seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
op = sok_saver.load_embedding_values(embedding_layer.embedding_variable, init_tensors[i])
restore_op.append(op)
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction="none")
def _replica_loss(labels, logits):
loss = loss_fn(labels, logits)
return tf.nn.compute_average_loss(loss, global_batch_size=args.global_batch_size)
def _train_step(inputs, labels, training):
def _step_fn(inputs, labels):
logit, embedding_vector = sok_sparse_demo(inputs, training=training)
loss = _replica_loss(labels, logit)
emb_var, other_var = sok.split_embedding_variable_from_others(sok_sparse_demo.trainable_variables)
grads = tf.gradients(loss, emb_var + other_var, colocate_gradients_with_ops=True,
unconnected_gradients=tf.UnconnectedGradients.NONE)
emb_grads, other_grads = grads[:len(emb_var)], grads[len(emb_var):]
if "plugin" in args.optimizer:
emb_train_op = emb_opt.apply_gradients(zip(emb_grads, emb_var))
else:
with sok.OptimizerScope(emb_var):
emb_train_op = emb_opt.apply_gradients(zip(emb_grads, emb_var))
with tf.control_dependencies([*emb_grads]):
# in case NCCL runs concurrently via SOK and horovod
other_grads = strategy.reduce("sum", other_grads)
other_train_op = dense_opt.apply_gradients(zip(other_grads, other_var))
|
tensorflow.gradients
| 9,100 |
from tensorflow.contrib.learn.python.learn.datasets import base
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True):
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
train = fake()
validation = fake()
test = fake()
return base.Datasets(train=train, validation=validation, test=test)
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = base.maybe_download(TRAIN_IMAGES, train_dir,
SOURCE_URL + TRAIN_IMAGES)
train_images = extract_images(local_file)
|
tensorflow.contrib.learn.python.learn.datasets.base.Datasets
| 9,101 |
import tensorflow as tf
input_size=config.hidden_size,
dropout=1 - config.keep_prob if is_training else 0)
params_size_t = self._cell.params_size()
self._rnn_params = tf.get_variable(
"lstm_params",
initializer=tf.random_uniform(
[params_size_t], -config.init_scale, config.init_scale),
validate_shape=False)
c = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
|
tensorflow.random_uniform
| 9,102 |
import tensorflow as tf
'target_labels': [[1, 2, 3, 4], [2, 3, 4, 5]],
'target_paddings': [[1, 1, 1, 1], [0, 0, 1, 1]],
'norm_wer_errors': [[1], [0]],
'norm_wer_words': [[0], [4]],
}
metrics_dict = mdl.CreateDecoderMetrics()
mdl.PostProcessDecodeOut(fake_dec_out, metrics_dict)
self.assertEqual(1 + 0, metrics_dict['wer'].total_value)
self.assertEqual(0 + 4, metrics_dict['wer'].total_weight)
self.assertEqual(1 + 0, metrics_dict['norm_wer'].total_value)
self.assertEqual(0 + 4, metrics_dict['norm_wer'].total_weight)
def testBProp(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
mdl.BProp()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
mdl.train_op.run()
def testBPropSmoothDecay(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
p.train.lr_schedule = (
schedule.ContinuousLearningRateSchedule.Params().Set(
|
tensorflow.set_random_seed
| 9,103 |
from tensorflow.python.keras.utils.generic_utils import register_keras_serializable
return outputs
@register_keras_serializable(package='Vitis', name='AveragePooling2D')
class VitisAveragePooling2D(tf.keras.layers.AveragePooling2D):
"""Vitis version of AveragePooling2D layer.
