Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | //Original Code:
//#include <self/utility>
//#include <self/debug>
//using namespace std;
//const int U=(1<<20)-1;
//int n,q;
//int inv[(1<<20)];
//
//struct Node
//{
// Node *l=0,*r=0;
// int sz;
// int ed;
// int swp=0;
// int hasl=0,hasr=0;
// Node(int _v):sz(_v),ed(_v){}
// void pushup()
// {
// sz=(l?l->sz:0)+(r?r->sz:0)+ed;
// hasl=((l?l->hasl:0)|(r?r->hasl:0))<<1|bool(l);
// hasr=((l?l->hasr:0)|(r?r->hasr:0))<<1|bool(r);
// }
// void pushswp(int x)
// {
// if(x&1)
// {
// swap(l,r);
// }
// swp^=x;
// int wl=(hasl&x),wr=(hasr&x);
// hasl^=wl;hasr^=wr;
// swap(wl,wr);
// hasl|=wl;hasr|=wr;
// }
// void pushdown()
// {
// if(l) l->pushswp(swp>>1);
// if(r) r->pushswp(swp>>1);
// swp=0;
// }
//}*rt;
//
//Node* make(int x,int l=20)
//{
// if(l==0) return new Node(1);
// Node *rt=new Node(0);
// if(x&1) rt->r=make(x>>1,l-1);
// else rt->l=make(x>>1,l-1);
// rt->pushup();
// return rt;
//}
//
//pair<Node*,Node*> split(Node *rt,int key,int l=20)
//{
// if(key<0) return mp(nullptr,rt);
// if(!rt) return mp(nullptr,nullptr);
// if(l==0) return mp(rt,nullptr);
// rt->pushdown();
// if(key&1)
// {
// auto o=split(rt->r,key>>1,l-1);
// rt->r=o.first;
// rt->pushup();
// auto tr=new Node(0);
// tr->r=o.second;
// tr->pushup();
// return mp(rt,tr);
// }
// else
// {
// auto o=split(rt->l,key>>1,l-1);
// rt->l=o.second;
// rt->pushup();
// auto tl=new Node(0);
// tl->l=o.first;
// tl->pushup();
// return mp(tl,rt);
// }
//}
//
//Node* merge(Node *a,Node *b)
//{
// if(!a) return b;
// if(!b) return a;
// a->pushdown();
// b->pushdown();
// a->l=merge(a->l,b->l);
// a->r=merge(a->r,b->r);
// a->pushup();
// return a;
//}
//
//tuple<Node*,Node*,Node*> splitlr(Node *&a,int l,int r)
//{
// auto o=split(a,r);
// auto o2=split(o.first,l);
// return mt(o2.first,o2.second,o.second);
//}
//
//Node* mergelr(tuple<Node*,Node*,Node*> o)
//{
// Node *a,*b,*c;
// tie(a,b,c)=o;
// return merge(merge(a,b),c);
//}
//
//void flip(Node *&rt,int w)
//{
// if(!rt) return;
// rt->pushswp(w);
//}
//
//void print(Node *&rt,int mask=0)
//{
// rt->pushdown();
// if(rt->ed)
// {
// cout<<mask<<endl;
// return;
// }
// if(rt->l) print(rt->l,mask<<1);
// if(rt->r) print(rt->r,(mask<<1)|1);
//}
//
//void push(Node *&rt,int w,int l=20)
//{
// if(!rt) return;
// int m=(rt->hasr^U)&w;
// flip(rt,m);
// w^=m;
// if(!(rt->hasl&w)) return;
// rt->pushdown();
// if(rt->l) push(rt->l,w>>1,l-1);
// if(rt->r) push(rt->r,w>>1,l-1);
// if(w&1)
// {
// rt->r=merge(rt->l,rt->r);
// rt->l=0;
// }
// rt->pushup();
//}
//
//int main()
//{
// // freopen("input.txt","r",stdin);
// for(int i=1;i<(1<<20);i++)
// {
// inv[i]=(inv[i>>1]>>1)|(((i&1)<<19));
// }
// cin>>n>>q;
// rt=new Node(0);
// for(int i=0;i<n;i++)
// {
// int x;
// scanf("%d",&x);
// x=inv[x];
// rt=merge(rt,make(x));
// }
// for(int i=0;i<q;i++)
// {
// int type;
// scanf("%d",&type);
// int l,r;
// scanf("%d%d",&l,&r);
// auto o=splitlr(rt,(l==0?-1:inv[l-1]),inv[r]);
// auto &tr=get<1>(o);
// if(type==4)
// {
// printf("%d\n",(tr?tr->sz:0));
// }
// else if(type==3)
// {
// int x;
// scanf("%d",&x);
// x=inv[x];
// flip(tr,x);
// }
// else if(type==2)
// {
// int x;
// scanf("%d",&x);
// x=inv[x];
// push(tr,x);
// }
// else
// {
// int x;
// scanf("%d",&x);
// x=inv[x];
// flip(tr,((1<<20)-1));
// push(tr,((1<<20)-1)^x);
// flip(tr,((1<<20)-1));
// }
// rt=mergelr(o);
// }
// // print(rt);
// return 0;
//}
//substituted with C++ Inliner
#ifndef _SELF_UTILITY
#define _SELF_UTILITY 1
#include <numeric>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <string.h>
#include <stack>
#include <assert.h>
#include <bitset>
#include <time.h>
#define Endl endl
#define mp make_pair
#define mt make_tuple
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define over(A) {cout<<A<<endl;exit(0);}
#define all(A) A.begin(),A.end()
#define quickcin ios_base::sync_with_stdio(false);
#ifdef __TAKE_MOD
int mod;
#else
#ifdef __TAKE_CONST_MOD
const int mod=__TAKE_CONST_MOD;
#else
const int mod=1000000007;
#endif
#endif
const int gmod=3;
const int inf=1039074182;
#ifdef __TAKE_CONST_EPS
const double eps=__TAKE_CONST_EPS;
#else
const double eps=1e-9;
#endif
const double pi=3.141592653589793238462643383279;
const ll llinf=2LL*inf*inf;
template <typename T1,typename T2> inline void chmin(T1 &x,T2 b) {if(b<x) x=b;}
template <typename T1,typename T2> inline void chmax(T1 &x,T2 b) {if(b>x) x=b;}
inline void chadd(int &x,int b) {x+=b-mod;x+=(x>>31 & mod);}
template <typename T1,typename T2> inline void chadd(T1 &x,T2 b) {x+=b;if(x>=mod) x-=mod;}
template <typename T1,typename T2> inline void chmul(T1 &x,T2 b) {x=1LL*x*b%mod;}
template <typename T1,typename T2> inline void chmod(T1 &x,T2 b) {x%=b,x+=b;if(x>=b) x-=b;}
template <typename T> inline T mabs(T x) {return (x<0?-x:x);}
using namespace std;
#endif
#ifndef _SELF_DEBUG
#define _SELF_DEBUG 1
#ifndef _SELF_OPERATOR
#define _SELF_OPERATOR 1
using namespace std;
template <typename T>
ostream & operator<<(ostream &cout, const vector<T> &vec)
{
cout << "{";
for (int i = 0; i < (int)vec.size(); i++)
{
cout << vec[i];
if (i != (int)vec.size() - 1)
cout << ',';
}
cout << "}";
return cout;
}
template <typename T1, typename T2>
ostream &operator<<(ostream &cout, pair<T1, T2> p)
{
cout << "(" << p.first << ',' << p.second << ")";
return cout;
}
template <typename T, typename T2>
ostream &operator<<(ostream &cout, set<T, T2> s)
{
vector<T> t;
for (auto x : s)
t.push_back(x);
cout << t;
return cout;
}
template <typename T, typename T2>
ostream &operator<<(ostream &cout, multiset<T, T2> s)
{
vector<T> t;
for (auto x : s)
t.push_back(x);
cout << t;
return cout;
}
template <typename T>
ostream &operator<<(ostream &cout, queue<T> q)
{
vector<T> t;
while (q.size())
{
t.push_back(q.front());
q.pop();
}
cout << t;
return cout;
}
template <typename T1, typename T2, typename T3>
ostream &operator<<(ostream &cout, map<T1, T2, T3> m)
{
for (auto &x : m)
{
cout << "Key: " << x.first << ' ' << "Value: " << x.second << endl;
}
return cout;
}
template <typename T1, typename T2>
void operator+=(pair<T1, T2> &x,const pair<T1, T2> y)
{
x.first += y.first;
x.second += y.second;
}
template <typename T1,typename T2>
pair<T1,T2> operator + (const pair<T1,T2> &x,const pair<T1,T2> &y)
{
return make_pair(x.first+y.first,x.second+y.second);
}
template <typename T1,typename T2>
pair<T1,T2> operator - (const pair<T1,T2> &x,const pair<T1,T2> &y)
{
return mp(x.first-y.first,x.second-y.second);
}
template <typename T1, typename T2>
pair<T1, T2> operator-(pair<T1, T2> x)
{
return make_pair(-x.first, -x.second);
}
template <typename T>
vector<vector<T>> operator~(vector<vector<T>> vec)
{
vector<vector<T>> v;
int n = vec.size(), m = vec[0].size();
v.resize(m);
for (int i = 0; i < m; i++)
{
v[i].resize(n);
}
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
v[i][j] = vec[j][i];
}
}
return v;
}
#endif
#include <sstream>
void print0x(int x)
{
std::vector <int> vec;
while(x)
{
vec.push_back(x&1);
x>>=1;
}
std::reverse(vec.begin(),vec.end());
for(int i=0;i<(int)vec.size();i++)
{
std::cout<<vec[i];
}
std::cout<<' ';
}
template <typename T>
void print0x(T x,int len)
{
std::vector <int> vec;
while(x)
{
vec.push_back(x&1);
x>>=1;
}
reverse(vec.begin(),vec.end());
for(int i=(int)vec.size();i<len;i++)
{
putchar('0');
}
for(size_t i=0;i<vec.size();i++)
{
std::cout<<vec[i];
}
std::cout<<' ';
}
vector<string> vec_splitter(string s) {
s += ',';
vector<string> res;
while(!s.empty()) {
res.push_back(s.substr(0, s.find(',')));
s = s.substr(s.find(',') + 1);
}
return res;
}
void debug_out(
vector<string> __attribute__ ((unused)) args,
__attribute__ ((unused)) int idx,
__attribute__ ((unused)) int LINE_NUM) { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(vector<string> args, int idx, int LINE_NUM, Head H, Tail... T) {
if(idx > 0) cerr << ", "; else cerr << "Line(" << LINE_NUM << ") ";
stringstream ss; ss << H;
cerr << args[idx] << " = " << ss.str();
debug_out(args, idx + 1, LINE_NUM, T...);
}
#define debug(...) debug_out(vec_splitter(#__VA_ARGS__), 0, __LINE__, __VA_ARGS__)
#endif
using namespace std;
const int U=(1<<20)-1;
int n,q;
int inv[(1<<20)];
struct Node
{
Node *l=0,*r=0;
int sz;
int ed;
int swp=0;
int hasl=0,hasr=0;
Node(int _v):sz(_v),ed(_v){}
void pushup()
{
sz=(l?l->sz:0)+(r?r->sz:0)+ed;
hasl=((l?l->hasl:0)|(r?r->hasl:0))<<1|bool(l);
hasr=((l?l->hasr:0)|(r?r->hasr:0))<<1|bool(r);
}
void pushswp(int x)
{
if(x&1)
{
swap(l,r);
}
swp^=x;
int wl=(hasl&x),wr=(hasr&x);
hasl^=wl;hasr^=wr;
swap(wl,wr);
hasl|=wl;hasr|=wr;
}
void pushdown()
{
if(l) l->pushswp(swp>>1);
if(r) r->pushswp(swp>>1);
swp=0;
}
}*rt;
Node* make(int x,int l=20)
{
if(l==0) return new Node(1);
Node *rt=new Node(0);
if(x&1) rt->r=make(x>>1,l-1);
else rt->l=make(x>>1,l-1);
rt->pushup();
return rt;
}
pair<Node*,Node*> split(Node *rt,int key,int l=20)
{
if(key<0) return mp(nullptr,rt);
if(!rt) return mp(nullptr,nullptr);
if(l==0) return mp(rt,nullptr);
rt->pushdown();
if(key&1)
{
auto o=split(rt->r,key>>1,l-1);
rt->r=o.first;
rt->pushup();
auto tr=new Node(0);
tr->r=o.second;
tr->pushup();
return mp(rt,tr);
}
else
{
auto o=split(rt->l,key>>1,l-1);
rt->l=o.second;
rt->pushup();
auto tl=new Node(0);
tl->l=o.first;
tl->pushup();
return mp(tl,rt);
}
}
Node* merge(Node *a,Node *b)
{
if(!a) return b;
if(!b) return a;
a->pushdown();
b->pushdown();
a->l=merge(a->l,b->l);
a->r=merge(a->r,b->r);
a->pushup();
return a;
}
tuple<Node*,Node*,Node*> splitlr(Node *&a,int l,int r)
{
auto o=split(a,r);
auto o2=split(o.first,l);
return mt(o2.first,o2.second,o.second);
}
Node* mergelr(tuple<Node*,Node*,Node*> o)
{
Node *a,*b,*c;
tie(a,b,c)=o;
return merge(merge(a,b),c);
}
void flip(Node *&rt,int w)
{
if(!rt) return;
rt->pushswp(w);
}
void print(Node *&rt,int mask=0)
{
rt->pushdown();
if(rt->ed)
{
cout<<mask<<endl;
return;
}
if(rt->l) print(rt->l,mask<<1);
if(rt->r) print(rt->r,(mask<<1)|1);
}
void push(Node *&rt,int w,int l=20)
{
if(!rt) return;
int m=(rt->hasr^U)&w;
flip(rt,m);
w^=m;
if(!(rt->hasl&w)) return;
rt->pushdown();
if(rt->l) push(rt->l,w>>1,l-1);
if(rt->r) push(rt->r,w>>1,l-1);
if(w&1)
{
rt->r=merge(rt->l,rt->r);
rt->l=0;
}
rt->pushup();
}
int main()
{
// // freopen("input.txt","r",stdin);
for(int i=1;i<(1<<20);i++)
{
inv[i]=(inv[i>>1]>>1)|(((i&1)<<19));
}
cin>>n>>q;
rt=new Node(0);
for(int i=0;i<n;i++)
{
int x;
scanf("%d",&x);
x=inv[x];
rt=merge(rt,make(x));
}
for(int i=0;i<q;i++)
{
int type;
scanf("%d",&type);
int l,r;
scanf("%d%d",&l,&r);
auto o=splitlr(rt,(l==0?-1:inv[l-1]),inv[r]);
auto &tr=get<1>(o);
if(type==4)
{
printf("%d\n",(tr?tr->sz:0));
}
else if(type==3)
{
int x;
scanf("%d",&x);
x=inv[x];
flip(tr,x);
}
else if(type==2)
{
int x;
scanf("%d",&x);
x=inv[x];
push(tr,x);
}
else
{
int x;
scanf("%d",&x);
x=inv[x];
flip(tr,((1<<20)-1));
push(tr,((1<<20)-1)^x);
flip(tr,((1<<20)-1));
}
rt=mergelr(o);
}
// print(rt);
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | /*
author: Maksim1744
created: 06.05.2021 16:01:27
*/
#include "bits/stdc++.h"
using namespace std;
using ll = long long;
using ld = long double;
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define sum(a) ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a) (*min_element((a).begin(), (a).end()))
#define maxe(a) (*max_element((a).begin(), (a).end()))
#define mini(a) ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a) ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())
template<typename T> vector<T>& operator-- (vector<T> &v){for (auto& i : v) --i; return v;}
template<typename T> vector<T>& operator++ (vector<T> &v){for (auto& i : v) ++i; return v;}
template<typename T> istream& operator>>(istream& is, vector<T> &v){for (auto& i : v) is >> i; return is;}
template<typename T> ostream& operator<<(ostream& os, vector<T> v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator-- (pair<T, U> &p){--p.first; --p.second; return p;}
template<typename T, typename U> pair<T,U>& operator++ (pair<T, U> &p){++p.first; ++p.second; return p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second; return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U> p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}
#ifdef HOME
#define SHOW_COLORS
#include "C:/C++ libs/print.cpp"
#else
#define show(...) void(0)
#define mclock void(0)
#define shows void(0)
#define debug if (false)
#endif
const int B = 20;
struct Node {
Node* to[2];
int sz = 0;
int mod = 0;
int def0 = (1 << B) - 1;
int def1 = (1 << B) - 1;
Node() {
to[0] = nullptr;
to[1] = nullptr;
}
};
ostream &operator << (ostream &o, const Node &n) {
return o << "[sz=" << n.sz << ", mod=" << n.mod
<< ", def0=" << n.def0 << ", def1=" << n.def1 << "]";
}
void add_num(Node *node, int x) {
for (int i = 0; i < B; ++i) {
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
int b = ((x >> (B - i - 1)) & 1);
if (!node->to[b]) {
node->to[b] = new Node();
}
node = node->to[b];
}
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
}
void update(Node *node, int level) {
if (!node) return;
node->sz = 0;
if (node->to[0]) node->sz += node->to[0]->sz;
if (node->to[1]) node->sz += node->to[1]->sz;
node->def0 = (1 << B) - 1;
node->def1 = (1 << B) - 1;
if (node->to[0]) {
node->def0 &= node->to[0]->def0;
node->def1 &= node->to[0]->def1;
}
if (node->to[1]) {
node->def0 &= node->to[1]->def0;
node->def1 &= node->to[1]->def1;
}
if (!node->to[0])
node->def1 |= (1 << (B - level - 1));
if (!node->to[1])
node->def0 |= (1 << (B - level - 1));
}
void modify(Node *node, int x) {
if (!node) return;
node->mod ^= x;
int mask = (x & (node->def0 | node->def1));
node->def0 ^= mask;
node->def1 ^= mask;
}
void push(Node *node, int level) {
if (!node) {
return;
}
if ((node->mod >> (B - level - 1)) & 1) {
swap(node->to[0], node->to[1]);
}
modify(node->to[0], node->mod);
modify(node->to[1], node->mod);
node->mod = 0;
}
pair<Node*, Node*> split(Node *node, int m, int l = 0, int r = (1 << B) - 1, int level = 0) {
push(node, level);
if (!node) return {nullptr, nullptr};
if (r <= m) return {node, nullptr};
if (l > m) return {nullptr, node};
int mid = (l + r) / 2;
auto L = new Node();
auto R = new Node();
if (mid < m) {
auto [a, b] = split(node->to[1], m, mid + 1, r, level + 1);
if (b) {
R->to[1] = b;
} else {
R = nullptr;
}
if (node->to[0] || a) {
L->to[0] = node->to[0];
L->to[1] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
} else {
auto [a, b] = split(node->to[0], m, l, mid, level + 1);
if (node->to[1] || b) {
R->to[0] = b;
R->to[1] = node->to[1];
} else {
R = nullptr;
}
if (a) {
L->to[0] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
}
}
Node* mrg(Node *a, Node *b, int level) {
if (!a) return b;
if (!b) return a;
if (level == B) {
assert(a->sz == 1 && b->sz == 1);
return a;
}
Node *root = a;
push(a, level);
push(b, level);
a->to[0] = mrg(a->to[0], b->to[0], level + 1);
a->to[1] = mrg(a->to[1], b->to[1], level + 1);
update(root, level);
return root;
}
void print(Node *node, int x = 0) {
debug {
if (x == 0 && node)
show(*node);
cerr << string(x, ' ') << "- ";
if (!node) {
cerr << endl;
return;
}
cerr << *node << endl;
print(node->to[0], x + 2);
print(node->to[1], x + 2);
}
}
tuple<Node*, Node*, Node*> cut(Node *root, int l, int r) {
auto [a, bc] = split(root, l - 1);
auto [b, c] = split(bc, r);
return {a, b, c};
}
Node* merge3(Node *a, Node *b, Node *c) {
return mrg(mrg(a, b, 0), c, 0);
}
void push_or_bit(Node *node, int b, int level) {
if (!node) return;
show(*node);
push(node, level);
if (level == B - b - 1) {
modify(node->to[0], 1 << b);
node->to[1] = mrg(node->to[0], node->to[1], level + 1);
node->to[0] = nullptr;
update(node, level);
return;
}
if ((node->def1 >> b) & 1) {
show("already good");
return;
}
if ((node->def0 >> b) & 1) {
modify(node, 1 << b);
return;
}
push_or_bit(node->to[0], b, level + 1);
push_or_bit(node->to[1], b, level + 1);
update(node, level);
}
void push_or(Node *root, int x) {
for (int b = 0; b < B; ++b) {
if ((x >> b) & 1) {
show(b);
push_or_bit(root, b, 0);
print(root);
}
}
}
int main() {
ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
Node *root = new Node();
auto call_xor = [&](int l, int r, int x) {
shows;
auto [a, b, c] = cut(root, l, r);
modify(b, x);
print(a);
print(b);
print(c);
root = merge3(a, b, c);
print(root);
};
auto call_or = [&](int l, int r, int x) {
shows;
auto [a, b, c] = cut(root, l, r);
show(l, r);
print(a);
print(b);
print(c);
push_or(b, x);
root = merge3(a, b, c);
print(root);
};
auto call_ask = [&](int l, int r) {
shows;
print(root);
auto [a, b, c] = cut(root, l, r);
print(a);
print(b);
print(c);
int res = (b ? b->sz : 0);
return res;
};
auto call_and = [&](int l, int r, int x) {
shows;
call_xor(0, (1 << B) - 1, (1 << B) - 1);
call_or(r ^ ((1 << B) - 1), l ^ ((1 << B) - 1), ((1 << B) - 1) ^ x);
call_xor(0, (1 << B) - 1, (1 << B) - 1);
};
int n, q;
cin >> n >> q;
vector<int> a(n);
cin >> a;
sort(a.begin(), a.end());
a.erase(unique(a.begin(), a.end()), a.end());
n = a.size();
for (int k : a) {
show(k);
add_num(root, k);
}
print(root);
while (q--) {
shows;
shows;
shows;
shows;
shows;
shows;
show(*root);
print(root);
shows;
int tp, l, r, x;
cin >> tp >> l >> r;
if (tp != 4) cin >> x;
if (tp == 1) {
call_and(l, r, x);
} else if (tp == 2) {
call_or(l, r, x);
} else if (tp == 3) {
call_xor(l, r, x);
} else if (tp == 4) {
cout << call_ask(l, r) << '\n';
} else {
assert(false);
}
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
template<int H>
struct MergeTree {
array<MergeTree<H-1>*, 2> ch;
array<int, H+1> branch_cou;
// (01 -> no change), (00 -> set 0), (11 -> set 1), (10 -> flip)
uint s0 = 0, s1 = -1;
uint size = 0;
MergeTree() : branch_cou(), ch{nullptr, nullptr} {}
MergeTree(int v) : branch_cou(), size(1) {
int b = (bool)(v & (1 << H));
ch[b] = new MergeTree<H-1>(v);
ch[b ^ 1] = nullptr;
}
static int getSize(MergeTree<H>* t) { return (t == nullptr ? 0 : t->size); }
void apply(uint t0, uint t1) {
uint b0 = (bool)(t0 & (1 << H));
uint b1 = (bool)(t1 & (1 << H));
if (b0 && ! b1) {
swap(ch[0], ch[1]);
} else if (b0 == b1) {
// We GUARANTEE that when we merge children here, one is nullptr
if (ch[b0] == nullptr) ch[b0] = ch[b0 ^ 1];
ch[b0 ^ 1] = nullptr;
}
s0 = (s0 | t0) & ((~s0) | t1);
s1 = (s1 & t1) | ((~s1) & t0);
}
void push() {
if (ch[0]) ch[0]->apply(s0, s1);
if (ch[1]) ch[1]->apply(s0, s1);
s0 = 0; s1 = -1;
}
void update() {
size = MergeTree<H-1>::getSize(ch[0]) + MergeTree<H-1>::getSize(ch[1]);
if (ch[0] && ch[1]) {
branch_cou[H] = 1;
if constexpr(H > 0) {
for (int j = 0; j < H; ++j) {
branch_cou[j] = ch[0]->branch_cou[j] + ch[1]->branch_cou[j];
}
}
} else {
branch_cou[H] = 0;
if constexpr(H > 0) {
if (ch[0]) {
for (int j = 0; j < H; ++j) branch_cou[j] = ch[0]->branch_cou[j];
} else if (ch[1]) {
for (int j = 0; j < H; ++j) branch_cou[j] = ch[1]->branch_cou[j];
} else {
for (int j = 0; j < H; ++j) branch_cou[j] = 0;
}
}
}
}
static MergeTree<H>* merge(MergeTree<H>* a, MergeTree<H>* b) {
if (!a) return b;
if (!b) return a;
a->push(), b->push();
a->ch[0] = MergeTree<H-1>::merge(a->ch[0], b->ch[0]);
a->ch[1] = MergeTree<H-1>::merge(a->ch[1], b->ch[1]);
a->update();
delete b;
return a;
}
static pair<MergeTree<H>*, MergeTree<H>*> split(MergeTree<H>* a, uint v) {
if (! a) return {nullptr, nullptr};
MergeTree<H>* b = nullptr;
a->push();
if (v & (1 << H)) {
auto sub = MergeTree<H-1>::split(a->ch[1], v);
a->ch[1] = sub.first;
a->update();
if (sub.second != nullptr) {
b = new MergeTree<H>();
b->ch[1] = sub.second;
b->update();
}
return {a, b};
} else {
auto sub = MergeTree<H-1>::split(a->ch[0], v);
a->ch[0] = sub.second;
a->update();
if (sub.first != nullptr) {
b = new MergeTree<H>();
b->ch[0] = sub.first;
b->update();
}
return {b, a};
}
}
static void recDelete(MergeTree<H>* t) {
if (! t) return;
MergeTree<H-1>::recDelete(t->ch[0]);
MergeTree<H-1>::recDelete(t->ch[1]);
}
};
template<>
struct MergeTree<-1> {
// No data :)
MergeTree() {}
MergeTree(int v) {}
static int getSize(MergeTree<-1>* t) { return t != nullptr; };
void apply(uint t0, uint t1) {}
void push() {}
void update() {}
static MergeTree<-1>* merge(MergeTree<-1>* a, MergeTree<-1>* b) {
if (! a) return b;
else if (b) delete b;
return a;
}
static pair<MergeTree<-1>*, MergeTree<-1>*> split(MergeTree<-1>* a, uint v) {
return {nullptr, a};
}
static void recDelete(MergeTree<-1>* t) {
if (t) delete t;
}
};
template<int H>
void andTree(MergeTree<H>* t, uint x) {
if (t == nullptr) return;
bool cont = 0;
for (int j = 0; j <= H; ++j) cont |= ((! (x & (1 << j))) && (t->branch_cou[j] > 0));
if (! cont) t->apply(0, x);
else {
t->push();
if (! (x & (1 << H))) {
t->ch[0] = MergeTree<H-1>::merge(t->ch[0], t->ch[1]);
t->ch[1] = nullptr;
}
andTree<H-1>(t->ch[0], x);
andTree<H-1>(t->ch[1], x);
t->update();
}
}
template<>
void andTree<-1>(MergeTree<-1>* t, uint x) { return; }
template<int H>
void orTree(MergeTree<H>* t, uint x) {
if (t == nullptr) return;
bool cont = 0;
for (int j = 0; j <= H; ++j) cont |= ((x & (1 << j)) && (t->branch_cou[j] > 0));
if (! cont) {
t->apply(x, -1);
} else {
t->push();
if (x & (1 << H)) {
t->ch[1] = MergeTree<H-1>::merge(t->ch[0], t->ch[1]);
t->ch[0] = nullptr;
}
orTree<H-1>(t->ch[0], x);
orTree<H-1>(t->ch[1], x);
t->update();
}
}
template<>
void orTree<-1>(MergeTree<-1>* t, uint x) { return; }
template<int H>
void printTree(MergeTree<H>* a, uint ind = 0) {
if (a == nullptr) return;
a->push();
printTree<H-1>(a->ch[0], ind);
printTree<H-1>(a->ch[1], ind | (1 << H));
}
template<>
void printTree(MergeTree<-1>* a, uint ind) {
if (a != nullptr) cerr << ind << ' ';
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
int n, q;
cin >> n >> q;
// Numbers up to 2^20
// 1. AND all a_i with L <= a_i <= R with x
// 2. OR all a_i with L <= a_i <= R with x
// 3. XOR all a_i with L <= a_i <= R with x
// 4. Count DISTINCT a_i with L <= a_i <= R
const int H = 21;
MergeTree<H>* root = nullptr;
for (int i = 0; i < n; ++i) {
uint v;
cin >> v;
root = MergeTree<H>::merge(root, new MergeTree<H>(v));
}
/*
printTree<H>(root);
cerr << '\n';
*/
for (int qi = 0; qi < q; ++qi) {
uint t, a, b;
cin >> t >> a >> b;
++b;
MergeTree<H> *le = nullptr, *ri = nullptr;
tie(le, root) = MergeTree<H>::split(root, a);
if (b < (1 << H)) tie(root, ri) = MergeTree<H>::split(root, b);
if (t <= 3) {
uint x;
cin >> x;
if (root != nullptr) {
if (t == 1) andTree<H>(root, x);
if (t == 2) orTree<H>(root, x);
if (t == 3) root->apply(x, ~x);
}
} else {
cout << MergeTree<H>::getSize(root) << '\n';
}
root = MergeTree<H>::merge(le, root);
root = MergeTree<H>::merge(root, ri);
/*
printTree<H>(root);
cerr << '\n';
*/
}
MergeTree<H>::recDelete(root);
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
const int maxlog=19;
const int maxnode=(1<<21)+((maxlog+5)<<1);
int rt,tag[maxnode][2],frk[maxnode],ch[maxnode][2],sz[maxnode],sta[maxnode],top,tot; // 0000->tag[0] 1111->tag[1] frk:can merge
// time complexity: potetion:#nodes, ~delta*log
inline int newnode() { return ((top>=0)?assert(sta[top]),sta[top--]:++tot); }
// { return ++tot; }
inline void pushup(int rt,int l)
{
if(!rt) return;
assert(l>=0);
sz[rt]=sz[ch[rt][0]]+sz[ch[rt][1]];
frk[rt]=frk[ch[rt][0]]|frk[ch[rt][1]]|((ch[rt][0] && ch[rt][1])<<l);
}
void push(int rt,int l,int c0,int c1)
{
if(!rt) return;
// if(((c0>>l)&1) || !((c1>>l)&1)) swap(ch[rt][0],ch[rt][1]);
if(!(((c0^c1)>>l)&1))
{
assert(!ch[rt][0] || !ch[rt][1]);
ch[rt][(c0>>l)&1]|=ch[rt][!((c0>>l)&1)];
ch[rt][!((c0>>l)&1)]=0;
}
else if((c0>>l)&1) swap(ch[rt][0],ch[rt][1]);
int _=((~tag[rt][0])&c0)|(tag[rt][0]&c1);
tag[rt][1]=((~tag[rt][1])&c0)|(tag[rt][1]&c1);
tag[rt][0]=_;
}
inline void pushdown(int rt,int l)
{
if(!rt || !l) return;
if(tag[rt][0]==0 && tag[rt][1]==-1) return;
push(ch[rt][0],l-1,tag[rt][0],tag[rt][1]),push(ch[rt][1],l-1,tag[rt][0],tag[rt][1]);
tag[rt][0]=0,tag[rt][1]=-1;
}
void insert(int &rt,int l,int x)
{
if(!rt) rt=++tot,ch[rt][0]=ch[rt][1]=0,frk[rt]=0,tag[rt][0]=0,tag[rt][1]=-1;
if(l<0) { sz[rt]=1; return; }
insert(ch[rt][(x>>l)&1],l-1,x),pushup(rt,l);
}
void split(int &rt1,int &rt2,int L,int l,int r,int x,int y)
{
if(x<=l && r<=y) { rt2=rt1,rt1=0; return; }
if(!rt1) { rt2=0; return; }
int mid=(l+r)>>1; pushdown(rt1,L);
rt2=newnode(),ch[rt2][0]=ch[rt2][1]=0,frk[rt2]=0,tag[rt2][0]=0,tag[rt2][1]=-1;
assert(rt2);
if(x<=mid) split(ch[rt1][0],ch[rt2][0],L-1,l,mid,x,y);
if(mid<y) split(ch[rt1][1],ch[rt2][1],L-1,mid+1,r,x,y);
pushup(rt1,L),pushup(rt2,L);
if(!sz[rt1]) assert(rt1),sta[++top]=rt1,rt1=0; // dprintf("- %d\n",sta[top]);
if(!sz[rt2]) assert(rt2),sta[++top]=rt2,rt2=0; // dprintf("- %d\n",sta[top]);
}
void merge(int &rt1,int rt2,int l)
{
if(!rt1 || !rt2) { rt1|=rt2; return; }
if(l<0) { sta[++top]=rt2/*,dprintf("- %d\n",sta[top])*/; return; }
pushdown(rt1,l),pushdown(rt2,l);
merge(ch[rt1][0],ch[rt2][0],l-1),merge(ch[rt1][1],ch[rt2][1],l-1);
pushup(rt1,l),sta[++top]=rt2/*,dprintf("- %d\n",sta[top])*/;
// printf(".!. %d\n",sz[rt1]);
}
void merge(int rt,int l,int x,int y)
{
if(!rt) return;
if(!((frk[rt]>>x)&1)) { push(rt,l,y<<x,~((y^1)<<x)); /*printf("... %d %d %d %d\n",l,x,y,frk[rt]);*/ return; }
pushdown(rt,l);
if(l==x)
{
assert(ch[rt][0] && ch[rt][1]);
merge(ch[rt][y],ch[rt][y^1],l-1);
/*sta[++top]=ch[rt][y^1],*/ch[rt][y^1]=0;//printf("- %d\n",sta[top]);
}
else merge(ch[rt][0],l-1,x,y),merge(ch[rt][1],l-1,x,y);
pushup(rt,l);
}
int query(int rt,int L,int l,int r,int x,int y)
{
if(!rt) return 0;
if(x<=l && r<=y) return sz[rt];
int mid=(l+r)>>1,res=0; pushdown(rt,L);
if(x<=mid) res+=query(ch[rt][0],L-1,l,mid,x,y);
if(mid<y) res+=query(ch[rt][1],L-1,mid+1,r,x,y);
return res;
}
void print(int rt,int L,int l,int r)
{
if(!rt) return;
if(l==r) { assert(sz[rt]==1); printf("%d ",l); return; }
int mid=(l+r)>>1; pushdown(rt,L);
// printf("%d %d\n%d %d\n",rt,ch[rt][0],rt,ch[rt][1]);
print(ch[rt][0],L-1,l,mid),print(ch[rt][1],L-1,mid+1,r);
}
int main()
{
int n,q,l,r,x,t;
scanf("%d%d",&n,&q);
rt=0,ch[0][0]=ch[0][1]=0,sz[0]=0,frk[rt]=0,tot=0,top=-1;
while(n--) scanf("%d",&x),insert(rt,maxlog,x);
while(q--)
{
scanf("%d%d%d",&t,&l,&r);
if(t!=4)
{
scanf("%d",&x);
split(rt,n,maxlog,0,(2<<maxlog)-1,l,r);
// printf("??? %d: ",sz[n]); print(n,maxlog,0,(2<<maxlog)-1); printf("\n");
if(t==1)
{
for(l=0;l<=maxlog;l++)
if(!((x>>l)&1))
merge(n,maxlog,l,0);//printf("%d: ",l),print(n,maxlog,0,(2<<maxlog)-1),printf("\n");
}
else if(t==2)
{
for(l=0;l<=maxlog;l++)
if((x>>l)&1)
merge(n,maxlog,l,1);
}
else push(n,maxlog,x,~x);
// printf("??? %d: ",sz[rt]); print(rt,maxlog,0,(2<<maxlog)-1); printf("\n");
// printf("??? %d: ",sz[n]); print(n,maxlog,0,(2<<maxlog)-1); printf("\n");
merge(rt,n,maxlog);
// printf("!!! %d: ",sz[rt]); print(rt,maxlog,0,(2<<maxlog)-1); printf("\n");
}
else printf("%d\n",query(rt,maxlog,0,(2<<maxlog)-1,l,r));
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
const int N=1234568,B=(1<<20)-1; bool fl[N]; int op,l,r,x;
int n,m,ql,qr,rt,ans,A,q[N],fa[N],s1[N],s2[N],ch[N][2],dep[N],f1[N],f2[N],f3[N],qt[N],qc[N];
inline bool get(int u){
return (ch[fa[u]][1]==u);
}
inline void upd(int u){
if(dep[u]==-1) return;
if(!ch[u][1]) f1[u]=f1[ch[u][0]],f2[u]=f2[ch[u][0]],s1[u]=s1[ch[u][0]],s2[u]=s2[ch[u][0]];
else if(!ch[u][0]) f1[u]=f1[ch[u][1]],f2[u]=f2[ch[u][1]],s1[u]=s1[ch[u][1]],s2[u]=s2[ch[u][1]];
else{
f1[u]=(f1[ch[u][0]]&f1[ch[u][1]]);
f2[u]=(f2[ch[u][0]]&f2[ch[u][1]]);
s1[u]=(s1[ch[u][0]]+s1[ch[u][1]]);
s2[u]=(s2[ch[u][0]]+s2[ch[u][1]]);
}
}
inline void psh(int u){
if(f3[u]&(1<<dep[u])) swap(ch[u][0],ch[u][1]);
f3[ch[u][0]]^=f3[u],f3[ch[u][1]]^=f3[u];
int a=f1[u],b=f2[u];
f1[u]=(b&f3[u])|(a&(B^f3[u]));
f2[u]=(a&f3[u])|(b&(B^f3[u]));
f3[u]=0;
}
inline void pushdown(int u){
psh(u),psh(ch[u][0]),psh(ch[u][1]);
}
inline int newnode(){
ql++; if(ql==1234567) ql=0; fl[q[ql]]=1; return q[ql];
}
inline void delnode(int u){
if(u<=1) return;
qr++; if(qr==1234567) qr=0;
ch[fa[u]][get(u)]=0;
if(fa[u]){
upd(fa[u]);
}
f1[u]=f2[u]=f3[u]=ch[u][0]=ch[u][1]=fa[u]=s1[u]=s2[u]=dep[u]=0,q[qr]=u,fl[u]=0;
}
inline void ins(int u,int c){
if(dep[u]==-1){
s1[u]=1,s2[u]++,f1[u]=(c^B),f2[u]=c; return;
}
if(c&(1<<dep[u])){
if(!ch[u][1]) ch[u][1]=newnode(),dep[ch[u][1]]=dep[u]-1,fa[ch[u][1]]=u;
ins(ch[u][1],c);
}
else{
if(!ch[u][0]) ch[u][0]=newnode(),dep[ch[u][0]]=dep[u]-1,fa[ch[u][0]]=u;
ins(ch[u][0],c);
}
upd(u);
}
inline int chk(int A,int op,int x,int y,int d){
if(op==1) x=(x&y);
if(op==2) x=(x|y);
if(op==3) x=(x^y);
if(x) A=A|(1<<d); else A=(((A^B)|(1<<d))^B);
return A;
}
inline void bfs(int t,int l,int r,int ql,int qr){
pushdown(t);
if(l==ql&&r==qr){
if(op<=3){
qt[++qt[0]]=t,qc[qt[0]]=A;
ch[fa[t]][get(t)]=0,upd(fa[t]);
fa[t]=0;
}
else ans+=s1[t];
return;
}
int d=(l+r)>>1;
if(ql<=d){
if(ch[t][0]){
A=chk(A,op,(x&(1<<dep[t]))>0,0,dep[t]);
bfs(ch[t][0],l,d,ql,min(d,qr));
}
}
if(d+1<=qr){
if(ch[t][1]){
A=chk(A,op,(x&(1<<dep[t]))>0,1,dep[t]);
bfs(ch[t][1],d+1,r,max(d+1,ql),qr);
}
}
upd(t);
}
inline int merge(int u,int t){
pushdown(u);
pushdown(t);
if(!s1[u]){
delnode(u); return t;
}
if(!s1[t]){
delnode(t); return u;
}
if(!u||!t) return (u+t);
if(dep[u]==-1){
s1[u]=1,s2[u]=s1[u]+s2[t]; delnode(t);
return u;
}
ch[u][0]=merge(ch[u][0],ch[t][0]);
ch[u][1]=merge(ch[u][1],ch[t][1]);
delnode(t),upd(u);
fa[ch[u][0]]=u,fa[ch[u][1]]=u;
return u;
}
inline void AND(int u,int c){
pushdown(u);
if(((f1[u]|f2[u])&(B^c))==(B^c)){
int C=0;
for(int i=0;i<=19;i++) if(!((1<<i)&c)&&((1<<i)&f2[u])) f3[u]^=(1<<i);
pushdown(u); return;
}
if(ch[u][0]) AND(ch[u][0],c);
if(ch[u][1]) AND(ch[u][1],c);
if(!(c&(1<<dep[u]))) ch[u][0]=merge(ch[u][0],ch[u][1]),ch[u][1]=0;
upd(u);
}
inline void OR(int u,int c){
pushdown(u);
if(((f1[u]|f2[u])&c)==c){
int C=0;
for(int i=0;i<=19;i++) if(((1<<i)&c)&&((1<<i)&f1[u])) f3[u]^=(1<<i);
pushdown(u); return;
}
if(ch[u][0]) OR(ch[u][0],c);
if(ch[u][1]) OR(ch[u][1],c);
if(c&(1<<dep[u])) ch[u][1]=merge(ch[u][0],ch[u][1]),ch[u][0]=0;
upd(u);
}
inline int dfs(int u,int A,int B){
pushdown(u);
if(dep[u]==dep[A]) return merge(A,u);
if(B&(1<<dep[u])){
if(!ch[u][1]) ch[u][1]=newnode(),dep[ch[u][1]]=dep[u]-1,fa[ch[u][1]]=u;
ch[u][1]=dfs(ch[u][1],A,B);
