(fred) [cnf transformation 165] 330. predc(X0) | ~preda(X0) | ~room(X0) [cnf transformation 173] 333. predb(fred) [cnf transformation 60] 334. predk(mary) [cnf transformation 61] 335. predg(fred) [cnf transformation 63] 336. preda(fred) [cnf transformation 64] 339. ~predk(X0) | predf(X0) | ~room(X0) [cnf transformation 179] 345. ~predd(mary) | room(sK7) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209] 346. ~predd(mary) | mary != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209] 347. ~predd(mary) | paul != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209] 348. ~predd(mary) | fred != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209] 349. ~predd(mary) | alice != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209] 353. 1 <=> predk(mary) [avatar definition] 355. predk(mary) <- (1) [avatar component clause 353] 397. 11 <=> ! [X1] : (predf(X1) | ~room(X1) | ~predg(X1)) [avatar definition] 398. ~predg(X1) | ~room(X1) | predf(X1) <- (11) [avatar component clause 397] 404. 13 <=> ! [X0] : (predd(X0) | ~room(X0) | ~predf(X0)) [avatar definition] 405. ~predf(X0) | ~room(X0) | predd(X0) <- (13) [avatar component clause 404] 406. 11 | 13 [avatar split clause 304,404,397] 453. 23 <=> predf(fred) [avatar definition] 455. ~predf(fred) <- (~23) [avatar component clause 453] 461. 25 <=> ! [X0] : (~predc(X0) | ~room(X0) | ~predb(X0)) [avatar definition] 462. ~predc(X0) | ~room(X0) | ~predb(X0) <- (25) [avatar component clause 461] 463. ~23 | 25 [avatar split clause 313,461,453] 496. 33 <=> preda(fred) [avatar definition] 497. preda(fred) <- (33) [avatar component clause 496] 504. 35 <=> ! [X0] : (predc(X0) | ~room(X0) | ~preda(X0)) [avatar definition] 505. ~preda(X0) | ~room(X0) | predc(X0) <- (35) [avatar component clause 504] 536. 35 [avatar split clause 330,504] 538. 1 [avatar split clause 334,353] 539. 33 [avatar split clause 336,496] 542. ~predd(mary) | alice != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 349,294] 543. ~predd(mary) | alice != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 542,293] 544. ~predd(mary) | alice != sK7 | ~room(mary) [subsumption resolution 543,292] 545. ~predd(mary) | alice != sK7 [subsumption resolution 544,291] 547. 42 <=> alice = sK7 [avatar definition] 549. alice != sK7 <- (~42) [avatar component clause 547] 551. 43 <=> predd(mary) [avatar definition] 553. ~predd(mary) <- (~43) [avatar component clause 551] 554. ~42 | ~43 [avatar split clause 545,551,547] 555. ~predd(mary) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 348,294] 556. ~predd(mary) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 555,293] 557. ~predd(mary) | fred != sK7 | ~room(mary) [subsumption resolution 556,292] 558. ~predd(mary) | fred != sK7 [subsumption resolution 557,291] 560. 44 <=> fred = sK7 [avatar definition] 562. fred != sK7 <- (~44) [avatar component clause 560] 563. ~44 | ~43 [avatar split clause 558,551,560] 564. ~predd(mary) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 347,294] 565. ~predd(mary) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 564,293] 566. ~predd(mary) | paul != sK7 | ~room(mary) [subsumption resolution 565,292] 567. ~predd(mary) | paul != sK7 [subsumption resolution 566,291] 569. 45 <=> paul = sK7 [avatar definition] 571. paul != sK7 <- (~45) [avatar component clause 569] 572. ~45 | ~43 [avatar split clause 567,551,569] 573. ~predd(mary) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 346,294] 574. ~predd(mary) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 573,293] 575. ~predd(mary) | mary != sK7 | ~room(mary) [subsumption resolution 574,292] 576. ~predd(mary) | mary != sK7 [subsumption resolution 575,291] 578. 46 <=> mary = sK7 [avatar definition] 580. mary != sK7 <- (~46) [avatar component clause 578] 581. ~46 | ~43 [avatar split clause 576,551,578] 582. ~predd(mary) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 345,294] 583. ~predd(mary) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 582,293] 584. ~predd(mary) | room(sK7) | ~room(mary) [subsumption resolution 583,292] 585. ~predd(mary) | room(sK7) [subsumption resolution 584,291] 587. 47 <=> room(sK7) [avatar definition] 589. room(sK7) <- (47) [avatar component clause 587] 590. 47 | ~43 [avatar split clause 585,551,587] 593. predf(mary) | ~room(mary) <- (1) [resolution 339,355] 594. predf(mary) <- (1) [subsumption resolution 593,291] 597. ~room(fred) | predf(fred) <- (11) [resolution 398,335] 599. predf(fred) <- (11) [subsumption resolution 597,293] 600. $false <- (11, ~23) [subsumption resolution 599,455] 601. ~11 | 23 [avatar contradiction clause 600] 607. ~room(mary) | predd(mary) <- (1, 13) [resolution 405,594] 609. predd(mary) <- (1, 13) [subsumption resolution 607,291] 610. $false <- (1, 13, ~43) [subsumption resolution 609,553] 611. ~1 | ~13 | 43 [avatar contradiction clause 610] 629. ~room(fred) | predc(fred) <- (33, 35) [resolution 505,497] 630. predc(fred) <- (33, 35) [subsumption resolution 629,293] 636. ~room(fred) | ~predb(fred) <- (25, 33, 35) [resolution 630,462] 637. ~predb(fred) <- (25, 33, 35) [subsumption resolution 636,293] 638. $false <- (25, 33, 35) [subsumption resolution 637,333] 639. ~25 | ~33 | ~35 [avatar contradiction clause 638] 836. fred = sK7 | paul = sK7 | mary = sK7 | alice = sK7 <- (47) [resolution 295,589] 854. paul = sK7 | mary = sK7 | alice = sK7 <- (~44, 47) [subsumption resolution 836,562] 855. mary = sK7 | alice = sK7 <- (~44, ~45, 47) [subsumption resolution 854,571] 856. alice = sK7 <- (~44, ~45, ~46, 47) [subsumption resolution 855,580] 857. $false <- (~42, ~44, ~45, ~46, 47) [subsumption resolution 856,549] 858. 42 | 44 | 45 | 46 | ~47 [avatar contradiction clause 857] 859. $false [avatar sat refutation 406,463,536,538,539,554,563,572,581,590,601,611,639,858] % SZS output end Proof for 2766505018964303649983113 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.073502
David, Jessica, Amanda, Allen, Paul are the only persons in the room. If “everyone in the room owns an extensive assortment of vintage comic book memorabilia” then “everyone in the room mentors a youth basketball team on weekends if they owns a smartwatch”. If “Allen mentors a youth basketball team on weekends” then “Jessica either works as a freelance web developer specializing in e-commerce sites or owns a smartwatch but not both”. David does not mentor a youth basketball team on weekends. If someone does not own a smartwatch then he/she mentors a youth basketball team on weekends and vice versa. It is not the case that “David either owns a smartwatch or develops open-source software projects in their free time but not both”.
David develops open-source software projects in their free time.
entailment
room(david)&room(jessica)&room(amanda)&room(allen)&room(paul)&(![X]:(room(X)=>(X='david'|X='jessica'|X='amanda'|X='allen'|X='paul')))& ((![X]:(room(X)=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(![X]:(room(X)=>(((owns_a_smartwatch(X))=>(mentors_a_youth_basketball_team_on_weekends(X)))))))& ((mentors_a_youth_basketball_team_on_weekends(allen))=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(jessica))<~>(owns_a_smartwatch(jessica)))))& (![X]:(~room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (does_not_mentor_a_youth_basketball_team_on_weekends(david))& (![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& ((![X]:((does_not_own_a_smartwatch(X))<=>(mentors_a_youth_basketball_team_on_weekends(X)))))& (~(((owns_a_smartwatch(david))<~>(develops_open-source_software_projects_in_their_free_time(david)))))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(david))& (((?[X]:(~room(X)&works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))
room(david)&room(jessica)&room(amanda)&room(allen)&room(paul)&(![X]:(room(X)=>(X='david'|X='jessica'|X='amanda'|X='allen'|X='paul')))& develops_open-source_software_projects_in_their_free_time(david)
[ "p0", "p4", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 5998922140058997105395675 % SZS output start Proof for 5998922140058997105395675 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ~preda(mary) [input p4] 51. ! [X0] : (~predc(X0) <=> preda(X0)) [input p7] 52. ~(predc(mary) <~> prede(mary)) [input p8] 55. ~(prede(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 129. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 130. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 129] 140. predc(mary) <=> prede(mary) [ennf transformation 52] 141. ~prede(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 55] 142. ~prede(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 141] 148. ! [X0] : ((~predc(X0) | ~preda(X0)) & (preda(X0) | predc(X0))) [nnf transformation 51] 149. (predc(mary) | ~prede(mary)) & (prede(mary) | ~predc(mary)) [nnf transformation 140] 152. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 153. ~prede(mary) | (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 142,152] 234. room(mary) [cnf transformation 130] 235. room(paul) [cnf transformation 130] 236. room(fred) [cnf transformation 130] 237. room(alice) [cnf transformation 130] 238. room(john) [cnf transformation 130] 239. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 130] 245. ~preda(mary) [cnf transformation 48] 248. preda(X0) | predc(X0) [cnf transformation 148] 250. prede(mary) | ~predc(mary) [cnf transformation 149] 255. ~prede(mary) | room(sK2) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153] 256. ~prede(mary) | mary != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153] 257. ~prede(mary) | paul != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153] 258. ~prede(mary) | fred != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153] 259. ~prede(mary) | alice != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153] 260. ~prede(mary) | john != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153] 289. 7 <=> prede(mary) [avatar definition] 293. 8 <=> predc(mary) [avatar definition] 297. ~8 | 7 [avatar split clause 250,289,293] 298. ~prede(mary) | john != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,238] 299. ~prede(mary) | john != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,237] 300. ~prede(mary) | john != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 299,236] 301. ~prede(mary) | john != sK2 | ~room(mary) [subsumption resolution 300,235] 302. ~prede(mary) | john != sK2 [subsumption resolution 301,234] 304. 9 <=> john = sK2 [avatar definition] 306. john != sK2 <- (~9) [avatar component clause 304] 307. ~9 | ~7 [avatar split clause 302,289,304] 308. ~prede(mary) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,238] 309. ~prede(mary) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 308,237] 310. ~prede(mary) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 309,236] 311. ~prede(mary) | alice != sK2 | ~room(mary) [subsumption resolution 310,235] 312. ~prede(mary) | alice != sK2 [subsumption resolution 311,234] 314. 10 <=> alice = sK2 [avatar definition] 316. alice != sK2 <- (~10) [avatar component clause 314] 317. ~10 | ~7 [avatar split clause 312,289,314] 318. ~prede(mary) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 258,238] 319. ~prede(mary) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,237] 320. ~prede(mary) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 319,236] 321. ~prede(mary) | fred != sK2 | ~room(mary) [subsumption resolution 320,235] 322. ~prede(mary) | fred != sK2 [subsumption resolution 321,234] 324. 11 <=> fred = sK2 [avatar definition] 326. fred != sK2 <- (~11) [avatar component clause 324] 327. ~11 | ~7 [avatar split clause 322,289,324] 328. ~prede(mary) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 257,238] 329. ~prede(mary) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,237] 330. ~prede(mary) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 329,236] 331. ~prede(mary) | paul != sK2 | ~room(mary) [subsumption resolution 330,235] 332. ~prede(mary) | paul != sK2 [subsumption resolution 331,234] 334. 12 <=> paul = sK2 [avatar definition] 336. paul != sK2 <- (~12) [avatar component clause 334] 337. ~12 | ~7 [avatar split clause 332,289,334] 338. ~prede(mary) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,238] 339. ~prede(mary) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,237] 340. ~prede(mary) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 339,236] 341. ~prede(mary) | mary != sK2 | ~room(mary) [subsumption resolution 340,235] 342. ~prede(mary) | mary != sK2 [subsumption resolution 341,234] 344. 13 <=> mary = sK2 [avatar definition] 346. mary != sK2 <- (~13) [avatar component clause 344] 347. ~13 | ~7 [avatar split clause 342,289,344] 348. ~prede(mary) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,238] 349. ~prede(mary) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 348,237] 350. ~prede(mary) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 349,236] 351. ~prede(mary) | room(sK2) | ~room(mary) [subsumption resolution 350,235] 352. ~prede(mary) | room(sK2) [subsumption resolution 351,234] 354. 14 <=> room(sK2) [avatar definition] 356. room(sK2) <- (14) [avatar component clause 354] 357. 14 | ~7 [avatar split clause 352,289,354] 359. predc(mary) [resolution 248,245] 363. 8 [avatar split clause 359,293] 466. alice = sK2 | fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (14) [resolution 239,356] 488. fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (~10, 14) [subsumption resolution 466,316] 489. paul = sK2 | mary = sK2 | john = sK2 <- (~10, ~11, 14) [subsumption resolution 488,326] 490. mary = sK2 | john = sK2 <- (~10, ~11, ~12, 14) [subsumption resolution 489,336] 491. john = sK2 <- (~10, ~11, ~12, ~13, 14) [subsumption resolution 490,346] 492. $false <- (~9, ~10, ~11, ~12, ~13, 14) [subsumption resolution 491,306] 493. 9 | 10 | 11 | 12 | 13 | ~14 [avatar contradiction clause 492] 494. $false [avatar sat refutation 297,307,317,327,337,347,357,363,493] % SZS output end Proof for 5998922140058997105395675 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.198346
There is a room. Everyone in the room collects antique jewelry and does not own a high-end gaming PC with custom-built components if and only if they enjoys kayaking. Everyone in the room is a wine connoisseur with a private cellar of vintage wines and does not collect antique jewelry if they is not a coffee connoisseur. No one in the room enjoys logic puzzles, does not practice digital art or does not enjoy stargazing. Everyone anywhere enjoys deep-sea diving and exploring underwater caves if they neither creates augmented reality experiences for mobile applications nor does not practice and performs acrobatic dance routines. Everyone in the room neither enjoys deep-sea diving and exploring underwater caves nor creates augmented reality experiences for mobile applications. Everyone in the room who does not practice tai chi does practice yoga. Everyone in the room does not enjoy kayaking if they either does practice yoga or practices tai chi but not both. Everyone in the room does not enjoy kayaking if and only if they neither collects antique jewelry nor collects historical artifacts related to ancient civilizations. Everyone in the room who neither collects antique jewelry nor collects historical artifacts related to ancient civilizations is a coffee connoisseur and practices and performs acrobatic dance routines.
Everyone in the room does practice yoga.
entailment
(there_is_a_room)& (![X]:(room(X)=>(((((collects_antique_jewelry(X))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))<=>(enjoys_kayaking(X))))))& (![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(does_not_collect_antique_jewelry(X))))))))& ((![X]:((collects_antique_jewelry(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(does_not_enjoy_spelunking(X))))))& (![X]:(room(X)=>(((does_not_enjoy_spelunking(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (~?[X]:(room(X)=>(((enjoys_logic_puzzles(X))|(does_not_practice_digital_art(X))|(does_not_enjoy_stargazing(X))))))& (![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(anywhere(X)=>(((~((creates_augmented_reality_experiences_for_mobile_applications(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(~((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))& ((![X]:((((is_not_an_active_member_of_a_local_robotics_club(X))&(does_not_enjoy_kayaking(X))))=>(has_completed_a_triathlon(X)))))& (![X]:(~room(X)=>(((does_not_enjoy_spelunking(X))=>(practices_tai_chi(X))))))& (![X]:(~room(X)=>(((practices_tai_chi(X))<=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))<~>(has_completed_a_triathlon(X))))))))& (~?[X]:(room(X)=>(((((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))<~>(has_completed_a_triathlon(X))))=>(~((creates_augmented_reality_experiences_for_mobile_applications(X))|(enjoys_stargazing(X))))))))& ((![X]:((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(does_not_practice_tai_chi(X))&(does_practice_yoga(X)))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(does_not_practice_tai_chi(X))))))& (![X]:(room(X)=>(((does_not_practice_tai_chi(X))=>(does_practice_yoga(X))))))& (~![X]:(anywhere(X)=>(((does_not_collect_antique_jewelry(X))&(is_an_active_member_of_a_local_robotics_club(X))&(collects_antique_jewelry(X))))))& (![X]:(room(X)=>(((((does_practice_yoga(X))<~>(practices_tai_chi(X))))=>(does_not_enjoy_kayaking(X))))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking(X))<=>(~((collects_antique_jewelry(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))))& (![X]:(room(X)=>(((~((collects_antique_jewelry(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(((is_a_coffee_connoisseur(X))&(practices_and_performs_acrobatic_dance_routines(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(does_practice_yoga(X)))
[ "b4", "p0", "p6", "p8", "p9", "p16", "p18", "p19", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 3260940229578271184554078 % SZS output start Proof for 3260940229578271184554078 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 50. ~? [X0] : (room(X0) => (~predt(X0) | ~preds(X0) | predg(X0))) [input p6] 52. ! [X0] : (anywhere(X0) => (~(~predo(X0) | predp(X0)) => predj(X0))) [input p8] 53. ! [X0] : (room(X0) => ~(predp(X0) | predj(X0))) [input p9] 60. ! [X0] : (room(X0) => (~predi(X0) => predc(X0))) [input p16] 62. ! [X0] : (room(X0) => ((predc(X0) <~> predi(X0)) => ~predu(X0))) [input p18] 63. ! [X0] : (room(X0) => (~predu(X0) <=> ~(predm(X0) | predn(X0)))) [input p19] 64. ! [X0] : (room(X0) => (~(predm(X0) | predn(X0)) => (predo(X0) & predk(X0)))) [input p20] 65. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 66. ~? [X0] : (room(X0) => (~preds(X0) | predg(X0))) [pure predicate removal 50] 68. ~? [X0] : (room(X0) => predg(X0)) [pure predicate removal 66] 69. ~? [X0] : ~room(X0) [pure predicate removal 68] 71. ! [X0] : (room(X0) => (~(predm(X0) | predn(X0)) => predo(X0))) [pure predicate removal 64] 148. ! [X0] : room(X0) [ennf transformation 69] 151. ! [X0] : ((predj(X0) | (~predo(X0) | predp(X0))) | ~anywhere(X0)) [ennf transformation 52] 152. ! [X0] : (predj(X0) | ~predo(X0) | predp(X0) | ~anywhere(X0)) [flattening 151] 153. ! [X0] : ((~predp(X0) & ~predj(X0)) | ~room(X0)) [ennf transformation 53] 163. ! [X0] : ((predc(X0) | predi(X0)) | ~room(X0)) [ennf transformation 60] 164. ! [X0] : (predc(X0) | predi(X0) | ~room(X0)) [flattening 163] 166. ! [X0] : ((~predu(X0) | (predc(X0) <=> predi(X0))) | ~room(X0)) [ennf transformation 62] 167. ! [X0] : (~predu(X0) | (predc(X0) <=> predi(X0)) | ~room(X0)) [flattening 166] 168. ! [X0] : ((~predu(X0) <=> (~predm(X0) & ~predn(X0))) | ~room(X0)) [ennf transformation 63] 169. ! [X0] : ((predo(X0) | (predm(X0) | predn(X0))) | ~room(X0)) [ennf transformation 71] 170. ! [X0] : (predo(X0) | predm(X0) | predn(X0) | ~room(X0)) [flattening 169] 171. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 65] 181. ! [X0] : (~predu(X0) | ((predc(X0) | ~predi(X0)) & (predi(X0) | ~predc(X0))) | ~room(X0)) [nnf transformation 167] 182. ! [X0] : (((~predu(X0) | (predm(X0) | predn(X0))) & ((~predm(X0) & ~predn(X0)) | predu(X0))) | ~room(X0)) [nnf transformation 168] 183. ! [X0] : (((~predu(X0) | predm(X0) | predn(X0)) & ((~predm(X0) & ~predn(X0)) | predu(X0))) | ~room(X0)) [flattening 182] 184. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK1) & room(sK1)) [choice axiom] 185. (~predc(sK1) & room(sK1)) | ~there_is_a_room [skolemisation 171,184] 186. anywhere(X0) [cnf transformation 5] 267. there_is_a_room [cnf transformation 44] 275. room(X0) [cnf transformation 148] 277. predj(X0) | ~predo(X0) | predp(X0) | ~anywhere(X0) [cnf transformation 152] 278. ~predj(X0) | ~room(X0) [cnf transformation 153] 279. ~predp(X0) | ~room(X0) [cnf transformation 153] 293. predc(X0) | predi(X0) | ~room(X0) [cnf transformation 164] 297. ~predu(X0) | predc(X0) | ~predi(X0) | ~room(X0) [cnf transformation 181] 298. ~predn(X0) | predu(X0) | ~room(X0) [cnf transformation 183] 299. ~predm(X0) | predu(X0) | ~room(X0) [cnf transformation 183] 301. predo(X0) | predm(X0) | predn(X0) | ~room(X0) [cnf transformation 170] 303. ~predc(sK1) | ~there_is_a_room [cnf transformation 185] 305. ~predo(X0) | predj(X0) | predp(X0) [subsumption resolution 277,186] 306. ~predp(X0) [subsumption resolution 279,275] 307. ~predj(X0) [subsumption resolution 278,275] 309. predc(X0) | predi(X0) [subsumption resolution 293,275] 310. ~predu(X0) | predc(X0) | ~predi(X0) [subsumption resolution 297,275] 311. ~predu(X0) | predc(X0) [subsumption resolution 310,309] 314. ~predm(X0) | predu(X0) [subsumption resolution 299,275] 315. ~predn(X0) | predu(X0) [subsumption resolution 298,275] 316. predo(X0) | predm(X0) | predn(X0) [subsumption resolution 301,275] 317. ~predc(sK1) [subsumption resolution 303,267] 327. 2 <=> predu(sK1) [avatar definition] 328. ~predu(sK1) <- (~2) [avatar component clause 327] 329. predu(sK1) <- (2) [avatar component clause 327] 334. predc(sK1) <- (2) [resolution 329,311] 337. $false <- (2) [subsumption resolution 334,317] 338. ~2 [avatar contradiction clause 337] 339. predm(X0) | predn(X0) | predj(X0) | predp(X0) [resolution 316,305] 340. predm(X0) | predn(X0) | predp(X0) [subsumption resolution 339,307] 341. predm(X0) | predn(X0) [subsumption resolution 340,306] 342. predn(X0) | predu(X0) [resolution 341,314] 343. predu(X0) [subsumption resolution 342,315] 348. $false <- (~2) [resolution 343,328] 349. 2 [avatar contradiction clause 348] 352. $false [avatar sat refutation 338,349] % SZS output end Proof for 3260940229578271184554078 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.436419
Jessie is the only person in the room. Everyone in the room who does not use contact lenses own a television. Everyone in the room own a television only if they writes a travel blog. Everyone in the room who writes a travel blog owns a significant collection of rare gemstones and minerals. Everyone anywhere enjoys stand-up paddleboarding if they owns a significant collection of rare gemstones and minerals. Everyone in the room is allergic to anything if they enjoys stand-up paddleboarding. Jessie who hosts themed dinner parties featuring gourmet home-cooked meals works on fridays. If someone is passionate about collecting and restoring classic cars then he/she own a television and vice versa. Jessie does not use contact lenses. Jessie hosts regular workshops on creative writing. Everyone in the room who uses contact lenses bakes bread at home. If someone collects rare and antique scientific instruments then he/she hosts regular workshops on creative writing and vice versa. Everyone in the room who collects antique clocks composes and performs experimental electronic music. Jessie works on fridays.
Jessie bakes bread at home.
neutral
room(jessie)&(![X]:(room(X)=>(X='jessie')))& (![X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(own_a_television(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))<=(own_a_television(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(anywhere(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(enjoys_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(is_allergic_to_anything(X))))))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(jessie))&(works_on_fridays(jessie)))& ((![X]:((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(own_a_television(X)))))& (does_not_use_contact_lenses(jessie))& (hosts_regular_workshops_on_creative_writing(jessie))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(bakes_bread_at_home(X))))))& ((![X]:((collects_rare_and_antique_scientific_instruments(X))<=>(hosts_regular_workshops_on_creative_writing(X)))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (works_on_fridays(jessie))
room(jessie)&(![X]:(room(X)=>(X='jessie')))& bakes_bread_at_home(jessie)
[]
null
0
There is a room. It is true that “everyone in the room who builds model airplanes does not enjoy kayaking”. Everyone in the room collects vintage vinyl records if they enjoys macrame and vice versa. Everyone outside the room who either enjoys kayaking or enjoys macrame but not both enjoys macrame. Everyone in the room who collects vintage vinyl records builds model airplanes. Everyone anywhere collects vintage vinyl records if they owns an Android phone. Someone in the room either enjoys macrame or builds model airplanes but not both. Everyone anywhere enjoys kayaking if they enjoys macrame. If someone owns an Android phone then he/she enjoys kayaking and vice versa. Everyone outside the room who enjoys kayaking owns an Android phone.
Everyone in the room enjoys macrame.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(does_not_enjoy_kayaking(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))<=>(enjoys_macrame(X))))))& (![X]:(~room(X)=>(((((enjoys_kayaking(X))<~>(enjoys_macrame(X))))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(builds_model_airplanes(X))))))& (![X]:(anywhere(X)=>(((owns_an_Android_phone(X))=>(collects_vintage_vinyl_records(X))))))& (?[X]:(room(X)&(((enjoys_macrame(X))<~>(builds_model_airplanes(X))))))& (![X]:(anywhere(X)=>(((enjoys_macrame(X))=>(enjoys_kayaking(X))))))& ((![X]:((owns_an_Android_phone(X))<=>(enjoys_kayaking(X)))))& (![X]:(~room(X)=>(((enjoys_kayaking(X))=>(owns_an_Android_phone(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_macrame(X)))
[ "b4", "p4", "p5", "p6", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2250261645483706303543704 % SZS output start Proof for 2250261645483706303543704 5. ! [X0] : anywhere(X0) [input b4] 48. ! [X0] : (room(X0) => (predb(X0) => predd(X0))) [input p4] 49. ! [X0] : (anywhere(X0) => (prede(X0) => predb(X0))) [input p5] 50. ? [X0] : ((predc(X0) <~> predd(X0)) & room(X0)) [input p6] 51. ! [X0] : (anywhere(X0) => (predc(X0) => preda(X0))) [input p7] 52. ! [X0] : (prede(X0) <=> preda(X0)) [input p8] 54. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 55. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 54] 133. ! [X0] : ((predd(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 48] 134. ! [X0] : (predd(X0) | ~predb(X0) | ~room(X0)) [flattening 133] 135. ! [X0] : ((predb(X0) | ~prede(X0)) | ~anywhere(X0)) [ennf transformation 49] 136. ! [X0] : (predb(X0) | ~prede(X0) | ~anywhere(X0)) [flattening 135] 137. ! [X0] : ((preda(X0) | ~predc(X0)) | ~anywhere(X0)) [ennf transformation 51] 138. ! [X0] : (preda(X0) | ~predc(X0) | ~anywhere(X0)) [flattening 137] 141. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 55] 145. ? [X0] : (((~predd(X0) | ~predc(X0)) & (predd(X0) | predc(X0))) & room(X0)) [nnf transformation 50] 146. ? [X0] : ((~predd(X0) | ~predc(X0)) & (predd(X0) | predc(X0)) & room(X0)) [flattening 145] 147. ? [X0] : ((~predd(X0) | ~predc(X0)) & (predd(X0) | predc(X0)) & room(X0)) => ((~predd(sK0) | ~predc(sK0)) & (predd(sK0) | predc(sK0)) & room(sK0)) [choice axiom] 148. (~predd(sK0) | ~predc(sK0)) & (predd(sK0) | predc(sK0)) & room(sK0) [skolemisation 146,147] 149. ! [X0] : ((prede(X0) | ~preda(X0)) & (preda(X0) | ~prede(X0))) [nnf transformation 52] 150. anywhere(X0) [cnf transformation 5] 236. ~predb(X0) | predd(X0) | ~room(X0) [cnf transformation 134] 237. predb(X0) | ~prede(X0) | ~anywhere(X0) [cnf transformation 136] 238. room(sK0) [cnf transformation 148] 240. ~predd(sK0) | ~predc(sK0) [cnf transformation 148] 241. preda(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 138] 243. ~preda(X0) | prede(X0) [cnf transformation 149] 245. ~room(X0) | predc(X0) [cnf transformation 141] 247. ~prede(X0) | predb(X0) [subsumption resolution 237,150] 249. 1 <=> predc(sK0) [avatar definition] 250. predc(sK0) <- (1) [avatar component clause 249] 253. 2 <=> predd(sK0) [avatar definition] 255. ~predd(sK0) <- (~2) [avatar component clause 253] 256. ~1 | ~2 [avatar split clause 240,253,249] 258. ~predc(X0) | preda(X0) [subsumption resolution 241,150] 259. predc(sK0) [resolution 245,238] 262. 1 [avatar split clause 259,249] 263. preda(sK0) <- (1) [resolution 258,250] 265. prede(sK0) <- (1) [resolution 263,243] 266. predb(sK0) <- (1) [resolution 265,247] 270. predd(sK0) | ~room(sK0) <- (1) [resolution 236,266] 271. ~room(sK0) <- (1, ~2) [subsumption resolution 270,255] 272. $false <- (1, ~2) [subsumption resolution 271,238] 273. ~1 | 2 [avatar contradiction clause 272] 274. $false [avatar sat refutation 256,262,273] % SZS output end Proof for 2250261645483706303543704 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.213824
Dolores is the only person in the room. Dolores does not make homemade pastries. Everyone in the room makes homemade pastries or does not have completed a triathlon.
Dolores has completed a triathlon.
contradiction
room(dolores)&(![X]:(room(X)=>(X='dolores')))& (![X]:(room(X)=>(((((is_not_an_active_member_of_a_local_robotics_club(X))|(does_not_enjoy_cross-country_skiing(X))|(practices_zumba(X))))<=(practices_calligraphy(X))))))& (![X]:(room(X)=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<=(does_not_enjoy_cross-country_skiing(X))))))& (does_not_make_homemade_pastries(dolores))& (practices_calligraphy(dolores))& (((can_play_the_guitar(dolores))<~>(has_a_curated_collection_of_mid-century_modern_furniture(dolores))))& ((![X]:((writes_and_illustrates_their_own_graphic_novels(X))=>(((is_not_a_tea_enthusiast(X))<~>(practices_urban_gardening(X)))))))& ((![X]:((does_not_compose_and_performs_experimental_electronic_music(X))=>(has_lived_in_exactly_three_countries(X)))))& ((![X]:((has_lived_in_exactly_three_countries(X))<=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))))& (does_not_collect_luxury_watches(dolores))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))|(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(((practices_zumba(X))=>(owns_an_Android_phone(X))))))& ((~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(dolores))|(has_a_curated_collection_of_mid-century_modern_furniture(dolores))))&(does_not_collect_antique_jewelry(dolores)))& (writes_and_illustrates_their_own_graphic_novels(dolores))& (![X]:(anywhere(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (is_a_professional_photographer_specializing_in_portrait_photography(dolores))& (practices_kickboxing(dolores))
room(dolores)&(![X]:(room(X)=>(X='dolores')))& has_completed_a_triathlon(dolores)
[ "p0", "p4", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 5072704476160454234167169 % SZS output start Proof for 5072704476160454234167169 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. ~predf(mary) [input p4] 55. ! [X0] : (room(X0) => (predf(X0) | ~predz(X0))) [input p11] 62. predz(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 149. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 151. ! [X0] : ((predf(X0) | ~predz(X0)) | ~room(X0)) [ennf transformation 55] 152. ! [X0] : (predf(X0) | ~predz(X0) | ~room(X0)) [flattening 151] 154. predz(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 62] 238. room(mary) [cnf transformation 149] 240. ~predf(mary) [cnf transformation 48] 245. ~predz(X0) | predf(X0) | ~room(X0) [cnf transformation 152] 250. predz(mary) [cnf transformation 154] 263. predf(mary) | ~room(mary) [resolution 245,250] 264. ~room(mary) [subsumption resolution 263,240] 265. $false [subsumption resolution 264,238] % SZS output end Proof for 5072704476160454234167169 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.59399
Connie is the only person in the room. If “Connie likes Ronald” then “everyone in the room neither is a happy person nor can play the guitar”. “Everyone in the room cannot play the guitar or creates large-scale murals for public art installations” only if “if someone is happy or is tall or both then he/she can play the guitar”. It is true that “everyone anywhere cannot play the guitar if they is not tall and vice versa”. No one anywhere who is not liked by Agnes can play the guitar. Connie likes Ronald. Everyone in the room neither is a happy person nor can play the guitar. Someone who cannot play the guitar is richer than someone who collects foreign coins. Everyone in the room is not liked by Ronald only if they can play the guitar.
Connie can play the guitar.
contradiction
room(connie)&(![X]:(room(X)=>(X='connie')))& ((like(ronald,connie))=>(![X]:(room(X)=>(~((happy(X)&person(X))|(can_play_the_guitar(X)))))))& ((![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))|(cannot_play_the_guitar(X))))))=>((![X]:((((happy(X))|(tall(X))))=>(can_play_the_guitar(X))))))& (![X]:(anywhere(X)=>(((cannot_play_the_guitar(X))<=>(~tall(X))))))& (~?[X]:(anywhere(X)=>(((~like(X,agnes))=>(can_play_the_guitar(X))))))& (like(ronald,connie))& (![X]:(room(X)=>(~((happy(X)&person(X))|(can_play_the_guitar(X))))))& (?[X,Y]:((cannot_play_the_guitar(X))&(collects_foreign_coins(Y))&(richer(X,Y))))& (![X]:(room(X)=>(((can_play_the_guitar(X))<=(~like(X,ronald))))))
room(connie)&(![X]:(room(X)=>(X='connie')))& can_play_the_guitar(connie)
[ "p4", "hypothesis" ]
% SZS status Unsatisfiable for 3771297190140318874574231 % SZS output start Proof for 3771297190140318874574231 48. ~? [X0] : (anywhere(X0) => (~like(X0,alice) => predd(X0))) [input p4] 53. predd(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 135. ! [X0] : ((~predd(X0) & ~like(X0,alice)) & anywhere(X0)) [ennf transformation 48] 136. ! [X0] : (~predd(X0) & ~like(X0,alice) & anywhere(X0)) [flattening 135] 140. predd(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 53] 238. ~predd(X0) [cnf transformation 136] 246. predd(mary) [cnf transformation 140] 273. $false [subsumption resolution 246,238] % SZS output end Proof for 3771297190140318874574231 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0
There is a room. If “everyone outside the room does not practice urban gardening or composes and performs experimental electronic music” then “everyone anywhere composes and performs experimental electronic music if they enjoys stand-up paddleboarding”. If “everyone in the room does not enjoy skydiving or maintains a large, organic vegetable garden year-round” then “everyone in the room can play the piano or does not compose and performs experimental electronic music”. If “everyone in the room can play the piano or does not compose and performs experimental electronic music” then “everyone in the room enjoys stand-up paddleboarding if they collects rare and antique scientific instruments”. If “not everyone in the room does not collect vintage stamps or collects luxury watches” then “everyone in the room who is a cybersecurity expert or composes and performs experimental electronic music or both drives a hybrid car”. If “someone anywhere enjoys deep-sea diving and exploring underwater caves” then “everyone outside the room does not play video games or enjoys skydiving”. If “everyone outside the room does not play video games or enjoys skydiving” then “everyone in the room who uses a Windows laptop maintains a large, organic vegetable garden year-round”.
