source
stringclasses
3 values
instruction
stringlengths
23
3.97k
input
stringclasses
1 value
output
stringlengths
1
3.75k
agentica-org/DeepScaleR-Preview-Dataset
The function $f(x) = (m^2 - m - 1)x^m$ is a power function, and it is a decreasing function on $x \in (0, +\infty)$. The value of the real number $m$ is
-1
agentica-org/DeepScaleR-Preview-Dataset
For any positive integer \( k \), let \( f_{1}(k) \) be the square of the sum of the digits of \( k \) when written in decimal notation. For \( n > 1 \), let \( f_{n}(k) = f_{1}\left(f_{n-1}(k)\right) \). What is \( f_{1992}\left(2^{1991}\right) \)?
256
agentica-org/DeepScaleR-Preview-Dataset
A circle is inscribed in quadrilateral $EFGH$, tangent to $\overline{EF}$ at $R$ and to $\overline{GH}$ at $S$. Given that $ER=24$, $RF=31$, $GS=40$, and $SH=29$, find the square of the radius of the circle.
945
agentica-org/DeepScaleR-Preview-Dataset
What three-digit integer is equal to the sum of the factorials of its digits?
145
agentica-org/DeepScaleR-Preview-Dataset
Let $U$ be a positive integer whose only digits are 0s and 1s. If $Y = U \div 18$ and $Y$ is an integer, what is the smallest possible value of $Y$?
61728395
agentica-org/DeepScaleR-Preview-Dataset
In $\triangle ABC$, $\angle A = 60^\circ$, $AB > AC$, point $O$ is the circumcenter, and the altitudes $BE$ and $CF$ intersect at point $H$. Points $M$ and $N$ are on segments $BH$ and $HF$ respectively, such that $BM = CN$. Find the value of $\frac{MH + NH}{OH}$.
\sqrt{3}
agentica-org/DeepScaleR-Preview-Dataset
How many different positive three-digit integers can be formed using only the digits in the set $\{1, 3, 4, 4, 7, 7, 7\}$ if no digit may be used more times than it appears in the given set of available digits?
43
agentica-org/DeepScaleR-Preview-Dataset
What is the remainder when $5^{137}$ is divided by 8?
5
agentica-org/DeepScaleR-Preview-Dataset
5 people are standing in a row for a photo, among them one person must stand in the middle. There are     ways to arrange them.
24
agentica-org/DeepScaleR-Preview-Dataset
Given \( \frac{1}{3} \leqslant a \leqslant 1 \), if \( f(x)=a x^{2}-2 x+1 \) attains its maximum value \( M(a) \) and minimum value \( N(a) \) on the interval \([1,3]\), and let \( g(a)=M(a)-N(a) \), then the minimum value of \( g(a) \) is \(\quad\) .
\frac{1}{2}
agentica-org/DeepScaleR-Preview-Dataset
What is the greatest common divisor of $2^{1998}-1$ and $2^{1989}-1$?
511
agentica-org/DeepScaleR-Preview-Dataset
The nine points of this grid are equally spaced horizontally and vertically. The distance between two neighboring points is 1 unit. What is the area, in square units, of the region where the two triangles overlap? [asy] size(80); dot((0,0)); dot((0,1));dot((0,2));dot((1,0));dot((1,1));dot((1,2));dot((2,0));dot((2,1));dot((2,2)); draw((0,0)--(2,1)--(1,2)--cycle, linewidth(0.6)); draw((2,2)--(0,1)--(1,0)--cycle, linewidth(0.6)); [/asy]
1
agentica-org/DeepScaleR-Preview-Dataset
Given $M=\{1,2,x\}$, we call the set $M$, where $1$, $2$, $x$ are elements of set $M$. The elements in the set have definiteness (such as $x$ must exist), distinctiveness (such as $x\neq 1, x\neq 2$), and unorderedness (i.e., changing the order of elements does not change the set). If set $N=\{x,1,2\}$, we say $M=N$. It is known that set $A=\{2,0,x\}$, set $B=\{\frac{1}{x},|x|,\frac{y}{x}\}$, and if $A=B$, then the value of $x-y$ is ______.