fa[ch[u][1]]=u;
}
else{
if(!ch[u][0]) ch[u][0]=newnode(),dep[ch[u][0]]=dep[u]-1,fa[ch[u][0]]=u;
ch[u][0]=dfs(ch[u][0],A,B);
fa[ch[u][0]]=u;
}
upd(u);
return u;
}
int main(){
for(int i=2;i<=1234567;i++) qr++,q[qr]=i;
cin>>n>>m,rt=1,dep[rt]=19;
for(int i=1;i<=n;i++) scanf("%d",&x),ins(rt,x);
while(m--){
scanf("%d%d%d",&op,&l,&r);
if(op==1){
scanf("%d",&x),qt[0]=0,A=0,bfs(rt,0,B,l,r);
for(int i=1;i<=qt[0];i++){
AND(qt[i],x);
if(qt[i]==1) continue;
rt=dfs(rt,qt[i],qc[i]);
}
}
if(op==2){
scanf("%d",&x),qt[0]=0,A=0,bfs(rt,0,B,l,r);
for(int i=1;i<=qt[0];i++){
OR(qt[i],x);
if(qt[i]==1) continue;
rt=dfs(rt,qt[i],qc[i]);
}
}
if(op==3){
scanf("%d",&x),qt[0]=0,A=0,bfs(rt,0,B,l,r);
for(int i=1;i<=qt[0];i++){
f3[qt[i]]^=x,pushdown(qt[i]);
if(qt[i]==1) continue;
rt=dfs(rt,qt[i],qc[i]);
}
}
if(op==4){
ans=0,bfs(rt,0,B,l,r);
printf("%d\n",ans);
}
}
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | /*
author: Maksim1744
created: 06.05.2021 16:01:27
*/
#include "bits/stdc++.h"
using namespace std;
using ll = long long;
using ld = long double;
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define sum(a) ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a) (*min_element((a).begin(), (a).end()))
#define maxe(a) (*max_element((a).begin(), (a).end()))
#define mini(a) ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a) ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())
template<typename T> vector<T>& operator-- (vector<T> &v){for (auto& i : v) --i; return v;}
template<typename T> vector<T>& operator++ (vector<T> &v){for (auto& i : v) ++i; return v;}
template<typename T> istream& operator>>(istream& is, vector<T> &v){for (auto& i : v) is >> i; return is;}
template<typename T> ostream& operator<<(ostream& os, vector<T> v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator-- (pair<T, U> &p){--p.first; --p.second; return p;}
template<typename T, typename U> pair<T,U>& operator++ (pair<T, U> &p){++p.first; ++p.second; return p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second; return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U> p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}
#ifdef HOME
#define SHOW_COLORS
#include "C:/C++ libs/print.cpp"
#else
#define show(...) void(0)
#define mclock void(0)
#define shows void(0)
#define debug if (false)
#endif
const int MEMSIZE = 1e9/2;
char memory[MEMSIZE];
int memorypos;
inline void * operator new(size_t n){
if (memorypos + n >= MEMSIZE)
memorypos = MEMSIZE / 3;
char * ret = memory + memorypos;
memorypos += n;
return (void *)ret;
}
inline void operator delete(void *){}
const int B = 20;
struct Node {
vector<Node*> to;
int sz = 0;
int mod = 0;
int def0 = (1 << B) - 1;
int def1 = (1 << B) - 1;
Node() {
to.assign(2, nullptr);
}
};
ostream &operator << (ostream &o, const Node &n) {
return o << "[sz=" << n.sz << ", mod=" << n.mod
<< ", def0=" << n.def0 << ", def1=" << n.def1 << "]";
}
void add_num(Node *node, int x) {
for (int i = 0; i < B; ++i) {
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
int b = ((x >> (B - i - 1)) & 1);
if (!node->to[b]) {
node->to[b] = new Node();
}
node = node->to[b];
}
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
}
void update(Node *node, int level) {
if (!node) return;
node->sz = 0;
if (node->to[0]) node->sz += node->to[0]->sz;
if (node->to[1]) node->sz += node->to[1]->sz;
node->def0 = (1 << B) - 1;
node->def1 = (1 << B) - 1;
if (node->to[0]) {
node->def0 &= node->to[0]->def0;
node->def1 &= node->to[0]->def1;
}
if (node->to[1]) {
node->def0 &= node->to[1]->def0;
node->def1 &= node->to[1]->def1;
}
if (!node->to[0])
node->def1 |= (1 << (B - level - 1));
if (!node->to[1])
node->def0 |= (1 << (B - level - 1));
}
void modify(Node *node, int x) {
if (!node) return;
node->mod ^= x;
int mask = (x & (node->def0 | node->def1));
node->def0 ^= mask;
node->def1 ^= mask;
}
void push(Node *node, int level) {
if (!node) {
return;
}
if ((node->mod >> (B - level - 1)) & 1) {
show(node->level);
swap(node->to[0], node->to[1]);
}
modify(node->to[0], node->mod);
modify(node->to[1], node->mod);
node->mod = 0;
}
pair<Node*, Node*> split(Node *node, int m, int l = 0, int r = (1 << B) - 1, int level = 0) {
push(node, level);
if (!node) return {nullptr, nullptr};
if (r <= m) return {node, nullptr};
if (l > m) return {nullptr, node};
int mid = (l + r) / 2;
auto L = new Node();
auto R = new Node();
if (mid < m) {
auto [a, b] = split(node->to[1], m, mid + 1, r, level + 1);
if (b) {
R->to[1] = b;
} else {
R = nullptr;
}
if (node->to[0] || a) {
L->to = {node->to[0], a};
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
} else {
auto [a, b] = split(node->to[0], m, l, mid, level + 1);
if (node->to[1] || b) {
R->to = {b, node->to[1]};
} else {
R = nullptr;
}
if (a) {
L->to[0] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
}
}
Node* mrg(Node *a, Node *b, int level) {
if (!a) return b;
if (!b) return a;
if (level == B) {
assert(a->sz == 1 && b->sz == 1);
return a;
}
Node *root = a;
push(a, level);
push(b, level);
a->to[0] = mrg(a->to[0], b->to[0], level + 1);
a->to[1] = mrg(a->to[1], b->to[1], level + 1);
update(root, level);
return root;
}
void print(Node *node, int x = 0) {
debug {
if (x == 0 && node)
show(*node);
cerr << string(x, ' ') << "- ";
if (!node) {
cerr << endl;
return;
}
cerr << *node << endl;
print(node->to[0], x + 2);
print(node->to[1], x + 2);
}
}
tuple<Node*, Node*, Node*> cut(Node *root, int l, int r) {
auto [a, bc] = split(root, l - 1);
auto [b, c] = split(bc, r);
return {a, b, c};
}
Node* merge3(Node *a, Node *b, Node *c) {
return mrg(mrg(a, b, 0), c, 0);
}
void push_or_bit(Node *node, int b, int level) {
if (!node) return;
show(*node);
push(node, level);
if (level == B - b - 1) {
modify(node->to[0], 1 << b);
node->to[1] = mrg(node->to[0], node->to[1], level + 1);
node->to[0] = nullptr;
update(node, level);
return;
}
if ((node->def1 >> b) & 1) {
show("already good");
return;
}
if ((node->def0 >> b) & 1) {
modify(node, 1 << b);
return;
}
push_or_bit(node->to[0], b, level + 1);
push_or_bit(node->to[1], b, level + 1);
update(node, level);
}
void push_or(Node *root, int x) {
for (int b = 0; b < B; ++b) {
if ((x >> b) & 1) {
show(b);
push_or_bit(root, b, 0);
print(root);
}
}
}
int main() {
ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
Node *root = new Node();
auto call_xor = [&](int l, int r, int x) {
shows;
auto [a, b, c] = cut(root, l, r);
modify(b, x);
print(a);
print(b);
print(c);
root = merge3(a, b, c);
print(root);
};
auto call_or = [&](int l, int r, int x) {
shows;
auto [a, b, c] = cut(root, l, r);
show(l, r);
print(a);
print(b);
print(c);
push_or(b, x);
root = merge3(a, b, c);
print(root);
};
auto call_ask = [&](int l, int r) {
shows;
print(root);
auto [a, b, c] = cut(root, l, r);
print(a);
print(b);
print(c);
int res = (b ? b->sz : 0);
return res;
};
auto call_and = [&](int l, int r, int x) {
shows;
call_xor(0, (1 << B) - 1, (1 << B) - 1);
call_or(r ^ ((1 << B) - 1), l ^ ((1 << B) - 1), ((1 << B) - 1) ^ x);
call_xor(0, (1 << B) - 1, (1 << B) - 1);
};
int n, q;
cin >> n >> q;
vector<int> a(n);
cin >> a;
sort(a.begin(), a.end());
a.erase(unique(a.begin(), a.end()), a.end());
n = a.size();
for (int k : a) {
show(k);
add_num(root, k);
}
print(root);
while (q--) {
shows;
shows;
shows;
shows;
shows;
shows;
show(*root);
print(root);
shows;
int tp, l, r, x;
cin >> tp >> l >> r;
if (tp != 4) cin >> x;
if (tp == 1) {
call_and(l, r, x);
} else if (tp == 2) {
call_or(l, r, x);
} else if (tp == 3) {
call_xor(l, r, x);
} else if (tp == 4) {
cout << call_ask(l, r) << '\n';
} else {
assert(false);
}
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
const int M = 4000003, all = (1<<20)-1;
template<typename T>
void read(T &x){
int ch = getchar(); x = 0; bool f = false;
for(;ch < '0' || ch > '9';ch = getchar()) f |= ch == '-';
for(;ch >= '0' && ch <= '9';ch = getchar()) x = x * 10 + ch - '0';
if(f) x = -x;
}
int n, q, rt, cnt, stk[M], tp, ch[M][2], seg[M][2], siz[M], tag[M];
int crep(){
int x = tp ? stk[tp--] : ++cnt;
ch[x][0] = ch[x][1] = seg[x][0] = seg[x][1] = tag[x] = siz[x] = 0;
return x;
}
void pup(int x){
siz[x] = siz[ch[x][0]] + siz[ch[x][1]];
for(int _ = 0;_ < 2;++ _)
seg[x][_] = seg[ch[x][0]][_] | seg[ch[x][1]][_];
}
void ptag(int x, int val, int d = 19){
if(val >> d & 1) swap(ch[x][0], ch[x][1]);
int _0 = (seg[x][0] & ~val) | (seg[x][1] & val), _1 = (seg[x][0] & val) | (seg[x][1] & ~val);
seg[x][0] = _0; seg[x][1] = _1; tag[x] ^= val;
}
void pdown(int x, int d){
if(tag[x]){ptag(ch[x][0], tag[x], d-1); ptag(ch[x][1], tag[x], d-1); tag[x] = 0;}
}
void ins(int val, int &x = rt, int d = 19){
if(!x) x = crep();
if(!~d){siz[x] = 1; seg[x][0] = all ^ val; seg[x][1] = val; return;}
ins(val, ch[x][val>>d&1], d-1); pup(x);
}
int qry(int ql, int qr, int x = rt, int L = 0, int R = all, int d = 19){
if(!x) return 0;
if(ql <= L && R <= qr) return siz[x];
int mid = L+R>>1, ans = 0; pdown(x, d);
if(ql <= mid) ans = qry(ql, qr, ch[x][0], L, mid, d-1);
if(mid < qr) ans += qry(ql, qr, ch[x][1], mid+1, R, d-1);
return ans;
}
void split(int &x, int &y, int ql, int qr, int L = 0, int R = all, int d = 19){
if(!x) return;
if(ql <= L && R <= qr){y = x; x = 0; return;}
int mid = L+R>>1; y = crep(); pdown(x, d);
if(ql <= mid) split(ch[x][0], ch[y][0], ql, qr, L, mid, d-1);
if(mid < qr) split(ch[x][1], ch[y][1], ql, qr, mid+1, R, d-1);
pup(x); pup(y);
}
void merge(int &x, int y, int d = 19){
if(!x || !y){x |= y; return;}
if(d >= 0){
pdown(x, d); pdown(y, d);
merge(ch[x][0], ch[y][0], d-1);
merge(ch[x][1], ch[y][1], d-1);
pup(x);
} stk[++tp] = y;
}
void chan(int x, int val, int d = 19){
if(!x) return;
if(!(val & seg[x][0] & seg[x][1])){
ptag(x, val & seg[x][0], d); return;
} pdown(x, d);
if(val >> d & 1){
ptag(ch[x][0], 1<<d, d-1);
merge(ch[x][1], ch[x][0], d-1);
ch[x][0] = 0;
} else chan(ch[x][0], val, d-1);
chan(ch[x][1], val, d-1); pup(x);
}
int main(){
read(n); read(q);
while(n --){int x; read(x); ins(x);}
while(q --){
int op, l, r, x, u; read(op); read(l); read(r);
if(op == 4) printf("%d\n", qry(l, r));
else {
read(x); split(rt, u, l, r);
if(op == 1){
ptag(u, all); chan(u, x ^ all); ptag(u, all);
} else if(op == 2) chan(u, x); else ptag(u, x);
merge(rt, u);
}
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <cstdio>
#include <iostream>
using namespace std;
const int M = 10000005;
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,k,q,rt,cnt,now,ls[M],rs[M],res[M],la[M],v[M],vk[M];
void up(int x)
{
v[x]=v[ls[x]]|v[rs[x]];
vk[x]=vk[ls[x]]|vk[rs[x]];
res[x]=res[ls[x]]+res[rs[x]];
}
void ins(int d,int &x,int val)
{
if(!x) x=++cnt;
if(d==0)
{
v[x]=val;vk[x]=val^k;res[x]=1;
return ;
}
if(val&(1<<(d-1))) ins(d-1,rs[x],val);
else ins(d-1,ls[x],val);
up(x);
}
void getxor(int d,int x,int val)
{
if(x==0) return ;
if(val&(1<<(d-1))) swap(ls[x],rs[x]);
int a=v[x],b=vk[x];
v[x]=(a&(k^val))|(b&val);
vk[x]=(b&(k^val))|(a&val);
la[x]^=val;
}
void down(int d,int x)
{
if(la[x]==0) return ;
getxor(d-1,ls[x],la[x]);getxor(d-1,rs[x],la[x]);
la[x]=0;
}
void split(int d,int &x,int &y,int l,int r,int L,int R)
{
if(x==0 || R<l || r<L) {y=0;return ;}
if(L<=l && r<=R) {y=x;x=0;return ;}
int mid=(l+r)>>1;y=++cnt;
down(d,x);
split(d-1,ls[x],ls[y],l,mid,L,R);
split(d-1,rs[x],rs[y],mid+1,r,L,R);
up(x);up(y);
}
void merge(int d,int &x,int &y)
{
if(x==0) {x=y;return ;}
if(y==0 || d==0) return ;
down(d,x);down(d,y);
merge(d-1,ls[x],ls[y]);
merge(d-1,rs[x],rs[y]);
up(x);
}
void getor(int d,int x,int val)
{
if(!x) return ;
int ad=val&vk[x];
if((ad&v[x])==0) {getxor(d,x,ad);return ;}
down(d,x);
if(val&(1<<(d-1)))
{
getxor(d-1,ls[x],1<<(d-1));
merge(d-1,rs[x],ls[x]);
ls[x]=0;
}
getor(d-1,ls[x],val);
getor(d-1,rs[x],val);
up(x);
}
int ask(int d,int &x,int l,int r,int L,int R)
{
if(!x || L>r || l>R) return 0;
if(L<=l && r<=R) return res[x];
down(d,x);
int mid=(l+r)>>1;
return ask(d-1,ls[x],l,mid,L,R)+ask(d-1,rs[x],mid+1,r,L,R);
}
signed main()
{
n=read();q=read();k=(1<<20)-1;
for(int i=1;i<=n;i++)
{
int x=read();
ins(20,rt,x);
}
while(q--)
{
int now=0,t=read(),x=read(),y=read();
if(t==4)
{
printf("%d\n",ask(20,rt,0,k,x,y));
continue;
}
split(20,rt,now,0,k,x,y);
int z=read();
if(t==1)
getxor(20,now,k),getor(20,now,k^z),getxor(20,now,k);
if(t==2)
getor(20,now,z);
if(t==3)
getxor(20,now,z);
merge(20,rt,now);
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | /*
author: Maksim1744
created: 06.05.2021 16:01:27
*/
#include "bits/stdc++.h"
using namespace std;
using ll = long long;
using ld = long double;
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define sum(a) ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a) (*min_element((a).begin(), (a).end()))
#define maxe(a) (*max_element((a).begin(), (a).end()))
#define mini(a) ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a) ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())
template<typename T> vector<T>& operator-- (vector<T> &v){for (auto& i : v) --i; return v;}
template<typename T> vector<T>& operator++ (vector<T> &v){for (auto& i : v) ++i; return v;}
template<typename T> istream& operator>>(istream& is, vector<T> &v){for (auto& i : v) is >> i; return is;}
template<typename T> ostream& operator<<(ostream& os, vector<T> v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator-- (pair<T, U> &p){--p.first; --p.second; return p;}
template<typename T, typename U> pair<T,U>& operator++ (pair<T, U> &p){++p.first; ++p.second; return p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second; return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U> p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}
#ifdef HOME
#define SHOW_COLORS
#include "C:/C++ libs/print.cpp"
#else
#define show(...) void(0)
#define mclock void(0)
#define shows void(0)
#define debug if (false)
#endif
const int MEMSIZE = 1e9/2;
char memory[MEMSIZE];
int memorypos;
inline void * operator new(size_t n){
if (memorypos + n >= MEMSIZE) {
memorypos = MEMSIZE / 3;
}
char * ret = memory + memorypos;
memorypos += n;
return (void *)ret;
}
inline void operator delete(void *){}
inline void operator delete(void *, size_t){}
const int B = 20;
struct Node {
Node* to[2];
int sz = 0;
int mod = 0;
int def0 = (1 << B) - 1;
int def1 = (1 << B) - 1;
Node() {
to[0] = nullptr;
to[1] = nullptr;
}
};
ostream &operator << (ostream &o, const Node &n) {
return o << "[sz=" << n.sz << ", mod=" << n.mod
<< ", def0=" << n.def0 << ", def1=" << n.def1 << "]";
}
void add_num(Node *node, int x) {
for (int i = 0; i < B; ++i) {
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
int b = ((x >> (B - i - 1)) & 1);
if (!node->to[b]) {
node->to[b] = new Node();
}
node = node->to[b];
}
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
}
void update(Node *node, int level) {
if (!node) return;
node->sz = 0;
if (node->to[0]) node->sz += node->to[0]->sz;
if (node->to[1]) node->sz += node->to[1]->sz;
node->def0 = (1 << B) - 1;
node->def1 = (1 << B) - 1;
if (node->to[0]) {
node->def0 &= node->to[0]->def0;
node->def1 &= node->to[0]->def1;
}
if (node->to[1]) {
node->def0 &= node->to[1]->def0;
node->def1 &= node->to[1]->def1;
}
if (!node->to[0])
node->def1 |= (1 << (B - level - 1));
if (!node->to[1])
node->def0 |= (1 << (B - level - 1));
}
void modify(Node *node, int x) {
if (!node) return;
node->mod ^= x;
int mask = (x & (node->def0 | node->def1));
node->def0 ^= mask;
node->def1 ^= mask;
}
void push(Node *node, int level) {
if (!node) {
return;
}
if ((node->mod >> (B - level - 1)) & 1) {
swap(node->to[0], node->to[1]);
}
modify(node->to[0], node->mod);
modify(node->to[1], node->mod);
node->mod = 0;
}
pair<Node*, Node*> split(Node *node, int m, int l = 0, int r = (1 << B) - 1, int level = 0) {
push(node, level);
if (!node) return {nullptr, nullptr};
if (r <= m) return {node, nullptr};
if (l > m) return {nullptr, node};
int mid = (l + r) / 2;
auto L = new Node();
auto R = new Node();
if (mid < m) {
auto [a, b] = split(node->to[1], m, mid + 1, r, level + 1);
if (b) {
R->to[1] = b;
} else {
R = nullptr;
}
if (node->to[0] || a) {
L->to[0] = node->to[0];
L->to[1] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
} else {
auto [a, b] = split(node->to[0], m, l, mid, level + 1);
if (node->to[1] || b) {
R->to[0] = b;
R->to[1] = node->to[1];
} else {
R = nullptr;
}
if (a) {
L->to[0] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
}
}
Node* mrg(Node *a, Node *b, int level) {
if (!a) return b;
if (!b) return a;
if (level == B) {
assert(a->sz == 1 && b->sz == 1);
return a;
}
Node *root = a;
push(a, level);
push(b, level);
a->to[0] = mrg(a->to[0], b->to[0], level + 1);
a->to[1] = mrg(a->to[1], b->to[1], level + 1);
update(root, level);
return root;
}
void print(Node *node, int x = 0) {
debug {
if (x == 0 && node)
show(*node);
cerr << string(x, ' ') << "- ";
if (!node) {
cerr << endl;
return;
}
cerr << *node << endl;
print(node->to[0], x + 2);
print(node->to[1], x + 2);
}
}
tuple<Node*, Node*, Node*> cut(Node *root, int l, int r) {
auto [a, bc] = split(root, l - 1);
auto [b, c] = split(bc, r);
return {a, b, c};
}
Node* merge3(Node *a, Node *b, Node *c) {
return mrg(mrg(a, b, 0), c, 0);
}
void push_or_bit(Node *node, int b, int level) {
if (!node) return;
show(*node);
push(node, level);
if (level == B - b - 1) {
modify(node->to[0], 1 << b);
node->to[1] = mrg(node->to[0], node->to[1], level + 1);
node->to[0] = nullptr;
update(node, level);
return;
}
if ((node->def1 >> b) & 1) {
show("already good");
return;
}
if ((node->def0 >> b) & 1) {
modify(node, 1 << b);
return;
}
push_or_bit(node->to[0], b, level + 1);
push_or_bit(node->to[1], b, level + 1);
update(node, level);
}
void push_or(Node *root, int x) {
for (int b = 0; b < B; ++b) {
if ((x >> b) & 1) {
show(b);
push_or_bit(root, b, 0);
print(root);
}
}
}
int main() {
ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
Node *root = new Node();
auto call_xor = [&](int l, int r, int x) {
shows;
auto [a, b, c] = cut(root, l, r);
modify(b, x);
print(a);
print(b);
print(c);
root = merge3(a, b, c);
print(root);
};
auto call_or = [&](int l, int r, int x) {
shows;
auto [a, b, c] = cut(root, l, r);
show(l, r);
print(a);
print(b);
print(c);
push_or(b, x);
root = merge3(a, b, c);
print(root);
};
auto call_ask = [&](int l, int r) {
shows;
print(root);
auto [a, b, c] = cut(root, l, r);
print(a);
print(b);
print(c);
int res = (b ? b->sz : 0);
return res;
};
auto call_and = [&](int l, int r, int x) {
shows;
call_xor(0, (1 << B) - 1, (1 << B) - 1);
call_or(r ^ ((1 << B) - 1), l ^ ((1 << B) - 1), ((1 << B) - 1) ^ x);
call_xor(0, (1 << B) - 1, (1 << B) - 1);
};
int n, q;
cin >> n >> q;
vector<int> a(n);
cin >> a;
sort(a.begin(), a.end());
a.erase(unique(a.begin(), a.end()), a.end());
n = a.size();
for (int k : a) {
show(k);
add_num(root, k);
}
print(root);
while (q--) {
shows;
shows;
shows;
shows;
shows;
shows;
show(*root);
print(root);
shows;
int tp, l, r, x;
cin >> tp >> l >> r;
if (tp != 4) cin >> x;
if (tp == 1) {
call_and(l, r, x);
} else if (tp == 2) {
call_or(l, r, x);
} else if (tp == 3) {
call_xor(l, r, x);
} else if (tp == 4) {
cout << call_ask(l, r) << '\n';
} else {
assert(false);
}
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<stdio.h>
const int maxn=200005,maxk=maxn*50;
int n,q,k,rt,cnt;
int lc[maxk],rc[maxk],lazy[maxk],Vand[maxk],Vor[maxk],res[maxk];
inline void swp(int &a,int &b){
a+=b,b=a-b,a-=b;
}
inline void pushup(int now){
Vand[now]=Vand[lc[now]]|Vand[rc[now]];
Vor[now]=Vor[lc[now]]|Vor[rc[now]];
res[now]=res[lc[now]]+res[rc[now]];
}
void insert(int dep,int &now,int val){
if(now==0)
now=++cnt;
if(dep==0){
Vand[now]=(k^val),Vor[now]=val,res[now]=1;
return ;
}
if(((val>>(dep-1))&1)==0)
insert(dep-1,lc[now],val);
else insert(dep-1,rc[now],val);
pushup(now);
}
void getxor(int dep,int now,int val){
if(now==0)
return ;
if((val>>(dep-1))&1)
swp(lc[now],rc[now]);
int Va=Vand[now],Vo=Vor[now];
Vand[now]=(Va&(k^val))|(Vo&val);//
Vor[now]=(Vo&(k^val))|(Va&val);
lazy[now]^=val;
}
void pushdown(int dep,int now){
if(lazy[now]==0)
return ;
getxor(dep-1,lc[now],lazy[now]),getxor(dep-1,rc[now],lazy[now]);
lazy[now]=0;
}
void split(int dep,int &x,int &y,int l,int r,int L,int R){
if(x==0||R<=l||r<=L){
y=0;
return ;
}
if(L<=l&&r<=R){
y=x,x=0;
return ;
}
int mid=(l+r)>>1;
pushdown(dep,x),y=++cnt;
split(dep-1,lc[x],lc[y],l,mid,L,R),split(dep-1,rc[x],rc[y],mid/*+1*/,r,L,R);
pushup(x),pushup(y);
}
void merge(int dep,int &x,int &y){
if(x==0){
x=y;
return ;
}
if(y==0||dep==0)
return ;
pushdown(dep,x),pushdown(dep,y);
merge(dep-1,lc[x],lc[y]),merge(dep-1,rc[x],rc[y]);
pushup(x);
}
void getor(int dep,int now,int val){
if(now==0)
return ;
if((val&Vand[now]&Vor[now])==0){
getxor(dep,now,val&Vand[now]);
return ;
}
pushdown(dep,now);
if((val>>(dep-1))&1){
getxor(dep-1,lc[now],1<<(dep-1));
merge(dep-1,rc[now],lc[now]);
lc[now]=0;
}
getor(dep-1,lc[now],val),getor(dep-1,rc[now],val);
pushup(now);
}
int query(int dep,int now,int l,int r,int L,int R){
if(now==0||R<=l||r<=L)
return 0;
if(L<=l&&r<=R)
return res[now];
int mid=(l+r)>>1;
pushdown(dep,now);
return query(dep-1,lc[now],l,mid,L,R)+query(dep-1,rc[now],mid/*+1*/,r,L,R);
}
int main(){
scanf("%d%d",&n,&q),k=(1<<20)-1;
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
insert(20,rt,x);
}
for(int i=1;i<=q;i++){
int t,x,y,z;
scanf("%d",&t);
if(t==4){
scanf("%d%d",&x,&y);
printf("%d\n",query(20,rt,0,1<<20,x,y+1));
continue;
}
int now;
scanf("%d%d%d",&x,&y,&z);
split(20,rt,now,0,1<<20,x,y+1);
if(t==1)
getxor(20,now,k),getor(20,now,z^k),getxor(20,now,k);
if(t==2)
getor(20,now,z);
if(t==3)
getxor(20,now,z);
merge(20,rt,now);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=4444444,mod=998244353,A1=(1<<20)-1;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
inline int qpow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;
return ans;
}
int n,q,rt,ch[maxn][2],s1[maxn],s2[maxn],sz[maxn],add[maxn],stk[maxn],tp;
inline void pushup(int x){
s1[x]=A1;s2[x]=sz[x]=0;
FOR(i,0,1) if(ch[x][i]) s1[x]&=s1[ch[x][i]],s2[x]|=s2[ch[x][i]],sz[x]+=sz[ch[x][i]];
}
inline void setadd(int x,int v,int dep){
if((v>>dep)&1) swap(ch[x][0],ch[x][1]);
add[x]^=v;
v&=s1[x]^s2[x]^A1;
s1[x]^=v;
s2[x]^=v;
}
inline void pushdown(int x,int dep){
if(add[x]){
FOR(i,0,1) if(ch[x][i]) setadd(ch[x][i],add[x],dep-1);
add[x]=0;
}
}
inline int newnode(){
int now=stk[tp--];
ch[now][0]=ch[now][1]=sz[now]=s1[now]=s2[now]=add[now]=0;
return now;
}
void init(){
ROF(i,maxn-100,1) stk[++tp]=i;
}
void merge(int &x,int &y,int dep){
if(!x || !y) return x|=y,y=0,void();
if(dep==-1) return sz[x]|=sz[y],s1[x]|=s1[y],s2[x]|=s2[y],stk[++tp]=y,y=0,void();
pushdown(x,dep);pushdown(y,dep);
FOR(i,0,1) merge(ch[x][i],ch[y][i],dep-1);
pushup(x);
stk[++tp]=y;y=0;
}
void insert(int &x,int v,int dep=19){
if(!x) x=newnode();
if(dep==-1) return s1[x]=s2[x]=v,sz[x]=1,void();
pushdown(x,dep);
insert(ch[x][(v>>dep)&1],v,dep-1);
pushup(x);
}
struct node{
int x,w,d;
}tmp[maxn];
int tl;
void split(int &x,int l,int r,int w=0,int dep=19){
if(!x) return;
if(r<w || w+((1<<(dep+1))-1)<l) return;
if(l<=w && w+((1<<(dep+1))-1)<=r){
tmp[++tl]=(node){x,w,dep};
x=0;
return;
}
pushdown(x,dep);
split(ch[x][0],l,r,w,dep-1);
split(ch[x][1],l,r,w|(1<<dep),dep-1);
pushup(x);
}
void insert2(int &x,node y,int v,int dep=19){
if(!x) x=newnode();
if(dep==y.d){
merge(x,y.x,dep);
return;
}
pushdown(x,dep);
insert2(ch[x][(v>>dep)&1],y,v,dep-1);
pushup(x);
}
void work1(int x,int v,int dep){
if(!x) return;
if(dep==-1 || !((s1[x]^s2[x])&(v^A1))) return setadd(x,s2[x]&(v^A1),dep);
pushdown(x,dep);
FOR(i,0,1) work1(ch[x][i],v,dep-1);
if(!((v>>dep)&1)) merge(ch[x][0],ch[x][1],dep-1);
pushup(x);
}
void work2(int x,int v,int dep){
if(!x) return;
if(dep==-1 || !((s1[x]^s2[x])&v)) return setadd(x,(s1[x]^A1)&v,dep);
pushdown(x,dep);
FOR(i,0,1) work2(ch[x][i],v,dep-1);
if((v>>dep)&1) merge(ch[x][1],ch[x][0],dep-1);
pushup(x);
}
void update1(int v){
FOR(i,1,tl){
work1(tmp[i].x,v,tmp[i].d);
insert2(rt,tmp[i],v&tmp[i].w);
}
}
void update2(int v){
FOR(i,1,tl){
work2(tmp[i].x,v,tmp[i].d);
insert2(rt,tmp[i],v|tmp[i].w);
}
}
void update3(int v){
FOR(i,1,tl){
setadd(tmp[i].x,v,tmp[i].d);
insert2(rt,tmp[i],v^tmp[i].w);
}
}
int query(int x,int l,int r,int w=0,int dep=19){
if(!x) return 0;
if(r<w || w+((1<<(dep+1))-1)<l) return 0;
if(l<=w && w+((1<<(dep+1))-1)<=r) return sz[x];
pushdown(x,dep);
return query(ch[x][0],l,r,w,dep-1)+query(ch[x][1],l,r,w|(1<<dep),dep-1);
}
int main(){
init();
n=read();q=read();
FOR(i,1,n) insert(rt,read());
while(q--){
int op=read(),l=read(),r=read(),x=op==4?0:read();
if(op==4) printf("%d\n",query(rt,l,r));
else{
tl=0;
split(rt,l,r);
if(op==1) update1(x);
if(op==2) update2(x);
if(op==3) update3(x);
}
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
constexpr int LV = 20, M = (1 << LV) - 1;
int n, q;
struct D {
D* c[2] = {nullptr, nullptr};
// bx: bits that differ, by: not in bx, the same bit
int bx = 0, by = 0, num = 0, lz = 0;
void down(int lv) {
if (lv < 0) return;
if (lz >> lv & 1) {
swap(c[0], c[1]);
lz ^= 1 << lv;
}
for (int i = 0; i < 2; ++i)
if (c[i]) {
c[i]->lz ^= lz;
c[i]->by = ~c[i]->bx & (c[i]->by ^ lz);
}
lz = 0;
}
void up(int lv) {
if (!c[0] && !c[1]) {
bx = by = 0;
num = lv < 0;
} else if (c[0] && c[1]) {
bx = c[0]->bx | c[1]->bx | (c[0]->by ^ c[1]->by) | 1 << lv;
by = ~bx & (c[0]->by | c[1]->by);
num = c[0]->num + c[1]->num;
} else {
int t = !c[0];
bx = c[t]->bx;
by = c[t]->by | t << lv;
num = c[t]->num;
}
by = ~bx & (by ^ lz);
}
} * root;
void dbg(D* a, int lv, int l = 0, int r = M) {
return;
vector<int> s;
function<void(D*, int, int, int)> dfs = [&](D* a, int lv, int l, int r) {
if (!a) return;
a->down(lv);
if (a->num <= 0) {
cout << "ERROR A "
<< " " << lv << " " << l << " " << r << " " << a->num << endl;
exit(0);
};
if (l == r) {
s.push_back(l);
return;
}
dfs(a->c[0], lv - 1, l, (l + r + 1) / 2 - 1);
dfs(a->c[1], lv - 1, (l + r + 1) / 2, r);
};
dfs(a, lv, l, r);
// DEBUG(s);
/*
if (lv == LV - 1) {
cerr << l << "~" << r << endl;
}
if (!a) return;
string pad((LV - lv) * 2, ' ');
cerr << pad << "num,bx,by,lz = " << a->num << "," << a->bx << "," << a->by << "," << a->lz
<< "\n";
int mid = (l + r + 1) / 2;
if (lv < 0) return;
cerr << pad << "0: " << l << "~" << mid - 1 << "\n";
dbg(a->c[0], lv - 1, l, mid - 1);
cerr << pad << "1: " << mid << "~" << r << "\n";
dbg(a->c[1], lv - 1, mid, r);*/
}
// [0,x) [x,M]
pair<D*, D*> splt(D* a, int lv, int x, int l, int r) {
if (!a) return {nullptr, nullptr};
a->down(lv);
if (r < x) return {a, nullptr};
if (l >= x) return {nullptr, a};
D *p[2] = {nullptr, nullptr}, *pt;
int mid = (l + r + 1) / 2; // l,mid-1 | mid,r
if (x < mid) {
tie(pt, a->c[0]) = splt(a->c[0], lv - 1, x, l, mid - 1);
p[1] = a;
if (pt) p[0] = new D, p[0]->c[0] = pt;
} else {
tie(a->c[1], pt) = splt(a->c[1], lv - 1, x, mid, r);
p[0] = a;
if (pt) p[1] = new D, p[1]->c[1] = pt;
}
for (int t : {0, 1})
if (p[t]) {
p[t]->up(lv);
if (!p[t]->num) {
delete p[t];
p[t] = nullptr;
}
}
return {p[0], p[1]};
}
D* mrg(D* a, D* b, int lv) {
if (!a || !b) return a ? a : b;
a->down(lv);
b->down(lv);
a->c[0] = mrg(a->c[0], b->c[0], lv - 1);
a->c[1] = mrg(a->c[1], b->c[1], lv - 1);
a->up(lv);
delete b;
return a;
}
D* ins(D* a, int lv, int z) {
if (!a) a = new D();
if (lv < 0) {
a->lz = a->bx = a->by = 0;
a->num = 1;
return a;
}
a->down(lv);
int b = z >> lv & 1;
a->c[b] = ins(a->c[b], lv - 1, z);
a->up(lv);
return a;
}
void dxor(D* a, int lv, int x) {
if (!a) return;
a->lz ^= x;
a->by ^= ~a->bx & x;
}
void dor(D* a, int lv, int x) {
if (!a) return;
a->down(lv);
if (!(a->bx & x)) {
dxor(a, lv, x & ~a->by);
} else {
if (x >> lv & 1) {
a->c[1] = mrg(a->c[0], a->c[1], lv - 1);
a->c[0] = nullptr;
a->up(lv);
x ^= 1 << lv;
}
dor(a->c[0], lv - 1, x);
dor(a->c[1], lv - 1, x);
}
a->up(lv);
}
int main() {
ios_base::sync_with_stdio(false);
cin >> n >> q;
for (int i = 0, x; i < n; ++i) {
cin >> x;
root = ins(root, LV - 1, x);
}
for (int tc = 0; tc < q; ++tc) {
dbg(root, LV - 1);
int t, l, r, x;
cin >> t >> l >> r;
auto [r1, rt] = splt(root, LV - 1, l, 0, M);
auto [r2, r3] = splt(rt, LV - 1, r + 1, 0, M);
dbg(r2, LV - 1);
if (t < 4) cin >> x;
if (t == 1) {
dxor(r2, LV - 1, M);
dor(r2, LV - 1, M ^ x);
dxor(r2, LV - 1, M);
} else if (t == 2) {
dor(r2, LV - 1, x);
} else if (t == 3) {
dxor(r2, LV - 1, x);
} else {
cout << (r2 ? r2->num : 0) << endl;
}
r2 = mrg(r2, r3, LV - 1);
root = mrg(r1, r2, LV - 1);
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
template<class t> inline t read(t &x){
char c=getchar();bool f=0;x=0;
while(!isdigit(c)) f|=c=='-',c=getchar();
while(isdigit(c)) x=(x<<1)+(x<<3)+(c^48),c=getchar();
if(f) x=-x;return x;
}
template<class t> inline void write(t x){
if(x<0) putchar('-'),write(-x);
else{if(x>9) write(x/10);putchar('0'+x%10);}
}
const int N=2e5+5,B=20,S=(1<<B)-1,M=N*23;
int tr[M],t0[M],t1[M],n,lc[M],rc[M],nd,tg[M],rt;
void pushup(int x){
tr[x]=tr[lc[x]]+tr[rc[x]];
t0[x]=t0[lc[x]]|t0[rc[x]];
t1[x]=t1[lc[x]]|t1[rc[x]];
}
void Xor(int x,int d,int v){
if(!x) return ;
if(v>>d&1) swap(lc[x],rc[x]);
int v0=t1[x]&v|t0[x]&~v,v1=t0[x]&v|t1[x]&~v;
t0[x]=v0;t1[x]=v1;tg[x]^=v;
}
void pushdown(int x,int d){
if(tg[x]){
Xor(lc[x],d-1,tg[x]);
Xor(rc[x],d-1,tg[x]);
tg[x]=0;
}
}
void split(int &x,int &y,int d,int l,int r,int p,int q){
if(p<=l&&r<=q) return y=x,x=0,void();
pushdown(x,d);
y=++nd;
int mid=l+r>>1;
if(p<=mid) split(lc[x],lc[y],d-1,l,mid,p,q);
if(q>mid) split(rc[x],rc[y],d-1,mid+1,r,p,q);
pushup(x);pushup(y);
}
void merge(int &x,int y,int d){
if(!x) return x=y,void();
if(d<0||!y) return ;
pushdown(x,d);pushdown(y,d);
merge(lc[x],lc[y],d-1);
merge(rc[x],rc[y],d-1);
pushup(x);
}
void Or(int x,int d,int v){
if(!x||d<0) return ;
if(!(v&t0[x]&t1[x])) return Xor(x,d,v&t0[x]);
pushdown(x,d);
if(v>>d&1){
Xor(lc[x],d-1,1<<d);
merge(rc[x],lc[x],d-1);
lc[x]=0;
}
Or(lc[x],d-1,v);
Or(rc[x],d-1,v);
pushup(x);
}
int que(int x,int d,int l,int r,int p,int q){
if(p<=l&&r<=q) return tr[x];
int mid=l+r>>1;
pushdown(x,d);
int res=0;
if(p<=mid) res=que(lc[x],d-1,l,mid,p,q);
if(q>mid) res+=que(rc[x],d-1,mid+1,r,p,q);
return res;
}
void insert(int &x,int d,int v){