|
tensorflow.python.keras.utils.generic_utils.register_keras_serializable
| 9,104 |
import tensorflow as tf
h = h + b
return h
def conv2d(x, shape, name, bias=False, stride=2, padding='SAME'):
with tf.variable_scope(name):
W = weight_variable(shape)
h = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding)
if bias:
b = bias_variable([shape[-1]])
h = h + b
return h
def deconv2d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'):
with tf.variable_scope(name):
W = weight_variable(shape)
h = tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride, stride, 1], padding=padding)
if bias:
b = bias_variable([shape[-2]])
h = h + b
return h
def conv3d(x, shape, name, bias=False, stride=2, padding='SAME'):
with tf.variable_scope(name):
W = weight_variable(shape)
h = tf.nn.conv3d(x, W, strides=[1, stride, stride, stride, 1], padding=padding)
if bias:
b = bias_variable([shape[-1]])
h = h + b
return h
|
tensorflow.nn.conv2d_transpose
| 9,105 |
import tensorflow as tf
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
|
tensorflow.shape
| 9,106 |
import tensorflow as tf
flat_x = tf.layers.flatten(x)
if self.use_epochs:
epoch = features["epoch"] + tf.zeros([x_shape[0]], dtype=tf.int32)
# Randomly set epoch to 0 in some cases as that's the inference value.
|
tensorflow.zeros
| 9,107 |
import tensorflow as tf
else:
remainder = tf.matmul(remainder, sliced_core)
else:
if remainder is not None:
# Add reminder from the previous collapsed cores to the current
# core.
sliced_core = tf.einsum('ab,bid->aid', remainder, sliced_core)
remainder = None
new_tt_cores.append(sliced_core)
if remainder is not None:
# The reminder obtained from collapsing the last cores.
new_tt_cores[-1] = tf.einsum('aib,bd->aid', new_tt_cores[-1], remainder)
remainder = None
# TODO: infer the output ranks and shape.
return TensorTrain(new_tt_cores)
def _are_tt_cores_valid(tt_cores, shape, tt_ranks):
"""Check if dimensions of the TT-cores are consistent and the dtypes coincide.
Args:
tt_cores: a tuple of `Tensor` objects
shape: An np.array, a tf.TensorShape (for tensors), a tuple of
|
tensorflow.einsum
| 9,108 |
import tensorflow as tf
cols[3] / height,
cols[2] / width], axis=1)
# add batch dimension (assume batch_size==1)
#assert image.get_shape()[0] == 1
boxes = tf.expand_dims(boxes, dim=0)
image = tf.image.draw_bounding_boxes(image, boxes) # 在image上画gt_truth
return tf.summary.image('ground_truth', image)
def _add_act_summary(self, tensor):
tf.summary.histogram('ACT/' + tensor.op.name + '/activations', tensor)
tf.summary.scalar('ACT/' + tensor.op.name + '/zero_fraction',
tf.nn.zero_fraction(tensor))
def _add_score_summary(self, key, tensor):
tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor)
def _add_train_summary(self, var):
tf.summary.histogram('TRAIN/' + var.op.name, var)
# Custom Layers #
def _reshape_layer(self, bottom, num_dim, name):
input_shape = tf.shape(bottom)
with tf.variable_scope(name):
|
tensorflow.nn.zero_fraction
| 9,109 |
import tensorflow as tf
relative_pos_gen.make_relative_att_ids(seq_len=5, batch_size=2))
def test_make_relative_att_ids_batch_size_2_tensor(self):
dummy_batch = tf.ones([2, 5])
relative_pos_gen = feature_utils.RelativePositionGenerator(max_distance=3)
|
tensorflow.ones
| 9,110 |
from tensorflow.contrib.eager.python.examples.revnet import config as config_
dev = tf.DeviceSpec.from_string(device).device_type.lower()
name = "%s_%s_batch_%d_%s" % (label, dev, batch_size, data_format)
extras = {"examples_per_sec": batch_size / avg_time}
self.report_benchmark(
iters=num_iters, wall_time=avg_time, name=name, extras=extras)
def _benchmark_eager_apply(self,
label,
device_and_format,
defun=False,
execution_mode=None):
config = config_.get_hparams_imagenet_56()
with tfe.execution_mode(execution_mode):
device, data_format = device_and_format
model = revnet.RevNet(config=config)
if defun:
# TODO(apassos): reenable after cond lets you return None
model.call = tfe.defun(model.call)
batch_size = 64
num_burn = 5
num_iters = 10
with tf.device(device):
|
tensorflow.contrib.eager.python.examples.revnet.config.get_hparams_imagenet_56
| 9,111 |
import tensorflow as tf
p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4,
lambda: tf.print('csrt acc ', [pct]),
lambda: tf.no_op())
with tf.control_dependencies([p]):
return tf.reduce_mean(loss)
|
tensorflow.control_dependencies
| 9,112 |
import tensorflow as tf
@registry.register_model
class FeedForwardCnnSmallCategoricalPolicyNew(PolicyBase):
"""Small cnn network with categorical output."""