\frac{1}{2}
agentica-org/DeepScaleR-Preview-Dataset
A triangle with side lengths in the ratio 2:3:4 is inscribed in a circle of radius 4. What is the area of the triangle?
12
agentica-org/DeepScaleR-Preview-Dataset
In the diagram, $\mathrm{ABCD}$ is a right trapezoid with $\angle \mathrm{DAB} = \angle \mathrm{ABC} = 90^\circ$. A rectangle $\mathrm{ADEF}$ is constructed externally along $\mathrm{AD}$, with an area of 6.36 square centimeters. Line $\mathrm{BE}$ intersects $\mathrm{AD}$ at point $\mathrm{P}$, and line $\mathrm{PC}$ is then connected. The area of the shaded region in the diagram is:
3.18
agentica-org/DeepScaleR-Preview-Dataset
Compute $55^2 - 45^2$ in your head.
1000
agentica-org/DeepScaleR-Preview-Dataset
Find the center of the hyperbola $4x^2 - 24x - 25y^2 + 250y - 489 = 0.$
(3,5)
agentica-org/DeepScaleR-Preview-Dataset
Let $\triangle ABC$ be a triangle with $AB=85$ , $BC=125$ , $CA=140$ , and incircle $\omega$ . Let $D$ , $E$ , $F$ be the points of tangency of $\omega$ with $\overline{BC}$ , $\overline{CA}$ , $\overline{AB}$ respectively, and furthermore denote by $X$ , $Y$ , and $Z$ the incenters of $\triangle AEF$ , $\triangle BFD$ , and $\triangle CDE$ , also respectively. Find the circumradius of $\triangle XYZ$ . *Proposed by David Altizio*
30
agentica-org/DeepScaleR-Preview-Dataset
A group of schoolchildren, heading to a school camp, was planned to be seated in buses so that there would be an equal number of passengers in each bus. Initially, 22 people were seated in each bus, but it turned out that three schoolchildren could not be seated. However, when one bus left empty, all the remaining schoolchildren seated equally in the other buses. How many schoolchildren were in the group, given that no more than 18 buses were provided for transporting the schoolchildren, and each bus can hold no more than 36 people? Give the answer as a number without indicating the units.
135
agentica-org/DeepScaleR-Preview-Dataset
Let $\mathbf{v}$ be a vector such that \[\left\| \mathbf{v} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} \right\| = 10.\] Find the smallest possible value of $\|\mathbf{v}\|$.
10 - 2\sqrt{5}
agentica-org/DeepScaleR-Preview-Dataset
What is the smallest positive integer $n$ for which $11n-8$ and $5n + 9$ share a common factor greater than $1$?
165
agentica-org/DeepScaleR-Preview-Dataset
Let b be a real number randomly selected from the interval $[-17,17]$. Then, m and n are two relatively prime positive integers such that m/n is the probability that the equation $x^4+25b^2=(4b^2-10b)x^2$ has $\textit{at least}$ two distinct real solutions. Find the value of $m+n$.
63
agentica-org/DeepScaleR-Preview-Dataset
An isosceles triangle has side lengths 8 cm, 8 cm and 10 cm. The longest side of a similar triangle is 25 cm. What is the perimeter of the larger triangle, in centimeters?
65
agentica-org/DeepScaleR-Preview-Dataset
In Cologne, there were three brothers who had 9 containers of wine. The first container had a capacity of 1 quart, the second contained 2 quarts, with each subsequent container holding one more quart than the previous one, so the last container held 9 quarts. The task is to divide the wine equally among the three brothers without transferring wine between the containers.
15
agentica-org/DeepScaleR-Preview-Dataset
There are 52 students in a class. Now, using the systematic sampling method, a sample of size 4 is drawn. It is known that the seat numbers in the sample are 6, X, 30, and 42. What should be the seat number X?
