file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Topology/Constructions.lean
nhds_inl
[]
[ 952, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 951, 1 ]
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Topology.lean
ProjectiveSpectrum.zeroLocus_anti_mono_homogeneousIdeal
[]
[ 191, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Algebra/RingQuot.lean
RingQuot.liftAlgHom_mkAlgHom_apply
[ { "state_after": "R : Type u₁\ninst✝⁶ : Semiring R\nS : Type u₂\ninst✝⁵ : CommSemiring S\nA : Type u₃\ninst✝⁴ : Semiring A\ninst✝³ : Algebra S A\nr : R → R → Prop\nT : Type u₄\ninst✝² : Semiring T\nB : Type u₄\ninst✝¹ : Semiring B\ninst✝ : Algebra S B\nf : A →ₐ[S] B\ns : A → A → Prop\nw : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y\nx : A\n⊢ ↑(↑{\n toFun := fun f' =>\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) },\n map_zero' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot = 0),\n map_add' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n y) },\n commutes' :=\n (_ :\n ∀ (x : S),\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot =\n ↑(algebraMap S B) x) },\n invFun := fun F =>\n {\n val :=\n AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) },\n property :=\n (_ :\n (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y)\n (AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) },\n left_inv :=\n (_ :\n Function.LeftInverse\n (fun F =>\n {\n val :=\n AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) },\n property :=\n (_ :\n (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y)\n (AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) })\n fun f' =>\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) },\n map_zero' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n y) },\n commutes' :=\n (_ :\n ∀ (x : S),\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot =\n ↑(algebraMap S B) x) }),\n right_inv :=\n (_ :\n Function.RightInverse\n (fun F =>\n {\n val :=\n AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) },\n property :=\n (_ :\n (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y)\n (AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) })\n fun f' =>\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) },\n map_zero' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n y) },\n commutes' :=\n (_ :\n ∀ (x : S),\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot =\n ↑(algebraMap S B) x) }) }\n { val := f, property := w })\n (↑{\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } *\n { toQuot := Quot.mk (Rel s) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } *\n { toQuot := Quot.mk (Rel s) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } *\n { toQuot := Quot.mk (Rel s) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot s)) r) }\n x) =\n ↑f x", "state_before": "R : Type u₁\ninst✝⁶ : Semiring R\nS : Type u₂\ninst✝⁵ : CommSemiring S\nA : Type u₃\ninst✝⁴ : Semiring A\ninst✝³ : Algebra S A\nr : R → R → Prop\nT : Type u₄\ninst✝² : Semiring T\nB : Type u₄\ninst✝¹ : Semiring B\ninst✝ : Algebra S B\nf : A →ₐ[S] B\ns : A → A → Prop\nw : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y\nx : A\n⊢ ↑(↑(liftAlgHom S) { val := f, property := w }) (↑(mkAlgHom S s) x) = ↑f x", "tactic": "simp_rw [liftAlgHom_def, preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def]" }, { "state_after": "no goals", "state_before": "R : Type u₁\ninst✝⁶ : Semiring R\nS : Type u₂\ninst✝⁵ : CommSemiring S\nA : Type u₃\ninst✝⁴ : Semiring A\ninst✝³ : Algebra S A\nr : R → R → Prop\nT : Type u₄\ninst✝² : Semiring T\nB : Type u₄\ninst✝¹ : Semiring B\ninst✝ : Algebra S B\nf : A →ₐ[S] B\ns : A → A → Prop\nw : ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y\nx : A\n⊢ ↑(↑{\n toFun := fun f' =>\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) },\n map_zero' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot = 0),\n map_add' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n y) },\n commutes' :=\n (_ :\n ∀ (x : S),\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot =\n ↑(algebraMap S B) x) },\n invFun := fun F =>\n {\n val :=\n AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) },\n property :=\n (_ :\n (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y)\n (AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) },\n left_inv :=\n (_ :\n Function.LeftInverse\n (fun F =>\n {\n val :=\n AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) },\n property :=\n (_ :\n (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y)\n (AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) })\n fun f' =>\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) },\n map_zero' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n y) },\n commutes' :=\n (_ :\n ∀ (x : S),\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot =\n ↑(algebraMap S B) x) }),\n right_inv :=\n (_ :\n Function.RightInverse\n (fun F =>\n {\n val :=\n AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) },\n property :=\n (_ :\n (fun f => ∀ ⦃x y : A⦄, s x y → ↑f x = ↑f y)\n (AlgHom.comp F\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ : { toQuot := Quot.mk (Rel fun x y => s x y) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n { toQuot := Quot.mk (Rel fun x y => s x y) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n { toQuot := Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) (a * a_1) } =\n { toQuot := Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n { toQuot := Quot.mk (Rel fun x y => s x y) x },\n map_one' :=\n (_ :\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) 1 } =\n 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y)\n (a * a_1) } =\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a } *\n {\n toQuot :=\n Quot.mk (Rel fun x y => s x y) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot fun x y => s x y)) r) })) })\n fun f' =>\n {\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) },\n map_zero' :=\n (_ :\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b) 0.toQuot =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) },\n map_mul' :=\n (_ :\n ∀ (x y : RingQuot fun x y => s x y),\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n (x * y) =\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n x *\n OneHom.toFun\n {\n toFun := fun x =>\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n x.toQuot,\n map_one' :=\n (_ :\n Quot.lift ↑↑f'\n (_ :\n ∀ (a b : A),\n Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n 1.toQuot =\n 1) }\n y) })\n y) },\n commutes' :=\n (_ :\n ∀ (x : S),\n Quot.lift ↑↑f' (_ : ∀ (a b : A), Rel (fun x y => s x y) a b → ↑↑f' a = ↑↑f' b)\n (↑(algebraMap S (RingQuot fun x y => s x y)) x).toQuot =\n ↑(algebraMap S B) x) }) }\n { val := f, property := w })\n (↑{\n toRingHom :=\n {\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n y) },\n commutes' :=\n (_ :\n ∀ (r : S),\n OneHom.toFun\n (↑↑{\n toMonoidHom :=\n {\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) },\n map_zero' :=\n (_ :\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } * { toQuot := Quot.mk (Rel s) a_1 }) })\n 0 =\n 0),\n map_add' :=\n (_ :\n ∀ (x y : A),\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } *\n { toQuot := Quot.mk (Rel s) a_1 }) })\n (x + y) =\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } *\n { toQuot := Quot.mk (Rel s) a_1 }) })\n x +\n OneHom.toFun\n (↑{\n toOneHom :=\n { toFun := fun x => { toQuot := Quot.mk (Rel s) x },\n map_one' := (_ : { toQuot := Quot.mk (Rel s) 1 } = 1) },\n map_mul' :=\n (_ :\n ∀ (a a_1 : A),\n { toQuot := Quot.mk (Rel s) (a * a_1) } =\n { toQuot := Quot.mk (Rel s) a } *\n { toQuot := Quot.mk (Rel s) a_1 }) })\n y) })\n (↑(algebraMap S A) r) =\n ↑(algebraMap S (RingQuot s)) r) }\n x) =\n ↑f x", "tactic": "rfl" } ]
[ 670, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 667, 1 ]
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.cramer_row_self
[ { "state_after": "m : Type u\nn : Type v\nα : Type w\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\ninst✝ : CommRing α\nA : Matrix n n α\nb : n → α\ni : n\nh : ∀ (j : n), b j = A j i\n⊢ ↑(cramer Aᵀᵀ) b = Pi.single i (det Aᵀ)", "state_before": "m : Type u\nn : Type v\nα : Type w\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\ninst✝ : CommRing α\nA : Matrix n n α\nb : n → α\ni : n\nh : ∀ (j : n), b j = A j i\n⊢ ↑(cramer A) b = Pi.single i (det A)", "tactic": "rw [← transpose_transpose A, det_transpose]" }, { "state_after": "case h.e'_2.h.e'_6\nm : Type u\nn : Type v\nα : Type w\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\ninst✝ : CommRing α\nA : Matrix n n α\nb : n → α\ni : n\nh : ∀ (j : n), b j = A j i\n⊢ b = Aᵀ i", "state_before": "m : Type u\nn : Type v\nα : Type w\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\ninst✝ : CommRing α\nA : Matrix n n α\nb : n → α\ni : n\nh : ∀ (j : n), b j = A j i\n⊢ ↑(cramer Aᵀᵀ) b = Pi.single i (det Aᵀ)", "tactic": "convert cramer_transpose_row_self Aᵀ i" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nm : Type u\nn : Type v\nα : Type w\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\ninst✝ : CommRing α\nA : Matrix n n α\nb : n → α\ni : n\nh : ∀ (j : n), b j = A j i\n⊢ b = Aᵀ i", "tactic": "exact funext h" } ]
[ 126, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
NNReal.tsum_eq_toNNReal_tsum
[ { "state_after": "case pos\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nh : Summable f\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))\n\ncase neg\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nh : ¬Summable f\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "state_before": "α : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "tactic": "by_cases h : Summable f" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nh : Summable f\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "tactic": "rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe]" }, { "state_after": "case neg\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nh : ¬Summable f\nA : (∑' (b : β), f b) = 0\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "state_before": "case neg\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nh : ¬Summable f\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "tactic": "have A := tsum_eq_zero_of_not_summable h" }, { "state_after": "case neg\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nA : (∑' (b : β), f b) = 0\nh : (∑' (b : β), ↑(f b)) = ⊤\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "state_before": "case neg\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nh : ¬Summable f\nA : (∑' (b : β), f b) = 0\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "tactic": "simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h" }, { "state_after": "no goals", "state_before": "case neg\nα : Type ?u.309286\nβ : Type u_1\nγ : Type ?u.309292\nf : β → ℝ≥0\nA : (∑' (b : β), f b) = 0\nh : (∑' (b : β), ↑(f b)) = ⊤\n⊢ (∑' (b : β), f b) = ENNReal.toNNReal (∑' (b : β), ↑(f b))", "tactic": "simp only [h, ENNReal.top_toNNReal, A]" } ]
[ 1103, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1098, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.inv_lt_inv
[]
[ 1479, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1478, 11 ]
Mathlib/LinearAlgebra/Projection.lean
Submodule.existsUnique_add_of_isCompl
[]
[ 211, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
TopCat.Sheaf.existsUnique_gluing
[]
[ 250, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
MeasurableEmbedding.aemeasurable_map_iff
