version
stringclasses
25 values
code
stringlengths
75
178k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
9
78
hexsha
stringlengths
40
40
1.10
import os import torch import torch.nn as nn import torch.quantization from torch.utils.mobile_optimizer import optimize_for_mobile from openunmix import utils from openunmix import model from openunmix.model import OpenUnmix target_urls_umxhq = { "bass": "https://zenodo.org/api/files/1c8f83c5-33a5-4f59-b109-721fdd234875/bass-8d85a5bd.pth", "drums": "https://zenodo.org/api/files/1c8f83c5-33a5-4f59-b109-721fdd234875/drums-9619578f.pth", "other": "https://zenodo.org/api/files/1c8f83c5-33a5-4f59-b109-721fdd234875/other-b52fbbf7.pth", "vocals": "https://zenodo.org/api/files/1c8f83c5-33a5-4f59-b109-721fdd234875/vocals-b62c91ce.pth", } target_urls_umxl = { "bass": "https://zenodo.org/api/files/f8209c3e-ba60-48cf-8e79-71ae65beca61/bass-2ca1ce51.pth", "drums": "https://zenodo.org/api/files/f8209c3e-ba60-48cf-8e79-71ae65beca61/drums-69e0ebd4.pth", "other": "https://zenodo.org/api/files/f8209c3e-ba60-48cf-8e79-71ae65beca61/other-c8c5b3e6.pth", "vocals": "https://zenodo.org/api/files/f8209c3e-ba60-48cf-8e79-71ae65beca61/vocals-bccbd9aa.pth", } def get_umx_models( target_urls, hidden_size=512, targets=None, device="cpu", pretrained=True ): """Download openunmix pretrained models Args: target_urls: dict with the link to download the model for bass, drums, other and vocals hidden_size: size for bottleneck layer targets: list of stems device: the device on which the model will be used pretrained: boolean for pretrained weights Returns: target_models: list with all the models """ if targets is None: targets = ["vocals", "drums", "bass", "other"] # determine the maximum bin count for a 16khz bandwidth model max_bin = int(utils.bandwidth_to_max_bin(rate=44100.0, n_fft=4096, bandwidth=16000)) target_models = {} for target in targets: # load open unmix model target_unmix = OpenUnmix( nb_bins=4096 // 2 + 1, nb_channels=2, hidden_size=hidden_size, max_bin=max_bin, ) # enable centering of stft to minimize reconstruction error if pretrained: state_dict = torch.hub.load_state_dict_from_url( target_urls[target], map_location=device ) target_unmix.load_state_dict(state_dict, strict=False) target_unmix.eval() target_unmix.to(device) target_models[target] = target_unmix return target_models def create_separator(target_models, device="cpu"): """Create separator class which contains all models Args: target_models: list of all models device: the device on which the model will be used Returns: separator: separator class which contains all models """ separator = ( model.Separator( target_models=target_models, niter=1, residual=False, n_fft=4096, n_hop=1024, nb_channels=2, sample_rate=44100.0, filterbank="asteroid", ) .eval() .to(device) ) return separator def quantize_model(model): """Quantize model dynamically Args: model: model corresponding to the separator """ model = torch.quantization.quantize_dynamic( model, {nn.LSTM, nn.Linear}, dtype=torch.qint8 ) return model def create_script(model_name, separator): """Create the torchscript model from a separator Args: model_name: name of the torchscript file to create separator: separator class which contains all models """ jit_script = torch.jit.script(separator) torchscript_model_opti = optimize_for_mobile(jit_script) torchscript_model_opti._save_for_lite_interpreter(f"dist/{model_name}.ptl") def main(): device = "cpu" separator_umxhq = create_separator(get_umx_models(target_urls_umxhq), device=device) separator_umxl = create_separator( get_umx_models(target_urls_umxl, hidden_size=1024), device=device ) if not os.path.exists("dist"): os.mkdir("dist") separator_umxhq = quantize_model(separator_umxhq) separator_umxl = quantize_model(separator_umxl) create_script("umxhq", separator_umxhq) create_script("umxl", separator_umxl) if __name__ == "__main__": main()
[ "torch.jit.script", "torch.quantization.quantize_dynamic", "torch.utils.mobile_optimizer.optimize_for_mobile", "torch.hub.load_state_dict_from_url" ]
1.10.1
demixr/openunmix-torchscript
e0ccb812b6a6e16151e54cb2101372f61eb12c60
1.7
"""Pytorch Dataset object that loads 27x27 patches that contain single cells.""" import os import random import numpy as np import scipy.io import torch import torch.utils.data as data_utils import torchvision.transforms as transforms from skimage import io, color from sklearn.model_selection import KFold import utils_augemntation class ColonCancerBagsCross(data_utils.Dataset): def __init__(self, path, train=True, test=False, shuffle_bag=False, data_augmentation=False, loc_info=False, push=False, nucleus_type=None, folds=10, fold_id=1, random_state=3, all_labels=False): self.path = path self.train = train self.test = test self.shuffle_bag = shuffle_bag self.data_augmentation = data_augmentation self.location_info = loc_info self.push = push self.nucleus_type = nucleus_type self.folds = folds self.fold_id = fold_id self.random_state = random_state self.all_labels = all_labels self.r = np.random.RandomState(random_state) tr = [utils_augemntation.RandomHEStain(), utils_augemntation.HistoNormalize(), utils_augemntation.RandomRotate(), transforms.RandomVerticalFlip(), transforms.RandomHorizontalFlip(), transforms.RandomCrop(27, padding=(2, 2), padding_mode='reflect'), #transforms.RandomRotation(15), transforms.ToTensor(), #transforms.RandomApply([utils_augemntation.GaussianNoise()], p=0.5) ] tst = [utils_augemntation.HistoNormalize(), transforms.ToTensor() ] psh = [transforms.ToTensor()] self.data_augmentation_img_transform = transforms.Compose(tr) self.normalize_to_tensor_transform = transforms.Compose(tst) self.to_tensor_transform = transforms.Compose(psh) self.dir_list = self.get_dir_list(self.path) folds = list(KFold(n_splits=self.folds, shuffle=True, random_state=self.random_state).split(self.dir_list)) if self.test: indices = set(folds[self.fold_id][1]) else: if self.train: val_indices = self.r.choice(folds[self.fold_id][0], len(folds[self.fold_id][1])) indices = set(folds[self.fold_id][0]) - set(val_indices) else: # valid indices = self.r.choice(folds[self.fold_id][0], len(folds[self.fold_id][1])) if nucleus_type: self.bag_list, self.labels_list = self.create_bags_one_type(np.asarray(self.dir_list)[list(indices)]) else: self.bag_list, self.labels_list = self.create_bags(np.asarray(self.dir_list)[list(indices)]) @staticmethod def get_dir_list(path): dirs = [x[0] for x in os.walk(path)] dirs.pop(0) dirs.sort() return dirs def create_bags_one_type(self, dir_list): """Create bags containing only one type of nucleus.""" bag_list = [] labels_list = [] for dir in dir_list: # Get image name img_name = dir.split('/')[-1] # bmp to pillow img_dir = dir + '/' + img_name + '.bmp' img = io.imread(img_dir) if img.shape[2] == 4: img = color.rgba2rgb(img) if self.location_info: xs = np.arange(0, 500) xs = np.asarray([xs for i in range(500)]) ys = xs.transpose() img = np.dstack((img, xs, ys)) # crop nucleus_type cells dir_nucleus_type = dir + '/' + img_name + '_' + self.nucleus_type + '.mat' with open(dir_nucleus_type, 'rb') as f: mat_nucleus_type = scipy.io.loadmat(f) cropped_cells = [] for (x, y) in mat_nucleus_type['detection']: x = np.round(x) y = np.round(y) if self.data_augmentation: x = x + np.round(np.random.normal(0, 3, 1)) y = y + np.round(np.random.normal(0, 3, 1)) if x < 13: x_start = 0 x_end = 27 elif x > 500 - 14: x_start = 500 - 27 x_end = 500 else: x_start = x - 13 x_end = x + 14 if y < 13: y_start = 0 y_end = 27 elif y > 500 - 14: y_start = 500 - 27 y_end = 500 else: y_start = y - 13 y_end = y + 14 cropped_cells.append(img[int(y_start):int(y_end), int(x_start):int(x_end)]) # if image doesn't contain any specific type nucleus, move to the next image if cropped_cells == []: continue # generate bag bag = cropped_cells # store single cell labels if self.nucleus_type == 'epithelial': labels = np.ones(len(cropped_cells)) else: labels = np.zeros(len(cropped_cells)) # shuffle if self.shuffle_bag: zip_bag_labels = list(zip(bag, labels)) random.shuffle(zip_bag_labels) bag, labels = zip(*zip_bag_labels) # append every bag two times if training if self.train: for _ in [0, 1]: bag_list.append(bag) labels_list.append(labels) else: bag_list.append(bag) labels_list.append(labels) # bag_list.append(bag) # labels_list.append(labels) return bag_list, labels_list def create_bags(self, dir_list): bag_list = [] labels_list = [] for dir in dir_list: # Get image name img_name = os.path.basename(dir) # bmp to pillow img_dir = os.path.join(dir, img_name + '.bmp') img = io.imread(img_dir) if img.shape[2] == 4: img = color.rgba2rgb(img) if self.location_info: xs = np.arange(0, 500) xs = np.asarray([xs for i in range(500)]) ys = xs.transpose() img = np.dstack((img, xs, ys)) # crop malignant cells dir_epithelial = os.path.join(dir, img_name + '_epithelial.mat') with open(dir_epithelial, 'rb') as f: mat_epithelial = scipy.io.loadmat(f) cropped_cells_epithelial = [] for (x, y) in mat_epithelial['detection']: x = np.round(x) y = np.round(y) if self.data_augmentation: x = x + np.round(np.random.normal(0, 3, 1)) y = y + np.round(np.random.normal(0, 3, 1)) if x < 13: x_start = 0 x_end = 27 elif x > 500 - 14: x_start = 500 - 27 x_end = 500 else: x_start = x - 13 x_end = x + 14 if y < 13: y_start = 0 y_end = 27 elif y > 500 - 14: y_start = 500 - 27 y_end = 500 else: y_start = y - 13 y_end = y + 14 cropped_cells_epithelial.append(img[int(y_start):int(y_end), int(x_start):int(x_end)]) # crop all other cells dir_inflammatory = os.path.join(dir, img_name + '_inflammatory.mat') dir_fibroblast = os.path.join(dir, img_name + '_fibroblast.mat') dir_others = os.path.join(dir, img_name + '_others.mat') with open(dir_inflammatory, 'rb') as f: mat_inflammatory = scipy.io.loadmat(f) with open(dir_fibroblast, 'rb') as f: mat_fibroblast = scipy.io.loadmat(f) with open(dir_others, 'rb') as f: mat_others = scipy.io.loadmat(f) all_coordinates = np.concatenate( (mat_inflammatory['detection'], mat_fibroblast['detection'], mat_others['detection']), axis=0) cropped_cells_others = [] for (x, y) in all_coordinates: x = np.round(x) y = np.round(y) if self.data_augmentation: x = x + np.round(np.random.normal(0, 3, 1)) y = y + np.round(np.random.normal(0, 3, 1)) if x < 13: x_start = 0 x_end = 27 elif x > 500 - 14: x_start = 500 - 27 x_end = 500 else: x_start = x - 13 x_end = x + 14 if y < 13: y_start = 0 y_end = 27 elif y > 500 - 14: y_start = 500 - 27 y_end = 500 else: y_start = y - 13 y_end = y + 14 cropped_cells_others.append(img[int(y_start):int(y_end), int(x_start):int(x_end)]) # generate bag bag = cropped_cells_epithelial + cropped_cells_others # store single cell labels labels = np.concatenate((np.ones(len(cropped_cells_epithelial)), np.zeros(len(cropped_cells_others))), axis=0) # shuffle if self.shuffle_bag: zip_bag_labels = list(zip(bag, labels)) random.shuffle(zip_bag_labels) bag, labels = zip(*zip_bag_labels) # append every bag two times if training if self.train: for _ in [0, 1]: bag_list.append(bag) labels_list.append(labels) else: bag_list.append(bag) labels_list.append(labels) return bag_list, labels_list def transform_and_data_augmentation(self, bag, raw=False): if raw: img_transform = self.to_tensor_transform elif not raw and self.data_augmentation: img_transform = self.data_augmentation_img_transform else: img_transform = self.normalize_to_tensor_transform bag_tensors = [] for img in bag: if self.location_info: bag_tensors.append(torch.cat( (img_transform(img[:, :, :3].astype('uint8')), torch.from_numpy(img[:, :, 3:].astype(float).transpose((2, 0, 1))).float(), ))) else: bag_tensors.append(img_transform(img)) return torch.stack(bag_tensors) def __len__(self): return len(self.labels_list) def __getitem__(self, index): bag = self.bag_list[index] if self.all_labels: label = torch.LongTensor(self.labels_list[index]) else: label = torch.LongTensor(self.labels_list[index]).max().unsqueeze(0) if self.push: return self.transform_and_data_augmentation(bag, raw=True), self.transform_and_data_augmentation( bag), label else: return self.transform_and_data_augmentation(bag), label
[ "torch.stack", "torch.LongTensor" ]
1.7.1
apardyl/ProtoPNet
b2bbd7284bfc84a37385c0e975408c68cdf64205
1.0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 4 12:32:53 2017 @author: wroscoe """ import os import sys import time import json import datetime import random import tarfile import numpy as np import pandas as pd from PIL import Image from donkeycar import util from ..log import get_logger logger = get_logger(__name__) class Tub(object): """ A datastore to store sensor data in a key, value format. Accepts str, int, float, image_array, image, and array data types. For example: #Create a tub to store speed values. >>> path = '~/mydonkey/test_tub' >>> inputs = ['user/speed', 'cam/image'] >>> types = ['float', 'image'] >>> t=Tub(path=path, inputs=inputs, types=types) """ def __init__(self, path, inputs=None, types=None): self.path = os.path.expanduser(path) logger.info('path_in_tub: {}'.format(self.path)) self.meta_path = os.path.join(self.path, 'meta.json') self.df = None exists = os.path.exists(self.path) if exists: # load log and meta logger.info('Tub exists: {}'.format(self.path)) with open(self.meta_path, 'r') as f: self.meta = json.load(f) self.current_ix = self.get_last_ix() + 1 elif not exists and inputs: logger.info('Tub does NOT exist. Creating new tub...') # create log and save meta os.makedirs(self.path) self.meta = {'inputs': inputs, 'types': types} with open(self.meta_path, 'w') as f: json.dump(self.meta, f) self.current_ix = 0 logger.info('New tub created at: {}'.format(self.path)) else: msg = "The tub path you provided doesn't exist and you didnt pass any meta info (inputs & types)" + \ "to create a new tub. Please check your tub path or provide meta info to create a new tub." raise AttributeError(msg) self.start_time = time.time() def get_last_ix(self): index = self.get_index() if len(index) >= 1: return max(index) return -1 def update_df(self): df = pd.DataFrame([self.get_json_record(i) for i in self.get_index(shuffled=False)]) self.df = df def get_df(self): if self.df is None: self.update_df() return self.df def get_index(self, shuffled=True): files = next(os.walk(self.path))[2] record_files = [f for f in files if f[:6] == 'record'] def get_file_ix(file_name): try: name = file_name.split('.')[0] num = int(name.split('_')[1]) except: num = 0 return num nums = [get_file_ix(f) for f in record_files] if shuffled: random.shuffle(nums) else: nums = sorted(nums) return nums @property def inputs(self): return list(self.meta['inputs']) @property def types(self): return list(self.meta['types']) def get_input_type(self, key): input_types = dict(zip(self.inputs, self.types)) return input_types.get(key) def write_json_record(self, json_data): path = self.get_json_record_path(self.current_ix) try: with open(path, 'w') as fp: json.dump(json_data, fp) except TypeError: logger.warn('troubles with record: {}'.format(json_data)) except FileNotFoundError: raise except: logger.error('Unexpected error: {}'.format(sys.exc_info()[0])) raise def get_num_records(self): import glob files = glob.glob(os.path.join(self.path, 'record_*.json')) return len(files) def make_record_paths_absolute(self, record_dict): d = {} for k, v in record_dict.items(): if type(v) == str: # filename if '.' in v: v = os.path.join(self.path, v) d[k] = v return d def check(self, fix=False): """ Iterate over all records and make sure we can load them. Optionally remove records that cause a problem. """ logger.info('Checking tub: {}'.format(self.path)) logger.info('Found: {} records'.format(self.get_num_records())) problems = False for ix in self.get_index(shuffled=False): try: self.get_record(ix) except: problems = True if fix is False: logger.warning('problems with record {} : {}'.format(ix, self.path)) else: logger.warning('problems with record {}, removing: {}'.format(ix, self.path)) self.remove_record(ix) if not problems: logger.info('No problems found.') def remove_record(self, ix): """ remove data associate with a record """ record = self.get_json_record_path(ix) os.unlink(record) def put_record(self, data): """ Save values like images that can't be saved in the csv log and return a record with references to the saved values that can be saved in a csv. """ json_data = {} for key, val in data.items(): typ = self.get_input_type(key) if typ in ['str', 'float', 'int', 'boolean']: json_data[key] = val elif typ is 'image': name = self.make_file_name(key, ext='.jpg') val.save(os.path.join(self.path, name)) json_data[key] = name elif typ == 'image_array': img = Image.fromarray(np.uint8(val)) name = self.make_file_name(key, ext='.jpg') img.save(os.path.join(self.path, name)) json_data[key] = name else: msg = 'Tub does not know what to do with this type {}'.format(typ) raise TypeError(msg) self.write_json_record(json_data) self.current_ix += 1 return self.current_ix def get_json_record_path(self, ix): # fill zeros # return os.path.join(self.path, 'record_'+str(ix).zfill(6)+'.json') # don't fill zeros return os.path.join(self.path, 'record_' + str(ix) + '.json') def get_json_record(self, ix): path = self.get_json_record_path(ix) try: with open(path, 'r') as fp: json_data = json.load(fp) except UnicodeDecodeError: raise Exception('bad record: %d. You may want to run `python manage.py check --fix`' % ix) except FileNotFoundError: raise except: logger.error('Unexpected error: {}'.format(sys.exc_info()[0])) raise record_dict = self.make_record_paths_absolute(json_data) return record_dict def get_record(self, ix): json_data = self.get_json_record(ix) data = self.read_record(json_data) return data def read_record(self, record_dict): data = {} for key, val in record_dict.items(): typ = self.get_input_type(key) # load objects that were saved as separate files if typ == 'image_array': img = Image.open((val)) val = np.array(img) data[key] = val return data def make_file_name(self, key, ext='.png'): # name = '_'.join([str(self.current_ix).zfill(6), key, ext]) name = '_'.join([str(self.current_ix), key, ext]) # don't fill zeros name = name = name.replace('/', '-') return name def delete(self): """ Delete the folder and files for this tub. """ import shutil shutil.rmtree(self.path) def shutdown(self): """ Required by the Part interface """ pass def get_record_gen(self, record_transform=None, shuffle=True, df=None): """ Returns records. Parameters ---------- record_transform : function The mapping function should handle records in dict format shuffle : bool Shuffle records df : numpy Dataframe If df is specified, the generator will use the records specified in that DataFrame. If None, the internal DataFrame will be used by calling get_df() Returns ------- A dict with keys mapping to the specified keys, and values lists of size batch_size. See Also -------- get_df """ if df is None: df = self.get_df() while True: for _ in self.df.iterrows(): if shuffle: record_dict = df.sample(n=1).to_dict(orient='record')[0] record_dict = self.read_record(record_dict) if record_transform: record_dict = record_transform(record_dict) yield record_dict def get_batch_gen(self, keys=None, batch_size=128, record_transform=None, shuffle=True, df=None): """ Returns batches of records. Additionally, each record in a batch is split up into a dict with inputs:list of values. By specifying keys as a subset of the inputs, you can filter out unnecessary data. Parameters ---------- keys : list of strings List of keys to filter out. If None, all inputs are included. batch_size : int The number of records in one batch. Returns ------- A dict with keys mapping to the specified keys, and values lists of size batch_size. See Also -------- get_record_gen """ record_gen = self.get_record_gen(record_transform=record_transform, shuffle=shuffle, df=df) if df is None: df = self.get_df() if keys is None: keys = list(self.df.columns) while True: record_list = [ next(record_gen) for _ in range(batch_size) ] batch_arrays = {} for i, k in enumerate(keys): arr = np.array([r[k] for r in record_list]) batch_arrays[k] = arr yield batch_arrays def get_train_gen(self, X_keys, Y_keys, batch_size=128, record_transform=None, df=None): """ Returns a training/validation set. The records are always shuffled. Parameters ---------- X_keys : list of strings List of the feature(s) to use. Must be included in Tub.inputs. Y_keys : list of strings List of the label(s) to use. Must be included in Tub.inputs. Returns ------- A tuple (X, Y), where X is a two dimensional array ( len(X_keys) x batch_size ) and Y is a two dimensional array ( len(Y_keys) x batch_size ). See Also -------- get_batch_gen """ batch_gen = self.get_batch_gen(X_keys + Y_keys, batch_size=batch_size, record_transform=record_transform, df=df) while True: batch = next(batch_gen) X = [batch[k] for k in X_keys] Y = [batch[k] for k in Y_keys] yield X, Y def get_train_val_gen(self, X_keys, Y_keys, batch_size=128, train_frac=.8, train_record_transform=None, val_record_transform=None): """ Create generators for training and validation set. Parameters ---------- train_frac : float Training/validation set split. train_record_transform : function Transform function for the training set. Used internally by Tub.get_record_gen(). val_record_transform : function Transform function for the validation set. Used internally by Tub.get_record_gen(). Returns ------- A tuple (train_gen, val_gen), where where train_gen is the training set generator, and val_gen the validation set generator. See Also -------- get_train_gen get_record_gen """ if self.df is None: self.update_df() train_df = self.df.sample(frac=train_frac, random_state=200) val_df = self.df.drop(train_df.index) train_gen = self.get_train_gen(X_keys=X_keys, Y_keys=Y_keys, batch_size=batch_size, record_transform=train_record_transform, df=train_df) val_gen = self.get_train_gen(X_keys=X_keys, Y_keys=Y_keys, batch_size=batch_size, record_transform=val_record_transform, df=val_df) return train_gen, val_gen def tar_records(self, file_path, start_ix=None, end_ix=None): """ Create a tarfile of the records and metadata from a tub. Compress using gzip. Parameters ---------- file_path : string The destination path of the created tar archive start_ix : int Start index. Defaults to 0. end_ix : int End index. Defaults to last index. Returns ------- Path to the tar archive """ if not start_ix: start_ix = 0 if not end_ix: end_ix = self.get_last_ix() + 1 with tarfile.open(name=file_path, mode='w:gz') as f: for ix in range(start_ix, end_ix): record_path = self.get_json_record_path(ix) f.add(record_path) f.add(self.meta_path) return file_path class TubWriter(Tub): def __init__(self, *args, **kwargs): super(TubWriter, self).__init__(*args, **kwargs) def run(self, *args): """ Accepts values, pairs them with their input keys and saves them to disk. """ assert len(self.inputs) == len(args) record = dict(zip(self.inputs, args)) self.put_record(record) class TubReader(Tub): def __init__(self, *args, **kwargs): super(TubReader, self).__init__(*args, **kwargs) self.read_ix = 0 def run(self, *args): """ Accepts keys to read from the tub and retrieves them sequentially. """ if self.read_ix >= self.current_ix: return None record_dict = self.get_record(self.read_ix) self.read_ix += 1 record = [record_dict[key] for key in args ] return record class TubHandler(): def __init__(self, path): self.path = os.path.expanduser(path) def get_tub_list(self): folders = next(os.walk(self.path))[1] return folders def next_tub_number(self): def get_tub_num(tub_name): try: num = int(tub_name.split('_')[1]) except: num = 0 return num folders = self.get_tub_list() numbers = [get_tub_num(x) for x in folders] next_number = max(numbers+[0]) + 1 return next_number def create_tub_path(self): tub_num = self.next_tub_number() date = datetime.datetime.now().strftime('%y-%m-%d') name = '_'.join(['tub', str(tub_num).zfill(2), date]) tub_path = os.path.join(self.path, name) return tub_path def new_tub_writer(self, inputs, types): tub_path = self.create_tub_path() tw = TubWriter(path=tub_path, inputs=inputs, types=types) return tw class TubImageStacker(Tub): """ A Tub for training a NN with images that are the last three records stacked togther as 3 channels of a single image. The idea is to give a simple feedforward NN some chance of building a model based on motion. If you drive with the ImageFIFO part, then you don't need this. Just make sure your inference pass uses the ImageFIFO that the NN will now expect. """ def rgb2gray(self, rgb): """ take a numpy rgb image return a new single channel image converted to greyscale """ return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) def stack3Images(self, img_a, img_b, img_c): """ convert 3 rgb images into grayscale and put them into the 3 channels of a single output image """ width, height, _ = img_a.shape gray_a = self.rgb2gray(img_a) gray_b = self.rgb2gray(img_b) gray_c = self.rgb2gray(img_c) img_arr = np.zeros([width, height, 3], dtype=np.dtype('B')) img_arr[...,0] = np.reshape(gray_a, (width, height)) img_arr[...,1] = np.reshape(gray_b, (width, height)) img_arr[...,2] = np.reshape(gray_c, (width, height)) return img_arr def get_record(self, ix): """ get the current record and two previous. stack the 3 images into a single image. """ data = super(TubImageStacker, self).get_record(ix) if ix > 1: data_ch1 = super(TubImageStacker, self).get_record(ix - 1) data_ch0 = super(TubImageStacker, self).get_record(ix - 2) json_data = self.get_json_record(ix) for key, val in json_data.items(): typ = self.get_input_type(key) #load objects that were saved as separate files if typ == 'image': val = self.stack3Images(data_ch0[key], data_ch1[key], data[key]) data[key] = val elif typ == 'image_array': img = self.stack3Images(data_ch0[key], data_ch1[key], data[key]) val = np.array(img) return data class TubTimeStacker(TubImageStacker): """ A Tub for training N with records stacked through time. The idea here is to force the network to learn to look ahead in time. Init with an array of time offsets from the current time. """ def __init__(self, frame_list, *args, **kwargs): """ frame_list of [0, 10] would stack the current and 10 frames from now records togther in a single record with just the current image returned. [5, 90, 200] would return 3 frames of records, ofset 5, 90, and 200 frames in the future. """ super(TubTimeStacker, self).__init__(*args, **kwargs) self.frame_list = frame_list def get_record(self, ix): """ stack the N records into a single record. Each key value has the record index with a suffix of _N where N is the frame offset into the data. """ data = {} for i, iOffset in enumerate(self.frame_list): iRec = ix + iOffset try: json_data = self.get_json_record(iRec) except FileNotFoundError: pass except: pass for key, val in json_data.items(): typ = self.get_input_type(key) # load only the first image saved as separate files if typ == 'image' and i == 0: val = Image.open(os.path.join(self.path, val)) data[key] = val elif typ == 'image_array' and i == 0: d = super(TubTimeStacker, self).get_record(ix) data[key] = d[key] else: """ we append a _offset to the key so user/angle out now be user/angle_0 """ new_key = key + "_" + str(iOffset) data[new_key] = val return data class TubGroup(Tub): def __init__(self, tub_paths_arg): tub_paths = util.files.expand_path_arg(tub_paths_arg) logger.info('TubGroup:tubpaths: {}'.format(tub_paths)) self.tubs = [Tub(path) for path in tub_paths] self.input_types = {} record_count = 0 for t in self.tubs: t.update_df() record_count += len(t.df) self.input_types.update(dict(zip(t.inputs, t.types))) logger.info('joining the tubs {} records together. This could take {} minutes.'.format(record_count, int(record_count / 300000))) self.meta = {'inputs': list(self.input_types.keys()), 'types': list(self.input_types.values())} self.df = pd.concat([t.df for t in self.tubs], axis=0, join='inner') @property def inputs(self): return list(self.meta['inputs']) @property def types(self): return list(self.meta['types']) def get_num_tubs(self): return len(self.tubs) def get_num_records(self): return len(self.df) class TorchTubGroup(Tub): def __init__(self, tub_paths_arg): tub_paths = util.files.expand_path_arg(tub_paths_arg) logger.info('TubGroup:tubpaths: {}'.format(tub_paths)) self.tubs = [Tub(path) for path in tub_paths] self.input_types = {} record_count = 0 for t in self.tubs: t.update_df() record_count += len(t.df) self.input_types.update(dict(zip(t.inputs, t.types))) logger.info('joining the tubs {} records together. This could take {} minutes.'.format(record_count, int(record_count / 300000))) self.meta = {'inputs': list(self.input_types.keys()), 'types': list(self.input_types.values())} self.df = pd.concat([t.df for t in self.tubs], axis=0, join='inner') @property def inputs(self): return list(self.meta['inputs']) @property def types(self): return list(self.meta['types']) def get_num_tubs(self): return len(self.tubs) def get_num_records(self): return len(self.df) def get_train_val_gen(self, X_keys, Y_keys, batch_size=128, train_frac=.8, train_record_transform=None, val_record_transform=None, sequential=False): import torch if self.df is None: self.update_df() if sequential: from torch.utils.data import SequentialSampler, BatchSampler torch.utils.data.SequentialSampler(Dataset(train_df, X_keys, Y_keys)) else: # random sampling train_df = self.df.sample(frac=train_frac, random_state=200) val_df = self.df.drop(train_df.index) train_gen = torch.utils.data.DataLoader(Dataset(train_df, X_keys, Y_keys), batch_size) val_gen = torch.utils.data.DataLoader(Dataset(val_df, X_keys, Y_keys), batch_size) return train_gen, val_gen class Dataset(object): def __init__(self, df_data, X_keys, Y_keys): self.data = df_data self.X_keys = X_keys self.Y_keys = Y_keys def __getitem__(self, idx): import torch try: img = Image.open((self.data[self.X_keys].iloc[idx, 0])) val = np.array(img, dtype=np.float32) / 255 steering = self.data[self.Y_keys].iloc[idx, 0].astype(np.float32) throttle = self.data[self.Y_keys].iloc[idx, 1].astype(np.float32) except IndexError as e: print(idx) print(self.data.size) raise e y = [steering, throttle] y = torch.FloatTensor(y) val = torch.FloatTensor(val).permute(2, 0, 1) # move channel dimmension from last to first return val, y def __len__(self): return self.data.shape[0]
[ "torch.FloatTensor" ]
1.0.0
0h-n0/donkeycar_pytorch
ed19404ad274ff0228cfa290a8b9d318f8781aad
1.4
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Union import torch from torch.utils.data import BatchSampler, DataLoader, IterableDataset from .state import AcceleratorState, DistributedType, is_tpu_available from .utils import ( RNGType, broadcast, broadcast_object_list, concatenate, find_batch_size, get_data_structure, initialize_tensors, is_torch_version, send_to_device, slice_tensors, synchronize_rng_states, ) if is_tpu_available(): import torch_xla.core.xla_model as xm # kwargs of the DataLoader in min version 1.4.0. _PYTORCH_DATALOADER_KWARGS = { "batch_size": 1, "shuffle": False, "sampler": None, "batch_sampler": None, "num_workers": 0, "collate_fn": None, "pin_memory": False, "drop_last": False, "timeout": 0, "worker_init_fn": None, "multiprocessing_context": None, } # kwargs added after by version _PYTORCH_DATALOADER_ADDITIONAL_KWARGS = { "1.6.0": {"generator": None}, "1.7.0": {"prefetch_factor": 2, "persistent_workers": False}, } for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items(): if is_torch_version(">=", v): _PYTORCH_DATALOADER_KWARGS.update(additional_kwargs) class BatchSamplerShard(BatchSampler): """ Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will always yield a number of batches that is a round multiple of `num_processes` and that all have the same size. Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would be too small / not present on all processes or loop with indices from the beginning. Args: batch_sampler (`torch.utils.data.sampler.BatchSampler`): The batch sampler to split in several shards. num_processes (`int`, *optional*, defaults to 1): The number of processes running concurrently. process_index (`int`, *optional*, defaults to 0): The index of the current process. split_batches (`bool`, *optional*, defaults to `False`): Whether the shards should be created by splitting a batch to give a piece of it on each process, or by yielding different full batches on each process. On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in: - the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if this argument is set to `False`. - the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]` then `[6, 7]` if this argument is set to `True`. <Tip warning={true}> This does not support `BatchSampler` with varying batch size yet. </Tip>""" def __init__( self, batch_sampler: BatchSampler, num_processes: int = 1, process_index: int = 0, split_batches: bool = False, ): if split_batches and batch_sampler.batch_size % num_processes != 0: raise ValueError( f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) " f"needs to be a round multiple of the number of processes ({num_processes})." ) self.batch_sampler = batch_sampler self.num_processes = num_processes self.process_index = process_index self.split_batches = split_batches self.batch_size = batch_sampler.batch_size self.drop_last = batch_sampler.drop_last def __len__(self): if self.split_batches: return len(self.batch_sampler) if len(self.batch_sampler) % self.num_processes == 0: return len(self.batch_sampler) // self.num_processes length = len(self.batch_sampler) // self.num_processes return length if self.drop_last else length + 1 def __iter__(self): return self._iter_with_split() if self.split_batches else self._iter_with_no_split() def _iter_with_split(self): initial_data = [] batch_length = self.batch_sampler.batch_size // self.num_processes for idx, batch in enumerate(self.batch_sampler): if idx == 0: initial_data = batch if len(batch) == self.batch_size: # If the batch is full, we yield the part of it this process is responsible of. yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] # If drop_last is True of the last batch was full, iteration is over, otherwise... if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size: # For degenerate cases where the dataset has less than num_process * batch_size samples while len(initial_data) < self.batch_size: initial_data += initial_data batch = batch + initial_data yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] def _iter_with_no_split(self): initial_data = [] batch_to_yield = [] for idx, batch in enumerate(self.batch_sampler): # We gather the initial indices in case we need to circle back at the end. if not self.drop_last and idx < self.num_processes: initial_data += batch # We identify the batch to yield but wait until we ar sure every process gets a full batch before actually # yielding it. if idx % self.num_processes == self.process_index: batch_to_yield = batch if idx % self.num_processes == self.num_processes - 1 and len(batch) == self.batch_size: yield batch_to_yield batch_to_yield = [] # If drop_last is True, iteration is over, otherwise... if not self.drop_last and len(initial_data) > 0: # ... we yield the complete batch we had saved before if it has the proper length if len(batch_to_yield) == self.batch_size: yield batch_to_yield # For degenerate cases where the dataset has less than num_process * batch_size samples while len(initial_data) < self.num_processes * self.batch_size: initial_data += initial_data # If the last batch seen was of the proper size, it has been yielded by its process so we move to the next if len(batch) == self.batch_size: batch = [] idx += 1 # Make sure we yield a multiple of self.num_processes batches cycle_index = 0 while idx % self.num_processes != 0 or len(batch) > 0: end_index = cycle_index + self.batch_size - len(batch) batch += initial_data[cycle_index:end_index] if idx % self.num_processes == self.process_index: yield batch cycle_index = end_index batch = [] idx += 1 class IterableDatasetShard(IterableDataset): """ Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will always yield a number of samples that is a round multiple of the actual batch size (depending of the value of `split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would be too small or loop with indices from the beginning. Args: dataset (`torch.utils.data.dataset.IterableDataset`): The batch sampler to split in several shards. batch_size (`int`, *optional*, defaults to 1): The size of the batches per shard (if `split_batches=False`) or the size of the batches (if `split_batches=True`). drop_last (`bool`, *optional*, defaults to `False`): Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the beginning. num_processes (`int`, *optional*, defaults to 1): The number of processes running concurrently. process_index (`int`, *optional*, defaults to 0): The index of the current process. split_batches (`bool`, *optional*, defaults to `False`): Whether the shards should be created by splitting a batch to give a piece of it on each process, or by yielding different full batches on each process. On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in: - the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this argument is set to `False`. - the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if this argument is set to `True`. """ def __init__( self, dataset: IterableDataset, batch_size: int = 1, drop_last: bool = False, num_processes: int = 1, process_index: int = 0, split_batches: bool = False, ): if split_batches and batch_size > 1 and batch_size % num_processes != 0: raise ValueError( f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) " f"needs to be a round multiple of the number of processes ({num_processes})." ) self.dataset = dataset self.batch_size = batch_size self.drop_last = drop_last self.num_processes = num_processes self.process_index = process_index self.split_batches = split_batches def __iter__(self): real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes) process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size) first_batch = None current_batch = [] for element in self.dataset: current_batch.append(element) # Wait to have a full batch before yielding elements. if len(current_batch) == real_batch_size: for i in process_slice: yield current_batch[i] if first_batch is None: first_batch = current_batch.copy() current_batch = [] # Finished if drop_last is True, otherwise complete the last batch with elements from the beginning. if not self.drop_last and len(current_batch) > 0: if first_batch is None: first_batch = current_batch.copy() while len(current_batch) < real_batch_size: current_batch += first_batch for i in process_slice: yield current_batch[i] class DataLoaderShard(DataLoader): """ Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup. Args: dataset (`torch.utils.data.dataset.Dataset`): The dataset to use to build this datalaoder. device (`torch.device`, *optional*): If passed, the device to put all batches on. rng_types (list of `str` or [`~utils.RNGType`]): The list of random number generators to synchronize at the beginning of each iteration. Should be one or several of: - `"torch"`: the base torch random number generator - `"cuda"`: the CUDA random number generator (GPU only) - `"xla"`: the XLA random number generator (TPU only) - `"generator"`: an optional `torch.Generator` generator (`torch.Generator`, *optional*): A random number generator to keep synchronized across processes. kwargs: All other keyword arguments to pass to the regular `DataLoader` initialization. """ def __init__(self, dataset, device=None, rng_types=None, generator=None, **kwargs): super().__init__(dataset, **kwargs) self.device = device self.rng_types = rng_types self.generator = generator def __iter__(self): if self.rng_types is not None: synchronize_rng_states(self.rng_types, self.generator) state = AcceleratorState() for batch in super().__iter__(): if state.distributed_type == DistributedType.TPU: xm.mark_step() yield batch if self.device is None else send_to_device(batch, self.device) class DataLoaderDispatcher(DataLoader): """ Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each process their part of the batch. Args: split_batches (`bool`, *optional*, defaults to `False`): Whether the resulting `DataLoader` should split the batches of the original data loader across devices or yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of `num_processes` batches at each iteration). Another way to see this is that the observed batch size will be the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of `batch_size`. """ def __init__(self, dataset, split_batches: bool = False, **kwargs): shuffle = False if is_torch_version(">=", "1.11.0"): from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe # We need to save the shuffling state of the DataPipe if isinstance(dataset, ShufflerIterDataPipe): shuffle = dataset._shuffle_enabled super().__init__(dataset, **kwargs) self.split_batches = split_batches if is_torch_version("<", "1.8.0"): raise ImportError( "Using `DataLoaderDispatcher` requires PyTorch 1.8.0 minimum. You have {torch.__version__}." ) if shuffle: torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle) def __iter__(self): state = AcceleratorState() if state.process_index == 0: # We only iterate through the DataLoader on process 0. main_iterator = super().__iter__() stop_iteration = False first_batch = None while not stop_iteration: # On process 0, we gather the batch to dispatch. if state.process_index == 0: try: if self.split_batches: # One batch of the main iterator is dispatched and split. batch = next(main_iterator) else: # num_processes batches of the main iterator are concatenated then dispatched and split. # We add the batches one by one so we have the remainder available when drop_last=False. batches = [] for _ in range(state.num_processes): batches.append(next(main_iterator)) batch = concatenate(batches, dim=0) # In both cases, we need to get the structure of the batch that we will broadcast on other # processes to initialize the tensors with the right shape. # data_structure, stop_iteration batch_info = [get_data_structure(batch), False] except StopIteration: batch_info = [None, True] else: batch_info = [None, stop_iteration] # This is inplace, so after this instruction, every process has the same `batch_info` as process 0. broadcast_object_list(batch_info) stop_iteration = batch_info[1] if stop_iteration: # If drop_last is False and split_batches is False, we may have a remainder to take care of. if not self.split_batches and not self.drop_last: if state.process_index == 0 and len(batches) > 0: batch = concatenate(batches, dim=0) batch_info = [get_data_structure(batch), False] else: batch_info = [None, True] broadcast_object_list(batch_info) if batch_info[1]: continue else: continue if state.process_index != 0: # Initialize tensors on other processes than process 0. batch = initialize_tensors(batch_info[0]) batch = send_to_device(batch, state.device) # Broadcast the batch before splitting it. batch = broadcast(batch, from_process=0) if not self.drop_last and first_batch is None: # We keep at least num processes elements of the first batch to be able to complete the last batch first_batch = slice_tensors(batch, slice(0, state.num_processes)) observed_batch_size = find_batch_size(batch) batch_size = observed_batch_size // state.num_processes if not self.drop_last and stop_iteration and observed_batch_size % state.num_processes != 0: # If the last batch is not complete, let's add the first batch to it. batch = concatenate([batch, first_batch], dim=0) batch_size += 1 data_slice = slice(state.process_index * batch_size, (state.process_index + 1) * batch_size) if state.distributed_type == DistributedType.TPU: xm.mark_step() yield slice_tensors(batch, data_slice) def __len__(self): state = AcceleratorState() whole_length = super().__len__() if self.drop_last: return whole_length // state.num_processes else: return math.ceil(whole_length / state.num_processes) def prepare_data_loader( dataloader: DataLoader, device: Optional[torch.device] = None, num_processes: Optional[int] = None, process_index: Optional[int] = None, split_batches: bool = False, put_on_device: bool = False, rng_types: Optional[List[Union[str, RNGType]]] = None, dispatch_batches: Optional[bool] = None, ) -> DataLoader: """ Wraps a PyTorch `DataLoader` to generate batches for one of the processes only. Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration at the first batch that would be too small / not present on all processes or loop with indices from the beginning. Args: dataloader (`torch.utils.data.dataloader.DataLoader`): The data loader to split across several devices. device (`torch.device`): The target device for the returned `DataLoader`. num_processes (`int`, *optional*): The number of processes running concurrently. Will default to the value given by [`~state.AcceleratorState`]. process_index (`int`, *optional*): The index of the current process. Will default to the value given by [`~state.AcceleratorState`]. split_batches (`bool`, *optional*, defaults to `False`): Whether the resulting `DataLoader` should split the batches of the original data loader across devices or yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of `num_processes` batches at each iteration). Another way to see this is that the observed batch size will be the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of `batch_size`. put_on_device (`bool`, *optional*, defaults to `False`): Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or dictionaries of tensors). rng_types (list of `str` or [`~utils.RNGType`]): The list of random number generators to synchronize at the beginning of each iteration. Should be one or several of: - `"torch"`: the base torch random number generator - `"cuda"`: the CUDA random number generator (GPU only) - `"xla"`: the XLA random number generator (TPU only) - `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type. dispatch_batches (`bool`, *optional*): If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches are split and broadcast to each process. Will default to `True` when the underlying dataset is an `IterableDataset`, `False` otherwise. Returns: `torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches <Tip warning={true}> This does not support `BatchSampler` with varying batch size yet. </Tip>""" if dispatch_batches is None: if is_torch_version("<", "1.8.0") or not put_on_device: dispatch_batches = False else: dispatch_batches = isinstance(dataloader.dataset, IterableDataset) if dispatch_batches and not put_on_device: raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.") # Grab defaults from AcceleratorState state = AcceleratorState() if num_processes is None: num_processes = state.num_processes if process_index is None: process_index = state.process_index # Sanity check if split_batches and dataloader.batch_size > 1 and dataloader.batch_size % num_processes != 0: raise ValueError( f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) " f"needs to be a round multiple of the number of processes ({num_processes})." ) new_dataset = dataloader.dataset # Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None generator = getattr(dataloader, "generator", None) # No change if no multiprocess if num_processes != 1 and not dispatch_batches: if isinstance(new_dataset, IterableDataset): if getattr(dataloader.dataset, "generator", None) is not None: generator = dataloader.dataset.generator new_dataset = IterableDatasetShard( new_dataset, batch_size=dataloader.batch_size, drop_last=dataloader.drop_last, num_processes=num_processes, process_index=process_index, split_batches=split_batches, ) else: # New batch sampler for the current process. if hasattr(dataloader.sampler, "generator"): if dataloader.sampler.generator is None: dataloader.sampler.generator = torch.Generator() generator = dataloader.sampler.generator generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item())) elif getattr(dataloader.batch_sampler, "generator", None) is not None: generator = dataloader.batch_sampler.generator new_batch_sampler = BatchSamplerShard( dataloader.batch_sampler, num_processes=num_processes, process_index=process_index, split_batches=split_batches, ) # We ignore all of those since they are all dealt with by our new_batch_sampler ignore_kwargs = [ "batch_size", "shuffle", "sampler", "batch_sampler", "drop_last", "generator", ] if rng_types is not None and generator is None and "generator" in rng_types: rng_types.remove("generator") kwargs = { k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS if k not in ignore_kwargs } # Need to provide batch_size as batch_sampler is None for Iterable dataset if new_batch_sampler is None: kwargs["drop_last"] = dataloader.drop_last kwargs["batch_size"] = dataloader.batch_size // num_processes if split_batches else dataloader.batch_size if dispatch_batches: return DataLoaderDispatcher( new_dataset, split_batches=split_batches, batch_sampler=new_batch_sampler, **kwargs ) return DataLoaderShard( new_dataset, device=device if put_on_device else None, batch_sampler=new_batch_sampler, rng_types=rng_types, generator=generator, **kwargs, )
[ "torch.utils.data.graph_settings.apply_shuffle_settings", "torch.Generator", "torch.empty" ]
1.4.0
yuxinyuan/accelerate
450d51ce0191020408bd3481bde85fe1dabaf289
1.8
import warnings from math import sqrt from typing import Iterator, List, Optional, Union, Any import e3nn import torch import torch.fx from e3nn import o3 from e3nn.util import prod from e3nn.util.codegen import CodeGenMixin from e3nn.util.jit import compile_mode from torch import fx from ._codegen import codegen_tensor_product_left_right, codegen_tensor_product_right from ._instruction import Instruction @compile_mode('script') class TensorProduct(CodeGenMixin, torch.nn.Module): r"""Tensor product with parametrized paths. Parameters ---------- irreps_in1 : `e3nn.o3.Irreps` Irreps for the first input. irreps_in2 : `e3nn.o3.Irreps` Irreps for the second input. irreps_out : `e3nn.o3.Irreps` Irreps for the output. instructions : list of tuple List of instructions ``(i_1, i_2, i_out, mode, train[, path_weight])``. Each instruction puts ``in1[i_1]`` :math:`\otimes` ``in2[i_2]`` into ``out[i_out]``. * ``mode``: `str`. Determines the way the multiplicities are treated, ``"uvw"`` is fully connected. Other valid options are: ``'uvw'``, ``'uvu'``, ``'uvv'``, ``'uuw'``, ``'uuu'``, and ``'uvuv'``. * ``train``: `bool`. `True` if this path should have learnable weights, otherwise `False`. * ``path_weight``: `float`. A fixed multiplicative weight to apply to the output of this path. Defaults to 1. Note that setting ``path_weight`` breaks the normalization derived from ``in1_var``/``in2_var``/``out_var``. in1_var : list of float, Tensor, or None Variance for each irrep in ``irreps_in1``. If ``None``, all default to ``1.0``. in2_var : list of float, Tensor, or None Variance for each irrep in ``irreps_in2``. If ``None``, all default to ``1.0``. out_var : list of float, Tensor, or None Variance for each irrep in ``irreps_out``. If ``None``, all default to ``1.0``. irrep_normalization : {'component', 'norm'} The assumed normalization of the input and output representations. If it is set to "norm": .. math:: \| x \| = \| y \| = 1 \Longrightarrow \| x \otimes y \| = 1 path_normalization : {'element', 'path'} If set to ``element``, each output is normalized by the total number of elements (independently of their paths). If it is set to ``path``, each path is normalized by the total number of elements in the path, then each output is normalized by the number of paths. internal_weights : bool whether the `e3nn.o3.TensorProduct` contains its learnable weights as a parameter shared_weights : bool whether the learnable weights are shared among the input's extra dimensions * `True` :math:`z_i = w x_i \otimes y_i` * `False` :math:`z_i = w_i x_i \otimes y_i` where here :math:`i` denotes a *batch-like* index. ``shared_weights`` cannot be `False` if ``internal_weights`` is `True`. compile_left_right : bool whether to compile the forward function, true by default compile_right : bool whether to compile the ``.right`` function, false by default Examples -------- Create a module that computes elementwise the cross-product of 16 vectors with 16 vectors :math:`z_u = x_u \wedge y_u` >>> module = TensorProduct( ... "16x1o", "16x1o", "16x1e", ... [ ... (0, 0, 0, "uuu", False) ... ] ... ) Now mix all 16 vectors with all 16 vectors to makes 16 pseudo-vectors :math:`z_w = \sum_{u,v} w_{uvw} x_u \wedge y_v` >>> module = TensorProduct( ... [(16, (1, -1))], ... [(16, (1, -1))], ... [(16, (1, 1))], ... [ ... (0, 0, 0, "uvw", True) ... ] ... ) With custom input variance and custom path weights: >>> module = TensorProduct( ... "8x0o + 8x1o", ... "16x1o", ... "16x1e", ... [ ... (0, 0, 0, "uvw", True, 3), ... (1, 0, 0, "uvw", True, 1), ... ], ... in2_var=[1/16] ... ) Example of a dot product: >>> irreps = o3.Irreps("3x0e + 4x0o + 1e + 2o + 3o") >>> module = TensorProduct(irreps, irreps, "0e", [ ... (i, i, 0, 'uuw', False) ... for i, (mul, ir) in enumerate(irreps) ... ]) Implement :math:`z_u = x_u \otimes (\sum_v w_{uv} y_v)` >>> module = TensorProduct( ... "8x0o + 7x1o + 3x2e", ... "10x0e + 10x1e + 10x2e", ... "8x0o + 7x1o + 3x2e", ... [ ... # paths for the l=0: ... (0, 0, 0, "uvu", True), # 0x0->0 ... # paths for the l=1: ... (1, 0, 1, "uvu", True), # 1x0->1 ... (1, 1, 1, "uvu", True), # 1x1->1 ... (1, 2, 1, "uvu", True), # 1x2->1 ... # paths for the l=2: ... (2, 0, 2, "uvu", True), # 2x0->2 ... (2, 1, 2, "uvu", True), # 2x1->2 ... (2, 2, 2, "uvu", True), # 2x2->2 ... ] ... ) Tensor Product using the xavier uniform initialization: >>> irreps_1 = o3.Irreps("5x0e + 10x1o + 1x2e") >>> irreps_2 = o3.Irreps("5x0e + 10x1o + 1x2e") >>> irreps_out = o3.Irreps("5x0e + 10x1o + 1x2e") >>> # create a Fully Connected Tensor Product >>> module = o3.TensorProduct( ... irreps_1, ... irreps_2, ... irreps_out, ... [ ... (i_1, i_2, i_out, "uvw", True, mul_1 * mul_2) ... for i_1, (mul_1, ir_1) in enumerate(irreps_1) ... for i_2, (mul_2, ir_2) in enumerate(irreps_2) ... for i_out, (mul_out, ir_out) in enumerate(irreps_out) ... if ir_out in ir_1 * ir_2 ... ] ... ) >>> with torch.no_grad(): ... for weight in module.weight_views(): ... mul_1, mul_2, mul_out = weight.shape ... # formula from torch.nn.init.xavier_uniform_ ... a = (6 / (mul_1 * mul_2 + mul_out))**0.5 ... new_weight = torch.empty_like(weight) ... new_weight.uniform_(-a, a) ... weight[:] = new_weight tensor(...) >>> n = 1_000 >>> vars = module(irreps_1.randn(n, -1), irreps_2.randn(n, -1)).var(0) >>> assert vars.min() > 1 / 3 >>> assert vars.max() < 3 """ instructions: List[Any] shared_weights: bool internal_weights: bool weight_numel: int _specialized_code: bool _optimize_einsums: bool _profiling_str: str _in1_dim: int _in2_dim: int def __init__( self, irreps_in1: o3.Irreps, irreps_in2: o3.Irreps, irreps_out: o3.Irreps, instructions: List[tuple], in1_var: Optional[Union[List[float], torch.Tensor]] = None, in2_var: Optional[Union[List[float], torch.Tensor]] = None, out_var: Optional[Union[List[float], torch.Tensor]] = None, irrep_normalization: str = None, path_normalization: str = None, internal_weights: Optional[bool] = None, shared_weights: Optional[bool] = None, compile_left_right: bool = True, compile_right: bool = False, normalization=None, # for backward compatibility _specialized_code: Optional[bool] = None, _optimize_einsums: Optional[bool] = None ): # === Setup === super().__init__() if normalization is not None: warnings.warn( "`normalization` is deprecated. Use `irrep_normalization` instead.", DeprecationWarning ) irrep_normalization = normalization if irrep_normalization is None: irrep_normalization = 'component' if path_normalization is None: path_normalization = 'element' assert irrep_normalization in ['component', 'norm'] assert path_normalization in ['element', 'path'] self.irreps_in1 = o3.Irreps(irreps_in1) self.irreps_in2 = o3.Irreps(irreps_in2) self.irreps_out = o3.Irreps(irreps_out) del irreps_in1, irreps_in2, irreps_out instructions = [x if len(x) == 6 else x + (1.0,) for x in instructions] instructions = [ Instruction( i_in1, i_in2, i_out, connection_mode, has_weight, path_weight, { 'uvw': (self.irreps_in1[i_in1].mul, self.irreps_in2[i_in2].mul, self.irreps_out[i_out].mul), 'uvu': (self.irreps_in1[i_in1].mul, self.irreps_in2[i_in2].mul), 'uvv': (self.irreps_in1[i_in1].mul, self.irreps_in2[i_in2].mul), 'uuw': (self.irreps_in1[i_in1].mul, self.irreps_out[i_out].mul), 'uuu': (self.irreps_in1[i_in1].mul,), 'uvuv': (self.irreps_in1[i_in1].mul, self.irreps_in2[i_in2].mul), }[connection_mode], ) for i_in1, i_in2, i_out, connection_mode, has_weight, path_weight in instructions ] if in1_var is None: in1_var = [1.0 for _ in range(len(self.irreps_in1))] else: in1_var = [float(var) for var in in1_var] assert len(in1_var) == len(self.irreps_in1), "Len of ir1_var must be equal to len(irreps_in1)" if in2_var is None: in2_var = [1.0 for _ in range(len(self.irreps_in2))] else: in2_var = [float(var) for var in in2_var] assert len(in2_var) == len(self.irreps_in2), "Len of ir2_var must be equal to len(irreps_in2)" if out_var is None: out_var = [1.0 for _ in range(len(self.irreps_out))] else: out_var = [float(var) for var in out_var] assert len(out_var) == len(self.irreps_out), "Len of out_var must be equal to len(irreps_out)" def num_elements(ins): return { 'uvw': (self.irreps_in1[ins.i_in1].mul * self.irreps_in2[ins.i_in2].mul), 'uvu': self.irreps_in2[ins.i_in2].mul, 'uvv': self.irreps_in1[ins.i_in1].mul, 'uuw': self.irreps_in1[ins.i_in1].mul, 'uuu': 1, 'uvuv': 1, }[ins.connection_mode] normalization_coefficients = [] for ins in instructions: mul_ir_in1 = self.irreps_in1[ins.i_in1] mul_ir_in2 = self.irreps_in2[ins.i_in2] mul_ir_out = self.irreps_out[ins.i_out] assert mul_ir_in1.ir.p * mul_ir_in2.ir.p == mul_ir_out.ir.p assert abs(mul_ir_in1.ir.l - mul_ir_in2.ir.l) <= mul_ir_out.ir.l <= mul_ir_in1.ir.l + mul_ir_in2.ir.l assert ins.connection_mode in ['uvw', 'uvu', 'uvv', 'uuw', 'uuu', 'uvuv'] alpha = 1 if irrep_normalization == 'component': alpha *= mul_ir_out.ir.dim if irrep_normalization == 'norm': alpha *= mul_ir_in1.ir.dim * mul_ir_in2.ir.dim if path_normalization == 'element': x = sum( in1_var[i.i_in1] * in2_var[i.i_in2] * num_elements(i) for i in instructions if i.i_out == ins.i_out ) if path_normalization == 'path': x = in1_var[ins.i_in1] * in2_var[ins.i_in2] * num_elements(ins) x *= len([i for i in instructions if i.i_out == ins.i_out]) if x > 0.0: alpha /= x alpha *= out_var[ins.i_out] alpha *= ins.path_weight normalization_coefficients += [sqrt(alpha)] self.instructions = [ Instruction(ins.i_in1, ins.i_in2, ins.i_out, ins.connection_mode, ins.has_weight, alpha, ins.path_shape) for ins, alpha in zip(instructions, normalization_coefficients) ] self._in1_dim = self.irreps_in1.dim self._in2_dim = self.irreps_in2.dim if shared_weights is False and internal_weights is None: internal_weights = False if shared_weights is None: shared_weights = True if internal_weights is None: internal_weights = shared_weights and any(i.has_weight for i in self.instructions) assert shared_weights or not internal_weights self.internal_weights = internal_weights self.shared_weights = shared_weights opt_defaults = e3nn.get_optimization_defaults() self._specialized_code = _specialized_code if _specialized_code is not None else opt_defaults['specialized_code'] self._optimize_einsums = _optimize_einsums if _optimize_einsums is not None else opt_defaults['optimize_einsums'] del opt_defaults # Generate the actual tensor product code if compile_left_right: graphmod_left_right = codegen_tensor_product_left_right( self.irreps_in1, self.irreps_in2, self.irreps_out, self.instructions, self.shared_weights, self._specialized_code, self._optimize_einsums ) else: graphmod_left_right = fx.Graph() graphmod_left_right.placeholder('x1', torch.Tensor) graphmod_left_right.placeholder('x2', torch.Tensor) graphmod_left_right.placeholder('w', torch.Tensor) graphmod_left_right.call_function( torch._assert, args=(False, "`left_right` method is not compiled, set `compile_left_right` to True when creating the TensorProduct") ) graphmod_left_right = fx.GraphModule(torch.nn.Module(), graphmod_left_right, class_name="tp_forward") if compile_right: graphmod_right = codegen_tensor_product_right( self.irreps_in1, self.irreps_in2, self.irreps_out, self.instructions, self.shared_weights, self._specialized_code, self._optimize_einsums ) else: graphmod_right = fx.Graph() graphmod_right.placeholder('x2', torch.Tensor) graphmod_right.placeholder('w', torch.Tensor) graphmod_right.call_function( torch._assert, args=(False, "`right` method is not compiled, set `compile_right` to True when creating the TensorProduct") ) graphmod_right = fx.GraphModule(torch.nn.Module(), graphmod_right, class_name="tp_forward") self._codegen_register({ "_compiled_main_left_right": graphmod_left_right, "_compiled_main_right": graphmod_right }) # === Determine weights === self.weight_numel = sum(prod(ins.path_shape) for ins in self.instructions if ins.has_weight) if internal_weights and self.weight_numel > 0: assert self.shared_weights, "Having internal weights impose shared weights" self.weight = torch.nn.Parameter(torch.randn(self.weight_numel)) else: # For TorchScript, there always has to be some kind of defined .weight self.register_buffer('weight', torch.Tensor()) if self.irreps_out.dim > 0: output_mask = torch.cat([ torch.ones(mul * ir.dim) if any( (ins.i_out == i_out) and (ins.path_weight != 0) and (0 not in ins.path_shape) for ins in self.instructions ) else torch.zeros(mul * ir.dim) for i_out, (mul, ir) in enumerate(self.irreps_out) ]) else: output_mask = torch.ones(0) self.register_buffer('output_mask', output_mask) # For TorchScript, this needs to be done in advance: self._profiling_str = str(self) def __repr__(self): npath = sum(prod(i.path_shape) for i in self.instructions) return ( f"{self.__class__.__name__}" f"({self.irreps_in1.simplify()} x {self.irreps_in2.simplify()} " f"-> {self.irreps_out.simplify()} | {npath} paths | {self.weight_numel} weights)" ) @torch.jit.unused def _prep_weights_python(self, weight: Optional[Union[torch.Tensor, List[torch.Tensor]]]) -> Optional[torch.Tensor]: if isinstance(weight, list): weight_shapes = [ins.path_shape for ins in self.instructions if ins.has_weight] if not self.shared_weights: weight = [w.reshape(-1, prod(shape)) for w, shape in zip(weight, weight_shapes)] else: weight = [w.reshape(prod(shape)) for w, shape in zip(weight, weight_shapes)] return torch.cat(weight, dim=-1) else: return weight def _get_weights(self, weight: Optional[torch.Tensor]) -> torch.Tensor: if not torch.jit.is_scripting(): # If we're not scripting, then we're in Python and `weight` could be a List[Tensor] # deal with that: weight = self._prep_weights_python(weight) if weight is None: if self.weight_numel > 0 and not self.internal_weights: raise RuntimeError("Weights must be provided when the TensorProduct does not have `internal_weights`") return self.weight else: if self.shared_weights: assert weight.shape == (self.weight_numel,), "Invalid weight shape" else: assert weight.shape[-1] == self.weight_numel, "Invalid weight shape" assert weight.ndim > 1, "When shared weights is false, weights must have batch dimension" return weight @torch.jit.export def right(self, y, weight: Optional[torch.Tensor] = None): r"""Partially evaluate :math:`w x \otimes y`. It returns an operator in the form of a tensor that can act on an arbitrary :math:`x`. For example, if the tensor product above is expressed as .. math:: w_{ijk} x_i y_j \rightarrow z_k then the right method returns a tensor :math:`b_{ik}` such that .. math:: w_{ijk} y_j \rightarrow b_{ik} x_i b_{ik} \rightarrow z_k The result of this method can be applied with a tensor contraction: .. code-block:: python torch.einsum("...ik,...i->...k", right, input) Parameters ---------- y : `torch.Tensor` tensor of shape ``(..., irreps_in2.dim)`` weight : `torch.Tensor` or list of `torch.Tensor`, optional required if ``internal_weights`` is ``False`` tensor of shape ``(self.weight_numel,)`` if ``shared_weights`` is ``True`` tensor of shape ``(..., self.weight_numel)`` if ``shared_weights`` is ``False`` or list of tensors of shapes ``weight_shape`` / ``(...) + weight_shape``. Use ``self.instructions`` to know what are the weights used for. Returns ------- `torch.Tensor` tensor of shape ``(..., irreps_in1.dim, irreps_out.dim)`` """ assert y.shape[-1] == self._in2_dim, "Incorrect last dimension for y" # - PROFILER - with torch.autograd.profiler.record_function(self._profiling_str): real_weight = self._get_weights(weight) return self._compiled_main_right(y, real_weight) def forward(self, x, y, weight: Optional[torch.Tensor] = None): r"""Evaluate :math:`w x \otimes y`. Parameters ---------- x : `torch.Tensor` tensor of shape ``(..., irreps_in1.dim)`` y : `torch.Tensor` tensor of shape ``(..., irreps_in2.dim)`` weight : `torch.Tensor` or list of `torch.Tensor`, optional required if ``internal_weights`` is ``False`` tensor of shape ``(self.weight_numel,)`` if ``shared_weights`` is ``True`` tensor of shape ``(..., self.weight_numel)`` if ``shared_weights`` is ``False`` or list of tensors of shapes ``weight_shape`` / ``(...) + weight_shape``. Use ``self.instructions`` to know what are the weights used for. Returns ------- `torch.Tensor` tensor of shape ``(..., irreps_out.dim)`` """ assert x.shape[-1] == self._in1_dim, "Incorrect last dimension for x" assert y.shape[-1] == self._in2_dim, "Incorrect last dimension for y" # - PROFILER - with torch.autograd.profiler.record_function(self._profiling_str): real_weight = self._get_weights(weight) return self._compiled_main_left_right(x, y, real_weight) def weight_view_for_instruction( self, instruction: int, weight: Optional[torch.Tensor] = None ) -> torch.Tensor: r"""View of weights corresponding to ``instruction``. Parameters ---------- instruction : int The index of the instruction to get a view on the weights for. ``self.instructions[instruction].has_weight`` must be ``True``. weight : `torch.Tensor`, optional like ``weight`` argument to ``forward()`` Returns ------- `torch.Tensor` A view on ``weight`` or this object's internal weights for the weights corresponding to the ``instruction`` th instruction. """ if not self.instructions[instruction].has_weight: raise ValueError(f"Instruction {instruction} has no weights.") offset = sum(prod(ins.path_shape) for ins in self.instructions[:instruction]) ins = self.instructions[instruction] weight = self._get_weights(weight) batchshape = weight.shape[:-1] return weight.narrow(-1, offset, prod(ins.path_shape)).view(batchshape + ins.path_shape) def weight_views( self, weight: Optional[torch.Tensor] = None, yield_instruction: bool = False ): r"""Iterator over weight views for each weighted instruction. Parameters ---------- weight : `torch.Tensor`, optional like ``weight`` argument to ``forward()`` yield_instruction : `bool`, default False Whether to also yield the corresponding instruction. Yields ------ If ``yield_instruction`` is ``True``, yields ``(instruction_index, instruction, weight_view)``. Otherwise, yields ``weight_view``. """ weight = self._get_weights(weight) batchshape = weight.shape[:-1] offset = 0 for ins_i, ins in enumerate(self.instructions): if ins.has_weight: flatsize = prod(ins.path_shape) this_weight = weight.narrow(-1, offset, flatsize).view(batchshape + ins.path_shape) offset += flatsize if yield_instruction: yield ins_i, ins, this_weight else: yield this_weight def visualize( self, weight: Optional[torch.Tensor] = None, plot_weight: bool = True, aspect_ratio=1, ax=None ): # pragma: no cover r"""Visualize the connectivity of this `e3nn.o3.TensorProduct` Parameters ---------- weight : `torch.Tensor`, optional like ``weight`` argument to ``forward()`` plot_weight : `bool`, default True Whether to color paths by the sum of their weights. ax : ``matplotlib.Axes``, default None The axes to plot on. If ``None``, a new figure will be created. Returns ------- (fig, ax) The figure and axes on which the plot was drawn. """ import numpy as np def _intersection(x, u, y, v): u2 = np.sum(u**2) v2 = np.sum(v**2) uv = np.sum(u * v) det = u2 * v2 - uv**2 mu = np.sum((u * uv - v * u2) * (y - x)) / det return y + mu * v import matplotlib import matplotlib.pyplot as plt from matplotlib import patches from matplotlib.path import Path if ax is None: ax = plt.gca() fig = ax.get_figure() # hexagon verts = [ np.array([np.cos(a * 2 * np.pi / 6), np.sin(a * 2 * np.pi / 6)]) for a in range(6) ] verts = np.asarray(verts) # scale it assert aspect_ratio in ['auto'] or isinstance(aspect_ratio, (float, int)) if aspect_ratio == 'auto': factor = 0.2 / 2 min_aspect = 1 / 2 h_factor = max(len(self.irreps_in2), len(self.irreps_in1)) w_factor = len(self.irreps_out) if h_factor / w_factor < min_aspect: h_factor = min_aspect * w_factor verts[:, 1] *= h_factor * factor verts[:, 0] *= w_factor * factor if isinstance(aspect_ratio, (float, int)): factor = 0.1 * max(len(self.irreps_in2), len(self.irreps_in1), len(self.irreps_out)) verts[:, 1] *= factor verts[:, 0] *= aspect_ratio * factor codes = [ Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, ] path = Path(verts, codes) patch = patches.PathPatch(path, facecolor='none', lw=1, zorder=2) ax.add_patch(patch) n = len(self.irreps_in1) b, a = verts[2:4] c_in1 = (a + b) / 2 s_in1 = [a + (i + 1) / (n + 1) * (b - a) for i in range(n)] n = len(self.irreps_in2) b, a = verts[:2] c_in2 = (a + b) / 2 s_in2 = [a + (i + 1) / (n + 1) * (b - a) for i in range(n)] n = len(self.irreps_out) a, b = verts[4:6] s_out = [a + (i + 1) / (n + 1) * (b - a) for i in range(n)] # get weights if weight is None and not self.internal_weights: plot_weight = False elif plot_weight: with torch.no_grad(): path_weight = [] for ins_i, ins in enumerate(self.instructions): if ins.has_weight: this_weight = self.weight_view_for_instruction(ins_i, weight=weight) path_weight.append(this_weight.pow(2).mean()) else: path_weight.append(0) path_weight = np.asarray(path_weight) path_weight /= np.abs(path_weight).max() cmap = matplotlib.cm.get_cmap('Blues') for ins_index, ins in enumerate(self.instructions): y = _intersection(s_in1[ins.i_in1], c_in1, s_in2[ins.i_in2], c_in2) verts = [] codes = [] verts += [s_out[ins.i_out], y] codes += [Path.MOVETO, Path.LINETO] verts += [s_in1[ins.i_in1], y] codes += [Path.MOVETO, Path.LINETO] verts += [s_in2[ins.i_in2], y] codes += [Path.MOVETO, Path.LINETO] if plot_weight: color = cmap(path_weight[ins_index]) if ins.has_weight else 'black' else: color = 'green' if ins.has_weight else 'black' ax.add_patch(patches.PathPatch( Path(verts, codes), facecolor='none', edgecolor=color, alpha=0.5, ls='-', lw=1.5 * ins.path_weight / min(i.path_weight for i in self.instructions), )) # add labels padding = 3 fontsize = 10 def format_ir(mul_ir): if mul_ir.mul == 1: return f"${mul_ir.ir}$" return f"${mul_ir.mul} \\times {mul_ir.ir}$" for i, mul_ir in enumerate(self.irreps_in1): ax.annotate( format_ir(mul_ir), s_in1[i], horizontalalignment='right', textcoords='offset points', xytext=(-padding, 0), fontsize=fontsize ) for i, mul_ir in enumerate(self.irreps_in2): ax.annotate( format_ir(mul_ir), s_in2[i], horizontalalignment='left', textcoords='offset points', xytext=(padding, 0), fontsize=fontsize ) for i, mul_ir in enumerate(self.irreps_out): ax.annotate( format_ir(mul_ir), s_out[i], horizontalalignment='center', verticalalignment='top', rotation=90, textcoords='offset points', xytext=(0, -padding), fontsize=fontsize ) ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) ax.axis('equal') ax.axis('off') return fig, ax class FullyConnectedTensorProduct(TensorProduct): r"""Fully-connected weighted tensor product All the possible path allowed by :math:`|l_1 - l_2| \leq l_{out} \leq l_1 + l_2` are made. The output is a sum on different paths: .. math:: z_w = \sum_{u,v} w_{uvw} x_u \otimes y_v + \cdots \text{other paths} where :math:`u,v,w` are the indices of the multiplicities. Parameters ---------- irreps_in1 : `e3nn.o3.Irreps` representation of the first input irreps_in2 : `e3nn.o3.Irreps` representation of the second input irreps_out : `e3nn.o3.Irreps` representation of the output irrep_normalization : {'component', 'norm'} see `e3nn.o3.TensorProduct` path_normalization : {'element', 'path'} see `e3nn.o3.TensorProduct` internal_weights : bool see `e3nn.o3.TensorProduct` shared_weights : bool see `e3nn.o3.TensorProduct` """ def __init__( self, irreps_in1, irreps_in2, irreps_out, irrep_normalization: str = None, path_normalization: str = None, **kwargs ): irreps_in1 = o3.Irreps(irreps_in1) irreps_in2 = o3.Irreps(irreps_in2) irreps_out = o3.Irreps(irreps_out) instr = [ (i_1, i_2, i_out, 'uvw', True, 1.0) for i_1, (_, ir_1) in enumerate(irreps_in1) for i_2, (_, ir_2) in enumerate(irreps_in2) for i_out, (_, ir_out) in enumerate(irreps_out) if ir_out in ir_1 * ir_2 ] super().__init__( irreps_in1, irreps_in2, irreps_out, instr, irrep_normalization=irrep_normalization, path_normalization=path_normalization, **kwargs ) class ElementwiseTensorProduct(TensorProduct): r"""Elementwise connected tensor product. .. math:: z_u = x_u \otimes y_u where :math:`u` runs over the irreps. Note that there are no weights. The output representation is determined by the two input representations. Parameters ---------- irreps_in1 : `e3nn.o3.Irreps` representation of the first input irreps_in2 : `e3nn.o3.Irreps` representation of the second input filter_ir_out : iterator of `e3nn.o3.Irrep`, optional filter to select only specific `e3nn.o3.Irrep` of the output irrep_normalization : {'component', 'norm'} see `e3nn.o3.TensorProduct` Examples -------- Elementwise scalar product >>> ElementwiseTensorProduct("5x1o + 5x1e", "10x1e", ["0e", "0o"]) ElementwiseTensorProduct(5x1o+5x1e x 10x1e -> 5x0o+5x0e | 10 paths | 0 weights) """ def __init__( self, irreps_in1, irreps_in2, filter_ir_out=None, irrep_normalization: str = None, **kwargs ): irreps_in1 = o3.Irreps(irreps_in1).simplify() irreps_in2 = o3.Irreps(irreps_in2).simplify() if filter_ir_out is not None: try: filter_ir_out = [o3.Irrep(ir) for ir in filter_ir_out] except ValueError: raise ValueError(f"filter_ir_out (={filter_ir_out}) must be an iterable of e3nn.o3.Irrep") assert irreps_in1.num_irreps == irreps_in2.num_irreps irreps_in1 = list(irreps_in1) irreps_in2 = list(irreps_in2) i = 0 while i < len(irreps_in1): mul_1, ir_1 = irreps_in1[i] mul_2, ir_2 = irreps_in2[i] if mul_1 < mul_2: irreps_in2[i] = (mul_1, ir_2) irreps_in2.insert(i + 1, (mul_2 - mul_1, ir_2)) if mul_2 < mul_1: irreps_in1[i] = (mul_2, ir_1) irreps_in1.insert(i + 1, (mul_1 - mul_2, ir_1)) i += 1 out = [] instr = [] for i, ((mul, ir_1), (mul_2, ir_2)) in enumerate(zip(irreps_in1, irreps_in2)): assert mul == mul_2 for ir in ir_1 * ir_2: if filter_ir_out is not None and ir not in filter_ir_out: continue i_out = len(out) out.append((mul, ir)) instr += [ (i, i, i_out, 'uuu', False) ] super().__init__( irreps_in1, irreps_in2, out, instr, irrep_normalization=irrep_normalization, **kwargs ) class FullTensorProduct(TensorProduct): r"""Full tensor product between two irreps. .. math:: z_{uv} = x_u \otimes y_v where :math:`u` and :math:`v` run over the irreps. Note that there are no weights. The output representation is determined by the two input representations. Parameters ---------- irreps_in1 : `e3nn.o3.Irreps` representation of the first input irreps_in2 : `e3nn.o3.Irreps` representation of the second input filter_ir_out : iterator of `e3nn.o3.Irrep`, optional filter to select only specific `e3nn.o3.Irrep` of the output irrep_normalization : {'component', 'norm'} see `e3nn.o3.TensorProduct` """ def __init__( self, irreps_in1: o3.Irreps, irreps_in2: o3.Irreps, filter_ir_out: Iterator[o3.Irrep] = None, irrep_normalization: str = None, **kwargs ): irreps_in1 = o3.Irreps(irreps_in1).simplify() irreps_in2 = o3.Irreps(irreps_in2).simplify() if filter_ir_out is not None: try: filter_ir_out = [o3.Irrep(ir) for ir in filter_ir_out] except ValueError: raise ValueError(f"filter_ir_out (={filter_ir_out}) must be an iterable of e3nn.o3.Irrep") out = [] instr = [] for i_1, (mul_1, ir_1) in enumerate(irreps_in1): for i_2, (mul_2, ir_2) in enumerate(irreps_in2): for ir_out in ir_1 * ir_2: if filter_ir_out is not None and ir_out not in filter_ir_out: continue i_out = len(out) out.append((mul_1 * mul_2, ir_out)) instr += [ (i_1, i_2, i_out, 'uvuv', False) ] out = o3.Irreps(out) out, p, _ = out.sort() instr = [ (i_1, i_2, p[i_out], mode, train) for i_1, i_2, i_out, mode, train in instr ] super().__init__( irreps_in1, irreps_in2, out, instr, irrep_normalization=irrep_normalization, **kwargs )
[ "torch.zeros", "torch.cat", "torch.no_grad", "torch.ones", "torch.fx.Graph", "torch.jit.is_scripting", "torch.nn.Module", "torch.Tensor", "torch.randn" ]
1.8.0
dmadisetti/e3nn
224ac5a4a4911626a7a04cf408d3f1872e5ff239
1.0
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ALBERT model. """ import math import os from dataclasses import dataclass from typing import Optional, Tuple import torch from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_albert import AlbertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "albert-base-v2" _CONFIG_FOR_DOC = "AlbertConfig" _TOKENIZER_FOR_DOC = "AlbertTokenizer" ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "albert-base-v1", "albert-large-v1", "albert-xlarge-v1", "albert-xxlarge-v1", "albert-base-v2", "albert-large-v2", "albert-xlarge-v2", "albert-xxlarge-v2", # See all ALBERT models at https://huggingface.co/models?filter=albert ] def load_tf_weights_in_albert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): print(name) for name, array in zip(names, arrays): original_name = name # If saved from the TF HUB module name = name.replace("module/", "") # Renaming and simplifying name = name.replace("ffn_1", "ffn") name = name.replace("bert/", "albert/") name = name.replace("attention_1", "attention") name = name.replace("transform/", "") name = name.replace("LayerNorm_1", "full_layer_layer_norm") name = name.replace("LayerNorm", "attention/LayerNorm") name = name.replace("transformer/", "") # The feed forward layer had an 'intermediate' step which has been abstracted away name = name.replace("intermediate/dense/", "") name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") # ALBERT attention was split between self and output which have been abstracted away name = name.replace("/output/", "/") name = name.replace("/self/", "/") # The pooler is a linear layer name = name.replace("pooler/dense", "pooler") # The classifier was simplified to predictions from cls/predictions name = name.replace("cls/predictions", "predictions") name = name.replace("predictions/attention", "predictions") # Naming was changed to be more explicit name = name.replace("embeddings/attention", "embeddings") name = name.replace("inner_group_", "albert_layers/") name = name.replace("group_", "albert_layer_groups/") # Classifier if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): name = "classifier/" + name # No ALBERT model currently handles the next sentence prediction task if "seq_relationship" in name: name = name.replace("seq_relationship/output_", "sop_classifier/classifier/") name = name.replace("weights", "weight") name = name.split("/") # Ignore the gradients applied by the LAMB/ADAM optimizers. if ( "adam_m" in name or "adam_v" in name or "AdamWeightDecayOptimizer" in name or "AdamWeightDecayOptimizer_1" in name or "global_step" in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise print(f"Initialize PyTorch weight {name} from {original_name}") pointer.data = torch.from_numpy(array) return model class AlbertEmbeddings(nn.Module): """ Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False, ) # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class AlbertAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob) self.output_dropout = nn.Dropout(config.hidden_dropout_prob) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pruned_heads = set() self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads ) # Prune linear layers self.query = prune_linear_layer(self.query, index) self.key = prune_linear_layer(self.key, index) self.value = prune_linear_layer(self.value, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params and store pruned heads self.num_attention_heads = self.num_attention_heads - len(heads) self.all_head_size = self.attention_head_size * self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attention_dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.transpose(2, 1).flatten(2) projected_context_layer = self.dense(context_layer) projected_context_layer_dropout = self.output_dropout(projected_context_layer) layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout) return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,) class AlbertLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = AlbertAttention(config) self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False ): attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions) ffn_output = apply_chunking_to_forward( self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[0], ) hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) return (hidden_states,) + attention_output[1:] # add attentions if we output them def ff_chunk(self, attention_output): ffn_output = self.ffn(attention_output) ffn_output = self.activation(ffn_output) ffn_output = self.ffn_output(ffn_output) return ffn_output class AlbertLayerGroup(nn.Module): def __init__(self, config): super().__init__() self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False ): layer_hidden_states = () layer_attentions = () for layer_index, albert_layer in enumerate(self.albert_layers): layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions) hidden_states = layer_output[0] if output_attentions: layer_attentions = layer_attentions + (layer_output[1],) if output_hidden_states: layer_hidden_states = layer_hidden_states + (hidden_states,) outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (layer_hidden_states,) if output_attentions: outputs = outputs + (layer_attentions,) return outputs # last-layer hidden state, (layer hidden states), (layer attentions) class AlbertTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): hidden_states = self.embedding_hidden_mapping_in(hidden_states) all_hidden_states = (hidden_states,) if output_hidden_states else None all_attentions = () if output_attentions else None head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask for i in range(self.config.num_hidden_layers): # Number of layers in a hidden group layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], output_attentions, output_hidden_states, ) hidden_states = layer_group_output[0] if output_attentions: all_attentions = all_attentions + layer_group_output[-1] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class AlbertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AlbertConfig load_tf_weights = load_tf_weights_in_albert base_model_prefix = "albert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class AlbertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.AlbertForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). sop_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None sop_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ALBERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ALBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.AlbertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.__call__` and :meth:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class AlbertModel(AlbertPreTrainedModel): config_class = AlbertConfig base_model_prefix = "albert" def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = AlbertEmbeddings(config) self.encoder = AlbertTransformer(config) if add_pooling_layer: self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.pooler_activation = nn.Tanh() else: self.pooler = None self.pooler_activation = None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, while [2,3] correspond to the two inner groups of the second hidden layer. Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more information about head pruning """ for layer, heads in heads_to_prune.items(): group_idx = int(layer / self.config.inner_group_num) inner_group_idx = int(layer - group_idx * self.config.inner_group_num) self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `sentence order prediction (classification)` head. """, ALBERT_START_DOCSTRING, ) class AlbertForPreTraining(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config) self.predictions = AlbertMLMHead(config) self.sop_classifier = AlbertSOPHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.predictions.decoder def set_output_embeddings(self, new_embeddings): self.predictions.decoder = new_embeddings def get_input_embeddings(self): return self.albert.embeddings.word_embeddings @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, sentence_order_label=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` sentence_order_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``. ``0`` indicates original order (sequence A, then sequence B), ``1`` indicates switched order (sequence B, then sequence A). Returns: Example:: >>> from transformers import AlbertTokenizer, AlbertForPreTraining >>> import torch >>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') >>> model = AlbertForPreTraining.from_pretrained('albert-base-v2') >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> sop_logits = outputs.sop_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) sop_scores = self.sop_classifier(pooled_output) total_loss = None if labels is not None and sentence_order_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1)) total_loss = masked_lm_loss + sentence_order_loss if not return_dict: output = (prediction_scores, sop_scores) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return AlbertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, sop_logits=sop_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AlbertMLMHead(nn.Module): def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.embedding_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.dense = nn.Linear(config.hidden_size, config.embedding_size) self.decoder = nn.Linear(config.embedding_size, config.vocab_size) self.activation = ACT2FN[config.hidden_act] self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) hidden_states = self.decoder(hidden_states) prediction_scores = hidden_states return prediction_scores def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias class AlbertSOPHead(nn.Module): def __init__(self, config): super().__init__() self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward(self, pooled_output): dropout_pooled_output = self.dropout(pooled_output) logits = self.classifier(dropout_pooled_output) return logits @add_start_docstrings( "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING, ) class AlbertForMaskedLM(AlbertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config, add_pooling_layer=False) self.predictions = AlbertMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.predictions.decoder def set_output_embeddings(self, new_embeddings): self.predictions.decoder = new_embeddings def get_input_embeddings(self): return self.albert.embeddings.word_embeddings @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_outputs = outputs[0] prediction_scores = self.predictions(sequence_outputs) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForSequenceClassification(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForTokenClassification(AlbertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config, add_pooling_layer=False) classifier_dropout_prob = ( config.classifier_dropout_prob if config.classifier_dropout_prob is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ALBERT_START_DOCSTRING, ) class AlbertForQuestionAnswering(AlbertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForMultipleChoice(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.albert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[ "torch.nn.Linear", "torch.einsum", "torch.ones", "torch.nn.BCEWithLogitsLoss", "torch.nn.CrossEntropyLoss", "torch.nn.LayerNorm", "torch.nn.Softmax", "torch.tensor", "torch.zeros", "torch.nn.Tanh", "torch.matmul", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.arange", "torch.from_numpy", "torch.nn.Embedding" ]
1.0
luyug/transformers
a59e7c1ed4ef1568ca0ba4140c9af641b17fa37e
1.6
import albumentations as albu import matplotlib.pyplot as plt import numpy as np import torch from torch.autograd import Variable def matplotlib_imshow(img, one_channel=False): if one_channel: img = img.mean(dim=0) img = img / 2 + 0.5 # unnormalize npimg = img.numpy() if one_channel: plt.imshow(npimg, cmap="Greys") else: plt.imshow(np.transpose(npimg, (1, 2, 0))) def get_training_augmentation(): train_transform = [ albu.HorizontalFlip(p=0.5), albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0), albu.PadIfNeeded(min_height=320, min_width=320, always_apply=True, border_mode=0), albu.RandomCrop(height=320, width=320, always_apply=True), albu.IAAAdditiveGaussianNoise(p=0.2), albu.IAAPerspective(p=0.5), albu.OneOf( [ albu.CLAHE(p=1), albu.RandomBrightness(p=1), albu.RandomGamma(p=1), ], p=0.9, ), albu.OneOf( [ albu.IAASharpen(p=1), albu.Blur(blur_limit=3, p=1), albu.MotionBlur(blur_limit=3, p=1), ], p=0.9, ), albu.OneOf( [ albu.RandomContrast(p=1), albu.HueSaturationValue(p=1), ], p=0.9, ), ] return albu.Compose(train_transform) def get_validation_augmentation(): """Add paddings to make image shape divisible by 32""" test_transform = [albu.PadIfNeeded(384, 480)] return albu.Compose(test_transform) def to_tensor(x, **kwargs): return x.transpose(2, 0, 1).astype("float32") def get_preprocessing(preprocessing_fn): """Construct preprocessing transform Args: preprocessing_fn (callbale): data normalization function (can be specific for each pretrained neural network) Return: transform: albumentations.Compose """ _transform = [ # albu.Lambda(image=preprocessing_fn), albu.Lambda(image=to_tensor, mask=to_tensor), ] return albu.Compose(_transform) def ToTensor(pic): img = torch.from_numpy(np.array(pic, np.int16, copy=False)) nchannel = 3 img = img.view(pic.size[1], pic.size[0], nchannel) img = img.transpose(0, 1).transpose(0, 2).contiguous() if isinstance(img, torch.ByteTensor): return img.float() else: return img def de_norm(x): out = (x + 1) / 2 return out.clamp(0, 1) def to_var(x, requires_grad=True): if not requires_grad: return Variable(x, requires_grad=requires_grad) else: return Variable(x)
[ "torch.autograd.Variable" ]
1.6.0
loayghawji/CPM
8d1c1d0e15bba04c0ef06997411a09765f736cfa
1.5
from metric.recall_at_k import RecallAtK from loss.vae_loss import VAELoss from dataloader.mamo_dataset import MamoDataset from validator import Validator from torch.utils.data import DataLoader from models.multi_VAE import MultiVAE import os import numpy as np import pytest import yaml # Packages needed to run test: # os # numpy # torch # pytest # yaml with open('yaml_files/data_info.yaml', 'r') as stream: try: data_info = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) # create temporary directories if not os.path.isdir('test_data_val'): os.mkdir('test_data_val') # generate random data np.random.seed(42) dir_path = 'test_data_val/' test_input_data_path = os.path.join( dir_path, 'movielens_small_test_input.npy') test_output_data_path = os.path.join( dir_path, 'movielens_small_test_test.npy') np.save(test_input_data_path, np.random.rand(2000, 8936).astype('float32')) np.save(test_output_data_path, np.random.rand(2000, 8936).astype('float32')) # Variables dataset = MamoDataset(np.load(test_input_data_path), np.load(test_output_data_path)) model = MultiVAE(params='yaml_files/params_multi_VAE.yaml') model.initialize_model() dataloader = DataLoader(dataset, batch_size=data_info['batch_size'], shuffle=True, drop_last=True) metrics = [RecallAtK(10)] objectives = [VAELoss()] obj_results = [0.4, 0.5, 0.7] alphas = [0.5, 0.2, 0.3] max_normalization = [1, 0.5, 2] # A Validator object cannot be created without a model. def test_validator_init_no_model(): with pytest.raises(TypeError, match='Argument: model must be set.'): Validator(None, dataloader, metrics, objectives) # A Validator object cannot be created without a dataloader. def test_validator_init_no_dataloader(): with pytest.raises(TypeError, match='Argument: dataloader must be set.'): Validator(model, None, metrics, objectives) # A Validator object cannot be created without metrics and objectives. def test_validator_init_no_metrics_and_objectives(): with pytest.raises(TypeError, match='Either argument: metrics or argument:' + ' objectives must be set.'): Validator(model, dataloader, None, None) # A Validator object cannot be created with an incorrect model. def test_validator_init_bad_model(): with pytest.raises(TypeError, match='Argument: model must be derived' + ' from nn.Module.'): Validator('model', dataloader, metrics, objectives) # A Validator object cannot be created with an incorrect dataloader. def test_validator_init_bad_dataloader(): with pytest.raises(TypeError, match='Argument: dataloader must be a' + ' pytorch DataLoader.'): Validator(model, 'dataloader', metrics, objectives) # A Validator object cannot be created with an incorrect metrics argument. def test_validator_init_bad_metrics(): with pytest.raises(TypeError, match='Argument: metrics must be a list.'): Validator(model, dataloader, 'metrics', objectives) with pytest.raises(TypeError, match='All elements of argument: metrics' + ' must be of type MetricAtK.'): Validator(model, dataloader, ['metric1', RecallAtK(2)], objectives) # A Validator object cannot be created with an incorrect objectives argument. def test_validator_init_bad_objectives(): with pytest.raises(TypeError, match='Argument: objectives must' + ' be a list.'): Validator(model, dataloader, metrics, 'objectives') with pytest.raises(TypeError, match='All elements of argument: objectives' + ' must be of type Loss.'): Validator(model, dataloader, metrics, ['objective', VAELoss()]) # Testing the combine_objectives method # combine_objectives cannot run if missing obj_results or in incorrect format def test_validator_combine_objectives_bad_obj_results(): v = Validator(model, dataloader, metrics, objectives) with pytest.raises(TypeError, match='Argument: obj_results must be set.'): v.combine_objectives(None, alphas, max_normalization) with pytest.raises(TypeError, match='Argument:' + ' obj_results must be a list.'): v.combine_objectives('Results', alphas, max_normalization) with pytest.raises(TypeError, match='All elements of argument: obj_results' + ' must be of type int or float.'): v.combine_objectives([1, 2.5, 'number'], alphas, max_normalization) # combine_objectives cannot run if alphas is in incorrect format def test_validator_combine_objectives_bad_alphas(): v = Validator(model, dataloader, metrics, objectives) with pytest.raises(TypeError, match='Argument:' + ' alphas must be a list.'): v.combine_objectives(obj_results, 'alphas', max_normalization) with pytest.raises(TypeError, match='All elements of argument: alphas' + ' must be of type int or float.'): v.combine_objectives(obj_results, [1, 2.5, 'number'], max_normalization) with pytest.raises(ValueError, match='The length of alphas must be equal' + ' to that of obj_results'): v.combine_objectives(obj_results, [1, 2.5], max_normalization) # combine_objectives cannot run if max_normalization is in incorrect format def test_validator_combine_objectives_bad_max_normalization(): v = Validator(model, dataloader, metrics, objectives) with pytest.raises(TypeError, match='Argument:' + ' max_normalization must be a list.'): v.combine_objectives(obj_results, alphas, 'max_normalization') with pytest.raises(TypeError, match='All elements of argument:' + ' max_normalization must be of type int or float.'): v.combine_objectives(obj_results, alphas, [1, 2.5, 'number']) with pytest.raises(ValueError, match='The length of max_normalization must' + ' be equal to that of obj_results'): v.combine_objectives(obj_results, alphas, [1, 2.5]) # Correct runs of combine_objectives def test_validator_combine_objectives_no_problem(): v = Validator(model, dataloader, metrics, objectives) assert(v.combine_objectives(obj_results, alphas, max_normalization) == 0.505) assert(v.combine_objectives(obj_results, None, max_normalization) == 1.75) assert(v.combine_objectives(obj_results, alphas, None) == 0.51) assert(v.combine_objectives(obj_results) == sum(obj_results)) def test_validator_evaluate_bad_inputs(): v = Validator(model, dataloader, metrics, objectives) with pytest.raises(TypeError, match='Argument: disable_anneal' + ' must be a bool.'): v.evaluate(disable_anneal='True') with pytest.raises(TypeError, match='Argument: verbose must be a bool.'): v.evaluate(verbose='True') # Small test just to show it works def test_validator_evaluate_no_problem(): v = Validator(model, dataloader, metrics, objectives) results = v.evaluate() assert isinstance(results, tuple) assert isinstance(results[0], list) assert isinstance(results[1], list) # removing generated data def test_cleanup(): os.remove(test_input_data_path) os.remove(test_output_data_path) os.rmdir('test_data_val')
[ "torch.utils.data.DataLoader" ]
1.5.0
blagojce95/ai-research-mamo-framework
7f3b5a5a9fb8b19c9eef453b81b03b6046a33bf2
1.9
###################################### ## 数据文件夹下LRW文件夹的名字. ## ###################################### LRW1000_DATA_PATH_NAME = '/data/zhangyk/data/CAS-VSR-W1k/audio/LRW1000_Public/audio' LRW1000_AUDIO_DATA_PATH_NAME = '/data/zhangyk/data/lrw1000_audio_pkl' ###################################### import torch from torch.utils.data import Dataset, DataLoader import numpy as np import glob import time import os import os.path as osp import sys sys.path.append("../") from models.metrics import ROOT_PATH from models.utils import mkdir, save_pickle, parse_dataloader_split_csv, nan_assert from tqdm.contrib import tzip import librosa import warnings warnings.filterwarnings('ignore') import torchaudio data_root_path = osp.join('/data/zhangyk/data', LRW1000_AUDIO_DATA_PATH_NAME) source_l, target_l = [], [] for stype in ['train', 'val', 'test', 'aux_val', 'aux_test']: csv_path = osp.join(ROOT_PATH, f'data/lrw1000/split/{stype}.csv') with open(csv_path, 'r') as f: csv_tmp = f.readlines() target_l.extend([osp.join(data_root_path, i.strip().split(',')[0]) for i in csv_tmp[1:]]) for i in csv_tmp[1:]: i_split = i.strip().split(',')[0] source_l.append(f'{i_split[i_split.rfind("_") + 1 : i_split.find(".pkl")]}.wav') seq_len = 26880 for i, j in tzip(source_l, target_l): waveform, sample_rate = torchaudio.load(osp.join(LRW1000_DATA_PATH_NAME, i)) assert sample_rate == 16000 waveform = waveform.squeeze(0) if waveform.shape[0] > seq_len: beg = int((waveform.shape[0] - seq_len) / 2) waveform = waveform[beg : beg + seq_len] elif waveform.shape[0] < seq_len: waveform = torch.cat([waveform, torch.zeros(seq_len - waveform.shape[0])]) assert waveform.shape[0] == seq_len waveform = waveform.cpu().detach().numpy() save_pickle(j, waveform)
[ "torch.zeros" ]
1.9.0
ZhangYikaii/Proto-CAT
57bb2c7fd88a9489faa88e3b904218bf5fb01b4e
1.0