18
agentica-org/DeepScaleR-Preview-Dataset
Find the modular inverse of $4$, modulo $21$. Express your answer as an integer from $0$ to $20$, inclusive.
16
agentica-org/DeepScaleR-Preview-Dataset
Given that $A$, $B$, and $P$ are three distinct points on the hyperbola ${x^2}-\frac{{y^2}}{4}=1$, and they satisfy $\overrightarrow{PA}+\overrightarrow{PB}=2\overrightarrow{PO}$ (where $O$ is the origin), the slopes of lines $PA$ and $PB$ are denoted as $m$ and $n$ respectively. Find the minimum value of ${m^2}+\frac{{n^2}}{9}$.
\frac{8}{3}
agentica-org/DeepScaleR-Preview-Dataset
Given a function defined on the set of positive integers as follows: \[ f(n) = \begin{cases} n - 3, & \text{if } n \geq 1000 \\ f[f(n + 7)], & \text{if } n < 1000 \end{cases} \] Find the value of \( f(90) \).
999
agentica-org/DeepScaleR-Preview-Dataset
Bernardo and Silvia play the following game. An integer between $0$ and $999$ inclusive is selected and given to Bernardo. Whenever Bernardo receives a number, he doubles it and passes the result to Silvia. Whenever Silvia receives a number, she adds $50$ to it and passes the result to Bernardo. The winner is the last person who produces a number less than $1000$. Let $N$ be the smallest initial number that results in a win for Bernardo. What is the sum of the digits of $N$?
7
agentica-org/DeepScaleR-Preview-Dataset
A basketball team consists of 18 players, including a set of 3 triplets: Bob, Bill, and Ben; and a set of twins: Tim and Tom. In how many ways can we choose 7 starters if exactly two of the triplets and one of the twins must be in the starting lineup?
4290
agentica-org/DeepScaleR-Preview-Dataset
What is the largest integer that must divide the product of any $5$ consecutive integers?
24
agentica-org/DeepScaleR-Preview-Dataset
Petya has seven cards with the digits 2, 2, 3, 4, 5, 6, 8. He wants to use all the cards to form the largest natural number that is divisible by 12. What number should he get?
8654232
agentica-org/DeepScaleR-Preview-Dataset
A computer software retailer has 1200 copies of a new software package to sell. Given that half of them will sell right away at the original price, two-thirds of the remainder will sell later when the price is reduced by 40%, and the remaining copies will sell in a clearance sale at 75% off the original price, determine the original price needed to achieve a total sales revenue of $72000.
80.90
agentica-org/DeepScaleR-Preview-Dataset
The side lengths of a triangle are 14 cm, 48 cm and 50 cm. How many square centimeters are in the area of the triangle?
336
agentica-org/DeepScaleR-Preview-Dataset
A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths $3$ , $4$ , and $5$ . What is the area of the triangle?
$\frac{9}{\pi^2}\left(\sqrt{3}+3\right)$
agentica-org/DeepScaleR-Preview-Dataset
Using the digits 1, 2, 3, 4, 5, how many even three-digit numbers less than 500 can be formed if each digit can be used more than once?
40
agentica-org/DeepScaleR-Preview-Dataset
Suppose that \( X \) and \( Y \) are angles with \( \tan X = \frac{1}{m} \) and \( \tan Y = \frac{a}{n} \) for some positive integers \( a, m, \) and \( n \). Determine the number of positive integers \( a \leq 50 \) for which there are exactly 6 pairs of positive integers \( (m, n) \) with \( X + Y = 45^{\circ} \). (Note: The formula \( \tan (X + Y) = \frac{\tan X + \tan Y}{1 - \tan X \tan Y} \) may be useful.)
12
agentica-org/DeepScaleR-Preview-Dataset
For how many three-digit positive integers is the sum of the digits equal to $5?$
15
agentica-org/DeepScaleR-Preview-Dataset
Given two lines $l_{1}$: $(3+m)x+4y=5-3m$ and $l_{2}$: $2x+(5+m)y=8$ are parallel, the value of the real number $m$ is ______.