[ { "state_after": "ι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\n⊢ AEMeasurable (g ∘ f) → AEMeasurable g", "state_before": "ι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\n⊢ AEMeasurable g ↔ AEMeasurable (g ∘ f)", "tactic": "refine' ⟨fun H => H.comp_measurable hf.measurable, _⟩" }, { "state_after": "case intro.intro\nι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\ng₁ : α → γ\nhgm₁ : Measurable g₁\nheq : g ∘ f =ᶠ[ae μ] g₁\n⊢ AEMeasurable g", "state_before": "ι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\n⊢ AEMeasurable (g ∘ f) → AEMeasurable g", "tactic": "rintro ⟨g₁, hgm₁, heq⟩" }, { "state_after": "case intro.intro.intro.intro\nι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\ng₂ : β → γ\nhgm₂ : Measurable g₂\nhgm₁ : Measurable (g₂ ∘ f)\nheq : g ∘ f =ᶠ[ae μ] g₂ ∘ f\n⊢ AEMeasurable g", "state_before": "case intro.intro\nι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\ng₁ : α → γ\nhgm₁ : Measurable g₁\nheq : g ∘ f =ᶠ[ae μ] g₁\n⊢ AEMeasurable g", "tactic": "rcases hf.exists_measurable_extend hgm₁ fun x => ⟨g x⟩ with ⟨g₂, hgm₂, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nι : Type ?u.3357463\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.3357475\nR : Type ?u.3357478\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g✝ : α → β\nμ ν : MeasureTheory.Measure α\ng : β → γ\nhf : MeasurableEmbedding f\ng₂ : β → γ\nhgm₂ : Measurable g₂\nhgm₁ : Measurable (g₂ ∘ f)\nheq : g ∘ f =ᶠ[ae μ] g₂ ∘ f\n⊢ AEMeasurable g", "tactic": "exact ⟨g₂, hgm₂, hf.ae_map_iff.2 heq⟩" } ]
[ 267, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Order/Lattice.lean
Monotone.le_map_sup
[]
[ 1099, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1097, 1 ]
Mathlib/Data/Fin/VecNotation.lean
Matrix.vecAlt1_vecAppend
[ { "state_after": "case h\nα : Type u\nm n o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (n + 1) → α\ni : Fin (n + 1)\n⊢ vecAlt1 (_ : n + 1 + (n + 1) = n + 1 + (n + 1)) (vecAppend (_ : n + 1 + (n + 1) = n + 1 + (n + 1)) v v) i =\n (v ∘ bit1) i", "state_before": "α : Type u\nm n o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (n + 1) → α\n⊢ vecAlt1 (_ : n + 1 + (n + 1) = n + 1 + (n + 1)) (vecAppend (_ : n + 1 + (n + 1) = n + 1 + (n + 1)) v v) = v ∘ bit1", "tactic": "ext i" }, { "state_after": "case h\nα : Type u\nm n o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (n + 1) → α\ni : Fin (n + 1)\n⊢ (if h : ↑i + ↑i + 1 < n + 1 then\n v\n { val := ↑i + ↑i + 1,\n isLt := (_ : ↑{ val := ↑i + ↑i + 1, isLt := (_ : ↑i + ↑i + 1 < n + 1 + (n + 1)) } < n + 1) }\n else\n v\n { val := ↑i + ↑i + 1 - (n + 1),\n isLt := (_ : ↑{ val := ↑i + ↑i + 1, isLt := (_ : ↑i + ↑i + 1 < n + 1 + (n + 1)) } - (n + 1) < n + 1) }) =\n v (bit1 i)", "state_before": "case h\nα : Type u\nm n o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (n + 1) → α\ni : Fin (n + 1)\n⊢ vecAlt1 (_ : n + 1 + (n + 1) = n + 1 + (n + 1)) (vecAppend (_ : n + 1 + (n + 1) = n + 1 + (n + 1)) v v) i =\n (v ∘ bit1) i", "tactic": "simp_rw [Function.comp, vecAlt1, vecAppend_eq_ite]" }, { "state_after": "case h.zero.mk\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\ni : ℕ\nhi : i < Nat.zero + 1\n⊢ (if h : ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 < Nat.zero + 1 then\n v\n { val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } <\n Nat.zero + 1) }\n else\n v\n { val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } -\n (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 { val := i, isLt := hi })", "state_before": "case h.zero\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\ni : Fin (Nat.zero + 1)\n⊢ (if h : ↑i + ↑i + 1 < Nat.zero + 1 then\n v\n { val := ↑i + ↑i + 1,\n isLt :=\n (_ : ↑{ val := ↑i + ↑i + 1, isLt := (_ : ↑i + ↑i + 1 < Nat.zero + 1 + (Nat.zero + 1)) } < Nat.zero + 1) }\n else\n v\n { val := ↑i + ↑i + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑i + ↑i + 1, isLt := (_ : ↑i + ↑i + 1 < Nat.zero + 1 + (Nat.zero + 1)) } - (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 i)", "tactic": "cases' i with i hi" }, { "state_after": "case h.zero.mk\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\ni : ℕ\nhi✝ : i < Nat.zero + 1\nhi : i = 0\n⊢ (if h : ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 < Nat.zero + 1 then\n v\n { val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1,\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } <\n Nat.zero + 1) }\n else\n v\n { val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 <\n Nat.zero + 1 + (Nat.zero + 1)) } -\n (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 { val := i, isLt := hi✝ })", "state_before": "case h.zero.mk\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\ni : ℕ\nhi : i < Nat.zero + 1\n⊢ (if h : ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 < Nat.zero + 1 then\n v\n { val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } <\n Nat.zero + 1) }\n else\n v\n { val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi } + ↑{ val := i, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } -\n (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 { val := i, isLt := hi })", "tactic": "simp only [Nat.zero_eq, zero_add, Nat.lt_one_iff] at hi" }, { "state_after": "case h.zero.mk\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\nhi : 0 < Nat.zero + 1\n⊢ (if h : ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 < Nat.zero + 1 then\n v\n { val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } <\n Nat.zero + 1) }\n else\n v\n { val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } -\n (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 { val := 0, isLt := hi })", "state_before": "case h.zero.mk\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\ni : ℕ\nhi✝ : i < Nat.zero + 1\nhi : i = 0\n⊢ (if h : ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 < Nat.zero + 1 then\n v\n { val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1,\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } <\n Nat.zero + 1) }\n else\n v\n { val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1,\n isLt :=\n (_ :\n ↑{ val := i, isLt := hi✝ } + ↑{ val := i, isLt := hi✝ } + 1 <\n Nat.zero + 1 + (Nat.zero + 1)) } -\n (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 { val := i, isLt := hi✝ })", "tactic": "subst i" }, { "state_after": "no goals", "state_before": "case h.zero.mk\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nv : Fin (Nat.zero + 1) → α\nhi : 0 < Nat.zero + 1\n⊢ (if h : ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 < Nat.zero + 1 then\n v\n { val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } <\n Nat.zero + 1) }\n else\n v\n { val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 - (Nat.zero + 1),\n isLt :=\n (_ :\n ↑{ val := ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1,\n isLt :=\n (_ :\n ↑{ val := 0, isLt := hi } + ↑{ val := 0, isLt := hi } + 1 < Nat.zero + 1 + (Nat.zero + 1)) } -\n (Nat.zero + 1) <\n Nat.zero + 1) }) =\n v (bit1 { val := 0, isLt := hi })", "tactic": "rfl" }, { "state_after": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)\n\ncase h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ¬↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "state_before": "case h.succ\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\n⊢ (if h : ↑i + ↑i + 1 < Nat.succ n + 1 then\n v\n { val := ↑i + ↑i + 1,\n isLt :=\n (_ :\n ↑{ val := ↑i + ↑i + 1, isLt := (_ : ↑i + ↑i + 1 < Nat.succ n + 1 + (Nat.succ n + 1)) } < Nat.succ n + 1) }\n else\n v\n { val := ↑i + ↑i + 1 - (Nat.succ n + 1),\n isLt :=\n (_ :\n ↑{ val := ↑i + ↑i + 1, isLt := (_ : ↑i + ↑i + 1 < Nat.succ n + 1 + (Nat.succ n + 1)) } -\n (Nat.succ n + 1) <\n Nat.succ n + 1) }) =\n v (bit1 i)", "tactic": "split_ifs with h <;> simp_rw [bit1, bit0] <;> congr" }, { "state_after": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "state_before": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "simp only [Fin.ext_iff, Fin.val_add, Fin.val_mk]" }, { "state_after": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "state_before": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "rw [Fin.val_mk] at h" }, { "state_after": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = (↑i + ↑i + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "state_before": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "erw [Nat.mod_eq_of_lt (Nat.lt_of_succ_lt h)]" }, { "state_after": "no goals", "state_before": "case h.succ.inl.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 = (↑i + ↑i + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "erw [Nat.mod_eq_of_lt h]" }, { "state_after": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "state_before": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : ¬↑i + ↑i + 1 < Nat.succ n + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "rw [Fin.val_mk, not_lt] at h" }, { "state_after": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) = (↑i + ↑i + 1 - (Nat.succ n + 1)) % (Nat.succ n + 1)", "state_before": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) = ((↑i + ↑i) % (Nat.succ n + 1) + 1 % (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "simp only [Fin.ext_iff, Fin.val_add, Fin.val_mk, Nat.mod_add_mod, Fin.val_one,\n Nat.mod_eq_sub_mod h, show 1 % (n + 2) = 1 from Nat.mod_eq_of_lt (by simp)]" }, { "state_after": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) < Nat.succ n + 1", "state_before": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) = (↑i + ↑i + 1 - (Nat.succ n + 1)) % (Nat.succ n + 1)", "tactic": "refine (Nat.mod_eq_of_lt ?_).symm" }, { "state_after": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 < Nat.succ n + 1 + (Nat.succ n + 1)", "state_before": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 - (Nat.succ n + 1) < Nat.succ n + 1", "tactic": "rw [tsub_lt_iff_left h]" }, { "state_after": "no goals", "state_before": "case h.succ.inr.e_a.e_val\nα : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ ↑i + ↑i + 1 < Nat.succ n + 1 + (Nat.succ n + 1)", "tactic": "exact Nat.add_succ_lt_add i.2 i.2" }, { "state_after": "no goals", "state_before": "α : Type u\nm o : ℕ\nm' : Type ?u.42128\nn' : Type ?u.42131\no' : Type ?u.42134\nn : ℕ\nv : Fin (Nat.succ n + 1) → α\ni : Fin (Nat.succ n + 1)\nh : Nat.succ n + 1 ≤ ↑i + ↑i + 1\n⊢ 1 < n + 2", "tactic": "simp" } ]
[ 356, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/Topology/Algebra/Monoid.lean
continuous_pow
[ { "state_after": "no goals", "state_before": "ι : Type ?u.177283\nα : Type ?u.177286\nX : Type ?u.177289\nM : Type u_1\nN : Type ?u.177295\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\n⊢ Continuous fun a => a ^ 0", "tactic": "simpa using continuous_const" }, { "state_after": "ι : Type ?u.177283\nα : Type ?u.177286\nX : Type ?u.177289\nM : Type u_1\nN : Type ?u.177295\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nk : ℕ\n⊢ Continuous fun a => a * a ^ k", "state_before": "ι : Type ?u.177283\nα : Type ?u.177286\nX : Type ?u.177289\nM : Type u_1\nN : Type ?u.177295\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nk : ℕ\n⊢ Continuous fun a => a ^ (k + 1)", "tactic": "simp only [pow_succ]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.177283\nα : Type ?u.177286\nX : Type ?u.177289\nM : Type u_1\nN : Type ?u.177295\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nk : ℕ\n⊢ Continuous fun a => a * a ^ k", "tactic": "exact continuous_id.mul (continuous_pow _)" } ]
[ 564, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 560, 1 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.measure_integral_sub_integral_sub_linear_isLittleO_of_tendsto_ae_right