if(!x) x=++nd;
if(d<0) return tr[x]=1,t0[x]=v^S,t1[x]=v,void();
if(v>>d&1) insert(rc[x],d-1,v);
else insert(lc[x],d-1,v);
pushup(x);
}
void doit(){
int o,l,r,x=0,v;
read(o);read(l);read(r);
if(o<=3){
read(v);
split(rt,x,19,0,S,l,r);
if(o==1) Xor(x,19,S),Or(x,19,S^v),Xor(x,19,S);
if(o==2) Or(x,19,v);
if(o==3) Xor(x,19,v);
merge(rt,x,19);
}
else write(que(rt,19,0,S,l,r)),puts("");
}
signed main(){
read(n);int t;read(t);
for(int i=1,x;i<=n;i++) insert(rt,19,read(x));
while(t--) doit();
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
#define rep(i, a, b) for (int i = a; i <= b; i++)
#define per(i, a, b) for (int i = a; i >= b; i--)
using namespace std;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef long long ll;
template <typename T>
inline void read(T &f) {
f = 0; T fu = 1; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') { fu = -1; } c = getchar(); }
while (c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
f *= fu;
}
template <typename T>
void print(T x) {
if (x < 0) putchar('-'), x = -x;
if (x < 10) putchar(x + 48);
else print(x / 10), putchar(x % 10 + 48);
}
template <typename T>
void print(T x, char t) {
print(x); putchar(t);
}
const int N = 2e5 + 5, M = N * 60, ALL = (1 << 20) - 1;
int ch[M][2], tag0[M], tag1[M], tagx[M], siz[M], can[M], tot;
int a[N];
void update(int u, int dep) {
siz[u] = siz[ch[u][0]] + siz[ch[u][1]];
can[u] = can[ch[u][0]] | can[ch[u][1]];
if (ch[u][0] && ch[u][1]) can[u] |= (1 << dep);
}
void add_tag(int u, int tg0, int tg1, int tgx) {
int tem = ALL ^ tg0 ^ tg1 ^ tgx, temu = ALL ^ tag0[u] ^ tag1[u] ^ tagx[u];
int ans0 = tg0 | (tag1[u] & tgx) | (tag0[u] & tem);
int ans1 = tg1 | (tag0[u] & tgx) | (tag1[u] & tem);
tagx[u] = (tagx[u] & tem) | (tgx & temu);
tag0[u] = ans0; tag1[u] = ans1;
}
int merge(int u, int v, int dep);
void pushdown(int u, int dep) {
if ((tag0[u] >> dep) & 1) {
ch[u][0] = merge(ch[u][0], ch[u][1], dep - 1); ch[u][1] = 0;
}
if ((tag1[u] >> dep) & 1) {
ch[u][1] = merge(ch[u][0], ch[u][1], dep - 1); ch[u][0] = 0;
}
if ((tagx[u] >> dep) & 1) {
swap(ch[u][0], ch[u][1]);
}
update(u, dep);
for (int i = 0; i <= 1; i++) {
if (ch[u][i]) {
add_tag(ch[u][i], tag0[u], tag1[u], tagx[u]);
}
}
tag0[u] = tag1[u] = tagx[u] = 0;
}
void check(int u, int dep) {
if (!u || dep == -1) return;
if (((tag0[u] | tag1[u]) & can[u]) == 0) return;
pushdown(u, dep);
check(ch[u][0], dep - 1); check(ch[u][1], dep - 1);
update(u, dep);
}
int merge(int u, int v, int dep) {
if (!u || !v) return u | v;
if (dep == -1) return u;
pushdown(u, dep); pushdown(v, dep);
ch[u][0] = merge(ch[u][0], ch[v][0], dep - 1);
ch[u][1] = merge(ch[u][1], ch[v][1], dep - 1);
update(u, dep); return u;
}
// split <= x
void split(int u, int x, int &l, int &r, int dep) {
if (!u) { l = r = 0; return; }
if (dep == -1) {
l = u; r = 0;
return;
}
pushdown(u, dep);
if ((x >> dep) & 1) {
l = u; r = ++tot;
split(ch[u][1], x, ch[l][1], ch[r][1], dep - 1);
update(l, dep); update(r, dep);
if (!siz[r]) r = 0;
} else {
l = ++tot; r = u;
split(ch[u][0], x, ch[l][0], ch[r][0], dep - 1);
update(l, dep); update(r, dep);
if (!siz[l]) l = 0;
}
}
void insert(int &u, int x, int dep) {
if (dep == -1) {
u = ++tot;
siz[tot] = 1;
return;
}
if (!u) u = ++tot;
insert(ch[u][(x >> dep) & 1], x, dep - 1);
update(u, dep);
}
void dfs(int u, int dep) {
if (!u) return;
// if (dep != -1) pushdown(u, dep);
fprintf(stderr, "u = %d, tag0[u] = %d, tag1[u] = %d, tagx[u] = %d, ch[u][0] = %d, ch[u][1] = %d, siz[u] = %d, dep = %d\n", u, tag0[u], tag1[u], tagx[u], ch[u][0], ch[u][1], siz[u], dep);
dfs(ch[u][0], dep - 1); dfs(ch[u][1], dep - 1);
}
int n, q, root;
int main() {
read(n); read(q);
for (int i = 1; i <= n; i++) {
int a; read(a);
insert(root, a, 19);
}
while (q--) {
int opt, l, r; read(opt); read(l); read(r);
int a = 0, b = 0, c = 0;
// fprintf(stderr, "root = %d\n", root);
if (l != 0) split(root, l - 1, a, b, 19);
else b = root;
split(b, r, b, c, 19);
if (opt <= 3) {
int x; read(x);
if (opt == 1) add_tag(b, ALL ^ x, 0, 0);
if (opt == 2) add_tag(b, 0, x, 0);
if (opt == 3) add_tag(b, 0, 0, x);
// fprintf(stderr, ">>> %d\n", can[b] & (tag0[b] | tag1[b]));
check(b, 19);
}
// dfs(b, 19);
if (opt == 4) print(siz[b], '\n');
// fprintf(stderr, "b = %d, tag0[b] = %d, tag1[b] = %d, tag2[b] = %d\n", b, tag0[b], tag1[b], tagx[b]);
root = merge(merge(a, b, 19), c, 19);
// dfs(root, 19);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int MOD;
struct modint {
private:
int v;
static int minv(int a, int m) {
a %= m;
assert(a);
return a == 1 ? 1 : int(m - ll(minv(m, a)) * ll(m) / a);
}
public:
modint() : v(0) {}
modint(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modint& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modint& n) { ll v_; in >> v_; n = modint(v_); return in; }
friend bool operator == (const modint& a, const modint& b) { return a.v == b.v; }
friend bool operator != (const modint& a, const modint& b) { return a.v != b.v; }
modint inv() const {
modint res;
res.v = minv(v, MOD);
return res;
}
friend modint inv(const modint& m) { return m.inv(); }
modint neg() const {
modint res;
res.v = v ? MOD-v : 0;
return res;
}
friend modint neg(const modint& m) { return m.neg(); }
modint operator- () const {
return neg();
}
modint operator+ () const {
return modint(*this);
}
modint& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modint& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modint& operator += (const modint& o) {
v += o.v;
if (v >= MOD) v -= MOD;
return *this;
}
modint& operator -= (const modint& o) {
v -= o.v;
if (v < 0) v += MOD;
return *this;
}
modint& operator *= (const modint& o) {
v = int(ll(v) * ll(o.v) % MOD);
return *this;
}
modint& operator /= (const modint& o) {
return *this *= o.inv();
}
friend modint operator ++ (modint& a, int) { modint r = a; ++a; return r; }
friend modint operator -- (modint& a, int) { modint r = a; --a; return r; }
friend modint operator + (const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator - (const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator * (const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator / (const modint& a, const modint& b) { return modint(a) /= b; }
};
namespace IO {
template<class T>
void _R(T &x) { cin >> x; }
void _R(int &x) { scanf("%d", &x); }
void _R(ll &x) { scanf("%lld", &x); }
void _R(double &x) { scanf("%lf", &x); }
void _R(char &x) { x = getchar(); }
void _R(char *x) { scanf("%s", x); }
void R() {}
template<class T, class... U>
void R(T &head, U &... tail) { _R(head), R(tail...); }
template<class T>
void _W(const T &x) { cout << x; }
void _W(const int &x) { printf("%d", x); }
void _W(const ll &x) { printf("%lld", x); }
void _W(const double &x) { printf("%.16f", x); }
void _W(const char &x) { putchar(x); }
void _W(const char *x) { printf("%s", x); }
template<class T, class U>
void _W(const pair<T, U> &x) { _W(x.first), putchar(' '), _W(x.second); }
template<class T>
void _W(const vector<T> &x) { for (auto i = x.begin(); i != x.end(); _W(*i++)) if (i != x.cbegin()) putchar(' '); }
void W() {}
template<class T, class... U>
void W(const T &head, const U &... tail) { _W(head), putchar(sizeof...(tail) ? ' ' : '\n'), W(tail...); }
}
using namespace IO;
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
const int maxn = 2e5+50;
const int maxp = maxn*32+5;
const int K = 20;
const int M = 1 << K;
int ls[maxp], rs[maxp], tot;
// 0, 1, cnt, XOR
int t0[maxp], t1[maxp], p[maxp], txor[maxp], tor[maxp];
inline void pushup(int x) {
p[x] = p[ls[x]] + p[rs[x]];
t0[x] = t0[ls[x]] | t0[rs[x]];
t1[x] = t1[ls[x]] | t1[rs[x]];
}
inline void XOR(int x, int t) {
if (!x) return;
txor[x] ^= t;
if (~tor[x] && t >> tor[x] & 1) swap(ls[x], rs[x]);
int a = (t0[x] & (~t)) | (t1[x] & t), b = (t1[x] & (~t)) | (t0[x] & t);
t0[x] = a, t1[x] = b;
}
inline void pushdown(int x) {
if (txor[x]) {
XOR(ls[x], txor[x]), XOR(rs[x], txor[x]);
txor[x] = 0;
}
}
inline void insert(int &x, int s, int k) {
if (!x) x = ++tot;
tor[x] = k;
if (k == -1) {
t1[x] = s, t0[x] = s ^ (M - 1);
p[x] = 1;
return;
}
insert((s >> k & 1) ? rs[x] : ls[x], s, k - 1);
pushup(x);
}
inline void split(int &x, int &y, int l, int r, int le, int re) {
if (!x || re < l || le > r) {
y = 0;
return;
}
if (le <= l && r <= re) {
y = x;
x = 0;
return;
}
int mid = l + r >> 1; pushdown(x);
tor[y = ++tot] = tor[x];
split(ls[x], ls[y], l, mid, le, re);
split(rs[x], rs[y], mid + 1, r, le, re);
pushup(x), pushup(y);
}
inline void merge(int &x, int y) {
if (!x || !y) {
x = x | y;
return;
}
pushdown(x), pushdown(y);
merge(ls[x], ls[y]), merge(rs[x], rs[y]);
if (~tor[x]) pushup(x);
}
inline void OR(int x, int s) {
if (!x) return;
if (!(s & t0[x] & t1[x])) {
XOR(x, s & t0[x]);
return;
}
pushdown(x);
if (s >> tor[x] & 1) XOR(ls[x], 1 << tor[x]), merge(rs[x], ls[x]), ls[x] = 0;
OR(ls[x], s), OR(rs[x], s);
pushup(x);
}
int main() {
int n, q, x = 0;
R(n, q);
for (int i = 1; i <= n; ++i) {
int v; R(v); insert(x, v, K - 1);
}
for (; q; --q) {
int oth;
int t, l, r, v; R(t, l, r);
split(x, oth, 0, M - 1, l, r);
if (t == 1) R(v),XOR(oth, M - 1),OR(oth, v ^ (M - 1)),XOR(oth, M - 1);
else if (t == 2) R(v),OR(oth, v);
else if (t == 3) R(v), XOR(oth, v);
else W(p[oth]);
merge(x, oth);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
const int N=200005,f=(1<<20)-1;
int n,q,u,m,lc[N<<6],rc[N<<6],tr[N<<6],t0[N<<6],t1[N<<6],t[N<<6];
void pt(int u,int p,int x)
{
if(!u)
return;
if(x>>(p-1)&1)
swap(lc[u],rc[u]);
int v0=(t0[u]&(~x))|(t1[u]&x),v1=(t1[u]&(~x))|(t0[u]&x);
t0[u]=v0,t1[u]=v1,t[u]^=x;
}
void pd(int u,int p)
{
if(t[u])
{
pt(lc[u],p-1,t[u]);
pt(rc[u],p-1,t[u]);
t[u]=0;
}
}
void pu(int u)
{
tr[u]=tr[lc[u]]+tr[rc[u]];
t0[u]=t0[lc[u]]|t0[rc[u]];
t1[u]=t1[lc[u]]|t1[rc[u]];
}
int ins(int u,int p,int x)
{
if(!u)
u=++m;
if(!p)
{
tr[u]=1;
t0[u]=(x^f);
t1[u]=x;
return u;
}
if(!(x>>(p-1)&1))
lc[u]=ins(lc[u],p-1,x);
else
rc[u]=ins(rc[u],p-1,x);
pu(u);
return u;
}
void split(int &u,int &v,int p,int l,int r,int a,int b)
{
if(b<=l||r<=a||!u)
{
v=0;
return;
}
if(a<=l&&r<=b)
{
v=u;
u=0;
return;
}
pd(u,p);
v=++m;
int mid=l+r>>1;
split(lc[u],lc[v],p-1,l,mid,a,b),split(rc[u],rc[v],p-1,mid,r,a,b);
pu(u),pu(v);
}
void mg(int &u,int &v,int p)
{
if(!u)
{
u=v;
return;
}
if(v==0||p==0)
return;
pd(u,p),pd(v,p);
mg(lc[u],lc[v],p-1);
mg(rc[u],rc[v],p-1);
pu(u);
}
void upd(int u,int p,int x)
{
if(!u)
return;
if(!(x&t0[u]&t1[u]))
{
pt(u,p,x&t0[u]);
return;
}
pd(u,p);
if(x>>(p-1)&1)
{
pt(lc[u],p-1,1<<(p-1));
mg(rc[u],lc[u],p-1);
lc[u]=0;
}
upd(lc[u],p-1,x);
upd(rc[u],p-1,x);
pu(u);
}
int ask(int u,int p,int l,int r,int a,int b)
{
if(b<=l||r<=a||!u)
return 0;
if(a<=l&&r<=b)
return tr[u];
pd(u,p);
int mid=l+r>>1;
return ask(lc[u],p-1,l,mid,a,b)+ask(rc[u],p-1,mid,r,a,b);
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
u=ins(u,20,x);
}
while(q--)
{
int t,l,r,v,x;
scanf("%d%d%d",&t,&l,&r);
r++;
if(t<=3)
{
scanf("%d",&x);
split(u,v,20,0,f+1,l,r);
if(t==1)
pt(v,20,f),upd(v,20,x^f),pt(v,20,f);
if(t==2)
upd(v,20,x);
if(t==3)
pt(v,20,x);
mg(u,v,20);
}
else
printf("%d\n",ask(u,20,0,f+1,l,r));
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | /*
author: Maksim1744
created: 06.05.2021 16:01:27
*/
#include "bits/stdc++.h"
using namespace std;
using ll = long long;
using ld = long double;
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define sum(a) ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a) (*min_element((a).begin(), (a).end()))
#define maxe(a) (*max_element((a).begin(), (a).end()))
#define mini(a) ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a) ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())
template<typename T> vector<T>& operator-- (vector<T> &v){for (auto& i : v) --i; return v;}
template<typename T> vector<T>& operator++ (vector<T> &v){for (auto& i : v) ++i; return v;}
template<typename T> istream& operator>>(istream& is, vector<T> &v){for (auto& i : v) is >> i; return is;}
template<typename T> ostream& operator<<(ostream& os, vector<T> v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator-- (pair<T, U> &p){--p.first; --p.second; return p;}
template<typename T, typename U> pair<T,U>& operator++ (pair<T, U> &p){++p.first; ++p.second; return p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second; return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U> p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}
#ifdef HOME
#define SHOW_COLORS
#else
#define show(...) void(0)
#define mclock void(0)
#define shows void(0)
#define debug if (false)
#endif
const int B = 20;
struct Node {
Node* to[2];
int sz = 0;
int mod = 0;
int def0 = (1 << B) - 1;
int def1 = (1 << B) - 1;
Node() {
to[0] = nullptr;
to[1] = nullptr;
}
};
ostream &operator << (ostream &o, const Node &n) {
return o << "[sz=" << n.sz << ", mod=" << n.mod
<< ", def0=" << n.def0 << ", def1=" << n.def1 << "]";
}
void add_num(Node *node, int x) {
for (int i = 0; i < B; ++i) {
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
int b = ((x >> (B - i - 1)) & 1);
if (!node->to[b]) {
node->to[b] = new Node();
}
node = node->to[b];
}
node->sz++;
node->def1 &= x;
node->def0 &= ((1 << B) - 1) ^ x;
}
void update(Node *node, int level) {
if (!node) return;
node->sz = 0;
if (node->to[0]) node->sz += node->to[0]->sz;
if (node->to[1]) node->sz += node->to[1]->sz;
node->def0 = (1 << B) - 1;
node->def1 = (1 << B) - 1;
if (node->to[0]) {
node->def0 &= node->to[0]->def0;
node->def1 &= node->to[0]->def1;
}
if (node->to[1]) {
node->def0 &= node->to[1]->def0;
node->def1 &= node->to[1]->def1;
}
if (!node->to[0])
node->def1 |= (1 << (B - level - 1));
if (!node->to[1])
node->def0 |= (1 << (B - level - 1));
}
void modify(Node *node, int x) {
if (!node) return;
node->mod ^= x;
int mask = (x & (node->def0 | node->def1));
node->def0 ^= mask;
node->def1 ^= mask;
}
void push(Node *node, int level) {
if (!node) {
return;
}
if ((node->mod >> (B - level - 1)) & 1) {
swap(node->to[0], node->to[1]);
}
modify(node->to[0], node->mod);
modify(node->to[1], node->mod);
node->mod = 0;
}
pair<Node*, Node*> split(Node *node, int m, int l = 0, int r = (1 << B) - 1, int level = 0) {
push(node, level);
if (!node) return {nullptr, nullptr};
if (r <= m) return {node, nullptr};
if (l > m) return {nullptr, node};
int mid = (l + r) / 2;
auto L = new Node();
auto R = new Node();
if (mid < m) {
auto [a, b] = split(node->to[1], m, mid + 1, r, level + 1);
if (b) {
R->to[1] = b;
} else {
R = nullptr;
}
if (node->to[0] || a) {
L->to[0] = node->to[0];
L->to[1] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
} else {
auto [a, b] = split(node->to[0], m, l, mid, level + 1);
if (node->to[1] || b) {
R->to[0] = b;
R->to[1] = node->to[1];
} else {
R = nullptr;
}
if (a) {
L->to[0] = a;
} else {
L = nullptr;
}
update(L, level);
update(R, level);
return {L, R};
}
}
Node* mrg(Node *a, Node *b, int level) {
if (!a) return b;
if (!b) return a;
if (level == B) {
assert(a->sz == 1 && b->sz == 1);
return a;
}
Node *root = a;
push(a, level);
push(b, level);
a->to[0] = mrg(a->to[0], b->to[0], level + 1);
a->to[1] = mrg(a->to[1], b->to[1], level + 1);
update(root, level);
return root;
}
tuple<Node*, Node*, Node*> cut(Node *root, int l, int r) {
auto [a, bc] = split(root, l - 1);
auto [b, c] = split(bc, r);
return {a, b, c};
}
Node* merge3(Node *a, Node *b, Node *c) {
return mrg(mrg(a, b, 0), c, 0);
}
void push_or_bit(Node *node, int b, int level) {
if (!node) return;
push(node, level);
if (level == B - b - 1) {
modify(node->to[0], 1 << b);
node->to[1] = mrg(node->to[0], node->to[1], level + 1);
node->to[0] = nullptr;
update(node, level);
return;
}
if ((node->def1 >> b) & 1) {
return;
}
if ((node->def0 >> b) & 1) {
modify(node, 1 << b);
return;
}
push_or_bit(node->to[0], b, level + 1);
push_or_bit(node->to[1], b, level + 1);
update(node, level);
}
void push_or(Node *root, int x) {
for (int b = 0; b < B; ++b) {
if ((x >> b) & 1) {
push_or_bit(root, b, 0);
}
}
}
int main() {
ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
Node *root = new Node();
auto call_xor = [&](int l, int r, int x) {
auto [a, b, c] = cut(root, l, r);
modify(b, x);
root = merge3(a, b, c);
};
auto call_or = [&](int l, int r, int x) {
auto [a, b, c] = cut(root, l, r);
push_or(b, x);
root = merge3(a, b, c);
};
auto call_ask = [&](int l, int r) {
auto [a, b, c] = cut(root, l, r);
int res = (b ? b->sz : 0);
return res;
};
auto call_and = [&](int l, int r, int x) {
call_xor(0, (1 << B) - 1, (1 << B) - 1);
call_or(r ^ ((1 << B) - 1), l ^ ((1 << B) - 1), ((1 << B) - 1) ^ x);
call_xor(0, (1 << B) - 1, (1 << B) - 1);
};
int n, q;
cin >> n >> q;
vector<int> a(n);
cin >> a;
sort(a.begin(), a.end());
a.erase(unique(a.begin(), a.end()), a.end());
n = a.size();
for (int k : a) {
add_num(root, k);
}
while (q--) {
int tp, l, r, x;
cin >> tp >> l >> r;
if (tp != 4) cin >> x;
if (tp == 1) {
call_and(l, r, x);
} else if (tp == 2) {
call_or(l, r, x);
} else if (tp == 3) {
call_xor(l, r, x);
} else if (tp == 4) {
cout << call_ask(l, r) << '\n';
} else {
assert(false);
}
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
const int LG = 20, U = (1 << LG) - 1;
struct Node {
int all0, all1;
int sz;
Node() : all0(U), all1(U), sz(0) {}
Node(int a0, int a1, int _sz) : all0(a0), all1(a1), sz(_sz) {}
};
Node operator+(const Node &a, const Node &b) {
return Node(a.all0 & b.all0, a.all1 & b.all1, a.sz + b.sz);
}
struct Trie {
Trie *son[2];
Node a;
int dep;
int tag;
Trie(int d) : dep(d), tag(0) {
son[0] = son[1] = NULL;
}
~Trie() {
delete son[0];
delete son[1];
}
};
void up(Trie *u) {
u->a = (u->son[0] != NULL ? u->son[0]->a : Node()) +
(u->son[1] != NULL ? u->son[1]->a : Node());
u->a.all0 |= (u->son[1] == NULL) << (u->dep - 1);
u->a.all1 |= (u->son[0] == NULL) << (u->dep - 1);
}
void work_xor(Trie *u, int v) {
if (u != NULL && u->dep > 0) {
int t = (u->a.all0 & v) ^ (u->a.all1 & v);
u->a.all0 ^= t, u->a.all1 ^= t;
if (v >> (u->dep - 1) & 1) {
std::swap(u->son[0], u->son[1]);
v ^= 1 << (u->dep - 1);
}
u->tag ^= v;
}
}
void down(Trie *u) {
work_xor(u->son[0], u->tag);
work_xor(u->son[1], u->tag);
u->tag = 0;
}
void insert(Trie *&u, int v, int d = LG) {
if (u == NULL) {
u = new Trie(d);
}
if (d == 0) {
u->a = Node(0, 0, 1);
return;
}
down(u);
insert(u->son[v >> (d - 1) & 1], v, d - 1);
up(u);
}
void split(Trie *u, int v, Trie *&x, Trie *&y) {
if (u == NULL) {
x = y = NULL;
return;
}
if (u->dep == 0) {
x = u;
y = NULL;
return;
}
down(u);
if (v >> (u->dep - 1) & 1) {
x = u;
y = new Trie(u->dep);
split(u->son[1], v, x->son[1], y->son[1]);
} else {
y = u;
x = new Trie(u->dep);
split(u->son[0], v, x->son[0], y->son[0]);
}
if (x->son[0] == NULL && x->son[1] == NULL) {
delete x;
x = NULL;
} else {
up(x);
}
if (y->son[0] == NULL && y->son[1] == NULL) {
delete y;
y = NULL;
} else {
up(y);
}
}
Trie *merge(Trie *u, Trie *v) {
if (u == NULL) {
return v;
}
if (v == NULL) {
return u;
}
if (u->dep == 0) {
u->a.sz = u->a.sz || v->a.sz;
delete v;
return u;
}
down(u), down(v);
u->son[0] = merge(u->son[0], v->son[0]);
u->son[1] = merge(u->son[1], v->son[1]);
up(u);
v->son[0] = v->son[1] = NULL;
delete v;
return u;
}
void split(Trie *u, int l, int r, Trie *&x, Trie *&y) {
if (l == 0) {
split(u, r, y, x);
} else {
split(u, l - 1, x, y);
Trie *z;
split(y, r, y, z);
x = merge(x, z);
}
}
void work_and(Trie *u, int v) {
if (u == NULL || u->dep == 0) {
return;
}
v &= (1 << u->dep) - 1;
if (((u->a.all0 | u->a.all1) & v) == v) {
work_xor(u, u->a.all1 & v);
return;
}
down(u);
if (v >> (u->dep - 1) & 1) {
u->son[0] = merge(u->son[0], u->son[1]);
u->son[1] = NULL;
}
work_and(u->son[0], v);
work_and(u->son[1], v);
up(u);
}
void work_or(Trie *u, int v) {
if (u == NULL || u->dep == 0) {
return;
}
v &= (1 << u->dep) - 1;
if (((u->a.all0 | u->a.all1) & v) == v) {
work_xor(u, u->a.all0 & v);
return;
}
down(u);
if (v >> (u->dep - 1) & 1) {
u->son[1] = merge(u->son[0], u->son[1]);
u->son[0] = NULL;
}
work_or(u->son[0], v);
work_or(u->son[1], v);
up(u);
}
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(0);
int n, q;
std::cin >> n >> q;
Trie *rt = NULL;
for (int i = 0; i < n; ++i) {
int v;
std::cin >> v;
insert(rt, v);
}
while (q--) {
int op, l, r;
std::cin >> op >> l >> r;
Trie *tmp;
split(rt, l, r, tmp, rt);
if (op <= 3) {
int x;
std::cin >> x;
if (op == 1) {
work_and(rt, U ^ x);
} else if (op == 2) {
work_or(rt, x);
} else {
work_xor(rt, x);
}
} else {
std::cout << (rt == NULL ? 0 : rt->a.sz) << "\n";
}
rt = merge(rt, tmp);
}
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<stdio.h>
const int maxn=200005,maxk=maxn*40;
int n,q,k,rt,cnt;
int lc[maxk],rc[maxk],lazy[maxk],Vand[maxk],Vor[maxk],res[maxk];
inline void swp(int &a,int &b){
a+=b,b=a-b,a-=b;
}
inline void pushup(int now){
Vand[now]=Vand[lc[now]]|Vand[rc[now]];
Vor[now]=Vor[lc[now]]|Vor[rc[now]];
res[now]=res[lc[now]]+res[rc[now]];
}
void insert(int dep,int &now,int val){
if(now==0)
now=++cnt;
if(dep==0){
Vand[now]=(k^val),Vor[now]=val,res[now]=1;
return ;
}
if(((val>>(dep-1))&1)==0)
insert(dep-1,lc[now],val);
else insert(dep-1,rc[now],val);
pushup(now);
}
void getxor(int dep,int now,int val){
if(now==0)
return ;
if((val>>(dep-1))&1)
swp(lc[now],rc[now]);
int Va=Vand[now],Vo=Vor[now];
Vand[now]=(Va&(k^val))|(Vo&val);
Vor[now]=(Vo&(k^val))|(Va&val);
lazy[now]^=val;
}
void pushdown(int dep,int now){
if(lazy[now]==0)
return ;
getxor(dep-1,lc[now],lazy[now]),getxor(dep-1,rc[now],lazy[now]);
lazy[now]=0;
}
void split(int dep,int &x,int &y,int l,int r,int L,int R){
if(x==0||R<l||r<L){
y=0;
return ;
}
if(L<=l&&r<=R){
y=x,x=0;
return ;
}
int mid=(l+r)>>1;
pushdown(dep,x),y=++cnt;
split(dep-1,lc[x],lc[y],l,mid,L,R),split(dep-1,rc[x],rc[y],mid+1,r,L,R);
pushup(x),pushup(y);
}
void merge(int dep,int &x,int &y){
if(x==0){
x=y;
return ;
}
if(y==0||dep==0)
return ;
pushdown(dep,x),pushdown(dep,y);
merge(dep-1,lc[x],lc[y]),merge(dep-1,rc[x],rc[y]);
pushup(x);
}
void getor(int dep,int now,int val){
if(now==0)
return ;
int add=val&Vand[now];
if((add&Vor[now])==0){
getxor(dep,now,add);
return ;
}
pushdown(dep,now);
if((val>>(dep-1))&1){
getxor(dep-1,lc[now],1<<(dep-1));
merge(dep-1,rc[now],lc[now]);
lc[now]=0;
}
getor(dep-1,lc[now],val),getor(dep-1,rc[now],val);
pushup(now);
}
int query(int dep,int now,int l,int r,int L,int R){
if(now==0||R<l||r<L)
return 0;
if(L<=l&&r<=R)
return res[now];
int mid=(l+r)>>1;
pushdown(dep,now);
return query(dep-1,lc[now],l,mid,L,R)+query(dep-1,rc[now],mid+1,r,L,R);
}
void read(int &x){
x=0;
char c=getchar();
for(;c<'0'||c>'9';c=getchar());
for(;c>='0'&&c<='9';c=getchar())
x=x*10+c-48;
}
int main(){
scanf("%d%d",&n,&q),k=(1<<20)-1;
for(int i=1;i<=n;i++){
int x;
read(x);
insert(20,rt,x);
}
for(int i=1;i<=q;i++){
int t,x,y,z,now;
read(t);
if(t==4){
read(x),read(y);
printf("%d\n",query(20,rt,0,k,x,y));
continue;
}
read(x),read(y),read(z);
split(20,rt,now,0,k,x,y);
if(t==1)
getxor(20,now,k),getor(20,now,z^k),getxor(20,now,k);
if(t==2)
getor(20,now,z);
if(t==3)
getxor(20,now,z);
merge(20,rt,now);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
#define lson ls[x],l,mid
#define rson rs[x],mid+1,r
using namespace std;const int N=2e5+7,M=N*50;
int rt,rt1,x,n,m,i,j,l,r,t,tk[M],ls[M],rs[M],ts[M],ts0[M],ts1[M],U,tag[M],sz;
void ud(int x){ts[x]=ts[ls[x]]+ts[rs[x]];ts0[x]=ts0[ls[x]]|ts0[rs[x]];ts1[x]=ts1[ls[x]]|ts1[rs[x]];}
int newnode(int k){return tk[sz+1]=k,++sz;}
void A(int x,int val){
if(!x)return;
tag[x]^=val;if(~tk[x]&&val>>tk[x]&1)swap(ls[x],rs[x]);
int X=(ts0[x]&(U^val))|(ts1[x]&val),Y=(ts1[x]&(U^val))|(ts0[x]&val);
ts0[x]=X;ts1[x]=Y;
}
void pd(int x){if(tag[x])A(ls[x],tag[x]),A(rs[x],tag[x]),tag[x]=0;}
void ins(int&x,int l,int r,int pos,int k){
if(!x)x=newnode(k);if(l==r){ts[x]=1;ts0[x]=U^pos;ts1[x]=U&pos;return;}int mid=l+r>>1;
if(pos<=mid)ins(lson,pos,k-1);else ins(rson,pos,k-1);ud(x);
}
int merge(int x,int y){
if(x==0||y==0)return x+y;pd(x);pd(y);
ls[x]=merge(ls[x],ls[y]);rs[x]=merge(rs[x],rs[y]);
if(~tk[x])ud(x);return x;
}
void split(int&x,int l,int r,int&y,int a,int b){
if(!x||a<=l&&r<=b){y=x;x=0;return;}int mid=l+r>>1;y=newnode(tk[x]);pd(x);
if(a<=mid)split(lson,ls[y],a,b);if(b>mid)split(rson,rs[y],a,b);ud(y);ud(x);
}
void modify(int x,int val){
if(!x)return;
if(!(val&ts0[x]&ts1[x]))return A(x,val&ts0[x]);pd(x);int k=tk[x];
if((val>>k&1))A(ls[x],1<<k),rs[x]=merge(rs[x],ls[x]),ls[x]=0;
modify(ls[x],val),modify(rs[x],val);if(k>=0)ud(x);
}
int main(){
for(scanf("%d%d",&n,&m),U=(1<<20)-1,i=1;i<=n;++i)scanf("%d",&j),ins(rt,0,U,j,19);
for(;m--;){
scanf("%d%d%d",&t,&l,&r);split(rt,0,U,rt1,l,r);
if(t==1)scanf("%d",&x),A(rt1,U),modify(rt1,x^U),A(rt1,U);
if(t==2)scanf("%d",&x),modify(rt1,x);
if(t==3)scanf("%d",&x),A(rt1,x);
if(t==4)printf("%d\n",ts[rt1]);
rt=merge(rt,rt1);
}
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 200005;
const int maxd = 19;
const int S = (1 << (maxd + 1)) - 1;
const int maxp = 10000005;
int ch[maxp][2], sz[maxp], sta[maxp][2];
inline void pushup(int x) {
sz[x] = sz[ch[x][0]] + sz[ch[x][1]];
for(int i = 0; i <= 1; i++)
sta[x][i] = sta[ch[x][0]][i] | sta[ch[x][1]][i];
}
int lazy[maxp];
inline void puttag(int x, int y, int d) {
if((y >> d) & 1) swap(ch[x][0], ch[x][1]);
int s0 = (sta[x][0] & (S ^ y)) | (sta[x][1] & y);
int s1 = (sta[x][1] & (S ^ y)) | (sta[x][0] & y);
sta[x][0] = s0, sta[x][1] = s1;
lazy[x] ^= y;
}
inline void putdown(int x, int d) {
if(!lazy[x]) return;
puttag(ch[x][0], lazy[x], d - 1);
puttag(ch[x][1], lazy[x], d - 1);
lazy[x] = 0;
}
int rt = 1, totp = 1, st[maxp], top;
inline int newnode() {
int x = (top) ? st[top--] : ++totp;
ch[x][0] = ch[x][1] = sz[x] = lazy[x] = sta[x][0] = sta[x][1] = 0;
return x;
}
void insert(int &x, int y, int d) {
if(!x) x = newnode();
if(d == -1) {
sz[x] = 1;
sta[x][0] = S ^ y;
sta[x][1] = y;
return;
}
int nxt = (y >> d) & 1;
insert(ch[x][nxt], y, d - 1);
pushup(x);
}
void split(int &x, int &y, int l, int r, int L, int R, int d) {
if(L <= l && r <= R) {
y = x, x = 0;
return;
}
putdown(x, d);
int mid = (l + r) >> 1;
y = newnode();
if(L <= mid)
split(ch[x][0], ch[y][0], l, mid, L, R, d - 1);
if(R > mid)
split(ch[x][1], ch[y][1], mid + 1, r, L, R, d - 1);
pushup(x), pushup(y);
}
int merge(int x, int y, int d) {
if(!x || !y) return x + y;
if(d == -1) {
st[++top] = y;
return x;
}
putdown(x, d), putdown(y, d);
sz[x] += sz[y];
ch[x][0] = merge(ch[x][0], ch[y][0], d - 1);
ch[x][1] = merge(ch[x][1], ch[y][1], d - 1);
pushup(x);
st[++top] = y;
return x;
}
int query(int x, int l, int r, int L, int R, int d) {
if(!x) return 0;
if(L <= l && r <= R) return sz[x];
putdown(x, d);
int mid = (l + r) >> 1, res = 0;
if(L <= mid)
res += query(ch[x][0], l, mid, L, R, d - 1);
if(R > mid)
res += query(ch[x][1], mid + 1, r, L, R, d - 1);
return res;
}
void modify(int x, int y, int d) {
if(!x) return;
if((y & sta[x][0] & sta[x][1]) == 0) {
puttag(x, (y & sta[x][0]), d);
return;
}
putdown(x, d);
if((y >> d) & 1) {
puttag(ch[x][0], 1 << d, d - 1);
ch[x][1] = merge(ch[x][0], ch[x][1], d - 1);
ch[x][0] = 0;
}
modify(ch[x][0], y, d - 1), modify(ch[x][1], y, d - 1);
pushup(x);
}
int n, q;
int main() {
scanf("%d%d", &n, &q);
for(int i = 1, x; i <= n; i++)
scanf("%d", &x), insert(rt, x, maxd);
for(int i = 1, opt, l, r, x; i <= q; i++) {
scanf("%d%d%d", &opt, &l, &r);
if(opt == 4)
printf("%d\n", query(rt, 0, S, l, r, maxd));
else {
scanf("%d", &x);
int nrt = 0;
split(rt, nrt, 0, S, l, r, maxd);
if(opt == 1) {
puttag(nrt, S, maxd);
modify(nrt, x ^ S, maxd);
puttag(nrt, S, maxd);
}
if(opt == 2)
modify(nrt, x, maxd);
if(opt == 3)
puttag(nrt, x, maxd);
rt = merge(rt, nrt, maxd);
}
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
const int maxb=20;
const int maxs=1<<maxb;
int n,q,tot,top,rt;
int st[maxs<<1],ls[maxs<<1],rs[maxs<<1],tag0[maxs<<1],tag1[maxs<<1],tagx[maxs<<1],sdep[maxs<<1],cnt[maxs<<1];
vector<pair<pair<int,int>,int> >todo;
void apply0(int cur,int mask){
tag1[cur]&=~mask;
tagx[cur]&=~mask;
tag0[cur]|=mask;
}
void apply1(int cur,int mask){
tag0[cur]&=~mask;
tagx[cur]&=~mask;
tag1[cur]|=mask;
}
void applyx(int cur,int mask){
int tmp=(tag0[cur]^tag1[cur])&mask;
tag0[cur]^=tmp;
tag1[cur]^=tmp;
tagx[cur]^=mask&~tag0[cur]&~tag1[cur];
}
int newnode(int _cnt){
int cur=top?st[--top]:tot++;
ls[cur]=rs[cur]=-1;
tag0[cur]=tag1[cur]=tagx[cur]=sdep[cur]=0;
cnt[cur]=_cnt;
return cur;
}
void merge(int &cur,int cur1,int cur2,int dep,int l,int r);
void pushdown(int cur,int dep,int l,int r){
int mid=l+r>>1;
if((tag0[cur]>>dep)&1){
merge(ls[cur],ls[cur],rs[cur],dep-1,l,mid);
rs[cur]=-1;
}
else if((tag1[cur]>>dep)&1){
merge(rs[cur],ls[cur],rs[cur],dep-1,mid+1,r);
ls[cur]=-1;
}
else if((tagx[cur]>>dep)&1)
swap(ls[cur],rs[cur]);
if(ls[cur]>=0)
apply0(ls[cur],tag0[cur]),apply1(ls[cur],tag1[cur]),applyx(ls[cur],tagx[cur]);
if(rs[cur]>=0)
apply0(rs[cur],tag0[cur]),apply1(rs[cur],tag1[cur]),applyx(rs[cur],tagx[cur]);
tag0[cur]=tag1[cur]=tagx[cur]=0;
}
void pushup(int cur,int dep){
cnt[cur]=(ls[cur]>=0?cnt[ls[cur]]:0)+(rs[cur]>=0?cnt[rs[cur]]:0);
sdep[cur]=(ls[cur]>=0?sdep[ls[cur]]:0)|(rs[cur]>=0?sdep[rs[cur]]:0);
if(ls[cur]>=0&&rs[cur]>=0)sdep[cur]|=1<<dep;
}
void check(int cur,int dep,int l,int r){
if(dep<0)return;
if(sdep[cur]&(tag0[cur]|tag1[cur])){
pushdown(cur,dep,l,r);
int mid=l+r>>1;
check(ls[cur],dep-1,l,mid);
check(rs[cur],dep-1,mid+1,r);
pushup(cur,dep);
}
}
void merge(int &cur,int cur1,int cur2,int dep,int l,int r){
if(cur1<0)cur=cur2;
else if(cur2<0)cur=cur1;
else{
cur=cur1;
if(dep>=0){
pushdown(cur1,dep,l,r);
pushdown(cur2,dep,l,r);
int mid=l+r>>1;
merge(ls[cur],ls[cur1],ls[cur2],dep-1,l,mid);
merge(rs[cur],rs[cur1],rs[cur2],dep-1,mid+1,r);
pushup(cur,dep);
}
st[top++]=cur2;
}
}
void insert(int &cur,int dep,int edep,int l,int r,int k,int val){
if(dep==edep){
merge(cur,cur,val,dep,l,r);
return;
}
if(cur<0)cur=newnode(0);
pushdown(cur,dep,l,r);
int mid=l+r>>1;
if(k<=mid)insert(ls[cur],dep-1,edep,l,mid,k,val);
else insert(rs[cur],dep-1,edep,mid+1,r,k,val);
pushup(cur,dep);
}
void update(int &cur,int dep,int l,int r,int vl,int vr,int op,int mask){
if(cur<0)return;
if(l>=vl&&r<=vr){
if(op==0){
apply0(cur,mask);
todo.push_back(make_pair(make_pair(l&((maxs-1)^mask),cur),dep));
}