-7
agentica-org/DeepScaleR-Preview-Dataset
Theo's watch is 10 minutes slow, but he believes it is 5 minutes fast. Leo's watch is 5 minutes fast, but he believes it is 10 minutes slow. At the same moment, each of them looks at his own watch. Theo thinks it is 12:00. What time does Leo think it is? A) 11:30 B) 11:45 C) 12:00 D) 12:30 E) 12:45
12:30
agentica-org/DeepScaleR-Preview-Dataset
Circles $P$, $Q$, and $R$ are externally tangent to each other and internally tangent to circle $S$. Circles $Q$ and $R$ are congruent. Circle $P$ has radius 2 and passes through the center of $S$. What is the radius of circle $Q$?
\frac{16}{9}
agentica-org/DeepScaleR-Preview-Dataset
Find $x.$ [asy] unitsize(0.7 cm); pair A, B, C, D, O; O = (0,0); A = 4*dir(160); B = 5*dir(160 + 180); C = 8*dir(20); D = 4*dir(20 + 180); draw(A--B); draw(C--D); draw(A--C); draw(B--D); label("$4$", (A + O)/2, SW); label("$10$", (C + O)/2, SE); label("$4$", (D + O)/2, NW); label("$5$", (B + O)/2, NE); label("$8$", (B + D)/2, S); label("$x$", (A + C)/2, N); label("$A$", A, W); label("$B$", B, E); label("$C$", C, E); label("$D$", D, W); label("$O$", O, N); [/asy]
9 \sqrt{2}
agentica-org/DeepScaleR-Preview-Dataset
Given that $F$ is the focus of the parabola $x^{2}=8y$, $P$ is a moving point on the parabola, and the coordinates of $A$ are $(0,-2)$, find the minimum value of $\frac{|PF|}{|PA|}$.
\frac{\sqrt{2}}{2}
agentica-org/DeepScaleR-Preview-Dataset
A function $f$ is defined for all real numbers and satisfies the conditions $f(3+x) = f(3-x)$ and $f(8+x) = f(8-x)$ for all $x$. If $f(0) = 0$, determine the minimum number of roots that $f(x) = 0$ must have in the interval $-500 \leq x \leq 500$.
201
agentica-org/DeepScaleR-Preview-Dataset
As a result of measuring the four sides and one of the diagonals of a certain quadrilateral, the following numbers were obtained: $1 ; 2 ; 2.8 ; 5 ; 7.5$. What is the length of the measured diagonal?
2.8
agentica-org/DeepScaleR-Preview-Dataset
The number $2.5252525\ldots$ can be written as a fraction. When reduced to lowest terms the sum of the numerator and denominator of this fraction is:
349
agentica-org/DeepScaleR-Preview-Dataset
In the Cartesian coordinate system xOy, the polar equation of circle C is $\rho=4$. The parametric equation of line l, which passes through point P(1, 2), is given by $$\begin{cases} x=1+ \sqrt {3}t \\ y=2+t \end{cases}$$ (where t is a parameter). (I) Write the standard equation of circle C and the general equation of line l; (II) Suppose line l intersects circle C at points A and B, find the value of $|PA| \cdot |PB|$.
11
agentica-org/DeepScaleR-Preview-Dataset
Anne-Marie has a deck of 16 cards, each with a distinct positive factor of 2002 written on it. She shuffles the deck and begins to draw cards from the deck without replacement. She stops when there exists a nonempty subset of the cards in her hand whose numbers multiply to a perfect square. What is the expected number of cards in her hand when she stops?
\frac{837}{208}
agentica-org/DeepScaleR-Preview-Dataset
The circle is divided into 30 equal parts by 30 points on the circle. Randomly selecting 3 different points, what is the probability that these 3 points form an equilateral triangle?