import os import math import numpy as np from PIL import Image import skimage.transform as trans import cv2 import torch from data import dataset_info from data.base_dataset import BaseDataset import util.util as util dataset_info = dataset_info() class CasiaDataset(BaseDataset): @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument('--no_pairing_check', action='store_true', help='If specified, skip sanity check of correct label-image file pairing') return parser def cv2_loader(self, img_str): img_array = np.frombuffer(img_str, dtype=np.uint8) return cv2.imdecode(img_array, cv2.IMREAD_COLOR) def fill_list(self, tmp_list): length = len(tmp_list) if length % self.opt.batchSize != 0: end = math.ceil(length / self.opt.batchSize) * self.opt.batchSize tmp_list = tmp_list + tmp_list[-1 * (end - length) :] return tmp_list def initialize(self, opt): self.opt = opt dataset_num = dataset_info.get_dataset(opt) self.prefix = [dataset_info.prefix[num] for num in dataset_num] file_list = [dataset_info.file_list[num] for num in dataset_num] land_mark_list = [dataset_info.land_mark_list[num] for num in dataset_num] self.params_dir = [dataset_info.params_dir[num] for num in dataset_num] self.folder_level = [dataset_info.folder_level[num] for num in dataset_num] self.num_datasets = len(file_list) assert len(land_mark_list) == self.num_datasets, \ 'num of landmk dir should be the num of datasets' assert len(self.params_dir) == self.num_datasets, \ 'num of params_dir should be the num of datasets' self.dataset_lists = [] self.landmark_paths = [] self.sizes = [] for n in range(self.num_datasets): with open(file_list[n]) as f: img_lists = f.readlines() img_lists = self.fill_list(img_lists) self.sizes.append(len(img_lists)) self.dataset_lists.append(sorted(img_lists)) with open(land_mark_list[n]) as f: landmarks = f.readlines() landmarks = self.fill_list(landmarks) self.landmark_paths.append(sorted(landmarks)) self.dataset_size = min(self.sizes) self.initialized = False def get_landmarks(self, landmark, img_list): landmark_split = landmark.strip().split(' ') filename1_without_ext = os.path.basename(img_list.strip()) filename2_without_ext = os.path.basename(landmark_split[0]) assert (filename1_without_ext == filename2_without_ext), \ "The image_path %s and params_path %s don't match." % \ (img_list, landmark_split[0]) label = landmark_split[1] landmarks = landmark_split[2:] landmarks = list(map(float, landmarks)) landmarks_array = np.array(landmarks).reshape(5, 2) return landmarks_array, label def get_param_file(self, img_list, dataset_num): img_name = os.path.splitext(img_list)[0] name_split = img_name.split("/") folder_level = self.folder_level[dataset_num] param_folder = os.path.join(self.params_dir[dataset_num], "/".join([name_split[i] for i in range(len(name_split) - folder_level, len(name_split))]) + ".txt") # params = np.loadtxt(param_folder) return param_folder def paths_match(self, path1, path2): filename1_without_ext = os.path.splitext(os.path.basename(path1)[-10:])[0] filename2_without_ext = os.path.splitext(os.path.basename(path2)[-10:])[0] return filename1_without_ext == filename2_without_ext def affine_align(self, img, landmark=None, **kwargs): M = None h, w, c = img.shape src = np.array([ [38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) src = src * 290 / 112 src[:, 0] += 50 src[:, 1] += 60 src = src / 400 * self.opt.crop_size dst = landmark # dst = landmark.astype(np.float32) tform = trans.SimilarityTransform() tform.estimate(dst, src) M = tform.params[0:2, :] warped = cv2.warpAffine(img, M, (self.opt.crop_size, self.opt.crop_size), borderValue=0.0) return warped, M def __getitem__(self, index): # Label Image randnum = np.random.randint(sum(self.sizes)) dataset_num = np.random.randint(self.num_datasets) image_path = self.dataset_lists[dataset_num][index].strip() image_path = os.path.join(self.prefix[dataset_num], image_path) print(image_path) img = cv2.imread(image_path) if img is None: raise Exception('None Image') param_path = self.get_param_file(image_path, dataset_num) #mesh_path = image_path.replace('CASIA-WebFace', 'CASIA_RR_new/input') mesh_path = image_path mesh = cv2.imread(mesh_path) if mesh is None: raise Exception('None mesh Image') mesh = cv2.cvtColor(mesh, cv2.COLOR_BGR2RGB) # Load mask #mask_path = image_path.replace('CASIA-WebFace', 'CASIA_RR_new/mask') mask_path = image_path.replace('input', 'mask') mask = cv2.imread(mask_path) if mesh is None: raise Exception('None mask Image') mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB) mesh[mask[:, :, 0] < 125] = [255, 255, 255] cv2.imwrite('/mnt2/download/test/test_masked.jpg', mesh) #cv2.imwrite('/mnt2/download/test/test.jpg', mesh) mesh = cv2.resize(mesh, (self.opt.crop_size, self.opt.crop_size)) mesh = mesh.transpose(2, 0, 1) / 255.0 mesh = torch.from_numpy(mesh).float() # img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (self.opt.crop_size, self.opt.crop_size)) M = None landmark_path = self.landmark_paths[dataset_num][index].strip() landmarks, label = self.get_landmarks(landmark_path, image_path) wrapped_img, M = self.affine_align(img, landmarks) M = torch.from_numpy(M).float() wrapped_img = img.transpose(2, 0, 1) / 255.0 wrapped_img = torch.from_numpy(wrapped_img).float() #print('loaded image', img.shape) #print(wrapped_img[:3, :3, :3]) input_dict = { 'image': wrapped_img, 'mesh': mesh, 'param_path': param_path, 'M': M, 'path': image_path } # Give subclasses a chance to modify the final output self.postprocess(input_dict) return input_dict def postprocess(self, input_dict): return input_dict def __len__(self): return self.dataset_size
[ "torch.from_numpy" ]
1.0.0
kangzhiq/Rotate-and-Render
e4b0946260f9ece8af7066f2668ee889a1ee9f23
1.4
# coding: utf-8 from itertools import chain, starmap from collections import Counter import torch from torchtext.data import Dataset as TorchtextDataset from torchtext.data import Example from torchtext.vocab import Vocab def _join_dicts(*args): """ Args: dictionaries with disjoint keys. Returns: a single dictionary that has the union of these keys. """ return dict(chain(*[d.items() for d in args])) def _dynamic_dict(example, src_field, sim_field, tgt_field): #20201209 tmr add sim """Create copy-vocab and numericalize with it. In-place adds ``"src_map"`` to ``example``. That is the copy-vocab numericalization of the tokenized ``example["src"]``. If ``example`` has a ``"tgt"`` key, adds ``"alignment"`` to example. That is the copy-vocab numericalization of the tokenized ``example["tgt"]``. The alignment has an initial and final UNK token to match the BOS and EOS tokens. Args: example (dict): An example dictionary with a ``"src"`` key and maybe a ``"tgt"`` key. (This argument changes in place!) src_field (torchtext.data.Field): Field object. tgt_field (torchtext.data.Field): Field object. Returns: torchtext.data.Vocab and ``example``, changed as described. """ src = src_field.tokenize(example["src"]) sim = sim_field.tokenize(example["sim"]) #20201209 tme add sim # make a small vocab containing just the tokens in the source sequence unk = src_field.unk_token pad = src_field.pad_token src_ex_vocab = Vocab(Counter(src), specials=[unk, pad]) sim_ex_vocab = Vocab(Counter(sim), specials=[unk, pad]) #20201209 tmr add sim unk_idx = src_ex_vocab.stoi[unk] # Map source tokens to indices in the dynamic dict. src_map = torch.LongTensor([src_ex_vocab.stoi[w] for w in src]) example["src_map"] = src_map example["src_ex_vocab"] = src_ex_vocab # Map source tokens to indices in the dynamic dict. #20201209 tme add sim sim_map = torch.LongTensor([sim_ex_vocab.stoi[w] for w in sim]) example["sim_map"] = sim_map example["sim_ex_vocab"] = sim_ex_vocab if "tgt" in example: tgt = tgt_field.tokenize(example["tgt"]) mask = torch.LongTensor( [unk_idx] + [src_ex_vocab.stoi[w] for w in tgt] + [unk_idx]) example["alignment"] = mask return src_ex_vocab, sim_ex_vocab, example class Dataset(TorchtextDataset): """Contain data and process it. A dataset is an object that accepts sequences of raw data (sentence pairs in the case of machine translation) and fields which describe how this raw data should be processed to produce tensors. When a dataset is instantiated, it applies the fields' preprocessing pipeline (but not the bit that numericalizes it or turns it into batch tensors) to the raw data, producing a list of :class:`torchtext.data.Example` objects. torchtext's iterators then know how to use these examples to make batches. Args: fields (dict[str, Field]): a dict with the structure returned by :func:`onmt.inputters.get_fields()`. Usually that means the dataset side, ``"src"`` or ``"tgt"``. Keys match the keys of items yielded by the ``readers``, while values are lists of (name, Field) pairs. An attribute with this name will be created for each :class:`torchtext.data.Example` object and its value will be the result of applying the Field to the data that matches the key. The advantage of having sequences of fields for each piece of raw input is that it allows the dataset to store multiple "views" of each input, which allows for easy implementation of token-level features, mixed word- and character-level models, and so on. (See also :class:`onmt.inputters.TextMultiField`.) readers (Iterable[onmt.inputters.DataReaderBase]): Reader objects for disk-to-dict. The yielded dicts are then processed according to ``fields``. data (Iterable[Tuple[str, Any]]): (name, ``data_arg``) pairs where ``data_arg`` is passed to the ``read()`` method of the reader in ``readers`` at that position. (See the reader object for details on the ``Any`` type.) dirs (Iterable[str or NoneType]): A list of directories where data is contained. See the reader object for more details. sort_key (Callable[[torchtext.data.Example], Any]): A function for determining the value on which data is sorted (i.e. length). filter_pred (Callable[[torchtext.data.Example], bool]): A function that accepts Example objects and returns a boolean value indicating whether to include that example in the dataset. Attributes: src_vocabs (List[torchtext.data.Vocab]): Used with dynamic dict/copy attention. There is a very short vocab for each src example. It contains just the source words, e.g. so that the generator can predict to copy them. """ def __init__(self, fields, readers, data, dirs, sort_key, filter_pred=None, corpus_id=None): self.sort_key = sort_key can_copy = 'src_map' in fields and 'alignment' in fields read_iters = [r.read(dat[1], dat[0], dir_) for r, dat, dir_ in zip(readers, data, dirs)] # self.src_vocabs is used in collapse_copy_scores and Translator.py self.src_vocabs = [] self.sim_vocabs = [] #20201209 tmr add sim examples = [] for ex_dict in starmap(_join_dicts, zip(*read_iters)): if corpus_id is not None: ex_dict["corpus_id"] = corpus_id else: ex_dict["corpus_id"] = "train" if can_copy: src_field = fields['src'] sim_field = fields['sim'] #29291129 tmr add sim tgt_field = fields['tgt'] # this assumes src_field and tgt_field are both text src_ex_vocab, ex_dict = _dynamic_dict(ex_dict, src_field.base_field, sim_field.base_field, tgt_field.base_field) #20201209 tmr add sim self.src_vocabs.append(src_ex_vocab) self.sim_vocabs.append(sim_ex_vocab) #20201209 tmr add sim ex_fields = {k: [(k, v)] for k, v in fields.items() if k in ex_dict} ex = Example.fromdict(ex_dict, ex_fields) examples.append(ex) # fields needs to have only keys that examples have as attrs fields = [] for _, nf_list in ex_fields.items(): assert len(nf_list) == 1 fields.append(nf_list[0]) super(Dataset, self).__init__(examples, fields, filter_pred) def __getattr__(self, attr): # avoid infinite recursion when fields isn't defined if 'fields' not in vars(self): raise AttributeError if attr in self.fields: return (getattr(x, attr) for x in self.examples) else: raise AttributeError def save(self, path, remove_fields=True): if remove_fields: self.fields = [] torch.save(self, path) @staticmethod def config(fields): readers, data, dirs = [], [], [] for name, field in fields: if field["data"] is not None: readers.append(field["reader"]) data.append((name, field["data"])) dirs.append(field["dir"]) return readers, data, dirs
[ "torch.save", "torch.LongTensor" ]
1.4.0
futuran/OpenNMT-py
0fef19aff6ea839e0684314792d41f7e08d1232d
1.4
import itertools as it from collections import namedtuple from typing import Dict, List, Optional, Union, NamedTuple import torch from torchaudio._torchaudio_decoder import ( _CriterionType, _LM, _KenLM, _LexiconDecoder, _LexiconDecoderOptions, _SmearingMode, _Trie, _Dictionary, _create_word_dict, _load_words, _ZeroLM, ) from torchaudio.utils import download_asset __all__ = ["Hypothesis", "LexiconDecoder", "lexicon_decoder"] _PretrainedFiles = namedtuple("PretrainedFiles", ["lexicon", "tokens", "lm"]) class Hypothesis(NamedTuple): r"""Represents hypothesis generated by CTC beam search decoder :py:func`LexiconDecoder`. :ivar torch.LongTensor tokens: Predicted sequence of token IDs. Shape `(L, )`, where `L` is the length of the output sequence :ivar List[str] words: List of predicted words :ivar float score: Score corresponding to hypothesis :ivar torch.IntTensor timesteps: Timesteps corresponding to the tokens. Shape `(L, )`, where `L` is the length of the output sequence """ tokens: torch.LongTensor words: List[str] score: float timesteps: torch.IntTensor class LexiconDecoder: """torchaudio.prototype.ctc_decoder.LexiconDecoder() Lexically contrained CTC beam search decoder from *Flashlight* [:footcite:`kahn2022flashlight`]. Note: To build the decoder, please use factory function :py:func:`lexicon_decoder`. Args: nbest (int): number of best decodings to return lexicon (Dict): lexicon mapping of words to spellings word_dict (_Dictionary): dictionary of words tokens_dict (_Dictionary): dictionary of tokens lm (_LM): language model decoder_options (_LexiconDecoderOptions): parameters used for beam search decoding blank_token (str): token corresopnding to blank sil_token (str): token corresponding to silence unk_word (str): word corresponding to unknown """ def __init__( self, nbest: int, lexicon: Dict, word_dict: _Dictionary, tokens_dict: _Dictionary, lm: _LM, decoder_options: _LexiconDecoderOptions, blank_token: str, sil_token: str, unk_word: str, ) -> None: self.nbest = nbest self.word_dict = word_dict self.tokens_dict = tokens_dict unk_word = word_dict.get_index(unk_word) self.blank = self.tokens_dict.get_index(blank_token) silence = self.tokens_dict.get_index(sil_token) vocab_size = self.tokens_dict.index_size() trie = _Trie(vocab_size, silence) start_state = lm.start(False) for word, spellings in lexicon.items(): word_idx = self.word_dict.get_index(word) _, score = lm.score(start_state, word_idx) for spelling in spellings: spelling_idx = [self.tokens_dict.get_index(token) for token in spelling] trie.insert(spelling_idx, word_idx, score) trie.smear(_SmearingMode.MAX) self.decoder = _LexiconDecoder( decoder_options, trie, lm, silence, self.blank, unk_word, [], False, # word level LM ) def _get_tokens(self, idxs: torch.IntTensor) -> torch.LongTensor: idxs = (g[0] for g in it.groupby(idxs)) idxs = filter(lambda x: x != self.blank, idxs) return torch.LongTensor(list(idxs)) def _get_timesteps(self, idxs: torch.IntTensor) -> torch.IntTensor: """Returns frame numbers corresponding to non-blank tokens.""" timesteps = [] for i, idx in enumerate(idxs): if idx == self.blank: continue if i == 0 or idx != idxs[i - 1]: timesteps.append(i) return torch.IntTensor(timesteps) def __call__(self, emissions: torch.FloatTensor, lengths: Optional[torch.Tensor] = None) -> List[List[Hypothesis]]: # Overriding the signature so that the return type is correct on Sphinx """__call__(self, emissions: torch.FloatTensor, lengths: Optional[torch.Tensor] = None) -> \ List[List[torchaudio.prototype.ctc_decoder.Hypothesis]] Args: emissions (torch.FloatTensor): tensor of shape `(batch, frame, num_tokens)` storing sequences of probability distribution over labels; output of acoustic model lengths (Tensor or None, optional): tensor of shape `(batch, )` storing the valid length of in time axis of the output Tensor in each batch Returns: List[List[Hypothesis]]: List of sorted best hypotheses for each audio sequence in the batch. """ assert emissions.dtype == torch.float32 B, T, N = emissions.size() if lengths is None: lengths = torch.full((B,), T) float_bytes = 4 hypos = [] for b in range(B): emissions_ptr = emissions.data_ptr() + float_bytes * b * emissions.stride(0) results = self.decoder.decode(emissions_ptr, lengths[b], N) nbest_results = results[: self.nbest] hypos.append( [ Hypothesis( tokens=self._get_tokens(result.tokens), words=[self.word_dict.get_entry(x) for x in result.words if x >= 0], score=result.score, timesteps=self._get_timesteps(result.tokens), ) for result in nbest_results ] ) return hypos def idxs_to_tokens(self, idxs: torch.LongTensor) -> List: """ Map raw token IDs into corresponding tokens Args: idxs (LongTensor): raw token IDs generated from decoder Returns: List: tokens corresponding to the input IDs """ return [self.tokens_dict.get_entry(idx.item()) for idx in idxs] def lexicon_decoder( lexicon: str, tokens: Union[str, List[str]], lm: Optional[str] = None, nbest: int = 1, beam_size: int = 50, beam_size_token: Optional[int] = None, beam_threshold: float = 50, lm_weight: float = 2, word_score: float = 0, unk_score: float = float("-inf"), sil_score: float = 0, log_add: bool = False, blank_token: str = "-", sil_token: str = "|", unk_word: str = "<unk>", ) -> LexiconDecoder: """ Builds lexically constrained CTC beam search decoder from *Flashlight* [:footcite:`kahn2022flashlight`]. Args: lexicon (str): lexicon file containing the possible words and corresponding spellings. Each line consists of a word and its space separated spelling tokens (str or List[str]): file or list containing valid tokens. If using a file, the expected format is for tokens mapping to the same index to be on the same line lm (str or None, optional): file containing language model, or `None` if not using a language model nbest (int, optional): number of best decodings to return (Default: 1) beam_size (int, optional): max number of hypos to hold after each decode step (Default: 50) beam_size_token (int, optional): max number of tokens to consider at each decode step. If None, it is set to the total number of tokens (Default: None) beam_threshold (float, optional): threshold for pruning hypothesis (Default: 50) lm_weight (float, optional): weight of language model (Default: 2) word_score (float, optional): word insertion score (Default: 0) unk_score (float, optional): unknown word insertion score (Default: -inf) sil_score (float, optional): silence insertion score (Default: 0) log_add (bool, optional): whether or not to use logadd when merging hypotheses (Default: False) blank_token (str, optional): token corresponding to blank (Default: "-") sil_token (str, optional): token corresponding to silence (Default: "|") unk_word (str, optional): word corresponding to unknown (Default: "<unk>") Returns: LexiconDecoder: decoder Example >>> decoder = lexicon_decoder( >>> lexicon="lexicon.txt", >>> tokens="tokens.txt", >>> lm="kenlm.bin", >>> ) >>> results = decoder(emissions) # List of shape (B, nbest) of Hypotheses """ lexicon = _load_words(lexicon) word_dict = _create_word_dict(lexicon) lm = _KenLM(lm, word_dict) if lm else _ZeroLM() tokens_dict = _Dictionary(tokens) decoder_options = _LexiconDecoderOptions( beam_size=beam_size, beam_size_token=beam_size_token or tokens_dict.index_size(), beam_threshold=beam_threshold, lm_weight=lm_weight, word_score=word_score, unk_score=unk_score, sil_score=sil_score, log_add=log_add, criterion_type=_CriterionType.CTC, ) return LexiconDecoder( nbest=nbest, lexicon=lexicon, word_dict=word_dict, tokens_dict=tokens_dict, lm=lm, decoder_options=decoder_options, blank_token=blank_token, sil_token=sil_token, unk_word=unk_word, ) def _get_filenames(model: str) -> _PretrainedFiles: if model not in ["librispeech", "librispeech-3-gram", "librispeech-4-gram"]: raise ValueError( f"{model} not supported. Must be one of ['librispeech-3-gram', 'librispeech-4-gram', 'librispeech']" ) prefix = f"decoder-assets/{model}" return _PretrainedFiles( lexicon=f"{prefix}/lexicon.txt", tokens=f"{prefix}/tokens.txt", lm=f"{prefix}/lm.bin" if model != "librispeech" else None, ) def download_pretrained_files(model: str) -> _PretrainedFiles: """ Retrieves pretrained data files used for CTC decoder. Args: model (str): pretrained language model to download. Options: ["librispeech-3-gram", "librispeech-4-gram", "librispeech"] Returns: Object with the following attributes lm: path corresponding to downloaded language model, or `None` if the model is not associated with an lm lexicon: path corresponding to downloaded lexicon file tokens: path corresponding to downloaded tokens file """ files = _get_filenames(model) lexicon_file = download_asset(files.lexicon) tokens_file = download_asset(files.tokens) if files.lm is not None: lm_file = download_asset(files.lm) else: lm_file = None return _PretrainedFiles( lexicon=lexicon_file, tokens=tokens_file, lm=lm_file, )
[ "torch.IntTensor", "torch.full" ]
1.4.0
spital/audio
414f4f774e9b649bf17c523fbd56b2c54c493508
1.8
import argparse import inspect from . import gaussian_diffusion as gd from .respace import SpacedDiffusion, space_timesteps from .unet import SuperResModel, UNetModel, EncoderUNetModel NUM_CLASSES = 1000 def diffusion_defaults(): """ Defaults for image and classifier training. """ return dict( learn_sigma=False, diffusion_steps=1000, noise_schedule="linear", timestep_respacing="", use_kl=False, predict_xstart=False, rescale_timesteps=False, rescale_learned_sigmas=False, ) def classifier_defaults(): """ Defaults for classifier models. """ return dict( image_size=64, classifier_use_fp16=False, classifier_width=128, classifier_depth=2, classifier_attention_resolutions="32,16,8", # 16 classifier_use_scale_shift_norm=True, # False classifier_resblock_updown=True, # False classifier_pool="attention", ) def model_and_diffusion_defaults(): """ Defaults for image training. """ res = dict( image_size=64, num_channels=128, num_res_blocks=2, num_heads=4, num_heads_upsample=-1, num_head_channels=-1, attention_resolutions="16,8", channel_mult="", dropout=0.0, class_cond=False, use_checkpoint=False, use_scale_shift_norm=True, resblock_updown=False, use_fp16=False, use_new_attention_order=False, z_cond=False, ) res.update(diffusion_defaults()) return res def classifier_and_diffusion_defaults(): res = classifier_defaults() res.update(diffusion_defaults()) return res def create_model_and_diffusion( image_size, class_cond, learn_sigma, num_channels, num_res_blocks, channel_mult, num_heads, num_head_channels, num_heads_upsample, attention_resolutions, dropout, diffusion_steps, noise_schedule, timestep_respacing, use_kl, predict_xstart, rescale_timesteps, rescale_learned_sigmas, use_checkpoint, use_scale_shift_norm, resblock_updown, use_fp16, use_new_attention_order, z_cond, ): model = create_model( image_size, num_channels, num_res_blocks, channel_mult=channel_mult, learn_sigma=learn_sigma, class_cond=class_cond, use_checkpoint=use_checkpoint, attention_resolutions=attention_resolutions, num_heads=num_heads, num_head_channels=num_head_channels, num_heads_upsample=num_heads_upsample, use_scale_shift_norm=use_scale_shift_norm, dropout=dropout, resblock_updown=resblock_updown, use_fp16=use_fp16, use_new_attention_order=use_new_attention_order, z_cond=z_cond, ) diffusion = create_gaussian_diffusion( steps=diffusion_steps, learn_sigma=learn_sigma, noise_schedule=noise_schedule, use_kl=use_kl, predict_xstart=predict_xstart, rescale_timesteps=rescale_timesteps, rescale_learned_sigmas=rescale_learned_sigmas, timestep_respacing=timestep_respacing, ) return model, diffusion def create_model( image_size, num_channels, num_res_blocks, channel_mult="", learn_sigma=False, class_cond=False, use_checkpoint=False, attention_resolutions="16", num_heads=1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, dropout=0, resblock_updown=False, use_fp16=False, use_new_attention_order=False, z_cond=False, ): if channel_mult == "": if image_size == 512: channel_mult = (0.5, 1, 1, 2, 2, 4, 4) elif image_size == 256: channel_mult = (1, 1, 2, 2, 4, 4) elif image_size == 128: channel_mult = (1, 1, 2, 3, 4) elif image_size == 64: channel_mult = (1, 2, 3, 4) else: raise ValueError(f"unsupported image size: {image_size}") else: channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(",")) attention_ds = [] for res in attention_resolutions.split(","): attention_ds.append(image_size // int(res)) return UNetModel( image_size=image_size, in_channels=3, model_channels=num_channels, out_channels=(3 if not learn_sigma else 6), num_res_blocks=num_res_blocks, attention_resolutions=tuple(attention_ds), dropout=dropout, channel_mult=channel_mult, num_classes=(NUM_CLASSES if class_cond else None), use_checkpoint=use_checkpoint, use_fp16=use_fp16, num_heads=num_heads, num_head_channels=num_head_channels, num_heads_upsample=num_heads_upsample, use_scale_shift_norm=use_scale_shift_norm, resblock_updown=resblock_updown, use_new_attention_order=use_new_attention_order, z_cond=z_cond, ) def create_classifier_and_diffusion( image_size, classifier_use_fp16, classifier_width, classifier_depth, classifier_attention_resolutions, classifier_use_scale_shift_norm, classifier_resblock_updown, classifier_pool, learn_sigma, diffusion_steps, noise_schedule, timestep_respacing, use_kl, predict_xstart, rescale_timesteps, rescale_learned_sigmas, ): classifier = create_classifier( image_size, classifier_use_fp16, classifier_width, classifier_depth, classifier_attention_resolutions, classifier_use_scale_shift_norm, classifier_resblock_updown, classifier_pool, ) diffusion = create_gaussian_diffusion( steps=diffusion_steps, learn_sigma=learn_sigma, noise_schedule=noise_schedule, use_kl=use_kl, predict_xstart=predict_xstart, rescale_timesteps=rescale_timesteps, rescale_learned_sigmas=rescale_learned_sigmas, timestep_respacing=timestep_respacing, ) return classifier, diffusion def create_classifier( image_size, classifier_use_fp16, classifier_width, classifier_depth, classifier_attention_resolutions, classifier_use_scale_shift_norm, classifier_resblock_updown, classifier_pool, ): if image_size == 512: channel_mult = (0.5, 1, 1, 2, 2, 4, 4) elif image_size == 256: channel_mult = (1, 1, 2, 2, 4, 4) elif image_size == 128: channel_mult = (1, 1, 2, 3, 4) elif image_size == 64: channel_mult = (1, 2, 3, 4) else: raise ValueError(f"unsupported image size: {image_size}") attention_ds = [] for res in classifier_attention_resolutions.split(","): attention_ds.append(image_size // int(res)) return EncoderUNetModel( image_size=image_size, in_channels=3, model_channels=classifier_width, out_channels=1000, num_res_blocks=classifier_depth, attention_resolutions=tuple(attention_ds), channel_mult=channel_mult, use_fp16=classifier_use_fp16, num_head_channels=64, use_scale_shift_norm=classifier_use_scale_shift_norm, resblock_updown=classifier_resblock_updown, pool=classifier_pool, ) def sr_model_and_diffusion_defaults(): res = model_and_diffusion_defaults() res["large_size"] = 128 res["small_size"] = 64 arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0] for k in res.copy().keys(): if k not in arg_names: del res[k] return res def sr_create_model_and_diffusion( large_size, small_size, class_cond, learn_sigma, num_channels, num_res_blocks, num_heads, num_head_channels, num_heads_upsample, attention_resolutions, dropout, diffusion_steps, noise_schedule, timestep_respacing, use_kl, predict_xstart, rescale_timesteps, rescale_learned_sigmas, use_checkpoint, use_scale_shift_norm, resblock_updown, use_fp16, ): model = sr_create_model( large_size, small_size, num_channels, num_res_blocks, learn_sigma=learn_sigma, class_cond=class_cond, use_checkpoint=use_checkpoint, attention_resolutions=attention_resolutions, num_heads=num_heads, num_head_channels=num_head_channels, num_heads_upsample=num_heads_upsample, use_scale_shift_norm=use_scale_shift_norm, dropout=dropout, resblock_updown=resblock_updown, use_fp16=use_fp16, ) diffusion = create_gaussian_diffusion( steps=diffusion_steps, learn_sigma=learn_sigma, noise_schedule=noise_schedule, use_kl=use_kl, predict_xstart=predict_xstart, rescale_timesteps=rescale_timesteps, rescale_learned_sigmas=rescale_learned_sigmas, timestep_respacing=timestep_respacing, ) return model, diffusion def sr_create_model( large_size, small_size, num_channels, num_res_blocks, learn_sigma, class_cond, use_checkpoint, attention_resolutions, num_heads, num_head_channels, num_heads_upsample, use_scale_shift_norm, dropout, resblock_updown, use_fp16, ): _ = small_size # hack to prevent unused variable if large_size == 512: channel_mult = (1, 1, 2, 2, 4, 4) elif large_size == 256: channel_mult = (1, 1, 2, 2, 4, 4) elif large_size == 128: channel_mult = (1, 1, 2, 3, 4) elif large_size == 64: channel_mult = (1, 2, 3, 4) else: raise ValueError(f"unsupported large size: {large_size}") attention_ds = [] for res in attention_resolutions.split(","): attention_ds.append(large_size // int(res)) return SuperResModel( image_size=large_size, in_channels=3, model_channels=num_channels, out_channels=(3 if not learn_sigma else 6), num_res_blocks=num_res_blocks, attention_resolutions=tuple(attention_ds), dropout=dropout, channel_mult=channel_mult, num_classes=(NUM_CLASSES if class_cond else None), use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, num_heads_upsample=num_heads_upsample, use_scale_shift_norm=use_scale_shift_norm, resblock_updown=resblock_updown, use_fp16=use_fp16, ) def create_gaussian_diffusion( *, steps=1000, learn_sigma=False, sigma_small=False, noise_schedule="linear", use_kl=False, predict_xstart=False, rescale_timesteps=False, rescale_learned_sigmas=False, timestep_respacing="", ): betas = gd.get_named_beta_schedule(noise_schedule, steps) if use_kl: loss_type = gd.LossType.RESCALED_KL elif rescale_learned_sigmas: loss_type = gd.LossType.RESCALED_MSE else: loss_type = gd.LossType.MSE if not timestep_respacing: timestep_respacing = [steps] return SpacedDiffusion( use_timesteps=space_timesteps(steps, timestep_respacing), betas=betas, model_mean_type=( gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X ), model_var_type=( ( gd.ModelVarType.FIXED_LARGE if not sigma_small else gd.ModelVarType.FIXED_SMALL ) if not learn_sigma else gd.ModelVarType.LEARNED_RANGE ), loss_type=loss_type, rescale_timesteps=rescale_timesteps, ) def add_dict_to_argparser(parser, default_dict): for k, v in default_dict.items(): v_type = type(v) if v is None: v_type = str elif isinstance(v, bool): v_type = str2bool parser.add_argument(f"--{k}", default=v, type=v_type) def args_to_dict(args, keys): return {k: getattr(args, k) for k in keys} def str2bool(v): """ https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse """ if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected") def seed_all(seed: int): """ Seeding everything for paired indendent training :param seed: seed number for a number generator. """ import os import numpy as np import torch as th import random random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) th.manual_seed(seed) th.cuda.manual_seed(seed) th.cuda.manual_seed_all(seed) th.backends.cudnn.deterministic = True th.backends.cudnn.benchmark = False
[ "torch.manual_seed", "torch.cuda.manual_seed", "torch.cuda.manual_seed_all" ]
1.8.2
XezXey/guided-diffusion
5e156d0c1135e3432c33e5a5efb382f2095d9a59
1.8
from abc import ABC, abstractmethod import numpy as np from numpy.lib.function_base import diff import torch as th import torch.distributed as dist def create_named_schedule_sampler(name, diffusion): """ Create a ScheduleSampler from a library of pre-defined samplers. :param name: the name of the sampler. :param diffusion: the diffusion object to sample for. """ if name == "uniform": return UniformSampler(diffusion) elif name == "loss-second-moment": return LossSecondMomentResampler(diffusion) else: raise NotImplementedError(f"unknown schedule sampler: {name}") class ScheduleSampler(ABC): """ A distribution over timesteps in the diffusion process, intended to reduce variance of the objective. By default, samplers perform unbiased importance sampling, in which the objective's mean is unchanged. However, subclasses may override sample() to change how the resampled terms are reweighted, allowing for actual changes in the objective. """ @abstractmethod def weights(self): """ Get a numpy array of weights, one per diffusion step. The weights needn't be normalized, but must be positive. """ def sample(self, batch_size, device): """ Importance-sample timesteps for a batch. :param batch_size: the number of timesteps. :param device: the torch device to save to. :return: a tuple (timesteps, weights): - timesteps: a tensor of timestep indices. - weights: a tensor of weights to scale the resulting losses. """ w = self.weights() p = w / np.sum(w) indices_np = np.random.choice(len(p), size=(batch_size,), p=p) indices = th.from_numpy(indices_np).long().to(device) weights_np = 1 / (len(p) * p[indices_np]) weights = th.from_numpy(weights_np).float().to(device) # print(batch_size) # print(w) # print(p) # print(indices_np) # print(indices) # print(weights_np) # print(weights) return indices, weights class UniformSampler(ScheduleSampler): def __init__(self, diffusion): self.diffusion = diffusion self._weights = np.ones([diffusion.num_timesteps]) def weights(self): return self._weights class LossAwareSampler(ScheduleSampler): def update_with_local_losses(self, local_ts, local_losses): """ Update the reweighting using losses from a model. Call this method from each rank with a batch of timesteps and the corresponding losses for each of those timesteps. This method will perform synchronization to make sure all of the ranks maintain the exact same reweighting. :param local_ts: an integer Tensor of timesteps. :param local_losses: a 1D Tensor of losses. """ batch_sizes = [ th.tensor([0], dtype=th.int32, device=local_ts.device) for _ in range(dist.get_world_size()) ] dist.all_gather( batch_sizes, th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device), ) # Pad all_gather batches to be the maximum batch size. batch_sizes = [x.item() for x in batch_sizes] max_bs = max(batch_sizes) timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes] loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes] dist.all_gather(timestep_batches, local_ts) dist.all_gather(loss_batches, local_losses) timesteps = [ x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs] ] losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]] self.update_with_all_losses(timesteps, losses) @abstractmethod def update_with_all_losses(self, ts, losses): """ Update the reweighting using losses from a model. Sub-classes should override this method to update the reweighting using losses from the model. This method directly updates the reweighting without synchronizing between workers. It is called by update_with_local_losses from all ranks with identical arguments. Thus, it should have deterministic behavior to maintain state across workers. :param ts: a list of int timesteps. :param losses: a list of float losses, one per timestep. """ class LossSecondMomentResampler(LossAwareSampler): def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001): self.diffusion = diffusion self.history_per_term = history_per_term self.uniform_prob = uniform_prob self._loss_history = np.zeros( [diffusion.num_timesteps, history_per_term], dtype=np.float64 ) self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int) def weights(self): if not self._warmed_up(): return np.ones([self.diffusion.num_timesteps], dtype=np.float64) weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1)) weights /= np.sum(weights) weights *= 1 - self.uniform_prob weights += self.uniform_prob / len(weights) return weights def update_with_all_losses(self, ts, losses): for t, loss in zip(ts, losses): if self._loss_counts[t] == self.history_per_term: # Shift out the oldest loss term. self._loss_history[t, :-1] = self._loss_history[t, 1:] self._loss_history[t, -1] = loss else: self._loss_history[t, self._loss_counts[t]] = loss self._loss_counts[t] += 1 def _warmed_up(self): return (self._loss_counts == self.history_per_term).all()
[ "torch.zeros", "torch.distributed.get_world_size", "torch.distributed.all_gather", "torch.from_numpy", "torch.tensor" ]
1.8.2
XezXey/guided-diffusion
5e156d0c1135e3432c33e5a5efb382f2095d9a59
1.7
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. from loguru import logger import torch import torch.backends.cudnn as cudnn from torch.nn.parallel import DistributedDataParallel as DDP from yolox.core import launch from yolox.exp import get_exp from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger import argparse import os import random import warnings def make_parser(): parser = argparse.ArgumentParser("YOLOX Eval") parser.add_argument("-expn", "--experiment-name", type=str, default=None) parser.add_argument("-n", "--name", type=str, default=None, help="model name") # distributed parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--dist-url", default=None, type=str, help="url used to set up distributed training", ) parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size") parser.add_argument( "-d", "--devices", default=None, type=int, help="device for training" ) parser.add_argument( "--local_rank", default=0, type=int, help="local rank for dist training" ) parser.add_argument( "--num_machines", default=1, type=int, help="num of node for training" ) parser.add_argument( "--machine_rank", default=0, type=int, help="node rank for multi-node training" ) parser.add_argument( "-f", "--exp_file", default=None, type=str, help="pls input your expriment description file", ) parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval") parser.add_argument("--conf", default=None, type=float, help="test conf") parser.add_argument("--nms", default=None, type=float, help="test nms threshold") parser.add_argument("--tsize", default=None, type=int, help="test img size") parser.add_argument("--seed", default=None, type=int, help="eval seed") parser.add_argument( "--fp16", dest="fp16", default=False, action="store_true", help="Adopting mix precision evaluating.", ) parser.add_argument( "--fuse", dest="fuse", default=False, action="store_true", help="Fuse conv and bn for testing.", ) parser.add_argument( "--trt", dest="trt", default=False, action="store_true", help="Using TensorRT model for testing.", ) parser.add_argument( "--test", dest="test", default=False, action="store_true", help="Evaluating on test-dev set.", ) parser.add_argument( "--speed", dest="speed", default=False, action="store_true", help="speed test only.", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser @logger.catch def main(exp, args, num_gpu): if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn( "You have chosen to seed testing. This will turn on the CUDNN deterministic setting, " ) is_distributed = num_gpu > 1 # set environment variables for distributed training cudnn.benchmark = True rank = args.local_rank # rank = get_local_rank() file_name = os.path.join(exp.output_dir, args.experiment_name) if rank == 0: os.makedirs(file_name, exist_ok=True) setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a") logger.info("Args: {}".format(args)) if args.conf is not None: exp.test_conf = args.conf if args.nms is not None: exp.nmsthre = args.nms if args.tsize is not None: exp.test_size = (args.tsize, args.tsize) model = exp.get_model() logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size))) logger.info("Model Structure:\n{}".format(str(model))) evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test) torch.cuda.set_device(rank) model.cuda(rank) model.eval() if not args.speed and not args.trt: if args.ckpt is None: ckpt_file = os.path.join(file_name, "best_ckpt.pth.tar") else: ckpt_file = args.ckpt logger.info("loading checkpoint") loc = "cuda:{}".format(rank) ckpt = torch.load(ckpt_file, map_location=loc) # load the model state dict model.load_state_dict(ckpt["model"]) logger.info("loaded checkpoint done.") if is_distributed: model = DDP(model, device_ids=[rank]) if args.fuse: logger.info("\tFusing model...") model = fuse_model(model) if args.trt: assert ( not args.fuse and not is_distributed and args.batch_size == 1 ), "TensorRT model is not support model fusing and distributed inferencing!" trt_file = os.path.join(file_name, "model_trt.pth") assert os.path.exists( trt_file ), "TensorRT model is not found!\n Run tools/trt.py first!" model.head.decode_in_inference = False decoder = model.head.decode_outputs else: trt_file = None decoder = None # start evaluate *_, summary = evaluator.evaluate( model, is_distributed, args.fp16, trt_file, decoder, exp.test_size ) logger.info("\n" + summary) if __name__ == "__main__": args = make_parser().parse_args() exp = get_exp(args.exp_file, args.name) exp.merge(args.opts) if not args.experiment_name: args.experiment_name = exp.exp_name num_gpu = torch.cuda.device_count() if args.devices is None else args.devices assert num_gpu <= torch.cuda.device_count() launch( main, num_gpu, args.num_machines, args.machine_rank, backend=args.dist_backend, dist_url=args.dist_url, args=(exp, args, num_gpu), )
[ "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.set_device", "torch.load" ]
1.7
XHYsdjkdsjsk2021/Yolox_xhy
a60f585d4d2bf36f9fa90b0a078efb7b315e0118
1.4
import colorama import spacy import torch import torch.nn.functional as F from nltk.corpus import stopwords from spacy.pipeline import EntityRuler from spacy.tokens import Token from transformers import GPT2Tokenizer from KID.agent import BaseAgent from KID.agent.agent_utils import calc_banned_ngram_tokens, top_k_filter, top_p_filter from KID.envs import BaseEnv from KID.infra import Frame from KID.policy import BasePolicy STOP_WORDS = set(stopwords.words('english')) getter = lambda token: token.is_stop \ or token.lower_ in STOP_WORDS or token.lemma_ in STOP_WORDS Token.set_extension('is_stop', getter=getter, force=True) # set attribute with getter nlp = spacy.load("en_core_web_sm") ruler = EntityRuler(nlp) nlp.add_pipe(ruler) class KIDAgent(BaseAgent): def __init__( self, env: BaseEnv, policy: BasePolicy, is_kid: bool, ): super(KIDAgent, self).__init__() self.env = env self.policy = policy self.is_kid = is_kid self.temperature = 1 self.repetition_penalty = 1 self.banned_ngram_size = 2 self.min_length = 0 self.gm_scale = 0.99 self.top_p = 0.92 self.top_k = 20 self.sampling = True self.color = False self._cur_norm_ids = torch.empty(0) self._cur_kid_ids = torch.empty(0) self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') def forward(self, action: 'Frame') -> 'Frame': # action should have past and last past, last = action['past'], action['last'] if past is None: # initial step action = self.env.step(action) # now action['past'] should not be None self._cur_norm_ids = last if self.is_kid: self._cur_kid_ids = last observation = self.env.step(action) # do the real step with valid action norm_logits = observation['logits'] norm_past = observation['past'] if not self.is_kid: # by default, we are using sampling decoding norm_last_prob = F.softmax(norm_logits[:, -1, :], dim=-1) if self.sampling: norm_last_prob = norm_last_prob[~torch. any(norm_last_prob.isnan(), dim=-1)] norm_last = torch.multinomial(norm_last_prob, num_samples=1) else: # or we can choose greedy decoding _, norm_last = torch.topk(norm_last_prob, k=1, dim=-1) self._cur_norm_ids = norm_last if self._cur_norm_ids is None \ else torch.cat((self._cur_norm_ids, norm_last), dim=1) gen_text_norm = self.tokenizer.decode( self._cur_norm_ids.tolist()[0], skip_special_tokens=True ) observation['last'] = norm_last observation['gen_text'] = gen_text_norm observation['cur_gen_id'] = self._cur_norm_ids return observation else: # if it is for KID norm_last_prob = self.pos_func(norm_logits, is_kid=True) kid_action = self.policy.update_policy( Frame( past=norm_past, last=last, logits=norm_logits, cur_gen_ids=self._cur_kid_ids, is_kid=True, ) ) kid_observation = self.env.step(kid_action) kid_kg_indices = kid_observation['kg_indices'] kid_kg_indices = list(filter(lambda x: len(x) <= 1, kid_kg_indices)) kid_kg_indices = [ind[0] for ind in kid_kg_indices] kid_logits = kid_observation['logits'] kid_last_prob = self.pos_func(kid_logits, is_kid=True) # fuse the two probabilities kid_last_prob = (kid_last_prob** self.gm_scale) * (norm_last_prob**(1 - self.gm_scale)) kid_last_prob = top_k_filter( kid_last_prob, top_k=self.top_k, min_tokens_to_keep=self.min_length, is_probs=True ) kid_last_prob = top_p_filter( kid_last_prob, top_p=self.top_p, min_tokens_to_keep=self.min_length, is_probs=True ) # rescale if torch.sum(kid_last_prob) <= 1: kid_last_prob = kid_last_prob / torch.sum(kid_last_prob) if self.sampling: kid_last_prob = kid_last_prob[~torch. any(kid_last_prob.isnan(), dim=-1)] kid_last = torch.multinomial(kid_last_prob, num_samples=1) else: # or we can choose greedy decoding _, kid_last = torch.topk(kid_last_prob, k=1, dim=-1) self._cur_kid_ids = kid_last if self._cur_kid_ids is None \ else torch.cat((self._cur_kid_ids, kid_last), dim=1) if self.color: gen_text_kid = "" for word_id in self._cur_kid_ids.tolist()[0]: if word_id in kid_kg_indices: gen_text_kid += "{}{}{}".format( colorama.Fore.RED, self.tokenizer.decode([word_id], skip_special_tokens=True), colorama.Style.RESET_ALL, ) else: gen_text_kid += self.tokenizer.decode( [word_id], skip_special_tokens=True ) else: gen_text_kid = self.tokenizer.decode( self._cur_kid_ids.tolist()[0], skip_special_tokens=True ) kid_observation['last'] = kid_last kid_observation['gen_text'] = gen_text_kid kid_observation['cur_gen_id'] = self._cur_kid_ids return kid_observation def pos_func(self, logits: torch.Tensor, is_kid: bool = False) -> torch.Tensor: last_logits = logits[:, -1, :] # load already generated tokens if is_kid: gen_toks_ids = self._cur_kid_ids else: gen_toks_ids = self._cur_norm_ids # repetition penalty for token_idx in set(gen_toks_ids[0].tolist()): if last_logits[0, token_idx] < 0: last_logits[0, token_idx] *= self.repetition_penalty else: last_logits[0, token_idx] /= self.repetition_penalty # ban duplicated ngrams cur_length = gen_toks_ids.size(1) banned_batch_tokens = calc_banned_ngram_tokens( self.banned_ngram_size, gen_toks_ids, cur_length ) # print("banned tokens", banned_batch_tokens) for banned_tokens in enumerate(banned_batch_tokens): last_logits[:, banned_tokens] = -float("inf") # # del banned_batch_tokens # min_length guarantee if cur_length < self.min_length: last_logits[:, self.tokenizer.eos_token_id] = -float("inf") last_prob = F.softmax(last_logits, dim=-1) return last_prob
[ "torch.cat", "torch.sum", "torch.multinomial", "torch.nn.functional.softmax", "torch.empty", "torch.topk" ]
1.4.0
microsoft/KID
a23e9d819b53605b6426170124feed10288c6f8b
1.7
import re from typing import Tuple, List, Iterator, Dict, Any import numpy as np from PIL import Image from numpy.core.fromnumeric import resize import tensorflow as tf from tensorflow import keras import tensorflow.keras.applications as tensorflow_models from tensorflow.keras import layers import thingsvision.cornet as cornet import thingsvision.clip as clip import torch import torch.nn as nn import torch.nn.functional as F from torchvision import transforms as T import torchvision.models as torchvision_models class Model(): def __init__(self, model_name: str, pretrained: bool, device: str, model_path: str=None, backend: str='pt'): """ Parameters ---------- Model_name : str Model name. Name of model for which features should subsequently be extracted. pretrained : bool Whether to load a model with pretrained or randomly initialized weights into memory. device : str Device. Whether model weights should be moved to CUDA or left on the CPU. model_path : str (optional) path/to/weights. If pretrained is set to False, model weights can be loaded from a path on the user's machine. This is useful when operating on a server without network access, or when features should be extracted for a model that was fine-tuned (or trained) on a custom image dataset. backend : str (optional) Deep learning framework that should be used. 'pt' for PyTorch and 'tf' for Tensorflow """ self.model_name = model_name self.backend = backend self.pretrained = pretrained self.device = device self.model_path = model_path self.load_model() def load_model(self) -> Tuple[Any, Any]: """Load a pretrained *torchvision* or CLIP model into memory.""" if self.backend == 'pt': if re.search(r'^clip', self.model_name): clip_model_name = "RN50" if re.search(r'ViT$', self.model_name): clip_model_name = "ViT-B/32" self.model, self.clip_n_px = clip.load( clip_model_name, device=self.device, model_path=self.model_path, pretrained=self.pretrained, jit=False, ) else: device = torch.device(self.device) if re.search(r'^cornet', self.model_name): try: self.model = getattr(cornet, f'cornet_{self.model_name[-1]}') except: self.model = getattr(cornet, f'cornet_{self.model_name[-2:]}') self.model = self.model(pretrained=self.pretrained, map_location=device) self.model = self.model.module # remove DataParallel elif self.model_name == 'vgg16_bn_ecoset': self.model = torchvision_models.vgg16_bn(pretrained=False) self.model.classifier[6] = nn.Linear(4096, 565, bias=True) self.model_path = 'https://osf.io/fe7s5/download' else: self.model = getattr(torchvision_models, self.model_name) self.model = self.model(pretrained=self.pretrained) self.model = self.model.to(device) if self.model_path: try: state_dict = torch.load(self.model_path, map_location=device) except FileNotFoundError: state_dict = torch.hub.load_state_dict_from_url(self.model_path, map_location=device) self.model.load_state_dict(state_dict) self.model.eval() elif self.backend == 'tf': model = getattr(tensorflow_models, self.model_name) if self.pretrained: weights = 'imagenet' elif self.model_path: weights = self.model_path else: weights = None self.model = model(weights=weights) def show(self) -> str: """Show architecture of model to select a layer.""" if re.search(r'^clip', self.model_name): for l, (n, p) in enumerate(self.model.named_modules()): if l > 1: if re.search(r'^visual', n): print(n) print('visual') else: print(self.model) print(f'\nEnter module name for which you would like to extract features:\n') module_name = str(input()) print() return module_name def extract_features( self, data_loader: Iterator, module_name: str, batch_size: int, flatten_acts: bool, clip: bool = False, return_probabilities: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """Extract hidden unit activations (at specified layer) for every image in the database. Parameters ---------- data_loader : Iterator Mini-batches. Iterator with equally sized mini-batches, where each element is a subsample of the full image dataset. module_name : str Layer name. Name of neural network layer for which features should be extraced. flatten_acts : bool Whether activation tensor (e.g., activations from an early layer of the neural network model) should be transformed into a vector. clip : bool (optional) Whether neural network model is a CNN-based torchvision or CLIP-based model. Since CLIP has a different training objective, feature extraction must be performed differently. return_probabilities : bool (optional) Whether class probabilities (softmax predictions) should be returned in addition to the feature matrix and the target vector. Returns ------- output : Tuple[np.ndarray, np.ndarray] OR Tuple[np.ndarray, np.ndarray, np.ndarray] Returns the feature matrix and the target vector OR in addition to the feature matrix and the target vector, the class probabilities. """ features, targets = [], [] if return_probabilities: assert not clip, '\nCannot extract activations for CLIP and return class predictions simultaneously. This feature will be implemented in a future version.\n' probabilities = [] if self.backend == 'pt': if re.search(r'ensemble$', module_name): ensembles = ['conv_ensemble', 'maxpool_ensemble'] assert module_name in ensembles, f'\nIf aggregating filters across layers and subsequently concatenating features, module name must be one of {ensembles}\n' if re.search(r'^conv', module_name): feature_extractor = nn.Conv2d else: feature_extractor = nn.MaxPool2d device = torch.device(self.device) # initialise dictionary to store hidden unit activations on the fly global activations activations = {} # register forward hook to store activations model = self.register_hook() with torch.no_grad(): for i, batch in enumerate(data_loader): batch = (t.to(device) for t in batch) X, y = batch if clip: img_features = model.encode_image(X) if module_name == 'visual': assert torch.unique(activations[module_name] == img_features).item( ), '\nImage features should represent activations in last encoder layer.\n' else: out = model(X) if return_probabilities: probas = F.softmax(out, dim=1) probabilities.append(probas) if re.search(r'ensemble$', module_name): layers = self.enumerate_layers(feature_extractor) act = self.nsemble_featmaps(activations, layers, 'max') else: act = activations[module_name] if flatten_acts: if clip: if re.search(r'attn$', module_name): act = act[0] else: if act.size(0) != X.shape[0] and len(act.shape) == 3: act = act.permute(1, 0, 2) act = act.view(act.size(0), -1) features.append(act.cpu()) targets.extend(y.squeeze(-1).cpu()) elif self.backend == 'tf': for i, batch in enumerate(data_loader): X, y = batch layer_outputs = [self.model.get_layer(module_name).output] activation_model = keras.models.Model(inputs=self.model.input, outputs=layer_outputs) activations = activation_model.predict(X) features.append(activations) targets.extend(y.numpy()) if return_probabilities: out = self.model.predict(X) probas = tf.nn.softmax(out, axis=1) probabilities.append(probas) # stack each mini-batch of hidden activations to obtain an N x F matrix, and flatten targets to yield vector features = np.vstack(features) targets = np.asarray(targets).ravel() if return_probabilities: probabilities = np.vstack(probabilities) assert len(features) == len(targets) == len( probabilities), '\nFeatures, targets, and probabilities must correspond to the same number of images.\n' return features, targets, probabilities assert len(features) == len( targets), '\nFeatures and targets must correspond to the same number of images.\n' print(f'...Features successfully extracted for all {len(features)} images in the database.') print(f'...Features shape: {features.shape}') return features, targets def enumerate_layers(self, feature_extractor) -> List[int]: layers = [] k = 0 for n, m in self.model.named_modules(): if re.search(r'\d+$', n): if isinstance(m, feature_extractor): layers.append(k) k += 1 return layers def ensemble_featmaps( self, activations: dict, layers: list, pooling: str = 'max', alpha: float = 3., beta: float = 5., ) -> torch.Tensor: """Concatenate globally (max or average) pooled feature maps.""" acts = [activations[''.join(('features.', str(l)))] for l in layers] func = torch.max if pooling == 'max' else torch.mean pooled_acts = [torch.tensor([list(map(func, featmaps)) for featmaps in acts_i]) for acts_i in acts] # upweight second-to-last conv layer by 5. pooled_acts[-2] = pooled_acts[-2] * alpha # upweight last conv layer by 10. pooled_acts[-1] = pooled_acts[-1] * beta stacked_acts = torch.cat(pooled_acts, dim=1) return stacked_acts def get_activation(self, name): """Store hidden unit activations at each layer of model.""" def hook(model, input, output): try: activations[name] = output.detach() except AttributeError: activations[name] = output return hook def register_hook(self): """Register a forward hook to store activations.""" for n, m in self.model.named_modules(): m.register_forward_hook(self.get_activation(n)) return self.model def get_transformations(self, resize_dim: int = 256, crop_dim: int = 224): if re.search(r'^clip', self.model_name): if self.backend != 'pt': raise Exception("You need to use Tensorflow 'tf' as backend if you want to use the CLIP model.") composition = T.Compose([ T.Resize(self.clip_n_px, interpolation=Image.BICUBIC), T.CenterCrop(self.clip_n_px), lambda image: image.convert("RGB"), T.ToTensor(), T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) return composition mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] if self.backend == 'pt': normalize = T.Normalize(mean=mean, std=std) composition = T.Compose([T.Resize(resize_dim), T.CenterCrop(crop_dim), T.ToTensor(), normalize]) return composition elif self.backend == 'tf': resize_dim = crop_dim resize_crop_and_normalize = tf.keras.Sequential([ layers.experimental.preprocessing.Resizing(resize_dim, resize_dim), #layers.experimental.preprocessing.CenterCrop(crop_dim, crop_dim) layers.experimental.preprocessing.Normalization(mean=mean, variance=[std_ * std_ for std_ in std]) ]) return resize_crop_and_normalize
[ "torch.nn.Linear", "torch.device", "torch.cat", "torch.unique", "torch.no_grad", "torch.hub.load_state_dict_from_url", "torch.load", "torch.nn.functional.softmax" ]
1.7.1
ViCCo-Group/THINGSvision
27273564631605639287f9b3bd3c57ba8cdb720f
1.4
import argparse import torch import warnings from argformat import StructuredFormatter from .preprocessor import Preprocessor from .tiresias import Tiresias if __name__ == "__main__": ######################################################################## # Parse arguments # ######################################################################## # Parse arguments parser = argparse.ArgumentParser( prog = "tiresias.py", description = "Tiresias: Predicting Security Events Through Deep Learning", formatter_class=StructuredFormatter ) # Add Tiresias mode arguments, run in different modes parser.add_argument('mode', help="mode in which to run Tiresias", choices=( 'train', 'predict', )) # Add input arguments group_input = parser.add_argument_group("Input parameters") group_input.add_argument('--csv' , help="CSV events file to process") group_input.add_argument('--txt' , help="TXT events file to process") group_input.add_argument('--length' , type=int , default=20 , help="sequence LENGTH ") group_input.add_argument('--timeout' , type=float, default=float('inf'), help="sequence TIMEOUT (seconds)") # Tiresias group_tiresias = parser.add_argument_group("Tiresias parameters") group_tiresias.add_argument( '--hidden', type=int, default=128, help='hidden dimension') group_tiresias.add_argument('-i', '--input' , type=int, default=300, help='input dimension') group_tiresias.add_argument('-k', '--k' , type=int, default=4 , help='number of concurrent memory cells') group_tiresias.add_argument('-o', '--online', action='store_true' , help='use online training while predicting') group_tiresias.add_argument('-t', '--top' , type=int, default=1 , help='accept any of the TOP predictions') group_tiresias.add_argument('--save', help="save Tiresias to specified file") group_tiresias.add_argument('--load', help="load Tiresias from specified file") # Training group_training = parser.add_argument_group("Training parameters") group_training.add_argument('-b', '--batch-size', type=int, default=128, help="batch size") group_training.add_argument('-d', '--device' , default='auto' , help="train using given device (cpu|cuda|auto)") group_training.add_argument('-e', '--epochs' , type=int, default=10, help="number of epochs to train with") # Parse arguments args = parser.parse_args() ######################################################################## # Load data # ######################################################################## # Set device if args.device is None or args.device == 'auto': args.device = 'cuda' if torch.cuda.is_available() else 'cpu' # Create preprocessor preprocessor = Preprocessor( length = args.length, timeout = args.timeout, ) # Load files if args.csv is not None and args.txt is not None: # Raise an error if both csv and txt are specified raise ValueError("Please specify EITHER --csv OR --txt.") if args.csv: # Load csv file X, y, label, mapping = preprocessor.csv(args.csv) elif args.txt: # Load txt file X, y, label, mapping = preprocessor.txt(args.txt) X = X.to(args.device) y = y.to(args.device) ######################################################################## # Tiresias # ######################################################################## # Create instance of Tiresias tiresias = Tiresias( input_size = args.input, hidden_size = args.hidden, output_size = args.input, k = args.k, ).to(args.device) # Load Tiresias from file, if necessary if args.load: tiresias = Tiresias.load(args.load).to(args.device) # Train Tiresias if args.mode == "train": # Print warning if training Tiresias without saving it if args.save is None: warnings.warn("Training Tiresias without saving it to output.") # Fit Tiresias with data tiresias.fit( X = X, y = y, epochs = args.epochs, batch_size = args.batch_size, ) # Save Tiresias to file if args.save: tiresias.save(args.save) # Predict with Tiresias if args.mode == "predict": if args.online: y_pred, confidence = tiresias.predict_online(X, y, k=args.top) else: y_pred, confidence = tiresias.predict(X, k=args.top) #################################################################### # Show predictions # #################################################################### # Initialise predictions y_pred_top = y_pred[:, 0].clone() # Compute top TOP predictions for top in range(1, args.top): print(top, y_pred.shape) # Get mask mask = y == y_pred[:, top] # Set top values y_pred_top[mask] = y[mask] from sklearn.metrics import classification_report print(classification_report(y.cpu(), y_pred_top.cpu(), digits=4))
[ "torch.cuda.is_available" ]
1.4.0
Thijsvanede/Tiresias
b007e19fb1bb5d073001aa156673c9dd382f939a
1.5
import os import json import argparse import math import torch from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.multiprocessing as mp import torch.distributed as dist from apex.parallel import DistributedDataParallel as DDP from apex import amp from data_utils import TextMelLoader, TextMelCollate import models import commons import utils global_step = 0 def main(): """Assume Single Node Multi GPUs Training Only""" assert torch.cuda.is_available(), "CPU training is not allowed." n_gpus = torch.cuda.device_count() os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "80000" hps = utils.get_hparams() mp.spawn( train_and_eval, nprocs=n_gpus, args=( n_gpus, hps, ), ) def train_and_eval(rank, n_gpus, hps): global global_step if rank == 0: logger = utils.get_logger(hps.log_dir) logger.info(hps) utils.check_git_hash(hps.log_dir) writer = SummaryWriter(log_dir=hps.log_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.log_dir, "eval")) dist.init_process_group( backend="nccl", init_method="env://", world_size=n_gpus, rank=rank ) torch.manual_seed(hps.train.seed) torch.cuda.set_device(rank) train_dataset = TextMelLoader(hps.data.training_files, hps.data) train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=n_gpus, rank=rank, shuffle=True ) collate_fn = TextMelCollate(1) train_loader = DataLoader( train_dataset, num_workers=8, shuffle=False, batch_size=hps.train.batch_size, pin_memory=True, drop_last=True, collate_fn=collate_fn, sampler=train_sampler, ) if rank == 0: val_dataset = TextMelLoader(hps.data.validation_files, hps.data) val_loader = DataLoader( val_dataset, num_workers=8, shuffle=False, batch_size=hps.train.batch_size, pin_memory=True, drop_last=True, collate_fn=collate_fn, ) symbols = hps.data.punc + hps.data.chars generator = models.FlowGenerator( n_vocab=len(symbols) + getattr(hps.data, "add_blank", False), out_channels=hps.data.n_mel_channels, **hps.model ).cuda(rank) optimizer_g = commons.Adam( generator.parameters(), scheduler=hps.train.scheduler, dim_model=hps.model.hidden_channels, warmup_steps=hps.train.warmup_steps, lr=hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps, ) if hps.train.fp16_run: generator, optimizer_g._optim = amp.initialize( generator, optimizer_g._optim, opt_level="O1" ) generator = DDP(generator) epoch_str = 1 global_step = 0 try: _, _, _, epoch_str = utils.load_checkpoint( utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), generator, optimizer_g, ) epoch_str += 1 optimizer_g.step_num = (epoch_str - 1) * len(train_loader) optimizer_g._update_learning_rate() global_step = (epoch_str - 1) * len(train_loader) except: if hps.train.ddi and os.path.isfile(os.path.join(hps.model_dir, "ddi_G.pth")): _ = utils.load_checkpoint( os.path.join(hps.model_dir, "ddi_G.pth"), generator, optimizer_g ) for epoch in range(epoch_str, hps.train.epochs + 1): if rank == 0: train( rank, epoch, hps, generator, optimizer_g, train_loader, logger, writer ) evaluate( rank, epoch, hps, generator, optimizer_g, val_loader, logger, writer_eval, ) if epoch % hps.train.save_epoch == 0: utils.save_checkpoint( generator, optimizer_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(epoch)), ) else: train(rank, epoch, hps, generator, optimizer_g, train_loader, None, None) def train(rank, epoch, hps, generator, optimizer_g, train_loader, logger, writer): train_loader.sampler.set_epoch(epoch) global global_step generator.train() for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(train_loader): x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda( rank, non_blocking=True ) y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( rank, non_blocking=True ) # Train Generator optimizer_g.zero_grad() ( (z, z_m, z_logs, logdet, z_mask), (x_m, x_logs, x_mask), (attn, logw, logw_), ) = generator(x, x_lengths, y, y_lengths, gen=False) l_mle = commons.mle_loss(z, z_m, z_logs, logdet, z_mask) l_length = commons.duration_loss(logw, logw_, x_lengths) loss_gs = [l_mle, l_length] loss_g = sum(loss_gs) if hps.train.fp16_run: with amp.scale_loss(loss_g, optimizer_g._optim) as scaled_loss: scaled_loss.backward() grad_norm = commons.clip_grad_value_( amp.master_params(optimizer_g._optim), 5 ) else: loss_g.backward() grad_norm = commons.clip_grad_value_(generator.parameters(), 5) optimizer_g.step() if rank == 0: if batch_idx % hps.train.log_interval == 0: (y_gen, *_), *_ = generator.module(x[:1], x_lengths[:1], gen=True) logger.info( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(x), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss_g.item(), ) ) logger.info( [x.item() for x in loss_gs] + [global_step, optimizer_g.get_lr()] ) scalar_dict = { "loss/g/total": loss_g, "learning_rate": optimizer_g.get_lr(), "grad_norm": grad_norm, } scalar_dict.update( {"loss/g/{}".format(i): v for i, v in enumerate(loss_gs)} ) utils.summarize( writer=writer, global_step=global_step, images={ "y_org": utils.plot_spectrogram_to_numpy( y[0].data.cpu().numpy() ), "y_gen": utils.plot_spectrogram_to_numpy( y_gen[0].data.cpu().numpy() ), "attn": utils.plot_alignment_to_numpy( attn[0, 0].data.cpu().numpy() ), }, scalars=scalar_dict, ) global_step += 1 if rank == 0: logger.info("====> Epoch: {}".format(epoch)) def evaluate(rank, epoch, hps, generator, optimizer_g, val_loader, logger, writer_eval): if rank == 0: global global_step generator.eval() losses_tot = [] with torch.no_grad(): for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(val_loader): x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda( rank, non_blocking=True ) y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( rank, non_blocking=True ) ( (z, z_m, z_logs, logdet, z_mask), (x_m, x_logs, x_mask), (attn, logw, logw_), ) = generator(x, x_lengths, y, y_lengths, gen=False) l_mle = commons.mle_loss(z, z_m, z_logs, logdet, z_mask) l_length = commons.duration_loss(logw, logw_, x_lengths) loss_gs = [l_mle, l_length] loss_g = sum(loss_gs) if batch_idx == 0: losses_tot = loss_gs else: losses_tot = [x + y for (x, y) in zip(losses_tot, loss_gs)] if batch_idx % hps.train.log_interval == 0: logger.info( "Eval Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(x), len(val_loader.dataset), 100.0 * batch_idx / len(val_loader), loss_g.item(), ) ) logger.info([x.item() for x in loss_gs]) losses_tot = [x / len(val_loader) for x in losses_tot] loss_tot = sum(losses_tot) scalar_dict = {"loss/g/total": loss_tot} scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_tot)}) utils.summarize( writer=writer_eval, global_step=global_step, scalars=scalar_dict ) logger.info("====> Epoch: {}".format(epoch)) if __name__ == "__main__": main()
[ "torch.distributed.init_process_group", "torch.no_grad", "torch.multiprocessing.spawn", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.set_device", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.utils.data.distributed.DistributedSampler", "torch.utils.tensorboard.SummaryWriter" ]
1.5.1
techthiyanes/vakyansh-tts
b090eb0aa3b36cf19de99902da7caef959dad45b
1.10
"""Utility function for the PPO-based safe explorer. """ import numpy as np import torch import torch.nn as nn from gym.spaces import Box from safe_control_gym.math_and_models.neural_networks import MLP, CNN, RNN, init_ from safe_control_gym.math_and_models.distributions import Normal, Categorical import safe_control_gym.controllers.ppo.ppo_utils as ppo_utils class SafePPOAgent(ppo_utils.PPOAgent): """A PPO class that encapsulates models, optimizers and update functions. """ def __init__(self, obs_space, act_space, hidden_dim=64, use_clipped_value=False, clip_param=0.2, target_kl=0.01, entropy_coef=0.01, actor_lr=0.0003, critic_lr=0.001, opt_epochs=10, mini_batch_size=64, action_modifier=None, **kwargs ): # Parameters. self.obs_space = obs_space self.act_space = act_space self.use_clipped_value = use_clipped_value self.clip_param = clip_param self.target_kl = target_kl self.entropy_coef = entropy_coef self.opt_epochs = opt_epochs self.mini_batch_size = mini_batch_size # Model. self.ac = MLPActorCritic(obs_space, act_space, hidden_dims=[hidden_dim] * 2, activation="tanh", action_modifier=action_modifier) # Optimizers. self.actor_opt = torch.optim.Adam(self.ac.actor.parameters(), actor_lr) self.critic_opt = torch.optim.Adam(self.ac.critic.parameters(), critic_lr) def compute_policy_loss(self, batch): """Returns policy loss(es) given batch of data. """ obs, act, logp_old, adv, c = batch["obs"], batch["act"], batch["logp"], batch["adv"], batch["c"] dist, logp = self.ac.actor(obs, act, c=c) # Policy. ratio = torch.exp(logp - logp_old) clip_adv = torch.clamp(ratio, 1 - self.clip_param, 1 + self.clip_param) * adv policy_loss = -torch.min(ratio * adv, clip_adv).mean() # Entropy. entropy_loss = -dist.entropy().mean() # KL/trust region. approx_kl = (logp_old - logp).mean() return policy_loss, entropy_loss, approx_kl class MLPActor(nn.Module): """Actor model. """ def __init__(self, obs_dim, act_dim, hidden_dims, activation, discrete=False, action_modifier=None ): """ """ super().__init__() self.pi_net = MLP(obs_dim, act_dim, hidden_dims, activation) # Construct output action distribution. self.discrete = discrete if discrete: self.dist_fn = lambda x: Categorical(logits=x) else: self.logstd = nn.Parameter(-0.5 * torch.ones(act_dim)) self.dist_fn = lambda x: Normal(x, self.logstd.exp()) # Safety filter. self.action_modifier = action_modifier def forward(self, obs, act=None, c=None ): """ """ mu = self.pi_net(obs) # Filter action if needed. if self.action_modifier: if len(mu.shape) == 1: # During evalution or single env runs. mu_safe = self.action_modifier(obs.unsqueeze(0), mu.unsqueeze(0), c.unsqueeze(0)).view(-1) else: # During training or vectorized runs. mu_safe = self.action_modifier(obs, mu, c) else: mu_safe = mu dist = self.dist_fn(mu_safe) logp_a = None if act is not None: logp_a = dist.log_prob(act) return dist, logp_a class MLPActorCritic(ppo_utils.MLPActorCritic): """Model for the actor-critic agent. Attributes: actor (MLPActor): policy network. critic (MLPCritic): value network. """ def __init__(self, obs_space, act_space, hidden_dims=(64, 64), activation="tanh", action_modifier=None ): """ """ nn.Module.__init__(self) obs_dim = obs_space.shape[0] if isinstance(act_space, Box): act_dim = act_space.shape[0] discrete = False else: act_dim = act_space.n discrete = True # Policy. self.actor = MLPActor(obs_dim, act_dim, hidden_dims, activation, discrete, action_modifier) # Value function. self.critic = ppo_utils.MLPCritic(obs_dim, hidden_dims, activation) def step(self, obs, c=None ): """ """ dist, _ = self.actor(obs, c=c) a = dist.sample() logp_a = dist.log_prob(a) v = self.critic(obs) return a.numpy(), v.numpy(), logp_a.numpy() def act(self, obs, c=None ): """ """ dist, _ = self.actor(obs, c=c) a = dist.mode() return a.numpy() class SafePPOBuffer(ppo_utils.PPOBuffer): """Storage for a batch of episodes during training. Attributes: max_length (int): maximum length of episode. batch_size (int): number of episodes per batch. scheme (dict): describs shape & other info of data to be stored. keys (list): names of all data from scheme. """ def __init__(self, obs_space, act_space, num_constraints, max_length, batch_size ): """ """ self.max_length = max_length self.batch_size = batch_size T, N = max_length, batch_size obs_dim = obs_space.shape if isinstance(act_space, Box): act_dim = act_space.shape[0] else: act_dim = act_space.n self.scheme = { "obs": { "vshape": (T, N, *obs_dim) }, "act": { "vshape": (T, N, act_dim) }, "rew": { "vshape": (T, N, 1) }, "mask": { "vshape": (T, N, 1), "init": np.ones }, "v": { "vshape": (T, N, 1) }, "logp": { "vshape": (T, N, 1) }, "ret": { "vshape": (T, N, 1) }, "adv": { "vshape": (T, N, 1) }, "terminal_v": { "vshape": (T, N, 1) }, "c": { "vshape": (T, N, num_constraints) }, } self.keys = list(self.scheme.keys()) self.reset()
[ "torch.min", "torch.nn.Module.__init__", "torch.clamp", "torch.ones", "torch.exp" ]
1.10.2
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
1.9
from pathlib import Path from typing import Optional, Dict, List, Type, Any, Union import pytorch_lightning as pl import torch from torch import nn as nn from torchmetrics import Metric from schnetpack.model.base import AtomisticModel __all__ = ["ModelOutput", "AtomisticTask"] class ModelOutput(nn.Module): """ Defines an output of a model, including mappings to a loss function and weight for training and metrics to be logged. """ def __init__( self, name: str, loss_fn: Optional[nn.Module] = None, loss_weight: float = 1.0, metrics: Optional[Dict[str, Metric]] = None, target_property: Optional[str] = None, ): """ Args: name: name of output in results dict target_property: Name of target in training batch. Only required for supervised training. If not given, the output name is assumed to also be the target name. loss_fn: function to compute the loss loss_weight: loss weight in the composite loss: $l = w_1 l_1 + \dots + w_n l_n$ metrics: dictionary of metrics with names as keys """ super().__init__() self.name = name self.target_property = target_property or name self.loss_fn = loss_fn self.loss_weight = loss_weight self.metrics = nn.ModuleDict(metrics) def calculate_loss(self, pred, target): if self.loss_weight == 0 or self.loss_fn is None: return 0.0 loss = self.loss_weight * self.loss_fn( pred[self.name], target[self.target_property] ) return loss def calculate_metrics(self, pred, target): metrics = { metric_name: metric(pred[self.name], target[self.target_property]) for metric_name, metric in self.metrics.items() } return metrics class AtomisticTask(pl.LightningModule): """ The basic learning task in SchNetPack, which ties model, loss and optimizer together. """ def __init__( self, model: AtomisticModel, outputs: List[ModelOutput], optimizer_cls: Type[torch.optim.Optimizer] = torch.optim.Adam, optimizer_args: Optional[Dict[str, Any]] = None, scheduler_cls: Optional[Type] = None, scheduler_args: Optional[Dict[str, Any]] = None, scheduler_monitor: Optional[str] = None, warmup_steps: int = 0, ): """ Args: model: the neural network model outputs: list of outputs an optional loss functions optimizer_cls: type of torch optimizer,e.g. torch.optim.Adam optimizer_args: dict of optimizer keyword arguments scheduler_cls: type of torch learning rate scheduler scheduler_args: dict of scheduler keyword arguments scheduler_monitor: name of metric to be observed for ReduceLROnPlateau warmup_steps: number of steps used to increase the learning rate from zero linearly to the target learning rate at the beginning of training """ super().__init__() self.model = model self.optimizer_cls = optimizer_cls self.optimizer_kwargs = optimizer_args self.scheduler_cls = scheduler_cls self.scheduler_kwargs = scheduler_args self.schedule_monitor = scheduler_monitor self.outputs = nn.ModuleList(outputs) self.grad_enabled = len(self.model.required_derivatives) > 0 self.lr = optimizer_args["lr"] self.warmup_steps = warmup_steps def setup(self, stage=None): if stage == "fit": self.model.initialize_postprocessors(self.trainer.datamodule) def forward(self, inputs: Dict[str, torch.Tensor]): results = self.model(inputs) return results def loss_fn(self, pred, batch): loss = 0.0 for output in self.outputs: loss += output.calculate_loss(pred, batch) return loss def log_metrics(self, pred, targets, subset): for output in self.outputs: for metric_name, metric in output.calculate_metrics(pred, targets).items(): self.log( f"{subset}_{output.name}_{metric_name}", metric, on_step=False, on_epoch=True, prog_bar=False, ) def training_step(self, batch, batch_idx): targets = { output.target_property: batch[output.target_property] for output in self.outputs } pred = self.predict_without_postprocessing(batch) loss = self.loss_fn(pred, targets) self.log("train_loss", loss, on_step=True, on_epoch=False, prog_bar=False) self.log_metrics(targets, pred, "train") return loss def validation_step(self, batch, batch_idx): torch.set_grad_enabled(self.grad_enabled) targets = { output.target_property: batch[output.target_property] for output in self.outputs } pred = self.predict_without_postprocessing(batch) loss = self.loss_fn(pred, targets) self.log("val_loss", loss, on_step=False, on_epoch=True, prog_bar=True) self.log_metrics(targets, pred, "val") return {"val_loss": loss} def test_step(self, batch, batch_idx): torch.set_grad_enabled(self.grad_enabled) targets = { output.target_property: batch[output.target_property] for output in self.outputs } pred = self.predict_without_postprocessing(batch) loss = self.loss_fn(pred, targets) self.log("test_loss", loss, on_step=False, on_epoch=True, prog_bar=True) self.log_metrics(targets, pred, "test") return {"test_loss": loss} def predict_without_postprocessing(self, batch): pp = self.model.do_postprocessing self.model.do_postprocessing = False pred = self(batch) self.model.do_postprocessing = pp return pred def configure_optimizers(self): optimizer = self.optimizer_cls( params=self.parameters(), **self.optimizer_kwargs ) if self.scheduler_cls: schedulers = [] schedule = self.scheduler_cls(optimizer=optimizer, **self.scheduler_kwargs) optimconf = {"scheduler": schedule, "name": "lr_schedule"} if self.schedule_monitor: optimconf["monitor"] = self.schedule_monitor schedulers.append(optimconf) return [optimizer], schedulers else: return optimizer def optimizer_step( self, epoch: int = None, batch_idx: int = None, optimizer=None, optimizer_idx: int = None, optimizer_closure=None, on_tpu: bool = None, using_native_amp: bool = None, using_lbfgs: bool = None, ): if self.trainer.global_step < self.warmup_steps: lr_scale = min(1.0, float(self.trainer.global_step + 1) / self.warmup_steps) for pg in optimizer.param_groups: pg["lr"] = lr_scale * self.lr # update params optimizer.step(closure=optimizer_closure)
[ "torch.nn.ModuleDict", "torch.set_grad_enabled", "torch.nn.ModuleList" ]
1.9
sxie22/schnetpack
a421e7c121c7bdb2838fb30f887812110ecfa3c6
1.6
import torch import torch.nn.functional as F from torch import nn from vit_pytorch.vit import ViT from vit_pytorch.t2t import T2TViT from vit_pytorch.efficient import ViT as EfficientViT from einops import rearrange, repeat # helpers def exists(val): return val is not None # classes class DistillMixin: def forward(self, img, distill_token = None): distilling = exists(distill_token) x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim = 1) x += self.pos_embedding[:, :(n + 1)] if distilling: distill_tokens = repeat(distill_token, '() n d -> b n d', b = b) x = torch.cat((x, distill_tokens), dim = 1) x = self._attend(x) if distilling: x, distill_tokens = x[:, :-1], x[:, -1] x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) out = self.mlp_head(x) if distilling: return out, distill_tokens return out class DistillableViT(DistillMixin, ViT): def __init__(self, *args, **kwargs): super(DistillableViT, self).__init__(*args, **kwargs) self.args = args self.kwargs = kwargs self.dim = kwargs['dim'] self.num_classes = kwargs['num_classes'] def to_vit(self): v = ViT(*self.args, **self.kwargs) v.load_state_dict(self.state_dict()) return v def _attend(self, x): x = self.dropout(x) x = self.transformer(x) return x class DistillableT2TViT(DistillMixin, T2TViT): def __init__(self, *args, **kwargs): super(DistillableT2TViT, self).__init__(*args, **kwargs) self.args = args self.kwargs = kwargs self.dim = kwargs['dim'] self.num_classes = kwargs['num_classes'] def to_vit(self): v = T2TViT(*self.args, **self.kwargs) v.load_state_dict(self.state_dict()) return v def _attend(self, x): x = self.dropout(x) x = self.transformer(x) return x class DistillableEfficientViT(DistillMixin, EfficientViT): def __init__(self, *args, **kwargs): super(DistillableEfficientViT, self).__init__(*args, **kwargs) self.args = args self.kwargs = kwargs self.dim = kwargs['dim'] self.num_classes = kwargs['num_classes'] def to_vit(self): v = EfficientViT(*self.args, **self.kwargs) v.load_state_dict(self.state_dict()) return v def _attend(self, x): return self.transformer(x) # knowledge distillation wrapper class DistillWrapper(nn.Module): def __init__( self, *, teacher, student, temperature = 1., alpha = 0.5, hard = False ): super().__init__() assert (isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT))) , 'student must be a vision transformer' self.teacher = teacher self.student = student dim = student.dim num_classes = student.num_classes self.temperature = temperature self.alpha = alpha self.hard = hard self.distillation_token = nn.Parameter(torch.randn(1, 1, dim)) self.distill_mlp = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img, labels, temperature = None, alpha = None, **kwargs): b, *_ = img.shape alpha = alpha if exists(alpha) else self.alpha T = temperature if exists(temperature) else self.temperature with torch.no_grad(): teacher_logits = self.teacher(img) student_logits, distill_tokens = self.student(img, distill_token = self.distillation_token, **kwargs) distill_logits = self.distill_mlp(distill_tokens) loss = F.cross_entropy(student_logits, labels) if not self.hard: distill_loss = F.kl_div( F.log_softmax(distill_logits / T, dim = -1), F.softmax(teacher_logits / T, dim = -1).detach(), reduction = 'batchmean') distill_loss *= T ** 2 else: teacher_labels = teacher_logits.argmax(dim = -1) distill_loss = F.cross_entropy(distill_logits, teacher_labels) return loss * (1 - alpha) + distill_loss * alpha
[ "torch.nn.Linear", "torch.cat", "torch.nn.LayerNorm", "torch.no_grad", "torch.nn.functional.log_softmax", "torch.nn.functional.cross_entropy", "torch.nn.functional.softmax", "torch.randn" ]
1.6
zarszz/vit-pytorch
d93cd84ccdb338572fe978c08bd95ca93bee11cc
1.0
import os import torch from torchvision import utils class Visualizer(): def __init__(self, netG, device, out, num_samples=10, num_columns=None, batch_size=100, range=(-1, 1)): self.netG = netG self.device = device self.out = out self.num_samples = num_samples if num_columns is None: self.num_columns = self.netG.num_classes else: self.num_columns = num_columns self.batch_size = batch_size self.range = range z_base = netG.sample_z(num_samples).to(device) z = z_base.clone().unsqueeze(1).repeat(1, self.num_columns, 1) self.fixed_z = z.view(-1, netG.latent_dim) def visualize(self, iteration): netG = self.netG netG.eval() with torch.no_grad(): y = torch.arange(self.num_columns).repeat(self.num_samples).to( self.device) if y.size(0) < self.batch_size: x = netG(self.fixed_z, y) else: xs = [] for i in range(0, y.size(0), self.batch_size): x = netG(self.fixed_z[i:i + self.batch_size], y[i:i + self.batch_size]) xs.append(x) x = torch.cat(xs, dim=0) utils.save_image(x.detach(), os.path.join(self.out, 'samples_iter_%d.png' % iteration), self.num_columns, 0, normalize=True, range=self.range)
[ "torch.no_grad", "torch.cat", "torch.arange" ]
1.0.1
takuhirok/rGAN
6f7a092de5814c662fd17224b3d48bebe7e03c2f
1.2
#!/usr/bin/env python3 from typing import Any, Callable, List, Tuple, Union import torch from torch.nn import Module from captum.log import log_usage from ...._utils.common import _verify_select_column from ...._utils.typing import BaselineType, TensorOrTupleOfTensorsGeneric from ..._utils.attribution import NeuronAttribution, PerturbationAttribution from ..._utils.gradient import _forward_layer_eval from ..feature_ablation import FeatureAblation class NeuronFeatureAblation(NeuronAttribution, PerturbationAttribution): r""" A perturbation based approach to computing neuron attribution, involving replacing each input feature with a given baseline / reference, and computing the difference in the neuron's input / output. By default, each scalar value within each input tensor is taken as a feature and replaced independently. Passing a feature mask, allows grouping features to be ablated together. This can be used in cases such as images, where an entire segment or region can be ablated, measuring the importance of the segment (feature group). Each input scalar in the group will be given the same attribution value equal to the change in target as a result of ablating the entire feature group. """ def __init__( self, forward_func: Callable, layer: Module, device_ids: Union[None, List[int]] = None, ) -> None: r""" Args: forward_func (callable): The forward function of the model or any modification of it layer (torch.nn.Module): Layer for which attributions are computed. Attributions for a particular neuron in the input or output of this layer are computed using the argument neuron_index in the attribute method. Currently, it is assumed that the inputs or the outputs of the layer, depending on which one is used for attribution, can only be a single tensor. device_ids (list(int)): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, then it is not necessary to provide this argument. """ NeuronAttribution.__init__(self, forward_func, layer, device_ids) PerturbationAttribution.__init__(self, forward_func) @log_usage() def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, neuron_index: Union[int, Tuple[int, ...]], baselines: BaselineType = None, additional_forward_args: Any = None, feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, attribute_to_neuron_input: bool = False, perturbations_per_eval: int = 1, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: inputs (tensor or tuple of tensors): Input for which neuron attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. neuron_index (int or tuple): Index of neuron in output of given layer for which attribution is desired. The length of this tuple must be one less than the number of dimensions in the output of the given layer (since dimension 0 corresponds to number of examples). An integer may be provided instead of a tuple of length 1. baselines (scalar, tensor, tuple of scalars or tensors, optional): Baselines define reference value which replaces each feature when ablated. Baselines can be provided as: - a single tensor, if inputs is a single tensor, with exactly the same dimensions as inputs or broadcastable to match the dimensions of inputs - a single scalar, if inputs is a single tensor, which will be broadcasted for each input value in input tensor. - a tuple of tensors or scalars, the baseline corresponding to each tensor in the inputs' tuple can be: - either a tensor with matching dimensions to corresponding tensor in the inputs' tuple or the first dimension is one and the remaining dimensions match with the corresponding input tensor. - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None additional_forward_args (any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None feature_mask (tensor or tuple of tensors, optional): feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should be the same size as the corresponding input or broadcastable to match the input tensor. Each tensor should contain integers in the range 0 to num_features - 1, and indices corresponding to the same feature should have the same value. Note that features within each input tensor are ablated independently (not across tensors). If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature, which is ablated independently. Default: None attribute_to_neuron_input (bool, optional): Indicates whether to compute the attributions with respect to the neuron input or output. If `attribute_to_neuron_input` is set to True then the attributions will be computed with respect to neuron's inputs, otherwise it will be computed with respect to neuron's outputs. Note that currently it is assumed that either the input or the output of internal neurons, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False perturbations_per_eval (int, optional): Allows ablation of multiple features to be processed simultaneously in one call to forward_fn. Each forward pass will contain a maximum of perturbations_per_eval * #examples samples. For DataParallel models, each batch is split among the available devices, so evaluations on each available device contain at most (perturbations_per_eval * #examples) / num_devices samples. Default: 1 Returns: *tensor* or tuple of *tensors* of **attributions**: - **attributions** (*tensor* or tuple of *tensors*): Attributions of particular neuron with respect to each input feature. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Examples:: >>> # SimpleClassifier takes a single input tensor of size Nx4x4, >>> # and returns an Nx3 tensor of class probabilities. >>> # It contains an attribute conv1, which is an instance of nn.conv2d, >>> # and the output of this layer has dimensions Nx12x3x3. >>> net = SimpleClassifier() >>> # Generating random input with size 2 x 4 x 4 >>> input = torch.randn(2, 4, 4) >>> # Defining NeuronFeatureAblation interpreter >>> ablator = NeuronFeatureAblation(net, net.conv1) >>> # To compute neuron attribution, we need to provide the neuron >>> # index for which attribution is desired. Since the layer output >>> # is Nx12x3x3, we need a tuple in the form (0..11,0..2,0..2) >>> # which indexes a particular neuron in the layer output. >>> # For this example, we choose the index (4,1,2). >>> # Computes neuron gradient for neuron with >>> # index (4,1,2). >>> # Computes ablation attribution, ablating each of the 16 >>> # scalar inputs independently. >>> attr = ablator.attribute(input, neuron_index=(4,1,2)) >>> # Alternatively, we may want to ablate features in groups, e.g. >>> # grouping each 2x2 square of the inputs and ablating them together. >>> # This can be done by creating a feature mask as follows, which >>> # defines the feature groups, e.g.: >>> # +---+---+---+---+ >>> # | 0 | 0 | 1 | 1 | >>> # +---+---+---+---+ >>> # | 0 | 0 | 1 | 1 | >>> # +---+---+---+---+ >>> # | 2 | 2 | 3 | 3 | >>> # +---+---+---+---+ >>> # | 2 | 2 | 3 | 3 | >>> # +---+---+---+---+ >>> # With this mask, all inputs with the same value are ablated >>> # simultaneously, and the attribution for each input in the same >>> # group (0, 1, 2, and 3) per example are the same. >>> # The attributions can be calculated as follows: >>> # feature mask has dimensions 1 x 4 x 4 >>> feature_mask = torch.tensor([[[0,0,1,1],[0,0,1,1], >>> [2,2,3,3],[2,2,3,3]]]) >>> attr = ablator.attribute(input, neuron_index=(4,1,2), >>> feature_mask=feature_mask) """ def neuron_forward_func(*args: Any): with torch.no_grad(): layer_eval, _ = _forward_layer_eval( self.forward_func, args, self.layer, device_ids=self.device_ids, attribute_to_layer_input=attribute_to_neuron_input, ) assert len(layer_eval) == 1, ( "Layers with multiple inputs /" " outputs are not supported for neuron ablation." ) return _verify_select_column(layer_eval[0], neuron_index) ablator = FeatureAblation(neuron_forward_func) # NOTE: using __wrapped__ to not log return ablator.attribute.__wrapped__( ablator, # self inputs, baselines=baselines, additional_forward_args=additional_forward_args, feature_mask=feature_mask, perturbations_per_eval=perturbations_per_eval, )
[ "torch.no_grad" ]
1.2
caraya10/captum
258928905875c18e85a2413b3bb97def1bfb730a
1.6
# Copyright (c) Facebook, Inc. and its affiliates. # MMBTModel, ModalEmbeddings is copied from [1] # as we have internal dependency on transformers v2.3. # These will be removed when we upgrade to package v2.5+. # [1]: https://github.com/huggingface/transformers/blob/master/src/transformers/modeling_mmbt.py # noqa import os from copy import deepcopy from dataclasses import dataclass from typing import Dict, Optional, Union import torch from multimodelity.common.registry import registry from multimodelity.models.base_model import BaseModel from multimodelity.models.interfaces.mmbt import MMBTGridHMInterface from multimodelity.modules.encoders import ( EncoderFactory, ImageEncoderFactory, ImageEncoderTypes, MultiModalEncoderBase, ResNet152ImageEncoder, TextEncoderFactory, TextEncoderTypes, TransformerEncoder, ) from multimodelity.modules.hf_layers import replace_with_jit from multimodelity.utils.checkpoint import load_pretrained_model from multimodelity.utils.configuration import get_multimodelity_cache_dir from multimodelity.utils.modeling import get_optimizer_parameters_for_bert from omegaconf import II, DictConfig, OmegaConf from torch import Tensor, nn from transformers.modeling_bert import BertForPreTraining, BertPredictionHeadTransform # TODO: Remove after transformers package upgrade to 2.5 class MMBTConfig: """Configuration class to store the configuration of a `MMBT Model`. Args: config (:obj:`~transformers.PreTrainedConfig`): Config of the underlying Transformer models. Its values are copied over to use a single config. num_labels (:obj:`int` or :obj:`None`, optional, defaults to `None`): Size of final Linear layer for classification. modal_hidden_size (:obj:`int`, optional, defautls to 2048): Embedding dimension of the non-text modality encoder. """ def __init__(self, config, num_labels=None, modal_hidden_size=2048): self.__dict__ = config.__dict__ self.modal_hidden_size = modal_hidden_size if num_labels: self.num_labels = num_labels # TODO: Remove after transformers package upgrade to 2.5 class ModalEmbeddings(nn.Module): """Generic Modal Embeddings which takes in an encoder, and a transformer embedding. """ def __init__(self, config, encoder, embeddings): super().__init__() self.config = config self.encoder = encoder self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size) self.position_embeddings = embeddings.position_embeddings self.token_type_embeddings = embeddings.token_type_embeddings self.word_embeddings = embeddings.word_embeddings self.LayerNorm = embeddings.LayerNorm self.dropout = nn.Dropout(p=config.hidden_dropout_prob) def forward( self, input_modal: Tensor, start_token: Optional[Tensor] = None, end_token: Optional[Tensor] = None, position_ids: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, ): token_embeddings = self.proj_embeddings(self.encoder(input_modal)) seq_length = token_embeddings.size(1) if start_token is not None: start_token_embeds = self.word_embeddings(start_token) seq_length += 1 token_embeddings = torch.cat( [start_token_embeds.unsqueeze(1), token_embeddings], dim=1 ) if end_token is not None: end_token_embeds = self.word_embeddings(end_token) seq_length += 1 token_embeddings = torch.cat( [token_embeddings, end_token_embeds.unsqueeze(1)], dim=1 ) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_modal.device ) position_ids = position_ids.unsqueeze(0).expand( input_modal.size(0), seq_length ) if token_type_ids is None: token_type_ids = torch.zeros( (input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device, ) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = token_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # TODO: Remove after transformers package upgrade to 2.5 class MMBTModel(nn.Module): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``. Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: # For example purposes. Not runnable. transformer = BertModel.from_pretrained('bert-base-uncased') encoder = ImageEncoder(args) mmbt = MMBTModel(config, transformer, encoder) """ def __init__(self, config, transformer, encoder): super().__init__() self.is_decoder = config.is_decoder self.num_hidden_layers = config.num_hidden_layers self.transformer = transformer self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings) def forward( self, input_modal: Tensor, input_ids: Tensor, modal_start_tokens: Optional[Tensor] = None, modal_end_tokens: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, modal_token_type_ids: Optional[Tensor] = None, position_ids: Optional[Tensor] = None, modal_position_ids: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, encoder_hidden_states: Optional[Tensor] = None, encoder_attention_mask: Optional[Tensor] = None, ): if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_txt_shape = input_ids.size() elif inputs_embeds is not None: input_txt_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = inputs_embeds.device if inputs_embeds is not None else input_ids.device modal_embeddings = self.modal_encoder( input_modal, start_token=modal_start_tokens, end_token=modal_end_tokens, position_ids=modal_position_ids, token_type_ids=modal_token_type_ids, ) input_modal_shape = modal_embeddings.size()[:-1] if token_type_ids is None: token_type_ids = torch.ones( input_txt_shape, dtype=torch.long, device=device ) txt_embeddings = self.transformer.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1) input_shape = embedding_output.size()[:-1] if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) else: attention_mask = torch.cat( [ torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask, ], dim=1, ) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(input_shape, device=device) else: encoder_attention_mask = torch.cat( [torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1, ) # We can provide a self-attention mask of dimensions # [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the # padding mask # - if the model is an encoder, make the mask broadcastable to # [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: if self.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = ( seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] ) attention_mask = ( causal_mask[:, None, :, :] * attention_mask[:, None, None, :] ) else: attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. # Python builtin next is currently not supported in Torchscript if not torch.jit.is_scripting(): attention_mask = attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastabe to # [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: encoder_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_attention_mask = encoder_attention_mask[:, None, None, :] # Python builtin next is currently not supported in Torchscript if not torch.jit.is_scripting(): encoder_attention_mask = encoder_attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility encoder_attention_mask = (1.0 - encoder_attention_mask) * -10000.0 encoder_outputs = self.transformer.encoder( embedding_output, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) sequence_output = encoder_outputs[0] pooled_output = self.transformer.pooler(sequence_output) outputs = ( sequence_output, pooled_output, encoder_outputs[1:], ) # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value class MMBTBase(MultiModalEncoderBase): def __init__(self, config, *args, **kwargs): super().__init__(config, *args, **kwargs) # Replace transformer layers with scriptable JIT layers replace_with_jit() def build(self): encoders = self._build_encoders(self.config) text_encoder, modal_encoder = encoders[0], encoders[1] self._encoder_config = text_encoder.config self._mmbt_config = MMBTConfig( self._encoder_config, num_labels=self.config.num_labels, modal_hidden_size=self.config.modal_hidden_size, ) self.use_modal_start_token = self.config.use_modal_start_token self.use_modal_end_token = self.config.use_modal_end_token self.num_max_segment = self.config.text_encoder.params.get("num_segments", 2) self.mmbt = MMBTModel(self._mmbt_config, text_encoder, modal_encoder) def extract_modal_end_token(self, sample_list: Dict[str, Tensor]): # compute the position of the last non-masked token, which is <sep> gather_index = sample_list["input_mask"].sum(1, keepdim=True) - 1 modal_end_token = ( torch.gather(sample_list["input_ids"], 1, gather_index) .squeeze(1) .clone() .detach() ) batch_size = sample_list["input_ids"].size(0) device = sample_list["input_ids"].device # remove start_token in input_ids sample_list["input_ids"] = torch.cat( [sample_list["input_ids"][:, 1:], sample_list["input_ids"][:, -1:]], dim=1 ) # update input_mask sample_list["input_mask"] = torch.cat( [ sample_list["input_mask"][:, 1:], torch.zeros([batch_size, 1], dtype=torch.long, device=device), ], dim=1, ) return modal_end_token def forward(self, sample_list: Dict[str, Tensor]): if self._is_direct_features_input: if "input_modal" in sample_list: input_modal = sample_list["input_modal"] else: input_modal = sample_list["image_feature_0"] else: input_modal = sample_list["image"] modal_start_token: Optional[Tensor] = None if self.use_modal_start_token: modal_start_token = sample_list["input_ids"][:, 0].clone().detach() modal_end_token: Optional[Tensor] = None if self.use_modal_end_token: modal_end_token = self.extract_modal_end_token(sample_list) if "modal_token_type_ids" in sample_list: modal_token_type_ids = sample_list["modal_token_type_ids"] else: token_value = 0 segment_ids = sample_list["segment_ids"] max_id = segment_ids.max() min_id = segment_ids.min() # Case of only one segment if max_id == min_id: # If max_id is greater than 0, that means text is at 0 segment # which means modal will be at 1 # In other case, it will be zero, which it already is # NOTE: We compare with tensor here due to TorchScript compliance if max_id == torch.tensor(0, dtype=max_id.dtype): token_value = 1 else: max_segment = self.num_max_segment - 1 # If max id is not equal to max_segment, it means # text segments start from 0 which means modal will # be last, otherwise, it is 0, which it already is if max_id != torch.tensor(max_segment, dtype=max_id.dtype): token_value = max_segment modal_token_type_ids = torch.full( (input_modal.size(0), 1), fill_value=token_value, dtype=torch.long, device=input_modal.device, ) # In case of XRAY, there might be only two dims if input_modal.dim() == 2: input_modal = input_modal.unsqueeze(dim=1) # See details of inputs at # https://github.com/huggingface/transformers/blob/1789c7/src/transformers/modeling_mmbt.py#L101 # noqa output = self.mmbt( input_modal, input_ids=sample_list["input_ids"], modal_start_tokens=modal_start_token, modal_end_tokens=modal_end_token, attention_mask=sample_list["input_mask"], token_type_ids=sample_list["segment_ids"], modal_token_type_ids=modal_token_type_ids, position_ids=None, modal_position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, ) return output class MMBTForPreTraining(nn.Module): def __init__(self, config, *args, **kwargs): super().__init__() self.config = config self.bert = MMBTBase(config, *args, **kwargs) self.encoder_config = self.bert.encoder_config # TODO : Switch to AutoModelForPreTraining after transformers # package upgrade to 2.5 pretraining_module = BertForPreTraining.from_pretrained( self.config.bert_model_name, config=self.encoder_config, cache_dir=os.path.join(get_multimodelity_cache_dir(), "distributed_{}".format(-1)), ) self.cls = deepcopy(pretraining_module.cls) self.loss_fct = nn.CrossEntropyLoss(ignore_index=-1) self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ if hasattr(self, "cls"): self.bert.mmbt.transformer._tie_or_clone_weights( self.cls.predictions.decoder, self.bert.mmbt.transformer.embeddings.word_embeddings, ) def forward(self, sample_list): module_output = self.bert(sample_list) sequence_output, pooled_output = module_output[0], module_output[1] prediction_scores, seq_relationship_score = self.cls( sequence_output, pooled_output ) output = {} if ( self.encoder_config.output_hidden_states or self.encoder_config.output_attentions ): output["extras"] = module_output[2:] loss_key = f"{sample_list.dataset_name}/{sample_list.dataset_type}" if "lm_label_ids" in sample_list and sample_list.lm_label_ids is not None: output["logits"] = prediction_scores lm_label_ids = sample_list.lm_label_ids # Only take last scores which are text's scores and ignore image scores text_scores = ( prediction_scores[:, -(lm_label_ids.size(1)) :] .contiguous() .view(-1, self.encoder_config.vocab_size) ) masked_lm_loss = self.loss_fct( text_scores, sample_list.lm_label_ids.contiguous().view(-1) ) output["losses"] = {} output["losses"][f"{loss_key}/masked_lm_loss"] = masked_lm_loss # Add alignment loss if present if ( "image_text_alignment" in sample_list and sample_list.image_text_alignment is not None ): output["seq_relationship_logits"] = seq_relationship_score alignment_loss = self.loss_fct( seq_relationship_score.contiguous().view(-1), sample_list.image_text_alignment.contiguous().view(-1), ) output["losses"][f"{loss_key}/alignment_loss"] = alignment_loss return output class MMBTForClassification(nn.Module): def __init__(self, config, *args, **kwargs): super().__init__() self.config = config self.bert = MMBTBase(config, *args, **kwargs) self.encoder_config = self.bert.encoder_config self.num_labels = self.config.num_labels self.output_hidden_states = self.encoder_config.output_hidden_states self.output_attentions = self.encoder_config.output_attentions self.fused_feature_only = self.config.fused_feature_only self.dropout = nn.Dropout(self.encoder_config.hidden_dropout_prob) self.classifier = nn.Sequential( BertPredictionHeadTransform(self.encoder_config), nn.Linear(self.encoder_config.hidden_size, self.config.num_labels), ) def forward(self, sample_list: Dict[str, Tensor]): module_output = self.bert(sample_list) pooled_output = module_output[1] output = {} if not torch.jit.is_scripting(): if self.output_hidden_states or self.output_attentions: output["extras"] = module_output[2:] else: assert not ( self.output_hidden_states or self.output_attentions ), "output_attentions or output_hidden_states not supported in script mode" pooled_output = self.dropout(pooled_output) if self.fused_feature_only: output["fused_feature"] = self.classifier[0](pooled_output) return output logits = self.classifier(pooled_output) reshaped_logits = logits.contiguous().view(-1, self.num_labels) output["scores"] = reshaped_logits return output @registry.register_model("mmbt") class MMBT(BaseModel): @dataclass class Config(BaseModel.Config): model: str = "mmbt" # classification or pretraining training_head_type: str = "pretraining" bert_model_name: str = "bert-base-uncased" direct_features_input: bool = False freeze_text: bool = False freeze_modal: bool = False freeze_complete_base: bool = False finetune_lr_multiplier: float = 1 # Dimension of the embedding finally returned by the modal encoder modal_hidden_size: int = 2048 text_hidden_size: int = 768 num_labels: int = 2 # This actually is Union[ImageEncoderConfig, ImageFeatureEncoderConfig] modal_encoder: EncoderFactory.Config = ImageEncoderFactory.Config( type=ImageEncoderTypes.resnet152, params=ResNet152ImageEncoder.Config() ) text_encoder: EncoderFactory.Config = TextEncoderFactory.Config( type=TextEncoderTypes.transformer, params=TransformerEncoder.Config(bert_model_name=II("bert_model_name")), ) use_modal_start_token: bool = True use_modal_end_token: bool = True fused_feature_only: bool = False output_dim: int = 768 def __init__(self, config: Union[DictConfig, Config], *args, **kwargs): super().__init__(config) def build(self): if self.config.training_head_type == "pretraining": self.model = MMBTForPreTraining(self.config) else: self.model = MMBTForClassification(self.config) if self.config.freeze_complete_base or self.config.freeze_text: for p in self.model.bert.mmbt.transformer.parameters(): p.requires_grad = False if self.config.freeze_complete_base or self.config.freeze_modal: for p in self.model.bert.mmbt.modal_encoder.parameters(): p.requires_grad = False # Backward compatibility for code from older mmbt @classmethod def format_state_key(cls, key): return ( key.replace("base.bert", "model.bert") .replace("base.cls", "model.cls") .replace("base.classifier", "model.classifier") ) @classmethod def from_pretrained(cls, model_name, *args, **kwargs): model = super().from_pretrained(model_name, *args, **kwargs) config = load_pretrained_model(model_name)["full_config"] OmegaConf.set_struct(config, True) if model_name == "mmbt.hateful_memes.images" or kwargs.get("interface"): return MMBTGridHMInterface(model, config) return model @classmethod def config_path(cls): return "configs/models/mmbt/pretrain.yaml" def forward(self, sample_list: Dict[str, Tensor]): return self.model(sample_list) def get_optimizer_parameters(self, config): return get_optimizer_parameters_for_bert(self.model, config)
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.cat", "torch.arange", "torch.gather", "torch.ones", "torch.jit.is_scripting", "torch.tensor", "torch.nn.CrossEntropyLoss" ]