def body(self, features):
observations = features["inputs"]
x = tf.transpose(observations, [0, 2, 3, 1, 4])
x_shape = common_layers.shape_list(x)
x = tf.reshape(x, x_shape[:-2] + [-1])
dropout = getattr(self.hparams, "dropout_ppo", 0.0)
with tf.variable_scope("feed_forward_cnn_small"):
x = tf.cast(x, tf.float32) / 255.0
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 32, (4, 4), strides=(2, 2), name="conv1",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 64, (4, 4), strides=(2, 2), name="conv2",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 128, (4, 4), strides=(2, 2), name="conv3",
activation=common_layers.belu, padding="SAME")
flat_x = tf.layers.flatten(x)
flat_x = tf.nn.dropout(flat_x, rate=dropout)
x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu, name="dense1")
|
tensorflow.layers.conv2d
| 9,113 |
import tensorflow as tf
degree_l = []
order_m = []
for degree in range(0, max_band + 1):
for order in range(-degree, degree + 1):
degree_l.append(degree)
order_m.append(order)
return (tf.convert_to_tensor(value=degree_l),
tf.convert_to_tensor(value=order_m))
def _evaluate_legendre_polynomial_pmm_eval(m, x):
pmm = tf.pow(1.0 - tf.pow(x, 2.0), tf.cast(m, dtype=x.dtype) / 2.0)
ones = tf.ones_like(m)
pmm *= tf.cast(
tf.pow(-ones, m) * double_factorial(2 * m - 1),
dtype=pmm.dtype)
return pmm
def _evaluate_legendre_polynomial_loop_cond(x, n, l, m, pmm, pmm1):
return tf.cast(tf.math.count_nonzero(n <= l), tf.bool)
|
tensorflow.cast
| 9,114 |
import tensorflow as tf
sequence_lengths = tf.convert_to_tensor(sequence_lengths)
with tf.control_dependencies(
[tf.assert_equal(sequence.shape[1], sequence_lengths.shape[0])]):
return tf.reverse_sequence(
sequence, sequence_lengths, seq_axis=0, batch_axis=1)
|
tensorflow.reverse_sequence
| 9,115 |
import tensorflow as tf
with tf.variable_scope(target_modality.name):
log_info("Transforming body output with %s.top", target_modality.name)
last_only = (
target_modality.top_is_pointwise and
self.hparams.mode == tf.estimator.ModeKeys.PREDICT and
not self.hparams.force_full_predict)
if not last_only:
logits = target_modality.top(body_output, features["targets"])
else:
# Take body outputs for the last position only, and targets too.
last_position_body_output = tf.expand_dims(
body_output[:, -1, :, :], axis=[1])
last_position_targets = tf.expand_dims(
features["targets"][:, -1:, :, :], axis=[1])
logits = target_modality.top(last_position_body_output,
last_position_targets)
return logits
def top(self, body_output, features):
if isinstance(body_output, dict):
logits = {}
for k, v in body_output.iteritems():
logits[k] = self._top_single(v, features)
return logits
|
tensorflow.expand_dims
| 9,116 |
import tensorflow as tf
# Project the embeddings to space dimensions for visualization
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config)
def add_train_stats(model, hparams):
with tf.variable_scope("stats") as scope:
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i])
tf.summary.scalar("before_loss", model.before_loss)
tf.summary.scalar("after_loss", model.after_loss)
|
tensorflow.variable_scope
| 9,117 |
import tensorflow as tf
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
if FLAGS.do_eval:
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)
result = estimator.evaluate(
|
tensorflow.logging.info
| 9,118 |
import tensorflow as tf
interpreter.set_tensor(in_node['index'], images)
interpreter.invoke()
prediction = interpreter.get_tensor(out_node['index'])
result = tf.argmax( prediction ,axis=1).numpy()
print('accuracy={:.4f}'.format(np.sum(result == y_test)/y_test.shape[0]))
if __name__ == '__main__':
convert_tflite()
|
tensorflow.argmax
| 9,119 |
import tensorflow as tf
# Initialize session
sess = tf.Session()
sess.run(tf.global_variables_initializer())
|
tensorflow.global_variables_initializer
| 9,120 |
import tensorflow as tf
dimensions being batch_size and window_size.