Everyone in the room enjoys stand-up paddleboarding.
contradiction
(there_is_a_room)& ((![X]:(~room(X)=>(((composes_and_performs_experimental_electronic_music(X))|(does_not_practice_urban_gardening(X))))))=>(![X]:(anywhere(X)=>(((enjoys_stand-up_paddleboarding(X))=>(composes_and_performs_experimental_electronic_music(X)))))))& (((![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_enjoy_skydiving(X))))))=>(![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(can_play_the_piano(X)))))))& ((![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(can_play_the_piano(X))))))=>(![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(enjoys_stand-up_paddleboarding(X))))))))& ((~![X]:(room(X)=>(((collects_luxury_watches(X))|(does_not_collect_vintage_stamps(X))))))=>(![X]:(room(X)=>(((((is_a_cybersecurity_expert(X))|(composes_and_performs_experimental_electronic_music(X))))=>(drives_a_hybrid_car(X)))))))& (((?[X]:(anywhere(X)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))=>(![X]:(~room(X)=>(((enjoys_skydiving(X))|(does_not_play_video_games(X)))))))& ((![X]:(~room(X)=>(((enjoys_skydiving(X))|(does_not_play_video_games(X))))))=>(![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))))& ((![X]:(room(X)=>(((does_not_collect_luxury_watches(X))|(plays_video_games(X))))))=>(~![X]:(anywhere(X)=>(((can_play_the_guitar(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X)))))))& ((![X]:(room(X)=>(((collects_vintage_stamps(X))|(cannot_play_the_piano(X))))))<=>(![X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_enjoy_stand-up_paddleboarding(X)))))))& ((?[X]:(anywhere(X)&(plays_video_games(X))))=>(((?[X]:(room(X)&composes_and_performs_experimental_electronic_music(X))))))& ((![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(enjoys_skydiving(X))))))=>((?[X,Y]:(room(X)&room(Y)&(enjoys_skydiving(X)&enjoys_skydiving(Y))&(X!=Y)))))& ((~(((?[X]:(room(X)&uses_a_Windows_laptop(X))))))=>(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(collects_luxury_watches(X)))))))& (((?[X]:(room(X)&collects_rare_and_antique_scientific_instruments(X)))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(((enjoys_windsurfing(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))))& (![X]:(room(X)=>(((((enjoys_windsurfing(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (~(?[X]:(room(X)&(practices_urban_gardening(X)))))& (~![X]:(room(X)=>(((collects_vintage_stamps(X))=>(enjoys_stand-up_paddleboarding(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_windsurfing(X)&enjoys_windsurfing(Y))&(X!=Y))))& (~![X]:(room(X)=>(((is_a_cybersecurity_expert(X))<=>(((can_play_the_piano(X))|(composes_and_performs_experimental_electronic_music(X))|(can_play_the_guitar(X))))))))& (![X]:(anywhere(X)=>(((((can_play_the_piano(X))|(composes_and_performs_experimental_electronic_music(X))|(can_play_the_guitar(X))))=>(collects_vintage_stamps(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(collects_luxury_watches(X))))))& (![X]:(anywhere(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(collects_luxury_watches(X))))))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(uses_a_Windows_laptop(X))))))& (~![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(enjoys_stand-up_paddleboarding(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_stand-up_paddleboarding(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7162997058654046464619606 % SZS output start Proof for 7162997058654046464619606 44. ! [X0] : (room(X0) => (predj(X0) => predc(X0))) & ~! [X0] : (room(X0) => (predk(X0) => predj(X0))) & ! [X0] : (room(X0) => (predp(X0) => predk(X0))) & ! [X0] : (anywhere(X0) => (preda(X0) => predp(X0))) & ! [X0] : (room(X0) => (predg(X0) => predp(X0))) & ! [X0] : (anywhere(X0) => ((predl(X0) | prede(X0) | predm(X0)) => predg(X0))) & ~! [X0] : (room(X0) => (predf(X0) <=> (predl(X0) | prede(X0) | predm(X0)))) & ? [X0,X1] : (X0 != X1 & predd(X1) & predd(X0) & room(X1) & room(X0)) & ~! [X0] : (room(X0) => (predg(X0) => predc(X0))) & ~? [X0] : (predb(X0) & room(X0)) & ! [X0] : (room(X0) => (predb(X0) => preda(X0))) & ! [X0] : (room(X0) => ((~predj(X0) & predj(X0) & predd(X0)) => predb(X0))) & ! [X0] : (room(X0) => (predb(X0) => (~predj(X0) & predj(X0) & predd(X0)))) & ? [X0] : (preda(X0) & room(X0)) & (~? [X0] : (predk(X0) & room(X0)) => ! [X0] : (room(X0) => (predo(X0) => predp(X0)))) & (! [X0] : (room(X0) => (predn(X0) | ~predf(X0))) => ? [X0,X1] : (X0 != X1 & predn(X1) & predn(X0) & room(X1) & room(X0))) & (? [X0] : (predi(X0) & anywhere(X0)) => ? [X0] : (prede(X0) & room(X0))) & (! [X0] : (room(X0) => (~predm(X0) | predg(X0))) <=> ! [X0] : (room(X0) => (~predc(X0) | predn(X0)))) & (! [X0] : (room(X0) => (predi(X0) | ~predp(X0))) => ~! [X0] : (anywhere(X0) => (predl(X0) => predo(X0)))) & (! [X0] : (~room(X0) => (~predi(X0) | predn(X0))) => ! [X0] : (room(X0) => (predk(X0) => predo(X0)))) & (? [X0] : (predj(X0) & anywhere(X0)) => ! [X0] : (~room(X0) => (~predi(X0) | predn(X0)))) & (~! [X0] : (room(X0) => (~predg(X0) | predp(X0))) => ! [X0] : (room(X0) => ((prede(X0) | predf(X0)) => predh(X0)))) & (! [X0] : (room(X0) => (predm(X0) | ~prede(X0))) => ! [X0] : (room(X0) => (preda(X0) => predc(X0)))) & (! [X0] : (room(X0) => (~predn(X0) | predo(X0))) => ! [X0] : (room(X0) => (predm(X0) | ~prede(X0)))) & (! [X0] : (~room(X0) => (~predb(X0) | prede(X0))) => ! [X0] : (anywhere(X0) => (predc(X0) => prede(X0)))) & there_is_a_room [input p0] 45. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 46. ! [X0] : (room(X0) => (predj(X0) => predc(X0))) & ~! [X1] : (room(X1) => (predk(X1) => predj(X1))) & ! [X2] : (room(X2) => (predp(X2) => predk(X2))) & ! [X3] : (anywhere(X3) => (preda(X3) => predp(X3))) & ! [X4] : (room(X4) => (predg(X4) => predp(X4))) & ! [X5] : (anywhere(X5) => ((predl(X5) | prede(X5) | predm(X5)) => predg(X5))) & ~! [X6] : (room(X6) => (predf(X6) <=> (predl(X6) | prede(X6) | predm(X6)))) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ~! [X9] : (room(X9) => (predg(X9) => predc(X9))) & ~? [X10] : (predb(X10) & room(X10)) & ! [X11] : (room(X11) => (predb(X11) => preda(X11))) & ! [X12] : (room(X12) => ((~predj(X12) & predj(X12) & predd(X12)) => predb(X12))) & ! [X13] : (room(X13) => (predb(X13) => (~predj(X13) & predj(X13) & predd(X13)))) & ? [X14] : (preda(X14) & room(X14)) & (~? [X15] : (predk(X15) & room(X15)) => ! [X16] : (room(X16) => (predo(X16) => predp(X16)))) & (! [X17] : (room(X17) => (predn(X17) | ~predf(X17))) => ? [X18,X19] : (X18 != X19 & predn(X19) & predn(X18) & room(X19) & room(X18))) & (? [X20] : (predi(X20) & anywhere(X20)) => ? [X21] : (prede(X21) & room(X21))) & (! [X22] : (room(X22) => (~predm(X22) | predg(X22))) <=> ! [X23] : (room(X23) => (~predc(X23) | predn(X23)))) & (! [X24] : (room(X24) => (predi(X24) | ~predp(X24))) => ~! [X25] : (anywhere(X25) => (predl(X25) => predo(X25)))) & (! [X26] : (~room(X26) => (~predi(X26) | predn(X26))) => ! [X27] : (room(X27) => (predk(X27) => predo(X27)))) & (? [X28] : (predj(X28) & anywhere(X28)) => ! [X29] : (~room(X29) => (~predi(X29) | predn(X29)))) & (~! [X30] : (room(X30) => (~predg(X30) | predp(X30))) => ! [X31] : (room(X31) => ((prede(X31) | predf(X31)) => predh(X31)))) & (! [X32] : (room(X32) => (predm(X32) | ~prede(X32))) => ! [X33] : (room(X33) => (preda(X33) => predc(X33)))) & (! [X34] : (room(X34) => (~predn(X34) | predo(X34))) => ! [X35] : (room(X35) => (predm(X35) | ~prede(X35)))) & (! [X36] : (~room(X36) => (~predb(X36) | prede(X36))) => ! [X37] : (anywhere(X37) => (predc(X37) => prede(X37)))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => (predj(X0) => predc(X0))) & ~! [X1] : (room(X1) => (predk(X1) => predj(X1))) & ! [X2] : (room(X2) => (predp(X2) => predk(X2))) & ! [X3] : (anywhere(X3) => (preda(X3) => predp(X3))) & ! [X4] : (room(X4) => (predg(X4) => predp(X4))) & ! [X5] : (anywhere(X5) => ((predl(X5) | prede(X5) | predm(X5)) => predg(X5))) & ~! [X6] : (room(X6) => (predf(X6) <=> (predl(X6) | prede(X6) | predm(X6)))) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ~! [X9] : (room(X9) => (predg(X9) => predc(X9))) & ~? [X10] : (predb(X10) & room(X10)) & ! [X11] : (room(X11) => (predb(X11) => preda(X11))) & ! [X12] : (room(X12) => ((~predj(X12) & predj(X12) & predd(X12)) => predb(X12))) & ! [X13] : (room(X13) => (predb(X13) => (~predj(X13) & predj(X13) & predd(X13)))) & ? [X14] : (preda(X14) & room(X14)) & (~? [X15] : (predk(X15) & room(X15)) => ! [X16] : (room(X16) => (predo(X16) => predp(X16)))) & (! [X17] : (room(X17) => (predn(X17) | ~predf(X17))) => ? [X18,X19] : (X18 != X19 & predn(X19) & predn(X18) & room(X19) & room(X18))) & (? [X20] : (predi(X20) & anywhere(X20)) => ? [X21] : (prede(X21) & room(X21))) & (! [X22] : (room(X22) => (~predm(X22) | predg(X22))) <=> ! [X23] : (room(X23) => (~predc(X23) | predn(X23)))) & (! [X24] : (room(X24) => (predi(X24) | ~predp(X24))) => ~! [X25] : (anywhere(X25) => (predl(X25) => predo(X25)))) & (! [X26] : (~room(X26) => (~predi(X26) | predn(X26))) => ! [X27] : (room(X27) => (predk(X27) => predo(X27)))) & (? [X28] : (predj(X28) & anywhere(X28)) => ! [X29] : (~room(X29) => (~predi(X29) | predn(X29)))) & (! [X32] : (room(X32) => (predm(X32) | ~prede(X32))) => ! [X33] : (room(X33) => (preda(X33) => predc(X33)))) & (! [X34] : (room(X34) => (~predn(X34) | predo(X34))) => ! [X35] : (room(X35) => (predm(X35) | ~prede(X35)))) & (! [X36] : (~room(X36) => (~predb(X36) | prede(X36))) => ! [X37] : (anywhere(X37) => (predc(X37) => prede(X37)))) & there_is_a_room [pure predicate removal 46] 48. ! [X0] : (room(X0) => (predj(X0) => predc(X0))) & ~! [X1] : (room(X1) => (predk(X1) => predj(X1))) & ! [X2] : (room(X2) => (predp(X2) => predk(X2))) & ! [X3] : (anywhere(X3) => (preda(X3) => predp(X3))) & ! [X4] : (room(X4) => (predg(X4) => predp(X4))) & ! [X5] : (anywhere(X5) => ((predl(X5) | prede(X5) | predm(X5)) => predg(X5))) & ~! [X6] : (room(X6) => (predf(X6) <=> (predl(X6) | prede(X6) | predm(X6)))) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ~! [X9] : (room(X9) => (predg(X9) => predc(X9))) & ~? [X10] : (predb(X10) & room(X10)) & ! [X11] : (room(X11) => (predb(X11) => preda(X11))) & ! [X12] : (room(X12) => ((~predj(X12) & predj(X12) & predd(X12)) => predb(X12))) & ! [X13] : (room(X13) => (predb(X13) => (~predj(X13) & predj(X13) & predd(X13)))) & ? [X14] : (preda(X14) & room(X14)) & (~? [X15] : (predk(X15) & room(X15)) => ! [X16] : (room(X16) => (predo(X16) => predp(X16)))) & (! [X17] : (room(X17) => (predn(X17) | ~predf(X17))) => ? [X18,X19] : (X18 != X19 & predn(X19) & predn(X18) & room(X19) & room(X18))) & (? [X20] : (predi(X20) & anywhere(X20)) => ? [X21] : (prede(X21) & room(X21))) & (! [X22] : (room(X22) => (~predm(X22) | predg(X22))) <=> ! [X23] : (room(X23) => (~predc(X23) | predn(X23)))) & (! [X24] : (room(X24) => (predi(X24) | ~predp(X24))) => ~! [X25] : (anywhere(X25) => (predl(X25) => predo(X25)))) & (! [X26] : (~room(X26) => (~predi(X26) | predn(X26))) => ! [X27] : (room(X27) => (predk(X27) => predo(X27)))) & (? [X28] : (predj(X28) & anywhere(X28)) => ! [X29] : (~room(X29) => (~predi(X29) | predn(X29)))) & (! [X32] : (room(X32) => (predm(X32) | ~prede(X32))) => ! [X33] : (room(X33) => (preda(X33) => predc(X33)))) & (! [X34] : (room(X34) => (~predn(X34) | predo(X34))) => ! [X35] : (room(X35) => (predm(X35) | ~prede(X35)))) & (! [X36] : (~room(X36) => (~predb(X36) | prede(X36))) => ! [X37] : (anywhere(X37) => (predc(X37) => prede(X37)))) [pure predicate removal 47] 49. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 45] 121. ! [X0] : ((predc(X0) | ~predj(X0)) | ~room(X0)) & ? [X1] : ((~predj(X1) & predk(X1)) & room(X1)) & ! [X2] : ((predk(X2) | ~predp(X2)) | ~room(X2)) & ! [X3] : ((predp(X3) | ~preda(X3)) | ~anywhere(X3)) & ! [X4] : ((predp(X4) | ~predg(X4)) | ~room(X4)) & ! [X5] : ((predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5))) | ~anywhere(X5)) & ? [X6] : ((predf(X6) <~> (predl(X6) | prede(X6) | predm(X6))) & room(X6)) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ? [X9] : ((~predc(X9) & predg(X9)) & room(X9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : ((preda(X11) | ~predb(X11)) | ~room(X11)) & ! [X12] : ((predb(X12) | (predj(X12) | ~predj(X12) | ~predd(X12))) | ~room(X12)) & ! [X13] : (((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13)) | ~room(X13)) & ? [X14] : (preda(X14) & room(X14)) & (! [X16] : ((predp(X16) | ~predo(X16)) | ~room(X16)) | ? [X15] : (predk(X15) & room(X15))) & (? [X18,X19] : (X18 != X19 & predn(X19) & predn(X18) & room(X19) & room(X18)) | ? [X17] : ((~predn(X17) & predf(X17)) & room(X17))) & (? [X21] : (prede(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~anywhere(X20))) & (! [X22] : ((~predm(X22) | predg(X22)) | ~room(X22)) <=> ! [X23] : ((~predc(X23) | predn(X23)) | ~room(X23))) & (? [X25] : ((~predo(X25) & predl(X25)) & anywhere(X25)) | ? [X24] : ((~predi(X24) & predp(X24)) & room(X24))) & (! [X27] : ((predo(X27) | ~predk(X27)) | ~room(X27)) | ? [X26] : ((predi(X26) & ~predn(X26)) & ~room(X26))) & (! [X29] : ((~predi(X29) | predn(X29)) | room(X29)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X33] : ((predc(X33) | ~preda(X33)) | ~room(X33)) | ? [X32] : ((~predm(X32) & prede(X32)) & room(X32))) & (! [X35] : ((predm(X35) | ~prede(X35)) | ~room(X35)) | ? [X34] : ((predn(X34) & ~predo(X34)) & room(X34))) & (! [X37] : ((prede(X37) | ~predc(X37)) | ~anywhere(X37)) | ? [X36] : ((predb(X36) & ~prede(X36)) & ~room(X36))) [ennf transformation 48] 122. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) & ? [X1] : (~predj(X1) & predk(X1) & room(X1)) & ! [X2] : (predk(X2) | ~predp(X2) | ~room(X2)) & ! [X3] : (predp(X3) | ~preda(X3) | ~anywhere(X3)) & ! [X4] : (predp(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5)) | ~anywhere(X5)) & ? [X6] : ((predf(X6) <~> (predl(X6) | prede(X6) | predm(X6))) & room(X6)) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ? [X9] : (~predc(X9) & predg(X9) & room(X9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : (preda(X11) | ~predb(X11) | ~room(X11)) & ! [X12] : (predb(X12) | predj(X12) | ~predj(X12) | ~predd(X12) | ~room(X12)) & ! [X13] : ((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13) | ~room(X13)) & ? [X14] : (preda(X14) & room(X14)) & (! [X16] : (predp(X16) | ~predo(X16) | ~room(X16)) | ? [X15] : (predk(X15) & room(X15))) & (? [X18,X19] : (X18 != X19 & predn(X19) & predn(X18) & room(X19) & room(X18)) | ? [X17] : (~predn(X17) & predf(X17) & room(X17))) & (? [X21] : (prede(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~anywhere(X20))) & (! [X22] : (~predm(X22) | predg(X22) | ~room(X22)) <=> ! [X23] : (~predc(X23) | predn(X23) | ~room(X23))) & (? [X25] : (~predo(X25) & predl(X25) & anywhere(X25)) | ? [X24] : (~predi(X24) & predp(X24) & room(X24))) & (! [X27] : (predo(X27) | ~predk(X27) | ~room(X27)) | ? [X26] : (predi(X26) & ~predn(X26) & ~room(X26))) & (! [X29] : (~predi(X29) | predn(X29) | room(X29)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X33] : (predc(X33) | ~preda(X33) | ~room(X33)) | ? [X32] : (~predm(X32) & prede(X32) & room(X32))) & (! [X35] : (predm(X35) | ~prede(X35) | ~room(X35)) | ? [X34] : (predn(X34) & ~predo(X34) & room(X34))) & (! [X37] : (prede(X37) | ~predc(X37) | ~anywhere(X37)) | ? [X36] : (predb(X36) & ~prede(X36) & ~room(X36))) [flattening 121] 123. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 49] 124. ? [X24] : (~predi(X24) & predp(X24) & room(X24)) | ~sP0 [predicate definition introduction] 125. ? [X18,X19] : (X18 != X19 & predn(X19) & predn(X18) & room(X19) & room(X18)) | ~sP1 [predicate definition introduction] 126. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) & ? [X1] : (~predj(X1) & predk(X1) & room(X1)) & ! [X2] : (predk(X2) | ~predp(X2) | ~room(X2)) & ! [X3] : (predp(X3) | ~preda(X3) | ~anywhere(X3)) & ! [X4] : (predp(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5)) | ~anywhere(X5)) & ? [X6] : ((predf(X6) <~> (predl(X6) | prede(X6) | predm(X6))) & room(X6)) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ? [X9] : (~predc(X9) & predg(X9) & room(X9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : (preda(X11) | ~predb(X11) | ~room(X11)) & ! [X12] : (predb(X12) | predj(X12) | ~predj(X12) | ~predd(X12) | ~room(X12)) & ! [X13] : ((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13) | ~room(X13)) & ? [X14] : (preda(X14) & room(X14)) & (! [X16] : (predp(X16) | ~predo(X16) | ~room(X16)) | ? [X15] : (predk(X15) & room(X15))) & (sP1 | ? [X17] : (~predn(X17) & predf(X17) & room(X17))) & (? [X21] : (prede(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~anywhere(X20))) & (! [X22] : (~predm(X22) | predg(X22) | ~room(X22)) <=> ! [X23] : (~predc(X23) | predn(X23) | ~room(X23))) & (? [X25] : (~predo(X25) & predl(X25) & anywhere(X25)) | sP0) & (! [X27] : (predo(X27) | ~predk(X27) | ~room(X27)) | ? [X26] : (predi(X26) & ~predn(X26) & ~room(X26))) & (! [X29] : (~predi(X29) | predn(X29) | room(X29)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X33] : (predc(X33) | ~preda(X33) | ~room(X33)) | ? [X32] : (~predm(X32) & prede(X32) & room(X32))) & (! [X35] : (predm(X35) | ~prede(X35) | ~room(X35)) | ? [X34] : (predn(X34) & ~predo(X34) & room(X34))) & (! [X37] : (prede(X37) | ~predc(X37) | ~anywhere(X37)) | ? [X36] : (predb(X36) & ~prede(X36) & ~room(X36))) [definition folding 122,125,124] 136. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) & ? [X1] : (~predj(X1) & predk(X1) & room(X1)) & ! [X2] : (predk(X2) | ~predp(X2) | ~room(X2)) & ! [X3] : (predp(X3) | ~preda(X3) | ~anywhere(X3)) & ! [X4] : (predp(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5)) | ~anywhere(X5)) & ? [X6] : ((((~predl(X6) & ~prede(X6) & ~predm(X6)) | ~predf(X6)) & ((predl(X6) | prede(X6) | predm(X6)) | predf(X6))) & room(X6)) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ? [X9] : (~predc(X9) & predg(X9) & room(X9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : (preda(X11) | ~predb(X11) | ~room(X11)) & ! [X12] : (predb(X12) | predj(X12) | ~predj(X12) | ~predd(X12) | ~room(X12)) & ! [X13] : ((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13) | ~room(X13)) & ? [X14] : (preda(X14) & room(X14)) & (! [X16] : (predp(X16) | ~predo(X16) | ~room(X16)) | ? [X15] : (predk(X15) & room(X15))) & (sP1 | ? [X17] : (~predn(X17) & predf(X17) & room(X17))) & (? [X21] : (prede(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~anywhere(X20))) & ((! [X22] : (~predm(X22) | predg(X22) | ~room(X22)) | ? [X23] : (predc(X23) & ~predn(X23) & room(X23))) & (! [X23] : (~predc(X23) | predn(X23) | ~room(X23)) | ? [X22] : (predm(X22) & ~predg(X22) & room(X22)))) & (? [X25] : (~predo(X25) & predl(X25) & anywhere(X25)) | sP0) & (! [X27] : (predo(X27) | ~predk(X27) | ~room(X27)) | ? [X26] : (predi(X26) & ~predn(X26) & ~room(X26))) & (! [X29] : (~predi(X29) | predn(X29) | room(X29)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X33] : (predc(X33) | ~preda(X33) | ~room(X33)) | ? [X32] : (~predm(X32) & prede(X32) & room(X32))) & (! [X35] : (predm(X35) | ~prede(X35) | ~room(X35)) | ? [X34] : (predn(X34) & ~predo(X34) & room(X34))) & (! [X37] : (prede(X37) | ~predc(X37) | ~anywhere(X37)) | ? [X36] : (predb(X36) & ~prede(X36) & ~room(X36))) [nnf transformation 126] 137. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) & ? [X1] : (~predj(X1) & predk(X1) & room(X1)) & ! [X2] : (predk(X2) | ~predp(X2) | ~room(X2)) & ! [X3] : (predp(X3) | ~preda(X3) | ~anywhere(X3)) & ! [X4] : (predp(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5)) | ~anywhere(X5)) & ? [X6] : (((~predl(X6) & ~prede(X6) & ~predm(X6)) | ~predf(X6)) & (predl(X6) | prede(X6) | predm(X6) | predf(X6)) & room(X6)) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ? [X9] : (~predc(X9) & predg(X9) & room(X9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : (preda(X11) | ~predb(X11) | ~room(X11)) & ! [X12] : (predb(X12) | predj(X12) | ~predj(X12) | ~predd(X12) | ~room(X12)) & ! [X13] : ((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13) | ~room(X13)) & ? [X14] : (preda(X14) & room(X14)) & (! [X16] : (predp(X16) | ~predo(X16) | ~room(X16)) | ? [X15] : (predk(X15) & room(X15))) & (sP1 | ? [X17] : (~predn(X17) & predf(X17) & room(X17))) & (? [X21] : (prede(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~anywhere(X20))) & (! [X22] : (~predm(X22) | predg(X22) | ~room(X22)) | ? [X23] : (predc(X23) & ~predn(X23) & room(X23))) & (! [X23] : (~predc(X23) | predn(X23) | ~room(X23)) | ? [X22] : (predm(X22) & ~predg(X22) & room(X22))) & (? [X25] : (~predo(X25) & predl(X25) & anywhere(X25)) | sP0) & (! [X27] : (predo(X27) | ~predk(X27) | ~room(X27)) | ? [X26] : (predi(X26) & ~predn(X26) & ~room(X26))) & (! [X29] : (~predi(X29) | predn(X29) | room(X29)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X33] : (predc(X33) | ~preda(X33) | ~room(X33)) | ? [X32] : (~predm(X32) & prede(X32) & room(X32))) & (! [X35] : (predm(X35) | ~prede(X35) | ~room(X35)) | ? [X34] : (predn(X34) & ~predo(X34) & room(X34))) & (! [X37] : (prede(X37) | ~predc(X37) | ~anywhere(X37)) | ? [X36] : (predb(X36) & ~prede(X36) & ~room(X36))) [flattening 136] 138. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) & ? [X1] : (~predj(X1) & predk(X1) & room(X1)) & ! [X2] : (predk(X2) | ~predp(X2) | ~room(X2)) & ! [X3] : (predp(X3) | ~preda(X3) | ~anywhere(X3)) & ! [X4] : (predp(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5)) | ~anywhere(X5)) & ? [X6] : (((~predl(X6) & ~prede(X6) & ~predm(X6)) | ~predf(X6)) & (predl(X6) | prede(X6) | predm(X6) | predf(X6)) & room(X6)) & ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) & ? [X9] : (~predc(X9) & predg(X9) & room(X9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : (preda(X11) | ~predb(X11) | ~room(X11)) & ! [X12] : (predb(X12) | predj(X12) | ~predj(X12) | ~predd(X12) | ~room(X12)) & ! [X13] : ((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13) | ~room(X13)) & ? [X14] : (preda(X14) & room(X14)) & (! [X15] : (predp(X15) | ~predo(X15) | ~room(X15)) | ? [X16] : (predk(X16) & room(X16))) & (sP1 | ? [X17] : (~predn(X17) & predf(X17) & room(X17))) & (? [X18] : (prede(X18) & room(X18)) | ! [X19] : (~predi(X19) | ~anywhere(X19))) & (! [X20] : (~predm(X20) | predg(X20) | ~room(X20)) | ? [X21] : (predc(X21) & ~predn(X21) & room(X21))) & (! [X22] : (~predc(X22) | predn(X22) | ~room(X22)) | ? [X23] : (predm(X23) & ~predg(X23) & room(X23))) & (? [X24] : (~predo(X24) & predl(X24) & anywhere(X24)) | sP0) & (! [X25] : (predo(X25) | ~predk(X25) | ~room(X25)) | ? [X26] : (predi(X26) & ~predn(X26) & ~room(X26))) & (! [X27] : (~predi(X27) | predn(X27) | room(X27)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X29] : (predc(X29) | ~preda(X29) | ~room(X29)) | ? [X30] : (~predm(X30) & prede(X30) & room(X30))) & (! [X31] : (predm(X31) | ~prede(X31) | ~room(X31)) | ? [X32] : (predn(X32) & ~predo(X32) & room(X32))) & (! [X33] : (prede(X33) | ~predc(X33) | ~anywhere(X33)) | ? [X34] : (predb(X34) & ~prede(X34) & ~room(X34))) [rectify 137] 139. ? [X1] : (~predj(X1) & predk(X1) & room(X1)) => (~predj(sK5) & predk(sK5) & room(sK5)) [choice axiom] 140. ? [X6] : (((~predl(X6) & ~prede(X6) & ~predm(X6)) | ~predf(X6)) & (predl(X6) | prede(X6) | predm(X6) | predf(X6)) & room(X6)) => (((~predl(sK6) & ~prede(sK6) & ~predm(sK6)) | ~predf(sK6)) & (predl(sK6) | prede(sK6) | predm(sK6) | predf(sK6)) & room(sK6)) [choice axiom] 141. ? [X7,X8] : (X7 != X8 & predd(X8) & predd(X7) & room(X8) & room(X7)) => (sK7 != sK8 & predd(sK8) & predd(sK7) & room(sK8) & room(sK7)) [choice axiom] 142. ? [X9] : (~predc(X9) & predg(X9) & room(X9)) => (~predc(sK9) & predg(sK9) & room(sK9)) [choice axiom] 143. ? [X14] : (preda(X14) & room(X14)) => (preda(sK10) & room(sK10)) [choice axiom] 144. ? [X16] : (predk(X16) & room(X16)) => (predk(sK11) & room(sK11)) [choice axiom] 145. ? [X17] : (~predn(X17) & predf(X17) & room(X17)) => (~predn(sK12) & predf(sK12) & room(sK12)) [choice axiom] 146. ? [X18] : (prede(X18) & room(X18)) => (prede(sK13) & room(sK13)) [choice axiom] 147. ? [X21] : (predc(X21) & ~predn(X21) & room(X21)) => (predc(sK14) & ~predn(sK14) & room(sK14)) [choice axiom] 148. ? [X23] : (predm(X23) & ~predg(X23) & room(X23)) => (predm(sK15) & ~predg(sK15) & room(sK15)) [choice axiom] 149. ? [X24] : (~predo(X24) & predl(X24) & anywhere(X24)) => (~predo(sK16) & predl(sK16) & anywhere(sK16)) [choice axiom] 150. ? [X26] : (predi(X26) & ~predn(X26) & ~room(X26)) => (predi(sK17) & ~predn(sK17) & ~room(sK17)) [choice axiom] 151. ? [X30] : (~predm(X30) & prede(X30) & room(X30)) => (~predm(sK18) & prede(sK18) & room(sK18)) [choice axiom] 152. ? [X32] : (predn(X32) & ~predo(X32) & room(X32)) => (predn(sK19) & ~predo(sK19) & room(sK19)) [choice axiom] 153. ? [X34] : (predb(X34) & ~prede(X34) & ~room(X34)) => (predb(sK20) & ~prede(sK20) & ~room(sK20)) [choice axiom] 154. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) & (~predj(sK5) & predk(sK5) & room(sK5)) & ! [X2] : (predk(X2) | ~predp(X2) | ~room(X2)) & ! [X3] : (predp(X3) | ~preda(X3) | ~anywhere(X3)) & ! [X4] : (predp(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | (~predl(X5) & ~prede(X5) & ~predm(X5)) | ~anywhere(X5)) & (((~predl(sK6) & ~prede(sK6) & ~predm(sK6)) | ~predf(sK6)) & (predl(sK6) | prede(sK6) | predm(sK6) | predf(sK6)) & room(sK6)) & (sK7 != sK8 & predd(sK8) & predd(sK7) & room(sK8) & room(sK7)) & (~predc(sK9) & predg(sK9) & room(sK9)) & ! [X10] : (~predb(X10) | ~room(X10)) & ! [X11] : (preda(X11) | ~predb(X11) | ~room(X11)) & ! [X12] : (predb(X12) | predj(X12) | ~predj(X12) | ~predd(X12) | ~room(X12)) & ! [X13] : ((~predj(X13) & predj(X13) & predd(X13)) | ~predb(X13) | ~room(X13)) & (preda(sK10) & room(sK10)) & (! [X15] : (predp(X15) | ~predo(X15) | ~room(X15)) | (predk(sK11) & room(sK11))) & (sP1 | (~predn(sK12) & predf(sK12) & room(sK12))) & ((prede(sK13) & room(sK13)) | ! [X19] : (~predi(X19) | ~anywhere(X19))) & (! [X20] : (~predm(X20) | predg(X20) | ~room(X20)) | (predc(sK14) & ~predn(sK14) & room(sK14))) & (! [X22] : (~predc(X22) | predn(X22) | ~room(X22)) | (predm(sK15) & ~predg(sK15) & room(sK15))) & ((~predo(sK16) & predl(sK16) & anywhere(sK16)) | sP0) & (! [X25] : (predo(X25) | ~predk(X25) | ~room(X25)) | (predi(sK17) & ~predn(sK17) & ~room(sK17))) & (! [X27] : (~predi(X27) | predn(X27) | room(X27)) | ! [X28] : (~predj(X28) | ~anywhere(X28))) & (! [X29] : (predc(X29) | ~preda(X29) | ~room(X29)) | (~predm(sK18) & prede(sK18) & room(sK18))) & (! [X31] : (predm(X31) | ~prede(X31) | ~room(X31)) | (predn(sK19) & ~predo(sK19) & room(sK19))) & (! [X33] : (prede(X33) | ~predc(X33) | ~anywhere(X33)) | (predb(sK20) & ~prede(sK20) & ~room(sK20))) [skolemisation 138,153,152,151,150,149,148,147,146,145,144,143,142,141,140,139] 281. room(sK9) [cnf transformation 154] 283. ~predc(sK9) [cnf transformation 154] 304. ~room(X0) | predc(X0) [cnf transformation 123] 540. predc(sK9) [resolution 304,281] 544. $false [subsumption resolution 540,283] % SZS output end Proof for 7162997058654046464619606 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.169612
Eugene is the only person in the room. “Not everyone in the room does not enjoy kayaking and exploring remote waterways only if they own a television” unless “Eugene does not collect foreign coins”.
It is not the case that “it is not the case that “Eugene has a curated collection of mid-century modern furniture””.
neutral
room(eugene)&(![X]:(room(X)=>(X='eugene')))& (~(does_not_collect_foreign_coins(eugene))=>(~![X]:(room(X)=>(((own_a_television(X))<=(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))))& (~(is_not_a_client_of_LVMH(eugene))=>((knows_morse_code(eugene))&(competes_in_national_level_swimming_championships(eugene))))& ((has_a_saltwater_aquarium(eugene))=>((eugene_dream=>(![X]:(room(X)=>(((((enjoys_spelunking(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))))& (((does_not_host_regular_workshops_on_creative_writing(eugene))=>(![X]:(room(X)=>(((knows_morse_code(X))=>(enjoys_making_ceramics(X)))))))&((~(does_not_host_regular_workshops_on_creative_writing(eugene)))=>(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(does_not_host_regular_workshops_on_creative_writing(X))))))))& ((~![X]:(anywhere(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))<~>(enjoys_kayaking_and_exploring_remote_waterways(eugene)))& ((((drives_a_hybrid_car(eugene))|(competes_in_national_level_swimming_championships(eugene))|(hosts_a_popular_podcast_about_emerging_technologies(eugene))))=>(knows_morse_code(eugene)))& ((((?[X]:(room(X)&is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))=>(~?[X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))&(own_a_television(X))))<=(drives_a_hybrid_car(X)))))))& (((hosts_regular_workshops_on_creative_writing(eugene))=>(![X]:(anywhere(X)=>(((is_not_a_client_of_LVMH(X))=>(((collects_foreign_coins(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X)))))))))&((~(hosts_regular_workshops_on_creative_writing(eugene)))=>(?[X]:(room(X)&(can_play_the_piano(X))))))& (![X]:(room(X)=>(((((collects_foreign_coins(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))=>(collects_foreign_coins(X))))))& (~![X]:(room(X)=>(((own_a_television(X))<=(collects_foreign_coins(X))))))& (((?[X]:(room(X)&writes_a_travel_blog(X)))))& (![X]:(room(X)=>(((((enjoys_coding_in_Python(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(enjoys_making_ceramics(X))))=>(((does_not_enjoy_coding_in_Python(X))|(hosts_regular_workshops_on_creative_writing(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(eugene))& ((does_not_compete_in_national_level_swimming_championships(eugene))&(hosts_a_popular_podcast_about_emerging_technologies(eugene)))& ((![X]:((~((hosts_a_popular_podcast_about_emerging_technologies(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(((own_a_television(X))&(enjoys_coding_in_Python(X)))))))& (((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(eugene))|(maintains_a_large,_organic_vegetable_garden_year-round(eugene))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(eugene))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(eugene))& (does_not_enjoy_kayaking_and_exploring_remote_waterways(eugene))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(does_not_have_a_saltwater_aquarium(X))))))& (![X]:(anywhere(X)=>(((does_not_have_a_saltwater_aquarium(X))=>(owns_an_Android_phone(X))))))& (~![X]:(anywhere(X)=>(((owns_an_Android_phone(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (((?[X]:(room(X)&is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))&(![X,Y]:((room(X)&room(Y)&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(Y)))=>(X=Y)))))& (?[X]:(room(X)&(can_play_the_piano(X))))
room(eugene)&(![X]:(room(X)=>(X='eugene')))& ~(~(has_a_curated_collection_of_mid-century_modern_furniture(eugene)))
[]
null
0.083782
Kevin is the only person in the room. If “it is not the case that “it is not the case that “someone in the room enjoys kayaking””” then “it is true that “it is not the case that “at least one person in the room can play the guitar”””. Kevin who collects historical artifacts related to ancient civilizations enjoys coding in Python. It is true that “if someone is an expert in identifying and foraging wild edible plants then he/she is a Linux enthusiast and vice versa”. If someone has a vast collection of first-edition science fiction novels then he/she does not develop open-source software projects in their free time and vice versa. If someone enjoys landscape photography then he/she enjoys spelunking and vice versa. At least one person in the room is not a coffee connoisseur. Someone in the room can play the guitar, enjoys stargazing and is a Linux enthusiast. It is not the case that “someone in the room drives a hybrid car”. Someone outside the room plays the drums. Someone in the room enjoys landscape photography. Someone in the room can play the guitar. Kevin dreamt that “Kevin who enjoys landscape photography collects foreign coins”. Kevin who plays the drums enjoys salsa dancing. If someone hosts regular workshops on creative writing and knows morse code then he/she does not have a vast collection of first-edition science fiction novels and vice versa. More than one person outside the room is a coffee connoisseur. If someone collects antique jewelry then he/she enjoys kayaking and vice versa. If someone can play the guitar then he/she owns an extensive assortment of vintage comic book memorabilia and vice versa. Someone outside the room enjoys spelunking. Only one person in the room collects historical artifacts related to ancient civilizations.
Kevin dreamt that “Kevin is a Linux enthusiast”.
entailment
room(kevin)&(![X]:(room(X)=>(X='kevin')))& ((~(~(?[X]:(room(X)&(enjoys_kayaking(X))))))=>(~(((?[X]:(room(X)&can_play_the_guitar(X)))))))& ((collects_historical_artifacts_related_to_ancient_civilizations(kevin))&(enjoys_coding_in_Python(kevin)))& ((![X]:((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<=>(is_a_Linux_enthusiast(X)))))& ((![X]:((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<=>(does_not_develop_open-source_software_projects_in_their_free_time(X)))))& ((![X]:((enjoys_landscape_photography(X))<=>(enjoys_spelunking(X)))))& (((?[X]:(room(X)&is_not_a_coffee_connoisseur(X)))))& (?[X]:(room(X)&(((can_play_the_guitar(X))&(enjoys_stargazing(X))&(is_a_Linux_enthusiast(X))))))& (~(?[X]:(room(X)&(drives_a_hybrid_car(X)))))& (?[X]:(~room(X)&(plays_the_drums(X))))& (?[X]:(room(X)&(enjoys_landscape_photography(X))))& (?[X]:(room(X)&(can_play_the_guitar(X))))& ((kevin_dream=>((enjoys_landscape_photography(kevin))&(collects_foreign_coins(kevin)))))& ((plays_the_drums(kevin))&(enjoys_salsa_dancing(kevin)))& ((![X]:((((hosts_regular_workshops_on_creative_writing(X))&(knows_morse_code(X))))<=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))& ((?[X,Y]:(~room(X)&~room(Y)&(is_a_coffee_connoisseur(X)&is_a_coffee_connoisseur(Y))&(X!=Y))))& ((![X]:((collects_antique_jewelry(X))<=>(enjoys_kayaking(X)))))& ((![X]:((can_play_the_guitar(X))<=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))& (?[X]:(~room(X)&(enjoys_spelunking(X))))& (((?[X]:(room(X)&collects_historical_artifacts_related_to_ancient_civilizations(X)))&(![X,Y]:((room(X)&room(Y)&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(collects_historical_artifacts_related_to_ancient_civilizations(Y)))=>(X=Y)))))& (?[X]:(room(X)&(enjoys_stargazing(X))))& (?[X]:(room(X)&(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))& (~((?[X,Y]:(anywhere(X)&anywhere(Y)&(drives_a_hybrid_car(X)&drives_a_hybrid_car(Y))&(X!=Y)))))& ((can_play_the_guitar(kevin))&(is_not_a_coffee_connoisseur(kevin)))
room(kevin)&(![X]:(room(X)=>(X='kevin')))& (kevin_dream=>(is_a_Linux_enthusiast(kevin)))
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 5592855457072597339372420 % SZS output start Proof for 5592855457072597339372420 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 51. ? [X0] : (predi(X0) & predw(X0) & predz(X0) & room(X0)) [input p7] 68. ~((mary_dream => predi(mary)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 81. ~(predi(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [pure predicate removal 68] 87. ? [X0] : (predi(X0) & predz(X0) & room(X0)) [pure predicate removal 51] 97. ? [X0] : (predi(X0) & room(X0)) [pure predicate removal 87] 166. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 169. ~predi(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 81] 174. ? [X0] : (predi(X0) & room(X0)) => (predi(sK1) & room(sK1)) [choice axiom] 175. predi(sK1) & room(sK1) [skolemisation 97,174] 194. ? [X0] : (mary != X0 & room(X0)) => (mary != sK11 & room(sK11)) [choice axiom] 195. ~predi(mary) | (mary != sK11 & room(sK11)) | ~room(mary) [skolemisation 169,194] 276. room(mary) [cnf transformation 166] 277. ~room(X0) | mary = X0 [cnf transformation 166] 283. room(sK1) [cnf transformation 175] 284. predi(sK1) [cnf transformation 175] 303. ~predi(mary) | room(sK11) | ~room(mary) [cnf transformation 195] 304. ~predi(mary) | mary != sK11 | ~room(mary) [cnf transformation 195] 305. ~predi(mary) | mary != sK11 [subsumption resolution 304,276] 307. 1 <=> mary = sK11 [avatar definition] 309. mary != sK11 <- (~1) [avatar component clause 307] 311. 2 <=> predi(mary) [avatar definition] 314. ~1 | ~2 [avatar split clause 305,311,307] 315. ~predi(mary) | room(sK11) [subsumption resolution 303,276] 317. 3 <=> room(sK11) [avatar definition] 319. room(sK11) <- (3) [avatar component clause 317] 320. 3 | ~2 [avatar split clause 315,311,317] 324. mary = sK1 [resolution 277,283] 333. predi(mary) [backward demodulation 284,324] 342. 2 [avatar split clause 333,311] 343. mary = sK11 <- (3) [resolution 319,277] 344. $false <- (~1, 3) [subsumption resolution 343,309] 345. 1 | ~3 [avatar contradiction clause 344] 346. $false [avatar sat refutation 314,320,342,345] % SZS output end Proof for 5592855457072597339372420 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.377309
Helen, Christopher, Steven, William are the only persons in the room. Christopher does practice yoga or does not collect limited-edition art prints from contemporary artists or both. Everyone in the room is dedicated to sustainable living and zero-waste practices only if they collects comic books. Everyone anywhere collects comic books only if they is not an avid collector of autographed memorabilia from famous musicians. Everyone in the room enjoys skydiving. Everyone in the room does not use an ios phone only if they either does not host a YouTube channel dedicated to art tutorials or does not have a saltwater aquarium but not both. Everyone in the room is not a night owl or does not have a saltwater aquarium. Everyone in the room is not a night owl. Everyone in the room is a night owl if they does not own an extensive assortment of vintage comic book memorabilia. Everyone in the room does not use an ios phone or does not own an extensive assortment of vintage comic book memorabilia or both.
