file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/LinearAlgebra/Dimension.lean
linearIndependent_le_span
[ { "state_after": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.352311\nR : Type u\ninst✝⁴ : Ring R\ninst✝³ : StrongRankCondition R\nM : Type v\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nι : Type u_1\nv : ι → M\ni : LinearIndependent R v\nw : Set M\ninst✝ : Fintype ↑w\ns : span R w = ⊤\n⊢ range v ≤ ↑(span R w)", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.352311\nR : Type u\ninst✝⁴ : Ring R\ninst✝³ : StrongRankCondition R\nM : Type v\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nι : Type u_1\nv : ι → M\ni : LinearIndependent R v\nw : Set M\ninst✝ : Fintype ↑w\ns : span R w = ⊤\n⊢ (#ι) ≤ ↑(Fintype.card ↑w)", "tactic": "apply linearIndependent_le_span' v i w" }, { "state_after": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.352311\nR : Type u\ninst✝⁴ : Ring R\ninst✝³ : StrongRankCondition R\nM : Type v\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nι : Type u_1\nv : ι → M\ni : LinearIndependent R v\nw : Set M\ninst✝ : Fintype ↑w\ns : span R w = ⊤\n⊢ range v ≤ ↑⊤", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.352311\nR : Type u\ninst✝⁴ : Ring R\ninst✝³ : StrongRankCondition R\nM : Type v\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nι : Type u_1\nv : ι → M\ni : LinearIndependent R v\nw : Set M\ninst✝ : Fintype ↑w\ns : span R w = ⊤\n⊢ range v ≤ ↑(span R w)", "tactic": "rw [s]" }, { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι✝ : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.352311\nR : Type u\ninst✝⁴ : Ring R\ninst✝³ : StrongRankCondition R\nM : Type v\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nι : Type u_1\nv : ι → M\ni : LinearIndependent R v\nw : Set M\ninst✝ : Fintype ↑w\ns : span R w = ⊤\n⊢ range v ≤ ↑⊤", "tactic": "exact le_top" } ]
[ 712, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 708, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Cardinal.IsStrongLimit.isLimit
[]
[ 882, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 881, 1 ]
Mathlib/Analysis/NormedSpace/Multilinear.lean
MultilinearMap.mkContinuousMultilinear_norm_le
[]
[ 1133, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1130, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
hasFDerivWithinAt_singleton
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.1399855\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.1399950\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf✝ f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\nf : E → F\nx : E\n⊢ HasFDerivWithinAt f 0 {x} x", "tactic": "simp only [HasFDerivWithinAt, nhdsWithin_singleton, HasFDerivAtFilter, isLittleO_pure,\n ContinuousLinearMap.zero_apply, sub_self]" } ]
[ 1115, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1112, 1 ]
Mathlib/NumberTheory/Liouville/LiouvilleNumber.lean
LiouvilleNumber.remainder_lt
[]
[ 169, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/Topology/Inseparable.lean
SeparationQuotient.continuousWithinAt_lift
[]
[ 563, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 560, 1 ]
Mathlib/Analysis/NormedSpace/Star/Multiplier.lean
DoubleCentralizer.coe_snd
[]
[ 506, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 505, 1 ]
Mathlib/Order/Directed.lean
IsMin.isBot
[]
[ 264, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 11 ]
Mathlib/Combinatorics/Additive/Behrend.lean
Behrend.map_le_of_mem_box
[]
[ 170, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.support_indicator
[]
[ 272, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Order/WithBot.lean
WithTop.le_coe_iff
[]
[ 861, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 860, 1 ]
Mathlib/Algebra/Order/Positive/Ring.lean
Positive.coe_add
[]
[ 38, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 37, 1 ]
Mathlib/Order/SymmDiff.lean
symmDiff_right_inj
[]
[ 542, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 541, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.zero_apply
[]
[ 183, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
HasFDerivAt.mul'
[]
[ 312, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
div_le_iff_of_neg'
[ { "state_after": "no goals", "state_before": "ι : Type ?u.144376\nα : Type u_1\nβ : Type ?u.144382\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhc : c < 0\n⊢ b / c ≤ a ↔ c * a ≤ b", "tactic": "rw [mul_comm, div_le_iff_of_neg hc]" } ]
[ 725, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 724, 1 ]
Mathlib/CategoryTheory/Limits/Types.lean
CategoryTheory.Limits.Types.colimit_sound'
[ { "state_after": "J : Type v\ninst✝ : SmallCategory J\nF : J ⥤ TypeMax\nj j' : J\nx : F.obj j\nx' : F.obj j'\nj'' : J\nf : j ⟶ j''\nf' : j' ⟶ j''\nw : F.map f x = F.map f' x'\n⊢ (F.map f ≫ colimit.ι F j'') x = (F.map f' ≫ colimit.ι F j'') x'", "state_before": "J : Type v\ninst✝ : SmallCategory J\nF : J ⥤ TypeMax\nj j' : J\nx : F.obj j\nx' : F.obj j'\nj'' : J\nf : j ⟶ j''\nf' : j' ⟶ j''\nw : F.map f x = F.map f' x'\n⊢ colimit.ι F j x = colimit.ι F j' x'", "tactic": "rw [← colimit.w _ f, ← colimit.w _ f']" }, { "state_after": "no goals", "state_before": "J : Type v\ninst✝ : SmallCategory J\nF : J ⥤ TypeMax\nj j' : J\nx : F.obj j\nx' : F.obj j'\nj'' : J\nf : j ⟶ j''\nf' : j' ⟶ j''\nw : F.map f x = F.map f' x'\n⊢ (F.map f ≫ colimit.ι F j'') x = (F.map f' ≫ colimit.ι F j'') x'", "tactic": "rw [types_comp_apply, types_comp_apply, w]" } ]
[ 352, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.trim_trim
[ { "state_after": "α : Type u_1\nβ : Type ?u.3498865\nγ : Type ?u.3498868\nδ : Type ?u.3498871\nι : Type ?u.3498874\nR : Type ?u.3498877\nR' : Type ?u.3498880\nm m0 : MeasurableSpace α\nμ : Measure α\ns : Set α\nm₁ m₂ : MeasurableSpace α\nhm₁₂ : m₁ ≤ m₂\nhm₂ : m₂ ≤ m0\nt : Set α\nht : MeasurableSet t\n⊢ ↑↑(trim (trim μ hm₂) hm₁₂) t = ↑↑(trim μ (_ : m₁ ≤ m0)) t", "state_before": "α : Type u_1\nβ : Type ?u.3498865\nγ : Type ?u.3498868\nδ : Type ?u.3498871\nι : Type ?u.3498874\nR : Type ?u.3498877\nR' : Type ?u.3498880\nm m0 : MeasurableSpace α\nμ : Measure α\ns : Set α\nm₁ m₂ : MeasurableSpace α\nhm₁₂ : m₁ ≤ m₂\nhm₂ : m₂ ≤ m0\n⊢ trim (trim μ hm₂) hm₁₂ = trim μ (_ : m₁ ≤ m0)", "tactic": "refine @Measure.ext _ m₁ _ _ (fun t ht => ?_)" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.3498865\nγ : Type ?u.3498868\nδ : Type ?u.3498871\nι : Type ?u.3498874\nR : Type ?u.3498877\nR' : Type ?u.3498880\nm m0 : MeasurableSpace α\nμ : Measure α\ns : Set α\nm₁ m₂ : MeasurableSpace α\nhm₁₂ : m₁ ≤ m₂\nhm₂ : m₂ ≤ m0\nt : Set α\nht : MeasurableSet t\n⊢ ↑↑(trim (trim μ hm₂) hm₁₂) t = ↑↑(trim μ (_ : m₁ ≤ m0)) t", "tactic": "rw [trim_measurableSet_eq hm₁₂ ht, trim_measurableSet_eq (hm₁₂.trans hm₂) ht,\n trim_measurableSet_eq hm₂ (hm₁₂ t ht)]" } ]
[ 4408, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4404, 1 ]
Mathlib/Analysis/Asymptotics/AsymptoticEquivalent.lean
Asymptotics.IsEquivalent.congr_left
[]
[ 116, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Topology/MetricSpace/Baire.lean
dense_sInter_of_open
[ { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : S = ∅\n⊢ Dense (⋂₀ S)\n\ncase inr\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\n⊢ Dense (⋂₀ S)", "state_before": "α : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\n⊢ Dense (⋂₀ S)", "tactic": "cases' S.eq_empty_or_nonempty with h h" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : S = ∅\n⊢ Dense (⋂₀ S)", "tactic": "simp [h]" }, { "state_after": "case inr.intro\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\n⊢ Dense (⋂₀ S)", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\n⊢ Dense (⋂₀ S)", "tactic": "rcases hS.exists_eq_range h with ⟨f, hf⟩" }, { "state_after": "case inr.intro\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nF : ∀ (n : ℕ), f n ∈ S\n⊢ Dense (⋂₀ S)", "state_before": "case inr.intro\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\n⊢ Dense (⋂₀ S)", "tactic": "have F : ∀ n, f n ∈ S := fun n => by rw [hf]; exact mem_range_self _" }, { "state_after": "case inr.intro\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nF : ∀ (n : ℕ), f n ∈ S\n⊢ Dense (⋂ (x : ℕ), f x)", "state_before": "case inr.intro\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nF : ∀ (n : ℕ), f n ∈ S\n⊢ Dense (⋂₀ S)", "tactic": "rw [hf, sInter_range]" }, { "state_after": "no goals", "state_before": "case inr.intro\nα : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nF : ∀ (n : ℕ), f n ∈ S\n⊢ Dense (⋂ (x : ℕ), f x)", "tactic": "exact dense_iInter_of_open_nat (fun n => ho _ (F n)) fun n => hd _ (F n)" }, { "state_after": "α : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nn : ℕ\n⊢ f n ∈ range f", "state_before": "α : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nn : ℕ\n⊢ f n ∈ S", "tactic": "rw [hf]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.12812\nγ : Type ?u.12815\nι : Type ?u.12818\ninst✝¹ : TopologicalSpace α\ninst✝ : BaireSpace α\nS : Set (Set α)\nho : ∀ (s : Set α), s ∈ S → IsOpen s\nhS : Set.Countable S\nhd : ∀ (s : Set α), s ∈ S → Dense s\nh : Set.Nonempty S\nf : ℕ → Set α\nhf : S = range f\nn : ℕ\n⊢ f n ∈ range f", "tactic": "exact mem_range_self _" } ]