[ { "state_after": "no goals", "state_before": "ι : Type u_2\n𝕜 : Type ?u.1353399\nE : Type u_1\nF : Type ?u.1353405\nA : Type ?u.1353408\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedSpace ℝ E\nf : ℝ → E\na b : ℝ\nc ca cb : E\nl l' la la' lb lb' : Filter ℝ\nlt : Filter ι\nμ : MeasureTheory.Measure ℝ\nu v ua va ub vb : ι → ℝ\ninst✝² : FTCFilter a la la'\ninst✝¹ : FTCFilter b lb lb'\ninst✝ : IsLocallyFiniteMeasure μ\nhab : IntervalIntegrable f μ a b\nhmeas : StronglyMeasurableAtFilter f lb'\nhf : Tendsto f (lb' ⊓ Measure.ae μ) (𝓝 c)\nhu : Tendsto u lt lb\nhv : Tendsto v lt lb\n⊢ (fun t => ((∫ (x : ℝ) in a..v t, f x ∂μ) - ∫ (x : ℝ) in a..u t, f x ∂μ) - ∫ (x : ℝ) in u t..v t, c ∂μ) =o[lt] fun t =>\n ∫ (x : ℝ) in u t..v t, 1 ∂μ", "tactic": "simpa using\n measure_integral_sub_integral_sub_linear_isLittleO_of_tendsto_ae hab stronglyMeasurableAt_bot\n hmeas ((tendsto_bot : Tendsto _ ⊥ (𝓝 (0 : E))).mono_left inf_le_left) hf\n (tendsto_const_pure : Tendsto _ _ (pure a)) tendsto_const_pure hu hv" } ]
[ 456, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 448, 1 ]
Mathlib/Analysis/SpecialFunctions/Sqrt.lean
DifferentiableAt.sqrt
[]
[ 140, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Computability/Reduce.lean
OneOneEquiv.trans
[]
[ 197, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_floor_right_pure_floor
[]
[ 73, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Topology/Inseparable.lean
SeparationQuotient.inducing_mk
[]
[ 469, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 467, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.toFun_eq
[]
[ 89, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.sub_cons
[]
[ 1650, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1649, 1 ]
Mathlib/Algebra/DirectLimit.lean
Module.DirectLimit.lift_unique
[ { "state_after": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : Nonempty ι\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\nF : DirectLimit G f →ₗ[R] P\nx✝ : DirectLimit G f\ni j : ι\nhij : i ≤ j\nx : G i\n⊢ ↑F (↑(of R ι G f i) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : Nonempty ι\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\nF : DirectLimit G f →ₗ[R] P\nx✝ : DirectLimit G f\ni j : ι\nhij : i ≤ j\nx : G i\n⊢ ↑((fun i => LinearMap.comp F (of R ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x", "tactic": "rw [LinearMap.comp_apply, of_f]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : Nonempty ι\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\nF : DirectLimit G f →ₗ[R] P\nx✝ : DirectLimit G f\ni j : ι\nhij : i ≤ j\nx : G i\n⊢ ↑F (↑(of R ι G f i) x) = ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x", "tactic": "rfl" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : Nonempty ι\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\nF : DirectLimit G f →ₗ[R] P\nx✝ : DirectLimit G f\ni : ι\nx : G i\n⊢ ↑F (↑(of R ι G f i) x) = ↑(LinearMap.comp F (of R ι G f i)) x", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : Nonempty ι\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\nF : DirectLimit G f →ₗ[R] P\nx✝ : DirectLimit G f\ni : ι\nx : G i\n⊢ ↑F (↑(of R ι G f i) x) =\n ↑(lift R ι G f (fun i => LinearMap.comp F (of R ι G f i))\n (_ :\n ∀ (i j : ι) (hij : i ≤ j) (x : G i),\n ↑((fun i => LinearMap.comp F (of R ι G f i)) j) (↑(f i j hij) x) =\n ↑((fun i => LinearMap.comp F (of R ι G f i)) i) x))\n (↑(of R ι G f i) x)", "tactic": "rw [lift_of]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : Nonempty ι\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\nF : DirectLimit G f →ₗ[R] P\nx✝ : DirectLimit G f\ni : ι\nx : G i\n⊢ ↑F (↑(of R ι G f i) x) = ↑(LinearMap.comp F (of R ι G f i)) x", "tactic": "rfl" } ]
[ 171, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
Module.End.hasEigenvalue_of_hasGeneralizedEigenvalue
[ { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : eigenspace f μ = ⊥\n⊢ False", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\n⊢ HasEigenvalue f μ", "tactic": "intro contra" }, { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : eigenspace f μ = ⊥\n⊢ ↑(generalizedEigenspace f μ) k = ⊥", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : eigenspace f μ = ⊥\n⊢ False", "tactic": "apply hμ" }, { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : Function.Injective ↑(f - ↑(algebraMap R (End R M)) μ)\n⊢ Function.Injective ↑((f - ↑(algebraMap R (End R M)) μ) ^ k)", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : eigenspace f μ = ⊥\n⊢ ↑(generalizedEigenspace f μ) k = ⊥", "tactic": "erw [LinearMap.ker_eq_bot] at contra ⊢" }, { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : Function.Injective ↑(f - ↑(algebraMap R (End R M)) μ)\n⊢ Function.Injective (↑(f - ↑(algebraMap R (End R M)) μ)^[k])", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : Function.Injective ↑(f - ↑(algebraMap R (End R M)) μ)\n⊢ Function.Injective ↑((f - ↑(algebraMap R (End R M)) μ) ^ k)", "tactic": "rw [LinearMap.coe_pow]" }, { "state_after": "no goals", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End R M\nμ : R\nk : ℕ\nhμ : HasGeneralizedEigenvalue f μ k\ncontra : Function.Injective ↑(f - ↑(algebraMap R (End R M)) μ)\n⊢ Function.Injective (↑(f - ↑(algebraMap R (End R M)) μ)^[k])", "tactic": "exact Function.Injective.iterate contra k" } ]
[ 361, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 357, 1 ]
Mathlib/LinearAlgebra/Prod.lean
LinearMap.coprod_comp_prod
[]
[ 259, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Topology/Separation.lean
Continuous.ext_on
[]
[ 1197, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1195, 1 ]
Mathlib/AlgebraicTopology/TopologicalSimplex.lean
SimplexCategory.toTopObj.ext
[]
[ 50, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/Data/Sign.lean
SignType.neg_one_le
[]
[ 206, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/Heyting/Boundary.lean
Coheyting.boundary_sup_sup_boundary_inf
[]
[ 131, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.ofMulEquivOfDom_id
[ { "state_after": "case h\nM : Type u_1\ninst✝³ : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝² : CommMonoid N\nP : Type ?u.3102959\ninst✝¹ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nT : Submonoid P\nQ : Type ?u.3111444\ninst✝ : CommMonoid Q\nx✝ : M\n⊢ ↑(toMap (ofMulEquivOfDom f (_ : Submonoid.map (MulEquiv.toMonoidHom (MulEquiv.refl M)) S = S))) x✝ = ↑(toMap f) x✝", "state_before": "M : Type u_1\ninst✝³ : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝² : CommMonoid N\nP : Type ?u.3102959\ninst✝¹ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nT : Submonoid P\nQ : Type ?u.3111444\ninst✝ : CommMonoid Q\n⊢ ofMulEquivOfDom f (_ : Submonoid.map (MulEquiv.toMonoidHom (MulEquiv.refl M)) S = S) = f", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nM : Type u_1\ninst✝³ : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝² : CommMonoid N\nP : Type ?u.3102959\ninst✝¹ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nT : Submonoid P\nQ : Type ?u.3111444\ninst✝ : CommMonoid Q\nx✝ : M\n⊢ ↑(toMap (ofMulEquivOfDom f (_ : Submonoid.map (MulEquiv.toMonoidHom (MulEquiv.refl M)) S = S))) x✝ = ↑(toMap f) x✝", "tactic": "rfl" } ]
[ 1544, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1540, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.deriv_mul_eq_opow_omega_mul
[ { "state_after": "a : Ordinal\nha : 0 < a\n⊢ ∀ (b : Ordinal), deriv (fun x => a * x) b = a ^ ω * b", "state_before": "a : Ordinal\nha : 0 < a\nb : Ordinal\n⊢ deriv (fun x => a * x) b = a ^ ω * b", "tactic": "revert b" }, { "state_after": "a : Ordinal\nha : 0 < a\n⊢ deriv (fun x => a * x) 0 = (fun x x_1 => x * x_1) (a ^ ω) 0 ∧\n ∀ (a_1 : Ordinal),\n deriv (fun x => a * x) a_1 = (fun x x_1 => x * x_1) (a ^ ω) a_1 →\n deriv (fun x => a * x) (succ a_1) = (fun x x_1 => x * x_1) (a ^ ω) (succ a_1)", "state_before": "a : Ordinal\nha : 0 < a\n⊢ ∀ (b : Ordinal), deriv (fun x => a * x) b = a ^ ω * b", "tactic": "rw [← funext_iff,\n IsNormal.eq_iff_zero_and_succ (deriv_isNormal _) (mul_isNormal (opow_pos omega ha))]" }, { "state_after": "case refine'_1\na : Ordinal\nha : 0 < a\n⊢ deriv (fun x => a * x) 0 = (fun x x_1 => x * x_1) (a ^ ω) 0\n\ncase refine'_2\na : Ordinal\nha : 0 < a\nc : Ordinal\nh : deriv (fun x => a * x) c = (fun x x_1 => x * x_1) (a ^ ω) c\n⊢ deriv (fun x => a * x) (succ c) = (fun x x_1 => x * x_1) (a ^ ω) (succ c)", "state_before": "a : Ordinal\nha : 0 < a\n⊢ deriv (fun x => a * x) 0 = (fun x x_1 => x * x_1) (a ^ ω) 0 ∧\n ∀ (a_1 : Ordinal),\n deriv (fun x => a * x) a_1 = (fun x x_1 => x * x_1) (a ^ ω) a_1 →\n deriv (fun x => a * x) (succ a_1) = (fun x x_1 => x * x_1) (a ^ ω) (succ a_1)", "tactic": "refine' ⟨_, fun c h => _⟩" }, { "state_after": "case refine'_1\na : Ordinal\nha : 0 < a\n⊢ deriv (fun x => a * x) 0 = a ^ ω * 0", "state_before": "case refine'_1\na : Ordinal\nha : 0 < a\n⊢ deriv (fun x => a * x) 0 = (fun x x_1 => x * x_1) (a ^ ω) 0", "tactic": "dsimp only" }, { "state_after": "no goals", "state_before": "case refine'_1\na : Ordinal\nha : 0 < a\n⊢ deriv (fun x => a * x) 0 = a ^ ω * 0", "tactic": "rw [deriv_zero, nfp_mul_zero, mul_zero]" }, { "state_after": "case refine'_2\na : Ordinal\nha : 0 < a\nc : Ordinal\nh : deriv (fun x => a * x) c = (fun x x_1 => x * x_1) (a ^ ω) c\n⊢ nfp (fun x => a * x) (succ ((fun x x_1 => x * x_1) (a ^ ω) c)) = (fun x x_1 => x * x_1) (a ^ ω) (succ c)", "state_before": "case refine'_2\na : Ordinal\nha : 0 < a\nc : Ordinal\nh : deriv (fun x => a * x) c = (fun x x_1 => x * x_1) (a ^ ω) c\n⊢ deriv (fun x => a * x) (succ c) = (fun x x_1 => x * x_1) (a ^ ω) (succ c)", "tactic": "rw [deriv_succ, h]" }, { "state_after": "no goals", "state_before": "case refine'_2\na : Ordinal\nha : 0 < a\nc : Ordinal\nh : deriv (fun x => a * x) c = (fun x x_1 => x * x_1) (a ^ ω) c\n⊢ nfp (fun x => a * x) (succ ((fun x x_1 => x * x_1) (a ^ ω) c)) = (fun x x_1 => x * x_1) (a ^ ω) (succ c)", "tactic": "exact nfp_mul_opow_omega_add c ha zero_lt_one (one_le_iff_pos.2 (opow_pos _ ha))" } ]
[ 726, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 718, 1 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
EMetric.tendstoLocallyUniformlyOn_iff
[ { "state_after": "α : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\nH :\n ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\nu : Set (α × α)\nhu : u ∈ 𝓤 α\nx : β\nhx : x ∈ s\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\n⊢ TendstoLocallyUniformlyOn F f p s ↔\n ∀ (ε : ℝ≥0∞),\n ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε", "tactic": "refine' ⟨fun H ε hε => H _ (edist_mem_uniformity hε), fun H u hu x hx => _⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\nH :\n ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\nu : Set (α × α)\nhu : u ∈ 𝓤 α\nx : β\nhx : x ∈ s\nε : ℝ≥0∞\nεpos : ε > 0\nhε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\nH :\n ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\nu : Set (α × α)\nhu : u ∈ 𝓤 α\nx : β\nhx : x ∈ s\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u", "tactic": "rcases mem_uniformity_edist.1 hu with ⟨ε, εpos, hε⟩" }, { "state_after": "case intro.intro.intro.intro\nα : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\nH :\n ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\nu : Set (α × α)\nhu : u ∈ 𝓤 α\nx : β\nhx : x ∈ s\nε : ℝ≥0∞\nεpos : ε > 0\nhε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u\nt : Set β\nht : t ∈ 𝓝[s] x\nHt : ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\nH :\n ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\nu : Set (α × α)\nhu : u ∈ 𝓤 α\nx : β\nhx : x ∈ s\nε : ℝ≥0∞\nεpos : ε > 0\nhε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u", "tactic": "rcases H ε εpos x hx with ⟨t, ht, Ht⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u\nβ : Type v\nX : Type ?u.29841\ninst✝¹ : PseudoEMetricSpace α\nι : Type u_1\ninst✝ : TopologicalSpace β\nF : ι → β → α\nf : β → α\np : Filter ι\ns : Set β\nH :\n ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\nu : Set (α × α)\nhu : u ∈ 𝓤 α\nx : β\nhx : x ∈ s\nε : ℝ≥0∞\nεpos : ε > 0\nhε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u\nt : Set β\nht : t ∈ 𝓝[s] x\nHt : ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u", "tactic": "exact ⟨t, ht, Ht.mono fun n hs x hx => hε (hs x hx)⟩" } ]