Steven uses an ios phone.
contradiction
room(helen)&room(christopher)&room(steven)&room(william)&(![X]:(room(X)=>(X='helen'|X='christopher'|X='steven'|X='william')))& (((does_practice_yoga(christopher))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(christopher))))& (![X]:(room(X)=>(((collects_comic_books(X))<=(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(anywhere(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=(collects_comic_books(X))))))& (![X]:(room(X)=>(enjoys_skydiving(X))))& (![X]:(room(X)=>(((((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))<~>(does_not_have_a_saltwater_aquarium(X))))<=(does_not_use_an_ios_phone(X))))))& (![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(is_not_a_night_owl(X))))))& (collects_comic_books(christopher))& (![X]:(room(X)=>(is_not_a_night_owl(X))))& (![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(is_a_night_owl(X))))))& (![X]:(anywhere(X)=>(is_not_an_avid_hiker(X))))& (~![X]:(anywhere(X)=>(is_not_a_night_owl(X))))& (![X]:(room(X)=>(((does_not_use_an_ios_phone(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))<~>(collects_comic_books(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))=>(is_a_cybersecurity_expert(X))))))& (((does_not_host_regular_workshops_on_creative_writing(christopher))<~>(enjoys_skydiving(christopher))))& (![X]:(room(X)=>(((~((does_not_bake_bread_at_home(X))|(does_not_create_YouTube_content(X))))<=(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))<~>(does_practice_yoga(X))))))))& (does_not_use_an_ios_phone(christopher))& (![X]:(room(X)=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))& ((![X]:((((enjoys_stand-up_paddleboarding(X))<~>(enjoys_skydiving(X))))<=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(does_not_train_for_and_competes_in_international_triathlons(X)))))))& (?[X]:(room(X)&(((enjoys_stand-up_paddleboarding(X))&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(has_a_saltwater_aquarium(X))))))& (does_not_collect_rare_and_antique_scientific_instruments(christopher))& ((![X]:((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<=>(((does_not_practice_yoga(X))<~>(does_not_collect_comic_books(X)))))))& (![X]:(room(X)=>(((((is_a_night_owl(X))<~>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(does_not_have_a_saltwater_aquarium(X))))))
room(helen)&room(christopher)&room(steven)&room(william)&(![X]:(room(X)=>(X='helen'|X='christopher'|X='steven'|X='william')))& uses_an_ios_phone(steven)
[ "p0", "p8", "p9", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 2344545936096264191988222 % SZS output start Proof for 2344545936096264191988222 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. ! [X0] : (room(X0) => ~predo(X0)) [input p8] 53. ! [X0] : (room(X0) => (~predu(X0) => predo(X0))) [input p9] 56. ! [X0] : (room(X0) => (~predu(X0) | ~predg(X0))) [input p12] 68. predg(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 148. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 159. ! [X0] : (~predo(X0) | ~room(X0)) [ennf transformation 52] 160. ! [X0] : ((predo(X0) | predu(X0)) | ~room(X0)) [ennf transformation 53] 161. ! [X0] : (predo(X0) | predu(X0) | ~room(X0)) [flattening 160] 163. ! [X0] : ((~predu(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 56] 164. ! [X0] : (~predu(X0) | ~predg(X0) | ~room(X0)) [flattening 163] 168. predg(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 169. predg(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 168] 264. room(fred) [cnf transformation 149] 274. ~predo(X0) | ~room(X0) [cnf transformation 159] 275. predo(X0) | predu(X0) | ~room(X0) [cnf transformation 161] 278. ~predu(X0) | ~predg(X0) | ~room(X0) [cnf transformation 164] 306. predg(fred) [cnf transformation 169] 308. ~room(X0) | predu(X0) [subsumption resolution 275,274] 309. ~predg(X0) | ~room(X0) [subsumption resolution 278,308] 335. ~room(fred) [resolution 309,306] 336. $false [subsumption resolution 335,264] % SZS output end Proof for 2344545936096264191988222 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.461255
There is a room. “Someone who is a strong person is richer than someone who is not a happy person” if “everyone in the room is not a creative person”. “Someone who is not a happy person is quieter than someone who is not a old person” unless “at least one person in the room is not a creative person”. “Everyone outside the room is a curious person” only if “everyone in the room either is not a funny person or is a quiet person but not both”. “Everyone in the room is a generous person or is a brave person or both” if “everyone in the room is a kind person, is not a happy person and is not a brave person” and vice versa. “Everyone in the room is not a patient person” if “someone in the room is creative”. If someone is not a quiet person then he/she either is not brave or is not a old person but not both and vice versa. Everyone in the room is not a creative person. At least one person in the room is not a old person. Someone in the room is happy or is a patient person or both. Everyone in the room is not a quiet person. Not everyone in the room either is not a patient person or is not a funny person but not both. It is not the case that “more than one person in the room is not a brave person and is not a wise person”. Someone who is a funny person is richer than someone who is not a curious person. Everyone in the room is a humble person.
Not everyone in the room is a generous person.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(~(creative(X)&person(X)))))=>(?[X,Y]:((strong(X)&person(X))&(~(happy(Y)&person(Y)))&(richer(X,Y)))))& (~(((?[X]:(room(X)&~(creative(X)&person(X))))))=>(?[X,Y]:((~(happy(X)&person(X)))&(~(old(Y)&person(Y)))&(quieter(X,Y)))))& ((![X]:(~room(X)=>(curious(X)&person(X))))=>(![X]:(room(X)=>(((~(funny(X)&person(X)))<~>(quiet(X)&person(X)))))))& ((![X]:(room(X)=>(((kind(X)&person(X))&(~(happy(X)&person(X)))&(~(brave(X)&person(X)))))))<=>(![X]:(room(X)=>(((generous(X)&person(X))|(brave(X)&person(X)))))))& ((?[X]:(room(X)&(creative(X))))=>(![X]:(room(X)=>(~(patient(X)&person(X))))))& ((![X]:((~(quiet(X)&person(X)))<=>(((~brave(X))<~>(~(old(X)&person(X))))))))& (![X]:(room(X)=>(~(creative(X)&person(X)))))& (((?[X]:(room(X)&~(old(X)&person(X))))))& (?[X]:(room(X)&(((happy(X))|(patient(X)&person(X))))))& (![X]:(room(X)=>(~(quiet(X)&person(X)))))& (~![X]:(room(X)=>(((~(patient(X)&person(X)))<~>(~(funny(X)&person(X)))))))& (~((?[X,Y]:(room(X)&room(Y)&(((~(brave(X)&person(X)))&(~(wise(X)&person(X))))&((~(brave(Y)&person(Y)))&(~(wise(Y)&person(Y)))))&(X!=Y)))))& (?[X,Y]:((funny(X)&person(X))&(~(curious(Y)&person(Y)))&(richer(X,Y))))& (![X]:(room(X)=>(humble(X)&person(X))))& (((?[X]:(room(X)&~(strong(X)&person(X))))))& (~![X]:(room(X)=>(patient(X)&person(X))))
(there_is_a_room)& ~![X]:(room(X)=>(generous(X)&person(X)))
[ "p0", "p4", "p6", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 2803700418184905401512338 % SZS output start Proof for 2803700418184905401512338 44. there_is_a_room [input p0] 48. ! [X0] : (room(X0) => (~(person(X0) & brave(X0)) & ~(person(X0) & happy(X0)) & person(X0) & kind(X0))) <=> ! [X0] : (room(X0) => ((person(X0) & brave(X0)) | (person(X0) & generous(X0)))) [input p4] 50. ! [X0] : (~(person(X0) & quiet(X0)) <=> (~brave(X0) <~> ~(person(X0) & old(X0)))) [input p6] 52. ? [X0] : (~(person(X0) & old(X0)) & room(X0)) [input p8] 54. ! [X0] : (room(X0) => ~(person(X0) & quiet(X0))) [input p10] 61. ~(~! [X0] : (room(X0) => (person(X0) & generous(X0))) & there_is_a_room) [input hypothesis] 65. ! [X0] : (room(X0) => (~(person(X0) & brave(X0)) & ~(person(X0) & happy(X0)) & person(X0) & kind(X0))) <=> ! [X1] : (room(X1) => ((person(X1) & brave(X1)) | (person(X1) & generous(X1)))) [rectify 48] 147. ! [X0] : (((~person(X0) | ~brave(X0)) & (~person(X0) | ~happy(X0)) & person(X0) & kind(X0)) | ~room(X0)) <=> ! [X1] : (((person(X1) & brave(X1)) | (person(X1) & generous(X1))) | ~room(X1)) [ennf transformation 65] 148. ! [X0] : (((~person(X0) | ~brave(X0)) & (~person(X0) | ~happy(X0)) & person(X0) & kind(X0)) | ~room(X0)) <=> ! [X1] : ((person(X1) & brave(X1)) | (person(X1) & generous(X1)) | ~room(X1)) [flattening 147] 151. ! [X0] : ((~person(X0) | ~quiet(X0)) <=> (~brave(X0) <~> (~person(X0) | ~old(X0)))) [ennf transformation 50] 154. ? [X0] : ((~person(X0) | ~old(X0)) & room(X0)) [ennf transformation 52] 155. ! [X0] : ((~person(X0) | ~quiet(X0)) | ~room(X0)) [ennf transformation 54] 156. ! [X0] : (~person(X0) | ~quiet(X0) | ~room(X0)) [flattening 155] 162. ! [X0] : ((person(X0) & generous(X0)) | ~room(X0)) | ~there_is_a_room [ennf transformation 61] 165. sP1 <=> ! [X0] : (((~person(X0) | ~brave(X0)) & (~person(X0) | ~happy(X0)) & person(X0) & kind(X0)) | ~room(X0)) [predicate definition introduction] 166. sP1 <=> ! [X1] : ((person(X1) & brave(X1)) | (person(X1) & generous(X1)) | ~room(X1)) [definition folding 148,165] 167. ! [X0] : (sP2(X0) <=> (~brave(X0) <~> (~person(X0) | ~old(X0)))) [predicate definition introduction] 168. ! [X0] : ((~person(X0) | ~quiet(X0)) <=> sP2(X0)) [definition folding 151,167] 185. (sP1 | ? [X0] : (((person(X0) & brave(X0)) | (person(X0) & happy(X0)) | ~person(X0) | ~kind(X0)) & room(X0))) & (! [X0] : (((~person(X0) | ~brave(X0)) & (~person(X0) | ~happy(X0)) & person(X0) & kind(X0)) | ~room(X0)) | ~sP1) [nnf transformation 165] 186. (sP1 | ? [X0] : (((person(X0) & brave(X0)) | (person(X0) & happy(X0)) | ~person(X0) | ~kind(X0)) & room(X0))) & (! [X1] : (((~person(X1) | ~brave(X1)) & (~person(X1) | ~happy(X1)) & person(X1) & kind(X1)) | ~room(X1)) | ~sP1) [rectify 185] 187. ? [X0] : (((person(X0) & brave(X0)) | (person(X0) & happy(X0)) | ~person(X0) | ~kind(X0)) & room(X0)) => (((person(sK10) & brave(sK10)) | (person(sK10) & happy(sK10)) | ~person(sK10) | ~kind(sK10)) & room(sK10)) [choice axiom] 188. (sP1 | (((person(sK10) & brave(sK10)) | (person(sK10) & happy(sK10)) | ~person(sK10) | ~kind(sK10)) & room(sK10))) & (! [X1] : (((~person(X1) | ~brave(X1)) & (~person(X1) | ~happy(X1)) & person(X1) & kind(X1)) | ~room(X1)) | ~sP1) [skolemisation 186,187] 189. (sP1 | ? [X1] : ((~person(X1) | ~brave(X1)) & (~person(X1) | ~generous(X1)) & room(X1))) & (! [X1] : ((person(X1) & brave(X1)) | (person(X1) & generous(X1)) | ~room(X1)) | ~sP1) [nnf transformation 166] 190. (sP1 | ? [X0] : ((~person(X0) | ~brave(X0)) & (~person(X0) | ~generous(X0)) & room(X0))) & (! [X1] : ((person(X1) & brave(X1)) | (person(X1) & generous(X1)) | ~room(X1)) | ~sP1) [rectify 189] 191. ? [X0] : ((~person(X0) | ~brave(X0)) & (~person(X0) | ~generous(X0)) & room(X0)) => ((~person(sK11) | ~brave(sK11)) & (~person(sK11) | ~generous(sK11)) & room(sK11)) [choice axiom] 192. (sP1 | ((~person(sK11) | ~brave(sK11)) & (~person(sK11) | ~generous(sK11)) & room(sK11))) & (! [X1] : ((person(X1) & brave(X1)) | (person(X1) & generous(X1)) | ~room(X1)) | ~sP1) [skolemisation 190,191] 194. ! [X0] : ((sP2(X0) | ((~brave(X0) | (person(X0) & old(X0))) & ((~person(X0) | ~old(X0)) | brave(X0)))) & ((((person(X0) & old(X0)) | brave(X0)) & ((~person(X0) | ~old(X0)) | ~brave(X0))) | ~sP2(X0))) [nnf transformation 167] 195. ! [X0] : ((sP2(X0) | ((~brave(X0) | (person(X0) & old(X0))) & (~person(X0) | ~old(X0) | brave(X0)))) & ((((person(X0) & old(X0)) | brave(X0)) & (~person(X0) | ~old(X0) | ~brave(X0))) | ~sP2(X0))) [flattening 194] 196. ! [X0] : (((~person(X0) | ~quiet(X0)) | ~sP2(X0)) & (sP2(X0) | (person(X0) & quiet(X0)))) [nnf transformation 168] 197. ! [X0] : ((~person(X0) | ~quiet(X0) | ~sP2(X0)) & (sP2(X0) | (person(X0) & quiet(X0)))) [flattening 196] 198. ? [X0] : ((~person(X0) | ~old(X0)) & room(X0)) => ((~person(sK12) | ~old(sK12)) & room(sK12)) [choice axiom] 199. (~person(sK12) | ~old(sK12)) & room(sK12) [skolemisation 154,198] 292. there_is_a_room [cnf transformation 44] 313. ~person(X1) | ~brave(X1) | ~room(X1) | ~sP1 [cnf transformation 188] 323. sP1 | room(sK11) [cnf transformation 192] 324. sP1 | ~person(sK11) | ~generous(sK11) [cnf transformation 192] 328. ~sP2(X0) | brave(X0) | old(X0) [cnf transformation 195] 333. sP2(X0) | quiet(X0) [cnf transformation 197] 337. room(sK12) [cnf transformation 199] 338. ~person(sK12) | ~old(sK12) [cnf transformation 199] 342. ~room(X0) | ~quiet(X0) | ~person(X0) [cnf transformation 156] 360. generous(X0) | ~room(X0) | ~there_is_a_room [cnf transformation 162] 361. person(X0) | ~room(X0) | ~there_is_a_room [cnf transformation 162] 477. 25 <=> sP1 [avatar definition] 487. 27 <=> ! [X1] : (~person(X1) | ~room(X1) | ~brave(X1)) [avatar definition] 488. ~person(X1) | ~room(X1) | ~brave(X1) <- (27) [avatar component clause 487] 489. ~25 | 27 [avatar split clause 313,487,477] 495. 29 <=> ! [X1] : (person(X1) | ~room(X1)) [avatar definition] 496. ~room(X1) | person(X1) <- (29) [avatar component clause 495] 507. 32 <=> person(sK11) [avatar definition] 512. 33 <=> generous(sK11) [avatar definition] 515. ~33 | ~32 | 25 [avatar split clause 324,477,507,512] 517. 34 <=> room(sK11) [avatar definition] 519. room(sK11) <- (34) [avatar component clause 517] 520. 34 | 25 [avatar split clause 323,477,517] 542. 40 <=> old(sK12) [avatar definition] 544. ~old(sK12) <- (~40) [avatar component clause 542] 546. 41 <=> person(sK12) [avatar definition] 547. person(sK12) <- (41) [avatar component clause 546] 549. ~40 | ~41 [avatar split clause 338,546,542] 597. person(X0) | ~room(X0) [subsumption resolution 361,292] 598. 29 [avatar split clause 597,495] 599. ~room(X0) | generous(X0) [subsumption resolution 360,292] 602. person(sK11) <- (29, 34) [resolution 496,519] 603. person(sK12) <- (29) [resolution 496,337] 621. 32 | ~29 | ~34 [avatar split clause 602,517,495,507] 622. 41 | ~29 [avatar split clause 603,495,546] 631. generous(sK11) <- (34) [resolution 599,519] 639. 33 | ~34 [avatar split clause 631,517,512] 641. ~brave(X1) | ~room(X1) <- (27, 29) [subsumption resolution 488,496] 660. brave(X1) | old(X1) | quiet(X1) [resolution 328,333] 669. ~quiet(sK12) | ~person(sK12) [resolution 342,337] 677. ~quiet(sK12) <- (41) [subsumption resolution 669,547] 793. ~room(X2) | quiet(X2) | old(X2) <- (27, 29) [resolution 660,641] 829. quiet(sK12) | old(sK12) <- (27, 29) [resolution 793,337] 836. old(sK12) <- (27, 29, 41) [subsumption resolution 829,677] 837. $false <- (27, 29, ~40, 41) [subsumption resolution 836,544] 838. ~27 | ~29 | 40 | ~41 [avatar contradiction clause 837] 843. $false [avatar sat refutation 489,515,520,549,598,621,622,639,838] % SZS output end Proof for 2803700418184905401512338 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.20805
There is a room. If someone is not not not wise or is funny or both then he/she is kind. If someone is kind then he/she is humble. Someone who is generous is richer than someone who is not not not patient and is humble. Only one person in the room is strong. Someone who is strong or is generous or both is quieter than someone who is tall. Someone who is funny is quieter than someone who is happy. All funny persons are humble. All kind persons are quiet. Someone who is creative is richer than someone who is curious or is kind or both. All patient persons are creative. If someone is patient then he/she is humble. All happy persons are old.
All tall persons are old.
neutral
(there_is_a_room)& ((![X]:((((~~~wise(X))|(funny(X))))=>(kind(X)))))& ((![X]:((kind(X))=>(humble(X)))))& (?[X,Y]:((generous(X))&(((~~~patient(Y))&(humble(Y))))&(richer(X,Y))))& (((?[X]:(room(X)&strong(X)))&(![X,Y]:((room(X)&room(Y)&(strong(X))&(strong(Y)))=>(X=Y)))))& (?[X,Y]:((((strong(X))|(generous(X))))&(tall(Y))&(quieter(X,Y))))& (?[X,Y]:((funny(X))&(happy(Y))&(quieter(X,Y))))& (![X]:(funny(X)=>humble(X)))& (![X]:(kind(X)=>quiet(X)))& (?[X,Y]:((creative(X))&(((curious(Y))|(kind(Y))))&(richer(X,Y))))& (![X]:(patient(X)=>creative(X)))& ((![X]:((patient(X))=>(humble(X)))))& (![X]:(happy(X)=>old(X)))& (?[X,Y]:((strong(X))&(((tall(Y))&(happy(Y))))&(quieter(X,Y))))& ((![X]:((tall(X))=>(curious(X)))))& ((![X]:((patient(X))=>(((patient(X))|(calm(X)))))))
(there_is_a_room)& ![X]:(tall(X)=>old(X))
[]
null
0.421503
Christopher is the only person in the room. If “Marcelino is a sibling of Christopher” then “Christopher and Kevin hate each other”. Either “Chad is louder than Christopher” or “Kevin is louder than Christopher” but not both. Kevin is quieter than Christopher.
Christopher is quieter than Kevin.
contradiction
room(christopher)&(![X]:(room(X)=>(X='christopher')))& ((sibling(christopher,marcelino))=>((hate(christopher,kevin) & hate(kevin,christopher))))& ((louder(christopher,chad))<~>(louder(christopher,kevin)))& ((quieter(christopher,dane))=>(Socks_do_not_disappear_worldwide_every_full_moon.))& (?[X,Y]:((poorer(derek,X))&(louder(kevin,Y))&(like(X,Y))))& (![X]:(happy(X)=>wise(X)))& (![X]:(brave(X)=>funny(X)))& ((hate(christopher,derek) & hate(derek,christopher)))& ((hate(christopher,virginia) & hate(virginia,christopher)))& (![X]:(humble(X)=>old(X)))& (Socks_do_not_disappear_worldwide_every_full_moon.)& (poorer(christopher,marcelino))& (A_bird_tweets_using_morse_code.)& ((like(christopher,kevin) & like(kevin,christopher)))& (quieter(christopher,kevin))& (quieter(christopher,marcelino))
room(christopher)&(![X]:(room(X)=>(X='christopher')))& quieter(kevin,christopher)
[ "b13", "b42", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 3901280727422966491617223 % SZS output start Proof for 3901280727422966491617223 14. ! [X0,X1] : (X0 != X1 => (quieter(X0,X1) => ~quieter(X1,X0))) [input b13] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 58. quieter(mary,alice) [input p14] 60. quieter(alice,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 88. ! [X0,X1] : ((~quieter(X1,X0) | ~quieter(X0,X1)) | X0 = X1) [ennf transformation 14] 89. ! [X0,X1] : (~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1) [flattening 88] 143. quieter(alice,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 60] 159. ~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1 [cnf transformation 89] 206. mary != alice [cnf transformation 43] 246. quieter(mary,alice) [cnf transformation 58] 250. quieter(alice,mary) [cnf transformation 143] 284. ~quieter(alice,mary) | mary = alice [resolution 159,246] 287. mary = alice [subsumption resolution 284,250] 288. $false [subsumption resolution 287,206] % SZS output end Proof for 3901280727422966491617223 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.708368
Daniel, Rebecca are the only persons in the room. Everyone in the room collects action figures. Everyone outside the room practices and performs acrobatic dance routines. Everyone in the room writes a travel blog. Everyone anywhere regularly contributes to tech forums and online communities. Everyone in the room regularly contributes to tech forums and online communities and is a tall person. Everyone in the room regularly contributes to tech forums and online communities. Daniel writes a travel blog. Rebecca is patient. Rebecca is the quietest outside the room.
Daniel practices and performs acrobatic dance routines.
neutral
room(daniel)&room(rebecca)&(![X]:(room(X)=>(X='daniel'|X='rebecca')))& (![X]:(room(X)=>(collects_action_figures(X))))& (![X]:(~room(X)=>(practices_and_performs_acrobatic_dance_routines(X))))& (![X]:(room(X)=>(writes_a_travel_blog(X))))& (![X]:(anywhere(X)=>(regularly_contributes_to_tech_forums_and_online_communities(X))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))&(tall(X)&person(X))))))& (![X]:(room(X)=>(regularly_contributes_to_tech_forums_and_online_communities(X))))& (writes_a_travel_blog(daniel))& (patient(rebecca))& (![X]:((~room(X)&(X!=rebecca))=>quieter(X,rebecca)))& (tall(rebecca))& (~?[X]:(patient(X)=>quiet(X)))& (((writes_a_travel_blog(rebecca))|(tall(rebecca)&person(rebecca))|(mentors_a_youth_basketball_team_on_weekends(rebecca))))& ((patient(daniel)&person(daniel))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(daniel)))& (![X]:(~room(X)=>(tall(X))))& (practices_and_performs_acrobatic_dance_routines(rebecca))& (regularly_goes_on_multi-day_backpacking_trips_in_national_parks(rebecca))& (![X]:(room(X)=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))& (![X]:(room(X)=>(tall(X)&person(X))))& (![X]:(room(X)=>(mentors_a_youth_basketball_team_on_weekends(X))))
room(daniel)&room(rebecca)&(![X]:(room(X)=>(X='daniel'|X='rebecca')))& practices_and_performs_acrobatic_dance_routines(daniel)
[]
null
0.060747
Diane, Jose, Luke are the only persons in the room. “No strong person is tall” unless “Luke and Diane are brave persons and are wise persons”. If “Jose is a wise person” then “Jose is a tall person”. If “Jose is a tall person” then “Luke is a funny person”. “No calm person is happy” unless “Luke is a creative person”. “Luke is a curious person” if “Diane is not a funny person”. If “Luke either is a creative person or is a curious person but not both” then “Luke and Diane are wise persons”. If “Luke and Diane are wise persons” then “Diane is a generous old person”. If “Jose is a wise person” then “Diane is a funny person”. If “Diane is a funny person” then “no strong person is humble”. Luke either is a wise person or is a humble person but not both. Jose is a strong person. Diane is a creative person and is not a humble person. Luke and Jose are not a wise persons. All calm persons are generous. Luke is not a wise person. Luke is a patient person. All creative persons are quiet.
All brave persons are funny.
neutral
room(diane)&room(jose)&room(luke)&(![X]:(room(X)=>(X='diane'|X='jose'|X='luke')))& (~(((brave(luke)&person(luke))&(wise(luke)&person(luke)))&((brave(diane)&person(diane))&(wise(diane)&person(diane))))=>(~?[X]:(strong(X)=>tall(X))))& (((wise(jose)&person(jose))=>(tall(jose)&person(jose)))& ((tall(jose)&person(jose))=>(funny(luke)&person(luke))))& (~(creative(luke)&person(luke))=>(~?[X]:(calm(X)=>happy(X))))& ((~(funny(diane)&person(diane)))=>(curious(luke)&person(luke)))& (((((creative(luke)&person(luke))<~>(curious(luke)&person(luke))))=>(wise(luke)&person(luke)&wise(diane)&person(diane)))& ((wise(luke)&person(luke)&wise(diane)&person(diane))=>(generous(diane)&old(diane)&person(diane))))& (((wise(jose)&person(jose))=>(funny(diane)&person(diane)))& ((funny(diane)&person(diane))=>(~?[X]:(strong(X)=>humble(X)))))& (((wise(luke)&person(luke))<~>(humble(luke)&person(luke))))& (strong(jose)&person(jose))& (((creative(diane)&person(diane))&(~(humble(diane)&person(diane)))))& (~(wise(luke)&person(luke))&~(wise(jose)&person(jose)))& (![X]:(calm(X)=>generous(X)))& (~(wise(luke)&person(luke)))& (patient(luke)&person(luke))& (![X]:(creative(X)=>quiet(X)))
room(diane)&room(jose)&room(luke)&(![X]:(room(X)=>(X='diane'|X='jose'|X='luke')))& ![X]:(brave(X)=>funny(X))
[]
null
0.39318
Nora is the only person in the room. Nora is younger than Betty. Nora practices archery. Not everyone in the room is a curious person if and only if they is not a strong person. If someone is younger than Betty then he/she is younger than Ruben and travels domestically frequently and vice versa. Someone who is not funny, not curious is younger than someone who is a curious person. Nora is not an enthusiastic bird watcher who travels for rare sightings. If someone is a culinary enthusiast who experiments with international cuisines then he/she is not an enthusiastic bird watcher who travels for rare sightings. If someone is a curious funny strong european then he/she is a culinary enthusiast who experiments with international cuisines and vice versa. Everyone in the room is not curious if they is younger than Ruben.
Nora is curious.
contradiction
room(nora)&(![X]:(room(X)=>(X='nora')))& (younger(betty,nora))& (practices_archery(nora))& (~![X]:(room(X)=>(((curious(X)&person(X))<=>(~(strong(X)&person(X)))))))& ((![X]:((younger(betty,X))<=>(((younger(ruben,X))&(travels_domestically_frequently(X)))))))& (?[X,Y]:((~funny(X)&~curious(X))&(curious(Y)&person(Y))&(younger(X,Y))))& (is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(nora))& ((![X]:((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))& ((![X]:((curious(X)&funny(X)&strong(X)&european(X))<=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))& (![X]:(room(X)=>(((younger(ruben,X))=>(~curious(X))))))
room(nora)&(![X]:(room(X)=>(X='nora')))& curious(nora)
[ "p0", "p1", "p4", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 6183031252757234874319884 % SZS output start Proof for 6183031252757234874319884 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. younger(paul,mary) [input p1] 48. ! [X0] : (younger(paul,X0) <=> (predr(X0) & younger(fred,X0))) [input p4] 53. ! [X0] : (room(X0) => (younger(fred,X0) => ~curious(X0))) [input p9] 54. curious(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 133. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 135. ! [X0] : ((~curious(X0) | ~younger(fred,X0)) | ~room(X0)) [ennf transformation 53] 136. ! [X0] : (~curious(X0) | ~younger(fred,X0) | ~room(X0)) [flattening 135] 137. curious(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 54] 143. ! [X0] : ((younger(paul,X0) | (~predr(X0) | ~younger(fred,X0))) & ((predr(X0) & younger(fred,X0)) | ~younger(paul,X0))) [nnf transformation 48] 144. ! [X0] : ((younger(paul,X0) | ~predr(X0) | ~younger(fred,X0)) & ((predr(X0) & younger(fred,X0)) | ~younger(paul,X0))) [flattening 143] 227. room(mary) [cnf transformation 133] 229. younger(paul,mary) [cnf transformation 45] 235. ~younger(paul,X0) | younger(fred,X0) [cnf transformation 144] 242. ~younger(fred,X0) | ~curious(X0) | ~room(X0) [cnf transformation 136] 245. curious(mary) [cnf transformation 137] 265. younger(fred,mary) [resolution 235,229] 266. ~curious(mary) | ~room(mary) [resolution 265,242] 267. ~room(mary) [subsumption resolution 266,245] 268. $false [subsumption resolution 267,227] % SZS output end Proof for 6183031252757234874319884 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Annabelle, Jeanne, Vanessa are the only persons in the room. Everyone in the room hosts regular workshops on creative writing if they owns a telescope. No one anywhere is an expert in identifying and foraging wild edible plants only if they is a cybersecurity expert. Everyone in the room who enjoys camping and organizing outdoor survival workshops is an avid collector of autographed memorabilia from famous musicians. Not everyone anywhere travels domestically frequently or does not practice urban gardening. Everyone anywhere collects luxury watches if they travels domestically frequently. Everyone in the room is a dedicated advocate for digital privacy and encryption if they collects luxury watches. Not everyone in the room is a dedicated advocate for digital privacy and encryption only if they neither owns an Android phone nor is not an expert in identifying and foraging wild edible plants. Everyone in the room is a client of Meta if they collects foreign coins. Jeanne travels domestically frequently or is passionate about collecting and restoring classic cars or both. Someone in the room enjoys camping and organizing outdoor survival workshops.
Vanessa is a cybersecurity expert.
contradiction
room(annabelle)&room(jeanne)&room(vanessa)&(![X]:(room(X)=>(X='annabelle'|X='jeanne'|X='vanessa')))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(hosts_regular_workshops_on_creative_writing(X))))))& (~?[X]:(anywhere(X)=>(((is_a_cybersecurity_expert(X))<=(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (~![X]:(anywhere(X)=>(((does_not_practice_urban_gardening(X))|(travels_domestically_frequently(X))))))& (![X]:(anywhere(X)=>(((travels_domestically_frequently(X))=>(collects_luxury_watches(X))))))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (~![X]:(room(X)=>(((~((owns_an_Android_phone(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))<=(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(is_a_client_of_Meta(X))))))& (((travels_domestically_frequently(jeanne))|(is_passionate_about_collecting_and_restoring_classic_cars(jeanne))))& (?[X]:(room(X)&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))
room(annabelle)&room(jeanne)&room(vanessa)&(![X]:(room(X)=>(X='annabelle'|X='jeanne'|X='vanessa')))& is_a_cybersecurity_expert(vanessa)
[ "p2", "hypothesis" ]
% SZS status Unsatisfiable for 2021472167570139193127501 % SZS output start Proof for 2021472167570139193127501 46. ~? [X0] : (anywhere(X0) => (predk(X0) => predc(X0))) [input p2] 55. predc(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 60. ~? [X0] : (predk(X0) => predc(X0)) [pure predicate removal 46] 65. ~? [X0] : predc(X0) [pure predicate removal 60] 144. ! [X0] : ~predc(X0) [ennf transformation 65] 146. predc(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 147. predc(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 146] 237. ~predc(X0) [cnf transformation 144] 244. predc(fred) [cnf transformation 147] 245. $false [subsumption resolution 244,237] % SZS output end Proof for 2021472167570139193127501 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.133467
Lisa is the only person in the room. If “Lisa is quieter than Ayana” then “Lisa is richer than Ayana”. If “Lisa is richer than Ayana or is quiet or both” then “someone in the room is older than Ayana”. If “Lisa is quiet” then “Lisa is richer than Ayana”. Lisa is the least quiet in the room. Only one person in the room is older than Ayana. Lisa is quiet. Lisa is older than Ayana. Lisa is quieter than Ayana. Only one person anywhere is quieter than Ayana. It is true that “everyone anywhere who is richer than Ayana is quieter than Ayana”.
Everyone anywhere is richer than Ayana.
contradiction
room(lisa)&(![X]:(room(X)=>(X='lisa')))& ((quieter(ayana,lisa))=>(richer(ayana,lisa)))& ((((richer(ayana,lisa))|(quiet(lisa))))=>(?[X]:(room(X)&(older(ayana,X)))))& ((quiet(lisa))=>(richer(ayana,lisa)))& (![X]:((room(X)&(X!=lisa))=>quieter(lisa,X)))& (((?[X]:(room(X)&older(ayana,X)))&(![X,Y]:((room(X)&room(Y)&(older(ayana,X))&(older(ayana,Y)))=>(X=Y)))))& (quiet(lisa))& (richer(ayana,lisa))& (old(lisa))& (((?[X]:(room(X)&quieter(ayana,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(ayana,X))&(quieter(ayana,Y)))=>(X=Y)))))& (older(ayana,lisa))& (quieter(ayana,lisa))& ((![X]:((quieter(ayana,X))=>(~(quiet(X)&person(X))))))& ((![X]:((((richer(ayana,X))&(quieter(ayana,X))))=>(old(X)))))& (((?[X]:(anywhere(X)&quieter(ayana,X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(quieter(ayana,X))&(quieter(ayana,Y)))=>(X=Y)))))& (((older(ayana,lisa))|(richer(ayana,lisa))))& ((![X]:((((quiet(X))&(old(X))&(older(ayana,X))))=>(quieter(ayana,X)))))& (![X]:(room(X)=>(((richer(ayana,X))=>(quieter(ayana,X))))))& (![X]:(anywhere(X)=>(((richer(ayana,X))=>(quieter(ayana,X))))))
room(lisa)&(![X]:(room(X)=>(X='lisa')))& ![X]:(anywhere(X)=>(richer(ayana,X)))
[ "b4", "b22", "b37", "b42", "p10", "p11", "p14", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 737622118182376675037579 % SZS output start Proof for 737622118182376675037579 5. ! [X0] : anywhere(X0) [input b4] 23. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => younger(X1,X0))) [input b22] 38. ! [X0,X1] : (X0 != X1 => (younger(X0,X1) => ~younger(X1,X0))) [input b37] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 54. older(paul,mary) [input p10] 55. quieter(paul,mary) [input p11] 58. ! [X0,X1] : ((quieter(paul,X1) & quieter(paul,X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (quieter(paul,X0) & anywhere(X0)) [input p14] 62. ! [X0] : (anywhere(X0) => (richer(paul,X0) => quieter(paul,X0))) [input p18] 63. ! [X0] : (anywhere(X0) => richer(paul,X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 66. ! [X0,X1] : ((quieter(paul,X1) & quieter(paul,X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (quieter(paul,X2) & anywhere(X2)) [rectify 58] 67. ! [X0] : (anywhere(X0) => richer(paul,X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary) [rectify 63] 104. ! [X0,X1] : ((younger(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 23] 105. ! [X0,X1] : (younger(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 104] 131. ! [X0,X1] : ((~younger(X1,X0) | ~younger(X0,X1)) | X0 = X1) [ennf transformation 38] 132. ! [X0,X1] : (~younger(X1,X0) | ~younger(X0,X1) | X0 = X1) [flattening 131] 152. ! [X0,X1] : (X0 = X1 | (~quieter(paul,X1) | ~quieter(paul,X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (quieter(paul,X2) & anywhere(X2)) [ennf transformation 66] 153. ! [X0,X1] : (X0 = X1 | ~quieter(paul,X1) | ~quieter(paul,X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (quieter(paul,X2) & anywhere(X2)) [flattening 152] 158. ! [X0] : ((quieter(paul,X0) | ~richer(paul,X0)) | ~anywhere(X0)) [ennf transformation 62] 159. ! [X0] : (quieter(paul,X0) | ~richer(paul,X0) | ~anywhere(X0)) [flattening 158] 160. ! [X0] : (richer(paul,X0) | ~anywhere(X0)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [ennf transformation 67] 168. ? [X2] : (quieter(paul,X2) & anywhere(X2)) => (quieter(paul,sK3) & anywhere(sK3)) [choice axiom] 169. ! [X0,X1] : (X0 = X1 | ~quieter(paul,X1) | ~quieter(paul,X0) | ~anywhere(X1) | ~anywhere(X0)) & (quieter(paul,sK3) & anywhere(sK3)) [skolemisation 153,168] 170. anywhere(X0) [cnf transformation 5] 189. ~older(X0,X1) | younger(X1,X0) | X0 = X1 [cnf transformation 105] 204. ~younger(X1,X0) | ~younger(X0,X1) | X0 = X1 [cnf transformation 132] 215. mary != paul [cnf transformation 43] 269. older(paul,mary) [cnf transformation 54] 270. quieter(paul,mary) [cnf transformation 55] 274. X0 = X1 | ~quieter(paul,X1) | ~quieter(paul,X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 169] 278. quieter(paul,X0) | ~richer(paul,X0) | ~anywhere(X0) [cnf transformation 159] 281. richer(paul,X0) | ~anywhere(X0) [cnf transformation 160] 283. 1 <=> quieter(paul,mary) [avatar definition] 284. quieter(paul,mary) <- (1) [avatar component clause 283] 310. 1 [avatar split clause 270,283] 311. X0 = X1 | ~quieter(paul,X1) | ~quieter(paul,X0) | ~anywhere(X0) [subsumption resolution 274,170] 312. ~quieter(paul,X1) | X0 = X1 | ~quieter(paul,X0) [subsumption resolution 311,170] 313. ~richer(paul,X0) | quieter(paul,X0) [subsumption resolution 278,170] 314. richer(paul,X0) [subsumption resolution 281,170] 325. quieter(paul,X0) [resolution 313,314] 364. younger(mary,paul) | mary = paul [resolution 189,269] 365. younger(mary,paul) [subsumption resolution 364,215] 374. ~younger(paul,mary) | mary = paul [resolution 204,365] 375. ~younger(paul,mary) [subsumption resolution 374,215] 378. mary = X0 | ~quieter(paul,X0) <- (1) [resolution 312,284] 380. mary = X0 <- (1) [subsumption resolution 378,325] 405. younger(mary,mary) <- (1) [backward demodulation 365,380] 408. ~younger(mary,mary) <- (1) [backward demodulation 375,380] 433. $false <- (1) [subsumption resolution 408,405] 434. ~1 [avatar contradiction clause 433] 437. $false [avatar sat refutation 310,434] % SZS output end Proof for 737622118182376675037579 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.547574
Chris, Eric are the only persons in the room. If “it is not the case that “Chris is passionate about collecting and restoring classic cars”” then “someone who is passionate about collecting and restoring classic cars is younger than someone who is a wine connoisseur” otherwise “Eric is a wine connoisseur”. If “at least one person in the room is a wine connoisseur” then “Chris is a wine connoisseur”. “Eric is younger than Cecile” only if “Chris is a wine connoisseur”. Either “it is not the case that “Adam is younger than Eric”” or “Eric is younger than Jennifer” but not both. If “Eric is a wine connoisseur” then “Cecile is younger than Eric”. “Chris who is younger than Jennifer is younger than Adam” if “Chris is a wine connoisseur”. Chris is not passionate about collecting and restoring classic cars. Chris who is younger than Jennifer is younger than Adam. Chris is passionate about collecting and restoring classic cars or is a wine connoisseur or both. Eric is younger than Adam. Eric is passionate about collecting and restoring classic cars. Chris is a wine connoisseur. Someone who is passionate about collecting and restoring classic cars is younger than someone who is younger than Adam and is passionate about collecting and restoring classic cars.