[ 206, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Basic.lean
Pmf.toMeasure_apply_singleton
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.83685\nγ : Type ?u.83688\ninst✝ : MeasurableSpace α\np : Pmf α\ns t : Set α\na : α\nh : MeasurableSet {a}\n⊢ ↑↑(toMeasure p) {a} = ↑p a", "tactic": "simp [toMeasure_apply_eq_toOuterMeasure_apply _ _ h, toOuterMeasure_apply_singleton]" } ]
[ 265, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
ContinuousLinearEquiv.uniqueDiffOn_image
[]
[ 523, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 521, 1 ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
ContinuousLinearMap.strongTopology.hasBasis_nhds_zero_of_basis
[ { "state_after": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis : UniformSpace F := TopologicalAddGroup.toUniformSpace F\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "state_before": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "tactic": "letI : UniformSpace F := TopologicalAddGroup.toUniformSpace F" }, { "state_after": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F\nthis : UniformAddGroup F\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "state_before": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis : UniformSpace F := TopologicalAddGroup.toUniformSpace F\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "tactic": "haveI : UniformAddGroup F := comm_topologicalAddGroup_is_uniform" }, { "state_after": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F\nthis✝ : UniformAddGroup F\nthis : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "state_before": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis✝ : UniformSpace F := TopologicalAddGroup.toUniformSpace F\nthis : UniformAddGroup F\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "tactic": "letI : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖" }, { "state_after": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F\nthis✝ : UniformAddGroup F\nthis : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖\n⊢ Filter.HasBasis (Filter.comap (↑(UniformOnFun.ofFun 𝔖) ∘ FunLike.coe) (𝓝 ((↑(UniformOnFun.ofFun 𝔖) ∘ FunLike.coe) 0)))\n (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "state_before": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F\nthis✝ : UniformAddGroup F\nthis : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖\n⊢ Filter.HasBasis (𝓝 0) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "tactic": "rw [(strongTopology.embedding_coeFn σ F 𝔖).toInducing.nhds_eq_comap]" }, { "state_after": "no goals", "state_before": "𝕜₁ : Type u_4\n𝕜₂ : Type u_5\ninst✝¹³ : NormedField 𝕜₁\ninst✝¹² : NormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nE : Type u_3\nE' : Type ?u.74932\nF : Type u_1\nF' : Type ?u.74938\ninst✝¹¹ : AddCommGroup E\ninst✝¹⁰ : Module 𝕜₁ E\ninst✝⁹ : AddCommGroup E'\ninst✝⁸ : Module ℝ E'\ninst✝⁷ : AddCommGroup F\ninst✝⁶ : Module 𝕜₂ F\ninst✝⁵ : AddCommGroup F'\ninst✝⁴ : Module ℝ F'\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalSpace E'\ninst✝¹ : TopologicalSpace F\ninst✝ : TopologicalAddGroup F\nι : Type u_2\n𝔖 : Set (Set E)\nh𝔖₁ : Set.Nonempty 𝔖\nh𝔖₂ : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖\np : ι → Prop\nb : ι → Set F\nh : Filter.HasBasis (𝓝 0) p b\nthis✝¹ : UniformSpace F := TopologicalAddGroup.toUniformSpace F\nthis✝ : UniformAddGroup F\nthis : TopologicalSpace (E →SL[σ] F) := strongTopology σ F 𝔖\n⊢ Filter.HasBasis (Filter.comap (↑(UniformOnFun.ofFun 𝔖) ∘ FunLike.coe) (𝓝 ((↑(UniformOnFun.ofFun 𝔖) ∘ FunLike.coe) 0)))\n (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => {f | ∀ (x : E), x ∈ Si.fst → ↑f x ∈ b Si.snd}", "tactic": "exact (UniformOnFun.hasBasis_nhds_zero_of_basis 𝔖 h𝔖₁ h𝔖₂ h).comap FunLike.coe" } ]
[ 167, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Order/UpperLower/Basic.lean
LowerSet.compl_iInf₂
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.91020\nγ : Type ?u.91023\nι : Sort u_2\nκ : ι → Sort u_3\ninst✝ : LE α\ns t : LowerSet α\na : α\nf : (i : ι) → κ i → LowerSet α\n⊢ compl (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), compl (f i j)", "tactic": "simp_rw [LowerSet.compl_iInf]" } ]
[ 931, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 930, 1 ]
Mathlib/Topology/Separation.lean
Continuous.limUnder_eq
[]
[ 1067, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1065, 1 ]
Mathlib/Data/Finset/NAry.lean
Finset.image₂_subset_iff_right
[ { "state_after": "no goals", "state_before": "α : Type u_2\nα' : Type ?u.20278\nβ : Type u_3\nβ' : Type ?u.20284\nγ : Type u_1\nγ' : Type ?u.20290\nδ : Type ?u.20293\nδ' : Type ?u.20296\nε : Type ?u.20299\nε' : Type ?u.20302\nζ : Type ?u.20305\nζ' : Type ?u.20308\nν : Type ?u.20311\ninst✝⁷ : DecidableEq α'\ninst✝⁶ : DecidableEq β'\ninst✝⁵ : DecidableEq γ\ninst✝⁴ : DecidableEq γ'\ninst✝³ : DecidableEq δ\ninst✝² : DecidableEq δ'\ninst✝¹ : DecidableEq ε\ninst✝ : DecidableEq ε'\nf f' : α → β → γ\ng g' : α → β → γ → δ\ns s' : Finset α\nt t' : Finset β\nu u' : Finset γ\na a' : α\nb b' : β\nc : γ\n⊢ image₂ f s t ⊆ u ↔ ∀ (b : β), b ∈ t → image (fun a => f a b) s ⊆ u", "tactic": "simp_rw [image₂_subset_iff, image_subset_iff, @forall₂_swap α]" } ]
[ 117, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Probability/Kernel/Basic.lean
ProbabilityTheory.kernel.IsSFiniteKernel.finset_sum
[ { "state_after": "case empty\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI : Finset ι\nh✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)\nh : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel (∑ i in ∅, κs i)\n\ncase insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\n⊢ IsSFiniteKernel (∑ i in insert i I, κs i)", "state_before": "α : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI : Finset ι\nh : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel (∑ i in I, κs i)", "tactic": "induction' I using Finset.induction with i I hi_nmem_I h_ind h" }, { "state_after": "case empty\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI : Finset ι\nh✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)\nh : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel 0", "state_before": "case empty\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI : Finset ι\nh✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)\nh : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel (∑ i in ∅, κs i)", "tactic": "rw [Finset.sum_empty]" }, { "state_after": "no goals", "state_before": "case empty\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI : Finset ι\nh✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)\nh : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel 0", "tactic": "infer_instance" }, { "state_after": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\n⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)", "state_before": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\n⊢ IsSFiniteKernel (∑ i in insert i I, κs i)", "tactic": "rw [Finset.sum_insert hi_nmem_I]" }, { "state_after": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\nthis : IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)", "state_before": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\n⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)", "tactic": "haveI : IsSFiniteKernel (κs i) := h i (Finset.mem_insert_self _ _)" }, { "state_after": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\nthis✝ : IsSFiniteKernel (κs i)\nthis : IsSFiniteKernel (∑ x in I, κs x)\n⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)", "state_before": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\nthis : IsSFiniteKernel (κs i)\n⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)", "tactic": "have : IsSFiniteKernel (∑ x : ι in I, κs x) :=\n h_ind fun i hiI => h i (Finset.mem_insert_of_mem hiI)" }, { "state_after": "no goals", "state_before": "case insert\nα : Type u_1\nβ : Type u_2\nι : Type u_3\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nκs : ι → { x // x ∈ kernel α β }\nI✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)\ni : ι\nI : Finset ι\nhi_nmem_I : ¬i ∈ I\nh_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)\nthis✝ : IsSFiniteKernel (κs i)\nthis : IsSFiniteKernel (∑ x in I, κs x)\n⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)", "tactic": "exact IsSFiniteKernel.add _ _" } ]