else if(op==1){
apply1(cur,mask);
todo.push_back(make_pair(make_pair(l|mask,cur),dep));
}
else{
applyx(cur,mask);
todo.push_back(make_pair(make_pair(l^mask,cur),dep));
}
check(cur,dep,l,r);
cur=-1;
return;
}
pushdown(cur,dep,l,r);
int mid=l+r>>1;
if(mid>=vl)update(ls[cur],dep-1,l,mid,vl,vr,op,mask);
if(mid<vr)update(rs[cur],dep-1,mid+1,r,vl,vr,op,mask);
pushup(cur,dep);
}
int query(int cur,int dep,int l,int r,int vl,int vr){
if(cur<0)return 0;
if(l>=vl&&r<=vr)return cnt[cur];
pushdown(cur,dep,l,r);
int mid=l+r>>1;
int sl=mid>=vl?query(ls[cur],dep-1,l,mid,vl,vr):0;
int sr=mid<vr?query(rs[cur],dep-1,mid+1,r,vl,vr):0;
return sl+sr;
}
int main(){
rt=-1;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
insert(rt,maxb-1,-1,0,maxs-1,x,newnode(1));
}
while(q--){
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
op--;
if(op<=2){
int mask;
scanf("%d",&mask);
todo.clear();
update(rt,maxb-1,0,maxs-1,l,r,op,op==0?(maxs-1)^mask:mask);
for(int i=0;i<int(todo.size());i++)
insert(rt,maxb-1,todo[i].second,0,maxs-1,todo[i].first.first,todo[i].first.second);
}
else
printf("%d\n",query(rt,maxb-1,0,maxs-1,l,r));
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
# define ll long long
# define read read1<ll>()
# define Type template<typename T>
Type T read1(){
T t=0;
char k;
bool vis=0;
do (k=getchar())=='-'&&(vis=1);while('0'>k||k>'9');
while('0'<=k&&k<='9')t=(t<<3)+(t<<1)+(k^'0'),k=getchar();
return vis?-t:t;
}
# define fre(k) freopen(k".in","r",stdin);freopen(k".out","w",stdout)
int s,q;
const int Depth=19;
struct node;
int size(node*);
int True(node*);
int False(node*);
struct node{
node *l,*r;
int _xor,s,k,or_0,or_1;//ORsum of the space of 0/1
node(int d){l=r=NULL;_xor=0;s=0;k=d;or_0=0;or_1=0;}
node(node *l_,node *r_,int d){
l=l_;r=r_;s=0;or_0=0;or_1=0;k=d;
if(l_){l_->down();
s+=l_->s;
or_0|=1<<k|l->or_0;
or_1|=l->or_1;
}if(r_){r_->down();
s+=r_->s;
or_0|=r->or_0;
or_1|=1<<k|r->or_1;
}if(!~d)s=1;
_xor=0;
}
void down(){
if(!_xor)return;
if(_xor>>k&1){
swap(l,r);
if((or_0^or_1)&(1<<k))or_0^=1<<k,or_1^=1<<k;
_xor^=1<<k;
}
if(l)l->_xor^=_xor;
if(r)r->_xor^=_xor;
int u=(or_0^or_1)&_xor;
or_0^=u;or_1^=u;
_xor=0;
}
void up(){
s=0;or_0=0;or_1=0;
if(l){l->down();
s+=l->s;
or_0|=1<<k|l->or_0;
or_1|=l->or_1;
}if(r){r->down();
s+=r->s;
or_0|=r->or_0;
or_1|=1<<k|r->or_1;
}if(!~k)s=1;
_xor=0;
}
}*root;
int size(node *x){return x?x->s:0;}
int True(node *x){return x?x->down(),x->or_1:0;}
int False(node *x){return x?x->down(),x->or_0:0;}
void insert(node *&x,int v,int d=Depth){
if(!x)x=new node(d),++x->s;
if(!~d)return;
if(v>>d&1)insert(x->r,v,d-1);
else insert(x->l,v,d-1);
x->up();
}
node* merge(node *x,node *y){
if(!x||!y)return x?x:y;
x->down();y->down();
x->l=merge(x->l,y->l);
x->r=merge(x->r,y->r);
x->up();delete y;
return x;
}
typedef pair<node*,node*> Homology;
Homology split(node *x,int n){
if(n<0)return Homology(NULL,x);
if(!x)return Homology(NULL,NULL);
if(!~x->k)return Homology(x,NULL);
Homology y;x->down();
node *z=NULL;
if(n>>x->k&1){
y=split(x->r,n);
y=Homology(new node(x->l,y.first,x->k),new node(NULL,y.second,x->k));
}else{
y=split(x->l,n);
y=Homology(new node(y.first,NULL,x->k),new node(y.second,x->r,x->k));
}
delete x;
return y;
}
void pr(node *&x,int v=0){
if(!x)return;x->down();
if(!~x->k)printf("-->%d %d\n",v,x->s);
else pr(x->l,v),pr(x->r,v|1<<x->k);
}
void trie_or(node *&x,int n){
if(!x)return;
if(!~x->k)return;
x->down();
// cout<<x->k<<"::"<<x->or_0<<endl;
if(!(n&x->or_0&x->or_1)){
x->_xor^=n&x->or_0;
return;
}
trie_or(x->l,n&~(1<<x->k));
trie_or(x->r,n&~(1<<x->k));
if(n>>x->k&1){
x->r=merge(x->l,x->r);
x->l=NULL;
}
x->up();
}
void Mtrie_or(node *&x,int n){
if(!x)return;
if(!~x->k)return;
x->down();
if(n>>x->k&1){
x->r=merge(x->l,x->r);x->l=NULL;
Mtrie_or(x->r,n^(1<<x->k));x->up();return;
}else Mtrie_or(x->l,n),Mtrie_or(x->r,n),x->up();
}
void trie_xor(node *&x,int n){
if(!x)return;
x->down();
// printf("-->%d\n",x->or_0);
x->_xor^=n;
}
void Mtrie_xor(node *&x,int n){
if(!x)return;
if(!~x->k)return;
x->down();
if(n>>x->k&1){
swap(x->l,x->r);
Mtrie_xor(x->l,n);
Mtrie_xor(x->r,n);
x->up();
}else Mtrie_xor(x->l,n),Mtrie_xor(x->r,n),x->up();
}
int main(){
s=read;q=read;
for(int i=1;i<=s;++i)insert(root,read);
// printf("(%d)\n",root->or_0);
for(int i=1;i<=q;++i){//puts("----");
int type=read,l=read,r=read,v;
Homology x=split(root,r),y=split(x.first,l-1);
if(type==4)printf("%d\n",size(y.second));
else{v=read;
switch(type){
case 1:trie_xor(y.second,(1<<20)-1);trie_or(y.second,(1<<20)-1^v);trie_xor(y.second,(1<<20)-1);break;
case 2:trie_or(y.second,v);break;
default:trie_xor(y.second,v);
}
}root=merge(merge(y.first,y.second),x.second);
// pr(root);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int MOD;
struct modint {
private:
int v;
static int minv(int a, int m) {
a %= m;
assert(a);
return a == 1 ? 1 : int(m - ll(minv(m, a)) * ll(m) / a);
}
public:
modint() : v(0) {}
modint(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modint& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modint& n) { ll v_; in >> v_; n = modint(v_); return in; }
friend bool operator == (const modint& a, const modint& b) { return a.v == b.v; }
friend bool operator != (const modint& a, const modint& b) { return a.v != b.v; }
modint inv() const {
modint res;
res.v = minv(v, MOD);
return res;
}
friend modint inv(const modint& m) { return m.inv(); }
modint neg() const {
modint res;
res.v = v ? MOD-v : 0;
return res;
}
friend modint neg(const modint& m) { return m.neg(); }
modint operator- () const {
return neg();
}
modint operator+ () const {
return modint(*this);
}
modint& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modint& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modint& operator += (const modint& o) {
v += o.v;
if (v >= MOD) v -= MOD;
return *this;
}
modint& operator -= (const modint& o) {
v -= o.v;
if (v < 0) v += MOD;
return *this;
}
modint& operator *= (const modint& o) {
v = int(ll(v) * ll(o.v) % MOD);
return *this;
}
modint& operator /= (const modint& o) {
return *this *= o.inv();
}
friend modint operator ++ (modint& a, int) { modint r = a; ++a; return r; }
friend modint operator -- (modint& a, int) { modint r = a; --a; return r; }
friend modint operator + (const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator - (const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator * (const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator / (const modint& a, const modint& b) { return modint(a) /= b; }
};
namespace IO {
template<class T>
void _R(T &x) { cin >> x; }
void _R(int &x) { scanf("%d", &x); }
void _R(ll &x) { scanf("%lld", &x); }
void _R(double &x) { scanf("%lf", &x); }
void _R(char &x) { x = getchar(); }
void _R(char *x) { scanf("%s", x); }
void R() {}
template<class T, class... U>
void R(T &head, U &... tail) { _R(head), R(tail...); }
template<class T>
void _W(const T &x) { cout << x; }
void _W(const int &x) { printf("%d", x); }
void _W(const ll &x) { printf("%lld", x); }
void _W(const double &x) { printf("%.16f", x); }
void _W(const char &x) { putchar(x); }
void _W(const char *x) { printf("%s", x); }
template<class T, class U>
void _W(const pair<T, U> &x) { _W(x.first), putchar(' '), _W(x.second); }
template<class T>
void _W(const vector<T> &x) { for (auto i = x.begin(); i != x.end(); _W(*i++)) if (i != x.cbegin()) putchar(' '); }
void W() {}
template<class T, class... U>
void W(const T &head, const U &... tail) { _W(head), putchar(sizeof...(tail) ? ' ' : '\n'), W(tail...); }
}
using namespace IO;
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
const int maxn = 2e5+50;
const int maxp = maxn*32+5;
const int K = 20;
const int M = 1 << K;
int ls[maxp], rs[maxp], tot;
// 0, 1, cnt, XOR
int t0[maxp], t1[maxp], p[maxp], txor[maxp], tor[maxp];
inline void pushup(int x) {
p[x] = p[ls[x]] + p[rs[x]];
t0[x] = t0[ls[x]] | t0[rs[x]];
t1[x] = t1[ls[x]] | t1[rs[x]];
}
inline void XOR(int x, int t) {
if (!x) return;
txor[x] ^= t;
if (~tor[x] && t >> tor[x] & 1) swap(ls[x], rs[x]);
int a = (t0[x] & (~t)) | (t1[x] & t), b = (t1[x] & (~t)) | (t0[x] & t);
t0[x] = a, t1[x] = b;
}
inline void pushdown(int x) {
if (txor[x]) {
XOR(ls[x], txor[x]), XOR(rs[x], txor[x]);
txor[x] = 0;
}
}
inline void insert(int &x, int s, int k) {
if (!x) x = ++tot;
tor[x] = k;
if (k == -1) {
t1[x] = s & (M - 1), t0[x] = t1[x] ^ (M - 1);
p[x] = 1;
return;
}
insert((s >> k & 1) ? rs[x] : ls[x], s, k - 1);
pushup(x);
}
inline void split(int &x, int &y, int l, int r, int le, int re) {
if (!x || re < l || le > r) {
y = 0;
return;
}
if (le <= l && r <= re) {
y = x;
x = 0;
return;
}
int mid = l + r >> 1; pushdown(x);
tor[y = ++tot] = tor[x];
split(ls[x], ls[y], l, mid, le, re);
split(rs[x], rs[y], mid + 1, r, le, re);
pushup(x), pushup(y);
}
inline void merge(int &x, int y) {
if (!x || !y) {
x = x | y;
return;
}
pushdown(x), pushdown(y);
merge(ls[x], ls[y]), merge(rs[x], rs[y]);
if (~tor[x]) pushup(x);
}
inline void OR(int x, int s) {
if (!x) return;
if (!(s & t0[x] & t1[x])) {
XOR(x, s & t0[x]);
return;
}
pushdown(x);
if (s >> tor[x] & 1) XOR(ls[x], 1 << tor[x]), merge(rs[x], ls[x]), ls[x] = 0;
OR(ls[x], s), OR(rs[x], s);
pushup(x);
}
int main() {
int n, q, x = 0;
R(n, q);
for (int i = 1; i <= n; ++i) {
int v; R(v); insert(x, v, K - 1);
}
for (; q; --q) {
int oth;
int t, l, r, v; R(t, l, r);
split(x, oth, 0, M - 1, l, r);
if (t == 1) R(v),XOR(oth, M - 1),OR(oth, v ^ (M - 1)),XOR(oth, M - 1);
else if (t == 2) R(v),OR(oth, v);
else if (t == 3) R(v), XOR(oth, v);
else W(p[oth]);
merge(x, oth);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <stdio.h>
#include <stdlib.h>
#define N 200000
#define Q 100000
#define N_ ((N + Q * 2) * (LG + 1))
#define LG 20
#define B (1 << LG)
int ll[1 + N_], rr[1 + N_], sz[1 + N_], msk0[1 + N_], msk1[1 + N_], lz[1 + N_], _ = 1;
void put(int u, int lg, int x) {int tmp, x0, x1;if (u == 0)return;if ((x & 1 << lg - 1) != 0)tmp = ll[u], ll[u] = rr[u], rr[u] = tmp;
x0 = msk0[u] & ~x | msk1[u] & x, x1 = msk1[u] & ~x | msk0[u] & x;msk0[u] = x0, msk1[u] = x1;lz[u] ^= x;}
void pus(int u, int lg) {if (lz[u])put(ll[u], lg - 1, lz[u]), put(rr[u], lg - 1, lz[u]), lz[u] = 0;}
void pul(int u) {int l = ll[u], r = rr[u];sz[u] = sz[l] + sz[r], msk0[u] = msk0[l] | msk0[r], msk1[u] = msk1[l] | msk1[r];}
int add(int u, int lg, int a) {if (u == 0)u = _++;if (lg == 0)sz[u] = 1, msk0[u] = a ^ B - 1, msk1[u] = a;
else {if ((a & 1 << lg - 1) == 0)ll[u] = add(ll[u], lg - 1, a);else rr[u] = add(rr[u], lg - 1, a);pul(u);}return u;}
void split(int *u, int *v, int lg, int l, int r, int ql, int qr) {
int m;
if (qr <= l || r <= ql || *u == 0) {
*v = 0;
return;
}
if (ql <= l && r <= qr) {
*v = *u, *u = 0;
return;
}
pus(*u, lg), *v = _++;
m = (l + r) / 2;
split(&ll[*u], &ll[*v], lg - 1, l, m, ql, qr), split(&rr[*u], &rr[*v], lg - 1, m, r, ql, qr);
pul(*u), pul(*v);
}
void merge(int *u, int *v, int lg) {if (*u == 0) {*u = *v;return;}if (*v == 0 || lg == 0)return;pus(*u, lg), pus(*v, lg);merge(&ll[*u], &ll[*v], lg - 1), merge(&rr[*u], &rr[*v], lg - 1);pul(*u);}
void update_or(int u, int lg, int x) {
if (u == 0)
return;
if ((x & msk0[u] & msk1[u]) == 0) {
put(u, lg, x & msk0[u]);
return;
}
pus(u, lg);
if ((x & 1 << lg - 1) != 0)
put(ll[u], lg - 1, 1 << lg - 1), merge(&rr[u], &ll[u], lg - 1), ll[u] = 0;
update_or(ll[u], lg - 1, x), update_or(rr[u], lg - 1, x);
pul(u);
}
int query(int u, int lg, int l, int r, int ql, int qr) {
int m;
if (qr <= l || r <= ql || u == 0)
return 0;
if (ql <= l && r <= qr)
return sz[u];
pus(u, lg);
m = (l + r) / 2;
return query(ll[u], lg - 1, l, m, ql, qr) + query(rr[u], lg - 1, m, r, ql, qr);
}
int main() {
int n, q, i, u;
scanf("%d%d", &n, &q);
u = 0;
for (i = 0; i < n; i++) {
int a;
scanf("%d", &a);
u = add(u, LG, a);
}
while (q--) {
int type, l, r;
scanf("%d%d%d", &type, &l, &r), r++;
if (type != 4) {
int x, v;
scanf("%d", &x);
split(&u, &v, LG, 0, B, l, r);
if (type == 1)
put(v, LG, B - 1), update_or(v, LG, x ^ B - 1), put(v, LG, B - 1);
else if (type == 2)
update_or(v, LG, x);
else
put(v, LG, x);
merge(&u, &v, LG);
} else
printf("%d\n", query(u, LG, 0, B, l, r));
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | /* https://codeforces.com/blog/entry/90236 (segment tree beats) */
#include <stdio.h>
#include <stdlib.h>
#define N 200000
#define Q 100000
#define N_ ((N + Q * 2) * (LG + 1))
#define LG 20
#define B (1 << LG)
int ll[1 + N_], rr[1 + N_], sz[1 + N_], msk0[1 + N_], msk1[1 + N_], lz[1 + N_], _ = 1;
void put(int u, int lg, int x) {
int tmp, x0, x1;
if (u == 0)
return;
if ((x & 1 << lg - 1) != 0)
tmp = ll[u], ll[u] = rr[u], rr[u] = tmp;
x0 = msk0[u] & ~x | msk1[u] & x, x1 = msk1[u] & ~x | msk0[u] & x;
msk0[u] = x0, msk1[u] = x1;
lz[u] ^= x;
}
void pus(int u, int lg) {
if (lz[u])
put(ll[u], lg - 1, lz[u]), put(rr[u], lg - 1, lz[u]), lz[u] = 0;
}
void pul(int u) {
int l = ll[u], r = rr[u];
sz[u] = sz[l] + sz[r], msk0[u] = msk0[l] | msk0[r], msk1[u] = msk1[l] | msk1[r];
}
int add(int u, int lg, int a) {
if (u == 0)
u = _++;
if (lg == 0)
sz[u] = 1, msk0[u] = a ^ B - 1, msk1[u] = a;
else {
if ((a & 1 << lg - 1) == 0)
ll[u] = add(ll[u], lg - 1, a);
else
rr[u] = add(rr[u], lg - 1, a);
pul(u);
}
return u;
}
void split(int *u, int *v, int lg, int l, int r, int ql, int qr) {
int m;
if (qr <= l || r <= ql || *u == 0) {
*v = 0;
return;
}
if (ql <= l && r <= qr) {
*v = *u, *u = 0;
return;
}
pus(*u, lg), *v = _++;
m = (l + r) / 2;
split(&ll[*u], &ll[*v], lg - 1, l, m, ql, qr), split(&rr[*u], &rr[*v], lg - 1, m, r, ql, qr);
pul(*u), pul(*v);
}
void merge(int *u, int *v, int lg) {
if (*u == 0) {
*u = *v;
return;
}
if (*v == 0 || lg == 0)
return;
pus(*u, lg), pus(*v, lg);
merge(&ll[*u], &ll[*v], lg - 1), merge(&rr[*u], &rr[*v], lg - 1);
pul(*u);
}
void update_or(int u, int lg, int x) {
if (u == 0)
return;
if ((x & msk0[u] & msk1[u]) == 0) {
put(u, lg, x & msk0[u]);
return;
}
pus(u, lg);
if ((x & 1 << lg - 1) != 0)
put(ll[u], lg - 1, 1 << lg - 1), merge(&rr[u], &ll[u], lg - 1), ll[u] = 0;
update_or(ll[u], lg - 1, x), update_or(rr[u], lg - 1, x);
pul(u);
}
int query(int u, int lg, int l, int r, int ql, int qr) {
int m;
if (qr <= l || r <= ql || u == 0)
return 0;
if (ql <= l && r <= qr)
return sz[u];
pus(u, lg);
m = (l + r) / 2;
return query(ll[u], lg - 1, l, m, ql, qr) + query(rr[u], lg - 1, m, r, ql, qr);
}
int main() {
int n, q, i, u;
scanf("%d%d", &n, &q);
u = 0;
for (i = 0; i < n; i++) {
int a;
scanf("%d", &a);
u = add(u, LG, a);
}
while (q--) {
int type, l, r;
scanf("%d%d%d", &type, &l, &r), r++;
if (type != 4) {
int x, v;
scanf("%d", &x);
split(&u, &v, LG, 0, B, l, r);
if (type == 1)
put(v, LG, B - 1), update_or(v, LG, x ^ B - 1), put(v, LG, B - 1);
else if (type == 2)
update_or(v, LG, x);
else
put(v, LG, x);
merge(&u, &v, LG);
} else
printf("%d\n", query(u, LG, 0, B, l, r));
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<stdio.h>
const int maxn=200005,maxk=maxn*50;
int n,q,k,rt,cnt;
int lc[maxk],rc[maxk],lazy[maxk],Vand[maxk],Vor[maxk],res[maxk];
inline void swp(int &a,int &b){
a+=b,b=a-b,a-=b;
}
inline void pushup(int now){
Vand[now]=Vand[lc[now]]|Vand[rc[now]];
Vor[now]=Vor[lc[now]]|Vor[rc[now]];
res[now]=res[lc[now]]+res[rc[now]];
}
void insert(int dep,int &now,int val){
if(now==0)
now=++cnt;
if(dep==0){
Vand[now]=(k^val),Vor[now]=val,res[now]=1;
return ;
}
if(((val>>(dep-1))&1)==0)
insert(dep-1,lc[now],val);
else insert(dep-1,rc[now],val);
pushup(now);
}
void getxor(int dep,int now,int val){
if(now==0)
return ;
if((val>>(dep-1))&1)
swp(lc[now],rc[now]);
int Va=Vand[now],Vo=Vor[now];
Vand[now]=(Va&(k^val))|(Vo&val);//
Vor[now]=(Vo&(k^val))|(Va&val);
lazy[now]^=val;
}
void pushdown(int dep,int now){
if(lazy[now]==0)
return ;
getxor(dep-1,lc[now],lazy[now]),getxor(dep-1,rc[now],lazy[now]);
lazy[now]=0;
}
void split(int dep,int &x,int &y,int l,int r,int L,int R){
if(x==0||R<l||r<L){
y=0;
return ;
}
if(L<=l&&r<=R){
y=x,x=0;
return ;
}
int mid=(l+r)>>1;
pushdown(dep,x),y=++cnt;
split(dep-1,lc[x],lc[y],l,mid,L,R),split(dep-1,rc[x],rc[y],mid+1,r,L,R);
pushup(x),pushup(y);
}
void merge(int dep,int &x,int &y){
if(x==0){
x=y;
return ;
}
if(y==0||dep==0)
return ;
pushdown(dep,x),pushdown(dep,y);
merge(dep-1,lc[x],lc[y]),merge(dep-1,rc[x],rc[y]);
pushup(x);
}
void getor(int dep,int now,int val){
if(now==0)
return ;
if((val&Vand[now]&Vor[now])==0){
getxor(dep,now,val&Vand[now]);
return ;
}
pushdown(dep,now);
if((val>>(dep-1))&1){
getxor(dep-1,lc[now],1<<(dep-1));
merge(dep-1,rc[now],lc[now]);
lc[now]=0;
}
getor(dep-1,lc[now],val),getor(dep-1,rc[now],val);
pushup(now);
}
int query(int dep,int now,int l,int r,int L,int R){
if(now==0||R<l||r<L)
return 0;
if(L<=l&&r<=R)
return res[now];
int mid=(l+r)>>1;
pushdown(dep,now);
return query(dep-1,lc[now],l,mid,L,R)+query(dep-1,rc[now],mid+1,r,L,R);
}
int main(){
scanf("%d%d",&n,&q),k=(1<<20)-1;
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
insert(20,rt,x);
}
for(int i=1;i<=q;i++){
int t,x,y,z;
scanf("%d",&t);
if(t==4){
scanf("%d%d",&x,&y);
printf("%d\n",query(20,rt,0,k,x,y));
continue;
}
int now;
scanf("%d%d%d",&x,&y,&z);
split(20,rt,now,0,k,x,y);
if(t==1)
getxor(20,now,k),getor(20,now,z^k),getxor(20,now,k);
if(t==2)
getor(20,now,z);
if(t==3)
getxor(20,now,z);
merge(20,rt,now);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
const int B=20;
int n,q,rt=1,cnt=1;
int t0[15000000],t1[15000000],sz[15000000],s[2][15000000],lz[15000000];
void pushup(int id,int d){
sz[id]=sz[s[0][id]]+sz[s[1][id]];
t0[id]=t0[s[0][id]]|t0[s[1][id]];
t1[id]=t1[s[0][id]]|t1[s[1][id]];
if(s[0][id])t0[id]|=(1<<d);
if(s[1][id])t1[id]|=(1<<d);
}
void tag(int id,int x,int d){
if(!id||d==-1)return;
if(x&(1<<d))swap(s[0][id],s[1][id]);
int tmp=(t0[id]^t1[id])&x;
t0[id]^=tmp,t1[id]^=tmp;
lz[id]^=x;
}
void pushdown(int id,int d){
if(lz[id]){
tag(s[0][id],lz[id],d-1);
tag(s[1][id],lz[id],d-1);
lz[id]=0;
}
}
void ins(int id,int x,int d){
if(d==-1){
sz[id]=1;
return;
}
if((1<<d)&x){
if(!s[1][id])s[1][id]=++cnt;
ins(s[1][id],x,d-1);
}else{
if(!s[0][id])s[0][id]=++cnt;
ins(s[0][id],x,d-1);
}
pushup(id,d);
}
void split(int id,int d,int p,int &x,int &y){
if(id==0){
x=y=0;
return;
}
if(d==-1){
x=id,y=0;
return;
}
pushdown(id,d);
if(p&(1<<d)){
x=id,y=++cnt;
split(s[1][x],d-1,p,s[1][x],s[1][y]);
}else{
x=++cnt,y=id;
split(s[0][y],d-1,p,s[0][x],s[0][y]);
}
pushup(x,d),pushup(y,d);
}
int merge(int id1,int id2,int d){
if(!id1||!id2)return id1|id2;
if(d==-1)return id1;
pushdown(id1,d),pushdown(id2,d);
s[0][id1]=merge(s[0][id1],s[0][id2],d-1);
s[1][id1]=merge(s[1][id1],s[1][id2],d-1);
pushup(id1,d);
return id1;
}
void AND(int id,int p,int d){
if(!id||(!((1<<p)&t1[id])))return;
if(!((1<<p)&t0[id])){
tag(id,1<<p,d);
return;
}
pushdown(id,d);
if(d==p){
s[0][id]=merge(s[0][id],s[1][id],d-1);
s[1][id]=0;
pushup(id,d);
return;
}
AND(s[0][id],p,d-1);
AND(s[1][id],p,d-1);
pushup(id,d);
}
void OR(int id,int p,int d){
if(!id||(!((1<<p)&t0[id])))return;
if(!((1<<p)&t1[id])){
tag(id,1<<p,d);
return;
}
pushdown(id,d);
if(d==p){
s[1][id]=merge(s[0][id],s[1][id],d-1);
s[0][id]=0;
pushup(id,d);
return;
}
OR(s[0][id],p,d-1);
OR(s[1][id],p,d-1);
pushup(id,d);
}
int main(){
scanf("%d%d",&n,&q);
while(n--){
int x;scanf("%d",&x);
ins(1,x,B-1);
}
while(q--){
int t,l,r,x,lr=0,rr=0;
scanf("%d%d%d",&t,&l,&r);
if(l>0)split(rt,B-1,l-1,lr,rt);
split(rt,B-1,r,rt,rr);
if(t==1){
scanf("%d",&x);
for(int i=0;i<B;i++)if(!(x&(1<<i)))AND(rt,i,B-1);
}
if(t==2){
scanf("%d",&x);
for(int i=0;i<B;i++)if(x&(1<<i))OR(rt,i,B-1);
}
if(t==3){
scanf("%d",&x);
tag(rt,x,B-1);
}
if(t==4)printf("%d\n",sz[rt]);
rt=merge(merge(lr,rt,B-1),rr,B-1);
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
#define ll long long
#define N 200015
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n;i>=a;i--)
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define lowbit(i) ((i)&(-i))
#define VI vector<int>
#define all(x) x.begin(),x.end()
#define SZ(x) ((int)x.size())
using namespace std;
int n,q,a[N];
const int all = (1<<20)-1;
int ls[N<<5],rs[N<<5],lz[N<<5],t0[N<<5],t1[N<<5],tr[N<<5],rt,tot;
void pushup(int p){
tr[p] = tr[ls[p]]+tr[rs[p]];
t0[p] = t0[ls[p]]|t0[rs[p]];
t1[p] = t1[ls[p]]|t1[rs[p]];
}
void Xor(int p,int dep,int x){
if(!p) return;
if(x>>(dep-1)&1) swap(ls[p],rs[p]);
int v0 = (t1[p]&x)|(t0[p]&(~x)),v1 = (t0[p]&x)|(t1[p]&(~x));
t0[p] = v0; t1[p] = v1; lz[p] ^= x;
}
void pushdown(int p,int dep){
if(lz[p]){
Xor(ls[p],dep-1,lz[p]);
Xor(rs[p],dep-1,lz[p]);
lz[p] = 0;
}
}
void Split(int &u,int &v,int dep,int l,int r,int a,int b){
if(a <= l && r <= b){
v = u; u = 0;
return;
}
pushdown(u,dep);
v = ++tot;
int mid = (l+r)>>1;
if(a <= mid) Split(ls[u],ls[v],dep-1,l,mid,a,b);
if(b > mid) Split(rs[u],rs[v],dep-1,mid+1,r,a,b);
pushup(u); pushup(v);
}
void merge(int &u,int &v,int dep){
if(!u) return u = v,void();
if(!v || !dep) return;
pushdown(u,dep); pushdown(v,dep);
merge(ls[u],ls[v],dep-1); merge(rs[u],rs[v],dep-1);
pushup(u);
}
void ins(int &p,int x,int dep){
if(!p) p = ++tot;
if(!dep){
tr[p] = 1;
t0[p] = x^all;
t1[p] = x;
return;
}
if(x>>(dep-1)&1) ins(rs[p],x,dep-1);
else ins(ls[p],x,dep-1);
pushup(p);
}
void Or(int p,int dep,int x){
if(!p || !dep) return;
if(!(x&t0[p]&t1[p])){
Xor(p,dep,x&t0[p]);
return;
}
pushdown(p,dep);
if(x>>(dep-1)&1){
Xor(ls[p],dep-1,1<<(dep-1));
merge(rs[p],ls[p],dep-1);
ls[p] = 0;
}
Or(ls[p],dep-1,x);
Or(rs[p],dep-1,x);
pushup(p);
}
int query(int p,int dep,int l,int r,int x,int y){
if(x <= l && r <= y) return tr[p];
int mid = (l+r)>>1;
pushdown(p,dep);
int res = 0;
if(x <= mid) res += query(ls[p],dep-1,l,mid,x,y);
if(y > mid) res += query(rs[p],dep-1,mid+1,r,x,y);
return res;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
scanf("%d%d",&n,&q);
rep(i,1,n){
int x; scanf("%d",&x);
ins(rt,x,20);
}
while(q--){
int typ,l,r,x;
scanf("%d%d%d",&typ,&l,&r);
if(typ <= 3){
int v;
scanf("%d",&x);
Split(rt,v,20,0,all,l,r);
if(typ == 1) Xor(v,20,all),Or(v,20,x^all),Xor(v,20,all);
if(typ == 2) Or(v,20,x);
if(typ == 3) Xor(v,20,x);
merge(rt,v,20);
}else{
printf("%d\n",query(rt,20,0,all,l,r));
}
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <cstdio>
#include <cassert>
#include <utility>
#include <functional>
//numbers up to 2^MAXLOGX-1
const int MAXLOGX=20;
template<int k>
struct Trie{
Trie<k-1>* chd[2];
int cnt;
int lazy;
int has[2];
int get_cnt(){
assert(this!=NULL);
return cnt;
}
int get_has(int d){
assert(this!=NULL);
push();
assert(has[d]<(1<<(k+1)));
return has[d];
}
Trie(Trie<k-1>* l,Trie<k-1>* r):chd{l,r},cnt(0),lazy(0),has{0,0}{
if(l){
cnt+=l->get_cnt();
has[0]|=l->get_has(0)|(1<<k);
has[1]|=l->get_has(1);
}
if(r){
cnt+=r->get_cnt();
has[0]|=r->get_has(0);
has[1]|=r->get_has(1)|(1<<k);
}
assert(has[0]<(1<<(k+1)));
assert(has[1]<(1<<(k+1)));
}
void push(){
assert(lazy<(1<<(k+1)));
if(!lazy) return;
//handle kth bit
if(lazy&(1<<k)){
std::swap(chd[0],chd[1]);
if((has[0]^has[1])&(1<<k)){
has[0]^=(1<<k);
has[1]^=(1<<k);
}
lazy^=(1<<k);
}
//handle rest of bits
int flip=(has[0]^has[1])&lazy;
has[0]^=flip;
has[1]^=flip;
if(chd[0]) chd[0]->lazy^=lazy;
if(chd[1]) chd[1]->lazy^=lazy;
lazy=0;
assert(has[0]<(1<<(k+1)));
assert(has[1]<(1<<(k+1)));
}
};
template<>
struct Trie<-1>{
int lazy;
Trie():lazy(0){
}
int get_cnt(){
assert(this!=NULL);
return 1;
}
int get_has(int d){
assert(this!=NULL);
return 0;
}
};
template<int k>
Trie<k>* create(int x){
if(x&(1<<k)){
return new Trie<k>(NULL,create<k-1>(x));
}else{
return new Trie<k>(create<k-1>(x),NULL);
}
}
template<>
Trie<-1>* create(int x){
return new Trie<-1>();
}
template<int k>
std::pair<Trie<k-1>*,Trie<k-1>*> destruct(Trie<k>* a){
assert(a!=NULL);
a->push();
auto res=std::make_pair(a->chd[0],a->chd[1]);
delete a;
return res;
}
template<int k>
Trie<k>* join(Trie<k-1>* l,Trie<k-1>* r){
if(l==NULL&&r==NULL) return NULL;
return new Trie<k>(l,r);
}
template<int k>
Trie<k>* merge(Trie<k>* a,Trie<k>* b){
if(!a) return b;
if(!b) return a;
auto aa=destruct(a);
auto bb=destruct(b);
Trie<k-1>* l=merge<k-1>(aa.first,bb.first);
Trie<k-1>* r=merge<k-1>(aa.second,bb.second);
return join<k>(l,r);
}
template<>
Trie<-1>* merge<-1>(Trie<-1>* a,Trie<-1>* b){
if(!a) return b;
if(!b) return a;
delete b;
return a;
}
template<int k>
//<thres and >=thres
std::pair<Trie<k>*,Trie<k>*> split(Trie<k>* a,int thres){
if(a==NULL){
return {NULL,NULL};
}
if(thres<=0) return {NULL,a};
if(thres>=(1<<(k+1))) return {a,NULL};
assert(k>=0);
auto aa=destruct(a);
if(thres<(1<<k)){
Trie<k-1>* l,*r;
std::tie(l,r)=split<k-1>(aa.first,thres);
return std::make_pair(join<k>(l,NULL),join<k>(r,aa.second));
}else if(thres>(1<<k)){
Trie<k-1>* l,*r;
std::tie(l,r)=split<k-1>(aa.second,thres-(1<<k));
return std::make_pair(join<k>(aa.first,l),join<k>(NULL,r));
}else{
return std::make_pair(join<k>(aa.first,NULL),join<k>(NULL,aa.second));
}
}
template<>
std::pair<Trie<-1>*,Trie<-1>*> split<-1>(Trie<-1>* a,int thres){
assert(0);
}
template<int k>
Trie<k>* update(Trie<k>* a,int val){
if(a==NULL) return NULL;
a->push();
assert(val<(1<<(k+1)));
if((val&a->has[0]&a->has[1])==0){
a->lazy^=(val&a->has[0]);
return a;
}
Trie<k-1>* l,*r;
std::tie(l,r)=destruct(a);
l=update<k-1>(l,val&~(1<<k));
r=update<k-1>(r,val&~(1<<k));
if(val&(1<<k)){
return join<k>(NULL,merge<k-1>(l,r));
}else{
return join<k>(l,r);
}
}
template<>
Trie<-1>* update<-1>(Trie<-1>* a,int val){
return a;
}
int main(){
Trie<MAXLOGX-1>* root=NULL;
int N,Q;
scanf("%d %d",&N,&Q);
for(int i=0;i<N;i++){
int A;
scanf("%d",&A);
root=merge(root,create<MAXLOGX-1>(A));
}
for(int i=0;i<Q;i++){
int T,L,R;
scanf("%d %d %d",&T,&L,&R);
Trie<MAXLOGX-1>* left,*right;
std::tie(left,root)=split(root,L);
std::tie(root,right)=split(root,R+1);
if(T==4){
printf("%d\n",root?root->cnt:0);
}else{
int X;
scanf("%d",&X);
if(root!=NULL){
if(T==1){
root->lazy^=((1<<MAXLOGX)-1);
root=update(root,X^((1<<MAXLOGX)-1));
root->lazy^=((1<<MAXLOGX)-1);
}else if(T==2){
root=update(root,X);
}else if(T==3){
assert(X<(1<<MAXLOGX));
root->lazy^=X;
}
}
}
root=merge(root,left);
root=merge(root,right);
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | //因为,已经我不想写代码了啊
#include<stdio.h>
const int maxn=200005,maxk=maxn*40;
int n,q,k,rt,cnt;
int lc[maxk],rc[maxk],lazy[maxk],Vand[maxk],Vor[maxk],res[maxk];
inline void swp(int &a,int &b){
a+=b,b=a-b,a-=b;
}
inline void pushup(int now){
Vand[now]=Vand[lc[now]]|Vand[rc[now]];
Vor[now]=Vor[lc[now]]|Vor[rc[now]];
res[now]=res[lc[now]]+res[rc[now]];
}
void insert(int dep,int &now,int val){
if(now==0)
now=++cnt;
if(dep==0){
Vand[now]=(k^val),Vor[now]=val,res[now]=1;
return ;
}
if(((val>>(dep-1))&1)==0)
insert(dep-1,lc[now],val);
else insert(dep-1,rc[now],val);
pushup(now);
}
void getxor(int dep,int now,int val){
if(now==0)
return ;
if((val>>(dep-1))&1)
swp(lc[now],rc[now]);
int Va=Vand[now],Vo=Vor[now];
Vand[now]=(Va&(k^val))|(Vo&val);
Vor[now]=(Vo&(k^val))|(Va&val);
lazy[now]^=val;
}
void pushdown(int dep,int now){
if(lazy[now]==0)
return ;
getxor(dep-1,lc[now],lazy[now]),getxor(dep-1,rc[now],lazy[now]);
lazy[now]=0;
}
void split(int dep,int &x,int &y,int l,int r,int L,int R){
if(x==0||R<l||r<L){
y=0;
return ;
}
if(L<=l&&r<=R){
y=x,x=0;
return ;
}
int mid=(l+r)>>1;
pushdown(dep,x),y=++cnt;
split(dep-1,lc[x],lc[y],l,mid,L,R),split(dep-1,rc[x],rc[y],mid+1,r,L,R);
pushup(x),pushup(y);
}
void merge(int dep,int &x,int &y){
if(x==0){
x=y;
return ;
}
if(y==0||dep==0)
return ;
pushdown(dep,x),pushdown(dep,y);
merge(dep-1,lc[x],lc[y]),merge(dep-1,rc[x],rc[y]);
pushup(x);
}
void getor(int dep,int now,int val){
if(now==0)
return ;
int add=val&Vand[now];
if((add&Vor[now])==0){
getxor(dep,now,add);
return ;
}
pushdown(dep,now);
if((val>>(dep-1))&1){
//getxor(dep-1,lc[now],1<<(dep-1));
merge(dep-1,rc[now],lc[now]);
lc[now]=0;
}
getor(dep-1,lc[now],val),getor(dep-1,rc[now],val);
pushup(now);
}
int query(int dep,int now,int l,int r,int L,int R){
if(now==0||R<l||r<L)
return 0;
if(L<=l&&r<=R)
return res[now];
int mid=(l+r)>>1;
pushdown(dep,now);
return query(dep-1,lc[now],l,mid,L,R)+query(dep-1,rc[now],mid+1,r,L,R);
}
void read(int &x){
x=0;
char c=getchar();
for(;c<'0'||c>'9';c=getchar());
for(;c>='0'&&c<='9';c=getchar())
x=x*10+c-48;
}
int main(){
scanf("%d%d",&n,&q),k=(1<<20)-1;
for(int i=1;i<=n;i++){
int x;
read(x);
insert(20,rt,x);
}
for(int i=1;i<=q;i++){
int t,x,y,z,now;
read(t);
if(t==4){
read(x),read(y);
printf("%d\n",query(20,rt,0,k,x,y));
continue;
}
read(x),read(y),read(z);
split(20,rt,now,0,k,x,y);
if(t==1)
getxor(20,now,k),getor(20,now,z^k),getxor(20,now,k);
if(t==2)
getor(20,now,z);
if(t==3)
getxor(20,now,z);
merge(20,rt,now);
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<stdio.h>
const int maxn=200005,maxk=maxn*40;
int n,q,k,rt,cnt;
int lc[maxk],rc[maxk],lazy[maxk],Vand[maxk],Vor[maxk],res[maxk];
inline void swp(int &a,int &b){
a+=b,b=a-b,a-=b;
}
inline void pushup(int now){
Vand[now]=Vand[lc[now]]|Vand[rc[now]];
Vor[now]=Vor[lc[now]]|Vor[rc[now]];
res[now]=res[lc[now]]+res[rc[now]];
}
void insert(int dep,int &now,int val){
if(now==0)
now=++cnt;
if(dep==0){
Vand[now]=(k^val),Vor[now]=val,res[now]=1;
return ;
}
if(((val>>(dep-1))&1)==0)
insert(dep-1,lc[now],val);
else insert(dep-1,rc[now],val);
pushup(now);
}
void getxor(int dep,int now,int val){
if(now==0)
return ;
if((val>>(dep-1))&1)
swp(lc[now],rc[now]);
int Va=Vand[now],Vo=Vor[now];
Vand[now]=(Va&(k^val))|(Vo&val);
Vor[now]=(Vo&(k^val))|(Va&val);
lazy[now]^=val;
}
void pushdown(int dep,int now){
if(lazy[now]==0)
return ;
getxor(dep-1,lc[now],lazy[now]),getxor(dep-1,rc[now],lazy[now]);
lazy[now]=0;
}
void split(int dep,int &x,int &y,int l,int r,int L,int R){
if(x==0||R<l||r<L){
y=0;
return ;
}
if(L<=l&&r<=R){
y=x,x=0;
return ;
}
int mid=(l+r)>>1;
pushdown(dep,x),y=++cnt;
split(dep-1,lc[x],lc[y],l,mid,L,R),split(dep-1,rc[x],rc[y],mid+1,r,L,R);
pushup(x),pushup(y);
}
void merge(int dep,int &x,int &y){
if(x==0){
x=y;
return ;
}
if(y==0||dep==0)
return ;
pushdown(dep,x),pushdown(dep,y);
merge(dep-1,lc[x],lc[y]),merge(dep-1,rc[x],rc[y]);
pushup(x);
}
void getor(int dep,int now,int val){
if(now==0)
return ;
int add=val&Vand[now];
if((add&Vor[now])==0){
getxor(dep,now,add);
return ;
}
pushdown(dep,now);
if((val>>(dep-1))&1){