1.6.0
hahaxun/mmf
6d32c3925ed9bf938e19a071aaa5e72a5cf01ee1
1.7
# -*- coding: utf-8 -*- # Copyright 2021 National Institute of Information and Communication Technology (Raj Dabre) # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall # be included in all copies or substantial portions of the # Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## Basic imports import os import sys import argparse import time os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 ## ## Huggingface imports import transformers from transformers import AutoTokenizer, MBartTokenizer, MBart50Tokenizer, BartTokenizer from transformers import MBartForConditionalGeneration, BartForConditionalGeneration, MBartConfig, get_linear_schedule_with_warmup from transformers import AdamW ## ## Pytorch imports import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel import torch.multiprocessing as mp import torch.distributed as dist from torch.optim import Adam from torch.utils.tensorboard import SummaryWriter ## ## Our imports from common_utils import * ## ## Other imports import math import random import numpy as np import sacrebleu from rouge_score import rouge_scorer import gc import functools ## ## Seed setting here torch.manual_seed(621311) ## def model_create_load_run_save(gpu, args, train_files, dev_files, quit_condition): """The main function which does the overall training. Should be split into multiple parts in the future. Currently monolithc intentionally.""" rank = args.nr * args.gpus + gpu ## The rank of the current process out of the total number of processes indicated by world_size. print("Launching process:", rank) dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank) if args.shard_files and rank == 0: ## First shard the data using process 0 aka the prime process or master process. Other processes will wait. shard_files_bi(train_files, args) dist.barrier() ## Stop other processes from proceeding till sharding is done. if args.use_official_pretrained: if "mbart" in args.model_path: if "50" in args.model_path: tok = MBart50Tokenizer.from_pretrained(args.tokenizer_name_or_path) else: tok = MBartTokenizer.from_pretrained(args.tokenizer_name_or_path) else: tok = BartTokenizer.from_pretrained(args.tokenizer_name_or_path) else: tok = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path, do_lower_case=False, use_fast=False, keep_accents=True) ## Fast tokenizers are not good because their behavior is weird. Accents should be kept or else the segmentation will be messed up on languages with accented characters. No lower case obviously because we want to train on the original case. Set to false if you are ok with the model not dealing with cases. scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=False) ## In case we do summarization. print("Tokenizer is:", tok) print(f"Running DDP checkpoint example on rank {rank}.") if args.fp16: ## Although the code supports FP16/AMP training, it tends to be unstable in distributed setups so use this carefully. print("We will do fp16 training") scaler = torch.cuda.amp.GradScaler() ## Gradient scaler which will be used with torch's automatic mixed precision else: print("We will do fp32 training") if args.encoder_tying_config is not None: print("We will use recurrently stacked layers for the encoder with configuration:", args.encoder_tying_config) if args.decoder_tying_config is not None: print("We will use recurrently stacked layers for the decoder with configuration:", args.decoder_tying_config) if args.unidirectional_encoder: print("Using unidirectional encoder.") writer = SummaryWriter(args.model_path+".tflogs") if args.use_official_pretrained: if "mbart" in args.pretrained_model: model = MBartForConditionalGeneration.from_pretrained(args.pretrained_model) ## We may use FBs official model and fine-tune it for our purposes. elif "bart" in args.pretrained_model: model = BartForConditionalGeneration.from_pretrained(args.pretrained_model) ## We may use FBs official model and fine-tune it for our purposes. model.config.dropout = args.dropout ## We should set dropouts manually model.attention_dropout = args.attention_dropout ## We should set dropouts manually model.activation_dropout = args.activation_dropout ## We should set dropouts manually else: config = MBartConfig(vocab_size=len(tok), encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_dim, decoder_ffn_dim=args.decoder_ffn_dim, d_model=args.d_model, no_embed_norm=args.no_embed_norm, scale_embedding=args.scale_embedding, pad_token_id=tok.pad_token_id, eos_token_id=tok(["</s>"], add_special_tokens=False).input_ids[0][0], bos_token_id=tok(["<s>"], add_special_tokens=False).input_ids[0][0], encoder_tying_config=args.encoder_tying_config, decoder_tying_config=args.decoder_tying_config, multilayer_softmaxing=args.multilayer_softmaxing, wait_k=args.wait_k, additional_source_wait_k=args.additional_source_wait_k, unidirectional_encoder=args.unidirectional_encoder, multi_source=args.multi_source, multi_source_method=args.multi_source_method, softmax_temperature=args.softmax_temperature, temperature_calibration=args.temperature_calibration, layerdrop=args.layerdrop, no_scale_attention_embedding=args.no_scale_attention_embedding, positional_encodings=args.positional_encodings, num_domains_for_domain_classifier=args.num_domains_for_domain_classifier, gradient_reversal_for_domain_classifier=args.gradient_reversal_for_domain_classifier) ## Configuration. TODO: Save this configuration somehow. model = MBartForConditionalGeneration(config) model.train() if args.distillation: ## When distilling we need a parent model. The creation of the model is in the same way as the child. This model is immediately loaded with some pretrained params and then loaded into the GPU. print("We will do distillation from a parent model.") if args.use_official_parent_pretrained: if "mbart" in args.parent_pretrained_model: parent_model = MBartForConditionalGeneration.from_pretrained(args.parent_pretrained_model) ## We may use FBs official model and fine-tune it for our purposes. elif "bart" in args.parent_pretrained_model: parent_model = BartForConditionalGeneration.from_pretrained(args.parent_pretrained_model) ## We may use FBs official model and fine-tune it for our purposes. parent_model.config.dropout = args.dropout ## We should set dropouts manually parent_model.attention_dropout = args.attention_dropout ## We should set dropouts manually parent_model.activation_dropout = args.activation_dropout ## We should set dropouts manually else: parent_config = MBartConfig(vocab_size=len(tok), encoder_layers=args.parent_encoder_layers, decoder_layers=args.parent_decoder_layers, dropout=args.parent_dropout, attention_dropout=args.parent_attention_dropout, activation_dropout=args.parent_activation_dropout, encoder_attention_heads=args.parent_encoder_attention_heads, decoder_attention_heads=args.parent_decoder_attention_heads, encoder_ffn_dim=args.parent_encoder_ffn_dim, decoder_ffn_dim=args.parent_decoder_ffn_dim, d_model=args.parent_d_model, no_embed_norm=args.no_embed_norm, scale_embedding=args.scale_embedding, pad_token_id=tok.pad_token_id, eos_token_id=tok(["</s>"], add_special_tokens=False).input_ids[0][0], bos_token_id=tok(["<s>"], add_special_tokens=False).input_ids[0][0], encoder_tying_config=args.encoder_tying_config, decoder_tying_config=args.decoder_tying_config, wait_k=args.wait_k, additional_source_wait_k=args.additional_source_wait_k, unidirectional_encoder=args.unidirectional_encoder, multi_source=args.multi_source, multi_source_method=args.multi_source_method, softmax_temperature=args.softmax_temperature, temperature_calibration=args.temperature_calibration, layerdrop=args.layerdrop, no_scale_attention_embedding=args.no_scale_attention_embedding, positional_encodings=args.positional_encodings) parent_model = MBartForConditionalGeneration(config) parent_model.cuda(gpu) parent_model.train() ## We do this to enable dropout but we wont have an optimizer for this so we wont train this model. For now. Future implementations should ask if we want to do co-distill or not. By co-distillation I mean, the parent will learn together with the child. parent_model = DistributedDataParallel(parent_model, device_ids=[gpu], output_device=gpu) print("Loading a parent model from which distillation will be done.") dist.barrier() # configure map_location properly map_location = {'cuda:%d' % 0: 'cuda:%d' % gpu} if not args.use_official_parent_pretrained: parent_checkpoint_dict = torch.load(args.parent_pretrained_model, map_location=map_location) if type(parent_checkpoint_dict) == dict: parent_model.load_state_dict(parent_checkpoint_dict['model']) # We never do any remapping of the parent. We always reuse it as it is. else: parent_model.module.load_state_dict(parent_checkpoint_dict) # We never do any remapping of the parent. We always reuse it as it is. parent_model.train() torch.cuda.set_device(gpu) ## Set the device to the current GPU. This is different from the rank so keep this in mind. if args.freeze_embeddings: ## If we wish to freeze the model embeddings. This may be useful when fine-tuning a pretrained model. print("Freezing embeddings") freeze_embeds(model) if args.freeze_encoder: ## If we wish to freeze the encoder itself. This may be useful when fine-tuning a pretrained model. print("Freezing encoder") freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) model.cuda(gpu) ## Move the model to the GPU. model = DistributedDataParallel(model, device_ids=[gpu], output_device=gpu) ## This wrapper around the model will enable distributed training. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] ## We suppose that weight decay will be used except for biases and layer norm weights. optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr, eps=1e-09) ## Our glorious optimizer. model.train() scheduler = get_linear_schedule_with_warmup(optimizer, args.warmup_steps, args.num_batches) ## A warmup and decay scheduler. We use the linear scheduler for now. TODO: Enable other schedulers with a flag. while scheduler.get_lr()[0] < 1e-7: ## We want to keep a minimum learning rate else for the initial batch or initial few batches barely anything will be learned which is a waste of computation. This minimum value is kept to 1e-7 by default in accordance with previous literature, other implementations and the Paris peace accords. scheduler.step() print("Initial LR is:", scheduler.get_lr()[0]) if args.pretrained_model != "" and not args.use_official_pretrained: ## Here we load a pretrained NMT model or a previous checkpoint in case training crashed. print("Loading from checkpoint. Strict loading by default but if there are missing or non matching keys, they will be ignored when layer remapping or component selection is done.") dist.barrier() # configure map_location properly map_location = {'cuda:%d' % 0: 'cuda:%d' % gpu} checkpoint_dict = torch.load(args.pretrained_model, map_location=map_location) if type(checkpoint_dict) == dict: model.load_state_dict(remap_embeddings_eliminate_components_and_eliminate_mismatches(model.state_dict(), remap_layers(checkpoint_dict['model'], 4, args), args), strict=True if (args.remap_encoder == "" and args.remap_decoder == "" and not args.eliminate_encoder_before_initialization and not args.eliminate_decoder_before_initialization and not args.eliminate_embeddings_before_initialization) else False) if not args.no_reload_optimizer_ctr_and_scheduler and args.remap_encoder is '' and args.remap_decoder is '' and not args.eliminate_encoder_before_initialization and not args.eliminate_decoder_before_initialization and not args.eliminate_embeddings_before_initialization: ## Do not load optimizers, ctr and schedulers when remapping or resuming training. if 'optimizer' in checkpoint_dict: print("Reloading optimizer") optimizer.load_state_dict(checkpoint_dict['optimizer']) ## Dubious if 'scheduler' in checkpoint_dict: print("Reloading scheduler") scheduler.load_state_dict(checkpoint_dict['scheduler']) ## Dubious if 'ctr' in checkpoint_dict: print("Reloading ctr. This means we resume training.") ctr = checkpoint_dict['ctr'] else: ctr = 0 else: model.module.load_state_dict(remap_embeddings_eliminate_components_and_eliminate_mismatches(model.state_dict(), remap_layers(checkpoint_dict, 3, args), args), strict=True if (args.remap_encoder == "" and args.remap_decoder == "" and not args.eliminate_encoder_before_initialization and not args.eliminate_decoder_before_initialization and not args.eliminate_embeddings_before_initialization) else False) ctr = 0 else: print("Training from scratch") CHECKPOINT_PATH = args.model_path if rank == 0: checkpoint_dict = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'ctr': 0} torch.save(checkpoint_dict, CHECKPOINT_PATH) ## Save a model by default every eval_every steps. This model will be saved with the same file name each time. torch.save(model.state_dict(), CHECKPOINT_PATH+".pure_model") dist.barrier() map_location = {'cuda:%d' % 0: 'cuda:%d' % gpu} checkpoint_dict = torch.load(CHECKPOINT_PATH, map_location=map_location) model.load_state_dict(checkpoint_dict['model']) optimizer.load_state_dict(checkpoint_dict['optimizer']) scheduler.load_state_dict(checkpoint_dict['scheduler']) ctr = checkpoint_dict['ctr'] model.train() print("Using label smoothing of", args.label_smoothing) print("Using gradient clipping norm of", args.max_gradient_clip_value) print("Using softmax temperature of", args.softmax_temperature) if args.max_ent_weight != -1: print("Doing entropy maximization during loss computation.") if args.multistep_optimizer_steps > 1: print("Using a multistep optimizer where gradients will be accumulated over", args.multistep_optimizer_steps, "batches.") num_batches_this_optimizer_step = 0 losses = 0 global_sbleu_history = [] ## To save the global evaluation metric history. max_global_sbleu = 0 ## Maximum global evaluation metric score. max_global_sbleu_step = 0 ## Step at which we achieved the maximum global evaluation metric score. individual_sbleu_history = {dev_pair: [] for dev_pair in dev_files} ## For multilingual NMT settings we suppose that we will keep a track of the histories for individual language pairs being evaluated and this dictionary keeps track of the history. max_individual_sbleu = {dev_pair: 0 for dev_pair in dev_files} ## The maximum score per pair. max_individual_sbleu_step = {dev_pair: 0 for dev_pair in dev_files} ## The step at which maximum score was achieved per pair. curr_eval_step = 0 annealing_attempt = 0 ## We use this to limit the number of times annealing will take place. When we anneal the LR is divided by a factor. How this is achieved will be explained below. inps = {dev_pair: [inpline.strip() for inpline in open(dev_files[dev_pair][0])][:args.max_eval_batches*args.dev_batch_size] for dev_pair in dev_files} ## Get all inputs for each pair. Select up to args.max_eval_batches*args.dev_batch_size examples. if args.is_summarization: ## Slight data structure difference for summarization vs translation when computing the evaluation metric. For summarization the metric is Rouge. refs = {dev_pair: [[refline.strip() for refline in open(dev_files[dev_pair][1])][:args.max_eval_batches*args.dev_batch_size]] for dev_pair in dev_files} ## Get all references for each input. Select up to args.max_eval_batches*args.dev_batch_size examples. scores = {dev_pair: 0 for dev_pair in dev_files} ## The rouge scorer works at the sentence level so we have to add all individual scores per sentence and this dictionary keeps track of the score. This dictionary may not be needed. else: refs = {dev_pair: [[refline.strip() for refline in open(dev_files[dev_pair][1])][:args.max_eval_batches*args.dev_batch_size]] for dev_pair in dev_files} ## Get all references for each input. Select up to args.max_eval_batches*args.dev_batch_size examples. for input_ids, input_masks, decoder_input_ids, labels in generate_batches_bilingual(tok, args, train_files, rank): #Batches are generated from here. The argument (0.30, 0.40) is a range which indicates the percentage of the source sentence to be masked in case we want masking during training just like we did during BART pretraining. The argument 3.5 is the lambda to the poisson length sampler which indicates the average length of a word sequence that will be masked. start = time.time() if ctr % args.eval_every == 0 and num_batches_this_optimizer_step == 0: ## We have to evaluate our model every eval_every steps. CHECKPOINT_PATH = args.model_path if rank == 0: ## Evaluation will be done only on the prime/master process which is at rank 0. Other processes will sleep. if not args.no_eval: ## If we dont care about early stopping and only on training for a bazillion batches then you can save time by skipping evaluation. print("Running eval on dev set(s)") if args.mixed_wait_k: model.module.config.wait_k = args.wait_k hyp = {dev_pair: [] for dev_pair in dev_files} sbleus = {} model.eval() ## We go to eval mode so that there will be no dropout. checkpoint_dict = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'ctr': ctr} ## This training state will be saved. for dev_pair in dev_files: ## For each evaluation pair we will decode and compute scores. slangtlang =dev_pair.strip().split("-") if args.multi_source: ## In case we do multisource NMT slang=slangtlang[0]+"-"+slangtlang[1] ## This will be split in the generate_batches_eval function as we expect a triplet. tlang=slangtlang[2] else: slang=slangtlang[0] tlang=slangtlang[1] eval_batch_counter = 0 for dev_input_ids, dev_input_masks in generate_batches_eval_bilingual(tok, args, inps[dev_pair], slang): if args.multi_source: dev_input_ids_parent = dev_input_ids[1] dev_input_ids = dev_input_ids[0] dev_input_masks_parent = dev_input_masks[1] dev_input_masks = dev_input_masks[0] dev_input_ids_parent = dev_input_ids_parent.to(gpu) ## Move to GPU. dev_input_masks_parent = dev_input_masks_parent.to(gpu) ## Move to GPU. start = time.time() dev_input_ids = dev_input_ids.to(gpu) ## Move to GPU. dev_input_masks = dev_input_masks.to(gpu) ## Move to GPU. if args.is_summarization: ## Things can be slow so best show progress print("Decoding batch from a pool of", len(inps[dev_pair]), "examples") with torch.no_grad(): ## torch.no_grad is apparently known to prevent the code from allocating memory for gradient computation in addition to making things faster. I have not verified this but have kept it as a safety measure to ensure that my model is not being directly tuned on the development set. translations = model.module.generate(dev_input_ids, use_cache=True, num_beams=1, max_length=int((len(dev_input_ids[0])*args.max_decode_length_multiplier) if args.max_decode_length_multiplier > 0 else -args.max_decode_length_multiplier), min_length=int((len(dev_input_ids[0])*args.min_decode_length_multiplier) if args.min_decode_length_multiplier > 0 else -args.min_decode_length_multiplier), early_stopping=True, attention_mask=dev_input_masks, pad_token_id=tok.pad_token_id, eos_token_id=tok(["</s>"], add_special_tokens=False).input_ids[0][0], decoder_start_token_id=tok([tlang if args.use_official_pretrained else "<2"+tlang+">"], add_special_tokens=False).input_ids[0][0], bos_token_id=tok(["<s>"], add_special_tokens=False).input_ids[0][0], length_penalty=args.length_penalty, repetition_penalty=args.repetition_penalty, encoder_no_repeat_ngram_size=args.encoder_no_repeat_ngram_size, no_repeat_ngram_size=args.no_repeat_ngram_size, additional_input_ids=dev_input_ids_parent if args.multi_source else None, additional_input_ids_mask=dev_input_masks_parent if args.multi_source else None) ## We translate the batch. dev_input_ids = dev_input_ids.to('cpu') ## Move to cpu. Not needed but its a safe step. dev_input_masks = dev_input_masks.to('cpu') ## Move to cpu. Not needed but its a safe step. translations=translations.to('cpu') ## Move to cpu. Not needed but its a safe step. if args.multi_source: dev_input_ids_parent = dev_input_ids_parent.to('cpu') ## Move to cpu. Not needed but its a safe step. dev_input_masks_parent = dev_input_masks_parent.to('cpu') ## Move to cpu. Not needed but its a safe step. for translation in translations: translation = tok.decode(translation, skip_special_tokens=args.no_skip_special_tokens, clean_up_tokenization_spaces=False) ### Get the raw sentences. hyp[dev_pair].append(translation) if args.use_rouge: ## Get the evaluation metric score. for curr_ref, curr_pred in zip(refs[dev_pair][0], hyp[dev_pair]): score = scorer.score(curr_ref, curr_pred) scores[dev_pair] += score['rougeL'].fmeasure sbleu = scores[dev_pair]/len(hyp[dev_pair]) metric = 'Rouge' else: sbleu = get_sacrebleu(refs[dev_pair], hyp[dev_pair]) metric = 'BLEU' individual_sbleu_history[dev_pair].append([sbleu, ctr]) ## Update the score history for this pair. sbleus[dev_pair] = sbleu print(metric, "score using sacrebleu after", ctr, "iterations is", sbleu, "for language pair", dev_pair) writer.add_scalar(dev_pair+" bleu/rouge", sbleu, ctr) if sbleu > max_individual_sbleu[dev_pair]: ## Update the best score and step number. If the score has improved then save a model copy for this pair. Although we will stop on the global score (average across scores over all pairs) we save these models if we want a model that performs the best on a single pair. max_individual_sbleu[dev_pair] = sbleu max_individual_sbleu_step[dev_pair] = curr_eval_step print("New peak reached for", dev_pair,". Saving.") torch.save(checkpoint_dict, CHECKPOINT_PATH+".best_dev_bleu."+dev_pair+"."+str(ctr)) torch.save(model.module.state_dict(), CHECKPOINT_PATH+".best_dev_bleu."+dev_pair+"."+str(ctr)+".pure_model") ## Pure model without any ddp markers or optimizer info. ## Global stats sbleu = sum(sbleus.values())/len(sbleus) ## The global score. global_sbleu_history.append([sbleu, ctr]) ## Update the global score history. print("Global", metric, "score using sacrebleu after", ctr, "iterations is:", sbleu) writer.add_scalar("global bleu/rouge", sbleu, ctr) if sbleu > max_global_sbleu: ## Update the best score and step number. If this has improved then save a copy for the model. Note that this model MAY NOT be the model that gives the best performance for all pairs. max_global_sbleu = sbleu max_global_sbleu_step = curr_eval_step print("New peak reached. Saving.") torch.save(checkpoint_dict, CHECKPOINT_PATH+".best_dev_bleu.global."+str(ctr)) torch.save(model.module.state_dict(), CHECKPOINT_PATH+".best_dev_bleu.global."+str(ctr)+".pure_model") ## Pure model without any ddp markers or optimizer info. if curr_eval_step - max_global_sbleu_step > (args.early_stop_checkpoints + annealing_attempt*args.additional_early_stop_checkpoints_per_anneal_step): ## If the global scores have not improved for more than early_stop_checkpoints + some additional checkpoints to wait for till annealing is done then we stop training. if annealing_attempt < args.max_annealing_attempts: ## We will only downscale the LR a fixed number of times. Each time we downscale the number of checkpoints to wait for declaring convergence will increase by a fixed value. annealing_attempt += 1 curr_lr = scheduler.get_lr()[0] print("LR before annealing is:", curr_lr) while scheduler.get_lr()[0] > (curr_lr/args.learning_rate_scaling): ## Currently we down scale the LR by advancing the scheduler by some steps. Now this is a bad idea because the scheduler may reach maximum number of steps where the LR is 0. However the training loop will continue and nothing will be updated. The loophole I have used is to set the maximum number of steps to a large value. Thus far I have not seen a case where this has a bad effect but users who do not trust this part of the code should not use annealing. scheduler.step() print("LR after annealing is:", scheduler.get_lr()[0]) else: ## Convergence has been reached and we stop and report the final metrics. print("We have seemingly converged as", metric, "failed to increase for the following number of checkpoints:", args.early_stop_checkpoints+annealing_attempt*args.additional_early_stop_checkpoints_per_anneal_step, ". You may want to consider increasing the number of tolerance steps, doing additional annealing or having a lower peak learning rate or something else.") print("Terminating training") print("Global dev", metric, "history:", global_sbleu_history) print("Individual", metric, "history:", individual_sbleu_history ) quit_condition[0] = -1 ## Since this is a shared variable it will be updated for all processes. curr_eval_step += 1 model.train() ## Put the model back in training mode where dropout will be done. else: ## If no evaluation will be done then I consider it prudent to save the model every 10000 checkpoints by default. Change this to whatever value you want. if ctr % args.no_eval_save_every == 0: print("No evaluation based early stopping so saving every", args.no_eval_save_every, "checkpoints.") checkpoint_dict = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'ctr': ctr} torch.save(checkpoint_dict, CHECKPOINT_PATH+"."+str(ctr)) torch.save(model.state_dict(), CHECKPOINT_PATH+"."+str(ctr)+".pure_model") print("Saving the model") sys.stdout.flush() # All processes should see same parameters as they all start from same # random parameters and gradients are synchronized in backward passes. # Therefore, saving it in one process is sufficient. checkpoint_dict = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'ctr': ctr} torch.save(checkpoint_dict, CHECKPOINT_PATH) ## Save a model by default every eval_every steps. This model will be saved with the same file name each time. torch.save(model.state_dict(), CHECKPOINT_PATH+".pure_model") # Use a barrier() to make sure that process 1 loads the model after process # 0 saves it. dist.barrier() if quit_condition[0].cpu().numpy() == -1: ## All processes will see the same value which is always updated by rank 0 processes. break ## Everyone quits. # configure map_location properly print("Loading from checkpoint") sys.stdout.flush() map_location = {'cuda:%d' % 0: 'cuda:%d' % gpu} checkpoint_dict = torch.load(CHECKPOINT_PATH, map_location=map_location) model.load_state_dict(checkpoint_dict['model']) optimizer.load_state_dict(checkpoint_dict['optimizer']) scheduler.load_state_dict(checkpoint_dict['scheduler']) dist.barrier() if args.cross_distillation or args.multi_source: ## The returned input ids and input masks are actually a list of two items each. The first item is to be fed to the parent model and the second item is to be fed to the child model. input_ids_parent=input_ids[1] input_ids=input_ids[0] input_ids_parent = input_ids_parent.to(gpu) ## Move to gpu input_masks_parent=input_masks[1] input_masks=input_masks[0] input_masks_parent = input_masks_parent.to(gpu) ## Move to gpu if args.num_domains_for_domain_classifier > 1: ## The label will contain the label as well as the domain indicator domain_classifier_labels=labels[1] ## This is not a tensor yet domain_classifier_labels = torch.tensor(domain_classifier_labels, dtype=torch.int64).to(gpu) ## Move to gpu labels=labels[0] label_mask = labels.eq(tok.pad_token_id).unsqueeze(-1).to(gpu) input_ids=input_ids.to(gpu) ## Move to gpu input_masks=input_masks.to(gpu) ## Move to gpu decoder_input_ids=decoder_input_ids.to(gpu) ## Move to gpu labels=labels.to(gpu) ## Move to gpu optimizer.zero_grad() ## Empty the gradients before any computation. if rank == 0: writer.add_scalar("learning rate", scheduler.get_lr()[0], ctr) if args.mixed_wait_k: model.module.config.wait_k = random.randint(1, args.wait_k) if rank == 0: writer.add_scalar("mixed wait k value", model.module.config.wait_k, ctr) if args.fp16: ## The difference between AMP and FP32 is the use of the autocast. The code below is duplicated and can be shrunk. TODO. with torch.cuda.amp.autocast(): mod_compute = model(input_ids=input_ids, attention_mask=input_masks ,decoder_input_ids=decoder_input_ids, output_hidden_states=args.distillation, output_attentions=args.distillation, additional_input_ids=input_ids_parent if args.multi_source else None, additional_input_ids_mask=input_masks_parent if args.multi_source else None, label_mask=label_mask if args.num_domains_for_domain_classifier > 1 else None) ## Run the model and get logits. logits = mod_compute.logits lprobs = torch.nn.functional.log_softmax(logits, dim=-1) ## Softmax tempering of logits if needed. loss = label_smoothed_nll_loss( lprobs, labels, args.label_smoothing, ignore_index=tok.pad_token_id ) ## Label smoothed cross entropy loss. loss = loss*args.softmax_temperature ## Up scale loss in case of non unitary temperatures. Note that in case of self calibrating temperature, the softmax temperature must be set to 1. if rank == 0: writer.add_scalar("pure cross entropy loss", loss.detach().cpu().numpy(), ctr) if args.temperature_calibration: loss = loss*mod_compute.softmax_temperature if rank == 0: writer.add_scalar("calibrated temperature", mod_compute.softmax_temperature.detach().cpu().numpy(), ctr) writer.add_scalar("calibrated temperature loss", loss.detach().cpu().numpy(), ctr) if args.num_domains_for_domain_classifier > 1: ## We augment the main loss with the domain classifier loss domain_classifier_logits = mod_compute.domain_classifier_logits domain_classifier_lprobs = torch.nn.functional.log_softmax(domain_classifier_logits, dim=-1) ## Softmax tempering of logits if needed. domain_classifier_loss = label_smoothed_nll_loss( domain_classifier_lprobs.view(-1,args.num_domains_for_domain_classifier), domain_classifier_labels.view(-1,1), args.label_smoothing ) ## Label smoothed cross entropy loss. We are not going to do any temperature related stuff to this. loss = domain_classifier_loss*args.domain_classifier_loss_weight + loss * (1.0-args.domain_classifier_loss_weight) if rank == 0: writer.add_scalar("domain classifier loss", domain_classifier_loss.detach().cpu().numpy(), ctr) writer.add_scalar("loss with domain classifier loss", loss.detach().cpu().numpy(), ctr) ## We will do multilayer softmaxing without any consideration for entropy maximization or distillation. if mod_compute.additional_lm_logits is not None: for additional_logits in mod_compute.additional_lm_logits: lprobs = torch.nn.functional.log_softmax(additional_logits, dim=-1) ## Softmax tempering of logits if needed. loss_extra = label_smoothed_nll_loss( lprobs, labels, args.label_smoothing, ignore_index=tok.pad_token_id ) ## Label smoothed cross entropy loss. loss_extra = loss_extra*args.softmax_temperature ## Up scale loss in case of non unitary temperatures. Note that in case of self calibrating temperature, the softmax temperature must be set to 1. TODO: Perhaps log this too. if args.temperature_calibration: loss_extra = loss_extra*mod_compute.softmax_temperature loss += loss_extra ## Up scale loss in case of non unitary temperatures. TODO: Perhaps log this too. if args.max_ent_weight != -1: ## This deals with softmax entropy maximization. The logic is that we compute the softmax entropy of the predictions via -(P(Y/X)*log(P(Y/X))). We then add it to the cross entropy loss with a negative sign as we wish to maximize entropy. This should penalize overconfident predictions. assert (args.max_ent_weight >= 0 and args.max_ent_weight <= 1) logits = logits*args.softmax_temperature ## We have to undo the tempered logits else our entropy estimate will be wrong. if args.temperature_calibration: logits = logits*mod_compute.softmax_temperature lprobs = torch.nn.functional.log_softmax(logits, dim=-1) ## No tempering here entropy = -(torch.exp(lprobs)*lprobs).mean() if rank == 0: writer.add_scalar("softmax entropy", entropy.detach().cpu().numpy(), ctr) if mod_compute.additional_lm_logits is not None: for additional_logits in mod_compute.additional_lm_logits: ## Compute entropy for each layer as well additional_logits = additional_logits*args.softmax_temperature ## We have to undo the tempered logits else our entropy estimate will be wrong. if args.temperature_calibration: additional_logits = additional_logits*mod_compute.softmax_temperature lprobs = torch.nn.functional.log_softmax(additional_logits, dim=-1) ## No tempering here entropy_extra = -(torch.exp(lprobs)*lprobs).mean() entropy += entropy_extra loss = loss*(1-args.max_ent_weight) - entropy*args.max_ent_weight ## Maximize the entropy so a minus is needed. Weigh and add losses as required. if rank == 0: writer.add_scalar("loss with entropy loss", loss.detach().cpu().numpy(), ctr) if args.distillation: ## Time to distill. if args.cross_distillation: ## The input ids and masks should be replaced with those appropriate for the parent. input_ids = input_ids_parent input_masks = input_masks_parent with torch.no_grad(): ## No gradient to avoid memory allocation. parent_mod_compute = parent_model(input_ids=input_ids, attention_mask=input_masks ,decoder_input_ids=decoder_input_ids, output_hidden_states=args.distillation, output_attentions=args.distillation) ## Get the parent model's computations. distillation_loss = compute_distillation_losses(mod_compute, parent_mod_compute, labels, tok.pad_token_id, args) ## Compute distillation losses. loss = args.distillation_loss_weight*distillation_loss + (1.0 - args.distillation_loss_weight)*loss ## Update the main loss with weighing and adding. if rank == 0: writer.add_scalar("distillation loss", distillation_loss.detach().cpu().numpy(), ctr) writer.add_scalar("final loss", loss.detach().cpu().numpy(), ctr) else: mod_compute = model(input_ids=input_ids, attention_mask=input_masks, decoder_input_ids=decoder_input_ids, output_hidden_states=args.distillation, output_attentions=args.distillation, additional_input_ids=input_ids_parent if args.multi_source else None, additional_input_ids_mask=input_masks_parent if args.multi_source else None, label_mask=label_mask if args.num_domains_for_domain_classifier > 1 else None) ## Run the model and get logits. logits = mod_compute.logits lprobs = torch.nn.functional.log_softmax(logits, dim=-1) ## Softmax tempering of logits if needed. loss = label_smoothed_nll_loss( lprobs, labels, args.label_smoothing, ignore_index=tok.pad_token_id ) ## Label smoothed cross entropy loss. loss = loss*args.softmax_temperature ## Up scale loss in case of non unitary temperatures. if rank == 0: writer.add_scalar("pure cross entropy loss", loss.detach().cpu().numpy(), ctr) if args.temperature_calibration: loss = loss*mod_compute.softmax_temperature if rank == 0: writer.add_scalar("calibrated temperature", mod_compute.softmax_temperature.detach().cpu().numpy(), ctr) writer.add_scalar("calibrated temperature loss", loss.detach().cpu().numpy(), ctr) if args.num_domains_for_domain_classifier > 1: ## We augment the main loss with the domain classifier loss domain_classifier_logits = mod_compute.domain_classifier_logits domain_classifier_lprobs = torch.nn.functional.log_softmax(domain_classifier_logits, dim=-1) ## Softmax tempering of logits if needed. domain_classifier_loss = label_smoothed_nll_loss( domain_classifier_lprobs.view(-1,args.num_domains_for_domain_classifier), domain_classifier_labels.view(-1,1), args.label_smoothing ) ## Label smoothed cross entropy loss. We are not going to do any temperature related stuff to this. loss = domain_classifier_loss*args.domain_classifier_loss_weight + loss * (1.0-args.domain_classifier_loss_weight) if rank == 0: writer.add_scalar("domain classifier loss", domain_classifier_loss.detach().cpu().numpy(), ctr) writer.add_scalar("loss with domain classifier loss", loss.detach().cpu().numpy(), ctr) ## We will do multilayer softmaxing without any consideration for distillation or domain classification. if mod_compute.additional_lm_logits is not None: for additional_logits in mod_compute.additional_lm_logits: lprobs = torch.nn.functional.log_softmax(additional_logits, dim=-1) ## Softmax tempering of logits if needed. loss_extra = label_smoothed_nll_loss( lprobs, labels, args.label_smoothing, ignore_index=tok.pad_token_id ) ## Label smoothed cross entropy loss. loss_extra = loss_extra*args.softmax_temperature ## Up scale loss in case of non unitary temperatures. Note that in case of self calibrating temperature, the softmax temperature must be set to 1. TODO: Perhaps log this too. if args.temperature_calibration: loss_extra = loss_extra*mod_compute.softmax_temperature loss += loss_extra ## Up scale loss in case of non unitary temperatures. TODO: Perhaps log this too. if args.max_ent_weight != -1: ## This deals with softmax entropy maximization. The logic is that we compute the softmax entropy of the predictions via -(P(Y/X)*log(P(Y/X))). We then add it to the cross entropy loss with a negative sign as we wish to maximize entropy. This should penalize overconfident predictions. assert (args.max_ent_weight >= 0 and args.max_ent_weight <= 1) logits = logits*args.softmax_temperature ## We have to undo the tempered logits else our entropy estimate will be wrong. if args.temperature_calibration: logits = logits*mod_compute.softmax_temperature lprobs = torch.nn.functional.log_softmax(logits, dim=-1) ## No tempering here entropy = -(torch.exp(lprobs)*lprobs).mean() if rank == 0: writer.add_scalar("softmax entropy", entropy.detach().cpu().numpy(), ctr) if mod_compute.additional_lm_logits is not None: for additional_logits in mod_compute.additional_lm_logits: ## Compute entropy for each layer as well additional_logits = additional_logits*args.softmax_temperature ## We have to undo the tempered logits else our entropy estimate will be wrong. if args.temperature_calibration: additional_logits = additional_logits*mod_compute.softmax_temperature lprobs = torch.nn.functional.log_softmax(additional_logits, dim=-1) ## No tempering here entropy_extra = -(torch.exp(lprobs)*lprobs).mean() entropy += entropy_extra loss = loss*(1-args.max_ent_weight) - entropy*args.max_ent_weight ## Maximize the entropy so a minus is needed. Weigh and add losses as required. if rank == 0: writer.add_scalar("loss with entropy loss", loss.detach().cpu().numpy(), ctr) if args.distillation: ## Time to distill. if args.cross_distillation: ## The input ids and masks should be replaced with those appropriate for the parent. input_ids = input_ids_parent input_masks = input_masks_parent with torch.no_grad(): ## No gradient to avoid memory allocation. parent_mod_compute = parent_model(input_ids=input_ids, attention_mask=input_masks ,decoder_input_ids=decoder_input_ids, output_hidden_states=args.distillation, output_attentions=args.distillation) ## Get the parent model's computations. distillation_loss = compute_distillation_losses(mod_compute, parent_mod_compute, labels, tok.pad_token_id, args) ## Compute distillation losses. loss = args.distillation_loss_weight*distillation_loss + (1.0 - args.distillation_loss_weight)*loss ## Update the main loss with weighing and adding. if rank == 0: writer.add_scalar("distillation loss", distillation_loss.detach().cpu().numpy(), ctr) writer.add_scalar("final loss", loss.detach().cpu().numpy(), ctr) input_ids=input_ids.to('cpu') ## Move to CPU. May not be needed but its a safety net. input_masks=input_masks.to('cpu') ## Move to CPU. May not be needed but its a safety net. decoder_input_ids=decoder_input_ids.to('cpu') ## Move to CPU. May not be needed but its a safety net. labels=labels.to('cpu') ## Move to CPU. May not be needed but its a safety net. if args.cross_distillation or args.multi_source: input_ids_parent=input_ids_parent.to('cpu') ## Move to CPU. May not be needed but its a safety net. input_masks_parent=input_masks_parent.to('cpu') ## Move to CPU. May not be needed but its a safety net. if args.fp16: ## The gradient scaler needs to be invoked with FP16/AMP computation. loss = loss/args.multistep_optimizer_steps scaler.scale(loss).backward() num_batches_this_optimizer_step += 1 losses += loss if num_batches_this_optimizer_step < args.multistep_optimizer_steps: continue else: pass if args.fp16: ## With FP16/AMP computation we need to unscale gradients before clipping them. We then optimize and update the scaler. if args.max_gradient_clip_value != 0.0: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_gradient_clip_value) scaler.step(optimizer) scaler.update() else: ## With FP32, we just do regular backpropagation, gradient clipping and then step the optimizer. loss = loss/args.multistep_optimizer_steps loss.backward() num_batches_this_optimizer_step += 1 losses += loss if num_batches_this_optimizer_step < args.multistep_optimizer_steps: continue if args.max_gradient_clip_value != 0.0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_gradient_clip_value) optimizer.step() scheduler.step() ## Advance the scheduler to get to the next value of LR. lv = losses.detach().cpu().numpy() ## Detach the loss in order to report it. losses = 0 num_batches_this_optimizer_step = 0 if ctr % 10 == 0 and rank % 8 == 0: ## Print the current loss every 10 batches but only for the master/prime process. print(ctr, lv) sys.stdout.flush() if ctr % args.eval_every == 0 and rank == 0 and args.save_weights_and_gradeint_info: ## Save the model weight and gradient info every time this condition is triggered. for param_name, param_value in model.named_parameters(): if not ("embed_positions" in param_name and args.positional_encodings): writer.add_histogram("weights."+param_name, param_value.detach().cpu().numpy(), ctr) writer.add_histogram("gradients."+param_name, param_value.grad.detach().cpu().numpy(), ctr) end = time.time() ctr += 1 if rank == 0: CHECKPOINT_PATH = args.model_path print("Saving the model after the final step") # All processes should see same parameters as they all start from same # random parameters and gradients are synchronized in backward passes. # Therefore, saving it in one process is sufficient. print("The best bleu was:", max_global_sbleu) print("The corresponding step was:", max_global_sbleu_step*args.eval_every) checkpoint_dict = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'ctr': ctr} torch.save(checkpoint_dict, CHECKPOINT_PATH) ## Save one last time. torch.save(model.module.state_dict(), CHECKPOINT_PATH+".pure_model") ## Pure model without any ddp markers or optimizer info. dist.barrier() ## Wait till all processes reach this point so that the prime process saves the final checkpoint. dist.destroy_process_group() ## Everything that has a beginning has an end, Neo! def run_demo(): parser = argparse.ArgumentParser() parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N') parser.add_argument('-g', '--gpus', default=1, type=int, help='number of gpus per node') parser.add_argument('-nr', '--nr', default=0, type=int, help='ranking within the nodes') parser.add_argument('-a', '--ipaddr', default='localhost', type=str, help='IP address of the main node') parser.add_argument('-p', '--port', default='26023', type=str, help='Port main node') parser.add_argument('--freeze_embeddings', action='store_true', help='Should freeze embeddings during fine tuning?') parser.add_argument('--freeze_encoder', action='store_true', help='Should we freeze encoder during fine tuning?') parser.add_argument('--positional_encodings', action='store_true', help='If true then we will use positional encodings instead of learned positional embeddings.') parser.add_argument('--no_embed_norm', action='store_true', help='If true then we wont normalize embeddings.') parser.add_argument('--scale_embedding', action='store_true', help='Should we scale embeddings?') parser.add_argument('--no_scale_attention_embedding', action='store_true', help='Should we scale attention embeddings?') parser.add_argument('--multistep_optimizer_steps', default=1, type=int, help="In case you want to simulate a larger batch you should set this to a higher value.") parser.add_argument('--encoder_layers', default=6, type=int, help="The value for number of encoder layers") parser.add_argument('--decoder_layers', default=6, type=int, help="The value for number of decoder layers") parser.add_argument('--label_smoothing', default=0.1, type=float, help="The value for label smoothing") parser.add_argument('--weight_decay', default=0.0001, type=float, help="The value for weight decay") parser.add_argument('--lr', default=7e-4, type=float, help="The value for the learning rate") parser.add_argument('--layerdrop', default=0.0, type=float, help="The value for layerdrop which indicates the probability that a whole layer will be bypassed via an identity transformation.") parser.add_argument('--dropout', default=0.1, type=float, help="The value for embedding dropout") parser.add_argument('--attention_dropout', default=0.1, type=float, help="The value for attention dropout") parser.add_argument('--activation_dropout', default=0.1, type=float, help="The value for activation dropout") parser.add_argument('--data_sampling_temperature', default=5.0, type=float, help="The value for the data sampling temperature") parser.add_argument('--token_masking_lambda', default=3.5, type=float, help="The value for the poisson sampling lambda value") parser.add_argument('--token_masking_probs_range', nargs='+', type=float, default=[0.3], help="The range of probabilities with which the token will be masked. If you want a fixed probability then specify one argument else specify ONLY 2.") parser.add_argument('--repetition_penalty', default=1.0, type=float, help='To prevent repetition during decoding. 1.0 means no repetition. 1.2 was supposed to be a good value for some settings according to some researchers.') parser.add_argument('--no_repeat_ngram_size', default=0, type=int, help='N-grams of this size will never be repeated in the decoder. Lets play with 2-grams as default.') parser.add_argument('--length_penalty', default=1.0, type=float, help='Set to more than 1.0 for longer sentences.') parser.add_argument('--no_skip_special_tokens', action='store_false', help='Should we return outputs without special tokens? We may need this to deal with situations where the user specified control tokens must be in the output.') parser.add_argument('--encoder_no_repeat_ngram_size', default=0, type=int, help='N-gram sizes to be prevented from being copied over from encoder. Lets play with 2-grams as default.') parser.add_argument('--encoder_tying_config', default=None, type=str, help='What should be the parameter tying configuration? 1-1-1-1-1-1 means 6 layers where all are shared. 1-1-2-2-3-3 means 6 layers, 3 unique layers and each one is recurred twice before passing to another layer. 1-2-3-1-2-3 means 6 layers, 3 unique layers and recurrence is done twice after all layers have been passed through. The default None implies a 1-2-3-4-...-N setup') parser.add_argument('--decoder_tying_config', default=None, type=str, help='What should be the parameter tying configuration? 1-1-1-1-1-1 means 6 layers where all are shared. 1-1-2-2-3-3 means 6 layers, 3 unique layers and each one is recurred twice before passing to another layer. 1-2-3-1-2-3 means 6 layers, 3 unique layers and recurrence is done twice after all layers have been passed through. The default None implies a 1-2-3-4-...-N setup') parser.add_argument('--softmax_temperature', default=1.0, type=float, help="The value for the softmax temperature") parser.add_argument('--distillation_temperature', default=1.0, type=float, help="The value for the softmax temperature during distillation") parser.add_argument('--temperature_calibration', action='store_true', help='Are we calibrating the temperature automatically during training? If yes then the softmax_temperature parameter should have a value of 1.0 furthermore the returned temperature will be used to scale the loss.') parser.add_argument('--encoder_attention_heads', default=8, type=int, help="The value for number of encoder attention heads") parser.add_argument('--decoder_attention_heads', default=8, type=int, help="The value for number of decoder attention heads") parser.add_argument('--wait_k', default=-1, type=int, help="The value for k in wait-k snmt. Keep as -1 for non-snmt aka vanilla NMT.") parser.add_argument('--mixed_wait_k', action='store_true', help='Should we train using up to wait_k? This can help simulate multiple wait_k') parser.add_argument('--additional_source_wait_k', default=-1, type=int, help="The value for k in wait-k snmt. Keep as -1 for non-snmt aka vanilla NMT. This is the wait-k for the additional source language. Can be used for simultaneous mutlisource NMT.") parser.add_argument('--future_prediction', action='store_true', help='This assumes that we dont mask token sequences randomly but only after the latter half of the sentence. We do this to make the model more robust towards missing future information. Granted we can achieve this using wait-k but methinks this may be a better way of training.') parser.add_argument('--unidirectional_encoder', action='store_true', help='This assumes that we use a unidirectional encoder. This is simulated via a lower-triangular matrix mask in the encoder. Easy peasy lemon squeazy.') parser.add_argument('--decoder_ffn_dim', default=2048, type=int, help="The value for decoder ff hidden dim") parser.add_argument('--encoder_ffn_dim', default=2048, type=int, help="The value for encoder ff hidden dim") parser.add_argument('--d_model', default=512, type=int, help="The value for model hidden size") parser.add_argument('--eval_every', default=1000, type=int, help="The number of iterations after which an evaluation must be done. Also saves a checkpoint every these number of steps.") parser.add_argument('--no_eval_save_every', default=10000, type=int, help="The number of iterations after which a model must be force saved in case evaluation is not done.") parser.add_argument('--max_gradient_clip_value', default=1.0, type=float, help="The max value for gradient norm value") parser.add_argument('--use_official_pretrained', action='store_true', help='Use this flag if you want the argument "pretrained_model" to specify a pretrained model created by someone else.') parser.add_argument('--pretrained_model', default='', type=str, help='Path to the pretrained model.') parser.add_argument('--no_reload_optimizer_ctr_and_scheduler', action='store_true', help='Should we reload the optimizer, counter and secheduler? By default we always reload these. Set this to False if we only want to reload the model params and optimize from scratch.') parser.add_argument('-m', '--model_path', default='pytorch.bin', type=str, help='Path to save the fine tuned model') parser.add_argument('--warmup_steps', default=16000, type=int, help='Scheduler warmup steps') parser.add_argument('--batch_size', default=2048, type=int, help='Train batch sizes in tokens') parser.add_argument('--batch_size_indicates_lines', action='store_true', help='Should we batch as a fixed number of lines?') parser.add_argument('--dev_batch_size', default=1024, type=int, help='Dev batch sizes in lines') parser.add_argument('--max_src_length', default=256, type=int, help='Maximum token length for source language') parser.add_argument('--max_tgt_length', default=256, type=int, help='Maximum token length for target language') parser.add_argument('--early_stop_checkpoints', default=10, type=int, help='Number of checkpoints to wait to see if BLEU increases.') parser.add_argument('--learning_rate_scaling', default=2, type=int, help='How much should the LR be divided by during annealing?. Set num_batches to a larger value or else you will see lr go to zero too soon.') parser.add_argument('--max_annealing_attempts', default=2, type=int, help='Number of times LR should be annealed.') parser.add_argument('--additional_early_stop_checkpoints_per_anneal_step', default=5, type=int, help='How many additional checkpoints should we wait till declaring convergence? This will be multiplied with the annealing step number.') parser.add_argument('--num_batches', default=500000, type=int, help='Number of batches to train on') parser.add_argument('--max_eval_batches', default=1000, type=int, help='These many evaluation batches will be considered. Use a small value like 5 to cover a portion of the evaluation data.') parser.add_argument('--max_decode_length_multiplier', default=2.0, type=float, help='This multiplied by the source sentence length will be the maximum decoding length. If you want to directly specify a particular value then set this to the negative of that value.') parser.add_argument('--min_decode_length_multiplier', default=0.1, type=float, help='This multiplied by the source sentence length will be the minimum decoding length. If you want to directly specify a particular value then set this to the negative of that value.') parser.add_argument('--tokenizer_name_or_path', default='ai4bharat/indic-bert', type=str, help='Name of or path to the tokenizer') parser.add_argument('--pretrained_tokenizer_name_or_path', default=None, type=str, help='Name of or path to the tokenizer of the pretrained model if its different from the current model. This tokenizer will be used for remapping embeddings so as to reuse as many pretrained embeddings as possible.') parser.add_argument('--multi_source_method', default=None, type=str, help='How to merge representations from multiple sources? Should be one of self_relevance_and_merge_after_attention, self_relevance_and_merge_before_attention, merge_after_attention, merge_before_attention. We also need to implement averaging methods such as early averaging (average encoder representations) and late averaging (average softmaxes). Relevance mechanisms should have a separate flag in the future.') parser.add_argument('--tokenization_sampling', action='store_true', help='Should we use stoachastic tokenization aka BPE dropout or Subword regularization?') parser.add_argument('--tokenization_nbest_list_size', type=int, default=64, help='The size of the nbest list when doing stochastic tokenization.') parser.add_argument('--tokenization_alpha_or_dropout', type=float, default=0.1, help='The value of sentence piece regularization amount controlled via alpha or the amount of BPE dropout controlled by dropout.') parser.add_argument('--train_slang', default='en', type=str, help='Source language(s) for training. If you want to specify the domain of the language pair then specify it as language-domain (hyphen in the middle) and make sure to set --num_domains_for_domain_classifier to a value > 1. If you want to specify an additional source then you need to do the same thing but note that you can do multi-source domain classification as its just too much.') parser.add_argument('--train_tlang', default='hi', type=str, help='Target language(s) for training') parser.add_argument('--train_src', default='', type=str, help='Source language training sentences') parser.add_argument('--train_tgt', default='', type=str, help='Target language training sentences') parser.add_argument('--dev_slang', default='en', type=str, help='Source language(s) for training') parser.add_argument('--dev_tlang', default='hi', type=str, help='Target language(s) for training') parser.add_argument('--dev_src', default='', type=str, help='Source language(s) development sentences') parser.add_argument('--dev_tgt', default='', type=str, help='Target language(s) development sentences') parser.add_argument('--fp16', action='store_true', help='Should we use fp16 training?') parser.add_argument('--no_eval', action='store_true', help='Should we skip evaluation?') parser.add_argument('--source_masking_for_bilingual', action='store_true', help='Should we use masking on source sentences when training on parallel corpora?') parser.add_argument('--is_summarization', action='store_true', help='Should we use masking on source sentences when training on parallel corpora?') parser.add_argument('--hard_truncate_length', default=0, type=int, help='Should we perform a hard truncation of the batch? This will be needed to eliminate cuda caching errors for when sequence lengths exceed a particular limit. This means self attention matrices will be massive and I used to get errors. Choose this value empirically.') parser.add_argument('--use_rouge', action='store_true', help='Should we use ROUGE for evaluation?') parser.add_argument('--max_ent_weight', type=float, default=-1.0, help='Should we maximize softmax entropy? If the value is anything between 0 and 1 then yes. If its -1.0 then no maximization will be done.') parser.add_argument('--num_domains_for_domain_classifier', type=int, default=1, help='If we have multiple domains then we should set this to a value higher than one.') parser.add_argument('--gradient_reversal_for_domain_classifier', action='store_true', help='Should we do gradient reversal for the domain classifier? If true then all gradients below the softmax layer (meaning linear projection plus softmax activation) for the classifier will be reversed. Essentially, the representations for two domains will be forced to become more similar. This may in turn be used for style transfer.') parser.add_argument('--domain_classifier_loss_weight', type=float, default=0.1, help='What weight should we give to the domain classifier? 1 minus this weight will be given to the main loss.') parser.add_argument('--shard_files', action='store_true', help='Should we shard the training data? Set to true only if the data is not already pre-sharded.') parser.add_argument('--multi_source', action='store_true', help='Are we doing multisource NMT? In that case you should specify the train_src as a hyphen separated pair indicating the parent language and the child language. You should also ensure that the source file is a tab separated file where each line contains "the parent pair source sentence[tab]child pair source sentence".') parser.add_argument('--multilayer_softmaxing', action='store_true', help='Should we apply a softmax for each decoder layer? Unsupported for distillation. Only for vanilla training.') parser.add_argument('--remap_encoder', default='', type=str, help='This indicates the remappings for the layer. Example: 1-2,2-4,3-6. The plan is to use these remappings to cut down the model prior to decoding or training. Suppose we have a 6 layer model but we only want to utilize the 2nd, 4th and 6th layer then we will copy the content of the 2nd, 4th and 6th layers to the 1st, 2nd and 3rd layer and delete the former layers from the parameter dictionary. This counts as layer pruning. IMPORTANT NOTE: Ensure that you specify ALL child layer indices you wish mapped. For example if you want 1-2,2-1,3-3 you MUST NOT skip the 3-3 part else it will be deleted from the model dictionary and will be randomly initialized. The loading mechanism is not strict so it will ignore missing or non matching keys. ADDITIONAL NOTE: Load a checkpoint with only the model and not the optimizer to prevent failure as we are not sure if remapping optimizers and learning rate schedulers make sense or not.') parser.add_argument('--remap_decoder', default='', type=str, help='This indicates the remappings for the layer. Example: 1-2,2-4,3-6. The plan is to use these remappings to cut down the model prior to decoding or training. Suppose we have a 6 layer model but we only want to utilize the 2nd, 4th and 6th layer then we will copy the content of the 2nd, 4th and 6th layers to the 1st, 2nd and 3rd layer and delete the former layers from the parameter dictionary. This counts as layer pruning. IMPORTANT NOTE: Ensure that you specify ALL child layer indices you wish mapped. For example if you want 1-2,2-1,3-3 you MUST NOT skip the 3-3 part else it will be deleted from the model dictionary and will be randomly initialized. The loading mechanism is not strict so it will ignore missing or non matching keys. ADDITIONAL NOTE: Load a checkpoint with only the model and not the optimizer to prevent failure as we are not sure if remapping optimizers and learning rate schedulers make sense or not.') parser.add_argument('--eliminate_encoder_before_initialization', action='store_true', help='Lets wipe out the encoder params from the pretrained model before we use it to initialize the current model. This means we have random encoder initialization.') parser.add_argument('--eliminate_decoder_before_initialization', action='store_true', help='Lets wipe out the decoder params from the pretrained model before we use it to initialize the current model. This means we have random decoder initialization.') parser.add_argument('--eliminate_embeddings_before_initialization', action='store_true', help='Lets wipe out the embedding params from the pretrained model before we use it to initialize the current model. This means we have random embedding initialization.') ### Distillation flags parser.add_argument('--distillation', action='store_true', help='Should we perform distillation from a parent model? If so then you must specify the model using "parent_pretrained_model". There are several distillation options check the flag called "distillation_styles".') parser.add_argument('--cross_distillation', action='store_true', help='Should we perform cross distillation from a parent model which has been trained on another source language but the same target language? If so then you must specify the model using "parent_pretrained_model". Additionally you should specify the train_src as a hyphen separated pair indicating the parent language and the child language. You should also ensure that the source file is a tab separated file where each line contains "the parent pair source sentence[tab]child pair source sentence" There are several distillation options check the flag called "distillation_styles".') parser.add_argument('--use_official_parent_pretrained', action='store_true', help='Use this flag if you want the argument "pretrained_model" to specify a pretrained model created by someone else for the purposes of distillation. Use this carefully because if the parent is created by someone else then you have to have your own model with different configurations for fine-tuning. Essentially you must make sure that use_official_parent_pretrained and use_official_pretrained are not true simultaneously.') parser.add_argument('--parent_pretrained_model', default='', type=str, help='Path to the parent pretrained model for distillation. The pretrained_model flag will be used to initialize the child model.') parser.add_argument('--distillation_loss_weight', type=float, default=0.7, help='All the distillation losses will be averaged and then multiplied by this weight before adding it to the regular xentropy loss which will be weighted by (1- distillation_loss_weight).') parser.add_argument('--distillation_styles', default='cross_entropy', type=str, help='One or more of softmax_distillation, attention_distillation, hidden_layer_regression. For attention distillation you must make sure that the number of attention heads between the parent and child are the same and for hidden layer regression you must make sure that the hidden size (d_model) is the same for the parent and child. In both these cases, you should also specify the layer mapping. See the "distillation_layer_mapping" flag.') parser.add_argument('--distillation_layer_mapping', default='1-1,2-2,3-3,4-4,5-5,6-6', type=str, help='This indicates the mappings between the parent and child model. The same flag is used for the encoder and the decoder. If you want to map the 2nd parent layer to the first child layer then use 2-1. Note that the layers are not zero indexed as per the description. Ensure that your indices are correct because checking is not done at the moment. If you get weird results then first make sure that your flags are correctly set. If the parent has 6 layers and the child has 3 layers then something like 6-4 will definitely throw an error. User beware! Dokuro mark.') parser.add_argument('--parent_encoder_layers', default=6, type=int, help="The value for number of encoder layers") parser.add_argument('--parent_decoder_layers', default=6, type=int, help="The value for number of decoder layers") parser.add_argument('--parent_dropout', default=0.1, type=float, help="The value for embedding dropout") parser.add_argument('--parent_attention_dropout', default=0.1, type=float, help="The value for attention dropout") parser.add_argument('--parent_activation_dropout', default=0.1, type=float, help="The value for activation dropout") parser.add_argument('--parent_encoder_attention_heads', default=8, type=int, help="The value for number of encoder attention heads") parser.add_argument('--parent_decoder_attention_heads', default=8, type=int, help="The value for number of decoder attention heads") parser.add_argument('--parent_decoder_ffn_dim', default=2048, type=int, help="The value for decoder ff hidden dim") parser.add_argument('--parent_encoder_ffn_dim', default=2048, type=int, help="The value for encoder ff hidden dim") parser.add_argument('--parent_d_model', default=512, type=int, help="The value for model hidden size") parser.add_argument('--save_weights_and_gradeint_info', action='store_true', help='Saving gradient information is time consuming. We should make this optional.') ### ### Placeholder flags to prevent code from breaking. These flags are not intended to be used for fine tuning. These flags are here because the common_utils.py methods assume the existence of these args for when joint mbart training and regular NMT training is done. TODO: Modify code to avoid the need for these flags in this script. parser.add_argument('--unify_encoder', action='store_true', help='Should we minimize the encoder representation distances instead of regular cross entropy minimization on the parallel corpus?') args = parser.parse_args() assert len(args.token_masking_probs_range) <= 2 print("IP address is", args.ipaddr) args.world_size = args.gpus * args.nodes # train_files = {} slangs = args.train_slang.strip().split(",") tlangs = args.train_tlang.strip().split(",") train_srcs = args.train_src.strip().split(",") train_tgts = args.train_tgt.strip().split(",") if args.num_domains_for_domain_classifier > 1: ## In case we have to do domain classification train_domains = args.train_domains.strip().split(",") ## Should not be empty args.train_domains = {} ## We can index the domain indicator this way domain_idx = 0 for train_domain in train_domains: if train_domain not in args.train_domains: args.train_domains[train_domain] = domain_idx domain_idx += 1 train_files = {slang+"-"+tlang+"-"+train_domain: (train_src, train_tgt, args.train_domains[train_domain]) for slang, tlang, train_src, train_tgt, train_domain in zip(slangs, tlangs, train_srcs, train_tgts, train_domains)} else: train_files = {slang+"-"+tlang: (train_src, train_tgt) for slang, tlang, train_src, train_tgt in zip(slangs, tlangs, train_srcs, train_tgts)} print("Training files are:", train_files) dev_files = {} if not args.no_eval: slangs = args.dev_slang.strip().split(",") tlangs = args.dev_tlang.strip().split(",") dev_srcs = args.dev_src.strip().split(",") dev_tgts = args.dev_tgt.strip().split(",") dev_files = {slang+"-"+tlang: (dev_src, dev_tgt) for slang, tlang, dev_src, dev_tgt in zip(slangs, tlangs, dev_srcs, dev_tgts)} print("Development files are:", dev_files) os.environ['MASTER_ADDR'] = args.ipaddr # os.environ['MASTER_PORT'] = args.port # quit_condition = torch.ones(1) ## Create a variable to hold the quitting condition trigger quit_condition.share_memory_() ## Share this among all processes mp.spawn(model_create_load_run_save, nprocs=args.gpus, args=(args,train_files, dev_files, quit_condition)) # if __name__ == "__main__": run_demo()
[ "torch.cuda.amp.autocast", "torch.distributed.destroy_process_group", "torch.distributed.init_process_group", "torch.save", "torch.no_grad", "torch.multiprocessing.spawn", "torch.nn.parallel.DistributedDataParallel", "torch.ones", "torch.manual_seed", "torch.cuda.set_device", "torch.nn.functional.log_softmax", "torch.tensor", "torch.load", "torch.cuda.amp.GradScaler", "torch.distributed.barrier", "torch.exp", "torch.utils.tensorboard.SummaryWriter" ]
1.7.1
alvations/yanmtt
9da45055e95f6e66faa17306ad79630071b84d9e
1.6
import torch #Nota bene: In training, the average of losses in each batch is returned. #In testing, this is not the case. def loss_enc(z_code, z_code_hat, test): if(test): l_enc = torch.sum((z_code - z_code_hat)**2, dim=(1)) else: l_enc = torch.sum((z_code - z_code_hat)**2, dim=(1)) return l_enc #def loss_enc(z_code, z_code_hat, test): # if test: # l_enc = torch.sum((z_code - z_code_hat)**2, dim=(1)) # return l_enc #def loss_rec(x, x_hat, test): # if test : # else: # l_con = torch.sum(torch.abs(x - x_hat), dim=(1, 2, 3)) # return l_con def loss_rec(x,x_hat,test): if test == True: l_con = torch.sum(torch.abs(x - x_hat), dim=(1, 2, 3)) else: l_con = torch.sum(torch.abs(x - x_hat), dim=(1, 2, 3)) return l_con def loss_adv(dis_x, dis_x_hat, features_real, features_fake, test): l_adv = torch.sum((dis_x - dis_x_hat)**2, dim=(1)) for fidx, _ in enumerate(features_real): feat_dim = len(features_real[fidx].shape) if(feat_dim == 4): l_adv += torch.sum((features_real[fidx] - features_fake[fidx])**2, dim=(1, 2, 3)) elif(feat_dim == 3): l_adv += torch.sum((features_real[fidx] - features_fake[fidx])**2, dim=(1, 2)) elif(feat_dim == 2): l_adv += torch.sum((features_real[fidx] - features_fake[fidx])**2, dim=(1)) else: l_adv += torch.sum((features_real[fidx] - features_fake[fidx])**2) return l_adv def loss_grad(grad_loss): l_grad = grad_loss #for i in range(nlayer): # wrt = model.module.up[int(2*i)].weight # target_grad = torch.autograd.grad(recon_loss, wrt, create_graph=True, retain_graph=True)[0] # # l_grad += -1 * func.cosine_similarity(target_grad.view(-1, 1), # ref_grad[i].avg.view(-1, 1), dim=0) return l_grad def loss_ganomaly(z_code, z_code_hat, x, x_hat, \ dis_x, dis_x_hat, features_real, features_fake, \ w_grad, w_enc, w_adv, w_con, test): z_code, z_code_hat, x, x_hat, dis_x, dis_x_hat = \ z_code.cpu(), z_code_hat.cpu(), x.cpu(), x_hat.cpu(), dis_x.cpu(), dis_x_hat.cpu() for fidx, _ in enumerate(features_real): features_real[fidx] = features_real[fidx].cpu() features_fake[fidx] = features_fake[fidx].cpu() l_enc = loss_enc(z_code, z_code_hat,test) l_con = loss_rec(x, x_hat,test) l_adv = loss_adv(dis_x, dis_x_hat, features_real, features_fake,test) if(test): l_tot = (w_enc * l_enc) + (w_con * l_con) + (w_adv * l_adv) else: l_tot = torch.mean((w_enc * l_enc) + (w_con * l_con) + (w_adv * l_adv)) l_enc = torch.mean(l_enc) l_con = torch.mean(l_con) l_adv = torch.mean(l_adv) return l_tot, l_enc, l_con, l_adv
[ "torch.abs", "torch.mean", "torch.sum" ]
1.6.0
ErikBertolino/Anomaly-Detection
edd14ccf3015d3bca48bd55b5b0d4aa98c98ff85
1.8
import sys import os import numpy as np import argparse import time import json from pathlib import Path import argparse import os import shutil import sys import numpy as np import torch import random random.seed(42) import torch.nn as nn import torch.optim as optim import torch.utils.data from torch.utils.data import DataLoader, TensorDataset import torch.utils.data.distributed from sklearn.metrics import roc_auc_score, accuracy_score import torch.utils.tensorboard as tensorboard import torchvision.transforms as transforms from opacus import PrivacyEngine # from opacus.layers import DifferentiallyPrivateDistributedDataParallel as DPDDP from opacus.utils import stats from opacus.utils.uniform_sampler import UniformWithReplacementSampler from torch.nn.parallel import DistributedDataParallel as DDP from torchvision.datasets import CIFAR10 from tqdm import tqdm from imblearn.over_sampling import RandomOverSampler, SMOTE from imblearn.under_sampling import RandomUnderSampler from sklearn.model_selection import train_test_split sys.path.append(os.path.abspath('../')) from art.estimators.classification import PyTorchClassifier from art.utils import load_mnist from art.attacks.inference.membership_inference import MembershipInferenceBlackBoxRuleBased, MembershipInferenceBlackBox from art.utils import load_dataset def convnet(num_classes): return nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(start_dim=1, end_dim=-1), nn.Linear(128, num_classes, bias=True), ) def accuracy(preds, labels): return (preds == labels).mean() def save_checkpoint(state, is_best, filename="checkpoint.tar"): torch.save(state, filename) if is_best: shutil.copyfile(filename, "model_best.pth.tar") def train(model, train_loader, optimizer, epoch, device): model.train() criterion = nn.CrossEntropyLoss() losses = [] top1_acc = [] for i, (images, target) in enumerate(train_loader): images = images.to(device) target = target.to(device) # compute output output = model(images) loss = criterion(output, target) preds = np.argmax(output.detach().cpu().numpy(), axis=1) labels = target.detach().cpu().numpy() # measure accuracy and record loss acc1 = accuracy(preds, labels) losses.append(loss.item()) top1_acc.append(acc1) stats.update(stats.StatType.TRAIN, acc1=acc1) # compute gradient and do SGD step loss.backward() # make sure we take a step after processing the last mini-batch in the # epoch to ensure we start the next epoch with a clean state if ((i + 1) % n_accumulation_steps == 0) or ((i + 1) == len(train_loader)): optimizer.step() optimizer.zero_grad() else: optimizer.virtual_step() if i % print_freq == 0: if not args.disable_dp: epsilon, best_alpha = optimizer.privacy_engine.get_privacy_spent( _delta ) print( f"\tTrain Epoch: {epoch} \t" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {np.mean(top1_acc):.6f} " f"(ε = {epsilon:.2f}, δ = {_delta}) for α = {best_alpha}" ) else: print( f"\tTrain Epoch: {epoch} \t" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {np.mean(top1_acc):.6f} " ) def test(model, test_loader, device): model.eval() criterion = nn.CrossEntropyLoss() losses = [] top1_acc = [] with torch.no_grad(): for images, target in test_loader: images = images.to(device) target = target.to(device) output = model(images) loss = criterion(output, target) preds = np.argmax(output.detach().cpu().numpy(), axis=1) labels = target.detach().cpu().numpy() acc1 = accuracy(preds, labels) losses.append(loss.item()) top1_acc.append(acc1) top1_avg = np.mean(top1_acc) stats.update(stats.StatType.TEST, acc1=top1_avg) print(f"\tTest set:" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {top1_avg :.6f} ") return np.mean(top1_acc) def calc_precision_recall(predicted, actual, positive_value=1): score = 0 # both predicted and actual are positive num_positive_predicted = 0 # predicted positive num_positive_actual = 0 # actual positive for i in range(len(predicted)): if predicted[i] == positive_value: num_positive_predicted += 1 if actual[i] == positive_value: num_positive_actual += 1 if predicted[i] == actual[i]: if predicted[i] == positive_value: score += 1 if num_positive_predicted == 0: precision = 1 else: precision = score / num_positive_predicted # the fraction of predicted “Yes” responses that are correct if num_positive_actual == 0: recall = 1 else: recall = score / num_positive_actual # the fraction of “Yes” responses that are predicted correctly return precision, recall if __name__ == "__main__": parser = argparse.ArgumentParser(description='Membership Inference Attack on Resampling') parser.add_argument('--dataset', default='cifar', help='dataset to test') parser.add_argument('--batch_size', type=int, default=128, help='batch size') parser.add_argument('--epochs', type=int, default=60, help='num epochs') parser.add_argument('--noise_multiplier', type=float, default=1.3, help='noise multiplier') parser.add_argument('--max_grad_norm', type=float, default=10.0, help='max grad norm') parser.add_argument('--lr', type=float, default=1, help='learning rate') parser.add_argument('--delta', type=float, default=0.00002, help='delta') parser.add_argument('--disable_dp', action='store_true', default=False, help='train non-private model') parser.add_argument('--load_model', action='store_true', default=False, help='use pre trained model') parser.add_argument('--perform_aug', action='store_true', default=False, help='perform data augmentation') parser.add_argument('--sampling_type', default='none', help='over, under or smote sampling') parser.add_argument('--attack_model', default='rf', help='attack model type -- rf, nn') parser.add_argument('--sampling_ratio', type=float, default=0.5, help='sampling ratio') args = parser.parse_args() print(vars(args)) device = torch.device('cpu') start = time.time() epsilon = -1 # hparams _sample_rate=0.04 batch_size_test=256 workers=2 wd=0 _weight_decay=0 _momentum=0.9 na=1 n_accumulation_steps=1 local_rank=-1 lr_schedule='cos' _optim='SGD' log_dir="" data_root='../cifar10' checkpoint_file='checkpoint' _delta=1e-5 _secure_rng=False resume="" print_freq=10 # Load data generator=None augmentations = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), ] normalize = [ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] if args.perform_aug: train_transform = transforms.Compose( augmentations + normalize # augmentations + normalize if disable_dp else normalize ) else: train_transform = transforms.Compose(normalize) test_transform = transforms.Compose(normalize) train_dataset = CIFAR10( root=data_root, train=True, download=True, transform=train_transform ) train_loader = torch.utils.data.DataLoader( train_dataset, num_workers=workers, generator=generator, batch_sampler=UniformWithReplacementSampler( num_samples=len(train_dataset), sample_rate=_sample_rate, generator=generator, ), ) test_dataset = CIFAR10( root=data_root, train=False, download=True, transform=train_transform ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=batch_size_test, shuffle=False, num_workers=workers, ) X = np.empty(shape=(0,3,32,32)) y = np.empty(shape=(0)) for images, target in train_loader: X = np.append(X, images, axis=0) y = np.append(y, target, axis=0) for images, target in test_loader: X = np.append(X, images, axis=0) y = np.append(y, target, axis=0) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42) print(X_train.shape) print(X_test.shape) # Perform resampling if args.sampling_type == 'over': print("Performing oversampling at {}".format(args.sampling_ratio)) X_train, y_train = RandomOverSampler(sampling_strategy=args.sampling_ratio).fit_resample(X_train, y_train) elif args.sampling_type == 'under': print("Performing undersampling at {}".format(args.sampling_ratio)) X_train, y_train = RandomUnderSampler(sampling_strategy=args.sampling_ratio).fit_resample(X_train, y_train) elif args.sampling_type == 'smote': print("Performing SMOTE oversampling at {}".format(args.sampling_ratio)) X_train, y_train = SMOTE(sampling_strategy=args.sampling_ratio).fit_resample(X_train, y_train) print(X_train.shape) print(y_train.shape) clipping = {"clip_per_layer": False, "enable_stat": True} best_acc1 = 0 device = torch.device("cuda") model = convnet(num_classes=10) model = model.to(device) if _optim == "SGD": optimizer = optim.SGD( model.parameters(), lr=args.lr, momentum=_momentum, weight_decay=_weight_decay, ) elif _optim == "RMSprop": optimizer = optim.RMSprop(model.parameters(), lr=args.lr) elif _optim == "Adam": optimizer = optim.Adam(model.parameters(), lr=args.lr) else: raise NotImplementedError("Optimizer not recognized. Please check spelling") if not args.disable_dp: privacy_engine = PrivacyEngine( model, sample_rate=_sample_rate * n_accumulation_steps, alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)), noise_multiplier=args.noise_multiplier, max_grad_norm=args.max_grad_norm, secure_rng=_secure_rng, **clipping, ) privacy_engine.attach(optimizer) if not args.load_model: for epoch in range(1, args.epochs + 1): if lr_schedule == "cos": lr = args.lr * 0.5 * (1 + np.cos(np.pi * epoch / (args.epochs + 1))) for param_group in optimizer.param_groups: param_group["lr"] = lr train(model, train_loader, optimizer, epoch, device) top1_acc = test(model, test_loader, device) # remember best acc@1 and save checkpoint is_best = top1_acc > best_acc1 best_acc1 = max(top1_acc, best_acc1) save_checkpoint( { "epoch": epoch + 1, "arch": "Convnet", "state_dict": model.state_dict(), "best_acc1": best_acc1, "optimizer": optimizer.state_dict(), }, is_best, filename=checkpoint_file + ".tar", ) else: checkpoint = torch.load('model_best.pth.tar') model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) art_classifier = PyTorchClassifier(model, loss=nn.CrossEntropyLoss(), optimizer=optimizer, input_shape=(3,32,32), nb_classes=10,) pred = np.array([np.argmax(arr) for arr in art_classifier.predict(torch.from_numpy(X_test).type(torch.FloatTensor))]) acc = accuracy_score(y_test, pred) print('Base private model accuracy: ', acc) # Black box attack attack_train_ratio = 0.5 attack_train_size = int(len(X_train) * attack_train_ratio) attack_test_size = int(len(X_test) * attack_train_ratio) mlp_attack_bb = MembershipInferenceBlackBox(art_classifier, attack_model_type=args.attack_model) # train attack model mlp_attack_bb.fit(torch.from_numpy(X_train[:attack_train_size]).type(torch.FloatTensor), torch.from_numpy(y_train[:attack_train_size]).type(torch.FloatTensor), torch.from_numpy(X_test[:attack_test_size]).type(torch.FloatTensor), torch.from_numpy(y_test[:attack_test_size]).type(torch.FloatTensor)) # infer mlp_inferred_train_bb = mlp_attack_bb.infer(torch.from_numpy(X_train).type(torch.FloatTensor), torch.from_numpy(y_train).type(torch.FloatTensor)) mlp_inferred_test_bb = mlp_attack_bb.infer(torch.from_numpy(X_test).type(torch.FloatTensor), torch.from_numpy(y_test).type(torch.FloatTensor)) # check accuracy print("Random forest model attack results: ") mlp_train_acc_bb = np.sum(mlp_inferred_train_bb) / len(mlp_inferred_train_bb) mlp_test_acc_bb = 1 - (np.sum(mlp_inferred_test_bb) / len(mlp_inferred_test_bb)) mlp_acc_bb = (mlp_train_acc_bb * len(mlp_inferred_train_bb) + mlp_test_acc_bb * len(mlp_inferred_test_bb)) / (len(mlp_inferred_train_bb) + len(mlp_inferred_test_bb)) print('train acc: {}'.format(mlp_train_acc_bb)) print('test acc: {}'.format(mlp_test_acc_bb)) print('total acc: {}'.format(mlp_acc_bb)) mlp_prec_recall_bb = calc_precision_recall(np.concatenate((mlp_inferred_train_bb, mlp_inferred_test_bb)), np.concatenate((np.ones(len(mlp_inferred_train_bb)), np.zeros(len(mlp_inferred_test_bb))))) print('precision, recall: {}'.format(mlp_prec_recall_bb)) rf_results = { 'train acc': mlp_train_acc_bb, 'test acc': mlp_test_acc_bb, 'total acc': mlp_acc_bb, 'prec, recall': mlp_prec_recall_bb } results = [epsilon, acc, mlp_test_acc_bb, mlp_acc_bb] results_json = { 'experiment_args': vars(args), 'experiment_time': time.time() - start, 'epsilon': epsilon, 'accuracy': acc, 'rf_acc': rf_results, } print(results) # Create experiment directory. experiment_path = f'/homes/al5217/adversarial-robustness-toolbox/examples/{args.dataset}/{args.sampling_type}/' experiment_number = len(os.listdir(experiment_path)) print("experiment_number: {}".format(experiment_number)) # Dump the results to file json_file = Path.cwd() / f'{args.dataset}/{args.sampling_type}/test_results-{experiment_number}.json' with json_file.open('w') as f: json.dump(results_json, f, indent=" ") print("dumped results to {}".format(str(json_file)))
[ "torch.nn.Linear", "torch.load", "torch.nn.CrossEntropyLoss", "torch.nn.AvgPool2d", "torch.utils.data.DataLoader", "torch.nn.Flatten", "torch.device", "torch.save", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.no_grad", "torch.from_numpy", "torch.nn.AdaptiveAvgPool2d" ]
1.8.1
ashlylau/adversarial-robustness-toolbox
0ab24714db39f0d7e428e57f4eb6f9c0d34ca898
1.7
# ################################ # From paper: "End-to-End Waveform Utterance Enhancement for Direct Evaluation # Metrics Optimization by Fully Convolutional Neural Networks", TASLP, 2018 # Authors: Szu-Wei, Fu 2020 # ################################ import torch import torchaudio import numpy as np from speechbrain.utils.torch_audio_backend import get_torchaudio_backend # torchaudio_backend = get_torchaudio_backend() # torchaudio.set_audio_backend(torchaudio_backend) torchaudio_backend = "soundfile" torchaudio.set_audio_backend(torchaudio_backend) smallVal = np.finfo("float").eps # To avoid divide by zero def thirdoct(fs, nfft, num_bands, min_freq): """Returns the 1/3 octave band matrix. Arguments --------- fs : int Sampling rate. nfft : int FFT size. num_bands : int Number of 1/3 octave bands. min_freq : int Center frequency of the lowest 1/3 octave band. Returns ------- obm : tensor Octave Band Matrix. """ f = torch.linspace(0, fs, nfft + 1) f = f[: int(nfft / 2) + 1] k = torch.from_numpy(np.array(range(num_bands)).astype(float)) cf = torch.pow(2.0 ** (1.0 / 3), k) * min_freq freq_low = min_freq * torch.pow(2.0, (2 * k - 1) / 6) freq_high = min_freq * torch.pow(2.0, (2 * k + 1) / 6) obm = torch.zeros(num_bands, len(f)) # a verifier for i in range(len(cf)): # Match 1/3 oct band freq with fft frequency bin f_bin = torch.argmin(torch.square(f - freq_low[i])) freq_low[i] = f[f_bin] fl_ii = f_bin f_bin = torch.argmin(torch.square(f - freq_high[i])) freq_high[i] = f[f_bin] fh_ii = f_bin # Assign to the octave band matrix obm[i, fl_ii:fh_ii] = 1 return obm def removeSilentFrames(x, y, dyn_range=40, N=256, K=128): w = torch.unsqueeze(torch.from_numpy(np.hanning(256)), 0).to(torch.float) X1 = x[0 : int(x.shape[0]) // N * N].reshape(int(x.shape[0]) // N, N).T X2 = ( x[128 : (int(x.shape[0]) - 128) // N * N + 128] .reshape((int(x.shape[0]) - 128) // N, N) .T ) X = torch.zeros(N, X1.shape[1] + X2.shape[1]) X[:, 0::2] = X1 X[:, 1::2] = X2 energy = 20 * torch.log10( torch.sqrt(torch.matmul(w ** 2, X ** 2)) / 16.0 + smallVal ) Max_energy = torch.max(energy) msk = torch.squeeze((energy - Max_energy + dyn_range > 0)) Y1 = y[0 : int(y.shape[0]) // N * N].reshape(int(y.shape[0]) // N, N).T Y2 = ( y[128 : (int(y.shape[0]) - 128) // N * N + 128] .reshape((int(y.shape[0]) - 128) // N, N) .T ) Y = torch.zeros(N, Y1.shape[1] + Y2.shape[1]) Y[:, 0::2] = Y1 Y[:, 1::2] = Y2 x_sil = w.T.repeat(1, X[:, msk].shape[-1]) * X[:, msk] y_sil = w.T.repeat(1, X[:, msk].shape[-1]) * Y[:, msk] x_sil = torch.cat( ( x_sil[0:128, 0], (x_sil[0:128, 1:] + x_sil[128:, 0:-1]).T.flatten(), x_sil[128:256, -1], ), axis=0, ) y_sil = torch.cat( ( y_sil[0:128, 0], (y_sil[0:128, 1:] + y_sil[128:, 0:-1]).T.flatten(), y_sil[128:256, -1], ), axis=0, ) return [x_sil, y_sil] def stoi_loss(y_pred_batch, y_true_batch, lens, reduction="mean"): """Compute the STOI score and return -1 * that score. This function can be used as a loss function for training with SGD-based updates. Arguments --------- y_pred_batch : torch.Tensor The degraded (enhanced) waveforms. y_true_batch : torch.Tensor The clean (reference) waveforms. lens : torch.Tensor The relative lengths of the waveforms within the batch. reduction : str The type of reduction ("mean" or "batch") to use. Example ------- >>> a = torch.sin(torch.arange(16000, dtype=torch.float32)).unsqueeze(0) >>> b = a + 0.001 >>> -stoi_loss(b, a, torch.ones(1)) tensor(0.7...) """ y_pred_batch = torch.squeeze(y_pred_batch, dim=-1) y_true_batch = torch.squeeze(y_true_batch, dim=-1) batch_size = y_pred_batch.shape[0] fs = 16000 # Sampling rate N = 30 # length of temporal envelope vectors J = 15.0 # Number of one-third octave bands octave_band = thirdoct(fs=10000, nfft=512, num_bands=15, min_freq=150) c = 5.62341325 # 10^(-Beta/20) with Beta = -15 D = torch.zeros(batch_size) resampler = torchaudio.transforms.Resample(fs, 10000).to( y_pred_batch.device ) for i in range(0, batch_size): # Run over mini-batches y_true = y_true_batch[i, 0 : int(lens[i] * y_pred_batch.shape[1])] y_pred = y_pred_batch[i, 0 : int(lens[i] * y_pred_batch.shape[1])] y_true, y_pred = resampler(y_true), resampler(y_pred) [y_sil_true, y_sil_pred] = removeSilentFrames(y_true, y_pred) stft_true = torchaudio.transforms.Spectrogram( n_fft=512, win_length=256, hop_length=128, power=2 )(y_sil_true) stft_pred = torchaudio.transforms.Spectrogram( n_fft=512, win_length=256, hop_length=128, power=2 )(y_sil_pred) OCT_true = torch.sqrt(torch.matmul(octave_band, stft_true) + 1e-14) OCT_pred = torch.sqrt(torch.matmul(octave_band, stft_pred) + 1e-14) M = int( stft_pred.shape[-1] - (N - 1) ) # number of temporal envelope vectors X = torch.zeros(15 * M, 30) Y = torch.zeros(15 * M, 30) for m in range(0, M): # Run over temporal envelope vectors X[m * 15 : (m + 1) * 15, :] = OCT_true[:, m : m + N] Y[m * 15 : (m + 1) * 15, :] = OCT_pred[:, m : m + N] alpha = torch.norm(X, dim=-1, keepdim=True) / ( torch.norm(Y, dim=-1, keepdim=True) + smallVal ) ay = Y * alpha y = torch.min(ay, X + X * c) xn = X - torch.mean(X, dim=-1, keepdim=True) xn = xn / (torch.norm(xn, dim=-1, keepdim=True) + smallVal) yn = y - torch.mean(y, dim=-1, keepdim=True) yn = yn / (torch.norm(yn, dim=-1, keepdim=True) + smallVal) d = torch.sum(xn * yn) D[i] = d / (J * M) if reduction == "mean": return -D.mean() return -D
[ "torch.zeros", "torch.min", "torch.max", "torch.square", "torch.norm", "torch.linspace", "torch.sum", "torch.squeeze", "torch.matmul", "torch.mean", "torch.pow" ]
1.7
jafermarq/speechbrain
b640e366dd0daa713ac2d7d19b77fbf7ed38486c
1.7
import os import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary class UNet3D(nn.Module): def __init__(self, in_channels, out_channels, interpolate=True, conv_layer_order='cbr', init_ch=16): super(UNet3D, self).__init__() self.no_class = out_channels # number of groups for the GroupNorm # num_groups = min(init_ch // 2, 32) # encoder path consist of 4 subsequent Encoder modules # the number of features maps is the same as in the paper self.encoders = nn.ModuleList([ Encoder(in_channels, init_ch, is_max_pool=False, conv_layer_order=conv_layer_order), Encoder(init_ch, 2 * init_ch, conv_layer_order=conv_layer_order), Encoder(2 * init_ch, 4 * init_ch, conv_layer_order=conv_layer_order), Encoder(4 * init_ch, 8 * init_ch, conv_layer_order=conv_layer_order), ]) self.decoders = nn.ModuleList([ Decoder(4 * init_ch + 8 * init_ch, 4 * init_ch, interpolate, conv_layer_order=conv_layer_order), Decoder(2 * init_ch + 4 * init_ch, 2 * init_ch, interpolate, conv_layer_order=conv_layer_order), Decoder(init_ch + 2 * init_ch, init_ch, interpolate, conv_layer_order=conv_layer_order) ]) self.final_conv = nn.Sequential(nn.Dropout3d(0.1, False), nn.Conv3d(init_ch, self.no_class, 1)) def forward(self, x): # encoder part encoders_features = [] enc1 = self.encoders[0](x) enc2 = self.encoders[1](enc1) enc3 = self.encoders[2](enc2) mid = self.encoders[3](enc3) encoders_features = [enc3, enc2, enc1] dec3 = self.decoders[0](enc3, mid) dec2 = self.decoders[1](enc2, dec3) dec1 = self.decoders[2](enc1, dec2) final = self.final_conv(dec1) return final # Some correctly implemented utilities from a github code repository, # but I don't like them. class Encoder(nn.Module): def __init__(self, in_channels, out_channels, conv_kernel_size=3, is_max_pool=True, max_pool_kernel_size=(2, 2, 2), conv_layer_order='cbr', num_groups=32): super(Encoder, self).__init__() self.max_pool = nn.MaxPool3d(kernel_size=max_pool_kernel_size, padding=0) if is_max_pool else None self.double_conv = DoubleConv(in_channels, out_channels, kernel_size=conv_kernel_size, order=conv_layer_order, num_groups=num_groups) def forward(self, x): if self.max_pool is not None: x = self.max_pool(x) x = self.double_conv(x) return x class Decoder(nn.Module): def __init__(self, in_channels, out_channels, interpolate, kernel_size=3, scale_factor=(2, 2, 2), conv_layer_order='cbr', num_groups=32): super(Decoder, self).__init__() if interpolate: self.upsample = None else: self.upsample = nn.ConvTranspose3d(2 * out_channels, 2 * out_channels, kernel_size=kernel_size, stride=scale_factor, padding=1, output_padding=0) self.double_conv = DoubleConv(in_channels, out_channels, kernel_size=kernel_size, order=conv_layer_order, num_groups=num_groups) def forward(self, encoder_features, x): if self.upsample is None: output_size = encoder_features.size()[2:] x = F.interpolate(x, size=output_size, mode='trilinear') else: x = self.upsample(x) x = torch.cat((encoder_features, x), dim=1) x = self.double_conv(x) return x class DoubleConv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, order='cbr', num_groups=32): super(DoubleConv, self).__init__() if in_channels < out_channels: # if in_channels < out_channels we're in the encoder path conv1_in_channels, conv1_out_channels = in_channels, out_channels // 2 conv2_in_channels, conv2_out_channels = conv1_out_channels, out_channels else: # otherwise we're in the decoder path conv1_in_channels, conv1_out_channels = in_channels, out_channels conv2_in_channels, conv2_out_channels = out_channels, out_channels # conv1 self._add_conv(1, conv1_in_channels, conv1_out_channels, kernel_size, order, num_groups) # conv2 self._add_conv(2, conv2_in_channels, conv2_out_channels, kernel_size, order, num_groups) def _add_conv(self, pos, in_channels, out_channels, kernel_size, order, num_groups): assert pos in [1, 2], 'pos MUST be either 1 or 2' assert 'c' in order, "'c' (conv layer) MUST be present" assert 'r' in order, "'r' (ReLU layer) MUST be present" for i, char in enumerate(order): if char == 'r': self.add_module(f'relu{pos}', nn.ReLU(inplace=True)) elif char == 'c': self.add_module(f'conv{pos}', nn.Conv3d(in_channels, out_channels, kernel_size, padding=1)) elif char == 'g': is_before_conv = i < order.index('c') assert not is_before_conv, 'GroupNorm MUST go after the Conv3d' self.add_module(f'norm{pos}', nn.GroupNorm(num_groups=num_groups, num_channels=out_channels)) elif char == 'b': is_before_conv = i < order.index('c') if is_before_conv: self.add_module(f'norm{pos}', nn.BatchNorm3d(in_channels)) else: self.add_module(f'norm{pos}', nn.BatchNorm3d(out_channels)) else: raise ValueError( f"Unsupported layer type '{char}'. MUST be one of 'b', 'r', 'c'") if __name__ == '__main__': import time model = UNet3D(1, 9, init_ch=16, conv_layer_order='cbr', interpolate=True) os.environ['CUDA_VISIBLE_DEVICES'] = '3' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) start = time.time() summary(model, (1, 160, 160, 64)) print("take {:f} s".format(time.time() - start))