[ 315, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 306, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.IsTrail.of_append_right
[ { "state_after": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w : V\np : Walk G u v\nq : Walk G v w\nh : List.Nodup (edges p) ∧ List.Nodup (edges q) ∧ List.Disjoint (edges p) (edges q)\n⊢ IsTrail q", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w : V\np : Walk G u v\nq : Walk G v w\nh : IsTrail (append p q)\n⊢ IsTrail q", "tactic": "rw [isTrail_def, edges_append, List.nodup_append] at h" }, { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w : V\np : Walk G u v\nq : Walk G v w\nh : List.Nodup (edges p) ∧ List.Nodup (edges q) ∧ List.Disjoint (edges p) (edges q)\n⊢ IsTrail q", "tactic": "exact ⟨h.2.1⟩" } ]
[ 952, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 949, 1 ]
Mathlib/Topology/MetricSpace/Isometry.lean
Isometry.mapsTo_ball
[]
[ 257, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.LocalInvariantProp.liftPropOn_mono
[]
[ 470, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 468, 1 ]
Mathlib/Order/SuccPred/IntervalSucc.lean
Antitone.pairwise_disjoint_on_Ioc_succ
[]
[ 107, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
uniformly_extend_spec
[ { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\ninst✝³ : UniformSpace α\ninst✝² : UniformSpace β\ninst✝¹ : UniformSpace γ\ne : β → α\nh_e : UniformInducing e\nh_dense : DenseRange e\nf : β → γ\nh_f : UniformContinuous f\ninst✝ : CompleteSpace γ\na : α\n⊢ Tendsto f (comap e (𝓝 a)) (𝓝 (DenseInducing.extend (_ : DenseInducing e) f a))", "tactic": "simpa only [DenseInducing.extend] using\n tendsto_nhds_limUnder (uniformly_extend_exists h_e ‹_› h_f _)" } ]
[ 463, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 461, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snormEssSup_mono_measure
[ { "state_after": "α : Type u_1\nE : Type ?u.1987410\nF : Type u_2\nG : Type ?u.1987416\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → F\nhμν : ν ≪ μ\n⊢ essSup (fun x => ↑‖f x‖₊) ν ≤ essSup (fun x => ↑‖f x‖₊) μ", "state_before": "α : Type u_1\nE : Type ?u.1987410\nF : Type u_2\nG : Type ?u.1987416\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → F\nhμν : ν ≪ μ\n⊢ snormEssSup f ν ≤ snormEssSup f μ", "tactic": "simp_rw [snormEssSup]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type ?u.1987410\nF : Type u_2\nG : Type ?u.1987416\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → F\nhμν : ν ≪ μ\n⊢ essSup (fun x => ↑‖f x‖₊) ν ≤ essSup (fun x => ↑‖f x‖₊) μ", "tactic": "exact essSup_mono_measure hμν" } ]
[ 582, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 580, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.union_right_comm
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.147908\nγ : Type ?u.147911\ninst✝ : DecidableEq α\ns✝ s₁ s₂ t✝ t₁ t₂ u✝ v : Finset α\na b : α\ns t u : Finset α\nx : α\n⊢ x ∈ s ∪ t ∪ u ↔ x ∈ s ∪ u ∪ t", "tactic": "simp only [mem_union, or_assoc, @or_comm (x ∈ t)]" } ]
[ 1428, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1427, 1 ]
Mathlib/Algebra/Ring/Defs.lean
mul_neg
[]
[ 298, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 297, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.coe_singletonOneHom
[]
[ 159, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/NumberTheory/LegendreSymbol/MulCharacter.lean
MulChar.IsQuadratic.pow_odd
[ { "state_after": "case intro\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nn : ℕ\n⊢ χ ^ (2 * n + 1) = χ", "state_before": "R : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nn : ℕ\nhn : Odd n\n⊢ χ ^ n = χ", "tactic": "obtain ⟨n, rfl⟩ := hn" }, { "state_after": "no goals", "state_before": "case intro\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nn : ℕ\n⊢ χ ^ (2 * n + 1) = χ", "tactic": "rw [pow_add, pow_one, hχ.pow_even (even_two_mul _), one_mul]" } ]
[ 531, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 528, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.lt_eq_subset
[]
[ 402, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 401, 1 ]
Mathlib/NumberTheory/Zsqrtd/Basic.lean
Zsqrtd.nonnegg_cases_right
[]
[ 510, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 507, 1 ]
Mathlib/CategoryTheory/Bicategory/Free.lean
CategoryTheory.FreeBicategory.mk_vcomp
[]
[ 246, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 1 ]
Mathlib/Analysis/InnerProductSpace/Calculus.lean
contDiffAt_inner
[]
[ 68, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 1 ]
Mathlib/Topology/Bases.lean
TopologicalSpace.isBasis_countableBasis
[]
[ 639, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 1 ]
Mathlib/Analysis/Normed/MulAction.lean
nndist_smul₀
[]
[ 119, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Tactic/Sat/FromLRAT.lean
Sat.Literal.reify_neg
[]
[ 213, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.iInf_eq_generate
[]
[ 582, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 581, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisCoinsertion.u_iSup_of_lu_eq_self
[]
[ 825, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 823, 1 ]
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin
[]
[ 608, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 603, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.trim
[ { "state_after": "α : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ HasFiniteIntegral f", "state_before": "α : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ Integrable f", "tactic": "refine' ⟨hf.aestronglyMeasurable, _⟩" }, { "state_after": "α : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ') < ⊤\n\nα : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ Measurable fun a => ↑‖f a‖₊", "state_before": "α : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ HasFiniteIntegral f", "tactic": "rw [HasFiniteIntegral, lintegral_trim hm _]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ') < ⊤", "tactic": "exact hf_int.2" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1258403\nγ : Type ?u.1258406\nδ : Type ?u.1258409\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β\ninst✝¹ : NormedAddCommGroup γ\nH : Type u_2\ninst✝ : NormedAddCommGroup H\nm0 : MeasurableSpace α\nμ' : Measure α\nf : α → H\nhm : m ≤ m0\nhf_int : Integrable f\nhf : StronglyMeasurable f\n⊢ Measurable fun a => ↑‖f a‖₊", "tactic": "exact @StronglyMeasurable.ennnorm _ m _ _ f hf" } ]
[ 1166, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1161, 1 ]
Mathlib/Data/Nat/Digits.lean
Nat.digits_inj_iff
[]
[ 330, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 1 ]
Mathlib/LinearAlgebra/Matrix/Determinant.lean
Matrix.det_eq_of_forall_row_eq_smul_add_const_aux