//getxor(dep-1,lc[now],1<<(dep-1));
merge(dep-1,rc[now],lc[now]);
lc[now]=0;
}
getor(dep-1,lc[now],val),getor(dep-1,rc[now],val);
pushup(now);
}
int query(int dep,int now,int l,int r,int L,int R){
if(now==0||R<l||r<L)
return 0;
if(L<=l&&r<=R)
return res[now];
int mid=(l+r)>>1;
pushdown(dep,now);
return query(dep-1,lc[now],l,mid,L,R)+query(dep-1,rc[now],mid+1,r,L,R);
}
void read(int &x){
x=0;
char c=getchar();
for(;c<'0'||c>'9';c=getchar());
for(;c>='0'&&c<='9';c=getchar())
x=x*10+c-48;
}
int main(){
scanf("%d%d",&n,&q),k=(1<<20)-1;
for(int i=1;i<=n;i++){
int x;
read(x);
insert(20,rt,x);
}
for(int i=1;i<=q;i++){
int t,x,y,z,now;
read(t);
if(t==4){
read(x),read(y);
printf("%d\n",query(20,rt,0,k,x,y));
continue;
}
read(x),read(y),read(z);
split(20,rt,now,0,k,x,y);
if(t==1)
getxor(20,now,k),getor(20,now,z^k),getxor(20,now,k);
if(t==2)
getor(20,now,z);
if(t==3)
getxor(20,now,z);
merge(20,rt,now);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
const int M = 2111111, all = (1<<20)-1;
template<typename T>
void read(T &x){
int ch = getchar(); x = 0; bool f = false;
for(;ch < '0' || ch > '9';ch = getchar()) f |= ch == '-';
for(;ch >= '0' && ch <= '9';ch = getchar()) x = x * 10 + ch - '0';
if(f) x = -x;
}
int n, q, rt, cnt, stk[M], tp, ch[M][2], seg[M][2], siz[M], tag[M];
int crep(){
int x = tp ? stk[tp--] : ++cnt;
ch[x][0] = ch[x][1] = seg[x][0] = seg[x][1] = tag[x] = siz[x] = 0;
return x;
}
void pup(int x){
siz[x] = siz[ch[x][0]] + siz[ch[x][1]];
for(int _ = 0;_ < 2;++ _)
seg[x][_] = seg[ch[x][0]][_] | seg[ch[x][1]][_];
}
void ptag(int x, int val, int d = 19){
if(val >> d & 1) swap(ch[x][0], ch[x][1]);
int _0 = (seg[x][0] & ~val) | (seg[x][1] & val), _1 = (seg[x][0] & val) | (seg[x][1] & ~val);
seg[x][0] = _0; seg[x][1] = _1; tag[x] ^= val;
}
void pdown(int x, int d){
if(tag[x]){ptag(ch[x][0], tag[x], d-1); ptag(ch[x][1], tag[x], d-1); tag[x] = 0;}
}
void ins(int val, int &x = rt, int d = 19){
if(!x) x = crep();
if(!~d){siz[x] = 1; seg[x][0] = all ^ val; seg[x][1] = val; return;}
ins(val, ch[x][val>>d&1], d-1); pup(x);
}
int qry(int ql, int qr, int x = rt, int L = 0, int R = all, int d = 19){
if(!x) return 0;
if(ql <= L && R <= qr) return siz[x];
int mid = L+R>>1, ans = 0; pdown(x, d);
if(ql <= mid) ans = qry(ql, qr, ch[x][0], L, mid, d-1);
if(mid < qr) ans += qry(ql, qr, ch[x][1], mid+1, R, d-1);
return ans;
}
void split(int &x, int &y, int ql, int qr, int L = 0, int R = all, int d = 19){
if(!x) return;
if(ql <= L && R <= qr){y = x; x = 0; return;}
int mid = L+R>>1; y = crep(); pdown(x, d);
if(ql <= mid) split(ch[x][0], ch[y][0], ql, qr, L, mid, d-1);
if(mid < qr) split(ch[x][1], ch[y][1], ql, qr, mid+1, R, d-1);
pup(x); pup(y);
}
void merge(int &x, int y, int d = 19){
if(!x || !y){x |= y; return;}
if(d >= 0){
pdown(x, d); pdown(y, d);
merge(ch[x][0], ch[y][0], d-1);
merge(ch[x][1], ch[y][1], d-1);
pup(x);
} stk[++tp] = y;
}
void chan(int x, int val, int d = 19){
if(!x) return;
if(!(val & seg[x][0] & seg[x][1])){
ptag(x, val & seg[x][0], d); return;
} pdown(x, d);
if(val >> d & 1){
ptag(ch[x][0], 1<<d, d-1);
merge(ch[x][1], ch[x][0], d-1);
ch[x][0] = 0;
} else chan(ch[x][0], val, d-1);
chan(ch[x][1], val, d-1); pup(x);
}
int main(){
read(n); read(q);
while(n --){int x; read(x); ins(x);}
while(q --){
int op, l, r, x, u; read(op); read(l); read(r);
if(op == 4) printf("%d\n", qry(l, r));
else {
read(x); split(rt, u, l, r);
if(op == 1){
ptag(u, all); chan(u, x ^ all); ptag(u, all);
} else if(op == 2) chan(u, x); else ptag(u, x);
merge(rt, u);
}
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
struct Node {
int cnt;
int type;
int tag;
int both;
int d;
Node *lc, *rc;
};
Node *null = new Node();
Node *newNode(int d) {
Node *t = new Node();
*t = *null;
t->d = d;
return t;
}
Node *merge(Node *, Node *);
void maintain(Node *);
void pull(Node *t) {
if (t->d == 0) {
return;
} else {
t->cnt = t->lc->cnt + t->rc->cnt;
t->both = t->lc->both | t->rc->both;
if (t->lc != null && t->rc != null) {
t->both |= 1 << t->d - 1;
}
maintain(t);
}
}
void apply(Node *t, int type, int tag) {
if (t == null) {
return;
} else if (t->d == 0) {
return;
} else {
t->type |= type;
t->tag |= tag & type;
t->tag &= tag | ~type;
t->tag ^= tag & ~type;
maintain(t);
}
}
void push(Node *t) {
if (t->type >> t->d - 1 & 1) {
if (t->tag >> t->d - 1 & 1) {
t->rc = merge(t->lc, t->rc);
t->lc = null;
apply(t->rc, t->type, t->tag);
} else {
t->lc = merge(t->lc, t->rc);
t->rc = null;
apply(t->lc, t->type, t->tag);
}
} else {
if (t->tag >> t->d - 1 & 1) {
swap(t->lc, t->rc);
}
apply(t->lc, t->type, t->tag);
apply(t->rc, t->type, t->tag);
}
t->type = t->tag = 0;
}
void maintain(Node *t) {
if (t == null) {
return;
} else if (!(t->both & t->type)) {
return;
} else {
push(t);
maintain(t->lc);
maintain(t->rc);
pull(t);
}
}
Node *merge(Node *a, Node *b) {
if (a == null) {
return b;
}
if (b == null) {
return a;
}
if (a->d == 0) {
a->cnt = a->cnt | b->cnt;
delete b;
return a;
}
push(a);
push(b);
a->lc = merge(a->lc, b->lc);
a->rc = merge(a->rc, b->rc);
delete b;
pull(a);
return a;
}
void add(Node *&t, int v, int d) {
if (t == null) {
t = newNode(d);
}
if (d == 0) {
t->cnt = 1;
} else {
if (~v >> d - 1 & 1) {
add(t->lc, v, d - 1);
} else {
add(t->rc, v, d - 1);
}
pull(t);
}
}
vector<pair<int, Node*>> nodes;
void modify1(Node *&t, int L, int R, int l, int r, int x, int type) {
if (L >= r || R <= l) {
return;
}
if (t == null) {
return;
}
if (L >= l && R <= r) {
Node *backUp = t;
t = null;
if (type == 1) {
apply(backUp, ~x, 0);
nodes.emplace_back(L & x, backUp);
} else if (type == 2) {
apply(backUp, x, x);
nodes.emplace_back(L | x, backUp);
} else {
apply(backUp, 0, x);
nodes.emplace_back(L ^ x, backUp);
}
return;
}
int m = (L + R) / 2;
push(t);
modify1(t->lc, L, m, l, r, x, type);
modify1(t->rc, m, R, l, r, x, type);
pull(t);
}
void modify2(Node *&t, int l, int r, int d) {
if (t == null) {
t = newNode(d);
}
while (l < r && nodes[l].second->d == d) {
t = merge(t, nodes[l].second);
l++;
}
if (l == r) {
return;
}
int mid = l;
while (mid < r && (~nodes[mid].first >> d - 1 & 1)) {
mid++;
}
push(t);
modify2(t->lc, l, mid, d - 1);
modify2(t->rc, mid, r, d - 1);
pull(t);
}
int query(Node *t, int L, int R, int l, int r) {
if (t == null) {
return 0;
}
if (L >= r || R <= l) {
return 0;
}
if (L >= l && R <= r) {
return t->cnt;
}
int m = (L + R) / 2;
push(t);
int leftCnt = query(t->lc, L, m, l, r);
int rightCnt = query(t->rc, m, R, l, r);
return leftCnt + rightCnt;
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
null->cnt = null->type = null->tag = null->both = 0;
null->lc = null->rc = null;
int n, q;
cin >> n >> q;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
Node *root = null;
for (int i = 0; i < n; i++) {
add(root, a[i], 20);
}
while (q--) {
int op, l, r;
cin >> op >> l >> r;
r++;
if (op < 4) {
int x;
cin >> x;
modify1(root, 0, 1 << 20, l, r, x, op);
sort(nodes.begin(), nodes.end(), [&](const pair<int, Node*> &a, const pair<int, Node*> &b) {
int va = a.first & ~((1 << a.second->d) - 1);
int vb = b.first & ~((1 << b.second->d) - 1);
if (va != vb) {
return va < vb;
} else {
return a.second->d > b.second->d;
}
});
modify2(root, 0, nodes.size(), 20);
nodes.clear();
} else {
cout << query(root, 0, 1 << 20, l, r) << "\n";
}
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e7 + 5, K = 20, W = 1 << K;
int n, q, tot;
int ls[N], rs[N], sum[N], or0[N], or1[N], tag[N], dep[N];
void pushup(int p) {
sum[p] = sum[ls[p]] + sum[rs[p]];
or0[p] = or0[ls[p]] | or0[rs[p]];
or1[p] = or1[ls[p]] | or1[rs[p]];
}
void Tag(int p, int k) {
if (!p) return ;
tag[p] ^= k;
if (dep[p] != -1 && k >> dep[p] & 1) swap(ls[p], rs[p]);
int tmp0 = (or0[p] & (~k)) | (or1[p] & k);
int tmp1 = (or1[p] & (~k)) | (or0[p] & k);
or0[p] = tmp0, or1[p] = tmp1;
}
void pushdown(int p) {
if (!tag[p]) return ;
Tag(ls[p], tag[p]), Tag(rs[p], tag[p]);
tag[p] = 0;
}
void insert(int &p, int k, int d) {
if (!p) p = ++tot;
dep[p] = d;
if (d == -1) {
or1[p] = k, or0[p] = k ^ (W - 1), sum[p] = 1;
return ;
}
insert((k >> d & 1) ? rs[p] : ls[p], k, d - 1);
pushup(p);
}
void split(int &p, int &q, int l, int r, int x, int y) {
if (!p || y < l || x > r) return q = 0, void();
if (x <= l && r <= y) {
q = p, p = 0;
return ;
}
int mid = (l + r) >> 1;
pushdown(p), q = ++tot;
dep[q] = dep[p];
split(ls[p], ls[q], l, mid, x, y);
split(rs[p], rs[q], mid + 1, r, x, y);
pushup(p), pushup(q);
}
void merge(int &p, int q) {
if (!p || !q) return p = p + q, void();
pushdown(p), pushdown(q);
merge(ls[p], ls[q]);
merge(rs[p], rs[q]);
if (dep[p] != -1) pushup(p);
}
void modify(int p, int k) {
if (!p) return ;
if ((k & or0[p] & or1[p]) == 0) {
return Tag(p, k & or0[p]), void();
}
pushdown(p);
if (dep[p] != -1 && k >> dep[p] & 1) {
Tag(ls[p], 1 << dep[p]);
merge(rs[p], ls[p]), ls[p] = 0;
}
modify(ls[p], k), modify(rs[p], k);
pushup(p);
}
int main() {
scanf("%d%d", &n, &q);
int x = 0;
for (int i = 1; i <= n; i++) {
int v; scanf("%d", &v);
insert(x, v, K - 1);
}
while (q--) {
int t, l, r, y, k;
scanf("%d%d%d", &t, &l, &r);
split(x, y, 0, W - 1, l, r);
if (t == 1) {
scanf("%d", &k);
Tag(y, W - 1);
modify(y, k ^ (W - 1));
Tag(y, W - 1);
} else if (t == 2) {
scanf("%d", &k);
modify(y, k);
} else if (t == 3) {
scanf("%d", &k);
Tag(y, k);
} else {
printf("%d\n", sum[y]);
}
merge(x, y);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <list>
#include <cassert>
#include <climits>
#include <bitset>
#include <chrono>
#include <random>
using namespace std;
#define PB push_back
#define MP make_pair
#define SZ(v) ((int)(v).size())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define REP(i,n) FOR(i,0,n)
#define FORE(i,a,b) for(int i=(a);i<=(b);++i)
#define REPE(i,n) FORE(i,0,n)
#define FORSZ(i,a,v) FOR(i,a,SZ(v))
#define REPSZ(i,v) REP(i,SZ(v))
std::mt19937 rnd((int)std::chrono::steady_clock::now().time_since_epoch().count());
typedef long long ll;
ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
const int MAXN = 200000;
const int MAXQ = 100000;
const int NBIT = 20;
struct Node {
int prefix, bit;
int lazyset, lazyclear, lazyflip;
int cntleaf, bothmask;
int ch[2];
Node() { lazyset = lazyclear = lazyflip = 0; ch[0] = ch[1] = -1; }
};
int n, nq;
int a[MAXN];
int qkind[MAXQ], ql[MAXQ], qr[MAXQ], qval[MAXQ];
int qans[MAXQ];
vector<Node> nodes;
queue<int> pool;
void print(int x,int v=-1) {
REP(i, NBIT - 1 - nodes[x].bit) printf(" ");
printf("%d:", x); if (v != -1) printf("%d", v); printf("[pref=%d cntleaf=%d", nodes[x].prefix, nodes[x].cntleaf);
if (nodes[x].lazyset != 0) printf(" lazyset=%x", nodes[x].lazyset);
if (nodes[x].lazyclear != 0) printf(" lazyclear=%x", nodes[x].lazyclear);
if (nodes[x].lazyflip != 0) printf(" lazyflip=%x", nodes[x].lazyflip);
printf("]\n");
REP(v, 2) if (nodes[x].ch[v] != -1) assert(nodes[nodes[x].ch[v]].bit == nodes[x].bit - 1), print(nodes[x].ch[v], v);
}
void update(int x) {
nodes[x].cntleaf = (nodes[x].bit == -1 ? 1 : 0) + (nodes[x].ch[0] != -1 ? nodes[nodes[x].ch[0]].cntleaf : 0) + (nodes[x].ch[1] != -1 ? nodes[nodes[x].ch[1]].cntleaf : 0);
nodes[x].bothmask = (nodes[x].ch[0] != -1 && nodes[x].ch[1] != -1 ? (1 << nodes[x].bit) : 0) | (nodes[x].ch[0] != -1 ? nodes[nodes[x].ch[0]].bothmask : 0) | (nodes[x].ch[1] != -1 ? nodes[nodes[x].ch[1]].bothmask : 0);
}
int createnode() {
if (!pool.empty()) { int ret = pool.front(); pool.pop(); nodes[ret] = Node(); return ret; }
int ret = SZ(nodes); nodes.PB(Node()); return ret;
}
int createnode(int prefix, int bit) {
int ret = createnode();
nodes[ret].prefix = prefix, nodes[ret].bit = bit;
update(ret);
return ret;
}
void releasenode(int x) {
pool.push(x);
}
void applyset(int x, int val) {
nodes[x].prefix |= val & ~((1 << (nodes[x].bit + 1)) - 1);
assert((nodes[x].bothmask & val) == 0);
if (nodes[x].bit == -1) return;
if (val & (1 << nodes[x].bit)) {
if (nodes[x].ch[0] != -1) { assert(nodes[x].ch[1] == -1); swap(nodes[x].ch[0], nodes[x].ch[1]); }
}
nodes[x].lazyset |= val;
nodes[x].lazyclear &= ~val;
nodes[x].lazyflip &= ~val;
}
void applyclear(int x, int val) {
nodes[x].prefix &= ~(val & ~((1 << (nodes[x].bit + 1)) - 1));
assert((nodes[x].bothmask & val) == 0);
if (nodes[x].bit == -1) return;
if (val & (1 << nodes[x].bit)) {
if (nodes[x].ch[1] != -1) { assert(nodes[x].ch[0] == -1); swap(nodes[x].ch[0], nodes[x].ch[1]); }
}
nodes[x].lazyclear |= val;
nodes[x].lazyset &= ~val;
nodes[x].lazyflip &= ~val;
}
void applyflip(int x, int val) {
nodes[x].prefix ^= val & ~((1 << (nodes[x].bit + 1)) - 1);
if (nodes[x].bit == -1) return;
if (val & (1 << nodes[x].bit)) {
swap(nodes[x].ch[0], nodes[x].ch[1]);
}
nodes[x].lazyflip ^= val;
}
void push(int x) {
if (nodes[x].lazyset != 0) { REP(v, 2) if (nodes[x].ch[v] != -1) applyset(nodes[x].ch[v], nodes[x].lazyset); nodes[x].lazyset = 0; }
if (nodes[x].lazyclear != 0) { REP(v, 2) if (nodes[x].ch[v] != -1) applyclear(nodes[x].ch[v], nodes[x].lazyclear); nodes[x].lazyclear = 0; }
if (nodes[x].lazyflip != 0) { REP(v, 2) if (nodes[x].ch[v] != -1) applyflip(nodes[x].ch[v], nodes[x].lazyflip); nodes[x].lazyflip = 0; }
}
void merge(int x, int y) {
//printf("merge(%d,%d)\n", nodes[x].bit, nodes[y].bit);
//print(x);
//print(y);
push(x); push(y);
assert(nodes[x].bit == nodes[y].bit && nodes[x].prefix == nodes[y].prefix);
REP(v, 2) {
int xx = nodes[x].ch[v], yy = nodes[y].ch[v];
if (yy == -1) continue;
if (xx == -1) { nodes[x].ch[v] = yy; continue; }
merge(xx, yy);
}
update(x);
releasenode(y);
}
void insert(int x, int y) {
//printf("insert(%d,%d)\n", nodes[x].bit, nodes[y].bit);
assert(nodes[x].bit >= nodes[y].bit);
push(x); push(y);
if (nodes[x].bit == nodes[y].bit) {
merge(x, y);
} else {
int v = (nodes[y].prefix >> nodes[x].bit) & 1;
if (nodes[x].ch[v] == -1) {
int z = createnode(nodes[x].prefix | (v << nodes[x].bit), nodes[x].bit - 1);
nodes[x].ch[v] = z;
}
assert(nodes[nodes[x].ch[v]].bit == nodes[x].bit - 1);
insert(nodes[x].ch[v], y);
update(x);
}
}
bool extract(int x, int l, int r, int L, int R, vector<int>& lst) { // [l,r) and [L,R)
push(x);
if (L <= l && r <= R) {
lst.PB(x);
return true;
} else {
int m = l + (r - l) / 2;
if (nodes[x].ch[0] != -1 && L < m) {
bool rem = extract(nodes[x].ch[0], l, m, L, R, lst);
if (rem) nodes[x].ch[0] = -1;
}
if (nodes[x].ch[1] != -1 && m < R) {
bool rem = extract(nodes[x].ch[1], m, r, L, R, lst);
if (rem) nodes[x].ch[1] = -1;
}
if (nodes[x].ch[0] == -1 && nodes[x].ch[1] == -1) {
releasenode(x);
return true;
}
update(x);
return false;
}
}
void resolveclear(int x, int val) {
nodes[x].prefix &= ~(val & ~((1 << (nodes[x].bit + 1)) - 1));
if (nodes[x].bit == -1) return;
if ((nodes[x].bothmask & val) == 0) { applyclear(x, val); return; }
push(x);
if (val & (1 << nodes[x].bit)) {
if (nodes[x].ch[1] != -1) {
applyclear(nodes[x].ch[1], 1 << nodes[x].bit);
if (nodes[x].ch[0] == -1) swap(nodes[x].ch[0], nodes[x].ch[1]);
else { merge(nodes[x].ch[0], nodes[x].ch[1]); nodes[x].ch[1] = -1; }
}
}
REP(v, 2) if (nodes[x].ch[v] != -1) resolveclear(nodes[x].ch[v], val);
update(x);
}
void resolveset(int x, int val) {
nodes[x].prefix |= val & ~((1 << (nodes[x].bit + 1)) - 1);
if (nodes[x].bit == -1) return;
if ((nodes[x].bothmask & val) == 0) { applyset(x, val); return; }
push(x);
if (val & (1 << nodes[x].bit)) {
if (nodes[x].ch[0] != -1) {
applyset(nodes[x].ch[0], 1 << nodes[x].bit);
if (nodes[x].ch[1] == -1) swap(nodes[x].ch[0], nodes[x].ch[1]);
else { merge(nodes[x].ch[1], nodes[x].ch[0]); nodes[x].ch[0] = -1; }
}
}
REP(v, 2) if (nodes[x].ch[v] != -1) resolveset(nodes[x].ch[v], val);
update(x);
}
void resolveflip(int x, int val) {
applyflip(x, val);
}
void solve() {
sort(a, a + n);
n = unique(a, a + n) - a;
nodes.clear();
pool = queue<int>();
int root = createnode(0, NBIT - 1);
REP(i, n) insert(root, createnode(a[i], -1));
REP(i, nq) {
//printf("q%d\n", i);
//print(root);
vector<int> lst;
bool newroot = extract(root, 0, (1 << NBIT), ql[i], qr[i] + 1, lst);
//printf("SZ(lst)=%d\n", SZ(lst));
//for (int x : lst) print(x);
//if (!newroot) printf("root\n"), print(root), printf("done\n");
if (qkind[i] == 1) {
for (int x : lst) {
resolveclear(x, (1 << NBIT) - 1 - qval[i]);
}
}
if (qkind[i] == 2) {
for (int x : lst) {
resolveset(x, qval[i]);
}
}
if (qkind[i] == 3) {
for (int x : lst) {
resolveflip(x, qval[i]);
}
}
//if (qkind[i] != 4) for (int x : lst) print(x);
if (qkind[i] == 4) {
qans[i] = 0;
for (int x : lst) qans[i] += nodes[x].cntleaf;
}
if (newroot) root = createnode(0, NBIT - 1);
for (int x : lst) insert(root, x);
}
}
void run() {
scanf("%d%d", &n, &nq);
REP(i, n) scanf("%d", &a[i]);
REP(i, nq) {
scanf("%d%d%d", &qkind[i], &ql[i], &qr[i]);
if (qkind[i] != 4) scanf("%d", &qval[i]);
}
solve();
REP(i, nq) if (qkind[i] == 4) printf("%d\n", qans[i]);
}
int qansstupid[MAXQ];
void solvestupid() {
set<int> cur;
REP(i, n) cur.insert(a[i]);
REP(i, nq) {
int l = ql[i], r = qr[i];
auto it = cur.lower_bound(l);
qansstupid[i] = 0;
vector<int> rem;
while (it != cur.end() && *it <= r) {
++qansstupid[i];
rem.PB(*it);
cur.erase(it++);
}
for (int x : rem) {
if (qkind[i] == 1) x = x&qval[i];
if (qkind[i] == 2) x = x | qval[i];
if (qkind[i] == 3) x = x^qval[i];
cur.insert(x);
}
}
}
void stress() {
int mxbit = 20, mxn = 1000, mxq = 1000;
//int mxbit = 4, mxn = 10, mxq = 5;
REP(rep, 10000) {
int nbit = rnd() % mxbit + 1;
n = rnd() % min(mxn, 1 << nbit) + 1;
set<int> seen;
REP(i, n) while (true) { int x = rnd() % (1 << nbit); if (seen.count(x)) continue; seen.insert(x); a[i] = x; break; }
nq = rnd() % mxq + 1;
REP(i, nq) {
qkind[i] = rnd() % 4 + 1;
ql[i] = rnd() % (1 << nbit), qr[i] = rnd() % (1 << nbit); if (ql[i] > qr[i]) swap(ql[i], qr[i]);
if (qkind[i] != 4) qval[i] = rnd() % (1 << nbit);
}
//printf("%d %d\n", n, nq); REP(i, n) { if (i != 0) printf(" "); printf("%d", a[i]); } puts(""); REP(i, nq) { printf("%d %d %d", qkind[i], ql[i], qr[i]); if (qkind[i] != 4) printf(" %d", qval[i]); puts(""); }
solve();
solvestupid();
bool ok = true; REP(i, nq) if (qkind[i] == 4 && qans[i] != qansstupid[i]) ok = false;
if (ok) { printf("."); continue; }
printf("err\n");
}
}
int main() {
run();
//stress();
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
#define L(i, j, k) for(int i = (j); i <= (k); i++)
#define R(i, j, k) for(int i = (j); i >= (k); i--)
#define ll long long
#define sz(a) a.size()
#define vi vector<int>
using namespace std;
const int N = 2e5 + 7, M = N * 80, rk = 20, mx = (1 << rk) - 1;
int n, q, a[N];
int ch[M][2], to0[M], to1[M], only[M], v[M], tot;
int Nw() {
++tot, only[tot] = mx, to0[tot] = 0, to1[tot] = mx, v[tot] = 0;
return tot;
}
void upd(int x, int l) {
only[x] = (only[ch[x][0]] & only[ch[x][1]]), v[x] = v[ch[x][0]] + v[ch[x][1]];
if(ch[x][0] && ch[x][1]) only[x] ^= (only[x] & (1 << l));
}
void mk(int x, int t0, int t1) {
if(x)
to0[x] = (t0 & (to0[x] ^ mx)) | (t1 & to0[x]),
to1[x] = (t0 & (to1[x] ^ mx)) | (t1 & to1[x]);
}
void push(int x, int l) {
int c0 = ch[x][0], c1 = ch[x][1];
ch[x][0] = ch[x][1] = 0;
if(c0) ch[x][to0[x] >> l & 1] = c0;
if(c1) ch[x][to1[x] >> l & 1] = c1;
to0[x] = (to0[x] | (1 << l)) ^ (1 << l), to1[x] = to1[x] | (1 << l);
mk(ch[x][0], to0[x], to1[x]), mk(ch[x][1], to0[x], to1[x]), to0[x] = 0, to1[x] = mx;
}
void split(int now, int &x, int &y, int k, int l = rk - 1) {
if(!now || l < 0) return x = now, y = 0, void();
push(now, l);
if(k >> l & 1) x = now, y = Nw(), split(ch[x][1], ch[x][1], ch[y][1], k, l - 1);
else y = now, x = Nw(), split(ch[y][0], ch[x][0], ch[y][0], k, l - 1);
upd(x, l), upd(y, l);
}
void ins (int &rt, int k, int l = rk - 1) {
if(!rt) rt = Nw();
if(l < 0) return v[rt] = 1, void();
ins(ch[rt][k >> l & 1], k, l - 1), upd(rt, l);
}
int merge(int x, int y, int l = rk - 1) {
if(!x || !y) return x | y;
if(l == -1) return x;
push(x, l), push(y, l);
ch[x][0] = merge(ch[x][0], ch[y][0], l - 1);
ch[x][1] = merge(ch[x][1], ch[y][1], l - 1);
upd(x, l);
return x;
}
void AND(int now, int k, int l = rk - 1) {
if(!now || l < 0) return;
if((only[now] & (mx ^ k)) == (mx ^ k)) return to0[now] &= k, to1[now] &= k, void();
push(now, l);
if(! (k >> l & 1)) ch[now][0] = merge(ch[now][0], ch[now][1], l - 1), ch[now][1] = 0;
AND(ch[now][0], k, l - 1), AND(ch[now][1], k, l - 1), upd(now, l);
}
void OR(int now, int k, int l = rk - 1) {
if(!now || l < 0) return;
if((only[now] & k) == k) return to0[now] |= k, to1[now] |= k, void();
push(now, l);
if(k >> l & 1) ch[now][1] = merge(ch[now][0], ch[now][1], l - 1), ch[now][0] = 0;
OR(ch[now][0], k, l - 1), OR(ch[now][1], k, l - 1), upd(now, l);
}
void dfs(int now, int l = rk - 1) {
if(!now || l < 0) return;
push(now, l), dfs(ch[now][0], l - 1), dfs(ch[now][1], l - 1), upd(now, l);
}
int rt;
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
only[0] = mx, cin >> n >> q;
L(i, 1, n) cin >> a[i], ins(rt, a[i]);
while(q--) {
int op, l, r, x, ox, now, oy;
cin >> op >> l >> r;
if(!l) ox = 0, oy = rt;
else split(rt, ox, oy, l - 1); //, cout << v[ox] << " and " << v[oy] << "\n";
split(oy, now, oy, r);
// cout << v[ox] << " " << v[now] << " " << v[oy] << "\n";
if(op == 4)
cout << v[now] << "\n";
else {
cin >> x;
if(op == 1) AND(now, x); //, dfs(now);
if(op == 2) OR(now, x);
if(op == 3) to0[now] ^= x, to1[now] ^= x;
}
// cout << "v = " << v[now] << "\n";
rt = merge(merge(ox, now), oy);
// cout << " rtv = " << v[rt] << "\n";
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <cstdio>
#include <cassert>
#include <algorithm>
int n,q;
int rt,cnt;
int ch[2][8000001],size[8000001],diff[8000001],val[8000001],lazy[8000001];
bool vis[8000001];
void pushup(int x){
if(vis[x])return;
if(!size[ch[0][x]]){
size[x]=size[ch[1][x]];
diff[x]=diff[ch[1][x]];
val[x]=val[ch[1][x]];
}
else if(!size[ch[1][x]]){
size[x]=size[ch[0][x]];
diff[x]=diff[ch[0][x]];
val[x]=val[ch[0][x]];
}
else{
size[x]=size[ch[0][x]]+size[ch[1][x]];
diff[x]=diff[ch[0][x]]|diff[ch[1][x]]|(val[ch[0][x]]^val[ch[1][x]]);
val[x]=val[ch[0][x]]&val[ch[1][x]];
}
}
void pushdown(int x,int y,int dep){
if(~dep&&(y&(1<<dep)))std::swap(ch[0][x],ch[1][x]);
val[x]=val[x]^y^(diff[x]&y);
lazy[x]^=y;
}
void spread(int x,int dep){
if(lazy[x]){
pushdown(ch[0][x],lazy[x],dep-1);
pushdown(ch[1][x],lazy[x],dep-1);
lazy[x]=0;
}
}
void add(int &pos,int dep,int v){
if(!pos)pos=++cnt;
if(!~dep){
diff[pos]=0;
val[pos]=v;
size[pos]=1;
vis[pos]=1;
return;
}
add(ch[((v&(1<<dep))!=0)][pos],dep-1,v);
pushup(pos);
}
void split(int now,int &x,int &y,int v,int dep){
if(v<0){
x=0,y=now;
return;
}
spread(now,dep);
if(!now)x=y=0;
else if(!~dep)x=now,y=0;
else{
if(!(v&(1<<dep))){
y=now;
x=++cnt;
split(ch[0][now],ch[0][x],ch[0][y],v,dep-1);
pushup(x);
pushup(y);
}
else{
x=now;
y=++cnt;
split(ch[1][now],ch[1][x],ch[1][y],v,dep-1);
pushup(x);
pushup(y);
}
}
}
int merge(int a,int b,int dep){
spread(a,dep),spread(b,dep);
if(!a||!b)return a|b;
if(!~dep)return a;
ch[0][a]=merge(ch[0][a],ch[0][b],dep-1);
ch[1][a]=merge(ch[1][a],ch[1][b],dep-1);
pushup(a);
return a;
}
int solve(int a,int dep,int val){
spread(a,dep);
if(!a)return a;
if(!~dep)return a;
int x=diff[a]&val;
if(!x){
pushdown(a,val^(val&::val[a]),dep);
return a;
}
if(val&(1<<dep)){
pushdown(ch[0][a],(1<<dep),dep-1);
ch[1][a]=merge(ch[0][a],ch[1][a],dep-1);
ch[0][a]=0;
}
solve(ch[0][a],dep-1,val);
solve(ch[1][a],dep-1,val);
pushup(a);
return a;
}
void debug(int x,int dep){
if(!x||!size[x])return;
spread(x,dep);
if(!~dep){
printf("%d ",val[x]);
return;
}
debug(ch[0][x],dep-1);
debug(ch[1][x],dep-1);
}
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
scanf("%d%d",&n,&q);
for(int i=1,tem;i<=n;++i){
scanf("%d",&tem);
add(rt,19,tem);
}
for(int i=1,t,l,r,x;i<=q;++i){
scanf("%d%d%d",&t,&l,&r);
int t1,t2,t3;
// debug(rt,19);putchar('\n');
split(rt,t1,t2,l-1,19);
split(t2,t2,t3,r,19);
rt=merge(t1,t3,19);
// debug(t2,19);putchar('\n');
if(t<=3)scanf("%d",&x);
if(t==1){
x^=1048575;
pushdown(t2,1048575,19);
solve(t2,19,x);
for(int i=0;i<20;++i)
if(x&(1<<i)&&!(val[t2]&(1<<i)))
pushdown(t2,1<<i,19);
pushdown(t2,1048575,19);
}
else if(t==2){
solve(t2,19,x);
// debug(t2,19);putchar('\n');
}
else if(t==3){
pushdown(t2,x,19);
}
else{
printf("%d\n",size[t2]);
}
rt=merge(rt,t2,19);
// debug(rt,19);putchar('\n');
// putchar('\n');
}
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1048576,C=20;
int Ri(){
int x=0;
char c=getchar();
for (;c<'0'||c>'9';c=getchar());
for (;c<='9'&&c>='0';c=getchar()) x=x*10+c-'0';
return x;
}
int n,cq;
struct tree{
int s[2],cnt,all[2],rev;
}tr[N*2+9];
int sta[N*2+9],cst;
int rot,cn;
void Pushup(int k,int d){
int x=tr[k].s[0],y=tr[k].s[1];
tr[k].cnt=tr[x].cnt+tr[y].cnt;
tr[k].all[0]=tr[x].all[0]&tr[y].all[0];
tr[k].all[1]=tr[x].all[1]&tr[y].all[1];
tr[k].all[0]|=!y<<d;
tr[k].all[1]|=!x<<d;
}
void Update_rev(int k,int d,int x){
if (x>>d&1) swap(tr[k].s[0],tr[k].s[1]);
int u=tr[k].all[0]&x,v=tr[k].all[1]&x;
tr[k].all[0]+=v-u;
tr[k].all[1]+=u-v;
tr[k].rev^=x&(1<<d)-1;
}
void Pushdown(int k,int d){
if (d<=0||!tr[k].rev) return;
if (tr[k].s[0]) Update_rev(tr[k].s[0],d-1,tr[k].rev);
if (tr[k].s[1]) Update_rev(tr[k].s[1],d-1,tr[k].rev);
tr[k].rev=0;
}
void Change_ins(int p,int d,int &k){
if (!k) k=++cn;
if (d==-1) {tr[k].cnt=1;return;}
Pushdown(k,d);
Change_ins(p,d-1,tr[k].s[p>>d&1]);
Pushup(k,d);
}
int Merge(int d,int x,int y){
if (!x||!y) return x+y;
if (d==-1) {tr[x].cnt|=tr[y].cnt;return x;}
Pushdown(x,d);
Pushdown(y,d);
tr[x].s[0]=Merge(d-1,tr[x].s[0],tr[y].s[0]);
tr[x].s[1]=Merge(d-1,tr[x].s[1],tr[y].s[1]);
sta[++cst]=y;
Pushup(x,d);
return x;
}
void Split(int L,int R,int l,int r,int d,int &x,int &y){
if (!x) {x=y=0;return;}
if (L<=l&&R>=r) {y=x;x=0;return;}
int mid=l+r>>1;
Pushdown(x,d);
tr[y=cst?sta[cst--]:++cn]=tree();
if (L<=mid) Split(L,R,l,mid,d-1,tr[x].s[0],tr[y].s[0]);
if (R>mid) Split(L,R,mid+1,r,d-1,tr[x].s[1],tr[y].s[1]);
if (x) Pushup(x,d);
if (y) Pushup(y,d);
}
void Change_or(int x,int d,int k){
if (!x||!k||d==-1) return;
if ((x&(tr[k].all[0]|tr[k].all[1]))==x){
Update_rev(k,d,x&tr[k].all[0]);
return;
}
Pushdown(k,d);
if (x>>d&1){
tr[k].s[1]=Merge(d-1,tr[k].s[0],tr[k].s[1]);
tr[k].s[0]=0;
}
x&=(1<<d)-1;
Change_or(x,d-1,tr[k].s[0]);
Change_or(x,d-1,tr[k].s[1]);
Pushup(k,d);
}
int Query_cnt(int L,int R,int l,int r,int d,int k){
if (!k) return 0;
if (L<=l&&R>=r) return tr[k].cnt;
int mid=l+r>>1,res=0;
Pushdown(k,d);
if (L<=mid) res+=Query_cnt(L,R,l,mid,d-1,tr[k].s[0]);
if (R>mid) res+=Query_cnt(L,R,mid+1,r,d-1,tr[k].s[1]);
return res;
}
int flag;
void into(){
tr[0].all[0]=tr[0].all[1]=N-1;
n=Ri();cq=Ri();
for (int i=1;i<=n;++i){
int x=Ri();
Change_ins(x,C-1,rot);
}
}
void work(){
}
void outo(){
for (;cq--;){
int opt,l,r;
opt=Ri();l=Ri();r=Ri();
if (opt<=3){
int x=Ri(),k=0;
Split(l,r,0,N-1,C-1,rot,k);
switch (opt){
case 1:
Update_rev(k,C-1,N-1);
Change_or(x^N-1,C-1,k);
Update_rev(k,C-1,N-1);
break;
case 2:Change_or(x,C-1,k);break;
case 3:Update_rev(k,C-1,x);break;
}
rot=Merge(C-1,rot,k);
}else printf("%d\n",Query_cnt(l,r,0,N-1,C-1,rot));
}
}
int main(){
into();
work();
outo();
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int MOD;
struct modint {
private:
int v;
static int minv(int a, int m) {
a %= m;
assert(a);
return a == 1 ? 1 : int(m - ll(minv(m, a)) * ll(m) / a);
}
public:
modint() : v(0) {}
modint(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modint& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modint& n) { ll v_; in >> v_; n = modint(v_); return in; }
friend bool operator == (const modint& a, const modint& b) { return a.v == b.v; }
friend bool operator != (const modint& a, const modint& b) { return a.v != b.v; }
modint inv() const {
modint res;
res.v = minv(v, MOD);
return res;
}
friend modint inv(const modint& m) { return m.inv(); }
modint neg() const {
modint res;
res.v = v ? MOD-v : 0;
return res;
}
friend modint neg(const modint& m) { return m.neg(); }
modint operator- () const {
return neg();
}
modint operator+ () const {
return modint(*this);
}
modint& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modint& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modint& operator += (const modint& o) {
v += o.v;
if (v >= MOD) v -= MOD;
return *this;
}
modint& operator -= (const modint& o) {
v -= o.v;
if (v < 0) v += MOD;
return *this;
}
modint& operator *= (const modint& o) {
v = int(ll(v) * ll(o.v) % MOD);
return *this;
}
modint& operator /= (const modint& o) {
return *this *= o.inv();
}
friend modint operator ++ (modint& a, int) { modint r = a; ++a; return r; }
friend modint operator -- (modint& a, int) { modint r = a; --a; return r; }
friend modint operator + (const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator - (const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator * (const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator / (const modint& a, const modint& b) { return modint(a) /= b; }
};
namespace IO {
template<class T>
void _R(T &x) { cin >> x; }
void _R(int &x) { scanf("%d", &x); }
void _R(ll &x) { scanf("%lld", &x); }
void _R(double &x) { scanf("%lf", &x); }
void _R(char &x) { x = getchar(); }
void _R(char *x) { scanf("%s", x); }
void R() {}
template<class T, class... U>
void R(T &head, U &... tail) { _R(head), R(tail...); }
template<class T>
void _W(const T &x) { cout << x; }
void _W(const int &x) { printf("%d", x); }
void _W(const ll &x) { printf("%lld", x); }
void _W(const double &x) { printf("%.16f", x); }
void _W(const char &x) { putchar(x); }
void _W(const char *x) { printf("%s", x); }
template<class T, class U>
void _W(const pair<T, U> &x) { _W(x.first), putchar(' '), _W(x.second); }
template<class T>
void _W(const vector<T> &x) { for (auto i = x.begin(); i != x.end(); _W(*i++)) if (i != x.cbegin()) putchar(' '); }
void W() {}
template<class T, class... U>
void W(const T &head, const U &... tail) { _W(head), putchar(sizeof...(tail) ? ' ' : '\n'), W(tail...); }
}
using namespace IO;
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
const int maxn = 2e5+50;
const int maxp = maxn*32+5;
const int K = 20;
const int M = 1 << K;
int ls[maxp], rs[maxp], tot;
// 0, 1, cnt, XOR
int t0[maxp], t1[maxp], p[maxp], txor[maxp];
inline void pushup(int x) {
p[x] = p[ls[x]] + p[rs[x]];
t0[x] = t0[ls[x]] | t0[rs[x]];