More than one person in the room is a wine connoisseur.
neutral
room(chris)&room(eric)&(![X]:(room(X)=>(X='chris'|X='eric')))& (((~(is_passionate_about_collecting_and_restoring_classic_cars(chris)))=>(?[X,Y]:((is_passionate_about_collecting_and_restoring_classic_cars(X))&(is_a_wine_connoisseur(Y))&(younger(X,Y)))))&((~(~(is_passionate_about_collecting_and_restoring_classic_cars(chris))))=>(is_a_wine_connoisseur(eric))))& ((((?[X]:(room(X)&is_a_wine_connoisseur(X)))))=>(is_a_wine_connoisseur(chris)))& ((younger(cecile,eric))=>(is_a_wine_connoisseur(chris)))& ((~(younger(eric,adam)))<~>(younger(jennifer,eric)))& ((is_a_wine_connoisseur(eric))=>(younger(eric,cecile)))& ((is_a_wine_connoisseur(chris))=>((younger(jennifer,chris))&(younger(adam,chris))))& (is_not_passionate_about_collecting_and_restoring_classic_cars(chris))& ((younger(jennifer,chris))&(younger(adam,chris)))& (((is_passionate_about_collecting_and_restoring_classic_cars(chris))|(is_a_wine_connoisseur(chris))))& (younger(adam,eric))& (is_passionate_about_collecting_and_restoring_classic_cars(eric))& (is_a_wine_connoisseur(chris))& (?[X,Y]:((is_passionate_about_collecting_and_restoring_classic_cars(X))&(((younger(adam,Y))&(is_passionate_about_collecting_and_restoring_classic_cars(Y))))&(younger(X,Y))))
room(chris)&room(eric)&(![X]:(room(X)=>(X='chris'|X='eric')))& (?[X,Y]:(room(X)&room(Y)&(is_a_wine_connoisseur(X)&is_a_wine_connoisseur(Y))&(X!=Y)))
[]
null
0.50315
Deanna is the only person in the room. If “everyone in the room enjoys bird watching or does not practice zumba” then “if someone collects limited-edition art prints from contemporary artists then he/she is a wine connoisseur with a private cellar of vintage wines and vice versa”. “Deanna enjoys origami” if “it is not the case that “it is not the case that “Deanna enjoys rooftop gardening””” and vice versa. If “at least one person outside the room is a wine connoisseur with a private cellar of vintage wines” then “Deanna uses a Windows laptop”. If “someone in the room competes in national level swimming championships” then “everyone in the room who either enjoys fishing or is a dedicated advocate for digital privacy and encryption but not both enjoys windsurfing”. “No one in the room does not own an extensive assortment of vintage comic book memorabilia or does not travel domestically frequently” if “someone anywhere collects limited-edition art prints from contemporary artists or is a dedicated advocate for digital privacy and encryption or both” and vice versa. If “at least one person in the room owns a smartwatch” then “Deanna collects limited-edition art prints from contemporary artists”. If “it is not the case that “Deanna creates bespoke furniture pieces from reclaimed wood”” then “Deanna enjoys bird watching”. If “everyone in the room does not enjoy rooftop gardening or does not create bespoke furniture pieces from reclaimed wood” then “Deanna owns a smartwatch”. “Deanna travels domestically frequently” if “Deanna is not a dedicated advocate for digital privacy and encryption” and vice versa. “Deanna uses contact lenses” if “everyone outside the room collects historical artifacts related to ancient civilizations or does not travel domestically frequently” and vice versa. “Deanna is a client of Meta” if “at least one person in the room enjoys rooftop gardening” and vice versa. Deanna does not practice zumba.
Deanna is a wine connoisseur with a private cellar of vintage wines.
contradiction
room(deanna)&(![X]:(room(X)=>(X='deanna')))& ((![X]:(room(X)=>(((does_not_practice_zumba(X))|(enjoys_bird_watching(X))))))=>((![X]:((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& ((~(~(enjoys_rooftop_gardening(deanna))))<=>(enjoys_origami(deanna)))& ((((?[X]:(~room(X)&is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))=>(uses_a_Windows_laptop(deanna)))& ((?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))=>(![X]:(room(X)=>(((((enjoys_fishing(X))<~>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))=>(enjoys_windsurfing(X)))))))& ((?[X]:(anywhere(X)&(((collects_limited-edition_art_prints_from_contemporary_artists(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))<=>(~?[X]:(room(X)=>(((does_not_travel_domestically_frequently(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))& ((((?[X]:(room(X)&owns_a_smartwatch(X)))))=>(collects_limited-edition_art_prints_from_contemporary_artists(deanna)))& ((~(creates_bespoke_furniture_pieces_from_reclaimed_wood(deanna)))=>(enjoys_bird_watching(deanna)))& ((![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(does_not_enjoy_rooftop_gardening(X))))))=>(owns_a_smartwatch(deanna)))& ((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(deanna))<=>(travels_domestically_frequently(deanna)))& ((![X]:(~room(X)=>(((does_not_travel_domestically_frequently(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))<=>(uses_contact_lenses(deanna)))& ((((?[X]:(room(X)&enjoys_rooftop_gardening(X)))))<=>(is_a_client_of_Meta(deanna)))& ((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(deanna))|(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(deanna))))=>((![X]:((builds_model_airplanes(X))<=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& ((~![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(is_a_client_of_Meta(deanna)))& ((uses_contact_lenses(deanna))=>(~(~(~((competes_in_national_level_swimming_championships(deanna))|(does_enjoy_mountain_biking(deanna)))))))& (![X]:(~room(X)=>(((enjoys_windsurfing(X))=>(is_not_a_client_of_Meta(X))))))& (does_not_practice_zumba(deanna))& (![X]:(~room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(enjoys_origami(X))))))& ((![X]:((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))<=>(enjoys_making_ceramics(X)))))& (![X]:(room(X)=>(((((enjoys_fishing(X))<~>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(((enjoys_bird_watching(X))&(uses_a_Windows_laptop(X))))))))& (uses_contact_lenses(deanna))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(deanna))& (~(((?[X]:(room(X)&collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (is_a_client_of_Meta(deanna))& (((?[X]:(anywhere(X)&volunteers_for_local_environmental_conservation_projects(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(volunteers_for_local_environmental_conservation_projects(X))&(volunteers_for_local_environmental_conservation_projects(Y)))=>(X=Y)))))& (~(~(~((competes_in_national_level_swimming_championships(deanna))|(does_enjoy_mountain_biking(deanna))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(uses_contact_lenses(X))))))
room(deanna)&(![X]:(room(X)=>(X='deanna')))& is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(deanna)
[ "b4", "b42", "p0", "p1", "p5", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 1385308918134601546865255 % SZS output start Proof for 1385308918134601546865255 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (predf(X0) | ~predn(X0))) => ! [X0] : (predd(X0) <=> predh(X0)) [input p1] 49. ? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) <=> ~? [X0] : (room(X0) => (~predj(X0) | ~prede(X0))) [input p5] 60. ~predn(mary) [input p16] 73. predh(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 74. ! [X0] : (room(X0) => (predf(X0) | ~predn(X0))) => ! [X1] : (predd(X1) <=> predh(X1)) [rectify 45] 76. ? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) <=> ~? [X1] : (room(X1) => (~predj(X1) | ~prede(X1))) [rectify 49] 160. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 161. ! [X1] : (predd(X1) <=> predh(X1)) | ? [X0] : ((~predf(X0) & predn(X0)) & room(X0)) [ennf transformation 74] 162. ! [X1] : (predd(X1) <=> predh(X1)) | ? [X0] : (~predf(X0) & predn(X0) & room(X0)) [flattening 161] 164. ? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) <=> ! [X1] : ((predj(X1) & prede(X1)) & room(X1)) [ennf transformation 76] 165. ? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) <=> ! [X1] : (predj(X1) & prede(X1) & room(X1)) [flattening 164] 186. predh(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 73] 188. ! [X1] : ((predd(X1) | ~predh(X1)) & (predh(X1) | ~predd(X1))) | ? [X0] : (~predf(X0) & predn(X0) & room(X0)) [nnf transformation 162] 189. ! [X0] : ((predd(X0) | ~predh(X0)) & (predh(X0) | ~predd(X0))) | ? [X1] : (~predf(X1) & predn(X1) & room(X1)) [rectify 188] 190. ? [X1] : (~predf(X1) & predn(X1) & room(X1)) => (~predf(sK0) & predn(sK0) & room(sK0)) [choice axiom] 191. ! [X0] : ((predd(X0) | ~predh(X0)) & (predh(X0) | ~predd(X0))) | (~predf(sK0) & predn(sK0) & room(sK0)) [skolemisation 189,190] 193. (? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) | ? [X1] : (~predj(X1) | ~prede(X1) | ~room(X1))) & (! [X1] : (predj(X1) & prede(X1) & room(X1)) | ! [X0] : ((~predc(X0) & ~predd(X0)) | ~anywhere(X0))) [nnf transformation 165] 194. (? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) | ? [X1] : (~predj(X1) | ~prede(X1) | ~room(X1))) & (! [X2] : (predj(X2) & prede(X2) & room(X2)) | ! [X3] : ((~predc(X3) & ~predd(X3)) | ~anywhere(X3))) [rectify 193] 195. ? [X0] : ((predc(X0) | predd(X0)) & anywhere(X0)) => ((predc(sK1) | predd(sK1)) & anywhere(sK1)) [choice axiom] 196. ? [X1] : (~predj(X1) | ~prede(X1) | ~room(X1)) => (~predj(sK2) | ~prede(sK2) | ~room(sK2)) [choice axiom] 197. (((predc(sK1) | predd(sK1)) & anywhere(sK1)) | (~predj(sK2) | ~prede(sK2) | ~room(sK2))) & (! [X2] : (predj(X2) & prede(X2) & room(X2)) | ! [X3] : ((~predc(X3) & ~predd(X3)) | ~anywhere(X3))) [skolemisation 194,196,195] 214. anywhere(X0) [cnf transformation 5] 259. mary != paul [cnf transformation 43] 296. ~room(X0) | mary = X0 [cnf transformation 160] 300. predd(X0) | ~predh(X0) | room(sK0) [cnf transformation 191] 301. predd(X0) | ~predh(X0) | predn(sK0) [cnf transformation 191] 306. room(X2) | ~predd(X3) | ~anywhere(X3) [cnf transformation 197] 331. ~predn(mary) [cnf transformation 60] 349. predh(mary) [cnf transformation 186] 355. 2 <=> ! [X0] : (predd(X0) | ~predh(X0)) [avatar definition] 356. ~predh(X0) | predd(X0) <- (2) [avatar component clause 355] 359. 3 <=> predn(sK0) [avatar definition] 361. predn(sK0) <- (3) [avatar component clause 359] 362. 3 | 2 [avatar split clause 301,355,359] 364. 4 <=> room(sK0) [avatar definition] 366. room(sK0) <- (4) [avatar component clause 364] 367. 4 | 2 [avatar split clause 300,355,364] 423. 17 <=> ! [X3] : ~predd(X3) [avatar definition] 424. ~predd(X3) <- (17) [avatar component clause 423] 435. 19 <=> ! [X2] : room(X2) [avatar definition] 436. room(X2) <- (19) [avatar component clause 435] 438. room(X2) | ~predd(X3) [subsumption resolution 306,214] 439. 17 | 19 [avatar split clause 438,435,423] 557. mary = sK0 <- (4) [resolution 296,366] 597. ~predh(X0) <- (2, 17) [subsumption resolution 356,424] 599. $false <- (2, 17) [resolution 597,349] 600. ~2 | ~17 [avatar contradiction clause 599] 605. predn(mary) <- (3, 4) [forward demodulation 361,557] 606. $false <- (3, 4) [subsumption resolution 605,331] 607. ~3 | ~4 [avatar contradiction clause 606] 612. mary = X0 <- (19) [resolution 436,296] 652. mary != mary <- (19) [superposition 259,612] 668. $false <- (19) [trivial inequality removal 652] 669. ~19 [avatar contradiction clause 668] 670. $false [avatar sat refutation 362,367,439,600,607,669] % SZS output end Proof for 1385308918134601546865255 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.437811
Rene is the only person in the room. If someone enjoys spelunking then he/she develops open-source software projects in their free time and vice versa. If someone develops open-source software projects in their free time then he/she collects antique clocks and vice versa. Someone in the room develops open-source software projects in their free time. Rene does enjoy mountain biking. If someone enjoys spelunking then he/she volunteers for local environmental conservation projects. If someone is a skilled home brewer experimenting with craft beer recipes then he/she collects classic novels. Someone anywhere develops open-source software projects in their free time. If someone is a certified scuba diver with advanced underwater photography skills then he/she is an avid mountain climber who has scaled several peaks and vice versa. Someone outside the room can play the flute. Rene practices zumba. Rene is an avid mountain climber who has scaled several peaks. If someone can play the flute then he/she reads mystery novels and vice versa. Someone in the room plays video games. It is not the case that “it is not the case that “Rene collects antique clocks””. Rene collects vintage vinyl records. Someone in the room is a dedicated advocate for digital privacy and encryption. If someone is a skilled home brewer experimenting with craft beer recipes then he/she is a client of Costco. Everyone in the room who volunteers for local environmental conservation projects plays video games. At least one person in the room can play the flute. Everyone in the room who practices calligraphy plays video games. Rene is a skilled home brewer experimenting with craft beer recipes.
Rene reads mystery novels.
entailment
room(rene)&(![X]:(room(X)=>(X='rene')))& ((![X]:((enjoys_spelunking(X))<=>(develops_open-source_software_projects_in_their_free_time(X)))))& ((![X]:((develops_open-source_software_projects_in_their_free_time(X))<=>(collects_antique_clocks(X)))))& (?[X]:(room(X)&(develops_open-source_software_projects_in_their_free_time(X))))& (does_enjoy_mountain_biking(rene))& ((![X]:((enjoys_spelunking(X))=>(volunteers_for_local_environmental_conservation_projects(X)))))& ((![X]:((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(collects_classic_novels(X)))))& (?[X]:(anywhere(X)&(develops_open-source_software_projects_in_their_free_time(X))))& ((![X]:((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))& (?[X]:(~room(X)&(can_play_the_flute(X))))& (practices_zumba(rene))& (is_an_avid_mountain_climber_who_has_scaled_several_peaks(rene))& ((![X]:((can_play_the_flute(X))<=>(reads_mystery_novels(X)))))& (?[X]:(room(X)&(plays_video_games(X))))& (~(~(collects_antique_clocks(rene))))& (collects_vintage_vinyl_records(rene))& (?[X]:(room(X)&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))& ((![X]:((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(is_a_client_of_Costco(X)))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(plays_video_games(X))))))& (((?[X]:(room(X)&can_play_the_flute(X)))))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(plays_video_games(X))))))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(rene))
room(rene)&(![X]:(room(X)=>(X='rene')))& reads_mystery_novels(rene)
[ "p0", "p12", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 6946651462490842417869191 % SZS output start Proof for 6946651462490842417869191 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 56. ! [X0] : (predb(X0) <=> predo(X0)) [input p12] 63. ? [X0] : (predb(X0) & room(X0)) [input p19] 66. ~(predo(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 67. ! [X0] : (predb(X0) => predo(X0)) [unused predicate definition removal 56] 160. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 161. ! [X0] : (predo(X0) | ~predb(X0)) [ennf transformation 67] 162. ~predo(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 66] 172. ? [X0] : (predb(X0) & room(X0)) => (predb(sK4) & room(sK4)) [choice axiom] 173. predb(sK4) & room(sK4) [skolemisation 63,172] 174. ? [X0] : (mary != X0 & room(X0)) => (mary != sK5 & room(sK5)) [choice axiom] 175. ~predo(mary) | (mary != sK5 & room(sK5)) | ~room(mary) [skolemisation 162,174] 256. room(mary) [cnf transformation 160] 257. ~room(X0) | mary = X0 [cnf transformation 160] 261. ~predb(X0) | predo(X0) [cnf transformation 161] 264. room(sK4) [cnf transformation 173] 265. predb(sK4) [cnf transformation 173] 266. ~predo(mary) | room(sK5) | ~room(mary) [cnf transformation 175] 267. ~predo(mary) | mary != sK5 | ~room(mary) [cnf transformation 175] 268. ~predo(mary) | mary != sK5 [subsumption resolution 267,256] 270. 1 <=> mary = sK5 [avatar definition] 272. mary != sK5 <- (~1) [avatar component clause 270] 274. 2 <=> predo(mary) [avatar definition] 277. ~1 | ~2 [avatar split clause 268,274,270] 278. ~predo(mary) | room(sK5) [subsumption resolution 266,256] 280. 3 <=> room(sK5) [avatar definition] 282. room(sK5) <- (3) [avatar component clause 280] 283. 3 | ~2 [avatar split clause 278,274,280] 285. predo(sK4) [resolution 261,265] 290. mary = sK4 [resolution 257,264] 294. predo(mary) [backward demodulation 285,290] 299. 2 [avatar split clause 294,274] 300. mary = sK5 <- (3) [resolution 282,257] 301. $false <- (~1, 3) [subsumption resolution 300,272] 302. 1 | ~3 [avatar contradiction clause 301] 303. $false [avatar sat refutation 277,283,299,302] % SZS output end Proof for 6946651462490842417869191 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.457394
Todd is the only person in the room. If “Todd is a old tall quiet kind person or is a tall person or both” then “no one in the room who is not not quiet is a tall person”. Everyone in the room who either is quieter than Gladys or is older than Gladys but not both is kind. Gladys is older than Todd. Someone who is old is richer than someone who either is a kind tall person or is quieter than Gladys but not both. All tall person is kind. Everyone in the room is old only if they is a kind quiet tall person. Everyone in the room is a old tall person if they is a quiet person or is tall or both. Someone in the room is quiet.
Todd is tall.
contradiction
room(todd)&(![X]:(room(X)=>(X='todd')))& ((((old(todd)&tall(todd)&quiet(todd)&kind(todd)&person(todd))|(tall(todd)&person(todd))))=>(~?[X]:(room(X)=>(((~~quiet(X))=>(tall(X)&person(X)))))))& (![X]:(room(X)=>(((((quieter(gladys,X))<~>(older(gladys,X))))=>(kind(X))))))& (older(todd,gladys))& (?[X,Y]:((old(X))&(((kind(Y)&tall(Y)&person(Y))<~>(quieter(gladys,Y))))&(richer(X,Y))))& (![X]:(tall(X)=>kind(X)))& (![X]:(room(X)=>(((kind(X)&quiet(X)&tall(X)&person(X))<=(old(X))))))& (![X]:(room(X)=>(((((quiet(X)&person(X))|(tall(X))))=>(old(X)&tall(X)&person(X))))))& (?[X]:(room(X)&(quiet(X))))
room(todd)&(![X]:(room(X)=>(X='todd')))& tall(todd)
[ "b42", "p0", "p1", "p5", "p6", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2366647190881420065251311 % SZS output start Proof for 2366647190881420065251311 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ((person(mary) & tall(mary)) | (person(mary) & kind(mary) & quiet(mary) & tall(mary) & old(mary))) => ~? [X0] : (room(X0) => (quiet(X0) => (person(X0) & tall(X0)))) [input p1] 49. ! [X0] : (tall(X0) => kind(X0)) [input p5] 50. ! [X0] : (room(X0) => (old(X0) => (person(X0) & tall(X0) & quiet(X0) & kind(X0)))) [input p6] 51. ! [X0] : (room(X0) => ((tall(X0) | (person(X0) & quiet(X0))) => (person(X0) & tall(X0) & old(X0)))) [input p7] 52. ? [X0] : (quiet(X0) & room(X0)) [input p8] 53. tall(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 126. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 127. ! [X0] : (((~person(X0) | ~tall(X0)) & quiet(X0)) & room(X0)) | ((~person(mary) | ~tall(mary)) & (~person(mary) | ~kind(mary) | ~quiet(mary) | ~tall(mary) | ~old(mary))) [ennf transformation 45] 128. ! [X0] : ((~person(X0) | ~tall(X0)) & quiet(X0) & room(X0)) | ((~person(mary) | ~tall(mary)) & (~person(mary) | ~kind(mary) | ~quiet(mary) | ~tall(mary) | ~old(mary))) [flattening 127] 131. ! [X0] : (kind(X0) | ~tall(X0)) [ennf transformation 49] 132. ! [X0] : (((person(X0) & tall(X0) & quiet(X0) & kind(X0)) | ~old(X0)) | ~room(X0)) [ennf transformation 50] 133. ! [X0] : ((person(X0) & tall(X0) & quiet(X0) & kind(X0)) | ~old(X0) | ~room(X0)) [flattening 132] 134. ! [X0] : (((person(X0) & tall(X0) & old(X0)) | (~tall(X0) & (~person(X0) | ~quiet(X0)))) | ~room(X0)) [ennf transformation 51] 135. ! [X0] : ((person(X0) & tall(X0) & old(X0)) | (~tall(X0) & (~person(X0) | ~quiet(X0))) | ~room(X0)) [flattening 134] 136. tall(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 53] 143. ? [X0] : (quiet(X0) & room(X0)) => (quiet(sK2) & room(sK2)) [choice axiom] 144. quiet(sK2) & room(sK2) [skolemisation 52,143] 189. mary != paul [cnf transformation 43] 225. room(mary) [cnf transformation 126] 226. ~room(X0) | mary = X0 [cnf transformation 126] 227. room(X0) | ~person(mary) | ~kind(mary) | ~quiet(mary) | ~tall(mary) | ~old(mary) [cnf transformation 128] 242. ~tall(X0) | kind(X0) [cnf transformation 131] 246. ~room(X0) | ~old(X0) | person(X0) [cnf transformation 133] 248. ~tall(X0) | old(X0) | ~room(X0) [cnf transformation 135] 253. room(sK2) [cnf transformation 144] 254. quiet(sK2) [cnf transformation 144] 257. tall(mary) [cnf transformation 136] 259. 1 <=> tall(mary) [avatar definition] 260. tall(mary) <- (1) [avatar component clause 259] 263. 2 <=> person(mary) [avatar definition] 271. 4 <=> old(mary) [avatar definition] 275. 5 <=> quiet(mary) [avatar definition] 279. 6 <=> kind(mary) [avatar definition] 289. 8 <=> ! [X0] : room(X0) [avatar definition] 290. room(X0) <- (8) [avatar component clause 289] 292. ~4 | ~1 | ~5 | ~6 | ~2 | 8 [avatar split clause 227,289,263,279,275,259,271] 313. 1 [avatar split clause 257,259] 314. kind(mary) <- (1) [resolution 242,260] 316. 6 | ~1 [avatar split clause 314,259,279] 318. mary = sK2 [resolution 226,253] 320. quiet(mary) [backward demodulation 254,318] 321. 5 [avatar split clause 320,275] 325. ~old(mary) | person(mary) [resolution 246,225] 328. old(mary) | ~room(mary) <- (1) [resolution 248,260] 342. 2 | ~4 [avatar split clause 325,271,263] 343. old(mary) <- (1) [subsumption resolution 328,225] 344. 4 | ~1 [avatar split clause 343,259,271] 349. mary = X4 <- (8) [resolution 290,226] 394. mary != mary <- (8) [superposition 189,349] 410. $false <- (8) [trivial inequality removal 394] 411. ~8 [avatar contradiction clause 410] 412. $false [avatar sat refutation 292,313,316,321,342,344,411] % SZS output end Proof for 2366647190881420065251311 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0
There is a room. Everyone in the room who enjoys watercolor painting is an enthusiastic bird watcher who travels for rare sightings. Not everyone in the room is an enthusiastic bird watcher who travels for rare sightings only if they creates augmented reality experiences for mobile applications. Everyone in the room creates augmented reality experiences for mobile applications if they does not own a high-end gaming PC with custom-built components and owns a high-end gaming PC with custom-built components.
Everyone outside the room is an enthusiastic bird watcher who travels for rare sightings.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (~![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(room(X)=>(((((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(~room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=>(collects_action_figures(X))))))& (![X]:(~room(X)=>(((collects_action_figures(X))|(does_not_enjoy_watercolor_painting(X))))))& (![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& (?[X]:(room(X)&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))& (![X]:(room(X)=>(((collects_action_figures(X))=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(collects_action_figures(X))))))& (?[X]:(anywhere(X)&(enjoys_watercolor_painting(X))))
(there_is_a_room)& ![X]:(~room(X)=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))
[]
null
0.268136
There is a room. Everyone in the room who enjoys macrame is right-handed. Everyone outside the room who is right-handed watches fantasy movies. Someone outside the room writes a travel blog. Not everyone in the room enjoys macrame if they owns a microscope. Everyone outside the room who enjoys macrame practices zumba. Not everyone in the room who collects antique clocks owns an extensive assortment of vintage comic book memorabilia. No one anywhere practices tai chi if they enjoys deep-sea diving and exploring underwater caves. Everyone in the room plays the violin if they practices tai chi. Everyone in the room is right-handed if they plays the violin. Everyone in the room owns a microscope if they is right-handed. Not everyone in the room who reads mystery novels collects luxury watches. Not everyone in the room watches fantasy movies if they collects luxury watches.
Everyone in the room does not own an extensive assortment of vintage comic book memorabilia or collects luxury watches.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((enjoys_macrame(X))=>(is_right-handed(X))))))& (![X]:(~room(X)=>(((is_right-handed(X))=>(watches_fantasy_movies(X))))))& (?[X]:(~room(X)&(writes_a_travel_blog(X))))& (~![X]:(room(X)=>(((owns_a_microscope(X))=>(enjoys_macrame(X))))))& (![X]:(~room(X)=>(((enjoys_macrame(X))=>(practices_zumba(X))))))& (~![X]:(room(X)=>(((collects_antique_clocks(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (~?[X]:(anywhere(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(plays_the_violin(X))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(is_right-handed(X))))))& (![X]:(room(X)=>(((is_right-handed(X))=>(owns_a_microscope(X))))))& (~![X]:(room(X)=>(((reads_mystery_novels(X))=>(collects_luxury_watches(X))))))& (~![X]:(room(X)=>(((collects_luxury_watches(X))=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(practices_zumba(X))))))& (?[X]:(room(X)&(enjoys_macrame(X))))& (![X]:(room(X)=>(((enjoys_macrame(X))<=>(practices_kickboxing(X))))))& (?[X]:(room(X)&(practices_zumba(X))))& (![X]:(room(X)=>(((is_right-handed(X))=>(reads_mystery_novels(X))))))& (![X]:(~room(X)=>(((reads_mystery_novels(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(enjoys_macrame(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((collects_luxury_watches(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))
[]
null
0.027738
Bonnie, Laura, Sandra are the only persons in the room. Everyone outside the room is not a brave person. Everyone in the room is a old person. No happy person is quiet. Everyone in the room is not a quiet person or is a funny person or both. If someone is a calm person then he/she is not a humble person, is not a creative person and is not a wise person and vice versa. Everyone in the room is kind, is a patient person and is not a strong person. Everyone anywhere either is a curious person or is not a tall person but not both. Someone in the room is not a humble person. More than one person outside the room is a old person. Everyone in the room is not a creative person.
Sandra and Laura are quiet.
contradiction
room(bonnie)&room(laura)&room(sandra)&(![X]:(room(X)=>(X='bonnie'|X='laura'|X='sandra')))& (![X]:(~room(X)=>(~(brave(X)&person(X)))))& (![X]:(room(X)=>(old(X)&person(X))))& (~?[X]:(happy(X)=>quiet(X)))& (![X]:(room(X)=>(((~(quiet(X)&person(X)))|(funny(X)&person(X))))))& ((![X]:((calm(X)&person(X))<=>(((~(humble(X)&person(X)))&(~(creative(X)&person(X)))&(~(wise(X)&person(X))))))))& (![X]:(room(X)=>(((kind(X))&(patient(X)&person(X))&(~(strong(X)&person(X)))))))& (![X]:(anywhere(X)=>(((curious(X)&person(X))<~>(~(tall(X)&person(X)))))))& (?[X]:(room(X)&(~(humble(X)&person(X)))))& ((?[X,Y]:(~room(X)&~room(Y)&(old(X)&person(X)&old(Y)&person(Y))&(X!=Y))))& (![X]:(room(X)=>(~(creative(X)&person(X)))))
room(bonnie)&room(laura)&room(sandra)&(![X]:(room(X)=>(X='bonnie'|X='laura'|X='sandra')))& quiet(sandra)&quiet(laura)
[ "p3", "hypothesis" ]
% SZS status Unsatisfiable for 6428062138516133406270232 % SZS output start Proof for 6428062138516133406270232 47. ~? [X0] : (happy(X0) => quiet(X0)) [input p3] 55. quiet(paul) & quiet(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 60. ~? [X0] : quiet(X0) [pure predicate removal 47] 136. ! [X0] : ~quiet(X0) [ennf transformation 60] 145. quiet(paul) & quiet(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 146. quiet(paul) & quiet(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 145] 247. ~quiet(X0) [cnf transformation 136] 283. quiet(paul) [cnf transformation 146] 296. $false [subsumption resolution 283,247] % SZS output end Proof for 6428062138516133406270232 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.381941
There is a room. Everyone in the room cannot play the piano or can play the guitar. Everyone in the room cannot play the guitar or cannot play the piano. Everyone outside the room is curious or cannot play the guitar. If someone can play the guitar then he/she is not curious and vice versa. Everyone in the room cannot play the guitar or does not practice graffiti art. Everyone in the room is patient or cannot play the guitar. If someone is a cybersecurity expert then he/she can play the piano. Everyone anywhere cannot play the piano or can play the piano. Someone in the room is a wine connoisseur. Everyone in the room is not a wine connoisseur or is curious. All patient persons are curious. Everyone in the room is a cybersecurity expert or cannot play the piano. Not everyone in the room can play the piano if and only if they is curious. Everyone in the room is curious if and only if they is a client of Meta. All curious persons are quiet.
Everyone in the room is a wine connoisseur.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((can_play_the_guitar(X))|(cannot_play_the_piano(X))))))& (![X]:(room(X)=>(((cannot_play_the_piano(X))|(cannot_play_the_guitar(X))))))& (![X]:(~room(X)=>(((cannot_play_the_guitar(X))|(curious(X))))))& ((![X]:((can_play_the_guitar(X))<=>(~curious(X)))))& (![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(cannot_play_the_guitar(X))))))& (![X]:(room(X)=>(((cannot_play_the_guitar(X))|(patient(X))))))& ((![X]:((is_a_cybersecurity_expert(X))=>(can_play_the_piano(X)))))& (![X]:(anywhere(X)=>(((can_play_the_piano(X))|(cannot_play_the_piano(X))))))& (?[X]:(room(X)&(is_a_wine_connoisseur(X))))& (![X]:(room(X)=>(((curious(X))|(is_not_a_wine_connoisseur(X))))))& (![X]:(patient(X)=>curious(X)))& (![X]:(room(X)=>(((cannot_play_the_piano(X))|(is_a_cybersecurity_expert(X))))))& (~![X]:(room(X)=>(((can_play_the_piano(X))<=>(curious(X))))))& (![X]:(room(X)=>(((curious(X))<=>(is_a_client_of_Meta(X))))))& (![X]:(curious(X)=>quiet(X)))
(there_is_a_room)& ![X]:(room(X)=>(is_a_wine_connoisseur(X)))
[]
null
0.472826
Jane is the only person in the room. If 'Jane practices archery' then 'Jane participates in long-distance cycling events across the country' otherwise 'it is not the case that 'Jane reads mystery novels''. Jane hosts a YouTube channel dedicated to art tutorials, practices kickboxing or practices urban gardening. Jane enjoys spelunking, plays eSports competitively or does enjoy mountain biking. Jane is a Linux enthusiast, collects historical artifacts related to ancient civilizations or hosts a YouTube channel dedicated to art tutorials. It is not the case that 'Jane hosts a YouTube channel dedicated to art tutorials'.
Jane reads mystery novels.
neutral
room(jane)&(![X]:(room(X)=>(X='jane')))& (((practices_archery(jane))=>(participates_in_long-distance_cycling_events_across_the_country(jane)))&((~(practices_archery(jane)))=>(~(reads_mystery_novels(jane)))))& (((hosts_a_YouTube_channel_dedicated_to_art_tutorials(jane))|(practices_kickboxing(jane))|(practices_urban_gardening(jane))))& (((enjoys_spelunking(jane))|(plays_eSports_competitively(jane))|(does_enjoy_mountain_biking(jane))))& (((is_a_Linux_enthusiast(jane))|(collects_historical_artifacts_related_to_ancient_civilizations(jane))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(jane))))& (~(hosts_a_YouTube_channel_dedicated_to_art_tutorials(jane)))& ((![X]:((plays_eSports_competitively(X))<=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))<~>(does_enjoy_mountain_biking(X)))))))& (practices_urban_gardening(jane))& (practices_archery(jane))& (hosts_regular_workshops_on_creative_writing(jane))& (((designs_and_sews_custom_cosplay_costumes_for_conventions(jane))<~>(practices_archery(jane))))& (?[X]:(~room(X)&(enjoys_kayaking(X))))& ((![X]:((has_a_pet_dog(X))<=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))<~>(knows_morse_code(X)))))))& (is_a_cybersecurity_expert(jane))
room(jane)&(![X]:(room(X)=>(X='jane')))& reads_mystery_novels(jane)
[]
null
0.313785
Elizabeth is the only person in the room. 'At least one person in the room enjoys wildlife photography' unless 'it is not the case that 'Elizabeth enjoys spelunking''. If 'Elizabeth is dedicated to sustainable living and zero-waste practices' then 'Elizabeth enjoys spelunking'. 'Elizabeth enjoys landscape photography' unless 'it is not the case that 'Elizabeth enjoys wildlife photography''. Elizabeth enjoys spelunking. Only one person in the room enjoys spelunking. At least one person in the room is dedicated to sustainable living and zero-waste practices. Only one person in the room enjoys landscape photography.
Not everyone in the room enjoys spelunking.
contradiction
room(elizabeth)&(![X]:(room(X)=>(X='elizabeth')))& (~(~(enjoys_spelunking(elizabeth)))=>(((?[X]:(room(X)&enjoys_wildlife_photography(X))))))& ((is_dedicated_to_sustainable_living_and_zero-waste_practices(elizabeth))=>(enjoys_spelunking(elizabeth)))& (~(~(enjoys_wildlife_photography(elizabeth)))=>(enjoys_landscape_photography(elizabeth)))& (enjoys_spelunking(elizabeth))& (((?[X]:(room(X)&enjoys_spelunking(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_spelunking(X))&(enjoys_spelunking(Y)))=>(X=Y)))))& (((?[X]:(room(X)&is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))& (((?[X]:(room(X)&enjoys_landscape_photography(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_landscape_photography(X))&(enjoys_landscape_photography(Y)))=>(X=Y)))))
room(elizabeth)&(![X]:(room(X)=>(X='elizabeth')))& ~![X]:(room(X)=>(enjoys_spelunking(X)))
[ "p0", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 6784051110467956005574138 % SZS output start Proof for 6784051110467956005574138 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. predd(mary) [input p4] 52. ~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 55. ~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary) [rectify 52] 128. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 136. ? [X0] : (~predd(X0) & room(X0)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [ennf transformation 55] 146. ? [X0] : (~predd(X0) & room(X0)) => (~predd(sK4) & room(sK4)) [choice axiom] 147. (~predd(sK4) & room(sK4)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [skolemisation 136,146] 229. ~room(X0) | mary = X0 [cnf transformation 128] 234. predd(mary) [cnf transformation 48] 245. room(sK4) [cnf transformation 147] 246. ~predd(sK4) [cnf transformation 147] 248. 1 <=> predd(mary) [avatar definition] 249. predd(mary) <- (1) [avatar component clause 248] 275. 1 [avatar split clause 234,248] 281. mary = sK4 [resolution 229,245] 295. ~predd(mary) [backward demodulation 246,281] 296. $false <- (1) [subsumption resolution 295,249] 297. ~1 [avatar contradiction clause 296] 298. $false [avatar sat refutation 275,297] % SZS output end Proof for 6784051110467956005574138 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.417767
Mark, Jeanne, Jeffrey, Kim, Judith are the only persons in the room. "Someone in the room is a coffee connoisseur" if "not everyone in the room does not frequently participates in hackathons and coding competitions or writes poetry". If "no one in the room does not collect luxury watches or is not an expert in identifying and foraging wild edible plants" then "Mark uses an ios phone" otherwise "everyone in the room who has a curated collection of mid-century modern furniture owns a telescope". If "everyone in the room enjoys landscape photography" then "everyone in the room maintains a personal blog focused on cybersecurity tips if they neither does not have lived in exactly three countries nor is an avid collector of autographed memorabilia from famous musicians" otherwise "Mark is not a coffee connoisseur". "At least one person in the room is an expert in identifying and foraging wild edible plants, does not enjoy windsurfing or frequently participates in hackathons and coding competitions" if "everyone outside the room is not a night owl or is a coffee connoisseur" and vice versa. "Everyone anywhere who volunteers for local environmental conservation projects is an avid collector of autographed memorabilia from famous musicians" if "Mark enjoys origami". Mark is a coffee connoisseur. Mark practices kickboxing. It is not the case that "Mark enjoys wildlife photography". Everyone in the room who has a curated collection of mid-century modern furniture owns a telescope. Mark who either frequently participates in hackathons and coding competitions or can play the piano but not both volunteers for local environmental conservation projects. Mark volunteers for local environmental conservation projects. Mark does not maintain a personal blog focused on cybersecurity tips. Mark is an avid collector of autographed memorabilia from famous musicians. If someone does not enjoy windsurfing then he/she either enjoys wildlife photography or enjoys cross-country skiing but not both. Everyone in the room does not use an ios phone if they can play the piano and collects luxury watches.