:param value_if_masked: Value to fill for masked positions.
:param expected_extra_dims: Expected extra dimensions.
:returns: Tensor of same shape as expanded_tensor, but with `value_if_masked` filled
in masked dimensions.
"""
mask_shape = list(map(int, self.mask.shape))
graph_typecheck.assert_shape(expanded_tensor, mask_shape + expected_extra_dims)
value_if_masked = expanded_tensor.dtype.as_numpy_dtype(value_if_masked)
if_masked_tensor = tf.fill(expanded_tensor.shape, value_if_masked)
mask = self.mask
for i in range(2, 2 + len(expected_extra_dims)):
mask = tf.expand_dims(mask, axis=i)
mask = tf.tile(mask, [1, 1] + expected_extra_dims)
return tf.where(mask, expanded_tensor, if_masked_tensor)
def initial_layer(
window_feature: WindowFeatures, *, clip_magnitude=10.0, include_flux_and_time=False
) -> tf.Tensor:
features = tf.expand_dims(window_feature.dflux_dt(clip_magnitude=clip_magnitude), 2)
if include_flux_and_time:
dflux = tf.expand_dims(window_feature.dflux, 2)
dtime = tf.expand_dims(window_feature.dtime, 2)
features = tf.concat([features, dflux, dtime],
|
tensorflow.expand_dims
| 9,121 |
import tensorflow as tf
k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NHWC',epsilon=1e-9) :
with tf.variable_scope(name) :
assert data_format == 'NHWC'
self.v = tf.get_variable('v', [k_h, k_w, out_dim, input_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.g = tf.get_variable('g',[out_dim],
initializer=tf.constant_initializer(float('nan')))
self.b = tf.get_variable('b',[out_dim],
initializer=tf.constant_initializer(float('nan')))
self.strides = [1, d_h, d_w, 1]
self.epsilon = epsilon
def __call__(self,input_var,name=None,**kwargs) :
shapes = tf.shape(input_var)
shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]])
def _init():
v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3])
t = tf.nn.conv2d_transpose(input_var,v_norm,
output_shape=shapes,
strides=self.strides,
padding='SAME',
data_format='NHWC')
mu,var = tf.nn.moments(t,axes=[0,1,2])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
|
tensorflow.shape
| 9,122 |
import tensorflow as tf
start_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[2]], axis=-1), name="attn1"), 1, bias=False,
name="start_pointer"), -1)
end_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[3]], axis=-1), name="attn2"), 1, bias=False,
name="end_pointer"), -1)
else:
start_logits = tf.squeeze(
|
tensorflow.concat
| 9,123 |
import tensorflow as tf
# Start by setting a seed for repeatability
tf.set_random_seed(hparams.tacotron_random_seed)
# Set up data feeder
coord = tf.train.Coordinator()
with tf.variable_scope("datafeeder") as scope:
feeder = Feeder(coord, metadat_fpath, hparams)
|
tensorflow.train.Coordinator
| 9,124 |
import tensorflow as tf
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
|
tensorflow.train.init_from_checkpoint
| 9,125 |
import tensorflow as tf
tf.app.flags.DEFINE_float('ws_iter_ratio_end', 0.5, 'WS: iteration ratio (at ending time)')
tf.app.flags.DEFINE_float('ws_mask_update_step', 500, 'WS: step size for updating the pruning mask')
def calc_prune_ratio(vars_list):
"""Calculate the overall pruning ratio for the given list of variables.
Args:
* vars_list: list of variables
Returns:
* prune_ratio: overall pruning ratio of the given list of variables
"""
nb_params_nnz = tf.add_n([tf.count_nonzero(var) for var in vars_list])
nb_params_all = tf.add_n([tf.size(var) for var in vars_list])
prune_ratio = 1.0 - tf.cast(nb_params_nnz, tf.float32) / tf.cast(nb_params_all, tf.float32)
return prune_ratio
class WeightSparseLearner(AbstractLearner): # pylint: disable=too-many-instance-attributes
"""Weight sparsification learner."""
def __init__(self, sm_writer, model_helper):
"""Constructor function.