[ "torch.cat", "torch.nn.MaxPool3d", "torch.nn.functional.interpolate", "torch.nn.GroupNorm", "torch.nn.ReLU", "torch.nn.Dropout3d", "torch.cuda.is_available", "torch.nn.Conv3d", "torch.nn.BatchNorm3d", "torch.nn.ConvTranspose3d" ]
1.7.1
jeff7021/organseg_dags
2ba7deb90836aaf8e0e35d879fd00b65787bb491
1.6
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock import pytest import torch from torch import optim from torch.utils.data import DataLoader import tests.helpers.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.plugins.environments import SLURMEnvironment from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_10 from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers import BoringModel, RandomDataset from tests.helpers.runif import RunIf class AMPTestModel(BoringModel): def _step(self, batch, batch_idx): assert torch.is_autocast_enabled() output = self(batch) bfloat16 = self.trainer.precision_plugin.is_bfloat16 assert output.dtype == torch.float16 if not bfloat16 else torch.bfloat16 loss = self.loss(batch, output) return loss def training_step(self, batch, batch_idx): output = self._step(batch, batch_idx) return {"loss": output} def validation_step(self, batch, batch_idx): output = self._step(batch, batch_idx) return {"x": output} def test_step(self, batch, batch_idx): output = self._step(batch, batch_idx) return {"y": output} def predict(self, batch, batch_idx, dataloader_idx=None): assert torch.is_autocast_enabled() output = self(batch) bfloat16 = self.trainer.precision_plugin.is_bfloat16 assert output.dtype == torch.float16 if not bfloat16 else torch.bfloat16 return output @RunIf(min_gpus=2) @pytest.mark.parametrize( "accelerator", [ pytest.param("dp", marks=pytest.mark.skip("dp + amp not supported currently")), # TODO "ddp_spawn", ], ) @pytest.mark.parametrize( "precision", [ 16, pytest.param( "bf16", marks=pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_10, reason="torch.bfloat16 not available"), ), ], ) @pytest.mark.parametrize("gpus", [1, 2]) def test_amp_gpus(tmpdir, accelerator, precision, gpus): """Make sure combinations of AMP and training types work if supported.""" tutils.reset_seed() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, gpus=gpus, accelerator=accelerator, precision=precision) model = AMPTestModel() # tutils.run_model_test(trainer_options, model) trainer.fit(model) trainer.test(model) trainer.predict(model, DataLoader(RandomDataset(32, 64))) assert trainer.state.finished, f"Training failed with {trainer.state}" @RunIf(min_gpus=2) @mock.patch.dict( os.environ, { "SLURM_NTASKS": "1", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0", "SLURM_PROCID": "0", }, ) def test_amp_gpu_ddp_slurm_managed(tmpdir): """Make sure DDP + AMP work.""" # simulate setting slurm flags tutils.set_random_master_port() model = AMPTestModel() # exp file to get meta logger = tutils.get_default_logger(tmpdir) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, gpus=[0], accelerator="ddp_spawn", precision=16, callbacks=[checkpoint], logger=logger, ) trainer.fit(model) # correct result and ok accuracy assert trainer.state.finished, "amp + ddp model failed to complete" # test root model address assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment) assert trainer.training_type_plugin.cluster_environment.resolve_root_node_address("abc") == "abc" assert trainer.training_type_plugin.cluster_environment.resolve_root_node_address("abc[23]") == "abc23" assert trainer.training_type_plugin.cluster_environment.resolve_root_node_address("abc[23-24]") == "abc23" generated = trainer.training_type_plugin.cluster_environment.resolve_root_node_address("abc[23-24, 45-40, 40]") assert generated == "abc23" @pytest.mark.skipif(torch.cuda.is_available(), reason="test is restricted only on CPU") def test_cpu_model_with_amp(tmpdir): """Make sure model trains on CPU.""" with pytest.raises(MisconfigurationException, match="AMP is only available on GPU"): Trainer(precision=16) @mock.patch("pytorch_lightning.plugins.precision.apex_amp.ApexMixedPrecisionPlugin.backward") def test_amp_without_apex(bwd_mock, tmpdir): """Check that even with apex amp type without requesting precision=16 the amp backend is void.""" model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, amp_backend="native") assert trainer.amp_backend is None trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, amp_backend="apex") assert trainer.amp_backend is None trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert not bwd_mock.called @RunIf(min_gpus=1, amp_apex=True) @mock.patch("pytorch_lightning.plugins.precision.apex_amp.ApexMixedPrecisionPlugin.backward") def test_amp_with_apex(bwd_mock, tmpdir): """Check calling apex scaling in training.""" class CustomModel(BoringModel): def training_step(self, batch, batch_idx, optimizer_idx): return super().training_step(batch, batch_idx) def configure_optimizers(self): optimizer1 = optim.Adam(self.parameters(), lr=0.01) optimizer2 = optim.SGD(self.parameters(), lr=0.01) lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1) lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1) return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2] model = CustomModel() model.training_epoch_end = None trainer = Trainer(default_root_dir=tmpdir, max_steps=5, precision=16, amp_backend="apex", gpus=1) assert str(trainer.amp_backend) == "AMPType.APEX" trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert bwd_mock.call_count == 10 assert isinstance(trainer.lr_schedulers[0]["scheduler"].optimizer, optim.Adam) assert isinstance(trainer.lr_schedulers[1]["scheduler"].optimizer, optim.SGD)
[ "torch.is_autocast_enabled", "torch.cuda.is_available", "torch.optim.lr_scheduler.StepLR" ]
1.6
yuvalkirstain/pytorch-lightning
ac1744242104a2f6a46a3d211723e4dbf90ad544
1.7
import os import time import numpy as np import torch import gym import gym_cabworld from algorithms.a2c_model import PolicyNetwork from common.features import clip_state, cut_off_state from common.logging import create_log_folder, get_last_folder from common.logging import Tracker def train_a2c(n_episodes): from pyvirtualdisplay import Display Display().start() env_name = "Cabworld-v0" env = gym.make(env_name) n_states = env.observation_space.shape[1] n_actions = env.action_space.n max_timesteps = 1000 gamma = 0.99 rewards = [] log_path = create_log_folder("a2c") tracker = Tracker() a2c = PolicyNetwork(n_states, n_actions) for episode in range(n_episodes): tracker.new_episode() state = env.reset() log_probs = [] state_values = [] for _ in range(max_timesteps): action, log_prob, state_value = a2c.get_action(state) state, reward, done, _ = env.step(action) tracker.track_reward(reward) log_probs.append(log_prob) state_values.append(state_value) rewards.append(reward) if done: print( f"Episode: {episode} Reward: {tracker.episode_reward} Passengers {tracker.get_pick_ups()}" ) returns = [] Gt = 0 pw = 0 for reward in rewards[::-1]: Gt += gamma ** pw * reward pw += 1 returns.append(Gt) returns = returns[::-1] returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + 1e-9) a2c.update(returns, log_probs, state_values, episode) break a2c.save_model(log_path) tracker.plot(log_path) def deploy_a2c(n_episodes, wait): env_name = "Cabworld-v0" env = gym.make(env_name) n_states = env.observation_space.shape[1] n_actions = env.action_space.n a2c = PolicyNetwork(n_states, n_actions) current_folder = get_last_folder("a2c") if not current_folder: print("No model") return current_model = os.path.join(current_folder, "a2c.pth") print(current_model) a2c.load_model(current_model) for _ in range(n_episodes): state = env.reset() episode_reward = 0 done = False while not done: action = a2c.get_action(state) state, reward, done, _ = env.step(action) episode_reward += reward env.render() time.sleep(wait) if done: print(f"Reward {episode_reward}") break
[ "torch.tensor" ]
1.7.1
nikolim/cablab
1dcf0d7da01ed3988f84309acfb31cc9a9893de1
1.7
import os import numpy as np import sklearn from sklearn import preprocessing import torch from torch.utils.data import Dataset from torch.utils.data.sampler import Sampler from utils import load_w2v_feature import settings import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') # include timestamp class ChunkSampler(Sampler): """ Samples elements sequentially from some offset. Arguments: num_samples: # of desired data points start: offset where we should start selecting from """ def __init__(self, num_samples, start=0): self.num_samples = num_samples self.start = start def __iter__(self): return iter(range(self.start, self.start + self.num_samples)) def __len__(self): return self.num_samples class InfluenceDataset(Dataset): def __init__(self, file_dir, seed, shuffle): self.vertices = np.load(os.path.join(file_dir, "vertex_id.npy")) logger.info("vertex ids loaded!") embedding_path = os.path.join(file_dir, "prone.emb2") max_vertex_idx = np.max(self.vertices) embedding = load_w2v_feature(embedding_path, max_vertex_idx) self.embedding = torch.FloatTensor(embedding) logger.info("global prone embedding loaded") vertex_features = np.load(os.path.join(file_dir, "vertex_feature.npy")) vertex_features = preprocessing.scale(vertex_features) self.vertex_features_dim = vertex_features.shape[1] vertex_features = np.concatenate((vertex_features, np.zeros(shape=(1, self.vertex_features_dim))), axis=0) self.vertex_features = torch.FloatTensor(vertex_features) del vertex_features logger.info("global vertex features loaded!") self.graphs = np.load(os.path.join(file_dir, "adjacency_matrix.npy")).astype(np.float32) # self-loop trick, the input graphs should have no self-loop identity = np.identity(self.graphs.shape[2], dtype=np.bool_) self.graphs += identity self.graphs[self.graphs != False] = True logger.info("graphs loaded!") # whether a user has been influenced # whether he/she is the ego user self.influence_features = np.load( os.path.join(file_dir, "influence_feature.npy")).astype(np.float32) logger.info("influence features loaded!") self.labels = np.load(os.path.join(file_dir, "label.npy")) logger.info("labels loaded!") if shuffle: self.graphs, self.influence_features, self.labels, self.vertices = \ sklearn.utils.shuffle( self.graphs, self.influence_features, self.labels, self.vertices, random_state=seed ) self.N = len(self.graphs) if self.N > settings.TEST_SIZE: self.graphs = self.graphs[: settings.TEST_SIZE] self.influence_features = self.influence_features[: settings.TEST_SIZE] self.labels = self.labels[: settings.TEST_SIZE] self.vertices = self.vertices[: settings.TEST_SIZE] self.N = settings.TEST_SIZE logger.info("%d ego networks loaded, each with size %d" % (self.N, self.graphs.shape[1])) n_classes = self.get_num_class() class_weight = self.N / (n_classes * np.bincount(self.labels)) self.class_weight = torch.FloatTensor(class_weight) def get_embedding(self): return self.embedding def get_vertex_features(self): return self.vertex_features def get_feature_dimension(self): return self.influence_features.shape[-1] def get_num_class(self): return np.unique(self.labels).shape[0] def get_class_weight(self): return self.class_weight def __len__(self): return self.N def __getitem__(self, idx): return self.graphs[idx], self.influence_features[idx], self.labels[idx], self.vertices[idx]
[ "torch.FloatTensor" ]
1.7.0
zfjsail/wechat-wow-analysis
9fc678f7931f0eac2e8b326d141b60ca7039eece
0.4
import torch from scipy import optimize import torch.nn.functional as F import math import numpy as np from functools import reduce from collections import OrderedDict def branin(x, a=1., b=5.1/(4.*math.pi**2), c=5./math.pi, r=6., s=10., t=1./(8*math.pi)): # branin function, global min of 0.397887 at # x = (-pi, 12.275), (math.pi, 2.275) and (9.42478, 2.475) x1, x2 = x[0], x[1] return a*(x1 - b*x2 + c*x1 - r)**2 + s*(1.-t)*torch.cos(x1) + s class PyTorchObjective(object): """PyTorch objective function, wrapped to be called by scipy.optimize.""" def __init__(self, obj_module): self.f = obj_module # some pytorch module, that produces a scalar loss # make an x0 from the parameters in this module parameters = OrderedDict(obj_module.named_parameters()) self.param_shapes = {n:parameters[n].size() for n in parameters} # ravel and concatenate all parameters to make x0 self.x0 = np.concatenate([parameters[n].data.cpu().numpy().ravel() for n in parameters]) def unpack_parameters(self, x): """optimize.minimize will supply 1D array, chop it up for each parameter.""" i = 0 named_parameters = OrderedDict() for n in self.param_shapes: param_len = reduce(lambda x,y: x*y, self.param_shapes[n]) # slice out a section of this length param = x[i:i+param_len] # reshape according to this size, and cast to torch param = param.reshape(*self.param_shapes[n]) named_parameters[n] = torch.from_numpy(param) # update index i += param_len return named_parameters def pack_grads(self): """pack all the gradients from the parameters in the module into a numpy array.""" grads = [] for p in self.f.parameters(): grad = p.grad.data.cpu().numpy() grads.append(grad.ravel()) return np.concatenate(grads) def is_new(self, x): # if this is the first thing we've seen if not hasattr(self, 'cached_x'): return True else: # compare x to cached_x to determine if we've been given a new input x, self.cached_x = np.array(x), np.array(self.cached_x) error = np.abs(x - self.cached_x) return error.max() > 1e-4 def cache(self, x): # unpack x and load into module state_dict = self.unpack_parameters(x) self.f.load_state_dict(state_dict) # store the raw array as well self.cached_x = x # zero the gradient self.f.zero_grad() # use it to calculate the objective obj = self.f() # backprop the objective obj.backward() self.cached_f = obj.item() self.cached_jac = self.pack_grads() def fun(self, x): if self.is_new(x): self.cache(x) return self.cached_f def jac(self, x): if self.is_new(x): self.cache(x) return self.cached_jac if __name__ == '__main__': x0 = np.random.rand(2) obj = PyTorchObjective(branin) xL = optimize.minimize(obj.fun, x0, method='BFGS', jac=obj.jac) print(x0, xL)
[ "torch.cos", "torch.from_numpy" ]
0.4.1
gngdb/pytorch-acdc
60044f39b018cfe7190381c08e9adff546c3bc66
1.0
#!/usr/bin/env python """ Translator Class and builder """ from __future__ import print_function import configargparse import codecs import os import math import torch from itertools import count from onmt.utils.misc import tile import onmt.model_builder import onmt.translate.beam import onmt.inputters as inputters import onmt.opts as opts import onmt.decoders.ensemble def build_translator(opt, report_score=True, logger=None, out_file=None): if out_file is None: out_file = codecs.open(opt.output, 'w+', 'utf-8') dummy_parser = configargparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] load_test_model = onmt.decoders.ensemble.load_test_model \ if len(opt.models) > 1 else onmt.model_builder.load_test_model fields, model, model_opt = load_test_model(opt, dummy_opt.__dict__) scorer = onmt.translate.GNMTGlobalScorer(opt) translator = Translator( model, fields, opt, model_opt, global_scorer=scorer, out_file=out_file, report_score=report_score, logger=logger ) return translator class Translator(object): """ Uses a model to translate a batch of sentences. Args: model (:obj:`onmt.modules.NMTModel`): NMT model to use for translation fields (dict of Fields): data fields beam_size (int): size of beam to use n_best (int): number of translations produced max_length (int): maximum length output to produce global_scores (:obj:`GlobalScorer`): object to rescore final translations copy_attn (bool): use copy attention during translation cuda (bool): use cuda beam_trace (bool): trace beam search for debugging logger(logging.Logger): logger. """ def __init__( self, model, fields, opt, model_opt, global_scorer=None, out_file=None, report_score=True, logger=None ): self.model = model self.fields = fields self.gpu = opt.gpu self.cuda = opt.gpu > -1 self.n_best = opt.n_best self.max_length = opt.max_length if opt.beam_size != 1 and opt.random_sampling_topk != 1: raise ValueError('Can either do beam search OR random sampling.') self.beam_size = opt.beam_size self.random_sampling_temp = opt.random_sampling_temp self.sample_from_topk = opt.random_sampling_topk self.min_length = opt.min_length self.stepwise_penalty = opt.stepwise_penalty self.dump_beam = opt.dump_beam self.block_ngram_repeat = opt.block_ngram_repeat self.ignore_when_blocking = set(opt.ignore_when_blocking) self.sample_rate = opt.sample_rate self.window_size = opt.window_size self.window_stride = opt.window_stride self.window = opt.window self.image_channel_size = opt.image_channel_size self.replace_unk = opt.replace_unk self.data_type = opt.data_type self.verbose = opt.verbose self.report_bleu = opt.report_bleu self.report_rouge = opt.report_rouge self.fast = opt.fast self.copy_attn = model_opt.copy_attn self.global_scorer = global_scorer self.out_file = out_file self.report_score = report_score self.logger = logger self.use_filter_pred = False # for debugging self.beam_trace = self.dump_beam != "" self.beam_accum = None if self.beam_trace: self.beam_accum = { "predicted_ids": [], "beam_parent_ids": [], "scores": [], "log_probs": []} def translate( self, src, tgt=None, src_dir=None, batch_size=None, attn_debug=False ): """ Translate content of `src_data_iter` (if not None) or `src_path` and get gold scores if one of `tgt_data_iter` or `tgt_path` is set. Note: batch_size must not be None Note: one of ('src_path', 'src_data_iter') must not be None Args: src_path (str): filepath of source data tgt_path (str): filepath of target data or None src_dir (str): source directory path (used for Audio and Image datasets) batch_size (int): size of examples per mini-batch attn_debug (bool): enables the attention logging Returns: (`list`, `list`) * all_scores is a list of `batch_size` lists of `n_best` scores * all_predictions is a list of `batch_size` lists of `n_best` predictions """ assert src is not None if batch_size is None: raise ValueError("batch_size must be set") data = inputters.build_dataset( self.fields, self.data_type, src=src, tgt=tgt, src_dir=src_dir, sample_rate=self.sample_rate, window_size=self.window_size, window_stride=self.window_stride, window=self.window, use_filter_pred=self.use_filter_pred, image_channel_size=self.image_channel_size, dynamic_dict=self.copy_attn ) cur_device = "cuda" if self.cuda else "cpu" data_iter = inputters.OrderedIterator( dataset=data, device=cur_device, batch_size=batch_size, train=False, sort=False, sort_within_batch=True, shuffle=False ) builder = onmt.translate.TranslationBuilder( data, self.fields, self.n_best, self.replace_unk, tgt ) # Statistics counter = count(1) pred_score_total, pred_words_total = 0, 0 gold_score_total, gold_words_total = 0, 0 all_scores = [] all_predictions = [] for batch in data_iter: batch_data = self.translate_batch( batch, data, attn_debug, fast=self.fast ) translations = builder.from_batch(batch_data) for trans in translations: all_scores += [trans.pred_scores[:self.n_best]] pred_score_total += trans.pred_scores[0] pred_words_total += len(trans.pred_sents[0]) if tgt is not None: gold_score_total += trans.gold_score gold_words_total += len(trans.gold_sent) + 1 n_best_preds = [" ".join(pred) for pred in trans.pred_sents[:self.n_best]] all_predictions += [n_best_preds] self.out_file.write('\n'.join(n_best_preds) + '\n') self.out_file.flush() if self.verbose: sent_number = next(counter) output = trans.log(sent_number) if self.logger: self.logger.info(output) else: os.write(1, output.encode('utf-8')) if attn_debug: preds = trans.pred_sents[0] preds.append('</s>') attns = trans.attns[0].tolist() if self.data_type == 'text': srcs = trans.src_raw else: srcs = [str(item) for item in range(len(attns[0]))] header_format = "{:>10.10} " + "{:>10.7} " * len(srcs) row_format = "{:>10.10} " + "{:>10.7f} " * len(srcs) output = header_format.format("", *srcs) + '\n' for word, row in zip(preds, attns): max_index = row.index(max(row)) row_format = row_format.replace( "{:>10.7f} ", "{:*>10.7f} ", max_index + 1) row_format = row_format.replace( "{:*>10.7f} ", "{:>10.7f} ", max_index) output += row_format.format(word, *row) + '\n' row_format = "{:>10.10} " + "{:>10.7f} " * len(srcs) os.write(1, output.encode('utf-8')) if self.report_score: msg = self._report_score('PRED', pred_score_total, pred_words_total) if self.logger: self.logger.info(msg) else: print(msg) if tgt is not None: msg = self._report_score('GOLD', gold_score_total, gold_words_total) if self.logger: self.logger.info(msg) else: print(msg) if self.report_bleu: msg = self._report_bleu(tgt) if self.logger: self.logger.info(msg) else: print(msg) if self.report_rouge: msg = self._report_rouge(tgt) if self.logger: self.logger.info(msg) else: print(msg) if self.dump_beam: import json json.dump(self.translator.beam_accum, codecs.open(self.dump_beam, 'w', 'utf-8')) return all_scores, all_predictions def sample_with_temperature(self, logits, sampling_temp, keep_topk): if sampling_temp == 0.0 or keep_topk == 1: # For temp=0.0, take the argmax to avoid divide-by-zero errors. # keep_topk=1 is also equivalent to argmax. topk_scores, topk_ids = logits.topk(1, dim=-1) else: logits = torch.div(logits, sampling_temp) if keep_topk > 0: top_values, top_indices = torch.topk(logits, keep_topk, dim=1) kth_best = top_values[:, -1].view([-1, 1]) kth_best = kth_best.repeat([1, logits.shape[1]]) kth_best = kth_best.type(torch.cuda.FloatTensor) # Set all logits that are not in the top-k to -1000. # This puts the probabilities close to 0. keep = torch.ge(logits, kth_best).type(torch.cuda.FloatTensor) logits = (keep * logits) + ((1-keep) * -10000) dist = torch.distributions.Multinomial( logits=logits, total_count=1) topk_ids = torch.argmax(dist.sample(), dim=1, keepdim=True) topk_scores = logits.gather(dim=1, index=topk_ids) return topk_ids, topk_scores def _translate_random_sampling( self, batch, data, max_length, min_length=0, sampling_temp=1.0, keep_topk=-1, return_attention=False ): """Alternative to beam search. Do random sampling at each step.""" assert self.beam_size == 1 # TODO: support these blacklisted features. assert self.block_ngram_repeat == 0 batch_size = batch.batch_size vocab = self.fields["tgt"].vocab start_token = vocab.stoi[self.fields["tgt"].init_token] end_token = vocab.stoi[self.fields["tgt"].eos_token] # Encoder forward. src, enc_states, memory_bank, src_lengths = self._run_encoder( batch, data.data_type) self.model.decoder.init_state(src, memory_bank, enc_states) use_src_map = data.data_type == 'text' and self.copy_attn results = {} results["predictions"] = [[] for _ in range(batch_size)] # noqa: F812 results["scores"] = [[] for _ in range(batch_size)] # noqa: F812 results["attention"] = [[] for _ in range(batch_size)] # noqa: F812 results["batch"] = batch if "tgt" in batch.__dict__: results["gold_score"] = self._score_target( batch, memory_bank, src_lengths, data, batch.src_map if use_src_map else None ) self.model.decoder.init_state(src, memory_bank, enc_states) else: results["gold_score"] = [0] * batch_size memory_lengths = src_lengths src_map = batch.src_map if use_src_map else None if isinstance(memory_bank, tuple): mb_device = memory_bank[0].device else: mb_device = memory_bank.device # seq_so_far contains chosen tokens; on each step, dim 1 grows by one. seq_so_far = torch.full( [batch_size, 1], start_token, dtype=torch.long, device=mb_device) alive_attn = None for step in range(max_length): decoder_input = seq_so_far[:, -1].view(1, -1, 1) log_probs, attn = self._decode_and_generate( decoder_input, memory_bank, batch, data, memory_lengths=memory_lengths, src_map=src_map, step=step, batch_offset=torch.arange(batch_size, dtype=torch.long) ) if step < min_length: log_probs[:, end_token] = -1e20 # Note that what this code calls log_probs are actually logits. topk_ids, topk_scores = self.sample_with_temperature( log_probs, sampling_temp, keep_topk) # Append last prediction. seq_so_far = torch.cat([seq_so_far, topk_ids.view(-1, 1)], -1) if return_attention: current_attn = attn if alive_attn is None: alive_attn = current_attn else: alive_attn = torch.cat([alive_attn, current_attn], 0) predictions = seq_so_far.view(-1, 1, seq_so_far.size(-1)) attention = ( alive_attn.view( alive_attn.size(0), -1, 1, alive_attn.size(-1)) if alive_attn is not None else None) for i in range(topk_scores.size(0)): # Store finished hypotheses for this batch. Unlike in beam search, # there will only ever be 1 hypothesis per example. score = topk_scores[i, 0] pred = predictions[i, 0, 1:] # Ignore start_token. m_len = memory_lengths[i] attn = attention[:, i, 0, :m_len] if attention is not None else [] results["scores"][i].append(score) results["predictions"][i].append(pred) results["attention"][i].append(attn) return results def translate_batch(self, batch, data, attn_debug, fast=False): """ Translate a batch of sentences. Mostly a wrapper around :obj:`Beam`. Args: batch (:obj:`Batch`): a batch from a dataset object data (:obj:`Dataset`): the dataset object fast (bool): enables fast beam search (may not support all features) Todo: Shouldn't need the original dataset. """ with torch.no_grad(): if self.beam_size == 1: return self._translate_random_sampling( batch, data, self.max_length, min_length=self.min_length, sampling_temp=self.random_sampling_temp, keep_topk=self.sample_from_topk, return_attention=attn_debug or self.replace_unk) if fast: return self._fast_translate_batch( batch, data, self.max_length, min_length=self.min_length, n_best=self.n_best, return_attention=attn_debug or self.replace_unk) else: return self._translate_batch(batch, data) def _run_encoder(self, batch, data_type): src = inputters.make_features(batch, 'src', data_type) src_lengths = None if data_type == 'text': _, src_lengths = batch.src elif data_type == 'audio': src_lengths = batch.src_lengths enc_states, memory_bank, src_lengths = self.model.encoder( src, src_lengths) if src_lengths is None: assert not isinstance(memory_bank, tuple), \ 'Ensemble decoding only supported for text data' src_lengths = torch.Tensor(batch.batch_size) \ .type_as(memory_bank) \ .long() \ .fill_(memory_bank.size(0)) return src, enc_states, memory_bank, src_lengths def _decode_and_generate( self, decoder_in, memory_bank, batch, data, memory_lengths, src_map=None, step=None, batch_offset=None ): unk_idx = self.fields["tgt"].vocab.stoi[self.fields["tgt"].unk_token] if self.copy_attn: # Turn any copied words into UNKs. decoder_in = decoder_in.masked_fill( decoder_in.gt(len(self.fields["tgt"].vocab) - 1), unk_idx ) # Decoder forward, takes [tgt_len, batch, nfeats] as input # and [src_len, batch, hidden] as memory_bank # in case of inference tgt_len = 1, batch = beam times batch_size # in case of Gold Scoring tgt_len = actual length, batch = 1 batch dec_out, dec_attn = self.model.decoder( decoder_in, memory_bank, memory_lengths=memory_lengths, step=step ) # Generator forward. if not self.copy_attn: attn = dec_attn["std"] log_probs = self.model.generator(dec_out.squeeze(0)) # returns [(batch_size x beam_size) , vocab ] when 1 step # or [ tgt_len, batch_size, vocab ] when full sentence else: attn = dec_attn["copy"] scores = self.model.generator(dec_out.view(-1, dec_out.size(2)), attn.view(-1, attn.size(2)), src_map) # here we have scores [tgt_lenxbatch, vocab] or [beamxbatch, vocab] if batch_offset is None: scores = scores.view(batch.batch_size, -1, scores.size(-1)) else: scores = scores.view(-1, self.beam_size, scores.size(-1)) scores = data.collapse_copy_scores( scores, batch, self.fields["tgt"].vocab, data.src_vocabs, batch_dim=0, batch_offset=batch_offset ) scores = scores.view(decoder_in.size(0), -1, scores.size(-1)) log_probs = scores.squeeze(0).log() # returns [(batch_size x beam_size) , vocab ] when 1 step # or [ tgt_len, batch_size, vocab ] when full sentence return log_probs, attn def _fast_translate_batch( self, batch, data, max_length, min_length=0, n_best=1, return_attention=False ): # TODO: support these blacklisted features. assert not self.dump_beam assert not self.use_filter_pred assert self.block_ngram_repeat == 0 assert self.global_scorer.beta == 0 beam_size = self.beam_size batch_size = batch.batch_size vocab = self.fields["tgt"].vocab start_token = vocab.stoi[self.fields["tgt"].init_token] end_token = vocab.stoi[self.fields["tgt"].eos_token] # Encoder forward. src, enc_states, memory_bank, src_lengths = self._run_encoder( batch, data.data_type) self.model.decoder.init_state(src, memory_bank, enc_states) use_src_map = data.data_type == 'text' and self.copy_attn results = {} results["predictions"] = [[] for _ in range(batch_size)] # noqa: F812 results["scores"] = [[] for _ in range(batch_size)] # noqa: F812 results["attention"] = [[] for _ in range(batch_size)] # noqa: F812 results["batch"] = batch if "tgt" in batch.__dict__: results["gold_score"] = self._score_target( batch, memory_bank, src_lengths, data, batch.src_map if use_src_map else None ) self.model.decoder.init_state(src, memory_bank, enc_states) else: results["gold_score"] = [0] * batch_size # Tile states and memory beam_size times. self.model.decoder.map_state( lambda state, dim: tile(state, beam_size, dim=dim)) if isinstance(memory_bank, tuple): memory_bank = tuple(tile(x, beam_size, dim=1) for x in memory_bank) mb_device = memory_bank[0].device else: memory_bank = tile(memory_bank, beam_size, dim=1) mb_device = memory_bank.device memory_lengths = tile(src_lengths, beam_size) src_map = (tile(batch.src_map, beam_size, dim=1) if use_src_map else None) top_beam_finished = torch.zeros([batch_size], dtype=torch.uint8) batch_offset = torch.arange(batch_size, dtype=torch.long) beam_offset = torch.arange( 0, batch_size * beam_size, step=beam_size, dtype=torch.long, device=mb_device) alive_seq = torch.full( [batch_size * beam_size, 1], start_token, dtype=torch.long, device=mb_device) alive_attn = None # Give full probability to the first beam on the first step. topk_log_probs = torch.tensor( [0.0] + [float("-inf")] * (beam_size - 1), device=mb_device ).repeat(batch_size) # Structure that holds finished hypotheses. hypotheses = [[] for _ in range(batch_size)] # noqa: F812 for step in range(max_length): decoder_input = alive_seq[:, -1].view(1, -1, 1) log_probs, attn = self._decode_and_generate( decoder_input, memory_bank, batch, data, memory_lengths=memory_lengths, src_map=src_map, step=step, batch_offset=batch_offset ) vocab_size = log_probs.size(-1) if step < min_length: log_probs[:, end_token] = -1e20 # Multiply probs by the beam probability. log_probs += topk_log_probs.view(-1).unsqueeze(1) alpha = self.global_scorer.alpha length_penalty = ((5.0 + (step + 1)) / 6.0) ** alpha # Flatten probs into a list of possibilities. curr_scores = log_probs / length_penalty curr_scores = curr_scores.reshape(-1, beam_size * vocab_size) topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1) # Recover log probs. topk_log_probs = topk_scores * length_penalty # Resolve beam origin and true word ids. topk_beam_index = topk_ids.div(vocab_size) topk_ids = topk_ids.fmod(vocab_size) # Map beam_index to batch_index in the flat representation. batch_index = ( topk_beam_index + beam_offset[:topk_beam_index.size(0)].unsqueeze(1)) select_indices = batch_index.view(-1) # Append last prediction. alive_seq = torch.cat( [alive_seq.index_select(0, select_indices), topk_ids.view(-1, 1)], -1) if return_attention: current_attn = attn.index_select(1, select_indices) if alive_attn is None: alive_attn = current_attn else: alive_attn = alive_attn.index_select(1, select_indices) alive_attn = torch.cat([alive_attn, current_attn], 0) is_finished = topk_ids.eq(end_token) if step + 1 == max_length: is_finished.fill_(1) # Save finished hypotheses. if is_finished.any(): # Penalize beams that finished. topk_log_probs.masked_fill_(is_finished, -1e10) is_finished = is_finished.to('cpu') top_beam_finished |= is_finished[:, 0].eq(1) predictions = alive_seq.view(-1, beam_size, alive_seq.size(-1)) attention = ( alive_attn.view( alive_attn.size(0), -1, beam_size, alive_attn.size(-1)) if alive_attn is not None else None) non_finished_batch = [] for i in range(is_finished.size(0)): b = batch_offset[i] finished_hyp = is_finished[i].nonzero().view(-1) # Store finished hypotheses for this batch. for j in finished_hyp: hypotheses[b].append(( topk_scores[i, j], predictions[i, j, 1:], # Ignore start_token. attention[:, i, j, :memory_lengths[i]] if attention is not None else None)) # End condition is the top beam finished and we can return # n_best hypotheses. if top_beam_finished[i] and len(hypotheses[b]) >= n_best: best_hyp = sorted( hypotheses[b], key=lambda x: x[0], reverse=True) for n, (score, pred, attn) in enumerate(best_hyp): if n >= n_best: break results["scores"][b].append(score) results["predictions"][b].append(pred) results["attention"][b].append( attn if attn is not None else []) else: non_finished_batch.append(i) non_finished = torch.tensor(non_finished_batch) # If all sentences are translated, no need to go further. if len(non_finished) == 0: break # Remove finished batches for the next step. top_beam_finished = top_beam_finished.index_select( 0, non_finished) batch_offset = batch_offset.index_select(0, non_finished) non_finished = non_finished.to(topk_ids.device) topk_log_probs = topk_log_probs.index_select(0, non_finished) batch_index = batch_index.index_select(0, non_finished) select_indices = batch_index.view(-1) alive_seq = predictions.index_select(0, non_finished) \ .view(-1, alive_seq.size(-1)) if alive_attn is not None: alive_attn = attention.index_select(1, non_finished) \ .view(alive_attn.size(0), -1, alive_attn.size(-1)) # Reorder states. if isinstance(memory_bank, tuple): memory_bank = tuple(x.index_select(1, select_indices) for x in memory_bank) else: memory_bank = memory_bank.index_select(1, select_indices) memory_lengths = memory_lengths.index_select(0, select_indices) self.model.decoder.map_state( lambda state, dim: state.index_select(dim, select_indices)) if src_map is not None: src_map = src_map.index_select(1, select_indices) return results def _translate_batch(self, batch, data): # (0) Prep each of the components of the search. # And helper method for reducing verbosity. beam_size = self.beam_size batch_size = batch.batch_size data_type = data.data_type vocab = self.fields["tgt"].vocab # Define a set of tokens to exclude from ngram-blocking exclusion_tokens = {vocab.stoi[t] for t in self.ignore_when_blocking} pad = vocab.stoi[self.fields['tgt'].pad_token] eos = vocab.stoi[self.fields['tgt'].eos_token] bos = vocab.stoi[self.fields['tgt'].init_token] beam = [onmt.translate.Beam(beam_size, n_best=self.n_best, cuda=self.cuda, global_scorer=self.global_scorer, pad=pad, eos=eos, bos=bos, min_length=self.min_length, stepwise_penalty=self.stepwise_penalty, block_ngram_repeat=self.block_ngram_repeat, exclusion_tokens=exclusion_tokens) for __ in range(batch_size)] # (1) Run the encoder on the src. src, enc_states, memory_bank, src_lengths = self._run_encoder( batch, data_type) self.model.decoder.init_state(src, memory_bank, enc_states) results = {} results["predictions"] = [] results["scores"] = [] results["attention"] = [] results["batch"] = batch if "tgt" in batch.__dict__: results["gold_score"] = self._score_target( batch, memory_bank, src_lengths, data, batch.src_map if data_type == 'text' and self.copy_attn else None) self.model.decoder.init_state(src, memory_bank, enc_states) else: results["gold_score"] = [0] * batch_size # (2) Repeat src objects `beam_size` times. # We use now batch_size x beam_size (same as fast mode) src_map = (tile(batch.src_map, beam_size, dim=1) if data.data_type == 'text' and self.copy_attn else None) self.model.decoder.map_state( lambda state, dim: tile(state, beam_size, dim=dim)) if isinstance(memory_bank, tuple): memory_bank = tuple(tile(x, beam_size, dim=1) for x in memory_bank) else: memory_bank = tile(memory_bank, beam_size, dim=1) memory_lengths = tile(src_lengths, beam_size) # (3) run the decoder to generate sentences, using beam search. for i in range(self.max_length): if all((b.done() for b in beam)): break # (a) Construct batch x beam_size nxt words. # Get all the pending current beam words and arrange for forward. inp = torch.stack([b.get_current_state() for b in beam]) inp = inp.view(1, -1, 1) # (b) Decode and forward out, beam_attn = self._decode_and_generate( inp, memory_bank, batch, data, memory_lengths=memory_lengths, src_map=src_map, step=i ) out = out.view(batch_size, beam_size, -1) beam_attn = beam_attn.view(batch_size, beam_size, -1) # (c) Advance each beam. select_indices_array = [] # Loop over the batch_size number of beam for j, b in enumerate(beam): b.advance(out[j, :], beam_attn.data[j, :, :memory_lengths[j]]) select_indices_array.append( b.get_current_origin() + j * beam_size) select_indices = torch.cat(select_indices_array) self.model.decoder.map_state( lambda state, dim: state.index_select(dim, select_indices)) # (4) Extract sentences from beam. for b in beam: scores, ks = b.sort_finished(minimum=self.n_best) hyps, attn = [], [] for i, (times, k) in enumerate(ks[:self.n_best]): hyp, att = b.get_hyp(times, k) hyps.append(hyp) attn.append(att) results["predictions"].append(hyps) results["scores"].append(scores) results["attention"].append(attn) return results def _score_target(self, batch, memory_bank, src_lengths, data, src_map): tgt_in = inputters.make_features(batch, 'tgt')[:-1] log_probs, attn = self._decode_and_generate( tgt_in, memory_bank, batch, data, memory_lengths=src_lengths, src_map=src_map) tgt_pad = self.fields["tgt"].vocab.stoi[self.fields["tgt"].pad_token] log_probs[:, :, tgt_pad] = 0 gold = batch.tgt[1:].unsqueeze(2) gold_scores = log_probs.gather(2, gold) gold_scores = gold_scores.sum(dim=0).view(-1) return gold_scores def _report_score(self, name, score_total, words_total): if words_total == 0: msg = "%s No words predicted" % (name,) else: msg = ("%s AVG SCORE: %.4f, %s PPL: %.4f" % ( name, score_total / words_total, name, math.exp(-score_total / words_total))) return msg def _report_bleu(self, tgt_path): import subprocess base_dir = os.path.abspath(__file__ + "/../../..") # Rollback pointer to the beginning. self.out_file.seek(0) print() res = subprocess.check_output( "perl %s/tools/multi-bleu.perl %s" % (base_dir, tgt_path), stdin=self.out_file, shell=True ).decode("utf-8") msg = ">> " + res.strip() return msg def _report_rouge(self, tgt_path): import subprocess path = os.path.split(os.path.realpath(__file__))[0] msg = subprocess.check_output( "python %s/tools/test_rouge.py -r %s -c STDIN" % (path, tgt_path), shell=True, stdin=self.out_file ).decode("utf-8").strip() return msg
[ "torch.zeros", "torch.cat", "torch.arange", "torch.no_grad", "torch.full", "torch.tensor", "torch.div", "torch.ge", "torch.Tensor", "torch.distributions.Multinomial", "torch.topk" ]
1.0
hkhpub/opennmt-hkh
63dceae7f8737a1780e91f2e727c7875ec0ebfdf
1.6
''' Model file and non-differentially private file ''' import time import torch import torch.nn.functional as F from torch import nn, optim import data import utils class EmbeddingNet(nn.Module): def __init__(self, vocab_size: int, **_): super().__init__() # Embedding dimension: vocab_size + <unk>, <pad>, <eos>, <sos> self.emb = nn.Embedding(vocab_size + 4, 16) self.fc1 = nn.Linear(16, 2) def forward(self, x): # x: batch_size, seq_len x = self.emb(x) # batch_size, seq_len, embed_dim x = x.mean(1) # batch_size, embed_dim x = self.fc1(x) # batch_size, fc_dim return x class LSTMNet(nn.Module): def __init__(self, vocab_size: int, **_): super().__init__() # Embedding dimension: vocab_size + <unk>, <pad>, <eos>, <sos> self.emb = nn.Embedding(vocab_size + 4, 100) self.lstm = nn.LSTM(100, 100) self.fc1 = nn.Linear(100, 2) def forward(self, x): # x: batch_size, seq_len x = self.emb(x) # batch_size, seq_len, embed_dim x = x.transpose(0, 1) # seq_len, batch_size, embed_dim x, _ = self.lstm(x) # seq_len, batch_size, lstm_dim x = x.mean(0) # batch_size, lstm_dim x = self.fc1(x) # batch_size, fc_dim return x class MNISTNet(nn.Module): def __init__(self, **_): super().__init__() self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3) self.conv2 = nn.Conv2d(16, 32, 4, 2) self.fc1 = nn.Linear(32 * 4 * 4, 32) self.fc2 = nn.Linear(32, 10) def forward(self, x): # x of shape [B, 1, 28, 28] x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14] x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13] x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5] x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4] x = x.view(-1, 32 * 4 * 4) # -> [B, 512] x = F.relu(self.fc1(x)) # -> [B, 32] x = self.fc2(x) # -> [B, 10] return x class FFNN(nn.Module): def __init__(self, **_): super().__init__() self.fc1 = nn.Linear(104, 50) self.fc2 = nn.Linear(50, 2) def forward(self, x): out = self.fc1(x) out = F.relu(out) out = self.fc2(out) return out class Logistic(nn.Module): def __init__(self, **_): super().__init__() self.fc1 = nn.Linear(104, 1) def forward(self, x): out = self.fc1(x) out = F.sigmoid(out) return out class CIFAR10Model(nn.Module): def __init__(self, **_): super().__init__() self.layer_list = nn.ModuleList([ nn.Sequential(nn.Conv2d(3, 32, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.Sequential(nn.Conv2d(32, 32, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.AvgPool2d(2, stride=2), nn.Sequential(nn.Conv2d(32, 64, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.Sequential(nn.Conv2d(64, 64, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.AvgPool2d(2, stride=2), nn.Sequential(nn.Conv2d(64, 128, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.Sequential(nn.Conv2d(128, 128, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.AvgPool2d(2, stride=2), nn.Sequential(nn.Conv2d(128, 256, (3, 3), padding=1, stride=(1, 1)), nn.ReLU()), nn.Conv2d(256, 10, (3, 3), padding=1, stride=(1, 1)), ]) def forward(self, x): for layer in self.layer_list: x = layer(x) # print(x.shape) return torch.mean(x, dim=(2, 3)) model_dict = { 'mnist': MNISTNet, 'lstm': LSTMNet, 'embed': EmbeddingNet, 'ffnn': FFNN, 'logreg': Logistic, 'cifar10': CIFAR10Model, } def get_data(args): data_fn = data.data_fn_dict[args.experiment][int(args.dummy_data)] kwargs = { 'max_features': args.max_features, 'max_len': args.max_len, 'format': 'NCHW', } if args.dummy_data: kwargs['num_examples'] = args.batch_size * 2 train_data, _ = data_fn(**kwargs) for d in train_data: # train_data, train_labels d = torch.from_numpy(d) if d.dtype == torch.int32: d = d.long() if args.experiment == 'logreg' and d.dtype != torch.float32: d = d.float() yield d def main(args): print(args) assert not args.dpsgd torch.backends.cudnn.benchmark = True train_data, train_labels = get_data(args) model = model_dict[args.experiment](vocab_size=args.max_features).cuda() optimizer = optim.SGD(model.parameters(), lr=args.learning_rate) loss_function = nn.CrossEntropyLoss() if args.experiment != 'logreg' else nn.BCELoss() timings = [] for epoch in range(1, args.epochs + 1): start = time.perf_counter() dataloader = data.dataloader(train_data, train_labels, args.batch_size) for batch_idx, (x, y) in enumerate(dataloader): x, y = x.cuda(non_blocking=True), y.cuda(non_blocking=True) optimizer.zero_grad() outputs = model(x) loss = loss_function(outputs, y) loss.backward() optimizer.step() duration = time.perf_counter() - start print("Time Taken for Epoch: ", duration) timings.append(duration) if not args.no_save: utils.save_runtimes(__file__.split('.')[0], args, timings) else: print('Not saving!') print('Done!') if __name__ == '__main__': parser = utils.get_parser(model_dict.keys()) args = parser.parse_args() main(args)
[ "torch.nn.Linear", "torch.nn.functional.sigmoid", "torch.nn.LSTM", "torch.nn.AvgPool2d", "torch.nn.CrossEntropyLoss", "torch.from_numpy", "torch.nn.ReLU", "torch.mean", "torch.nn.Conv2d", "torch.nn.BCELoss", "torch.nn.functional.relu", "torch.nn.functional.max_pool2d", "torch.nn.Embedding" ]
1.6.0
jessijzhao/fast-dpsgd
143370bd1a11076a461e1d06e235db9b1d6b5de5
1.6
from math import ceil import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def cast_tuple(val, l = 3): val = val if isinstance(val, tuple) else (val,) return (*val, *((val[-1],) * max(l - len(val), 0))) def always(val): return lambda *args, **kwargs: val # classes class FeedForward(nn.Module): def __init__(self, dim, mult, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim, dim * mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(dim * mult, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, fmap_size, heads = 8, dim_key = 32, dim_value = 64, dropout = 0., dim_out = None, downsample = False): super().__init__() inner_dim_key = dim_key * heads inner_dim_value = dim_value * heads dim_out = default(dim_out, dim) self.heads = heads self.scale = dim_key ** -0.5 self.to_q = nn.Sequential(nn.Conv2d(dim, inner_dim_key, 1, stride = (2 if downsample else 1), bias = False), nn.BatchNorm2d(inner_dim_key)) self.to_k = nn.Sequential(nn.Conv2d(dim, inner_dim_key, 1, bias = False), nn.BatchNorm2d(inner_dim_key)) self.to_v = nn.Sequential(nn.Conv2d(dim, inner_dim_value, 1, bias = False), nn.BatchNorm2d(inner_dim_value)) self.attend = nn.Softmax(dim = -1) self.to_out = nn.Sequential( nn.GELU(), nn.Conv2d(inner_dim_value, dim_out, 1), nn.BatchNorm2d(dim_out), nn.Dropout(dropout) ) # positional bias self.pos_bias = nn.Embedding(fmap_size * fmap_size, heads) q_range = torch.arange(0, fmap_size, step = (2 if downsample else 1)) k_range = torch.arange(fmap_size) q_pos = torch.stack(torch.meshgrid(q_range, q_range), dim = -1) k_pos = torch.stack(torch.meshgrid(k_range, k_range), dim = -1) q_pos, k_pos = map(lambda t: rearrange(t, 'i j c -> (i j) c'), (q_pos, k_pos)) rel_pos = (q_pos[:, None, ...] - k_pos[None, :, ...]).abs() x_rel, y_rel = rel_pos.unbind(dim = -1) pos_indices = (x_rel * fmap_size) + y_rel self.register_buffer('pos_indices', pos_indices) def apply_pos_bias(self, fmap): bias = self.pos_bias(self.pos_indices) bias = rearrange(bias, 'i j h -> () h i j') return fmap + bias def forward(self, x): b, n, *_, h = *x.shape, self.heads q = self.to_q(x) y = q.shape[2] qkv = (q, self.to_k(x), self.to_v(x)) q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale dots = self.apply_pos_bias(dots) attn = self.attend(dots) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', h = h, y = y) return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, fmap_size, depth, heads, dim_key, dim_value, mlp_mult = 2, dropout = 0., dim_out = None, downsample = False): super().__init__() dim_out = default(dim_out, dim) self.layers = nn.ModuleList([]) self.attn_residual = (not downsample) and dim == dim_out for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, fmap_size = fmap_size, heads = heads, dim_key = dim_key, dim_value = dim_value, dropout = dropout, downsample = downsample, dim_out = dim_out), FeedForward(dim_out, mlp_mult, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: attn_res = (x if self.attn_residual else 0) x = attn(x) + attn_res x = ff(x) + x return x class LeViT(nn.Module): def __init__( self, *, image_size, num_classes, dim, depth, heads, mlp_mult, stages = 3, dim_key = 32, dim_value = 64, dropout = 0., num_distill_classes = None ): super().__init__() dims = cast_tuple(dim, stages) depths = cast_tuple(depth, stages) layer_heads = cast_tuple(heads, stages) assert all(map(lambda t: len(t) == stages, (dims, depths, layer_heads))), 'dimensions, depths, and heads must be a tuple that is less than the designated number of stages' self.conv_embedding = nn.Sequential( nn.Conv2d(3, 32, 3, stride = 2, padding = 1), nn.Conv2d(32, 64, 3, stride = 2, padding = 1), nn.Conv2d(64, 128, 3, stride = 2, padding = 1), nn.Conv2d(128, dims[0], 3, stride = 2, padding = 1) ) fmap_size = image_size // (2 ** 4) layers = [] for ind, dim, depth, heads in zip(range(stages), dims, depths, layer_heads): is_last = ind == (stages - 1) layers.append(Transformer(dim, fmap_size, depth, heads, dim_key, dim_value, mlp_mult, dropout)) if not is_last: next_dim = dims[ind + 1] layers.append(Transformer(dim, fmap_size, 1, heads * 2, dim_key, dim_value, dim_out = next_dim, downsample = True)) fmap_size = ceil(fmap_size / 2) self.backbone = nn.Sequential(*layers) self.pool = nn.Sequential( nn.AdaptiveAvgPool2d(1), Rearrange('... () () -> ...') ) self.distill_head = nn.Linear(dim, num_distill_classes) if exists(num_distill_classes) else always(None) self.mlp_head = nn.Linear(dim, num_classes) def forward(self, img): x = self.conv_embedding(img) x = self.backbone(x) x = self.pool(x) out = self.mlp_head(x) distill = self.distill_head(x) if exists(distill): return out, distill return out
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.AdaptiveAvgPool2d", "torch.arange", "torch.nn.ModuleList", "torch.einsum", "torch.nn.Softmax", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.Conv2d", "torch.meshgrid", "torch.nn.GELU", "torch.nn.Embedding" ]
1.6
jhvics1/vit-pytorch
bad4b94e7b4baa544ca36149431f7912eccd4b49
1.7
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import argparse import random import warnings from loguru import logger import os import torch import torch.backends.cudnn as cudnn from yolox.core import Trainer, launch from yolox.exp import get_exp from yolox.utils import configure_nccl os.environ['CUDA_VISIBLE_DEVICES']='1,2' def make_parser(): parser = argparse.ArgumentParser("YOLOX train parser") parser.add_argument("-expn", "--experiment-name", type=str, default=None) parser.add_argument("-n", "--name", type=str, default=None, help="model name") # distributed parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--dist-url", default=None, type=str, help="url used to set up distributed training" ) parser.add_argument("-b", "--batch-size", type=int, default=32, help="batch size") parser.add_argument( "-d", "--devices", default=2, type=int, help="device for training" ) parser.add_argument( "--local_rank", default=0, type=int, help="local rank for dist training" ) parser.add_argument( "-f", "--exp_file", default='/home/meprint/sunanlin_folder/YOLOX-main/yolox/exp/yolox_base.py', type=str, help="plz input your expriment description file", ) parser.add_argument( "--resume", default=False, action="store_true", help="resume training" ) parser.add_argument("-c", "--ckpt", default='yoloxl_.pth.tar', type=str, help="pre checkpoint file") parser.add_argument( "-e", "--start_epoch", default=None, type=int, help="resume training start epoch" ) parser.add_argument( "--num_machine", default=1, type=int, help="num of node for training" ) parser.add_argument( "--machine_rank", default=0, type=int, help="node rank for multi-node training" ) parser.add_argument( "--fp16", dest="fp16", default=True, action="store_true", help="Adopting mix precision training.", ) parser.add_argument( "-o", "--occupy", dest="occupy", default=True, action="store_true", help="occupy GPU memory first for training.", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser @logger.catch def main(exp, args): if not args.experiment_name: args.experiment_name = exp.exp_name if exp.seed is not None: random.seed(exp.seed) torch.manual_seed(exp.seed) cudnn.deterministic = True warnings.warn( "You have chosen to seed training. This will turn on the CUDNN deterministic setting, " "which can slow down your training considerably! You may see unexpected behavior " "when restarting from checkpoints." ) # set environment variables for distributed training configure_nccl() cudnn.benchmark = True trainer = Trainer(exp, args) trainer.train() if __name__ == "__main__": args = make_parser().parse_args() exp = get_exp(args.exp_file, args.name) exp.merge(args.opts) num_gpu = torch.cuda.device_count() if args.devices is None else args.devices assert num_gpu <= torch.cuda.device_count() dist_url = "auto" if args.dist_url is None else args.dist_url launch( main, num_gpu, args.num_machine, backend=args.dist_backend, dist_url=dist_url, args=(exp, args) )
[ "torch.manual_seed", "torch.cuda.device_count" ]
1.7
1298998/YOLOX-train-your-data
be50386e5cab7614924796bf6b6bde581d14d4aa
1.2
from typing import Dict, Any import torch from allennlp.training.optimizers import Optimizer from allennlp.common.testing import AllenNlpTestCase from allennlp.training.learning_rate_schedulers import LearningRateScheduler from allennlp.common.params import Params class CosineWithRestartsTest(AllenNlpTestCase): def setUp(self): super().setUp() self.model = torch.nn.Sequential(torch.nn.Linear(10, 10)) # We use these cases to verify that the scheduler works as expected. # Each case consists of 5 parameters: # - epochs: the total # of epochs to run for. # - params: parameters passed to initialize the scheduler. # - learning rate checks: a list of tuples, each of which specifies an epoch # number and the expected value of the learning rate at that epoch. # - checkpoints: a list of epoch numbers at which to save the scheduler # state, and then restore from the saved state and resume. self.cosine_schedule_cases = [ ( 30, {"t_initial": 30, "t_mul": 1.0}, [(0, 1.0), (15, 0.5000000000000001), (29, 0.0027390523158632996)], [10, 14], ), (10, {"t_initial": 1, "t_mul": 2.0}, [(0, 1.0), (1, 1.0), (2, 0.5), (3, 1.0)], [1, 3]), (30, {"t_initial": 1, "t_mul": 1.0}, [(0, 1.0), (15, 1.0), (29, 1.0)], []), ( 60, {"t_initial": 30, "t_mul": 1.0}, [ (0, 1.0), (15, 0.5000000000000001), (29, 0.0027390523158632996), (30, 1.0), (45, 0.5000000000000001), (59, 0.0027390523158632996), ], [30, 35], ), ( 60, {"t_initial": 30, "t_mul": 1.0, "eta_mul": 0.5}, [(0, 1.0), (15, 0.5000000000000001), (29, 0.0027390523158632996), (30, 0.5)], [], ), ( 100, {"t_initial": 30, "t_mul": 1.5}, [(0, 1.0), (29, 0.0027390523158632996), (30, 1.0), (74, 0.0012179748700879012)], [], ), ( 210, {"t_initial": 30, "t_mul": 2}, [ (0, 1.0), (29, 0.0027390523158632996), (30, 1.0), (89, 0.0006852326227130834), (90, 1.0), (209, 0.00017133751222137006), ], [], ), ( 210, {"t_initial": 30, "t_mul": 2, "eta_mul": 0.5}, [(0, 1.0), (30, 0.5), (90, 0.25)], [29, 90], ), ( 150, {"t_initial": 30, "t_mul": 1}, [ (0, 1.0), (29, 0.0027390523158632996), (30, 1.0), (59, 0.0027390523158632996), (60, 1.0), (89, 0.0027390523158632996), (90, 1.0), ], [], ), (10, {"t_initial": 1, "t_mul": 1, "eta_mul": 0.5}, [(0, 1.0), (1, 0.5), (2, 0.25)], []), ] def _get_optimizer(self, lr: float = 1.0): return Optimizer.from_params( self.model.named_parameters(), Params({"type": "sgd", "lr": lr}) ) def test_from_params(self): """Make sure `from_params` initializes an instance properly.""" optim = self._get_optimizer() sched = LearningRateScheduler.from_params(optim, Params({"type": "cosine", "t_initial": 5})) assert sched.t_initial == 5 assert sched.last_epoch == -1 # Learning should be unchanged after initializing scheduler. assert optim.param_groups[0]["lr"] == 1.0 with self.assertRaises(TypeError): # t_initial is required. LearningRateScheduler.from_params(optim, Params({"type": "cosine"})) def test_schedules(self): """Make sure the math is correct.""" for epochs, params, lr_checks, _ in self.cosine_schedule_cases: optimizer = self._get_optimizer() params["type"] = "cosine" scheduler = LearningRateScheduler.from_params(optimizer, Params(params)) lrs = [optimizer.param_groups[0]["lr"]] for epoch in range(epochs): scheduler.step(epoch) lrs.append(optimizer.param_groups[0]["lr"]) for it, lr in lr_checks: assert lrs[it] == lr, f"Iteration {it}: {lrs[it]} != {lr}" def test_schedules_with_save_and_resume(self): """Make sure scheduler will resume with the right state.""" def init_and_restore_scheduler( optimizer: torch.optim.Optimizer, params: Dict[str, Any], state_dict: Dict[str, Any] = None, ): """ Initialize a new scheduler and optionally restore its state from a checkpoint. """ params["type"] = "cosine" scheduler = LearningRateScheduler.from_params(optimizer, Params(params)) if state_dict is not None: scheduler.load_state_dict(state_dict) return scheduler for epochs, params, lr_checks, checkpoints in self.cosine_schedule_cases: optimizer = self._get_optimizer() scheduler = init_and_restore_scheduler(optimizer, params) state = scheduler.state_dict() lrs = [optimizer.param_groups[0]["lr"]] for epoch in range(epochs): if epoch in checkpoints: # Restore scheduler from state dict. scheduler = init_and_restore_scheduler(optimizer, params, state_dict=state) # Take step and record learning rate. scheduler.step(1, epoch) lrs.append(optimizer.param_groups[0]["lr"]) # Save state again. state = scheduler.state_dict() for it, lr in lr_checks: assert lrs[it] == lr, f"Iteration {it}: {lrs[it]} != {lr}"
[ "torch.nn.Linear" ]
1.2.0
avinashsai/allennlp
6da30e9d53bd2c8199848addc78ff0e29d79b542
1.9
from torch import nn from src.retrieval_core.models.pooling.GeM import GeM class PoolFactory(nn.Module): def __init__(self, pool='max'): super(PoolFactory, self).__init__() pool_type = { 'avg': nn.AdaptiveAvgPool2d(1), 'max': nn.AdaptiveMaxPool2d(1), 'gem': GeM() } if pool not in pool_type.keys(): raise ValueError('Unknown pooling methods for {}'.format(pool)) else: self.pool = pool_type[pool] def forward(self, x): return self.pool(x)
[ "torch.nn.AdaptiveAvgPool2d", "torch.nn.AdaptiveMaxPool2d" ]
1.9.0
RImbriaco/OML
4998cdebc3ac553ccd53b4caacf24d8c3d8fc07b
1.4
import torch.nn as nn from models.blocks import GlobalAvgPool2d class _VanillaConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(_VanillaConvBlock, self).__init__() self._block = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self._block(x) class VanillaCnn(nn.Module): def __init__(self, class_count=10, use_softmax=True): super(VanillaCnn, self).__init__() self._features = nn.Sequential(_VanillaConvBlock(in_channels=3, out_channels=8, kernel_size=3), _VanillaConvBlock(in_channels=8, out_channels=16, kernel_size=3), nn.MaxPool2d(kernel_size=2, stride=2), _VanillaConvBlock(in_channels=16, out_channels=32, kernel_size=3), _VanillaConvBlock(in_channels=32, out_channels=64, kernel_size=3), nn.MaxPool2d(kernel_size=2, stride=2), _VanillaConvBlock(in_channels=64, out_channels=128, kernel_size=3), _VanillaConvBlock(in_channels=128, out_channels=256, kernel_size=3), nn.MaxPool2d(kernel_size=2, stride=2)) classifier_layers = [ GlobalAvgPool2d(), nn.Conv2d(256, class_count, kernel_size=1) ] if use_softmax: classifier_layers.append(nn.Softmax(dim=1)) self._classifier = nn.Sequential(*classifier_layers) def forward(self, x): y = self._features(x) return self._classifier(y)[:, :, 0, 0]
[ "torch.nn.Softmax", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.4.0
mamaheux/pytorch-exemple-calcul-canada
41bd1769aaf30bd3786589bd3e3252bb115fdd69
1.4
import torch import torch.nn as nn import torch.nn.functional as F from transformers import BertModel from .layer import AttentionLayer as AL, GlobalAttentionLayer as GoAL, \ StructAttentionLayer as SAL, ResAttentionLayer as RAL, ContAttentionLayer as CAL from .dataset import get_lm_path class TranHGAT(nn.Module): def __init__(self, attr_num, device='cpu', finetuning=True, lm='bert', lm_path=None): super().__init__() # load the model or model checkpoint path = get_lm_path(lm, lm_path) self.lm = lm if lm == 'bert': from transformers import BertModel self.bert = BertModel.from_pretrained(path) elif lm == 'distilbert': from transformers import DistilBertModel self.bert = DistilBertModel.from_pretrained(path) elif lm == 'roberta' or lm == 'roberta-large': from transformers import RobertaModel self.bert = RobertaModel.from_pretrained(path) elif lm == 'xlnet': from transformers import XLNetModel self.bert = XLNetModel.from_pretrained(path) self.device = device self.finetuning = finetuning hidden_size = self.bert.config.hidden_size hidden_dropout_prob = 0.1 self.inits = nn.ModuleList([ GoAL(hidden_size, 0.2) for _ in range(attr_num)]) self.alls = nn.ModuleList([ GoAL(hidden_size, 0.2) for _ in range(attr_num)]) self.oves = nn.ModuleList([ CAL(hidden_size + hidden_size, 0.2) for _ in range(attr_num)]) self.conts = nn.ModuleList([ AL(hidden_size + hidden_size, 0.2, device) for _ in range(attr_num)]) self.out = SAL(hidden_size * (attr_num + 1), 0.2) self.res = RAL(hidden_size, 0.2, 1/17) self.softmax = nn.Softmax(dim=2) self.dropout = nn.Dropout(hidden_dropout_prob) self.fc = nn.Linear(hidden_size, 2) def forward(self, xs, left_xs, right_xs, zs, y, token_attr_adjs): # Token Sequence xs = xs.to(self.device) left_xs = left_xs.to(self.device) right_xs = right_xs.to(self.device) xs = xs.permute(1, 0, 2) #[Attributes, Batch, Tokens] left_xs = left_xs.permute(1, 0, 2) right_xs = right_xs.permute(1, 0, 2) zs = zs.to(self.device) y = y.to(self.device) # Token-Attribute Graph Adjacency Matrix token_attr_adjs = token_attr_adjs.to(self.device) token_attr_adjs = token_attr_adjs.permute(0, 2, 1) # [Batch, All Tokens, Attributes] if self.training and self.finetuning: self.bert.train() # Get Context attns, contexts = self.get_context(xs, zs, token_attr_adjs) entity_embs = [] attr_comp_embs = [] for x, left_x, right_x in zip(xs, left_xs, right_xs): # Hierarchical Aggregation entity_embs.append(self.hier_aggr(left_x, right_x, attns, contexts)) # Attribute Comparison attr_comp_embs.append(self.hier_attr_comp(x, attns, contexts)) entity_outputs = torch.stack(entity_embs).permute(1, 0, 2) attr_outputs = torch.stack(attr_comp_embs).permute(1, 0, 2) # Entity Comparison entity_output = self.hier_ent_comp(attr_outputs, entity_outputs) # Entity Alignment entity_output = self.res(entity_output) else: self.bert.eval() with torch.no_grad(): # Get Context attns, contexts = self.get_context(xs, zs, token_attr_adjs) entity_embs = [] attr_comp_embs = [] for x, left_x, right_x in zip(xs, left_xs, right_xs): # Hierarchical Aggregation entity_embs.append(self.hier_aggr(left_x, right_x, attns, contexts)) # Attribute Comparison attr_comp_embs.append(self.hier_attr_comp(x, attns, contexts)) entity_outputs = torch.stack(entity_embs).permute(1, 0, 2) attr_outputs = torch.stack(attr_comp_embs).permute(1, 0, 2) # Entity Comparison entity_output = self.hier_ent_comp(attr_outputs, entity_outputs) # Entity Alignment entity_output = self.res(entity_output) logits = self.fc(entity_output) y_hat = logits.argmax(-1) return logits, y, y_hat # `adjs` is the Token-Attribute graph adjacency matrix def get_context(self, xs, zs, adjs): attr_outputs = [] attns = [] for x, init, cont in zip(xs, self.inits, self.conts): # Get Attribute Context Embedding attr_embeddings = init(self.bert.get_input_embeddings()(x)) # [Batch, Hidden] attr_outputs.append(attr_embeddings) # Get Token-Attribute Attention attn = cont(x, self.bert.get_input_embeddings(), attr_embeddings) # [Batch, All Tokens] attns.append(attn) ent_outputs = [] for z, all in zip(zs, self.alls): # Get Entity Context Embedding ent_embedding = all(self.bert.get_input_embeddings(z)) # [1, Hidden] ent_outputs.append(ent_embedding) context_outputs = [] for attr, ent, ove in zip(attr_outputs, ent_outputs, self.oves): context_outputs.append(ove(attr, ent)) attns = self.softmax(torch.stack(attns).permute(1, 2, 0)) * adjs # [Batch, All Tokens, Attributes] context_outputs = torch.stack(context_outputs).permute(1, 0, 2) # [Batch, Attributes, Hidden] return attns, context_outputs def context_embedding(self, x, attns, attr_outputs): if self.lm == 'distilbert': words_emb = self.bert.embeddings(x) else: words_emb = self.bert.get_input_embeddings()(x) # Add Context Embedding for i in range(words_emb.size()[0]): # i is index of batch words_emb[i] += torch.matmul(attns[i][x[i]], attr_outputs[i]) return words_emb def hier_aggr(self, left_x, right_x, attns, attr_contexts): left_attr_emb = self.transform(self.context_embedding(left_x, attns, attr_contexts)) right_attr_emb = self.transform(self.context_embedding(right_x, attns, attr_contexts)) entity_emb = torch.cat([left_attr_emb, right_attr_emb]) return entity_emb def hier_attr_comp(self, x, attns, attr_contexts): return self.transform(self.context_embedding(x, attns, attr_contexts)) def hier_ent_comp(self, attr_comp_emb, en_sum_emb): # Currently, we only support aligned attributes # So the entity is connected to all attributes # For simplicity, we omit this particular adjacency matrix return self.out(attr_comp_emb, en_sum_emb) def transform(self, emb): output = self.bert(inputs_embeds=emb) pooled_output = output[0][:, 0, :] pooled_output = self.dropout(pooled_output) return pooled_output
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.cat", "torch.stack", "torch.nn.Softmax", "torch.no_grad", "torch.matmul" ]
1.4.0
CGCL-codes/HierGAT
df0353e589a00b2b9ac6c8eae87396233fe850ee
1.5
import os import numpy as np import pandas as pd import torch from torch.utils.data.dataset import Dataset from PIL import Image, ImageFilter from Utils import utils import random import posixpath def get_list_from_filenames(file_path): # input: relative path to .txt file with file names # output: list of relative path names with open(file_path) as f: lines = f.read().splitlines() return lines class Synhead(Dataset): def __init__(self, data_dir, csv_path, transform, test=False): column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll'] tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig") self.data_dir = data_dir self.transform = transform self.X_train = tmp_df['path'] self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']] self.length = len(tmp_df) self.test = test def __getitem__(self, index): path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png' img = Image.open(path) img = img.convert('RGB') x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index] x_min = float(x_min); x_max = float(x_max) y_min = float(y_min); y_max = float(y_max) yaw = -float(yaw); pitch = float(pitch); roll = float(roll) # k = 0.2 to 0.40 k = np.random.random_sample() * 0.2 + 0.2 x_min -= 0.6 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) x_max += 0.6 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) width, height = img.size # Crop the face img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # Flip? rnd = np.random.random_sample() if rnd < 0.5: yaw = -yaw roll = -roll img = img.transpose(Image.FLIP_LEFT_RIGHT) # Blur? rnd = np.random.random_sample() if rnd < 0.05: img = img.filter(ImageFilter.BLUR) # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 labels = torch.LongTensor(binned_pose) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): return self.length class Pose_300W_LP(Dataset): # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB', train_percent=100., use_train=True, seed=17): assert 0. <= train_percent <= 100. self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext # allowing a sub sample of the dataset for training and validation filename_list = get_list_from_filenames(filename_path) self.length = int(len(filename_list) * train_percent // 100) random.seed(seed) train_inds = set(random.sample(range(len(filename_list)), self.length)) validation_inds = set(range(len(filename_list))) - train_inds if use_train: filename_list = [filename_list[i] for i in train_inds] else: filename_list = [filename_list[i] for i in validation_inds] self.length = len(filename_list) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode # self.length = len(filename_list) def __getitem__(self, index): #NOAM path = os.path.join(self.data_dir, self.X_train[index] + self.img_ext) path = posixpath.join(*path.split('\\')) img = Image.open(path) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) mat_path = posixpath.join(*mat_path.split('\\')) # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) # k = 0.2 to 0.40 k = np.random.random_sample() * 0.2 + 0.2 x_min -= 0.6 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) x_max += 0.6 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Flip? rnd = np.random.random_sample() if rnd < 0.5: yaw = -yaw roll = -roll img = img.transpose(Image.FLIP_LEFT_RIGHT) # Blur? rnd = np.random.random_sample() if rnd < 0.05: img = img.filter(ImageFilter.BLUR) # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 # Get target tensors labels = binned_pose cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # 122,450 return self.length class Pose_300W_LP_random_ds(Dataset): # 300W-LP dataset with random downsampling def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): path = os.path.join(self.data_dir, self.X_train[index] + self.img_ext).replace(r"\\", "/") img = Image.open(path) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) # k = 0.2 to 0.40 k = np.random.random_sample() * 0.2 + 0.2 x_min -= 0.6 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) x_max += 0.6 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi ds = 1 + np.random.randint(0,4) * 5 original_size = img.size img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) # Flip? rnd = np.random.random_sample() if rnd < 0.5: yaw = -yaw roll = -roll img = img.transpose(Image.FLIP_LEFT_RIGHT) # Blur? rnd = np.random.random_sample() if rnd < 0.05: img = img.filter(ImageFilter.BLUR) # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 # Get target tensors labels = binned_pose cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # 122,450 return self.length class AFLW2000(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) k = 0.20 x_min -= 2 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) x_max += 2 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # 2,000 return self.length class AFLW2000_ds(Dataset): # AFLW2000 dataset with fixed downsampling def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) k = 0.20 x_min -= 2 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) x_max += 2 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) ds = 3 # downsampling factor original_size = img.size img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # 2,000 return self.length class AFLW_aug(Dataset): # AFLW dataset with flipping def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # We get the pose in radians annot = open(txt_path, 'r') line = annot.readline().split(' ') pose = [float(line[1]), float(line[2]), float(line[3])] # And convert to degrees. yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Fix the roll in AFLW roll *= -1 # Augment # Flip? rnd = np.random.random_sample() if rnd < 0.5: yaw = -yaw roll = -roll img = img.transpose(Image.FLIP_LEFT_RIGHT) # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # train: 18,863 # test: 1,966 return self.length class AFLW(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # We get the pose in radians annot = open(txt_path, 'r') line = annot.readline().split(' ') pose = [float(line[1]), float(line[2]), float(line[3])] # And convert to degrees. yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Fix the roll in AFLW roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # train: 18,863 # test: 1,966 return self.length class AFW(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) img_name = self.X_train[index].split('_')[0] img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext)) img = img.convert(self.image_mode) txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # We get the pose in degrees annot = open(txt_path, 'r') line = annot.readline().split(' ') yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] # Crop the face loosely k = 0.32 x1 = float(line[4]) y1 = float(line[5]) x2 = float(line[6]) y2 = float(line[7]) x1 -= 0.8 * k * abs(x2 - x1) y1 -= 2 * k * abs(y2 - y1) x2 += 0.8 * k * abs(x2 - x1) y2 += 1 * k * abs(y2 - y1) img = img.crop((int(x1), int(y1), int(x2), int(y2))) # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # Around 200 return self.length class BIWI(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext)) img = img.convert(self.image_mode) pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext) y_train_list = self.y_train[index].split('/') bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext) # Load bounding box bbox = open(bbox_path, 'r') line = bbox.readline().split(' ') if len(line) < 4: x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1] else: x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])] bbox.close() # Load pose in degrees pose_annot = open(pose_path, 'r') R = [] for line in pose_annot: line = line.strip('\n').split(' ') l = [] if line[0] != '': for nb in line: if nb == '': continue l.append(float(nb)) R.append(l) R = np.array(R) T = R[3,:] R = R[:3,:] pose_annot.close() R = np.transpose(R) roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi # Loosely crop face k = 0.35 x_min -= 0.6 * k * abs(x_max - x_min) y_min -= k * abs(y_max - y_min) x_max += 0.6 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 labels = torch.LongTensor(binned_pose) cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) return img, labels, cont_labels, self.X_train[index] def __len__(self): # 15,667 return self.length
[ "torch.FloatTensor", "torch.LongTensor" ]
1.5.0
noamzilo/deep-head-pose
31969b8cbeeea5423ab7d326945f7871c5aed57e
0.4
# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # Modifications copyright Microsoft # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from contextlib import contextmanager import io import warnings import cloudpickle from horovod.common.util import check_extension try: check_extension('horovod.torch', 'HOROVOD_WITH_PYTORCH', __file__, 'mpi_lib_v2') except: check_extension('horovod.torch', 'HOROVOD_WITH_PYTORCH', __file__, 'mpi_lib', '_mpi_lib') from horovod.torch.compression import Compression from horovod.torch.mpi_ops import allreduce, allreduce_async, allreduce_, allreduce_async_ from horovod.torch.mpi_ops import allgather, allgather_async from horovod.torch.mpi_ops import broadcast, broadcast_async, broadcast_, broadcast_async_ from horovod.torch.mpi_ops import join from horovod.torch.mpi_ops import poll, synchronize from horovod.torch.mpi_ops import init, shutdown from horovod.torch.mpi_ops import size, local_size, rank, local_rank from horovod.torch.mpi_ops import mpi_threads_supported, mpi_enabled, mpi_built from horovod.torch.mpi_ops import gloo_enabled, gloo_built from horovod.torch.mpi_ops import nccl_built, ddl_built, ccl_built from horovod.torch.mpi_ops import Average, Sum, Adasum import torch import collections # Please run this function in a subprocess def _check_has_gpu(): import torch return torch.cuda.is_available() class _DistributedOptimizer(torch.optim.Optimizer): def __init__(self, params, named_parameters, compression, backward_passes_per_step=1, op=Average): super(self.__class__, self).__init__(params) self._compression = compression if named_parameters is not None: named_parameters = list(named_parameters) else: named_parameters = [('allreduce.noname.%s' % i, v) for param_group in self.param_groups for i, v in enumerate(param_group['params'])] # make sure that named_parameters are tuples if any([not isinstance(p, tuple) for p in named_parameters]): raise ValueError('named_parameters should be a sequence of ' 'tuples (name, parameter), usually produced by ' 'model.named_parameters().') dups = _DistributedOptimizer.find_duplicates([k for k, _ in named_parameters]) if len(dups) > 0: raise ValueError('Parameter names in named_parameters must be unique. ' 'Found duplicates: %s' % ', '.join(dups)) all_param_ids = {id(v) for param_group in self.param_groups for v in param_group['params']} named_param_ids = {id(v) for k, v in named_parameters} unnamed_param_ids = all_param_ids - named_param_ids if len(unnamed_param_ids): raise ValueError('named_parameters was specified, but one or more model ' 'parameters were not named. Python object ids: ' '%s' % ', '.join(str(id) for id in unnamed_param_ids)) self._parameter_names = {v: k for k, v in sorted(named_parameters)} self.backward_passes_per_step = backward_passes_per_step self._allreduce_delay = {v: self.backward_passes_per_step for _, v in sorted(named_parameters)} self.op = op self._handles = {} self._grad_accs = [] self._requires_update = set() self._synchronized = False self._should_synchronize = True if size() > 1: self._register_hooks() @staticmethod def find_duplicates(lst): seen = set() dups = set() for el in lst: if el in seen: dups.add(el) seen.add(el) return dups def set_backward_passes_per_step(self, passes): self.backward_passes_per_step = passes for p in self._allreduce_delay: self._allreduce_delay[p] = self.backward_passes_per_step def _register_hooks(self): for param_group in self.param_groups: for p in param_group['params']: if p.requires_grad: p.grad = p.data.new(p.size()).zero_() self._requires_update.add(p) p_tmp = p.expand_as(p) grad_acc = p_tmp.grad_fn.next_functions[0][0] grad_acc.register_hook(self._make_hook(p)) self._grad_accs.append(grad_acc) def _allreduce_grad_async(self, p): name = self._parameter_names.get(p) tensor = p.grad tensor_compressed, ctx = self._compression.compress(tensor) handle = allreduce_async_(tensor_compressed, name=name, op=self.op) return handle, ctx def _make_hook(self, p): def hook(*ignore): if p in self._handles and self._handles[p][0] is not None: if self._allreduce_delay[p] <= 0: raise AssertionError( "Gradients were computed more than " "backward_passes_per_step times before call " "to step(). Increase backward_passes_per_step to " "accumulate gradients locally.") assert not p.grad.requires_grad assert self._allreduce_delay[p] > 0 handle, ctx = None, None self._allreduce_delay[p] -= 1 if self._allreduce_delay[p] == 0: handle, ctx = self._allreduce_grad_async(p) self._handles[p] = (handle, ctx) return hook def synchronize(self): missing_p = self._requires_update - set(self._handles.keys()) for p in missing_p: handle, ctx = self._allreduce_grad_async(p) self._handles[p] = (handle, ctx) for p, value in self._handles.items(): handle, ctx = value if handle is None: handle, ctx = self._allreduce_grad_async(p) self._handles[p] = (handle, ctx) for p, (handle, _) in self._handles.items(): output = synchronize(handle) self._allreduce_delay[p] = self.backward_passes_per_step p.grad.set_(self._compression.decompress(output, ctx)) self._handles.clear() self._synchronized = True @contextmanager def skip_synchronize(self): """ A context manager used to specify that optimizer.step() should not perform synchronization. It's typically used in a following pattern: .. code-block:: python optimizer.synchronize() with optimizer.skip_synchronize(): optimizer.step() """ self._should_synchronize = False try: yield finally: self._should_synchronize = True def step(self, closure=None): if self._should_synchronize: if self._synchronized: warnings.warn("optimizer.step() called without " "optimizer.skip_synchronize() context after " "optimizer.synchronize(). This can cause training " "slowdown. You may want to consider using " "optimizer.skip_synchronize() context if you use " "optimizer.synchronize() in your code.") self.synchronize() self._synchronized = False return super(self.__class__, self).step(closure) def zero_grad(self): if self._handles: raise AssertionError("optimizer.zero_grad() was called after loss.backward() " "but before optimizer.step() or optimizer.synchronize(). " "This is prohibited as it can cause a race condition.") return super(self.__class__, self).zero_grad() class _DistributedAdasumOptimizer(torch.optim.Optimizer): def __init__(self, params, named_parameters, compression, backward_passes_per_step=1): super(self.__class__, self).__init__(params) self._compression = compression if named_parameters is not None: named_parameters = list(named_parameters) else: named_parameters = [('allreduce.noname.%s' % i, v) for param_group in self.param_groups for i, v in enumerate(param_group['params'])] # make sure that named_parameters are tuples if any([not isinstance(p, tuple) for p in named_parameters]): raise ValueError('named_parameters should be a sequence of ' 'tuples (name, parameter), usually produced by ' 'model.named_parameters().') dups = _DistributedOptimizer.find_duplicates([k for k, _ in named_parameters]) if len(dups) > 0: raise ValueError('Parameter names in named_parameters must be unique. ' 'Found duplicates: %s' % ', '.join(dups)) all_param_ids = {id(v) for param_group in self.param_groups for v in param_group['params']} named_param_ids = {id(v) for k, v in named_parameters} unnamed_param_ids = all_param_ids - named_param_ids if len(unnamed_param_ids): raise ValueError('named_parameters was specified, but one or more model ' 'parameters were not named. Python object ids: ' '%s' % ', '.join(str(id) for id in unnamed_param_ids)) self._parameter_names = {v: k for k, v in sorted(named_parameters)} self.backward_passes_per_step = backward_passes_per_step self._allreduce_delay = {v: self.backward_passes_per_step for _, v in sorted(named_parameters)} self._handles = {} self._grad_accs = [] self._requires_update = set() self._synchronized = False self._should_synchronize = True self._starting_models = { p : torch.zeros_like(p, requires_grad=False) for _, p in named_parameters } self._register_hooks() def set_backward_passes_per_step(self, passes): self.backward_passes_per_step = passes for p in self._allreduce_delay: self._allreduce_delay[p] = self.backward_passes_per_step def _register_hooks(self): for param_group in self.param_groups: for p in param_group['params']: if p.requires_grad: p.grad = p.data.new(p.size()).zero_() self._requires_update.add(p) p_tmp = p.expand_as(p) grad_acc = p_tmp.grad_fn.next_functions[0][0] grad_acc.register_hook(self._make_hook(p)) self._grad_accs.append(grad_acc) def _allreduce_grad_async(self, p): # Delta optimizer implements this logic: # start = current.copy() # step() -> computes 'current - \alpha.f(g)' where f is # optimizer logic and g is the gradient # delta = current-start # allreduce_(delta) # start += delta # current = start # In order to suppport this logic using function hook to improve performance, # we do: # delta = (start - \alpha.f(g)) - start # = -\alpha.f(g) # set start to zero and step computes -\alpha.f(g) # where f is the underlying optimizer logic name = self._parameter_names.get(p) start = self._starting_models[p] stashed_params = [] for group in self.param_groups: stashed_params.append(group['params']) # only want to step on p if any([p is v for v in group['params']]): group['params'] = [p] else: group['params'] = [] start.data.copy_(p) super(self.__class__, self).step() # compute delta = curr - start p.data.sub_(start) # allreduce as before tensor_compressed, ctx = self._compression.compress(p) handle = allreduce_async_(tensor_compressed.data, name=name, op=Adasum) # reset stashed parameters for stashed, group in zip(stashed_params, self.param_groups): group['params'] = stashed return handle, ctx def _make_hook(self, p): def hook(*ignore): if p in self._handles and self._handles[p][0] is not None: if self._allreduce_delay[p] <= 0: raise AssertionError( "Gradients were computed more than " "backward_passes_per_step times before call " "to step(). Increase backward_passes_per_step to " "accumulate gradients locally.") assert not p.grad.requires_grad assert self._allreduce_delay[p] > 0 handle, ctx = None, None self._allreduce_delay[p] -= 1 if self._allreduce_delay[p] == 0: handle, ctx = self._allreduce_grad_async(p) self._handles[p] = (handle, ctx) return hook def synchronize(self): pass @contextmanager def skip_synchronize(self): raise AssertionError("Skipping synchronization is not supported when using Adasum optimizer.") def step(self, closure=None): loss = None if closure is not None: loss = closure() missing_p = self._requires_update - set(self._handles.keys()) for p in missing_p: handle, ctx = self._allreduce_grad_async(p) self._handles[p] = (handle, ctx) for p, (handle, ctx) in self._handles.items(): # This means step() is called before backward_passes_per_steps finished. # We do a synchoronous allreduce here. if not handle: handle, ctx = self._allreduce_grad_async(p) self._handles[p] = (handle, ctx) delta = synchronize(handle) delta = self._compression.decompress(delta, ctx) start = self._starting_models[p] start.data.add_(delta.data) p.data.copy_(start) self._allreduce_delay[p] = self.backward_passes_per_step self._handles.clear() return loss def zero_grad(self): if self._handles: raise AssertionError("optimizer.zero_grad() was called after loss.backward() " "but before optimizer.step() or optimizer.synchronize(). " "This is prohibited as it can cause a race condition.") return super(self.__class__, self).zero_grad() def DistributedOptimizer(optimizer, named_parameters=None, compression=Compression.none, backward_passes_per_step=1, op=Average): """ An optimizer that wraps another torch.optim.Optimizer, using an allreduce to combine gradient values before applying gradients to model weights. Allreduce operations are executed after each gradient is computed by ``loss.backward()`` in parallel with each other. The ``step()`` method ensures that all allreduce operations are finished before applying gradients to the model. DistributedOptimizer exposes the ``synchronize()`` method, which forces allreduce operations to finish before continuing the execution. It's useful in conjunction with gradient clipping, or other operations that modify gradients in place before ``step()`` is executed. Make sure to use ``optimizer.skip_synchronize()`` if you're calling ``synchronize()`` in your code. Example of gradient clipping: .. code-block:: python output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.synchronize() torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) with optimizer.skip_synchronize(): optimizer.step() Arguments: optimizer: Optimizer to use for computing gradients and applying updates. named_parameters: A mapping between parameter names and values. Used for naming of allreduce operations. Typically just ``model.named_parameters()``. compression: Compression algorithm used during allreduce to reduce the amount of data sent during the each parameter update step. Defaults to not using compression. backward_passes_per_step: Number of expected backward passes to perform before calling step()/synchronize(). This allows accumulating gradients over multiple mini-batches before reducing and applying them. op: The reduction operation to use when combining gradients across different ranks. """ # We dynamically create a new class that inherits from the optimizer that was passed in. # The goal is to override the `step()` method with an allreduce implementation. if op != Adasum or size() == 1: cls = type(optimizer.__class__.__name__, (optimizer.__class__,), dict(_DistributedOptimizer.__dict__)) return cls(optimizer.param_groups, named_parameters, compression, backward_passes_per_step, op) else: cls = type(optimizer.__class__.__name__, (optimizer.__class__,), dict(_DistributedAdasumOptimizer.__dict__)) return cls(optimizer.param_groups, named_parameters, compression, backward_passes_per_step) def broadcast_parameters(params, root_rank): """ Broadcasts the parameters from root rank to all other processes. Typical usage is to broadcast the ``model.state_dict()``, ``model.named_parameters()``, or ``model.parameters()``. Arguments: params: One of the following: - list of parameters to broadcast - dict of parameters to broadcast root_rank: The rank of the process from which parameters will be broadcasted to all other processes. """ if isinstance(params, dict): params = sorted(params.items()) elif isinstance(params, list): # support both named_parameters() and regular parameters() params = [p if isinstance(p, tuple) else (None, p) for p in params] else: raise ValueError('invalid params of type: %s' % type(params)) # Run asynchronous broadcasts. handles = [] for name, p in params: handle = broadcast_async_(p, root_rank, name) handles.append(handle) # Wait for completion. for handle in handles: synchronize(handle) def broadcast_optimizer_state(optimizer, root_rank): """ Broadcasts an optimizer state from root rank to all other processes. Arguments: optimizer: An optimizer. root_rank: The rank of the process from which the optimizer will be broadcasted to all other processes. """ if isinstance(optimizer, torch.optim.LBFGS): # TODO(travis): L-BFGS cannot be easily supported without serializing # the entire state_dict, as its structure is deeply nested and contains # None type parameter values raise ValueError('cannot broadcast torch.optim.LBFGS state') state_dict = optimizer.state_dict() # Newly created optimizers will not have their state initialized, so # do that initialization here if len(state_dict['state']) == 0: for group in optimizer.param_groups: for p in group['params']: if p.requires_grad and id(p) not in state_dict['state']: p.grad = p.data.new(p.size()).zero_() # This function accepts a torch.optim.Optimizer or a DistributedOptimizer # wrapped around a torch optimizer. Calling step() with a DistributedOptimizer # forces allreduce on all model parameters, which will result in deadlock # unless every rank calls step(). Therefore, to finish state initialization # only call optimizer.step() with a torch.optim.Optimizer. if optimizer.__module__ == DistributedOptimizer.__module__: super(optimizer.__class__, optimizer).step() else: optimizer.step() state_dict = optimizer.state_dict() # If the state_dict is still empty after initialization, then # the optimizer is stateless, and there is nothing to broadcast. # Furthermore, attempting to access the state dict would result in # an error. if len(state_dict['state']) == 0: return params = [] callbacks = {} occurrences = collections.defaultdict(int) # Returns the full type structure of the possibly nested objects for recursive casting back def _get_types(x): if isinstance(x, collections.Iterable): return type(x), [_get_types(xi) for xi in x] else: return type(x) # Casts an object encoded in a tensor back into its original type and subtypes def _recursive_cast(x, dtype): if isinstance(dtype, tuple): t, dtypes = dtype x = t(x) return t([_recursive_cast(x[i], dtypes[i]) for i in range(len(x))]) else: return dtype(x) # Some optimizer parameters may be represented as scalars instead of # tensors. In such cases, we need to wrap the scalar in a tensor, then # broadcast, then update the appropriate value in the state_dict with the # new unwrapped scalar value via a callback. def _create_callback(pid, name, t, p): def _from_tensor(): state_dict['state'][pid][name] = t(p.cpu().numpy()[0]) return _from_tensor def _create_option_callback(index, option_key, option_tensor, dtypes): def _from_tensor(): optimizer.param_groups[index][option_key] = _recursive_cast(option_tensor.cpu().numpy()[0], dtypes) return _from_tensor # Param groups are an ordered list, normally there is only one per model, # but users can add additional param groups for example to train # previously frozen layers for index, group in enumerate(state_dict['param_groups']): # Broadcast options like learning rate for option_key, option_value in group.items(): if option_key == 'params': continue # Options like the learning rate are scalar, and need to be wrapped in tensors key = '%s.%d' % (option_key, index) dtypes = _get_types(option_value) option_tensor = torch.Tensor([option_value]) callbacks[key] = _create_option_callback(index, option_key, option_tensor, dtypes) params.append((key, option_tensor)) # The params list here is ordered by the layers in the model for pid in group['params']: param_state = state_dict['state'][pid] for name, p in param_state.items(): # Some parameter names may appear more than once, in which # case we ensure they have a unique identifier defined by # their order occurrences[name] += 1 key = '%s.%d' % (str(name), occurrences[name]) if not torch.is_tensor(p): # Wrap the scalar in a FloatTensor, and remember its type # so we can cast it back after unwrapping t = type(p) p = torch.Tensor([p]) callbacks[key] = _create_callback(pid, name, t, p) params.append((key, p)) # Synchronized broadcast of all parameters broadcast_parameters(params, root_rank) # Post-broadcast cleanup for non-tensor parameters for key, p in params: if key in callbacks: callbacks[key]() def broadcast_object(obj, root_rank, name=None): """ Serializes and broadcasts an object from root rank to all other processes. Typical usage is to broadcast the `optimizer.state_dict()`, for example: .. code-block:: python state_dict = broadcast_object(optimizer.state_dict(), 0) if hvd.rank() > 0: optimizer.load_state_dict(state_dict) Arguments: obj: An object capable of being serialized without losing any context. root_rank: The rank of the process from which parameters will be broadcasted to all other processes. name: Optional name to use during broadcast, will default to the class type. Returns: The object that was broadcast from the `root_rank`. """ if name is None: name = str(type(obj)) if rank() == root_rank: b = io.BytesIO() cloudpickle.dump(obj, b) t = torch.ByteTensor(bytearray(b.getvalue())) sz = torch.IntTensor([t.shape[0]]) broadcast_(sz, root_rank, name + '.sz') else: sz = torch.IntTensor([0]) broadcast_(sz, root_rank, name + '.sz') t = torch.ByteTensor(sz.tolist()[0]) broadcast_(t, root_rank, name + '.t') if rank() != root_rank: buf = io.BytesIO(t.numpy().tobytes()) obj = cloudpickle.load(buf) return obj
[ "torch.IntTensor", "torch.is_tensor", "torch.cuda.is_available", "torch.zeros_like", "torch.Tensor" ]
0.4.0
pragupta/horovod
7d7a9df9ffb77a121030207f1659ec6c9afaa8ed
1.1
import numpy as np import torch from bonsai.pruning.abstract_pruners import WeightBasedPruner, ActivationBasedPruner, GradBasedPruner class WeightL2Prunner(WeightBasedPruner): @staticmethod def compute_single_layer_ranks(module, *args, **kwargs): size = module.weights.size() weights = module.weights.contiguous().view(size[0], np.prod(size[1:])) return torch.sqrt(torch.sum(weights ** 2, dim=1)) class ActivationL2Prunner(ActivationBasedPruner): @staticmethod def compute_single_layer_ranks(module, *args, **kwargs): # activation map size is (batch_size x out_channels x width x height) activation = module.activation.detach().transpose(0, 1) size = activation.size() activation = activation.contiguous().view(size[0], np.prod(size[1:])) return torch.sqrt(torch.sum(activation ** 2, dim=1)) class TaylorExpansionPrunner(GradBasedPruner): @staticmethod def compute_single_layer_ranks(module, *args, **kwargs): # activation map and grad sizes are (batch_size X out_channels X width X height) activation = module.activation.detach().transpose(0, 1) grad = module.grad.detach().transpose(0, 1) ranks = activation * grad size = ranks.size() ranks = ranks.contiguous().view(size[0], np.prod(size[1:])) ranks = torch.mean(ranks, dim=1) return ranks
[ "torch.mean", "torch.sum" ]
1.1.0
ItamarWilf/pytorch-bonsai
d8091cfa731d5168ce9a0a1d98e555f7d1364244
0.4