Mark is a coffee connoisseur.
entailment
room(mark)&room(jeanne)&room(jeffrey)&room(kim)&room(judith)&(![X]:(room(X)=>(X='mark'|X='jeanne'|X='jeffrey'|X='kim'|X='judith')))& ((~![X]:(room(X)=>(((writes_poetry(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))=>(?[X]:(room(X)&(is_a_coffee_connoisseur(X)))))& (((~?[X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_collect_luxury_watches(X))))))=>(uses_an_ios_phone(mark)))&((~(~?[X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_collect_luxury_watches(X)))))))=>(![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(owns_a_telescope(X))))))))& (((![X]:(room(X)=>(enjoys_landscape_photography(X))))=>(![X]:(room(X)=>(((~((does_not_have_lived_in_exactly_three_countries(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))&((~(![X]:(room(X)=>(enjoys_landscape_photography(X)))))=>(is_not_a_coffee_connoisseur(mark))))& ((![X]:(~room(X)=>(((is_a_coffee_connoisseur(X))|(is_not_a_night_owl(X))))))<=>(((?[X]:(room(X)&((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_enjoy_windsurfing(X))|(frequently_participates_in_hackathons_and_coding_competitions(X))))))))& ((enjoys_origami(mark))=>(![X]:(anywhere(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))& (is_a_coffee_connoisseur(mark))& (practices_kickboxing(mark))& (~(enjoys_wildlife_photography(mark)))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(owns_a_telescope(X))))))& ((((frequently_participates_in_hackathons_and_coding_competitions(mark))<~>(can_play_the_piano(mark))))&(volunteers_for_local_environmental_conservation_projects(mark)))& (volunteers_for_local_environmental_conservation_projects(mark))& (does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(mark))& (is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(mark))& ((![X]:((does_not_enjoy_windsurfing(X))=>(((enjoys_wildlife_photography(X))<~>(enjoys_cross-country_skiing(X)))))))& (![X]:(room(X)=>(((((can_play_the_piano(X))&(collects_luxury_watches(X))))=>(does_not_use_an_ios_phone(X))))))& (![X]:(room(X)=>(((does_not_use_an_ios_phone(X))<=>(enjoys_landscape_photography(X))))))& (?[X]:(room(X)&(is_a_coffee_connoisseur(X))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(((collects_luxury_watches(X))<~>(enjoys_cross-country_skiing(X))))))))& (is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(mark))& (![X]:(room(X)=>(((~((does_not_have_lived_in_exactly_three_countries(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (((uses_an_ios_phone(mark))<~>(enjoys_cross-country_skiing(mark))))& (enjoys_origami(mark))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(((practices_kickboxing(X))|(owns_a_telescope(X))))))))& (![X]:(~room(X)=>(((((practices_kickboxing(X))|(owns_a_telescope(X))))=>(enjoys_wildlife_photography(X))))))& (collects_luxury_watches(mark))& (writes_poetry(mark))& (((mentors_a_youth_basketball_team_on_weekends(mark))&(enjoys_landscape_photography(mark))&(has_lived_in_exactly_three_countries(mark))))& (![X]:(anywhere(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_collect_vintage_stamps(X))))))& (~![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(enjoys_windsurfing(X))))))
room(mark)&room(jeanne)&room(jeffrey)&room(kim)&room(judith)&(![X]:(room(X)=>(X='mark'|X='jeanne'|X='jeffrey'|X='kim'|X='judith')))& is_a_coffee_connoisseur(mark)
[ "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 6010956521502278067874928 % SZS output start Proof for 6010956521502278067874928 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. predc(mary) [input p6] 75. ~(predc(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 170. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 171. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 170] 187. ~predc(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 75] 188. ~predc(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 187] 211. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK6 & alice != sK6 & fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 212. ~predc(mary) | (john != sK6 & alice != sK6 & fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 188,211] 293. room(mary) [cnf transformation 171] 294. room(paul) [cnf transformation 171] 295. room(fred) [cnf transformation 171] 296. room(alice) [cnf transformation 171] 297. room(john) [cnf transformation 171] 298. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 171] 310. predc(mary) [cnf transformation 50] 333. ~predc(mary) | room(sK6) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 334. ~predc(mary) | mary != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 335. ~predc(mary) | paul != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 336. ~predc(mary) | fred != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 337. ~predc(mary) | alice != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 338. ~predc(mary) | john != sK6 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 212] 360. 6 <=> predc(mary) [avatar definition] 417. 6 [avatar split clause 310,360] 434. ~predc(mary) | john != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,297] 435. ~predc(mary) | john != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 434,296] 436. ~predc(mary) | john != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 435,295] 437. ~predc(mary) | john != sK6 | ~room(mary) [subsumption resolution 436,294] 438. ~predc(mary) | john != sK6 [subsumption resolution 437,293] 440. 22 <=> john = sK6 [avatar definition] 442. john != sK6 <- (~22) [avatar component clause 440] 443. ~22 | ~6 [avatar split clause 438,360,440] 444. ~predc(mary) | alice != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,297] 445. ~predc(mary) | alice != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 444,296] 446. ~predc(mary) | alice != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 445,295] 447. ~predc(mary) | alice != sK6 | ~room(mary) [subsumption resolution 446,294] 448. ~predc(mary) | alice != sK6 [subsumption resolution 447,293] 450. 23 <=> alice = sK6 [avatar definition] 452. alice != sK6 <- (~23) [avatar component clause 450] 453. ~23 | ~6 [avatar split clause 448,360,450] 454. ~predc(mary) | fred != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 336,297] 455. ~predc(mary) | fred != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 454,296] 456. ~predc(mary) | fred != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 455,295] 457. ~predc(mary) | fred != sK6 | ~room(mary) [subsumption resolution 456,294] 458. ~predc(mary) | fred != sK6 [subsumption resolution 457,293] 460. 24 <=> fred = sK6 [avatar definition] 462. fred != sK6 <- (~24) [avatar component clause 460] 463. ~24 | ~6 [avatar split clause 458,360,460] 464. ~predc(mary) | paul != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 335,297] 465. ~predc(mary) | paul != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 464,296] 466. ~predc(mary) | paul != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 465,295] 467. ~predc(mary) | paul != sK6 | ~room(mary) [subsumption resolution 466,294] 468. ~predc(mary) | paul != sK6 [subsumption resolution 467,293] 470. 25 <=> paul = sK6 [avatar definition] 472. paul != sK6 <- (~25) [avatar component clause 470] 473. ~25 | ~6 [avatar split clause 468,360,470] 474. ~predc(mary) | mary != sK6 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 334,297] 475. ~predc(mary) | mary != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 474,296] 476. ~predc(mary) | mary != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 475,295] 477. ~predc(mary) | mary != sK6 | ~room(mary) [subsumption resolution 476,294] 478. ~predc(mary) | mary != sK6 [subsumption resolution 477,293] 480. 26 <=> mary = sK6 [avatar definition] 482. mary != sK6 <- (~26) [avatar component clause 480] 483. ~26 | ~6 [avatar split clause 478,360,480] 484. ~predc(mary) | room(sK6) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 333,297] 485. ~predc(mary) | room(sK6) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 484,296] 486. ~predc(mary) | room(sK6) | ~room(paul) | ~room(mary) [subsumption resolution 485,295] 487. ~predc(mary) | room(sK6) | ~room(mary) [subsumption resolution 486,294] 488. ~predc(mary) | room(sK6) [subsumption resolution 487,293] 490. 27 <=> room(sK6) [avatar definition] 492. room(sK6) <- (27) [avatar component clause 490] 493. 27 | ~6 [avatar split clause 488,360,490] 607. alice = sK6 | fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (27) [resolution 298,492] 671. fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (~23, 27) [subsumption resolution 607,452] 672. paul = sK6 | mary = sK6 | john = sK6 <- (~23, ~24, 27) [subsumption resolution 671,462] 673. mary = sK6 | john = sK6 <- (~23, ~24, ~25, 27) [subsumption resolution 672,472] 674. john = sK6 <- (~23, ~24, ~25, ~26, 27) [subsumption resolution 673,482] 675. $false <- (~22, ~23, ~24, ~25, ~26, 27) [subsumption resolution 674,442] 676. 22 | 23 | 24 | 25 | 26 | ~27 [avatar contradiction clause 675] 677. $false [avatar sat refutation 417,443,453,463,473,483,493,676] % SZS output end Proof for 6010956521502278067874928 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.094067
Henry, Ella, Erica, Aaron are the only persons in the room. If “Erica either enjoys spelunking or collects vintage stamps but not both” then “Jennifer and Aaron like each other”. If “everyone in the room does not enjoy stand-up paddleboarding or is a generous person” then ““A door does not randomly teleport those who pass through it.” and “A bridge does not sing when it is crossed.” and “A car runs solely on saltwater.””. If ““A door does not randomly teleport those who pass through it.” and “A bridge does not sing when it is crossed.” and “A car runs solely on saltwater.”” then “no quiet person is brave”. If “Tonya is a sibling of Aaron” then “Tonya and Henry hate each other”. If ““A door does not randomly teleport those who pass through it.” and “A bridge does not sing when it is crossed.” and “A door randomly teleports those who pass through it.”” then ““A car runs solely on saltwater.” and “A city has outlawed the use of round tables.” and “A door does not randomly teleport those who pass through it.””. If ““A car runs solely on saltwater.” and “A city has outlawed the use of round tables.” and “A door does not randomly teleport those who pass through it.”” then “no generous person is patient”. It is not the case that “Erica makes homemade pastries”. If someone plays as a goalkeeper for a local amateur soccer team then he/she drives a hybrid car and vice versa. Neither “A tower leans significantly but never falls.” nor “A city has outlawed the use of round tables.”. Erica enjoys landscape photography. Everyone anywhere does not collect first edition books if they is a generous person. Erica is a culinary enthusiast who experiments with international cuisines. All funny persons are curious. All humble persons are quiet. Aaron is a drone photographer. All curious persons are humble.
Erica enjoys landscape photography.
entailment
room(henry)&room(ella)&room(erica)&room(aaron)&(![X]:(room(X)=>(X='henry'|X='ella'|X='erica'|X='aaron')))& ((((enjoys_spelunking(erica))<~>(collects_vintage_stamps(erica))))=>((like(jennifer,aaron) & like(aaron,jennifer))))& (((![X]:(room(X)=>(((generous(X)&person(X))|(does_not_enjoy_stand-up_paddleboarding(X))))))=>(((A_door_does_not_randomly_teleport_those_who_pass_through_it.)&(A_bridge_does_not_sing_when_it_is_crossed.)&(A_car_runs_solely_on_saltwater.))))& ((((A_door_does_not_randomly_teleport_those_who_pass_through_it.)&(A_bridge_does_not_sing_when_it_is_crossed.)&(A_car_runs_solely_on_saltwater.)))=>(~?[X]:(quiet(X)=>brave(X)))))& ((sibling(aaron,tonya))=>((hate(tonya,henry) & hate(henry,tonya))))& (((((A_door_does_not_randomly_teleport_those_who_pass_through_it.)&(A_bridge_does_not_sing_when_it_is_crossed.)&(A_door_randomly_teleports_those_who_pass_through_it.)))=>(((A_car_runs_solely_on_saltwater.)&(A_city_has_outlawed_the_use_of_round_tables.)&(A_door_does_not_randomly_teleport_those_who_pass_through_it.))))& ((((A_car_runs_solely_on_saltwater.)&(A_city_has_outlawed_the_use_of_round_tables.)&(A_door_does_not_randomly_teleport_those_who_pass_through_it.)))=>(~?[X]:(generous(X)=>patient(X)))))& (~(makes_homemade_pastries(erica)))& ((![X]:((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=>(drives_a_hybrid_car(X)))))& (~((A_tower_leans_significantly_but_never_falls.)|(A_city_has_outlawed_the_use_of_round_tables.)))& (enjoys_landscape_photography(erica))& (![X]:(anywhere(X)=>(((generous(X)&person(X))=>(does_not_collect_first_edition_books(X))))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(erica))& (![X]:(funny(X)=>curious(X)))& (![X]:(humble(X)=>quiet(X)))& (is_a_drone_photographer(aaron))& (![X]:(curious(X)=>humble(X)))
room(henry)&room(ella)&room(erica)&room(aaron)&(![X]:(room(X)=>(X='henry'|X='ella'|X='erica'|X='aaron')))& enjoys_landscape_photography(erica)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 109510363774809962476422 % SZS output start Proof for 109510363774809962476422 44. ! [X0] : (curious(X0) => humble(X0)) & predv(alice) & ! [X0] : (humble(X0) => quiet(X0)) & ! [X0] : (funny(X0) => curious(X0)) & predt(fred) & ! [X0] : (anywhere(X0) => ((person(X0) & generous(X0)) => ~predz(X0))) & predb(fred) & ~(propositionc | propositione) & ! [X0] : (preds(X0) <=> predc(X0)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X0] : (generous(X0) => patient(X0))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X0] : (quiet(X0) => brave(X0))) & (! [X0] : (room(X0) => (~predj(X0) | (person(X0) & generous(X0)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predb(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (curious(X0) => humble(X0)) & predv(alice) & ! [X1] : (humble(X1) => quiet(X1)) & ! [X2] : (funny(X2) => curious(X2)) & predt(fred) & ! [X3] : (anywhere(X3) => ((person(X3) & generous(X3)) => ~predz(X3))) & predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (curious(X0) => humble(X0)) & ! [X1] : (humble(X1) => quiet(X1)) & ! [X2] : (funny(X2) => curious(X2)) & predt(fred) & ! [X3] : (anywhere(X3) => ((person(X3) & generous(X3)) => ~predz(X3))) & predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (curious(X0) => humble(X0)) & ! [X1] : (humble(X1) => quiet(X1)) & predt(fred) & ! [X3] : (anywhere(X3) => ((person(X3) & generous(X3)) => ~predz(X3))) & predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X1] : (humble(X1) => quiet(X1)) & predt(fred) & ! [X3] : (anywhere(X3) => ((person(X3) & generous(X3)) => ~predz(X3))) & predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. predt(fred) & ! [X3] : (anywhere(X3) => ((person(X3) & generous(X3)) => ~predz(X3))) & predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X3] : (anywhere(X3) => ((person(X3) & generous(X3)) => ~predz(X3))) & predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. predb(fred) & ~(propositionc | propositione) & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 54. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ~predm(fred) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 55. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) => ~? [X5] : (generous(X5) => patient(X5))) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) => ~? [X5] : ~generous(X5)) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : (quiet(X6) => brave(X6))) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) => ~? [X5] : ~generous(X5)) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : ~quiet(X6)) & (! [X7] : (room(X7) => (~predj(X7) | (person(X7) & generous(X7)))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) => ~? [X5] : ~generous(X5)) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : ~quiet(X6)) & (! [X7] : (room(X7) => (person(X7) & generous(X7))) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 61. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) => ~? [X5] : ~generous(X5)) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : ~quiet(X6)) & (! [X7] : ~room(X7) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 58] 62. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((propositiond & ~propositiona & ~propositiond) => (~propositiond & propositionc & propositionb)) & (sibling(alice,lucy) => (hate(mary,lucy) & hate(lucy,mary))) & ((propositionb & ~propositiona & ~propositiond) => ~? [X6] : ~quiet(X6)) & (! [X7] : ~room(X7) => (propositionb & ~propositiona & ~propositiond)) & ((predd(fred) <~> predq(fred)) => (like(alice,john) & like(john,alice))) & ! [X8] : (room(X8) => (alice = X8 | fred = X8 | paul = X8 | mary = X8)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 61] 134. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) | (~propositiond | propositiona | propositiond)) & ((hate(mary,lucy) & hate(lucy,mary)) | ~sibling(alice,lucy)) & (! [X6] : quiet(X6) | (~propositionb | propositiona | propositiond)) & ((propositionb & ~propositiona & ~propositiond) | ? [X7] : room(X7)) & ((like(alice,john) & like(john,alice)) | (predd(fred) <=> predq(fred))) & ! [X8] : ((alice = X8 | fred = X8 | paul = X8 | mary = X8) | ~room(X8)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 135. predb(fred) & ~propositionc & ! [X4] : (preds(X4) <=> predc(X4)) & ((~propositiond & propositionc & propositionb) | ~propositiond | propositiona | propositiond) & ((hate(mary,lucy) & hate(lucy,mary)) | ~sibling(alice,lucy)) & (! [X6] : quiet(X6) | ~propositionb | propositiona | propositiond) & ((propositionb & ~propositiona & ~propositiond) | ? [X7] : room(X7)) & ((like(alice,john) & like(john,alice)) | (predd(fred) <=> predq(fred))) & ! [X8] : (alice = X8 | fred = X8 | paul = X8 | mary = X8 | ~room(X8)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134] 136. ~predb(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 137. ~predb(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 136] 139. predb(fred) & ~propositionc & ! [X4] : ((preds(X4) | ~predc(X4)) & (predc(X4) | ~preds(X4))) & ((~propositiond & propositionc & propositionb) | ~propositiond | propositiona | propositiond) & ((hate(mary,lucy) & hate(lucy,mary)) | ~sibling(alice,lucy)) & (! [X6] : quiet(X6) | ~propositionb | propositiona | propositiond) & ((propositionb & ~propositiona & ~propositiond) | ? [X7] : room(X7)) & ((like(alice,john) & like(john,alice)) | ((predd(fred) | ~predq(fred)) & (predq(fred) | ~predd(fred)))) & ! [X8] : (alice = X8 | fred = X8 | paul = X8 | mary = X8 | ~room(X8)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 135] 140. predb(fred) & ~propositionc & ! [X0] : ((preds(X0) | ~predc(X0)) & (predc(X0) | ~preds(X0))) & ((~propositiond & propositionc & propositionb) | ~propositiond | propositiona | propositiond) & ((hate(mary,lucy) & hate(lucy,mary)) | ~sibling(alice,lucy)) & (! [X1] : quiet(X1) | ~propositionb | propositiona | propositiond) & ((propositionb & ~propositiona & ~propositiond) | ? [X2] : room(X2)) & ((like(alice,john) & like(john,alice)) | ((predd(fred) | ~predq(fred)) & (predq(fred) | ~predd(fred)))) & ! [X3] : (alice = X3 | fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 139] 141. ? [X2] : room(X2) => room(sK0) [choice axiom] 142. predb(fred) & ~propositionc & ! [X0] : ((preds(X0) | ~predc(X0)) & (predc(X0) | ~preds(X0))) & ((~propositiond & propositionc & propositionb) | ~propositiond | propositiona | propositiond) & ((hate(mary,lucy) & hate(lucy,mary)) | ~sibling(alice,lucy)) & (! [X1] : quiet(X1) | ~propositionb | propositiona | propositiond) & ((propositionb & ~propositiona & ~propositiond) | room(sK0)) & ((like(alice,john) & like(john,alice)) | ((predd(fred) | ~predq(fred)) & (predq(fred) | ~predd(fred)))) & ! [X3] : (alice = X3 | fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 140,141] 143. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 144. ~predb(fred) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 137,143] 227. room(mary) [cnf transformation 142] 228. room(paul) [cnf transformation 142] 229. room(fred) [cnf transformation 142] 230. room(alice) [cnf transformation 142] 231. ~room(X3) | fred = X3 | paul = X3 | mary = X3 | alice = X3 [cnf transformation 142] 248. predb(fred) [cnf transformation 142] 249. ~predb(fred) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 250. ~predb(fred) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 251. ~predb(fred) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 252. ~predb(fred) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 253. ~predb(fred) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 312. alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 253,248] 313. alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 312,230] 314. alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 313,229] 315. alice != sK1 | ~room(mary) [subsumption resolution 314,228] 316. alice != sK1 [subsumption resolution 315,227] 317. fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 252,248] 318. fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 317,230] 319. fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 318,229] 320. fred != sK1 | ~room(mary) [subsumption resolution 319,228] 321. fred != sK1 [subsumption resolution 320,227] 322. paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 251,248] 323. paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 322,230] 324. paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 323,229] 325. paul != sK1 | ~room(mary) [subsumption resolution 324,228] 326. paul != sK1 [subsumption resolution 325,227] 327. mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 250,248] 328. mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 327,230] 329. mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 328,229] 330. mary != sK1 | ~room(mary) [subsumption resolution 329,228] 331. mary != sK1 [subsumption resolution 330,227] 332. room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 249,248] 333. room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 332,230] 334. room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 333,229] 335. room(sK1) | ~room(mary) [subsumption resolution 334,228] 336. room(sK1) [subsumption resolution 335,227] 383. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 [resolution 231,336] 384. paul = sK1 | mary = sK1 | alice = sK1 [subsumption resolution 383,321] 385. mary = sK1 | alice = sK1 [subsumption resolution 384,326] 386. alice = sK1 [subsumption resolution 385,331] 387. $false [subsumption resolution 386,316] % SZS output end Proof for 109510363774809962476422 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.024 s % ------------------------------ % ------------------------------
0.203354
There is a room. Everyone anywhere does not collect comic books if they does not make homemade pastries or does not practice pilates or both. Everyone in the room is not an avid mountain climber who has scaled several peaks or collects vintage vinyl records or both if they does not collect comic books. Daniel dreamt that “everyone outside the room is an avid mountain climber who has scaled several peaks, owns a high-end gaming PC with custom-built components and does not collect vintage vinyl records”. Everyone outside the room does not collect comic books if they practices graffiti art. Everyone in the room does not collect comic books only if they makes homemade pastries, does not play eSports competitively or collects action figures. Everyone in the room is a dedicated advocate for digital privacy and encryption. No one in the room collects comic books if they practices pilates, does not collect action figures or does not practice zumba. Everyone in the room does not maintain a large, organic vegetable garden year-round, does not create large-scale murals for public art installations or does not collect rare minerals. Everyone in the room does not maintain a large, organic vegetable garden year-round if they collects classic novels. Everyone in the room hosts a popular podcast about emerging technologies. Everyone in the room practices zumba. Everyone in the room does not practice graffiti art or is a skilled home brewer experimenting with craft beer recipes or both if they does not practice zumba. Everyone in the room does not practice graffiti art or is a skilled home brewer experimenting with craft beer recipes or both only if they does not maintain a large, organic vegetable garden year-round. Everyone in the room is not a skilled home brewer experimenting with craft beer recipes, does not enjoy coding in Python or enjoys macrame if they does not design and sews custom cosplay costumes for conventions or is not a skilled home brewer experimenting with craft beer recipes or both. Everyone in the room either does not practice tai chi or practices pilates but not both. No one in the room practices graffiti art if they does not collect classic novels and is a member of a local theater group specializing in improv. Everyone in the room does not collect action figures if they practices graffiti art. Everyone in the room who does not collect action figures plays the violin or owns a high-end gaming PC with custom-built components or both. Everyone outside the room plays the violin or owns a high-end gaming PC with custom-built components or both if and only if they plays eSports competitively.
Everyone in the room maintains a large, organic vegetable garden year-round.
contradiction
(there_is_a_room)& (![X]:(anywhere(X)=>(((((does_not_make_homemade_pastries(X))|(does_not_practice_pilates(X))))=>(does_not_collect_comic_books(X))))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(collects_vintage_vinyl_records(X))))))))& ((daniel_dream=>(![X]:(~room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))&(does_not_collect_vintage_vinyl_records(X))))))))& (![X]:(~room(X)=>(((practices_graffiti_art(X))=>(does_not_collect_comic_books(X))))))& (![X]:(room(X)=>(((((makes_homemade_pastries(X))|(does_not_play_eSports_competitively(X))|(collects_action_figures(X))))<=(does_not_collect_comic_books(X))))))& (![X]:(room(X)=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))& (~?[X]:(room(X)=>(((((practices_pilates(X))|(does_not_collect_action_figures(X))|(does_not_practice_zumba(X))))=>(collects_comic_books(X))))))& (![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(does_not_create_large-scale_murals_for_public_art_installations(X))|(does_not_collect_rare_minerals(X))))))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(hosts_a_popular_podcast_about_emerging_technologies(X))))& (![X]:(room(X)=>(practices_zumba(X))))& (![X]:(room(X)=>(((does_not_practice_zumba(X))=>(((does_not_practice_graffiti_art(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& (![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))<=(((does_not_practice_graffiti_art(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& (![X]:(room(X)=>(((((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_enjoy_coding_in_Python(X))|(enjoys_macrame(X))))))))& (![X]:(room(X)=>(((does_not_practice_tai_chi(X))<~>(practices_pilates(X))))))& (~?[X]:(room(X)=>(((((does_not_collect_classic_novels(X))&(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))=>(practices_graffiti_art(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(does_not_collect_action_figures(X))))))& (![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(((plays_the_violin(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))& (![X]:(~room(X)=>(((((plays_the_violin(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))<=>(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(does_not_practice_pilates(X))))))
(there_is_a_room)& ![X]:(room(X)=>(maintains_a_large,_organic_vegetable_garden_year-round(X)))
[ "p7", "p13", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 5900836333152457768108638 % SZS output start Proof for 5900836333152457768108638 51. ~? [X0] : (room(X0) => ((~predi(X0) | ~predf(X0) | predn(X0)) => predj(X0))) [input p7] 57. ! [X0] : (room(X0) => ((predr(X0) | ~prede(X0)) => ~predc(X0))) [input p13] 60. ~? [X0] : (room(X0) => ((predh(X0) & ~predw(X0)) => prede(X0))) [input p16] 65. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 66. ~? [X0] : (room(X0) => (~predw(X0) => prede(X0))) [pure predicate removal 60] 70. ~? [X0] : (room(X0) => prede(X0)) [pure predicate removal 66] 77. ~? [X0] : (room(X0) => ~(~predi(X0) | ~predf(X0) | predn(X0))) [pure predicate removal 51] 81. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 65] 154. ! [X0] : ((~predi(X0) | ~predf(X0) | predn(X0)) & room(X0)) [ennf transformation 77] 158. ! [X0] : ((~predc(X0) | (~predr(X0) & prede(X0))) | ~room(X0)) [ennf transformation 57] 159. ! [X0] : (~predc(X0) | (~predr(X0) & prede(X0)) | ~room(X0)) [flattening 158] 161. ! [X0] : (~prede(X0) & room(X0)) [ennf transformation 70] 169. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 81] 254. room(X0) [cnf transformation 154] 258. ~predc(X0) | prede(X0) | ~room(X0) [cnf transformation 159] 263. ~prede(X0) [cnf transformation 161] 270. predc(X0) | ~room(X0) [cnf transformation 169] 273. ~predc(X0) | prede(X0) [subsumption resolution 258,254] 278. predc(X0) [subsumption resolution 270,254] 279. prede(X0) [resolution 273,278] 280. $false [subsumption resolution 279,263] % SZS output end Proof for 5900836333152457768108638 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.020 s % ------------------------------ % ------------------------------
0.260257
There is a room. If “everyone in the room owns a microscope” then “everyone in the room who is a drone photographer has a saltwater aquarium”. If “everyone outside the room collects modern art or cannot play the piano” then “everyone in the room does not host regular game nights featuring complex strategy games or collects modern art”. If “everyone in the room does not host regular game nights featuring complex strategy games or collects modern art” then “everyone in the room does not collect first edition books if they does not host regular game nights featuring complex strategy games”. Either “everyone in the room hosts regular game nights featuring complex strategy games or does not own a microscope” or “everyone in the room writes and illustrates their own graphic novels or does not own a microscope” but not both. “No one in the room does enjoy mountain biking if they writes and illustrates their own graphic novels” unless “everyone in the room writes and illustrates their own graphic novels or does not design and sews custom cosplay costumes for conventions”. If “everyone in the room does not design and sews custom cosplay costumes for conventions or does not collect first edition books” then “everyone outside the room collects first edition books if they does not design and sews custom cosplay costumes for conventions”. Everyone in the room who does not have a piercing is not a drone photographer. Not everyone in the room writes and illustrates their own graphic novels or collects first edition books or both if they is not a drone photographer. Not everyone outside the room designs and sews custom cosplay costumes for conventions, hosts regular game nights featuring complex strategy games and collects vintage stamps if they writes and illustrates their own graphic novels or collects first edition books or both. Everyone in the room does not have a saltwater aquarium or owns an extensive assortment of vintage comic book memorabilia. Everyone in the room owns a microscope or does not write and illustrates their own graphic novels.