1/406
agentica-org/DeepScaleR-Preview-Dataset
Find the maximum value of the following expression: $$ |\cdots|\left|x_{1}-x_{2}\right|-x_{3}\left|-\cdots-x_{1990}\right|, $$ where \( x_{1}, x_{2}, \cdots, x_{1990} \) are distinct natural numbers from 1 to 1990.
1989
agentica-org/DeepScaleR-Preview-Dataset
Find an approximate value of $0.998^6$ such that the error is less than $0.001$.
0.988
agentica-org/DeepScaleR-Preview-Dataset
Find the units digit of $7 \cdot 17 \cdot 1977 - 7^3$
0
agentica-org/DeepScaleR-Preview-Dataset
Find all real numbers $k$ such that \[\left\| k \begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} 4 \\ 7 \end{pmatrix} \right\| = 2 \sqrt{13}.\]Enter all the solutions, separated by commas.
-1
agentica-org/DeepScaleR-Preview-Dataset
Suppose that \(x_1+1=x_2+2=x_3+3=\cdots=x_{2010}+2010=x_1+x_2+x_3+\cdots+x_{2010}+2011\). Find the value of \(\left\lfloor|T|\right\rfloor\), where \(T=\sum_{n=1}^{2010}x_n\).
1005
agentica-org/DeepScaleR-Preview-Dataset
Find the sum of the first eight prime numbers that have a units digit of 3.
404
agentica-org/DeepScaleR-Preview-Dataset
A circle is tangent to the lines $4x - 3y = 30$ and $4x - 3y = -10.$ The center of the circle lies on the line $2x + y = 0.$ Find the center of the circle.
(1,-2)
agentica-org/DeepScaleR-Preview-Dataset
$\triangle KWU$ is an equilateral triangle with side length $12$ . Point $P$ lies on minor arc $\overarc{WU}$ of the circumcircle of $\triangle KWU$ . If $\overline{KP} = 13$ , find the length of the altitude from $P$ onto $\overline{WU}$ . *Proposed by Bradley Guo*
\frac{25\sqrt{3}}{24}
agentica-org/DeepScaleR-Preview-Dataset
Three of the edges of a cube are $\overline{AB}, \overline{BC},$ and $\overline{CD},$ and $\overline{AD}$ is an interior diagonal. Points $P, Q,$ and $R$ are on $\overline{AB}, \overline{BC},$ and $\overline{CD},$ respectively, so that $AP = 5, PB = 15, BQ = 15,$ and $CR = 10.$ What is the area of the polygon that is the intersection of plane $PQR$ and the cube?
525
agentica-org/DeepScaleR-Preview-Dataset
Allie and Betty play a game where they take turns rolling a standard die. If a player rolls $n$, she is awarded $f(n)$ points, where \[f(n) = \left\{ \begin{array}{cl} 6 & \text{ if }n\text{ is a multiple of 2 and 3}, \\ 2 & \text{ if }n\text{ is only a multiple of 2}, \\ 0 & \text{ if }n\text{ is not a multiple of 2}. \end{array} \right.\]Allie rolls the die four times and gets a 5, 4, 1, and 2. Betty rolls and gets 6, 3, 3, and 2. What is the product of Allie's total points and Betty's total points?
32
agentica-org/DeepScaleR-Preview-Dataset
Let $c$ be a real number randomly selected from the interval $[-20,20]$. Then, $p$ and $q$ are two relatively prime positive integers such that $\frac{p}{q}$ is the probability that the equation $x^4 + 36c^2 = (9c^2 - 15c)x^2$ has at least two distinct real solutions. Find the value of $p + q$.
29
agentica-org/DeepScaleR-Preview-Dataset
Given: $$ \frac{ \left( \frac{1}{3} \right)^2 + \left( \frac{1}{4} \right)^2 }{ \left( \frac{1}{5} \right)^2 + \left( \frac{1}{6} \right)^2} = \frac{37x}{73y} $$ Express $\sqrt{x} \div \sqrt{y}$ as a common fraction.