[ 349, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.le_centralizer_iff
[]
[ 2300, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2299, 1 ]
Mathlib/RingTheory/Int/Basic.lean
Int.normalize_coe_nat
[]
[ 116, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Algebra/Algebra/Spectrum.lean
spectrum.mem_resolventSet_iff
[]
[ 135, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.coe_mono
[]
[ 336, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 1 ]
Mathlib/GroupTheory/Submonoid/Basic.lean
Submonoid.mem_sInf
[]
[ 324, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 323, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.copy_copy
[ { "state_after": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu'' v'' : V\np : Walk G u'' v''\n⊢ Walk.copy (Walk.copy p (_ : u'' = u'') (_ : v'' = v'')) (_ : u'' = u'') (_ : v'' = v'') =\n Walk.copy p (_ : u'' = u'') (_ : v'' = v'')", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v u' v' u'' v'' : V\np : Walk G u v\nhu : u = u'\nhv : v = v'\nhu' : u' = u''\nhv' : v' = v''\n⊢ Walk.copy (Walk.copy p hu hv) hu' hv' = Walk.copy p (_ : u = u'') (_ : v = v'')", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu'' v'' : V\np : Walk G u'' v''\n⊢ Walk.copy (Walk.copy p (_ : u'' = u'') (_ : v'' = v'')) (_ : u'' = u'') (_ : v'' = v'') =\n Walk.copy p (_ : u'' = u'') (_ : v'' = v'')", "tactic": "rfl" } ]
[ 146, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/Algebra/Module/Submodule/Pointwise.lean
Submodule.zero_eq_bot
[]
[ 176, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Topology/SubsetProperties.lean
IsCompact.elim_finite_subcover
[]
[ 197, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.liftMonoid_symm_coe
[]
[ 548, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 546, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/ZeroObjects.lean
CategoryTheory.Limits.coprodZeroIso_inv
[]
[ 156, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Analysis/SpecialFunctions/Exp.lean
Real.isBoundedUnder_le_exp_comp
[]
[ 213, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Algebra/Associated.lean
dvdNotUnit_of_dvdNotUnit_associated
[ { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np r : α\nu : αˣ\nh : DvdNotUnit p (r * ↑u)\nh' : r * ↑u ~ᵤ r\n⊢ DvdNotUnit p r", "state_before": "α : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np q r : α\nh : DvdNotUnit p q\nh' : q ~ᵤ r\n⊢ DvdNotUnit p r", "tactic": "obtain ⟨u, rfl⟩ := Associated.symm h'" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np r : α\nu : αˣ\nh' : r * ↑u ~ᵤ r\nhp : p ≠ 0\nx : α\nhx : ¬IsUnit x ∧ r * ↑u = p * x\n⊢ DvdNotUnit p r", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np r : α\nu : αˣ\nh : DvdNotUnit p (r * ↑u)\nh' : r * ↑u ~ᵤ r\n⊢ DvdNotUnit p r", "tactic": "obtain ⟨hp, x, hx⟩ := h" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np r : α\nu : αˣ\nh' : r * ↑u ~ᵤ r\nhp : p ≠ 0\nx : α\nhx : ¬IsUnit x ∧ r * ↑u = p * x\n⊢ r = p * (x * ↑u⁻¹)", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np r : α\nu : αˣ\nh' : r * ↑u ~ᵤ r\nhp : p ≠ 0\nx : α\nhx : ¬IsUnit x ∧ r * ↑u = p * x\n⊢ DvdNotUnit p r", "tactic": "refine' ⟨hp, x * ↑u⁻¹, DvdNotUnit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.348972\nγ : Type ?u.348975\nδ : Type ?u.348978\ninst✝¹ : CommMonoidWithZero α\ninst✝ : Nontrivial α\np r : α\nu : αˣ\nh' : r * ↑u ~ᵤ r\nhp : p ≠ 0\nx : α\nhx : ¬IsUnit x ∧ r * ↑u = p * x\n⊢ r = p * (x * ↑u⁻¹)", "tactic": "rw [← mul_assoc, ← hx.right, mul_assoc, Units.mul_inv, mul_one]" } ]
[ 1178, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1173, 1 ]
Mathlib/AlgebraicTopology/DoldKan/NCompGamma.lean
AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty
[ { "state_after": "case h\nC : Type u_2\ninst✝³ : Category C\ninst✝² : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝ : Δ ⟶ Δ'\ninst✝¹ : Mono i✝\nn : ℕ\ni : [n] ⟶ Δ'\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len [n]) =\n HomologicalComplex.Hom.f PInfty (len Δ') ≫ X.map i.op", "state_before": "C : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni : Δ ⟶ Δ'\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len Δ) =\n HomologicalComplex.Hom.f PInfty (len Δ') ≫ X.map i.op", "tactic": "induction' Δ using SimplexCategory.rec with n" }, { "state_after": "case h.h\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len [n]) =\n HomologicalComplex.Hom.f PInfty (len [n']) ≫ X.map i.op", "state_before": "case h\nC : Type u_2\ninst✝³ : Category C\ninst✝² : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝ : Δ ⟶ Δ'\ninst✝¹ : Mono i✝\nn : ℕ\ni : [n] ⟶ Δ'\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len [n]) =\n HomologicalComplex.Hom.f PInfty (len Δ') ≫ X.map i.op", "tactic": "induction' Δ' using SimplexCategory.rec with n'" }, { "state_after": "case h.h\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "state_before": "case h.h\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty (len [n]) =\n HomologicalComplex.Hom.f PInfty (len [n']) ≫ X.map i.op", "tactic": "dsimp" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : n = n'\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op\n\ncase neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "state_before": "case h.h\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "by_cases n = n'" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : Isδ₀ i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op\n\ncase neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "state_before": "case neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "by_cases hi : Isδ₀ i" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n]\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : n = n'\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "subst h" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n]\ninst✝ : Mono i\n⊢ 𝟙 (HomologicalComplex.X K[X] (len [n])) ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty n ≫ 𝟙 (X.obj [n].op)", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n]\ninst✝ : Mono i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ X.map i.op", "tactic": "simp only [SimplexCategory.eq_id_of_mono i, Γ₀.Obj.Termwise.mapMono_id, op_id, X.map_id]" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n]\ninst✝ : Mono i\n⊢ 𝟙 (X.obj [n].op) ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ 𝟙 (X.obj [n].op)", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n]\ninst✝ : Mono i\n⊢ 𝟙 (HomologicalComplex.X K[X] (len [n])) ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty n ≫ 𝟙 (X.obj [n].op)", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n]\ninst✝ : Mono i\n⊢ 𝟙 (X.obj [n].op) ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n ≫ 𝟙 (X.obj [n].op)", "tactic": "simp only [id_comp, comp_id]" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : Isδ₀ i\nh' : n' = n + 1\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : Isδ₀ i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "have h' : n' = n + 1 := hi.left" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : Isδ₀ i\nh' : n' = n + 1\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "subst h'" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.d K[X] (len [n + 1]) (len [n]) ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "tactic": "simp only [Γ₀.Obj.Termwise.mapMono_δ₀' _ i hi]" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.d K[X] (n + 1) n ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.d K[X] (len [n + 1]) (len [n]) ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "tactic": "dsimp" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ (HomologicalComplex.Hom.f PInfty (n + 1) ≫ Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.d K[X] (n + 1) n ≫ HomologicalComplex.Hom.f PInfty n =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "tactic": "rw [← PInfty.comm _ n, AlternatingFaceMapComplex.obj_d_eq]" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ (Finset.sum Finset.univ fun j => HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑j • SimplicialObject.δ X j)) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ (HomologicalComplex.Hom.f PInfty (n + 1) ≫ Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "tactic": "simp only [eq_self_iff_true, id_comp, if_true, Preadditive.comp_sum]" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op\n\ncase pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ∀ (b : Fin (n + 2)),\n b ∈ Finset.univ → b ≠ 0 → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0\n\ncase pos.h₁\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ¬0 ∈ Finset.univ → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = 0", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ (Finset.sum Finset.univ fun j => HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑j • SimplicialObject.δ X j)) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "tactic": "rw [Finset.sum_eq_single (0 : Fin (n + 2))]" }, { "state_after": "case pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ∀ (b : Fin (n + 2)),\n b ∈ Finset.univ → b ≠ 0 → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0\n\ncase pos.h₁\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ¬0 ∈ Finset.univ → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = 0\n\ncase pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op\n\ncase pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ∀ (b : Fin (n + 2)),\n b ∈ Finset.univ → b ≠ 0 → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0\n\ncase pos.h₁\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ¬0 ∈ Finset.univ → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = 0", "tactic": "rotate_left" }, { "state_after": "case pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0", "state_before": "case pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ∀ (b : Fin (n + 2)),\n b ∈ Finset.univ → b ≠ 0 → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0", "tactic": "intro b _ hb" }, { "state_after": "case pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ (-1) ^ ↑b • HomologicalComplex.Hom.f PInfty (n + 1) ≫ SimplicialObject.δ X b = 0", "state_before": "case pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑b • SimplicialObject.δ X b) = 0", "tactic": "rw [Preadditive.comp_zsmul]" }, { "state_after": "no goals", "state_before": "case pos.h₀\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ (-1) ^ ↑b • HomologicalComplex.Hom.f PInfty (n + 1) ≫ SimplicialObject.δ X b = 0", "tactic": "erw [PInfty_comp_map_mono_eq_zero X (SimplexCategory.δ b) h\n (by\n rw [Isδ₀.iff]\n exact hb),\n zsmul_zero]" }, { "state_after": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ ¬b = 0", "state_before": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ ¬Isδ₀ (SimplexCategory.δ b)", "tactic": "rw [Isδ₀.iff]" }, { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\nb : Fin (n + 2)\na✝ : b ∈ Finset.univ\nhb : b ≠ 0\n⊢ ¬b = 0", "tactic": "exact hb" }, { "state_after": "no goals", "state_before": "case pos.h₁\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ ¬0 ∈ Finset.univ → HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) = 0", "tactic": "simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff]" }, { "state_after": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ SimplicialObject.δ X 0 =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map (SimplexCategory.δ 0).op", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0) =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map i.op", "tactic": "simp only [hi.eq_δ₀, Fin.val_zero, pow_zero, one_zsmul]" }, { "state_after": "no goals", "state_before": "case pos\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\ni✝ : Δ ⟶ [n + 1]\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n + 1]\ninst✝ : Mono i\nh : ¬n = n + 1\nhi : Isδ₀ i\n⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ SimplicialObject.