Everyone in the room designs and sews custom cosplay costumes for conventions or does not design and sews custom cosplay costumes for conventions.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(owns_a_microscope(X))))=>(![X]:(room(X)=>(((is_a_drone_photographer(X))=>(has_a_saltwater_aquarium(X)))))))& (((![X]:(~room(X)=>(((cannot_play_the_piano(X))|(collects_modern_art(X))))))=>(![X]:(room(X)=>(((collects_modern_art(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X)))))))& ((![X]:(room(X)=>(((collects_modern_art(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))=>(![X]:(room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))=>(does_not_collect_first_edition_books(X))))))))& ((![X]:(room(X)=>(((does_not_own_a_microscope(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))<~>(![X]:(room(X)=>(((does_not_own_a_microscope(X))|(writes_and_illustrates_their_own_graphic_novels(X)))))))& (~(![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(writes_and_illustrates_their_own_graphic_novels(X))))))=>(~?[X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(does_enjoy_mountain_biking(X)))))))& ((![X]:(room(X)=>(((does_not_collect_first_edition_books(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>(![X]:(~room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))=>(collects_first_edition_books(X)))))))& (![X]:(room(X)=>(((does_not_have_a_piercing(X))=>(is_not_a_drone_photographer(X))))))& (~![X]:(room(X)=>(((is_not_a_drone_photographer(X))=>(((writes_and_illustrates_their_own_graphic_novels(X))|(collects_first_edition_books(X))))))))& (~![X]:(~room(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))|(collects_first_edition_books(X))))=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(hosts_regular_game_nights_featuring_complex_strategy_games(X))&(collects_vintage_stamps(X))))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_have_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(owns_a_microscope(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(does_not_enjoy_making_ceramics(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 489677750335496730593274 % SZS output start Proof for 489677750335496730593274 44. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X0] : (room(X0) => (predg(X0) => predh(X0))) & ! [X0] : (room(X0) => (predg(X0) | ~predl(X0))) & ! [X0] : (room(X0) => (~preda(X0) | predi(X0))) & ~! [X0] : (~room(X0) => ((predc(X0) | predl(X0)) => (prede(X0) & predp(X0) & predm(X0)))) & ~! [X0] : (room(X0) => (~predo(X0) => (predc(X0) | predl(X0)))) & ! [X0] : (room(X0) => (~predb(X0) => ~predo(X0))) & (! [X0] : (room(X0) => (~predm(X0) | ~predc(X0))) => ! [X0] : (~room(X0) => (~predm(X0) => predc(X0)))) & (~! [X0] : (room(X0) => (predl(X0) | ~predm(X0))) => ~? [X0] : (room(X0) => (predl(X0) => predh(X0)))) & (! [X0] : (room(X0) => (predp(X0) | ~predg(X0))) <~> ! [X0] : (room(X0) => (predl(X0) | ~predg(X0)))) & (! [X0] : (room(X0) => (~predp(X0) | predd(X0))) => ! [X0] : (room(X0) => (~predp(X0) => ~predc(X0)))) & (! [X0] : (~room(X0) => (predd(X0) | ~predf(X0))) => ! [X0] : (room(X0) => (~predp(X0) | predd(X0)))) & (! [X0] : (room(X0) => predg(X0)) => ! [X0] : (room(X0) => (predo(X0) => preda(X0)))) & there_is_a_room [input p0] 45. ~(! [X0] : (room(X0) => (predm(X0) | ~predm(X0))) & there_is_a_room) [input hypothesis] 46. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X1] : (room(X1) => (predg(X1) => predh(X1))) & ! [X2] : (room(X2) => (predg(X2) | ~predl(X2))) & ! [X3] : (room(X3) => (~preda(X3) | predi(X3))) & ~! [X4] : (~room(X4) => ((predc(X4) | predl(X4)) => (prede(X4) & predp(X4) & predm(X4)))) & ~! [X5] : (room(X5) => (~predo(X5) => (predc(X5) | predl(X5)))) & ! [X6] : (room(X6) => (~predb(X6) => ~predo(X6))) & (! [X7] : (room(X7) => (~predm(X7) | ~predc(X7))) => ! [X8] : (~room(X8) => (~predm(X8) => predc(X8)))) & (~! [X9] : (room(X9) => (predl(X9) | ~predm(X9))) => ~? [X10] : (room(X10) => (predl(X10) => predh(X10)))) & (! [X11] : (room(X11) => (predp(X11) | ~predg(X11))) <~> ! [X12] : (room(X12) => (predl(X12) | ~predg(X12)))) & (! [X13] : (room(X13) => (~predp(X13) | predd(X13))) => ! [X14] : (room(X14) => (~predp(X14) => ~predc(X14)))) & (! [X15] : (~room(X15) => (predd(X15) | ~predf(X15))) => ! [X16] : (room(X16) => (~predp(X16) | predd(X16)))) & (! [X17] : (room(X17) => predg(X17)) => ! [X18] : (room(X18) => (predo(X18) => preda(X18)))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X1] : (room(X1) => (predg(X1) => predh(X1))) & ! [X2] : (room(X2) => (predg(X2) | ~predl(X2))) & ! [X3] : (room(X3) => (~preda(X3) | predi(X3))) & ~! [X4] : (~room(X4) => ~(predc(X4) | predl(X4))) & ~! [X5] : (room(X5) => (~predo(X5) => (predc(X5) | predl(X5)))) & ! [X6] : (room(X6) => (~predb(X6) => ~predo(X6))) & (! [X7] : (room(X7) => (~predm(X7) | ~predc(X7))) => ! [X8] : (~room(X8) => (~predm(X8) => predc(X8)))) & (~! [X9] : (room(X9) => (predl(X9) | ~predm(X9))) => ~? [X10] : (room(X10) => (predl(X10) => predh(X10)))) & (! [X11] : (room(X11) => (predp(X11) | ~predg(X11))) <~> ! [X12] : (room(X12) => (predl(X12) | ~predg(X12)))) & (! [X13] : (room(X13) => (~predp(X13) | predd(X13))) => ! [X14] : (room(X14) => (~predp(X14) => ~predc(X14)))) & (! [X15] : (~room(X15) => (predd(X15) | ~predf(X15))) => ! [X16] : (room(X16) => (~predp(X16) | predd(X16)))) & (! [X17] : (room(X17) => predg(X17)) => ! [X18] : (room(X18) => (predo(X18) => preda(X18)))) & there_is_a_room [pure predicate removal 46] 48. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X1] : (room(X1) => (predg(X1) => predh(X1))) & ! [X2] : (room(X2) => (predg(X2) | ~predl(X2))) & ! [X3] : (room(X3) => (~preda(X3) | predi(X3))) & ~! [X4] : (~room(X4) => ~(predc(X4) | predl(X4))) & ~! [X5] : (room(X5) => (~predo(X5) => (predc(X5) | predl(X5)))) & (! [X7] : (room(X7) => (~predm(X7) | ~predc(X7))) => ! [X8] : (~room(X8) => (~predm(X8) => predc(X8)))) & (~! [X9] : (room(X9) => (predl(X9) | ~predm(X9))) => ~? [X10] : (room(X10) => (predl(X10) => predh(X10)))) & (! [X11] : (room(X11) => (predp(X11) | ~predg(X11))) <~> ! [X12] : (room(X12) => (predl(X12) | ~predg(X12)))) & (! [X13] : (room(X13) => (~predp(X13) | predd(X13))) => ! [X14] : (room(X14) => (~predp(X14) => ~predc(X14)))) & (! [X15] : (~room(X15) => (predd(X15) | ~predf(X15))) => ! [X16] : (room(X16) => (~predp(X16) | predd(X16)))) & (! [X17] : (room(X17) => predg(X17)) => ! [X18] : (room(X18) => (predo(X18) => preda(X18)))) & there_is_a_room [pure predicate removal 47] 49. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X1] : (room(X1) => (predg(X1) => predh(X1))) & ! [X2] : (room(X2) => (predg(X2) | ~predl(X2))) & ! [X3] : (room(X3) => (~preda(X3) | predi(X3))) & ~! [X4] : (~room(X4) => ~(predc(X4) | predl(X4))) & ~! [X5] : (room(X5) => (~predo(X5) => (predc(X5) | predl(X5)))) & (! [X7] : (room(X7) => (~predm(X7) | ~predc(X7))) => ! [X8] : (~room(X8) => (~predm(X8) => predc(X8)))) & (~! [X9] : (room(X9) => (predl(X9) | ~predm(X9))) => ~? [X10] : (room(X10) => (predl(X10) => predh(X10)))) & (! [X11] : (room(X11) => (predp(X11) | ~predg(X11))) <~> ! [X12] : (room(X12) => (predl(X12) | ~predg(X12)))) & (! [X13] : (room(X13) => (~predp(X13) | predd(X13))) => ! [X14] : (room(X14) => (~predp(X14) => ~predc(X14)))) & (! [X15] : (~room(X15) => predd(X15)) => ! [X16] : (room(X16) => (~predp(X16) | predd(X16)))) & (! [X17] : (room(X17) => predg(X17)) => ! [X18] : (room(X18) => (predo(X18) => preda(X18)))) & there_is_a_room [pure predicate removal 48] 50. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X1] : (room(X1) => (predg(X1) => predh(X1))) & ! [X2] : (room(X2) => (predg(X2) | ~predl(X2))) & ! [X3] : (room(X3) => (~preda(X3) | predi(X3))) & ~! [X4] : (~room(X4) => ~(predc(X4) | predl(X4))) & ~! [X5] : (room(X5) => (predc(X5) | predl(X5))) & (! [X7] : (room(X7) => (~predm(X7) | ~predc(X7))) => ! [X8] : (~room(X8) => (~predm(X8) => predc(X8)))) & (~! [X9] : (room(X9) => (predl(X9) | ~predm(X9))) => ~? [X10] : (room(X10) => (predl(X10) => predh(X10)))) & (! [X11] : (room(X11) => (predp(X11) | ~predg(X11))) <~> ! [X12] : (room(X12) => (predl(X12) | ~predg(X12)))) & (! [X13] : (room(X13) => (~predp(X13) | predd(X13))) => ! [X14] : (room(X14) => (~predp(X14) => ~predc(X14)))) & (! [X15] : (~room(X15) => predd(X15)) => ! [X16] : (room(X16) => (~predp(X16) | predd(X16)))) & there_is_a_room [pure predicate removal 49] 51. ! [X0] : (room(X0) => (predi(X0) <=> ~predj(X0))) & ! [X1] : (room(X1) => (predg(X1) => predh(X1))) & ! [X2] : (room(X2) => (predg(X2) | ~predl(X2))) & ~! [X4] : (~room(X4) => ~(predc(X4) | predl(X4))) & ~! [X5] : (room(X5) => (predc(X5) | predl(X5))) & (! [X7] : (room(X7) => (~predm(X7) | ~predc(X7))) => ! [X8] : (~room(X8) => (~predm(X8) => predc(X8)))) & (~! [X9] : (room(X9) => (predl(X9) | ~predm(X9))) => ~? [X10] : (room(X10) => (predl(X10) => predh(X10)))) & (! [X11] : (room(X11) => (predp(X11) | ~predg(X11))) <~> ! [X12] : (room(X12) => (predl(X12) | ~predg(X12)))) & (! [X13] : (room(X13) => (~predp(X13) | predd(X13))) => ! [X14] : (room(X14) => (~predp(X14) => ~predc(X14)))) & (! [X15] : (~room(X15) => predd(X15)) => ! [X16] : (room(X16) => (~predp(X16) | predd(X16)))) & there_is_a_room [pure predicate removal 50] 124. ! [X0] : ((predi(X0) <=> ~predj(X0)) | ~room(X0)) & ! [X1] : ((predh(X1) | ~predg(X1)) | ~room(X1)) & ! [X2] : ((predg(X2) | ~predl(X2)) | ~room(X2)) & ? [X4] : ((predc(X4) | predl(X4)) & ~room(X4)) & ? [X5] : ((~predc(X5) & ~predl(X5)) & room(X5)) & (! [X8] : ((predc(X8) | predm(X8)) | room(X8)) | ? [X7] : ((predm(X7) & predc(X7)) & room(X7))) & (! [X10] : ((~predh(X10) & predl(X10)) & room(X10)) | ! [X9] : ((predl(X9) | ~predm(X9)) | ~room(X9))) & (! [X11] : ((predp(X11) | ~predg(X11)) | ~room(X11)) <~> ! [X12] : ((predl(X12) | ~predg(X12)) | ~room(X12))) & (! [X14] : ((~predc(X14) | predp(X14)) | ~room(X14)) | ? [X13] : ((predp(X13) & ~predd(X13)) & room(X13))) & (! [X16] : ((~predp(X16) | predd(X16)) | ~room(X16)) | ? [X15] : (~predd(X15) & ~room(X15))) & there_is_a_room [ennf transformation 51] 125. ! [X0] : ((predi(X0) <=> ~predj(X0)) | ~room(X0)) & ! [X1] : (predh(X1) | ~predg(X1) | ~room(X1)) & ! [X2] : (predg(X2) | ~predl(X2) | ~room(X2)) & ? [X4] : ((predc(X4) | predl(X4)) & ~room(X4)) & ? [X5] : (~predc(X5) & ~predl(X5) & room(X5)) & (! [X8] : (predc(X8) | predm(X8) | room(X8)) | ? [X7] : (predm(X7) & predc(X7) & room(X7))) & (! [X10] : (~predh(X10) & predl(X10) & room(X10)) | ! [X9] : (predl(X9) | ~predm(X9) | ~room(X9))) & (! [X11] : (predp(X11) | ~predg(X11) | ~room(X11)) <~> ! [X12] : (predl(X12) | ~predg(X12) | ~room(X12))) & (! [X14] : (~predc(X14) | predp(X14) | ~room(X14)) | ? [X13] : (predp(X13) & ~predd(X13) & room(X13))) & (! [X16] : (~predp(X16) | predd(X16) | ~room(X16)) | ? [X15] : (~predd(X15) & ~room(X15))) & there_is_a_room [flattening 124] 126. ? [X0] : ((~predm(X0) & predm(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 45] 127. ? [X0] : (~predm(X0) & predm(X0) & room(X0)) | ~there_is_a_room [flattening 126] 129. ! [X0] : (((predi(X0) | predj(X0)) & (~predj(X0) | ~predi(X0))) | ~room(X0)) & ! [X1] : (predh(X1) | ~predg(X1) | ~room(X1)) & ! [X2] : (predg(X2) | ~predl(X2) | ~room(X2)) & ? [X4] : ((predc(X4) | predl(X4)) & ~room(X4)) & ? [X5] : (~predc(X5) & ~predl(X5) & room(X5)) & (! [X8] : (predc(X8) | predm(X8) | room(X8)) | ? [X7] : (predm(X7) & predc(X7) & room(X7))) & (! [X10] : (~predh(X10) & predl(X10) & room(X10)) | ! [X9] : (predl(X9) | ~predm(X9) | ~room(X9))) & ((? [X12] : (~predl(X12) & predg(X12) & room(X12)) | ? [X11] : (~predp(X11) & predg(X11) & room(X11))) & (! [X12] : (predl(X12) | ~predg(X12) | ~room(X12)) | ! [X11] : (predp(X11) | ~predg(X11) | ~room(X11)))) & (! [X14] : (~predc(X14) | predp(X14) | ~room(X14)) | ? [X13] : (predp(X13) & ~predd(X13) & room(X13))) & (! [X16] : (~predp(X16) | predd(X16) | ~room(X16)) | ? [X15] : (~predd(X15) & ~room(X15))) & there_is_a_room [nnf transformation 125] 130. ! [X0] : (((predi(X0) | predj(X0)) & (~predj(X0) | ~predi(X0))) | ~room(X0)) & ! [X1] : (predh(X1) | ~predg(X1) | ~room(X1)) & ! [X2] : (predg(X2) | ~predl(X2) | ~room(X2)) & ? [X4] : ((predc(X4) | predl(X4)) & ~room(X4)) & ? [X5] : (~predc(X5) & ~predl(X5) & room(X5)) & (! [X8] : (predc(X8) | predm(X8) | room(X8)) | ? [X7] : (predm(X7) & predc(X7) & room(X7))) & (! [X10] : (~predh(X10) & predl(X10) & room(X10)) | ! [X9] : (predl(X9) | ~predm(X9) | ~room(X9))) & (? [X12] : (~predl(X12) & predg(X12) & room(X12)) | ? [X11] : (~predp(X11) & predg(X11) & room(X11))) & (! [X12] : (predl(X12) | ~predg(X12) | ~room(X12)) | ! [X11] : (predp(X11) | ~predg(X11) | ~room(X11))) & (! [X14] : (~predc(X14) | predp(X14) | ~room(X14)) | ? [X13] : (predp(X13) & ~predd(X13) & room(X13))) & (! [X16] : (~predp(X16) | predd(X16) | ~room(X16)) | ? [X15] : (~predd(X15) & ~room(X15))) & there_is_a_room [flattening 129] 131. ! [X0] : (((predi(X0) | predj(X0)) & (~predj(X0) | ~predi(X0))) | ~room(X0)) & ! [X1] : (predh(X1) | ~predg(X1) | ~room(X1)) & ! [X2] : (predg(X2) | ~predl(X2) | ~room(X2)) & ? [X3] : ((predc(X3) | predl(X3)) & ~room(X3)) & ? [X4] : (~predc(X4) & ~predl(X4) & room(X4)) & (! [X5] : (predc(X5) | predm(X5) | room(X5)) | ? [X6] : (predm(X6) & predc(X6) & room(X6))) & (! [X7] : (~predh(X7) & predl(X7) & room(X7)) | ! [X8] : (predl(X8) | ~predm(X8) | ~room(X8))) & (? [X9] : (~predl(X9) & predg(X9) & room(X9)) | ? [X10] : (~predp(X10) & predg(X10) & room(X10))) & (! [X11] : (predl(X11) | ~predg(X11) | ~room(X11)) | ! [X12] : (predp(X12) | ~predg(X12) | ~room(X12))) & (! [X13] : (~predc(X13) | predp(X13) | ~room(X13)) | ? [X14] : (predp(X14) & ~predd(X14) & room(X14))) & (! [X15] : (~predp(X15) | predd(X15) | ~room(X15)) | ? [X16] : (~predd(X16) & ~room(X16))) & there_is_a_room [rectify 130] 132. ? [X3] : ((predc(X3) | predl(X3)) & ~room(X3)) => ((predc(sK0) | predl(sK0)) & ~room(sK0)) [choice axiom] 133. ? [X4] : (~predc(X4) & ~predl(X4) & room(X4)) => (~predc(sK1) & ~predl(sK1) & room(sK1)) [choice axiom] 134. ? [X6] : (predm(X6) & predc(X6) & room(X6)) => (predm(sK2) & predc(sK2) & room(sK2)) [choice axiom] 135. ? [X9] : (~predl(X9) & predg(X9) & room(X9)) => (~predl(sK3) & predg(sK3) & room(sK3)) [choice axiom] 136. ? [X10] : (~predp(X10) & predg(X10) & room(X10)) => (~predp(sK4) & predg(sK4) & room(sK4)) [choice axiom] 137. ? [X14] : (predp(X14) & ~predd(X14) & room(X14)) => (predp(sK5) & ~predd(sK5) & room(sK5)) [choice axiom] 138. ? [X16] : (~predd(X16) & ~room(X16)) => (~predd(sK6) & ~room(sK6)) [choice axiom] 139. ! [X0] : (((predi(X0) | predj(X0)) & (~predj(X0) | ~predi(X0))) | ~room(X0)) & ! [X1] : (predh(X1) | ~predg(X1) | ~room(X1)) & ! [X2] : (predg(X2) | ~predl(X2) | ~room(X2)) & ((predc(sK0) | predl(sK0)) & ~room(sK0)) & (~predc(sK1) & ~predl(sK1) & room(sK1)) & (! [X5] : (predc(X5) | predm(X5) | room(X5)) | (predm(sK2) & predc(sK2) & room(sK2))) & (! [X7] : (~predh(X7) & predl(X7) & room(X7)) | ! [X8] : (predl(X8) | ~predm(X8) | ~room(X8))) & ((~predl(sK3) & predg(sK3) & room(sK3)) | (~predp(sK4) & predg(sK4) & room(sK4))) & (! [X11] : (predl(X11) | ~predg(X11) | ~room(X11)) | ! [X12] : (predp(X12) | ~predg(X12) | ~room(X12))) & (! [X13] : (~predc(X13) | predp(X13) | ~room(X13)) | (predp(sK5) & ~predd(sK5) & room(sK5))) & (! [X15] : (~predp(X15) | predd(X15) | ~room(X15)) | (~predd(sK6) & ~room(sK6))) & there_is_a_room [skolemisation 131,138,137,136,135,134,133,132] 140. ? [X0] : (~predm(X0) & predm(X0) & room(X0)) => (~predm(sK7) & predm(sK7) & room(sK7)) [choice axiom] 141. (~predm(sK7) & predm(sK7) & room(sK7)) | ~there_is_a_room [skolemisation 127,140] 222. there_is_a_room [cnf transformation 139] 254. predm(sK7) | ~there_is_a_room [cnf transformation 141] 255. ~predm(sK7) | ~there_is_a_room [cnf transformation 141] 369. ~predm(sK7) [subsumption resolution 255,222] 370. ~there_is_a_room [subsumption resolution 254,369] 371. $false [subsumption resolution 370,222] % SZS output end Proof for 489677750335496730593274 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.075889
Sue, Emilie are the only persons in the room. “Everyone in the room enjoys snowboarding if they does not have a curated collection of mid-century modern furniture” if “everyone in the room does not have a curated collection of mid-century modern furniture or enjoys snowboarding”. If someone does not have a curated collection of mid-century modern furniture then he/she enjoys snowboarding and vice versa. Everyone in the room does not have a curated collection of mid-century modern furniture or has a curated collection of mid-century modern furniture. Everyone in the room has a curated collection of mid-century modern furniture or does not enjoy snowboarding or both if they does not have a curated collection of mid-century modern furniture. Everyone outside the room has a curated collection of mid-century modern furniture if they does not enjoy snowboarding. Everyone in the room has a curated collection of mid-century modern furniture if they enjoys snowboarding.
Emilie enjoys snowboarding.
contradiction
room(sue)&room(emilie)&(![X]:(room(X)=>(X='sue'|X='emilie')))& ((![X]:(room(X)=>(((enjoys_snowboarding(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))=>(![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))=>(enjoys_snowboarding(X)))))))& ((![X]:((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))<=>(enjoys_snowboarding(X)))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_enjoy_snowboarding(X))))))))& (![X]:(~room(X)=>(((does_not_enjoy_snowboarding(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))
room(sue)&room(emilie)&(![X]:(room(X)=>(X='sue'|X='emilie')))& enjoys_snowboarding(emilie)
[ "p0", "p2", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 8967000417291412786203324 % SZS output start Proof for 8967000417291412786203324 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ! [X0] : (~predx(X0) <=> predo(X0)) [input p2] 48. ! [X0] : (room(X0) => (~predx(X0) => (~predo(X0) | predx(X0)))) [input p4] 51. predo(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 125. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 126. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 125] 131. ! [X0] : (((~predo(X0) | predx(X0)) | predx(X0)) | ~room(X0)) [ennf transformation 48] 132. ! [X0] : (~predo(X0) | predx(X0) | predx(X0) | ~room(X0)) [flattening 131] 137. predo(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 51] 138. predo(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 137] 143. ! [X0] : ((~predx(X0) | ~predo(X0)) & (predo(X0) | predx(X0))) [nnf transformation 46] 225. room(paul) [cnf transformation 126] 230. predx(X0) | predo(X0) [cnf transformation 143] 231. ~predx(X0) | ~predo(X0) [cnf transformation 143] 233. ~predo(X0) | predx(X0) | predx(X0) | ~room(X0) [cnf transformation 132] 239. predo(paul) [cnf transformation 138] 240. ~predo(X0) | predx(X0) | ~room(X0) [duplicate literal removal 233] 259. ~room(X0) | predx(X0) [subsumption resolution 240,230] 262. predx(paul) [resolution 259,225] 266. ~predo(paul) [resolution 262,231] 267. $false [subsumption resolution 266,239] % SZS output end Proof for 8967000417291412786203324 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.148731
Ana is the only person in the room. Everyone in the room who is quieter than David is quieter than Allen. Ana is older than Irene. Someone who is quiet is richer than someone who is quieter than Irene. Ana is quieter than Irene. Ana is older than David. Ana is older than David or is quiet or both. Ana is older than Allen. Everyone in the room who is richer than Irene is old. More than one person outside the room is a quiet old person. David is richer than Ana. Everyone outside the room who is quieter than Allen is richer than David. Everyone in the room who is richer than David is older than Allen. Ana is not not not quiet. Everyone in the room who neither is richer than David nor is richer than Allen is older than Irene. Ana is older than Allen and is quieter than Allen. Everyone outside the room who is quiet is quieter than Allen.
Ana is richer than Allen.
neutral
room(ana)&(![X]:(room(X)=>(X='ana')))& (![X]:(room(X)=>(((quieter(david,X))=>(quieter(allen,X))))))& (older(irene,ana))& (?[X,Y]:((quiet(X))&(quieter(irene,Y))&(richer(X,Y))))& (quieter(irene,ana))& (older(david,ana))& (((older(david,ana))|(quiet(ana))))& (older(allen,ana))& (![X]:(room(X)=>(((richer(irene,X))=>(old(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(quiet(X)&old(X)&person(X)&quiet(Y)&old(Y)&person(Y))&(X!=Y))))& (richer(ana,david))& (![X]:(~room(X)=>(((quieter(allen,X))=>(richer(david,X))))))& (![X]:(room(X)=>(((richer(david,X))=>(older(allen,X))))))& (~~~quiet(ana))& (![X]:(room(X)=>(((~((richer(david,X))|(richer(allen,X))))=>(older(irene,X))))))& (((older(allen,ana))&(quieter(allen,ana))))& (![X]:(~room(X)=>(((quiet(X))=>(quieter(allen,X))))))& (quieter(david,ana))
room(ana)&(![X]:(room(X)=>(X='ana')))& richer(allen,ana)
[]
null
0.493551
There is a room. “Everyone in the room does not practice calligraphy or practices calligraphy” if “everyone in the room does not collect antique jewelry or enjoys stargazing” and vice versa. If “everyone in the room does not bake bread at home or enjoys snowboarding” then “everyone outside the room who does not bake bread at home bakes bread at home”. If “not everyone in the room enjoys snowboarding or does not play the violin” then “everyone in the room uses contact lenses or does not bake bread at home”. If “everyone in the room uses contact lenses or does not bake bread at home” then “not everyone anywhere uses contact lenses if and only if they plays the violin”. If “no one in the room is not a wine connoisseur or plays video games” then “everyone in the room does not bake bread at home or is not a wine connoisseur”. If “no one in the room does not collect antique jewelry or plays the violin” then “everyone in the room either is not a wine connoisseur or writes poetry but not both”. If “no one in the room does not volunteer for local environmental conservation projects or is a wine connoisseur” then “if someone either bakes bread at home or writes poetry but not both then he/she can play the guitar”. “Everyone in the room practices calligraphy or does not have a tattoo” if “everyone in the room does not enjoy snowboarding or is a certified scuba diver with advanced underwater photography skills” and vice versa. Either “everyone in the room volunteers for local environmental conservation projects or does not have a tattoo” or “no one in the room does not play the violin or plays the violin” but not both. “Everyone in the room enjoys snowboarding or does not play the violin” only if “someone in the room plays the violin”.
Everyone in the room has a tattoo.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_collect_antique_jewelry(X))))))<=>(![X]:(room(X)=>(((practices_calligraphy(X))|(does_not_practice_calligraphy(X)))))))& ((![X]:(room(X)=>(((enjoys_snowboarding(X))|(does_not_bake_bread_at_home(X))))))=>(![X]:(~room(X)=>(((does_not_bake_bread_at_home(X))=>(bakes_bread_at_home(X)))))))& (((~![X]:(room(X)=>(((does_not_play_the_violin(X))|(enjoys_snowboarding(X))))))=>(![X]:(room(X)=>(((does_not_bake_bread_at_home(X))|(uses_contact_lenses(X)))))))& ((![X]:(room(X)=>(((does_not_bake_bread_at_home(X))|(uses_contact_lenses(X))))))=>(~![X]:(anywhere(X)=>(((uses_contact_lenses(X))<=>(plays_the_violin(X))))))))& ((~?[X]:(room(X)=>(((plays_video_games(X))|(is_not_a_wine_connoisseur(X))))))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))|(does_not_bake_bread_at_home(X)))))))& ((~?[X]:(room(X)=>(((plays_the_violin(X))|(does_not_collect_antique_jewelry(X))))))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))<~>(writes_poetry(X)))))))& ((~?[X]:(room(X)=>(((is_a_wine_connoisseur(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))=>((![X]:((((bakes_bread_at_home(X))<~>(writes_poetry(X))))=>(can_play_the_guitar(X))))))& ((![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_enjoy_snowboarding(X))))))<=>(![X]:(room(X)=>(((does_not_have_a_tattoo(X))|(practices_calligraphy(X)))))))& ((![X]:(room(X)=>(((does_not_have_a_tattoo(X))|(volunteers_for_local_environmental_conservation_projects(X))))))<~>(~?[X]:(room(X)=>(((plays_the_violin(X))|(does_not_play_the_violin(X)))))))& ((![X]:(room(X)=>(((does_not_play_the_violin(X))|(enjoys_snowboarding(X))))))=>(?[X]:(room(X)&(plays_the_violin(X)))))& ((![X]:(~room(X)=>(((plays_the_violin(X))|(does_not_enjoy_snowboarding(X))))))<=>(?[X]:(room(X)&(writes_poetry(X)))))& ((![X]:(anywhere(X)=>(((enjoys_snowboarding(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))=>(((?[X]:(room(X)&volunteers_for_local_environmental_conservation_projects(X)))&(![X,Y]:((room(X)&room(Y)&(volunteers_for_local_environmental_conservation_projects(X))&(volunteers_for_local_environmental_conservation_projects(Y)))=>(X=Y))))))& (![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(collects_antique_jewelry(X))))))& (![X]:(room(X)=>(((collects_antique_jewelry(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((writes_poetry(X))<=>(does_not_use_contact_lenses(X))))))& (![X]:(room(X)=>(((~((volunteers_for_local_environmental_conservation_projects(X))|(uses_contact_lenses(X))))=>(practices_calligraphy(X))))))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& ((marcia_dream=>(![X]:(room(X)=>(((collects_antique_jewelry(X))=>(~((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(uses_contact_lenses(X))))))))))& (![X]:(room(X)=>(((~((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(uses_contact_lenses(X))))=>(((volunteers_for_local_environmental_conservation_projects(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(practices_calligraphy(X))))))& (![X]:(room(X)=>(((practices_calligraphy(X))<=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(uses_contact_lenses(X))))))& ((![X]:((practices_calligraphy(X))<=>(collects_antique_jewelry(X)))))
(there_is_a_room)& ![X]:(room(X)=>(has_a_tattoo(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5805788899184001778869388 % SZS output start Proof for 5805788899184001778869388 44. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X0] : (room(X0) => (preda(X0) => predb(X0))) & ! [X0] : (room(X0) => (predj(X0) <=> preda(X0))) & ! [X0] : (room(X0) => (predb(X0) => predj(X0))) & ! [X0] : (room(X0) => (prede(X0) => predb(X0))) & ! [X0] : (room(X0) => (~(predb(X0) | predk(X0)) => (predo(X0) & predi(X0)))) & (mary_dream => ! [X0] : (room(X0) => (predd(X0) => ~(predb(X0) | predk(X0))))) & ! [X0] : (room(X0) => (predj(X0) => predk(X0))) & ! [X0] : (room(X0) => (~(predb(X0) | predi(X0)) => predj(X0))) & ! [X0] : (room(X0) => (predh(X0) <=> ~predb(X0))) & ! [X0] : (room(X0) => (predd(X0) => predh(X0))) & ! [X0] : (room(X0) => (~predk(X0) => predd(X0))) & (! [X0] : (anywhere(X0) => (~predk(X0) | preda(X0))) => (! [X0,X1] : ((predi(X1) & predi(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predi(X0) & room(X0)))) & (! [X0] : (~room(X0) => (~preda(X0) | predn(X0))) <=> ? [X0] : (predh(X0) & room(X0))) & (! [X0] : (room(X0) => (preda(X0) | ~predn(X0))) => ? [X0] : (predn(X0) & room(X0))) & (! [X0] : (room(X0) => (predi(X0) | ~predc(X0))) <~> ~? [X0] : (room(X0) => (~predn(X0) | predn(X0)))) & (! [X0] : (room(X0) => (~preda(X0) | predo(X0))) <=> ! [X0] : (room(X0) => (predj(X0) | ~predc(X0)))) & (~? [X0] : (room(X0) => (~predi(X0) | predf(X0))) => ! [X0] : ((prede(X0) <~> predh(X0)) => predl(X0))) & (~? [X0] : (room(X0) => (~predd(X0) | predn(X0))) => ! [X0] : (room(X0) => (~predf(X0) <~> predh(X0)))) & (~? [X0] : (room(X0) => (~predf(X0) | predg(X0))) => ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0)))) & (! [X0] : (room(X0) => (predb(X0) | ~prede(X0))) => ~! [X0] : (anywhere(X0) => (predb(X0) <=> predn(X0)))) & (~! [X0] : (room(X0) => (preda(X0) | ~predn(X0))) => ! [X0] : (room(X0) => (predb(X0) | ~prede(X0)))) & (! [X0] : (room(X0) => (~prede(X0) | preda(X0))) => ! [X0] : (~room(X0) => (~prede(X0) => prede(X0)))) & (! [X0] : (room(X0) => (~predd(X0) | predp(X0))) <=> ! [X0] : (room(X0) => (~predj(X0) | predj(X0)))) & there_is_a_room [input p0] 45. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 46. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X5] : (room(X5) => (~(predb(X5) | predk(X5)) => (predo(X5) & predi(X5)))) & (mary_dream => ! [X6] : (room(X6) => (predd(X6) => ~(predb(X6) | predk(X6))))) & ! [X7] : (room(X7) => (predj(X7) => predk(X7))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & ! [X11] : (room(X11) => (~predk(X11) => predd(X11))) & (! [X12] : (anywhere(X12) => (~predk(X12) | preda(X12))) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X24] : (room(X24) => (~predi(X24) | predf(X24))) => ! [X25] : ((prede(X25) <~> predh(X25)) => predl(X25))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (~? [X28] : (room(X28) => (~predf(X28) | predg(X28))) => ! [X29] : (room(X29) => (~prede(X29) | ~predf(X29)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (anywhere(X31) => (predb(X31) <=> predn(X31)))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) & there_is_a_room [rectify 44] 47. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X5] : (room(X5) => (~(predb(X5) | predk(X5)) => (predo(X5) & predi(X5)))) & ! [X7] : (room(X7) => (predj(X7) => predk(X7))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & ! [X11] : (room(X11) => (~predk(X11) => predd(X11))) & (! [X12] : (anywhere(X12) => (~predk(X12) | preda(X12))) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X24] : (room(X24) => (~predi(X24) | predf(X24))) => ! [X25] : ((prede(X25) <~> predh(X25)) => predl(X25))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (~? [X28] : (room(X28) => (~predf(X28) | predg(X28))) => ! [X29] : (room(X29) => (~prede(X29) | ~predf(X29)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (anywhere(X31) => (predb(X31) <=> predn(X31)))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) & there_is_a_room [pure predicate removal 46] 48. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & (! [X12] : (anywhere(X12) => preda(X12)) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X24] : (room(X24) => (~predi(X24) | predf(X24))) => ! [X25] : ((prede(X25) <~> predh(X25)) => predl(X25))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (~? [X28] : (room(X28) => (~predf(X28) | predg(X28))) => ! [X29] : (room(X29) => (~prede(X29) | ~predf(X29)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (anywhere(X31) => (predb(X31) <=> predn(X31)))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) & there_is_a_room [pure predicate removal 47] 49. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & (! [X12] : (anywhere(X12) => preda(X12)) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (~? [X28] : (room(X28) => (~predf(X28) | predg(X28))) => ! [X29] : (room(X29) => (~prede(X29) | ~predf(X29)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (anywhere(X31) => (predb(X31) <=> predn(X31)))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) & there_is_a_room [pure predicate removal 48] 50. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & (! [X12] : (anywhere(X12) => preda(X12)) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (anywhere(X31) => (predb(X31) <=> predn(X31)))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) & there_is_a_room [pure predicate removal 49] 51. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & (! [X12] : (anywhere(X12) => preda(X12)) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (anywhere(X31) => (predb(X31) <=> predn(X31)))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) [pure predicate removal 50] 52. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 45] 53. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (room(X1) => (preda(X1) => predb(X1))) & ! [X2] : (room(X2) => (predj(X2) <=> preda(X2))) & ! [X3] : (room(X3) => (predb(X3) => predj(X3))) & ! [X4] : (room(X4) => (prede(X4) => predb(X4))) & ! [X8] : (room(X8) => (~(predb(X8) | predi(X8)) => predj(X8))) & ! [X9] : (room(X9) => (predh(X9) <=> ~predb(X9))) & ! [X10] : (room(X10) => (predd(X10) => predh(X10))) & (! [X12] : preda(X12) => (! [X13,X14] : ((predi(X14) & predi(X13) & room(X14) & room(X13)) => X13 = X14) & ? [X15] : (predi(X15) & room(X15)))) & (! [X16] : (~room(X16) => (~preda(X16) | predn(X16))) <=> ? [X17] : (predh(X17) & room(X17))) & (! [X18] : (room(X18) => (preda(X18) | ~predn(X18))) => ? [X19] : (predn(X19) & room(X19))) & (! [X20] : (room(X20) => (predi(X20) | ~predc(X20))) <~> ~? [X21] : (room(X21) => (~predn(X21) | predn(X21)))) & (! [X22] : (room(X22) => (~preda(X22) | predo(X22))) <=> ! [X23] : (room(X23) => (predj(X23) | ~predc(X23)))) & (~? [X26] : (room(X26) => (~predd(X26) | predn(X26))) => ! [X27] : (room(X27) => (~predf(X27) <~> predh(X27)))) & (! [X30] : (room(X30) => (predb(X30) | ~prede(X30))) => ~! [X31] : (predb(X31) <=> predn(X31))) & (~! [X32] : (room(X32) => (preda(X32) | ~predn(X32))) => ! [X33] : (room(X33) => (predb(X33) | ~prede(X33)))) & (! [X34] : (room(X34) => (~prede(X34) | preda(X34))) => ! [X35] : (~room(X35) => (~prede(X35) => prede(X35)))) & (! [X36] : (room(X36) => (~predd(X36) | predp(X36))) <=> ! [X37] : (room(X37) => (~predj(X37) | predj(X37)))) [pure predicate removal 51] 126. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : ((predb(X1) | ~preda(X1)) | ~room(X1)) & ! [X2] : ((predj(X2) <=> preda(X2)) | ~room(X2)) & ! [X3] : ((predj(X3) | ~predb(X3)) | ~room(X3)) & ! [X4] : ((predb(X4) | ~prede(X4)) | ~room(X4)) & ! [X8] : ((predj(X8) | (predb(X8) | predi(X8))) | ~room(X8)) & ! [X9] : ((predh(X9) <=> ~predb(X9)) | ~room(X9)) & ! [X10] : ((predh(X10) | ~predd(X10)) | ~room(X10)) & ((! [X13,X14] : (X13 = X14 | (~predi(X14) | ~predi(X13) | ~room(X14) | ~room(X13))) & ? [X15] : (predi(X15) & room(X15))) | ? [X12] : ~preda(X12)) & (! [X16] : ((~preda(X16) | predn(X16)) | room(X16)) <=> ? [X17] : (predh(X17) & room(X17))) & (? [X19] : (predn(X19) & room(X19)) | ? [X18] : ((~preda(X18) & predn(X18)) & room(X18))) & (! [X20] : ((predi(X20) | ~predc(X20)) | ~room(X20)) <~> ! [X21] : ((predn(X21) & ~predn(X21)) & room(X21))) & (! [X22] : ((~preda(X22) | predo(X22)) | ~room(X22)) <=> ! [X23] : ((predj(X23) | ~predc(X23)) | ~room(X23))) & (! [X27] : ((~predf(X27) <~> predh(X27)) | ~room(X27)) | ? [X26] : ((~predd(X26) | predn(X26)) | ~room(X26))) & (? [X31] : (predb(X31) <~> predn(X31)) | ? [X30] : ((~predb(X30) & prede(X30)) & room(X30))) & (! [X33] : ((predb(X33) | ~prede(X33)) | ~room(X33)) | ! [X32] : ((preda(X32) | ~predn(X32)) | ~room(X32))) & (! [X35] : ((prede(X35) | prede(X35)) | room(X35)) | ? [X34] : ((prede(X34) & ~preda(X34)) & room(X34))) & (! [X36] : ((~predd(X36) | predp(X36)) | ~room(X36)) <=> ! [X37] : ((~predj(X37) | predj(X37)) | ~room(X37))) [ennf transformation 53] 127. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (predb(X1) | ~preda(X1) | ~room(X1)) & ! [X2] : ((predj(X2) <=> preda(X2)) | ~room(X2)) & ! [X3] : (predj(X3) | ~predb(X3) | ~room(X3)) & ! [X4] : (predb(X4) | ~prede(X4) | ~room(X4)) & ! [X8] : (predj(X8) | predb(X8) | predi(X8) | ~room(X8)) & ! [X9] : ((predh(X9) <=> ~predb(X9)) | ~room(X9)) & ! [X10] : (predh(X10) | ~predd(X10) | ~room(X10)) & ((! [X13,X14] : (X13 = X14 | ~predi(X14) | ~predi(X13) | ~room(X14) | ~room(X13)) & ? [X15] : (predi(X15) & room(X15))) | ? [X12] : ~preda(X12)) & (! [X16] : (~preda(X16) | predn(X16) | room(X16)) <=> ? [X17] : (predh(X17) & room(X17))) & (? [X19] : (predn(X19) & room(X19)) | ? [X18] : (~preda(X18) & predn(X18) & room(X18))) & (! [X20] : (predi(X20) | ~predc(X20) | ~room(X20)) <~> ! [X21] : (predn(X21) & ~predn(X21) & room(X21))) & (! [X22] : (~preda(X22) | predo(X22) | ~room(X22)) <=> ! [X23] : (predj(X23) | ~predc(X23) | ~room(X23))) & (! [X27] : ((~predf(X27) <~> predh(X27)) | ~room(X27)) | ? [X26] : (~predd(X26) | predn(X26) | ~room(X26))) & (? [X31] : (predb(X31) <~> predn(X31)) | ? [X30] : (~predb(X30) & prede(X30) & room(X30))) & (! [X33] : (predb(X33) | ~prede(X33) | ~room(X33)) | ! [X32] : (preda(X32) | ~predn(X32) | ~room(X32))) & (! [X35] : (prede(X35) | prede(X35) | room(X35)) | ? [X34] : (prede(X34) & ~preda(X34) & room(X34))) & (! [X36] : (~predd(X36) | predp(X36) | ~room(X36)) <=> ! [X37] : (~predj(X37) | predj(X37) | ~room(X37))) [flattening 126] 128. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 52] 129. sP0 <=> ! [X20] : (predi(X20) | ~predc(X20) | ~room(X20)) [predicate definition introduction] 130. ! [X0] : (predj(X0) <=> predd(X0)) & ! [X1] : (predb(X1) | ~preda(X1) | ~room(X1)) & ! [X2] : ((predj(X2) <=> preda(X2)) | ~room(X2)) & ! [X3] : (predj(X3) | ~predb(X3) | ~room(X3)) & ! [X4] : (predb(X4) | ~prede(X4) | ~room(X4)) & ! [X8] : (predj(X8) | predb(X8) | predi(X8) | ~room(X8)) & ! [X9] : ((predh(X9) <=> ~predb(X9)) | ~room(X9)) & ! [X10] : (predh(X10) | ~predd(X10) | ~room(X10)) & ((! [X13,X14] : (X13 = X14 | ~predi(X14) | ~predi(X13) | ~room(X14) | ~room(X13)) & ? [X15] : (predi(X15) & room(X15))) | ? [X12] : ~preda(X12)) & (! [X16] : (~preda(X16) | predn(X16) | room(X16)) <=> ? [X17] : (predh(X17) & room(X17))) & (? [X19] : (predn(X19) & room(X19)) | ? [X18] : (~preda(X18) & predn(X18) & room(X18))) & (sP0 <~> ! [X21] : (predn(X21) & ~predn(X21) & room(X21))) & (! [X22] : (~preda(X22) | predo(X22) | ~room(X22)) <=> ! [X23] : (predj(X23) | ~predc(X23) | ~room(X23))) & (! [X27] : ((~predf(X27) <~> predh(X27)) | ~room(X27)) | ? [X26] : (~predd(X26) | predn(X26) | ~room(X26))) & (? [X31] : (predb(X31) <~> predn(X31)) | ? [X30] : (~predb(X30) & prede(X30) & room(X30))) & (! [X33] : (predb(X33) | ~prede(X33) | ~room(X33)) | ! [X32] : (preda(X32) | ~predn(X32) | ~room(X32))) & (! [X35] : (prede(X35) | prede(X35) | room(X35)) | ? [X34] : (prede(X34) & ~preda(X34) & room(X34))) & (! [X36] : (~predd(X36) | predp(X36) | ~room(X36)) <=> ! [X37] : (~predj(X37) | predj(X37) | ~room(X37))) [definition folding 127,129] 136. ! [X0] : ((predj(X0) | ~predd(X0)) & (predd(X0) | ~predj(X0))) & ! [X1] : (predb(X1) | ~preda(X1) | ~room(X1)) & ! [X2] : (((predj(X2) | ~preda(X2)) & (preda(X2) | ~predj(X2))) | ~room(X2)) & ! [X3] : (predj(X3) | ~predb(X3) | ~room(X3)) & ! [X4] : (predb(X4) | ~prede(X4) | ~room(X4)) & ! [X8] : (predj(X8) | predb(X8) | predi(X8) | ~room(X8)) & ! [X9] : (((predh(X9) | predb(X9)) & (~predb(X9) | ~predh(X9))) | ~room(X9)) & ! [X10] : (predh(X10) | ~predd(X10) | ~room(X10)) & ((! [X13,X14] : (X13 = X14 | ~predi(X14) | ~predi(X13) | ~room(X14) | ~room(X13)) & ? [X15] : (predi(X15) & room(X15))) | ? [X12] : ~preda(X12)) & ((! [X16] : (~preda(X16) | predn(X16) | room(X16)) | ! [X17] : (~predh(X17) | ~room(X17))) & (? [X17] : (predh(X17) & room(X17)) | ? [X16] : (preda(X16) & ~predn(X16) & ~room(X16)))) & (? [X19] : (predn(X19) & room(X19)) | ? [X18] : (~preda(X18) & predn(X18) & room(X18))) & ((? [X21] : (~predn(X21) | predn(X21) | ~room(X21)) | ~sP0) & (! [X21] : (predn(X21) & ~predn(X21) & room(X21)) | sP0)) & ((! [X22] : (~preda(X22) | predo(X22) | ~room(X22)) | ? [X23] : (~predj(X23) & predc(X23) & room(X23))) & (! [X23] : (predj(X23) | ~predc(X23) | ~room(X23)) | ? [X22] : (preda(X22) & ~predo(X22) & room(X22)))) & (! [X27] : (((~predh(X27) | predf(X27)) & (predh(X27) | ~predf(X27))) | ~room(X27)) | ? [X26] : (~predd(X26) | predn(X26) | ~room(X26))) & (? [X31] : ((~predn(X31) | ~predb(X31)) & (predn(X31) | predb(X31))) | ? [X30] : (~predb(X30) & prede(X30) & room(X30))) & (! [X33] : (predb(X33) | ~prede(X33) | ~room(X33)) | ! [X32] : (preda(X32) | ~predn(X32) | ~room(X32))) & (! [X35] : (prede(X35) | prede(X35) | room(X35)) | ? [X34] : (prede(X34) & ~preda(X34) & room(X34))) & ((! [X36] : (~predd(X36) | predp(X36) | ~room(X36)) | ? [X37] : (predj(X37) & ~predj(X37) & room(X37))) & (! [X37] : (~predj(X37) | predj(X37) | ~room(X37)) | ? [X36] : (predd(X36) & ~predp(X36) & room(X36)))) [nnf transformation 130] 137. ! [X0] : ((predj(X0) | ~predd(X0)) & (predd(X0) | ~predj(X0))) & ! [X1] : (predb(X1) | ~preda(X1) | ~room(X1)) & ! [X2] : (((predj(X2) | ~preda(X2)) & (preda(X2) | ~predj(X2))) | ~room(X2)) & ! [X3] : (predj(X3) | ~predb(X3) | ~room(X3)) & ! [X4] : (predb(X4) | ~prede(X4) | ~room(X4)) & ! [X8] : (predj(X8) | predb(X8) | predi(X8) | ~room(X8)) & ! [X9] : (((predh(X9) | predb(X9)) & (~predb(X9) | ~predh(X9))) | ~room(X9)) & ! [X10] : (predh(X10) | ~predd(X10) | ~room(X10)) & ((! [X13,X14] : (X13 = X14 | ~predi(X14) | ~predi(X13) | ~room(X14) | ~room(X13)) & ? [X15] : (predi(X15) & room(X15))) | ? [X12] : ~preda(X12)) & (! [X16] : (~preda(X16) | predn(X16) | room(X16)) | ! [X17] : (~predh(X17) | ~room(X17))) & (? [X17] : (predh(X17) & room(X17)) | ? [X16] : (preda(X16) & ~predn(X16) & ~room(X16))) & (? [X19] : (predn(X19) & room(X19)) | ? [X18] : (~preda(X18) & predn(X18) & room(X18))) & (? [X21] : (~predn(X21) | predn(X21) | ~room(X21)) | ~sP0) & (! [X21] : (predn(X21) & ~predn(X21) & room(X21)) | sP0) & (! [X22] : (~preda(X22) | predo(X22) | ~room(X22)) | ? [X23] : (~predj(X23) & predc(X23) & room(X23))) & (! [X23] : (predj(X23) | ~predc(X23) | ~room(X23)) | ? [X22] : (preda(X22) & ~predo(X22) & room(X22))) & (! [X27] : (((~predh(X27) | predf(X27)) & (predh(X27) | ~predf(X27))) | ~room(X27)) | ? [X26] : (~predd(X26) | predn(X26) | ~room(X26))) & (? [X31] : ((~predn(X31) | ~predb(X31)) & (predn(X31) | predb(X31))) | ? [X30] : (~predb(X30) & prede(X30) & room(X30))) & (! [X33] : (predb(X33) | ~prede(X33) | ~room(X33)) | ! [X32] : (preda(X32) | ~predn(X32) | ~room(X32))) & (! [X35] : (prede(X35) | prede(X35) | room(X35)) | ? [X34] : (prede(X34) & ~preda(X34) & room(X34))) & (! [X36] : (~predd(X36) | predp(X36) | ~room(X36)) | ? [X37] : (predj(X37) & ~predj(X37) & room(X37))) & (! [X37] : (~predj(X37) | predj(X37) | ~room(X37)) | ? [X36] : (predd(X36) & ~predp(X36) & room(X36))) [flattening 136] 138. ! [X0] : ((predj(X0) | ~predd(X0)) & (predd(X0) | ~predj(X0))) & ! [X1] : (predb(X1) | ~preda(X1) | ~room(X1)) & ! [X2] : (((predj(X2) | ~preda(X2)) & (preda(X2) | ~predj(X2))) | ~room(X2)) & ! [X3] : (predj(X3) | ~predb(X3) | ~room(X3)) & ! [X4] : (predb(X4) | ~prede(X4) | ~room(X4)) & ! [X5] : (predj(X5) | predb(X5) | predi(X5) | ~room(X5)) & ! [X6] : (((predh(X6) | predb(X6)) & (~predb(X6) | ~predh(X6))) | ~room(X6)) & ! [X7] : (predh(X7) | ~predd(X7) | ~room(X7)) & ((! [X8,X9] : (X8 = X9 | ~predi(X9) | ~predi(X8) | ~room(X9) | ~room(X8)) & ? [X10] : (predi(X10) & room(X10))) | ? [X11] : ~preda(X11)) & (! [X12] : (~preda(X12) | predn(X12) | room(X12)) | ! [X13] : (~predh(X13) | ~room(X13))) & (? [X14] : (predh(X14) & room(X14)) | ? [X15] : (preda(X15) & ~predn(X15) & ~room(X15))) & (? [X16] : (predn(X16) & room(X16)) | ? [X17] : (~preda(X17) & predn(X17) & room(X17))) & (? [X18] : (~predn(X18) | predn(X18) | ~room(X18)) | ~sP0) & (! [X19] : (predn(X19) & ~predn(X19) & room(X19)) | sP0) & (! [X20] : (~preda(X20) | predo(X20) | ~room(X20)) | ? [X21] : (~predj(X21) & predc(X21) & room(X21))) & (! [X22] : (predj(X22) | ~predc(X22) | ~room(X22)) | ? [X23] : (preda(X23) & ~predo(X23) & room(X23))) & (! [X24] : (((~predh(X24) | predf(X24)) & (predh(X24) | ~predf(X24))) | ~room(X24)) | ? [X25] : (~predd(X25) | predn(X25) | ~room(X25))) & (? [X26] : ((~predn(X26) | ~predb(X26)) & (predn(X26) | predb(X26))) | ? [X27] : (~predb(X27) & prede(X27) & room(X27))) & (! [X28] : (predb(X28) | ~prede(X28) | ~room(X28)) | ! [X29] : (preda(X29) | ~predn(X29) | ~room(X29))) & (! [X30] : (prede(X30) | prede(X30) | room(X30)) | ? [X31] : (prede(X31) & ~preda(X31) & room(X31))) & (! [X32] : (~predd(X32) | predp(X32) | ~room(X32)) | ? [X33] : (predj(X33) & ~predj(X33) & room(X33))) & (! [X34] : (~predj(X34) | predj(X34) | ~room(X34)) | ? [X35] : (predd(X35) & ~predp(X35) & room(X35))) [rectify 137] 139. ? [X10] : (predi(X10) & room(X10)) => (predi(sK2) & room(sK2)) [choice axiom] 140. ? [X11] : ~preda(X11) => ~preda(sK3) [choice axiom] 141. ? [X14] : (predh(X14) & room(X14)) => (predh(sK4) & room(sK4)) [choice axiom] 142. ? [X15] : (preda(X15) & ~predn(X15) & ~room(X15)) => (preda(sK5) & ~predn(sK5) & ~room(sK5)) [choice axiom] 143. ? [X16] : (predn(X16) & room(X16)) => (predn(sK6) & room(sK6)) [choice axiom] 144. ? [X17] : (~preda(X17) & predn(X17) & room(X17)) => (~preda(sK7) & predn(sK7) & room(sK7)) [choice axiom] 145. ? [X18] : (~predn(X18) | predn(X18) | ~room(X18)) => (~predn(sK8) | predn(sK8) | ~room(sK8)) [choice axiom] 146. ? [X21] : (~predj(X21) & predc(X21) & room(X21)) => (~predj(sK9) & predc(sK9) & room(sK9)) [choice axiom] 147. ? [X23] : (preda(X23) & ~predo(X23) & room(X23)) => (preda(sK10) & ~predo(sK10) & room(sK10)) [choice axiom] 148. ? [X25] : (~predd(X25) | predn(X25) | ~room(X25)) => (~predd(sK11) | predn(sK11) | ~room(sK11)) [choice axiom] 149. ? [X26] : ((~predn(X26) | ~predb(X26)) & (predn(X26) | predb(X26))) => ((~predn(sK12) | ~predb(sK12)) & (predn(sK12) | predb(sK12))) [choice axiom] 150. ? [X27] : (~predb(X27) & prede(X27) & room(X27)) => (~predb(sK13) & prede(sK13) & room(sK13)) [choice axiom] 151. ? [X31] : (prede(X31) & ~preda(X31) & room(X31)) => (prede(sK14) & ~preda(sK14) & room(sK14)) [choice axiom] 152. ? [X33] : (predj(X33) & ~predj(X33) & room(X33)) => (predj(sK15) & ~predj(sK15) & room(sK15)) [choice axiom] 153. ? [X35] : (predd(X35) & ~predp(X35) & room(X35)) => (predd(sK16) & ~predp(sK16) & room(sK16)) [choice axiom] 154. ! [X0] : ((predj(X0) | ~predd(X0)) & (predd(X0) | ~predj(X0))) & ! [X1] : (predb(X1) | ~preda(X1) | ~room(X1)) & ! [X2] : (((predj(X2) | ~preda(X2)) & (preda(X2) | ~predj(X2))) | ~room(X2)) & ! [X3] : (predj(X3) | ~predb(X3) | ~room(X3)) & ! [X4] : (predb(X4) | ~prede(X4) | ~room(X4)) & ! [X5] : (predj(X5) | predb(X5) | predi(X5) | ~room(X5)) & ! [X6] : (((predh(X6) | predb(X6)) & (~predb(X6) | ~predh(X6))) | ~room(X6)) & ! [X7] : (predh(X7) | ~predd(X7) | ~room(X7)) & ((! [X8,X9] : (X8 = X9 | ~predi(X9) | ~predi(X8) | ~room(X9) | ~room(X8)) & (predi(sK2) & room(sK2))) | ~preda(sK3)) & (! [X12] : (~preda(X12) | predn(X12) | room(X12)) | ! [X13] : (~predh(X13) | ~room(X13))) & ((predh(sK4) & room(sK4)) | (preda(sK5) & ~predn(sK5) & ~room(sK5))) & ((predn(sK6) & room(sK6)) | (~preda(sK7) & predn(sK7) & room(sK7))) & ((~predn(sK8) | predn(sK8) | ~room(sK8)) | ~sP0) & (! [X19] : (predn(X19) & ~predn(X19) & room(X19)) | sP0) & (! [X20] : (~preda(X20) | predo(X20) | ~room(X20)) | (~predj(sK9) & predc(sK9) & room(sK9))) & (! [X22] : (predj(X22) | ~predc(X22) | ~room(X22)) | (preda(sK10) & ~predo(sK10) & room(sK10))) & (! [X24] : (((~predh(X24) | predf(X24)) & (predh(X24) | ~predf(X24))) | ~room(X24)) | (~predd(sK11) | predn(sK11) | ~room(sK11))) & (((~predn(sK12) | ~predb(sK12)) & (predn(sK12) | predb(sK12))) | (~predb(sK13) & prede(sK13) & room(sK13))) & (! [X28] : (predb(X28) | ~prede(X28) | ~room(X28)) | ! [X29] : (preda(X29) | ~predn(X29) | ~room(X29))) & (! [X30] : (prede(X30) | prede(X30) | room(X30)) | (prede(sK14) & ~preda(sK14) & room(sK14))) & (! [X32] : (~predd(X32) | predp(X32) | ~room(X32)) | (predj(sK15) & ~predj(sK15) & room(sK15))) & (! [X34] : (~predj(X34) | predj(X34) | ~room(X34)) | (predd(sK16) & ~predp(sK16) & room(sK16))) [skolemisation 138,153,152,151,150,149,148,147,146,145,144,143,142,141,140,139] 257. predj(X22) | ~predc(X22) | ~room(X22) | room(sK10) [cnf transformation 154] 259. predj(X22) | ~predc(X22) | ~room(X22) | preda(sK10) [cnf transformation 154] 267. room(sK6) | room(sK7) [cnf transformation 154] 273. room(sK4) | ~room(sK5) [cnf transformation 154] 274. room(sK4) | ~predn(sK5) [cnf transformation 154] 275. room(sK4) | preda(sK5) [cnf transformation 154] 276. predh(sK4) | ~room(sK5) [cnf transformation 154] 277. predh(sK4) | ~predn(sK5) [cnf transformation 154] 278. predh(sK4) | preda(sK5) [cnf transformation 154] 279. ~preda(X12) | predn(X12) | room(X12) | ~predh(X13) | ~room(X13) [cnf transformation 154] 283. ~predd(X7) | predh(X7) | ~room(X7) [cnf transformation 154] 284. ~predh(X6) | ~predb(X6) | ~room(X6) [cnf transformation 154] 289. ~predj(X2) | preda(X2) | ~room(X2) [cnf transformation 154] 290. ~preda(X2) | predj(X2) | ~room(X2) [cnf transformation 154] 291. ~preda(X1) | predb(X1) | ~room(X1) [cnf transformation 154] 292. ~predj(X0) | predd(X0) [cnf transformation 154] 294. ~room(X0) | predc(X0) [cnf transformation 128] 341. 10 <=> ! [X13] : (~predh(X13) | ~room(X13)) [avatar definition] 342. ~predh(X13) | ~room(X13) <- (10) [avatar component clause 341] 344. 11 <=> ! [X12] : (~preda(X12) | room(X12) | predn(X12)) [avatar definition] 345. ~preda(X12) | room(X12) | predn(X12) <- (11) [avatar component clause 344] 346. 10 | 11 [avatar split clause 279,344,341] 348. 12 <=> preda(sK5) [avatar definition] 350. preda(sK5) <- (12) [avatar component clause 348] 352. 13 <=> predh(sK4) [avatar definition] 354. predh(sK4) <- (13) [avatar component clause 352] 355. 12 | 13 [avatar split clause 278,352,348] 357. 14 <=> predn(sK5) [avatar definition] 359. ~predn(sK5) <- (~14) [avatar component clause 357] 360. ~14 | 13 [avatar split clause 277,352,357] 362. 15 <=> room(sK5) [avatar definition] 364. ~room(sK5) <- (~15) [avatar component clause 362] 365. ~15 | 13 [avatar split clause 276,352,362] 367. 16 <=> room(sK4) [avatar definition] 369. room(sK4) <- (16) [avatar component clause 367] 370. 12 | 16 [avatar split clause 275,367,348] 371. ~14 | 16 [avatar split clause 274,367,357] 372. ~15 | 16 [avatar split clause 273,367,362] 388. 20 <=> room(sK7) [avatar definition] 390. room(sK7) <- (20) [avatar component clause 388] 393. 21 <=> room(sK6) [avatar definition] 395. room(sK6) <- (21) [avatar component clause 393] 398. 20 | 21 [avatar split clause 267,393,388] 430. 29 <=> preda(sK10) [avatar definition] 432. preda(sK10) <- (29) [avatar component clause 430] 434. 30 <=> ! [X22] : (predj(X22) | ~room(X22) | ~predc(X22)) [avatar definition] 435. predj(X22) | ~room(X22) | ~predc(X22) <- (30) [avatar component clause 434] 436. 29 | 30 [avatar split clause 259,434,430] 443. 32 <=> room(sK10) [avatar definition] 445. room(sK10) <- (32) [avatar component clause 443] 446. 32 | 30 [avatar split clause 257,434,443] 525. ~room(X22) | predj(X22) <- (30) [subsumption resolution 435,294] 528. predj(sK7) <- (20, 30) [resolution 525,390] 529. predd(sK7) <- (20, 30) [resolution 528,292] 531. predh(sK7) | ~room(sK7) <- (20, 30) [resolution 529,283] 533. predh(sK7) <- (20, 30) [subsumption resolution 531,390] 535. ~room(sK7) <- (10, 20, 30) [resolution 533,342] 537. $false <- (10, 20, 30) [subsumption resolution 535,390] 538. ~10 | ~20 | ~30 [avatar contradiction clause 537] 553. 50 <=> predh(sK6) [avatar definition] 554. ~predh(sK6) <- (~50) [avatar component clause 553] 555. predh(sK6) <- (50) [avatar component clause 553] 579. predb(sK10) | ~room(sK10) <- (29) [resolution 432,291] 580. predj(sK10) | ~room(sK10) <- (29) [resolution 432,290] 581. predb(sK10) <- (29, 32) [subsumption resolution 579,445] 582. predj(sK10) <- (29, 32) [subsumption resolution 580,445] 589. room(sK5) | predn(sK5) <- (11, 12) [resolution 345,350] 592. predn(sK5) <- (11, 12, ~15) [subsumption resolution 589,364] 593. $false <- (11, 12, ~14, ~15) [subsumption resolution 592,359] 594. ~11 | ~12 | 14 | 15 [avatar contradiction clause 593] 595. ~predb(sK4) | ~room(sK4) <- (13) [resolution 354,284] 596. ~predb(sK4) <- (13, 16) [subsumption resolution 595,369] 602. 54 <=> predj(sK4) [avatar definition] 604. predj(sK4) <- (54) [avatar component clause 602] 639. predd(sK10) <- (29, 32) [resolution 582,292] 663. predh(sK10) | ~room(sK10) <- (29, 32) [resolution 639,283] 666. predh(sK10) <- (29, 32) [subsumption resolution 663,445] 687. ~predb(sK10) | ~room(sK10) <- (29, 32) [resolution 666,284] 688. ~room(sK10) <- (29, 32) [subsumption resolution 687,581] 689. $false <- (29, 32) [subsumption resolution 688,445] 690. ~29 | ~32 [avatar contradiction clause 689] 706. ~room(X22) | predj(X22) <- (30) [subsumption resolution 435,294] 707. predj(sK4) <- (16, 30) [resolution 706,369] 708. predj(sK6) <- (21, 30) [resolution 706,395] 710. 54 | ~16 | ~30 [avatar split clause 707,434,367,602] 715. preda(sK4) | ~room(sK4) <- (54) [resolution 604,289] 717. preda(sK4) <- (16, 54) [subsumption resolution 715,369] 725. predd(sK6) <- (21, 30) [resolution 708,292] 739. predb(sK4) | ~room(sK4) <- (16, 54) [resolution 717,291] 742. ~room(sK4) <- (13, 16, 54) [subsumption resolution 739,596] 743. $false <- (13, 16, 54) [subsumption resolution 742,369] 744. ~13 | ~16 | ~54 [avatar contradiction clause 743] 764. ~room(sK6) <- (10, 50) [resolution 342,555] 766. $false <- (10, 21, 50) [subsumption resolution 764,395] 767. ~10 | ~21 | ~50 [avatar contradiction clause 766] 776. predh(sK6) | ~room(sK6) <- (21, 30) [resolution 725,283] 779. ~room(sK6) <- (21, 30, ~50) [subsumption resolution 776,554] 780. $false <- (21, 30, ~50) [subsumption resolution 779,395] 781. ~21 | ~30 | 50 [avatar contradiction clause 780] 782. $false [avatar sat refutation 346,355,360,365,370,371,372,398,436,446,538,594,690,710,744,767,781] % SZS output end Proof for 5805788899184001778869388 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.022431
Tonjaa, Tonja, Merle are the only persons in the room. "Someone in the room does enjoy mountain biking" unless "Merle neither uses an ios phone nor collects rare minerals". If "Tonja collects rare minerals" then "Merle does enjoy mountain biking". If "Merle collects rare minerals" then "Tonja does enjoy mountain biking and collects rare minerals". "Merle collects rare minerals" only if "Merle either does not enjoy mountain biking or does not collect rare minerals but not both". Someone in the room does enjoy mountain biking. At least one person in the room does enjoy mountain biking, uses an ios phone or collects rare minerals. Tonjaa does enjoy mountain biking. Tonjaa who does enjoy mountain biking uses an ios phone. Everyone in the room does enjoy mountain biking or does not enjoy mountain biking. Merle either does not enjoy mountain biking or does not collect rare minerals but not both. Merle does enjoy mountain biking and uses an ios phone. If someone does enjoy mountain biking and uses an ios phone then he/she does enjoy mountain biking, collects rare minerals or uses an ios phone and vice versa. Tonja uses an ios phone, does enjoy mountain biking or collects rare minerals.
Everyone in the room does enjoy mountain biking.
entailment
room(tonjaa)&room(tonja)&room(merle)&(![X]:(room(X)=>(X='tonjaa'|X='tonja'|X='merle')))& (~(~((uses_an_ios_phone(merle))|(collects_rare_minerals(merle))))=>(?[X]:(room(X)&(does_enjoy_mountain_biking(X)))))& ((collects_rare_minerals(tonja))=>(does_enjoy_mountain_biking(merle)))& ((collects_rare_minerals(merle))=>(((does_enjoy_mountain_biking(tonja))&(collects_rare_minerals(tonja)))))& ((collects_rare_minerals(merle))=>(((does_not_enjoy_mountain_biking(merle))<~>(does_not_collect_rare_minerals(merle)))))& (?[X]:(room(X)&(does_enjoy_mountain_biking(X))))& (((?[X]:(room(X)&((does_enjoy_mountain_biking(X))|(uses_an_ios_phone(X))|(collects_rare_minerals(X)))))))& (does_enjoy_mountain_biking(tonjaa))& ((does_enjoy_mountain_biking(tonjaa))&(uses_an_ios_phone(tonjaa)))& (![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(does_enjoy_mountain_biking(X))))))& (((does_not_enjoy_mountain_biking(merle))<~>(does_not_collect_rare_minerals(merle))))& (((does_enjoy_mountain_biking(tonjaa))&(uses_an_ios_phone(tonjaa))))& (((does_enjoy_mountain_biking(merle))&(uses_an_ios_phone(merle))))& ((![X]:((((does_enjoy_mountain_biking(X))&(uses_an_ios_phone(X))))<=>(((does_enjoy_mountain_biking(X))|(collects_rare_minerals(X))|(uses_an_ios_phone(X)))))))& (~(collects_rare_minerals(tonja)))& (((uses_an_ios_phone(tonja))|(does_enjoy_mountain_biking(tonja))|(collects_rare_minerals(tonja))))& (collects_rare_minerals(tonjaa))& (uses_an_ios_phone(tonjaa))
room(tonjaa)&room(tonja)&room(merle)&(![X]:(room(X)=>(X='tonjaa'|X='tonja'|X='merle')))& ![X]:(room(X)=>(does_enjoy_mountain_biking(X)))
[ "p0", "p7", "p12", "p13", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 4771116411168100180980716 % SZS output start Proof for 4771116411168100180980716 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 51. preda(mary) [input p7] 56. predb(fred) & preda(fred) [input p12] 57. ! [X0] : ((predb(X0) & preda(X0)) <=> (predb(X0) | predc(X0) | preda(X0))) [input p13] 59. predc(paul) | preda(paul) | predb(paul) [input p15] 62. ~(! [X0] : (room(X0) => preda(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 64. ~(! [X0] : (room(X0) => preda(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 62] 137. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 138. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 137] 145. ? [X0] : (~preda(X0) & room(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 64] 146. ? [X0] : (~preda(X0) & room(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 145] 156. ! [X0] : (((predb(X0) & preda(X0)) | (~predb(X0) & ~predc(X0) & ~preda(X0))) & ((predb(X0) | predc(X0) | preda(X0)) | (~predb(X0) | ~preda(X0)))) [nnf transformation 57] 157. ! [X0] : (((predb(X0) & preda(X0)) | (~predb(X0) & ~predc(X0) & ~preda(X0))) & (predb(X0) | predc(X0) | preda(X0) | ~predb(X0) | ~preda(X0))) [flattening 156] 158. ? [X0] : (~preda(X0) & room(X0)) => (~preda(sK3) & room(sK3)) [choice axiom] 159. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) => (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 160. (~preda(sK3) & room(sK3)) | (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 146,159,158] 241. room(mary) [cnf transformation 138] 242. room(paul) [cnf transformation 138] 243. room(fred) [cnf transformation 138] 244. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 138] 258. preda(mary) [cnf transformation 51] 266. preda(fred) [cnf transformation 56] 270. ~predc(X0) | preda(X0) [cnf transformation 157] 271. ~predb(X0) | preda(X0) [cnf transformation 157] 272. ~preda(X0) | predb(X0) [cnf transformation 157] 276. predc(paul) | preda(paul) | predb(paul) [cnf transformation 59] 279. room(sK3) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 280. room(sK3) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 281. room(sK3) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 282. room(sK3) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 283. ~preda(sK3) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 284. ~preda(sK3) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 285. ~preda(sK3) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 286. ~preda(sK3) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 313. 6 <=> preda(fred) [avatar definition] 315. preda(fred) <- (6) [avatar component clause 313] 319. 7 <=> preda(paul) [avatar definition] 321. preda(paul) <- (7) [avatar component clause 319] 340. 6 [avatar split clause 266,313] 342. preda(paul) | predb(paul) [subsumption resolution 276,270] 343. predb(paul) [subsumption resolution 342,272] 344. ~preda(sK3) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 286,243] 345. ~preda(sK3) | fred != sK4 | ~room(mary) [subsumption resolution 344,242] 346. ~preda(sK3) | fred != sK4 [subsumption resolution 345,241] 348. 11 <=> fred = sK4 [avatar definition] 350. fred != sK4 <- (~11) [avatar component clause 348] 352. 12 <=> preda(sK3) [avatar definition] 354. ~preda(sK3) <- (~12) [avatar component clause 352] 355. ~11 | ~12 [avatar split clause 346,352,348] 356. ~preda(sK3) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 285,243] 357. ~preda(sK3) | paul != sK4 | ~room(mary) [subsumption resolution 356,242] 358. ~preda(sK3) | paul != sK4 [subsumption resolution 357,241] 360. 13 <=> paul = sK4 [avatar definition] 362. paul != sK4 <- (~13) [avatar component clause 360] 363. ~13 | ~12 [avatar split clause 358,352,360] 364. ~preda(sK3) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 284,243] 365. ~preda(sK3) | mary != sK4 | ~room(mary) [subsumption resolution 364,242] 366. ~preda(sK3) | mary != sK4 [subsumption resolution 365,241] 368. 14 <=> mary = sK4 [avatar definition] 371. ~14 | ~12 [avatar split clause 366,352,368] 372. ~preda(sK3) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 283,243] 373. ~preda(sK3) | room(sK4) | ~room(mary) [subsumption resolution 372,242] 374. ~preda(sK3) | room(sK4) [subsumption resolution 373,241] 376. 15 <=> room(sK4) [avatar definition] 378. room(sK4) <- (15) [avatar component clause 376] 379. 15 | ~12 [avatar split clause 374,352,376] 380. room(sK3) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 282,243] 381. room(sK3) | fred != sK4 | ~room(mary) [subsumption resolution 380,242] 382. room(sK3) | fred != sK4 [subsumption resolution 381,241] 384. 16 <=> room(sK3) [avatar definition] 386. room(sK3) <- (16) [avatar component clause 384] 387. ~11 | 16 [avatar split clause 382,384,348] 388. room(sK3) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 281,243] 389. room(sK3) | paul != sK4 | ~room(mary) [subsumption resolution 388,242] 390. room(sK3) | paul != sK4 [subsumption resolution 389,241] 391. ~13 | 16 [avatar split clause 390,384,360] 392. room(sK3) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 280,243] 393. room(sK3) | mary != sK4 | ~room(mary) [subsumption resolution 392,242] 394. room(sK3) | mary != sK4 [subsumption resolution 393,241] 395. ~14 | 16 [avatar split clause 394,384,368] 396. room(sK3) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 279,243] 397. room(sK3) | room(sK4) | ~room(mary) [subsumption resolution 396,242] 398. room(sK3) | room(sK4) [subsumption resolution 397,241] 399. 15 | 16 [avatar split clause 398,384,376] 403. preda(paul) [resolution 271,343] 404. 7 [avatar split clause 403,319] 458. paul = sK4 | mary = sK4 | fred = sK4 <- (15) [resolution 244,378] 498. mary = sK4 | fred = sK4 <- (~13, 15) [subsumption resolution 458,362] 502. mary = sK4 <- (~11, ~13, 15) [subsumption resolution 498,350] 503. 14 | 11 | 13 | ~15 [avatar split clause 502,376,360,348,368] 516. paul = sK3 | mary = sK3 | fred = sK3 <- (16) [resolution 386,244] 518. 26 <=> fred = sK3 [avatar definition] 520. fred = sK3 <- (26) [avatar component clause 518] 522. 27 <=> mary = sK3 [avatar definition] 524. mary = sK3 <- (27) [avatar component clause 522] 526. 28 <=> paul = sK3 [avatar definition] 528. paul = sK3 <- (28) [avatar component clause 526] 529. 26 | 27 | 28 | ~16 [avatar split clause 516,384,526,522,518] 531. ~preda(paul) <- (~12, 28) [backward demodulation 354,528] 532. $false <- (7, ~12, 28) [subsumption resolution 531,321] 533. ~7 | 12 | ~28 [avatar contradiction clause 532] 536. ~preda(mary) <- (~12, 27) [backward demodulation 354,524] 537. $false <- (~12, 27) [subsumption resolution 536,258] 538. 12 | ~27 [avatar contradiction clause 537] 540. ~preda(fred) <- (~12, 26) [backward demodulation 354,520] 541. $false <- (6, ~12, 26) [subsumption resolution 540,315] 542. ~6 | 12 | ~26 [avatar contradiction clause 541] 543. $false [avatar sat refutation 340,355,363,371,379,387,391,395,399,404,503,529,533,538,542] % SZS output end Proof for 4771116411168100180980716 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0.525631
Bridget, Gary are the only persons in the room. If “everyone in the room is quieter than Migdalia or does not host themed dinner parties featuring gourmet home-cooked meals” then “Bridget does not host themed dinner parties featuring gourmet home-cooked meals” otherwise “everyone in the room is a quiet person if they is not a quiet curious person”. “Gary is quieter than Thomas” only if “everyone in the room either is an amateur astronomer who builds and uses custom telescopes or is quiet but not both only if they hosts themed dinner parties featuring gourmet home-cooked meals”. If “Bridget hosts themed dinner parties featuring gourmet home-cooked meals” then “more than one person in the room is not curious”. Bridget hosts themed dinner parties featuring gourmet home-cooked meals. Gary does not host themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who is an amateur astronomer who builds and uses custom telescopes is not an amateur astronomer who builds and uses custom telescopes.
Gary is quiet.
entailment
room(bridget)&room(gary)&(![X]:(room(X)=>(X='bridget'|X='gary')))& (((![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(quieter(migdalia,X))))))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(bridget)))&((~(![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(quieter(migdalia,X)))))))=>(![X]:(room(X)=>(((~(quiet(X)&curious(X)&person(X)))=>(quiet(X)&person(X))))))))& ((quieter(thomas,gary))=>(![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<~>(quiet(X)))))))))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(bridget))=>((?[X,Y]:(room(X)&room(Y)&(~curious(X)&~curious(Y))&(X!=Y)))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(bridget))& (does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(gary))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))
room(bridget)&room(gary)&(![X]:(room(X)=>(X='bridget'|X='gary')))& quiet(gary)
[ "p0", "p1", "p4", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 7902551930476287136391965 % SZS output start Proof for 7902551930476287136391965 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. (~! [X0] : (room(X0) => (quieter(alice,X0) | ~predp(X0))) => ! [X0] : (room(X0) => (~(person(X0) & curious(X0) & quiet(X0)) => (person(X0) & quiet(X0))))) & (! [X0] : (room(X0) => (quieter(alice,X0) | ~predp(X0))) => ~predp(mary)) [input p1] 48. predp(mary) [input p4] 49. ~predp(paul) [input p5] 51. ~(quiet(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 52. (~! [X0] : (room(X0) => (quieter(alice,X0) | ~predp(X0))) => ! [X1] : (room(X1) => (~(person(X1) & curious(X1) & quiet(X1)) => (person(X1) & quiet(X1))))) & (! [X2] : (room(X2) => (quieter(alice,X2) | ~predp(X2))) => ~predp(mary)) [rectify 45] 56. (~! [X0] : (room(X0) => (quieter(alice,X0) | ~predp(X0))) => ! [X1] : (room(X1) => (~(curious(X1) & quiet(X1)) => quiet(X1)))) & (! [X2] : (room(X2) => (quieter(alice,X2) | ~predp(X2))) => ~predp(mary)) [pure predicate removal 52] 126. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 127. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 126] 128. (! [X1] : ((quiet(X1) | (curious(X1) & quiet(X1))) | ~room(X1)) | ! [X0] : ((quieter(alice,X0) | ~predp(X0)) | ~room(X0))) & (~predp(mary) | ? [X2] : ((~quieter(alice,X2) & predp(X2)) & room(X2))) [ennf transformation 56] 129. (! [X1] : (quiet(X1) | (curious(X1) & quiet(X1)) | ~room(X1)) | ! [X0] : (quieter(alice,X0) | ~predp(X0) | ~room(X0))) & (~predp(mary) | ? [X2] : (~quieter(alice,X2) & predp(X2) & room(X2))) [flattening 128] 135. ~quiet(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 51] 136. ~quiet(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 135] 138. (! [X0] : (quiet(X0) | (curious(X0) & quiet(X0)) | ~room(X0)) | ! [X1] : (quieter(alice,X1) | ~predp(X1) | ~room(X1))) & (~predp(mary) | ? [X2] : (~quieter(alice,X2) & predp(X2) & room(X2))) [rectify 129] 139. ? [X2] : (~quieter(alice,X2) & predp(X2) & room(X2)) => (~quieter(alice,sK0) & predp(sK0) & room(sK0)) [choice axiom] 140. (! [X0] : (quiet(X0) | (curious(X0) & quiet(X0)) | ~room(X0)) | ! [X1] : (quieter(alice,X1) | ~predp(X1) | ~room(X1))) & (~predp(mary) | (~quieter(alice,sK0) & predp(sK0) & room(sK0))) [skolemisation 138,139] 144. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 145. ~quiet(paul) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 136,144] 226. room(mary) [cnf transformation 127] 227. room(paul) [cnf transformation 127] 228. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 127] 229. ~predp(mary) | room(sK0) [cnf transformation 140] 230. ~predp(mary) | predp(sK0) [cnf transformation 140] 231. ~predp(mary) | ~quieter(alice,sK0) [cnf transformation 140] 232. quiet(X0) | quiet(X0) | ~room(X0) | quieter(alice,X1) | ~predp(X1) | ~room(X1) [cnf transformation 140] 241. predp(mary) [cnf transformation 48] 242. ~predp(paul) [cnf transformation 49] 244. ~quiet(paul) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 145] 245. ~quiet(paul) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 145] 246. ~quiet(paul) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 145] 248. quiet(X0) | ~room(X0) | quieter(alice,X1) | ~predp(X1) | ~room(X1) [duplicate literal removal 232] 250. 1 <=> ! [X1] : (quieter(alice,X1) | ~room(X1) | ~predp(X1)) [avatar definition] 251. quieter(alice,X1) | ~room(X1) | ~predp(X1) <- (1) [avatar component clause 250] 257. 3 <=> ! [X0] : (quiet(X0) | ~room(X0)) [avatar definition] 258. ~room(X0) | quiet(X0) <- (3) [avatar component clause 257] 259. 1 | 3 [avatar split clause 248,257,250] 261. 4 <=> quieter(alice,sK0) [avatar definition] 263. ~quieter(alice,sK0) <- (~4) [avatar component clause 261] 265. 5 <=> predp(mary) [avatar definition] 266. predp(mary) <- (5) [avatar component clause 265] 268. ~4 | ~5 [avatar split clause 231,265,261] 270. 6 <=> predp(sK0) [avatar definition] 272. predp(sK0) <- (6) [avatar component clause 270] 273. 6 | ~5 [avatar split clause 230,265,270] 275. 7 <=> room(sK0) [avatar definition] 277. room(sK0) <- (7) [avatar component clause 275] 278. 7 | ~5 [avatar split clause 229,265,275] 316. 5 [avatar split clause 241,265] 317. ~quiet(paul) | paul != sK3 | ~room(mary) [subsumption resolution 246,227] 318. ~quiet(paul) | paul != sK3 [subsumption resolution 317,226] 320. 16 <=> paul = sK3 [avatar definition] 324. 17 <=> quiet(paul) [avatar definition] 327. ~16 | ~17 [avatar split clause 318,324,320] 328. ~quiet(paul) | mary != sK3 | ~room(mary) [subsumption resolution 245,227] 329. ~quiet(paul) | mary != sK3 [subsumption resolution 328,226] 331. 18 <=> mary = sK3 [avatar definition] 333. mary != sK3 <- (~18) [avatar component clause 331] 334. ~18 | ~17 [avatar split clause 329,324,331] 335. ~quiet(paul) | room(sK3) | ~room(mary) [subsumption resolution 244,227] 336. ~quiet(paul) | room(sK3) [subsumption resolution 335,226] 338. 19 <=> room(sK3) [avatar definition] 340. room(sK3) <- (19) [avatar component clause 338] 341. 19 | ~17 [avatar split clause 336,324,338] 343. quiet(paul) <- (3) [resolution 258,227] 349. 17 | ~3 [avatar split clause 343,257,324] 353. mary = sK0 | paul = sK0 <- (7) [resolution 228,277] 356. mary = sK3 | paul = sK3 <- (19) [resolution 228,340] 358. 20 <=> paul = sK0 [avatar definition] 360. paul = sK0 <- (20) [avatar component clause 358] 362. 21 <=> mary = sK0 [avatar definition] 364. mary = sK0 <- (21) [avatar component clause 362] 365. 20 | 21 | ~7 [avatar split clause 353,275,362,358] 384. paul = sK3 <- (~18, 19) [subsumption resolution 356,333] 387. 16 | 18 | ~19 [avatar split clause 384,338,331,320] 395. predp(paul) <- (6, 20) [backward demodulation 272,360] 397. $false <- (6, 20) [subsumption resolution 395,242] 398. ~6 | ~20 [avatar contradiction clause 397] 405. ~quieter(alice,mary) <- (~4, 21) [backward demodulation 263,364] 416. ~room(mary) | ~predp(mary) <- (1, ~4, 21) [resolution 251,405] 417. ~predp(mary) <- (1, ~4, 21) [subsumption resolution 416,226] 418. $false <- (1, ~4, 5, 21) [subsumption resolution 417,266] 419. ~1 | 4 | ~5 | ~21 [avatar contradiction clause 418] 420. $false [avatar sat refutation 259,268,273,278,316,327,334,341,349,365,387,398,419] % SZS output end Proof for 7902551930476287136391965 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.014369
There is a room. “Everyone in the room practices urban gardening or does not compete in national level swimming championships” only if “everyone anywhere who competes in national level swimming championships practices graffiti art”. If “not everyone in the room has completed a triathlon or does not play video games” then “everyone in the room who has completed a triathlon collects classic novels”. If “no one anywhere maintains a large, organic vegetable garden year-round or does not write poetry” then “at least one person in the room can play the guitar”. “If someone trains for and competes in international triathlons then he/she collects foreign coins and vice versa” if “not everyone anywhere enjoys snowboarding or does not practice urban gardening”. Everyone in the room can play the harmonica if they enjoys snowboarding. Everyone in the room plays video games if and only if they competes in national level swimming championships. Everyone in the room competes in national level swimming championships if and only if they has completed a triathlon. Everyone in the room has completed a triathlon if and only if they plays video games. Everyone in the room plays video games if and only if they enjoys virtual reality gaming. Not everyone in the room who enjoys virtual reality gaming collects foreign coins. Everyone in the room can play the piano if they collects foreign coins.