#!/usr/bin/env python # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import SimpleITK as sitk import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import os from copy import deepcopy import torch import torch.nn.functional as F from utils.model_utils import dice_val from utils.model_utils import get_one_hot_encoding def save_seg_result(cf,epoch,pid,seg_map,mask_map,fusion_map): if cf.test_last_epoch == False: pth = cf.plot_dir + '3D_result_epoch{}/'.format(epoch) else: pth = cf.plot_dir + '3D_result_lastepoch{}/'.format(epoch) if not os.path.exists(pth): os.mkdir(pth) seg_map = np.squeeze(seg_map).astype(np.uint8) mask_map = np.squeeze(mask_map).astype(np.uint8) fusion_map = np.squeeze(fusion_map).astype(np.uint8) seg_map_pth = pth + '{}_epoch{}_segmap.nii.gz'.format(pid,epoch) mask_map_pth = pth + '{}_epoch{}_maskmap.nii.gz'.format(pid,epoch) fusion_map_pth = pth + '{}_epoch{}_fusionmap.nii.gz'.format(pid,epoch) seg_map = sitk.GetImageFromArray(seg_map) sitk.WriteImage(seg_map,seg_map_pth) mask_map = sitk.GetImageFromArray(mask_map) sitk.WriteImage(mask_map,mask_map_pth) fusion_map = sitk.GetImageFromArray(fusion_map) sitk.WriteImage(fusion_map,fusion_map_pth) def savedice_csv(cf,epoch,pidlist,seg_dice,mask_dice,fusion_dice): if cf.test_last_epoch == True: pth = cf.test_dir + 'dice_lastepoch{}.csv'.format(epoch) else: pth = cf.test_dir + 'dice_epoch{}.csv'.format(epoch) print('saving csv to',pth) f = open(pth,'w+') f.write('%s,%s,%s,%s\n'%('patient','maskdice','segdice','fusiondice')) for ii,pid in enumerate(pidlist): print('pid',pid) f.write('%s,%.2f,%.2f,%.2f\n'%(pid,(mask_dice[ii]),(seg_dice[ii]),(fusion_dice[ii]))) f.flush() maskdice = sum(mask_dice)/float(len(mask_dice)) segdice = sum(seg_dice)/float(len(seg_dice)) fusiondice = sum(fusion_dice)/float(len(fusion_dice)) f.write('%s,%.2f,%.2f,%.2f\n'%('average',(maskdice),(segdice),(fusiondice))) f.flush() f.close() def save_test_image(results_list,results_list_mask,results_list_seg,results_list_fusion, epoch,cf,pth,mode = 'test'): print('in save_test_image') if cf.test_last_epoch == False: pth = pth + 'epoch_{}/'.format(epoch) else: pth = pth + 'lastepoch_{}/'.format(epoch) if not os.path.exists(pth): os.mkdir(pth) mask_dice,seg_dice,fusion_dice,pidlist =[], [],[],[] for ii,box_pid in enumerate(results_list_seg): pid = box_pid[1] pidlist.append(pid) #boxes = box_pid[0][0] boxes = results_list[ii][0][0]#box_pid[0][0] img = np.load(cf.pp_test_data_path + pid + '_img.npy') img = np.transpose(img,axes = (1,2,0))[np.newaxis] data = np.transpose(img, axes=(3, 0, 1, 2))#128,1,64,128 seg = np.load(cf.pp_test_data_path + pid + '_rois.npy') seg = np.transpose(seg,axes = (1,2,0))[np.newaxis] this_batch_seg_label = np.expand_dims(seg,axis=0)#seg[np.newaxis,:,:,:,:] this_batch_seg_label = get_one_hot_encoding(this_batch_seg_label, cf.num_seg_classes+1) seg = np.transpose(seg, axes=(3, 0, 1, 2))#128,1,64,128 mask_map = np.squeeze(results_list_mask[ii][0]) mask_map = np.transpose(mask_map,axes = (0,1,2))[np.newaxis] mask_map_ = np.expand_dims(mask_map,axis=0) print('pid',pid) print('mask_map',mask_map_.shape) print('this_batch_seg_label',this_batch_seg_label.shape) this_batch_dice_mask = dice_val(torch.from_numpy(mask_map_),torch.from_numpy(this_batch_seg_label)) mask_map = np.transpose(mask_map, axes=(3, 0, 1, 2))#128,1,64,128 mask_map[mask_map>0.5] = 1 mask_map[mask_map<1] = 0 seg_map = np.squeeze(results_list_seg[ii][0]) seg_map = np.transpose(seg_map,axes = (0,1,2))[np.newaxis] seg_map_ = np.expand_dims(seg_map,axis=0) this_batch_dice_seg = dice_val(torch.from_numpy(seg_map_),torch.from_numpy(this_batch_seg_label)) seg_map = np.transpose(seg_map, axes=(3, 0, 1, 2))#128,1,64,128 seg_map[seg_map>0.5] = 1 seg_map[seg_map<1] = 0 fusion_map = np.squeeze(results_list_fusion[ii][0]) fusion_map = np.transpose(fusion_map,axes = (0,1,2))[np.newaxis] fusion_map_ = np.expand_dims(fusion_map,axis=0) this_batch_dice_fusion = dice_val(torch.from_numpy(fusion_map_),torch.from_numpy(this_batch_seg_label)) fusion_map = np.transpose(fusion_map, axes=(3, 0, 1, 2))#128,1,64,128 fusion_map[fusion_map>0.5] = 1 fusion_map[fusion_map<1] = 0 save_seg_result(cf,epoch,pid,seg_map,mask_map,fusion_map) mask_dice.append(this_batch_dice_mask) seg_dice.append(this_batch_dice_seg) fusion_dice.append(this_batch_dice_fusion) gt_boxes = [box['box_coords'] for box in boxes if box['box_type'] == 'gt'] slice_num = 5 if len(gt_boxes) > 0: center = int((gt_boxes[0][5]-gt_boxes[0][4])/2+gt_boxes[0][4]) z_cuts = [np.max((center - slice_num, 0)), np.min((center + slice_num, data.shape[0]))]#max len = 10 else: z_cuts = [data.shape[0]//2 - slice_num, int(data.shape[0]//2 + np.min([slice_num, data.shape[0]//2]))] roi_results = [[] for _ in range(data.shape[0])] for box in boxes:#box is a list b = box['box_coords'] # dismiss negative anchor slices. slices = np.round(np.unique(np.clip(np.arange(b[4], b[5] + 1), 0, data.shape[0]-1))) for s in slices: roi_results[int(s)].append(box) roi_results[int(s)][-1]['box_coords'] = b[:4]#change 3d box to 2d roi_results = roi_results[z_cuts[0]: z_cuts[1]]#extract slices to show data = data[z_cuts[0]: z_cuts[1]] seg = seg[z_cuts[0]:z_cuts[1]] seg_map = seg_map[z_cuts[0]:z_cuts[1]] mask_map = mask_map[z_cuts[0]:z_cuts[1]] fusion_map = fusion_map[z_cuts[0]:z_cuts[1]] pids = [pid] * data.shape[0] kwargs={'linewidth':0.2, 'alpha':1, } show_arrays = np.concatenate([data,data,data,data], axis=1).astype(float)#10,2,79,219 approx_figshape = (4*show_arrays.shape[0], show_arrays.shape[1]) fig = plt.figure(figsize=approx_figshape) gs = gridspec.GridSpec(show_arrays.shape[1] + 1, show_arrays.shape[0]) gs.update(wspace=0.1, hspace=0.1) for b in range(show_arrays.shape[0]):#10(0...9) for m in range(show_arrays.shape[1]):#4(0,1,2,3) ax = plt.subplot(gs[m, b]) ax.axis('off') arr = show_arrays[b, m]#get image to be shown cmap = 'gray' vmin = None vmax = None if m == 1: ax.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax) ax.contour(np.squeeze(mask_map[b][0:1,:,:]),colors = 'yellow',linewidth=1,alpha=1) if m == 2: ax.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax) ax.contour(np.squeeze(seg_map[b][0:1,:,:]),colors = 'lime',linewidth=1,alpha=1) if m == 3: ax.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax) ax.contour(np.squeeze(fusion_map[b][0:1,:,:]),colors = 'orange',linewidth=1,alpha=1) if m == 0: plt.title('{}'.format(pids[b][:10]), fontsize=8) ax.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax) ax.contour(np.squeeze(seg[b][0:1,:,:]),colors = 'red',linewidth=1,alpha=1) plot_text = False ax.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax) for box in roi_results[b]: coords = box['box_coords'] #print('coords',coords) #print('type',box['box_type']) if box['box_type'] == 'det': #print('score',box['box_score']) if box['box_score'] > 0.1:# and box['box_score'] > cf.source_th:#detected box plot_text = True #score = np.max(box['box_score']) score = box['box_score'] score_text = '{:.2f}'.format(score*100)#'{}|{:.0f}'.format(box['box_pred_class_id'], score*100) score_font_size = 7 text_color = 'w' text_x = coords[1] #+ 10*(box['box_pred_class_id'] -1) #avoid overlap of scores in plot. text_y = coords[2] + 10 #else:#background and small score don't show # continue color_var = 'box_type'#'extra_usage' if 'extra_usage' in list(box.keys()) else 'box_type' color = cf.box_color_palette[box[color_var]] ax.plot([coords[1], coords[3]], [coords[0], coords[0]], color=color, linewidth=1, alpha=1) # up ax.plot([coords[1], coords[3]], [coords[2], coords[2]], color=color, linewidth=1, alpha=1) # down ax.plot([coords[1], coords[1]], [coords[0], coords[2]], color=color, linewidth=1, alpha=1) # left ax.plot([coords[3], coords[3]], [coords[0], coords[2]], color=color, linewidth=1, alpha=1) # right if plot_text: ax.text(text_x, text_y, score_text, fontsize=score_font_size, color=text_color) if cf.test_last_epoch == False: outfile = pth+'result_{}_{}_{}.png'.format(mode,pid,epoch) else: outfile = pth+'result_{}_{}_lastepoch_{}.png'.format(mode,pid,epoch) print('outfile',outfile) try: plt.savefig(outfile) except: raise Warning('failed to save plot.') savedice_csv(cf,epoch,pidlist,seg_dice,mask_dice,fusion_dice) def save_monitor_valuse(cf,test_df,epoch,flag = 'val'): pth = cf.exp_dir filename = flag+'_{}'.format(epoch)+'.csv' print('pth',pth+filename) test_df.to_csv(pth+filename) def plot_batch_prediction(batch, results_dict, cf, mode,outfile= None): """ plot the input images, ground truth annotations, and output predictions of a batch. If 3D batch, plots a 2D projection of one randomly sampled element (patient) in the batch. Since plotting all slices of patient volume blows up costs of time and space, only a section containing a randomly sampled ground truth annotation is plotted. :param batch: dict with keys: 'data' (input image), 'seg' (pixelwise annotations), 'pid' :param results_dict: list over batch element. Each element is a list of boxes (prediction and ground truth), where every box is a dictionary containing box_coords, box_score and box_type. """ #print('in ploting image') data = batch['data'] pids = batch['pid'] segs = batch['seg'] # for 3D, repeat pid over batch elements. if len(set(pids)) == 1: pids = [pids] * data.shape[0] if mode == 'val_patient': mask_map = results_dict['seg_preds']#.cpu().detach().numpy() seg_map = results_dict['seg_logits']#.cpu().detach().numpy() fusion_map = results_dict['fusion_map']#.cpu().detach().numpy() else: #mask_map = torch.tensor(results_dict['seg_preds']).cuda() if cf.fusion_feature_method == 'after': mask_map = results_dict['seg_preds'][:,1:2,:,:,:].cpu().detach().numpy() else: mask_map = F.softmax(results_dict['seg_preds'], dim=1)[:,1:2,:,:,:].cpu().detach().numpy()# N,2,64,128,128 if cf.fusion_feature_method == 'after': seg_map = results_dict['seg_logits'][:,1:2,:,:,:].cpu().detach().numpy() else: seg_map = F.softmax(results_dict['seg_logits'], dim=1)[:,1:2,:,:,:].cpu().detach().numpy() fusion_map = results_dict['fusion_map'][:,1:2,:,:,:].cpu().detach().numpy() we_layer_seg = results_dict['we_layer'][:,1:2,:,:,:].cpu().detach().numpy() we_layer_mask = results_dict['we_layer'][:,3:4,:,:,:].cpu().detach().numpy() roi_results = deepcopy(results_dict['boxes'])#len == batch size # Randomly sampled one patient of batch and project data into 2D slices for plotting. if cf.dim == 3: patient_ix = np.random.choice(data.shape[0]) data = np.transpose(data[patient_ix], axes=(3, 0, 1, 2))#128,1,64,128 # select interesting foreground section to plot. gt_boxes = [box['box_coords'] for box in roi_results[patient_ix] if box['box_type'] == 'gt'] if len(gt_boxes) > 0: center = int((gt_boxes[0][5]-gt_boxes[0][4])/2+gt_boxes[0][4]) z_cuts = [np.max((center - 5, 0)), np.min((center + 5, data.shape[0]))]#max len = 10 else: z_cuts = [data.shape[0]//2 - 5, int(data.shape[0]//2 + np.min([5, data.shape[0]//2]))] p_roi_results = roi_results[patient_ix] roi_results = [[] for _ in range(data.shape[0])]#len = 128 # iterate over cubes and spread across slices. for box in p_roi_results:#box is a list b = box['box_coords'] # dismiss negative anchor slices. slices = np.round(np.unique(np.clip(np.arange(b[4], b[5] + 1), 0, data.shape[0]-1))) for s in slices: roi_results[int(s)].append(box) roi_results[int(s)][-1]['box_coords'] = b[:4]#change 3d box to 2d roi_results = roi_results[z_cuts[0]: z_cuts[1]]#extract slices to show data = data[z_cuts[0]: z_cuts[1]] segs = np.transpose(segs[patient_ix], axes=(3, 0, 1, 2))[z_cuts[0]: z_cuts[1]]#gt mask_map = np.transpose(mask_map[patient_ix], axes=(3, 0, 1, 2))[z_cuts[0]: z_cuts[1]]#pred seg seg_map = np.transpose(seg_map[patient_ix], axes=(3, 0, 1, 2))[z_cuts[0]: z_cuts[1]]#pred seg fusion_map = np.transpose(fusion_map[patient_ix], axes=(3, 0, 1, 2))[z_cuts[0]: z_cuts[1]]#pred seg we_layer_seg = np.transpose(we_layer_seg[patient_ix],axes=(3,0,1,2))[z_cuts[0]:z_cuts[1]] we_layer_mask = np.transpose(we_layer_mask[patient_ix],axes=(3,0,1,2))[z_cuts[0]:z_cuts[1]] pids = [pids[patient_ix]] * data.shape[0] try: # all dimensions except for the 'channel-dimension' are required to match for i in [0, 2, 3]: assert data.shape[i] == segs.shape[i] == mask_map.shape[i] except: raise Warning('Shapes of arrays to plot not in agreement!' 'Shapes {} vs. {} vs {}'.format(data.shape, segs.shape, mask_map.shape)) show_arrays = np.concatenate([data[:,0][:,None], segs, mask_map, seg_map, fusion_map,we_layer_mask,we_layer_seg], axis=1).astype(float) approx_figshape = (4 * show_arrays.shape[0], 4 * show_arrays.shape[1]) fig = plt.figure(figsize=approx_figshape) gs = gridspec.GridSpec(show_arrays.shape[1] + 1, show_arrays.shape[0]) gs.update(wspace=0.1, hspace=0.1) for b in range(show_arrays.shape[0]): for m in range(show_arrays.shape[1]): ax = plt.subplot(gs[m, b]) ax.axis('off') arr = show_arrays[b, m]#get image to be shown if m == 0: cmap = 'gray' vmin = None vmax = None else: cmap = 'jet' vmin = 0 vmax = 1#cf.num_seg_classes - 1 ax.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax) if m == 0: plot_text = False plt.title('{}'.format(pids[b][:10]), fontsize=8) for box in roi_results[b]: coords = box['box_coords'] if box['box_type'] == 'det': # dont plot background preds or low confidence boxes. if box['box_score'] > cf.show_det_source_th:#detected box plot_text = True score = box['box_score'] score_text = '{:.2f}'.format(score*100) score_font_size = 7 text_color = 'w' text_x = coords[1] #+ 10*(box['box_pred_class_id'] -1) #avoid overlap of scores in plot. text_y = coords[2] + 5 color_var = 'box_type'#'extra_usage' if 'extra_usage' in list(box.keys()) else 'box_type' color = cf.box_color_palette[box[color_var]] ax.plot([coords[1], coords[3]], [coords[0], coords[0]], color=color, linewidth=1, alpha=1) # up ax.plot([coords[1], coords[3]], [coords[2], coords[2]], color=color, linewidth=1, alpha=1) # down ax.plot([coords[1], coords[1]], [coords[0], coords[2]], color=color, linewidth=1, alpha=1) # left ax.plot([coords[3], coords[3]], [coords[0], coords[2]], color=color, linewidth=1, alpha=1) # right if plot_text: ax.text(text_x, text_y, score_text, fontsize=score_font_size, color=text_color) return fig class TrainingPlot_2Panel(): def __init__(self, cf): self.file_name = cf.plot_dir + '/monitor_{}'.format(cf.fold) #print('file_name monitor',self.file_name) self.exp_name = cf.fold_dir self.do_validation = cf.do_validation self.separate_values_dict = cf.assign_values_to_extra_figure#{} self.figure_list = [] for n in range(cf.n_monitoring_figures):#1 self.figure_list.append(plt.figure(figsize=(10, 6))) self.figure_list[-1].ax1 = plt.subplot(111) self.figure_list[-1].ax1.set_xlabel('epochs') self.figure_list[-1].ax1.set_ylabel('loss / metrics') self.figure_list[-1].ax1.set_xlim(0, cf.num_epochs) self.figure_list[-1].ax1.grid() self.figure_list[0].ax1.set_ylim(0, 1.5) self.color_palette = ['b', 'c', 'r', 'purple', 'm', 'y', 'k', 'tab:gray'] def update_and_save(self, metrics, epoch): for figure_ix in range(len(self.figure_list)): fig = self.figure_list[figure_ix] detection_monitoring_plot(fig.ax1, metrics, self.exp_name, self.color_palette, epoch, figure_ix, self.separate_values_dict, self.do_validation) fig.savefig(self.file_name + '_{}'.format(figure_ix)) def detection_monitoring_plot(ax1, metrics, exp_name, color_palette, epoch, figure_ix, separate_values_dict, do_validation): monitor_values_keys = metrics['train']['monitor_values'][1][0].keys() separate_values = [v for fig_ix in separate_values_dict.values() for v in fig_ix] if figure_ix == 0: plot_keys = [ii for ii in monitor_values_keys if ii not in separate_values] plot_keys += [k for k in metrics['train'].keys() if k != 'monitor_values'] else: plot_keys = separate_values_dict[figure_ix] x = np.arange(1, epoch + 1) for kix, pk in enumerate(plot_keys): if pk in metrics['train'].keys(): y_train = metrics['train'][pk][1:] if do_validation: y_val = metrics['val'][pk][1:] else: y_train = [np.mean([er[pk] for er in metrics['train']['monitor_values'][e]]) for e in x] if do_validation: y_val = [np.mean([er[pk] for er in metrics['val']['monitor_values'][e]]) for e in x] ax1.plot(x, y_train, label='train_{}'.format(pk), linestyle='--', color=color_palette[kix]) if do_validation: ax1.plot(x, y_val, label='val_{}'.format(pk), linestyle='-', color=color_palette[kix]) if epoch == 1: box = ax1.get_position() ax1.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ax1.set_title(exp_name) def plot_prediction_hist(label_list, pred_list, type_list, outfile): """ plot histogram of predictions for a specific class. :param label_list: list of 1s and 0s specifying whether prediction is a true positive match (1) or a false positive (0). False negatives (missed ground truth objects) are artificially added predictions with score 0 and label 1. :param pred_list: list of prediction-scores. :param type_list: list of prediction-types for stastic-info in title. """ #print('in plot_prediction_hist') #print('label_list',label_list) #print('pred_list',pred_list) #print('type_list',type_list) #print('outfile',outfile) preds = np.array(pred_list) labels = np.array(label_list) title = outfile.split('/')[-1] + ' count:{}'.format(len(label_list)) plt.figure() plt.yscale('log') if 0 in labels: plt.hist(preds[labels == 0], alpha=0.3, color='g', range=(0, 1), bins=50, label='false pos.') if 1 in labels: plt.hist(preds[labels == 1], alpha=0.3, color='b', range=(0, 1), bins=50, label='true pos. (false neg. @ score=0)') if type_list is not None: fp_count = type_list.count('det_fp') fn_count = type_list.count('det_fn') tp_count = type_list.count('det_tp') pos_count = fn_count + tp_count title += ' tp:{} fp:{} fn:{} pos:{}'. format(tp_count, fp_count, fn_count, pos_count) plt.legend() plt.title(title) plt.xlabel('confidence score') plt.ylabel('log n') plt.savefig(outfile) plt.close() def plot_stat_curves(stats, outfile): print('in plot_stat_curves') print('outfile',outfile) for c in ['roc', 'prc']: plt.figure() for s in stats: if s[c] is not None: plt.plot(s[c][0], s[c][1], label=s['name'] + '_' + c) plt.title(outfile.split('/')[-1] + '_' + c) plt.legend(loc=3 if c == 'prc' else 4) plt.xlabel('precision' if c == 'prc' else '1-spec.') plt.ylabel('recall') plt.savefig(outfile + '_' + c) plt.close()
[ "torch.nn.functional.softmax", "torch.from_numpy" ]
0.4.1
zhouyuegithub/medicaldetectiontoolkit
283121228ab6012f3369c0a649c0e1aeae492283
1.6
import functools import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import segmentation_models_pytorch as smp import utils class FCN(nn.Module): def __init__(self, num_input_channels, num_output_classes, num_filters=64): super(FCN, self).__init__() self.conv1 = nn.Conv2d(num_input_channels, num_filters, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv5 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv7 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.last = nn.Conv2d(num_filters, num_output_classes, kernel_size=1, stride=1, padding=0) def forward(self, inputs): x = F.relu(self.conv1(inputs)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv5(x)) x = F.relu(self.conv6(x)) x = F.relu(self.conv7(x)) x = self.last(x) return x class Wakey_FCN(nn.Module): def __init__(self, num_input_channels, num_output_classes, num_filters=64): super(Wakey_FCN, self).__init__() self.conv1 = nn.Conv2d(num_input_channels, num_filters, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv5 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.last = nn.Conv2d(num_filters, num_output_classes, kernel_size=1, stride=1, padding=0) def forward(self, inputs): x = F.relu(self.conv1(inputs)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv5(x)) x = self.last(x) return x class Single_FCN(nn.Module): def __init__(self, num_input_channels, num_output_classes, num_filters=64): super(Single_FCN, self).__init__() self.conv1 = nn.Conv2d(num_input_channels, num_filters, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.conv5 = nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1) self.last = nn.Conv2d(num_filters, num_output_classes, kernel_size=1, stride=1, padding=0) def forward(self, inputs): x = F.relu(self.conv1(inputs)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv5(x)) x = self.last(x) return x def get_unet(): return smp.Unet( encoder_name='resnet18', encoder_depth=3, encoder_weights=None, decoder_channels=(128, 64, 64), in_channels=4, classes=2) def get_unet_plus_plus(): return smp.UnetPlusPlus( encoder_name='resnet18', encoder_depth=3, encoder_weights=None, decoder_channels=(128, 64, 64), in_channels=4, classes=2 ) def get_manet(): return smp.MAnet( encoder_name='resnet18', encoder_depth=3, encoder_weights=None, decoder_channels=(128, 64, 64), in_channels=4, classes=2 ) def get_deeplabv3(): return smp.DeepLabV3( encoder_name='resnet18', encoder_depth=3, encoder_weights=None, decoder_channels=128, in_channels=4, classes=2 ) def get_deeplabv3_plus(): return smp.DeepLabV3Plus(encoder_name='resnet34', encoder_depth=5, encoder_weights=None, encoder_output_stride=16, decoder_channels=256, decoder_atrous_rates=(12, 24, 36), in_channels=4, classes=2) def get_fpn(): return smp.FPN(encoder_name='resnet34', encoder_depth=5, encoder_weights=None, decoder_pyramid_channels=256, decoder_segmentation_channels=128, decoder_merge_policy='add', in_channels=4, classes=2) def get_linknet(): return smp.Linknet(encoder_name='resnet18', encoder_depth=3, encoder_weights=None, in_channels=4, classes=2) def get_pspnet(): return smp.PSPNet(encoder_name='resnet34', encoder_weights=None, encoder_depth=3, psp_out_channels=512, psp_use_batchnorm=True, psp_dropout=0.2, in_channels=4, classes=2) def get_pan(): return smp.PAN(encoder_name='resnet34', encoder_weights=None, encoder_dilation=True, decoder_channels=32, in_channels=4, classes=2) def get_fcn(): return FCN(num_input_channels=4, num_output_classes=len(utils.NLCD_CLASSES), num_filters=64) def get_water_fcn(): return Single_FCN(num_input_channels=1, num_output_classes=2, num_filters=64) def get_imprev_fcn(): return Single_FCN(num_input_channels=4, num_output_classes=2, num_filters=64) def get_wakey_fcn(): return Wakey_FCN(num_input_channels=1, num_output_classes=2, num_filters=64)
[ "torch.nn.Conv2d" ]
1.6.0
baoqianyue/DFC2021-Track-MSD
d707f7601c6caa0d0f0e6013d493e66059d23d49
1.1
import argparse import glob import numpy as np import os import torch import constants as c def get_best_epoch_cell(ckpt_path, cell_type): model_ckpt = torch.load(ckpt_path) loss_history = model_ckpt['loss'] acc_history = model_ckpt['acc'] pp_acc_history = model_ckpt['pp_acc'] best_epoch = -1 best_loss = np.inf best_acc = 0.0 best_pp_acc = 0.0 for i, loss_dict in enumerate(loss_history['valid']): if loss_dict[cell_type] < best_loss: best_loss = loss_dict[cell_type] best_acc = acc_history['valid'][i][cell_type] best_pp_acc = pp_acc_history['valid'][i][cell_type] best_epoch = i assert best_epoch != -1 return best_loss, best_acc, best_pp_acc def get_args(): parser = argparse.ArgumentParser(description='Cellular Classification') parser.add_argument('-c', '--checkpoint', type=str, required=True, help='Checkpoint file') return parser.parse_args() def main(): args = get_args() path = os.path.join(args.checkpoint, 'best.tar') if os.path.exists(path): # base model # model_ckpt = torch.load(path) # loss_history = model_ckpt['loss'] # acc_history = model_ckpt['acc'] # if 'pp_acc' in model_ckpt: # pp_acc_history = model_ckpt['pp_acc'] # else: # pp_acc_history = dict() max_epoch = -1 for path in glob.iglob(os.path.join(args.checkpoint, '*.tar')): epoch = path.split('/')[-1].split('.')[0] if epoch.isdigit(): max_epoch = max(max_epoch, int(epoch)) path = os.path.join(args.checkpoint, '%d.tar' % max_epoch) for exp in c.EXPS: best_loss, best_acc, best_pp_acc = get_best_epoch_cell(path, exp) out = [exp, '', '', best_loss, best_acc, best_pp_acc] # out = [exp, '', '', loss_history['valid'][-1][exp], acc_history['valid'][-1][exp], # pp_acc_history.get('valid', [{exp: ''}])[-1][exp]] print('\t'.join([str(x) for x in out])) # if isinstance(loss_history['train'][-1], torch.Tensor): # train_loss = loss_history['train'][-1].cpu().numpy() # else: # train_loss = loss_history['train'][-1] # out = ['overall', train_loss, acc_history['train'][-1]] # print('\t'.join([str(x) for x in out])) else: # finetune model for exp in c.EXPS: path = os.path.join(args.checkpoint, '%s_best.tar' % exp) if os.path.exists(path): model_ckpt = torch.load(path) loss_history = model_ckpt['loss'] acc_history = model_ckpt['acc'] if 'pp_acc' in model_ckpt: pp_acc_history = model_ckpt['pp_acc'] else: pp_acc_history = dict() if isinstance(loss_history['train'][-1], torch.Tensor): train_loss = loss_history['train'][-1].cpu().numpy() else: train_loss = loss_history['train'][-1] out = [exp, train_loss, acc_history['train'][-1], loss_history['valid'][-1][exp], acc_history['valid'][-1][exp], pp_acc_history.get('valid', [{exp: ''}])[-1][exp]] print('\t'.join([str(x) for x in out])) if __name__ == '__main__': main()
[ "torch.load" ]
1.1.0
ChihHsuLin/cellular_image_classification
5ea81b4a0f42d17ecb95c41ff4349ef610841394
0.6
import torch class Decoder(torch.nn.Module): # TODO: support learnable fusion modules def __init__(self): super().__init__() self.FUSION_DIC = {"2to1_fusion": ["sum", "diff", "abs_diff"], "2to2_fusion": ["concat"]} def fusion(self, x1, x2, fusion_form="concat"): """Specify the form of feature fusion""" if fusion_form == "concat": x = torch.cat([x1, x2], dim=1) elif fusion_form == "sum": x = x1 + x2 elif fusion_form == "diff": x = x2 - x1 elif fusion_form == "abs_diff": x = torch.abs(x1 - x2) else: raise ValueError('the fusion form "{}" is not defined'.format(fusion_form)) return x def aggregation_layer(self, fea1, fea2, fusion_form="concat", ignore_original_img=True): """aggregate features from siamese or non-siamese branches""" start_idx = 1 if ignore_original_img else 0 aggregate_fea = [self.fusion(fea1[idx], fea2[idx], fusion_form) for idx in range(start_idx, len(fea1))] return aggregate_fea
[ "torch.abs", "torch.cat" ]
0.6.3
yjt2018/change_detection.pytorch
cbd6150708eeddbd66e30e311f2482d43334b738
1.10
import torch from cape import CAPE2d def test_cape2d(): pos_emb = CAPE2d(d_model=512, max_global_shift=0.0, max_local_shift=0.0, max_global_scaling=1.0, batch_first=False) print("Checking correct dimensionality input/output (16x16) for batch_size = False...") exp_shape = (16, 16, 32, 512) x = torch.randn(exp_shape) x = pos_emb(x) assert exp_shape == x.shape, f"""Error! Expected shape = {exp_shape} | Received shape = {x.shape}""" print("Checking correct dimensionality input/output (24x16) for batch_size = False...") exp_shape = (24, 16, 32, 512) x = torch.randn(exp_shape) x = pos_emb(x) assert exp_shape == x.shape, f"""Error! Expected shape = {exp_shape} | Received shape = {x.shape}""" print("Checking correct dimensionality input/output (16x24) for batch_size = False...") exp_shape = (16, 24, 32, 512) x = torch.randn(exp_shape) x = pos_emb(x) assert exp_shape == x.shape, f"""Error! Expected shape = {exp_shape} | Received shape = {x.shape}""" print("Checking correct dimensionality input/output (16x16) for batch_size = True...") pos_emb = CAPE2d(d_model=512, max_global_shift=0.0, max_local_shift=0.0, max_global_scaling=1.0, batch_first=True) exp_shape = (32, 16, 16, 512) x = torch.randn(exp_shape) x = pos_emb(x) assert exp_shape == x.shape, f"""Error! Expected shape = {exp_shape} | Received shape = {x.shape}""" print("Checking correct dimensionality input/output (24x16) for batch_size = True...") exp_shape = (32, 24, 16, 512) x = torch.randn(exp_shape) x = pos_emb(x) assert exp_shape == x.shape, f"""Error! Expected shape = {exp_shape} | Received shape = {x.shape}""" print("Checking correct dimensionality input/output (16x24) for batch_size = True...") exp_shape = (32, 16, 24, 512) x = torch.randn(exp_shape) x = pos_emb(x) assert exp_shape == x.shape, f"""Error! Expected shape = {exp_shape} | Received shape = {x.shape}""" def test_augment_positions(): print("Checking that positions order is not altered after local shifting...") def check_position_order(max_local_shift, batch_size=128, patches_x=24, patches_y=24, expect_disorder=False): if expect_disorder: spotted_disorder = False pos_emb = CAPE2d(d_model=512, max_global_shift=0.0, max_local_shift=max_local_shift, max_global_scaling=1.0, batch_first=False) x = torch.zeros([batch_size, patches_x, patches_y]) y = torch.zeros([batch_size, patches_x, patches_y]) x += torch.linspace(-1, 1, patches_x)[None, :, None] y += torch.linspace(-1, 1, patches_y)[None, None, :] x, y = pos_emb.augment_positions(x, y) for b in range(batch_size): for c in range(patches_y): pos_x = x[b, :, c] for t in range(patches_x - 1): if not expect_disorder: assert pos_x[t] < pos_x[t + 1], f"""Error! Pos x order has been altered after local shifting with max value {max_local_shift}. Pos embedding = {pos_x}. Index t = {t} Index t + 1 = {t + 1}.""" else: if pos_x[t] >= pos_x[t + 1]: return for b in range(batch_size): for c in range(patches_x): pos_y = y[b, c, :] for t in range(patches_y - 1): if not expect_disorder: assert pos_y[t] < pos_y[t + 1], f"""Error! Pos y order has been altered after local shifting with max value {max_local_shift}. Pos embedding = {pos_y}. Index t = {t} Index t + 1 = {t + 1}.""" else: if pos_y[t] >= pos_y[t + 1]: return if expect_disorder: assert spotted_disorder, f"""Error! Expected position disorder with max local shift = {max_local_shift}. However, haven't spotted any.""" check_position_order(max_local_shift=0.00, patches_x=24, patches_y=24) check_position_order(max_local_shift=0.25, patches_x=24, patches_y=24) check_position_order(max_local_shift=0.50, patches_x=24, patches_y=24) check_position_order(max_local_shift=0.00, patches_x=24, patches_y=64) check_position_order(max_local_shift=0.25, patches_x=24, patches_y=64) check_position_order(max_local_shift=0.50, patches_x=24, patches_y=64) check_position_order(max_local_shift=0.00, patches_x=64, patches_y=24) check_position_order(max_local_shift=0.25, patches_x=64, patches_y=24) check_position_order(max_local_shift=0.50, patches_x=64, patches_y=24) check_position_order(max_local_shift=0.55, batch_size=1024, patches_x=24, patches_y=24, expect_disorder=True) check_position_order(max_local_shift=1.00, batch_size=128, patches_x=24, patches_y=24, expect_disorder=True)
[ "torch.zeros", "torch.linspace", "torch.randn" ]
1.10.0
gcambara/cape
c18c3c5e33f24a85506f30c399bf88b45f8a1787
0.7
import numpy as np import random import os import time import importlib import cv2 from PIL import Image import math import pickle import torch from torch import distributed as dist from torch.utils.data.sampler import Sampler def load_module(module_type, module_name): m = importlib.import_module(f'{module_type}.{module_name}') return m def return_empty_dict_if_none(x): return {} if x is None else x def get_data_sampler(dataset, shuffle=False, is_distributed=False): if is_distributed: return torch.utils.data.distributed.DistributedSampler(dataset, shuffle=shuffle) if shuffle: return torch.utils.data.RandomSampler(dataset) else: return torch.utils.data.SequentialSampler(dataset) def dict2device(d, device, dtype=None): if isinstance(d, np.ndarray): d = torch.from_numpy(d) if torch.is_tensor(d): d = d.to(device) if dtype is not None: d = d.type(dtype) return d if isinstance(d, dict): for k, v in d.items(): d[k] = dict2device(v, device, dtype=dtype) return d def setup_environment(seed): # random random.seed(seed) # numpy np.random.seed(seed) # cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) # pytorch os.environ['OMP_NUM_THREADS'] = '1' torch.set_num_threads(1) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True def squeeze_metrics(d): metrics = dict() for k, v in d.items(): if torch.is_tensor(v): metrics[k] = v.mean().item() elif isinstance(v, float): metrics[k] = v else: raise NotImplementedError("Unknown datatype for metric: {}".format(type(v))) return metrics def reduce_metrics(metrics): metrics_dict = dict() for k in metrics[0].keys(): metrics_dict[k] = np.mean([item[k] for item in metrics]) return metrics_dict def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def reduce_loss_dict(loss_dict): world_size = get_world_size() if world_size < 2: return loss_dict with torch.no_grad(): keys = [] losses = [] for k in sorted(loss_dict.keys()): keys.append(k) losses.append(loss_dict[k]) losses = torch.stack(losses, 0) dist.reduce(losses, dst=0) if dist.get_rank() == 0: losses /= world_size reduced_losses = {k: v for k, v in zip(keys, losses)} return reduced_losses def flatten_parameters(parameters): list_of_flat_parameters = [torch.flatten(p) for p in parameters] flat_parameters = torch.cat(list_of_flat_parameters).view(-1, 1) return flat_parameters def set_random_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def itt(img): tensor = torch.FloatTensor(img) # if len(tensor.shape) == 3: tensor = tensor.permute(2, 0, 1) else: tensor = tensor.unsqueeze(0) return tensor def tti(tensor): tensor = tensor.detach().cpu() tensor = tensor[0].permute(1, 2, 0) image = tensor.numpy() if image.shape[-1] == 1: image = image[..., 0] return image def to_tanh(t): return t * 2 - 1. def to_sigm(t): return (t + 1) / 2 def get_rotation_matrix(angle, axis='x'): if axis == 'x': return np.array([ [1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)] ]) elif axis == 'y': return np.array([ [np.cos(angle), 0, -np.sin(angle)], [0, 1, 0], [np.sin(angle), 0, np.cos(angle)] ]) elif axis == 'z': return np.array([ [np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1] ]) else: raise ValueError(f"Unkown axis {axis}") def rotate_verts(vertices, angle, K, K_inv, axis='y', mean_point=None): rot_mat = get_rotation_matrix(angle, axis) rot_mat = torch.FloatTensor(rot_mat).to(vertices.device).unsqueeze(0) vertices_world = torch.bmm(vertices, K_inv.transpose(1, 2)) if mean_point is None: mean_point = vertices_world.mean(dim=1) vertices_rot = vertices_world - mean_point vertices_rot = torch.bmm(vertices_rot, rot_mat.transpose(1, 2)) vertices_rot = vertices_rot + mean_point vertices_rot_cam = torch.bmm(vertices_rot, K.transpose(1, 2)) return vertices_rot_cam, mean_point def json2kps(openpose_dict): list2kps = lambda x: np.array(x).reshape(-1, 3) keys_to_save = ['pose_keypoints_2d', 'face_keypoints_2d', 'hand_right_keypoints_2d', 'hand_left_keypoints_2d'] kps = openpose_dict['people'] if len(kps) == 0: kp_stacked = np.ones((137, 2)) * -1 return kp_stacked kps = kps[0] kp_parts = [list2kps(kps[key]) for key in keys_to_save] kp_stacked = np.concatenate(kp_parts, axis=0) kp_stacked[kp_stacked[:, 2] < 0.1, :] = -1 kp_stacked = kp_stacked[:, :2] return kp_stacked def segment_img(img, segm): img = to_sigm(img) * segm img = to_tanh(img) return img def segm2mask(segm): segm = torch.sum(segm, dim=1, keepdims=True) # Bx3xHxW -> Bx1xHxW segm = (segm > 0.0).type(torch.float32) return segm
[ "torch.distributed.get_world_size", "torch.cat", "torch.utils.data.RandomSampler", "torch.stack", "torch.distributed.reduce", "torch.sum", "torch.is_tensor", "torch.FloatTensor", "torch.manual_seed", "torch.distributed.is_initialized", "torch.distributed.get_rank", "torch.set_num_threads", "torch.cuda.manual_seed_all", "torch.utils.data.SequentialSampler", "torch.distributed.is_available", "torch.no_grad", "torch.from_numpy", "torch.utils.data.distributed.DistributedSampler", "torch.flatten" ]
0.7.0
saic-vul/style-people
a48418ace25b99a50801a54a9e282cd986c305ba
1.11
""" libraries """ import os import gc import re import ast import sys import copy import json import time import math import string import pickle import random import joblib import itertools import warnings from IPython.core.display_functions import display import scipy as sp import numpy as np import pandas as pd from tqdm.auto import tqdm from sklearn.metrics import f1_score from sklearn.model_selection import StratifiedKFold, GroupKFold, KFold import torch import torch.nn as nn from torch.nn import Parameter import torch.nn.functional as F from torch.optim import Adam, SGD, AdamW from torch.utils.data import DataLoader, Dataset import tokenizers import transformers from transformers import AutoTokenizer, AutoModel, AutoConfig from transformers import get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup import wandb from wandb_creds import * from transformers import AutoModel, DistilBertTokenizerFast """ constants & options """ SEED = 42 OUTPUT_DIR = 'EXPERIMENT_1_' # increment for each iteration MODEL = AutoModel.from_pretrained('distilbert-base-uncased') TOKENIZER = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased') pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "false" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') """ CONFIGURATION """ class CONFIGURATION: wandb = False competition = 'NBME' _wandb_kernel = 'mkingo' debug = False apex = True print_freq = 100 num_workers = 4 model = MODEL tokenizer = TOKENIZER scheduler = 'cosine' # ['linear', 'cosine'] batch_scheduler = True num_cycles = 0.5 num_warmup_steps = 0 epochs = 5 encoder_lr = 2e-5 decoder_lr = 2e-5 min_lr = 1e-6 eps = 1e-6 betas = (0.9, 0.999) batch_size = 4 fc_dropout = 0.2 max_len = 512 weight_decay = 0.01 gradient_accumulation_steps = 1 max_grad_norm = 1000 seed = 42 n_fold = 5 trn_fold = [0] train = True if CONFIGURATION.debug: CONFIGURATION.epochs = 2 CONFIGURATION.trn_fold = [0] """ wandb """ if CONFIGURATION.wandb: wandb.login(key=API_KEY) def class2dict(f): """ :param f: :return: """ return dict((name, getattr(f, name)) for name in dir(f) if not name.startswith('__')) run = wandb.init( project=CONFIGURATION.competition, name=CONFIGURATION.model, config=class2dict(CONFIGURATION), group=CONFIGURATION.model, job_type="train", )
[ "torch.cuda.is_available" ]
1.11.0
mkingopng/NBME_score_clinical_patient_notes
4ca9816be2665d7585ab0d168376a340aa800088
1.3
from functools import reduce import torch import torch.nn.functional as F from .td import generalized_lambda_returns from ding.hpc_rl import hpc_wrapper def tb_cross_entropy(logit, label, mask=None): assert (len(label.shape) >= 2) T, B = label.shape[:2] # Special 2D case if len(label.shape) > 2: assert len(label.shape) == 3 s, n = logit.shape[-2:] logit = logit.reshape(-1, n) label = label.reshape(-1) ce = -F.cross_entropy(logit, label, reduction='none') ce = ce.view(T * B, -1) if mask is not None: ce *= mask.reshape(-1, s) ce = ce.sum(dim=1) ce = ce.reshape(T, B) else: label = label.reshape(-1) logit = logit.reshape(-1, logit.shape[-1]) ce = -F.cross_entropy(logit, label, reduction='none') ce = ce.reshape(T, B, -1) ce = ce.mean(dim=2) return ce def upgo_returns(rewards: torch.Tensor, bootstrap_values: torch.Tensor) -> torch.Tensor: r""" Overview: Computing UPGO return targets. Also notice there is no special handling for the terminal state. Arguments: - rewards (:obj:`torch.Tensor`): the returns from time step 0 to T-1, \ of size [T_traj, batchsize] - bootstrap_values (:obj:`torch.Tensor`): estimation of the state value at step 0 to T, \ of size [T_traj+1, batchsize] Returns: - ret (:obj:`torch.Tensor`): Computed lambda return value for each state from 0 to T-1, \ of size [T_traj, batchsize] """ # UPGO can be viewed as a lambda return! The trace continues for V_t (i.e. lambda = 1.0) if r_tp1 + V_tp2 > V_tp1. # as the lambdas[-1, :] is ignored in generalized_lambda_returns, we don't care about bootstrap_values_tp2[-1] lambdas = (rewards + bootstrap_values[1:]) >= bootstrap_values[:-1] lambdas = torch.cat([lambdas[1:], torch.ones_like(lambdas[-1:])], dim=0) return generalized_lambda_returns(bootstrap_values, rewards, 1.0, lambdas) @hpc_wrapper( shape_fn=lambda args: args[0].shape, namedtuple_data=True, include_args=5, include_kwargs=['target_output', 'rhos', 'action', 'rewards', 'bootstrap_values'] ) def upgo_loss( target_output: torch.Tensor, rhos: torch.Tensor, action: torch.Tensor, rewards: torch.Tensor, bootstrap_values: torch.Tensor, mask=None ) -> torch.Tensor: r""" Overview: Computing UPGO loss given constant gamma and lambda. There is no special handling for terminal state value, if the last state in trajectory is the terminal, just pass a 0 as bootstrap_terminal_value. Arguments: - target_output (:obj:`torch.Tensor`): the output computed by the target policy network, \ of size [T_traj, batchsize, n_output] - rhos (:obj:`torch.Tensor`): the importance sampling ratio, of size [T_traj, batchsize] - action (:obj:`torch.Tensor`): the action taken, of size [T_traj, batchsize] - rewards (:obj:`torch.Tensor`): the returns from time step 0 to T-1, of size [T_traj, batchsize] - bootstrap_values (:obj:`torch.Tensor`): estimation of the state value at step 0 to T, \ of size [T_traj+1, batchsize] Returns: - loss (:obj:`torch.Tensor`): Computed importance sampled UPGO loss, averaged over the samples, of size [] """ # discard the value at T as it should be considered in the next slice with torch.no_grad(): returns = upgo_returns(rewards, bootstrap_values) advantages = rhos * (returns - bootstrap_values[:-1]) metric = tb_cross_entropy(target_output, action, mask) assert (metric.shape == action.shape[:2]) losses = advantages * metric return -losses.mean()
[ "torch.no_grad", "torch.nn.functional.cross_entropy", "torch.ones_like" ]
1.3.1
uuid0000/DI-engine
cc2713fa01e5288bae21cfeb595729d665e092d1
1.4
import torch import os from PIL import Image from xml.dom.minidom import parse import numpy as np import utilities.transforms as T class FacialDataset(object): def __init__(self, root, transforms, train=True): self.root = root self.transforms = transforms # load all image files, sorting them to # ensure that they are aligned self.train = train self.imgs = list(sorted(os.listdir(os.path.join(root, "images")))) self.annotations = list(sorted(os.listdir(os.path.join(root, "annotations")))) def __getitem__(self, idx): # load images img_path = os.path.join(self.root+"/images", self.imgs[idx]) img = Image.open(img_path).convert("RGB") annotation_path = os.path.join(self.root+"/annotations", self.annotations[idx]) dom = parse(annotation_path) root = dom.documentElement objects = root.getElementsByTagName("object") size = root.getElementsByTagName("size")[0] image_width = int(size.getElementsByTagName("width")[0].childNodes[0].data) image_height = int(size.getElementsByTagName("height")[0].childNodes[0].data) masks = np.zeros((len(objects), image_width, image_height)) boxes = [] labels = [] box_num = 0 for box in objects: cls_name = box.getElementsByTagName("name")[0].childNodes[0].data xmin = int(box.getElementsByTagName("xmin")[0].childNodes[0].data) ymin = int(box.getElementsByTagName("ymin")[0].childNodes[0].data) xmax = int(box.getElementsByTagName("xmax")[0].childNodes[0].data) ymax = int(box.getElementsByTagName("ymax")[0].childNodes[0].data) boxes.append([xmin, ymin, xmax, ymax]) if cls_name=="without_mask": labels.append(1) else: labels.append(2) for i in range(xmin, min(xmax+1, image_width)): for j in range(ymin, min(ymax+1, image_height)): masks[box_num, i, j] = 1 box_num += 1 # convert everything into a torch.Tensor boxes = torch.as_tensor(boxes, dtype=torch.float32) labels = torch.as_tensor(labels, dtype=torch.int64) masks = torch.as_tensor(masks, dtype=torch.uint8) image_id = torch.tensor([idx]) area = torch.as_tensor((boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]), dtype=torch.float32) # iscrowd is needed in evaluation, which converts everything into coco datatype iscrowd = torch.zeros((len(objects),), dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels target["masks"] = masks target["image_id"] = image_id target["area"] = area target["iscrowd"] = iscrowd if self.transforms is not None: img, target = self.transforms(img, target) return img, target def __len__(self): return len(self.imgs) def get_transform(horizontal_flip): transforms = [] # converts the image, a PIL image, into a PyTorch Tensor transforms.append(T.ToTensor()) if horizontal_flip: transforms.append(T.RandomHorizontalFlip(0.5)) return T.Compose(transforms)
[ "torch.as_tensor", "torch.tensor" ]
1.4.0
jerinka/traffic_sign_frcnn
3a6cd77af965ea88de61d6718a4f539f58b46a13
1.5
from PIL import Image import requests import matplotlib.pyplot as plt import torch from torch import nn from torchvision.models import resnet50 import torchvision.transforms as T torch.set_grad_enabled(False); import gradio as gr import io model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True) # COCO classes CLASSES = [ 'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # colors for visualization COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] # standard PyTorch mean-std input image normalization transform = T.Compose([ T.Resize(800), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # for output bounding box post-processing def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def fig2img(fig): """Convert a Matplotlib figure to a PIL Image and return it""" buf = io.BytesIO() fig.savefig(buf) buf.seek(0) return Image.open(buf) def plot_results(pil_img, prob, boxes): plt.figure(figsize=(16,10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3)) cl = p.argmax() text = f'{CLASSES[cl]}: {p[cl]:0.2f}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') return fig2img(plt) def detr(im): # mean-std normalize the input image (batch-size: 1) img = transform(im).unsqueeze(0) # propagate through the model outputs = model(img) # keep only predictions with 0.7+ confidence probas = outputs['pred_logits'].softmax(-1)[0, :, :-1] keep = probas.max(-1).values > 0.9 # convert boxes from [0; 1] to image scales bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size) return plot_results(im, probas[keep], bboxes_scaled) inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Image(type="pil",label="Output Image") examples = [ ['horses.jpg'], ['pandas.jpg'] ] title = "DETR" description = "demo for Facebook DETR. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.12872'>End-to-End Object Detection with Transformers</a> | <a href='https://github.com/facebookresearch/detr'>Github Repo</a></p>" gr.Interface(detr, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
[ "torch.stack", "torch.tensor", "torch.set_grad_enabled", "torch.hub.load" ]
1.5.0
AK391/detr
112396eec6b70b6bd1bb180d91c6e3b0e391cdc6
1.1
""" The trainer handles all the logic for running a val loop, training loop, distributing, etc.. . """ import os import sys import warnings import logging import torch import torch.distributed as dist import torch.multiprocessing as mp import tqdm from torch.optim.optimizer import Optimizer from pytorch_lightning.trainer.auto_mix_precision import TrainerAMPMixin from pytorch_lightning.trainer.callback_config import TrainerCallbackConfigMixin from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin from pytorch_lightning.trainer.distrib_data_parallel import TrainerDDPMixin from pytorch_lightning.trainer.distrib_parts import ( TrainerDPMixin, parse_gpu_ids, determine_root_gpu_device ) from pytorch_lightning.trainer.evaluation_loop import TrainerEvaluationLoopMixin from pytorch_lightning.trainer.logging import TrainerLoggingMixin from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin from pytorch_lightning.trainer.trainer_io import TrainerIOMixin from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin from pytorch_lightning.utilities.debugging import MisconfigurationException try: from apex import amp APEX_AVAILABLE = True except ImportError: APEX_AVAILABLE = False class Trainer(TrainerIOMixin, TrainerDPMixin, TrainerDDPMixin, TrainerLoggingMixin, TrainerModelHooksMixin, TrainerTrainingTricksMixin, TrainerDataLoadingMixin, TrainerAMPMixin, TrainerEvaluationLoopMixin, TrainerTrainLoopMixin, TrainerCallbackConfigMixin, ): def __init__( self, logger=True, checkpoint_callback=True, early_stop_callback=True, default_save_path=None, gradient_clip_val=0, gradient_clip=None, # backward compatible, todo: remove in v0.8.0 process_position=0, nb_gpu_nodes=None, # backward compatible, todo: remove in v0.8.0 num_nodes=1, gpus=None, log_gpu_memory=None, show_progress_bar=True, overfit_pct=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_nb_epochs=None, # backward compatible, todo: remove in v0.8.0 min_nb_epochs=None, # backward compatible, todo: remove in v0.8.0 max_num_epochs=1000, min_num_epochs=1, train_percent_check=1.0, val_percent_check=1.0, test_percent_check=1.0, val_check_interval=1.0, log_save_interval=100, row_log_interval=10, add_row_log_interval=None, # backward compatible, todo: remove in v0.8.0 distributed_backend=None, use_amp=False, print_nan_grads=False, weights_summary='full', weights_save_path=None, amp_level='O1', nb_sanity_val_steps=None, # backward compatible, todo: remove in v0.8.0 num_sanity_val_steps=5, truncated_bptt_steps=None, resume_from_checkpoint=None, ): """ :param logger: Logger for experiment tracking :param checkpoint_callback: Callback for checkpointing :param early_stop_callback: Callback for early stopping :param str default_save_path: Default path for logs+weights if no logger/ckpt_callback passed :param int gradient_clip_val: 0 means don't clip. :param int gradient_clip: 0 means don't clip. Deprecated. :param process_position: shown in the tqdm bar :param int num_nodes: number of GPU nodes :param list|str|int gpus: int. (ie: 2 gpus) OR list to specify which GPUs [0, 1] OR '0,1' OR '-1' / -1 to use all available gpus :param str log_gpu_memory: None, 'min_max', 'all' :param bool show_progress_bar: If true shows tqdm bar :param float overfit_pct: uses this much of all datasets :param int track_grad_norm: -1 no tracking. Otherwise tracks that norm :param int check_val_every_n_epoch: check val every n train epochs :param bool fast_dev_run: runs full iteration over everything to find bugs :param int accumulate_grad_batches: Accumulates grads every k batches :param int max_num_epochs: :param int min_num_epochs: :param int train_percent_check: How much of train set to check :param int val_percent_check: How much of val set to check :param int test_percent_check: How much of test set to check :param float|int val_check_interval: If float, % of tng epoch. If int, check every n batch :param int log_save_interval: Writes logs to disk this often :param int row_log_interval: How often to add logging rows :param int add_row_log_interval: How often to add logging rows. Deprecated. :param str distributed_backend: Options: 'dp', 'ddp', 'ddp2'. :param bool use_amp: If true uses apex for 16bit precision :param bool print_nan_grads: Prints nan gradients :param str weights_summary: Options: 'full', 'top', None to not print. :param bool weights_save_path: Where to save weights if on cluster :param str amp_level: Check nvidia docs for level :param int num_sanity_val_steps: How many val steps before a full train loop. :param int truncated_bptt_steps: Enables multiple backward passes for each batch. .. warning:: Following arguments become deprecated and they will be removed in v0.8.0: - `gradient_clip`, - `nb_gpu_nodes`, - `max_nb_epochs`, - `min_nb_epochs`, - `add_row_log_interval`, - `nb_sanity_val_steps` """ # Transfer params if nb_gpu_nodes is not None: # Backward compatibility warnings.warn("`nb_gpu_nodes` has renamed to `num_nodes` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) if not num_nodes: # in case you did not set the proper value num_nodes = nb_gpu_nodes self.num_gpu_nodes = num_nodes self.log_gpu_memory = log_gpu_memory if gradient_clip is not None: # Backward compatibility warnings.warn("`gradient_clip` has renamed to `gradient_clip_val` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) if not gradient_clip_val: # in case you did not set the proper value gradient_clip_val = gradient_clip self.gradient_clip_val = gradient_clip_val self.check_val_every_n_epoch = check_val_every_n_epoch self.track_grad_norm = track_grad_norm self.on_gpu = True if (gpus and torch.cuda.is_available()) else False self.process_position = process_position self.weights_summary = weights_summary if max_nb_epochs is not None: # Backward compatibility warnings.warn("`max_nb_epochs` has renamed to `max_num_epochs` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) if not max_num_epochs: # in case you did not set the proper value max_num_epochs = max_nb_epochs self.max_num_epochs = max_num_epochs if min_nb_epochs is not None: # Backward compatibility warnings.warn("`min_nb_epochs` has renamed to `min_num_epochs` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) if not min_num_epochs: # in case you did not set the proper value min_num_epochs = min_nb_epochs self.min_num_epochs = min_num_epochs if nb_sanity_val_steps is not None: # Backward compatibility warnings.warn("`nb_sanity_val_steps` has renamed to `num_sanity_val_steps` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) if not num_sanity_val_steps: # in case you did not set the proper value num_sanity_val_steps = nb_sanity_val_steps self.num_sanity_val_steps = num_sanity_val_steps self.print_nan_grads = print_nan_grads self.truncated_bptt_steps = truncated_bptt_steps self.resume_from_checkpoint = resume_from_checkpoint self.shown_warnings = set() self.fast_dev_run = fast_dev_run if self.fast_dev_run: self.num_sanity_val_steps = 1 self.max_num_epochs = 1 m = ''' Running in fast_dev_run mode: will run a full train, val loop using a single batch ''' logging.info(m) # set default save path if user didn't provide one self.default_save_path = default_save_path if self.default_save_path is None: self.default_save_path = os.getcwd() # training bookeeping self.total_batch_idx = 0 self.running_loss = [] self.avg_loss = 0 self.batch_idx = 0 self.tqdm_metrics = {} self.callback_metrics = {} self.num_val_batches = 0 self.num_training_batches = 0 self.num_test_batches = 0 self.get_train_dataloader = None self.get_test_dataloaders = None self.get_val_dataloaders = None self.is_iterable_train_dataloader = False # training state self.model = None self.testing = False self.lr_schedulers = [] self.optimizers = None self.global_step = 0 self.current_epoch = 0 self.total_batches = 0 # configure early stop callback # creates a default one if none passed in self.early_stop_callback = None self.configure_early_stopping(early_stop_callback, logger) self.reduce_lr_on_plateau_scheduler = None # configure checkpoint callback self.checkpoint_callback = checkpoint_callback self.weights_save_path = weights_save_path # accumulated grads self.configure_accumulated_gradients(accumulate_grad_batches) # allow int, string and gpu list self.data_parallel_device_ids = parse_gpu_ids(gpus) self.root_gpu = determine_root_gpu_device(self.data_parallel_device_ids) # distributed backend choice self.use_ddp = False self.use_ddp2 = False self.use_dp = False self.single_gpu = False self.distributed_backend = distributed_backend self.set_distributed_mode(distributed_backend, num_nodes) # init flags for SLURM+ddp to work self.proc_rank = 0 self.world_size = 1 self.node_rank = 0 self.configure_slurm_ddp(num_nodes) # nvidia setup self.set_nvidia_flags(self.is_slurm_managing_tasks, self.data_parallel_device_ids) # can't init progress bar here because starting a new process # means the progress_bar won't survive pickling self.show_progress_bar = show_progress_bar # logging self.log_save_interval = log_save_interval self.val_check_interval = val_check_interval if add_row_log_interval is not None: # backward compatibility warnings.warn("`add_row_log_interval` has renamed to `row_log_interval` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) if not row_log_interval: # in case you did not set the proper value row_log_interval = add_row_log_interval self.row_log_interval = row_log_interval # how much of the data to use self.determine_data_use_amount(train_percent_check, val_percent_check, test_percent_check, overfit_pct) # 16 bit mixed precision training using apex self.amp_level = amp_level self.init_amp(use_amp) @property def slurm_job_id(self): try: job_id = os.environ['SLURM_JOB_ID'] job_id = int(job_id) except Exception: job_id = None return job_id def __parse_gpu_ids(self, gpus): """Parse GPUs id. :param list|str|int gpus: input GPU ids :return list(int): """ # if gpus = -1 then use all available devices # otherwise, split the string using commas if gpus is not None: if isinstance(gpus, list): gpus = gpus elif isinstance(gpus, str): if gpus == '-1': gpus = list(range(0, torch.cuda.device_count())) else: gpus = [int(x.strip()) for x in gpus.split(',')] elif isinstance(gpus, int): gpus = gpus else: raise ValueError('`gpus` has to be a string, int or list of ints') return gpus def __set_root_gpu(self, gpus): if gpus is None: return None # set root gpu root_gpu = 0 if type(gpus) is list: root_gpu = gpus[0] return root_gpu @property def num_gpus(self): gpus = self.data_parallel_device_ids if gpus is None: return 0 else: return len(gpus) @property def data_parallel(self): return self.use_dp or self.use_ddp or self.use_ddp2 @property def training_tqdm_dict(self): """Read-only for tqdm metrics. :return: """ tqdm_dict = { 'loss': '{0:.3f}'.format(self.avg_loss), 'batch_idx': '{}'.format(self.batch_idx), } if self.truncated_bptt_steps is not None: tqdm_dict['split_idx'] = self.split_idx if self.logger is not None and self.logger.version is not None: tqdm_dict['v_nb'] = self.logger.version tqdm_dict.update(self.tqdm_metrics) if self.on_gpu: tqdm_dict['gpu'] = '{}'.format(torch.cuda.current_device()) return tqdm_dict @property def tng_tqdm_dic(self): """Read-only for tqdm metrics. .. warning:: Deprecated in v0.5.0. use training_tqdm_dict instead. :return: """ warnings.warn("`tng_tqdm_dic` has renamed to `training_tqdm_dict` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) return self.training_tqdm_dict # ----------------------------- # MODEL TRAINING # ----------------------------- def fit(self, model): # when using multi-node or DDP within a node start each module in a separate process if self.use_ddp2: task = int(os.environ['SLURM_LOCALID']) self.ddp_train(task, model) elif self.use_ddp: if self.is_slurm_managing_tasks: task = int(os.environ['SLURM_LOCALID']) self.ddp_train(task, model) else: mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,)) # 1 gpu or dp option triggers training using DP module # easier to avoid NCCL issues elif self.use_dp: self.dp_train(model) elif self.single_gpu: self.single_gpu_train(model) # ON CPU else: # run through amp wrapper if self.use_amp: raise MisconfigurationException('amp + cpu is not supported. Please use a GPU option') # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers()) self.run_pretrain_routine(model) # return 1 when finished # used for testing or when we need to know that training succeeded return 1 def init_optimizers(self, optimizers): # single optimizer if isinstance(optimizers, Optimizer): return [optimizers], [] # two lists elif len(optimizers) == 2 and isinstance(optimizers[0], list): optimizers, lr_schedulers = optimizers lr_schedulers, self.reduce_lr_on_plateau_scheduler = self.configure_schedulers(lr_schedulers) return optimizers, lr_schedulers # single list or tuple elif isinstance(optimizers, list) or isinstance(optimizers, tuple): return optimizers, [] def configure_schedulers(self, schedulers): for i, scheduler in enumerate(schedulers): if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): reduce_lr_on_plateau_scheduler = schedulers.pop(i) return schedulers, reduce_lr_on_plateau_scheduler return schedulers, None def run_pretrain_routine(self, model): """Sanity check a few things before starting actual training. :param model: """ ref_model = model if self.data_parallel: ref_model = model.module # give model convenience properties ref_model.trainer = self # set local properties on the model self.copy_trainer_model_properties(ref_model) # link up experiment object if self.logger is not None: ref_model.logger = self.logger # save exp to get started if hasattr(ref_model, "hparams"): self.logger.log_hyperparams(ref_model.hparams) self.logger.save() if self.use_ddp or self.use_ddp2: dist.barrier() # set up checkpoint callback self.configure_checkpoint_callback() # register auto-resubmit when on SLURM self.register_slurm_signal_handlers() # transfer data loaders from model self.get_dataloaders(ref_model) # print model summary if self.proc_rank == 0 and self.weights_summary is not None: if self.weights_summary in ['full', 'top']: ref_model.summarize(mode=self.weights_summary) else: m = "weights_summary can be None, 'full' or 'top'" raise MisconfigurationException(m) # track model now. # if cluster resets state, the model will update with the saved weights self.model = model # restore training and model before hpc call self.restore_weights(model) # when testing requested only run test and return if self.testing: self.run_evaluation(test=True) return # run tiny validation (if validation defined) # to make sure program won't crash during val ref_model.on_sanity_check_start() if self.get_val_dataloaders() is not None and self.num_sanity_val_steps > 0: # init progress bars for validation sanity check pbar = tqdm.tqdm(desc='Validation sanity check', total=self.num_sanity_val_steps, leave=False, position=2 * self.process_position, disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch') self.main_progress_bar = pbar # dummy validation progress bar self.val_progress_bar = tqdm.tqdm(disable=True) self.evaluate(model, self.get_val_dataloaders(), self.num_sanity_val_steps, self.testing) # close progress bars self.main_progress_bar.close() self.val_progress_bar.close() # init progress bar pbar = tqdm.tqdm(leave=True, position=2 * self.process_position, disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch', file=sys.stdout) self.main_progress_bar = pbar # clear cache before training if self.on_gpu: torch.cuda.empty_cache() # CORE TRAINING LOOP self.train() def test(self, model=None): self.testing = True if model is not None: self.fit(model) else: self.run_evaluation(test=True)
[ "torch.multiprocessing.spawn", "torch.cuda.current_device", "torch.cuda.device_count", "torch.cuda.empty_cache", "torch.cuda.is_available", "torch.distributed.barrier" ]
1.1
YehCF/pytorch-lightning
6666ca5af39aa2d3e5a483da3d7f6bb76514cc9f
1.6
import torch from torch.utils.data import Dataset from .data_utils import get_tokenizer, natural_sort, skip, FixedSizeOrderedDict import random import glob import tensorflow as tf import re import logging from itertools import cycle import os import subprocess import simdjson as json import hub class HubAdapter(torch.utils.data.Dataset): def __init__(self, ods): self.ds = ods @classmethod def __instancecheck__(cls, instance): return isinstance(instance, torch.utils.data.Dataset) def __len__(self): return len(self.ds) # def __iter__(self): # for i in range(len(self)): # yield self[i] def __getitem__(self, index): x = self.ds.__getitem__(index) return x['text'][:1024] def get_hub_dataset(): schema = hub.schema.SchemaDict({'text': hub.schema.Tensor(shape=(None,), dtype='int64', max_shape=(2049,))}) ds = hub.Dataset("snsi/pile_train0", schema=schema, shape=(100000,)).to_pytorch() # ds = hub.Dataset("interneuron/pile_train0", shape=(None,)).to_pytorch() return HubAdapter(ds) class GPT2Dataset(Dataset): def __init__(self, glob_pattern, seq_len, seed=1, shuffle_input_filenames=True, pretokenized=True, filetype="tfrecords", mode="chunks", train=True, tokenizer=None, **kwargs): super().__init__() self.files = glob.glob(glob_pattern) # glob pattern pointing to files self.seed = seed # random seed for shuffling # shuffle or sort files if shuffle_input_filenames: random.seed(self.seed) random.shuffle(self.files) else: self.files = natural_sort(self.files) self.filetype = filetype # filetype ["tfrecords"] implemented_filetypes = ["tfrecords"] if self.filetype not in implemented_filetypes: raise NotImplementedError self.processed_files = FixedSizeOrderedDict(max=1) # storage for lazily loading data # parses the length of the files, either by encoding in the filenames or by iterating over them self._get_lens() self.seq_len = seq_len # set sequence length self.mode = mode # set mode ["chunks"] implemented_modes = ["chunks"] if self.mode not in implemented_modes: raise NotImplementedError self.pretokenized = pretokenized if not self.pretokenized: raise NotImplementedError # TODO: tokenize text data on the fly self.train = train def _get_number_of_documents(self, filename): # extracts number of files from a filename formatted "<name>_<num_documents>.{filetype}." # if no pattern is matched, returns None match = re.search("_(\d{1,})." + self.filetype + "$", filename) return int(match.group(1)) if match is not None else match def _get_number_of_documents_by_iteration(self, filename): # extracts number of files from a tfrecord document in the event it doesn't have metadata in the filename # this could be very slow. logging.warning( "Found no metadata found in filename - iterating through first tfrecord to find global length") count = 0 if self.filetype == "tfrecords": for _ in tf.io.tf_record_iterator(filename): count += 1 return count def _get_lens(self): lens = [] for f in self.files: n_documents = self._get_number_of_documents(f) if n_documents is None: n_documents = self._get_number_of_documents_by_iteration(f) lens.append(n_documents) self.lens = lens self._len = sum(self.lens) def _parse_function(self, example_proto): features = { "text": tf.io.VarLenFeature(tf.int64) } parsed_features = tf.io.parse_single_example(example_proto, features) return tf.sparse.to_dense(parsed_features["text"], parsed_features["text"].dense_shape[0]) def _process_tfrecord(self, tfrecords_file, resume_idx=None): dataset = tf.data.TFRecordDataset([tfrecords_file]) dataset = dataset.map(self._parse_function, num_parallel_calls=1) for example in dataset.as_numpy_iterator(): yield torch.tensor(example, dtype=torch.long) def _maybe_process_tfrecord(self, file_idx): if self.processed_files.get(file_idx) is None: self.processed_files[file_idx] = list(self._process_tfrecord(self.files[file_idx])) return self.processed_files[file_idx] def _seek(self, idx): cumsum = 0 for count, (f, length) in cycle(enumerate(zip(self.files, self.lens))): prev_cumsum = cumsum cumsum += length if cumsum == idx: remainder = 0 skip_idx = count + 1 return skip_idx, remainder elif cumsum > idx: remainder = idx - prev_cumsum skip_idx = count return skip_idx, remainder def __getitem__(self, idx): # seek to correct chunk seek_idx, remainder = self._seek(idx) f = self.files[seek_idx] if self.filetype == "tfrecords": chunk = self._maybe_process_tfrecord( seek_idx) # parses tfrecord file to a list *once* then stores in memory else: raise NotImplementedError return chunk[remainder] # get item from current chunk def __len__(self): return self._len class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq def __len__(self): return self.data.size(0) // self.seq_len class DynamicDataset(Dataset): def __init__(self, input_files, tokenizer, max_seq_len, target_field='text', seed=1, shuffle_files=True, **kwargs): super().__init__() self.files = [] self.setup_files(input_files) if shuffle_files: random.seed(seed) random.shuffle(self.files) self.create_pipeline() self.tokenizer = tokenizer self.max_seq_len = max_seq_len self.target_field = target_field self.parser = json.Parser() self.idx = 0 def setup_files(self, input_files): if isinstance(input_files, str): if input_files.endswith('*'): self.files = glob.glob(input_files) elif os.path.isdir(input_files): self.files = glob.glob(os.path.join(input_files, '*')) elif isinstance(input_files, list): for file_path in input_files: if os.path.isfile(file_path) and os.path.exists(file_path): self.files.append(file_path) elif file_path.endswith('*'): self.files.extend(glob.glob(file_path)) elif os.path.isdir(file_path): self.files.extend(glob.glob(os.path.join(file_path, '*'))) self.total_files = len(self.files) self.file_idx, self.total_lines = {}, 0 for file_path in self.files: total_lines = self.total_lines_in_file(file_path) self.file_idx[file_path] = total_lines self.total_lines += total_lines logging.info(f'Total Files: {self.total_files}. Total Lines: {self.total_lines}') def create_pipeline(self): self.pipeline = tf.data.TextLineDataset(self.files, num_parallel_reads=tf.data.experimental.AUTOTUNE).as_numpy_iterator() def parse_json(self, line): try: return self.parser.parse(line).as_dict() except ValueError: return line @classmethod def total_lines_in_file(cls, file_path): return int(subprocess.check_output(['wc', '-l', file_path]).split()[0]) def tokenize_example(self, ex): self.idx += 1 return self.tokenizer(ex[self.target_field], max_length=self.max_seq_len, truncation=True, return_tensors='pt')['input_ids'] def __getitem__(self, idx): try: ex = next(self.pipeline) except StopIteration: del self.pipeline self.create_pipeline() ex = next(self.pipeline) return self.tokenize_example(self.parse_json(ex)) def __len__(self): return self.total_lines
[ "torch.tensor" ]
1.6
raijinspecial/gpt-neox
89749e0b76938fa1ff84a3dd1cbcbe64521d861b
1.0
import json import argparse import os import time import torch import numpy as np from scipy.spatial.distance import cosine from sklearn.preprocessing import scale from sklearn.linear_model import LogisticRegression import chart_studio import chart_studio.plotly as py import plotly.io as pio import plotly.graph_objects as go import plotly.figure_factory as ff chart_studio.tools.set_credentials_file(username= 'jxhe', api_key='Bm0QOgX4fQf3bULtkpzZ') chart_studio.tools.set_config_file(world_readable=True, sharing='public') def read_input(keys, vals): def parse_fname(fname): x = '.'.join(fname.split('.')[:-1]) x = x.split('/')[-1] x = x.split('.') size = int(x[-2].split('size')[-1]) embed = int(x[-1].split('hid')[-1]) return size, embed size, embed = parse_fname(keys) keys = np.memmap(keys, dtype=np.float32, mode='r', shape=(size, embed)) val_data = [] with open(vals, 'r') as fin: for line in fin: s = json.loads(line.strip()) if s[0] != ' ' and s != '\n': s = f'@{s}' val_data.append(s) return keys, val_data def plot_html(keys, vals, start_id, length, output_dir, fid='', vis_feat='l2', extra=None): vis_size = length vis_shape = (vis_size // 20, 20) num_vis = vis_shape[0] * vis_shape[1] symbol = np.reshape(vals[:num_vis], vis_shape) keys = keys[:num_vis] def cosine_dist(keys): dist = [cosine(keys[1], keys[0])] for i in range(1, num_vis): dist.append(cosine(keys[i], keys[i-1])) return np.array(dist) def l2_dist(keys): diff = [keys[1] - keys[0]] for i in range(1, num_vis): diff.append(keys[i] - keys[i-1]) diff = np.array(diff) return np.linalg.norm(diff, axis=-1) def hyper_z(keys): index = extra['model'].coef_[0].nonzero()[0] print(f'{index.shape[0]} neurons') w = extra['model'].coef_[0][index] x = keys[:, index] b = extra['model'].intercept_[0] # the distance between x0 and hyperplane wx+b=0 is # |wx0+b| / |w| return (np.dot(x, w) + b) / np.sqrt(np.dot(w, w)) # import pdb; pdb.set_trace() if vis_feat == 'hyper_z': hyper_z = hyper_z(keys) else: hyper_z = None l2_d = l2_dist(keys) cosine_d = cosine_dist(keys) norm = np.linalg.norm(keys, axis=-1) shift_norm = np.zeros(norm.shape) shift_norm[1:] = norm[:-1] shift_norm[0] = shift_norm[1] relative_l2 = l2_d / shift_norm if vis_feat == 'hyper_z': hyper_z = np.reshape(hyper_z, vis_shape) else: hyper_z = None l2_d = np.reshape(l2_d, vis_shape) cosine_d = np.reshape(cosine_d, vis_shape) norm = np.reshape(norm, vis_shape) relative_l2 = np.reshape(relative_l2, vis_shape) # Display element name and atomic mass on hover hover=[] for i in range(vis_shape[0]): local = [] for j in range(vis_shape[1]): text = '' text += f'norm: {norm[i, j]:.3f} <br>' text += f'l2_d: {l2_d[i, j]:.3f} <br>' text += f'relative_l2_d: {relative_l2[i, j]:.3f} <br>' text += f'cosine_d: {cosine_d[i, j]:.3f} <br>' text += f'hyper_z: {hyper_z[i, j]:.3f} <br>' if hyper_z is not None else 'none' local.append(text) hover.append(local) # Invert Matrices symbol = symbol[::-1] hover = hover[::-1] plot_args = {'colorscale': 'inferno'} if vis_feat == 'l2': z = l2_d elif vis_feat == 'cosine': z = cosine_d z[z<0.15] = 0.15 elif vis_feat == 'norm': z = norm elif vis_feat == 'relative_l2': z = relative_l2 z[z<0.1] = 1000 z[z==1000] = 1 elif vis_feat == 'hyper_z': z = hyper_z # z = z.flatten() z = np.clip(z, -2.5, 2.5) plot_args = {'colorscale': 'RdYlGn', 'font_colors': ['black']} else: raise ValueError z = z[::-1] # Set Colorscale # colorscale=[[0.0, 'rgb(255,255,255)'], [.2, 'rgb(255, 255, 153)'], # [.4, 'rgb(153, 255, 204)'], [.6, 'rgb(179, 217, 255)'], # [.8, 'rgb(240, 179, 255)'],[1.0, 'rgb(255, 77, 148)']] # Make Annotated Heatmap fig = ff.create_annotated_heatmap(z, annotation_text=symbol, text=hover, hoverinfo='text', **plot_args) fig.update_layout(title_text=f'gpt2-large visualizing {vis_feat} from {fid}') fid = fid.split('/')[-1] fid = '.'.join(fid.split('.')[:-1]) if output_dir: pio.write_html(fig, file=os.path.join(output_dir, f'gpt2_vis_{vis_feat}_{fid}.html')) else: py.plot(fig, filename=f'gpt2_vis_{vis_feat}_{fid}.html') if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('--vis-feat', type=str, default='l2', choices=['l2', 'cosine', 'hyper_z'], help='the feature used to reflect colors of the heatmap') parser.add_argument('--key', type=str, default='features.jsonl', help='the input jsonl file') parser.add_argument('--val', type=str, default='features.jsonl', help='the input jsonl file') parser.add_argument('--max-tok', type=int, default=1e5, help='maximum number of tokens to visualize') parser.add_argument('--output_dir', type=str, default=None, help='the output html directory. If not set, the figures would \ be uploaded to plotly chart studio') parser.add_argument('--extra-path', type=str, default=None, help='some extra files to load for visualization, depending \ on the specific mode of vis_feat') # parser.add_argument('--prefix', type=str, default='', # help='the prefix of outputs files, to distinguish in case') args = parser.parse_args() np.random.seed(22) if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) print('reading features') start = time.time() keys, vals = read_input(args.key, args.val) print(f'reading features complete, costing {time.time() - start} seconds') length = min(len(keys), args.max_tok) keys = keys[:length] vals = vals[:length] extra = torch.load(args.extra_path) if args.extra_path is not None else None plot_html(keys, vals, 0, length, args.output_dir, vis_feat=args.vis_feat, fid=args.key, extra=extra)
[ "torch.load" ]
1.0
MGheini/unify-parameter-efficient-tuning
3222ce2c0079566a28043e22380eb4ab6ad14389
1.9
import torch.nn as nn from torch.autograd import Variable from collections import defaultdict from .layers.PRM import Residual as ResidualPyramid from .layers.Residual import Residual as Residual from common.arguments import sppe_args opt = sppe_args() class Hourglass(nn.Module): def __init__(self, n, nFeats, nModules, inputResH, inputResW, net_type, B, C): super(Hourglass, self).__init__() self.ResidualUp = ResidualPyramid if n >= 2 else Residual self.ResidualDown = ResidualPyramid if n >= 3 else Residual self.depth = n self.nModules = nModules self.nFeats = nFeats self.net_type = net_type self.B = B self.C = C self.inputResH = inputResH self.inputResW = inputResW self.up1 = self._make_residual(self.ResidualUp, False, inputResH, inputResW) self.low1 = nn.Sequential( nn.MaxPool2d(2), self._make_residual(self.ResidualDown, False, inputResH / 2, inputResW / 2) ) if n > 1: self.low2 = Hourglass(n - 1, nFeats, nModules, inputResH / 2, inputResW / 2, net_type, B, C) else: self.low2 = self._make_residual(self.ResidualDown, False, inputResH / 2, inputResW / 2) self.low3 = self._make_residual(self.ResidualDown, True, inputResH / 2, inputResW / 2) self.up2 = nn.UpsamplingNearest2d(scale_factor=2) self.upperBranch = self.up1 self.lowerBranch = nn.Sequential( self.low1, self.low2, self.low3, self.up2 ) def _make_residual(self, resBlock, useConv, inputResH, inputResW): layer_list = [] for i in range(self.nModules): layer_list.append(resBlock(self.nFeats, self.nFeats, inputResH, inputResW, stride=1, net_type=self.net_type, useConv=useConv, baseWidth=self.B, cardinality=self.C)) return nn.Sequential(*layer_list) def forward(self, x: Variable): up1 = self.upperBranch(x) up2 = self.lowerBranch(x) out = up1 + up2 return out class PyraNet(nn.Module): def __init__(self): super(PyraNet, self).__init__() B, C = opt.baseWidth, opt.cardinality self.inputResH = opt.inputResH / 4 self.inputResW = opt.inputResW / 4 self.nStack = opt.nStack self.cnv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(True) ) self.r1 = nn.Sequential( ResidualPyramid(64, 128, opt.inputResH / 2, opt.inputResW / 2, stride=1, net_type='no_preact', useConv=False, baseWidth=B, cardinality=C), nn.MaxPool2d(2) ) self.r4 = ResidualPyramid(128, 128, self.inputResH, self.inputResW, stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C) self.r5 = ResidualPyramid(128, opt.nFeats, self.inputResH, self.inputResW, stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C) self.preact = nn.Sequential( self.cnv1, self.r1, self.r4, self.r5 ) self.stack_layers = defaultdict(list) for i in range(self.nStack): hg = Hourglass(4, opt.nFeats, opt.nResidual, self.inputResH, self.inputResW, 'preact', B, C) lin = nn.Sequential( hg, nn.BatchNorm2d(opt.nFeats), nn.ReLU(True), nn.Conv2d(opt.nFeats, opt.nFeats, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(opt.nFeats), nn.ReLU(True) ) tmpOut = nn.Conv2d(opt.nFeats, opt.nClasses, kernel_size=1, stride=1, padding=0) self.stack_layers['lin'].append(lin) self.stack_layers['out'].append(tmpOut) if i < self.nStack - 1: lin_ = nn.Conv2d(opt.nFeats, opt.nFeats, kernel_size=1, stride=1, padding=0) tmpOut_ = nn.Conv2d(opt.nClasses, opt.nFeats, kernel_size=1, stride=1, padding=0) self.stack_layers['lin_'].append(lin_) self.stack_layers['out_'].append(tmpOut_) def forward(self, x: Variable): out = [] inter = self.preact(x) for i in range(self.nStack): lin = self.stack_layers['lin'][i](inter) tmpOut = self.stack_layers['out'][i](lin) out.append(tmpOut) if i < self.nStack - 1: lin_ = self.stack_layers['lin_'][i](lin) tmpOut_ = self.stack_layers['out_'][i](tmpOut) inter = inter + lin_ + tmpOut_ return out def createModel(**kw): model = PyraNet() return model
[ "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.UpsamplingNearest2d" ]
1.9.0
fsImageries/video-to-pose3D
098c87ce19dc3331da03e6eac0b9744684eb66f6
1.6
from typing import Iterable, Dict, List import torch from einops import rearrange, repeat from torch import Tensor from torch import nn from torch.nn import Identity from perceiver_pytorch.caching import cache_by_name_fn from perceiver_pytorch.modalities import InputModality, modality_encoding from perceiver_pytorch.perceiver_pytorch import PreNorm, Attention, FeedForward, cache_fn, fourier_encode, \ FeedForwardGELU from perceiver_pytorch.common import build_perceiver_layers # An implementation of Perceiver that can accept multiple data modalities in the same forward. class MultiModalityPerceiver(nn.Module): def __init__( self, *, modalities: Iterable[InputModality], depth, num_latents=512, latent_dim=512, cross_heads=1, latent_heads=8, cross_dim_head=64, latent_dim_head=64, num_classes=None, attn_dropout=0., ff_dropout=0., weight_tie_layers=False, num_latent_blocks_per_layer=1, use_gelu: bool = False, ): """ :param modalities: :param depth: Number of times the perceiver will perform cross-attention between latent and input. :param num_latents: :param latent_dim: :param cross_heads: :param latent_heads: :param cross_dim_head: :param latent_dim_head: :param num_classes: Number of classes to predict, or if None, return the hidden state (num latents x hidden_dim) :param attn_dropout: :param ff_dropout: :param weight_tie_layers: True: share weights across layers, False no shared weights. :param num_latent_blocks_per_layer: Number of blocks in the latent transformer. :param use_gelu: Use GELU activation like the Perceiver preprint indicates. False, with Lucidrains' GEGLU activation in feed forward instead. """ super().__init__() self.modalities = {modality.name: modality for modality in modalities} # we encode modality with one hot encoding, so need one dim per modality: modality_encoding_dim = sum([1 for _ in modalities]) # input_dim is the maximum dimension over all input modalities: input_dim = max(modality.input_dim for modality in modalities) + modality_encoding_dim self.max_modality_dim = input_dim self.latents = nn.Parameter(torch.randn(num_latents, latent_dim)) ff_type = FeedForwardGELU if use_gelu else FeedForward get_cross_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads=cross_heads, dim_head=cross_dim_head, dropout=attn_dropout), context_dim=input_dim) get_cross_ff = lambda: PreNorm(latent_dim, ff_type(latent_dim, dropout=ff_dropout)) get_latent_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, heads=latent_heads, dim_head=latent_dim_head, dropout=attn_dropout)) get_latent_ff = lambda: PreNorm(latent_dim, ff_type(latent_dim, dropout=ff_dropout)) get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(cache_by_name_fn, ( get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff)) self.layers = nn.ModuleList([]) build_perceiver_layers(self.layers, depth, get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff, weight_tie_layers, num_latent_blocks_per_layer=num_latent_blocks_per_layer) self.to_logits = nn.Sequential( nn.LayerNorm(latent_dim), nn.Linear(latent_dim, num_classes) ) def forward(self, multi_modality_data: Dict[str, Tensor], mask=None): """ :param data: a dictionary where keys are modality names and Tensor contain a batch of modality input data. :param mask: :return: """ batch_sizes = set() num_modalities = len(multi_modality_data) linearized_data = [] linearized_data_per_layer: Dict[int, List[Tensor]] = {} for modality_index, modality_name in enumerate(sorted(multi_modality_data.keys())): assert modality_name in self.modalities, f"modality {modality_name} was not defined in constructor" data = multi_modality_data[modality_name] modality = self.modalities[modality_name] b, *axis, _, device = *data.shape, data.device assert len( axis) == modality.input_axis, f'input data must have the right number of for modality {modality_name}. ' \ f'Expected {modality.input_axis} while forward argument offered {len(axis)}' batch_sizes.add(b) assert len(batch_sizes) == 1, "batch size must be the same across all modalities" # calculate fourier encoded positions in the range of [-1, 1], for all axis # Figure out padding for this modality, given max dimension across all modalities: padding_size = self.max_modality_dim - modality.input_dim - num_modalities padding = torch.zeros(size=data.size()[0:-1] + (padding_size,)).to(device) # concat to channels of data and flatten axis modality_encodings = modality_encoding(b, axis, modality_index, num_modalities, device=device) if modality.num_freq_bands > 0: axis_pos = list(map(lambda size: torch.linspace(-1., 1., steps=size, device=device), axis)) pos = torch.stack(torch.meshgrid(*axis_pos), dim=-1) enc_pos = fourier_encode(pos, modality.max_freq, modality.num_freq_bands, modality.freq_base) enc_pos = rearrange(enc_pos, '... n d -> ... (n d)') enc_pos = repeat(enc_pos, '... -> b ...', b=b) else: enc_pos = torch.zeros(data.shape).to(device) to_concat = (data, padding, enc_pos, modality_encodings) data = torch.cat(to_concat, dim=-1) data = rearrange(data, 'b ... d -> b (...) d').to(device) linearized_data.append(data) b = batch_sizes.pop() x = repeat(self.latents, 'n d -> b n d', b=b).to(device) # Concatenate all the modalities: data = torch.cat(linearized_data, dim=1) for cross_attn, cross_ff, latent_transformer in self.layers: x = cross_attn(x, context=data, mask=mask) + x x = cross_ff(x) + x x = latent_transformer(x) + x x = self.pool(x) return self.to_logits(x) def pool(self, x): """ Perform pooling over latents. :param x: batch x num_latents x latent_dim :return: pooled x """ # implement global pooling return x.mean(dim=-2) class MultiModalityPerceiverNoPooling(MultiModalityPerceiver): def __init__(self, *, modalities: Iterable[InputModality], depth, num_latents=512, latent_dim=512, cross_heads=1, latent_heads=8, cross_dim_head=64, latent_dim_head=64, attn_dropout=0., ff_dropout=0., weight_tie_layers=False, num_latent_blocks_per_layer=1, use_gelu: bool = True): """ Perceiver that returns hidden state. Makes it possible to configure pooling with the result of forward. :param modalities: :param depth: Number of times the perceiver will perform cross-attention between latent and input. :param num_latents: :param latent_dim: :param cross_heads: :param latent_heads: :param cross_dim_head: :param latent_dim_head: :param attn_dropout: :param ff_dropout: :param weight_tie_layers: True: share weights across layers, False no shared weights. :param num_latent_blocks_per_layer: Number of blocks in the latent transformer. :param use_gelu: Use GELU activation like the Perceiver preprint indicates. False, with Lucidrains' GEGLU activation in feed forward instead. """ super().__init__(modalities=modalities, depth=depth, num_latents=num_latents, latent_dim=latent_dim, cross_heads=cross_heads, latent_heads=latent_heads, cross_dim_head=cross_dim_head, latent_dim_head=latent_dim_head, attn_dropout=attn_dropout, ff_dropout=ff_dropout, weight_tie_layers=weight_tie_layers, num_latent_blocks_per_layer=num_latent_blocks_per_layer, use_gelu=use_gelu, num_classes=1) self.to_logits = Identity() def pool(self, x): """ Do not pool. :param x: batch x num_latents x latent_dim :return: pooled x """ # no pooling return x
[ "torch.nn.Linear", "torch.zeros", "torch.cat", "torch.nn.LayerNorm", "torch.nn.Identity", "torch.nn.ModuleList", "torch.linspace", "torch.meshgrid", "torch.randn" ]
1.6
frenkiboy/perceiver-pytorch
b07d5154c5dee63684c59f57d02a1b405701845f
1.0
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): import torch from transformers import AutoModel @require_torch @require_sentencepiece @require_tokenizers class BortIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = AutoModel.from_pretrained("amazon/bort") model.to(torch_device) input_ids = torch.tensor( [[0, 18077, 4082, 7804, 8606, 6195, 2457, 3321, 11, 10489, 16, 269, 2579, 328, 2]], device=torch_device, dtype=torch.long, ) # Schloß Nymphenburg in Munich is really nice! output = model(input_ids)["last_hidden_state"] expected_shape = torch.Size((1, 15, 1024)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0349, 0.0436, -1.8654], [-0.6964, 0.0835, -1.7393], [-0.9819, 0.2956, -0.2868]]], device=torch_device, dtype=torch.float, ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
[ "torch.Size", "torch.allclose", "torch.tensor" ]
1.0
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch - TF 2.0 general utilities.""" import os import re import numpy from .file_utils import ExplicitEnum from .utils import logging logger = logging.get_logger(__name__) class TransposeType(ExplicitEnum): """ Possible ... """ NO = "no" SIMPLE = "simple" CONV2D = "conv2d" def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove="", tf_weight_shape=None): """ Convert a TF 2.0 model variable name in a pytorch model weight name. Conventions for TF2.0 scopes -> PyTorch attribute names conversions: - '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) - '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) return tuple with: - pytorch model weight name - transpose: `TransposeType` member indicating whether and how TF2.0 and PyTorch weights matrices should be transposed with regards to each other """ tf_name = tf_name.replace(":0", "") # device ids tf_name = re.sub( r"/[^/]*___([^/]*)/", r"/\1/", tf_name ) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) tf_name = tf_name.replace( "_._", "/" ) # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) tf_name = re.sub(r"//+", "/", tf_name) # Remove empty levels at the end tf_name = tf_name.split("/") # Convert from TF2.0 '/' separators to PyTorch '.' separators # Some weights have a single name without "/" such as final_logits_bias in BART if len(tf_name) > 1: tf_name = tf_name[1:] # Remove level zero # When should we transpose the weights if tf_name[-1] == "kernel" and tf_weight_shape is not None and tf_weight_shape.rank == 4: # A simple heuristic to detect conv layer using weight array shape transpose = TransposeType.CONV2D elif bool( tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"] or "emb_projs" in tf_name or "out_projs" in tf_name ): transpose = TransposeType.SIMPLE else: transpose = TransposeType.NO # Convert standard TF2.0 names in PyTorch names if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma": tf_name[-1] = "weight" if tf_name[-1] == "beta": tf_name[-1] = "bias" # The SeparableConv1D TF layer contains two weights that are translated to PyTorch Conv1D here if tf_name[-1] == "pointwise_kernel" or tf_name[-1] == "depthwise_kernel": tf_name[-1] = tf_name[-1].replace("_kernel", ".weight") # Remove prefix if needed tf_name = ".".join(tf_name) if start_prefix_to_remove: tf_name = tf_name.replace(start_prefix_to_remove, "", 1) return tf_name, transpose ##################### # PyTorch => TF 2.0 # ##################### def load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=None, allow_missing_keys=False): """Load pytorch checkpoints in a TF 2.0 model""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info(f"Loading PyTorch weights from {pt_path}") pt_state_dict = torch.load(pt_path, map_location="cpu") logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters") return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False): """Load pytorch checkpoints in a TF 2.0 model""" pt_state_dict = pt_model.state_dict() return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False): """Load pytorch state_dict in a TF 2.0 model.""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 from tensorflow.python.keras import backend as K except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built # Adapt state dict - TODO remove this and update the AWS weights files instead # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in pt_state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): pt_state_dict[new_key] = pt_state_dict.pop(old_key) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(tf_model.base_model_prefix) for s in pt_state_dict.keys()): start_prefix_to_remove = tf_model.base_model_prefix + "." symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights tf_loaded_numel = 0 weight_value_tuples = [] all_pytorch_weights = set(list(pt_state_dict.keys())) missing_keys = [] for symbolic_weight in symbolic_weights: sw_name = symbolic_weight.name name, transpose = convert_tf_weight_name_to_pt_weight_name( sw_name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=symbolic_weight.shape ) # Find associated numpy array in pytorch model state dict if name not in pt_state_dict: if allow_missing_keys: missing_keys.append(name) continue elif tf_model._keys_to_ignore_on_load_missing is not None: # authorized missing keys don't have to be loaded if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing): continue raise AttributeError(f"{name} not found in PyTorch model") array = pt_state_dict[name].numpy() if transpose is TransposeType.CONV2D: # Conv2D weight: # PT: (num_out_channel, num_in_channel, kernel[0], kernel[1]) # -> TF: (kernel[0], kernel[1], num_in_channel, num_out_channel) array = numpy.transpose(array, axes=(2, 3, 1, 0)) elif transpose is TransposeType.SIMPLE: array = numpy.transpose(array) if len(symbolic_weight.shape) < len(array.shape): array = numpy.squeeze(array) elif len(symbolic_weight.shape) > len(array.shape): array = numpy.expand_dims(array, axis=0) if list(symbolic_weight.shape) != list(array.shape): try: array = numpy.reshape(array, symbolic_weight.shape) except AssertionError as e: e.args += (symbolic_weight.shape, array.shape) raise e try: assert list(symbolic_weight.shape) == list(array.shape) except AssertionError as e: e.args += (symbolic_weight.shape, array.shape) raise e tf_loaded_numel += array.size # logger.warning(f"Initialize TF weight {symbolic_weight.name}") weight_value_tuples.append((symbolic_weight, array)) all_pytorch_weights.discard(name) K.batch_set_value(weight_value_tuples) if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure restore ops are run logger.info(f"Loaded {tf_loaded_numel:,} parameters in the TF 2.0 model.") unexpected_keys = list(all_pytorch_weights) if tf_model._keys_to_ignore_on_load_missing is not None: for pat in tf_model._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if tf_model._keys_to_ignore_on_load_unexpected is not None: for pat in tf_model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the PyTorch model were not used when " f"initializing the TF 2.0 model {tf_model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model trained on another task " f"or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model that you expect " f"to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.warning(f"All PyTorch model weights were used when initializing {tf_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights or buffers of the TF 2.0 model {tf_model.__class__.__name__} were not initialized from the PyTorch model " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {tf_model.__class__.__name__} were initialized from the PyTorch model.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {tf_model.__class__.__name__} for predictions without further training." ) return tf_model ##################### # TF 2.0 => PyTorch # ##################### def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False): """ Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise import transformers from .modeling_tf_utils import load_tf_weights logger.info(f"Loading TensorFlow weights from {tf_checkpoint_path}") # Instantiate and load the associated TF 2.0 model tf_model_class_name = "TF" + pt_model.__class__.__name__ # Add "TF" at the beginning tf_model_class = getattr(transformers, tf_model_class_name) tf_model = tf_model_class(pt_model.config) if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built load_tf_weights(tf_model, tf_checkpoint_path) return load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=allow_missing_keys) def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False): """Load TF 2.0 model in a pytorch model""" weights = tf_model.weights return load_tf2_weights_in_pytorch_model(pt_model, weights, allow_missing_keys=allow_missing_keys) def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False): """Load TF2.0 symbolic weights in a PyTorch model""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise new_pt_params_dict = {} current_pt_params_dict = dict(pt_model.named_parameters()) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()): start_prefix_to_remove = pt_model.base_model_prefix + "." # Build a map from potential PyTorch weight names to TF 2.0 Variables tf_weights_map = {} for tf_weight in tf_weights: pt_name, transpose = convert_tf_weight_name_to_pt_weight_name( tf_weight.name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=tf_weight.shape ) tf_weights_map[pt_name] = (tf_weight.numpy(), transpose) all_tf_weights = set(list(tf_weights_map.keys())) loaded_pt_weights_data_ptr = {} missing_keys_pt = [] for pt_weight_name, pt_weight in current_pt_params_dict.items(): # Handle PyTorch shared weight ()not duplicated in TF 2.0 if pt_weight.data_ptr() in loaded_pt_weights_data_ptr: new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()] continue # Find associated numpy array in pytorch model state dict if pt_weight_name not in tf_weights_map: if allow_missing_keys: missing_keys_pt.append(pt_weight_name) continue raise AttributeError(f"{pt_weight_name} not found in TF 2.0 model") array, transpose = tf_weights_map[pt_weight_name] if transpose is TransposeType.CONV2D: # Conv2D weight: # TF: (kernel[0], kernel[1], num_in_channel, num_out_channel) # -> PT: (num_out_channel, num_in_channel, kernel[0], kernel[1]) array = numpy.transpose(array, axes=(3, 2, 0, 1)) elif transpose is TransposeType.SIMPLE: array = numpy.transpose(array) if len(pt_weight.shape) < len(array.shape): array = numpy.squeeze(array) elif len(pt_weight.shape) > len(array.shape): array = numpy.expand_dims(array, axis=0) if list(pt_weight.shape) != list(array.shape): try: array = numpy.reshape(array, pt_weight.shape) except AssertionError as e: e.args += (pt_weight.shape, array.shape) raise e try: assert list(pt_weight.shape) == list(array.shape) except AssertionError as e: e.args += (pt_weight.shape, array.shape) raise e # logger.warning(f"Initialize PyTorch weight {pt_weight_name}") # Make sure we have a proper numpy array if numpy.isscalar(array): array = numpy.array(array) new_pt_params_dict[pt_weight_name] = torch.from_numpy(array) loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = torch.from_numpy(array) all_tf_weights.discard(pt_weight_name) missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False) missing_keys += missing_keys_pt # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if pt_model._keys_to_ignore_on_load_missing is not None: for pat in pt_model._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if pt_model._keys_to_ignore_on_load_unexpected is not None: for pat in pt_model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the TF 2.0 model were not used when " f"initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model trained on another task " f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a TFBertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model that you expect " f"to be exactly identical (e.g. initializing a BertForSequenceClassification model from a TFBertForSequenceClassification model)." ) else: logger.warning(f"All TF 2.0 model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the TF 2.0 model " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) logger.info(f"Weights or buffers not loaded from TF 2.0 model: {all_tf_weights}") return pt_model
[ "torch.from_numpy", "torch.load" ]
1.0
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
3
import torch import torch.nn as nn import torch.nn.functional as F import neural_renderer as nr import numpy as np import cv2 class DepthRenderer(nn.Module): def __init__(self, cfg): super(DepthRenderer, self).__init__() min_depth = cfg.MODEL.MVSNET.MIN_DEPTH max_depth = min_depth + (cfg.MODEL.MVSNET.DEPTH_INTERVAL \ * cfg.MODEL.MVSNET.NUM_DEPTHS) self.renderer = nr.Renderer( camera_mode='projection', near=min_depth, far=max_depth, anti_aliasing=False ) fx, fy = cfg.MODEL.MVSNET.FOCAL_LENGTH cx, cy = cfg.MODEL.MVSNET.PRINCIPAL_POINT self.camera_k = torch.tensor( [[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=torch.float32 ) self.dist_coeffs = torch.zeros(5, dtype=torch.float32) # conversion from shapenet convention (East-Up_South) # to renderer convention (East-Down-North) # final rotation: R_renderer_shapenet * extrinsics # inverse y and z, equivalent to inverse x, but gives positive z rvec = np.array([np.pi, 0., 0.], dtype=np.float32) R = cv2.Rodrigues(rvec)[0] T = np.eye(4, dtype=np.float32) T[:3, :3] = R self.T_renderer_shapenet = torch.from_numpy(T) self.T_shapenet_renderer = torch.inverse(self.T_renderer_shapenet) def transform_to_renderer_frame(self, T_view_world): """ Args: - T_view_world: (batch x 4 x 4) transformation in shapenet coordinates (East-Up-South) Returns: - (batch x 4 x 4) transformation in renderer frame (East-Down-North) """ batch_size = T_view_world.size(0) device = T_view_world.device self.T_renderer_shapenet = self.T_renderer_shapenet.to(device) self.T_shapenet_renderer = self.T_shapenet_renderer.to(device) # change to correct shape (batched) T_renderer_shapenet = self.T_renderer_shapenet \ .unsqueeze(0) .expand(batch_size, -1, -1) T_shapenet_renderer = self.T_shapenet_renderer \ .unsqueeze(0).expand(batch_size, -1, -1) # inverse y and z, equivalent to inverse x, but gives positive z T_view_world = torch.bmm(T_renderer_shapenet, T_view_world) return T_view_world def forward(self, coords, faces, extrinsics, image_shape): """ Multi-view rendering Args: - pred_coords: (batch x vertices x 3) tensor - faces: (batch x faces x 3) tensor - image_shape: shape of the depth image to be rendered - extrinsics: (batch x view x 2 x 4 x 4) tensor Returns: - depth tensor batch x view x height x width """ batch_size = extrinsics.size(0) num_views = extrinsics.size(1) # augment views: size = (batch x view x vertices x 3) coords_augmented = coords.unsqueeze(1).expand(-1, num_views, -1, -1) \ .contiguous() # size = (batch x view x faces` x 3) faces_augmented = faces.unsqueeze(1).expand(-1, num_views, -1, -1) \ .contiguous() depth_flattened = self.render_depth( _flatten_batch_view(coords_augmented), _flatten_batch_view(faces_augmented), _flatten_batch_view(extrinsics), image_shape ) return _unflatten_batch_view(depth_flattened, batch_size) def render_depth(self, coords, faces, T_view_world, image_shape): """ renders a batch of depths Args: - pred_coords: (batch x vertices x 3) tensor - faces: (batch x faces x 3) tensor - image_shape shape of the depth image to be rendered - T_view_world: (batch x 4 x 4) transformation in shapenet coordinates (EUS) Returns: - depth tensors of shape (batch x h x w) """ image_size = image_shape.max() # This is not thread safe! self.renderer.image_size = image_size batch_size, num_points = coords.size()[:2] # move to correct device device = coords.device self.camera_k = self.camera_k.to(device) self.dist_coeffs = self.dist_coeffs.to(device) faces = faces.type(torch.int32).to(device) # change to correct shape (batches) dist_coeffs = self.dist_coeffs.unsqueeze(0).expand(batch_size, -1) # transformation stuffs T_view_world = self.transform_to_renderer_frame(T_view_world) R = T_view_world[:, :3, :3] t = T_view_world[:, :3, 3].unsqueeze(1) depth = self.renderer( vertices=coords, faces=faces, mode='depth', K=self.camera_k.unsqueeze(0), dist_coeffs=dist_coeffs, R=R, t=t, orig_size=image_size ) depth[depth <= self.renderer.near] = 0 depth[depth >= self.renderer.far] = 0 return depth ## Private utility functions def _flatten_batch_view(tensor): return tensor.view(-1, *(tensor.size()[2:])) def _unflatten_batch_view(tensor, batch_size): return tensor.view(batch_size, -1, *(tensor.size()[1:]))
[ "torch.zeros", "torch.inverse", "torch.bmm", "torch.from_numpy", "torch.tensor" ]
3
rakeshshrestha31/meshmvs
e82cf0121ae49dd781d87d172218f41a882e3c04
0.3