\frac{75 \sqrt{73}}{6 \sqrt{61} \sqrt{37}}
agentica-org/DeepScaleR-Preview-Dataset
A fair coin is flipped 9 times. What is the probability that at least 6 of the flips result in heads?
\frac{65}{256}
agentica-org/DeepScaleR-Preview-Dataset
Compute $\arccos(\cos 9).$ All functions are in radians.
9 - 2\pi
agentica-org/DeepScaleR-Preview-Dataset
The endpoints of a line segment \\(AB\\) with a fixed length of \\(3\\) move on the parabola \\(y^{2}=x\\). Let \\(M\\) be the midpoint of the line segment \\(AB\\). The minimum distance from \\(M\\) to the \\(y\\)-axis is \_\_\_\_\_\_.
\dfrac{5}{4}
agentica-org/DeepScaleR-Preview-Dataset
For what ratio of the bases of a trapezoid does there exist a line on which the six points of intersection with the diagonals, the lateral sides, and the extensions of the bases of the trapezoid form five equal segments?
1:2
agentica-org/DeepScaleR-Preview-Dataset
There are 54 chips in a box. Each chip is either small or large. If the number of small chips is greater than the number of large chips by a prime number of chips, what is the greatest possible number of large chips?
26
agentica-org/DeepScaleR-Preview-Dataset
If $a = \log_8 225$ and $b = \log_2 15$, then $a$, in terms of $b$, is:
\frac{2b}{3}
agentica-org/DeepScaleR-Preview-Dataset
There are 2008 red cards and 2008 white cards. 2008 players sit down in circular toward the inside of the circle in situation that 2 red cards and 2 white cards from each card are delivered to each person. Each person conducts the following procedure in one turn as follows. $ (*)$ If you have more than one red card, then you will pass one red card to the left-neighbouring player. If you have no red card, then you will pass one white card to the left -neighbouring player. Find the maximum value of the number of turn required for the state such that all person will have one red card and one white card first.
1004
agentica-org/DeepScaleR-Preview-Dataset
A ticket to a school play cost $x$ dollars, where $x$ is a whole number. A group of 9th graders buys tickets costing a total of $48, and a group of 10th graders buys tickets costing a total of $64. How many values for $x$ are possible?
5
agentica-org/DeepScaleR-Preview-Dataset
Calculate the value of $$1+\cfrac{2}{3+\cfrac{6}{7}}$$ and express it as a simplified fraction.
\frac{41}{27}
agentica-org/DeepScaleR-Preview-Dataset
Inside the square \(ABCD\), points \(K\) and \(M\) are marked (point \(M\) is inside triangle \(ABD\), point \(K\) is inside \(BMC\)) such that triangles \(BAM\) and \(DKM\) are congruent \((AM = KM, BM = MD, AB = KD)\). Find \(\angle KCM\) if \(\angle AMB = 100^\circ\).
35
agentica-org/DeepScaleR-Preview-Dataset
Javier is going to Disneyland during spring break. He plans on visiting four particular attractions all before lunch. In how many orders could he visit all four attractions once?
24
agentica-org/DeepScaleR-Preview-Dataset
Define a function $A(m, n)$ in line with the Ackermann function and compute $A(3, 2)$.
11
agentica-org/DeepScaleR-Preview-Dataset
In a right square pyramid $O-ABCD$, $\angle AOB=30^{\circ}$, the dihedral angle between plane $OAB$ and plane $OBC$ is $\theta$, and $\cos \theta = a \sqrt{b} - c$, where $a, b, c \in \mathbf{N}$, and $b$ is not divisible by the square of any prime number. Find $a+b+c=$ _______.
14
agentica-org/DeepScaleR-Preview-Dataset
\(f(x)\) is a linear function, and the equation \(f(f(x)) = x + 1\) has no solutions. Find all possible values of \(f(f(f(f(f(2022)))))-f(f(f(2022)))-f(f(2022))\).