Everyone in the room is not a Linux enthusiast or collects foreign coins.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(practices_urban_gardening(X))))))=>(![X]:(anywhere(X)=>(((competes_in_national_level_swimming_championships(X))=>(practices_graffiti_art(X)))))))& ((~![X]:(room(X)=>(((does_not_play_video_games(X))|(has_completed_a_triathlon(X))))))=>(![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(collects_classic_novels(X)))))))& ((~?[X]:(anywhere(X)=>(((does_not_write_poetry(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))))=>(((?[X]:(room(X)&can_play_the_guitar(X))))))& ((~![X]:(anywhere(X)=>(((does_not_practice_urban_gardening(X))|(enjoys_snowboarding(X))))))=>((![X]:((trains_for_and_competes_in_international_triathlons(X))<=>(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((plays_video_games(X))<=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))<=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))<=>(plays_video_games(X))))))& (![X]:(room(X)=>(((plays_video_games(X))<=>(enjoys_virtual_reality_gaming(X))))))& (~![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(can_play_the_piano(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(anywhere(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(collects_classic_novels(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(can_play_the_piano(X))))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(writes_poetry(X))))))& (~![X]:(room(X)=>(((writes_poetry(X))=>(does_not_collect_classic_novels(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))<=(does_not_collect_classic_novels(X))))))& (![X]:(~room(X)=>(((enjoys_kayaking(X))<=(plays_video_games(X))))))& (~![X]:(room(X)=>(((enjoys_kayaking(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))<=>(is_a_Linux_enthusiast(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((collects_foreign_coins(X))|(is_not_a_Linux_enthusiast(X)))))
[]
null
0.40887
Gladys, Richard, Claudette, Lori, Brian are the only persons in the room. If “Gladys plays the drums” then “at least one person in the room enjoys bird watching, collects antique jewelry and does not enjoy bird watching” otherwise “Gladys hosts themed dinner parties featuring gourmet home-cooked meals”. Gladys either is a craft beer aficionado or is not a craft beer aficionado but not both. Gladys hosts themed dinner parties featuring gourmet home-cooked meals. Gladys hosts themed dinner parties featuring gourmet home-cooked meals and enjoys bird watching. Everyone in the room who plays the drums is a craft beer aficionado. Gladys enjoys bird watching. Someone in the room enjoys bird watching. Not everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals. Someone in the room collects antique jewelry or plays the drums or both. Everyone in the room enjoys bird watching and hosts themed dinner parties featuring gourmet home-cooked meals.
Gladys plays the drums.
contradiction
room(gladys)&room(richard)&room(claudette)&room(lori)&room(brian)&(![X]:(room(X)=>(X='gladys'|X='richard'|X='claudette'|X='lori'|X='brian')))& (((plays_the_drums(gladys))=>(((?[X]:(room(X)&((enjoys_bird_watching(X))&(collects_antique_jewelry(X))&(does_not_enjoy_bird_watching(X))))))))&((~(plays_the_drums(gladys)))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(gladys))))& (((is_a_craft_beer_aficionado(gladys))<~>(is_not_a_craft_beer_aficionado(gladys))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(gladys))& (((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(gladys))&(enjoys_bird_watching(gladys))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(is_a_craft_beer_aficionado(X))))))& (enjoys_bird_watching(gladys))& (?[X]:(room(X)&(enjoys_bird_watching(X))))& (~![X]:(room(X)=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))& (?[X]:(room(X)&(((collects_antique_jewelry(X))|(plays_the_drums(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))
room(gladys)&room(richard)&room(claudette)&room(lori)&room(brian)&(![X]:(room(X)=>(X='gladys'|X='richard'|X='claudette'|X='lori'|X='brian')))& plays_the_drums(gladys)
[ "p1", "hypothesis" ]
% SZS status Unsatisfiable for 7298558935923990595188766 % SZS output start Proof for 7298558935923990595188766 45. (~predf(mary) => prede(mary)) & (predf(mary) => ? [X0] : (~preda(X0) & predb(X0) & preda(X0) & room(X0))) [input p1] 55. predf(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 59. predf(mary) => ? [X0] : (~preda(X0) & predb(X0) & preda(X0) & room(X0)) [pure predicate removal 45] 61. predf(mary) => ? [X0] : (~preda(X0) & preda(X0) & room(X0)) [pure predicate removal 59] 137. ? [X0] : (~preda(X0) & preda(X0) & room(X0)) | ~predf(mary) [ennf transformation 61] 142. predf(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 143. predf(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 145. ? [X0] : (~preda(X0) & preda(X0) & room(X0)) => (~preda(sK0) & preda(sK0) & room(sK0)) [choice axiom] 146. (~preda(sK0) & preda(sK0) & room(sK0)) | ~predf(mary) [skolemisation 137,145] 241. preda(sK0) | ~predf(mary) [cnf transformation 146] 242. ~preda(sK0) | ~predf(mary) [cnf transformation 146] 259. predf(mary) [cnf transformation 143] 261. 1 <=> predf(mary) [avatar definition] 265. 2 <=> preda(sK0) [avatar definition] 268. ~1 | ~2 [avatar split clause 242,265,261] 269. ~1 | 2 [avatar split clause 241,265,261] 275. 1 [avatar split clause 259,261] 276. $false [avatar sat refutation 268,269,275] % SZS output end Proof for 7298558935923990595188766 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Not everyone anywhere does enjoy trail running or does not write and illustrates their own graphic novels. No one in the room who reads mystery novels neither plays video games nor is a skilled home brewer experimenting with craft beer recipes. Everyone in the room who owns a 3D printer or writes and illustrates their own graphic novels or both frequently participates in hackathons and coding competitions, is a skilled home brewer experimenting with craft beer recipes and uses a Windows laptop.
Everyone in the room does not frequently participates in hackathons and coding competitions.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))))& (~![X]:(anywhere(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(does_enjoy_trail_running(X))))))& (![X]:(anywhere(X)=>(((does_not_know_morse_code(X))|(reads_mystery_novels(X))))))& (~?[X]:(room(X)=>(((reads_mystery_novels(X))=>(~((plays_video_games(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& (![X]:(room(X)=>(((~((plays_video_games(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))<=>(~((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(enjoys_snowboarding(X))))))))& (![X]:(anywhere(X)=>(((~((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(enjoys_snowboarding(X))))=>(((owns_a_3D_printer(X))|(writes_and_illustrates_their_own_graphic_novels(X))))))))& (![X]:(room(X)=>(((((owns_a_3D_printer(X))|(writes_and_illustrates_their_own_graphic_novels(X))))=>(((frequently_participates_in_hackathons_and_coding_competitions(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(uses_a_Windows_laptop(X))))))))& (![X]:(room(X)=>(((((frequently_participates_in_hackathons_and_coding_competitions(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(uses_a_Windows_laptop(X))))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_play_video_games(X))))))& (![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(plays_video_games(X))))))& (![X]:(room(X)=>(((plays_video_games(X))|(does_not_use_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))&(uses_contact_lenses(X))))))))& (![X]:(room(X)=>(((((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))&(uses_contact_lenses(X))))=>(((does_enjoy_trail_running(X))&(owns_a_microscope(X))&(writes_poetry(X))))))))& (![X]:(anywhere(X)=>(((does_not_enjoy_stargazing(X))|(enjoys_stargazing(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))<=>(((owns_a_microscope(X))&(enjoys_snowboarding(X))&(knows_morse_code(X))))))))& (![X]:(~room(X)=>(((((owns_a_microscope(X))&(enjoys_snowboarding(X))&(knows_morse_code(X))))<=>(((drives_a_hybrid_car(X))|(enjoys_making_ceramics(X))))))))& (![X]:(anywhere(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(plays_video_games(X))))))& (![X]:(~room(X)=>(((~((writes_poetry(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))<=(plays_video_games(X))))))& (~?[X]:(room(X)=>(((~((writes_poetry(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(~((writes_and_illustrates_their_own_graphic_novels(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))))))& (![X]:(room(X)=>(((~((writes_and_illustrates_their_own_graphic_novels(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))|(does_not_enjoy_snowboarding(X))))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_frequently_participates_in_hackathons_and_coding_competitions(X)))
[ "p2", "p4", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1763526086237572956317580 % SZS output start Proof for 1763526086237572956317580 46. ~! [X0] : (anywhere(X0) => (predj(X0) | ~predo(X0))) [input p2] 48. ~? [X0] : (room(X0) => (predu(X0) => ~(prede(X0) | preda(X0)))) [input p4] 51. ! [X0] : (room(X0) => ((predo(X0) | predn(X0)) => (predd(X0) & prede(X0) & predm(X0)))) [input p7] 67. ! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room [input hypothesis] 74. ~? [X0] : (room(X0) => ~(prede(X0) | preda(X0))) [pure predicate removal 48] 77. ! [X0] : (room(X0) => ~predm(X0)) [pure predicate removal 67] 151. ? [X0] : ((~predj(X0) & predo(X0)) & anywhere(X0)) [ennf transformation 46] 152. ? [X0] : (~predj(X0) & predo(X0) & anywhere(X0)) [flattening 151] 153. ! [X0] : ((prede(X0) | preda(X0)) & room(X0)) [ennf transformation 74] 157. ! [X0] : (((predd(X0) & prede(X0) & predm(X0)) | (~predo(X0) & ~predn(X0))) | ~room(X0)) [ennf transformation 51] 158. ! [X0] : ((predd(X0) & prede(X0) & predm(X0)) | (~predo(X0) & ~predn(X0)) | ~room(X0)) [flattening 157] 179. ! [X0] : (~predm(X0) | ~room(X0)) [ennf transformation 77] 181. ? [X0] : (~predj(X0) & predo(X0) & anywhere(X0)) => (~predj(sK0) & predo(sK0) & anywhere(sK0)) [choice axiom] 182. ~predj(sK0) & predo(sK0) & anywhere(sK0) [skolemisation 152,181] 272. predo(sK0) [cnf transformation 182] 274. room(X0) [cnf transformation 153] 282. predm(X0) | ~predo(X0) | ~room(X0) [cnf transformation 158] 314. ~predm(X0) | ~room(X0) [cnf transformation 179] 321. ~predo(X0) | predm(X0) [subsumption resolution 282,274] 339. ~predm(X0) [subsumption resolution 314,274] 344. predm(sK0) [resolution 321,272] 346. $false [subsumption resolution 344,339] % SZS output end Proof for 1763526086237572956317580 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.019 s % ------------------------------ % ------------------------------
0.055298
There is a room. If 'not everyone outside the room does not collect comic books or collects comic books' then 'if someone enjoys fishing then he/she does not bake bread at home and enjoys fishing'.
Everyone in the room can play the harmonica.
neutral
(there_is_a_room)& ((~![X]:(~room(X)=>(((collects_comic_books(X))|(does_not_collect_comic_books(X))))))=>((![X]:((enjoys_fishing(X))=>(((does_not_bake_bread_at_home(X))&(enjoys_fishing(X))))))))& (~(![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_enjoy_macrame(X))))))=>(![X]:(room(X)=>(((enjoys_fishing(X))<=>(does_not_collect_comic_books(X)))))))& ((![X]:(anywhere(X)=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))=>(![X]:(~room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))<=(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& ((~?[X]:(room(X)=>(((enjoys_fishing(X))|(is_not_a_Linux_enthusiast(X))))))<=>(![X]:(room(X)=>(((can_play_the_harmonica(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))<~>(![X]:(room(X)=>(((collects_comic_books(X))|(does_not_have_a_piercing(X)))))))& ((![X]:(room(X)=>(((enjoys_fishing(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(![X]:(room(X)=>(((((collects_comic_books(X))&(is_a_Linux_enthusiast(X))))=>(enjoys_kayaking(X)))))))& (![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_enjoy_macrame(X))))))& (~![X]:(room(X)=>(((can_play_the_harmonica(X))=>(~((collects_comic_books(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))))& (![X]:(room(X)=>(collects_comic_books(X))))& (~?[X]:(room(X)=>(((enjoys_fishing(X))<=(collects_comic_books(X))))))& (~![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(((practices_and_performs_acrobatic_dance_routines(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(enjoys_macrame(X))))))))& (~![X]:(anywhere(X)=>(((((practices_and_performs_acrobatic_dance_routines(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(enjoys_macrame(X))))=>(~((collects_rare_and_antique_scientific_instruments(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))))& (![X]:(room(X)=>(((((collects_rare_and_antique_scientific_instruments(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(enjoys_kayaking(X))))))& (![X]:(room(X)=>(((((enjoys_fishing(X))&(own_a_television(X))&(collects_rare_and_antique_scientific_instruments(X))))=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(collects_rare_and_antique_scientific_instruments(X))))))))& (~?[X]:(room(X)=>(((((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(collects_rare_and_antique_scientific_instruments(X))))=>(~((does_not_travel_domestically_frequently(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))))& (![X]:(room(X)=>(((((does_not_travel_domestically_frequently(X))<~>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))<=(~((does_not_travel_domestically_frequently(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))))& ((![X]:((~((enjoys_kayaking(X))|(has_a_piercing(X))))<=>(((travels_domestically_frequently(X))|(enjoys_fishing(X)))))))& ((![X]:((own_a_television(X))=>(~((bakes_bread_at_home(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& (![X]:(room(X)=>(((enjoys_macrame(X))<=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((((collects_comic_books(X))&(is_a_Linux_enthusiast(X))))=>(enjoys_kayaking(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(can_play_the_harmonica(X)))
[]
null
0
Sylvia is the only person in the room. Everyone in the room who makes homemade pastries can play the flute. Not everyone in the room who practices urban gardening works as a freelance web developer specializing in e-commerce sites. Everyone in the room who is a dedicated volunteer for local community service projects competes in national level swimming championships. At least one person in the room enjoys fishing. Sylvia dreamt that “it is not the case that “Sylvia is a Linux enthusiast or creates YouTube content or both””. Everyone in the room is an expert in identifying and foraging wild edible plants if they enjoys virtual reality gaming and vice versa. Sylvia enjoys virtual reality gaming. Everyone outside the room drives a hybrid car or does not design and sews custom cosplay costumes for conventions. It is not the case that “more than one person in the room can play the flute”. Everyone in the room works as a freelance web developer specializing in e-commerce sites only if they enjoys fishing. Everyone in the room who is a dedicated volunteer for local community service projects knows morse code. Sylvia competes in national level swimming championships. Everyone in the room who has a specialized collection of handmade artisan pottery hosts regular game nights featuring complex strategy games. Everyone in the room who hosts regular game nights featuring complex strategy games works as a freelance web developer specializing in e-commerce sites, has a specialized collection of handmade artisan pottery or creates large-scale murals for public art installations. Everyone anywhere who works as a freelance web developer specializing in e-commerce sites, has a specialized collection of handmade artisan pottery or creates large-scale murals for public art installations is an expert in identifying and foraging wild edible plants. Sylvia hosts regular game nights featuring complex strategy games. Sylvia is an expert in identifying and foraging wild edible plants. Sylvia regularly contributes to tech forums and online communities. Sylvia creates large-scale murals for public art installations.
Sylvia competes in national level swimming championships, enjoys virtual reality gaming and regularly contributes to tech forums and online communities.
entailment
room(sylvia)&(![X]:(room(X)=>(X='sylvia')))& (![X]:(room(X)=>(((makes_homemade_pastries(X))=>(can_play_the_flute(X))))))& (~![X]:(room(X)=>(((practices_urban_gardening(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(competes_in_national_level_swimming_championships(X))))))& (((?[X]:(room(X)&enjoys_fishing(X)))))& ((sylvia_dream=>(~(((is_a_Linux_enthusiast(sylvia))|(creates_YouTube_content(sylvia)))))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<=>(enjoys_virtual_reality_gaming(X))))))& (enjoys_virtual_reality_gaming(sylvia))& (![X]:(~room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(drives_a_hybrid_car(X))))))& (~((?[X,Y]:(room(X)&room(Y)&(can_play_the_flute(X)&can_play_the_flute(Y))&(X!=Y)))))& (![X]:(room(X)=>(((enjoys_fishing(X))<=(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(knows_morse_code(X))))))& (competes_in_national_level_swimming_championships(sylvia))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))|(creates_large-scale_murals_for_public_art_installations(X))))))))& (![X]:(anywhere(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))|(creates_large-scale_murals_for_public_art_installations(X))))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (hosts_regular_game_nights_featuring_complex_strategy_games(sylvia))& (is_an_expert_in_identifying_and_foraging_wild_edible_plants(sylvia))& (regularly_contributes_to_tech_forums_and_online_communities(sylvia))& (creates_large-scale_murals_for_public_art_installations(sylvia))
room(sylvia)&(![X]:(room(X)=>(X='sylvia')))& ((competes_in_national_level_swimming_championships(sylvia))&(enjoys_virtual_reality_gaming(sylvia))&(regularly_contributes_to_tech_forums_and_online_communities(sylvia)))
[ "p0", "p7", "p12", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 7542202414062222123852674 % SZS output start Proof for 7542202414062222123852674 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 51. preda(mary) [input p7] 56. prede(mary) [input p12] 62. predb(mary) [input p18] 64. ~(predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 146. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 155. ~predb(mary) | ~preda(mary) | ~prede(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 64] 162. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 163. ~predb(mary) | ~preda(mary) | ~prede(mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 155,162] 245. room(mary) [cnf transformation 146] 246. ~room(X0) | mary = X0 [cnf transformation 146] 252. preda(mary) [cnf transformation 51] 253. prede(mary) [cnf transformation 56] 261. predb(mary) [cnf transformation 62] 263. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK2) | ~room(mary) [cnf transformation 163] 264. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK2 | ~room(mary) [cnf transformation 163] 268. ~preda(mary) | ~prede(mary) | mary != sK2 | ~room(mary) [subsumption resolution 264,261] 269. ~prede(mary) | mary != sK2 | ~room(mary) [subsumption resolution 268,252] 270. mary != sK2 | ~room(mary) [subsumption resolution 269,253] 271. mary != sK2 [subsumption resolution 270,245] 272. ~preda(mary) | ~prede(mary) | room(sK2) | ~room(mary) [subsumption resolution 263,261] 273. ~prede(mary) | room(sK2) | ~room(mary) [subsumption resolution 272,252] 274. room(sK2) | ~room(mary) [subsumption resolution 273,253] 275. room(sK2) [subsumption resolution 274,245] 280. mary = sK2 [resolution 246,275] 284. $false [subsumption resolution 280,271] % SZS output end Proof for 7542202414062222123852674 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.078274
Leslie is the only person in the room. Brenda is a client of Leslie. It is not the case that “Leslie is not a wise european”. Everyone in the room either enjoys writing detailed reviews of new and classic board games or collects vintage stamps but not both if they enjoys fishing. A shadow does not appear only at noon. Leslie enjoys coding in Python. Leslie is a client of Michael. There is no planet where the oceans are in the sky. If someone is a sibling of Michael then he/she hosts a popular podcast about emerging technologies and vice versa.
Leslie is tall.
neutral
room(leslie)&(![X]:(room(X)=>(X='leslie')))& (client(leslie,brenda))& (~(~(wise(leslie)&european(leslie))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))<~>(collects_vintage_stamps(X))))))))& (A_shadow_does_not_appear_only_at_noon.)& (enjoys_coding_in_Python(leslie))& (client(michael,leslie))& (There_is_no_planet_where_the_oceans_are_in_the_sky.)& ((![X]:((sibling(michael,X))<=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (((All_swans_in_one_park_are_blue.)|(Glass_rain_does_not_fall_on_a_distant_planet.)))& (![X]:(anywhere(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(curious(X)&person(X))))))& (client(samantha,leslie))& (![X]:(quiet(X)=>humble(X)))& (![X]:(room(X)=>(((client(michael,X))=>(kind(X))))))& (louder(leslie,jessica))& ((![X]:((((louder(brenda,X))&(client(jessica,X))))<=>(streams_on_Twitch(X)))))& (does_not_collect_classic_novels(leslie))& (?[X,Y]:((((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(younger(jessica,X))))&(~hate(Y,jessica))&(younger(X,Y))))& (![X]:(room(X)=>(((~quiet(X))=>(tall(X)&wise(X)&person(X))))))& (poorer(maria,leslie))& (generous(leslie)&tourist(leslie))& (![X]:(room(X)=>(((calm(X))<=(humble(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(~(creative(X)&brave(X)&tall(X)&generous(X)&wise(X)&person(X)))))))
room(leslie)&(![X]:(room(X)=>(X='leslie')))& tall(leslie)
[]
null
0
Richard, Robert are the only persons in the room. If “everyone in the room does not play the drums or plays the drums” then “Richard who collects vintage stamps hosts themed dinner parties featuring gourmet home-cooked meals, has a piercing or collects vintage stamps”. If “not everyone in the room does not maintain a large, organic vegetable garden year-round or has a piercing” then “Richard plays the drums”. “More than one person in the room either hosts themed dinner parties featuring gourmet home-cooked meals or collects vintage stamps but not both” unless “it is not the case that “Robert collects vintage stamps””. It is not the case that “at least one person outside the room plays the drums”. Only one person in the room plays the drums. More than one person in the room hosts themed dinner parties featuring gourmet home-cooked meals. At least one person in the room maintains a large, organic vegetable garden year-round. It is not the case that “someone in the room has a piercing”.
Richard maintains a large, organic vegetable garden year-round.
neutral
room(richard)&room(robert)&(![X]:(room(X)=>(X='richard'|X='robert')))& ((![X]:(room(X)=>(((plays_the_drums(X))|(does_not_play_the_drums(X))))))=>((collects_vintage_stamps(richard))&(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(richard))|(has_a_piercing(richard))|(collects_vintage_stamps(richard))))))& ((~![X]:(room(X)=>(((has_a_piercing(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))=>(plays_the_drums(richard)))& (~(~(collects_vintage_stamps(robert)))=>((?[X,Y]:(room(X)&room(Y)&(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<~>(collects_vintage_stamps(X)))&((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(Y))<~>(collects_vintage_stamps(Y))))&(X!=Y)))))& (~(((?[X]:(~room(X)&plays_the_drums(X))))))& (((?[X]:(room(X)&plays_the_drums(X)))&(![X,Y]:((room(X)&room(Y)&(plays_the_drums(X))&(plays_the_drums(Y)))=>(X=Y)))))& ((?[X,Y]:(room(X)&room(Y)&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(Y))&(X!=Y))))& (((?[X]:(room(X)&maintains_a_large,_organic_vegetable_garden_year-round(X)))))& (~(?[X]:(room(X)&(has_a_piercing(X)))))
room(richard)&room(robert)&(![X]:(room(X)=>(X='richard'|X='robert')))& maintains_a_large,_organic_vegetable_garden_year-round(richard)
[]
null
0.638112
Kristy, Karen, Robert, Brian are the only persons in the room. Either “at least one person in the room does not host a popular podcast about emerging technologies” or “Kristy hosts a popular podcast about emerging technologies” but not both. If “Kristy hosts a popular podcast about emerging technologies” then “Karen creates large-scale murals for public art installations”. At least one person in the room creates large-scale murals for public art installations. Kristy hosts a popular podcast about emerging technologies. Kristy enjoys wildlife photography. If someone creates large-scale murals for public art installations then he/she enjoys wildlife photography. More than one person in the room enjoys wildlife photography. Kristy creates large-scale murals for public art installations. If someone enjoys wildlife photography then he/she hosts a popular podcast about emerging technologies and vice versa. Karen enjoys wildlife photography. Karen hosts a popular podcast about emerging technologies. Someone in the room enjoys wildlife photography. If someone enjoys wildlife photography then he/she creates large-scale murals for public art installations and vice versa. At least one person in the room enjoys wildlife photography. Karen creates large-scale murals for public art installations. At least one person outside the room enjoys wildlife photography.
Robert enjoys wildlife photography.
entailment
room(kristy)&room(karen)&room(robert)&room(brian)&(![X]:(room(X)=>(X='kristy'|X='karen'|X='robert'|X='brian')))& ((((?[X]:(room(X)&does_not_host_a_popular_podcast_about_emerging_technologies(X)))))<~>(hosts_a_popular_podcast_about_emerging_technologies(kristy)))& ((hosts_a_popular_podcast_about_emerging_technologies(kristy))=>(creates_large-scale_murals_for_public_art_installations(karen)))& (((?[X]:(room(X)&creates_large-scale_murals_for_public_art_installations(X)))))& (hosts_a_popular_podcast_about_emerging_technologies(kristy))& (enjoys_wildlife_photography(kristy))& ((![X]:((creates_large-scale_murals_for_public_art_installations(X))=>(enjoys_wildlife_photography(X)))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_wildlife_photography(X)&enjoys_wildlife_photography(Y))&(X!=Y))))& (creates_large-scale_murals_for_public_art_installations(kristy))& ((![X]:((enjoys_wildlife_photography(X))<=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))& (enjoys_wildlife_photography(karen))& (hosts_a_popular_podcast_about_emerging_technologies(karen))& (?[X]:(room(X)&(enjoys_wildlife_photography(X))))& ((![X]:((enjoys_wildlife_photography(X))<=>(creates_large-scale_murals_for_public_art_installations(X)))))& (((?[X]:(room(X)&enjoys_wildlife_photography(X)))))& (creates_large-scale_murals_for_public_art_installations(karen))& (((?[X]:(~room(X)&enjoys_wildlife_photography(X)))))
room(kristy)&room(karen)&room(robert)&room(brian)&(![X]:(room(X)=>(X='kristy'|X='karen'|X='robert'|X='brian')))& enjoys_wildlife_photography(robert)
[ "p0", "p1", "p4", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 3212446691595187392200441 % SZS output start Proof for 3212446691595187392200441 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ? [X0] : (~preda(X0) & room(X0)) <~> preda(mary) [input p1] 48. preda(mary) [input p4] 53. ! [X0] : (predb(X0) <=> preda(X0)) [input p9] 61. ~(predb(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 134. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 135. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134] 138. ~predb(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 139. ~predb(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 138] 141. (~preda(mary) | ! [X0] : (preda(X0) | ~room(X0))) & (preda(mary) | ? [X0] : (~preda(X0) & room(X0))) [nnf transformation 45] 142. (~preda(mary) | ! [X0] : (preda(X0) | ~room(X0))) & (preda(mary) | ? [X1] : (~preda(X1) & room(X1))) [rectify 141] 143. ? [X1] : (~preda(X1) & room(X1)) => (~preda(sK0) & room(sK0)) [choice axiom] 144. (~preda(mary) | ! [X0] : (preda(X0) | ~room(X0))) & (preda(mary) | (~preda(sK0) & room(sK0))) [skolemisation 142,143] 149. ! [X0] : ((predb(X0) | ~preda(X0)) & (preda(X0) | ~predb(X0))) [nnf transformation 53] 157. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 158. ~predb(fred) | (alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 139,157] 239. room(mary) [cnf transformation 135] 240. room(paul) [cnf transformation 135] 241. room(fred) [cnf transformation 135] 242. room(alice) [cnf transformation 135] 243. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 135] 246. ~preda(mary) | preda(X0) | ~room(X0) [cnf transformation 144] 250. preda(mary) [cnf transformation 48] 260. ~preda(X0) | predb(X0) [cnf transformation 149] 272. ~predb(fred) | room(sK7) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 273. ~predb(fred) | mary != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 274. ~predb(fred) | paul != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 275. ~predb(fred) | fred != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 276. ~predb(fred) | alice != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 278. 1 <=> ! [X0] : (preda(X0) | ~room(X0)) [avatar definition] 279. ~room(X0) | preda(X0) <- (1) [avatar component clause 278] 281. 2 <=> preda(mary) [avatar definition] 284. 1 | ~2 [avatar split clause 246,281,278] 300. 2 [avatar split clause 250,281] 302. ~predb(fred) | alice != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 276,242] 303. ~predb(fred) | alice != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 302,241] 304. ~predb(fred) | alice != sK7 | ~room(mary) [subsumption resolution 303,240] 305. ~predb(fred) | alice != sK7 [subsumption resolution 304,239] 307. 6 <=> alice = sK7 [avatar definition] 309. alice != sK7 <- (~6) [avatar component clause 307] 311. 7 <=> predb(fred) [avatar definition] 314. ~6 | ~7 [avatar split clause 305,311,307] 315. ~predb(fred) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 275,242] 316. ~predb(fred) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 315,241] 317. ~predb(fred) | fred != sK7 | ~room(mary) [subsumption resolution 316,240] 318. ~predb(fred) | fred != sK7 [subsumption resolution 317,239] 320. 8 <=> fred = sK7 [avatar definition] 322. fred != sK7 <- (~8) [avatar component clause 320] 323. ~8 | ~7 [avatar split clause 318,311,320] 324. ~predb(fred) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,242] 325. ~predb(fred) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 324,241] 326. ~predb(fred) | paul != sK7 | ~room(mary) [subsumption resolution 325,240] 327. ~predb(fred) | paul != sK7 [subsumption resolution 326,239] 329. 9 <=> paul = sK7 [avatar definition] 331. paul != sK7 <- (~9) [avatar component clause 329] 332. ~9 | ~7 [avatar split clause 327,311,329] 333. ~predb(fred) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 273,242] 334. ~predb(fred) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 333,241] 335. ~predb(fred) | mary != sK7 | ~room(mary) [subsumption resolution 334,240] 336. ~predb(fred) | mary != sK7 [subsumption resolution 335,239] 338. 10 <=> mary = sK7 [avatar definition] 340. mary != sK7 <- (~10) [avatar component clause 338] 341. ~10 | ~7 [avatar split clause 336,311,338] 342. ~predb(fred) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,242] 343. ~predb(fred) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 342,241] 344. ~predb(fred) | room(sK7) | ~room(mary) [subsumption resolution 343,240] 345. ~predb(fred) | room(sK7) [subsumption resolution 344,239] 347. 11 <=> room(sK7) [avatar definition] 349. room(sK7) <- (11) [avatar component clause 347] 350. 11 | ~7 [avatar split clause 345,311,347] 376. preda(fred) <- (1) [resolution 279,241] 391. predb(fred) <- (1) [resolution 376,260] 394. 7 | ~1 [avatar split clause 391,278,311] 459. fred = sK7 | paul = sK7 | mary = sK7 | alice = sK7 <- (11) [resolution 243,349] 545. paul = sK7 | mary = sK7 | alice = sK7 <- (~8, 11) [subsumption resolution 459,322] 546. mary = sK7 | alice = sK7 <- (~8, ~9, 11) [subsumption resolution 545,331] 547. alice = sK7 <- (~8, ~9, ~10, 11) [subsumption resolution 546,340] 548. $false <- (~6, ~8, ~9, ~10, 11) [subsumption resolution 547,309] 549. 6 | 8 | 9 | 10 | ~11 [avatar contradiction clause 548] 550. $false [avatar sat refutation 284,300,314,323,332,341,350,394,549] % SZS output end Proof for 3212446691595187392200441 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.349196
There is a room. “A clock measures time in various colors.” or “A bridge sings when it is crossed.” or both.
It is true that “A bridge sings when it is crossed.”.
neutral
(there_is_a_room)& ((A_clock_measures_time_in_various_colors.)|(A_bridge_sings_when_it_is_crossed.))
(there_is_a_room)& A_bridge_sings_when_it_is_crossed.
[]
null
0.442881
There is a room. Everyone in the room neither hosts themed dinner parties featuring gourmet home-cooked meals nor is kind if they is a dedicated volunteer for local community service projects or enjoys skydiving or both. Only one person in the room is not wise, not kind. Someone anywhere practices archery. All wise persons are curious. Everyone in the room who is a dedicated volunteer for local community service projects enjoys skydiving. Not everyone in the room who enjoys skydiving practices archery. If someone hosts themed dinner parties featuring gourmet home-cooked meals then he/she is a curious tourist and vice versa. Everyone in the room is a dedicated volunteer for local community service projects, is a curious wise kind tourist and practices archery if they is a curious wise kind person. If someone hosts themed dinner parties featuring gourmet home-cooked meals then he/she is a wise tourist and vice versa. Only one person in the room is wise. Everyone outside the room who is kind is not a kind wise person. If someone practices pilates then he/she is a dedicated volunteer for local community service projects. Everyone outside the room who is a wise tourist is a kind person. All kind persons are curious. If someone is not a wise tourist then he/she is curious.
Not everyone in the room is a curious person.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(enjoys_skydiving(X))))=>(~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(kind(X))))))))& (((?[X]:(room(X)&~wise(X)&~kind(X)))&(![X,Y]:((room(X)&room(Y)&(~wise(X)&~kind(X))&(~wise(Y)&~kind(Y)))=>(X=Y)))))& (?[X]:(anywhere(X)&(practices_archery(X))))& (![X]:(wise(X)=>curious(X)))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(enjoys_skydiving(X))))))& (~![X]:(room(X)=>(((enjoys_skydiving(X))=>(practices_archery(X))))))& ((![X]:((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=>(curious(X)&tourist(X)))))& (![X]:(room(X)=>(((curious(X)&wise(X)&kind(X)&person(X))=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))&(curious(X)&wise(X)&kind(X)&tourist(X))&(practices_archery(X))))))))& ((![X]:((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=>(wise(X)&tourist(X)))))& (((?[X]:(room(X)&wise(X)))&(![X,Y]:((room(X)&room(Y)&(wise(X))&(wise(Y)))=>(X=Y)))))& (![X]:(~room(X)=>(((kind(X))=>(~(kind(X)&wise(X)&person(X)))))))& ((![X]:((practices_pilates(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))& (![X]:(~room(X)=>(((wise(X)&tourist(X))=>(kind(X)&person(X))))))& (![X]:(kind(X)=>curious(X)))& ((![X]:((~(wise(X)&tourist(X)))=>(curious(X)))))
(there_is_a_room)& ~![X]:(room(X)=>(curious(X)&person(X)))
[]
null
0
There is a room. “No one outside the room does not enjoy landscape photography or is a drone photographer” if “everyone in the room is a drone photographer or does not own an extensive assortment of vintage comic book memorabilia”. If “no one in the room does not make homemade pastries or does not host a YouTube channel dedicated to art tutorials” then “more than one person in the room enjoys landscape photography”. No one in the room does not read mystery novels if they does not make homemade pastries. Everyone in the room who streams on Twitch enjoys wildlife photography. If someone does not host a YouTube channel dedicated to art tutorials then he/she enjoys cross-country skiing and vice versa. Everyone in the room owns a 3D printer if and only if they enjoys wildlife photography. If someone streams on Twitch then he/she does not collect luxury watches. Everyone in the room who enjoys landscape photography streams on Twitch. Everyone in the room streams on Twitch if and only if they creates augmented reality experiences for mobile applications. More than one person in the room enjoys landscape photography.
Everyone in the room does not create augmented reality experiences for mobile applications or collects luxury watches.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_a_drone_photographer(X))))))=>(~?[X]:(~room(X)=>(((is_a_drone_photographer(X))|(does_not_enjoy_landscape_photography(X)))))))& ((~?[X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))|(does_not_make_homemade_pastries(X))))))=>((?[X,Y]:(room(X)&room(Y)&(enjoys_landscape_photography(X)&enjoys_landscape_photography(Y))&(X!=Y)))))& (~?[X]:(room(X)=>(((does_not_make_homemade_pastries(X))=>(does_not_read_mystery_novels(X))))))& (![X]:(room(X)=>(((streams_on_Twitch(X))=>(enjoys_wildlife_photography(X))))))& ((![X]:((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(enjoys_cross-country_skiing(X)))))& (![X]:(room(X)=>(((owns_a_3D_printer(X))<=>(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(enjoys_cross-country_skiing(X))))))& (![X]:(room(X)=>(((((creates_augmented_reality_experiences_for_mobile_applications(X))|(collects_comic_books(X))|(uses_an_ios_phone(X))))<=(enjoys_cross-country_skiing(X))))))& ((![X]:((streams_on_Twitch(X))=>(does_not_collect_luxury_watches(X)))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(streams_on_Twitch(X))))))& (![X]:(room(X)=>(((streams_on_Twitch(X))<=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_landscape_photography(X)&enjoys_landscape_photography(Y))&(X!=Y))))& (![X]:(room(X)=>(((does_not_enjoy_landscape_photography(X))|(plays_the_violin(X))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(enjoys_wildlife_photography(X))))))& ((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(enjoys_wildlife_photography(X)))))
(there_is_a_room)& ![X]:(room(X)=>(((collects_luxury_watches(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X)))))
[ "p3", "p9", "p10", "p11", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 518520218523174921659444 % SZS output start Proof for 518520218523174921659444 47. ~? [X0] : (room(X0) => (~predt(X0) => ~predq(X0))) [input p3] 53. ! [X0] : (preds(X0) => ~predj(X0)) [input p9] 54. ! [X0] : (room(X0) => (predk(X0) => preds(X0))) [input p10] 55. ! [X0] : (room(X0) => (preds(X0) <=> predd(X0))) [input p11] 56. ? [X0,X1] : (X0 != X1 & predk(X1) & predk(X0) & room(X1) & room(X0)) [input p12] 60. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room [input hypothesis] 69. ~? [X0] : (room(X0) => ~~predt(X0)) [pure predicate removal 47] 70. ~? [X0] : ~room(X0) [pure predicate removal 69] 74. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) [pure predicate removal 60] 148. ! [X0] : room(X0) [ennf transformation 70] 152. ! [X0] : (~predj(X0) | ~preds(X0)) [ennf transformation 53] 153. ! [X0] : ((preds(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 54] 154. ! [X0] : (preds(X0) | ~predk(X0) | ~room(X0)) [flattening 153] 155. ! [X0] : ((preds(X0) <=> predd(X0)) | ~room(X0)) [ennf transformation 55] 160. ! [X0] : ((~predd(X0) | predj(X0)) | ~room(X0)) [ennf transformation 74] 161. ! [X0] : (~predd(X0) | predj(X0) | ~room(X0)) [flattening 160] 167. ! [X0] : (((preds(X0) | ~predd(X0)) & (predd(X0) | ~preds(X0))) | ~room(X0)) [nnf transformation 155] 168. ? [X0,X1] : (X0 != X1 & predk(X1) & predk(X0) & room(X1) & room(X0)) => (sK1 != sK2 & predk(sK2) & predk(sK1) & room(sK2) & room(sK1)) [choice axiom] 169. sK1 != sK2 & predk(sK2) & predk(sK1) & room(sK2) & room(sK1) [skolemisation 56,168] 252. room(X0) [cnf transformation 148] 256. ~predj(X0) | ~preds(X0) [cnf transformation 152] 257. preds(X0) | ~predk(X0) | ~room(X0) [cnf transformation 154] 258. predd(X0) | ~preds(X0) | ~room(X0) [cnf transformation 167] 262. predk(sK1) [cnf transformation 169] 267. ~predd(X0) | predj(X0) | ~room(X0) [cnf transformation 161] 283. ~predk(X0) | preds(X0) [subsumption resolution 257,252] 285. ~preds(X0) | predd(X0) [subsumption resolution 258,252] 288. ~predd(X0) | predj(X0) [subsumption resolution 267,252] 291. preds(sK1) [resolution 283,262] 296. predd(sK1) [resolution 285,291] 308. predj(sK1) [resolution 296,288] 317. ~preds(sK1) [resolution 308,256] 318. $false [subsumption resolution 317,291] % SZS output end Proof for 518520218523174921659444 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.015625