[ { "state_after": "case empty\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\n⊢ det A = det B", "state_before": "case empty\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\n⊢ ∀ (c : n → R),\n (∀ (i : n), ¬i ∈ ∅ → c i = 0) → ∀ (k : n), ¬k ∈ ∅ → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B", "tactic": "rintro c hs k - A_eq" }, { "state_after": "case empty\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nthis : ∀ (i : n), c i = 0\n⊢ det A = det B", "state_before": "case empty\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\n⊢ det A = det B", "tactic": "have : ∀ i, c i = 0 := by\n intro i\n specialize hs i\n contrapose! hs\n simp [hs]" }, { "state_after": "case empty.e_M\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nthis : ∀ (i : n), c i = 0\n⊢ A = B", "state_before": "case empty\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nthis : ∀ (i : n), c i = 0\n⊢ det A = det B", "tactic": "congr" }, { "state_after": "case empty.e_M.a.h\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nthis : ∀ (i : n), c i = 0\ni j : n\n⊢ A i j = B i j", "state_before": "case empty.e_M\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nthis : ∀ (i : n), c i = 0\n⊢ A = B", "tactic": "ext (i j)" }, { "state_after": "no goals", "state_before": "case empty.e_M.a.h\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nthis : ∀ (i : n), c i = 0\ni j : n\n⊢ A i j = B i j", "tactic": "rw [A_eq, this, MulZeroClass.zero_mul, add_zero]" }, { "state_after": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\ni : n\n⊢ c i = 0", "state_before": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\n⊢ ∀ (i : n), c i = 0", "tactic": "intro i" }, { "state_after": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\ni : n\nhs : ¬i ∈ ∅ → c i = 0\n⊢ c i = 0", "state_before": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nhs : ∀ (i : n), ¬i ∈ ∅ → c i = 0\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\ni : n\n⊢ c i = 0", "tactic": "specialize hs i" }, { "state_after": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\ni : n\nhs : c i ≠ 0\n⊢ ¬i ∈ ∅ ∧ c i ≠ 0", "state_before": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\ni : n\nhs : ¬i ∈ ∅ → c i = 0\n⊢ c i = 0", "tactic": "contrapose! hs" }, { "state_after": "no goals", "state_before": "m : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA B : Matrix n n R\nc : n → R\nk : n\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\ni : n\nhs : c i ≠ 0\n⊢ ¬i ∈ ∅ ∧ c i ≠ 0", "tactic": "simp [hs]" }, { "state_after": "case insert\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\n⊢ det A = det B", "state_before": "case insert\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\n⊢ ∀ (c : n → R),\n (∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0) →\n ∀ (k : n), ¬k ∈ insert i s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B", "tactic": "intro c hs k hk A_eq" }, { "state_after": "case insert\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ det A = det B", "state_before": "case insert\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\n⊢ det A = det B", "tactic": "have hAi : A i = B i + c i • B k := funext (A_eq i)" }, { "state_after": "case insert.hij\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ i ≠ k\n\ncase insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ ∀ (i_1 : n), ¬i_1 ∈ s → update c i 0 i_1 = 0\n\ncase insert.k\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ n\n\ncase insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ ¬?insert.k ∈ s\n\ncase insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ ∀ (i_1 j : n), A i_1 j = updateRow B i (A i) i_1 j + update c i 0 i_1 * updateRow B i (A i) ?insert.k j", "state_before": "case insert\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ det A = det B", "tactic": "rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self]" }, { "state_after": "no goals", "state_before": "case insert.hij\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ i ≠ k", "tactic": "exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk" }, { "state_after": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\n⊢ update c i 0 i' = 0", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ ∀ (i_1 : n), ¬i_1 ∈ s → update c i 0 i_1 = 0", "tactic": "intro i' hi'" }, { "state_after": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\n⊢ (if i' = i then 0 else c i') = 0", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\n⊢ update c i 0 i' = 0", "tactic": "rw [Function.update_apply]" }, { "state_after": "case insert.x.inl\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\nhi'i : i' = i\n⊢ 0 = 0\n\ncase insert.x.inr\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\nhi'i : ¬i' = i\n⊢ c i' = 0", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\n⊢ (if i' = i then 0 else c i') = 0", "tactic": "split_ifs with hi'i" }, { "state_after": "no goals", "state_before": "case insert.x.inl\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\nhi'i : i' = i\n⊢ 0 = 0", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case insert.x.inr\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' : n\nhi' : ¬i' ∈ s\nhi'i : ¬i' = i\n⊢ c i' = 0", "tactic": "exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i)" }, { "state_after": "no goals", "state_before": "case insert.k\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ n", "tactic": "exact k" }, { "state_after": "no goals", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ ¬k ∈ s", "tactic": "exact fun h => hk (Finset.mem_insert_of_mem h)" }, { "state_after": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\n⊢ A i' j' = updateRow B i (A i) i' j' + update c i 0 i' * updateRow B i (A i) k j'", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\n⊢ ∀ (i_1 j : n), A i_1 j = updateRow B i (A i) i_1 j + update c i 0 i_1 * updateRow B i (A i) k j", "tactic": "intro i' j'" }, { "state_after": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\n⊢ A i' j' = (if i' = i then A i j' else B i' j') + (if i' = i then 0 else c i') * updateRow B i (A i) k j'", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\n⊢ A i' j' = updateRow B i (A i) i' j' + update c i 0 i' * updateRow B i (A i) k j'", "tactic": "rw [updateRow_apply, Function.update_apply]" }, { "state_after": "case insert.x.inl\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\nhi'i : i' = i\n⊢ A i' j' = A i j' + 0 * updateRow B i (A i) k j'\n\ncase insert.x.inr\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\nhi'i : ¬i' = i\n⊢ A i' j' = B i' j' + c i' * updateRow B i (A i) k j'", "state_before": "case insert.x\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\n⊢ A i' j' = (if i' = i then A i j' else B i' j') + (if i' = i then 0 else c i') * updateRow B i (A i) k j'", "tactic": "split_ifs with hi'i" }, { "state_after": "no goals", "state_before": "case insert.x.inr\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\nhi'i : ¬i' = i\n⊢ A i' j' = B i' j' + c i' * updateRow B i (A i) k j'", "tactic": "rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s]" }, { "state_after": "no goals", "state_before": "case insert.x.inl\nm : Type ?u.1702450\nn : Type u_1\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\nR : Type v\ninst✝ : CommRing R\nA : Matrix n n R\ni : n\ns : Finset n\n_hi : ¬i ∈ s\nih :\n ∀ {B : Matrix n n R} (c : n → R),\n (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B\nB : Matrix n n R\nc : n → R\nhs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0\nk : n\nhk : ¬k ∈ insert i s\nA_eq : ∀ (i j : n), A i j = B i j + c i * B k j\nhAi : A i = B i + c i • B k\ni' j' : n\nhi'i : i' = i\n⊢ A i' j' = A i j' + 0 * updateRow B i (A i) k j'", "tactic": "simp [hi'i]" } ]
[ 502, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 472, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.mul_mul_right
[]
[ 1290, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1288, 1 ]
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
NonUnitalSubsemiring.mem_closure_iff
[]
[ 662, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 660, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
HasSum.nonpos
[]
[ 133, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 1 ]
Mathlib/Data/Real/Basic.lean
Real.add_neg_lt_sSup
[]
[ 776, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 774, 1 ]
Mathlib/Analysis/InnerProductSpace/PiL2.lean
OrthonormalBasis.orthonormal