t1[x] = t1[ls[x]] | t1[rs[x]];
}
inline void XOR(int x, int t, int dep = K) {
if (!x) return;
txor[x] ^= t;
if (t >> (dep - 1) & 1) swap(ls[x], rs[x]);
int a = (t0[x] & (~t)) | (t1[x] & t), b = (t1[x] & (~t)) | (t0[x] & t);
t0[x] = a, t1[x] = b;
}
inline void pushdown(int x, int dep) {
if (txor[x]) {
XOR(ls[x], txor[x], dep - 1), XOR(rs[x], txor[x], dep - 1);
txor[x] = 0;
}
}
inline void insert(int &x, int s, int dep = K) {
if (!x) x = ++tot;
if (!dep) {
t1[x] = s, t0[x] = s ^ (M - 1);
p[x] = 1;
return;
}
insert((s >> (dep - 1) & 1) ? rs[x] : ls[x], s, dep - 1);
pushup(x);
}
inline void split(int &x, int &y, int l, int r, int le, int re, int dep = K) {
if (le <= l && r <= re) {
y = x; x = 0;
return;
}
int mid = l + r >> 1; pushdown(x, dep);
y = ++tot;
if (le <= mid) split(ls[x], ls[y], l, mid, le, re, dep - 1);
if (re > mid) split(rs[x], rs[y], mid + 1, r, le, re, dep - 1);
pushup(x), pushup(y);
}
inline void merge(int &x, int y, int dep = K) {
if (!x || !y) {
x = x + y;
return;
}
if (!dep) return;
pushdown(x, dep), pushdown(y, dep);
merge(ls[x], ls[y], dep - 1), merge(rs[x], rs[y], dep - 1);
pushup(x);
}
inline void OR(int x, int s, int dep = K) {
if (!x) return;
if (!(s & t0[x] & t1[x])) {
XOR(x, s & t0[x], dep);
return;
}
pushdown(x, dep);
if (s >> (dep - 1) & 1) {
XOR(ls[x], 1 << (dep - 1), dep - 1);
merge(rs[x], ls[x], dep - 1);
ls[x] = 0;
}
OR(ls[x], s, dep - 1), OR(rs[x], s, dep - 1);
pushup(x);
}
int main() {
int n, q, x = 0;
R(n, q);
for (int i = 1; i <= n; ++i) {
int v; R(v); insert(x, v);
}
for (; q; --q) {
int oth;
int t, l, r, v; R(t, l, r);
split(x, oth, 0, M - 1, l, r);
if (t == 1) R(v),XOR(oth, M - 1),OR(oth, v ^ (M - 1)),XOR(oth, M - 1);
else if (t == 2) R(v),OR(oth, v);
else if (t == 3) R(v), XOR(oth, v);
else W(p[oth]);
merge(x, oth);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
const int N = 8e6 + 5, K = 20, M = 1 << K;
int n, q, tot, ls[N], rs[N], tk[N], t0[N], t1[N], ts[N], tt[N];
inline void pushup(int p) {
ts[p] = ts[ls[p]] + ts[rs[p]];
t0[p] = t0[ls[p]] | t0[rs[p]];
t1[p] = t1[ls[p]] | t1[rs[p]];
}
inline void tag(int p, int t) {
if (!p) return; tt[p] ^= t;
if (~tk[p] && t >> tk[p] & 1) std::swap(ls[p], rs[p]);
int x = (t0[p] & (~t)) | (t1[p] & t), y = (t1[p] & (~t)) | (t0[p] & t);
t0[p] = x, t1[p] = y;
}
inline void pushdown(int p) {
if (tt[p]) {
tag(ls[p], tt[p]), tag(rs[p], tt[p]);
tt[p] = 0;
}
}
void insert(int &p, int s, int k) {
if (!p) p = ++tot;
tk[p] = k;
if (k == -1) {
t1[p] = s & (M - 1), t0[p] = t1[p] ^ (M - 1);
ts[p] = 1;
return;
}
insert((s >> k & 1) ? rs[p] : ls[p], s, k - 1);
pushup(p);
}
void split(int &p, int &q, int l, int r, int x, int y) {
if (!p || y < l || x > r) {q = 0; return;}
if (x <= l && r <= y) {q = p, p = 0; return;}
int mid = l + r >> 1; pushdown(p);
tk[q = ++tot] = tk[p];
split(ls[p], ls[q], l, mid, x, y);
split(rs[p], rs[q], mid + 1, r, x, y);
pushup(p), pushup(q);
}
void merge(int &p, int q) {
if (!p || !q) {p = p | q; return;}
pushdown(p), pushdown(q);
merge(ls[p], ls[q]), merge(rs[p], rs[q]);
if (~tk[p]) pushup(p);
}
void modify(int p, int s) {
if (!p) return;
if (!(s & t0[p] & t1[p])) {tag(p, s & t0[p]); return;}
pushdown(p);
if (s >> tk[p] & 1) tag(ls[p], 1 << tk[p]), merge(rs[p], ls[p]), ls[p] = 0;
modify(ls[p], s), modify(rs[p], s);
pushup(p);
}
int main() {
scanf("%d%d", &n, &q); int p = 0;
for (int i = 1; i <= n; ++i) {
int x; scanf("%d", &x);
insert(p, x, K - 1);
}
for (; q; --q) {
int t, l, r, q, x; scanf("%d%d%d", &t, &l, &r);
split(p, q, 0, M - 1, l, r);
if (t == 1) scanf("%d", &x), tag(q, M - 1), modify(q, x ^ (M - 1)), tag(q, M - 1);
else if (t == 2) scanf("%d", &x), modify(q, x);
else if (t == 3) scanf("%d", &x), tag(q, x);
else printf("%d\n", ts[q]);
merge(p, q);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | /*
{
######################
# Author #
# Gary #
# 2021 #
######################
*/
#include<bits/stdc++.h>
#define rb(a,b,c) for(int a=b;a<=c;++a)
#define rl(a,b,c) for(int a=b;a>=c;--a)
#define LL long long
#define IT iterator
#define PB push_back
#define II(a,b) make_pair(a,b)
#define FIR first
#define SEC second
#define FREO freopen("check.out","w",stdout)
#define rep(a,b) for(int a=0;a<b;++a)
#define SRAND mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
#define random(a) rng()%a
#define ALL(a) a.begin(),a.end()
#define POB pop_back
#define ff fflush(stdout)
#define fastio ios::sync_with_stdio(false)
#define check_min(a,b) a=min(a,b)
#define check_max(a,b) a=max(a,b)
using namespace std;
//inline int read(){
// int x=0;
// char ch=getchar();
// while(ch<'0'||ch>'9'){
// ch=getchar();
// }
// while(ch>='0'&&ch<='9'){
// x=(x<<1)+(x<<3)+(ch^48);
// ch=getchar();
// }
// return x;
//}
const int INF=0x3f3f3f3f;
typedef pair<int,int> mp;
/*}
*/
int root=1,cnt=1,ans[200000*41+233],lc[200000*41+233],rc[200000*41+233],depth[200000*41+233],r[200000*41+233],l[200000*41+233],tag[200000*41+233];
bool have[200000*41+233];
void pushdown(int idx){
if((tag[idx]>>depth[idx])&1) swap(lc[idx],rc[idx]);
if(lc[idx]) tag[lc[idx]]^=tag[idx];
if(rc[idx]) tag[rc[idx]]^=tag[idx];
int oldl=l[idx],oldr=r[idx];
r[idx]^=r[idx]&tag[idx];
l[idx]^=l[idx]&tag[idx];
r[idx]|=oldl&tag[idx];
l[idx]|=oldr&tag[idx];
tag[idx]=0;
assert(!(l[idx]&r[idx]));
}
void upd(int idx){
ans[idx]=have[idx];
if(depth[idx]==20) return ;
l[idx]=r[idx]=0;
assert(lc[idx]||rc[idx]);
if(lc[idx]) pushdown(lc[idx]),ans[idx]+=ans[lc[idx]],assert(!tag[lc[idx]]);
else r[idx]|=1<<depth[idx];
if(rc[idx]) pushdown(rc[idx]),ans[idx]+=ans[rc[idx]],assert(!tag[rc[idx]]);
else l[idx]|=1<<depth[idx];
if(lc[idx]&&rc[idx]) l[idx]|=l[lc[idx]]&l[rc[idx]],r[idx]|=r[lc[idx]]&r[rc[idx]];
else l[idx]|=l[max(lc[idx],rc[idx])],r[idx]|=r[max(lc[idx],rc[idx])];
assert(!(l[idx]&r[idx]));
}
void merge(int& u,int& v){//merge(u,v) -> v
if(!u||!v){
if(u){
v=u;
u=0;
}
if(v) pushdown(v);
return ;
}
pushdown(u),pushdown(v);
have[v]|=have[u];
merge(rc[u],rc[v]);
merge(lc[u],lc[v]);
// cout<<u<<" "<<v<<' '<<rc[v]<<' '<<lc[v]<<' '<<endl;
u=0;
upd(v);
}
int Rev(int x){
int ret=0;
rep(i,20){
ret|=((x>>i)&1)<<(19-i);
}
return ret;
}
void split(int rt,int val,int & x,int & y){
if(!rt){
x=y=0;
return ;
}
pushdown(rt);
if(depth[rt]==20){
x=rt,y=0;
return;
}
if((val>>depth[rt])&1){
x=rt;
y=++cnt;
depth[cnt]=depth[rt];
split(rc[rt],val,rc[x],rc[y]);
}
else{
x=++cnt;
y=rt;
depth[cnt]=depth[rt];
split(lc[rt],val,lc[x],lc[y]);
}
if(!lc[x]&&!rc[x]){
x=0;
}
if(!lc[y]&&!rc[y]){
y=0;
}
if(x) upd(x);
if(y) upd(y);
}
void getor(int idx,int x){
if(depth[idx]==20) return ;
pushdown(idx);
if((x&(l[idx]|r[idx]))==x){
tag[idx]^=x&l[idx];
pushdown(idx);
return ;
}
if((x>>depth[idx])&1);
else{
if(lc[idx]) getor(lc[idx],x);
if(rc[idx]) getor(rc[idx],x);
upd(idx);
return ;
}
if(lc[idx]&&rc[idx]){
merge(lc[idx],rc[idx]);
getor(rc[idx],x^(1<<depth[idx]));
upd(idx);
return ;
}
if(lc[idx]){
swap(lc[idx],rc[idx]);
getor(rc[idx],x^(1<<depth[idx]));
upd(idx);
return ;
}
assert(rc[idx]);
getor(rc[idx],x^(1<<depth[idx]));
upd(idx);
}
void insert(int rt,int val){
if(depth[rt]==20){
have[rt]=1;
upd(rt);
return ;
}
bool bt=(val>>depth[rt])&1;
if(bt){
if(!rc[rt]) rc[rt]=++cnt,depth[cnt]=depth[rt]+1;
insert(rc[rt],val);
}
else{
if(!lc[rt]) lc[rt]=++cnt,depth[cnt]=depth[rt]+1;
insert(lc[rt],val);
}
upd(rt);
}
int main(){
int n,q;
scanf("%d%d",&n,&q);
rb(i,1,n){
int ai;
scanf("%d",&ai);
insert(root,Rev(ai));
}
rb(i,1,q){
int ty,l,r;
scanf("%d%d%d",&ty,&l,&r);
int x=0,y=0,z=0;
split(root,Rev(r),y,z);
if(l)
split(y,Rev(l-1),x,y);
else x=0;
if(ty<=3){
int X;
scanf("%d",&X);
// if(n==1000) cout<<ty<<' '<<l<<' '<<r<<" "<<X<<endl;
if(y){
if(ty==1){
tag[y]^=(1<<20)-1;
getor(y,((1<<20)-1)^Rev(X));
tag[y]^=(1<<20)-1;
}
if(ty==2){
getor(y,Rev(X));
}
if(ty==3){
tag[y]^=Rev(X);
}
pushdown(y);
}
}
else{
// if(n==1000) cout<<ty<<' '<<l<<' '<.<r<<endl;
printf("%d\n",ans[y]);
}
merge(x,y);
merge(y,z);
root=z;
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <iostream>
#include <algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<iomanip>
#include<ctime>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<bitset>
#define sqr(x) ((x)*(x))
#define fz1(i,n) for ((i)=1;(i)<=(n);(i)++)
#define fd1(i,n) for ((i)=(n);(i)>=1;(i)--)
#define fz0g(i,n) for ((i)=0;(i)<=(n);(i)++)
#define fd0g(i,n) for ((i)=(n);(i)>=0;(i)--)
#define fz0k(i,n) for ((i)=0;(i)<(n);(i)++)
#define fd0k(i,n) for ((i)=(long long)((n)-1);(i)>=0;(i)--)
#define fz(i,x,y) for ((i)=(x);(i)<=(y);(i)++)
#define fd(i,y,x) for ((i)=(y);(i)>=(x);(i)--)
#define fzin fz1(i,n)
#define fzim fz1(i,m)
#define fzjn fz1(j,n)
#define fzjm fz1(j,m)
#define ff(c,itr) for (__typeof((c).begin()) itr=(c).begin();itr!=(c).end();++itr)
#define rdst(st,len){static char ss[len];scanf(" %s",ss);(st)=ss;}
#define incm(x,y) {x=((x)+(y))%mod;}
#define spln(i,n) (i==n?'\n':' ')
#define fac_init(n){fac[0]=fac[1]=inv[1]=fi[0]=fi[1]=1;fz(i,2,n){fac[i]=1ll*fac[i-1]*i%mod;inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;fi[i]=1ll*fi[i-1]*inv[i]%mod;}}
#define fi first
#define se second
#define mk make_pair
using namespace std;
inline void read(int &x)
{
char c;int f=1;
while(!isdigit(c=getchar()))if(c=='-')f=-1;
x=(c&15);while(isdigit(c=getchar()))x=(x<<1)+(x<<3)+(c&15);
x*=f;
}
const int lim=(1<<20)-1;
int n,q,i,j,rt,cnt;
int lc[16000005],rc[16000005];
int tagx[16000005];
int sz[16000005],f[16000005][2];
vector<pair<int,pair<int,int> > > v;
void pushup(int x,int d)
{
sz[x]=sz[lc[x]]+sz[rc[x]];
f[x][0]=f[lc[x]][0]|f[rc[x]][0];
f[x][1]=f[lc[x]][1]|f[rc[x]][1];
if(sz[lc[x]]==0) lc[x]=0;
if(sz[rc[x]]==0) rc[x]=0;
if(lc[x]) f[x][0]|=(1<<d);
if(rc[x]) f[x][1]|=(1<<d);
if(sz[x]&&!(f[x][0]||f[x][1])){
int a;
a++;
}
}
void update(int &x,int l,int r,int d,int y)
{
if(!x){
x=++cnt;
}
if(l==r){
sz[x]=1;
f[x][0]|=(lim^y);
f[x][1]|=y;
return;
}
int mid=(l+r)/2;
if(y<=mid) update(lc[x],l,mid,d-1,y); else update(rc[x],mid+1,r,d-1,y);
pushup(x,d);
}
void merge(int &x,int y,int d);
void updx(int x,int d,int t)
{
if(d==-1) return;
int tt=((f[x][0]^f[x][1])&t);
f[x][0]^=tt;f[x][1]^=tt;
tagx[x]^=t;
if(((t>>d)&1)){
swap(lc[x],rc[x]);
}
}
void pushdo(int x,int d)
{
if(lc[x]){
if(tagx[x]!=0) updx(lc[x],d-1,tagx[x]);
}
if(rc[x]){
if(tagx[x]!=0) updx(rc[x],d-1,tagx[x]);
}
tagx[x]=0;
}
void upda(int x,int k,int d)
{
if(!x||!((f[x][1]>>k)&1)) return;
if(!((f[x][0]>>k)&1)){
updx(x,d,(1<<k));
return;
}
pushdo(x,d);
if(d==k){
merge(lc[x],rc[x],d-1);
rc[x]=0;
pushup(x,d);
return;
}
upda(lc[x],k,d-1);
upda(rc[x],k,d-1);
pushup(x,d);
}
void updo(int x,int k,int d)
{
if(!x||!((f[x][0]>>k)&1)) return;
if(!((f[x][1]>>k)&1)){
updx(x,d,(1<<k));
return;
}
pushdo(x,d);
if(d==k){
merge(rc[x],lc[x],d-1);
lc[x]=0;
pushup(x,d);
return;
}
updo(lc[x],k,d-1);
updo(rc[x],k,d-1);
pushup(x,d);
}
void merge(int &x,int y,int d)
{
if(!x||!y){
x=x+y;
return;
}
if(d==-1){
sz[x]=1;
return;
}
pushdo(x,d);
pushdo(y,d);
merge(lc[x],lc[y],d-1);
merge(rc[x],rc[y],d-1);
pushup(x,d);
}
int count(int x,int l,int r,int d,int ql,int qr)
{
if(!x) return 0;
if(ql<=l&&r<=qr){
return sz[x];
}
pushdo(x,d);
int mid=(l+r)/2,s=0;
if(ql<=mid) s+=count(lc[x],l,mid,d-1,ql,qr);
if(qr>mid) s+=count(rc[x],mid+1,r,d-1,ql,qr);
return s;
}
void pushin(int &x,int l,int r,int d,int ql,int qr)
{
if(!x) return;
if(ql<=l&&r<=qr){
v.push_back(make_pair(x,mk(l,r)));
x=0;return;
}
pushdo(x,d);
int mid=(l+r)/2;
if(ql<=mid) pushin(lc[x],l,mid,d-1,ql,qr);
if(qr>mid) pushin(rc[x],mid+1,r,d-1,ql,qr);
pushup(x,d);
}
void retin(int &x,int l,int r,int d,int ql,int qr,int y)
{
if(!x){
x=++cnt;
}
if(ql==l&&r==qr){
merge(x,y,d);
return;
}
pushdo(x,d);
int mid=(l+r)/2;
if(ql<=mid) retin(lc[x],l,mid,d-1,ql,qr,y);
if(qr>mid) retin(rc[x],mid+1,r,d-1,ql,qr,y);
pushup(x,d);
}
int main()
{
read(n);read(q);
fz1(i,n){
int x;
read(x);
update(rt,0,lim,19,x);
}
while(q--){
int op,l,r;
read(op);read(l);read(r);
if(op==4){
printf("%d\n",count(rt,0,lim,19,l,r));
continue;
}
v.clear();
pushin(rt,0,lim,19,l,r);
int val;read(val);
ff(v,it){
int l=it->se.fi,r=it->se.se,x=it->fi;
for(i=19;i>=0;i--){
if(((l>>i)&1)==((r>>i)&1)){
if(op==1){
l&=(lim^(1<<i)^((1<<i)&val));
r&=(lim^(1<<i)^((1<<i)&val));
}
if(op==2){
l|=((1<<i)&val);
r|=((1<<i)&val);
}
if(op==3){
l^=((1<<i)&val);
r^=((1<<i)&val);
}
}
else break;
}
if(op==1){
fz0k(j,20) if(!((val>>j)&1))upda(x,j,i);
}
if(op==2){
fz0k(j,20) if(((val>>j)&1))updo(x,j,i);
}
if(op==3) updx(x,i,val);
retin(rt,0,lim,19,l,r,x);
}
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
typedef long long i64;
#define sz(a) int((a).size())
#define all(a) (a).begin(), (a).end()
#define rep(i, a, b) for (int i = (a); i < (b); ++i)
#define per(i, a, b) for (int i = (b) - 1; i >= (a); --i)
using namespace std;
const int xn = 8e6, xk = 20, xs = 1 << xk;
int n = 1, ls[xn], rs[xn], h[xn];
int sz[xn], lw[xn], rw[xn], fw[xn];
int nw(int k) {int u = n++; h[u] = k; return u;}
void pu(int u) {
if (-1 != h[u]) {
sz[u] = sz[ls[u]] + sz[rs[u]];
lw[u] = lw[ls[u]] | lw[rs[u]];
rw[u] = rw[ls[u]] | rw[rs[u]];
}
}
void rev(int u, int x) {
if (!u) {return;} fw[u] ^= x;
lw[u] ^= (rw[u] ^= (lw[u] ^= rw[u] & x) & x) & x;
if (~h[u] and x >> h[u] & 1) {swap(ls[u], rs[u]);}
}
void pd(int u) {if (fw[u]) {rev(ls[u], fw[u]),
rev(rs[u], fw[u]), fw[u] = 0;}}
void ist(int &u, int x, int k = xk - 1) {
if (!u) {u = nw(k);}
if (k == -1) {lw[u] = (xs - 1) ^ x; rw[u] = x; sz[u] = 1;}
else {ist(x >> k & 1 ? rs[u] : ls[u], x, k - 1); pu(u);}
}
void spl(int &u, int &v, int x, int y, int l = 0, int r = xs) {
if (!u or y <= l or r <= x) {v = 0; return;}
if (x <= l and r <= y) {v = u; u = 0; return;}
int mi = (l + r) / 2; pd(u); v = nw(h[u]);
spl(ls[u], ls[v], x, y, l, mi);
spl(rs[u], rs[v], x, y, mi, r); pu(u); pu(v);
}
void mge(int &u, int v) {
if (!u or !v) {u |= v; return;}
pd(u); pd(v); mge(ls[u], ls[v]); mge(rs[u], rs[v]); pu(u);
}
void wor(int u, int x) {
if (!u) {return;}
if (!(x & lw[u] & rw[u])) {return rev(u, x & lw[u]);}
pd(u);
if (x >> h[u] & 1) {
rev(ls[u], 1 << h[u]), mge(rs[u], ls[u]), ls[u] = 0;
}
wor(ls[u], x); wor(rs[u], x); pu(u);
}
void out(int u) {
if (!u) {return;} pd(u);
cout << u << " -> " << ls[u] << " -> "
<< rs[u] << " : " << h[u] << ' ' << lw[u]
<< ' ' << rw[u] << ' ' << fw[u] << ' ' << sz[u] << '\n';
out(ls[u]), out(rs[u]);
}
int main() {
// freopen("CF1515H.in", "r", stdin); // @
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
int n, nq, rt = 0, u; cin >> n >> nq;
rep(i, 0, n) {int x; cin >> x; ist(rt, x);}
// cout << "[OUT RT]\n"; out(rt); // @
rep(iq, 0, nq) {
int o, l, r; cin >> o >> l >> r, ++r;
spl(rt, u, l, r);
// cout << "[OUT U]\n"; out(u); // @
if (o == 4) {cout << sz[u] << '\n';}
else {
int x; cin >> x;
if (o == 3) {rev(u, x);}
else if (o == 2) {wor(u, x);}
else {rev(u, xs - 1), wor(u, (xs - 1) ^ x),
rev(u, xs - 1);}
}
// cout << "[OUT U]\n"; out(u); // @
mge(rt, u);
// cout << "[OUT RT]\n"; out(rt); // @
}
// cout << "hem, hem, aaaaaaaaaaa" << endl; // @
return 0;
}
/* 📌https://www.cnblogs.com/George1123/p/tips.html */ | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
using ll=long long;
//#define int ll
#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()
#define all(x) x.bg,x.ed
#define si(x) int(x.size())
#ifdef LOCAL
#define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl
#else
#define dmp(x) void(0)
#endif
template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}
template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}
template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;
using pi=pair<int,int>;
using vi=vc<int>;
template<class t,class u>
ostream& operator<<(ostream& os,const pair<t,u>& p){
return os<<"{"<<p.a<<","<<p.b<<"}";
}
template<class t> ostream& operator<<(ostream& os,const vc<t>& v){
os<<"{";
for(auto e:v)os<<e<<",";
return os<<"}";
}
#define mp make_pair
#define mt make_tuple
#define one(x) memset(x,-1,sizeof(x))
#define zero(x) memset(x,0,sizeof(x))
#ifdef LOCAL
void dmpr(ostream&os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ";
dmpr(os,args...);
}
#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)
#else
#define dmp2(...) void(0)
#endif
using uint=unsigned;
using ull=unsigned long long;
template<class t,size_t n>
ostream& operator<<(ostream&os,const array<t,n>&a){
return os<<vc<t>(all(a));
}
template<int i,class T>
void print_tuple(ostream&,const T&){
}
template<int i,class T,class H,class ...Args>
void print_tuple(ostream&os,const T&t){
if(i)os<<",";
os<<get<i>(t);
print_tuple<i+1,T,Args...>(os,t);
}
template<class ...Args>
ostream& operator<<(ostream&os,const tuple<Args...>&t){
os<<"{";
print_tuple<0,tuple<Args...>,Args...>(os,t);
return os<<"}";
}
template<class t>
void print(t x,int suc=1){
cout<<x;
if(suc==1)
cout<<"\n";
if(suc==2)
cout<<" ";
}
ll read(){
ll i;
cin>>i;
return i;
}
vi readvi(int n,int off=0){
vi v(n);
rep(i,n)v[i]=read()+off;
return v;
}
pi readpi(int off=0){
int a,b;cin>>a>>b;
return pi(a+off,b+off);
}
template<class t,class u>
void print(const pair<t,u>&p,int suc=1){
print(p.a,2);
print(p.b,suc);
}
template<class T>
void print(const vector<T>&v,int suc=1){
rep(i,v.size())
print(v[i],i==int(v.size())-1?suc:2);
}
string readString(){
string s;
cin>>s;
return s;
}
template<class T>
T sq(const T& t){
return t*t;
}
//#define CAPITAL
void yes(bool ex=true){
#ifdef CAPITAL
cout<<"YES"<<"\n";
#else
cout<<"Yes"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void no(bool ex=true){
#ifdef CAPITAL
cout<<"NO"<<"\n";
#else
cout<<"No"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void possible(bool ex=true){
#ifdef CAPITAL
cout<<"POSSIBLE"<<"\n";
#else
cout<<"Possible"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void impossible(bool ex=true){
#ifdef CAPITAL
cout<<"IMPOSSIBLE"<<"\n";
#else
cout<<"Impossible"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
constexpr ll ten(int n){
return n==0?1:ten(n-1)*10;
}
const ll infLL=LLONG_MAX/3;
#ifdef int
const int inf=infLL;
#else
const int inf=INT_MAX/2-100;
#endif
int topbit(signed t){
return t==0?-1:31-__builtin_clz(t);
}
int topbit(ll t){
return t==0?-1:63-__builtin_clzll(t);
}
int botbit(signed a){
return a==0?32:__builtin_ctz(a);
}
int botbit(ll a){
return a==0?64:__builtin_ctzll(a);
}
int popcount(signed t){
return __builtin_popcount(t);
}
int popcount(ll t){
return __builtin_popcountll(t);
}
bool ispow2(int i){
return i&&(i&-i)==i;
}
ll mask(int i){
return (ll(1)<<i)-1;
}
bool inc(int a,int b,int c){
return a<=b&&b<=c;
}
template<class t> void mkuni(vc<t>&v){
sort(all(v));
v.erase(unique(all(v)),v.ed);
}
ll rand_int(ll l, ll r) { //[l, r]
#ifdef LOCAL
static mt19937_64 gen;
#else
static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
return uniform_int_distribution<ll>(l, r)(gen);
}
template<class t>
void myshuffle(vc<t>&a){
rep(i,si(a))swap(a[i],a[rand_int(0,i)]);
}
template<class t>
int lwb(const vc<t>&v,const t&a){
return lower_bound(all(v),a)-v.bg;
}
vvc<int> readGraph(int n,int m){
vvc<int> g(n);
rep(i,m){
int a,b;
cin>>a>>b;
//sc.read(a,b);
a--;b--;
g[a].pb(b);
g[b].pb(a);
}
return g;
}
vvc<int> readTree(int n){
return readGraph(n,n-1);
}
const int L=20;
const int M=mask(L);
/*
void clear(int&a,int i){
a&=~(1<<i);
}
*/
int action(int i,int fix,int off){
return ((i^off)&~fix)|(fix&off);
}
struct N{
N*ch[2];
int fix,off,cnt,both;
N():ch{nullptr,nullptr},fix(0),off(0),cnt(0),both(0){}
void work(int f,int o,int lv){
f&=mask(lv);
o&=mask(lv);
off=action(off,f,o);
fix|=f;
}
void update(int lv){
fix=0;
off=0;
cnt=0;
both=0;
rep(k,2)if(ch[k]){
cnt+=ch[k]->cnt;
both|=ch[k]->both;
}
if(ch[0]&&ch[1])both|=1<<(lv-1);
}
void propagate(int lv){
if(fix&1<<(lv-1)){
int k=(off>>(lv-1))&1;
if(ch[k^1])swap(ch[0],ch[1]);
assert(!ch[k^1]);
}else if(off&1<<(lv-1)){
swap(ch[0],ch[1]);
}
rep(k,2)if(ch[k])ch[k]->work(fix,off,lv-1);
fix=0;
off=0;
}
};
N buf[ten(7)];
using np=N*;
N* nn(){
static int head=0;
return buf+head++;
}
np mg(np a,np b,int lv){
if(!a&&!b)return nullptr;
np n=nn();
n->ch[0]=a;
n->ch[1]=b;
n->update(lv);
return n;
}
np insert(np x,int pos,int lv){
if(!x)x=nn();
if(lv==0){
x->cnt=1;
return x;
}
int k=(pos>>(lv-1))&1;
x->propagate(lv);
x->ch[k]=insert(x->ch[k],pos,lv-1);
x->update(lv);
return x;
}
//l,lv,ptr
vc<tuple<int,int,np>> memo;
np meld(np x,np y,int lv){
if(!x)return y;
if(!y)return x;
if(lv==0){
x->cnt|=y->cnt;
}else{
x->propagate(lv);
y->propagate(lv);
rep(k,2)x->ch[k]=meld(x->ch[k],y->ch[k],lv-1);
x->update(lv);
}
return x;
}
np modify(np x,int lv){
if(!x)return x;
if((x->fix&x->both)==0)return x;
assert(lv>0);
if(x->fix&1<<(lv-1)){
int k=(x->off>>(lv-1))&1;
x->ch[k]=meld(x->ch[k],x->ch[k^1],lv-1);
x->ch[k^1]=nullptr;
}
x->propagate(lv);
rep(k,2)x->ch[k]=modify(x->ch[k],lv-1);
x->update(lv);
return x;
}
np dfs1(np x,int l,int r,int lv,int b,int e,int fix,int off){
if(!x||e<=l||r<=b)return x;
if(b<=l&&r<=e){
x->work(fix,off,lv);
int pos=(action(l,fix,off)>>lv)<<lv;
memo.eb(pos,lv,modify(x,lv));
return nullptr;
}
int m=(l+r)/2;
x->propagate(lv);
return mg(
dfs1(x->ch[0],l,m,lv-1,b,e,fix,off),
dfs1(x->ch[1],m,r,lv-1,b,e,fix,off),
lv);
}
np dfs2(np x,int l,int r,int lv,int tarl,int tarlv,np y){
assert(l<=tarl&&tarl<r);
if(lv==tarlv){
assert(l==tarl);
return meld(x,y,lv);
}
if(!x)x=nn();
x->propagate(lv);
int m=(l+r)/2;
if(tarl<m){
x->ch[0]=dfs2(x->ch[0],l,m,lv-1,tarl,tarlv,y);
}else{
x->ch[1]=dfs2(x->ch[1],m,r,lv-1,tarl,tarlv,y);
}
x->update(lv);
return x;
}
np make_change(np root,int b,int e,int fix,int off){
root=dfs1(root,0,1<<L,L,b,e,fix,off);
for(auto [l,lv,ptr]:memo){
root=dfs2(root,0,1<<L,L,l,lv,ptr);
}
memo.clear();
return root;
}
int query(np x,int l,int r,int lv,int b,int e){
if(!x||e<=l||r<=b)return 0;
if(b<=l&&r<=e)return x->cnt;
int m=(l+r)/2;
x->propagate(lv);
return query(x->ch[0],l,m,lv-1,b,e)+query(x->ch[1],m,r,lv-1,b,e);
}
void slv(){
int n,q;cin>>n>>q;
np root=nullptr;
rep(i,n){
int a=read();
root=insert(root,a,L);
}
rep(_,q){
int t;cin>>t;
int l,r;cin>>l>>r;
r++;
if(t<=3){
int x=read(),fix=0,off=0;
if(t==1)fix=mask(L)^x;
else if(t==2)fix=x,off=x;
else off=x;
root=make_change(root,l,r,fix,off);
}else{
int ans=query(root,0,1<<L,L,l,r);
print(ans);
}
}
}
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
cout<<fixed<<setprecision(20);
//int t;cin>>t;rep(_,t)
slv();
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #define DEBUG 0
#include <bits/stdc++.h>
using namespace std;
#if DEBUG
// basic debugging macros
int __i__,__j__;
#define printLine(l) for(__i__=0;__i__<l;__i__++){cout<<"-";}cout<<endl
#define printLine2(l,c) for(__i__=0;__i__<l;__i__++){cout<<c;}cout<<endl
#define printVar(n) cout<<#n<<": "<<n<<endl
#define printArr(a,l) cout<<#a<<": ";for(__i__=0;__i__<l;__i__++){cout<<a[__i__]<<" ";}cout<<endl
#define print2dArr(a,r,c) cout<<#a<<":\n";for(__i__=0;__i__<r;__i__++){for(__j__=0;__j__<c;__j__++){cout<<a[__i__][__j__]<<" ";}cout<<endl;}
#define print2dArr2(a,r,c,l) cout<<#a<<":\n";for(__i__=0;__i__<r;__i__++){for(__j__=0;__j__<c;__j__++){cout<<setw(l)<<setfill(' ')<<a[__i__][__j__]<<" ";}cout<<endl;}
// advanced debugging class
// debug 1,2,'A',"test";
class _Debug {
public:
template<typename T>
_Debug& operator,(T val) {
cout << val << endl;
return *this;
}
};
#define debug _Debug(),
#else
#define printLine(l)
#define printLine2(l,c)
#define printVar(n)
#define printArr(a,l)
#define print2dArr(a,r,c)
#define print2dArr2(a,r,c,l)
#define debug
#endif
// define
#define MAX_VAL 999999999
#define MAX_VAL_2 999999999999999999LL
#define EPS 1e-6
#define mp make_pair
#define pb push_back
// typedef
typedef unsigned int UI;
typedef long long int LLI;
typedef unsigned long long int ULLI;
typedef unsigned short int US;
typedef pair<int,int> pii;
typedef pair<LLI,LLI> plli;
typedef vector<int> vi;
typedef vector<LLI> vlli;
typedef vector<pii> vpii;
typedef vector<plli> vplli;
// ---------- END OF TEMPLATE ----------
struct node {
node *l,*r;
int z,f,s;
int a,b;
node() { l = r = NULL,z = f = a = b = 0,s = 1; }
};
int c = 0;
node mem[1 << 22];
node *all = NULL;
node *newNode() {
if (all != NULL) {
node *t = all;
all = all->l;
t->l = t->r = NULL,t->z = t->f = t->a = t->b = 0,t->s = 1;
return t;
}
else return &mem[c++];
}
int delNode(node *n) {
n->l = all,all = n;
return 0;
}
node *root = NULL;
int size(node *n) {
if (n != NULL) return n->s;
else return 0;
}
int update(node *n,int d) {
if (n != NULL) {
n->s = size(n->l) + size(n->r);
if (n->s == 0) n->s = 1;
n->a = ((n->l == NULL) ? 0:n->l->a|(1 << d)) | ((n->r == NULL) ? 0:n->r->a);
n->b = ((n->r == NULL) ? 0:n->r->b|(1 << d)) | ((n->l == NULL) ? 0:n->l->b);
}
return 0;
}
int prop(node *n,int d);
int merge2(node *l,node *r,node *&n,int d) {
prop(l,d),prop(r,d);
if (l == NULL) n = r;
else if (r == NULL) n = l;
else {
if (n == NULL) n = newNode();
merge2(l->l,r->l,n->l,d-1);
merge2(l->r,r->r,n->r,d-1);
delNode(l);
delNode(r);
}
update(n,d);
return 0;
}
int merge(node *l,node *r,node *&n,int d) {
node *t = NULL;
merge2(l,r,t,d);
n = t;
return 0;
}
int prop(node *n,int d) {
if (n != NULL) {
if (n->l != NULL) {
n->l->f &= ~n->z;
n->l->z |= n->z;
n->l->f ^= n->f;
}
if (n->r != NULL) {
n->r->f &= ~n->z;
n->r->z |= n->z;
n->r->f ^= n->f;
}
if (d >= 0) {
if (n->z & (1 << d)) merge(n->l,n->r,n->l,d-1),n->r = NULL;
if (n->f & (1 << d)) swap(n->l,n->r);
}
if ((n->a & n->b & n->z) & ((1 << (d+1))-1)) prop(n->l,d-1),prop(n->r,d-1);
n->z = n->f = 0;
update(n,d);
}
return 0;
}
int split(node *n,node *&l,node *&r,int s,int d) {
prop(n,d);
if (n == NULL) l = r = NULL;
else if (d < 0) l = n,r = NULL;
else if (s & (1 << d)) {
split(n->r,n->r,r,s,d-1);
if ((n->l == NULL) && (n->r == NULL)) {
delNode(n);
l = NULL;
}
else l = n;
if (r != NULL) {
node *t = newNode();
t->r = r,r = t;
}
}
else {
split(n->l,l,n->l,s,d-1);
if ((n->l == NULL) && (n->r == NULL)) {
delNode(n);
r = NULL;
}
else r = n;
if (l != NULL) {
node *t = newNode();
t->l = l,l = t;
}
}
update(l,d),update(r,d);
return 0;
}
int main() {
int i,j;
int n,q,a;
int t,l,r,x;
scanf("%d %d",&n,&q);
for (i = 0; i < n; i++) {
scanf("%d",&a);
node *n = newNode(),*r = n;
for (j = 19; j >= 0; j--) {
if (a & (1 << j)) n->r = newNode(),n = n->r;
else n->l = newNode(),n = n->l;
}
merge(root,r,root,19);
}
for (i = 0; i < q; i++) {
scanf("%d",&t);
if (t == 1) {
scanf("%d %d %d",&l,&r,&x);
node *L,*M,*R;
if (l > 0) split(root,L,M,l-1,19);
else L = NULL,M = root;
split(M,M,R,r,19);
if (M != NULL) M->z = ~x,M->f = 0;
merge(L,M,M,19);
merge(M,R,root,19);
}
else if (t == 2) {
scanf("%d %d %d",&l,&r,&x);
if (l > r) swap(l,r);
node *L,*M,*R;
if (l > 0) split(root,L,M,l-1,19);
else L = NULL,M = root;
split(M,M,R,r,19);
if (M != NULL) M->z = x,M->f = x;
merge(L,M,M,19);
merge(M,R,root,19);
}
else if (t == 3) {
scanf("%d %d %d",&l,&r,&x);
node *L,*M,*R;
if (l > 0) split(root,L,M,l-1,19);
else L = NULL,M = root;
split(M,M,R,r,19);
if (M != NULL) M->z = 0,M->f = x;
merge(L,M,M,19);
merge(M,R,root,19);
}
else {
scanf("%d %d",&l,&r);
if (l > r) swap(l,r);
node *L,*M,*R;
if (l > 0) split(root,L,M,l-1,19);
else L = NULL,M = root;
split(M,M,R,r,19);
printf("%d\n",size(M));
merge(L,M,M,19);
merge(M,R,root,19);
}
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
template <typename T> void read(T &t) {
t=0; char ch=getchar(); int f=1;
while (ch<'0'||ch>'9') { if (ch=='-') f=-1; ch=getchar(); }
do { (t*=10)+=ch-'0'; ch=getchar(); } while ('0'<=ch&&ch<='9'); t*=f;
}
const int maxn=(1e7)+10;
int n,q,a[200010];
int rt,tot,N;
int ls[maxn],rs[maxn];
int lazy[maxn];
int And[maxn],Or[maxn],tr[maxn];
void pushup(int root) {
And[root]=And[ls[root]]|And[rs[root]];
Or[root]=Or[ls[root]]|Or[rs[root]];
tr[root]=tr[ls[root]]+tr[rs[root]];
}
void insert(int dep,int &root,int x) {
if (!root) root=++tot;
if (dep==0) { tr[root]=1; And[root]=N-x,Or[root]=x; return; }
if (x>>(dep-1)&1) insert(dep-1,rs[root],x);
else insert(dep-1,ls[root],x);
pushup(root);
}
void update_xor(int dep,int root,int x) {
if (root==0) return;
//printf("%d %d %d\n",dep,root,x);
if (x>>(dep-1)&1) swap(ls[root],rs[root]);
int A=And[root],O=Or[root];
And[root]=(A&(N-x))|(O&x);
Or[root]=(O&(N-x))|(A&x);
lazy[root]^=x;
}
void pushdown(int dep,int root) {
if (lazy[root]==0) return;
update_xor(dep-1,ls[root],lazy[root]);
update_xor(dep-1,rs[root],lazy[root]);
lazy[root]=0;
}
void merge(int dep,int &x,int &y) {
//printf("%d %d %d,%d %d\n",dep,x,y,ls[x],rs[x]);
if (!x) { x=y; return; }
if (!y||!dep) return;
pushdown(dep,x),pushdown(dep,y);
merge(dep-1,ls[x],ls[y]);
merge(dep-1,rs[x],rs[y]);
pushup(x);
}
int query(int dep,int L,int R,int l,int r,int root) {
if (!root) return 0;
if (L<=l&&r<=R) return tr[root];
pushdown(dep,root);
int mid=(l+r)>>1,res=0;
if (L<=mid) res=query(dep-1,L,R,l,mid,ls[root]);
if (mid<R) res+=query(dep-1,L,R,mid+1,r,rs[root]);
return res;
}
void update_or(int dep,int root,int x) {
if (!root) return;
if ((x&And[root]&Or[root])==0) {
update_xor(dep,root,x&And[root]);
return;
}
pushdown(dep,root);
if (x>>(dep-1)&1) {
update_xor(dep-1,ls[root],1<<(dep-1));
merge(dep-1,rs[root],ls[root]);
ls[root]=0;
}
update_or(dep-1,ls[root],x);
update_or(dep-1,rs[root],x);
pushup(root);
}
void split(int dep,int L,int R,int &x,int &y,int l,int r) {
if (x==0||l>R||r<L) { y=0; return; }
if (L<=l&&r<=R) { y=x; x=0; return; }
int mid=(l+r)>>1;
pushdown(dep,x); y=++tot;
split(dep-1,L,R,ls[x],ls[y],l,mid);
split(dep-1,L,R,rs[x],rs[y],mid+1,r);
pushup(x),pushup(y);
}
int main() {
//freopen("1.txt","r",stdin);
read(n),read(q); N=(1<<20)-1;
for (int i=1;i<=n;i++) read(a[i]);
for (int i=1;i<=n;i++) insert(20,rt,a[i]);
int op,l,r,x;
while (q--) {
read(op),read(l),read(r);
if (op==4) {
printf("%d\n",query(20,l,r,0,N,rt));
continue;
}
read(x); int now;
split(20,l,r,rt,now,0,N);
if (op==1) update_xor(20,now,N),update_or(20,now,N-x),update_xor(20,now,N);
else if (op==2) update_or(20,now,x);
else update_xor(20,now,x);
merge(20,rt,now);
}
return 0;
}
/*
REMEMBER:
1. Think TWICE, Code ONCE!
Are there any counterexamples to your algo?
2. Be careful about the BOUNDARIES!
N=1? P=1? Something about 0?
3. Do not make STUPID MISTAKES!
Array size? Integer overflow? Time complexity? Memory usage? Precision error?