-2022
agentica-org/DeepScaleR-Preview-Dataset
Suppose that $x^{10} + x + 1 = 0$ and $x^100 = a_0 + a_1x +... + a_9x^9$ . Find $a_5$ .
-252
agentica-org/DeepScaleR-Preview-Dataset
What is the sum of the first 10 odd positive integers?
100
agentica-org/DeepScaleR-Preview-Dataset
Let $k$ be the answer to this problem. The probability that an integer chosen uniformly at random from $\{1,2, \ldots, k\}$ is a multiple of 11 can be written as $\frac{a}{b}$ for relatively prime positive integers $a$ and $b$. Compute $100 a+b$.
1000
agentica-org/DeepScaleR-Preview-Dataset
If $f(2x)=\frac{2}{2+x}$ for all $x>0$, then $2f(x)=$
\frac{8}{4+x}
agentica-org/DeepScaleR-Preview-Dataset
In $\triangle ABC$, $D$ is a point on side $\overline{AC}$ such that $BD=DC$ and $\angle BCD$ measures $70^\circ$. What is the degree measure of $\angle ADB$?
140
agentica-org/DeepScaleR-Preview-Dataset
In the complex plane, the distance between the points corresponding to the complex numbers $-3+i$ and $1-i$ is $\boxed{\text{answer}}$.
\sqrt{20}
agentica-org/DeepScaleR-Preview-Dataset
On the diagonals $AC$ and $CE$ of a regular hexagon $ABCDEF$, points $M$ and $N$ are taken respectively, such that $\frac{AM}{AC} = \frac{CN}{CE} = \lambda$. It is known that points $B, M$, and $N$ lie on one line. Find $\lambda$.
\frac{\sqrt{3}}{3}
agentica-org/DeepScaleR-Preview-Dataset
We have 10 points on a line A_{1}, A_{2} \cdots A_{10} in that order. Initially there are n chips on point A_{1}. Now we are allowed to perform two types of moves. Take two chips on A_{i}, remove them and place one chip on A_{i+1}, or take two chips on A_{i+1}, remove them, and place a chip on A_{i+2} and A_{i}. Find the minimum possible value of n such that it is possible to get a chip on A_{10} through a sequence of moves.
46
agentica-org/DeepScaleR-Preview-Dataset
In triangle $XYZ$, $XY=25$ and $XZ=14$. The angle bisector of $\angle X$ intersects $YZ$ at point $E$, and point $N$ is the midpoint of $XE$. Let $Q$ be the point of the intersection of $XZ$ and $YN$. The ratio of $ZQ$ to $QX$ can be expressed in the form $\dfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
39
agentica-org/DeepScaleR-Preview-Dataset
On an island, there are red, yellow, green, and blue chameleons. - On a cloudy day, either one red chameleon changes its color to yellow, or one green chameleon changes its color to blue. - On a sunny day, either one red chameleon changes its color to green, or one yellow chameleon changes its color to blue. In September, there were 18 sunny days and 12 cloudy days. The number of yellow chameleons increased by 5. By how many did the number of green chameleons increase?
11
agentica-org/DeepScaleR-Preview-Dataset
The number 519 is formed using the digits 5, 1, and 9. The three digits of this number are rearranged to form the largest possible and then the smallest possible three-digit numbers. What is the difference between these largest and smallest numbers?
792
agentica-org/DeepScaleR-Preview-Dataset
The set $$ A=\{\sqrt[n]{n} \mid n \in \mathbf{N} \text{ and } 1 \leq n \leq 2020\} $$ has the largest element as $\qquad$ .
\sqrt[3]{3}
agentica-org/DeepScaleR-Preview-Dataset
Given that the probability of player A winning a single game is $\frac{2}{3}$, calculate the probability that A wins the match with a score of 3:1 in a best of five games format.