import argparse import sys import time import math import torch.nn as nn import torch.optim as optim from drnn import DRNN from char_rnn.utils import * from char_rnn.model import DRNN_Char import warnings warnings.filterwarnings("ignore") # Suppress the RunTimeWarning on unicode parser = argparse.ArgumentParser(description='Sequence Modeling - Character Level Language Model') parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='batch size (default: 32)') parser.add_argument('--cuda', action='store_false', help='use CUDA (default: True)') parser.add_argument('--dropout', type=float, default=0.1, help='dropout applied to layers (default: 0.1)') parser.add_argument('--emb_dropout', type=float, default=0.1, help='dropout applied to the embedded layer (0 = no dropout) (default: 0.1)') parser.add_argument('--clip', type=float, default=0.15, help='gradient clip, -1 means no clip (default: 0.15)') parser.add_argument('--epochs', type=int, default=100, help='upper epoch limit (default: 100)') parser.add_argument('--levels', type=int, default=3, help='# of levels (default: 3)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='report interval (default: 100') parser.add_argument('--lr', type=float, default=4, help='initial learning rate (default: 4)') parser.add_argument('--emsize', type=int, default=100, help='dimension of character embeddings (default: 100)') parser.add_argument('--optim', type=str, default='SGD', help='optimizer to use (default: SGD)') parser.add_argument('--nhid', type=int, default=450, help='number of hidden units per layer (default: 450)') parser.add_argument('--validseqlen', type=int, default=320, help='valid sequence length (default: 320)') parser.add_argument('--seq_len', type=int, default=400, help='total sequence length, including effective history (default: 400)') parser.add_argument('--seed', type=int, default=1111, help='random seed (default: 1111)') parser.add_argument('--dataset', type=str, default='ptb', help='dataset to use (default: ptb)') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") print(args) file, file_len, valfile, valfile_len, testfile, testfile_len, corpus = data_generator(args) n_characters = len(corpus.dict) train_data = batchify(char_tensor(corpus, file), args.batch_size, args) val_data = batchify(char_tensor(corpus, valfile), 1, args) test_data = batchify(char_tensor(corpus, testfile), 1, args) print("Corpus size: ", n_characters) model = DRNN_Char(input_size=args.emsize, output_size=n_characters, hidden_size=args.nhid, num_layers=args.levels, dropout=args.dropout, emb_dropout=args.emb_dropout) if args.cuda: model.cuda() criterion = nn.CrossEntropyLoss() lr = args.lr optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr) def evaluate(source): model.eval() total_loss = 0 count = 0 source_len = source.size(1) for batch, i in enumerate(range(0, source_len - 1, args.validseqlen)): if i + args.seq_len - args.validseqlen >= source_len: continue inp, target = get_batch(source, i, args) output = model(inp) eff_history = args.seq_len - args.validseqlen final_output = output[:, eff_history:].contiguous().view(-1, n_characters) final_target = target[:, eff_history:].contiguous().view(-1) loss = criterion(final_output, final_target) total_loss += loss.data * final_output.size(0) count += final_output.size(0) val_loss = total_loss[0] / count * 1.0 return val_loss def train(epoch): model.train() total_loss = 0 start_time = time.time() losses = [] source = train_data source_len = source.size(1) for batch_idx, i in enumerate(range(0, source_len - 1, args.validseqlen)): if i + args.seq_len - args.validseqlen >= source_len: continue inp, target = get_batch(source, i, args) optimizer.zero_grad() output = model(inp) eff_history = args.seq_len - args.validseqlen final_output = output[:, eff_history:].contiguous().view(-1, n_characters) final_target = target[:, eff_history:].contiguous().view(-1) loss = criterion(final_output, final_target) loss.backward() if args.clip > 0: torch.nn.utils.clip_grad_norm(model.parameters(), args.clip) optimizer.step() total_loss += loss.data if batch_idx % args.log_interval == 0 and batch_idx > 0: cur_loss = total_loss[0] / args.log_interval losses.append(cur_loss) elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | ' 'loss {:5.3f} | bpc {:5.3f}'.format( epoch, batch_idx, int((source_len-0.5) / args.validseqlen), lr, elapsed * 1000 / args.log_interval, cur_loss, cur_loss / math.log(2))) total_loss = 0 start_time = time.time() # if batch % (200 * args.log_interval) == 0 and batch > 0: # vloss = evaluate(val_data) # print('-' * 89) # print('| In epoch {:3d} | valid loss {:5.3f} | ' # 'valid bpc {:8.3f}'.format(epoch, vloss, vloss / math.log(2))) # model.train() return sum(losses) * 1.0 / len(losses) def main(): global lr try: print("Training for %d epochs..." % args.epochs) all_losses = [] best_vloss = 1e7 for epoch in range(1, args.epochs + 1): loss = train(epoch) vloss = evaluate(val_data) print('-' * 89) print('| End of epoch {:3d} | valid loss {:5.3f} | valid bpc {:8.3f}'.format( epoch, vloss, vloss / math.log(2))) test_loss = evaluate(test_data) print('=' * 89) print('| End of epoch {:3d} | test loss {:5.3f} | test bpc {:8.3f}'.format( epoch, test_loss, test_loss / math.log(2))) print('=' * 89) if epoch > 5 and vloss > max(all_losses[-3:]): lr = lr / 10. for param_group in optimizer.param_groups: param_group['lr'] = lr all_losses.append(vloss) if vloss < best_vloss: print("Saving...") save(model) best_vloss = vloss except KeyboardInterrupt: print('-' * 89) print("Saving before quit...") save(model) # Run on test data. test_loss = evaluate(test_data) print('=' * 89) print('| End of training | test loss {:5.3f} | test bpc {:8.3f}'.format( test_loss, test_loss / math.log(2))) print('=' * 89) # train_by_random_chunk() if __name__ == "__main__": main()
[ "torch.nn.CrossEntropyLoss" ]
0.3.0
dnbaker/pytorch-dilated-rnn
4d7e04bf00d2f144c4435cb7ad78ecee7de81dd1
1.7
import copy import numpy as np import scipy.linalg import scipy.stats import torch from matplotlib import pyplot as plt # from ray import tune # from ray.tune.suggest import ConcurrencyLimiter # from ray.tune.suggest.hyperopt import HyperOptSearch # import tqdm from torch import nn from torch.nn import functional as F import autonomous_optimizer class Variable(nn.Module): """A wrapper to turn a tensor of parameters into a module for optimization.""" def __init__(self, data: torch.Tensor): """Create Variable holding `data` tensor.""" super().__init__() self.x = nn.Parameter(data) def convex_quadratic(): """ Generate a symmetric positive semidefinite matrix A with eigenvalues uniformly in [1, 30]. """ num_vars = 2 # First generate an orthogonal matrix (of eigenvectors) eig_vecs = torch.tensor( scipy.stats.ortho_group.rvs(dim=(num_vars)), dtype=torch.float ) # Now generate eigenvalues eig_vals = torch.rand(num_vars) * 29 + 1 A = eig_vecs @ torch.diag(eig_vals) @ eig_vecs.T b = torch.normal(0, 1 / np.sqrt(num_vars), size=(num_vars,)) x0 = torch.normal(0, 0.5 / np.sqrt(num_vars), size=(num_vars,)) def quadratic(var): x = var.x return 0.5 * x.T @ A @ x + b.T @ x optimal_x = scipy.linalg.solve(A.numpy(), -b.numpy(), assume_a="pos") optimal_val = quadratic(Variable(torch.tensor(optimal_x))).item() return { "model0": Variable(x0), "obj_function": quadratic, "optimal_x": optimal_x, "optimal_val": optimal_val, "A": A.numpy(), "b": b.numpy(), } def rosenbrock(): num_vars = 2 # Initialization strategy: x_i = -2 if i is even, x_i = +2 if i is odd x0 = torch.tensor([-1.5 if i % 2 == 0 else 1.5 for i in range(num_vars)]) def rosen(var): x = var.x return torch.sum(100.0 * (x[1:] - x[:-1] ** 2.0) ** 2.0 + (1 - x[:-1]) ** 2.0) # Optimum at all x_i = 1, giving f(x) = 0 optimal_x = np.ones(num_vars) optimal_val = 0 return { "model0": Variable(x0), "obj_function": rosen, "optimal_x": optimal_x, "optimal_val": optimal_val, } def logistic_regression(): num_vars = 3 g0 = torch.distributions.multivariate_normal.MultivariateNormal( loc=torch.randn(num_vars), scale_tril=torch.tril(torch.randn((num_vars, num_vars))), ) g1 = torch.distributions.multivariate_normal.MultivariateNormal( loc=torch.randn(num_vars), scale_tril=torch.tril(torch.randn((num_vars, num_vars))), ) x = torch.cat([g0.sample((50,)), g1.sample((50,))]) y = torch.cat([torch.zeros((50,)), torch.ones((50,))]) perm = torch.randperm(len(x)) x = x[perm] y = y[perm] model0 = nn.Sequential(nn.Linear(num_vars, 1), nn.Sigmoid()) def obj_function(model): y_hat = model(x).view(-1) weight_norm = model[0].weight.norm() return F.binary_cross_entropy(y_hat, y) + 5e-4 / 2 * weight_norm return {"model0": model0, "obj_function": obj_function, "data": (x, y)} def robust_linear_regression(): num_vars = 3 # Create four gaussian distributions with random mean and covariance. # For all points drawn from the same gaussian, their labels are # generated by projecting them along the same random vector, adding # the same random bias, and perturbing them with i.i.d. gaussian noise. x = [] y = [] for _ in range(4): gaussian = torch.distributions.multivariate_normal.MultivariateNormal( loc=torch.randn(num_vars), scale_tril=torch.tril(torch.randn((num_vars, num_vars))), ) new_points = gaussian.sample((25,)) # y_i = true_vector `dot` x_i + true_bias + noise true_vector = torch.randn(num_vars) true_bias = torch.randn(1) new_labels = new_points @ true_vector + true_bias + torch.randn(25) x.append(new_points) y.append(new_labels) x = torch.cat(x) y = torch.cat(y) # Shuffle the dataset perm = torch.randperm(len(x)) x = x[perm] y = y[perm] model0 = nn.Linear(num_vars, 1) def geman_mcclure(model): y_hat = model(x).view(-1) squared_errors = (y - y_hat) ** 2 return (squared_errors / (1 + squared_errors)).mean() return {"model0": model0, "obj_function": geman_mcclure} def mlp(): num_vars = 2 # Create four gaussian distributions with random mean and covariance gaussians = [ torch.distributions.multivariate_normal.MultivariateNormal( loc=torch.randn(num_vars), scale_tril=torch.tril(torch.randn((num_vars, num_vars))), ) for _ in range(4) ] # Randomly assign each of the four gaussians a 0-1 label # Do again if all four gaussians have the same label (don't want that) gaussian_labels = np.zeros((4,)) while (gaussian_labels == 0).all() or (gaussian_labels == 1).all(): gaussian_labels = torch.randint(0, 2, size=(4,)) # Generate a dataset of 100 points with 25 points drawn from each gaussian # Label of the datapoint is the same as the label of the gaussian it came from x = torch.cat([g.sample((25,)) for g in gaussians]) y = torch.cat([torch.full((25,), float(label)) for label in gaussian_labels]) perm = torch.randperm(len(x)) x = x[perm] y = y[perm] model0 = nn.Sequential( nn.Linear(num_vars, 2), nn.ReLU(), nn.Linear(2, 1), nn.Sigmoid() ) def obj_function(model): y_hat = model(x).view(-1) weight_norm = model[0].weight.norm() + model[2].weight.norm() return F.binary_cross_entropy(y_hat, y) + 5e-4 / 2 * weight_norm return {"model0": model0, "obj_function": obj_function, "dataset": (x, y)} def run_optimizer(make_optimizer, problem, iterations, hyperparams): # Initial solution model = copy.deepcopy(problem["model0"]) obj_function = problem["obj_function"] # Define optimizer optimizer = make_optimizer(model.parameters(), **hyperparams) # We will keep track of the objective values and weight trajectories # throughout the optimization process. values = [] trajectory = [] # Passed to optimizer. This setup is required to give the autonomous # optimizer access to the objective value and not just its gradients. def closure(): trajectory.append(copy.deepcopy(model)) optimizer.zero_grad() obj_value = obj_function(model) obj_value.backward() values.append(obj_value.item()) return obj_value # Minimize for i in range(iterations): optimizer.step(closure) # Stop optimizing if we start getting nans as objective values if np.isnan(values[-1]) or np.isinf(values[-1]): break return np.nan_to_num(values, 1e6), trajectory def accuracy(model, x, y): return ((model(x).view(-1) > 0.5) == y).float().mean().item() def run_all_optimizers(problem, iterations, tune_dict, policy): # SGD sgd_vals, sgd_traj = run_optimizer( torch.optim.SGD, problem, iterations, tune_dict["sgd"]["hyperparams"] ) print(f"SGD best loss: {sgd_vals.min()}") # Momentum momentum_vals, momentum_traj = run_optimizer( torch.optim.SGD, problem, iterations, tune_dict["momentum"]["hyperparams"] ) print(f"Momentum best loss: {momentum_vals.min()}") # Adam adam_vals, adam_traj = run_optimizer( torch.optim.Adam, problem, iterations, tune_dict["adam"]["hyperparams"] ) print(f"Adam best loss: {adam_vals.min()}") # LBFGS lbfgs_vals, lbfgs_traj = run_optimizer( torch.optim.LBFGS, problem, iterations, tune_dict["lbfgs"]["hyperparams"] ) print(f"LBFGS best loss: {lbfgs_vals.min()}") # Autonomous optimizer ao_vals, ao_traj = run_optimizer( autonomous_optimizer.AutonomousOptimizer, problem, iterations, {"policy": policy}, ) print(f"Autonomous Optimizer best loss: {ao_vals.min()}") return { "sgd": (sgd_vals, sgd_traj), "momentum": (momentum_vals, momentum_traj), "adam": (adam_vals, adam_traj), "lbfgs": (lbfgs_vals, lbfgs_traj), "ao": (ao_vals, ao_traj), } def plot_trajectories(trajectories, problem, get_weights, set_weights): """Plot optimization trajectories on top of a contour plot. Parameters: trajectories (List(nn.Module)) problem (dict) get_weights (Callable[[], Tuple[float, float]]) set_weights (Callable[[float, float], None]) """ data = {} for name, traj in trajectories.items(): data[name] = np.array([get_weights(model) for model in traj]) xmin = min(np.array(d)[:, 0].min() for d in data.values()) ymin = min(np.array(d)[:, 1].min() for d in data.values()) xmax = max(np.array(d)[:, 0].max() for d in data.values()) ymax = max(np.array(d)[:, 1].max() for d in data.values()) X = np.linspace(xmin - (xmax - xmin) * 0.2, xmax + (xmax - xmin) * 0.2) Y = np.linspace(ymin - (ymax - ymin) * 0.2, ymax + (ymax - ymin) * 0.2) model = copy.deepcopy(problem["model0"]) Z = np.empty((len(Y), len(X))) for i in range(len(X)): for j in range(len(Y)): set_weights(model, X[i], Y[j]) Z[j, i] = problem["obj_function"](model) plt.figure(figsize=(10, 6), dpi=500) plt.contourf(X, Y, Z, 30, cmap="RdGy") plt.colorbar() for name, traj in data.items(): plt.plot(traj[:, 0], traj[:, 1], label=name) plt.title("Convex Quadratic Trajectory Plot") plt.plot(*get_weights(problem["model0"]), "bo") plt.legend() plt.plot() plt.show() '''def tune_algos( dataset, algo_iters, tune_iters, hyperparam_space, algos=["sgd", "momentum" "adam", "lbfgs"], ): """Tune hyperparameters with Bayesian optimization.""" def make_experiment(make_optimizer): def experiment(hyperparams): best_obj_vals = [] for problem in dataset: vals, traj = run_optimizer( make_optimizer, problem, algo_iters, hyperparams ) best_obj_vals.append(vals.min()) tune.report(objective_value=np.mean(best_obj_vals)) return experiment results = {} for algo in tqdm.tqdm(algos): if algo == "sgd": sgd_analysis = tune.run( make_experiment(torch.optim.SGD), config={"lr": hyperparam_space["lr"]}, metric="objective_value", mode="min", search_alg=ConcurrencyLimiter(HyperOptSearch(), max_concurrent=3), num_samples=tune_iters, verbose=0, ) sgd_hyperparams = sgd_analysis.get_best_config( metric="objective_value", mode="min" ) results["sgd"] = {"analysis": sgd_analysis, "hyperparams": sgd_hyperparams} if algo == "momentum": momentum_analysis = tune.run( make_experiment(torch.optim.SGD), config={ "nesterov": True, "lr": hyperparam_space["lr"], "momentum": hyperparam_space["momentum"], }, metric="objective_value", mode="min", search_alg=ConcurrencyLimiter(HyperOptSearch(), max_concurrent=3), num_samples=tune_iters, verbose=0, ) momentum_hyperparams = momentum_analysis.get_best_config( metric="objective_value", mode="min" ) results["momentum"] = { "analysis": momentum_analysis, "hyperparams": momentum_hyperparams, } if algo == "adam": adam_analysis = tune.run( make_experiment(torch.optim.Adam), config={"lr": hyperparam_space["lr"]}, metric="objective_value", mode="min", search_alg=ConcurrencyLimiter(HyperOptSearch(), max_concurrent=3), num_samples=tune_iters, verbose=0, ) adam_hyperparams = adam_analysis.get_best_config( metric="objective_value", mode="min" ) results["adam"] = { "analysis": adam_analysis, "hyperparams": adam_hyperparams, } if algo == "lbfgs": lbfgs_analysis = tune.run( make_experiment(torch.optim.LBFGS), config={"lr": hyperparam_space["lr"], "max_iter": 1}, metric="objective_value", mode="min", search_alg=ConcurrencyLimiter(HyperOptSearch(), max_concurrent=3), num_samples=tune_iters, verbose=0, ) lbfgs_hyperparams = lbfgs_analysis.get_best_config( metric="objective_value", mode="min" ) results["lbfgs"] = { "analysis": lbfgs_analysis, "hyperparams": lbfgs_hyperparams, } return results'''
[ "torch.nn.Linear", "torch.cat", "torch.nn.Parameter", "torch.ones", "torch.sum", "torch.randint", "torch.tensor", "torch.zeros", "torch.nn.ReLU", "torch.nn.functional.binary_cross_entropy", "torch.rand", "torch.nn.Sigmoid", "torch.diag", "torch.randn" ]
1.7.1
stewy33/Learning-to-Optimize
b5e6fd008f12d0b702d861f6d6a99b773fd7c024
0.4
from __future__ import print_function import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler import torch.nn.functional as F import torch.optim as optim from PIL import Image import matplotlib.pyplot as plt from .losses import ContentLoss, StyleLoss, Normalization from models.SAB import SpatialAttention import torchvision.transforms as transforms import torchvision.models as models import copy content_layers_default = ['conv_4'] style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] ############################################################################### # Helper Functions ############################################################################### def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.niter> epochs and linearly decay the rate to zero over the next <opt.niter_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[], use_sab=False): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif netG == 'unet_128': net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout, use_sab=use_sab) elif netG == 'unet_256': net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout, use_sab=use_sab) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you cna specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % net) return init_net(net, init_type, init_gain, gpu_ids) def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers=content_layers_default, style_layers=style_layers_default): cnn = copy.deepcopy(cnn) # normalization module normalization = Normalization(normalization_mean, normalization_std).to(device) # just in order to have an iterable access to or list of content/syle # losses content_losses = [] style_losses = [] # assuming that cnn is a nn.Sequential, so we make a new nn.Sequential # to put in modules that are supposed to be activated sequentially model = nn.Sequential(normalization) i = 0 # increment every time we see a conv for layer in cnn.children(): if isinstance(layer, nn.Conv2d): i += 1 name = 'conv_{}'.format(i) elif isinstance(layer, nn.ReLU): name = 'relu_{}'.format(i) # The in-place version doesn't play very nicely with the ContentLoss # and StyleLoss we insert below. So we replace with out-of-place # ones here. layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d): name = 'pool_{}'.format(i) elif isinstance(layer, nn.BatchNorm2d): name = 'bn_{}'.format(i) else: raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) model.add_module(name, layer) if name in content_layers: # add content loss: target = model(content_img).detach() content_loss = ContentLoss(target) model.add_module("content_loss_{}".format(i), content_loss) content_losses.append(content_loss) if name in style_layers: # add style loss: target_feature = model(style_img).detach() style_loss = StyleLoss(target_feature) model.add_module("style_loss_{}".format(i), style_loss) style_losses.append(style_loss) # now we trim off the layers after the last content and style losses for i in range(len(model) - 1, -1, -1): if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): break model = model[:(i + 1)] return model, style_losses, content_losses def get_input_optimizer(input_img): # this line to show that input is a parameter that requires a gradient optimizer = optim.LBFGS([input_img.requires_grad_()]) return optimizer def get_style_texture_algorithm(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") cnn = models.vgg19(pretrained=True).features.to(device).eval() # Additionally, VGG networks are trained on images with each channel normalized by # mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225]. We will use them to normalize # the image before sending it into the network. cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) # desired depth layers to compute style/content losses : content_layers_default = ['conv_4'] style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, input_img) return output ''' we define a function that performs the neural transfer. For each iteration of the networks, it is fed an updated input and computes new losses. We will run the backward methods of each loss module to dynamicaly compute their gradients. The optimizer requires a “closure” function, which reevaluates the modul and returns the loss ''' def run_style_transfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps=300, style_weight=1000000, content_weight=1): """Run the style transfer.""" print('Building the style transfer model..') model, style_losses, content_losses = get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img) optimizer = get_input_optimizer(input_img) print('Optimizing..') run = [0] while run[0] <= num_steps: def closure(): # correct the values of updated input image input_img.data.clamp_(0, 1) optimizer.zero_grad() model(input_img) style_score = 0 content_score = 0 for sl in style_losses: style_score += sl.loss for cl in content_losses: content_score += cl.loss style_score *= style_weight content_score *= content_weight loss = style_score + content_score loss.backward() run[0] += 1 if run[0] % 50 == 0: print("run {}:".format(run)) print('Style Loss : {:4f} Content Loss: {:4f}'.format( style_score.item(), content_score.item())) print() return style_score + content_score optimizer.step(closure) # a last correction... input_img.data.clamp_(0, 1) return input_img ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None elif gan_mode == 'style_texture': self.loss = get_style_texture_algorithm() else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) alpha = alpha.to(device) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, use_sab=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer if use_sab: unet_block = SpatialAttention(ngf*8) for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer user_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.InstanceNorm2d else: use_bias = norm_layer != nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input)
[ "torch.optim.lr_scheduler.StepLR", "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.nn.LeakyReLU", "torch.nn.init.kaiming_normal_", "torch.cuda.is_available", "torch.nn.BCEWithLogitsLoss", "torch.nn.DataParallel", "torch.nn.init.constant_", "torch.nn.ConvTranspose2d", "torch.nn.init.normal_", "torch.tensor", "torch.nn.ReflectionPad2d", "torch.nn.init.orthogonal_", "torch.nn.init.xavier_normal_", "torch.nn.ReplicationPad2d", "torch.nn.Sequential", "torch.nn.Tanh", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.rand", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.optim.lr_scheduler.LambdaLR" ]
0.4.1
akgokce/EndoL2H
da012dbf3a907000fc469c738976e8905d1dd423
1.5
"""Tools to ease model training (like torch.ignite)""" import torch import torch.nn.functional as F from torch.optim.lr_scheduler import ReduceLROnPlateau from nitorch.core.utils import benchmark, fold, unfold, rubiks_shuffle from nitorch.core.py import make_tuple from nitorch.nn.modules import Module from nitorch.nn import DiceLoss import string import math import os import random try: from torch.utils.tensorboard import SummaryWriter except ImportError: def SummaryWriter(): raise ImportError('Optional dependency TensorBoard not found') def split_train_val_test(data, split=[0.6, 0.1, 0.3], shuffle=False, seed=0): """Split sequence of data into train, validation and test. Parameters ---------- data : [N,] list Input data. split : [3,] list, default=[0.6, 0.2, 0.2] Train, validation, test fractions. suffle : bool, default=False Randomly shuffle input data (with seed for reproducibility) seed : int, default=0 Seed for random shuffling. Returns ---------- train : [split[0]*N,] list Train split. val : [split[1]*N,] list Validation split. test : [split[2]*N,] list Test split. """ N = len(data) # Ensure split is normalised split = [s / sum(split) for s in split] # Randomly shuffle input data (with seed for reproducibility) if shuffle: random.seed(seed) data = random.sample(data, N) # Do train/val/test split train, val, test = [], [], [] for i, d in enumerate(data): if i < math.floor(split[0] * N): train.append(d) elif i < math.floor(sum(split[:2]) * N): val.append(d) elif i < math.floor(sum(split) * N): test.append(d) return train, val, test def update_loss_dict(old, new, weight=1, inplace=True): """Update a dictionary of losses/metrics with a new batch Parameters ---------- old : dict Previous (accumulated) dictionary of losses/metrics new : dict Dictionary of losses/metrics for the current batch weight : float, default=1 Weight for the batch inplace : bool, default=True Modify the dictionary in-place Returns ------- new : dict Updated (accumulated) dictionary of losses/metrics """ if not inplace: old = dict(old) for key, val in new.items(): if key in old.keys(): old[key] += val * weight else: old[key] = val * weight return old def normalize_loss_dict(losses, weight=1, inplace=True): """Normalize all losses in a dict. Parameters ---------- losses : dict Accumulated dictionary of losses/metrics weight : float, default=1 Sum of weights across all batches inplace : bool, default=True Modify the dictionary in-place Returns ------- losses : dict Normalized dictionary of losses/metrics """ if not inplace: losses = dict(losses) for key, val in losses.items(): losses[key] /= weight return losses class ModelTrainer: """A class that simplifies training a network.""" _nb_steps = None _train_set = None _eval_set = None _tensorboard = None _tensorboard_callbacks = None random_state = [] def __init__(self, model, train_set, eval_set=None, optimizer=None, nb_epoch=100, nb_steps=None, *, # the remaining parameters *must be* keywords device=None, dtype=None, initial_epoch=0, log_interval=10, benchmark=False, seed=None, tensorboard=None, save_model=None, save_optimizer=None, load_model=None, load_optimizer=None, show_losses=True, show_metrics=False, scheduler=ReduceLROnPlateau): """ Parameters ---------- model : Module Model to train. Its forward pass should accept a `loss` argument, and take as inputs the elements that pop out of the training set. train_set : sequence[tensor or tuple[tensor]] Training set. It should be a finite sequence of tensors or tuple of tensors. eval_set : sequence[tensor or tuple[tensor]], optional Evaluation set. It should be a finite sequence of tensors or tuple of tensors. optimizer : callable, default=Adam A function that takes trainable parameters as inputs and returns an Optimizer object. nb_epoch : int, default=100 Number of epochs. nb_steps : int, default=`len(train_set) or 100` Number of steps per epoch. If the training set is a finite sequence (i.e., `len` is implemented), its length is used. Else, the training set is assumed to be infinite and the default number of steps is 100. scheduler : Scheduler, default=ReduceLROnPlateau Other Parameters ---------------- device : torch.device, optional Device to use. By default, use the default cuda device if any, else use cpu. dtype : torch.dtype, optional Data type to use. By default use `torch.get_default_dtype`. initial_epoch : int, default=0 First epoch log_interval : int, default=10 Number of steps between screen updates. benchmark : bool, default=False Use the cudnn benchmarking utility that uses the first forward pass to compare different convolution algorithms and select the best performing one. You should only use this option if the spatial shape of your input data is constant across mini batches. seed : int, optional Manual seed to use for training. The seed is set when training starts. A context manager is used so that the global state is kept untouched. If `None`, use the global state. tensorboard : str, optional A path to the tensorboard log directory. If provided, losses and metrics are registered to the board by default. save_model : str, optional A path to save the model at each epoch. Can have a formatted component ('mymodel_{}.pth') for the epoch number. save_optimizer : str, optional A path to save the optimizer at each epoch. Can have a formatted component ('myoptim_{}.pth') for the epoch number. load_model : str, optional Path to saved weights to use to initialize the model. load_optimizer : str, optional Path to saved state to use to initialize the optimizer. show_losses : bool, default=True Print values of individual losses show_metrics : bool, default=False Print values of individual metrics """ self.model = model self.train_set = train_set self.eval_set = eval_set if optimizer is None: optimizer = torch.optim.Adam(model.parameters()) self.optimizer = optimizer self.log_interval = log_interval self.benchmark = benchmark self.seed = seed self.initial_seed = seed self.tensorboard = tensorboard self._tensorboard_callbacks = dict(train=dict(epoch=[], step=[]), eval=dict(epoch=[], step=[])) self.save_model = save_model self.save_optimizer = save_optimizer self.load_model = load_model self.load_optimizer = load_optimizer self.show_losses = show_losses self.show_metrics = show_metrics self.nb_epoch = nb_epoch self.nb_steps = nb_steps self.initial_epoch = initial_epoch self.epoch = initial_epoch self.device = device or 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.device) self.dtype = dtype or torch.get_default_dtype() self.scheduler = scheduler if self.scheduler is not None: self.scheduler = self.scheduler(self.optimizer) if self.load_model: self.model.load_state_dict(torch.load(self.load_model)) if self.load_optimizer: self.optimizer.load_state_dict(torch.load(self.load_optimizer)) def _update_nb_steps(self): def len_or(x, default): return len(x) if hasattr(x, '__len__') else default self._nb_train = self._nb_steps or len_or(self._train_set, 100) self._nb_eval = self._nb_steps or len_or(self._eval_set, 100) class _batch_iterator: def __init__(self, set, length): self.set = set self.length = length def __len__(self): return self.length def __iter__(self): d = 0 while d < self.length: for batch in self.set: if d >= self.length: return yield batch d += 1 @property def tensorboard(self): if self._tensorboard: return self._tensorboard else: return self._tensorboard @tensorboard.setter def tensorboard(self, val): if not val: self._tensorboard = val else: self._tensorboard = SummaryWriter(val) @property def nb_steps(self): return self._nb_steps @nb_steps.setter def nb_steps(self, val): self._nb_steps = val self._update_nb_steps() @property def train_set(self): if self._train_set: return self._batch_iterator(self._train_set, self._nb_train) else: return None @train_set.setter def train_set(self, val): self._train_set = val self._update_nb_steps() @property def eval_set(self): if self._eval_set: return self._batch_iterator(self._eval_set, self._nb_eval) else: return None @eval_set.setter def eval_set(self, val): self._eval_set = val self._update_nb_steps() def _train(self, epoch=0): """Train for one epoch""" self.model.train() epoch_loss = 0. epoch_losses = {} epoch_metrics = {} nb_batches = 0 nb_steps = len(self.train_set) for n_batch, batch in enumerate(self.train_set): losses = {} metrics = {} # forward pass batch = make_tuple(batch) batch = tuple(torch.as_tensor(b, device=self.device) for b in batch) batch = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch) nb_batches += batch[0].shape[0] self.optimizer.zero_grad() output = self.model(*batch, _loss=losses, _metric=metrics) loss = sum(losses.values()) # backward pass loss.backward() self.optimizer.step() # update average across batches with torch.no_grad(): weight = float(batch[0].shape[0]) epoch_loss += loss * weight update_loss_dict(epoch_losses, losses, weight) update_loss_dict(epoch_metrics, metrics, weight) # print if n_batch % self.log_interval == 0: self._print('train', epoch, n_batch+1, nb_steps, loss, losses, metrics) # tb callback if self.tensorboard: tbopt = dict(inputs=batch, outputs=output, epoch=epoch, minibatch=n_batch, mode='train', loss=loss, losses=losses, metrics=metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['train']['step']: func(self.tensorboard, **tbopt) del tbopt # print summary with torch.no_grad(): epoch_loss /= nb_batches normalize_loss_dict(epoch_losses, nb_batches) normalize_loss_dict(epoch_metrics, nb_batches) self._print('train', epoch, nb_steps, nb_steps, epoch_loss, epoch_losses, epoch_metrics, last=True) self._board('train', epoch, epoch_loss, epoch_metrics) # tb callback if self.tensorboard: tbopt = dict(epoch=epoch, loss=epoch_loss, mode='train', losses=epoch_losses, metrics=epoch_metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['train']['epoch']: func(self.tensorboard, **tbopt) return epoch_loss def _eval(self, epoch=0): """Evaluate once""" if self.eval_set is None: return self.model.eval() with torch.no_grad(): epoch_loss = 0 epoch_losses = {} epoch_metrics = {} nb_batches = 0 nb_steps = len(self.eval_set) for n_batch, batch in enumerate(self.eval_set): losses = {} metrics = {} # forward pass batch = make_tuple(batch) batch = tuple(torch.as_tensor(b, device=self.device) for b in batch) batch = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch) nb_batches += batch[0].shape[0] self.optimizer.zero_grad() output = self.model(*batch, _loss=losses, _metric=metrics) loss = sum(losses.values()) # update average across batches weight = float(batch[0].shape[0]) epoch_loss += loss * weight update_loss_dict(epoch_losses, losses, weight) update_loss_dict(epoch_metrics, metrics, weight) # print if n_batch % self.log_interval == 0: self._print('eval', epoch, n_batch + 1, nb_steps, loss, losses, metrics) # tb callback if self.tensorboard: tbopt = dict(inputs=batch, outputs=output, epoch=epoch, minibatch=n_batch, mode='eval', loss=loss, losses=losses, metrics=metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['eval']['step']: func(self.tensorboard, **tbopt) # print summary epoch_loss /= nb_batches normalize_loss_dict(epoch_losses, nb_batches) normalize_loss_dict(epoch_metrics, nb_batches) self._print('eval', epoch, nb_steps, nb_steps, epoch_loss, epoch_losses, epoch_metrics, last=True) self._board('eval', epoch, epoch_loss, epoch_metrics) # tb callback if self.tensorboard: tbopt = dict(epoch=epoch, loss=epoch_loss, mode='eval', losses=epoch_losses, metrics=epoch_metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['eval']['epoch']: func(self.tensorboard, **tbopt) return epoch_loss def _print(self, mode, n_epoch, n_batch, nb_steps, loss, losses=None, metrics=None, last=False): """Pretty printing Parameters ---------- mode : {'train', 'eval'} n_epoch : int Index of current epoch (starts at one) n_batch : int Index of current batch (starts at one) nb_steps : int Total number of batches loss : () tensor Loss for this batch losses : dict[str: () tensor] Loss components for this batch metrics : dict[str: () tensor] Metrics for this batch last : bool, default=False Is this the end of the batch? If True, loss/losses/metrics should contain the average loss across all batches. """ name = 'Train' if mode == 'train' else 'Eval ' if last: pct = 1 bar = '[' + '=' * 10 + ']' else: pct = n_batch/nb_steps len_arrow = min(math.floor(pct*10 + 0.5), 9) bar = '[' + '=' * len_arrow + '>' + ' ' * (9-len_arrow) + ']' lepoch = str(len(str(self.nb_epoch))) evolution = '{:s} | {:' + lepoch + 'd} | {:3.0f}% ' + bar + ' ' evolution = evolution.format(name, n_epoch, pct*100) values = '' if mode == 'train': values += '| loss = {:12.6g} '.format(loss.item()) if losses and self.show_losses: values += '|' for key, val in losses.items(): values += ' {}: {:12.6g} '.format(key, val.item()) if metrics and (mode == 'eval' or self.show_metrics): values += '|' for key, val in metrics.items(): values += ' {}: {:12.6g} '.format(key, val.item()) print(evolution + values, end='\r', flush=True) if last: print('') def _board(self, mode, epoch, loss, epoch_metrics): """Add losses and metrics to tensorboard.""" if not self.tensorboard: return tb = self.tensorboard tb.add_scalars('loss', {mode: loss.item()}, epoch) for tag, value in epoch_metrics.items(): tb.add_scalars(tag, {mode: value.item()}, epoch) tb.flush() def add_tensorboard_callback(self, func, mode='train', trigger='epoch'): """Register tensorboard callbacks Parameters ---------- func : callable If trigger 'step', with signature `(tb, input, output, epoch, step, loss, losses, metrics)` If trigger 'epoch', with signature: `(tb, epoch, loss, losses, metrics)` mode : {'train', 'eval'} Trigger either during a training or evaluation call. trigger : {'epoch', 'step'} Trigger either at the end of a step or at the end of an epoch. """ if mode not in self._tensorboard_callbacks.keys(): self._tensorboard_callbacks[mode] = dict() if trigger not in self._tensorboard_callbacks[mode].keys(): self._tensorboard_callbacks[mode][trigger] = list() self._tensorboard_callbacks[mode][trigger].append(func) def _hello(self, mode): """Tell the use what we are going to do (mode, device, dtype, ...) Parameters ---------- mode : {'train', 'eval'} """ if self.device.type == 'cuda': device = torch.cuda.get_device_name(self.device) else: assert self.device.type == 'cpu' device = 'CPU' dtype = str(self.dtype).split('.')[-1] if mode == 'train': hello = 'Training model {} for {} epochs (steps per epoch: {}) ' \ 'on {} (dtype = {})' hello = hello.format(type(self.model).__name__, self.nb_epoch, len(self.train_set), device, dtype) else: hello = 'Evaluating model {} (minibatches: {}) on {} (dtype = {})' hello = hello.format(type(self.model).__name__, len(self.eval_set), device, dtype) print(hello, flush=True) def _save(self, epoch): """Save once""" if self.save_model: save_model = self._formatfile(self.save_model, epoch) dir_model = os.path.dirname(save_model) if dir_model: os.makedirs(dir_model, exist_ok=True) torch.save(self.model.state_dict(), save_model) if self.save_optimizer: save_optimizer = self._formatfile(self.save_optimizer, epoch) dir_optimizer = os.path.dirname(save_optimizer) if dir_optimizer: os.makedirs(dir_optimizer, exist_ok=True) torch.save(self.optimizer.state_dict(), save_optimizer) @staticmethod def _formatfile(file, epoch): """Format filename for an epoch""" keys = [tup[1] for tup in string.Formatter().parse(file) if tup[1] is not None] if len(keys) == 1: file = file.format(epoch) elif len(keys) > 1: raise ValueError('Cannot have more than one format key') return file def train(self): """Launch training""" self._hello('train') with torch.random.fork_rng(enabled=self.seed is not None): if self.seed is not None: torch.random.manual_seed(self.seed) self.initial_seed = torch.random.initial_seed() with benchmark(self.benchmark): self.model.to(dtype=self.dtype, device=self.device) self.epoch = self.initial_epoch self._eval(self.epoch) self._save(self.epoch) for self.epoch in range(self.epoch+1, self.nb_epoch+1): train_loss = self._train(self.epoch) print('Train loss: {}'.format(train_loss)) val_loss = self._eval(self.epoch) self._save(self.epoch) # scheduler if isinstance(self.scheduler, ReduceLROnPlateau): sched_loss = val_loss or train_loss self.scheduler.step(sched_loss) elif self.scheduler: self.scheduler.step() def eval(self): """Launch evaluation""" self._hello('eval') self.model.to(dtype=self.dtype, device=self.device) self._eval() def init(self): """Initialize the random state + run one evaluation.""" with torch.random.fork_rng(enabled=self.seed is not None): if self.seed is not None: torch.random.manual_seed(self.seed) self.initial_seed = torch.random.initial_seed() self.save_random_state() self.epoch = self.initial_epoch self.model.to(dtype=self.dtype, device=self.device) self._eval(self.epoch) self._save(self.epoch) def set_random_state(self): """Populate the random state using a saved state.""" if self.random_state: cpu_state, *gpu_states = self.random_state devices = list(range(torch.cuda.device_count())) torch.set_rng_state(self.random_state[0]) for device, state in zip(devices, gpu_states): torch.cuda.set_rng_state(state, device) def save_random_state(self): """Save the current random state.""" devices = list(range(torch.cuda.device_count())) self.random_state = [torch.get_rng_state()] self.random_state.extend(torch.cuda.get_rng_state(device) for device in devices) def train1(self): """Train for one epoch.""" with torch.random.fork_rng(): self.set_random_state() self.model.to(dtype=self.dtype, device=self.device) self.epoch += 1 self._train(self.epoch) self._eval(self.epoch) self._save(self.epoch) self.save_random_state() class PreTrainer: """A class that allows self-supervised training via a number of methods. Useful for pre-training before using ModelTrainer for supervised tasks.""" _nb_steps = None _train_set = None _eval_set = None _tensorboard = None _tensorboard_callbacks = None random_state = [] def __init__(self, model, train_set, eval_set=None, optimizer=None, nb_epoch=100, nb_steps=None, *, # the remaining parameters *must be* keywords loss=torch.nn.L1Loss(), adv_model=None, lambda_adv=1, lambda_gp=10, device=None, dtype=None, initial_epoch=0, log_interval=10, benchmark=False, seed=None, tensorboard=None, save_model=None, save_optimizer=None, load_model=None, load_optimizer=None, show_losses=True, show_metrics=False, scheduler=ReduceLROnPlateau): """ Parameters ---------- model : Module Model to train. Its forward pass should accept a `loss` argument, and take as inputs the elements that pop out of the training set. train_set : sequence[tensor or tuple[tensor]] Training set. It should be a finite sequence of tensors or tuple of tensors. eval_set : sequence[tensor or tuple[tensor]], optional Evaluation set. It should be a finite sequence of tensors or tuple of tensors. optimizer : callable, default=Adam A function that takes trainable parameters as inputs and returns an Optimizer object. nb_epoch : int, default=100 Number of epochs. nb_steps : int, default=`len(train_set) or 100` Number of steps per epoch. If the training set is a finite sequence (i.e., `len` is implemented), its length is used. Else, the training set is assumed to be infinite and the default number of steps is 100. scheduler : Scheduler, default=ReduceLROnPlateau Other Parameters ---------------- loss : callable Loss to use for pre-training task. adv_model : nitorch Module or torch Sequential, default=None If not None, will use adversarial loss weighted by lambda_adv lambda_adv : int or float, default=1 If adversarial loss used then total loss will be: Loss_total = loss + lambda_adv * (adv_model(y_hat)) lambda_gp : int or float, default=10 Gradient penalty for discriminator training, as per Wasserstein GAN device : torch.device, optional Device to use. By default, use the default cuda device if any, else use cpu. dtype : torch.dtype, optional Data type to use. By default use `torch.get_default_dtype`. initial_epoch : int, default=0 First epoch log_interval : int, default=10 Number of steps between screen updates. benchmark : bool, default=False Use the cudnn benchmarking utility that uses the first forward pass to compare different convolution algorithms and select the best performing one. You should only use this option if the spatial shape of your input data is constant across mini batches. seed : int, optional Manual seed to use for training. The seed is set when training starts. A context manager is used so that the global state is kept untouched. If `None`, use the global state. tensorboard : str, optional A path to the tensorboard log directory. If provided, losses and metrics are registered to the board by default. save_model : str, optional A path to save the model at each epoch. Can have a formatted component ('mymodel_{}.pth') for the epoch number. save_optimizer : str, optional A path to save the optimizer at each epoch. Can have a formatted component ('myoptim_{}.pth') for the epoch number. load_model : str, optional Path to saved weights to use to initialize the model. load_optimizer : str, optional Path to saved state to use to initialize the optimizer. show_losses : bool, default=True Print values of individual losses show_metrics : bool, default=False Print values of individual metrics """ self.model = model self.train_set = train_set self.eval_set = eval_set self.loss = loss self.adv_model = adv_model if adv_model is not None: self.adv_opt = torch.optim.Adam(adv_model.parameters()) self.lambda_adv = lambda_adv self.lambda_gp = lambda_gp if optimizer is None: optimizer = torch.optim.Adam(model.parameters()) self.optimizer = optimizer self.log_interval = log_interval self.benchmark = benchmark self.seed = seed self.initial_seed = seed self.tensorboard = tensorboard self._tensorboard_callbacks = dict(train=dict(epoch=[], step=[]), eval=dict(epoch=[], step=[])) self.save_model = save_model self.save_optimizer = save_optimizer self.load_model = load_model self.load_optimizer = load_optimizer self.show_losses = show_losses self.show_metrics = show_metrics self.nb_epoch = nb_epoch self.nb_steps = nb_steps self.initial_epoch = initial_epoch self.epoch = initial_epoch self.device = device or 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.device) self.dtype = dtype or torch.get_default_dtype() self.scheduler = scheduler if self.scheduler is not None: self.scheduler = self.scheduler(self.optimizer) if self.load_model: self.model.load_state_dict(torch.load(self.load_model)) if self.load_optimizer: self.optimizer.load_state_dict(torch.load(self.load_optimizer)) def _update_nb_steps(self): def len_or(x, default): return len(x) if hasattr(x, '__len__') else default self._nb_train = self._nb_steps or len_or(self._train_set, 100) self._nb_eval = self._nb_steps or len_or(self._eval_set, 100) def wass_gp(self, disc, real, fake): # Adapted from example provided by @eriklindernoren on GitHub # debugging - print device of tensors device = real.device fake = fake.to(device) # assume [B, C, **] -> dim = length of shape excluding B & C dim = len(real.shape) - 2 # random number to scale between real & fake shape = [real.shape[0], 1] _ = [shape.append(1) for i in range(dim)] eps = torch.rand(shape) eps = eps.to(device) mix = (real * eps + fake * (1 - eps)).requires_grad_(True) disc_mix = disc(mix) if isinstance(disc_mix, (list, tuple)): disc_mix = disc_mix[0] fake_ = torch.ones(disc_mix.shape, requires_grad=False) fake_ = fake_.to(device) grad = torch.autograd.grad( outputs=disc_mix, inputs=mix, grad_outputs=fake_, create_graph=True, retain_graph=True, only_inputs=True ) grad = grad[0] grad = grad.view(grad.shape[0], -1) gp = ((grad.norm(2, dim=1) - 1)**2) gp = gp.mean() return gp def rubiks_gen(self, image, kernel=[10,10,10]): image = unfold(image, kernel) image = rubiks_shuffle(image) image = fold(image, len(kernel)) return image class _batch_iterator: def __init__(self, set, length): self.set = set self.length = length def __len__(self): return self.length def __iter__(self): d = 0 while d < self.length: for batch in self.set: if d >= self.length: return yield batch d += 1 @property def tensorboard(self): if self._tensorboard: return self._tensorboard else: return self._tensorboard @tensorboard.setter def tensorboard(self, val): if not val: self._tensorboard = val else: self._tensorboard = SummaryWriter(val) @property def nb_steps(self): return self._nb_steps @nb_steps.setter def nb_steps(self, val): self._nb_steps = val self._update_nb_steps() @property def train_set(self): if self._train_set: return self._batch_iterator(self._train_set, self._nb_train) else: return None @train_set.setter def train_set(self, val): self._train_set = val self._update_nb_steps() @property def eval_set(self): if self._eval_set: return self._batch_iterator(self._eval_set, self._nb_eval) else: return None @eval_set.setter def eval_set(self, val): self._eval_set = val self._update_nb_steps() def _train(self, epoch=0, adv=False, kernel=[10,10,10]): """Train for one epoch""" self.model.train() epoch_loss = 0. nb_batches = 0 nb_steps = len(self.train_set) for n_batch, batch in enumerate(self.train_set): # forward pass batch = make_tuple(batch) batch = tuple(torch.as_tensor(b, device=self.device) for b in batch) batch = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch) nb_batches += batch[0].shape[0] target = batch[0] if len(batch) > 1: meta = batch[-1] else: meta = None self.optimizer.zero_grad() image = self.rubiks_gen(target, kernel) output = self.model(image, meta=meta, seg=False, gan=True, gan_meta=meta) if adv == True: self.adv_opt.zero_grad() real_true = self.adv_model(target) real_false = self.adv_model(output) grad_pen = self.wass_gp(self.adv_model, target, output) loss_adv_d = -torch.mean(real_true) + torch.mean(real_false) + self.lambda_gp * grad_pen loss_adv_d.backward() self.adv_opt.step() loss = self.loss(output, target) - torch.mean(real_false) else: loss = self.loss(output, target) # backward pass loss.backward() self.optimizer.step() # update average across batches with torch.no_grad(): weight = float(batch[0].shape[0]) epoch_loss += loss * weight # # print # if n_batch % self.log_interval == 0: # self._print('train', epoch, n_batch+1, nb_steps, # loss) # # tb callback # if self.tensorboard: # tbopt = dict(inputs=batch, outputs=output, # epoch=epoch, minibatch=n_batch, mode='train', # loss=loss) # self.model.board(self.tensorboard, **tbopt) # for func in self._tensorboard_callbacks['train']['step']: # func(self.tensorboard, **tbopt) # del tbopt # print summary with torch.no_grad(): epoch_loss /= nb_batches # self._print('train', epoch, nb_steps, nb_steps, # epoch_loss, last=True) # self._board('train', epoch) # # tb callback # if self.tensorboard: # tbopt = dict(epoch=epoch, loss=epoch_loss, mode='train') # self.model.board(self.tensorboard, **tbopt) # for func in self._tensorboard_callbacks['train']['epoch']: # func(self.tensorboard, **tbopt) return epoch_loss def _eval(self, epoch=0): """Evaluate once""" if self.eval_set is None: return self.model.eval() with torch.no_grad(): epoch_loss = 0 epoch_losses = {} epoch_metrics = {} nb_batches = 0 nb_steps = len(self.eval_set) for n_batch, batch in enumerate(self.eval_set): losses = {} metrics = {} # forward pass batch = make_tuple(batch) batch = tuple(torch.as_tensor(b, device=self.device) for b in batch) batch = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch) nb_batches += batch[0].shape[0] self.optimizer.zero_grad() output = self.model(*batch, _loss=losses, _metric=metrics) loss = sum(losses.values()) # update average across batches weight = float(batch[0].shape[0]) epoch_loss += loss * weight update_loss_dict(epoch_losses, losses, weight) update_loss_dict(epoch_metrics, metrics, weight) # print if n_batch % self.log_interval == 0: self._print('eval', epoch, n_batch + 1, nb_steps, loss, losses, metrics) # tb callback if self.tensorboard: tbopt = dict(inputs=batch, outputs=output, epoch=epoch, minibatch=n_batch, mode='eval', loss=loss, losses=losses, metrics=metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['eval']['step']: func(self.tensorboard, **tbopt) # print summary epoch_loss /= nb_batches normalize_loss_dict(epoch_losses, nb_batches) normalize_loss_dict(epoch_metrics, nb_batches) self._print('eval', epoch, nb_steps, nb_steps, epoch_loss, epoch_losses, epoch_metrics, last=True) self._board('eval', epoch, epoch_loss, epoch_metrics) # tb callback if self.tensorboard: tbopt = dict(epoch=epoch, loss=epoch_loss, mode='eval', losses=epoch_losses, metrics=epoch_metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['eval']['epoch']: func(self.tensorboard, **tbopt) return epoch_loss def _print(self, mode, n_epoch, n_batch, nb_steps, loss, losses=None, metrics=None, last=False): """Pretty printing Parameters ---------- mode : {'train', 'eval'} n_epoch : int Index of current epoch (starts at one) n_batch : int Index of current batch (starts at one) nb_steps : int Total number of batches loss : () tensor Loss for this batch losses : dict[str: () tensor] Loss components for this batch metrics : dict[str: () tensor] Metrics for this batch last : bool, default=False Is this the end of the batch? If True, loss/losses/metrics should contain the average loss across all batches. """ name = 'Train' if mode == 'train' else 'Eval ' if last: pct = 1 bar = '[' + '=' * 10 + ']' else: pct = n_batch/nb_steps len_arrow = min(math.floor(pct*10 + 0.5), 9) bar = '[' + '=' * len_arrow + '>' + ' ' * (9-len_arrow) + ']' lepoch = str(len(str(self.nb_epoch))) evolution = '{:s} | {:' + lepoch + 'd} | {:3.0f}% ' + bar + ' ' evolution = evolution.format(name, n_epoch, pct*100) values = '' if mode == 'train': values += '| loss = {:12.6g} '.format(loss.item()) if losses and self.show_losses: values += '|' for key, val in losses.items(): values += ' {}: {:12.6g} '.format(key, val.item()) if metrics and (mode == 'eval' or self.show_metrics): values += '|' for key, val in metrics.items(): values += ' {}: {:12.6g} '.format(key, val.item()) print(evolution + values, end='\r', flush=True) if last: print('') def _board(self, mode, epoch, loss, epoch_metrics): """Add losses and metrics to tensorboard.""" if not self.tensorboard: return tb = self.tensorboard tb.add_scalars('loss', {mode: loss.item()}, epoch) for tag, value in epoch_metrics.items(): tb.add_scalars(tag, {mode: value.item()}, epoch) tb.flush() def add_tensorboard_callback(self, func, mode='train', trigger='epoch'): """Register tensorboard callbacks Parameters ---------- func : callable If trigger 'step', with signature `(tb, input, output, epoch, step, loss, losses, metrics)` If trigger 'epoch', with signature: `(tb, epoch, loss, losses, metrics)` mode : {'train', 'eval'} Trigger either during a training or evaluation call. trigger : {'epoch', 'step'} Trigger either at the end of a step or at the end of an epoch. """ if mode not in self._tensorboard_callbacks.keys(): self._tensorboard_callbacks[mode] = dict() if trigger not in self._tensorboard_callbacks[mode].keys(): self._tensorboard_callbacks[mode][trigger] = list() self._tensorboard_callbacks[mode][trigger].append(func) def _hello(self, mode): """Tell the use what we are going to do (mode, device, dtype, ...) Parameters ---------- mode : {'train', 'eval'} """ if self.device.type == 'cuda': device = torch.cuda.get_device_name(self.device) else: assert self.device.type == 'cpu' device = 'CPU' dtype = str(self.dtype).split('.')[-1] if mode == 'train': hello = 'Training model {} for {} epochs (steps per epoch: {}) ' \ 'on {} (dtype = {})' hello = hello.format(type(self.model).__name__, self.nb_epoch, len(self.train_set), device, dtype) else: hello = 'Evaluating model {} (minibatches: {}) on {} (dtype = {})' hello = hello.format(type(self.model).__name__, len(self.eval_set), device, dtype) print(hello, flush=True) def _save(self, epoch): """Save once""" if self.save_model: save_model = self._formatfile(self.save_model, epoch) dir_model = os.path.dirname(save_model) if dir_model: os.makedirs(dir_model, exist_ok=True) torch.save(self.model.state_dict(), save_model) if self.save_optimizer: save_optimizer = self._formatfile(self.save_optimizer, epoch) dir_optimizer = os.path.dirname(save_optimizer) if dir_optimizer: os.makedirs(dir_optimizer, exist_ok=True) torch.save(self.optimizer.state_dict(), save_optimizer) @staticmethod def _formatfile(file, epoch): """Format filename for an epoch""" keys = [tup[1] for tup in string.Formatter().parse(file) if tup[1] is not None] if len(keys) == 1: file = file.format(epoch) elif len(keys) > 1: raise ValueError('Cannot have more than one format key') return file def train(self): """Launch training""" self._hello('train') with torch.random.fork_rng(enabled=self.seed is not None): if self.seed is not None: torch.random.manual_seed(self.seed) self.initial_seed = torch.random.initial_seed() with benchmark(self.benchmark): self.model.to(dtype=self.dtype, device=self.device) self.epoch = self.initial_epoch self._eval(self.epoch) self._save(self.epoch) for self.epoch in range(self.epoch+1, self.nb_epoch+1): train_loss = self._train(self.epoch) print('Train loss: {}'.format(train_loss)) val_loss = self._eval(self.epoch) self._save(self.epoch) # scheduler if isinstance(self.scheduler, ReduceLROnPlateau): sched_loss = val_loss or train_loss self.scheduler.step(sched_loss) elif self.scheduler: self.scheduler.step() def eval(self): """Launch evaluation""" self._hello('eval') self.model.to(dtype=self.dtype, device=self.device) self._eval() def init(self): """Initialize the random state + run one evaluation.""" with torch.random.fork_rng(enabled=self.seed is not None): if self.seed is not None: torch.random.manual_seed(self.seed) self.initial_seed = torch.random.initial_seed() self.save_random_state() self.epoch = self.initial_epoch self.model.to(dtype=self.dtype, device=self.device) self._eval(self.epoch) self._save(self.epoch) def set_random_state(self): """Populate the random state using a saved state.""" if self.random_state: cpu_state, *gpu_states = self.random_state devices = list(range(torch.cuda.device_count())) torch.set_rng_state(self.random_state[0]) for device, state in zip(devices, gpu_states): torch.cuda.set_rng_state(state, device) def save_random_state(self): """Save the current random state.""" devices = list(range(torch.cuda.device_count())) self.random_state = [torch.get_rng_state()] self.random_state.extend(torch.cuda.get_rng_state(device) for device in devices) def train1(self): """Train for one epoch.""" with torch.random.fork_rng(): self.set_random_state() self.model.to(dtype=self.dtype, device=self.device) self.epoch += 1 self._train(self.epoch) self._eval(self.epoch) self._save(self.epoch) self.save_random_state() class SegGANTrainer: """Training class for Seg+CycleGAN model, may need tweaking for general use.""" _nb_steps = None _train_set = None _eval_set = None _tensorboard = None _tensorboard_callbacks = None random_state = [] def __init__(self, model, disc, train_set, eval_set=None, optimizer=None, lambda_gp=10, lambda_domain=1, lambda_cycle=10, lambda_id=0.1, lambda_seg_domain=0.1, lambda_seg_synth=0.3, lambda_seg_adv=0.1, seg_loss=DiceLoss(log=False, implicit=False), domain_loss=torch.nn.CrossEntropyLoss(), cycle_loss=torch.nn.L1Loss(), gen_interval=1, seg_interval=20, adv_seg_start=5, softplus=True, r1=False, nb_epoch=100, nb_steps=None, *, # the remaining parameters *must be* keywords device=None, dtype=None, initial_epoch=0, log_interval=10, benchmark=False, seed=None, tensorboard=None, save_model=None, save_optimizer=None, load_model=None, load_optimizer=None, show_losses=True, show_metrics=False, scheduler=ReduceLROnPlateau): """ Parameters ---------- model : Module (Generative) Model to train. Its forward pass should accept a `loss` argument, and take as inputs the elements that pop out of the training set. disc : Module or sequence[Module] Discriminator model(s) for GAN training. For cycleSeg model this should contain one for GAN and one for seg. train_set : sequence[tensor or tuple[tensor]] Training set. It should be a finite sequence of tensors or tuple of tensors. Should contain tuple of (Source, Target) domains. eval_set : sequence[tensor or tuple[tensor]], optional Evaluation set. It should be a finite sequence of tensors or tuple of tensors. Should contain tuple of (Source, Target) domains. optimizer : callable, default=Adam A function that takes trainable parameters as inputs and returns an Optimizer object. nb_epoch : int, default=100 Number of epochs. nb_steps : int, default=`len(train_set) or 100` Number of steps per epoch. If the training set is a finite sequence (i.e., `len` is implemented), its length is used. Else, the training set is assumed to be infinite and the default number of steps is 100. scheduler : Scheduler, default=ReduceLROnPlateau Other Parameters ---------------- device : torch.device, optional Device to use. By default, use the default cuda device if any, else use cpu. dtype : torch.dtype, optional Data type to use. By default use `torch.get_default_dtype`. initial_epoch : int, default=0 First epoch log_interval : int, default=10 Number of steps between screen updates. benchmark : bool, default=False Use the cudnn benchmarking utility that uses the first forward pass to compare different convolution algorithms and select the best performing one. You should only use this option if the spatial shape of your input data is constant across mini batches. seed : int, optional Manual seed to use for training. The seed is set when training starts. A context manager is used so that the global state is kept untouched. If `None`, use the global state. tensorboard : str, optional A path to the tensorboard log directory. If provided, losses and metrics are registered to the board by default. save_model : str, optional A path to save the model at each epoch. Can have a formatted component ('mymodel_{}.pth') for the epoch number. save_optimizer : str, optional A path to save the optimizer at each epoch. Can have a formatted component ('myoptim_{}.pth') for the epoch number. load_model : str, optional Path to saved weights to use to initialize the model. load_optimizer : str, optional Path to saved state to use to initialize the optimizer. show_losses : bool, default=True Print values of individual losses show_metrics : bool, default=False Print values of individual metrics """ self.model = model if isinstance(disc, (list, tuple)): if len(disc) == 2: self.disc_gan, self.disc_seg = disc else: self.disc_gan = disc[0] self.disc_seg = None else: self.disc_gan = disc self.disc_seg = None self.train_set = train_set self.eval_set = eval_set if optimizer is None: optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.5,0.999)) self.optim_d_gan = None self.optim_d_seg = None if self.disc_gan: self.optim_d_gan = torch.optim.Adam(self.disc_gan.parameters(), lr=0.00001, betas=(0.5,0.999)) if self.disc_seg: self.optim_d_seg = torch.optim.Adam(self.disc_seg.parameters(), lr=0.00001, betas=(0.5,0.999)) self.optimizer = optimizer self.lambda_gp = lambda_gp self.lambda_domain = lambda_domain self.lambda_cycle = lambda_cycle self.lambda_id = lambda_id self.lambda_seg_domain = lambda_seg_domain self.lambda_seg_synth = lambda_seg_synth self.lambda_seg_adv = lambda_seg_adv self.seg_loss = seg_loss self.domain_loss = domain_loss self.cycle_loss = cycle_loss self.gen_interval = gen_interval self.seg_interval = seg_interval self.adv_seg_start = adv_seg_start self.softplus = softplus self.r1 = r1 self.log_interval = log_interval self.benchmark = benchmark self.seed = seed self.initial_seed = seed self.tensorboard = tensorboard self._tensorboard_callbacks = dict(train=dict(epoch=[], step=[]), eval=dict(epoch=[], step=[])) self.save_model = save_model self.save_optimizer = save_optimizer self.load_model = load_model self.load_optimizer = load_optimizer self.show_losses = show_losses self.show_metrics = show_metrics self.nb_epoch = nb_epoch self.nb_steps = nb_steps self.initial_epoch = initial_epoch self.epoch = initial_epoch self.device = device or 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.device) self.dtype = dtype or torch.get_default_dtype() self.scheduler = scheduler if self.scheduler is not None: self.scheduler = self.scheduler(self.optimizer) if self.load_model: self.model.load_state_dict(torch.load(self.load_model)) if self.load_optimizer: self.optimizer.load_state_dict(torch.load(self.load_optimizer)) def _update_nb_steps(self): def len_or(x, default): return len(x) if hasattr(x, '__len__') else default self._nb_train = self._nb_steps or len_or(self._train_set, 100) self._nb_eval = self._nb_steps or len_or(self._eval_set, 100) class _batch_iterator: def __init__(self, set, length): self.set = set self.length = length def __len__(self): return self.length def __iter__(self): d = 0 while d < self.length: for batch in self.set: if d >= self.length: return yield batch d += 1 @property def tensorboard(self): if self._tensorboard: return self._tensorboard else: return self._tensorboard @tensorboard.setter def tensorboard(self, val): if not val: self._tensorboard = val else: self._tensorboard = SummaryWriter(val) @property def nb_steps(self): return self._nb_steps @nb_steps.setter def nb_steps(self, val): self._nb_steps = val self._update_nb_steps() @property def train_set(self): if self._train_set: return self._batch_iterator(self._train_set, self._nb_train) else: return None @train_set.setter def train_set(self, val): self._train_set = val self._update_nb_steps() @property def eval_set(self): if self._eval_set: return self._batch_iterator(self._eval_set, self._nb_eval) else: return None @eval_set.setter def eval_set(self, val): self._eval_set = val self._update_nb_steps() def wass_gp(self, disc, real, fake): # Adapted from example provided by @eriklindernoren on GitHub # debugging - print device of tensors device = real.device fake = fake.to(device) # assume [B, C, **] -> dim = length of shape excluding B & C dim = len(real.shape) - 2 # random number to scale between real & fake shape = [real.shape[0], 1] _ = [shape.append(1) for i in range(dim)] eps = torch.rand(shape) eps = eps.to(device) mix = (real * eps + fake * (1 - eps)).requires_grad_(True) disc_mix = disc(mix) if isinstance(disc_mix, (list, tuple)): disc_mix = disc_mix[0] fake_ = torch.ones(disc_mix.shape, requires_grad=False) fake_ = fake_.to(device) grad = torch.autograd.grad( outputs=disc_mix, inputs=mix, grad_outputs=fake_, create_graph=True, retain_graph=True, only_inputs=True ) grad = grad[0] grad = grad.view(grad.shape[0], -1) gp = ((grad.norm(2, dim=1) - 1)**2) gp = gp.mean() return gp def r1_reg(self, disc, x_in): x_in.requires_grad = True d_out,_ = disc(x_in) # zero-centered gradient penalty for real images batch_size = x_in.size(0) grad_dout = torch.autograd.grad( outputs=d_out.sum(), inputs=x_in, create_graph=True, retain_graph=True, only_inputs=True)[0] grad_dout2 = grad_dout.pow(2) assert (grad_dout2.size() == x_in.size()) reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0) return reg def _train_gan(self, epoch=0): """Train GAN for one epoch""" # TODO: Look at implementing FID metric for val self.model.train() # check for translation data - need to extend to work for standard generation if len(self.train_set) == 2: train_s, train_t = self.train_set train_set = zip(train_s, train_t) nb_steps = len(train_s) else: train_set = self.train_set nb_steps = len(train_set) epoch_loss_d_gan = 0. epoch_loss_d_seg = 0. epoch_loss_g = 0. epoch_loss_seg = 0. epoch_losses = {} epoch_metrics = {} nb_batches = 0 nb_d_gan = 0. nb_d_seg = 0. nb_gan = 0. nb_seg = 0. ### TODO: add proper data-logging for n_batch, batch in enumerate(train_set): losses = {} metrics = {} loss_d_gan = 0. loss_d_seg = 0. loss_g = 0. loss_seg = 0. batch_s, batch_t = batch # create batch for source domain batch_s = make_tuple(batch_s) batch_s = tuple(torch.as_tensor(b, device=self.device) for b in batch_s) batch_s = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch_s) batch_s_img, batch_s_ref, batch_s_met = batch_s nb_batches += batch_s[0].shape[0] # create batch for target domain batch_t = make_tuple(batch_t) batch_t = tuple(torch.as_tensor(b, device=self.device) for b in batch_t) batch_t = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch_t) batch_t_img, batch_t_met = batch_t self.optimizer.zero_grad() if self.optim_d_gan: self.optim_d_gan.zero_grad() if self.optim_d_seg: self.optim_d_seg.zero_grad() ## training translation discriminator # first perform source -> target trans_t_img = self.model(image=batch_s_img, meta=batch_s_met, seg=False, gan=True, gan_meta=batch_t_met) # test discriminator on translation real_valid, real_class = self.disc_gan(batch_s_img) fake_valid, fake_class = self.disc_gan(trans_t_img) # calculate wasserstein gradient penalty (or R1) if self.r1: grad_pen = self.r1_reg(self.disc_gan, batch_s_img) else: grad_pen = self.wass_gp(self.disc_gan, batch_s_img, trans_t_img) # adversarial if self.softplus: loss_adv_d = torch.mean(F.softplus(-real_valid)) + torch.mean(F.softplus(fake_valid)) + self.lambda_gp * grad_pen else: loss_adv_d = -torch.mean(real_valid) + torch.mean(fake_valid) + self.lambda_gp * grad_pen # domain loss_dom_d = self.domain_loss(real_class.view(-1, real_class.shape[-1]), torch.max(batch_s_met, -1)[1].view(-1)) # repeat for target -> source trans_s_img = self.model(image=batch_t_img, meta=batch_t_met, seg=False, gan=True, gan_meta=batch_s_met) real_valid, real_class = self.disc_gan(batch_t_img) fake_valid, fake_class = self.disc_gan(trans_s_img) if self.r1: grad_pen = self.r1_reg(self.disc_gan, batch_t_img) else: grad_pen = self.wass_gp(self.disc_gan, batch_t_img, trans_s_img) if self.softplus: loss_adv_d += torch.mean(F.softplus(-real_valid)) + torch.mean(F.softplus(fake_valid)) + self.lambda_gp * grad_pen else: loss_adv_d += -torch.mean(real_valid) + torch.mean(fake_valid) + self.lambda_gp * grad_pen loss_dom_d += self.domain_loss(real_class.view(-1, real_class.shape[-1]), torch.max(batch_t_met, -1)[1].view(-1)) # calculate overall loss loss_d_gan = loss_adv_d + self.lambda_domain * loss_dom_d losses['loss_adv_d_gan'] = loss_adv_d losses['loss_dom_d_gan'] = loss_dom_d losses['loss_d_gan'] = loss_d_gan self.optim_d_gan.zero_grad() loss_d_gan.backward() self.optim_d_gan.step() nb_d_gan += 1. if self.disc_seg and epoch > self.adv_seg_start: ## training segmentation discriminator # segment images s_seg = self.model(image=batch_s_img, meta=batch_s_met, seg=True, gan=False) t_seg = self.model(image=batch_t_img, meta=batch_t_met, seg=True, gan=False) # test discriminator on segmentation gt_valid, _ = self.disc_seg(batch_s_ref) s_valid, s_class = self.disc_seg(s_seg) t_valid, t_class = self.disc_seg(t_seg) # calculate wasserstein gradient penalty if self.r1: grad_pen = self.r1_reg(self.disc_seg, batch_s_ref) else: grad_pen = 0.5 * (self.wass_gp(self.disc_seg, batch_s_ref, s_seg) + \ self.wass_gp(self.disc_seg, batch_s_ref, t_seg)) # adversarial if self.softplus: loss_adv_d = torch.mean(F.softplus(-gt_valid)) + \ 0.5 * (torch.mean(F.softplus(s_valid)) + torch.mean(F.softplus(t_valid))) + \ self.lambda_gp * grad_pen else: loss_adv_d = -torch.mean(gt_valid) + \ 0.5 * (torch.mean(s_valid) + torch.mean(t_valid)) + \ self.lambda_gp * grad_pen # domain loss_dom_d = 0.5 * (self.domain_loss(s_class.view(-1, s_class.shape[-1]), torch.max(batch_s_met, -1)[1].view(-1)) + \ self.domain_loss(t_class.view(-1, t_class.shape[-1]), torch.max(batch_t_met, -1)[1].view(-1))) # calculate overall loss loss_d_seg = loss_adv_d + self.lambda_domain * loss_dom_d losses['loss_adv_d_seg'] = loss_adv_d losses['loss_dom_d_seg'] = loss_dom_d losses['loss_d_seg'] = loss_d_seg self.optim_d_seg.zero_grad() loss_d_seg.backward() self.optim_d_seg.step() nb_d_seg += 1. if n_batch > 0 and n_batch % self.gen_interval == 0: ## training translation generator # source -> target s_t_img = self.model(image=batch_s_img, meta=batch_s_met, seg=False, gan=True, gan_meta=batch_t_met) fake_valid, fake_class = self.disc_gan(s_t_img) if self.softplus: loss_g_adv = torch.mean(F.softplus(-fake_valid)) else: loss_g_adv = - torch.mean(fake_valid) loss_g_dom = self.domain_loss(fake_class.view(-1, fake_class.shape[-1]), torch.max(batch_t_met, -1)[1].view(-1)) # target -> source t_s_img = self.model(image=batch_s_img, meta=batch_s_met, seg=False, gan=True, gan_meta=batch_t_met) fake_valid, fake_class = self.disc_gan(t_s_img) if self.softplus: loss_g_adv += torch.mean(F.softplus(-fake_valid)) else: loss_g_adv += - torch.mean(fake_valid) loss_g_dom += self.domain_loss(fake_class.view(-1, fake_class.shape[-1]), torch.max(batch_s_met, -1)[1].view(-1)) # source -> target -> source s_t_s_img = self.model(image=s_t_img, meta=batch_t_met, seg=False, gan=True, gan_meta=batch_s_met) loss_g_cyc = self.cycle_loss(s_t_s_img, batch_s_img) # target -> source -> target t_s_t_img = self.model(image=t_s_img, meta=batch_s_met, seg=False, gan=True, gan_meta=batch_t_met) loss_g_cyc += self.cycle_loss(t_s_t_img, batch_t_img) # source -> source s_s_img = self.model(image=batch_s_img, meta=batch_s_met, seg=False, gan=True, gan_meta=batch_s_met) loss_g_id = self.cycle_loss(s_s_img, batch_s_img) # target -> target t_t_img = self.model(image=batch_t_img, meta=batch_t_met, seg=False, gan=True, gan_meta=batch_t_met) loss_g_id += self.cycle_loss(t_t_img, batch_t_img) # overall loss loss_g = loss_g_adv + self.lambda_domain * loss_g_dom + \ self.lambda_cycle * loss_g_cyc + self.lambda_id * loss_g_id losses['loss_g_adv'] = loss_g_adv losses['loss_g_dom'] = loss_g_dom losses['loss_g_cyc'] = loss_g_cyc losses['loss_g_id'] = loss_g_id losses['loss_g'] = loss_g self.optimizer.zero_grad() loss_g.backward() self.optimizer.step() nb_gan += 1. if n_batch % self.seg_interval == 0: ## training segmentation 'generator' via Dice # segment images s_seg = self.model(image=batch_s_img, meta=batch_s_met, seg=True, gan=False) # supervised learning of source -> label loss_seg_sup = self.seg_loss(s_seg, batch_s_ref) s_t_img = self.model(image=batch_s_img, meta=batch_s_met, seg=False, gan=True, gan_meta=batch_t_met) s_t_seg = self.model(image=s_t_img, meta=batch_t_met, seg=True, gan=False) # supervised learning of source -> target -> label loss_seg_synth = self.seg_loss(s_t_seg, batch_s_ref) if self.disc_seg and epoch > self.adv_seg_start: t_seg = self.model(image=batch_t_img, meta=batch_t_met, seg=True, gan=False) t_s_img = self.model(image=batch_t_img, meta=batch_t_met, seg=False, gan=True, gan_meta=batch_s_met) t_s_seg = self.model(image=t_s_img, meta=batch_t_met, seg=True, gan=False) # test discriminator on segmentation s_valid, s_class = self.disc_seg(s_seg) t_valid, t_class = self.disc_seg(t_seg) s_t_valid, s_t_class = self.disc_seg(s_t_seg) t_s_valid, t_s_class = self.disc_seg(t_s_seg) # adversarial if self.softplus: loss_seg_adv = torch.mean(F.softplus(-s_valid)) loss_seg_adv += torch.mean(F.softplus(-t_valid)) loss_seg_adv += torch.mean(F.softplus(-s_t_valid)) loss_seg_adv += torch.mean(F.softplus(-t_s_valid)) else: loss_seg_adv = -torch.mean(s_valid) loss_seg_adv += -torch.mean(t_valid) loss_seg_adv += -torch.mean(s_t_valid) loss_seg_adv += -torch.mean(t_s_valid) # domain loss_seg_dom = self.domain_loss(s_class.view(-1, s_class.shape[-1]), torch.max(batch_s_met, -1)[1].view(-1)) loss_seg_dom += self.domain_loss(t_class.view(-1, t_class.shape[-1]), torch.max(batch_t_met, -1)[1].view(-1)) loss_seg_dom += self.domain_loss(s_t_class.view(-1, s_t_class.shape[-1]), torch.max(batch_t_met, -1)[1].view(-1)) loss_seg_dom += self.domain_loss(t_s_class.view(-1, t_s_class.shape[-1]), torch.max(batch_s_met, -1)[1].view(-1)) # calculate overall loss loss_seg = loss_seg_sup + self.lambda_seg_synth * loss_seg_synth + \ self.lambda_seg_adv * loss_seg_adv + self.lambda_seg_domain * loss_seg_dom losses['loss_seg_sup'] = loss_seg_sup losses['loss_seg_synth'] = loss_seg_synth losses['loss_seg_adv'] = loss_seg_adv losses['loss_seg_domain'] = loss_seg_dom else: # only use T1 segmentation loss loss_seg = loss_seg_sup + self.lambda_seg_synth * loss_seg_synth losses['loss_seg_sup'] = loss_seg_sup losses['loss_seg_synth'] = loss_seg_synth losses['loss_seg'] = loss_seg self.optimizer.zero_grad() loss_seg.backward() self.optimizer.step() nb_seg += 1. # update average across batches with torch.no_grad(): weight = float(batch_s[0].shape[0]) epoch_loss_d_gan += loss_d_gan * weight epoch_loss_d_seg += loss_d_seg * weight epoch_loss_g += loss_g * weight epoch_loss_seg += loss_seg * weight loss = loss_d_gan + loss_d_seg + loss_g + loss_seg update_loss_dict(epoch_losses, losses, weight) update_loss_dict(epoch_metrics, metrics, weight) # print if n_batch % self.log_interval == 0: self._print('train', epoch, n_batch+1, nb_steps, loss, losses, metrics) # tb callback if self.tensorboard: tbopt = dict(inputs=batch, outputs=output, epoch=epoch, minibatch=n_batch, mode='train', loss=loss, losses=losses, metrics=metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['train']['step']: func(self.tensorboard, **tbopt) del tbopt # print summary with torch.no_grad(): if nb_d_gan > 0: epoch_loss_d_gan /= nb_d_gan if nb_d_seg > 0: epoch_loss_d_seg /= nb_d_seg if nb_gan > 0: epoch_loss_g /= nb_gan if nb_seg > 0: epoch_loss_seg /= nb_seg epoch_loss = epoch_loss_d_gan + epoch_loss_d_seg + epoch_loss_g + epoch_loss_seg normalize_loss_dict(epoch_losses, nb_batches) normalize_loss_dict(epoch_metrics, nb_batches) self._print('train', epoch, nb_steps, nb_steps, epoch_loss, epoch_losses, epoch_metrics, last=True) self._board('train', epoch, epoch_loss, epoch_metrics) # tb callback if self.tensorboard: tbopt = dict(epoch=epoch, loss=epoch_loss, mode='train', losses=epoch_losses, metrics=epoch_metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['train']['epoch']: func(self.tensorboard, **tbopt) print('D_G loss: {}\nD_S loss: {}\nG loss: {}\nS loss: {}'.format(epoch_loss_d_gan, epoch_loss_d_seg, epoch_loss_g, epoch_loss_seg)) return epoch_loss, epoch_losses def _train_seg(self, epoch=0): """Train segmentation for one epoch""" self.model.train() epoch_loss = 0. epoch_losses = {} epoch_metrics = {} nb_batches = 0 nb_steps = len(self.train_set) for n_batch, batch in enumerate(self.train_set): losses = {} metrics = {} # forward pass batch = make_tuple(batch) batch = tuple(torch.as_tensor(b, device=self.device) for b in batch) batch = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch) nb_batches += batch[0].shape[0] self.optimizer.zero_grad() output = self.model(*batch, _loss=losses, _metric=metrics) loss = sum(losses.values()) # backward pass loss.backward() self.optimizer.step() # update average across batches with torch.no_grad(): weight = float(batch[0].shape[0]) epoch_loss += loss * weight update_loss_dict(epoch_losses, losses, weight) update_loss_dict(epoch_metrics, metrics, weight) # print if n_batch % self.log_interval == 0: self._print('train', epoch, n_batch+1, nb_steps, loss, losses, metrics) # tb callback if self.tensorboard: tbopt = dict(inputs=batch, outputs=output, epoch=epoch, minibatch=n_batch, mode='train', loss=loss, losses=losses, metrics=metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['train']['step']: func(self.tensorboard, **tbopt) del tbopt # print summary with torch.no_grad(): epoch_loss /= nb_batches normalize_loss_dict(epoch_losses, nb_batches) normalize_loss_dict(epoch_metrics, nb_batches) self._print('train', epoch, nb_steps, nb_steps, epoch_loss, epoch_losses, epoch_metrics, last=True) self._board('train', epoch, epoch_loss, epoch_metrics) # tb callback if self.tensorboard: tbopt = dict(epoch=epoch, loss=epoch_loss, mode='train', losses=epoch_losses, metrics=epoch_metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['train']['epoch']: func(self.tensorboard, **tbopt) return epoch_loss def _eval(self, epoch=0): """Evaluate once""" if self.eval_set is None: return self.model.eval() with torch.no_grad(): epoch_loss = 0 epoch_losses = {} epoch_metrics = {} nb_batches = 0 nb_steps = len(self.eval_set) for n_batch, batch in enumerate(self.eval_set): losses = {} metrics = {} # forward pass batch = make_tuple(batch) batch = tuple(torch.as_tensor(b, device=self.device) for b in batch) batch = tuple(b.to(dtype=self.dtype) if b.dtype in (torch.half, torch.float, torch.double) else b for b in batch) nb_batches += batch[0].shape[0] self.optimizer.zero_grad() output = self.model(*batch, _loss=losses, _metric=metrics) loss = sum(losses.values()) # update average across batches weight = float(batch[0].shape[0]) epoch_loss += loss * weight update_loss_dict(epoch_losses, losses, weight) update_loss_dict(epoch_metrics, metrics, weight) # print if n_batch % self.log_interval == 0: self._print('eval', epoch, n_batch + 1, nb_steps, loss, losses, metrics) # tb callback if self.tensorboard: tbopt = dict(inputs=batch, outputs=output, epoch=epoch, minibatch=n_batch, mode='eval', loss=loss, losses=losses, metrics=metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['eval']['step']: func(self.tensorboard, **tbopt) # print summary epoch_loss /= nb_batches normalize_loss_dict(epoch_losses, nb_batches) normalize_loss_dict(epoch_metrics, nb_batches) self._print('eval', epoch, nb_steps, nb_steps, epoch_loss, epoch_losses, epoch_metrics, last=True) self._board('eval', epoch, epoch_loss, epoch_metrics) # tb callback if self.tensorboard: tbopt = dict(epoch=epoch, loss=epoch_loss, mode='eval', losses=epoch_losses, metrics=epoch_metrics) self.model.board(self.tensorboard, **tbopt) for func in self._tensorboard_callbacks['eval']['epoch']: func(self.tensorboard, **tbopt) return epoch_loss def _print(self, mode, n_epoch, n_batch, nb_steps, loss, losses=None, metrics=None, last=False): """Pretty printing Parameters ---------- mode : {'train', 'eval'} n_epoch : int Index of current epoch (starts at one) n_batch : int Index of current batch (starts at one) nb_steps : int Total number of batches loss : () tensor Loss for this batch losses : dict[str: () tensor] Loss components for this batch metrics : dict[str: () tensor] Metrics for this batch last : bool, default=False Is this the end of the batch? If True, loss/losses/metrics should contain the average loss across all batches. """ name = 'Train' if mode == 'train' else 'Eval ' if last: pct = 1 bar = '[' + '=' * 10 + ']' else: pct = n_batch/nb_steps len_arrow = min(math.floor(pct*10 + 0.5), 9) bar = '[' + '=' * len_arrow + '>' + ' ' * (9-len_arrow) + ']' lepoch = str(len(str(self.nb_epoch))) evolution = '{:s} | {:' + lepoch + 'd} | {:3.0f}% ' + bar + ' ' evolution = evolution.format(name, n_epoch, pct*100) values = '' if mode == 'train': values += '| loss = {:12.6g} '.format(loss.item()) if losses and self.show_losses: values += '|' for key, val in losses.items(): values += ' {}: {:12.6g} '.format(key, val.item()) if metrics and (mode == 'eval' or self.show_metrics): values += '|' for key, val in metrics.items(): values += ' {}: {:12.6g} '.format(key, val.item()) print(evolution + values, end='\r', flush=True) if last: print('') def _board(self, mode, epoch, loss, epoch_metrics): """Add losses and metrics to tensorboard.""" if not self.tensorboard: return tb = self.tensorboard tb.add_scalars('loss', {mode: loss.item()}, epoch) for tag, value in epoch_metrics.items(): tb.add_scalars(tag, {mode: value.item()}, epoch) tb.flush() def add_tensorboard_callback(self, func, mode='train', trigger='epoch'): """Register tensorboard callbacks Parameters ---------- func : callable If trigger 'step', with signature `(tb, input, output, epoch, step, loss, losses, metrics)` If trigger 'epoch', with signature: `(tb, epoch, loss, losses, metrics)` mode : {'train', 'eval'} Trigger either during a training or evaluation call. trigger : {'epoch', 'step'} Trigger either at the end of a step or at the end of an epoch. """ if mode not in self._tensorboard_callbacks.keys(): self._tensorboard_callbacks[mode] = dict() if trigger not in self._tensorboard_callbacks[mode].keys(): self._tensorboard_callbacks[mode][trigger] = list() self._tensorboard_callbacks[mode][trigger].append(func) def _hello(self, mode): """Tell the use what we are going to do (mode, device, dtype, ...) Parameters ---------- mode : {'train', 'eval'} """ if self.device.type == 'cuda': device = torch.cuda.get_device_name(self.device) else: assert self.device.type == 'cpu' device = 'CPU' dtype = str(self.dtype).split('.')[-1] if mode == 'train': hello = 'Training model {} for {} epochs (steps per epoch: {}) ' \ 'on {} (dtype = {})' hello = hello.format(type(self.model).__name__, self.nb_epoch, len(self.train_set), device, dtype) else: hello = 'Evaluating model {} (minibatches: {}) on {} (dtype = {})' hello = hello.format(type(self.model).__name__, len(self.eval_set), device, dtype) print(hello, flush=True) def _save(self, epoch): """Save once""" if self.save_model: save_model = self._formatfile(self.save_model, epoch) dir_model = os.path.dirname(save_model) if dir_model: os.makedirs(dir_model, exist_ok=True) torch.save(self.model.state_dict(), save_model) if self.save_optimizer: save_optimizer = self._formatfile(self.save_optimizer, epoch) dir_optimizer = os.path.dirname(save_optimizer) if dir_optimizer: os.makedirs(dir_optimizer, exist_ok=True) torch.save(self.optimizer.state_dict(), save_optimizer) @staticmethod def _formatfile(file, epoch): """Format filename for an epoch""" keys = [tup[1] for tup in string.Formatter().parse(file) if tup[1] is not None] if len(keys) == 1: file = file.format(epoch) elif len(keys) > 1: raise ValueError('Cannot have more than one format key') return file def train(self): """Launch training""" self._hello('train') with torch.random.fork_rng(enabled=self.seed is not None): if self.seed is not None: torch.random.manual_seed(self.seed) self.initial_seed = torch.random.initial_seed() with benchmark(self.benchmark): self.model.to(dtype=self.dtype, device=self.device) self.epoch = self.initial_epoch self._eval(self.epoch) self._save(self.epoch) for self.epoch in range(self.epoch+1, self.nb_epoch+1): train_loss = self._train(self.epoch) print('Train loss: {}'.format(train_loss)) val_loss = self._eval(self.epoch) self._save(self.epoch) # scheduler if isinstance(self.scheduler, ReduceLROnPlateau): sched_loss = val_loss or train_loss self.scheduler.step(sched_loss) elif self.scheduler: self.scheduler.step() def eval(self): """Launch evaluation""" self._hello('eval') self.model.to(dtype=self.dtype, device=self.device) self._eval() def init(self): """Initialize the random state + run one evaluation.""" with torch.random.fork_rng(enabled=self.seed is not None): if self.seed is not None: torch.random.manual_seed(self.seed) self.initial_seed = torch.random.initial_seed() self.save_random_state() self.epoch = self.initial_epoch self.model.to(dtype=self.dtype, device=self.device) self._eval(self.epoch) self._save(self.epoch) def set_random_state(self): """Populate the random state using a saved state.""" if self.random_state: cpu_state, *gpu_states = self.random_state devices = list(range(torch.cuda.device_count())) torch.set_rng_state(self.random_state[0]) for device, state in zip(devices, gpu_states): torch.cuda.set_rng_state(state, device) def save_random_state(self): """Save the current random state.""" devices = list(range(torch.cuda.device_count())) self.random_state = [torch.get_rng_state()] self.random_state.extend(torch.cuda.get_rng_state(device) for device in devices) def train1(self): """Train for one epoch.""" with torch.random.fork_rng(): self.set_random_state() self.model.to(dtype=self.dtype, device=self.device) self.epoch += 1 self._train(self.epoch) self._eval(self.epoch) self._save(self.epoch) self.save_random_state()
[ "torch.ones", "torch.cuda.is_available", "torch.load", "torch.nn.CrossEntropyLoss", "torch.get_rng_state", "torch.cuda.set_rng_state", "torch.random.manual_seed", "torch.autograd.grad", "torch.as_tensor", "torch.utils.tensorboard.SummaryWriter", "torch.random.initial_seed", "torch.device", "torch.nn.functional.softplus", "torch.max", "torch.cuda.get_device_name", "torch.cuda.device_count", "torch.cuda.get_rng_state", "torch.rand", "torch.get_default_dtype", "torch.no_grad", "torch.nn.L1Loss", "torch.set_rng_state", "torch.random.fork_rng", "torch.mean" ]
1.5
liamchalcroft/nitorch
0de179aff97244a82213c528f0d6393725c868c9
1.7
import os import json import torch import numpy as np from pointnetae.config import * class SceneDataset(torch.utils.data.Dataset): def __init__( self, data_source, max_num_points, load_ram=False, is_testing=False, ): self.data_source = data_source self.load_ram = load_ram self.max_num_points = max_num_points if is_testing: split_path = os.path.join(split_dir, room_name, split_test) else: split_path = os.path.join(split_dir, room_name, split_train) with open(split_path, "r") as f: self.npyfiles = json.load(f) if load_ram: self.loaded_data = [] for f in self.npyfiles: filepath = os.path.join(self.data_source, f) self.loaded_data.append(self.get_item_from_filepath(filepath)) def get_item_from_filepath(self, filepath): furniture_arr = np.load(filepath) num_points = furniture_arr.shape[0] assert num_points <= self.max_num_points target_tensor = furniture_arr furniture_tensor = np.zeros((num_points, point_size + 1)) furniture_tensor[0:num_points, 0:geometry_size + orientation_size] = furniture_arr[:, 0:geometry_size + orientation_size] # geometry, orientation furniture_tensor[np.arange(num_points), geometry_size + orientation_size + furniture_arr[:, geometry_size + orientation_size].astype(int)] = 1 # category furniture_tensor[0:num_points, geometry_size + orientation_size + num_categories] = 1 # existence (TODO: remove this from everywhere) furniture_tensor[0:num_points, geometry_size + orientation_size + num_categories + 1:] = furniture_arr[:, geometry_size + orientation_size + 1:] # shape return torch.Tensor(furniture_tensor), torch.Tensor(target_tensor) def __len__(self): return len(self.npyfiles) def __getitem__(self, idx): if self.load_ram: return self.loaded_data[idx] else: filepath = os.path.join(self.data_source, self.npyfiles[idx]) return self.get_item_from_filepath(filepath) def get_room_id(self, idx): return os.path.splitext(self.npyfiles[idx])[0]
[ "torch.Tensor" ]
1.7.1
AdamWang00/pointnet.pytorch
b92c3916cf9f84c35861790e8d9cdc6170a9afd5
1.3
import random import warnings from collections import OrderedDict from functools import wraps from typing import Any, Callable, Generator, Iterator, List, Optional import torch from torch.utils.data import DataLoader from torch.utils.data.sampler import BatchSampler from ignite.engine.engine import Engine from ignite.engine.events import Events from ignite.utils import manual_seed __all__ = ["update_dataloader", "keep_random_state", "ReproducibleBatchSampler", "DeterministicEngine"] def update_dataloader(dataloader: DataLoader, new_batch_sampler: BatchSampler) -> DataLoader: """Helper function to replace current batch sampler of the dataloader by a new batch sampler. Function returns new dataloader with new batch sampler. Args: dataloader: input dataloader new_batch_sampler: new batch sampler to use Returns: DataLoader """ params_keys = [k for k in dataloader.__dict__.keys() if not k.startswith("_")] for k in ["batch_size", "sampler", "drop_last", "batch_sampler", "dataset_kind"]: if k in params_keys: params_keys.remove(k) params = {k: getattr(dataloader, k) for k in params_keys} params["batch_sampler"] = new_batch_sampler return type(dataloader)(**params) class ReproducibleBatchSampler(BatchSampler): """Reproducible batch sampler. This class internally iterates and stores indices of the input batch sampler. This helps to start providing data batches from an iteration in a deterministic way. Example: Setup dataloader with `ReproducibleBatchSampler` and start providing data batches from an iteration .. code-block:: python from ignite.engine.deterministic import update_dataloader dataloader = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) # rewind dataloader to a specific iteration: dataloader.batch_sampler.start_iteration = start_iteration Args: batch_sampler: batch sampler same as used with `torch.utils.data.DataLoader`. start_iteration: optional start iteration. """ def __init__(self, batch_sampler: BatchSampler, start_iteration: Optional[int] = None): if not isinstance(batch_sampler, BatchSampler): raise TypeError("Argument batch_sampler should be torch.utils.data.sampler.BatchSampler") self.batch_indices = [] # type: List self.batch_sampler = batch_sampler self.start_iteration = start_iteration self.sampler = self.batch_sampler.sampler def setup_batch_indices(self) -> None: """Setup batch indices.""" self.batch_indices = [] for batch in self.batch_sampler: self.batch_indices.append(batch) if self.start_iteration is not None: self.batch_indices = self.batch_indices[self.start_iteration :] self.start_iteration = None def __iter__(self) -> Generator: self.setup_batch_indices() for batch in self.batch_indices: yield batch def __len__(self) -> int: return len(self.batch_sampler) def _get_rng_states() -> List[Any]: output = [random.getstate(), torch.get_rng_state()] try: import numpy as np output.append(np.random.get_state()) except ImportError: pass return output def _set_rng_states(rng_states: List[Any]) -> None: random.setstate(rng_states[0]) if "cpu" not in rng_states[1].device.type: rng_states[1] = rng_states[1].cpu() torch.set_rng_state(rng_states[1]) try: import numpy as np np.random.set_state(rng_states[2]) except ImportError: pass def _repr_rng_state(rng_states: List[Any]) -> str: from hashlib import md5 out = " ".join([md5(str(list(s)).encode("utf-8")).hexdigest() for s in rng_states]) return out def keep_random_state(func: Callable) -> Callable: """Helper decorator to keep random state of torch, numpy and random intact while executing a function. For more details on usage, please see :ref:`Dataflow synchronization`. Args: func: function to decorate """ @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> None: rng_states = _get_rng_states() func(*args, **kwargs) _set_rng_states(rng_states) return wrapper class DeterministicEngine(Engine): """Deterministic engine derived from :class:`~ignite.engine.engine.Engine`. "Deterministic" run is done by adding additional handlers to synchronize the dataflow and overriding some methods of :class:`~ignite.engine.engine.Engine`: .. code-block:: python for e in range(num_epochs): set_seed(seed_offset + e) if resume: setup_saved_rng_states() do_single_epoch_iterations(dataloader) If input data provider is `DataLoader`, its batch sampler is replaced by :class:`~ignite.engine.deterministic.ReproducibleBatchSampler`. .. code-block:: python for e in range(num_epochs): set_seed(seed_offset + e) setup_sampling(dataloader) if resume: setup_saved_rng_states() do_single_epoch_iterations(dataloader) Internally, `torch.backends.cudnn.deterministic = True` and `torch.backends.cudnn.benchmark = False` are also applied. For more details about dataflow synchronization, please see :ref:`Dataflow synchronization`. .. Note :: This class can produce exactly the same dataflow when resuming the run from an epoch (or more precisely from dataflow restart) and using torch `DataLoader` with `num_workers > 1` as data provider. Args: process_function: A function receiving a handle to the engine and the current batch in each iteration, and returns data to be stored in the engine's state. """ def __init__(self, process_function: Callable): super(DeterministicEngine, self).__init__(process_function) self.state_dict_user_keys.append("rng_states") self.add_event_handler(Events.STARTED, self._init_run) self.add_event_handler(Events.DATALOADER_STOP_ITERATION | Events.TERMINATE_SINGLE_EPOCH, self._setup_seed) def state_dict(self) -> OrderedDict: state_dict = super(DeterministicEngine, self).state_dict() state_dict["rng_states"] = _get_rng_states() return state_dict def _init_run(self) -> None: self.state.seed = int(torch.randint(0, int(1e9), (1,)).item()) if not hasattr(self.state, "rng_states"): setattr(self.state, "rng_states", None) if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def _setup_engine(self) -> None: if self.state.dataloader is None: raise RuntimeError( "Internal error, self.state.dataloader is None. Please, file an issue if you encounter this error." ) self._dataloader_len = self._get_data_length(self.state.dataloader) # if input data is torch dataloader we replace batch sampler by a batch sampler # such that its random sampling indices are reproducible by prefetching them before data iteration if isinstance(self.state.dataloader, DataLoader): # attribute _dataset_kind is introduced since 1.3.0 => before 1.3.0 all datasets are map-like can_patch_dataloader = True if hasattr(self.state.dataloader, "_dataset_kind"): from torch.utils.data.dataloader import _DatasetKind _dataloader_kind = self.state.dataloader._dataset_kind can_patch_dataloader = _dataloader_kind == _DatasetKind.Map if can_patch_dataloader: if self._dataloader_len is not None and hasattr(self.state.dataloader.sampler, "epoch"): if self._dataloader_len != self.state.epoch_length: warnings.warn( "When defined engine's epoch length is different of input dataloader length, " "distributed sampler indices can not be setup in a reproducible manner" ) batch_sampler = self.state.dataloader.batch_sampler if not (batch_sampler is None or isinstance(batch_sampler, ReproducibleBatchSampler)): self.state.dataloader = update_dataloader( self.state.dataloader, ReproducibleBatchSampler(batch_sampler) # type: ignore[arg-type] ) iteration = self.state.iteration self._dataloader_iter = self._from_iteration(iteration) # Below we define initial counter value for _run_once_on_dataset to measure a single epoch if self.state.epoch_length is not None: iteration %= self.state.epoch_length self._init_iter.append(iteration) # restore rng state if in the middle in_the_middle = self.state.iteration % self._dataloader_len > 0 if self._dataloader_len is not None else False rng_states = getattr(self.state, "rng_states", None) if rng_states is not None and in_the_middle: _set_rng_states(rng_states) setattr(self.state, "rng_states", None) def _from_iteration(self, iteration: int) -> Iterator: if self.state.dataloader is None: raise RuntimeError( "Internal error, self.state.dataloader is None. Please, file an issue if you encounter this error." ) data = self.state.dataloader if isinstance(data, DataLoader): try: # following is unsafe for IterableDatasets iteration %= len(data.batch_sampler) # type: ignore[attr-defined, arg-type] # Synchronize dataflow according to state.iteration self._setup_seed() if iteration > 0: # batch sampler is ReproducibleBatchSampler data.batch_sampler.start_iteration = iteration # type: ignore[attr-defined, union-attr] return iter(data) except TypeError as e: # Probably we can do nothing with DataLoader built upon IterableDatasets pass self.logger.info("Resuming from iteration for provided data will fetch data until required iteration ...") if hasattr(data, "__len__"): iteration %= len(data) # type: ignore[arg-type] # Synchronize dataflow from the begining self._setup_seed(iteration=0) data_iter = iter(data) counter = 0 while counter < iteration: try: next(data_iter) counter += 1 except StopIteration: data_iter = iter(data) return data_iter def _setup_seed(self, _: Any = None, iter_counter: Optional[int] = None, iteration: Optional[int] = None) -> None: if iter_counter is None: le = self._dataloader_len if self._dataloader_len is not None else 1 elif not iter_counter > 0: raise ValueError("iter_counter should be positive value") else: le = iter_counter if iteration is None: iteration = self.state.iteration manual_seed(self.state.seed + iteration // le) # type: ignore[operator]
[ "torch.get_rng_state", "torch.cuda.is_available", "torch.set_rng_state" ]
1.3
01-vyom/ignite
6954817abaa03b9be0f3a18b262058e1e8dd8fbe
1.7
import time import logging import warnings import psutil from signal import signal, SIGINT from py3nvml.py3nvml import * from typing import Dict, Optional from kge import Config, Dataset from kge.distributed.parameter_server import init_torch_server, init_lapse_scheduler from kge.distributed.worker_process import WorkerProcessPool from kge.distributed.work_scheduler import WorkScheduler from kge.distributed.misc import get_num_keys import torch from torch import multiprocessing as mp def monitor_hardware(folder, interval=1): def bytes_to_mb(bytes_amount): return round(bytes_amount / 1024 / 1024, 2) logger = logging.getLogger("hardware_monitor") logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler(os.path.join(folder, "hardware_monitor.log")) fh.setLevel(logging.DEBUG) logger.addHandler(fh) # let's monitor the default connection between OUR two servers # todo: just monitor all interfaces later on interface = "enp130s0f0" while True: time.sleep(interval) cpu_percentage = psutil.cpu_percent() memory_percentage = psutil.virtual_memory().percent network_info = psutil.net_io_counters() bytes_sent = network_info.bytes_sent bytes_recv = network_info.bytes_recv # timestamp;cpu%;mem%;net_sent;net_recvm msg = f"{time.time()};{cpu_percentage};{memory_percentage};{bytes_to_mb(bytes_sent)};{bytes_to_mb(bytes_recv)}" network_info = psutil.net_io_counters(pernic=True) if interface in network_info.keys(): bytes_sent = network_info[interface].bytes_sent bytes_recv = network_info[interface].bytes_recv msg += f";{bytes_to_mb(bytes_sent)};{bytes_to_mb(bytes_recv)}" logger.info( msg=msg ) def monitor_gpus(folder, interval=1): try: nvmlInit() except Exception: print("could not initialize GPU monitor") return device_count = nvmlDeviceGetCount() if device_count == 0: return logger = logging.getLogger("gpu_monitor") logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler(os.path.join(folder, "gpu_monitor.log")) fh.setLevel(logging.DEBUG) logger.addHandler(fh) while True: time.sleep(interval) for i in range(device_count): handle = nvmlDeviceGetHandleByIndex(i) proc_res = nvmlDeviceGetComputeRunningProcesses(handle) mem_per_process = list( map(lambda obj: (obj.pid, obj.usedGpuMemory), proc_res) ) res = nvmlDeviceGetUtilizationRates(handle) mem_res = nvmlDeviceGetMemoryInfo(handle) # timestamp;device_id;gpu_util;gpu_mem_util;gpu_temp;mem_per_process logger.info( f"{time.time()};{i};{res.gpu};{round((mem_res.used/mem_res.total)*100)};{mem_per_process}" ) def create_and_run_distributed( config: Config, dataset: Optional[Dataset] = None, checkpoint: Optional[Dict] = None ): # setting num eval workers to 1 if < 1 if config.get("job.distributed.num_eval_workers") < 1: warnings.warn("Need to have at least one worker for evaluation." "Setting job.distributed.num_eval_workers to 1") config.set("job.distributed.num_eval_workers", 1) # setting num workers to 1 if < 1 if config.get("job.distributed.num_workers") < 1: warnings.warn("Need to have at least one worker for training." "Setting job.distribtued.num_workers to 1") config.set("job.distributed.num_workers", 1) # setting num workers per machine to num workers if < 0 if config.get("job.distributed.num_workers_machine") <= 0: config.set("job.distributed.num_workers_machine", config.get("job.distributed.num_workers")) # setting already initialized workers if < 0 if config.get("job.distributed.already_init_workers") < 0: config.set("job.distributed.already_init_workers", config.get("job.distributed.machine_id") * config.get("job.distributed.num_workers_machine")) # specific settings for valid only jobs if config.get("job.type") in ["valid", "test", "eval"]: config.set("job.distributed.parameter_server", "shared") num_eval_workers = config.get("job.distributed.num_eval_workers") config.set("job.distributed.num_workers", num_eval_workers) config.set("job.distributed.num_workers_machine", num_eval_workers) config.set("job.distributed.num_machines", 1) config.set("job.distributed.gloo_socket_ifname", "lo") config.set("job.distributed.master_ip", "127.0.0.1") config.set(f"{config.get('model')}.create_eval", True) os.environ["OMP_NUM_THREADS"] = str( config.get("job.distributed.num_threads_per_process") ) os.environ["GLOO_SOCKET_IFNAME"] = config.get("job.distributed.gloo_socket_ifname") if ( config.get("job.distributed.repartition_epoch") and config.get("job.distributed.partition_type") == "stratification" ): # with stratificaton we have a lot of open files that need to be shared # between processes. Some servers don't allow that. Therefore set sharing # strategy to file_system to avoid too many open files error torch.multiprocessing.set_sharing_strategy("file_system") # catch interrupt (to shut down lapse and other processes) processes = [] monitoring_processes = [] worker_process_pool = None def kill_processes(signal_received, frame): print("\nSIGINT or CTRL-C detected. Shutting down all processes and exiting...") for process in processes: if process is not None: try: process.kill() except AttributeError: print("process already killed") for process in monitoring_processes: if process is not None: process.kill() if worker_process_pool is not None: worker_process_pool.kill() exit(0) signal(SIGINT, kill_processes) if config.get("job.type") == "train": # start hardware monitoring monitor_process = mp.Process( target=monitor_hardware, args=(config.folder, 0.5), daemon=True ) monitoring_processes.append(monitor_process) monitor_process.start() gpu_monitor_process = mp.Process( target=monitor_gpus, args=(config.folder, 1), daemon=True ) monitoring_processes.append(gpu_monitor_process) gpu_monitor_process.start() if config.get("job.distributed.machine_id") == 0: num_keys = get_num_keys(config, dataset) if config.get("job.distributed.parameter_server") == "lapse": p = mp.Process( target=init_lapse_scheduler, args=( config, num_keys, ), daemon=True, ) processes.append(p) p.start() elif config.get("job.distributed.parameter_server") == "torch": p = mp.Process( target=init_torch_server, args=( config, num_keys, ), daemon=True, ) processes.append(p) p.start() # create a work scheduler print("init scheduler") scheduler_init_time = time.time() scheduler = WorkScheduler.create(config=config, dataset=dataset) config.log(f"scheduler initialized after: {time.time()-scheduler_init_time}") print("start scheduler") scheduler_start_time = time.time() processes.append(scheduler) scheduler.start() config.log(f"scheduler start took: {time.time()-scheduler_start_time}") # create all train-workers in a worker pool worker_process_pool = WorkerProcessPool( config, dataset, checkpoint, ) valid_trace = worker_process_pool.join() for p in processes: p.join() if config.get("job.type") == "train": monitor_process.terminate() gpu_monitor_process.terminate() return valid_trace