Args:
* sm_writer: TensorFlow's summary writer
|
tensorflow.size
| 9,126 |
import tensorflow as tf
# Parse 'None' into None.
input_partition_dims = [
None if x == 'None' else _maybe_transpose(x)
for x in input_partition_dims
]
else:
tpu_cluster_resolver = None
# Sets up config for TPUEstimator.
tpu_config = tf.contrib.tpu.TPUConfig(
params.train.iterations_per_loop,
num_cores_per_replica=num_cores_per_replica,
input_partition_dims=input_partition_dims,
per_host_input_for_training=tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 # pylint: disable=line-too-long
)
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
|
tensorflow.contrib.tpu.TPUConfig
| 9,127 |
import tensorflow as tf
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
|
tensorflow.shape
| 9,128 |
from tensorflow.python.ops import array_ops
model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units)
params_size_t = model.params_size()
input_data = variables.Variable(
array_ops.ones([seq_length, batch_size, num_units]))
input_h = variables.Variable(
array_ops.ones([num_layers, batch_size, num_units]))
input_c = variables.Variable(
array_ops.ones([num_layers, batch_size, num_units]))
params = variables.Variable(
array_ops.ones([params_size_t]), validate_shape=False)
output, output_h, output_c = model(
is_training=True,
input_data=input_data,
input_h=input_h,
input_c=input_c,
params=params)
all_grads = gradients_impl.gradients(
[output, output_h, output_c],
|
tensorflow.python.ops.array_ops.ones
| 9,129 |
import tensorflow as tf
h = embed(X, we)
#h=[-1,n_ctx,emb]
for layer in range(n_layer):
h = block(h, 'h%d'%layer, train=train, scale=True)
#h=[-1,n_ctx,emb] lm_h [-1,emb]
lm_h = tf.reshape(h[:, :-1], [-1, n_embd])
lm_logits = tf.matmul(lm_h, we, transpose_b=True)
lm_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=lm_logits, labels=tf.reshape(X[:, 1:, 0], [-1]))
lm_losses = tf.reshape(lm_losses, [shape_list(X)[0], shape_list(X)[1]-1])
lm_losses = tf.reduce_sum(lm_losses*M[:, 1:], 1)/tf.reduce_sum(M[:, 1:], 1)
clf_h = tf.reshape(h, [-1, n_embd])
pool_idx = tf.cast(tf.argmax(tf.cast(tf.equal(X[:, :, 0], clf_token), tf.float32), 1), tf.int32)
clf_h = tf.gather(clf_h, tf.range(shape_list(X)[0], dtype=tf.int32)*n_ctx+pool_idx)
clf_h = tf.reshape(clf_h, [-1, 2, n_embd])
if train and clf_pdrop > 0:
shape = shape_list(clf_h)
shape[1] = 1
clf_h = tf.nn.dropout(clf_h, 1-clf_pdrop, shape)
clf_h = tf.reshape(clf_h, [-1, n_embd])
clf_logits = clf(clf_h, 1, train=train)
clf_logits = tf.reshape(clf_logits, [-1, 2])
|
tensorflow.reshape
| 9,130 |
import tensorflow as tf
"r").extractall(tmp_dir)
if dataset[1][0] == "tmx":
cleaning_requested = "tmx" in datatypes_to_clean
tmx_filename = os.path.join(tmp_dir, dataset[1][1])
if tmx_filename.endswith(".gz"):
with gzip.open(tmx_filename, "rb") as tmx_file:
_tmx_to_source_target(tmx_file, lang1_resfile, lang2_resfile,
do_cleaning=cleaning_requested)
else:
with tf.gfile.Open(tmx_filename) as tmx_file:
_tmx_to_source_target(tmx_file, lang1_resfile, lang2_resfile,
do_cleaning=cleaning_requested)
elif dataset[1][0] == "tsv":
_, src_column, trg_column, glob_pattern = dataset[1]
filenames = tf.gfile.Glob(os.path.join(tmp_dir, glob_pattern))
if not filenames:
# Capture *.tgz and *.tar.gz too.
mode = "r:gz" if compressed_filepath.endswith("gz") else "r"
|
tensorflow.gfile.Open
| 9,131 |
import tensorflow as tf
x, n, l, m, pmm, pmm1 = tf.while_loop(
cond=_evaluate_legendre_polynomial_loop_cond,
body=_evaluate_legendre_polynomial_loop_body,
loop_vars=[x, n, l, m, pmm, pmm1])
return pmm1
def _evaluate_legendre_polynomial_branch(l, m, x, pmm):
pmm1 = x * (2.0 * tf.cast(m, dtype=x.dtype) + 1.0) * pmm
# if, l == m + 1 return pmm1, otherwise lift to the next band.
res = tf.where(
tf.equal(l, m + 1), pmm1,
_evaluate_legendre_polynomial_loop(x, m, l, pmm, pmm1))
return res
def evaluate_legendre_polynomial(degree_l: TensorLike,
order_m: TensorLike,
x: TensorLike) -> TensorLike:
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
x = tf.convert_to_tensor(value=x)
|
tensorflow.equal
| 9,132 |
from tensorflow.python.framework import ops as _ops
(self._name, self._shape))
assert self._send_tpu_core != self._recv_tpu_core, (
"TPU send/recv must be cross-core: %s and %s" %
(send_device, recv_device))
def Send(self, tensor):
"""Sends a tensor through the channel."""
assert tensor.dtype == self._dtype
assert not self._send_called, (
"Send called multiple times for %s" % self._name)
self._send_called = True
if self._send_tpu_core == -1:
return _Send(tensor, self._name, self._send_device, self._recv_device)
else:
with _ops.device(self._send_device):
return _XlaSend(
tensor, tensor_name=self._name, name="Send_" + self._name)
def Recv(self):
"""Receives a tensor from the channel."""
if self._send_tpu_core == -1:
return _Recv(self._dtype, self._name,
self._send_device, self._recv_device)
else:
with _ops.device(self._recv_device):
return _XlaRecv(
self._dtype,
tensor_name=self._name,
|
tensorflow.python.framework.ops.device
| 9,133 |
import tensorflow as tf
tf.compat.v2.summary.scalar(
name="orig_task_optimal", data=orig_opt_frac, step=global_step)
# How often is the relabelled goal optimal?
# The relabel_indices are [B, 1], so we need to remove the extra dim.
relabel_is_opt = tf.squeeze(relabel_indices) == orig_indices
relabel_opt_frac = tf.reduce_mean(tf.cast(relabel_is_opt, tf.float32))
tf.compat.v2.summary.scalar(
name="relabel_task_optimal", data=relabel_opt_frac, step=global_step)
|
tensorflow.squeeze
| 9,134 |
import tensorflow as tf
# Compute Pearson correlation
pearson = contrib_metrics.streaming_pearson_correlation(
logits, label_ids, weights=is_real_example)
# Compute MSE
# mse = tf.metrics.mean(per_example_loss)
mse = tf.metrics.mean_squared_error(
label_ids, logits, weights=is_real_example)
loss = tf.metrics.mean(
values=per_example_loss,
weights=is_real_example)
|
tensorflow.metrics.mean_squared_error
| 9,135 |
import tensorflow as tf
input_mask=inp_mask)
summary = xlnet_model.get_pooled_out(FLAGS.summary_type, FLAGS.use_summ_proj)
with tf.variable_scope("logits"):
logits = tf.layers.dense(summary, 1,
kernel_initializer=xlnet_model.get_initializer())
logits = tf.reshape(logits, [bsz_per_core, 4])
one_hot_target = tf.one_hot(label, 4)
per_example_loss = -tf.reduce_sum(
tf.nn.log_softmax(logits) * one_hot_target, -1)
total_loss = tf.reduce_mean(per_example_loss)
return total_loss, per_example_loss, logits
|
tensorflow.one_hot
| 9,136 |
import tensorflow as tf
with tf.variable_scope('fully_connected'):
aux_logits = self._add_fully_connected(X, (ch,), K, no_reg=True)
return aux_logits
def _compute_predictions(self, logits, classes):
probs = tf.nn.softmax(logits)
preds = tf.argmax(logits, axis=1, output_type=tf.int32)