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.781880\n𝕜 : Type u_2\ninst✝⁹ : IsROrC 𝕜\nE : Type u_3\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.781909\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type ?u.781927\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type ?u.781947\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nb : OrthonormalBasis ι 𝕜 E\n⊢ Orthonormal 𝕜 ↑b", "tactic": "classical\n rw [orthonormal_iff_ite]\n intro i j\n rw [← b.repr.inner_map_map (b i) (b j), b.repr_self i, b.repr_self j,\n EuclideanSpace.inner_single_left, EuclideanSpace.single_apply, map_one, one_mul]" }, { "state_after": "ι : Type u_1\nι' : Type ?u.781880\n𝕜 : Type u_2\ninst✝⁹ : IsROrC 𝕜\nE : Type u_3\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.781909\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type ?u.781927\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type ?u.781947\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nb : OrthonormalBasis ι 𝕜 E\n⊢ ∀ (i j : ι), inner (↑b i) (↑b j) = if i = j then 1 else 0", "state_before": "ι : Type u_1\nι' : Type ?u.781880\n𝕜 : Type u_2\ninst✝⁹ : IsROrC 𝕜\nE : Type u_3\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.781909\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type ?u.781927\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type ?u.781947\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nb : OrthonormalBasis ι 𝕜 E\n⊢ Orthonormal 𝕜 ↑b", "tactic": "rw [orthonormal_iff_ite]" }, { "state_after": "ι : Type u_1\nι' : Type ?u.781880\n𝕜 : Type u_2\ninst✝⁹ : IsROrC 𝕜\nE : Type u_3\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.781909\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type ?u.781927\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type ?u.781947\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nb : OrthonormalBasis ι 𝕜 E\ni j : ι\n⊢ inner (↑b i) (↑b j) = if i = j then 1 else 0", "state_before": "ι : Type u_1\nι' : Type ?u.781880\n𝕜 : Type u_2\ninst✝⁹ : IsROrC 𝕜\nE : Type u_3\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.781909\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type ?u.781927\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type ?u.781947\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nb : OrthonormalBasis ι 𝕜 E\n⊢ ∀ (i j : ι), inner (↑b i) (↑b j) = if i = j then 1 else 0", "tactic": "intro i j" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.781880\n𝕜 : Type u_2\ninst✝⁹ : IsROrC 𝕜\nE : Type u_3\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.781909\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type ?u.781927\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type ?u.781947\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nb : OrthonormalBasis ι 𝕜 E\ni j : ι\n⊢ inner (↑b i) (↑b j) = if i = j then 1 else 0", "tactic": "rw [← b.repr.inner_map_map (b i) (b j), b.repr_self i, b.repr_self j,\n EuclideanSpace.inner_single_left, EuclideanSpace.single_apply, map_one, one_mul]" } ]
[ 409, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 404, 11 ]
Mathlib/RingTheory/Localization/AsSubring.lean
Localization.mapToFractionRing_apply
[]
[ 49, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Data/Nat/Factorial/Basic.lean
Nat.succ_descFactorial_succ
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ descFactorial (n + 1) (0 + 1) = (n + 1) * descFactorial n 0", "tactic": "rw [descFactorial_zero, descFactorial_one, mul_one]" }, { "state_after": "no goals", "state_before": "n k : ℕ\n⊢ descFactorial (n + 1) (succ k + 1) = (n + 1) * descFactorial n (succ k)", "tactic": "rw [descFactorial_succ, succ_descFactorial_succ _ k, descFactorial_succ, succ_sub_succ,\n mul_left_comm]" } ]
[ 381, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 376, 1 ]
Mathlib/Topology/OmegaCompletePartialOrder.lean
Scott.isOpen_sUnion
[ { "state_after": "α : Type u\ninst✝ : OmegaCompletePartialOrder α\ns : Set (Set α)\nhs : ∀ (t : Set α), t ∈ s → Continuous' fun x => x ∈ t\n⊢ Continuous' fun x => x ∈ ⋃₀ s", "state_before": "α : Type u\ninst✝ : OmegaCompletePartialOrder α\ns : Set (Set α)\nhs : ∀ (t : Set α), t ∈ s → IsOpen α t\n⊢ IsOpen α (⋃₀ s)", "tactic": "simp only [IsOpen] at hs⊢" }, { "state_after": "case h.e'_5.h.a\nα : Type u\ninst✝ : OmegaCompletePartialOrder α\ns : Set (Set α)\nhs : ∀ (t : Set α), t ∈ s → Continuous' fun x => x ∈ t\nx✝ : α\n⊢ x✝ ∈ ⋃₀ s ↔ sSup (setOf ⁻¹' s) x✝", "state_before": "α : Type u\ninst✝ : OmegaCompletePartialOrder α\ns : Set (Set α)\nhs : ∀ (t : Set α), t ∈ s → Continuous' fun x => x ∈ t\n⊢ Continuous' fun x => x ∈ ⋃₀ s", "tactic": "convert CompleteLattice.sSup_continuous' (setOf ⁻¹' s) hs" }, { "state_after": "no goals", "state_before": "case h.e'_5.h.a\nα : Type u\ninst✝ : OmegaCompletePartialOrder α\ns : Set (Set α)\nhs : ∀ (t : Set α), t ∈ s → Continuous' fun x => x ∈ t\nx✝ : α\n⊢ x✝ ∈ ⋃₀ s ↔ sSup (setOf ⁻¹' s) x✝", "tactic": "simp only [sSup_apply, setOf_bijective.surjective.exists, exists_prop, mem_preimage,\n SetCoe.exists, iSup_Prop_eq, mem_setOf_eq, mem_sUnion]" } ]
[ 68, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/CategoryTheory/Limits/Opposites.lean
CategoryTheory.Limits.PullbackCone.unop_inr
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nJ : Type u₂\ninst✝ : Category J\nX✝ : Type v₂\nX Y Z : Cᵒᵖ\nf : X ⟶ Z\ng : Y ⟶ Z\nc : PullbackCone f g\n⊢ PushoutCocone.inr (unop c) = (snd c).unop", "tactic": "aesop_cat" } ]
[ 529, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 528, 1 ]
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
MeasureTheory.locallyIntegrableOn_of_locallyIntegrable_restrict
[ { "state_after": "X : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\n⊢ IntegrableAtFilter f (𝓝[s] x)", "state_before": "X : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\n⊢ LocallyIntegrableOn f s", "tactic": "intro x _" }, { "state_after": "case intro.intro\nX : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\nt : Set X\nht_mem : t ∈ 𝓝 x\nht_int : IntegrableOn f t\n⊢ IntegrableAtFilter f (𝓝[s] x)", "state_before": "X : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\n⊢ IntegrableAtFilter f (𝓝[s] x)", "tactic": "obtain ⟨t, ht_mem, ht_int⟩ := hf x" }, { "state_after": "case intro.intro.intro.intro.intro\nX : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\nt : Set X\nht_mem : t ∈ 𝓝 x\nht_int : IntegrableOn f t\nu : Set X\nhu_sub : u ⊆ t\nhu_o : IsOpen u\nhu_mem : x ∈ u\n⊢ IntegrableAtFilter f (𝓝[s] x)", "state_before": "case intro.intro\nX : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\nt : Set X\nht_mem : t ∈ 𝓝 x\nht_int : IntegrableOn f t\n⊢ IntegrableAtFilter f (𝓝[s] x)", "tactic": "obtain ⟨u, hu_sub, hu_o, hu_mem⟩ := mem_nhds_iff.mp ht_mem" }, { "state_after": "case intro.intro.intro.intro.intro\nX : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\nt : Set X\nht_mem : t ∈ 𝓝 x\nht_int : IntegrableOn f t\nu : Set X\nhu_sub : u ⊆ t\nhu_o : IsOpen u\nhu_mem : x ∈ u\n⊢ IntegrableOn f (s ∩ u)", "state_before": "case intro.intro.intro.intro.intro\nX : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\nt : Set X\nht_mem : t ∈ 𝓝 x\nht_int : IntegrableOn f t\nu : Set X\nhu_sub : u ⊆ t\nhu_o : IsOpen u\nhu_mem : x ∈ u\n⊢ IntegrableAtFilter f (𝓝[s] x)", "tactic": "refine' ⟨_, inter_mem_nhdsWithin s (hu_o.mem_nhds hu_mem), _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\nX : Type u_1\nY : Type ?u.122795\nE : Type u_2\nR : Type ?u.122801\ninst✝⁵ : MeasurableSpace X\ninst✝⁴ : TopologicalSpace X\ninst✝³ : MeasurableSpace Y\ninst✝² : TopologicalSpace Y\ninst✝¹ : NormedAddCommGroup E\nf : X → E\nμ : Measure X\ns : Set X\ninst✝ : OpensMeasurableSpace X\nhf : LocallyIntegrable f\nx : X\na✝ : x ∈ s\nt : Set X\nht_mem : t ∈ 𝓝 x\nht_int : IntegrableOn f t\nu : Set X\nhu_sub : u ⊆ t\nhu_o : IsOpen u\nhu_mem : x ∈ u\n⊢ IntegrableOn f (s ∩ u)", "tactic": "simpa only [IntegrableOn, Measure.restrict_restrict hu_o.measurableSet, inter_comm] using\n ht_int.mono_set hu_sub" } ]
[ 150, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.chain_adj_support
[]
[ 648, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 645, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.coe_add_eq_ite