[ "torch.multiprocessing.Process", "torch.multiprocessing.set_sharing_strategy" ]
1.7.1
uma-pi1/dist-kge
ccc93e7981c09a0499f2267f37886660896d8f72
1.1
import bisect import gc import glob import random import torch from others.logging import logger class Batch(object): def _pad(self, data, pad_id, width=-1): if (width == -1): width = max(len(d) for d in data) rtn_data = [d + [pad_id] * (width - len(d)) for d in data] return rtn_data def __init__(self, data=None, device=None, is_test=False): """Create a Batch from a list of examples.""" if data is not None: self.batch_size = len(data) pre_src = [x[0] for x in data] pre_tgt = [x[1] for x in data] pre_segs = [x[2] for x in data] pre_clss = [x[3] for x in data] pre_src_sent_labels = [x[4] for x in data] src = torch.tensor(self._pad(pre_src, 0)) tgt = torch.tensor(self._pad(pre_tgt, 0)) segs = torch.tensor(self._pad(pre_segs, 0)) mask_src = 1 - (src == 0) mask_tgt = 1 - (tgt == 0) clss = torch.tensor(self._pad(pre_clss, -1)) src_sent_labels = torch.tensor(self._pad(pre_src_sent_labels, 0)) mask_cls = 1 - (clss == -1) clss[clss == -1] = 0 setattr(self, 'clss', clss.to(device)) setattr(self, 'mask_cls', mask_cls.to(device)) setattr(self, 'src_sent_labels', src_sent_labels.to(device)) setattr(self, 'src', src.to(device)) setattr(self, 'tgt', tgt.to(device)) setattr(self, 'segs', segs.to(device)) setattr(self, 'mask_src', mask_src.to(device)) setattr(self, 'mask_tgt', mask_tgt.to(device)) if (is_test): src_str = [x[-2] for x in data] setattr(self, 'src_str', src_str) tgt_str = [x[-1] for x in data] setattr(self, 'tgt_str', tgt_str) def __len__(self): return self.batch_size def load_dataset(args, corpus_type, shuffle): """ Dataset generator. Don't do extra stuff here, like printing, because they will be postponed to the first loading time. Args: corpus_type: 'train' or 'valid' Returns: A list of dataset, the dataset(s) are lazily loaded. """ assert corpus_type in ["train", "valid", "test"] def _lazy_dataset_loader(pt_file, corpus_type): dataset = torch.load(pt_file) logger.info('Loading %s dataset from %s, number of examples: %d' % (corpus_type, pt_file, len(dataset))) return dataset # Sort the glob output by file name (by increasing indexes). pts = sorted(glob.glob(args.bert_data_path + '.' + corpus_type + '.[0-9]*.pt')) if pts: if (shuffle): random.shuffle(pts) for pt in pts: yield _lazy_dataset_loader(pt, corpus_type) else: # Only one inputters.*Dataset, simple! pt = args.bert_data_path + '.' + corpus_type + '.pt' yield _lazy_dataset_loader(pt, corpus_type) def abs_batch_size_fn(new, count): src, tgt = new[0], new[1] global max_n_sents, max_n_tokens, max_size if count == 1: max_size = 0 max_n_sents=0 max_n_tokens=0 max_n_sents = max(max_n_sents, len(tgt)) max_size = max(max_size, max_n_sents) src_elements = count * max_size if (count > 6): return src_elements + 1e3 return src_elements def ext_batch_size_fn(new, count): if (len(new) == 4): pass src, labels = new[0], new[4] global max_n_sents, max_n_tokens, max_size if count == 1: max_size = 0 max_n_sents = 0 max_n_tokens = 0 max_n_sents = max(max_n_sents, len(src)) max_size = max(max_size, max_n_sents) src_elements = count * max_size return src_elements class Dataloader(object): def __init__(self, args, datasets, batch_size, device, shuffle, is_test): self.args = args self.datasets = datasets self.batch_size = batch_size self.device = device self.shuffle = shuffle self.is_test = is_test self.cur_iter = self._next_dataset_iterator(datasets) assert self.cur_iter is not None def __iter__(self): dataset_iter = (d for d in self.datasets) while self.cur_iter is not None: for i, batch in enumerate(self.cur_iter): print('batch: ', i) yield batch self.cur_iter = self._next_dataset_iterator(dataset_iter) def _next_dataset_iterator(self, dataset_iter): try: # Drop the current dataset for decreasing memory if hasattr(self, "cur_dataset"): self.cur_dataset = None gc.collect() del self.cur_dataset gc.collect() self.cur_dataset = next(dataset_iter) except StopIteration: return None return DataIterator(args = self.args, dataset=self.cur_dataset, batch_size=self.batch_size, device=self.device, shuffle=self.shuffle, is_test=self.is_test) class DataIterator(object): def __init__(self, args, dataset, batch_size, device=None, is_test=False, shuffle=True): self.args = args self.batch_size, self.is_test, self.dataset = batch_size, is_test, dataset self.iterations = 0 self.device = device self.shuffle = shuffle self.sort_key = lambda x: len(x[1]) self._iterations_this_epoch = 0 if (self.args.task == 'abs'): self.batch_size_fn = abs_batch_size_fn else: self.batch_size_fn = ext_batch_size_fn def data(self): if self.shuffle: random.shuffle(self.dataset) xs = self.dataset return xs def preprocess(self, ex, is_test): src = ex['src'] tgt = ex['tgt'][:self.args.max_tgt_len][:-1]+[2] src_sent_labels = ex['src_sent_labels'] segs = ex['segs'] if(not self.args.use_interval): segs=[0]*len(segs) clss = ex['clss'] src_txt = ex['src_txt'] tgt_txt = ex['tgt_txt'] end_id = [src[-1]] src = src[:-1][:self.args.max_pos - 1] + end_id segs = segs[:self.args.max_pos] max_sent_id = bisect.bisect_left(clss, self.args.max_pos) src_sent_labels = src_sent_labels[:max_sent_id] clss = clss[:max_sent_id] # src_txt = src_txt[:max_sent_id] if(is_test): return src, tgt, segs, clss, src_sent_labels, src_txt, tgt_txt else: return src, tgt, segs, clss, src_sent_labels def batch_buffer(self, data, batch_size): minibatch, size_so_far = [], 0 for ex in data: if(len(ex['src'])==0): continue ex = self.preprocess(ex, self.is_test) if(ex is None): continue minibatch.append(ex) size_so_far = self.batch_size_fn(ex, len(minibatch)) if size_so_far == batch_size: yield minibatch minibatch, size_so_far = [], 0 elif size_so_far > batch_size: yield minibatch[:-1] minibatch, size_so_far = minibatch[-1:], self.batch_size_fn(ex, 1) if minibatch: yield minibatch def batch(self, data, batch_size): """Yield elements from data in chunks of batch_size.""" minibatch, size_so_far = [], 0 for ex in data: minibatch.append(ex) size_so_far = self.batch_size_fn(ex, len(minibatch)) if size_so_far == batch_size: yield minibatch minibatch, size_so_far = [], 0 elif size_so_far > batch_size: yield minibatch[:-1] minibatch, size_so_far = minibatch[-1:], self.batch_size_fn(ex, 1) if minibatch: yield minibatch def create_batches(self): """ Create batches """ data = self.data() for buffer in self.batch_buffer(data, self.batch_size * 300): if (self.args.task == 'abs'): p_batch = sorted(buffer, key=lambda x: len(x[2])) p_batch = sorted(p_batch, key=lambda x: len(x[1])) else: p_batch = sorted(buffer, key=lambda x: len(x[2])) p_batch = self.batch(p_batch, self.batch_size) p_batch = list(p_batch) if (self.shuffle): random.shuffle(p_batch) for b in p_batch: if(len(b)==0): continue yield b def __iter__(self): while True: self.batches = self.create_batches() for idx, minibatch in enumerate(self.batches): # fast-forward if loaded from state if self._iterations_this_epoch > idx: continue self.iterations += 1 self._iterations_this_epoch += 1 batch = Batch(minibatch, self.device, self.is_test) yield batch return class TextDataloader(object): def __init__(self, args, datasets, batch_size, device, shuffle, is_test): self.args = args self.batch_size = batch_size self.device = device def data(self): if self.shuffle: random.shuffle(self.dataset) xs = self.dataset return xs def preprocess(self, ex, is_test): src = ex['src'] tgt = ex['tgt'][:self.args.max_tgt_len][:-1] + [2] src_sent_labels = ex['src_sent_labels'] segs = ex['segs'] if (not self.args.use_interval): segs = [0] * len(segs) clss = ex['clss'] src_txt = ex['src_txt'] tgt_txt = ex['tgt_txt'] end_id = [src[-1]] src = src[:-1][:self.args.max_pos - 1] + end_id segs = segs[:self.args.max_pos] max_sent_id = bisect.bisect_left(clss, self.args.max_pos) src_sent_labels = src_sent_labels[:max_sent_id] clss = clss[:max_sent_id] # src_txt = src_txt[:max_sent_id] if (is_test): return src, tgt, segs, clss, src_sent_labels, src_txt, tgt_txt else: return src, tgt, segs, clss, src_sent_labels def batch_buffer(self, data, batch_size): minibatch, size_so_far = [], 0 for ex in data: if (len(ex['src']) == 0): continue ex = self.preprocess(ex, self.is_test) if (ex is None): continue minibatch.append(ex) size_so_far = simple_batch_size_fn(ex, len(minibatch)) if size_so_far == batch_size: yield minibatch minibatch, size_so_far = [], 0 elif size_so_far > batch_size: yield minibatch[:-1] minibatch, size_so_far = minibatch[-1:], simple_batch_size_fn(ex, 1) if minibatch: yield minibatch def create_batches(self): """ Create batches """ data = self.data() for buffer in self.batch_buffer(data, self.batch_size * 300): if (self.args.task == 'abs'): p_batch = sorted(buffer, key=lambda x: len(x[2])) p_batch = sorted(p_batch, key=lambda x: len(x[1])) else: p_batch = sorted(buffer, key=lambda x: len(x[2])) p_batch = batch(p_batch, self.batch_size) p_batch = batch(p_batch, self.batch_size) p_batch = list(p_batch) if (self.shuffle): random.shuffle(p_batch) for b in p_batch: if (len(b) == 0): continue yield b def __iter__(self): while True: self.batches = self.create_batches() for idx, minibatch in enumerate(self.batches): # fast-forward if loaded from state if self._iterations_this_epoch > idx: continue self.iterations += 1 self._iterations_this_epoch += 1 batch = Batch(minibatch, self.device, self.is_test) yield batch return
[ "torch.load" ]
1.1.0
thenghiapham/PreSumm
7bc537b656dc43898474c99b906e02f65b98c975
1.6
import os import torch from detecto.core import Model, Dataset from detecto.utils import xml_to_csv, read_image def get_dataset(**kwargs): path = os.path.dirname(__file__) input_folder = os.path.join(path, 'static') labels_path = os.path.join(path, 'static/labels.csv') xml_to_csv(input_folder, labels_path) dataset = Dataset(labels_path, input_folder, **kwargs) os.remove(labels_path) return dataset def get_image(): path = os.path.dirname(__file__) file = 'static/image.jpg' return read_image(os.path.join(path, file)) def get_model(): return Model(['test1', 'test2', 'test3']) def empty_predictor(x): return [{'labels': torch.empty(0), 'boxes': torch.empty(0, 4), 'scores': torch.empty(0)}]
[ "torch.empty" ]
1.6.0
erjiang/detecto
673bee8c0522e8cd18edce1602c2fd061bb27e14
1.11
# -*- coding: utf-8 -*- import torch class Config: ''' Chatbot模型参数 ''' corpus_data_path = 'corpus.pth' #已处理的对话数据 use_QA_first = True #是否载入知识库 max_input_length = 100 #输入的最大句子长度 max_generate_length = 300 #生成的最大句子长度 prefix = 'checkpoints/chatbot' #模型断点路径前缀 model_ckpt = 'checkpoints/chatbot_0425_2112' #加载模型路径 # model_ckpt = None # 如果从零开始训练, 则不从任何checkpoints继续 ''' 训练超参数 ''' batch_size = 2048 #每批训练数据的大小 shuffle = True #dataloader是否打乱数据 num_workers = 0 #dataloader多进程提取数据 bidirectional = True #Encoder-RNN是否双向 hidden_size = 512 embedding_dim = 512 method = 'dot' #attention method dropout = 0 #是否使用dropout clip = 50.0 #梯度裁剪阈值 num_layers = 2 #Encoder-RNN层数 learning_rate = 1e-4 #学习率 teacher_forcing_ratio = 1.0 #teacher_forcing比例 decoder_learning_ratio = 5.0 ''' 训练周期信息 ''' epoch = 2000 save_every = 50 #每隔save_every个Epoch保存 ''' GPU ''' use_gpu = torch.cuda.is_available() #是否使用gpu device = torch.device("cuda" if use_gpu else "cpu") #device if __name__ == "__main__": print(torch.version.__version__) print(torch.cuda.is_available())
[ "torch.device", "torch.cuda.is_available" ]
1.11.0
scyq/CapstoneNetwork
e4c888f2a6b1951794687657f86cd84cb006c2a3
1.10
import torch from ...dataset import SequenceBatch from ._abstract import ImportanceMeasureModule class InputTimesGradientImportanceMeasure(ImportanceMeasureModule): def forward(self, batch: SequenceBatch) -> torch.Tensor: # Prepear a compact embedding matrix for doing sum(x * dy/dz @ W.T) efficently. embedding_matrix_compact = torch.index_select( self.model.embedding_matrix, 0, batch.sentence.view(-1) ).unsqueeze(-1) # (B * T, Z, 1) y, _, embedding = self.model(batch) yc = y[torch.arange(batch.label.numel(), device=self.device), batch.label] yc_batch = yc.sum(dim=0) with torch.no_grad(): yc_wrt_embedding, = torch.autograd.grad([yc_batch], (embedding, )) # (B, T, Z) if yc_wrt_embedding is None: raise ValueError('Could not compute gradient') yc_wrt_embedding = yc_wrt_embedding[:, :batch.sentence.size(1), :] # This is a fast and memory-efficient version of sum(one_hot(x) * dy/dz @ W.T) # We can do this because x is one_hot, hence there is no need to # compute all the dy/dx = dy/dz @ W.T elements, where x = 0, # because they will anyway go away after sum. # In this context, the sum comes from the 2-norm. The mean # does not affect anything, as x remains the same for all # # Riemann steps. yc_wrt_x_compact = torch.bmm( yc_wrt_embedding.reshape( embedding_matrix_compact.shape[0], 1, embedding_matrix_compact.shape[1] ), # (B * T, 1, Z) embedding_matrix_compact, # (B * T, Z, 1) ).reshape_as(batch.sentence) # (B*T, 1, 1) -> (B, T) # Abs is equivalent to 2-norm, because the naive sum is essentially # sqrt(0^2 + ... + 0^2 + y_wrt_x^2 + 0^2 + ... + 0^2) = abs(y_wrt_x) return torch.abs(yc_wrt_x_compact)
[ "torch.abs", "torch.autograd.grad", "torch.no_grad" ]
1.10.0
AndreasMadsen/nlp-roar-interpretability
ad30f756cd744dfb05d1b57de744c5ff60d9f20c
1.8
from typing import Any, List import numpy as np import torch.nn import torch from cptr_model.config.config import Config from cptr_model.config.specifics.cptr.architecture_config_file_manager import ArchitectureConfigFileManager from cptr_model.embeddings.position.base_position_embedding import BasePositionEmbedding class PositionSinCosEmbedding(BasePositionEmbedding): KEY_DIM = 'dim' KEY_NUM_POSITIONS = 'num_positions' def __init__(self, config: Config, **kwargs): self.config = config self.dim = kwargs.get(PositionSinCosEmbedding.KEY_DIM, None) self.num_positions = kwargs.get(PositionSinCosEmbedding.KEY_NUM_POSITIONS, None) print(kwargs) super().__init__(config, **kwargs) self.register_buffer('pos_table', self.get_position_embedding_table()) def _verify_required_args(self) -> None: if not self.dim: raise ValueError(f'{PositionSinCosEmbedding.KEY_DIM} value is None') if not self.num_positions: raise ValueError(f'{PositionSinCosEmbedding.KEY_NUM_POSITIONS} value is None') def __get_position_angle_vec(self, position: int) -> List[float]: return [float(position / np.power(10000, 2 * (hid_j // 2) / self.dim)) for hid_j in range(self.dim)] def get_position_embedding_table(self) -> torch.Tensor: sinusoid_table = torch.tensor([self.__get_position_angle_vec(i) for i in range(self.num_positions)]) sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) return torch.FloatTensor(sinusoid_table).unsqueeze(0).to(device=torch.device('cuda' if self.config.default_use_gpu else 'cpu')) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.pos_table[:, :x.shape[1], :].clone().detach() + x
[ "torch.cos", "torch.device", "torch.sin", "torch.FloatTensor" ]
1.8.0
jsoft88/cptr-vision-transformer
c1728792e3a1b14805ad2489efcd869677c380d7
1.8
# Copyright (c) Meta Platforms, Inc import math from typing import Optional, Sequence, Tuple import torch import torch.nn.functional as F from flowtorch.bijectors.fixed import Fixed class LeakyReLU(Fixed): # TODO: Setting the slope of Leaky ReLU as __init__ argument def _forward( self, x: torch.Tensor, params: Optional[Sequence[torch.Tensor]] ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: y = F.leaky_relu(x) ladj = self._log_abs_det_jacobian(x, y, params) return y, ladj def _inverse( self, y: torch.Tensor, params: Optional[Sequence[torch.Tensor]] ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: x = F.leaky_relu(y, negative_slope=100.0) ladj = self._log_abs_det_jacobian(x, y, params) return x, ladj def _log_abs_det_jacobian( self, x: torch.Tensor, y: torch.Tensor, params: Optional[Sequence[torch.Tensor]] ) -> torch.Tensor: return torch.where( x >= 0.0, torch.zeros_like(x), torch.ones_like(x) * math.log(0.01) )
[ "torch.zeros_like", "torch.ones_like", "torch.nn.functional.leaky_relu" ]
1.8.1
vmoens/flowtorch
499273172dc64b68dd41d06ace935bd6ee970fe4
1.2
import torch import torch.nn as nn import torch.nn.functional as F class BaseNetwork(nn.Module): def __init__(self): super(BaseNetwork, self).__init__() def init_weights(self, init_type='normal', gain=0.02): ''' initialize network's weights init_type: normal | xavier | kaiming | orthogonal https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39 ''' def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': nn.init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight.data, gain=gain) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: nn.init.normal_(m.weight.data, 1.0, gain) nn.init.constant_(m.bias.data, 0.0) self.apply(init_func) class InpaintGenerator(BaseNetwork): def __init__(self, residual_blocks=8, init_weights=True): super(InpaintGenerator, self).__init__() self.encoder = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(in_channels=6, out_channels=64, kernel_size=7, padding=0), nn.InstanceNorm2d(64, track_running_stats=False), nn.ReLU(True), nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(128, track_running_stats=False), nn.ReLU(True), nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(256, track_running_stats=False), nn.ReLU(True) ) blocks = [] for _ in range(residual_blocks): block = ResnetBlock(256, 2) blocks.append(block) self.middle = nn.Sequential(*blocks) self.decoder = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(128, track_running_stats=False), nn.ReLU(True), nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(64, track_running_stats=False), nn.ReLU(True), nn.ReflectionPad2d(3), nn.Conv2d(in_channels=64, out_channels=3, kernel_size=7, padding=0), ) if init_weights: self.init_weights() def forward(self, x): x = self.encoder(x) x = self.middle(x) x = self.decoder(x) x = (torch.tanh(x) + 1) / 2 return x class Discriminator(BaseNetwork): def __init__(self, in_channels, use_sigmoid=True, use_spectral_norm=True, init_weights=True): super(Discriminator, self).__init__() self.use_sigmoid = use_sigmoid self.conv1 = self.features = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv2 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv3 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv4 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm), nn.LeakyReLU(0.2, inplace=True), ) self.conv5 = nn.Sequential( spectral_norm(nn.Conv2d(in_channels=512, out_channels=1, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm), ) if init_weights: self.init_weights() def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) conv4 = self.conv4(conv3) conv5 = self.conv5(conv4) outputs = conv5 if self.use_sigmoid: outputs = torch.sigmoid(conv5) return outputs, [conv1, conv2, conv3, conv4, conv5] class ResnetBlock(nn.Module): def __init__(self, dim, dilation=1, use_spectral_norm=False): super(ResnetBlock, self).__init__() self.conv_block = nn.Sequential( nn.ReflectionPad2d(dilation), spectral_norm(nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=0, dilation=dilation, bias=not use_spectral_norm), use_spectral_norm), nn.InstanceNorm2d(dim, track_running_stats=False), nn.ReLU(True), nn.ReflectionPad2d(1), spectral_norm(nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=0, dilation=1, bias=not use_spectral_norm), use_spectral_norm), nn.InstanceNorm2d(dim, track_running_stats=False), ) def forward(self, x): out = x + self.conv_block(x) # Remove ReLU at the end of the residual block # http://torch.ch/blog/2016/02/04/resnets.html return out def spectral_norm(module, mode=True): if mode: return nn.utils.spectral_norm(module) return module
[ "torch.sigmoid", "torch.nn.init.constant_", "torch.nn.Sequential", "torch.nn.init.orthogonal_", "torch.nn.LeakyReLU", "torch.nn.ConvTranspose2d", "torch.nn.init.kaiming_normal_", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.init.normal_", "torch.nn.ReflectionPad2d", "torch.nn.utils.spectral_norm", "torch.nn.InstanceNorm2d", "torch.tanh", "torch.nn.init.xavier_normal_" ]
1.2.0
Larry-u/JAFPro
10e5ee3b77bcdb103709c08c3e7d033396bab5ba
1.7
#!/usr/bin/env python3 import unittest import torch from gpytorch.lazy import RootLazyTensor from gpytorch.test.lazy_tensor_test_case import LazyTensorTestCase class TestRootLazyTensor(LazyTensorTestCase, unittest.TestCase): seed = 0 should_test_sample = True should_call_lanczos = False should_call_lanczos_diagonalization = True def create_lazy_tensor(self): root = torch.randn(3, 5, requires_grad=True) return RootLazyTensor(root) def evaluate_lazy_tensor(self, lazy_tensor): root = lazy_tensor.root.tensor res = root.matmul(root.transpose(-1, -2)) return res class TestRootLazyTensorBatch(TestRootLazyTensor): seed = 1 def create_lazy_tensor(self): root = torch.randn(3, 5, 5) root.add_(torch.eye(5).unsqueeze(0)) root.requires_grad_(True) return RootLazyTensor(root) class TestRootLazyTensorMultiBatch(TestRootLazyTensor): seed = 1 # Because these LTs are large, we'll skil the big tests should_test_sample = False skip_slq_tests = True def create_lazy_tensor(self): root = torch.randn(4, 3, 5, 5) root.requires_grad_(True) return RootLazyTensor(root) if __name__ == "__main__": unittest.main()
[ "torch.eye", "torch.randn" ]
1.7
qingfeng10/gpytorch
4d33fbf64594aab2dd6e0cfcb3242510231b3e0e
1.1
import numpy as np import torch import torch.nn as nn from mmcv.cnn import kaiming_init, normal_init from torch.nn.modules.utils import _pair import torch.nn.functional as F from mmdet.core import force_fp32 from ..builder import build_loss from ..registry import HEADS from ..utils import ConvModule import mmcv @HEADS.register_module class MaskIoUHead_MH(nn.Module): """Mask IoU Head. This head predicts the IoU of predicted masks and corresponding gt masks. """ def __init__(self, num_convs=4, roi_feat_size=14, in_channels=256, conv_out_channels=256, fc_out_channels=1024, num_classes=81, loss_mask = dict(type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)): super(MaskIoUHead_MH, self).__init__() self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels self.num_classes = num_classes self.fp16_enabled = False self.convs = nn.ModuleList() self.final_conv = nn.Conv2d(self.conv_out_channels, 1, 1, stride=1) for i in range(num_convs): if i == 0: # concatenation of mask feature and mask prediction in_channels = self.in_channels + self.num_classes - 1 else: in_channels = self.conv_out_channels stride = 2 if i == num_convs - 1 else 1 self.convs.append( ConvModule( in_channels, self.conv_out_channels, 3, stride=stride, padding=1)) # roi_feat_size = _pair(roi_feat_size) # pooled_area = (roi_feat_size[0] // 2) * (roi_feat_size[1] // 2) # self.fcs = nn.ModuleList() # for i in range(num_fcs): # in_channels = ( # self.conv_out_channels * # pooled_area if i == 0 else self.fc_out_channels) # self.fcs.append(nn.Linear(in_channels, self.fc_out_channels)) # # self.fc_mask_iou = nn.Linear(self.fc_out_channels, self.num_classes) self.relu = nn.ReLU() self.max_pool = nn.MaxPool2d(2, 2) self.loss_mask = build_loss(loss_mask) def init_weights(self): kaiming_init(self.final_conv) # for fc in self.fcs: # kaiming_init( # fc, # a=1, # mode='fan_in', # nonlinearity='leaky_relu', # distribution='uniform') # normal_init(self.fc_mask_iou, std=0.01) def forward(self, mask_feat, mask_pred): mask_pred = mask_pred[:,1:,:,:].sigmoid() mask_pred_pooled = self.max_pool(mask_pred) x = torch.cat((mask_feat, mask_pred_pooled), 1) for conv in self.convs: x = self.relu(conv(x)) mask_out = self.final_conv(x) # x = x.view(x.size(0), -1) # for fc in self.fcs: # x = self.relu(fc(x)) # mask_iou = self.fc_mask_iou(x) return mask_out @force_fp32(apply_to=('mask_iou_pred', )) def loss(self, mask_pred, mask_targets, rcnn_cfg): loss = dict() # pos_inds = mask_iou_targets > 0 # if pos_inds.sum() > 0: # loss_mask_iou = self.loss_iou(mask_iou_pred[pos_inds], # mask_iou_targets[pos_inds]) # else: # loss_mask_iou = mask_iou_pred * 0 H, W = mask_pred.size()[-2:] mask_targets = mask_targets[:,None,:,:] mask_targets = F.interpolate(mask_targets, (H,W)).squeeze(1) num_pred = mask_pred.size(0) loss_mask = self.loss_mask(mask_pred, mask_targets, torch.zeros(num_pred, dtype=torch.long)) loss['loss_refine_mask'] = loss_mask loss['refine_acc'] = ((mask_pred >= rcnn_cfg.mask_thr_binary).float() == mask_targets).sum().float() / mask_targets.numel() * 100 # loss['loss_mask_iou'] = loss_mask_iou return loss # @force_fp32(apply_to=('mask_pred', )) # def get_target(self, sampling_results, gt_masks, mask_pred, mask_targets, # rcnn_train_cfg): # """Compute target of mask IoU. # # Mask IoU target is the IoU of the predicted mask (inside a bbox) and # the gt mask of corresponding gt mask (the whole instance). # The intersection area is computed inside the bbox, and the gt mask area # is computed with two steps, firstly we compute the gt area inside the # bbox, then divide it by the area ratio of gt area inside the bbox and # the gt area of the whole instance. # # Args: # sampling_results (list[:obj:`SamplingResult`]): sampling results. # gt_masks (list[ndarray]): Gt masks (the whole instance) of each # image, binary maps with the same shape of the input image. # mask_pred (Tensor): Predicted masks of each positive proposal, # shape (num_pos, h, w). # mask_targets (Tensor): Gt mask of each positive proposal, # binary map of the shape (num_pos, h, w). # rcnn_train_cfg (dict): Training config for R-CNN part. # # Returns: # Tensor: mask iou target (length == num positive). # """ # pos_proposals = [res.pos_bboxes for res in sampling_results] # pos_assigned_gt_inds = [ # res.pos_assigned_gt_inds for res in sampling_results # ] # # # compute the area ratio of gt areas inside the proposals and # # the whole instance # area_ratios = map(self._get_area_ratio, pos_proposals, # pos_assigned_gt_inds, gt_masks) # area_ratios = torch.cat(list(area_ratios)) # assert mask_targets.size(0) == area_ratios.size(0) # # mask_pred = (mask_pred > rcnn_train_cfg.mask_thr_binary).float() # mask_pred_areas = mask_pred.sum((-1, -2)) # # # mask_pred and mask_targets are binary maps # overlap_areas = (mask_pred * mask_targets).sum((-1, -2)) # # # compute the mask area of the whole instance # gt_full_areas = mask_targets.sum((-1, -2)) / (area_ratios + 1e-7) # # mask_iou_targets = overlap_areas / ( # mask_pred_areas + gt_full_areas - overlap_areas) # return mask_iou_targets # # def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks): # """Compute area ratio of the gt mask inside the proposal and the gt # mask of the corresponding instance""" # num_pos = pos_proposals.size(0) # if num_pos > 0: # area_ratios = [] # proposals_np = pos_proposals.cpu().numpy() # pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy() # # compute mask areas of gt instances (batch processing for speedup) # gt_instance_mask_area = gt_masks.sum((-1, -2)) # for i in range(num_pos): # gt_mask = gt_masks[pos_assigned_gt_inds[i]] # # # crop the gt mask inside the proposal # x1, y1, x2, y2 = proposals_np[i, :].astype(np.int32) # gt_mask_in_proposal = gt_mask[y1:y2 + 1, x1:x2 + 1] # # ratio = gt_mask_in_proposal.sum() / ( # gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7) # area_ratios.append(ratio) # area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to( # pos_proposals.device) # else: # area_ratios = pos_proposals.new_zeros((0, )) # return area_ratios # @force_fp32(apply_to=('mask_iou_pred', )) # def get_mask_scores(self, mask_iou_pred, det_bboxes, det_labels): # """Get the mask scores. # # mask_score = bbox_score * mask_iou # """ # inds = range(det_labels.size(0)) # mask_scores = mask_iou_pred[inds, det_labels + # 1] * det_bboxes[inds, -1] # mask_scores = mask_scores.cpu().numpy() # det_labels = det_labels.cpu().numpy() # return [ # mask_scores[det_labels == i] for i in range(self.num_classes - 1) # ]
[ "torch.zeros", "torch.cat", "torch.nn.ModuleList", "torch.nn.MaxPool2d", "torch.nn.functional.interpolate", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.1
Gitgigabyte/mmd
02cf37884d3ac9a6018656d1871695669966dfb3
1.8
from torch import nn, Tensor class Classifier(nn.Module): """ Simple model with linear layers for mnist """ def __init__(self): super(Classifier, self).__init__() self.fc1 = nn.Linear(784, 512) self.relu1 = nn.LeakyReLU(negative_slope=0.1) self.drop1 = nn.Dropout(p=0.5) self.fc2 = nn.Linear(512, 256) self.relu2 = nn.LeakyReLU(negative_slope=0.1) self.drop2 = nn.Dropout(p=0.5) self.out = nn.Linear(256, 10) # self.out_act = nn.Softmax(dim=1) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.relu1(x) x = self.drop1(x) x = self.fc2(x) x = self.relu2(x) x = self.drop2(x) x = self.out(x) # x = self.out_act(x) return x
[ "torch.nn.Linear", "torch.nn.LeakyReLU", "torch.nn.Dropout" ]
1.8.1
stefansturlu/FederatedMedical
d753acda850e0d8cf64fc1d5c19e7018494bc16a
1.4
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """nn.Module with additional great features.""" import collections import copy import inspect import logging import os import tempfile import types import uuid from abc import ABC from argparse import Namespace from functools import partial from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import torch from torch import ScriptModule, Tensor from torch.nn import Module from torch.optim.optimizer import Optimizer from pytorch_lightning.core.grads import GradInformation from pytorch_lightning.core.hooks import CheckpointHooks, DataHooks, ModelHooks from pytorch_lightning.core.memory import ModelSummary from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.core.saving import ALLOWED_CONFIG_TYPES, ModelIO, PRIMITIVE_TYPES from pytorch_lightning.core.step_result import Result from pytorch_lightning.utilities import rank_zero_deprecation, rank_zero_warn from pytorch_lightning.utilities.apply_func import apply_to_collection, convert_to_tensors from pytorch_lightning.utilities.device_dtype_mixin import DeviceDtypeModuleMixin from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.parsing import AttributeDict, collect_init_args, save_hyperparameters from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT log = logging.getLogger(__name__) class LightningModule( ABC, DeviceDtypeModuleMixin, GradInformation, ModelIO, ModelHooks, DataHooks, CheckpointHooks, Module, ): # Below is for property support of JIT in PyTorch 1.7 # since none of these are important when using JIT, we are going to ignore them. __jit_unused_properties__ = [ "datamodule", "example_input_array", "hparams", "hparams_initial", "on_gpu", "current_epoch", "global_step", "global_rank", "local_rank", "logger", "model_size", "automatic_optimization", "truncated_bptt_steps", ] + DeviceDtypeModuleMixin.__jit_unused_properties__ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) # see (https://github.com/pytorch/pytorch/blob/3e6bb5233f9ca2c5aa55d9cda22a7ee85439aa6e/ # torch/nn/modules/module.py#L227) torch._C._log_api_usage_once(f"lightning.module.{self.__class__.__name__}") self.loaded_optimizer_states_dict = {} #: Pointer to the trainer object self.trainer = None self._distrib_type = None self._device_type = None #: True if using amp self.use_amp: bool = False #: The precision used self.precision: int = 32 # optionally can be set by user self._example_input_array = None self._datamodule = None self._results: Optional[Result] = None self._current_fx_name: str = '' self._running_manual_backward: bool = False self._current_hook_fx_name: Optional[str] = None self._current_dataloader_idx: Optional[int] = None self._automatic_optimization: bool = True self._truncated_bptt_steps: int = 0 self._param_requires_grad_state = dict() def optimizers(self, use_pl_optimizer: bool = True) -> Union[Optimizer, List[Optimizer], List[LightningOptimizer]]: if use_pl_optimizer: opts = list(self.trainer.lightning_optimizers.values()) else: opts = self.trainer.optimizers # single optimizer if isinstance(opts, list) and len(opts) == 1 and isinstance(opts[0], Optimizer): return opts[0] # multiple opts return opts def lr_schedulers(self) -> Optional[Union[Any, List[Any]]]: if not self.trainer.lr_schedulers: return None # ignore other keys "interval", "frequency", etc. lr_schedulers = [s["scheduler"] for s in self.trainer.lr_schedulers] # single scheduler if len(lr_schedulers) == 1: return lr_schedulers[0] # multiple schedulers return lr_schedulers @property def example_input_array(self) -> Any: return self._example_input_array @property def current_epoch(self) -> int: """The current epoch""" return self.trainer.current_epoch if self.trainer else 0 @property def global_step(self) -> int: """Total training batches seen across all epochs""" return self.trainer.global_step if self.trainer else 0 @property def global_rank(self) -> int: """ The index of the current process across all nodes and devices. """ return self.trainer.global_rank if self.trainer else 0 @property def local_rank(self) -> int: """ The index of the current process within a single node. """ return self.trainer.local_rank if self.trainer else 0 @example_input_array.setter def example_input_array(self, example: Any) -> None: self._example_input_array = example @property def datamodule(self) -> Any: rank_zero_deprecation( "The `LightningModule.datamodule` property is deprecated in v1.3 and will be removed in v1.5." " Access the datamodule through using `self.trainer.datamodule` instead." ) return self._datamodule @datamodule.setter def datamodule(self, datamodule: Any) -> None: self._datamodule = datamodule @property def on_gpu(self): """ True if your model is currently running on GPUs. Useful to set flags around the LightningModule for different CPU vs GPU behavior. """ return self.device.type == "cuda" @property def automatic_optimization(self) -> bool: """ If False you are responsible for calling .backward, .step, zero_grad. """ return self._automatic_optimization @automatic_optimization.setter def automatic_optimization(self, automatic_optimization: bool) -> None: self._automatic_optimization = automatic_optimization @property def truncated_bptt_steps(self) -> int: """ truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of much a longer sequence. If this is > 0, the training step is passed ``hiddens``. """ return self._truncated_bptt_steps @truncated_bptt_steps.setter def truncated_bptt_steps(self, truncated_bptt_steps: int) -> None: self._truncated_bptt_steps = truncated_bptt_steps @property def logger(self): """ Reference to the logger object in the Trainer. """ return self.trainer.logger if self.trainer else None def _apply_batch_transfer_handler(self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: int = 0): batch = self.on_before_batch_transfer(batch, dataloader_idx) batch = self.transfer_batch_to_device(batch, device) batch = self.on_after_batch_transfer(batch, dataloader_idx) return batch def print(self, *args, **kwargs) -> None: r""" Prints only from process 0. Use this in any distributed mode to log only once. Args: *args: The thing to print. The same as for Python's built-in print function. **kwargs: The same as for Python's built-in print function. Example:: def forward(self, x): self.print(x, 'in forward') """ if self.trainer.is_global_zero: progress_bar = self.trainer.progress_bar_callback if progress_bar is not None and progress_bar.is_enabled: progress_bar.print(*args, **kwargs) else: print(*args, **kwargs) def log( self, name: str, value: Any, prog_bar: bool = False, logger: bool = True, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, ): """ Log a key, value Example:: self.log('train_loss', loss) The default behavior per hook is as follows .. csv-table:: ``*`` also applies to the test loop :header: "LightningModule Hook", "on_step", "on_epoch", "prog_bar", "logger" :widths: 20, 10, 10, 10, 10 "training_step", "T", "F", "F", "T" "training_step_end", "T", "F", "F", "T" "training_epoch_end", "F", "T", "F", "T" "validation_step*", "F", "T", "F", "T" "validation_step_end*", "F", "T", "F", "T" "validation_epoch_end*", "F", "T", "F", "T" Args: name: key name value: value name prog_bar: if True logs to the progress bar logger: if True logs to the logger on_step: if True logs at this step. None auto-logs at the training_step but not validation/test_step on_epoch: if True logs epoch accumulated metrics. None auto-logs at the val/test step but not training_step reduce_fx: reduction function over step values for end of epoch. Torch.mean by default tbptt_reduce_fx: function to reduce on truncated back prop tbptt_pad_token: token to use for padding enable_graph: if True, will not auto detach the graph sync_dist: if True, reduces the metric across GPUs/TPUs sync_dist_op: the op to sync across GPUs/TPUs sync_dist_group: the ddp group to sync across add_dataloader_idx: if True, appends the index of the current dataloader to the name (when using multiple). If False, user needs to give unique names for each dataloader to not mix values """ if self._results is not None: # in any epoch end can't log step metrics (only epoch metric) if 'epoch_end' in self._current_fx_name and on_step: m = f'on_step=True cannot be used on {self._current_fx_name} method' raise MisconfigurationException(m) if 'epoch_end' in self._current_fx_name and on_epoch is False: m = f'on_epoch cannot be False when called from the {self._current_fx_name} method' raise MisconfigurationException(m) # add log_dict # TODO: if logged twice fail with crash # set the default depending on the fx_name on_step = self.__auto_choose_log_on_step(on_step) on_epoch = self.__auto_choose_log_on_epoch(on_epoch) if self._current_hook_fx_name is not None: self.trainer.logger_connector.check_logging_in_callbacks( self._current_hook_fx_name, on_step=on_step, on_epoch=on_epoch ) # make sure user doesn't introduce logic for multi-dataloaders if "/dataloader_idx_" in name: raise MisconfigurationException( f"Logged key: {name} should not contain information about dataloader_idx." ) training_type_plugin = self.trainer.training_type_plugin # Determine if dataloader index should be added dataloader_idx = self._current_dataloader_idx if add_dataloader_idx else None self._results.log( name, value, prog_bar, logger, on_step, on_epoch, reduce_fx, tbptt_reduce_fx, tbptt_pad_token, enable_graph, sync_dist, sync_dist_op, sync_dist_group, training_type_plugin.reduce, dataloader_idx, self.device, ) def log_dict( self, dictionary: dict, prog_bar: bool = False, logger: bool = True, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, ): """ Log a dictonary of values at once Example:: values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} self.log_dict(values) Args: dictionary: key value pairs (str, tensors) prog_bar: if True logs to the progress base logger: if True logs to the logger on_step: if True logs at this step. None auto-logs for training_step but not validation/test_step on_epoch: if True logs epoch accumulated metrics. None auto-logs for val/test step but not training_step reduce_fx: reduction function over step values for end of epoch. Torch.mean by default tbptt_reduce_fx: function to reduce on truncated back prop tbptt_pad_token: token to use for padding enable_graph: if True, will not auto detach the graph sync_dist: if True, reduces the metric across GPUs/TPUs sync_dist_op: the op to sync across GPUs/TPUs sync_dist_group: the ddp group sync across add_dataloader_idx: if True, appends the index of the current dataloader to the name (when using multiple). If False, user needs to give unique names for each dataloader to not mix values """ for k, v in dictionary.items(): self.log( name=k, value=v, prog_bar=prog_bar, logger=logger, on_step=on_step, on_epoch=on_epoch, reduce_fx=reduce_fx, enable_graph=enable_graph, sync_dist=sync_dist, sync_dist_group=sync_dist_group, sync_dist_op=sync_dist_op, tbptt_pad_token=tbptt_pad_token, tbptt_reduce_fx=tbptt_reduce_fx, add_dataloader_idx=add_dataloader_idx ) def write_prediction( self, name: str, value: Union[torch.Tensor, List[torch.Tensor]], filename: str = 'predictions.pt' ): """ Write predictions to disk using ``torch.save`` Example:: self.write_prediction('pred', torch.tensor(...), filename='my_predictions.pt') Args: name: a string indicating the name to save the predictions under value: the predictions, either a single :class:`~torch.Tensor` or a list of them filename: name of the file to save the predictions to Note: when running in distributed mode, calling ``write_prediction`` will create a file for each device with respective names: ``filename_rank_0.pt``, ``filename_rank_1.pt``, ... .. deprecated::v1.3 Will be removed in v1.5.0. """ rank_zero_deprecation( 'LightningModule method `write_prediction` was deprecated in v1.3' ' and will be removed in v1.5.' ) self.trainer.evaluation_loop.predictions._add_prediction(name, value, filename) def write_prediction_dict(self, predictions_dict: Dict[str, Any], filename: str = 'predictions.pt'): """ Write a dictonary of predictions to disk at once using ``torch.save`` Example:: pred_dict = {'pred1': torch.tensor(...), 'pred2': torch.tensor(...)} self.write_prediction_dict(pred_dict) Args: predictions_dict: dict containing predictions, where each prediction should either be single :class:`~torch.Tensor` or a list of them Note: when running in distributed mode, calling ``write_prediction_dict`` will create a file for each device with respective names: ``filename_rank_0.pt``, ``filename_rank_1.pt``, ... .. deprecated::v1.3 Will be removed in v1.5.0. """ rank_zero_deprecation( 'LightningModule method `write_prediction_dict` was deprecated in v1.3 and' ' will be removed in v1.5.' ) for k, v in predictions_dict.items(): self.write_prediction(k, v, filename) def __auto_choose_log_on_step(self, on_step): if on_step is None: if self._current_fx_name in {'training_step', 'training_step_end'}: on_step = True elif self._current_fx_name in { 'evaluation_step', 'evaluation_step_end', 'evaluation_epoch_end', 'training_epoch_end' }: on_step = False else: on_step = False return on_step def __auto_choose_log_on_epoch(self, on_epoch): if on_epoch is None: if self._current_fx_name in {'training_step', 'training_step_end'}: on_epoch = False elif self._current_fx_name in { 'evaluation_step', 'evaluation_step_end', 'evaluation_epoch_end', 'training_epoch_end' }: on_epoch = True else: on_epoch = True return on_epoch def all_gather( self, data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False, ): r""" Allows users to call ``self.all_gather()`` from the LightningModule, thus making the ```all_gather``` operation accelerator agnostic. ```all_gather``` is a function provided by accelerators to gather a tensor from several distributed processes Args: tensor: int, float, tensor of shape (batch, ...), or a (possibly nested) collection thereof. group: the process group to gather results from. Defaults to all processes (world) sync_grads: flag that allows users to synchronize gradients for all_gather op Return: A tensor of shape (world_size, batch, ...), or if the input was a collection the output will also be a collection with tensors of this shape. """ group = group if group is not None else torch.distributed.group.WORLD all_gather = self.trainer.accelerator.all_gather data = convert_to_tensors(data, device=self.device) all_gather = partial(all_gather, group=group, sync_grads=sync_grads) return apply_to_collection(data, torch.Tensor, all_gather) def forward(self, *args, **kwargs) -> Any: r""" Same as :meth:`torch.nn.Module.forward()`. Args: *args: Whatever you decide to pass into the forward method. **kwargs: Keyword arguments are also possible. Return: Your model's output """ return super().forward(*args, **kwargs) def training_step(self, *args, **kwargs) -> STEP_OUTPUT: r""" Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger. Args: batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]): The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list. batch_idx (int): Integer displaying index of this batch optimizer_idx (int): When using multiple optimizers, this argument will also be present. hiddens(:class:`~torch.Tensor`): Passed in if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0. Return: Any of. - :class:`~torch.Tensor` - The loss tensor - ``dict`` - A dictionary. Can include any keys, but must include the key ``'loss'`` - ``None`` - Training will skip to the next batch Note: Returning ``None`` is currently not supported for multi-GPU or TPU, or with 16-bit precision enabled. In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific. Example:: def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss If you define multiple optimizers, this step will be called with an additional ``optimizer_idx`` parameter. .. code-block:: python # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder if optimizer_idx == 1: # do training_step with decoder If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step. .. code-block:: python # Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step ... out, hiddens = self.lstm(data, hiddens) ... return {'loss': loss, 'hiddens': hiddens} Note: The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step. """ rank_zero_warn("`training_step` must be implemented to be used with the Lightning Trainer") def training_step_end(self, *args, **kwargs) -> STEP_OUTPUT: """ Use this when training with dp or ddp2 because :meth:`training_step` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss. Note: If you later switch to ddp or some other mode, this will still be called so that you don't have to change your code .. code-block:: python # pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(batch_parts_outputs) Args: batch_parts_outputs: What you return in `training_step` for each batch part. Return: Anything When using dp/ddp2 distributed backends, only a portion of the batch is inside the training_step: .. code-block:: python def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) # softmax uses only a portion of the batch in the denomintaor loss = self.softmax(out) loss = nce_loss(loss) return loss If you wish to do something with all the parts of the batch, then use this method to do it: .. code-block:: python def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return {'pred': out} def training_step_end(self, training_step_outputs): gpu_0_pred = training_step_outputs[0]['pred'] gpu_1_pred = training_step_outputs[1]['pred'] gpu_n_pred = training_step_outputs[n]['pred'] # this softmax now uses the full batch loss = nce_loss([gpu_0_pred, gpu_1_pred, gpu_n_pred]) return loss See Also: See the :ref:`advanced/multi_gpu:Multi-GPU training` guide for more details. """ def training_epoch_end(self, outputs: EPOCH_OUTPUT) -> None: """ Called at the end of the training epoch with the outputs of all training steps. Use this in case you need to do something with all the outputs for every training_step. .. code-block:: python # the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs) Args: outputs: List of outputs you defined in :meth:`training_step`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader. Return: None Note: If this method is not overridden, this won't be called. Example:: def training_epoch_end(self, training_step_outputs): # do something with all training_step outputs return result With multiple dataloaders, ``outputs`` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader. .. code-block:: python def training_epoch_end(self, training_step_outputs): for out in training_step_outputs: # do something here """ def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: r""" Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy. .. code-block:: python # the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs) Args: batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]): The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list. batch_idx (int): The index of this batch dataloader_idx (int): The index of the dataloader that produced this batch (only if multiple val dataloaders used) Return: Any of. - Any object or value - ``None`` - Validation will skip to the next batch .. code-block:: python # pseudocode of order val_outs = [] for val_batch in val_data: out = validation_step(val_batch) if defined('validation_step_end'): out = validation_step_end(out) val_outs.append(out) val_outs = validation_epoch_end(val_outs) .. code-block:: python # if you have one val dataloader: def validation_step(self, batch, batch_idx) # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx) Examples:: # CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc}) If you pass in multiple val dataloaders, :meth:`validation_step` will have an additional argument. .. code-block:: python # CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx): # dataloader_idx tells you which dataset this is. Note: If you don't need to validate you don't need to implement this method. Note: When the :meth:`validation_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled. """ def validation_step_end(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: """ Use this when validating with dp or ddp2 because :meth:`validation_step` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss. Note: If you later switch to ddp or some other mode, this will still be called so that you don't have to change your code. .. code-block:: python # pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(batch_parts_outputs) Args: batch_parts_outputs: What you return in :meth:`validation_step` for each batch part. Return: None or anything .. code-block:: python # WITHOUT validation_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) loss = self.softmax(out) loss = nce_loss(loss) self.log('val_loss', loss) # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return out def validation_step_end(self, val_step_outputs): for out in val_step_outputs: # do something with these See Also: See the :ref:`advanced/multi_gpu:Multi-GPU training` guide for more details. """ def validation_epoch_end(self, outputs: EPOCH_OUTPUT) -> None: """ Called at the end of the validation epoch with the outputs of all validation steps. .. code-block:: python # the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs) Args: outputs: List of outputs you defined in :meth:`validation_step`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader. Return: None Note: If you didn't define a :meth:`validation_step`, this won't be called. Examples: With a single dataloader: .. code-block:: python def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: # do something With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader. .. code-block:: python def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log('final_metric', final_value) """ def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: r""" Operates on a single batch of data from the test set. In this step you'd normally generate examples or calculate anything of interest such as accuracy. .. code-block:: python # the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs) Args: batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]): The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list. batch_idx (int): The index of this batch. dataloader_idx (int): The index of the dataloader that produced this batch (only if multiple test dataloaders used). Return: Any of. - Any object or value - ``None`` - Testing will skip to the next batch .. code-block:: python # if you have one test dataloader: def test_step(self, batch, batch_idx) # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx) Examples:: # CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc}) If you pass in multiple test dataloaders, :meth:`test_step` will have an additional argument. .. code-block:: python # CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx): # dataloader_idx tells you which dataset this is. Note: If you don't need to test you don't need to implement this method. Note: When the :meth:`test_step` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled. """ def test_step_end(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: """ Use this when testing with dp or ddp2 because :meth:`test_step` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss. Note: If you later switch to ddp or some other mode, this will still be called so that you don't have to change your code. .. code-block:: python # pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(batch_parts_outputs) Args: batch_parts_outputs: What you return in :meth:`test_step` for each batch part. Return: None or anything .. code-block:: python # WITHOUT test_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) self.log('test_loss', loss) # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return out def test_step_end(self, output_results): # this out is now the full size of the batch all_test_step_outs = output_results.out loss = nce_loss(all_test_step_outs) self.log('test_loss', loss) See Also: See the :ref:`advanced/multi_gpu:Multi-GPU training` guide for more details. """ def test_epoch_end(self, outputs: EPOCH_OUTPUT) -> None: """ Called at the end of a test epoch with the output of all test steps. .. code-block:: python # the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs) Args: outputs: List of outputs you defined in :meth:`test_step_end`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader Return: None Note: If you didn't define a :meth:`test_step`, this won't be called. Examples: With a single dataloader: .. code-block:: python def test_epoch_end(self, outputs): # do something with the outputs of all test batches all_test_preds = test_step_outputs.predictions some_result = calc_all_results(all_test_preds) self.log(some_result) With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader. .. code-block:: python def test_epoch_end(self, outputs): final_value = 0 for dataloader_outputs in outputs: for test_step_out in dataloader_outputs: # do something final_value += test_step_out self.log('final_metric', final_value) """ def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any: """ Step function called during :meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`. By default, it calls :meth:`~pytorch_lightning.core.lightning.LightningModule.forward`. Override to add any processing logic. Args: batch: Current batch batch_idx: Index of current batch dataloader_idx: Index of the current dataloader Return: Predicted output """ return self(batch) def configure_callbacks(self): """ Configure model-specific callbacks. When the model gets attached, e.g., when ``.fit()`` or ``.test()`` gets called, the list returned here will be merged with the list of callbacks passed to the Trainer's ``callbacks`` argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer's callbacks list, it will take priority and replace them. In addition, Lightning will make sure :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callbacks run last. Return: A list of callbacks which will extend the list of callbacks in the Trainer. Example:: def configure_callbacks(self): early_stop = EarlyStopping(monitor"val_acc", mode="max") checkpoint = ModelCheckpoint(monitor="val_loss") return [early_stop, checkpoint] Note: Certain callback methods like :meth:`~pytorch_lightning.callbacks.base.Callback.on_init_start` will never be invoked on the new callbacks returned here. """ return [] def configure_optimizers(self): r""" Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Return: Any of these 6 options. - **Single optimizer**. - **List or Tuple** of optimizers. - **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_dict). - **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"`` key whose value is a single LR scheduler or lr_dict. - **Tuple of dictionaries** as described above, with an optional ``"frequency"`` key. - **None** - Fit will run without any optimizer. Note: The ``frequency`` value specified in a dict along with the ``optimizer`` key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step. This is different from the ``frequency`` value specified in the lr_dict mentioned below. .. code-block:: python def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {'optimizer': optimizer_one, 'frequency': 5}, {'optimizer': optimizer_two, 'frequency': 10}, ] In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the ``lr_scheduler`` key in the above dict, the scheduler will only be updated when its optimizer is being used. Note: The lr_dict is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below. .. code-block:: python lr_dict = { 'scheduler': lr_scheduler, # The LR scheduler instance (required) 'interval': 'epoch', # The unit of the scheduler's step size 'frequency': 1, # The frequency of the scheduler 'reduce_on_plateau': False, # For ReduceLROnPlateau scheduler 'monitor': 'val_loss', # Metric for ReduceLROnPlateau to monitor 'strict': True, # Whether to crash the training if `monitor` is not found 'name': None, # Custom name for LearningRateMonitor to use } Only the ``"scheduler"`` key is required, the rest will be set to the defaults above. Note: The ``"frequency"`` value is an ``int`` corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step. Examples:: # most cases def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = {'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step'} # called after each training step dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} ) Note: Some things to know: - Lightning calls ``.backward()`` and ``.step()`` on each optimizer and learning rate scheduler as needed. - If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizers. - If you use multiple optimizers, :meth:`training_step` will have an additional ``optimizer_idx`` parameter. - If you use :class:`torch.optim.LBFGS`, Lightning handles the closure function automatically for you. - If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step. - If you need to control how often those optimizers step or override the default ``.step()`` schedule, override the :meth:`optimizer_step` hook. - If you only want to call a learning rate scheduler every ``x`` step or epoch, or want to monitor a custom metric, you can specify these in a lr_dict: .. code-block:: python lr_dict = { 'scheduler': lr_scheduler, 'interval': 'step', # or 'epoch' 'monitor': 'val_f1', 'frequency': x, } """ rank_zero_warn("`configure_optimizers` must be implemented to be used with the Lightning Trainer") def manual_backward(self, loss: Tensor, optimizer: Optional[Optimizer] = None, *args, **kwargs) -> None: """ Call this directly from your training_step when doing optimizations manually. By using this we can ensure that all the proper scaling when using 16-bit etc has been done for you. This function forwards all args to the .backward() call as well. See :ref:`manual optimization<common/optimizers:Manual optimization>` for more examples. Example:: def training_step(...): opt = self.optimizers() loss = ... opt.zero_grad() # automatically applies scaling, etc... self.manual_backward(loss) opt.step() """ if optimizer is not None: rank_zero_deprecation( "`optimizer` argument to `manual_backward` is deprecated in v1.2 and will be removed in v1.4" ) # make sure we're using manual opt self._verify_is_manual_optimization('manual_backward') # backward self._running_manual_backward = True self.trainer.train_loop.backward(loss, optimizer=None, opt_idx=None, *args, **kwargs) self._running_manual_backward = False def backward(self, loss: Tensor, optimizer: Optimizer, optimizer_idx: int, *args, **kwargs) -> None: """ Override backward with your own implementation if you need to. Args: loss: Loss is already scaled by accumulated grads optimizer: Current optimizer being used optimizer_idx: Index of the current optimizer being used Called to perform backward step. Feel free to override as needed. The loss passed in has already been scaled for accumulated gradients if requested. Example:: def backward(self, loss, optimizer, optimizer_idx): loss.backward() """ if self.automatic_optimization or self._running_manual_backward: loss.backward(*args, **kwargs) def toggle_optimizer(self, optimizer: Optimizer, optimizer_idx: int): """ Makes sure only the gradients of the current optimizer's parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup. .. note:: Only called when using multiple optimizers Override for your own behavior It works with ``untoggle_optimizer`` to make sure param_requires_grad_state is properly reset. Args: optimizer: Current optimizer used in training_loop optimizer_idx: Current optimizer idx in training_loop """ # Iterate over all optimizer parameters to preserve their `requires_grad` information # in case these are pre-defined during `configure_optimizers` param_requires_grad_state = {} for opt in self.optimizers(use_pl_optimizer=False): for group in opt.param_groups: for param in group['params']: # If a param already appear in param_requires_grad_state, continue if param in param_requires_grad_state: continue param_requires_grad_state[param] = param.requires_grad param.requires_grad = False # Then iterate over the current optimizer's parameters and set its `requires_grad` # properties accordingly for group in optimizer.param_groups: for param in group['params']: param.requires_grad = param_requires_grad_state[param] self._param_requires_grad_state = param_requires_grad_state def untoggle_optimizer(self, optimizer_idx: int): """ .. note:: Only called when using multiple optimizers Override for your own behavior Args: optimizer_idx: Current optimizer idx in training_loop """ for opt_idx, opt in enumerate(self.optimizers(use_pl_optimizer=False)): if optimizer_idx != opt_idx: for group in opt.param_groups: for param in group['params']: if param in self._param_requires_grad_state: param.requires_grad = self._param_requires_grad_state[param] # save memory self._param_requires_grad_state = dict() def optimizer_step( self, epoch: int = None, batch_idx: int = None, optimizer: Optimizer = None, optimizer_idx: int = None, optimizer_closure: Optional[Callable] = None, on_tpu: bool = None, using_native_amp: bool = None, using_lbfgs: bool = None, ) -> None: r""" Override this method to adjust the default way the :class:`~pytorch_lightning.trainer.trainer.Trainer` calls each optimizer. By default, Lightning calls ``step()`` and ``zero_grad()`` as shown in the example once per optimizer. Warning: If you are overriding this method, make sure that you pass the ``optimizer_closure`` parameter to ``optimizer.step()`` function as shown in the examples. This ensures that ``training_step()``, ``optimizer.zero_grad()``, ``backward()`` are called within :meth:`~pytorch_lightning.trainer.training_loop.TrainLoop.run_training_batch`. Args: epoch: Current epoch batch_idx: Index of current batch optimizer: A PyTorch optimizer optimizer_idx: If you used multiple optimizers, this indexes into that list. optimizer_closure: Closure for all optimizers on_tpu: ``True`` if TPU backward is required using_native_amp: ``True`` if using native amp using_lbfgs: True if the matching optimizer is :class:`torch.optim.LBFGS` Examples:: # DEFAULT def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs): optimizer.step(closure=optimizer_closure) # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs): # update generator opt every step if optimizer_idx == 0: optimizer.step(closure=optimizer_closure) # update discriminator opt every 2 steps if optimizer_idx == 1: if (batch_idx + 1) % 2 == 0 : optimizer.step(closure=optimizer_closure) # ... # add as many optimizers as you want Here's another example showing how to use this for more advanced things such as learning rate warm-up: .. code-block:: python # learning rate warm-up def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs): # warm up lr if self.trainer.global_step < 500: lr_scale = min(1., float(self.trainer.global_step + 1) / 500.) for pg in optimizer.param_groups: pg['lr'] = lr_scale * self.learning_rate # update params optimizer.step(closure=optimizer_closure) """ optimizer.step(closure=optimizer_closure) def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int): """Override this method to change the default behaviour of ``optimizer.zero_grad()``. Args: epoch: Current epoch batch_idx: Index of current batch optimizer: A PyTorch optimizer optimizer_idx: If you used multiple optimizers this indexes into that list. Examples:: # DEFAULT def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad() # Set gradients to `None` instead of zero to improve performance. def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad(set_to_none=True) See :meth:`torch.optim.Optimizer.zero_grad` for the explanation of the above example. """ optimizer.zero_grad() def tbptt_split_batch(self, batch: Tensor, split_size: int) -> list: r""" When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function. Args: batch: Current batch split_size: The size of the split Return: List of batch splits. Each split will be passed to :meth:`training_step` to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length. Examples:: def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits Note: Called in the training loop after :meth:`~pytorch_lightning.callbacks.base.Callback.on_batch_start` if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0. Each returned batch split is passed separately to :meth:`training_step`. """ time_dims = [len(x[0]) for x in batch if isinstance(x, (torch.Tensor, collections.Sequence))] assert len(time_dims) >= 1, "Unable to determine batch time dimension" assert all(x == time_dims[0] for x in time_dims), "Batch time dimension length is ambiguous" splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits def summarize(self, mode: Optional[str] = ModelSummary.MODE_DEFAULT) -> Optional[ModelSummary]: model_summary = None if mode in ModelSummary.MODES: model_summary = ModelSummary(self, mode=mode) log.info("\n" + str(model_summary)) elif mode is not None: raise MisconfigurationException(f"`mode` can be None, {', '.join(ModelSummary.MODES)}, got {mode}") return model_summary def freeze(self) -> None: r""" Freeze all params for inference. Example:: model = MyLightningModule(...) model.freeze() """ for param in self.parameters(): param.requires_grad = False self.eval() def unfreeze(self) -> None: """ Unfreeze all parameters for training. .. code-block:: python model = MyLightningModule(...) model.unfreeze() """ for param in self.parameters(): param.requires_grad = True self.train() def get_progress_bar_dict(self) -> Dict[str, Union[int, str]]: r""" Implement this to override the default items displayed in the progress bar. By default it includes the average loss value, split index of BPTT (if used) and the version of the experiment when using a logger. .. code-block:: Epoch 1: 4%|▎ | 40/1095 [00:03<01:37, 10.84it/s, loss=4.501, v_num=10] Here is an example how to override the defaults: .. code-block:: python def get_progress_bar_dict(self): # don't show the version number items = super().get_progress_bar_dict() items.pop("v_num", None) return items Return: Dictionary with the items to be displayed in the progress bar. """ # call .item() only once but store elements without graphs running_train_loss = self.trainer.train_loop.running_loss.mean() avg_training_loss = None if running_train_loss is not None: avg_training_loss = running_train_loss.cpu().item() elif self.automatic_optimization: avg_training_loss = float('NaN') tqdm_dict = {} if avg_training_loss is not None: tqdm_dict["loss"] = f"{avg_training_loss:.3g}" module_tbptt_enabled = self.truncated_bptt_steps > 0 trainer_tbptt_enabled = self.trainer.truncated_bptt_steps is not None and self.trainer.truncated_bptt_steps > 0 if module_tbptt_enabled or trainer_tbptt_enabled: tqdm_dict["split_idx"] = self.trainer.split_idx if self.trainer.logger is not None and self.trainer.logger.version is not None: version = self.trainer.logger.version # show last 4 places of long version strings version = version[-4:] if isinstance(version, str) else version tqdm_dict["v_num"] = version return tqdm_dict def _verify_is_manual_optimization(self, fn_name): if self.automatic_optimization: raise MisconfigurationException( f'to use {fn_name}, please disable automatic optimization:' ' set model property `automatic_optimization` as False' ) @classmethod def _auto_collect_arguments(cls, frame=None) -> Tuple[Dict, Dict]: """ Collect all module arguments in the current constructor and all child constructors. The child constructors are all the ``__init__`` methods that reach the current class through (chained) ``super().__init__()`` calls. Args: frame: instance frame Returns: self_arguments: arguments dictionary of the first instance parents_arguments: arguments dictionary of the parent's instances """ if not frame: frame = inspect.currentframe() frame_args = collect_init_args(frame.f_back, []) self_arguments = frame_args[-1] # set hyper_parameters in child self_arguments = self_arguments parents_arguments = {} # add all arguments from parents for args in frame_args[:-1]: parents_arguments.update(args) return self_arguments, parents_arguments def save_hyperparameters( self, *args, ignore: Optional[Union[Sequence[str], str]] = None, frame: Optional[types.FrameType] = None ) -> None: """Save model arguments to ``hparams`` attribute. Args: args: single object of `dict`, `NameSpace` or `OmegaConf` or string names or arguments from class ``__init__`` ignore: an argument name or a list of argument names from class ``__init__`` to be ignored frame: a frame object. Default is None Example:: >>> class ManuallyArgsModel(LightningModule): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # manually assign arguments ... self.save_hyperparameters('arg1', 'arg3') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14 >>> class AutomaticArgsModel(LightningModule): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # equivalent automatic ... self.save_hyperparameters() ... def forward(self, *args, **kwargs): ... ... >>> model = AutomaticArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg2": abc "arg3": 3.14 >>> class SingleArgModel(LightningModule): ... def __init__(self, params): ... super().__init__() ... # manually assign single argument ... self.save_hyperparameters(params) ... def forward(self, *args, **kwargs): ... ... >>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14)) >>> model.hparams "p1": 1 "p2": abc "p3": 3.14 >>> class ManuallyArgsModel(LightningModule): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # pass argument(s) to ignore as a string or in a list ... self.save_hyperparameters(ignore='arg2') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14 """ # the frame needs to be created in this file. if not frame: frame = inspect.currentframe().f_back save_hyperparameters(self, *args, ignore=ignore, frame=frame) def _set_hparams(self, hp: Union[dict, Namespace, str]) -> None: if isinstance(hp, Namespace): hp = vars(hp) if isinstance(hp, dict): hp = AttributeDict(hp) elif isinstance(hp, PRIMITIVE_TYPES): raise ValueError(f"Primitives {PRIMITIVE_TYPES} are not allowed.") elif not isinstance(hp, ALLOWED_CONFIG_TYPES): raise ValueError(f"Unsupported config type of {type(hp)}.") if isinstance(hp, dict) and isinstance(self.hparams, dict): self.hparams.update(hp) else: self._hparams = hp @torch.no_grad() def to_onnx( self, file_path: Union[str, Path], input_sample: Optional[Any] = None, **kwargs, ): """ Saves the model in ONNX format Args: file_path: The path of the file the onnx model should be saved to. input_sample: An input for tracing. Default: None (Use self.example_input_array) **kwargs: Will be passed to torch.onnx.export function. Example: >>> class SimpleModel(LightningModule): ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(in_features=64, out_features=4) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1))) >>> with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile: ... model = SimpleModel() ... input_sample = torch.randn((1, 64)) ... model.to_onnx(tmpfile.name, input_sample, export_params=True) ... os.path.isfile(tmpfile.name) True """ mode = self.training if input_sample is None: if self.example_input_array is None: raise ValueError( "Could not export to ONNX since neither `input_sample` nor" " `model.example_input_array` attribute is set." ) input_sample = self.example_input_array input_sample = self._apply_batch_transfer_handler(input_sample) if "example_outputs" not in kwargs: self.eval() kwargs["example_outputs"] = self(input_sample) torch.onnx.export(self, input_sample, file_path, **kwargs) self.train(mode) @torch.no_grad() def to_torchscript( self, file_path: Optional[Union[str, Path]] = None, method: Optional[str] = 'script', example_inputs: Optional[Any] = None, **kwargs, ) -> Union[ScriptModule, Dict[str, ScriptModule]]: """ By default compiles the whole model to a :class:`~torch.jit.ScriptModule`. If you want to use tracing, please provided the argument `method='trace'` and make sure that either the example_inputs argument is provided, or the model has self.example_input_array set. If you would like to customize the modules that are scripted you should override this method. In case you want to return multiple modules, we recommend using a dictionary. Args: file_path: Path where to save the torchscript. Default: None (no file saved). method: Whether to use TorchScript's script or trace method. Default: 'script' example_inputs: An input to be used to do tracing when method is set to 'trace'. Default: None (Use self.example_input_array) **kwargs: Additional arguments that will be passed to the :func:`torch.jit.script` or :func:`torch.jit.trace` function. Note: - Requires the implementation of the :meth:`~pytorch_lightning.core.lightning.LightningModule.forward` method. - The exported script will be set to evaluation mode. - It is recommended that you install the latest supported version of PyTorch to use this feature without limitations. See also the :mod:`torch.jit` documentation for supported features. Example: >>> class SimpleModel(LightningModule): ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(in_features=64, out_features=4) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1))) ... >>> model = SimpleModel() >>> torch.jit.save(model.to_torchscript(), "model.pt") # doctest: +SKIP >>> os.path.isfile("model.pt") # doctest: +SKIP >>> torch.jit.save(model.to_torchscript(file_path="model_trace.pt", method='trace', # doctest: +SKIP ... example_inputs=torch.randn(1, 64))) # doctest: +SKIP >>> os.path.isfile("model_trace.pt") # doctest: +SKIP True Return: This LightningModule as a torchscript, regardless of whether file_path is defined or not. """ mode = self.training if method == 'script': torchscript_module = torch.jit.script(self.eval(), **kwargs) elif method == 'trace': # if no example inputs are provided, try to see if model has example_input_array set if example_inputs is None: if self.example_input_array is None: raise ValueError( 'Choosing method=`trace` requires either `example_inputs`' ' or `model.example_input_array` to be defined.' ) example_inputs = self.example_input_array # automatically send example inputs to the right device and use trace example_inputs = self._apply_batch_transfer_handler(example_inputs) torchscript_module = torch.jit.trace(func=self.eval(), example_inputs=example_inputs, **kwargs) else: raise ValueError(f"The 'method' parameter only supports 'script' or 'trace', but value given was: {method}") self.train(mode) if file_path is not None: torch.jit.save(torchscript_module, file_path) return torchscript_module @property def hparams(self) -> Union[AttributeDict, dict, Namespace]: if not hasattr(self, "_hparams"): self._hparams = AttributeDict() return self._hparams @property def hparams_initial(self) -> AttributeDict: if not hasattr(self, "_hparams_initial"): return AttributeDict() # prevent any change return copy.deepcopy(self._hparams_initial) @property def model_size(self) -> float: # todo: think about better way without need to dump model to drive tmp_name = f"{uuid.uuid4().hex}.pt" torch.save(self.state_dict(), tmp_name) size_mb = os.path.getsize(tmp_name) / 1e6 os.remove(tmp_name) return size_mb
[ "torch._C._log_api_usage_once", "torch.no_grad", "torch.jit.save", "torch.onnx.export" ]
1.4
lillekemiker/pytorch-lightning
6104a6316afb8cdd9825d77844db456ffa766ca1
1.4
import time from typing import Optional import torch from falkon.options import ConjugateGradientOptions, FalkonOptions from falkon.mmv_ops.fmmv_incore import incore_fdmmv, incore_fmmv from falkon.utils.tensor_helpers import copy_same_stride, create_same_stride from falkon.utils import TicToc # More readable 'pseudocode' for conjugate gradient. # function [x] = conjgrad(A, b, x) # r = b - A * x; # p = r; # rsold = r' * r; # # for i = 1:length(b) # Ap = A * p; # alpha = rsold / (p' * Ap); # x = x + alpha * p; # r = r - alpha * Ap; # rsnew = r' * r; # if sqrt(rsnew) < 1e-10 # break; # end # p = r + (rsnew / rsold) * p; # rsold = rsnew; # end # end class Optimizer(object): def __init__(self): pass class ConjugateGradient(Optimizer): def __init__(self, opt: Optional[ConjugateGradientOptions] = None): super().__init__() self.params = opt or ConjugateGradientOptions() def solve(self, X0, B, mmv, max_iter, callback=None): t_start = time.time() if X0 is None: R = copy_same_stride(B) X = create_same_stride(B.size(), B, B.dtype, B.device) X.fill_(0.0) else: R = B - mmv(X0) X = X0 m_eps = self.params.cg_epsilon(X.dtype) P = R # noinspection PyArgumentList Rsold = torch.sum(R.pow(2), dim=0) e_train = time.time() - t_start for i in range(max_iter): with TicToc("Chol Iter", debug=False): # TODO: FIXME t_start = time.time() AP = mmv(P) # noinspection PyArgumentList alpha = Rsold / (torch.sum(P * AP, dim=0) + m_eps) X.addmm_(P, torch.diag(alpha)) if (i + 1) % self.params.cg_full_gradient_every == 0: R = B - mmv(X) else: R = R - torch.mm(AP, torch.diag(alpha)) # R.addmm_(mat1=AP, mat2=torch.diag(alpha), alpha=-1.0) # noinspection PyArgumentList Rsnew = torch.sum(R.pow(2), dim=0) if Rsnew.abs().max().sqrt() < self.params.cg_tolerance: print("Stopping conjugate gradient descent at " "iteration %d. Solution has converged." % (i + 1)) break P = R + torch.mm(P, torch.diag(Rsnew / (Rsold + m_eps))) if P.is_cuda: # P must be synced so that it's correct for mmv in next iter. torch.cuda.synchronize() Rsold = Rsnew e_iter = time.time() - t_start e_train += e_iter with TicToc("Chol callback", debug=False): if callback is not None: callback(i + 1, X, e_train) return X class FalkonConjugateGradient(Optimizer): def __init__(self, kernel, preconditioner, opt: FalkonOptions): super().__init__() self.kernel = kernel self.preconditioner = preconditioner self.params = opt self.optimizer = ConjugateGradient(opt.get_conjgrad_options()) def solve(self, X, M, Y, _lambda, initial_solution, max_iter, callback=None): n = X.size(0) prec = self.preconditioner with TicToc("ConjGrad preparation", False): if M is None: Knm = X else: Knm = None # Compute the right hand side if Knm is not None: B = incore_fmmv(Knm, Y / n, None, transpose=True, opt=self.params) else: B = self.kernel.dmmv(X, M, None, Y / n, opt=self.params) B = prec.apply_t(B) # Define the Matrix-vector product iteration if X.is_cuda: s1 = torch.cuda.Stream(X.device) def mmv(sol): with TicToc("MMV", False): v = prec.invA(sol) v_t = prec.invT(v) if Knm is not None: cc = incore_fdmmv(Knm, v_t, None, opt=self.params) else: cc = self.kernel.dmmv(X, M, v_t, None, opt=self.params) if X.is_cuda: with torch.cuda.stream(s1), torch.cuda.device(X.device): # We must sync before calls to prec.inv* which use a different stream cc_ = cc.div_(n) v_ = v.mul_(_lambda) s1.synchronize() cc_ = prec.invTt(cc_).add_(v_) s1.synchronize() return prec.invAt(cc_) else: return prec.invAt(prec.invTt(cc / n) + _lambda * v) # Run the conjugate gradient solver beta = self.optimizer.solve(initial_solution, B, mmv, max_iter, callback) return beta
[ "torch.cuda.synchronize", "torch.cuda.device", "torch.cuda.stream", "torch.diag", "torch.cuda.Stream", "torch.sum" ]
1.4
gpleiss/falkon
36aa6713aff8ee6b9ad922d48b07c994fce30559
1.4
import torch import torch.nn as nn import pdb class Cumulative_Probability_Layer(nn.Module): def __init__(self, num_features, args, max_followup): super(Cumulative_Probability_Layer, self).__init__() self.args = args self.hazard_fc = nn.Linear(num_features, max_followup) self.base_hazard_fc = nn.Linear(num_features, 1) self.relu = nn.ReLU(inplace=True) mask = torch.ones([max_followup, max_followup]) mask = torch.tril(mask, diagonal=0) mask = torch.nn.Parameter(torch.t(mask), requires_grad=False) self.register_parameter('upper_triagular_mask', mask) def hazards(self, x): raw_hazard = self.hazard_fc(x) pos_hazard = self.relu(raw_hazard) return pos_hazard def forward(self, x): if self.args.make_probs_indep: return self.hazards(x) # hazards = self.hazard_fc(x) hazards = self.hazards(x) B, T = hazards.size() #hazards is (B, T) expanded_hazards = hazards.unsqueeze(-1).expand(B, T, T) #expanded_hazards is (B,T, T) masked_hazards = expanded_hazards * self.upper_triagular_mask # masked_hazards now (B,T, T) cum_prob = torch.sum(masked_hazards, dim=1) + self.base_hazard_fc(x) return cum_prob
[ "torch.nn.Linear", "torch.tril", "torch.ones", "torch.nn.ReLU", "torch.t", "torch.sum" ]
1.4.0
harrivle/Mirai
70413de690da36c5878e2e6006711476e166bb1d
1.8
# This app is for educational purpose only. Insights gained is not financial advice. Use at your own risk! import streamlit as st from PIL import Image import pandas as pd import base64 import matplotlib.pyplot as plt from bs4 import BeautifulSoup import requests import json import time import tweepy import datetime from datetime import datetime, date, time import plotly.express as px import numpy as np from wordcloud import WordCloud, STOPWORDS import config import torch from transformers import pipeline from hate_speech_model import HateSpeechClassifier #---------------------------------# # New feature (make sure to upgrade your streamlit library) # pip install --upgrade streamlit #---------------------------------# # Page layout ## Page expands to full width st.set_page_config(layout="wide") #---------------------------------# # Title image = Image.open('4.PNG') st.image(image, width = None) df = pd.read_csv('data/final_hatespeech_data - final_hatespeech_data.csv') df['label'] = np.where(df['label']==1,'Hate speech','Normal speech') # Page layout (continued) ## Divide page to 3 columns (col1 = sidebar, col2 and col3 = page contents) col1 = st.sidebar col2, col3 = st.beta_columns((2,1)) #---------------------------------# # Sidebar - Main panel col1.header('Select options') ## Sidebar - Currency price unit locations = ['ELDORET', 'EMBU', 'GARISSA', 'GITHUNGURI', 'HOMA BAY', 'ISINYA', 'ISIOLO', 'JUJA', 'KABARAK', 'KABETE', 'KAJIADO', 'KAKAMEGA', 'KAPSABET', 'NAIROBI', 'KERICHO', 'KIAMBU'] region = pd.DataFrame(locations) selected_region = col1.selectbox('Select region', region) ## Sidebar - Start and End date start_date = col1.date_input('Start date', min_value=datetime(2021, 4, 1),max_value=datetime(2021, 4, 29)) start_date = pd.to_datetime(start_date) end_date = col1.date_input('End date', min_value=datetime(2021, 4, 1),max_value=datetime(2021, 4, 29)) end_date = pd.to_datetime(end_date) #date_range = col1.date_input('Date Range',value=(datetime(2020, 1, 1), datetime(2030, 1, 1)), help="choose a range or click same day twice") #st.title('Twitter hatespeech detection tool') st.markdown(""" This tool classifies tweets as **hate speech or non-hatespeech**! """) #---------------------------------# # About expander_bar_1 = st.beta_expander("About this tool") expander_bar_1.markdown(""" In an increasingly digital era where online social interactions are considered part of the social context, it is proving inevitable that machine learning should be used to protect people from harmful content. This has been evidenced by the multitude of instances where hate speech propagated online has led to physical injury and loss of lives across the world. Government institutions should now consider online interactions as spaces where potential crimes may occur just like in the physical world. This tool identifies hatespeech as tweets that can be in following three formal classes: * **HATE:** This class contains tweets which highlight negative attributes or deficiencies of certain groups of individuals. This class includes hateful comments towards individuals based on race, political opinion, sexual orientation, gender, social status, health condition, etc. * **OFFN:** This class contains tweets which are degrading, dehumanizing or insulting towards an individual. It encompasses cases of threatening with violent acts. * **PRFN:** This class contains tweets with explicit content, profane words or unacceptable language in the absence of insults and abuse. This typically concerns the usage of swearwords and cursing. Political hate speech is the greatest area of concern in regards to Kenya and thus this will be the area of focus for this tool. """) #---------------------------------# # Scraping of tweets expander_bar_2 = st.beta_expander("Search/load tweets") #@st.cache # Load classification model with st.spinner('Loading...'): model = HateSpeechClassifier() model.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device('cpu'))) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = torch.device("cpu") @st.cache(allow_output_mutation=True) def sentence_prediction(tw, model): tokenizer = config.TOKENIZER max_len = 140 review = str(tw) inputs = tokenizer.encode_plus( review, None, add_special_tokens=True, max_length=max_len, return_token_type_ids=False, truncation=True, padding="max_length" ) class_names = ['Normal Speech','Hate Speech'] input_ids = inputs['input_ids'] mask = inputs['attention_mask'] padding_length = max_len - len(input_ids) input_ids = input_ids + ([0] * padding_length) mask = mask + ([0] * padding_length) input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) attention_mask = torch.tensor(mask, dtype=torch.long).unsqueeze(0) input_ids = input_ids.to(device, dtype=torch.long) attention_mask = attention_mask.to(device, dtype=torch.long) outputs = model(input_ids=input_ids, attention_mask=attention_mask ) outputs = torch.sigmoid(outputs).cpu().detach().numpy() out = outputs[0][0] hate_prediction = float(out) if hate_prediction >= 0.5: return f"{class_names[1]}" else: return f"{class_names[0]}" ### SINGLE TWEET CLASSIFICATION ### expander_bar_2.subheader('Single tweet classification') # Get sentence input, preprocess it, and convert to flair.data.Sentence format tw = expander_bar_2.text_input('Tweet:') if tw != '': # Predict tweet sentence = sentence_prediction(tw, model) # Show prediction #with st.spinner('Predicting...'): #sentence if sentence == "Hate Speech": zero_model = 'typeform/mobilebert-uncased-mnli' classifier = pipeline("zero-shot-classification", model=zero_model,tokenizer=config.TOKENIZER) text = tw candidate_labels = ['Violent', 'Offensive', 'Profane'] result = classifier(text, candidate_labels) data = pd.DataFrame({'Hate Sub-clusters': result['labels'], 'Confidence Level': result['scores']}) clus = data[data['Confidence Level'] == data['Confidence Level'].max()] clus_p = clus['Hate Sub-clusters'].values clus_pp = clus_p[0] clus_c = clus['Confidence Level'].values clus_cc = round(clus_c[0], 2) #print('hate sub-cluster: ', clus_pp ,' with a Confidence Level of ', clus_cc) #f"{'hate sub-cluster': clus_pp,'Confidence Level': clus_cc}" with st.spinner('Predicting...'): speech = f"**{sentence}**" subclust = f"**Hate sub-cluster: {clus_pp} with a Confidence Level of {clus_cc}**" #st.markdown(speech) expander_bar_2.write(speech) #st.markdown(subclust) expander_bar_2.write(subclust) else: with st.spinner('Predicting...'): speech = f"**{sentence}**" #st.markdown(speech) expander_bar_2.write(speech) #st.write(alt.Chart(data).mark_bar().encode( # x='Confidence Level', # y=alt.X('Hate Sub-clusters', sort=None), # color='Hate Sub-clusters' #).configure_axis( # grid=False #).properties( # width=500, # height=150 #) # ) # st.write(out) ### TWEET SEARCH AND CLASSIFY ### expander_bar_2.subheader('Offline Batch tweet classification') # Initialize empty dataframe tweet_data = pd.DataFrame({ 'tweet': [], 'predicted-sentiment': [], 'location': [], 'tweet_date': [] }) uploaded_file = expander_bar_2.file_uploader("Choose a file") if uploaded_file is not None: df = pd.read_csv(uploaded_file) expander_bar_2.write(df) # classify tweet #for tweet in df['tweet']: for index, row in df.iterrows(): # Skip iteration if tweet is empty #if tweet in ('', ' '): if row['tweet'] in ('', ' '): continue # Make predictions class_names = ['Hate Speech', 'Normal Speech'] sentence = sentence_prediction(row['tweet'], model) # classifier.predict(sentence) sentiment = sentence max_len = 140 if sentiment == "Hate Speech": #tokenizer = AutoTokenizer.from_pretrained('typeform/mobilebert-uncased-mnli') zero_model = 'typeform/mobilebert-uncased-mnli' classifier = pipeline("zero-shot-classification", model=zero_model,tokenizer=config.TOKENIZER) text = row['tweet'] candidate_labels = ['Violent', 'Offensive', 'Profane'] result = classifier(text, candidate_labels) data = pd.DataFrame({'Hate Sub-clusters': result['labels'], 'Confidence Level': result['scores']}) clus = data[data['Confidence Level'] == data['Confidence Level'].max()] clus_p = clus['Hate Sub-clusters'].values clus_pp = clus_p[0] clus_c = clus['Confidence Level'].values clus_cc = round(clus_c[0], 2) #tweet_data = tweet_data.append({'tweet': tweet, 'predicted-sentiment': sentiment, 'hate sub-cluster': clus_pp, # 'confidence level': clus_cc}, ignore_index=True) tweet_data = tweet_data.append( {'tweet': row['tweet'], 'predicted-sentiment': sentiment, 'hate sub-cluster': clus_pp, 'confidence level': clus_cc, 'location': row['location'], 'tweet_date': row['tweet_date']}, ignore_index=True) #tweet_data = tweet_data.reindex( # columns=['tweet', 'predicted-sentiment', 'hate sub-cluster', 'confidence level']) tweet_data = tweet_data.reindex( columns=['tweet', 'predicted-sentiment', 'hate sub-cluster', 'confidence level', 'location', 'tweet_date']) else: non = '' #tweet_data = tweet_data.append( # {'tweet': tweet, 'predicted-sentiment': sentiment, 'hate sub-cluster': non, 'confidence level': non}, # ignore_index=True) tweet_data = tweet_data.append( {'tweet': row['tweet'], 'predicted-sentiment': sentiment, 'hate sub-cluster': non, 'confidence level': non, 'location': row['location'], 'tweet_date': row['tweet_date']}, ignore_index=True) tweet_data = tweet_data.reindex( columns=['tweet', 'predicted-sentiment', 'hate sub-cluster', 'confidence level', 'location', 'tweet_date']) #columns=['tweet', 'predicted-sentiment', 'hate sub-cluster', 'confidence level']) # As long as the query is valid (not empty or equal to '#')... #if query != '' and query != '#': # with st.spinner(f'Searching for and analyzing {query}...'): # Show query data and sentiment if available try: #expander_bar_2.write(tweet_data) tweet_data.to_csv("predicted_tweet_data") tweet_data['tweet_date'] = pd.to_datetime(tweet_data['tweet_date']) tweet_data_filtered = tweet_data[ (tweet_data['location'] == selected_region) & (tweet_data['tweet_date'] >= start_date) & ( tweet_data['tweet_date'] <= end_date)] expander_bar_2.write(tweet_data_filtered) except NameError: # if no queries have been made yet pass #---------------------------------# # Overview of extracted tweets tweet_data['tweet_date'] = pd.to_datetime(tweet_data['tweet_date']) tweet_data_filtered = tweet_data[(tweet_data['location']==selected_region) & (tweet_data['tweet_date']>=start_date) & (tweet_data['tweet_date']<=end_date)] expander_bar_3 = st.beta_expander("Visual overview of loaded tweets") sentiment_count = tweet_data_filtered['predicted-sentiment'].value_counts() sentiment_count = pd.DataFrame({'Sentiments':sentiment_count.index,'Tweets':sentiment_count.values}) # region_count = df['location'].value_counts() # region_count = pd.DataFrame({'Region':region_count.index,'Tweets':region_count.values}) if len(sentiment_count) == 0: expander_bar_3.markdown('There are no visuals at the moment...... Please load data to show some visuals') else: fig_1 = px.bar(sentiment_count,x='Sentiments',y='Tweets',color='Tweets',height=500) expander_bar_3.plotly_chart(fig_1) fig_2 = px.pie(sentiment_count,values='Tweets',names='Sentiments') expander_bar_3.plotly_chart(fig_2) # fig_3 = px.bar(region_count,x='Region',y='Tweets',color='Tweets',height=500) # expander_bar_3.plotly_chart(fig_3) #expander_bar_3.table() #---------------------------------# # Hate speech tweets expander_bar_3 = st.beta_expander("View hatespeech tweets") df_hatespeech = tweet_data_filtered[tweet_data_filtered['predicted-sentiment']=='Hate Speech'] if len(df_hatespeech) == 0: expander_bar_3.markdown('Nothing to show here since hate speech has not been detected in the set of uploaded tweets') else: expander_bar_3.dataframe(df_hatespeech[['tweet','predicted-sentiment']]) #---------------------------------# # Non-hatespeech tweets expander_bar_4 = st.beta_expander("View normal text tweets") df_normalspeech = tweet_data_filtered[tweet_data_filtered['predicted-sentiment']=='Normal Speech'] if len(df_normalspeech) == 0: expander_bar_4.markdown('Nothing to show here since normal speech has not been detected in the set of uploaded tweets') else: expander_bar_4.dataframe(df_normalspeech[['tweet','predicted-sentiment']]) #---------------------------------# #---------------------------------# #---------------------------------# # Hate speech words st.set_option('deprecation.showPyplotGlobalUse', False) expander_bar_5 = st.beta_expander("Hate speech key words") if len(df_hatespeech) == 0: expander_bar_5.markdown('Nothing to show here since hate speech has not been detected in the set of uploaded tweets') else: words = " ".join(df_hatespeech["tweet"]) processed_words = " ".join([word for word in words.split() if "http" not in word and not word.startswith("@") and word != "RT"]) wordcloud = WordCloud(stopwords=STOPWORDS, background_color="white", width=800, height=640).generate(processed_words) plt.imshow(wordcloud) plt.xticks([]) plt.yticks([]) expander_bar_5.pyplot() #---------------------------------#
[ "torch.device", "torch.sigmoid", "torch.tensor" ]
1.8.1
sgich/HateSpeechDetection
e6e0dd2ca6956cdb496232196ef292b97e96eb04
1.7