corrects = tf.equal(preds, classes)
return (probs, corrects)
def _compute_loss(self, logits, aux_logits_list, classes, **knobs):
|
tensorflow.nn.softmax
| 9,137 |
import tensorflow as tf
add_weight_decay(params['weight_decay'])
regularization_loss = tf.losses.get_regularization_loss()
# create localization and classification losses
losses = ssd.loss(labels, params)
tf.losses.add_loss(params['localization_loss_weight'] * losses['localization_loss'])
tf.losses.add_loss(params['classification_loss_weight'] * losses['classification_loss'])
tf.summary.scalar('regularization_loss', regularization_loss)
tf.summary.scalar('localization_loss', losses['localization_loss'])
tf.summary.scalar('classification_loss', losses['classification_loss'])
total_loss = tf.losses.get_total_loss(add_regularization_losses=True)
if mode == tf.estimator.ModeKeys.EVAL:
|
tensorflow.summary.scalar
| 9,138 |
import tensorflow as tf
+ np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\
* tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0)
else:
new_state = ((1 - self.alpha) * state) \
+ self.alpha * (
tf.matmul(
tf.nn.relu(state),
self.W_rec * self.rec_Connectivity,
transpose_b=True, name="1")
+ tf.matmul(
rnn_in,
self.W_in * self.input_Connectivity,
transpose_b=True, name="2")
+ self.b_rec) \
+ np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\
* tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0)
return new_state
|
tensorflow.matmul
| 9,139 |
import tensorflow as tf
output = inputs * self.kernel
if self.use_bias:
output = output + self.bias
if self.activation is not None:
output = self.activation(output)
return output
nan2zeroLayer = Lambda(lambda x: tf.where(tf.is_nan(x), tf.zeros_like(x), x))
ColWiseMultLayer = lambda name: Lambda(lambda l: l[0]*(tf.matmul(tf.reshape(l[1], (-1,1)),
tf.ones((1, l[0].get_shape()[1]),
dtype=l[1].dtype))),
name=name)
|
tensorflow.is_nan
| 9,140 |
from tensorflow.python.ops import array_ops
self._batch_ndims_is_0, 2, 1 + self.batch_ndims)
event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,))
new_shape = array_ops.concat(0, (sample_shape, batch_shape, event_shape))
x = array_ops.reshape(x, shape=new_shape)
return x
|
tensorflow.python.ops.array_ops.reshape
| 9,141 |
import tensorflow as tf
print('Using ranking trajectory loss ', config.contra_horizon)
contra_loss, cstr_pct = contra_traj_lossV9(
pred, target[name], horizon=config.contra_horizon, margin=config.margin)
objectives.append((Objective(name, contra_loss, min, include, exclude)))
elif name == 'reward' and config.r_loss == 'l2':
pred = heads[name](features)
l2_loss = tf.compat.v1.losses.mean_squared_error(target[name], pred)
# l2_loss = tf.nn.l2_loss(pred - target[name])
objectives.append((Objective(name, l2_loss, min, include, exclude)))
else:
if not config.aug_same and config.aug:
recon_feat = tf.concat([features, target['aug']], -1)
print('Use recon feature ', name, recon_feat)
logprob = heads[name](recon_feat).log_prob(target[name])
# logprob = heads[name](features).log_prob(target['ori_img'])
else:
logprob = heads[name](features).log_prob(target[name])
objectives.append(Objective(name, logprob, max, include, exclude))
objectives = [o._replace(value=tf.reduce_mean(o.value)) for o in objectives]
return objectives, cstr_pct
|
tensorflow.concat
| 9,142 |
import tensorflow as tf
tf.app.flags.DEFINE_float(
'warmup_learning_rate', 0.00001,
'The start warm-up learning rate to avoid NAN.')
tf.app.flags.DEFINE_integer(
'warmup_steps', 100,
'The total steps to warm-up.')