*/ | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=200010,D=20,M=N*D,Mx=(1<<D)-1;
int n,m;
namespace trie{
int val[M],ls[M],rs[M],tot,tag[M];
int h0[M],h1[M];
void setg(int u,int v,int d=D-1)
{
if(!u || d<0) return;
if(v>>d&1) swap(ls[u],rs[u]);
int p=(h0[u]^h1[u])&v;
h0[u]^=p;h1[u]^=p;
tag[u]^=v;
}
int ton[M],tp;
void del(int u)
{
h0[u]=h1[u]=ls[u]=rs[u]=tag[u]=val[u]=0;
ton[++tp]=u;
}
int node(){return tp?ton[tp--]:++tot;}
void push(int u,int d)
{
if(tag[u]) setg(ls[u],tag[u],d-1),setg(rs[u],tag[u],d-1),tag[u]=0;
}
void upd(int u,int d)
{
val[u]=val[ls[u]]+val[rs[u]];
h0[u]=h0[ls[u]]|h0[rs[u]],h1[u]=h1[ls[u]]|h1[rs[u]];
if(ls[u]) h0[u]|=1<<d;
if(rs[u]) h1[u]|=1<<d;
}
void insert(int &u,int x,int d=D-1)
{
if(!u) u=++tot;
if(d<0){val[u]=1;return;}
if(x>>d&1) insert(rs[u],x,d-1);
else insert(ls[u],x,d-1);
upd(u,d);
}
int merge(int x,int y,int d=D-1)
{
if(!x || !y) return x+y;
if(d<0){val[x]|=val[y];del(y);return x;}
push(x,d);push(y,d);
ls[x]=merge(ls[x],ls[y],d-1);
rs[x]=merge(rs[x],rs[y],d-1);
upd(x,d);del(y);
return x;
}
void split(int u,int k,int &l,int &r,int d=D-1)
{
if(d==-1){l=u;r=0;return;}
if(!u){l=r=0;return;}
push(u,d);
if(k>>d&1) l=u,r=node(),split(rs[u],k,rs[l],rs[r],d-1);
else l=node(),r=u,split(ls[u],k,ls[l],ls[r],d-1);
upd(l,d);upd(r,d);
}
void set_k(int u,int k,int d=D-1)//set all 0 in k to 1
{
if(!u || !(h0[u]>>k&1)) return;
if(!(h1[u]>>k&1)){setg(u,1<<k,d);return;}
push(u,d);
if(d==k){rs[u]=merge(rs[u],ls[u],d-1);ls[u]=0;upd(u,d);return;}
set_k(ls[u],k,d-1);set_k(rs[u],k,d-1);
upd(u,d);
}
void reset_k(int u,int k,int d=D-1)//set all 1 in k to 0
{
if(!u || !(h1[u]>>k&1)) return;
if(!(h0[u]>>k&1)){setg(u,1<<k,d);return;}
push(u,d);
if(d==k){ls[u]=merge(rs[u],ls[u],d-1);rs[u]=0;upd(u,d);return;}
reset_k(ls[u],k,d-1);reset_k(rs[u],k,d-1);
upd(u,d);
}
}
using trie::insert;using trie::merge;using trie::split;
using trie::setg;using trie::set_k;using trie::reset_k;
int root;
void set_xor(int l,int r,int x)
{
int lt=0,rt=0;
if(l) split(root,l-1,lt,root);
split(root,r,root,rt);
setg(root,x);
root=merge(merge(lt,root),rt);
}
void set_or(int l,int r,int x)
{
int lt=0,rt=0;
if(l) split(root,l-1,lt,root);
split(root,r,root,rt);
for(int i=0;i<D;i++) if(x>>i&1) set_k(root,i);
root=merge(merge(lt,root),rt);
}
void set_and(int l,int r,int x)
{
int lt=0,rt=0;
if(l) split(root,l-1,lt,root);
split(root,r,root,rt);
for(int i=0;i<D;i++) if(!(x>>i&1)) reset_k(root,i);
root=merge(merge(lt,root),rt);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1,x;i<=n;i++) scanf("%d",&x),trie::insert(root,x);
while(m --> 0)
{
int op,l,r,x;
scanf("%d%d%d",&op,&l,&r);
if(op==1) scanf("%d",&x),set_and(l,r,x);
else if(op==2) scanf("%d",&x),set_or(l,r,x);
else if(op==3) scanf("%d",&x),set_xor(l,r,x);
else
{
int lt=0,rt=0;
if(l) split(root,l-1,lt,root);
split(root,r,root,rt);
printf("%d\n",trie::val[root]);
root=merge(merge(lt,root),rt);
}
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <cstdio>
#include <algorithm>
const int Maxn=200000;
const int Maxv=(1<<20);
const int Maxk=20;
int n,q;
int a[Maxn+5];
int Root,id_tot;
struct Trie_Node{
int ch[2];
int val_0,val_1;
int sum;
int lazy;
}seg[Maxn*Maxk+5];
int st[Maxn*Maxk+5],st_top;
int new_node(){
int u;
if(st_top>0){
u=st[st_top--];
}
else{
u=++id_tot;
}
seg[u].ch[0]=seg[u].ch[1]=0;
seg[u].val_0=seg[u].val_1=0;
seg[u].sum=0;
seg[u].lazy=0;
return u;
}
void del_node(int u){
st[++st_top]=u;
}
void push_up(int root,int dep){
seg[root].sum=seg[seg[root].ch[0]].sum+seg[seg[root].ch[1]].sum;
seg[root].val_0=seg[seg[root].ch[0]].val_0|seg[seg[root].ch[1]].val_0;
seg[root].val_1=seg[seg[root].ch[0]].val_1|seg[seg[root].ch[1]].val_1;
if(seg[root].ch[0]){
seg[root].val_0|=(1<<dep);
}
if(seg[root].ch[1]){
seg[root].val_1|=(1<<dep);
}
}
void insert(int val,int &root=Root,int dep=Maxk-1){
if(root==0){
root=new_node();
}
if(dep==-1){
seg[root].sum=1;
return;
}
insert(val,seg[root].ch[(val>>dep)&1],dep-1);
push_up(root,dep);
}
void update_tag(int root,int v,int dep){
if(root==0||dep==-1){
return;
}
if((v>>dep)&1){
std::swap(seg[root].ch[0],seg[root].ch[1]);
}
int tmp=(seg[root].val_0^seg[root].val_1)&v;
seg[root].val_0^=tmp,seg[root].val_1^=tmp;
seg[root].lazy^=v;
}
void push_down(int root,int dep){
if(seg[root].lazy){
update_tag(seg[root].ch[0],seg[root].lazy,dep-1);
update_tag(seg[root].ch[1],seg[root].lazy,dep-1);
seg[root].lazy=0;
}
}
int trie_merge(int root_1,int root_2,int dep=Maxk-1){
if(root_1==0||root_2==0){
return root_1^root_2;
}
if(dep==-1){
del_node(root_2);
return root_1;
}
push_down(root_1,dep);
push_down(root_2,dep);
seg[root_1].ch[0]=trie_merge(seg[root_1].ch[0],seg[root_2].ch[0],dep-1);
seg[root_1].ch[1]=trie_merge(seg[root_1].ch[1],seg[root_2].ch[1],dep-1);
del_node(root_2);
push_up(root_1,dep);
return root_1;
}
void trie_split(int root,int k,int &l_root,int &r_root,int dep=Maxk-1){
if(root==0){
l_root=r_root=0;
return;
}
if(dep==-1){
l_root=root;
r_root=0;
return;
}
push_down(root,dep);
if((k>>dep)&1){
l_root=root;
r_root=new_node();
trie_split(seg[root].ch[1],k,seg[l_root].ch[1],seg[r_root].ch[1],dep-1);
}
else{
l_root=new_node();
r_root=root;
trie_split(seg[root].ch[0],k,seg[l_root].ch[0],seg[r_root].ch[0],dep-1);
}
push_up(l_root,dep);
push_up(r_root,dep);
}
void push_or(int root,int k,int dep=Maxk-1){
if(root==0||((seg[root].val_0>>k)&1)==0){
return;
}
if(((seg[root].val_1>>k)&1)==0){
update_tag(root,1<<k,dep);
return;
}
push_down(root,dep);
if(dep==k){
seg[root].ch[1]=trie_merge(seg[root].ch[0],seg[root].ch[1],dep-1);
seg[root].ch[0]=0;
push_up(root,dep);
return;
}
push_or(seg[root].ch[0],k,dep-1);
push_or(seg[root].ch[1],k,dep-1);
push_up(root,dep);
}
void push_and(int root,int k,int dep=Maxk-1){
if(root==0||((seg[root].val_1>>k)&1)==0){
return;
}
if(((seg[root].val_0>>k)&1)==0){
update_tag(root,1<<k,dep);
return;
}
push_down(root,dep);
if(dep==k){
seg[root].ch[0]=trie_merge(seg[root].ch[0],seg[root].ch[1],dep-1);
seg[root].ch[1]=0;
push_up(root,dep);
return;
}
push_and(seg[root].ch[0],k,dep-1);
push_and(seg[root].ch[1],k,dep-1);
push_up(root,dep);
}
int main(){
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
insert(a[i]);
}
for(int t=1;t<=q;t++){
int op;
scanf("%d",&op);
int l,r;
scanf("%d%d",&l,&r);
int l_root=0,r_root=0;
if(l){
trie_split(Root,l-1,l_root,Root);
}
trie_split(Root,r,Root,r_root);
if(op==1){
int x;
scanf("%d",&x);
for(int i=0;i<Maxk;i++){
if(((x>>i)&1)==0){
push_and(Root,i);
}
}
}
else if(op==2){
int x;
scanf("%d",&x);
for(int i=0;i<Maxk;i++){
if(((x>>i)&1)==1){
push_or(Root,i);
}
}
}
else if(op==3){
int x;
scanf("%d",&x);
update_tag(Root,x,Maxk-1);
}
else{
printf("%d\n",seg[Root].sum);
}
Root=trie_merge(trie_merge(l_root,Root),r_root);
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int MOD;
struct modint {
private:
int v;
static int minv(int a, int m) {
a %= m;
assert(a);
return a == 1 ? 1 : int(m - ll(minv(m, a)) * ll(m) / a);
}
public:
modint() : v(0) {}
modint(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modint& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modint& n) { ll v_; in >> v_; n = modint(v_); return in; }
friend bool operator == (const modint& a, const modint& b) { return a.v == b.v; }
friend bool operator != (const modint& a, const modint& b) { return a.v != b.v; }
modint inv() const {
modint res;
res.v = minv(v, MOD);
return res;
}
friend modint inv(const modint& m) { return m.inv(); }
modint neg() const {
modint res;
res.v = v ? MOD-v : 0;
return res;
}
friend modint neg(const modint& m) { return m.neg(); }
modint operator- () const {
return neg();
}
modint operator+ () const {
return modint(*this);
}
modint& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modint& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modint& operator += (const modint& o) {
v += o.v;
if (v >= MOD) v -= MOD;
return *this;
}
modint& operator -= (const modint& o) {
v -= o.v;
if (v < 0) v += MOD;
return *this;
}
modint& operator *= (const modint& o) {
v = int(ll(v) * ll(o.v) % MOD);
return *this;
}
modint& operator /= (const modint& o) {
return *this *= o.inv();
}
friend modint operator ++ (modint& a, int) { modint r = a; ++a; return r; }
friend modint operator -- (modint& a, int) { modint r = a; --a; return r; }
friend modint operator + (const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator - (const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator * (const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator / (const modint& a, const modint& b) { return modint(a) /= b; }
};
namespace IO {
template<class T>
void _R(T &x) { cin >> x; }
void _R(int &x) { scanf("%d", &x); }
void _R(ll &x) { scanf("%lld", &x); }
void _R(double &x) { scanf("%lf", &x); }
void _R(char &x) { x = getchar(); }
void _R(char *x) { scanf("%s", x); }
void R() {}
template<class T, class... U>
void R(T &head, U &... tail) { _R(head), R(tail...); }
template<class T>
void _W(const T &x) { cout << x; }
void _W(const int &x) { printf("%d", x); }
void _W(const ll &x) { printf("%lld", x); }
void _W(const double &x) { printf("%.16f", x); }
void _W(const char &x) { putchar(x); }
void _W(const char *x) { printf("%s", x); }
template<class T, class U>
void _W(const pair<T, U> &x) { _W(x.first), putchar(' '), _W(x.second); }
template<class T>
void _W(const vector<T> &x) { for (auto i = x.begin(); i != x.end(); _W(*i++)) if (i != x.cbegin()) putchar(' '); }
void W() {}
template<class T, class... U>
void W(const T &head, const U &... tail) { _W(head), putchar(sizeof...(tail) ? ' ' : '\n'), W(tail...); }
}
using namespace IO;
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
const int maxn = 2e5+50;
const int maxp = maxn*32+5;
const int K = 20;
const int M = 1 << K;
int ls[maxp], rs[maxp], tot;
// 0, 1, cnt, XOR
int t0[maxp], t1[maxp], p[maxp], txor[maxp], dep[maxp];
inline void pushup(int x) {
p[x] = p[ls[x]] + p[rs[x]];
t0[x] = t0[ls[x]] | t0[rs[x]];
t1[x] = t1[ls[x]] | t1[rs[x]];
}
inline void XOR(int x, int t) {
if (!x) return;
txor[x] ^= t;
if (t >> dep[x] & 1) swap(ls[x], rs[x]);
int a = (t0[x] & (~t)) | (t1[x] & t), b = (t1[x] & (~t)) | (t0[x] & t);
t0[x] = a, t1[x] = b;
}
inline void pushdown(int x) {
if (txor[x]) {
XOR(ls[x], txor[x]), XOR(rs[x], txor[x]);
txor[x] = 0;
}
}
inline void insert(int &x, int s, int k) {
if (!x) x = ++tot;
dep[x] = k;
if (k == -1) {
t1[x] = s, t0[x] = s ^ (M - 1);
p[x] = 1;
return;
}
insert((s >> k & 1) ? rs[x] : ls[x], s, k - 1);
pushup(x);
}
inline void split(int &x, int &y, int l, int r, int le, int re) {
if (!x || re < l || le > r) {
y = 0;
return;
}
if (le <= l && r <= re) {
y = x;
x = 0;
return;
}
int mid = l + r >> 1; pushdown(x);
dep[y = ++tot] = dep[x];
split(ls[x], ls[y], l, mid, le, re);
split(rs[x], rs[y], mid + 1, r, le, re);
pushup(x), pushup(y);
}
inline void merge(int &x, int y) {
if (!x || !y) {
x = x | y;
return;
}
pushdown(x), pushdown(y);
merge(ls[x], ls[y]), merge(rs[x], rs[y]);
if (~dep[x]) pushup(x);
}
inline void OR(int x, int s) {
if (!x) return;
if (!(s & t0[x] & t1[x])) {
XOR(x, s & t0[x]);
return;
}
pushdown(x);
if (s >> dep[x] & 1) XOR(ls[x], 1 << dep[x]), merge(rs[x], ls[x]), ls[x] = 0;
OR(ls[x], s), OR(rs[x], s);
pushup(x);
}
int main() {
int n, q, x = 0;
R(n, q);
for (int i = 1; i <= n; ++i) {
int v; R(v); insert(x, v, K - 1);
}
for (; q; --q) {
int oth;
int t, l, r, v; R(t, l, r);
split(x, oth, 0, M - 1, l, r);
if (t == 1) R(v),XOR(oth, M - 1),OR(oth, v ^ (M - 1)),XOR(oth, M - 1);
else if (t == 2) R(v),OR(oth, v);
else if (t == 3) R(v), XOR(oth, v);
else W(p[oth]);
merge(x, oth);
}
return 0;
} | CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
#define debug(...) //ignore
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef long double ld;
const int LEV = 22;
const int M1 = (1<<LEV)-1;
int BIT(int x, int bit) { return (1<<bit) & x; }
struct node;
using pn = node*;
pn merge(pn a, pn b);
struct node {
pn l = nullptr, r = nullptr;
int cnt_ = 0, here = 0;
int level = -1;
int lazy_xor = 0;
int has_on = 0, has_off = 0;
friend int cnt(pn x) { return x ? x->cnt_ : 0; }
friend int ON(pn x) { return x ? x->has_on : 0; }
friend int OFF(pn x) { return x ? x->has_off : 0; }
friend pn create(pn l, pn r, int lev) {
pn t = new node();
t->level = lev;
t->l = l;
t->r = r;
t->pull();
return t;
}
void pull() {
cnt_ = here + cnt(l) + cnt(r);
has_on = ON(l) | ON(r);
has_off = OFF(l) | OFF(r);
if(r) has_on ^= (1<<level);
if(l) has_off ^= (1<<level);
}
void apply_xor(int x) {
rep(bit,0,LEV) if(x>>bit&1){
lazy_xor ^= (1<<bit);
if((has_on>>bit&1) != (has_off>>bit&1)){
has_on ^= (1<<bit);
has_off ^= (1<<bit);
}
}
}
void push() {
if(level == -1) return;
if(lazy_xor>>level&1) swap(l,r);
for(auto c : {l,r}) if(c) c->apply_xor(lazy_xor);
lazy_xor = 0;
pull();
}
};
pn merge(pn a, pn b) {
if(!a) return b;
if(!b) return a;
a->push();
b->push();
pn t = create(merge(a->l, b->l), merge(a->r, b->r), a->level);
t->here = (a->here || b->here);
t->pull();
delete a;
delete b;
return t;
}
pair<pn,pn> split(pn t, int x, int level = LEV) {
if(!t) return {t,t};
assert(level == t->level);
t->push();
if(level == -1) return {nullptr, t}; // x on RHS
if(x>>level&1) {
auto [a,b] = split(t->r,x,level-1);
auto p = make_pair(create(t->l,a,level), create(nullptr,b,level));
delete t;
return p;
}
else {
auto [a,b] = split(t->l,x,level-1);
auto p = make_pair(create(a,nullptr,level), create(b,t->r,level));
delete t;
return p;
}
}
void insert(pn& t, int x, int level = LEV) {
if(!t) t = create(t, t, level);
assert(level == t->level);
t->push();
if(level == -1) {
t->here = 1;
t->pull();
return;
}
if(x>>level&1) insert(t->r, x, level-1);
else insert(t->l, x, level-1);
t->pull();
}
tuple<pn,pn,pn> split3(pn t, int l, int r) {
auto [L,T] = split(t,l);
auto [M,R] = split(T,r+1);
return {L,M,R};
}
void XOR(pn& t, int x) {
if(!t) return;
t->apply_xor(x);
t->push();
}
void OR(pn& t, int x) {
if(!x) return;
if(!t) return;
t->push();
if(t->level == -1) return;
if(x>>t->level&1) {
t->r = merge(t->l,t->r);
t->l = nullptr;
t->pull();
}
rep(bit,0,t->level) if(x>>bit&1) {
if((t->has_off>>bit&1) == 0) x ^= (1<<bit);
else if((t->has_on>>bit&1) == 0) { x ^= (1<<bit); XOR(t, 1<<bit); }
}
OR(t->l, x);
OR(t->r, x);
t->pull();
}
void AND(pn& t, int x) { XOR(t, M1); OR(t, x^M1); XOR(t, M1); }
int main() {
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(cin.failbit);
int n, q;
cin>>n>>q;
pn root = nullptr;
rep(i,0,n) {
int a;
cin>>a;
insert(root, a);
}
rep(i,0,q) {
int typ,l,r,x;
cin>>typ>>l>>r;
if(typ <= 3) cin>>x;
auto [a,b,c] = split3(root,l,r);
if(typ == 1) AND(b,x);
if(typ == 2) OR(b,x);
if(typ == 3) XOR(b,x);
if(typ == 4) cout << cnt(b) << "\n";
root = merge(a,merge(b,c));
}
cout << flush;
_Exit(0);
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <queue>
#include <ctime>
#include <cassert>
#include <complex>
#include <string>
#include <cstring>
#include <chrono>
#include <random>
#include <bitset>
using namespace std;
#ifdef LOCAL
#define eprintf(...) fprintf(stderr, __VA_ARGS__);fflush(stderr);
#else
#define eprintf(...) 42
#endif
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
template<typename T>
using pair2 = pair<T, T>;
using pii = pair<int, int>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
ll myRand(ll B) {
return (ull)rng() % B;
}
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
clock_t startTime;
double getCurrentTime() {
return (double)(clock() - startTime) / CLOCKS_PER_SEC;
}
const int P = 8, Q = 12;
struct Block {
bitset<(1 << P)> a;
int A, X, cnt;
Block() : a(), A((1 << P) - 1), X(0), cnt(0) {}
void push() {
bitset<(1 << P)> nw;
nw.reset();
for (int x = 0; x < (1 << P); x++) {
if (a[x]) {
nw[(x & A) ^ X] = 1;
}
}
a = nw;
X ^= X & A;
cnt = a.count();
}
void recalc() {
A = (1 << P) - 1;
X = 0;
cnt = a.count();
}
void makeOp(int t, int x) {
if (t == 3) {
X ^= x;
return;
}
if (t == 1) x ^= (1 << P) - 1;
bool p = (A & x) != 0;
X ^= X & x;
A ^= A & x;
if (t == 2) X ^= x;
if (p) push();
}
};
Block blocks[(1 << 14) + 55];
bitset<(1 << 14) + 55> usedBlock;
int curBlock;
int p[(1 << 12) + 5];
int np[(1 << 12) + 5];
void recalcFree() {
usedBlock.reset();
for (int i = 0; i < (1 << Q); i++)
if (p[i] != -1)
usedBlock[p[i]] = 1;
curBlock = 0;
}
int getNewBlock() {
while (usedBlock[curBlock]) curBlock++;
usedBlock[curBlock] = 1;
blocks[curBlock] = Block();
return curBlock;
}
void mergeInto(int &v, int u) {
if (v == -1) {
v = u;
return;
}
blocks[v].push();
blocks[u].push();
blocks[v].a |= blocks[u].a;
blocks[v].recalc();
}
int getAns(int l, int r) {
int lId = l >> P, rId = r >> P;
l &= (1 << P) - 1;
r &= (1 << P) - 1;
int ans = 0;
if (lId == rId) {
if (p[lId] == -1) return ans;
blocks[p[lId]].push();
for (int x = l; x <= r; x++)
ans += blocks[p[lId]].a[x];
return ans;
}
if (p[lId] != -1) {
blocks[p[lId]].push();
for (int x = l; x < (1 << P); x++)
ans += blocks[p[lId]].a[x];
}
if (p[rId] != -1) {
blocks[p[rId]].push();
for (int x = 0; x <= r; x++)
ans += blocks[p[rId]].a[x];
}
for (int i = lId + 1; i < rId; i++)
if (p[i] != -1)
ans += blocks[p[i]].cnt;
return ans;
}
void splitBlock(int &v, int &u, int l, int r) {
// eprintf("splitting ");
blocks[v].push();
// for (int i = 0; i < (1 << P); i++)
// eprintf("%d", (int)blocks[v].a[i]);
u = getNewBlock();
blocks[u] = blocks[v];
/*
eprintf(" -- ");
for (int i = 0; i < (1 << P); i++)
eprintf("%d", (int)blocks[v].a[i]);
eprintf(" ");
for (int i = 0; i < (1 << P); i++)
eprintf("%d", (int)blocks[u].a[i]);
*/
for (int i = 0; i <= (1 << P) - 1; i++) {
if (l <= i && i <= r) {
blocks[u].a[i] = 0;
} else {
blocks[v].a[i] = 0;
}
}
/*
eprintf(" -- ");
for (int i = 0; i < (1 << P); i++)
eprintf("%d", (int)blocks[v].a[i]);
eprintf(" ");
for (int i = 0; i < (1 << P); i++)
eprintf("%d", (int)blocks[u].a[i]);
*/
blocks[v].recalc();
blocks[u].recalc();
/*
eprintf(" -- ");
for (int i = 0; i < (1 << P); i++)
eprintf("%d", (int)blocks[v].a[i]);
eprintf(" ");
for (int i = 0; i < (1 << P); i++)
eprintf("%d", (int)blocks[u].a[i]);
eprintf("\n");
*/
}
void makeOp(int t, int l, int r, int x) {
int lId = l >> P, rId = r >> P;
int y = x >> P;
l &= (1 << P) - 1;
r &= (1 << P) - 1;
x &= (1 << P) - 1;
for (int i = 0; i < (1 << Q); i++) {
if (p[i] == -1) continue;
int v = p[i];
if (i < lId || i > rId) {
mergeInto(np[i], v);
continue;
}
if (i == lId || i == rId) {
int L = 0, R = (1 << P) - 1;
if (i == lId) L = l;
if (i == rId) R = r;
int u;
splitBlock(v, u, L, R);
mergeInto(np[i], u);
blocks[v].makeOp(t, x);
int j = i;
if (t == 1) {
j &= y;
} else if (t == 2) {
j |= y;
} else {
j ^= y;
}
mergeInto(np[j], v);
} else {
blocks[v].makeOp(t, x);
int j = i;
if (t == 1) {
j &= y;
} else if (t == 2) {
j |= y;
} else {
j ^= y;
}
mergeInto(np[j], v);
}
}
}
void eprintAll() {
for (int i = 0; i < (1 << Q); i++) {
if (p[i] == -1) {
for (int j = 0; j < (1 << P); j++)
eprintf("0");
} else {
for (int j = 0; j < (1 << P); j++)
eprintf("%d", (int)blocks[p[i]].a[j]);
}
eprintf("|");
}
eprintf("\n");
}
int main()
{
startTime = clock();
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
int n, q;
scanf("%d%d", &n, &q);
for (int i = 0; i < (1 << Q); i++)
p[i] = -1;
while(n--) {
int x;
scanf("%d", &x);
int v = x >> P;
if (p[v] == -1) p[v] = getNewBlock();
blocks[p[v]].a[x & ((1 << P) - 1)] = 1;
}
for (int i = 0; i < (1 << Q); i++)
if (p[i] != -1)
blocks[p[i]].recalc();
// eprintf("! %d\n", blocks[p[0]].cnt);
while(q--) {
//eprintAll();
int t, l, r;
scanf("%d%d%d", &t, &l, &r);
if (t == 4) {
printf("%d\n", getAns(l, r));
} else {
int x;
scanf("%d", &x);
for (int i = 0; i < (1 << Q); i++)
np[i] = -1;
recalcFree();
makeOp(t, l, r, x);
for (int i = 0; i < (1 << Q); i++)
p[i] = np[i];
}
/*
eprintf("! %d\n", blocks[p[0]].cnt);
for (int i = 0; i < 8; i++)
eprintf("%d", (int)blocks[p[0]].a[i]);
eprintf("\n");
*/
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | #include <cstdio>
#include <cassert>
#include <utility>
#include <functional>
#define X first
#define Y second
const int mod = 998244353;
template<int k>
struct node{
node <k-1>* chd[2];
int cnt;
int lazy;
int has[2];
int get_cnt(){
assert(this!=NULL);
return cnt;
}
int get_has(int d){
assert(this!=NULL);
push();
assert(has[d]<(1<<(k+1)));
return has[d];
}
node():chd{NULL, NULL}, has{0, 0}, cnt(0),lazy(0){};
node(node<k-1>* l,node <k-1>* r):chd{l,r},cnt(0),lazy(0),has{0,0}{
if(l){
cnt+=l->get_cnt();
has[0]|=l->get_has(0)|(1<<k);
has[1]|=l->get_has(1);
}
if(r){
cnt+=r->get_cnt();
has[0]|=r->get_has(0);
has[1]|=r->get_has(1)|(1<<k);
}
assert(has[0]<(1<<(k+1)));
assert(has[1]<(1<<(k+1)));
}
void push(){
assert(lazy<(1<<(k+1)));
if(!lazy) return;
if(lazy&(1<<k)){
std::swap(chd[0],chd[1]);
if((has[0]^has[1])&(1<<k)){
has[0]^=(1<<k);
has[1]^=(1<<k);
}
lazy^=(1<<k);
}
int flip=(has[0]^has[1])&lazy;
has[0]^=flip;
has[1]^=flip;
if(chd[0]) chd[0]->lazy^=lazy;
if(chd[1]) chd[1]->lazy^=lazy;
lazy=0;
assert(has[0]<(1<<(k+1)));
assert(has[1]<(1<<(k+1)));
}
};
template<>
struct node<-1>{
int lazy;
node():lazy(0){
}
int get_cnt(){
assert(this!=NULL);
return 1;
}
int get_has(int d){
assert(this!=NULL);
return 0;
}
};
template<int k>
node<k>* create(int x){
if(x&(1<<k)){
return new node<k>(NULL,create<k-1>(x));
}else{
return new node<k>(create<k-1>(x),NULL);
}
}
template<> node<-1>*create(int x)
{
return new node<-1>();
}
template<int k> std::pair <node<k - 1>*, node< k - 1>*> destruct(node <k>*a)
{
assert(a!=NULL);
a -> push();
auto res = std::make_pair(a -> chd[0], a -> chd[1]);
delete a;
return res;
}
template <int k> node <k>* join(node<k -1>* l, node <k - 1>* r)
{
if(l == NULL && r == NULL)
{
return NULL;
}
return new node<k>(l, r);
}
template<int k> node<k>* merge(node<k> *a, node<k> *b)
{
if(!a)
{
return b;
}
if(!b)
{
return a;
}
auto aa = destruct(a);
auto bb = destruct(b);
node <k - 1> *l = merge<k - 1>(aa.X, bb.X);
node <k - 1> *r = merge<k - 1>(aa.Y, bb.Y);
return join<k>(l, r);
}
template<>node<-1>* merge(node<-1>*a, node<-1>* b)
{
if(!a)
{
return b;
}
if(!b)
{
return a;
}
delete b;
return a;
}
template<int k>
std::pair<node<k>*,node<k>*> split(node<k>* a,int thres){
if(a==NULL){
return {NULL,NULL};
}
if(thres<=0) return {NULL,a};
if(thres>=(1<<(k+1))) return {a,NULL};
assert(k>=0);
auto aa =destruct(a);
if(thres<(1<<k)){
node<k-1>* l,*r;
std::tie(l,r)=split<k-1>(aa.first,thres);
return std::make_pair(join<k>(l,NULL),join<k>(r,aa.second));
}else if(thres>(1<<k)){
node<k-1>* l,*r;
std::tie(l,r)=split<k-1>(aa.second, thres-(1<<k));
return std::make_pair(join<k>(aa.first,l),join<k>(NULL,r));
}else{
return std::make_pair(join<k>(aa.first,NULL),join<k>(NULL,aa.second));
}
}
template<>
std::pair<node<-1>*,node<-1>*> split<-1>(node<-1>* a,int thres){
assert(0);
}
template<int k> node<k>* update(node<k> *a, int val)
{
if(a == NULL) return NULL;
a -> push();
assert(val<(1<<(k+1)));
if((val & a -> has[0] & a -> has[1]) == 0)
{
a -> lazy ^= (val & a ->has[0]);
return a;
}
node<k - 1>*l, *r;
std::tie(l, r) = destruct(a);
l = update<k - 1>(l, val & ~(1 << k));
r = update<k - 1>(r, val & ~(1 << k));
if(val & (1 << k))
{
return join<k>(NULL, merge<k - 1>(l, r));
}
else
{
return join<k>(l, r);
}
}
template<>node<-1>*update(node<-1>*a, int val)
{
return a;
}
int main()
{
// ifstream cin("input1.txt.4c");
// ios_base::sync_with_stdio(0);
// cin.tie(0);
//cout.tie(0);
node<19>* root = NULL;
int n, q;
//cin >> n >> q;
scanf("%d %d", &n, &q);
// printf("A\n");
for(int i = 0; i< n; i++)
{
int a;
scanf("%d", &a);
// root = create<19> (a);
root = merge(root, create<19>(a));
}
while(q--)
{
int t, l, r;
scanf("%d%d%d", &t, &l, &r);
node<19>*left, *right;
std::tie(left, root) = split(root, l);
std::tie(root, right) = split(root, r + 1);
if(t == 4)
{
if(root)
{
printf("%d\n", root -> cnt);
// return 0;
}
else
{
printf("0\n");
//return 0;
}
}
else
{
int x;
scanf("%d", &x);
if(root != NULL)
{
if(t == 1)
{
root -> lazy ^= ((1 << 20) - 1);
root = update(root, x ^ ((1 << 20) - 1));
root -> lazy ^= ((1 << 20) - 1);
}
else if(t == 2)
{
root = update(root, x);
}
else
{
root -> lazy ^=x;
}
}
}
root = merge(root, left);
root = merge(root, right);
}
return 0;
}
| CPP |
1515_H. Phoenix and Bits | Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has n integers a_1, a_2, ..., a_n, and will perform q of the following queries:
1. replace all numbers a_i where l ≤ a_i ≤ r with a_i AND x;
2. replace all numbers a_i where l ≤ a_i ≤ r with a_i OR x;
3. replace all numbers a_i where l ≤ a_i ≤ r with a_i XOR x;
4. output how many distinct integers a_i where l ≤ a_i ≤ r.
For each query, Phoenix is given l, r, and x. Note that he is considering the values of the numbers, not their indices.
Input
The first line contains two integers n and q (1 ≤ n ≤ 2 ⋅ 10^5; 1 ≤ q ≤ 10^5) — the number of integers and the number of queries, respectively.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i < 2^{20}) — the integers that Phoenix starts with.
The next q lines contain the queries. For each query, the first integer of each line is t (1 ≤ t ≤ 4) — the type of query.
If t ∈ \{1, 2, 3\}, then three integers l_i, r_i, and x_i will follow (0 ≤ l_i, r_i, x_i < 2^{20}; l_i ≤ r_i).
Otherwise, if t=4, two integers l_i and r_i will follow (0 ≤ l_i ≤ r_i < 2^{20}).
It is guaranteed that there is at least one query where t=4.
Output
Print the answer for each query where t=4.
Examples
Input
5 6
5 4 3 2 1
1 2 3 2
4 2 5
3 2 5 3
4 1 6
2 1 1 8
4 8 10
Output
3
2
1
Input
6 7
6 0 2 3 2 7
1 0 4 3
2 6 8 4
4 0 7
3 2 5 3
1 0 1 2
4 0 3
4 2 7
Output
5
1
2
Note
In the first example:
* For the first query, 2 is replaced by 2 AND 2 = 2 and 3 is replaced with 3 AND 2 = 2. The set of numbers is \{1, 2, 4, 5\}.
* For the second query, there are 3 distinct numbers between 2 and 5: 2, 4, and 5.
* For the third query, 2 is replaced by 2 XOR 3 = 1, 4 is replaced by 4 XOR 3 = 7, and 5 is replaced by 5 XOR 3 = 6. The set of numbers is \{1, 6, 7\}.
* For the fourth query, there are 2 distinct numbers between 1 and 6: 1 and 6.
* For the fifth query, 1 is replaced by 1 OR 8 = 9. The set of numbers is \{6, 7, 9\}.
* For the sixth query, there is one distinct number between 8 and 10: 9. | 2 | 14 | // Author: wlzhouzhuan
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
#define pb push_back
#define fir first
#define sec second
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define per(i, l, r) for (int i = l; i >= r; i--)
#define mset(s, t) memset(s, t, sizeof(s))
#define mcpy(s, t) memcpy(s, t, sizeof(t))
template<typename T1, typename T2> void ckmin(T1 &a, T2 b) { if (a > b) a = b; }
template<typename T1, typename T2> void ckmax(T1 &a, T2 b) { if (a < b) a = b; }
int read() {
int x = 0, f = 0; char ch = getchar();
while (!isdigit(ch)) f |= ch == '-', ch = getchar();
while (isdigit(ch)) x = 10 * x + ch - '0', ch = getchar();
return f ? -x : x;
}
template<typename T> void print(T x) {
if (x < 0) putchar('-'), x = -x;
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
template<typename T> void print(T x, char let) {
print(x), putchar(let);
}
const int N = 200005;
const int B = 20;
const int K = (1 << B) - 1;
int a[N], n, q;
int ls[60 * N], rs[60 * N], tot, rt;
int Vand[60 * N], Vor[60 * N], siz[60 * N], lazy[60 * N];
void pushup(int u) {
Vand[u] = Vand[ls[u]] | Vand[rs[u]];
Vor[u] = Vor[ls[u]] | Vor[rs[u]];
siz[u] = siz[ls[u]] + siz[rs[u]];
}
void pushxor(int dep, int u, int val) {
if (!u) return ;
// printf("pushxor %d %d %d\n", dep, u, val);
if (val >> (dep - 1) & 1) swap(ls[u], rs[u]);
int tmpand = Vand[u], tmpor = Vor[u];
Vand[u] = (tmpand & (val ^ K)) | (tmpor & val);
Vor[u] = (tmpor & (val ^ K)) | (tmpand & val);
lazy[u] ^= val;
}
void pushdown(int dep, int u) {
if (lazy[u]) {
pushxor(dep - 1, ls[u], lazy[u]), pushxor(dep - 1, rs[u], lazy[u]);
lazy[u] = 0;
}
}
void ins(int dep, int &u, int l, int r, int val) {
if (!u) u = ++tot;
if (dep == 0) {
Vand[u] = val ^ K;
Vor[u] = val;
siz[u] = 1;
return ;
}
int mid = l + r >> 1;
if (val >> (dep - 1) & 1) ins(dep - 1, rs[u], l, mid, val);
else ins(dep - 1, ls[u], mid + 1, r, val);
// printf("%d %d\n", u, val);
pushup(u);
}
void split(int dep, int &u, int &v, int l, int r, int ql, int qr) {
// printf("split %d %d %d %d %d %d %d\n", u, v, dep, l, r, ql, qr);
if (!u || qr < l || ql > r) {
v = 0;
return ;
}
if (ql <= l && r <= qr) {
v = u, u = 0;
return ;
}
pushdown(dep, u), v = ++tot;
int mid = l + r >> 1;
split(dep - 1, ls[u], ls[v], l, mid, ql, qr);
split(dep - 1, rs[u], rs[v], mid + 1, r, ql, qr);
pushup(u), pushup(v);
// printf("ls[%d]=%d,rs[%d]=%d,ls[%d]=%d,rs[%d]=%d\n",u,ls[u],u,rs[u],v,ls[v],v,rs[v]);
// printf(">>> %d %d %d %d\n",Vand[u],Vor[u],Vand[v],Vor[v]);
}
void merge(int dep, int &x, int &y) {
// printf("merge %d %d %d\n", x, y, dep);
if (!x) {
x = y;
return ;
}
if (!y || dep == 0) return ;
pushdown(dep, x), pushdown(dep, y);
merge(dep - 1, ls[x], ls[y]);
merge(dep - 1, rs[x], rs[y]);
pushup(x);
}
void update_or(int dep, int u, int l, int r, int x) {
if (!u) return ;
int add = Vand[u] & x;
if ((add & Vor[u]) == 0) {
pushxor(dep, u, add);
return ;
}
pushdown(dep, u);
int mid = l + r >> 1;
if (x >> (dep - 1) & 1) {
pushxor(dep - 1, ls[u], 1 << dep - 1);
merge(dep - 1, rs[u], ls[u]);
ls[u] = 0;
}
update_or(dep - 1, ls[u], l, mid, x);
update_or(dep - 1, rs[u], mid + 1, r, x);
pushup(u);
// printf("update_or %d %d %d %d %d\n",u,ls[u],rs[u],Vand[u],Vor[u]);
}
int query(int dep, int u, int l, int r, int ql, int qr) {
// printf("query %d %d %d %d %d %d\n",dep,u,l,r,ql,qr);
if (!u || qr < l || ql > r) return 0;
if (ql <= l && r <= qr) return siz[u];
pushdown(dep, u);
int mid = l + r >> 1, ans = 0;
ans += query(dep - 1, ls[u], l, mid, ql, qr);
ans += query(dep - 1, rs[u], mid + 1, r, ql, qr);
return ans;
}
int main() {
n = read(), q = read();
rep(i, 1, n) {
a[i] = read();
ins(20, rt, 0, K, a[i]);
}
// printf("tot = %d\n", tot);
// for(int i=1;i<=tot;i++){
// printf("info[%d]: %d %d %d\n",i,Vand[i],Vor[i],siz[i]);
// }
// return 0;
while (q--) {
int opt = read(), l = read(), r = read(), x, y = 0;
if (opt == 4) {
print(query(20, rt, 0, K, l, r), '\n');
} else {
x = read();
split(20, rt, y, 0, K, l, r);
// printf("modify rt = %d\n", y);
if (opt == 1) pushxor(20, y, K), update_or(20, y, 0, K, x ^ K), pushxor(20, y, K);
else if (opt == 2) update_or(20, y, 0, K, x);
else pushxor(20, y, x);
merge(20, rt, y);
// printf("tot = %d\n", tot);
// for(int i=1;i<=tot;i++){
// printf("info[%d]: %d %d %d\n",i,Vand[i],Vor[i],siz[i]);
// }
// system("pause");
}
}
return 0;
} | CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.Scanner;
/**
*
* @author Acer
*/
public class ExcitingBets {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-- > 0){
long a = sc.nextLong();
long b = sc.nextLong();
if(a==b){
System.out.println(0+" "+0);
}
else{
long gcd = Math.abs(a-b);
long rem = a%gcd;
long step = Math.min(rem, gcd-rem);
System.out.println(gcd+" "+step);
}
}
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import io,os
input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
import math
t=int(input())
while(t>0):
t-=1
a,b=sorted(list(map(int,input().split())))
if(a==0):
print(str(b)+" 0")
continue
if(a==b):
print("0 0")
continue
if((b-a)==1):
print("1 0")
continue
else:
g=b-a
print(str(g)+" "+str(min(b%g,g-b%g))) | PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args)throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw=new PrintWriter(System.out);
int t=Integer.parseInt(br.readLine());
while(t-->0)
{
String s[]=(br.readLine()).split(" ");
long a=Long.parseLong(s[0]);
long b=Long.parseLong(s[1]);
if(a==b)
{
pw.println("0 0");
continue;
}
long max=Math.max(a,b);
long min=Math.min(a,b);
long gcd=max-min;
long m1=min%gcd;
long m2=(1+(min/gcd))*gcd-min;
long move=Math.min(m1,m2);
pw.println(gcd+" "+move);
}
pw.flush();
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<bits/stdc++.h>
using namespace std;
#define ll long long int
#define M 1000000007
#define read(arr) for(int i=0;i<n;i++) cin>>arr[i];
#define print(arr) for(int i=0;i<n;i++) cout<<arr[i]<<" "; cout<<endl;
#define vl vector<ll>
bool sortcoll(vector<ll> &v1, vector<ll> &v2)
{
return v1[1]>v2[1];
}
bool isPrime(ll n)
{
if(n==1)
return true;
for(int i=2;i<=sqrt(n);i++)
if(n%i==0)
return false;
return true;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll t;
cin>>t;
while(t--)
{
ll a,b;
cin>>a>>b;
if(a==b)
cout<<0<<" "<<0<<endl;
else
{
ll x=abs(a-b);
ll l=(min(a,b)/x)*x;
ll u=(max(a,b)/x+1)*x;
ll res=LLONG_MAX;
for(ll i=l;i<=u;i+=x)
{
if(min(abs(i-a),abs(i-b))<res)
res=min(abs(i-a),abs(i-b));
}
cout<<x<<" "<<res<<endl;
}
}
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include <bits/stdc++.h>
typedef long long int ll;
const unsigned int MOD = 1000000007;
using namespace std;
int main()
{
int t;
cin >> t;
for (int tt = 0; tt < t; tt++)
{
ll a,b;
cin>>a>>b;
if(a>b)
swap(a,b);
if(a==b)
cout<<"0 0\n";
else
{
ll x=abs(a-b);
ll y= a%x;
y = min(y, x-y);
cout<<x<<" "<<y<<"\n";
}
}
} | CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import sys
import math
input = sys.stdin.readline
t = int(input())
for _ in range(t):
c=0
a,b=list(map(int,input().split()))
if a==b:
print(0,0)
else:
g=abs(a-b)
print(g,min(a%g,g-a%g))
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | T = int(input())
for _ in range(T):
a, b = map(int, input().split(' '))
if a < b:
a, b = b, a
if a == b:
print("0 0")
else:
d = a - b
steps = min(b % d, d - b % d)
print("{} {}".format(d, steps))
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.*;
import java.lang.Math;
public class yoo
{
public static void main(String args[])
{
int t;
long n1,n2,a1,b1;
Scanner sc=new Scanner(System.in);
t=sc.nextInt();
while(t>0)
{
n1=sc.nextLong();
n2=sc.nextLong();
if(n1==n2)
{
System.out.println(0+" "+0);
}
else
{
b1=Math.min(n1,n2);
a1=Math.max(n1,n2);
System.out.println((a1-b1)+" "+Math.min(b1%(a1-b1),(a1-b1)-(b1%(a1-b1))));
}
t--;
}
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.io.*;
import java.math.BigInteger;
import java.util.*;
/*long startTime = System.currentTimeMillis(); //获取开始时间
* long endTime = System.currentTimeMillis(); //获取结束时间
* System.out.println("程序运行时间:" + (endTime - startTime) + "ms"); //输出程序运行时间
*/
public class Main{
static final int n=998244353;
public static void main(String[] args){
Read in=new Read(System.in);
int t=in.nextInt();
while(t!=0) {
t--;
long a=in.nextLong();
long b=in.nextLong();
if(a<b) {
long temp=a;
a=b;
b=temp;
}
long gcd=a-b;
long k=0;
if(a!=0&&gcd!=0)
k=a%gcd;
k=Math.min(k, gcd-k);
System.out.println(gcd+" "+k);
}
//
}
static long fun(long a,long b) {
long a1=a,b1=b;
while(b!=0)
{
long temp=b;
b=a%b;
a=temp;
}
long ret=a1/a*b1;
return ret;
}
static class Read {//自定义快读 Read
public BufferedReader reader;
public StringTokenizer tokenizer;
public Read(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str = null;
try {
str = reader.readLine();
} catch (IOException e) {
// TODO 自动生成的 catch 块
e.printStackTrace();
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public Double nextDouble() {
return Double.parseDouble(next());
}
public BigInteger nextBigInteger() {
return new BigInteger(next());
}
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import sys
import os
from io import BytesIO
sys.stdin = BytesIO(os.read(0, os.fstat(0).st_size))
f = sys.stdin
line = lambda: f.readline().strip('\r\n').split()
def solve():
d = abs(A-B)
if d == 0:
return "0 0"
r = A%d
b = A-r
t = b+d
if A-b <= t-A:
s = A-b
else:
s = t-A
return str(str(d) + " " + str(s))
T = int(line()[0])
for test in range(1,T+1):
A,B = map(int, line())
sys.stdout.write(solve())
sys.stdout.write("\n")
f.close() | PYTHON |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.Scanner;
public class excitingbets {
static int gcd(int n1, int n2) {
if (n2 == 0) {
return n1;
}
return gcd(n2, n1 % n2);
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
while (t-->0){
long a = scanner.nextLong();
long b = scanner.nextLong();
long r = Math.abs(a-b);
if (a==0 || b==0){
System.out.println(Math.max(a,b)+" "+0);
}else if (a==b){
System.out.println(0+" "+0);
}else{
long inc = a%r;
long dec = r-inc;
if (inc>dec){
System.out.println(r+" "+dec);
}else
{
System.out.println(r+" "+inc);
}
}
}
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 |
// Written by xiongjx751 in 2021/7/7
import java.io.*;
import java.util.Scanner;
public class Main {
private static final boolean MULTI_CASE = true;
private static int __T__;
// private static InputReader in;
private static PrintWriter out;
private static Scanner sc = new Scanner(System.in);
private static void run_case() {
long a = sc.nextLong(), b = sc.nextLong();
// long a = in.getll(), b = in.getll();
if (a == b) {
out.println("0 0");
}
else {
long c = Math.max(a, b) - Math.min(a, b);
long t = Math.min(a, b);
long ans = (t + c - 1) / c * c - t;
long ans2 = c - ans;
out.println(c + " " + Math.min(ans, ans2));
}
}
private static void __init__() {
// in = new InputReader();
out = new PrintWriter(new OutputStreamWriter(System.out));
__T__ = MULTI_CASE ? sc.nextInt() : 1;
}
public static void main(String[] args) {
__init__();
while (__T__-- > 0) {
run_case();
}
out.flush();
}
public static class InputReader {
private final StreamTokenizer st; private final BufferedReader br;
public InputReader() { InputStream stream = System.in; br = new BufferedReader(new InputStreamReader(stream)); st = new StreamTokenizer(br); }
public int next() { try { return st.nextToken(); } catch (IOException e) { e.printStackTrace(); return 0; } }
public int getint() { next(); return (int) st.nval; }
public long getll() { next(); return (long) st.nval; }
public double getdou() { next(); return st.nval; }
public String getwstr() { next(); return st.sval; }
public String getdstr() { next(); return String.valueOf((int)st.nval); }
public String getLine() { try { return br.readLine(); } catch (IOException ignored) { return null; } }
public boolean has() { if (next() == StreamTokenizer.TT_EOF) return false; else { st.pushBack(); return true; } }
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #!/usr/bin/env python3
# from typing import *
import sys
import io
import math
import collections
import decimal
import itertools
import bisect
import heapq
def input():
return sys.stdin.readline()[:-1]