import argparse import os from tqdm import tqdm from datetime import datetime import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data from torch.utils.tensorboard import SummaryWriter import deepab from deepab.models.AbResNet import AbResNet, load_model from deepab.models.PairedSeqLSTM import load_model as load_lstm_rnn from deepab.util.masking import MASK_VALUE from deepab.util.training import check_for_h5_file # from deepab.util.util import RawTextArgumentDefaultsHelpFormatter from deepab.datasets.H5PairwiseGeometryDataset import H5PairwiseGeometryDataset from deepab.preprocess.generate_h5_pairwise_geom_file import antibody_to_h5 _output_names = ['ca_dist', 'cb_dist', 'no_dist', 'omega', 'theta', 'phi'] class FocalLoss(nn.modules.loss._WeightedLoss): def __init__(self, weight=None, gamma=2, reduction='mean', ignore_index=MASK_VALUE): super(FocalLoss, self).__init__(weight, reduction=reduction) self.gamma = gamma self.weight = weight self.ignore_index = ignore_index def forward(self, input, target): ce_loss = F.cross_entropy(input, target, reduction=self.reduction, weight=self.weight, ignore_index=self.ignore_index) pt = torch.exp(-ce_loss) focal_loss = ((1 - pt)**self.gamma * ce_loss).mean() return focal_loss def train_epoch(model, train_loader, optimizer, device, criterion, loss_size): """Trains a model for one epoch""" model.train() running_losses = torch.zeros(loss_size) for inputs, labels in tqdm(train_loader, total=len(train_loader)): inputs = inputs.to(device) labels = [label.to(device) for label in labels] optimizer.zero_grad() def handle_batch(): outputs = model(inputs) losses = [ criterion(output, label) for output, label in zip(outputs, labels) ] total_loss = sum(losses) losses.append(total_loss) total_loss.backward() optimizer.step() return outputs, torch.Tensor([float(l.item()) for l in losses]) outputs, batch_loss = handle_batch() running_losses += batch_loss return running_losses def validate(model, validation_loader, device, criterion, loss_size): """""" with torch.no_grad(): model.eval() running_losses = torch.zeros(loss_size) for inputs, labels in tqdm(validation_loader, total=len(validation_loader)): inputs = inputs.to(device) labels = [label.to(device) for label in labels] def handle_batch(): outputs = model(inputs) losses = [ criterion(output, label) for output, label in zip(outputs, labels) ] total_loss = sum(losses) losses.append(total_loss) return outputs, torch.Tensor([float(l.item()) for l in losses]) outputs, batch_loss = handle_batch() running_losses += batch_loss return running_losses def train(model, train_loader, validation_loader, optimizer, epochs, current_epoch, device, criterion, lr_modifier, writer, save_file, save_every, properties=None): """""" properties = {} if properties is None else properties print('Using {} as device'.format(str(device).upper())) model = model.to(device) loss_size = len(_output_names) + 1 for epoch in range(current_epoch, epochs): train_losses = train_epoch(model, train_loader, optimizer, device, criterion, loss_size) avg_train_losses = train_losses / len(train_loader) train_loss_dict = dict( zip(_output_names + ['total'], avg_train_losses.tolist())) writer.add_scalars('train_loss', train_loss_dict, global_step=epoch) print('\nAverage training loss (epoch {}): {}'.format( epoch, train_loss_dict)) val_losses = validate(model, validation_loader, device, criterion, loss_size) avg_val_losses = val_losses / len(validation_loader) val_loss_dict = dict( zip(_output_names + ['total'], avg_val_losses.tolist())) writer.add_scalars('validation_loss', val_loss_dict, global_step=epoch) print('\nAverage validation loss (epoch {}): {}'.format( epoch, val_loss_dict)) total_val_loss = val_losses[-1] lr_modifier.step(total_val_loss) if (epoch + 1) % save_every == 0: properties.update({'model_state_dict': model.state_dict()}) properties.update({ 'optimizer_state_dict': optimizer.state_dict(), 'train_loss': train_loss_dict, 'val_loss': val_loss_dict, 'epoch': epoch }) torch.save(properties, save_file + ".e{}".format(epoch + 1)) properties.update({'model_state_dict': model.state_dict()}) properties.update({ 'optimizer_state_dict': optimizer.state_dict(), 'train_loss': train_loss_dict, 'val_loss': val_loss_dict, 'epoch': epoch }) torch.save(properties, save_file) def _get_args(): """Gets command line arguments""" project_path = os.path.abspath(os.path.join(deepab.__file__, "../..")) desc = (''' Script for training a model using a non-redundant set of bound and unbound antibodies from SabDab with at most 99% sequence similarity, a resolution cutoff of 3, and with a paired VH/VL. \n If there is no H5 file named antibody.h5 in the deepab/data directory, then the script automatically uses the PDB files in deepab/data/antibody_database directory to generate antibody.h5. If no such directory exists, then the script downloads the set of pdbs from SabDab outlined above. ''') parser = argparse.ArgumentParser() # Model architecture arguments parser.add_argument('--num_blocks1D', type=int, default=3, help='Number of one-dimensional ResNet blocks to use.') parser.add_argument('--num_blocks2D', type=int, default=25, help='Number of two-dimensional ResNet blocks to use.') parser.add_argument('--dilation_cycle', type=int, default=5) parser.add_argument('--num_bins', type=int, default=37) parser.add_argument('--dropout', type=float, default=0.2) # Training arguments parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--save_every', type=int, default=5) parser.add_argument('--batch_size', type=int, default=4) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--use_gpu', default=False, action="store_true") parser.add_argument('--train_split', type=float, default=0.9) default_h5_file = os.path.join(project_path, 'data/abPwGeometry.h5') parser.add_argument('--h5_file', type=str, default=default_h5_file) default_antibody_database = os.path.join(project_path, 'data/antibody_database') parser.add_argument('--antibody_database', type=str, default=default_antibody_database) now = str(datetime.now().strftime('%y-%m-%d %H:%M:%S')) default_model_path = os.path.join(project_path, 'trained_models/model_{}/'.format(now)) parser.add_argument('--output_dir', type=str, default=default_model_path) parser.add_argument('--pretrain_model_file', type=str, default=None) parser.add_argument('--random_seed', type=int, default=0) return parser.parse_args() def _cli(): args = _get_args() device_type = 'cuda' if torch.cuda.is_available( ) and args.use_gpu else 'cpu' device = torch.device(device_type) out_dir = args.output_dir current_epoch = 0 if os.path.isdir(out_dir) and os.path.exists( os.path.join(out_dir, "model.p")): model_file = os.path.join(out_dir, "model.p") properties = torch.load(model_file, map_location='cpu') model = load_model(model_file, eval_mode=False, device=device).to(device) current_epoch = properties['epoch'] + 1 optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) optimizer.load_state_dict(properties['optimizer_state_dict']) elif args.pretrain_model_file != None and os.path.exists( args.pretrain_model_file): pretrain_model_file = args.pretrain_model_file properties = torch.load(pretrain_model_file, map_location='cpu') model = load_model(pretrain_model_file, eval_mode=False, device=device, strict=False).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) properties.update({'lr': args.lr}) print('Making {} ...'.format(out_dir)) os.mkdir(out_dir) else: lstm_model_file = "trained_models/pairedseqlstm_scaler.p.e5" lstm_model = load_lstm_rnn(lstm_model_file, eval_mode=True).to(device) lstm_checkpoint_dict = torch.load(lstm_model_file, map_location='cpu') lstm_mean = torch.tensor( lstm_checkpoint_dict['scaler_mean']).float().to(device) lstm_scale = torch.tensor( lstm_checkpoint_dict['scaler_scale']).float().to(device) properties = dict(num_out_bins=args.num_bins, num_blocks1D=args.num_blocks1D, num_blocks2D=args.num_blocks2D, dropout_proportion=args.dropout, dilation_cycle=args.dilation_cycle) model = AbResNet(21, lstm_model=lstm_model, lstm_mean=lstm_mean, lstm_scale=lstm_scale, **properties) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) properties.update({'lr': args.lr}) properties['lstm_checkpoint_dict'] = lstm_checkpoint_dict print('Making {} ...'.format(out_dir)) os.mkdir(out_dir) properties.update({'lr': args.lr}) # Load dataset loaders from h5 file h5_file = args.h5_file check_for_h5_file(h5_file, antibody_to_h5, args.antibody_database) dataset = H5PairwiseGeometryDataset(h5_file, num_bins=args.num_bins, mask_distant_orientations=True) train_split_length = int(len(dataset) * args.train_split) torch.manual_seed(args.random_seed) train_dataset, validation_dataset = data.random_split( dataset, [train_split_length, len(dataset) - train_split_length]) train_loader = data.DataLoader( train_dataset, batch_size=args.batch_size, collate_fn=H5PairwiseGeometryDataset.merge_samples_to_minibatch) validation_loader = data.DataLoader( validation_dataset, batch_size=args.batch_size, collate_fn=H5PairwiseGeometryDataset.merge_samples_to_minibatch) criterion = FocalLoss(ignore_index=dataset.mask_fill_value) lr_modifier = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, verbose=True) writer = SummaryWriter(os.path.join(out_dir, 'tensorboard')) print('Arguments:\n', args) print('Model:\n', model) train(model=model, train_loader=train_loader, validation_loader=validation_loader, optimizer=optimizer, device=device, epochs=args.epochs, current_epoch=current_epoch, criterion=criterion, lr_modifier=lr_modifier, writer=writer, save_file=os.path.join(out_dir, 'model.p'), save_every=args.save_every, properties=properties) if __name__ == '__main__': _cli()
[ "torch.zeros", "torch.device", "torch.save", "torch.no_grad", "torch.manual_seed", "torch.nn.functional.cross_entropy", "torch.cuda.is_available", "torch.tensor", "torch.utils.data.DataLoader", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.load", "torch.exp" ]
1.7.1
nsridhar1/DeepAb
659bad092e1b56ec9f056d9c031900990436200c
1.8
from data.data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Pred from data.edf_loader import EdfDataset from data.sample_loader import SampleDataset from exp.exp_basic import Exp_Basic from models.model import Informer, InformerStack from utils.tools import EarlyStopping, adjust_learning_rate from utils.metrics import metric import numpy as np import torch import torch.nn as nn from torch import optim from torch.utils.data import DataLoader import os import time import warnings warnings.filterwarnings('ignore') class Exp_Informer(Exp_Basic): def __init__(self, args): super(Exp_Informer, self).__init__(args) def _build_model(self): model_dict = { 'informer':Informer, 'informerstack':InformerStack, } if self.args.model=='informer' or self.args.model=='informerstack': e_layers = self.args.e_layers if self.args.model=='informer' else self.args.s_layers model = model_dict[self.args.model]( self.args.enc_in, self.args.dec_in, self.args.c_out, self.args.seq_len, self.args.label_len, self.args.pred_len, self.args.factor, self.args.d_model, self.args.n_heads, e_layers, # self.args.e_layers, self.args.d_layers, self.args.d_ff, self.args.dropout, self.args.attn, self.args.embed, self.args.freq, self.args.activation, self.args.output_attention, self.args.distil, self.args.mix, self.device ).float() if self.args.use_multi_gpu and self.args.use_gpu: model = nn.DataParallel(model, device_ids=self.args.device_ids) return model def _get_data(self, flag): args = self.args data_dict = { 'ETTh1':Dataset_ETT_hour, 'ETTh2':Dataset_ETT_hour, 'ETTm1':Dataset_ETT_minute, 'ETTm2':Dataset_ETT_minute, 'WTH':Dataset_Custom, 'ECL':Dataset_Custom, 'Solar':Dataset_Custom, 'custom':Dataset_Custom, 'SingleEdf': EdfDataset, 'SampleEdf': SampleDataset } Data = data_dict[self.args.data] timeenc = 0 if args.embed!='timeF' else 1 if flag == 'test': shuffle_flag = False; drop_last = True; batch_size = args.batch_size; freq=args.freq elif flag=='pred': shuffle_flag = False; drop_last = False; batch_size = 1; freq=args.detail_freq Data = Dataset_Pred else: shuffle_flag = True; drop_last = True; batch_size = args.batch_size; freq=args.freq data_set = Data( root_path=args.root_path, data_path=args.data_path, flag=flag, size=[args.seq_len, args.label_len, args.pred_len], features=args.features, target=args.target, inverse=args.inverse, timeenc=timeenc, freq=freq, cols=args.cols ) if self.args.data == 'SampleEdf': data_set = data_set.sample_dataset print(flag, len(data_set)) data_loader = DataLoader( data_set, batch_size=batch_size, shuffle=shuffle_flag, num_workers=args.num_workers, drop_last=drop_last) return data_set, data_loader def _select_optimizer(self): model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) return model_optim def _select_criterion(self): criterion = nn.MSELoss() return criterion def vali(self, vali_data, vali_loader, criterion): self.model.eval() total_loss = [] for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(vali_loader): pred, true = self._process_one_batch( vali_data, batch_x, batch_y, batch_x_mark, batch_y_mark) loss = criterion(pred.detach().cpu(), true.detach().cpu()) total_loss.append(loss) total_loss = np.average(total_loss) self.model.train() return total_loss def train(self, setting): train_data, train_loader = self._get_data(flag = 'train') vali_data, vali_loader = self._get_data(flag = 'val') test_data, test_loader = self._get_data(flag = 'test') path = os.path.join(self.args.checkpoints, setting) if not os.path.exists(path): os.makedirs(path) time_now = time.time() train_steps = len(train_loader) early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) model_optim = self._select_optimizer() criterion = self._select_criterion() if self.args.use_amp: scaler = torch.cuda.amp.GradScaler() for epoch in range(self.args.train_epochs): iter_count = 0 train_loss = [] self.model.train() epoch_time = time.time() for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(train_loader): iter_count += 1 model_optim.zero_grad() pred, true = self._process_one_batch( train_data, batch_x, batch_y, batch_x_mark, batch_y_mark) loss = criterion(pred, true) train_loss.append(loss.item()) if (i+1) % 500==0: print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) speed = (time.time()-time_now)/iter_count left_time = speed*((self.args.train_epochs - epoch)*train_steps - i) print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) iter_count = 0 time_now = time.time() if self.args.use_amp: scaler.scale(loss).backward() scaler.step(model_optim) scaler.update() else: loss.backward() model_optim.step() print("Epoch: {} cost time: {}".format(epoch+1, time.time()-epoch_time)) train_loss = np.average(train_loss) vali_loss = self.vali(vali_data, vali_loader, criterion) test_loss = self.vali(test_data, test_loader, criterion) print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format( epoch + 1, train_steps, train_loss, vali_loss, test_loss)) early_stopping(vali_loss, self.model, path) if early_stopping.early_stop: print("Early stopping") break adjust_learning_rate(model_optim, epoch+1, self.args) best_model_path = path+'/'+'checkpoint.pth' self.model.load_state_dict(torch.load(best_model_path)) return self.model def test(self, setting): test_data, test_loader = self._get_data(flag='test') self.model.eval() preds = [] trues = [] for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(test_loader): pred, true = self._process_one_batch( test_data, batch_x, batch_y, batch_x_mark, batch_y_mark) preds.append(pred.detach().cpu().numpy()) trues.append(true.detach().cpu().numpy()) preds = np.array(preds) trues = np.array(trues) print('test shape:', preds.shape, trues.shape) preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1]) trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1]) print('test shape:', preds.shape, trues.shape) # result save folder_path = './results/' + setting +'/' if not os.path.exists(folder_path): os.makedirs(folder_path) mae, mse, rmse, mape, mspe = metric(preds, trues) print('mse:{}, mae:{}'.format(mse, mae)) np.save(folder_path+'metrics.npy', np.array([mae, mse, rmse, mape, mspe])) np.save(folder_path+'pred.npy', preds) np.save(folder_path+'true.npy', trues) return def predict(self, setting, load=False): pred_data, pred_loader = self._get_data(flag='pred') if load: path = os.path.join(self.args.checkpoints, setting) best_model_path = path+'/'+'checkpoint.pth' self.model.load_state_dict(torch.load(best_model_path)) self.model.eval() preds = [] for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(pred_loader): pred, true = self._process_one_batch( pred_data, batch_x, batch_y, batch_x_mark, batch_y_mark) preds.append(pred.detach().cpu().numpy()) preds = np.array(preds) preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1]) # result save folder_path = './results/' + setting +'/' if not os.path.exists(folder_path): os.makedirs(folder_path) np.save(folder_path+'real_prediction.npy', preds) return def _process_one_batch(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float() batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) # decoder input if self.args.padding==0: dec_inp = torch.zeros([batch_y.shape[0], self.args.pred_len, batch_y.shape[-1]]).float() elif self.args.padding==1: dec_inp = torch.ones([batch_y.shape[0], self.args.pred_len, batch_y.shape[-1]]).float() dec_inp = torch.cat([batch_y[:,:self.args.label_len,:], dec_inp], dim=1).float().to(self.device) # encoder - decoder if self.args.use_amp: with torch.cuda.amp.autocast(): if self.args.output_attention: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) else: if self.args.output_attention: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if self.args.inverse: outputs = dataset_object.inverse_transform(outputs) f_dim = -1 if self.args.features=='MS' else 0 batch_y = batch_y[:,-self.args.pred_len:,f_dim:].to(self.device) return outputs, batch_y
[ "torch.zeros", "torch.cat", "torch.cuda.amp.autocast", "torch.nn.MSELoss", "torch.ones", "torch.utils.data.DataLoader", "torch.load", "torch.cuda.amp.GradScaler", "torch.nn.DataParallel" ]
1.8.0
kimjimong/Informer2020
1466bea980552ca65468f10d53bef8506935f315
1.1
import torch from torch import nn from torch import autograd from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence class SeqToLangModel(nn.Module): def __init__(self, num_of_ngrams, output_size, hidden_size, embedding_dim): super().__init__() self.chars_embedding = nn.Embedding(num_embeddings=num_of_ngrams, padding_idx=0, embedding_dim=embedding_dim) self.rnn = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_size, bidirectional=True, batch_first=True) self.linear = nn.Linear(hidden_size*2, output_size) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def forward(self, tokenized_texts): batch_size = tokenized_texts.shape[0] num_of_words = tokenized_texts.shape[1] num_of_ngrams = tokenized_texts.shape[2] lens = torch.sum(tokenized_texts.sum(2) > 0, dim=1) x = tokenized_texts.view(batch_size * num_of_words, num_of_ngrams) embedded = self.chars_embedding(x) embedded = embedded.view(batch_size, num_of_words, num_of_ngrams, -1) embedded_sum = embedded.sum(2) / lens.view(batch_size, 1, 1).float() pack = pack_padded_sequence(embedded_sum, lens, batch_first=True, enforce_sorted=False) rnn_outputs, last_hidden = self.rnn(pack) unpacked, unpacked_len = pad_packed_sequence(rnn_outputs, batch_first=True) if unpacked.size(1) < num_of_words: dummy_tensor = autograd.Variable(torch.zeros(batch_size, num_of_words - unpacked.size(1), unpacked.shape[-1])).to(self.device) unpacked = torch.cat([unpacked, dummy_tensor], 1) output = self.linear(unpacked) return output
[ "torch.nn.Linear", "torch.cat", "torch.nn.LSTM", "torch.nn.utils.rnn.pad_packed_sequence", "torch.cuda.is_available", "torch.nn.utils.rnn.pack_padded_sequence", "torch.nn.Embedding" ]
1.1.0
abdelrahman0110/task
2956dc96f51b3fb3d691d0f8bbad9d9bfdeb6078
1.4
import tqdm import pytest import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import BasePolicy from tianshou.env import DummyVectorEnv, SubprocVectorEnv from tianshou.data import Batch, Collector, AsyncCollector from tianshou.data import ( ReplayBuffer, PrioritizedReplayBuffer, VectorReplayBuffer, CachedReplayBuffer, ) if __name__ == '__main__': from env import MyTestEnv, NXEnv else: # pytest from test.base.env import MyTestEnv, NXEnv class MyPolicy(BasePolicy): def __init__(self, dict_state=False, need_state=True): """ :param bool dict_state: if the observation of the environment is a dict :param bool need_state: if the policy needs the hidden state (for RNN) """ super().__init__() self.dict_state = dict_state self.need_state = need_state def forward(self, batch, state=None): if self.need_state: if state is None: state = np.zeros((len(batch.obs), 2)) else: state += 1 if self.dict_state: return Batch(act=np.ones(len(batch.obs['index'])), state=state) return Batch(act=np.ones(len(batch.obs)), state=state) def learn(self): pass class Logger: def __init__(self, writer): self.cnt = 0 self.writer = writer def preprocess_fn(self, **kwargs): # modify info before adding into the buffer, and recorded into tfb # if obs && env_id exist -> reset # if obs_next/rew/done/info/env_id exist -> normal step if 'rew' in kwargs: info = kwargs['info'] info.rew = kwargs['rew'] if 'key' in info.keys(): self.writer.add_scalar( 'key', np.mean(info.key), global_step=self.cnt) self.cnt += 1 return Batch(info=info) else: return Batch() @staticmethod def single_preprocess_fn(**kwargs): # same as above, without tfb if 'rew' in kwargs: info = kwargs['info'] info.rew = kwargs['rew'] return Batch(info=info) else: return Batch() def test_collector(): writer = SummaryWriter('log/collector') logger = Logger(writer) env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0) for i in [2, 3, 4, 5]] venv = SubprocVectorEnv(env_fns) dum = DummyVectorEnv(env_fns) policy = MyPolicy() env = env_fns[0]() c0 = Collector(policy, env, ReplayBuffer(size=100), logger.preprocess_fn) c0.collect(n_step=3) assert len(c0.buffer) == 3 assert np.allclose(c0.buffer.obs[:4, 0], [0, 1, 0, 0]) assert np.allclose(c0.buffer[:].obs_next[..., 0], [1, 2, 1]) c0.collect(n_episode=3) assert len(c0.buffer) == 8 assert np.allclose(c0.buffer.obs[:10, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 0]) assert np.allclose(c0.buffer[:].obs_next[..., 0], [1, 2, 1, 2, 1, 2, 1, 2]) c0.collect(n_step=3, random=True) c1 = Collector( policy, venv, VectorReplayBuffer(total_size=100, buffer_num=4), logger.preprocess_fn) c1.collect(n_step=8) obs = np.zeros(100) obs[[0, 1, 25, 26, 50, 51, 75, 76]] = [0, 1, 0, 1, 0, 1, 0, 1] assert np.allclose(c1.buffer.obs[:, 0], obs) assert np.allclose(c1.buffer[:].obs_next[..., 0], [1, 2, 1, 2, 1, 2, 1, 2]) c1.collect(n_episode=4) assert len(c1.buffer) == 16 obs[[2, 3, 27, 52, 53, 77, 78, 79]] = [0, 1, 2, 2, 3, 2, 3, 4] assert np.allclose(c1.buffer.obs[:, 0], obs) assert np.allclose(c1.buffer[:].obs_next[..., 0], [1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]) c1.collect(n_episode=4, random=True) c2 = Collector( policy, dum, VectorReplayBuffer(total_size=100, buffer_num=4), logger.preprocess_fn) c2.collect(n_episode=7) obs1 = obs.copy() obs1[[4, 5, 28, 29, 30]] = [0, 1, 0, 1, 2] obs2 = obs.copy() obs2[[28, 29, 30, 54, 55, 56, 57]] = [0, 1, 2, 0, 1, 2, 3] c2obs = c2.buffer.obs[:, 0] assert np.all(c2obs == obs1) or np.all(c2obs == obs2) c2.reset_env() c2.reset_buffer() assert c2.collect(n_episode=8)['n/ep'] == 8 obs[[4, 5, 28, 29, 30, 54, 55, 56, 57]] = [0, 1, 0, 1, 2, 0, 1, 2, 3] assert np.all(c2.buffer.obs[:, 0] == obs) c2.collect(n_episode=4, random=True) # test corner case with pytest.raises(TypeError): Collector(policy, dum, ReplayBuffer(10)) with pytest.raises(TypeError): Collector(policy, dum, PrioritizedReplayBuffer(10, 0.5, 0.5)) with pytest.raises(TypeError): c2.collect() # test NXEnv for obs_type in ["array", "object"]: envs = SubprocVectorEnv([ lambda i=x: NXEnv(i, obs_type) for x in [5, 10, 15, 20]]) c3 = Collector(policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4)) c3.collect(n_step=6) assert c3.buffer.obs.dtype == object def test_collector_with_async(): env_lens = [2, 3, 4, 5] writer = SummaryWriter('log/async_collector') logger = Logger(writer) env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0.001, random_sleep=True) for i in env_lens] venv = SubprocVectorEnv(env_fns, wait_num=len(env_fns) - 1) policy = MyPolicy() bufsize = 60 c1 = AsyncCollector( policy, venv, VectorReplayBuffer(total_size=bufsize * 4, buffer_num=4), logger.preprocess_fn) ptr = [0, 0, 0, 0] for n_episode in tqdm.trange(1, 30, desc="test async n_episode"): result = c1.collect(n_episode=n_episode) assert result["n/ep"] >= n_episode # check buffer data, obs and obs_next, env_id for i, count in enumerate( np.bincount(result["lens"], minlength=6)[2:]): env_len = i + 2 total = env_len * count indices = np.arange(ptr[i], ptr[i] + total) % bufsize ptr[i] = (ptr[i] + total) % bufsize seq = np.arange(env_len) buf = c1.buffer.buffers[i] assert np.all(buf.info.env_id[indices] == i) assert np.all(buf.obs[indices].reshape(count, env_len) == seq) assert np.all(buf.obs_next[indices].reshape( count, env_len) == seq + 1) # test async n_step, for now the buffer should be full of data for n_step in tqdm.trange(1, 15, desc="test async n_step"): result = c1.collect(n_step=n_step) assert result["n/st"] >= n_step for i in range(4): env_len = i + 2 seq = np.arange(env_len) buf = c1.buffer.buffers[i] assert np.all(buf.info.env_id == i) assert np.all(buf.obs.reshape(-1, env_len) == seq) assert np.all(buf.obs_next.reshape(-1, env_len) == seq + 1) with pytest.raises(TypeError): c1.collect() def test_collector_with_dict_state(): env = MyTestEnv(size=5, sleep=0, dict_state=True) policy = MyPolicy(dict_state=True) c0 = Collector(policy, env, ReplayBuffer(size=100), Logger.single_preprocess_fn) c0.collect(n_step=3) c0.collect(n_episode=2) assert len(c0.buffer) == 10 env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, dict_state=True) for i in [2, 3, 4, 5]] envs = DummyVectorEnv(env_fns) envs.seed(666) obs = envs.reset() assert not np.isclose(obs[0]['rand'], obs[1]['rand']) c1 = Collector( policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4), Logger.single_preprocess_fn) c1.collect(n_step=12) result = c1.collect(n_episode=8) assert result['n/ep'] == 8 lens = np.bincount(result['lens']) assert result['n/st'] == 21 and np.all(lens == [0, 0, 2, 2, 2, 2]) or \ result['n/st'] == 20 and np.all(lens == [0, 0, 3, 1, 2, 2]) batch, _ = c1.buffer.sample(10) c0.buffer.update(c1.buffer) assert len(c0.buffer) in [42, 43] if len(c0.buffer) == 42: assert np.all(c0.buffer[:].obs.index[..., 0] == [ 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, ]), c0.buffer[:].obs.index[..., 0] else: assert np.all(c0.buffer[:].obs.index[..., 0] == [ 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, ]), c0.buffer[:].obs.index[..., 0] c2 = Collector( policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4), Logger.single_preprocess_fn) c2.collect(n_episode=10) batch, _ = c2.buffer.sample(10) def test_collector_with_ma(): env = MyTestEnv(size=5, sleep=0, ma_rew=4) policy = MyPolicy() c0 = Collector(policy, env, ReplayBuffer(size=100), Logger.single_preprocess_fn) # n_step=3 will collect a full episode r = c0.collect(n_step=3)['rews'] assert len(r) == 0 r = c0.collect(n_episode=2)['rews'] assert r.shape == (2, 4) and np.all(r == 1) env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, ma_rew=4) for i in [2, 3, 4, 5]] envs = DummyVectorEnv(env_fns) c1 = Collector( policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4), Logger.single_preprocess_fn) r = c1.collect(n_step=12)['rews'] assert r.shape == (2, 4) and np.all(r == 1), r r = c1.collect(n_episode=8)['rews'] assert r.shape == (8, 4) and np.all(r == 1) batch, _ = c1.buffer.sample(10) print(batch) c0.buffer.update(c1.buffer) assert len(c0.buffer) in [42, 43] if len(c0.buffer) == 42: rew = [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ] else: rew = [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ] assert np.all(c0.buffer[:].rew == [[x] * 4 for x in rew]) assert np.all(c0.buffer[:].done == rew) c2 = Collector( policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4), Logger.single_preprocess_fn) r = c2.collect(n_episode=10)['rews'] assert r.shape == (10, 4) and np.all(r == 1) batch, _ = c2.buffer.sample(10) def test_collector_with_atari_setting(): reference_obs = np.zeros([6, 4, 84, 84]) for i in range(6): reference_obs[i, 3, np.arange(84), np.arange(84)] = i reference_obs[i, 2, np.arange(84)] = i reference_obs[i, 1, :, np.arange(84)] = i reference_obs[i, 0] = i # atari single buffer env = MyTestEnv(size=5, sleep=0, array_state=True) policy = MyPolicy() c0 = Collector(policy, env, ReplayBuffer(size=100)) c0.collect(n_step=6) c0.collect(n_episode=2) assert c0.buffer.obs.shape == (100, 4, 84, 84) assert c0.buffer.obs_next.shape == (100, 4, 84, 84) assert len(c0.buffer) == 15 obs = np.zeros_like(c0.buffer.obs) obs[np.arange(15)] = reference_obs[np.arange(15) % 5] assert np.all(obs == c0.buffer.obs) c1 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=True)) c1.collect(n_episode=3) assert np.allclose(c0.buffer.obs, c1.buffer.obs) with pytest.raises(AttributeError): c1.buffer.obs_next assert np.all(reference_obs[[1, 2, 3, 4, 4] * 3] == c1.buffer[:].obs_next) c2 = Collector( policy, env, ReplayBuffer(size=100, ignore_obs_next=True, save_only_last_obs=True)) c2.collect(n_step=8) assert c2.buffer.obs.shape == (100, 84, 84) obs = np.zeros_like(c2.buffer.obs) obs[np.arange(8)] = reference_obs[[0, 1, 2, 3, 4, 0, 1, 2], -1] assert np.all(c2.buffer.obs == obs) assert np.allclose(c2.buffer[:].obs_next, reference_obs[[1, 2, 3, 4, 4, 1, 2, 2], -1]) # atari multi buffer env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, array_state=True) for i in [2, 3, 4, 5]] envs = DummyVectorEnv(env_fns) c3 = Collector( policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4)) c3.collect(n_step=12) result = c3.collect(n_episode=9) assert result["n/ep"] == 9 and result["n/st"] == 23 assert c3.buffer.obs.shape == (100, 4, 84, 84) obs = np.zeros_like(c3.buffer.obs) obs[np.arange(8)] = reference_obs[[0, 1, 0, 1, 0, 1, 0, 1]] obs[np.arange(25, 34)] = reference_obs[[0, 1, 2, 0, 1, 2, 0, 1, 2]] obs[np.arange(50, 58)] = reference_obs[[0, 1, 2, 3, 0, 1, 2, 3]] obs[np.arange(75, 85)] = reference_obs[[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]] assert np.all(obs == c3.buffer.obs) obs_next = np.zeros_like(c3.buffer.obs_next) obs_next[np.arange(8)] = reference_obs[[1, 2, 1, 2, 1, 2, 1, 2]] obs_next[np.arange(25, 34)] = reference_obs[[1, 2, 3, 1, 2, 3, 1, 2, 3]] obs_next[np.arange(50, 58)] = reference_obs[[1, 2, 3, 4, 1, 2, 3, 4]] obs_next[np.arange(75, 85)] = reference_obs[[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]] assert np.all(obs_next == c3.buffer.obs_next) c4 = Collector( policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4, ignore_obs_next=True, save_only_last_obs=True)) c4.collect(n_step=12) result = c4.collect(n_episode=9) assert result["n/ep"] == 9 and result["n/st"] == 23 assert c4.buffer.obs.shape == (100, 84, 84) obs = np.zeros_like(c4.buffer.obs) slice_obs = reference_obs[:, -1] obs[np.arange(8)] = slice_obs[[0, 1, 0, 1, 0, 1, 0, 1]] obs[np.arange(25, 34)] = slice_obs[[0, 1, 2, 0, 1, 2, 0, 1, 2]] obs[np.arange(50, 58)] = slice_obs[[0, 1, 2, 3, 0, 1, 2, 3]] obs[np.arange(75, 85)] = slice_obs[[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]] assert np.all(c4.buffer.obs == obs) obs_next = np.zeros([len(c4.buffer), 4, 84, 84]) ref_index = np.array([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 4, 4, 1, 2, 3, 4, 4, ]) obs_next[:, -1] = slice_obs[ref_index] ref_index -= 1 ref_index[ref_index < 0] = 0 obs_next[:, -2] = slice_obs[ref_index] ref_index -= 1 ref_index[ref_index < 0] = 0 obs_next[:, -3] = slice_obs[ref_index] ref_index -= 1 ref_index[ref_index < 0] = 0 obs_next[:, -4] = slice_obs[ref_index] assert np.all(obs_next == c4.buffer[:].obs_next) buf = ReplayBuffer(100, stack_num=4, ignore_obs_next=True, save_only_last_obs=True) c5 = Collector(policy, envs, CachedReplayBuffer(buf, 4, 10)) result_ = c5.collect(n_step=12) assert len(buf) == 5 and len(c5.buffer) == 12 result = c5.collect(n_episode=9) assert result["n/ep"] == 9 and result["n/st"] == 23 assert len(buf) == 35 assert np.all(buf.obs[:len(buf)] == slice_obs[[ 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 4]]) assert np.all(buf[:].obs_next[:, -1] == slice_obs[[ 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 3, 4, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 2, 1, 2, 3, 4, 4]]) assert len(buf) == len(c5.buffer) # test buffer=None c6 = Collector(policy, envs) result1 = c6.collect(n_step=12) for key in ["n/ep", "n/st", "rews", "lens"]: assert np.allclose(result1[key], result_[key]) result2 = c6.collect(n_episode=9) for key in ["n/ep", "n/st", "rews", "lens"]: assert np.allclose(result2[key], result[key]) if __name__ == '__main__': test_collector() test_collector_with_dict_state() test_collector_with_ma() test_collector_with_atari_setting() test_collector_with_async()
[ "torch.utils.tensorboard.SummaryWriter" ]
1.4.0
ksc999/tianshou
8a5e2190f7045ffee2ffa4346c0010693ac7b222
1.5
import argparse import os # workaround to unpickle olf model files import sys import numpy as np import torch import time from envs.envs_util import VecPyTorch, make_vec_envs from misc.utils import get_render_func, get_vec_normalize # sys.path.append('a2c_ppo_acktr') parser = argparse.ArgumentParser(description='RL') parser.add_argument( '--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, help='log interval, one log per n updates (default: 10)') parser.add_argument( '--env-name', default='PongNoFrameskip-v4', help='environment to train on (default: PongNoFrameskip-v4)') parser.add_argument( '--algo', default='ppo', help='whether to use a non-deterministic policy') parser.add_argument( '--load-dir', default='./trained_models/', help='directory to load agent logs (default: ./trained_models/)') parser.add_argument( '--non-det', action='store_true', default=False, help='whether to use a non-deterministic policy') args = parser.parse_args() args.det = not args.non_det env = make_vec_envs( args.env_name, args.seed + 1000, 1, None, None, device='cpu', allow_early_resets=False) # Get a render function render_func = get_render_func(env) # We need to use the same statistics for normalization as used in training actor_critic, ob_rms = \ torch.load(os.path.join(args.load_dir, args.algo, args.env_name + ".pt")) vec_norm = get_vec_normalize(env) if vec_norm is not None: vec_norm.eval() vec_norm.ob_rms = ob_rms recurrent_hidden_states = torch.zeros(1, actor_critic.recurrent_hidden_state_size) masks = torch.zeros(1, 1) obs = env.reset() if render_func is not None: render_func('human') if args.env_name.find('Bullet') > -1: import pybullet as p torsoId = -1 for i in range(p.getNumBodies()): if (p.getBodyInfo(i)[0].decode() == "torso"): torsoId = i while True: with torch.no_grad(): value, action, _, recurrent_hidden_states = actor_critic.act( obs, recurrent_hidden_states, masks, deterministic=args.det) # Obser reward and next obs obs, reward, done, _ = env.step(action) masks.fill_(0.0 if done else 1.0) if args.env_name.find('Bullet') > -1: if torsoId > -1: distance = 5 yaw = 0 humanPos, humanOrn = p.getBasePositionAndOrientation(torsoId) p.resetDebugVisualizerCamera(distance, yaw, -20, humanPos) if render_func is not None: render_func('human') time.sleep(1/30)
[ "torch.zeros", "torch.no_grad" ]
1.5.1
mazpie/vime-pytorch
fef62d9d700886622d9ca8c2234ad1718c10f553
1.8
from typing import Dict, Optional import torch from kornia.augmentation._2d.geometric.base import GeometricAugmentationBase2D from kornia.geometry.transform import get_tps_transform, warp_image_tps class RandomThinPlateSpline(GeometricAugmentationBase2D): r"""Add random noise to the Thin Plate Spline algorithm. .. image:: _static/img/RandomThinPlateSpline.png Args: scale: the scale factor to apply to the destination points. align_corners: Interpolation flag used by ``grid_sample``. mode: Interpolation mode used by `grid_sample`. Either 'bilinear' or 'nearest'. return_transform: if ``True`` return the matrix describing the transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation won't be concatenated. same_on_batch: apply the same transformation across the batch. p: probability of applying the transformation. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). .. note:: This function internally uses :func:`kornia.geometry.transform.warp_image_tps`. Examples: >>> img = torch.ones(1, 1, 2, 2) >>> out = RandomThinPlateSpline()(img) >>> out.shape torch.Size([1, 1, 2, 2]) To apply the exact augmenation again, you may take the advantage of the previous parameter state: >>> input = torch.randn(1, 3, 32, 32) >>> aug = RandomThinPlateSpline(p=1.) >>> (aug(input) == aug(input, params=aug._params)).all() tensor(True) """ def __init__( self, scale: float = 0.2, align_corners: bool = False, return_transform: bool = False, same_on_batch: bool = False, p: float = 0.5, keepdim: bool = False, ) -> None: super().__init__( p=p, return_transform=return_transform, same_on_batch=same_on_batch, p_batch=1.0, keepdim=keepdim ) self.flags = dict(align_corners=align_corners) self.dist = torch.distributions.Uniform(-scale, scale) def generate_parameters(self, shape: torch.Size) -> Dict[str, torch.Tensor]: B, _, _, _ = shape src = torch.tensor([[[-1.0, -1.0], [-1.0, 1.0], [1.0, -1.0], [1.0, 1.0], [0.0, 0.0]]]).repeat(B, 1, 1) # Bx5x2 dst = src + self.dist.rsample(src.shape) return dict(src=src, dst=dst) # TODO: It is incorrect to return identity def compute_transformation(self, input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: return self.identity_matrix(input) def apply_transform( self, input: torch.Tensor, params: Dict[str, torch.Tensor], transform: Optional[torch.Tensor] = None ) -> torch.Tensor: src = params["src"].to(input) dst = params["dst"].to(input) # NOTE: warp_image_tps need to use inverse parameters kernel, affine = get_tps_transform(dst, src) return warp_image_tps(input, src, kernel, affine, self.flags["align_corners"])
[ "torch.distributions.Uniform", "torch.tensor" ]
1.8.1
dichen-cd/kornia
dcd1c5e17cf4d2ae2db1f438c53245bba0afd93f
1.5
import argparse import sys import os import matplotlib.pyplot as plt from tensorboardX import SummaryWriter plt.switch_backend('agg') sys.path.insert(0, '../utils') # If that is the way to include paths for this project, then why not also for 'backbone'? sys.path.insert(0, '../eval') sys.path.insert(0, '../backbone') from dataset_3d import * from model_3d import * from resnet_2d3d import neq_load_customized from augmentation import * from utils import AverageMeter, save_checkpoint, denorm, calc_topk_accuracy import torch import torch.optim as optim from torch.utils import data from torchvision import transforms import torchvision.utils as vutils # This way, cuda optimizes for the hardware available, if input size is always equal. # torch.backends.cudnn.benchmark = True parser = argparse.ArgumentParser() parser.add_argument('--net', default='resnet18', type=str) parser.add_argument('--model', default='dpc-rnn', type=str) parser.add_argument('--dataset', default='nturgbd', type=str) parser.add_argument('--seq_len', default=5, type=int, help='number of frames in each video block') parser.add_argument('--num_seq', default=6, type=int, help='number of video blocks') parser.add_argument('--pred_step', default=2, type=int) parser.add_argument('--ds', default=1, type=int, help='frame downsampling rate') parser.add_argument('--batch_size', default=96, type=int) parser.add_argument('--lr', default=1e-3, type=float, help='learning rate') parser.add_argument('--wd', default=1e-5, type=float, help='weight decay') parser.add_argument('--resume', default='', type=str, help='path of model to resume') parser.add_argument('--pretrain', default='', type=str, help='path of pretrained model') parser.add_argument('--epochs', default=10, type=int, help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)') parser.add_argument('--gpu', default=[0,2], type=int, nargs='+') parser.add_argument('--print_freq', default=5, type=int, help='frequency of printing output during training') parser.add_argument('--reset_lr', action='store_true', help='Reset learning rate when resume training?') parser.add_argument('--prefix', default='tmp', type=str, help='prefix of checkpoint filename') parser.add_argument('--train_what', default='all', type=str) parser.add_argument('--img_dim', default=128, type=int) parser.add_argument('--train_csv', default=os.path.expanduser("~/datasets/nturgbd/project_specific/dpc_converted/train_set.csv"), type=str) parser.add_argument('--test_csv', default=os.path.expanduser("~/datasets/nturgbd/project_specific/dpc_converted/test_set.csv"), type=str) def main(): torch.manual_seed(0) np.random.seed(0) global args; args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # NVIDIA-SMI uses PCI_BUS_ID device order, but CUDA orders graphics devices by speed by default (fastest first). os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(id) for id in args.gpu]) print ('Cuda visible devices: {}'.format(os.environ["CUDA_VISIBLE_DEVICES"])) print ('Available device count: {}'.format(torch.cuda.device_count())) args.gpu = list(range(torch.cuda.device_count())) # Really weird: In Pytorch 1.2, the device ids start from 0 on the visible devices. print("Note: At least in Pytorch 1.2, device ids are reindexed on the visible devices and not the same as in nvidia-smi.") for i in args.gpu: print("Using Cuda device {}: {}".format(i, torch.cuda.get_device_name(i))) print("Cuda is available: {}".format(torch.cuda.is_available())) global cuda; cuda = torch.device('cuda') ### dpc model ### if args.model == 'dpc-rnn': model = DPC_RNN(sample_size=args.img_dim, num_seq=args.num_seq, seq_len=args.seq_len, network=args.net, pred_step=args.pred_step) else: raise ValueError('wrong model!') # Data Parallel uses a master device (default gpu 0) and performs scatter gather operations on batches and resulting gradients. model = nn.DataParallel(model) # Distributes batches on mutiple devices to train model in parallel automatically. model = model.to(cuda) # Sends model to device 0, other gpus are used automatically. global criterion criterion = nn.CrossEntropyLoss() # Contrastive loss is basically CrossEntropyLoss with vector similarity and temperature. ### optimizer ### if args.train_what == 'last': for name, param in model.module.resnet.named_parameters(): param.requires_grad = False else: pass # train all layers print('\n===========Check Grad============') for name, param in model.named_parameters(): print(name, param.requires_grad) print('=================================\n') params = model.parameters() optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.wd) args.old_lr = None best_acc = 0 global iteration iteration = 0 ### restart training ### if args.resume: if os.path.isfile(args.resume): args.old_lr = float(re.search('_lr(.+?)_', args.resume).group(1)) print("=> loading resumed checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location=torch.device('cpu')) args.start_epoch = checkpoint['epoch'] iteration = checkpoint['iteration'] best_acc = checkpoint['best_acc'] # I assume this copies the *cpu located* parameters to the CUDA model automatically? model.load_state_dict(checkpoint['state_dict']) if not args.reset_lr: # if didn't reset lr, load old optimizer optimizer.load_state_dict(checkpoint['optimizer']) else: print('==== Change lr from %f to %f ====' % (args.old_lr, args.lr)) print("=> loaded resumed checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch'])) else: print("[Warning] no checkpoint found at '{}'".format(args.resume)) if args.pretrain: if os.path.isfile(args.pretrain): print("=> loading pretrained checkpoint '{}'".format(args.pretrain)) checkpoint = torch.load(args.pretrain, map_location=torch.device('cpu')) model = neq_load_customized(model, checkpoint['state_dict']) print("=> loaded pretrained checkpoint '{}' (epoch {})" .format(args.pretrain, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.pretrain)) ### load data ### if args.dataset == 'ucf101': # designed for ucf101, short size=256, rand crop to 224x224 then scale to 128x128 transform = transforms.Compose([ RandomHorizontalFlip(consistent=True), RandomCrop(size=224, consistent=True), Scale(size=(args.img_dim, args.img_dim)), RandomGray(consistent=False, p=0.5), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.25, p=1.0), ToTensor(), Normalize() ]) elif args.dataset == 'k400': # designed for kinetics400, short size=150, rand crop to 128x128 transform = transforms.Compose([ RandomSizedCrop(size=args.img_dim, consistent=True, p=1.0), RandomHorizontalFlip(consistent=True), RandomGray(consistent=False, p=0.5), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.25, p=1.0), ToTensor(), Normalize() ]) elif args.dataset == 'nturgbd': # designed for nturgbd, short size=150, rand crop to 128x128 transform = transforms.Compose([ RandomSizedCrop(size=args.img_dim, consistent=True, p=1.0), RandomHorizontalFlip(consistent=True), RandomGray(consistent=False, p=0.5), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.25, p=1.0), ToTensor(), Normalize() ]) train_loader = get_data(transform, 'train') val_loader = get_data(transform, 'val') # setup tools global de_normalize; de_normalize = denorm() global img_path; img_path, model_path = set_path(args) global writer_train try: # old version writer_val = SummaryWriter(log_dir=os.path.join(img_path, 'val')) writer_train = SummaryWriter(log_dir=os.path.join(img_path, 'train')) except: # v1.7 writer_val = SummaryWriter(logdir=os.path.join(img_path, 'val')) writer_train = SummaryWriter(logdir=os.path.join(img_path, 'train')) ### main loop ### for epoch in range(args.start_epoch, args.epochs): train_loss, train_acc, train_accuracy_list = train(train_loader, model, optimizer, epoch) val_loss, val_acc, val_accuracy_list = validate(val_loader, model, epoch) # save curve writer_train.add_scalar('global/loss', train_loss, epoch) writer_train.add_scalar('global/accuracy', train_acc, epoch) writer_val.add_scalar('global/loss', val_loss, epoch) writer_val.add_scalar('global/accuracy', val_acc, epoch) writer_train.add_scalar('accuracy/top1', train_accuracy_list[0], epoch) writer_train.add_scalar('accuracy/top3', train_accuracy_list[1], epoch) writer_train.add_scalar('accuracy/top5', train_accuracy_list[2], epoch) writer_val.add_scalar('accuracy/top1', val_accuracy_list[0], epoch) writer_val.add_scalar('accuracy/top3', val_accuracy_list[1], epoch) writer_val.add_scalar('accuracy/top5', val_accuracy_list[2], epoch) # save check_point is_best = val_acc > best_acc; best_acc = max(val_acc, best_acc) save_checkpoint({'epoch': epoch + 1, 'net': args.net, 'state_dict': model.state_dict(), 'best_acc': best_acc, 'optimizer': optimizer.state_dict(), 'iteration': iteration}, is_best, filename=os.path.join(model_path, 'epoch%s.pth.tar' % str(epoch + 1)), keep_all=False) print('Training from ep %d to ep %d finished' % (args.start_epoch, args.epochs)) def process_output(mask): '''task mask as input, compute the target for contrastive loss''' # dot product is computed in parallel gpus, so get less easy neg, bounded by batch size in each gpu''' # mask meaning: -2: omit, -1: temporal neg (hard), 0: easy neg, 1: pos, -3: spatial neg (B, NP, SQ, B2, NS, _) = mask.size() # [B, P, SQ, B, N, SQ] target = mask == 1 target.requires_grad = False return target, (B, B2, NS, NP, SQ) def train(data_loader, model, optimizer, epoch): losses = AverageMeter() accuracy = AverageMeter() accuracy_list = [AverageMeter(), AverageMeter(), AverageMeter()] model.train() global iteration for idx, input_seq in enumerate(data_loader): tic = time.time() input_seq = input_seq.to(cuda) B = input_seq.size(0) [score_, mask_] = model(input_seq) # visualize if (iteration == 0) or (iteration == args.print_freq): # I suppose this is a bug, since it does not write out images on print frequency, but only the first and second time. if B > 2: input_seq = input_seq[0:2, :] writer_train.add_image('input_seq', de_normalize(vutils.make_grid( input_seq.transpose(2, 3).contiguous().view(-1, 3, args.img_dim, args.img_dim), nrow=args.num_seq * args.seq_len)), iteration) del input_seq if idx == 0: target_, (_, B2, NS, NP, SQ) = process_output(mask_) # TODO: adapt logic for two stream network. # score is a 6d tensor: [B, P, SQ, B, N, SQ] score_flattened = score_.view(B * NP * SQ, B2 * NS * SQ) target_flattened = target_.view(B * NP * SQ, B2 * NS * SQ) target_flattened = target_flattened.double() target_flattened = target_flattened.argmax(dim=1) loss = criterion(score_flattened, target_flattened) top1, top3, top5 = calc_topk_accuracy(score_flattened, target_flattened, (1, 3, 5)) accuracy_list[0].update(top1.item(), B) accuracy_list[1].update(top3.item(), B) accuracy_list[2].update(top5.item(), B) losses.update(loss.item(), B) accuracy.update(top1.item(), B) del score_ optimizer.zero_grad() loss.backward() optimizer.step() del loss if idx % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Loss {loss.val:.6f} ({loss.local_avg:.4f})\t' 'Acc: top1 {3:.4f}; top3 {4:.4f}; top5 {5:.4f} T:{6:.2f}\t'.format( epoch, idx, len(data_loader), top1, top3, top5, time.time() - tic, loss=losses)) writer_train.add_scalar('local/loss', losses.val, iteration) writer_train.add_scalar('local/accuracy', accuracy.val, iteration) iteration += 1 return losses.local_avg, accuracy.local_avg, [i.local_avg for i in accuracy_list] def validate(data_loader, model, epoch): losses = AverageMeter() accuracy = AverageMeter() accuracy_list = [AverageMeter(), AverageMeter(), AverageMeter()] model.eval() with torch.no_grad(): for idx, input_seq in tqdm(enumerate(data_loader), total=len(data_loader)): input_seq = input_seq.to(cuda) B = input_seq.size(0) [score_, mask_] = model(input_seq) del input_seq if idx == 0: target_, (_, B2, NS, NP, SQ) = process_output(mask_) # [B, P, SQ, B, N, SQ] score_flattened = score_.view(B * NP * SQ, B2 * NS * SQ) target_flattened = target_.view(B * NP * SQ, B2 * NS * SQ) target_flattened = target_flattened.double() target_flattened = target_flattened.argmax(dim=1) loss = criterion(score_flattened, target_flattened) top1, top3, top5 = calc_topk_accuracy(score_flattened, target_flattened, (1, 3, 5)) losses.update(loss.item(), B) accuracy.update(top1.item(), B) accuracy_list[0].update(top1.item(), B) accuracy_list[1].update(top3.item(), B) accuracy_list[2].update(top5.item(), B) print('[{0}/{1}] Loss {loss.local_avg:.4f}\t' 'Acc: top1 {2:.4f}; top3 {3:.4f}; top5 {4:.4f} \t'.format( epoch, args.epochs, *[i.avg for i in accuracy_list], loss=losses)) return losses.local_avg, accuracy.local_avg, [i.local_avg for i in accuracy_list] def get_data(transform, mode='train'): print('Loading data for "%s" ...' % mode) if args.dataset == 'k400': use_big_K400 = args.img_dim > 140 dataset = Kinetics400_full_3d(mode=mode, transform=transform, seq_len=args.seq_len, num_seq=args.num_seq, downsample=5, big=use_big_K400) elif args.dataset == 'ucf101': dataset = UCF101_3d(mode=mode, transform=transform, seq_len=args.seq_len, num_seq=args.num_seq, downsample=args.ds) elif args.dataset == 'nturgbd': dataset = NTURGBD_3D(mode=mode, transform=transform, seq_len=args.seq_len, num_seq=args.num_seq, downsample=args.ds, train_csv=args.train_csv, val_csv=args.test_csv) else: raise ValueError('dataset not supported') sampler = data.RandomSampler(dataset) if mode == 'train': data_loader = data.DataLoader(dataset, batch_size=args.batch_size, sampler=sampler, shuffle=False, num_workers=32, pin_memory=True, drop_last=True) elif mode == 'val': data_loader = data.DataLoader(dataset, batch_size=args.batch_size, sampler=sampler, shuffle=False, num_workers=32, pin_memory=True, drop_last=True) print('"%s" dataset size: %d' % (mode, len(dataset))) return data_loader def set_path(args): if args.resume: exp_path = os.path.dirname(os.path.dirname(args.resume)) else: exp_path = 'log_{args.prefix}/{args.dataset}-{args.img_dim}_{0}_{args.model}_\ bs{args.batch_size}_lr{1}_seq{args.num_seq}_pred{args.pred_step}_len{args.seq_len}_ds{args.ds}_\ train-{args.train_what}{2}'.format( 'r%s' % args.net[6::], \ args.old_lr if args.old_lr is not None else args.lr, \ '_pt=%s' % args.pretrain.replace('/', '-') if args.pretrain else '', \ args=args) img_path = os.path.join(exp_path, 'img') model_path = os.path.join(exp_path, 'model') if not os.path.exists(img_path): os.makedirs(img_path) if not os.path.exists(model_path): os.makedirs(model_path) return img_path, model_path if __name__ == '__main__': main()
[ "torch.device", "torch.utils.data.RandomSampler", "torch.no_grad", "torch.optim.Adam", "torch.cuda.get_device_name", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
1.5.0
simplexsigil/DPC
bf06939e302d9393b22f9b424abd281c535d8dbd
1.6
from pathlib import Path from typing import Tuple import numpy as np import pandas as pd import torch from .bandits import DataBasedBandit from .utils import download_data URL = "https://storage.googleapis.com/bandits_datasets/raw_stock_contexts" class FinancialDataBandit(DataBasedBandit): """A contextual bandit based on `Financial Stock dataset`. Source: https://github.com/tensorflow/models/tree/archive/research/deep_contextual_bandits Citation: Riquelme, Tucker, Snoek. Deep Bayesian bandits showdown: An empirical comparison of Bayesian deep networks for Thompson sampling. InProceedings ofthe 6th International Conference on Learning Representations, 2018. License: Apache-2.0 License Args: path (str, optional): Path to the data. Defaults to "./data/Financial/". download (bool, optional): Whether to download the data. Defaults to False. force_download (bool, optional): Whether to force download even if file exists. Defaults to False. url (Union[str, None], optional): URL to download data from. Defaults to None which implies use of source URL. device (str): Device to use for tensor operations. "cpu" for cpu or "cuda" for cuda. Defaults to "cpu". Attributes: n_actions (int): Number of actions available. context_dim (int): The length of context vector. len (int): The number of examples (context, reward pairs) in the dataset. device (torch.device): Device to use for tensor operations. Raises: FileNotFoundError: If file is not found at specified path. """ def __init__(self, **kwargs): super(FinancialDataBandit, self).__init__(kwargs.get("device", "cpu")) self.n_actions = 8 path = kwargs.get("path", "./data/Financial/") download = kwargs.get("download", None) force_download = kwargs.get("force_download", None) url = kwargs.get("url", URL) if download: fpath = download_data(path, url, force_download) self.df = pd.read_csv( fpath, header=None, skiprows=[0], sep=" ", dtype=np.float32 ).dropna() else: fpath = Path(path).joinpath("raw_stock_contexts") self.df = pd.read_csv( fpath, header=None, skiprows=[0], sep=" ", dtype=np.float32 ).dropna() self.context_dim = self.df.shape[1] self.len = len(self.df) self._generate_rewards() def _generate_rewards(self): # Vector with additive noise levels for each action noise_stds = [0.01 * (i + 1) for i in range(self.n_actions)] betas = np.random.uniform(-1, 1, (self.context_dim, self.n_actions)) betas /= np.linalg.norm(betas, axis=0) mean_rewards = np.dot(self.df, betas) noise = np.random.normal(scale=noise_stds, size=mean_rewards.shape) self.rewards = mean_rewards + noise self.max_rewards = np.max(self.rewards, axis=1) def reset(self) -> torch.Tensor: """Reset bandit by shuffling indices and get new context. Returns: torch.Tensor: Current context selected by bandit. """ self._reset() self.df = self.df.sample(frac=1).reset_index(drop=True) self._generate_rewards() return self._get_context() def _compute_reward(self, action: int) -> Tuple[int, int]: """Compute the reward for a given action. Args: action (int): The action to compute reward for. Returns: Tuple[int, int]: Computed reward. """ r = self.rewards[self.idx, action] max_r = self.max_rewards[self.idx] return r, max_r def _get_context(self) -> torch.Tensor: """Get the vector for current selected context. Returns: torch.Tensor: Current context vector. """ return torch.tensor( self.df.iloc[self.idx], device=self.device, dtype=torch.float, )
[ "torch.tensor" ]
1.6.0
IBM/sau-explore
dfeff8192292afeca7c17927684a3ed9fe65b97f
1.4
from math import ceil from typing import Dict, Any, List, Optional import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from core.algorithms.onpolicy_sync.losses import PPO from core.algorithms.onpolicy_sync.losses.ppo import PPOConfig from core.base_abstractions.experiment_config import ExperimentConfig from core.base_abstractions.sensor import SensorSuite from core.base_abstractions.task import TaskSampler from plugins.ithor_plugin.ithor_sensors import RGBSensorThor, GoalObjectTypeThorSensor from plugins.ithor_plugin.ithor_task_samplers import ObjectNavTaskSampler from plugins.ithor_plugin.ithor_tasks import ObjectNavTask from projects.objectnav_baselines.models.object_nav_models import ( ObjectNavBaselineActorCritic, ) from utils.experiment_utils import Builder, PipelineStage, TrainingPipeline, LinearDecay class ObjectNavThorPPOExperimentConfig(ExperimentConfig): """A simple object navigation experiment in THOR. Training with PPO. """ # A simple setting, train/valid/test are all the same single scene # and we're looking for a single object OBJECT_TYPES = ["Tomato"] TRAIN_SCENES = ["FloorPlan1_physics"] VALID_SCENES = ["FloorPlan1_physics"] TEST_SCENES = ["FloorPlan1_physics"] # Setting up sensors and basic environment details SCREEN_SIZE = 224 SENSORS = [ RGBSensorThor( height=SCREEN_SIZE, width=SCREEN_SIZE, use_resnet_normalization=True, ), GoalObjectTypeThorSensor(object_types=OBJECT_TYPES), ] ENV_ARGS = { "player_screen_height": SCREEN_SIZE, "player_screen_width": SCREEN_SIZE, "quality": "Very Low", } MAX_STEPS = 128 ADVANCE_SCENE_ROLLOUT_PERIOD = None VALID_SAMPLES_IN_SCENE = 10 TEST_SAMPLES_IN_SCENE = 100 @classmethod def tag(cls): return "ObjectNavThorPPO" @classmethod def training_pipeline(cls, **kwargs): ppo_steps = int(1e6) lr = 2.5e-4 num_mini_batch = 2 if not torch.cuda.is_available() else 6 update_repeats = 4 num_steps = 128 metric_accumulate_interval = cls.MAX_STEPS * 10 # Log every 10 max length tasks save_interval = 10000 gamma = 0.99 use_gae = True gae_lambda = 1.0 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=metric_accumulate_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={ "ppo_loss": PPO(clip_decay=LinearDecay(ppo_steps), **PPOConfig), }, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps,), ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), ) @classmethod def machine_params(cls, mode="train", **kwargs): num_gpus = torch.cuda.device_count() has_gpu = num_gpus != 0 if mode == "train": nprocesses = 20 if has_gpu else 4 gpu_ids = [0] if has_gpu else [] elif mode == "valid": nprocesses = 1 gpu_ids = [1 % num_gpus] if has_gpu else [] elif mode == "test": nprocesses = 1 gpu_ids = [0] if has_gpu else [] else: raise NotImplementedError("mode must be 'train', 'valid', or 'test'.") return {"nprocesses": nprocesses, "gpu_ids": gpu_ids} @classmethod def create_model(cls, **kwargs) -> nn.Module: return ObjectNavBaselineActorCritic( action_space=gym.spaces.Discrete(len(ObjectNavTask.class_action_names())), observation_space=SensorSuite(cls.SENSORS).observation_spaces, goal_sensor_uuid="goal_object_type_ind", hidden_size=512, object_type_embedding_dim=8, ) @classmethod def make_sampler_fn(cls, **kwargs) -> TaskSampler: return ObjectNavTaskSampler(**kwargs) @staticmethod def _partition_inds(n: int, num_parts: int): return np.round(np.linspace(0, n, num_parts + 1, endpoint=True)).astype( np.int32 ) def _get_sampler_args_for_scene_split( self, scenes: List[str], process_ind: int, total_processes: int, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: if total_processes > len(scenes): # oversample some scenes -> bias if total_processes % len(scenes) != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisible by the number of scenes" ) scenes = scenes * int(ceil(total_processes / len(scenes))) scenes = scenes[: total_processes * (len(scenes) // total_processes)] else: if len(scenes) % total_processes != 0: print( "Warning: oversampling some of the scenes to feed all processes." " You can avoid this by setting a number of workers divisor of the number of scenes" ) inds = self._partition_inds(len(scenes), total_processes) return { "scenes": scenes[inds[process_ind] : inds[process_ind + 1]], "object_types": self.OBJECT_TYPES, "env_args": self.ENV_ARGS, "max_steps": self.MAX_STEPS, "sensors": self.SENSORS, "action_space": gym.spaces.Discrete( len(ObjectNavTask.class_action_names()) ), "seed": seeds[process_ind] if seeds is not None else None, "deterministic_cudnn": deterministic_cudnn, } def train_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.TRAIN_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = "manual" res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if len(devices) > 0 else None ) return res def valid_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.VALID_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = self.VALID_SAMPLES_IN_SCENE res["max_tasks"] = self.VALID_SAMPLES_IN_SCENE * len(res["scenes"]) res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if len(devices) > 0 else None ) return res def test_task_sampler_args( self, process_ind: int, total_processes: int, devices: Optional[List[int]] = None, seeds: Optional[List[int]] = None, deterministic_cudnn: bool = False, ) -> Dict[str, Any]: res = self._get_sampler_args_for_scene_split( self.TEST_SCENES, process_ind, total_processes, seeds=seeds, deterministic_cudnn=deterministic_cudnn, ) res["scene_period"] = self.TEST_SAMPLES_IN_SCENE res["max_tasks"] = self.TEST_SAMPLES_IN_SCENE * len(res["scenes"]) res["env_args"] = {} res["env_args"].update(self.ENV_ARGS) res["env_args"]["x_display"] = ( ("0.%d" % devices[process_ind % len(devices)]) if len(devices) > 0 else None ) return res
[ "torch.cuda.is_available", "torch.cuda.device_count" ]
1.4.0
prithv1/allenact
f29dd6f0ec62425b02ca07fee815b1a82627a28e
1.9
from typing import List, Any import pytorch_lightning as pl import torch from pytorch_lightning import Trainer from torch.optim import Adam from torchmetrics import MetricCollection from new.data.report import Report from new.model.lstm_tagger import LstmTagger from new.training.data import ReportsDataModule from new.training.metrics import Precision, Recall, TopkAccuracy from commode_utils.losses import SequenceCrossEntropyLoss class TrainingModule(pl.LightningModule): def __init__(self, tagger: LstmTagger): super().__init__() self.tagger = tagger self.train_metrics = MetricCollection([Precision(), Recall(), TopkAccuracy(1)]) self.val_metrics = MetricCollection([Precision(), Recall(), TopkAccuracy(1)]) self.softmax = torch.nn.Softmax(dim=-1) self.celoss = SequenceCrossEntropyLoss(reduction="batch-mean", pad_idx=2) def training_step(self, batch, batch_idx): reports, target, masks = batch mask = torch.cat(masks, dim=1) if self.tagger.with_crf: emissions = torch.cat([self.tagger.calc_emissions(report, mask) for report, mask in zip(reports, masks)], dim=1) loss = -self.tagger.crf(emissions, target, mask) else: scores = self.tagger.forward(reports, masks) loss = self.celoss(scores, target) with torch.no_grad(): scores = self.tagger.forward(reports, masks) preds = scores.argmax(dim=-1) scores = self.softmax(scores) self.train_metrics.update(preds, target, mask, scores=scores) self.log("train_loss", loss) return loss def validation_step(self, batch, *args): reports, target, masks = batch mask = torch.cat(masks, dim=1) if self.tagger.with_crf: emissions = torch.cat([self.tagger.calc_emissions(report, mask) for report, mask in zip(reports, masks)], dim=1) loss = -self.tagger.crf(emissions, target, mask) else: scores = self.tagger.forward(reports, masks) loss = self.celoss(scores, target) with torch.no_grad(): scores = self.tagger.forward(reports, masks) preds = scores.argmax(dim=-1) scores = self.softmax(scores) self.val_metrics.update(preds, target, mask, scores=scores) return loss def validation_epoch_end(self, outputs: List[Any]) -> None: super().validation_epoch_end(outputs) self.log("val_metrics", self.val_metrics.compute()) print(self.val_metrics.compute()) self.val_metrics.reset() def training_epoch_end(self, outputs: List[Any]) -> None: super().training_epoch_end(outputs) self.log("train_metrics", self.train_metrics.compute()) self.train_metrics.reset() def configure_optimizers(self): return Adam(self.parameters(), lr=1e-4, weight_decay=1e-5) def train_lstm_tagger(tagger: LstmTagger, reports: List[Report], target: List[List[int]], batch_size: int, max_len: int) -> LstmTagger: datamodule = ReportsDataModule(reports, target, batch_size, max_len) model = TrainingModule(tagger) trainer = Trainer(gpus=1) trainer.fit(model, datamodule) return tagger
[ "torch.cat", "torch.no_grad", "torch.nn.Softmax" ]
1.9.0
lissrbay/bugml
6a3823e32c176de9d3a47416a220e7d83d38763d
1.1
import torch import torch.nn as nn from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler from .. import builder from ..registry import DETECTORS from .base import BaseDetector from .test_mixins import BBoxTestMixin, MaskTestMixin, RPNTestMixin @DETECTORS.register_module class TwoStageDetector(BaseDetector, RPNTestMixin, BBoxTestMixin, MaskTestMixin): """Base class for two-stage detectors. Two-stage detectors typically consisting of a region proposal network and a task-specific regression head. """ def __init__(self, backbone, neck=None, shared_head=None, rpn_head=None, bbox_roi_extractor=None, bbox_head=None, mask_roi_extractor=None, mask_head=None, keypoint_roi_extractor=None,### keypoint_head=None, train_cfg=None, test_cfg=None, pretrained=None): super(TwoStageDetector, self).__init__() self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) if shared_head is not None: self.shared_head = builder.build_shared_head(shared_head) if rpn_head is not None: self.rpn_head = builder.build_head(rpn_head) if bbox_head is not None: self.bbox_roi_extractor = builder.build_roi_extractor( bbox_roi_extractor) self.bbox_head = builder.build_head(bbox_head) if mask_head is not None: if mask_roi_extractor is not None: self.mask_roi_extractor = builder.build_roi_extractor( mask_roi_extractor) self.share_roi_extractor = False else: self.share_roi_extractor = True self.mask_roi_extractor = self.bbox_roi_extractor self.mask_head = builder.build_head(mask_head) ### if keypoint_head is not None: if keypoint_roi_extractor is not None: self.keypoint_roi_extractor = builder.build_roi_extractor( keypoint_roi_extractor) self.share_roi_extractor = False else: self.share_roi_extractor = True self.keypoint_roi_extractor = self.bbox_roi_extractor self.keypoint_head = builder.build_head(keypoint_head) ### self.train_cfg = train_cfg self.test_cfg = test_cfg self.init_weights(pretrained=pretrained) @property def with_rpn(self): return hasattr(self, 'rpn_head') and self.rpn_head is not None def init_weights(self, pretrained=None): super(TwoStageDetector, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) if self.with_neck: if isinstance(self.neck, nn.Sequential): for m in self.neck: m.init_weights() else: self.neck.init_weights() if self.with_shared_head: self.shared_head.init_weights(pretrained=pretrained) if self.with_rpn: self.rpn_head.init_weights() if self.with_bbox: self.bbox_roi_extractor.init_weights() self.bbox_head.init_weights() if self.with_mask: self.mask_head.init_weights() if not self.share_roi_extractor: self.mask_roi_extractor.init_weights() ### if self.with_keypoint: self.keypoint_head.init_weights() if not self.share_roi_extractor: self.keypoint_roi_extractor.init_weights() def extract_feat(self, img): """Directly extract features from the backbone+neck """ x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_dummy(self, img): """Used for computing network flops. See `mmedetection/tools/get_flops.py` """ outs = () # backbone x = self.extract_feat(img) # rpn if self.with_rpn: rpn_outs = self.rpn_head(x) outs = outs + (rpn_outs, ) proposals = torch.randn(1000, 4).cuda() # bbox head rois = bbox2roi([proposals]) if self.with_bbox: bbox_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = self.bbox_head(bbox_feats) outs = outs + (cls_score, bbox_pred) # mask head if self.with_mask: mask_rois = rois[:100] mask_feats = self.mask_roi_extractor( x[:self.mask_roi_extractor.num_inputs], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head(mask_feats) outs = outs + (mask_pred, ) return outs ### keypoint head if self.with_keypoint: keypoint_rois = rois[:100] keypoint_feats = self.keypoint_roi_extractor( x[:self.keypoint_roi_extractor.num_inputs], keypoint_rois) if self.with_shared_head: keypoint_feats = self.shared_head(keypoint_feats) keypoint_pred = self.keypoint_head(keypoint_feats) outs = outs + (keypoint_pred, ) return outs def forward_train(self, img, img_meta, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, gt_keypoints=None,### proposals=None): """ Args: img (Tensor): of shape (B, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_meta (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and my also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. gt_bboxes (list[Tensor]): each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. proposals : override rpn proposals with custom proposals. Use when `with_rpn` is False. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() # RPN forward and loss if self.with_rpn: rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) rpn_losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) losses.update(rpn_losses) proposal_cfg = self.train_cfg.get('rpn_proposal', self.test_cfg.rpn) proposal_inputs = rpn_outs + (img_meta, proposal_cfg) proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) else: proposal_list = proposals # assign gts and sample proposals if self.with_bbox or self.with_mask: bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner) bbox_sampler = build_sampler( self.train_cfg.rcnn.sampler, context=self) num_imgs = img.size(0) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] for i in range(num_imgs): assign_result = bbox_assigner.assign(proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=[lvl_feat[i][None] for lvl_feat in x]) sampling_results.append(sampling_result) # bbox head forward and loss if self.with_bbox: rois = bbox2roi([res.bboxes for res in sampling_results]) # TODO: a more flexible way to decide which feature maps to use bbox_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = self.bbox_head(bbox_feats) bbox_targets = self.bbox_head.get_target(sampling_results, gt_bboxes, gt_labels, self.train_cfg.rcnn) loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, *bbox_targets) losses.update(loss_bbox) # mask head forward and loss if self.with_mask: if not self.share_roi_extractor: pos_rois = bbox2roi( [res.pos_bboxes for res in sampling_results]) mask_feats = self.mask_roi_extractor( x[:self.mask_roi_extractor.num_inputs], pos_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) else: pos_inds = [] device = bbox_feats.device for res in sampling_results: pos_inds.append( torch.ones( res.pos_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds.append( torch.zeros( res.neg_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds = torch.cat(pos_inds) mask_feats = bbox_feats[pos_inds] mask_pred = self.mask_head(mask_feats) mask_targets = self.mask_head.get_target(sampling_results, gt_masks, self.train_cfg.rcnn) pos_labels = torch.cat( [res.pos_gt_labels for res in sampling_results]) loss_mask = self.mask_head.loss(mask_pred, mask_targets, pos_labels) losses.update(loss_mask) ### keypoint head forward and loss if self.with_keypoint: if not self.share_roi_extractor: pos_rois = bbox2roi( [res.pos_bboxes for res in sampling_results]) keypoint_feats = self.keypoint_roi_extractor( x[:self.keypoint_roi_extractor.num_inputs], pos_rois) if self.with_shared_head: keypoint_feats = self.shared_head(keypoint_feats) else: pos_inds = [] device = bbox_feats.device for res in sampling_results: pos_inds.append( torch.ones( res.pos_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds.append( torch.zeros( res.neg_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds = torch.cat(pos_inds) keypoint_feats = bbox_feats[pos_inds] keypoint_pred = self.keypoint_head(keypoint_feats) keypoint_targets = self.keypoint_head.get_target(sampling_results, gt_keypoints, self.train_cfg.rcnn) pos_labels = torch.cat( [res.pos_gt_labels for res in sampling_results]) loss_keypoint = self.keypoint_head.loss(keypoint_pred, keypoint_targets, pos_labels) losses.update(loss_keypoint) return losses def simple_test(self, img, img_meta, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, "Bbox head must be implemented." x = self.extract_feat(img) proposal_list = self.simple_test_rpn( x, img_meta, self.test_cfg.rpn) if proposals is None else proposals det_bboxes, det_labels = self.simple_test_bboxes( x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale) bbox_results = bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) if not self.with_mask: return bbox_results elif self.with_mask: segm_results = self.simple_test_mask( x, img_meta, det_bboxes, det_labels, rescale=rescale) return bbox_results, segm_results ### elif self.with_keypoint: kp_results = self.simple_test_keypoint( x, img_meta, det_bboxes, det_labels, rescale=rescale) return bbox_results, kp_results def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ # recompute feats to save memory proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) det_bboxes, det_labels = self.aug_test_bboxes( self.extract_feats(imgs), img_metas, proposal_list, self.test_cfg.rcnn) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor'] bbox_results = bbox2result(_det_bboxes, det_labels, self.bbox_head.num_classes) # det_bboxes always keep the original scale if self.with_mask: segm_results = self.aug_test_mask( self.extract_feats(imgs), img_metas, det_bboxes, det_labels) return bbox_results, segm_results else: return bbox_results
[ "torch.zeros", "torch.cat", "torch.randn", "torch.ones" ]
1.1
nemonameless/mmkp
3758c48c7a6568e04d5a01b79f12baf12abcc420
1.6
# Code modified from https://github.com/kuangliu/pytorch-cifar '''ResNet in PyTorch. BasicBlock and Bottleneck module is from the original ResNet paper: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 PreActBlock and PreActBottleneck module is from the later paper: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv:1603.05027 ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class PreActBlock(nn.Module): '''Pre-activation version of the BasicBlock.''' expansion = 1 def __init__(self, in_planes, planes, stride=1): super(PreActBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = conv3x3(in_planes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out += shortcut return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class PreActBottleneck(nn.Module): '''Pre-activation version of the original Bottleneck module.''' expansion = 4 def __init__(self, in_planes, planes, stride=1): super(PreActBottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out = self.conv3(F.relu(self.bn3(out))) out += shortcut return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10, nc=3): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = conv3x3(nc, 64) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x, lin=0, lout=5): out = x if lin < 1 and lout > -1: out = self.conv1(out) out = self.bn1(out) out = F.relu(out) if lin < 2 and lout > 0: out = self.layer1(out) if lin < 3 and lout > 1: out = self.layer2(out) if lin < 4 and lout > 2: out = self.layer3(out) if lin < 5 and lout > 3: out = self.layer4(out) if lout > 4: # out = F.avg_pool2d(out, 4) out = F.adaptive_avg_pool2d(out, (1, 1)) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(num_classes=10, nc=3): return ResNet(PreActBlock, [2, 2, 2, 2], num_classes=num_classes, nc=nc) def ResNet34(num_classes=10): return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes) def ResNet50(num_classes=10): return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes) def ResNet101(num_classes=10): return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes) def ResNet152(num_classes=10): return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes) def test(): net = ResNet18() y = net(Variable(torch.randn(1, 3, 32, 32))) print(y.size()) def resnet(): return ResNet18()
[ "torch.nn.Linear", "torch.nn.Sequential", "torch.nn.BatchNorm2d", "torch.nn.functional.adaptive_avg_pool2d", "torch.nn.Conv2d", "torch.nn.functional.relu", "torch.randn" ]
1.6.0
dmitryshendryk/tantum
afd07e7a52d65338297a4f46d26e5241d3e756dc
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( RobertaConfig, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from transformers.models.roberta.modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaEmbeddings, create_position_ids_from_input_ids, ) class RobertaModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RobertaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RobertaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RobertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RobertaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( RobertaForCausalLM, RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaForMultipleChoice, RobertaForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else () def setUp(self): self.model_tester = RobertaModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RobertaModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = RobertaEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = RobertaEmbeddings(config=config) inputs_embeds = torch.Tensor(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class RobertaModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = RobertaForMaskedLM.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): model = RobertaModel.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_classification_head(self): model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]]) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') # roberta.eval() # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach() self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
[ "torch.Size", "torch.eq", "torch.tensor", "torch.as_tensor", "torch.allclose", "torch.Tensor" ]
1.0
HatsuneMiku4/transformers
ee5a5b6be825a9e3ac539485e7dea7601ad57653
0.4
""" A ``TokenEmbedder`` which uses one of the BERT models (https://github.com/google-research/bert) to produce embeddings. At its core it uses Hugging Face's PyTorch implementation (https://github.com/huggingface/pytorch-pretrained-BERT), so thanks to them! """ from typing import Dict import logging import torch import torch.nn.functional as F from pytorch_pretrained_bert.modeling import BertModel from allennlp.modules.scalar_mix import ScalarMix from allennlp.modules.token_embedders.token_embedder import TokenEmbedder from allennlp.nn import util logger = logging.getLogger(__name__) class PretrainedBertModel: """ In some instances you may want to load the same BERT model twice (e.g. to use as a token embedder and also as a pooling layer). This factory provides a cache so that you don't actually have to load the model twice. """ _cache: Dict[str, BertModel] = {} @classmethod def load(cls, model_name: str, cache_model: bool = True) -> BertModel: if model_name in cls._cache: return PretrainedBertModel._cache[model_name] model = BertModel.from_pretrained(model_name) if cache_model: cls._cache[model_name] = model return model class BertEmbedder(TokenEmbedder): """ A ``TokenEmbedder`` that produces BERT embeddings for your tokens. Should be paired with a ``BertIndexer``, which produces wordpiece ids. Most likely you probably want to use ``PretrainedBertEmbedder`` for one of the named pretrained models, not this base class. Parameters ---------- bert_model: ``BertModel`` The BERT model being wrapped. top_layer_only: ``bool``, optional (default = ``False``) If ``True``, then only return the top layer instead of apply the scalar mix. max_pieces : int, optional (default: 512) The BERT embedder uses positional embeddings and so has a corresponding maximum length for its input ids. Assuming the inputs are windowed and padded appropriately by this length, the embedder will split them into a large batch, feed them into BERT, and recombine the output as if it was a longer sequence. num_start_tokens : int, optional (default: 1) The number of starting special tokens input to BERT (usually 1, i.e., [CLS]) num_end_tokens : int, optional (default: 1) The number of ending tokens input to BERT (usually 1, i.e., [SEP]) """ def __init__(self, bert_model: BertModel, top_layer_only: bool = False, max_pieces: int = 512, num_start_tokens: int = 1, num_end_tokens: int = 1) -> None: super().__init__() self.bert_model = bert_model self.output_dim = bert_model.config.hidden_size self.max_pieces = max_pieces self.num_start_tokens = num_start_tokens self.num_end_tokens = num_end_tokens if not top_layer_only: self._scalar_mix = ScalarMix(bert_model.config.num_hidden_layers, do_layer_norm=False) else: self._scalar_mix = None def get_output_dim(self) -> int: return self.output_dim def forward(self, input_ids: torch.LongTensor, offsets: torch.LongTensor = None, token_type_ids: torch.LongTensor = None) -> torch.Tensor: """ Parameters ---------- input_ids : ``torch.LongTensor`` The (batch_size, ..., max_sequence_length) tensor of wordpiece ids. offsets : ``torch.LongTensor``, optional The BERT embeddings are one per wordpiece. However it's possible/likely you might want one per original token. In that case, ``offsets`` represents the indices of the desired wordpiece for each original token. Depending on how your token indexer is configured, this could be the position of the last wordpiece for each token, or it could be the position of the first wordpiece for each token. For example, if you had the sentence "Definitely not", and if the corresponding wordpieces were ["Def", "##in", "##ite", "##ly", "not"], then the input_ids would be 5 wordpiece ids, and the "last wordpiece" offsets would be [3, 4]. If offsets are provided, the returned tensor will contain only the wordpiece embeddings at those positions, and (in particular) will contain one embedding per token. If offsets are not provided, the entire tensor of wordpiece embeddings will be returned. token_type_ids : ``torch.LongTensor``, optional If an input consists of two sentences (as in the BERT paper), tokens from the first sentence should have type 0 and tokens from the second sentence should have type 1. If you don't provide this (the default BertIndexer doesn't) then it's assumed to be all 0s. """ # pylint: disable=arguments-differ batch_size, full_seq_len = input_ids.size(0), input_ids.size(-1) initial_dims = list(input_ids.shape[:-1]) # The embedder may receive an input tensor that has a sequence length longer than can # be fit. In that case, we should expect the wordpiece indexer to create padded windows # of length `self.max_pieces` for us, and have them concatenated into one long sequence. # E.g., "[CLS] I went to the [SEP] [CLS] to the store to [SEP] ..." # We can then split the sequence into sub-sequences of that length, and concatenate them # along the batch dimension so we effectively have one huge batch of partial sentences. # This can then be fed into BERT without any sentence length issues. Keep in mind # that the memory consumption can dramatically increase for large batches with extremely # long sentences. needs_split = full_seq_len > self.max_pieces last_window_size = 0 if needs_split: # Split the flattened list by the window size, `max_pieces` split_input_ids = list(input_ids.split(self.max_pieces, dim=-1)) # We want all sequences to be the same length, so pad the last sequence last_window_size = split_input_ids[-1].size(-1) padding_amount = self.max_pieces - last_window_size split_input_ids[-1] = F.pad(split_input_ids[-1], pad=[0, padding_amount], value=0) # Now combine the sequences along the batch dimension input_ids = torch.cat(split_input_ids, dim=0) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) input_mask = (input_ids != 0).long() # input_ids may have extra dimensions, so we reshape down to 2-d # before calling the BERT model and then reshape back at the end. all_encoder_layers, _ = self.bert_model(input_ids=util.combine_initial_dims(input_ids), token_type_ids=util.combine_initial_dims(token_type_ids), attention_mask=util.combine_initial_dims(input_mask)) all_encoder_layers = torch.stack(all_encoder_layers) if needs_split: # First, unpack the output embeddings into one long sequence again unpacked_embeddings = torch.split(all_encoder_layers, batch_size, dim=1) unpacked_embeddings = torch.cat(unpacked_embeddings, dim=2) # Next, select indices of the sequence such that it will result in embeddings representing the original # sentence. To capture maximal context, the indices will be the middle part of each embedded window # sub-sequence (plus any leftover start and final edge windows), e.g., # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # "[CLS] I went to the very fine [SEP] [CLS] the very fine store to eat [SEP]" # with max_pieces = 8 should produce max context indices [2, 3, 4, 10, 11, 12] with additional start # and final windows with indices [0, 1] and [14, 15] respectively. # Find the stride as half the max pieces, ignoring the special start and end tokens # Calculate an offset to extract the centermost embeddings of each window stride = (self.max_pieces - self.num_start_tokens - self.num_end_tokens) // 2 stride_offset = stride // 2 + self.num_start_tokens first_window = list(range(stride_offset)) max_context_windows = [i for i in range(full_seq_len) if stride_offset - 1 < i % self.max_pieces < stride_offset + stride] # Lookback what's left, unless it's the whole self.max_pieces window if full_seq_len % self.max_pieces == 0: lookback = self.max_pieces else: lookback = full_seq_len % self.max_pieces final_window_start = full_seq_len - lookback + stride_offset + stride final_window = list(range(final_window_start, full_seq_len)) select_indices = first_window + max_context_windows + final_window initial_dims.append(len(select_indices)) recombined_embeddings = unpacked_embeddings[:, :, select_indices] else: recombined_embeddings = all_encoder_layers # Recombine the outputs of all layers # (layers, batch_size * d1 * ... * dn, sequence_length, embedding_dim) # recombined = torch.cat(combined, dim=2) input_mask = (recombined_embeddings != 0).long() if self._scalar_mix is not None: mix = self._scalar_mix(recombined_embeddings, input_mask) else: mix = recombined_embeddings[-1] # At this point, mix is (batch_size * d1 * ... * dn, sequence_length, embedding_dim) if offsets is None: # Resize to (batch_size, d1, ..., dn, sequence_length, embedding_dim) dims = initial_dims if needs_split else input_ids.size() return util.uncombine_initial_dims(mix, dims) else: # offsets is (batch_size, d1, ..., dn, orig_sequence_length) offsets2d = util.combine_initial_dims(offsets) # now offsets is (batch_size * d1 * ... * dn, orig_sequence_length) range_vector = util.get_range_vector(offsets2d.size(0), device=util.get_device_of(mix)).unsqueeze(1) # selected embeddings is also (batch_size * d1 * ... * dn, orig_sequence_length) selected_embeddings = mix[range_vector, offsets2d] return util.uncombine_initial_dims(selected_embeddings, offsets.size()) @TokenEmbedder.register("bert-pretrained") class PretrainedBertEmbedder(BertEmbedder): # pylint: disable=line-too-long """ Parameters ---------- pretrained_model: ``str`` Either the name of the pretrained model to use (e.g. 'bert-base-uncased'), or the path to the .tar.gz file with the model weights. If the name is a key in the list of pretrained models at https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/pytorch_pretrained_bert/modeling.py#L41 the corresponding path will be used; otherwise it will be interpreted as a path or URL. requires_grad : ``bool``, optional (default = False) If True, compute gradient of BERT parameters for fine tuning. top_layer_only: ``bool``, optional (default = ``False``) If ``True``, then only return the top layer instead of apply the scalar mix. """ def __init__(self, pretrained_model: str, requires_grad: bool = False, top_layer_only: bool = False) -> None: model = PretrainedBertModel.load(pretrained_model) for param in model.parameters(): param.requires_grad = requires_grad super().__init__(bert_model=model, top_layer_only=top_layer_only)
[ "torch.cat", "torch.stack", "torch.split", "torch.zeros_like", "torch.nn.functional.pad" ]
0.4.1
schmmd/allennlp
fbc28cefe03b1ea3ff65300d475d34f5f9629a5c
0.4
# pylint: disable=no-self-use,invalid-name import torch from pytorch_pretrained_bert.modeling import BertConfig, BertModel from allennlp.common.testing import ModelTestCase from allennlp.data.dataset import Batch from allennlp.data.fields import TextField, ListField from allennlp.data.instance import Instance from allennlp.data.token_indexers.wordpiece_indexer import PretrainedBertIndexer from allennlp.data.tokenizers import WordTokenizer from allennlp.data.tokenizers.word_splitter import BertBasicWordSplitter from allennlp.data.vocabulary import Vocabulary from allennlp.modules.token_embedders.bert_token_embedder import BertEmbedder class TestBertEmbedder(ModelTestCase): def setUp(self): super().setUp() vocab_path = self.FIXTURES_ROOT / 'bert' / 'vocab.txt' self.token_indexer = PretrainedBertIndexer(str(vocab_path)) config_path = self.FIXTURES_ROOT / 'bert' / 'config.json' config = BertConfig(str(config_path)) self.bert_model = BertModel(config) self.token_embedder = BertEmbedder(self.bert_model) def test_without_offsets(self): input_ids = torch.LongTensor([[3, 5, 9, 1, 2], [1, 5, 0, 0, 0]]) result = self.token_embedder(input_ids) assert list(result.shape) == [2, 5, 12] def test_with_offsets(self): input_ids = torch.LongTensor([[3, 5, 9, 1, 2], [1, 5, 0, 0, 0]]) offsets = torch.LongTensor([[0, 2, 4], [1, 0, 0]]) result = self.token_embedder(input_ids, offsets=offsets) assert list(result.shape) == [2, 3, 12] def test_end_to_end(self): tokenizer = WordTokenizer(word_splitter=BertBasicWordSplitter()) # 2 3 4 3 5 6 8 9 2 14 12 sentence1 = "the quickest quick brown fox jumped over the lazy dog" tokens1 = tokenizer.tokenize(sentence1) # 2 3 5 6 8 9 2 15 10 11 14 1 sentence2 = "the quick brown fox jumped over the laziest lazy elmo" tokens2 = tokenizer.tokenize(sentence2) vocab = Vocabulary() instance1 = Instance({"tokens": TextField(tokens1, {"bert": self.token_indexer})}) instance2 = Instance({"tokens": TextField(tokens2, {"bert": self.token_indexer})}) batch = Batch([instance1, instance2]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) tokens = tensor_dict["tokens"] # 16 = [CLS], 17 = [SEP] assert tokens["bert"].tolist() == [[16, 2, 3, 4, 3, 5, 6, 8, 9, 2, 14, 12, 17, 0], [16, 2, 3, 5, 6, 8, 9, 2, 15, 10, 11, 14, 1, 17]] assert tokens["bert-offsets"].tolist() == [[1, 3, 4, 5, 6, 7, 8, 9, 10, 11], [1, 2, 3, 4, 5, 6, 7, 10, 11, 12]] # No offsets, should get 14 vectors back ([CLS] + 12 token wordpieces + [SEP]) bert_vectors = self.token_embedder(tokens["bert"]) assert list(bert_vectors.shape) == [2, 14, 12] # Offsets, should get 10 vectors back. bert_vectors = self.token_embedder(tokens["bert"], offsets=tokens["bert-offsets"]) assert list(bert_vectors.shape) == [2, 10, 12] # Now try top_layer_only = True tlo_embedder = BertEmbedder(self.bert_model, top_layer_only=True) bert_vectors = tlo_embedder(tokens["bert"]) assert list(bert_vectors.shape) == [2, 14, 12] bert_vectors = tlo_embedder(tokens["bert"], offsets=tokens["bert-offsets"]) assert list(bert_vectors.shape) == [2, 10, 12] def test_padding_for_equal_length_indices(self): tokenizer = WordTokenizer(word_splitter=BertBasicWordSplitter()) # 2 3 5 6 8 9 2 14 12 sentence = "the quick brown fox jumped over the lazy dog" tokens = tokenizer.tokenize(sentence) vocab = Vocabulary() instance = Instance({"tokens": TextField(tokens, {"bert": self.token_indexer})}) batch = Batch([instance]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) tokens = tensor_dict["tokens"] assert tokens["bert"].tolist() == [[16, 2, 3, 5, 6, 8, 9, 2, 14, 12, 17]] assert tokens["bert-offsets"].tolist() == [[1, 2, 3, 4, 5, 6, 7, 8, 9]] def test_squad_with_unwordpieceable_passage(self): # pylint: disable=line-too-long tokenizer = WordTokenizer() token_indexer = PretrainedBertIndexer("bert-base-uncased") passage1 = ("There were four major HDTV systems tested by SMPTE in the late 1970s, " "and in 1979 an SMPTE study group released A Study of High Definition Television Systems:") question1 = "Who released A Study of High Definition Television Systems?" passage2 = ("Broca, being what today would be called a neurosurgeon, " "had taken an interest in the pathology of speech. He wanted " "to localize the difference between man and the other animals, " "which appeared to reside in speech. He discovered the speech " "center of the human brain, today called Broca's area after him. " "His interest was mainly in Biological anthropology, but a German " "philosopher specializing in psychology, Theodor Waitz, took up the " "theme of general and social anthropology in his six-volume work, " "entitled Die Anthropologie der Naturvölker, 1859–1864. The title was " """soon translated as "The Anthropology of Primitive Peoples". """ "The last two volumes were published posthumously.") question2 = "What did Broca discover in the human brain?" from allennlp.data.dataset_readers.reading_comprehension.util import make_reading_comprehension_instance instance1 = make_reading_comprehension_instance(tokenizer.tokenize(question1), tokenizer.tokenize(passage1), {"bert": token_indexer}, passage1) instance2 = make_reading_comprehension_instance(tokenizer.tokenize(question2), tokenizer.tokenize(passage2), {"bert": token_indexer}, passage2) vocab = Vocabulary() batch = Batch([instance1, instance2]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) qtokens = tensor_dict["question"] ptokens = tensor_dict["passage"] config = BertConfig(len(token_indexer.vocab)) model = BertModel(config) embedder = BertEmbedder(model) _ = embedder(ptokens["bert"], offsets=ptokens["bert-offsets"]) _ = embedder(qtokens["bert"], offsets=qtokens["bert-offsets"]) def test_max_length(self): config = BertConfig(len(self.token_indexer.vocab)) model = BertModel(config) embedder = BertEmbedder(model) tokenizer = WordTokenizer(word_splitter=BertBasicWordSplitter()) sentence = "the " * 1000 tokens = tokenizer.tokenize(sentence) vocab = Vocabulary() instance = Instance({"tokens": TextField(tokens, {"bert": self.token_indexer})}) batch = Batch([instance]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) tokens = tensor_dict["tokens"] embedder(tokens["bert"], tokens["bert-offsets"]) def test_end_to_end_with_higher_order_inputs(self): tokenizer = WordTokenizer(word_splitter=BertBasicWordSplitter()) # 2 3 4 3 5 6 8 9 2 14 12 sentence1 = "the quickest quick brown fox jumped over the lazy dog" tokens1 = tokenizer.tokenize(sentence1) text_field1 = TextField(tokens1, {"bert": self.token_indexer}) # 2 3 5 6 8 9 2 15 10 11 14 1 sentence2 = "the quick brown fox jumped over the laziest lazy elmo" tokens2 = tokenizer.tokenize(sentence2) text_field2 = TextField(tokens2, {"bert": self.token_indexer}) # 2 5 15 10 11 6 sentence3 = "the brown laziest fox" tokens3 = tokenizer.tokenize(sentence3) text_field3 = TextField(tokens3, {"bert": self.token_indexer}) vocab = Vocabulary() instance1 = Instance({"tokens": ListField([text_field1])}) instance2 = Instance({"tokens": ListField([text_field2, text_field3])}) batch = Batch([instance1, instance2]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths, verbose=True) tokens = tensor_dict["tokens"] # No offsets, should get 14 vectors back ([CLS] + 12 wordpieces + [SEP]) bert_vectors = self.token_embedder(tokens["bert"]) assert list(bert_vectors.shape) == [2, 2, 14, 12] # Offsets, should get 10 vectors back. bert_vectors = self.token_embedder(tokens["bert"], offsets=tokens["bert-offsets"]) assert list(bert_vectors.shape) == [2, 2, 10, 12] # Now try top_layer_only = True tlo_embedder = BertEmbedder(self.bert_model, top_layer_only=True) bert_vectors = tlo_embedder(tokens["bert"]) assert list(bert_vectors.shape) == [2, 2, 14, 12] bert_vectors = tlo_embedder(tokens["bert"], offsets=tokens["bert-offsets"]) assert list(bert_vectors.shape) == [2, 2, 10, 12] def test_sliding_window(self): tokenizer = WordTokenizer(word_splitter=BertBasicWordSplitter()) sentence = "the quickest quick brown fox jumped over the lazy dog" tokens = tokenizer.tokenize(sentence) vocab = Vocabulary() vocab_path = self.FIXTURES_ROOT / 'bert' / 'vocab.txt' token_indexer = PretrainedBertIndexer(str(vocab_path), truncate_long_sequences=False, max_pieces=8) config_path = self.FIXTURES_ROOT / 'bert' / 'config.json' config = BertConfig(str(config_path)) bert_model = BertModel(config) token_embedder = BertEmbedder(bert_model, max_pieces=8) instance = Instance({"tokens": TextField(tokens, {"bert": token_indexer})}) batch = Batch([instance]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) tokens = tensor_dict["tokens"] # 16 = [CLS], 17 = [SEP] # 1 full window + 1 half window with start/end tokens assert tokens["bert"].tolist() == [[16, 2, 3, 4, 3, 5, 6, 17, 16, 3, 5, 6, 8, 9, 2, 17, 16, 8, 9, 2, 14, 12, 17]] assert tokens["bert-offsets"].tolist() == [[1, 3, 4, 5, 6, 7, 8, 9, 10, 11]] bert_vectors = token_embedder(tokens["bert"]) assert list(bert_vectors.shape) == [1, 13, 12] bert_vectors = token_embedder(tokens["bert"], offsets=tokens["bert-offsets"]) assert list(bert_vectors.shape) == [1, 10, 12] def test_sliding_window_with_batch(self): tokenizer = WordTokenizer(word_splitter=BertBasicWordSplitter()) sentence = "the quickest quick brown fox jumped over the lazy dog" tokens = tokenizer.tokenize(sentence) vocab = Vocabulary() vocab_path = self.FIXTURES_ROOT / 'bert' / 'vocab.txt' token_indexer = PretrainedBertIndexer(str(vocab_path), truncate_long_sequences=False, max_pieces=8) config_path = self.FIXTURES_ROOT / 'bert' / 'config.json' config = BertConfig(str(config_path)) bert_model = BertModel(config) token_embedder = BertEmbedder(bert_model, max_pieces=8) instance = Instance({"tokens": TextField(tokens, {"bert": token_indexer})}) instance2 = Instance({"tokens": TextField(tokens + tokens + tokens, {"bert": token_indexer})}) batch = Batch([instance, instance2]) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) tokens = tensor_dict["tokens"] bert_vectors = token_embedder(tokens["bert"], offsets=tokens["bert-offsets"]) assert bert_vectors is not None
[ "torch.LongTensor" ]
0.4.1
schmmd/allennlp
fbc28cefe03b1ea3ff65300d475d34f5f9629a5c
1.0
# Pytorch imports import torch # Cyphercat imports from .train import train, train_attacker from .metrics import eval_membership_inference, eval_attack_model # Device to run on device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def ml_leaks1(target=None, shadow_model=None, attacker_model=None, target_in_loader=None, target_out_loader=None, shadow_train_loader=None, shadow_out_loader=None, shadow_optim=None, attack_optim=None, shadow_criterion=None, attack_criterion=None, shadow_epochs=0, attack_epochs=0, classes=None, n_max_posteriors=3, retrain=True, verbose=False): '''Implementation of ml_leaks 1 membership inference attack Trains shadow network an independent data set and then trains the attacker to infer membership on this shadow net. Finally, the attacker is used to run mberbeship inference on the target. Args: target (nn.Module): Trained target network. shadow_model (nn.Module): Shadow network to help train the attacker in membership inference task. attacker_model (nn.Module): Network to be trained in membership inference task. target_in_loader (DataLoader): DataLoader pointing to target in-data used for testing the attack (split[4]) target_out_loader (DataLoader): Loads data pointing to target out-of- training dataset (split[1]) used for attack evaluation. shadow_train_loader (DataLoader): Loader for shadow_model training (split[2]). shadow_out_loader: Out-of-sample from shadow net, used to train the attacker (split[3]). shadow_optim (torch.optim): Optimizer for shadow_model training. attack_optim (torch.optim): Optimizer for attacker_model training. shadow_criterion (torch.nn): Loss function for shadow_model training. attack_criterion (torch.nn): Loss function for attacker_model training. shadow_epochs (int): Number of epochs used to train the shadow network. attack_epochs (int): Number of epochs used to train the attack network. classes (list): Classes for membership inference task. n_max_posteriors (int): Number of maximal posteriors to use in membership inference attack. retrain (bool): If True will retrain the shadow and attack network, otherwise will simply use the provided attacker model as is fed. verbose (bool): If True will print the loss at each batch during all training steps. Example: To-do: Add example to docstring. ''' if retrain: print('---- Training shadow network ----') train(model=shadow_model, data_loader=shadow_train_loader, test_loader=shadow_out_loader, optimizer=shadow_optim, criterion=shadow_criterion, n_epochs=shadow_epochs, classes=classes, verbose=verbose) # print('---- Training attack network ----') train_attacker(attack_model=attacker_model, shadow_model=shadow_model, shadow_train=shadow_train_loader, shadow_out=shadow_out_loader, optimizer=attack_optim, criterion=attack_criterion, n_epochs=attack_epochs, k=n_max_posteriors) # print('---- Evaluate attack ----') df_pr = eval_attack_model(attack_model=attacker_model, target=target, target_train=target_in_loader, target_out=target_out_loader, k=n_max_posteriors) return df_pr def ml_leaks3(target=None, target_in_loader=None, target_out_loader=None): ''' Implementation of ml_leaks 3 membership inference attack Args: target (nn.Module): Trained target network to attack target_in_loader (DataLoader): Loader pointing to data used to train target (split[4]). Used here to evaluate attack performance. target_out_loader: Loader pointing to the target out-of-training data (split[1]) Example: To-do: Add example to docstring. ''' eval_membership_inference(target_model=target, target_train=target_in_loader, target_out=target_out_loader) def mi_gradient_ascent(input_sample=None, target_model=None, optimizer=None, category=None, iterations=0, verbose=False): """ Implementation of gradient based model inversion attack Args: input_sample (torch.tensor): Initialized input sample, usually randomly generated. Size should match the model input. target_model (nn.Module): Pretrained model to attack. optimizer (nn.optim): Optimizer (initialized on image parameters) used in attack. category (int): Category to invert. iterations (int): Query iterations in the attack. verbose (bool): If True will print the loss at each step in attack. Returns: (list(float)): Returns a list of the losses at each iteration. Example: Todos: Write example """ category = torch.Variable(torch.LongTensor([category])).to(device) losses = [] for i_step in range(iterations): target_model.zero_grad() out = target_model(input_sample) loss = -out.take(category) loss.backward() # optimizer.step() input_sample.grad.zero_() losses.append(loss.data) # return losses
[ "torch.cuda.is_available", "torch.LongTensor" ]
1.0.0
arafin-lab/model_inversion_experiments
4029ae8683b9056013e6424d8931afe79afa618e