δ X 0 =\n HomologicalComplex.Hom.f PInfty (n + 1) ≫ X.map (SimplexCategory.δ 0).op", "tactic": "rfl" }, { "state_after": "case neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ 0 = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op\n\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ [n'] ≠ [n]", "state_before": "case neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ Γ₀.Obj.Termwise.mapMono K[X] i ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "rw [Γ₀.Obj.Termwise.mapMono_eq_zero _ i _ hi, zero_comp]" }, { "state_after": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ [n'] ≠ [n]\n\ncase neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ 0 = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "state_before": "case neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ 0 = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op\n\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ [n'] ≠ [n]", "tactic": "swap" }, { "state_after": "case neg.h₁\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ len [n] ≠ n'\n\ncase neg.h₂\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ ¬Isδ₀ i", "state_before": "case neg\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ 0 = HomologicalComplex.Hom.f PInfty n' ≫ X.map i.op", "tactic": "rw [PInfty_comp_map_mono_eq_zero]" }, { "state_after": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\nh' : [n'] = [n]\n⊢ False", "state_before": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ [n'] ≠ [n]", "tactic": "by_contra h'" }, { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\nh' : [n'] = [n]\n⊢ False", "tactic": "exact h (congr_arg SimplexCategory.len h'.symm)" }, { "state_after": "no goals", "state_before": "case neg.h₁\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ len [n] ≠ n'", "tactic": "exact h" }, { "state_after": "case neg.h₂\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\nh' : Isδ₀ i\n⊢ False", "state_before": "case neg.h₂\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\n⊢ ¬Isδ₀ i", "tactic": "by_contra h'" }, { "state_after": "no goals", "state_before": "case neg.h₂\nC : Type u_2\ninst✝⁵ : Category C\ninst✝⁴ : Preadditive C\nX : SimplicialObject C\nΔ Δ' : SimplexCategory\ni✝² : Δ ⟶ Δ'\ninst✝³ : Mono i✝²\nn : ℕ\ni✝¹ : [n] ⟶ Δ'\ninst✝² : Mono i✝¹\nn' : ℕ\ni✝ : Δ ⟶ [n']\ninst✝¹ : Mono i✝\ni : [n] ⟶ [n']\ninst✝ : Mono i\nh : ¬n = n'\nhi : ¬Isδ₀ i\nh' : Isδ₀ i\n⊢ False", "tactic": "exact hi h'" } ]
[ 125, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Order/Bounds/Basic.lean
AntitoneOn.map_bddBelow
[]
[ 1245, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1244, 1 ]
Mathlib/Topology/MetricSpace/Gluing.lean
Metric.Sigma.isometry_mk
[ { "state_after": "no goals", "state_before": "ι : Type u_2\nE : ι → Type u_1\ninst✝ : (i : ι) → MetricSpace (E i)\ni : ι\nx y : E i\n⊢ dist { fst := i, snd := x } { fst := i, snd := y } = dist x y", "tactic": "simp" } ]
[ 439, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/Data/List/MinMax.lean
List.argmin_cons
[]
[ 202, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.addVal_le_of_coeff_ne_zero
[ { "state_after": "Γ : Type u_1\nR : Type u_2\ninst✝² : LinearOrderedCancelAddCommMonoid Γ\ninst✝¹ : Ring R\ninst✝ : IsDomain R\nx : HahnSeries Γ R\ng : Γ\nh : coeff x g ≠ 0\n⊢ order x ≤ g", "state_before": "Γ : Type u_1\nR : Type u_2\ninst✝² : LinearOrderedCancelAddCommMonoid Γ\ninst✝¹ : Ring R\ninst✝ : IsDomain R\nx : HahnSeries Γ R\ng : Γ\nh : coeff x g ≠ 0\n⊢ ↑(addVal Γ R) x ≤ ↑g", "tactic": "rw [addVal_apply_of_ne (ne_zero_of_coeff_ne_zero h), WithTop.coe_le_coe]" }, { "state_after": "no goals", "state_before": "Γ : Type u_1\nR : Type u_2\ninst✝² : LinearOrderedCancelAddCommMonoid Γ\ninst✝¹ : Ring R\ninst✝ : IsDomain R\nx : HahnSeries Γ R\ng : Γ\nh : coeff x g ≠ 0\n⊢ order x ≤ g", "tactic": "exact order_le_of_coeff_ne_zero h" } ]
[ 1379, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1376, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.bind_def
[]
[ 2045, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2044, 1 ]
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean
MeasureTheory.tendstoInMeasure_of_tendsto_snorm
[ { "state_after": "case pos\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nl : Filter ι\nhp_ne_zero : p ≠ 0\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\nhp_ne_top : p = ⊤\n⊢ TendstoInMeasure μ f l g\n\ncase neg\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nl : Filter ι\nhp_ne_zero : p ≠ 0\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\nhp_ne_top : ¬p = ⊤\n⊢ TendstoInMeasure μ f l g", "state_before": "α : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nl : Filter ι\nhp_ne_zero : p ≠ 0\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\n⊢ TendstoInMeasure μ f l g", "tactic": "by_cases hp_ne_top : p = ∞" }, { "state_after": "case pos\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\nf : ι → α → E\ng : α → E\nl : Filter ι\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhp_ne_zero : ⊤ ≠ 0\nhfg : Tendsto (fun n => snorm (f n - g) ⊤ μ) l (𝓝 0)\n⊢ TendstoInMeasure μ f l g", "state_before": "case pos\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nl : Filter ι\nhp_ne_zero : p ≠ 0\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\nhp_ne_top : p = ⊤\n⊢ TendstoInMeasure μ f l g", "tactic": "subst hp_ne_top" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\nf : ι → α → E\ng : α → E\nl : Filter ι\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhp_ne_zero : ⊤ ≠ 0\nhfg : Tendsto (fun n => snorm (f n - g) ⊤ μ) l (𝓝 0)\n⊢ TendstoInMeasure μ f l g", "tactic": "exact tendstoInMeasure_of_tendsto_snorm_top hfg" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nl : Filter ι\nhp_ne_zero : p ≠ 0\nhf : ∀ (n : ι), AEStronglyMeasurable (f n) μ\nhg : AEStronglyMeasurable g μ\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\nhp_ne_top : ¬p = ⊤\n⊢ TendstoInMeasure μ f l g", "tactic": "exact tendstoInMeasure_of_tendsto_snorm_of_ne_top hp_ne_zero hp_ne_top hf hg hfg" } ]
[ 355, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 349, 1 ]
Mathlib/Algebra/Homology/HomologicalComplex.lean
HomologicalComplex.hom_f_injective
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nV : Type u\ninst✝¹ : Category V\ninst✝ : HasZeroMorphisms V\nc : ComplexShape ι\nC C₁ C₂ : HomologicalComplex V c\n⊢ Function.Injective fun f => f.f", "tactic": "aesop_cat" } ]
[ 246, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
closure_eq_inter_uniformity
[ { "state_after": "no goals", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.88389\ninst✝ : UniformSpace α\nt : Set (α × α)\n⊢ (⋂ (V : Set (α × α)) (_ : V ∈ 𝓤 α), V ○ t ○ V) = ⋂ (V : Set (α × α)) (_ : V ∈ 𝓤 α), V ○ (t ○ V)", "tactic": "simp only [compRel_assoc]" } ]
[ 979, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 972, 1 ]
Mathlib/Data/Int/Parity.lean
Int.even_iff
[ { "state_after": "no goals", "state_before": "m✝ n : ℤ\nx✝ : Even n\nm : ℤ\nhm : n = m + m\n⊢ n % 2 = 0", "tactic": "simp [← two_mul, hm]" }, { "state_after": "no goals", "state_before": "m n : ℤ\nh : n % 2 = 0\n⊢ n % 2 + 2 * (n / 2) = n / 2 + n / 2", "tactic": "simp [← two_mul, h]" } ]
[ 42, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/LinearAlgebra/Dfinsupp.lean
Dfinsupp.coprodMap_apply_single
[ { "state_after": "no goals", "state_before": "ι : Type u_4\nR : Type u_1\nS : Type ?u.308054\nM : ι → Type u_2\nN : Type u_3\ndec_ι : DecidableEq ι\ninst✝⁶ : Semiring R\ninst✝⁵ : (i : ι) → AddCommMonoid (M i)\ninst✝⁴ : (i : ι) → Module R (M i)\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : DecidableEq ι\ninst✝ : (x : N) → Decidable (x ≠ 0)\nf : (i : ι) → M i →ₗ[R] N\ni : ι\nx : M i\n⊢ ↑(coprodMap f) (single i x) = ↑(f i) x", "tactic": "simp [coprodMap_apply]" } ]
[ 282, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/ArctanDeriv.lean
DifferentiableOn.arctan
[]
[ 205, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Analysis/NormedSpace/BoundedLinearMaps.lean
IsBoundedBilinearMap.map_sub_right
[]
[ 396, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 394, 1 ]
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.ne_zero_iff
[]
[ 238, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/GroupTheory/Perm/Option.lean
Equiv.optionCongr_sign
[ { "state_after": "case refine_1\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne : Perm α\n⊢ ↑Perm.sign (optionCongr 1) = ↑Perm.sign 1\n\ncase refine_2\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne : Perm α\n⊢ ∀ (f : Perm α) (x y : α),\n x ≠ y →\n ↑Perm.sign (optionCongr f) = ↑Perm.sign f → ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f)", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne : Perm α\n⊢ ↑Perm.sign (optionCongr e) = ↑Perm.sign e", "tactic": "refine Perm.swap_induction_on e ?_ ?_" }, { "state_after": "no goals", "state_before": "case refine_1\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne : Perm α\n⊢ ↑Perm.sign (optionCongr 1) = ↑Perm.sign 1", "tactic": "simp [Perm.one_def]" }, { "state_after": "case refine_2\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne f : Perm α\nx y : α\nhne : x ≠ y\nh : ↑Perm.sign (optionCongr f) = ↑Perm.sign f\n⊢ ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f)", "state_before": "case refine_2\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne : Perm α\n⊢ ∀ (f : Perm α) (x y : α),\n x ≠ y →\n ↑Perm.sign (optionCongr f) = ↑Perm.sign f → ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f)", "tactic": "intro f x y hne h" }, { "state_after": "no goals", "state_before": "case refine_2\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\ne f : Perm α\nx y : α\nhne : x ≠ y\nh : ↑Perm.sign (optionCongr f) = ↑Perm.sign f\n⊢ ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f)", "tactic": "simp [h, hne, Perm.mul_def, ← Equiv.optionCongr_trans]" } ]
[ 43, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 38, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_eq_zero
[ { "state_after": "case intro\nι : Type ?u.89646\nα : Type u_1\nβ : Type ?u.89652\nγ : Type ?u.89655\ninst✝ : CommMonoidWithZero α\ns : Multiset α\nh : 0 ∈ s\ns' : Multiset α\nhs' : s = 0 ::ₘ s'\n⊢ prod s = 0", "state_before": "ι : Type ?u.89646\nα : Type u_1\nβ : Type ?u.89652\nγ : Type ?u.89655\ninst✝ : CommMonoidWithZero α\ns : Multiset α\nh : 0 ∈ s\n⊢ prod s = 0", "tactic": "rcases Multiset.exists_cons_of_mem h with ⟨s', hs'⟩" }, { "state_after": "no goals", "state_before": "case intro\nι : Type ?u.89646\nα : Type u_1\nβ : Type ?u.89652\nγ : Type ?u.89655\ninst✝ : CommMonoidWithZero α\ns : Multiset α\nh : 0 ∈ s\ns' : Multiset α\nhs' : s = 0 ::ₘ s'\n⊢ prod s = 0", "tactic": "simp [hs', Multiset.prod_cons]" } ]
[ 285, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.measure_ne_top
[]
[ 3060, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3059, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
Pmf.mem_support_filter_iff
[]
[ 284, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/Topology/Constructions.lean
interior_pi_set