\frac{8}{27}
agentica-org/DeepScaleR-Preview-Dataset
Let \( X = \{0, a, b, c\} \) and \( M(X) = \{ f \mid f: X \rightarrow X \} \) be the set of all functions from \( X \) to itself. Define the addition operation \( \oplus \) on \( X \) as given in the following table: \[ \begin{array}{|c|c|c|c|c|} \hline \oplus & 0 & a & b & c \\ \hline 0 & 0 & a & b & c \\ \hline a & a & 0 & c & b \\ \hline b & b & c & 0 & a \\ \hline c & c & b & a & 0 \\ \hline \end{array} \] 1. Determine the number of elements in the set: \[ S = \{ f \in M(X) \mid f((x \oplus y) \oplus x) = (f(x) \oplus f(y)) \oplus f(x), \forall x, y \in X \}. \] 2. Determine the number of elements in the set: \[ I = \{ f \in M(X) \mid f(x \oplus x) = f(x) \oplus f(x), \forall x \in X \}. \]
64
agentica-org/DeepScaleR-Preview-Dataset
Compute the integral: \(\int_{0}^{\pi / 2}\left(\sin ^{2}(\sin x) + \cos ^{2}(\cos x)\right) \,dx\).
\frac{\pi}{4}
agentica-org/DeepScaleR-Preview-Dataset
Let $M = 36 \cdot 36 \cdot 77 \cdot 330$. Find the ratio of the sum of the odd divisors of $M$ to the sum of the even divisors of $M$.
1 : 62
agentica-org/DeepScaleR-Preview-Dataset
Two students, A and B, each choose 2 out of 6 extracurricular reading materials. Calculate the number of ways in which the two students choose extracurricular reading materials such that they have exactly 1 material in common.
120
agentica-org/DeepScaleR-Preview-Dataset
Person A and Person B start from points $A$ and $B$ simultaneously and move towards each other. It is known that the speed ratio of Person A to Person B is 6:5. When they meet, they are 5 kilometers from the midpoint between $A$ and $B$. How many kilometers away is Person B from point $A$ when Person A reaches point $B$?
5/3
agentica-org/DeepScaleR-Preview-Dataset
How many different routes can Samantha take by biking on streets to the southwest corner of City Park, then taking a diagonal path through the park to the northeast corner, and then biking on streets to school?
400
agentica-org/DeepScaleR-Preview-Dataset
In \(\triangle ABC\), \(AB : AC = 4 : 3\) and \(M\) is the midpoint of \(BC\). \(E\) is a point on \(AB\) and \(F\) is a point on \(AC\) such that \(AE : AF = 2 : 1\). It is also given that \(EF\) and \(AM\) intersect at \(G\) with \(GF = 72 \mathrm{~cm}\) and \(GE = x \mathrm{~cm}\). Find the value of \(x\).
108
agentica-org/DeepScaleR-Preview-Dataset
The store owner bought 2000 pens at $0.15 each and plans to sell them at $0.30 each, calculate the number of pens he needs to sell to make a profit of exactly $150.
1000
agentica-org/DeepScaleR-Preview-Dataset
Samantha lives 2 blocks west and 1 block south of the southwest corner of City Park. Her school is 2 blocks east and 2 blocks north of the northeast corner of City Park. On school days she bikes on streets to the southwest corner of City Park, then takes a diagonal path through the park to the northeast corner, and then bikes on streets to school. If her route is as short as possible, how many different routes can she take?
18
agentica-org/DeepScaleR-Preview-Dataset
If $x \ne 0$ or $4$ and $y \ne 0$ or $6$, then $\frac{2}{x} + \frac{3}{y} = \frac{1}{2}$ is equivalent to
\frac{4y}{y-6}=x
agentica-org/DeepScaleR-Preview-Dataset
Given an equilateral triangle with one vertex at the origin and the other two vertices on the parabola $y^2 = 2\sqrt{3}x$, find the length of the side of this equilateral triangle.
12
agentica-org/DeepScaleR-Preview-Dataset
Each of five, standard, six-sided dice is rolled once. What is the probability that there is at least one pair but not a three-of-a-kind (that is, there are two dice showing the same value, but no three dice show the same value)?
\frac{25}{36}