# sys.setrecursionlimit(1000000)
# _INPUT = """# paste here...
# """
# sys.stdin = io.StringIO(_INPUT)
T0 = int(input())
for _ in range(T0):
A, B = map(int, input().split())
if A > B:
A, B = B, A
if A == B:
print(0, 0)
else:
d = B - A
print(d, min(A % d, d-(A % d)))
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | """
// Author : snape_here - Susanta Mukherjee
"""
from __future__ import division, print_function
import os,sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def ii(): return int(input())
def fi(): return float(input())
def si(): return input()
def msi(): return map(str,input().split())
def mi(): return map(int,input().split())
def li(): return list(mi())
def lsi(): return list(msi())
def read():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
def gcd(x, y):
while y:
x, y = y, x % y
return x
def lcm(x, y):
return (x*y)//(gcd(x,y))
mod=1000000007
def modInverse(b,m):
g = gcd(b, m)
if (g != 1):
return -1
else:
return pow(b, m - 2, m)
def ceil2(x,y):
if x%y==0:
return x//y
else:
return x//y+1
def modu(a,b,m):
a = a % m
inv = modInverse(b,m)
if(inv == -1):
return -999999999
else:
return (inv*a)%m
from math import log,factorial,cos,tan,sin,radians,floor,sqrt,ceil
import bisect
import random
import string
from decimal import *
getcontext().prec = 50
abc="abcdefghijklmnopqrstuvwxyz"
pi=3.141592653589793238
def gcd1(a):
if len(a) == 1:
return a[0]
ans = a[0]
for i in range(1,len(a)):
ans = gcd(ans,a[i])
return ans
def mykey(x):
return len(x)
def main():
for _ in range(ii()):
a,b=mi()
if a==b:
print(0,0)
continue
if a>b:
a,b=b,a
x = b-a
y = ceil2(a,x)
z = min(a-x*(y-1),x*y-a)
print(x,z)
# print("Case #",end="")
# print(_+1,end="")
# print(": ",end="")
# print(ans)
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
#read()
main() | PYTHON |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 |
//@ikung
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define fast \
ios_base::sync_with_stdio(0); \
cin.tie(0);
#define f(i, k) for (int i = 0; i < k; i++)
#define F first
#define S second
#define endl "\n"
#define rep(i, n) for (int i = 1; i <= n; i++)
#define rew(i, a, b) for (int i = a; i <= b; i++)
#define dbg(...) logger(#__VA_ARGS__, __VA_ARGS__)
template <typename... Args>
void logger(string vars, Args &&...values)
{
cout << vars << " = ";
string delim = "";
(..., (cout << delim << values, delim = ","));
cout << endl;
}
#define mod 1000000007
const int inf = 1e18;
const int N = 200005;
int n;
void solve()
{
int i, j, k;
int a, b;
cin >> a >> b;
if (a < b)
swap(a, b);
int diff = a - b,move;
if(diff==0)
move = 0;
else
{
move = (a % diff);
if(diff-a%diff>0)
move = min(move, diff - a % diff);
}
cout << diff << " "<<move<< endl;
return;
}
signed main()
{
fast int t = 1, i, j, k;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
//#ifndef ONLINE_JUDGE
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
//#endif | CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | from __future__ import division,print_function
from heapq import*
import sys
le = sys.__stdin__.read().split("\n")[::-1]
af=[]
for zorg in range(int(le.pop())):
a,b= list(map(int,le.pop().split()))
if a==b:
af.append("0 0")
else:
d=max(a,b)-min(a,b)
af.append(str(d)+" "+str(min(a%d,(-a)%d)))
print("\n".join(map(str,af)))
| PYTHON |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define DBG(x) \
(void)(cout << "L" << __LINE__ \
<< ": " << #x << " = " \
<< (x) << "\n")
typedef long long ll;
const int maxn=110000;
const int INF=0x3f3f3f3f;
void run_case()
{
int T;
cin >> T;
while (T--)
{
ll a, b;
cin >> a >> b;
if (a == b)
cout << 0 << " " << 0 << "\n";
else
{
ll cur = abs(a-b);
cout << cur << " " << min(a % cur, cur - a % cur) << "\n";
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout << setiosflags(ios::fixed) << setprecision(12);
run_case();
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | n = int(input())
for i in range(n):
a, b = map(int, input().split())
if a < b:
a, b = b, a
ans = a - b
if ans == 0:
print(0, 0)
continue
# if b > ans:
ans2 = min(ans - b % ans, b % ans)
# else:
# ans2 = ans - b
print(ans, ans2)
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.io.*;
import java.util.*;
public class Codeforces {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int cases = Integer.parseInt(br.readLine());
while(cases-- > 0) {
String[] str = br.readLine().split(" ");
long a = Long.parseLong(str[0]);
long b = Long.parseLong(str[1]);
if(a == b) {
System.out.println(0+" "+0);
continue;
}
long g = Math.abs(a-b);
long ans = Math.min(b%g, g-b%g);
System.out.println(g+" "+ans);
}
}
public static long gcd(long a, long b) {
if(a == 0) {
return b;
}
return gcd(b%a, a);
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<bits/stdc++.h>
#define ll long long
#define str string
#define ch char
#define sz 200005
using namespace std;
int main()
{
ll t;
cin>>t;
while(t--)
{
ll a,b,x;
cin>>a>>b;
if(a==b)
{
cout<<0<<' '<<0<<endl;
}
else
{
x=abs(a-b);
cout<<x<<' '<<min(a%x, x-(a%x))<<endl;
}
}
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.io.*;
import java.util.*;
public class A {
static void swap(long a, long b) {
long t = a;
a = b;
b = t;
}
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
System.setOut(new PrintStream(new FileOutputStream("out.txt")));
read = new Scanner(new File("in.txt"));
}
catch (Exception e) {
}
}
// START
int t = read.nextInt();
while(t-- > 0) {
long a = read.nextLong();
long b = read.nextLong();
if(a > b) a = a ^ b ^ (b = a);
long diff = b-a;
if(diff == 0) System.out.println("0 0");
else System.out.println(diff + " " + Math.min(a%diff, diff-a%diff));
}
// END
read.close();
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define sum(a) (accumulate((a).begin(), (a).end(), 0ll))
#define mine(a) (*min_element((a).begin(), (a).end()))
#define maxe(a) (*max_element((a).begin(), (a).end()))
#define mini(a) (min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a) (max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) (lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) (upper_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define pv(v) \
for (auto u : v) \
cout << u << " ";
#define nl (cout << "\n")
typedef long long ll;
using namespace std;
int i, j, k;
ll mod = 1e9 + 7;
const int N = 1e5 + 7;
void solve()
{
ll a, b;
cin >> a >> b;
ll gd = abs(b - a);
ll ma, mb;
if (gd == 0)
{
cout << gd << " " << 0 << "\n";
return;
}
ma = min(gd - a % gd, a % gd);
mb = min(gd - b % gd, b % gd);
cout << gd << " " << min(ma, mb) << "\n";
}
int main()
{
int tcase;
cin >> tcase;
while (tcase--)
solve();
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.*;
import java.io.*;
public class hello{
public static void main(String [] args){
Scanner input = new Scanner(System.in);
int t = input.nextInt();
while(t-->0){
long a = input.nextLong();
long b = input.nextLong();
if(a==b ){
System.out.println(0 +" "+ 0);
}
else{
if(a>b){
long temp = a;
a = b;
b = temp;
}
long val = b-a;
System.out.println(val+" "+Math.min(a%val,val- a%val));
}
}
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | t=int(input())
for i in range(t):
a,b=map(int,input().split())
if a==b:
e=0
m=0
print(e,m,sep=" ")
else:
e=abs(a-b)
if a%e>=e/2:
m=abs(e-a%e)
elif a%e<e/2:
m=abs(a%e)
m=min(m,b)
print(e,m,sep=" ") | PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.StringTokenizer;
public class A implements Runnable {
public static void main(String[] args) throws Exception {
new Thread(null, new A(), "SwapnilGanguly", 1 << 24).start();
}
public void run() {
MyScanner sc = new MyScanner();
PrintWriter pr = new PrintWriter(System.out);
int T = sc.nextInt();
while (T-- > 0) {
long a = sc.nextLong(), b = sc.nextLong();
if (a == b) {
pr.println("0 0");
continue;
}
long diff = Math.abs(a - b);
long moves = diff - (a % diff);
if (moves == diff)
moves = 0;
long moves2 = (a % diff);
pr.println(diff + " " + Math.min(moves, moves2));
}
pr.close();
}
public static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] ar = new int[n];
for (int i = 0; i < n; i++)
ar[i] = nextInt();
return ar;
}
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import math
def main():
t=int(input())
while(t>0):
t-=1
a,b=map(int, input().split())
dif=abs(a-b)
if a==b:
print("0 0")
continue
i=0
aux=max(a, b)/dif
sig=(int(aux)+1)*dif if aux-int(aux)>0.5 else int(aux)*dif
print(f'{dif} {abs(sig-max(a, b))}')
main()
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
int32_t mod = 1e9 + 7;
void solveCase()
{
int a = 0, b = 0;
cin >> a >> b;
int mx = abs(a - b);
if (mx == 0)
{
cout << "0 0\n";
return;
}
int moves = (a % mx ? min(a % mx, mx - a % mx) : 0);
cout << mx << ' ' << moves << '\n';
}
int32_t main()
{
ios::sync_with_stdio(false), cin.tie(NULL);
int t = 0;
cin >> t;
while (t--)
solveCase();
} | CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import math
for i in range(int(input())):
f,g=map(int,input().split())
a=max(f,g)
b=min(f,g)
if math.gcd(a,b)==abs(a-b):
print(abs(a-b),0)
continue
if a==b:
print(0,0)
continue
if b==0:
print(a-b,0)
continue
l=a-b
m=a//l
p=m*l
u=(m+1)*(l)
if a-p<u-a:
print(a-b,a-p)
else:
print(a-b,u-a)
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<iostream>
using namespace std;
#include<bits/stdc++.h>
#include<string.h>
#include <iomanip>
#include <ctype.h>
#define ll long long int
#define test cout<<"Nevil\n";
#define ios ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pi 3.14159265359
#define precise(x) fixed << setprecision(x)
ll md=1e9+7;
ll mod_pow(ll a,ll b,ll M = md)
{
if(a == 0) return 0;
b %= (M - 1);
ll res = 1;
while(b > 0)
{
if(b&1) res=(res*a)%M;
a=(a*a)%M;
b>>=1;
}
return res;
}
void solve()
{
}
int main()
{
ios;
ll cases=1;
cin>>cases;
for(ll zz=1;zz<=cases;zz++)
{
ll a,b;
cin>>a>>b;
if(a==b)
{
cout<<"0 0\n";
continue;
}
ll t=abs(a-b);
ll t2=min(a%t,t-(a%t));
cout<<t<<" "<<t2<<"\n";
}
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include <bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define setval(arr,v) memset(arr,v,sizeof(arr));
#define int long long int
#define mod 1000000007
#define v vector
#define umap unordered_map
#define pb push_back
#define pf push_front
#define pii pair<int,int>
#define fi first
#define se second
#define INF 1000000000000000
using namespace std;
void solve()
{
int a,b;
cin>>a>>b;
if(b > a)
swap(a,b);
cout<<a-b<<" ";
if(a-b == 0)
cout<<0<<"\n";
else
cout<<min(((a-b)-(b)%(a-b))%(a-b),b%(a-b))<<"\n";
}
int32_t main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t = 1;
cin>>t;
while(t--)
{
solve();
}
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 |
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- > 0)
{
long a=sc.nextLong();
long b=sc.nextLong();
if(a==b)
{
System.out.println("0 0");
continue;
}
else if(Math.abs(a-b)==1)
{
System.out.println("1 0");
continue;
}
//// int k=100;
//// while(k-->0)
//// {
////
//// }
else {
long k = Math.abs(a - b);
long c = 0;
long z= (long) Math.round(a/(double)k);
c= (long) Math.abs(a-k*z);
System.out.println(k + " " + c);
}
}
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int t;
int main() {
cin >> t;
while(t--) {
ll a,b;
cin >> a >> b;
if(a==b) {
cout << "0 0" << endl;
continue;
}
ll num=abs(a-b);
cout << num << " " << min(a%num,num-a%num) << endl;
}
} | CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.*;
public class exitement
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
long t,a,b;
t=sc.nextLong();
while(t-->0)
{
a=sc.nextLong();
b=sc.nextLong();
if(a==b)
{
System.out.println(0+" "+0);
}
else
{
System.out.println(Math.abs(a-b)+" "+Math.min((a%Math.abs(a-b)),(Math.abs(a-b)-a%Math.abs(a-b))));
}
}
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 |
import java.util.*;
import java.io.*;
import javafx.util.Pair;
public class One {
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
static StringBuilder out = new StringBuilder();
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));
static int I(String s) {
return Integer.parseInt(s);
}
static long L(String s) {
return Long.parseLong(s);
}
static double D(String s) {
return Double.parseDouble(s);
}
static String[] SA() throws IOException {
return bf.readLine().split(" ");
}
public static void main(String[] args) throws IOException {
int n = I(bf.readLine());
while (n-- > 0) {
StringTokenizer in = new StringTokenizer(bf.readLine());
long t = L(in.nextToken());
long t1 = L(in.nextToken());
long abs=Math.abs(t - t1);
long max=Math.max(t, t1);
if(abs!=0)
System.out.println((abs) + " " + (Math.min(max % abs, (abs -( max % abs)))));
else System.out.println("0 0");
}
}
static long gcd(long a, long b) {
// Everything divides 0
if (a == 0) {
return b;
}
if (b == 0) {
return a;
}
// base case
if (a == b) {
return a;
}
// a is greater
if (a > b) {
return gcd(a - b, b);
}
return gcd(a, b - a);
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 |
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
public class ExcitingBets {
private static String solve(long a, long b) {
long gcd = Math.abs((a - b));
if (gcd == 0)
return "0 0";
long d=a/gcd;
long lb= d*gcd;
long ub=lb+gcd;
long min = Long.min(ub-a,a-lb);
return gcd + " " + min;
}
public static void main(String[] args)
throws IOException {
Scanner s = new Scanner();
int t = 1;
t = s.nextInt();
StringBuilder ans = new StringBuilder();
int count = 0;
while (t-- > 0) {
long n = s.nextLong();
long m = s.nextLong();
ans.append(solve(n, m)).append("\n");
}
System.out.println(ans.toString());
}
static class Scanner {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Scanner() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Scanner(String file_name) throws IOException {
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
} else {
continue;
}
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
public static long norm(long a, long MOD) {
return ((a % MOD) + MOD) % MOD;
}
public static long msub(long a, long b, long MOD) {
return norm(norm(a, MOD) - norm(b, MOD), MOD);
}
public static long madd(long a, long b, long MOD) {
return norm(norm(a, MOD) + norm(b, MOD), MOD);
}
public static long mMul(long a, long b, long MOD) {
return norm(norm(a, MOD) * norm(b, MOD), MOD);
}
public static long mDiv(long a, long b, long MOD) {
return norm(norm(a, MOD) / norm(b, MOD), MOD);
}
public static String formattedArray(int a[]) {
StringBuilder res = new StringBuilder("");
for (int e : a)
res.append(e).append(" ");
return res.toString().trim();
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<bits/stdc++.h>
using namespace std;
///typedef
typedef long long ll;
typedef pair<int, int> pii;
///define constant
const ll mxn = 200005;
const int mod = 1000000007;//1e9+7;
///faster io
#define faster_io ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
///debug
#define watch(x) cout << __LINE__ << " says: " << #x << " = " << x << "\n"
#define watch2(x,y) cout<< __LINE__ << " says: " <<#x<<" = "<<x<<" "<<#y<<" = "<<y <<endl
#define watch3(x,y,z) cout<< __LINE__ << " says: " <<#x<<" = "<<x<<" "<<#y<<" = "<<y <<" "<<#z<<" = "<<z<<endl
///program starts...........
void solve_case(int tc)
{
ll a, b;
cin>>a>>b;
ll gcd = abs(a-b);
cout<<gcd;
if(gcd == 0)
{
cout<<" 0"<<endl;
return;
}
ll r = a % gcd;
cout<<" "<<min(r, gcd - r)<<endl;
return;
}
int main()
{
faster_io;
// freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
int test_case=1;
cin>>test_case;
for(int tc=1 ; tc<=test_case; tc++)
{
solve_case(tc);
}
/// KeyPoint
/// Corner Cases
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
#define read(x) freopen(x, "r", stdin);
#define write(x) freopen(x, "w", stdout);
#define ll long long
#define lli long long int
#define FOR(n) for(int i=0; i<(int)(n); ++i)
#define mod 1073741824
#define MAX 100001
#define gcd(a, b) __gcd(a, b)
int main()
{
ll t;
cin>>t;
while(t--)
{
ll n,m,a,b,flag;
cin>>a>>b;
flag =abs(a-b);
if(flag == 0)
{
cout<<"0 "<<"0"<<endl;
}
else
{
cout<<flag<<" "<<min(a%flag,flag-(a%flag))<<endl;
}
}
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.*;
import java.io.*;
public class AiseHi {
static Scanner sc = new Scanner(System.in);
static int mod = (int)(1e9+7);
static int n;
public static void main (String[] args) {
int t = 1;
t = sc.nextInt();
z : while(t-->0) {
long a = sc.nextLong();
long b = sc.nextLong();
if(a == b) {
System.out.println("0 0");
continue;
}
long ans = Math.abs(a - b);
long min = Math.min(a, b);
if(min%ans==0) {
System.out.println(ans+" 0");
}
else {
long is = min/ans;
long val = ans*(is+1);
long mov = Math.min(min - ans*is, val - min);
System.out.println(ans+" "+mov);
}
}
}
private static int[] query(int i) {
System.out.println("? "+i);
int ret[] = new int[n+1];
for(int j=1;j<=n;j++) ret[j] = sc.nextInt();
System.out.flush();
return ret;
}
private static int findn(int[] a, int l, int h, long m) {
int ret = -1;
while(l<=h) {
int mid = (l+h)/2;
if(a[mid]>m) {
h = mid-1;
}
else {
ret = mid;
l = mid+1;
}
}
return ret;
}
private static int find(int[] a, int l, int h, long m) {
int ret = -1;
while(l<=h) {
int mid = (l+h)/2;
if(a[mid]>=m) {
ret = mid;
h = mid-1;
}
else l = mid+1;
}
return ret;
}
private static boolean find(String ini, String a) {
return !KMPSearch(ini,a);
}
static boolean KMPSearch(String pat, String txt)
{
int M = pat.length();
int N = txt.length();
int lps[] = new int[M];
int j = 0;
computeLPSArray(pat, M, lps);
int i = 0;
while (i < N) {
if (pat.charAt(j) == txt.charAt(i)) {
j++;
i++;
}
if (j == M) {
j = lps[j - 1];
return true;
}
else if (i < N && pat.charAt(j) != txt.charAt(i)) {
if (j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
return false;
}
static void computeLPSArray(String pat, int M, int lps[])
{
int len = 0;
int i = 1;
lps[0] = 0; // lps[0] is always 0
// the loop calculates lps[i] for i = 1 to M-1
while (i < M) {
if (pat.charAt(i) == pat.charAt(len)) {
len++;
lps[i] = len;
i++;
}
else // (pat[i] != pat[len])
{
// This is tricky. Consider the example.
// AAACAAAA and i = 7. The idea is similar
// to search step.
if (len != 0) {
len = lps[len - 1];
// Also, note that we do not increment
// i here
}
else // if (len == 0)
{
lps[i] = len;
i++;
}
}
}
}
// private static boolean check(long n,long val) {
// if(n == 0) return true;
//
// while(val<=n) {
//// if(check(n-val,))
// }
// }
private static int find(int[] a, TreeMap<Integer, Integer> ts, int lp) {
int ret = 1;
int idx = -1;
for(int i=a.length-1;i>=0;i--) {
if(a[i] == lp) {
idx = i;
break;
}
}
idx--;
int prev = lp;
while(idx>=0) {
if((prev - a[idx]) >= lp) {
ret++;
prev = a[idx];
}
idx--;
}
return ret;
}
private static void reverse(char[] s) {
char a[] = new char[s.length];
for(int i=0;i<s.length;i++) a[i] = s[i];
for(int i=0;i<s.length;i++)
s[i] = a[a.length-1-i];
}
private static boolean isPalindrome(char[] s) {
int n = s.length;
for(int i=0;i<n/2;i++)
if(s[i]!=s[n-1-i]) return false;
return true;
}
private static boolean is(char[] s) {
for(char c : s) if(c == '0') return false;
return true;
}
// static int ceil(int a,int b) {
// return a/b + (a%b==0?0:1);
// }
static boolean prime[] = new boolean[2000009];
// static int fac[] = new int[2000009];
static void sieve() {
prime[0] = true;
prime[1] = true;
int max = 1000000;
for(int i=2;i*i<=max;i++) {
if(!prime[i]) {
for(int j=i*i;j<=max;j+=i) {
prime[j] = true;
// fac[j] = i;
}
}
}
}
static long gcd(long a,long b) { if(b==0) return a; return gcd(b,a%b); }
}
class DSU {
int par[];
int size[];
DSU(int n) {
par = new int[n];
size = new int[n];
Arrays.fill(size, 1);
for(int i=0;i<n;i++) par[i] = i;
}
int findPar(int x) {
if(x == par[x]) return x;
return par[x] = findPar(par[x]);
}
boolean join(int u,int v) {
int fu = findPar(u);
int fv = findPar(v);
if(fu!=fv) {
if(size[fu]>size[fv]) {
par[fv] = fu;
size[fu] += size[fv];
}
else {
par[fu] = fv;
size[fv] += size[fu];
}
return true;
}
else return false;
}
} | JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | /*
author: rohit_03012002
*/
import java.util.*;
import java.io.*;
import java.math.*;
import java.io.FileWriter;
import java.io.IOException;
public class cf{
static class Pair{
int u;
int v;
Pair(int a,int b){
u=a;
v=b;
}
public boolean equals(Object o) {
Pair other = (Pair) o;
return ((u == other.u && v == other.v));
}
}
////////////////////////////////////**********Code-Start**********/////////////////////////////////////////////////
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
System.setOut(new PrintStream(
new FileOutputStream("output.txt")));
sc = new InputReader(new FileInputStream("input.txt"));
}
catch (Exception e) {
}
sieveOfEratosthenes((int)1e7);
int t=s(0);
while(t-->0)
solve();
System.out.println(sb);
}
else{
sc = new InputReader(inputStream);
pw = new PrintWriter(outputStream);
sieveOfEratosthenes((int)1e7);
int t=s(0);
while(t-->0)
solve();
System.out.print(sb);
pw.close();
}
}
static ArrayList<ArrayList<Integer>>arr=new ArrayList<>();
// static PriorityQueue<Integer> pq=new PriorityQueue<>();
static StringBuilder sb=new StringBuilder();
public static void solve() {
long a=s(0l);
long b=s(0l);
if(a>b){
long temp=b;
b=a;
a=temp;
}
if(a==0){
sb.append(b+" 0"+"\n");
return;
}
long ans=b-a;
if(ans==0){
sb.append("0 0"+"\n");
return;
}
if(ans==1){
sb.append("1 0"+"\n");
return;
}
long step=ans-b%ans;
long step1=b%ans;
if(a-step1>=0){
sb.append(ans+" "+Math.min(step,step1)+"\n");
}
else{
sb.append(ans+" "+step+"\n");
}
}
////////////////////////////////////**********Code-End**********//////////////////////////////////////////////////
// Arrays.sort(a,(c,b)->(c.x==b.x)?c.y-b.y:c.x-b.x); sort the array ont the basis of y if x1==x2
// set precision --> String.format("%.df",ans);
static int inf=Integer.MAX_VALUE;
static int minf=Integer.MIN_VALUE;
static InputReader sc;
static PrintWriter pw;
static ArrayList<ArrayList<Integer>> adj;
static int mod=1000000007;
static int mod1= 998244353;
static int max(int ...a){int m=a[0];for(int e:a)m=(m>=e)?m:e;return m;}
static int min(int ...a){int m=a[0];for(int e:a)m=(m<=e)?m:e;return m;}
static int abs(int a){return Math.abs(a);}
static long max(long ...a){long m=a[0];for(long e:a)m=(m>=e)?m:e;return m;}
static long min(long ...a){long m=a[0];for(long e:a)m=(m<=e)?m:e;return m;}
static long abs(long a){return Math.abs(a);}
static int ceil(double x){return (int)Math.ceil(x);}
static int floor(double x){return (int)Math.floor(x);}
static void subset(int a[],int n,ArrayList<Integer> arr){
if(n==a.length){
System.out.println(arr);
return;
}
ArrayList<Integer> b=new ArrayList<>();
ArrayList<Integer> c=new ArrayList<>();
b.addAll(arr);
c.addAll(arr);
b.add(a[n]);
subset(a,n+1,b);
subset(a,n+1,c);
}
static boolean prime[];
static int smallestFactor[];
static ArrayList<Integer> allPrimes;
static void sieveOfEratosthenes(int n)
{
prime = new boolean[n+1];
smallestFactor = new int[n+1];
allPrimes=new ArrayList<>();
smallestFactor[1] = 1;
for(int i=2;i<n;i++) {
prime[i] = true;
smallestFactor[i] = i;
}
for(int p = 2; p*p <=n; p++)
{
if(prime[p])
{
smallestFactor[p] = p;
for(int i = p*p; i <= n; i += p) {
prime[i] = false;
smallestFactor[i] = Math.min(p,smallestFactor[i]);
}
}
}
for(int i=0;i<prime.length;i++){
if(prime[i]){
allPrimes.add(i);
}
}
}
static long mins(long a,long b){
return Math.min(a,b);
}
static long maxs(long a,long b){
return Math.max(a,b);
}
static int mins(int a,int b){
return Math.min(a,b);
}
static int maxs(int a,int b){
return Math.max(a,b);
}
// static void initial(int n){
// for(int i=0;i<=n;i++){
// arr.add(new ArrayList<>());
// }
// }
static boolean isMember(int a,int d,int x){
return ((x - a) % d == 0 && (x - a) / d >= 0);
}
static int numSum(int n){
int sum=0;
while(n!=0){
sum+=n%10;
n/=10;
}
return sum;
}
static void sort(ArrayList<Integer> brr){
Collections.sort(brr);
}
static void Lsort(ArrayList<Long> arr){
Collections.sort(arr);
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void rSort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l,Collections.reverseOrder());
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void sort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (Long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void rSort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (Long i:a) l.add(i);
Collections.sort(l,Collections.reverseOrder());
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static boolean isperfect(double number)
{
double sqrt=Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
static boolean isPrime(long n){
if(n<2){
return false;
}
for(int i = 2; i*i<=n; i++){
if(n%i==0){
return false;
}
}
return true;
}
static int lowerBound(int[] arr, int low, int high, long element) {
int middle;
while (low < high) {
middle = low + (high - low) / 2;
if (element > arr[middle])
low = middle + 1;
else
high = middle;
}
if (low < arr.length && arr[low] < element)
return -1;
return low;
}
static int upperBound(int[] arr, int low, int high, long element) {
int middle;
while (low < high) {
middle = low + (high - low) / 2;
if (arr[middle] > element)
high = middle;
else
low = middle + 1;
}
if (low<arr.length &&arr[low] <= element)
return -1;
return low;
}
public static String sortString(String inputString)
{
char tempArray[] = inputString.toCharArray();
Arrays.sort(tempArray);
return new String(tempArray);
}
public static int ask(int l, int r){
System.out.println("? "+l+" "+r);
System.out.flush();
return sc.nextInt();
}
public static void swap(char []chrr, int i, int j){
char temp=chrr[i];
chrr[i]=chrr[j];
chrr[j]=temp;
}
public static void swap(int []chrr, int i, int j){
int temp=chrr[i];
chrr[i]=chrr[j];
chrr[j]=temp;
}
public static int countSetBits(int n){
int a=0;
while(n>0){
a+=(n&1);
n>>=1;
}
return a;
}
public static boolean isPowerOfTwo(long x){
return x!=0 && ((x&(x-1)) == 0);
}
public static long gcd(long a, long b) {
while (b > 0) {
long c = a;
a = b;
b = c % b;
}
return a;
}
public static long lcm(long a , long b )
{
long gc = gcd(a,b);
return (a/gc)*b;
}
static long fast_pow(long base,long n,long M){
if(n==0)
return 1;
if(n==1)
return base;
long halfn=fast_pow(base,n/2,M);
if(n%2==0)
return ( halfn * halfn ) % M;
else
return ( ( ( halfn * halfn ) % M ) * base ) % M;
}
static long modInverse(long n,long M){
return fast_pow(n,M-2,M);
}
public static String reverse(String input)
{
StringBuilder str = new StringBuilder("") ;
for(int i =input.length()-1 ; i >= 0 ; i-- )
{
str.append(input.charAt(i));
}
return str.toString() ;
}
public static String reverse(StringBuilder input)
{
StringBuilder str = new StringBuilder("") ;
for(int i =input.length()-1 ; i >= 0 ; i-- )
{
str.append(input.charAt(i));
}
return str.toString() ;
}
public static long nCr(int n,int k)
{
long ans=1L;
k=k>n-k?n-k:k;
int j=1;
for(;j<=k;j++,n--)
{
if(n%j==0)
{
ans*=n/j;
}else
if(ans%j==0)
{
ans=ans/j*n;
}else
{
ans=(ans*n)/j;
}
}
return ans;
}
public static long kadanesAlgorithm(long[] arr)
{
if(arr.length == 0)return 0 ;
long[] dp = new long[arr.length] ;
dp[0] = arr[0] ;
long max = dp[0] ;
for(int i = 1; i < arr.length ; i++)
{
if(dp[i-1] > 0)
{
dp[i] = dp[i-1] + arr[i] ;
}
else{
dp[i] = arr[i] ;
}
if(dp[i] > max)max = dp[i] ;
}
return max ;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public static int s(int n){
return sc.nextInt();
}
public static long s(long n){
return sc.nextLong();
}
public static String s(String n){
return sc.next();
}
public static double s(double n){
return sc.nextDouble();
}
public static void p(int n){
pw.print(n);
}
public static void p(long n){
pw.print(n);
}
public static void p(String n){
pw.print(n);
}
public static void p(double n){
pw.print(n);
}
public static void pln(int n){
pw.println(n);
}
public static void pln(long n){
pw.println(n);
}
public static void pln(String n){
pw.println(n);
}
public static void pln(double n){
pw.println(n);
}
public static void feedArr(long []arr){
for(int i=0;i<arr.length;++i)
arr[i]=sc.nextLong();
}
public static void feedArr(double []arr){
for(int i=0;i<arr.length;++i)
arr[i]=sc.nextDouble();
}
public static void feedArr(int []arr){
for(int i=0;i<arr.length;++i)
arr[i]=sc.nextInt();
}
public static void feedArr(String []arr){
for(int i=0;i<arr.length;++i)
arr[i]=sc.next();
}
public static String printArr(int []arr){
StringBuilder sbr=new StringBuilder();
for(int i:arr)
sbr.append(i+" ");
return sbr.toString();
}
public static String printArr(long []arr){
StringBuilder sbr=new StringBuilder();
for(long i:arr)
sbr.append(i+" ");
return sbr.toString();
}
public static String printArr(String []arr){
StringBuilder sbr=new StringBuilder();
for(String i:arr)
sbr.append(i+" ");
return sbr.toString();
}
public static String printArr(double []arr){
StringBuilder sbr=new StringBuilder();
for(double i:arr)
sbr.append(i+" ");
return sbr.toString();
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
// smallest lcm(a,b) => a+b=n will be n/smallPrimefactor ans n-(n/smallestprimefactor).
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.util.Scanner;
public class ExcitingBets {
public static void solve(long a, long b) {
long exc = Math.abs(a-b);
if (exc == 0) {
System.out.println("0 0");
return;
}
System.out.println(exc + " " + Math.min((a % exc), (exc - (a % exc))));
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t-- > 0) {
long a = in.nextLong();
long b = in.nextLong();
solve(a, b);
}
in.close();
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | t = int(input())
for i in range(t):
[a,b] = input().split()
a=int(a)
b=int(b)
c=max(a,b)
d=min(a,b)
if(c==d):
print("0 0")
else:
temp1 = c-d
temp2 = min(c%(c-d),(c-d)-(c%(c-d)))
print(f"{temp1} {temp2}")
| PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
long long a,b;
cin>>a>>b;
if (a==b)
cout<<0<<" "<<0<<endl;
else
{
long long d= abs(a-b);
long long s= 0;
if( a==0 || b==0)
s=0;
else
s=min(a%d, d-(a%d));
cout<<d<<" "<<s<<endl;
}
}
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | import java.io.*;
import java.util.*;
public class excitingBets {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
public FastReader(String file_name)throws IOException
{
br = new BufferedReader(
new FileReader(file_name));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int[] nextArray(int n){
int ar[] = new int[n];
for(int i=0;i<n;i++)
ar[i] = this.nextInt();
return (ar);
}
}
static class OutputWriter{
BufferedWriter writer;
public OutputWriter(OutputStream stream){
writer = new BufferedWriter(new OutputStreamWriter(stream));
}
public OutputWriter(String file_name) throws IOException{
writer = new BufferedWriter(new FileWriter("output.txt"));
}
public void print(int i) throws IOException {
writer.write(i);
}
public void print(String s) throws IOException {
writer.write(s);
}
public void print(char []c) throws IOException {
writer.write(c);
}
public void println(int i) throws IOException {
writer.write(i+"\n");
}
public void println(long i) throws IOException {
writer.write(i+"\n");
}
public void println(String s) throws IOException {
writer.write(s+"\n");
}
public void println(char []c) throws IOException {
writer.write(c+"\n");
}
public void close() throws IOException {
writer.close();
}
}
public static void initialize_io_redirection()throws IOException{
boolean oj = System.getProperty("ONLINE_JUDGE")!=null;
if(!oj){
fs = new FastReader("input.txt");
op = new OutputWriter("output.txt");
System.setOut(new PrintStream(new File("output.txt")));
}
else{
fs = new FastReader();
op = new OutputWriter(System.out);
}
}
static FastReader fs;
static OutputWriter op;
public static void main(String[] args)throws IOException{
initialize_io_redirection();
//fs = new FastReader();
//op = new OutputWriter(System.out);
int t = fs.nextInt();
while(t-- > 0)
solve();
op.close();
}
public static long gcd(long a, long b){
if (a == 0)
return b;
return gcd(b%a, a);
}
public static void solve()throws IOException{
long a=fs.nextLong(),b=fs.nextLong();
if(a>b){
a=a+b;
b=a-b;
a-=b;
}
long r=b-a;
if(r==0)
System.out.println(0+" "+0);
else
System.out.println(r+" "+Math.min( r-(a%r),a%r));
// System.out.println(r+" "+Math.min(b%r,b-(b%r)));
}
}
| JAVA |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | # import sys
# sys.stdout = open('ot.txt', 'w')
# sys.stdin = open('in.txt', 'r')
from math import cos, pi, ceil, pi,tan, floor, gcd, sqrt, log2, factorial, log10
from collections import Counter
from copy import deepcopy
from string import ascii_lowercase,ascii_uppercase
alpha = ascii_lowercase
beta=ascii_uppercase
for ttt in range(int(input())):
x,y=(map(int,input().split()))
if x==y:
print(0,0)
continue
if y-x==1:
print(1,0)
continue
if x>y:
x,y=y,x
if x==0:
print(y,0)
continue
gg=y-x
a=ceil(x/gg)
s=a*gg-x
print(gg,min(s,x%gg)) | PYTHON3 |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | #include<bits/stdc++.h>
using namespace std;
int main()
{
int T;
cin>>T;
while(T--)
{
long long a,b;
cin>>a>>b;
if(a==b)
cout<<0<<" "<<0<<"\n";
else
{
long long g = abs(a-b);
long long d = min(a%g,g-a%g);
cout<<g<<" "<<d<<"\n";
}
}
return 0;
}
| CPP |
1543_A. Exciting Bets | Welcome to Rockport City!
It is time for your first ever race in the game against Ronnie. To make the race interesting, you have bet a dollars and Ronnie has bet b dollars. But the fans seem to be disappointed. The excitement of the fans is given by gcd(a,b), where gcd(x, y) denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers x and y. To make the race more exciting, you can perform two types of operations:
1. Increase both a and b by 1.
2. Decrease both a and b by 1. This operation can only be performed if both a and b are greater than 0.
In one move, you can perform any one of these operations. You can perform arbitrary (possibly zero) number of moves. Determine the maximum excitement the fans can get and the minimum number of moves required to achieve it.
Note that gcd(x,0)=x for any x ≥ 0.
Input
The first line of input contains a single integer t (1≤ t≤ 5⋅ 10^3) — the number of test cases.
The first and the only line of each test case contains two integers a and b (0≤ a, b≤ 10^{18}).
Output
For each test case, print a single line containing two integers.
If the fans can get infinite excitement, print 0 0.
Otherwise, the first integer must be the maximum excitement the fans can get, and the second integer must be the minimum number of moves required to achieve that excitement.
Example
Input
4
8 5
1 2
4 4
3 9
Output
3 1
1 0
0 0
6 3
Note
For the first test case, you can apply the first operation 1 time to get a=9 and b=6. It can be shown that 3 is the maximum excitement possible.
For the second test case, no matter how many operations you apply, the fans will always have an excitement equal to 1. Since the initial excitement is also 1, you don't need to apply any operation.
For the third case, the fans can get infinite excitement by applying the first operation an infinite amount of times.
For the fourth test case, you can apply the second operation 3 times to get a=0 and b=6. Since, gcd(0,6)=6, the fans will get an excitement of 6. | 2 | 7 | t=int(input())
while(t):
a,b=input().split()
a=int(a)
b=int(b)
if(a==b):
print(0,0)
elif(a<b):
a,b=b,a
c=a-b
print(a-b)
print(min(c-a%c,a%c))
print('\n')
else:
c=a-b
print(a-b)
print(min(c-a%c,a%c))
print('\n')
t-=1 | PYTHON3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.