[ { "state_after": "case h\nα : Type u\nβ : Type v\nγ : Type ?u.313054\nδ : Type ?u.313057\nε : Type ?u.313060\nζ : Type ?u.313063\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.313074\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\nI : Set ι\nhI : Set.Finite I\ns : (i : ι) → Set (π i)\na : (i : ι) → π i\n⊢ a ∈ interior (Set.pi I s) ↔ a ∈ Set.pi I fun i => interior (s i)", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.313054\nδ : Type ?u.313057\nε : Type ?u.313060\nζ : Type ?u.313063\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.313074\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\nI : Set ι\nhI : Set.Finite I\ns : (i : ι) → Set (π i)\n⊢ interior (Set.pi I s) = Set.pi I fun i => interior (s i)", "tactic": "ext a" }, { "state_after": "no goals", "state_before": "case h\nα : Type u\nβ : Type v\nγ : Type ?u.313054\nδ : Type ?u.313057\nε : Type ?u.313060\nζ : Type ?u.313063\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.313074\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\nI : Set ι\nhI : Set.Finite I\ns : (i : ι) → Set (π i)\na : (i : ι) → π i\n⊢ a ∈ interior (Set.pi I s) ↔ a ∈ Set.pi I fun i => interior (s i)", "tactic": "simp only [Set.mem_pi, mem_interior_iff_mem_nhds, set_pi_mem_nhds_iff hI]" } ]
[ 1357, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1354, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_mono
[]
[ 2162, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2161, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.isCauSeq_exp
[]
[ 369, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/IsOpenComapC.lean
AlgebraicGeometry.Polynomial.isOpenMap_comap_C
[ { "state_after": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R[X]\nU : Set (PrimeSpectrum R[X])\ns : Set R[X]\nz : zeroLocus s = Uᶜ\n⊢ IsOpen (↑(PrimeSpectrum.comap C) '' U)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nf : R[X]\n⊢ IsOpenMap ↑(PrimeSpectrum.comap C)", "tactic": "rintro U ⟨s, z⟩" }, { "state_after": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R[X]\nU : Set (PrimeSpectrum R[X])\ns : Set R[X]\nz : zeroLocus s = Uᶜ\n⊢ IsOpen (⋃ (i : ↑s), ↑(PrimeSpectrum.comap C) '' zeroLocus {↑i}ᶜ)", "state_before": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R[X]\nU : Set (PrimeSpectrum R[X])\ns : Set R[X]\nz : zeroLocus s = Uᶜ\n⊢ IsOpen (↑(PrimeSpectrum.comap C) '' U)", "tactic": "rw [← compl_compl U, ← z, ← iUnion_of_singleton_coe s, zeroLocus_iUnion, compl_iInter,\n image_iUnion]" }, { "state_after": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R[X]\nU : Set (PrimeSpectrum R[X])\ns : Set R[X]\nz : zeroLocus s = Uᶜ\n⊢ IsOpen (⋃ (i : ↑s), imageOfDf ↑i)", "state_before": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R[X]\nU : Set (PrimeSpectrum R[X])\ns : Set R[X]\nz : zeroLocus s = Uᶜ\n⊢ IsOpen (⋃ (i : ↑s), ↑(PrimeSpectrum.comap C) '' zeroLocus {↑i}ᶜ)", "tactic": "simp_rw [← imageOfDf_eq_comap_C_compl_zeroLocus]" }, { "state_after": "no goals", "state_before": "case intro\nR : Type u_1\ninst✝ : CommRing R\nf : R[X]\nU : Set (PrimeSpectrum R[X])\ns : Set R[X]\nz : zeroLocus s = Uᶜ\n⊢ IsOpen (⋃ (i : ↑s), imageOfDf ↑i)", "tactic": "exact isOpen_iUnion fun f => isOpen_imageOfDf" } ]
[ 82, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Topology/MetricSpace/PartitionOfUnity.lean
EMetric.exists_forall_closedBall_subset_aux₁
[ { "state_after": "ι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\nthis :\n ∀ᶠ (x_1 : ℝ) in 𝓝 0,\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι),\n (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i\n⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "state_before": "ι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\n⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "tactic": "have := (ENNReal.continuous_ofReal.tendsto' 0 0 ENNReal.ofReal_zero).eventually\n (eventually_nhds_zero_forall_closedBall_subset hK hU hKU hfin x).curry" }, { "state_after": "case intro.intro\nι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\nthis :\n ∀ᶠ (x_1 : ℝ) in 𝓝 0,\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι),\n (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i\nr : ℝ\nhr0 : r > 0\nhr :\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i\n⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "state_before": "ι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\nthis :\n ∀ᶠ (x_1 : ℝ) in 𝓝 0,\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι),\n (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i\n⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "tactic": "rcases this.exists_gt with ⟨r, hr0, hr⟩" }, { "state_after": "case intro.intro\nι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\nthis :\n ∀ᶠ (x_1 : ℝ) in 𝓝 0,\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι),\n (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i\nr : ℝ\nhr0 : r > 0\nhr :\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i\ny : X\nhy : ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i\n⊢ r ∈ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "state_before": "case intro.intro\nι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\nthis :\n ∀ᶠ (x_1 : ℝ) in 𝓝 0,\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι),\n (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i\nr : ℝ\nhr0 : r > 0\nhr :\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i\n⊢ ∃ r, ∀ᶠ (y : X) in 𝓝 x, r ∈ Ioi 0 ∩ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "tactic": "refine' ⟨r, hr.mono fun y hy => ⟨hr0, _⟩⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nι : Type u_2\nX : Type u_1\ninst✝ : EMetricSpace X\nK U : ι → Set X\nhK : ∀ (i : ι), IsClosed (K i)\nhU : ∀ (i : ι), IsOpen (U i)\nhKU : ∀ (i : ι), K i ⊆ U i\nhfin : LocallyFinite K\nx : X\nthis :\n ∀ᶠ (x_1 : ℝ) in 𝓝 0,\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι),\n (ENNReal.ofReal x_1, y).snd ∈ K i → closedBall (ENNReal.ofReal x_1, y).snd (ENNReal.ofReal x_1, y).fst ⊆ U i\nr : ℝ\nhr0 : r > 0\nhr :\n ∀ᶠ (y : X) in 𝓝 x,\n ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i\ny : X\nhy : ∀ (i : ι), (ENNReal.ofReal r, y).snd ∈ K i → closedBall (ENNReal.ofReal r, y).snd (ENNReal.ofReal r, y).fst ⊆ U i\n⊢ r ∈ ENNReal.ofReal ⁻¹' ⋂ (i : ι) (_ : y ∈ K i), {r | closedBall y r ⊆ U i}", "tactic": "rwa [mem_preimage, mem_iInter₂]" } ]
[ 74, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/GroupTheory/OrderOfElement.lean
LinearOrderedRing.orderOf_le_two
[ { "state_after": "case inl\nG : Type u\nA : Type v\nx y : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs x ≠ 1\n⊢ orderOf x ≤ 2\n\ncase inr\nG : Type u\nA : Type v\nx y : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs x = 1\n⊢ orderOf x ≤ 2", "state_before": "G : Type u\nA : Type v\nx y : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\n⊢ orderOf x ≤ 2", "tactic": "cases' ne_or_eq (|x|) 1 with h h" }, { "state_after": "case inr.inl\nG : Type u\nA : Type v\ny : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs 1 = 1\n⊢ orderOf 1 ≤ 2\n\ncase inr.inr\nG : Type u\nA : Type v\ny : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs (-1) = 1\n⊢ orderOf (-1) ≤ 2", "state_before": "case inr\nG : Type u\nA : Type v\nx y : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs x = 1\n⊢ orderOf x ≤ 2", "tactic": "rcases eq_or_eq_neg_of_abs_eq h with (rfl | rfl)" }, { "state_after": "no goals", "state_before": "case inr.inr\nG : Type u\nA : Type v\ny : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs (-1) = 1\n⊢ orderOf (-1) ≤ 2", "tactic": "apply orderOf_le_of_pow_eq_one <;> norm_num" }, { "state_after": "no goals", "state_before": "case inl\nG : Type u\nA : Type v\nx y : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs x ≠ 1\n⊢ orderOf x ≤ 2", "tactic": "simp [orderOf_abs_ne_one h]" }, { "state_after": "no goals", "state_before": "case inr.inl\nG : Type u\nA : Type v\ny : G\na b : A\nn m : ℕ\ninst✝ : LinearOrderedRing G\nh : abs 1 = 1\n⊢ orderOf 1 ≤ 2", "tactic": "simp" } ]
[ 1096, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1091, 1 ]
Mathlib/GroupTheory/DoubleCoset.lean
Doset.right_bot_eq_right_quot
[ { "state_after": "G : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\n⊢ _root_.Quotient (setoid ↑H.toSubmonoid ↑⊥) = _root_.Quotient (QuotientGroup.rightRel H)", "state_before": "G : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\n⊢ Quotient ↑H.toSubmonoid ↑⊥ = _root_.Quotient (QuotientGroup.rightRel H)", "tactic": "unfold Quotient" }, { "state_after": "case e_s\nG : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\n⊢ setoid ↑H.toSubmonoid ↑⊥ = QuotientGroup.rightRel H", "state_before": "G : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\n⊢ _root_.Quotient (setoid ↑H.toSubmonoid ↑⊥) = _root_.Quotient (QuotientGroup.rightRel H)", "tactic": "congr" }, { "state_after": "case e_s.H\nG : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\na✝ b✝ : G\n⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.rightRel H) a✝ b✝", "state_before": "case e_s\nG : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\n⊢ setoid ↑H.toSubmonoid ↑⊥ = QuotientGroup.rightRel H", "tactic": "ext" }, { "state_after": "case e_s.H\nG : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\na✝ b✝ : G\n⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (setoid ↑H ↑⊥) a✝ b✝", "state_before": "case e_s.H\nG : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\na✝ b✝ : G\n⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.rightRel H) a✝ b✝", "tactic": "simp_rw [← rel_bot_eq_right_group_rel H]" }, { "state_after": "no goals", "state_before": "case e_s.H\nG : Type u_1\ninst✝¹ : Group G\nα : Type ?u.70749\ninst✝ : Mul α\nJ : Subgroup G\ng : G\nH : Subgroup G\na✝ b✝ : G\n⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (setoid ↑H ↑⊥) a✝ b✝", "tactic": "rfl" } ]
[ 215, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Linear.lean
ContinuousLinearMap.differentiableAt
[]
[ 83, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 11 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.length_ndinsert_of_not_mem
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nh : ¬a ∈ s\n⊢ ↑card (ndinsert a s) = ↑card s + 1", "tactic": "simp [h]" } ]
[ 83, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Analysis/SpecialFunctions/ExpDeriv.lean
HasDerivAt.cexp
[]
[ 97, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Algebra/Algebra/Equiv.lean
AlgEquiv.toRingEquiv_symm
[]
[ 379, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.power_lt_aleph0
[ { "state_after": "α β : Type u\na b : Cardinal\nm n : ℕ\nha : ↑m < ℵ₀\nhb : ↑n < ℵ₀\n⊢ ↑(m ^ n) < ℵ₀", "state_before": "α β : Type u\na b : Cardinal\nm n : ℕ\nha : ↑m < ℵ₀\nhb : ↑n < ℵ₀\n⊢ ↑m ^ ↑n < ℵ₀", "tactic": "rw [← natCast_pow]" }, { "state_after": "no goals", "state_before": "α β : Type u\na b : Cardinal\nm n : ℕ\nha : ↑m < ℵ₀\nhb : ↑n < ℵ₀\n⊢ ↑(m ^ n) < ℵ₀", "tactic": "apply nat_lt_aleph0" } ]
[ 1595, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1593, 1 ]
Mathlib/Order/Filter/Bases.lean
Filter.asBasis_filter
[]
[ 411, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/Analysis/Calculus/FDerivMeasurable.lean
RightDerivMeasurableAux.measurableSet_b
[]
[ 510, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
MulPosReflectLT.toMulPosMonoRev
[]
[ 1015, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1013, 1 ]
Mathlib/Data/Set/Image.lean
Set.subset_preimage_univ
[]
[ 85, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/FieldTheory/Subfield.lean
Subfield.sum_mem
[]
[ 317, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 11 ]
Mathlib/Algebra/Order/Ring/Defs.lean
lt_mul_right
[ { "state_after": "case h.e'_3\nα : Type u\nβ : Type ?u.63411\ninst✝ : StrictOrderedSemiring α\na b c d : α\nhn : 0 < a\nhm : 1 < b\n⊢ a = a * 1", "state_before": "α : Type u\nβ : Type ?u.63411\ninst✝ : StrictOrderedSemiring α\na b c d : α\nhn : 0 < a\nhm : 1 < b\n⊢ a < a * b", "tactic": "convert mul_lt_mul_of_pos_left hm hn" }, { "state_after": "no goals", "state_before": "case h.e'_3\nα : Type u\nβ : Type ?u.63411\ninst✝ : StrictOrderedSemiring α\na b c d : α\nhn : 0 < a\nhm : 1 < b\n⊢ a = a * 1", "tactic": "rw [mul_one]" } ]
[ 570, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 568, 1 ]