[ { "state_after": "case zero\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\na b : ZMod Nat.zero\n⊢ ↑(a + b) = ↑(if ↑Nat.zero ≤ ↑a + ↑b then a + b - ↑Nat.zero else a + b)\n\ncase succ\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\n⊢ ↑(a + b) = ↑(if ↑(Nat.succ n✝) ≤ ↑a + ↑b then a + b - ↑(Nat.succ n✝) else a + b)", "state_before": "n✝ : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn : ℕ\na b : ZMod n\n⊢ ↑(a + b) = ↑(if ↑n ≤ ↑a + ↑b then a + b - ↑n else a + b)", "tactic": "cases n" }, { "state_after": "case succ\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\n⊢ ↑(a + b) = ↑(if ↑(Nat.succ n✝) ≤ ↑a + ↑b then a + b - ↑(Nat.succ n✝) else a + b)", "state_before": "case succ\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\n⊢ ↑(a + b) = ↑(if ↑(Nat.succ n✝) ≤ ↑a + ↑b then a + b - ↑(Nat.succ n✝) else a + b)", "tactic": "simp only [Fin.val_add_eq_ite, ← Int.ofNat_add, ← Int.ofNat_succ, Int.ofNat_le]" }, { "state_after": "case succ.inl\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ ↑(a + b) = ↑(a + b - ↑(Nat.succ n✝))\n\ncase succ.inr\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ¬↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ ↑(a + b) = ↑(a + b)", "state_before": "case succ\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\n⊢ ↑(a + b) = ↑(if ↑(Nat.succ n✝) ≤ ↑a + ↑b then a + b - ↑(Nat.succ n✝) else a + b)", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case zero\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\na b : ZMod Nat.zero\n⊢ ↑(a + b) = ↑(if ↑Nat.zero ≤ ↑a + ↑b then a + b - ↑Nat.zero else a + b)", "tactic": "simp" }, { "state_after": "case succ.inl\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ ↑(a + b) = ↑(a + b - ↑(Nat.succ n✝))", "state_before": "case succ.inl\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ ↑(a + b) = ↑(a + b - ↑(Nat.succ n✝))", "tactic": "norm_cast" }, { "state_after": "case succ.inl.e_a\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ a + b = a + b - ↑(Nat.succ n✝)", "state_before": "case succ.inl\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ ↑(a + b) = ↑(a + b - ↑(Nat.succ n✝))", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case succ.inl.e_a\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ a + b = a + b - ↑(Nat.succ n✝)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case succ.inr\nn : ℕ\nR : Type ?u.34539\ninst✝ : Ring R\nn✝ : ℕ\na b : ZMod (Nat.succ n✝)\nh : ¬↑(Nat.succ n✝) ≤ ↑a + ↑b\n⊢ ↑(a + b) = ↑(a + b)", "tactic": "rfl" } ]
[ 277, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Mathlib/CategoryTheory/Idempotents/Karoubi.lean
CategoryTheory.Idempotents.Karoubi.id_eq
[ { "state_after": "no goals", "state_before": "C : Type ?u.15232\ninst✝ : Category C\nP : Karoubi C\n⊢ P.p = P.p ≫ P.p ≫ P.p", "tactic": "repeat' rw [P.idem]" }, { "state_after": "no goals", "state_before": "C : Type ?u.15232\ninst✝ : Category C\nP : Karoubi C\n⊢ P.p = P.p ≫ P.p", "tactic": "rw [P.idem]" }, { "state_after": "no goals", "state_before": "C : Type u_1\ninst✝ : Category C\nP : Karoubi C\n⊢ 𝟙 P = Hom.mk P.p", "tactic": "rfl" } ]
[ 128, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/Data/Nat/Interval.lean
Nat.card_Iic
[ { "state_after": "no goals", "state_before": "a b c : ℕ\n⊢ card (Iic b) = b + 1", "tactic": "rw [Iic_eq_Icc, card_Icc, bot_eq_zero, tsub_zero]" } ]
[ 117, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Prefunctor.mapPath_comp'
[]
[ 149, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/LinearAlgebra/Matrix/DotProduct.lean
Matrix.dotProduct_eq_zero_iff
[]
[ 73, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/GroupTheory/Nilpotent.lean
isNilpotent_of_product_of_sylow_group
[ { "state_after": "no goals", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\n⊢ Group.IsNilpotent G", "tactic": "classical\n let ps := (Fintype.card G).factorization.support\n have : ∀ (p : ps) (P : Sylow p G), IsNilpotent (↑P : Subgroup G) := by\n intro p P\n haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p))\n exact P.isPGroup'.isNilpotent\n exact nilpotent_of_mulEquiv e" }, { "state_after": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\n⊢ Group.IsNilpotent G", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\n⊢ Group.IsNilpotent G", "tactic": "let ps := (Fintype.card G).factorization.support" }, { "state_after": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\nthis : ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P }\n⊢ Group.IsNilpotent G", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\n⊢ Group.IsNilpotent G", "tactic": "have : ∀ (p : ps) (P : Sylow p G), IsNilpotent (↑P : Subgroup G) := by\n intro p P\n haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p))\n exact P.isPGroup'.isNilpotent" }, { "state_after": "no goals", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\nthis : ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P }\n⊢ Group.IsNilpotent G", "tactic": "exact nilpotent_of_mulEquiv e" }, { "state_after": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\np : { x // x ∈ ps }\nP : Sylow (↑p) G\n⊢ Group.IsNilpotent { x // x ∈ ↑P }", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\n⊢ ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P }", "tactic": "intro p P" }, { "state_after": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\np : { x // x ∈ ps }\nP : Sylow (↑p) G\nthis : Fact (Nat.Prime ↑p)\n⊢ Group.IsNilpotent { x // x ∈ ↑P }", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\np : { x // x ∈ ps }\nP : Sylow (↑p) G\n⊢ Group.IsNilpotent { x // x ∈ ↑P }", "tactic": "haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p))" }, { "state_after": "no goals", "state_before": "G : Type u_1\nhG : Group G\ninst✝ : Fintype G\ne : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G\nps : Finset ℕ := (Nat.factorization (card G)).support\np : { x // x ∈ ps }\nP : Sylow (↑p) G\nthis : Fact (Nat.Prime ↑p)\n⊢ Group.IsNilpotent { x // x ∈ ↑P }", "tactic": "exact P.isPGroup'.isNilpotent" } ]
[ 892, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 883, 1 ]
Mathlib/Topology/Spectral/Hom.lean
IsSpectralMap.continuous
[]
[ 53, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Init/Algebra/Order.lean
gt_of_gt_of_ge
[]
[ 134, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Algebra/Order/Module.lean
inv_smul_lt_iff_of_neg
[ { "state_after": "no goals", "state_before": "k : Type u_1\nM : Type u_2\nN : Type ?u.96377\ninst✝³ : LinearOrderedField k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nh : c < 0\n⊢ c⁻¹ • a < b ↔ c • b < a", "tactic": "rw [← smul_lt_smul_iff_of_neg h, smul_inv_smul₀ h.ne]" } ]
[ 171, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/Topology/Maps.lean
openEmbedding_id
[]
[ 610, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieHom.idealRange_eq_lieSpan_range
[]
[ 907, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 906, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.inducedOuterMeasure_caratheodory
[ { "state_after": "α : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ (∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t) ↔\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t", "state_before": "α : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ MeasurableSet s ↔\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t", "tactic": "rw [isCaratheodory_iff_le]" }, { "state_after": "case mp\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ (∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t) →\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t\n\ncase mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ (∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t) →\n ∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t", "state_before": "α : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ (∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t) ↔\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t", "tactic": "constructor" }, { "state_after": "case mp\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nt : Set α\n_ht : P t\n⊢ ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t", "state_before": "case mp\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ (∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t) →\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t", "tactic": "intro h t _ht" }, { "state_after": "no goals", "state_before": "case mp\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nt : Set α\n_ht : P t\n⊢ ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t", "tactic": "exact h t" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu : Set α\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) u", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\n⊢ (∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) t) →\n ∀ (t : Set α),\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t", "tactic": "intro h u" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu : Set α\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤\n ⨅ (t : Set α) (ht : P t) (_ : u ⊆ t), m t ht", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu : Set α\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) u", "tactic": "conv_rhs => rw [inducedOuterMeasure_eq_iInf _ msU m_mono]" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu : Set α\n⊢ ∀ (i : Set α),\n ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (ht : P i) (_ : u ⊆ i), m i ht", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu : Set α\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤\n ⨅ (t : Set α) (ht : P t) (_ : u ⊆ t), m t ht", "tactic": "refine' le_iInf _" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (ht : P t) (_ : u ⊆ t), m t ht", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu : Set α\n⊢ ∀ (i : Set α),\n ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (ht : P i) (_ : u ⊆ i), m i ht", "tactic": "intro t" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\n⊢ ∀ (i : P t), ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (_ : u ⊆ t), m t i", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (ht : P t) (_ : u ⊆ t), m t ht", "tactic": "refine' le_iInf _" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (_ : u ⊆ t), m t ht", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\n⊢ ∀ (i : P t), ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (_ : u ⊆ t), m t i", "tactic": "intro ht" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\n⊢ u ⊆ t → ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ m t ht", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ ⨅ (_ : u ⊆ t), m t ht", "tactic": "refine' le_iInf _" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\nh2t : u ⊆ t\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ m t ht", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\n⊢ u ⊆ t → ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ m t ht", "tactic": "intro h2t" }, { "state_after": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\nh2t : u ⊆ t\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s)", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\nh2t : u ⊆ t\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤ m t ht", "tactic": "refine' le_trans _ (le_trans (h t ht) <| le_of_eq <| inducedOuterMeasure_eq' _ msU m_mono ht)" }, { "state_after": "no goals", "state_before": "case mpr\nα : Type u_1\nP : Set α → Prop\nm : (s : Set α) → P s → ℝ≥0∞\nP0 : P ∅\nm0 : m ∅ P0 = 0\nPU : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), P (f i)) → P (⋃ (i : ℕ), f i)\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) = ∑' (i : ℕ), m (f i) (_ : P (f i))\nmsU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), P (f i)),\n m (⋃ (i : ℕ), f i) (_ : P (⋃ (i : ℕ), f i)) ≤ ∑' (i : ℕ), m (f i) (_ : P (f i))\nm_mono : ∀ ⦃s₁ s₂ : Set α⦄ (hs₁ : P s₁) (hs₂ : P s₂), s₁ ⊆ s₂ → m s₁ hs₁ ≤ m s₂ hs₂\ns : Set α\nh :\n ∀ (t : Set α),\n P t →\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s) ≤ ↑(inducedOuterMeasure m P0 m0) t\nu t : Set α\nht : P t\nh2t : u ⊆ t\n⊢ ↑(inducedOuterMeasure m P0 m0) (u ∩ s) + ↑(inducedOuterMeasure m P0 m0) (u \\ s) ≤\n ↑(inducedOuterMeasure m P0 m0) (t ∩ s) + ↑(inducedOuterMeasure m P0 m0) (t \\ s)", "tactic": "refine'\n add_le_add (mono' _ <| Set.inter_subset_inter_left _ h2t)\n (mono' _ <| diff_subset_diff_left h2t)" } ]
[ 1541, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1520, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.copy_eq
[]
[ 159, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.restr_univ
[]
[ 726, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 725, 1 ]
Mathlib/AlgebraicGeometry/StructureSheaf.lean
AlgebraicGeometry.StructureSheaf.stalkToFiberRingHom_germ'
[]
[ 548, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 545, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.map_eq_zero_iff
[ { "state_after": "case mp\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ ↑(algebraMap R S) r = 0 → ∃ m, ↑m * r = 0\n\ncase mpr\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0", "state_before": "R : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ ↑(algebraMap R S) r = 0 ↔ ∃ m, ↑m * r = 0", "tactic": "constructor" }, { "state_after": "case mp\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nh : ↑(algebraMap R S) r = 0\n⊢ ∃ m, ↑m * r = 0\n\ncase mpr\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0", "state_before": "case mp\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ ↑(algebraMap R S) r = 0 → ∃ m, ↑m * r = 0\n\ncase mpr\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0", "tactic": "intro h" }, { "state_after": "case mp.intro\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nh : ↑(algebraMap R S) r = 0\nm : { x // x ∈ M }\nhm : ↑m * 0 = ↑m * r\n⊢ ∃ m, ↑m * r = 0", "state_before": "case mp\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nh : ↑(algebraMap R S) r = 0\n⊢ ∃ m, ↑m * r = 0", "tactic": "obtain ⟨m, hm⟩ := (IsLocalization.eq_iff_exists M S).mp ((algebraMap R S).map_zero.trans h.symm)" }, { "state_after": "no goals", "state_before": "case mp.intro\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nh : ↑(algebraMap R S) r = 0\nm : { x // x ∈ M }\nhm : ↑m * 0 = ↑m * r\n⊢ ∃ m, ↑m * r = 0", "tactic": "exact ⟨m, by simpa using hm.symm⟩" }, { "state_after": "no goals", "state_before": "R : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nh : ↑(algebraMap R S) r = 0\nm : { x // x ∈ M }\nhm : ↑m * 0 = ↑m * r\n⊢ ↑m * r = 0", "tactic": "simpa using hm.symm" }, { "state_after": "case mpr.intro\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nm : { x // x ∈ M }\nhm : ↑m * r = 0\n⊢ ↑(algebraMap R S) r = 0", "state_before": "case mpr\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\n⊢ (∃ m, ↑m * r = 0) → ↑(algebraMap R S) r = 0", "tactic": "rintro ⟨m, hm⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro\nR : Type u_2\ninst✝⁴ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommSemiring S\ninst✝² : Algebra R S\nP : Type ?u.395998\ninst✝¹ : CommSemiring P\ninst✝ : IsLocalization M S\nr : R\nm : { x // x ∈ M }\nhm : ↑m * r = 0\n⊢ ↑(algebraMap R S) r = 0", "tactic": "rw [← (IsLocalization.map_units S m).mul_right_inj, mul_zero, ← RingHom.map_mul, hm,\n RingHom.map_zero]" } ]
[ 236, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Logic/Equiv/Set.lean
Equiv.Set.insert_symm_apply_inl
[]
[ 290, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
RingHom.liftOfRightInverse_comp_apply
[]
[ 2280, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2277, 1 ]
Mathlib/Algebra/Order/Field/Power.lean
Odd.zpow_neg_iff
[ { "state_after": "case intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b c d : α\nn k : ℤ\nhk : n = 2 * k + 1\n⊢ a ^ n < 0 ↔ a < 0", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhn : Odd n\n⊢ a ^ n < 0 ↔ a < 0", "tactic": "cases' hn with k hk" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝ : LinearOrderedField α\na b c d : α\nn k : ℤ\nhk : n = 2 * k + 1\n⊢ a ^ n < 0 ↔ a < 0", "tactic": "simpa only [hk, two_mul] using zpow_bit1_neg_iff" } ]
[ 190, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Data/Quot.lean
Quotient.out_eq
[]
[ 376, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 375, 1 ]
Mathlib/Data/Set/Intervals/Instances.lean
Set.Ico.coe_nonneg
[]
[ 212, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Algebra/Order/Sub/Canonical.lean
tsub_add_min
[ { "state_after": "case h\nα : Type u_1\ninst✝² : CanonicallyLinearOrderedAddMonoid α\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\n⊢ min a b ≤ a", "state_before": "α : Type u_1\ninst✝² : CanonicallyLinearOrderedAddMonoid α\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\n⊢ a - b + min a b = a", "tactic": "rw [← tsub_min, @tsub_add_cancel_of_le]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\ninst✝² : CanonicallyLinearOrderedAddMonoid α\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\n⊢ min a b ≤ a", "tactic": "apply min_le_left" } ]
[ 512, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
HasFDerivAtFilter.congr_of_eventuallyEq
[]
[ 844, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 842, 1 ]
Mathlib/Data/Set/Function.lean
Set.MapsTo.subset_preimage
[]
[ 395, 5 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.eq_succ_of_ne_zero
[]
[ 436, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 435, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.range_subtype