Mathlib/Order/SymmDiff.lean
bihimp_left_comm
[ { "state_after": "no goals", "state_before": "ι : Type ?u.80811\nα : Type u_1\nβ : Type ?u.80817\nπ : ι → Type ?u.80822\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c)", "tactic": "simp_rw [← bihimp_assoc, bihimp_comm]" } ]
[ 634, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 634, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.Tendsto.atBot_div_const
[ { "state_after": "no goals", "state_before": "ι : Type ?u.249256\nι' : Type ?u.249259\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.249268\ninst✝ : LinearOrderedField α\nl : Filter β\nf : β → α\nr : α\nhr : 0 < r\nhf : Tendsto f l atBot\n⊢ Tendsto (fun x => f x / r) l atBot", "tactic": "simpa only [div_eq_mul_inv] using hf.atBot_mul_const (inv_pos.2 hr)" } ]
[ 1222, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1220, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Continuous.dist
[]
[ 1809, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1807, 11 ]
Mathlib/Data/Nat/Digits.lean
Nat.digits_one_succ
[]
[ 115, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
contDiff_smul
[]
[ 1493, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1492, 1 ]
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
ContinuousLinearMap.adjoint_adjoint
[]
[ 136, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Algebra/Quaternion.lean
QuaternionAlgebra.star_mk
[]
[ 641, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 640, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.SimpleFunc.setToSimpleFunc_congr_left
[ { "state_after": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\n⊢ ∑ x in SimpleFunc.range f, ↑(T (↑f ⁻¹' {x})) x = ∑ x in SimpleFunc.range f, ↑(T' (↑f ⁻¹' {x})) x", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\n⊢ setToSimpleFunc T f = setToSimpleFunc T' f", "tactic": "simp_rw [setToSimpleFunc]" }, { "state_after": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\nx : E\nx✝ : x ∈ SimpleFunc.range f\n⊢ ↑(T (↑f ⁻¹' {x})) x = ↑(T' (↑f ⁻¹' {x})) x", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\n⊢ ∑ x in SimpleFunc.range f, ↑(T (↑f ⁻¹' {x})) x = ∑ x in SimpleFunc.range f, ↑(T' (↑f ⁻¹' {x})) x", "tactic": "refine' sum_congr rfl fun x _ => _" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\nx : E\nx✝ : x ∈ SimpleFunc.range f\nhx0 : x = 0\n⊢ ↑(T (↑f ⁻¹' {x})) x = ↑(T' (↑f ⁻¹' {x})) x\n\ncase neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\nx : E\nx✝ : x ∈ SimpleFunc.range f\nhx0 : ¬x = 0\n⊢ ↑(T (↑f ⁻¹' {x})) x = ↑(T' (↑f ⁻¹' {x})) x", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\nx : E\nx✝ : x ∈ SimpleFunc.range f\n⊢ ↑(T (↑f ⁻¹' {x})) x = ↑(T' (↑f ⁻¹' {x})) x", "tactic": "by_cases hx0 : x = 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\nx : E\nx✝ : x ∈ SimpleFunc.range f\nhx0 : x = 0\n⊢ ↑(T (↑f ⁻¹' {x})) x = ↑(T' (↑f ⁻¹' {x})) x", "tactic": "simp [hx0]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.205114\nG : Type ?u.205117\n𝕜 : Type ?u.205120\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nT T' : Set α → E →L[ℝ] F\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = T' s\nf : α →ₛ E\nhf : Integrable ↑f\nx : E\nx✝ : x ∈ SimpleFunc.range f\nhx0 : ¬x = 0\n⊢ ↑(T (↑f ⁻¹' {x})) x = ↑(T' (↑f ⁻¹' {x})) x", "tactic": "rw [h (f ⁻¹' {x}) (SimpleFunc.measurableSet_fiber _ _)\n (SimpleFunc.measure_preimage_lt_top_of_integrable _ hf hx0)]" } ]
[ 403, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_union_add_card_inter
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.31550\ns✝ t✝ : Finset α\nf : α → β\nn : ℕ\ninst✝ : DecidableEq α\ns t : Finset α\n⊢ card (s ∪ ∅) + card (s ∩ ∅) = card s + card ∅", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.31550\ns✝ t✝ : Finset α\nf : α → β\nn : ℕ\ninst✝ : DecidableEq α\ns t : Finset α\na : α\nr : Finset α\nhar : ¬a ∈ r\nh : card (s ∪ r) + card (s ∩ r) = card s + card r\n⊢ card (s ∪ insert a r) + card (s ∩ insert a r) = card s + card (insert a r)", "tactic": "by_cases a ∈ s <;>\nsimp [*, ← add_assoc, add_right_comm _ 1]" } ]
[ 411, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/Data/List/Sigma.lean
List.dlookup_kunion_right
[ { "state_after": "case nil\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nl₂ : List (Sigma β)\nh : ¬a ∈ keys []\n⊢ dlookup a (kunion [] l₂) = dlookup a l₂\n\ncase cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a ∈ keys (head✝ :: tail✝)\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "state_before": "α : Type u\nβ : α → Type v\nl l₁✝ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nl₁ l₂ : List (Sigma β)\nh : ¬a ∈ keys l₁\n⊢ dlookup a (kunion l₁ l₂) = dlookup a l₂", "tactic": "induction l₁ generalizing l₂" }, { "state_after": "case cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a ∈ keys (head✝ :: tail✝)\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "state_before": "case nil\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nl₂ : List (Sigma β)\nh : ¬a ∈ keys []\n⊢ dlookup a (kunion [] l₂) = dlookup a l₂\n\ncase cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a ∈ keys (head✝ :: tail✝)\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "tactic": "case nil => simp" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\ntail_ih✝ : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a ∈ keys (head✝ :: tail✝)\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "tactic": "case cons _ _ ih => simp [not_or] at h; simp [h.1, ih h.2]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nl₂ : List (Sigma β)\nh : ¬a ∈ keys []\n⊢ dlookup a (kunion [] l₂) = dlookup a l₂", "tactic": "simp" }, { "state_after": "α : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a = head✝.fst ∧ ¬a ∈ keys tail✝\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "state_before": "α : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a ∈ keys (head✝ :: tail✝)\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "tactic": "simp [not_or] at h" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : α → Type v\nl l₁ l₂✝ : List (Sigma β)\ninst✝ : DecidableEq α\na : α\nhead✝ : Sigma β\ntail✝ : List (Sigma β)\nih : ∀ {l₂ : List (Sigma β)}, ¬a ∈ keys tail✝ → dlookup a (kunion tail✝ l₂) = dlookup a l₂\nl₂ : List (Sigma β)\nh : ¬a = head✝.fst ∧ ¬a ∈ keys tail✝\n⊢ dlookup a (kunion (head✝ :: tail✝) l₂) = dlookup a l₂", "tactic": "simp [h.1, ih h.2]" } ]
[ 763, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 759, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_inl_union_inr'
[ { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type u_3\nR : Type u_1\nK : Type ?u.650261\nM : Type u_2\nM' : Type u_4\nM'' : Type ?u.650270\nV : Type u\nV' : Type ?u.650275\nv✝ : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nv : ι → M\nv' : ι' → M'\nhv : LinearIndependent R v\nhv' : LinearIndependent R v'\n⊢ Disjoint (span R (Set.range (↑(inl R M M') ∘ v))) (span R (Set.range (↑(inr R M M') ∘ v')))", "tactic": "refine' isCompl_range_inl_inr.disjoint.mono _ _ <;>\n simp only [span_le, range_coe, range_comp_subset_range]" } ]
[ 995, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 990, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
Affine.Simplex.reindex_symm_reindex
[ { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nm n : ℕ\ns : Simplex k P m\ne : Fin (n + 1) ≃ Fin (m + 1)\n⊢ reindex (reindex s e.symm) e = s", "tactic": "rw [← reindex_trans, Equiv.symm_trans_self, reindex_refl]" } ]
[ 897, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 896, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.SimpleFunc.lintegral_eq_lintegral
[ { "state_after": "α : Type u_1\nβ : Type ?u.69212\nγ : Type ?u.69215\nδ : Type ?u.69218\nm✝ : MeasurableSpace α\nμ✝ ν : Measure α\nm : MeasurableSpace α\nf : α →ₛ ℝ≥0∞\nμ : Measure α\n⊢ (⨆ (g : α →ₛ ℝ≥0∞) (_ : ↑g ≤ fun a => ↑f a), lintegral g μ) = lintegral f μ", "state_before": "α : Type u_1\nβ : Type ?u.69212\nγ : Type ?u.69215\nδ : Type ?u.69218\nm✝ : MeasurableSpace α\nμ✝ ν : Measure α\nm : MeasurableSpace α\nf : α →ₛ ℝ≥0∞\nμ : Measure α\n⊢ (∫⁻ (a : α), ↑f a ∂μ) = lintegral f μ", "tactic": "rw [MeasureTheory.lintegral]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.69212\nγ : Type ?u.69215\nδ : Type ?u.69218\nm✝ : MeasurableSpace α\nμ✝ ν : Measure α\nm : MeasurableSpace α\nf : α →ₛ ℝ≥0∞\nμ : Measure α\n⊢ (⨆ (g : α →ₛ ℝ≥0∞) (_ : ↑g ≤ fun a => ↑f a), lintegral g μ) = lintegral f μ", "tactic": "exact\n le_antisymm (iSup₂_le fun g hg => lintegral_mono hg <| le_rfl) (le_iSup₂_of_le f le_rfl le_rfl)" } ]
[ 124, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.LocalInvariantProp.liftPropOn_congr_iff
[]
[ 444, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/CategoryTheory/Extensive.lean
CategoryTheory.finitaryExtensive_iff_of_isTerminal
[ { "state_after": "J : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH : IsVanKampenColimit c₀\n⊢ FinitaryExtensive C", "state_before": "J : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\n⊢ FinitaryExtensive C ↔ IsVanKampenColimit c₀", "tactic": "refine' ⟨fun H => H.2 c₀ hc₀, fun H => _⟩" }, { "state_after": "case van_kampen'\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH : IsVanKampenColimit c₀\n⊢ ∀ {X Y : C} (c : BinaryCofan X Y), IsColimit c → IsVanKampenColimit c", "state_before": "J : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH : IsVanKampenColimit c₀\n⊢ FinitaryExtensive C", "tactic": "constructor" }, { "state_after": "case van_kampen'\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\n⊢ ∀ {X Y : C} (c : BinaryCofan X Y),\n IsColimit c →\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ X) (αY : Y' ⟶ Y) (f : c'.pt ⟶ c.pt),\n αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c))", "state_before": "case van_kampen'\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH : IsVanKampenColimit c₀\n⊢ ∀ {X Y : C} (c : BinaryCofan X Y), IsColimit c → IsVanKampenColimit c", "tactic": "simp_rw [BinaryCofan.isVanKampen_iff] at H⊢" }, { "state_after": "case van_kampen'\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\n⊢ Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "state_before": "case van_kampen'\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX Y : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\n⊢ ∀ {X Y : C} (c : BinaryCofan X Y),\n IsColimit c →\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ X) (αY : Y' ⟶ Y) (f : c'.pt ⟶ c.pt),\n αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c))", "tactic": "intro X Y c hc X' Y' c' αX αY f hX hY" }, { "state_after": "case van_kampen'.mk.intro\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\n⊢ Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "state_before": "case van_kampen'\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\n⊢ Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "tactic": "obtain ⟨d, hd, hd'⟩ :=\n Limits.BinaryCofan.IsColimit.desc' hc (HT.from _ ≫ c₀.inl) (HT.from _ ≫ c₀.inr)" }, { "state_after": "case van_kampen'.mk.intro\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\n⊢ IsPullback (BinaryCofan.inl c') (αX ≫ IsTerminal.from HT X) (f ≫ d) (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') (αY ≫ IsTerminal.from HT Y) (f ≫ d) (BinaryCofan.inr c₀) ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "state_before": "case van_kampen'.mk.intro\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\n⊢ Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "tactic": "rw [H c' (αX ≫ HT.from _) (αY ≫ HT.from _) (f ≫ d) (by rw [← reassoc_of% hX, hd, Category.assoc])\n (by rw [← reassoc_of% hY, hd', Category.assoc])]" }, { "state_after": "case van_kampen'.mk.intro.intro\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\nhl : IsPullback (BinaryCofan.inl c) (IsTerminal.from HT X) d (BinaryCofan.inl c₀)\nhr : IsPullback (BinaryCofan.inr c) (IsTerminal.from HT Y) d (BinaryCofan.inr c₀)\n⊢ IsPullback (BinaryCofan.inl c') (αX ≫ IsTerminal.from HT X) (f ≫ d) (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') (αY ≫ IsTerminal.from HT Y) (f ≫ d) (BinaryCofan.inr c₀) ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "state_before": "case van_kampen'.mk.intro\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\n⊢ IsPullback (BinaryCofan.inl c') (αX ≫ IsTerminal.from HT X) (f ≫ d) (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') (αY ≫ IsTerminal.from HT Y) (f ≫ d) (BinaryCofan.inr c₀) ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "tactic": "obtain ⟨hl, hr⟩ := (H c (HT.from _) (HT.from _) d hd.symm hd'.symm).mp ⟨hc⟩" }, { "state_after": "no goals", "state_before": "case van_kampen'.mk.intro.intro\nJ : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\nhl : IsPullback (BinaryCofan.inl c) (IsTerminal.from HT X) d (BinaryCofan.inl c₀)\nhr : IsPullback (BinaryCofan.inr c) (IsTerminal.from HT Y) d (BinaryCofan.inr c₀)\n⊢ IsPullback (BinaryCofan.inl c') (αX ≫ IsTerminal.from HT X) (f ≫ d) (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') (αY ≫ IsTerminal.from HT Y) (f ≫ d) (BinaryCofan.inr c₀) ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c) ∧ IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c)", "tactic": "rw [hl.paste_vert_iff hX.symm, hr.paste_vert_iff hY.symm]" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\n⊢ (αX ≫ IsTerminal.from HT X) ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f ≫ d", "tactic": "rw [← reassoc_of% hX, hd, Category.assoc]" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝³ : Category J\nC✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasFiniteCoproducts C\nT : C\nHT : IsTerminal T\nc₀ : BinaryCofan T T\nhc₀ : IsColimit c₀\nH :\n ∀ {X' Y' : C} (c' : BinaryCofan X' Y') (αX : X' ⟶ T) (αY : Y' ⟶ T) (f : c'.pt ⟶ c₀.pt),\n αX ≫ BinaryCofan.inl c₀ = BinaryCofan.inl c' ≫ f →\n αY ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f →\n (Nonempty (IsColimit c') ↔\n IsPullback (BinaryCofan.inl c') αX f (BinaryCofan.inl c₀) ∧\n IsPullback (BinaryCofan.inr c') αY f (BinaryCofan.inr c₀))\nX Y : C\nc : BinaryCofan X Y\nhc : IsColimit c\nX' Y' : C\nc' : BinaryCofan X' Y'\nαX : X' ⟶ X\nαY : Y' ⟶ Y\nf : c'.pt ⟶ c.pt\nhX : αX ≫ BinaryCofan.inl c = BinaryCofan.inl c' ≫ f\nhY : αY ≫ BinaryCofan.inr c = BinaryCofan.inr c' ≫ f\nd : c.pt ⟶ ((Functor.const (Discrete WalkingPair)).obj c₀.pt).obj { as := WalkingPair.left }\nhd : BinaryCofan.inl c ≫ d = IsTerminal.from HT X ≫ BinaryCofan.inl c₀\nhd' : BinaryCofan.inr c ≫ d = IsTerminal.from HT Y ≫ BinaryCofan.inr c₀\n⊢ (αY ≫ IsTerminal.from HT Y) ≫ BinaryCofan.inr c₀ = BinaryCofan.inr c' ≫ f ≫ d", "tactic": "rw [← reassoc_of% hY, hd', Category.assoc]" } ]
[ 311, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 299, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.inter_biInter
[ { "state_after": "α✝ : Type ?u.105347\nβ : Type ?u.105350\nγ : Type ?u.105353\nι✝ : Sort ?u.105356\nι' : Sort ?u.105359\nι₂ : Sort ?u.105362\nκ : ι✝ → Sort ?u.105367\nκ₁ : ι✝ → Sort ?u.105372\nκ₂ : ι✝ → Sort ?u.105377\nκ' : ι' → Sort ?u.105382\nι : Type u_1\nα : Type u_2\ns : Set ι\nhs : Set.Nonempty s\nf : ι → Set α\nt : Set α\n⊢ (⋂ (i : ι) (_ : i ∈ s), t ∩ f i) = ⋂ (i : ι) (_ : i ∈ s), f i ∩ t", "state_before": "α✝ : Type ?u.105347\nβ : Type ?u.105350\nγ : Type ?u.105353\nι✝ : Sort ?u.105356\nι' : Sort ?u.105359\nι₂ : Sort ?u.105362\nκ : ι✝ → Sort ?u.105367\nκ₁ : ι✝ → Sort ?u.105372\nκ₂ : ι✝ → Sort ?u.105377\nκ' : ι' → Sort ?u.105382\nι : Type u_1\nα : Type u_2\ns : Set ι\nhs : Set.Nonempty s\nf : ι → Set α\nt : Set α\n⊢ (⋂ (i : ι) (_ : i ∈ s), t ∩ f i) = t ∩ ⋂ (i : ι) (_ : i ∈ s), f i", "tactic": "rw [inter_comm, ← biInter_inter hs]" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.105347\nβ : Type ?u.105350\nγ : Type ?u.105353\nι✝ : Sort ?u.105356\nι' : Sort ?u.105359\nι₂ : Sort ?u.105362\nκ : ι✝ → Sort ?u.105367\nκ₁ : ι✝ → Sort ?u.105372\nκ₂ : ι✝ → Sort ?u.105377\nκ' : ι' → Sort ?u.105382\nι : Type u_1\nα : Type u_2\ns : Set ι\nhs : Set.Nonempty s\nf : ι → Set α\nt : Set α\n⊢ (⋂ (i : ι) (_ : i ∈ s), t ∩ f i) = ⋂ (i : ι) (_ : i ∈ s), f i ∩ t", "tactic": "simp [inter_comm]" } ]
[ 960, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 957, 1 ]
Mathlib/Probability/Independence/Basic.lean
ProbabilityTheory.IndepSets.symm
[ { "state_after": "Ω : Type u_1\nι : Type ?u.432097\ns₁ s₂ : Set (Set Ω)\ninst✝ : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\nh : IndepSets s₁ s₂\nt1 t2 : Set Ω\nht1 : t1 ∈ s₂\nht2 : t2 ∈ s₁\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2", "state_before": "Ω : Type u_1\nι : Type ?u.432097\ns₁ s₂ : Set (Set Ω)\ninst✝ : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\nh : IndepSets s₁ s₂\n⊢ IndepSets s₂ s₁", "tactic": "intro t1 t2 ht1 ht2" }, { "state_after": "Ω : Type u_1\nι : Type ?u.432097\ns₁ s₂ : Set (Set Ω)\ninst✝ : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\nh : IndepSets s₁ s₂\nt1 t2 : Set Ω\nht1 : t1 ∈ s₂\nht2 : t2 ∈ s₁\n⊢ ↑↑μ (t2 ∩ t1) = ↑↑μ t2 * ↑↑μ t1", "state_before": "Ω : Type u_1\nι : Type ?u.432097\ns₁ s₂ : Set (Set Ω)\ninst✝ : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\nh : IndepSets s₁ s₂\nt1 t2 : Set Ω\nht1 : t1 ∈ s₂\nht2 : t2 ∈ s₁\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2", "tactic": "rw [Set.inter_comm, mul_comm]" }, { "state_after": "no goals", "state_before": "Ω : Type u_1\nι : Type ?u.432097\ns₁ s₂ : Set (Set Ω)\ninst✝ : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\nh : IndepSets s₁ s₂\nt1 t2 : Set Ω\nht1 : t1 ∈ s₂\nht2 : t2 ∈ s₁\n⊢ ↑↑μ (t2 ∩ t1) = ↑↑μ t2 * ↑↑μ t1", "tactic": "exact h t2 t1 ht2 ht1" } ]
[ 151, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/Data/Polynomial/Expand.lean
Polynomial.isLocalRingHom_expand
[ { "state_after": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑↑(expand R p) f)\n⊢ IsUnit f", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\n⊢ IsLocalRingHom ↑(expand R p)", "tactic": "refine' ⟨fun f hf1 => _⟩" }, { "state_after": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑(expand R p) f)\n⊢ IsUnit f", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑↑(expand R p) f)\n⊢ IsUnit f", "tactic": "norm_cast at hf1" }, { "state_after": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑(expand R p) f)\nhf2 : ↑(expand R p) f = ↑C (coeff (↑(expand R p) f) 0)\n⊢ IsUnit f", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑(expand R p) f)\n⊢ IsUnit f", "tactic": "have hf2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit hf1)" }, { "state_after": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑(expand R p) f)\nhf2 : ↑(expand R p) f = ↑C (coeff f 0)\n⊢ IsUnit f", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑(expand R p) f)\nhf2 : ↑(expand R p) f = ↑C (coeff (↑(expand R p) f) 0)\n⊢ IsUnit f", "tactic": "rw [coeff_expand hp, if_pos (dvd_zero _), p.zero_div] at hf2" }, { "state_after": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (coeff f 0)\nhf2 : ↑(expand R p) f = ↑C (coeff f 0)\n⊢ IsUnit f", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (↑(expand R p) f)\nhf2 : ↑(expand R p) f = ↑C (coeff f 0)\n⊢ IsUnit f", "tactic": "rw [hf2, isUnit_C] at hf1" }, { "state_after": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (coeff f 0)\nhf2 : f = ↑C (coeff f 0)\n⊢ IsUnit f", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (coeff f 0)\nhf2 : ↑(expand R p) f = ↑C (coeff f 0)\n⊢ IsUnit f", "tactic": "rw [expand_eq_C hp] at hf2" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝¹ : CommRing R\ninst✝ : IsDomain R\np : ℕ\nhp : 0 < p\nf : R[X]\nhf1 : IsUnit (coeff f 0)\nhf2 : f = ↑C (coeff f 0)\n⊢ IsUnit f", "tactic": "rwa [hf2, isUnit_C]" } ]
[ 278, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.subtype_apply
[]
[ 431, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic.disc_ne_zero_iff_roots_nodup
[ { "state_after": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ Nodup {x, y, z}", "state_before": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ disc P ≠ 0 ↔ Nodup (roots (map φ P))", "tactic": "rw [disc_ne_zero_iff_roots_ne ha h3, h3]" }, { "state_after": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ Nodup (x ::ₘ y ::ₘ {z})", "state_before": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ Nodup {x, y, z}", "tactic": "change _ ↔ (x ::ₘ y ::ₘ {z}).Nodup" }, { "state_after": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ ¬(x = y ∨ x = z) ∧ ¬y = z ∧ Nodup {z}", "state_before": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ Nodup (x ::ₘ y ::ₘ {z})", "tactic": "rw [nodup_cons, nodup_cons, mem_cons, mem_singleton, mem_singleton]" }, { "state_after": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ ¬(x = y ∨ x = z) ∧ ¬y = z ∧ True", "state_before": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ ¬(x = y ∨ x = z) ∧ ¬y = z ∧ Nodup {z}", "tactic": "simp only [nodup_singleton]" }, { "state_after": "no goals", "state_before": "R : Type ?u.1296918\nS : Type ?u.1296921\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ x ≠ y ∧ x ≠ z ∧ y ≠ z ↔ ¬(x = y ∨ x = z) ∧ ¬y = z ∧ True", "tactic": "tauto" } ]
[ 594, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]
Mathlib/LinearAlgebra/Multilinear/Basic.lean
MultilinearMap.mkPiRing_apply_one_eq_self
[ { "state_after": "case H\nR : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\n⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m", "state_before": "R : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\n⊢ MultilinearMap.mkPiRing R ι (↑f fun x => 1) = f", "tactic": "ext m" }, { "state_after": "case H\nR : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\nthis : m = fun i => m i • 1\n⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m", "state_before": "case H\nR : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\n⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m", "tactic": "have : m = fun i => m i • (1 : R) := by\n ext j\n simp" }, { "state_after": "no goals", "state_before": "case H\nR : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\nthis : m = fun i => m i • 1\n⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m", "tactic": "conv_rhs => rw [this, f.map_smul_univ]" }, { "state_after": "case h\nR : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\nj : ι\n⊢ m j = m j • 1", "state_before": "R : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\n⊢ m = fun i => m i • 1", "tactic": "ext j" }, { "state_after": "no goals", "state_before": "case h\nR : Type u\nι : Type u'\nn : ℕ\nM : Fin (Nat.succ n) → Type v\nM₁ : ι → Type v₁\nM₂ : Type v₂\nM₃ : Type v₃\nM' : Type v'\ninst✝⁷ : CommSemiring R\ninst✝⁶ : (i : ι) → AddCommMonoid (M₁ i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i)\ninst✝⁴ : AddCommMonoid M₂\ninst✝³ : (i : Fin (Nat.succ n)) → Module R (M i)\ninst✝² : (i : ι) → Module R (M₁ i)\ninst✝¹ : Module R M₂\nf✝ f' : MultilinearMap R M₁ M₂\ninst✝ : Fintype ι\nf : MultilinearMap R (fun x => R) M₂\nm : ι → R\nj : ι\n⊢ m j = m j • 1", "tactic": "simp" } ]
[ 1072, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1066, 1 ]
Mathlib/Topology/MetricSpace/Isometry.lean
IsometryEquiv.preimage_sphere
[ { "state_after": "no goals", "state_before": "ι : Type ?u.1073874\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nh✝ h : α ≃ᵢ β\nx : β\nr : ℝ\n⊢ ↑h ⁻¹' Metric.sphere x r = Metric.sphere (↑(IsometryEquiv.symm h) x) r", "tactic": "rw [← h.isometry.preimage_sphere (h.symm x) r, h.apply_symm_apply]" } ]
[ 618, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 616, 1 ]
Mathlib/GroupTheory/Coset.lean
Subgroup.quotientEquivOfEq_mk
[]
[ 632, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 630, 1 ]