[ { "state_after": "case h\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\nx : M\n⊢ x ∈ Hom.range (Embedding.toHom (subtype S)) ↔ x ∈ S", "state_before": "L : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\n⊢ Hom.range (Embedding.toHom (subtype S)) = S", "tactic": "ext x" }, { "state_after": "case h\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\nx : M\n⊢ (∃ y, ↑y = x) ↔ x ∈ S", "state_before": "case h\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\nx : M\n⊢ x ∈ Hom.range (Embedding.toHom (subtype S)) ↔ x ∈ S", "tactic": "simp only [Hom.mem_range, Embedding.coe_toHom, coeSubtype]" }, { "state_after": "case h\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\nx : M\n⊢ (∃ y, ↑y = x) → x ∈ S", "state_before": "case h\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\nx : M\n⊢ (∃ y, ↑y = x) ↔ x ∈ S", "tactic": "refine' ⟨_, fun h => ⟨⟨x, h⟩, rfl⟩⟩" }, { "state_after": "case h.intro.mk\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\ny : M\nhy : y ∈ S\n⊢ ↑{ val := y, property := hy } ∈ S", "state_before": "case h\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\nx : M\n⊢ (∃ y, ↑y = x) → x ∈ S", "tactic": "rintro ⟨⟨y, hy⟩, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.intro.mk\nL : Language\nM : Type w\nN : Type ?u.1144938\nP : Type ?u.1144941\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS✝ S : Substructure L M\ny : M\nhy : y ∈ S\n⊢ ↑{ val := y, property := hy } ∈ S", "tactic": "exact hy" } ]
[ 1016, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1011, 1 ]
Mathlib/Order/BooleanAlgebra.lean
compl_eq_comm
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.54315\nw x y z : α\ninst✝ : BooleanAlgebra α\n⊢ xᶜ = y ↔ yᶜ = x", "tactic": "rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]" } ]
[ 628, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 627, 1 ]
Mathlib/CategoryTheory/Closed/Cartesian.lean
CategoryTheory.CartesianClosed.curry_eq_iff
[]
[ 215, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 214, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.subtypeQuotientEquivQuotientSubtype_symm_mk
[]
[ 1503, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1499, 1 ]
Mathlib/MeasureTheory/Measure/VectorMeasure.lean
MeasureTheory.VectorMeasure.coe_neg
[]
[ 351, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 351, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.IsNormal.cof_le
[ { "state_after": "case inl\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\n⊢ cof 0 ≤ cof (f 0)\n\ncase inr.inl.intro\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\nb : Ordinal\n⊢ cof (succ b) ≤ cof (f (succ b))\n\ncase inr.inr\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\na : Ordinal\nha : IsLimit a\n⊢ cof a ≤ cof (f a)", "state_before": "α : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\na : Ordinal\n⊢ cof a ≤ cof (f a)", "tactic": "rcases zero_or_succ_or_limit a with (rfl | ⟨b, rfl⟩ | ha)" }, { "state_after": "case inl\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\n⊢ 0 ≤ cof (f 0)", "state_before": "case inl\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\n⊢ cof 0 ≤ cof (f 0)", "tactic": "rw [cof_zero]" }, { "state_after": "no goals", "state_before": "case inl\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\n⊢ 0 ≤ cof (f 0)", "tactic": "exact zero_le _" }, { "state_after": "case inr.inl.intro\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\nb : Ordinal\n⊢ 0 < f (succ b)", "state_before": "case inr.inl.intro\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\nb : Ordinal\n⊢ cof (succ b) ≤ cof (f (succ b))", "tactic": "rw [cof_succ, Cardinal.one_le_iff_ne_zero, cof_ne_zero, ← Ordinal.pos_iff_ne_zero]" }, { "state_after": "no goals", "state_before": "case inr.inl.intro\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\nb : Ordinal\n⊢ 0 < f (succ b)", "tactic": "exact (Ordinal.zero_le (f b)).trans_lt (hf.1 b)" }, { "state_after": "no goals", "state_before": "case inr.inr\nα : Type ?u.99458\nr : α → α → Prop\nf : Ordinal → Ordinal\nhf : IsNormal f\na : Ordinal\nha : IsLimit a\n⊢ cof a ≤ cof (f a)", "tactic": "rw [hf.cof_eq ha]" } ]
[ 695, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 689, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Basis.lean
AffineBasis.surjective_coord
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\n⊢ Function.Surjective ↑(coord b i)", "tactic": "classical\n intro x\n obtain ⟨j, hij⟩ := exists_ne i\n let s : Finset ι := {i, j}\n have hi : i ∈ s := by simp\n have _ : j ∈ s := by simp\n let w : ι → k := fun j' => if j' = i then x else 1 - x\n have hw : s.sum w = 1 := by\n simp [Finset.sum_ite, Finset.filter_insert, hij]\n erw [Finset.filter_eq']\n simp [hij.symm]\n use s.affineCombination k b w\n simp [b.coord_apply_combination_of_mem hi hw]" }, { "state_after": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\n⊢ Function.Surjective ↑(coord b i)", "tactic": "intro x" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "obtain ⟨j, hij⟩ := exists_ne i" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "let s : Finset ι := {i, j}" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "have hi : i ∈ s := by simp" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "have _ : j ∈ s := by simp" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "let w : ι → k := fun j' => if j' = i then x else 1 - x" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\nhw : Finset.sum s w = 1\n⊢ ∃ a, ↑(coord b i) a = x", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "have hw : s.sum w = 1 := by\n simp [Finset.sum_ite, Finset.filter_insert, hij]\n erw [Finset.filter_eq']\n simp [hij.symm]" }, { "state_after": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\nhw : Finset.sum s w = 1\n⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = x", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\nhw : Finset.sum s w = 1\n⊢ ∃ a, ↑(coord b i) a = x", "tactic": "use s.affineCombination k b w" }, { "state_after": "no goals", "state_before": "case intro\nι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\nhw : Finset.sum s w = 1\n⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = x", "tactic": "simp [b.coord_apply_combination_of_mem hi hw]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\n⊢ i ∈ s", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\n⊢ j ∈ s", "tactic": "simp" }, { "state_after": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ ↑(Finset.card (insert i (Finset.filter (fun x => x = i) {j}))) * x + (1 - x) = 1", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ Finset.sum s w = 1", "tactic": "simp [Finset.sum_ite, Finset.filter_insert, hij]" }, { "state_after": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ ↑(Finset.card (insert i (if i ∈ {j} then {i} else ∅))) * x + (1 - x) = 1", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ ↑(Finset.card (insert i (Finset.filter (fun x => x = i) {j}))) * x + (1 - x) = 1", "tactic": "erw [Finset.filter_eq']" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.141682\nk : Type u_3\nV : Type u_4\nP : Type u_2\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j✝ : ι\ne : ι ≃ ι'\ninst✝ : Nontrivial ι\ni : ι\nx : k\nj : ι\nhij : j ≠ i\ns : Finset ι := {i, j}\nhi : i ∈ s\nx✝ : j ∈ s\nw : ι → k := fun j' => if j' = i then x else 1 - x\n⊢ ↑(Finset.card (insert i (if i ∈ {j} then {i} else ∅))) * x + (1 - x) = 1", "tactic": "simp [hij.symm]" } ]
[ 273, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Algebra/Support.lean
Function.mulSupport_min
[]
[ 180, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.sup_eq_union
[]
[ 1311, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1310, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.biproduct.hom_ext'
[]
[ 472, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 470, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.frequently_const
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.163070\nι : Sort x\nf : Filter α\ninst✝ : NeBot f\np : Prop\nh : p\n⊢ (∃ᶠ (x : α) in f, p) ↔ p", "tactic": "simpa [h]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.163070\nι : Sort x\nf : Filter α\ninst✝ : NeBot f\np : Prop\nh : ¬p\n⊢ (∃ᶠ (x : α) in f, p) ↔ p", "tactic": "simp [h]" } ]
[ 1336, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1335, 1 ]
Mathlib/Algebra/CharP/Basic.lean
CharP.intCast_eq_intCast
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : AddGroupWithOne R\np : ℕ\ninst✝ : CharP R p\na b : ℤ\n⊢ ↑a = ↑b ↔ a ≡ b [ZMOD ↑p]", "tactic": "rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]" } ]
[ 146, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Algebra/Order/Archimedean.lean
eq_of_forall_rat_lt_iff_lt
[]
[ 298, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/CategoryTheory/Endofunctor/Algebra.lean
CategoryTheory.Endofunctor.Algebra.mono_of_mono
[]
[ 172, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]