|
tensorflow.app.flags.DEFINE_integer
| 9,143 |
import tensorflow as tf
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
|
tensorflow.logging.info
| 9,144 |
import tensorflow as tf
with tf.Graph().as_default():
# create a TF session for the current graph
config = tf.ConfigProto()
if FLAGS.enbl_multi_gpu:
|
tensorflow.ConfigProto
| 9,145 |
import tensorflow as tf
# split
input_images_split = tf.split(input_images, len(gpus))
input_score_maps_split = tf.split(input_score_maps, len(gpus))
input_geo_maps_split = tf.split(input_geo_maps, len(gpus))
input_training_masks_split = tf.split(input_training_masks, len(gpus))
tower_grads = []
reuse_variables = None
for i, gpu_id in enumerate(gpus):
#with tf.device('/gpu:%d' % gpu_id):
with tf.name_scope('model_%d' % gpu_id) as scope:
iis = input_images_split[i]
isms = input_score_maps_split[i]
igms = input_geo_maps_split[i]
itms = input_training_masks_split[i]
total_loss, model_loss = tower_loss(iis, isms, igms, itms, reuse_variables)
batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
reuse_variables = True
grads = opt.compute_gradients(total_loss)
|
tensorflow.name_scope
| 9,146 |
import tensorflow as tf
def softmax_mask(val, mask):
return -INF * (1 - tf.cast(mask, tf.float32)) + val
def pointer(inputs, state, hidden, mask, scope="pointer"):
with tf.variable_scope(scope):
u = tf.concat([tf.tile(tf.expand_dims(state, axis=1), [1, tf.shape(inputs)[1], 1]), inputs], axis=2) #[N,PL,2d]
s0 = tf.nn.tanh(dense(u, hidden, use_bias=False, scope="s0"))
s = dense(s0, 1, use_bias=False, scope="s")
s1 = softmax_mask(tf.squeeze(s, [2]), mask)#[N,PL]
a = tf.expand_dims(tf.nn.softmax(s1), axis=2)#[N,PL,1]
res = tf.reduce_sum(a * inputs, axis=1)
return res, s1 # attention_sum probability
def summ(memory, hidden, mask, keep_prob=1.0, is_train=None, scope="summ"):
with tf.variable_scope(scope):
d_memory = dropout(memory, keep_prob=keep_prob, is_train=is_train)
s0 = tf.nn.tanh(dense(d_memory, hidden, scope="s0"))
s = dense(s0, 1, use_bias=False, scope="s")
|
tensorflow.squeeze
| 9,147 |
import tensorflow as tf
if use_token_type:
if token_type_ids is None:
raise ValueError("`token_type_ids` must be specified if"
"`use_token_type` is True.")
token_type_table = tf.get_variable(
name=token_type_embedding_name,
shape=[token_type_vocab_size, width],
initializer=create_initializer(initializer_range))
# This vocab will be small so we always do one-hot here, since it is always
# faster for a small vocabulary.
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
output += token_type_embeddings
if use_position_embeddings:
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
with tf.control_dependencies([assert_op]):
full_position_embeddings = tf.get_variable(
name=position_embedding_name,
shape=[max_position_embeddings, width],
initializer=create_initializer(initializer_range))
|
tensorflow.matmul
| 9,148 |
import tensorflow as tf
def _optimize(self, loss, step, **knobs):
opt_momentum = knobs['opt_momentum'] # Momentum optimizer momentum
grad_clip_norm = knobs['grad_clip_norm'] # L2 norm to clip gradients by
# Compute learning rate, gradients
tf_trainable_vars = tf.trainable_variables()
lr = self._get_learning_rate(step, **knobs)
grads = tf.gradients(loss, tf_trainable_vars)
self._mark_for_monitoring('lr', lr)
# Clip gradients
if grad_clip_norm > 0:
grads = [tf.clip_by_norm(x, grad_clip_norm) for x in grads]
|
tensorflow.gradients
| 9,149 |
import tensorflow as tf
self.sess.run(self.train_op, feed_dict={S: s})
if self.t_replace_counter % self.t_replace_iter == 0:
self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)])
self.t_replace_counter += 1
|
tensorflow.assign
| 9,150 |
import tensorflow as tf
def sparse_conv2d_matmul(x, w, blk_indices, strides, padding):
"""
Performs 2D convolution using matrix multiplication on a sparse feature map.
Naive python implementation of sparse convolution using gather and scatter.
:param x: [Tensor] [N, H, W, C]. Input activation tensor, dtype float32.
:param w: [Tensor] [I, J, C, K]. Convolution kernel, dtype float32.
:param blk_indices: [Tensor] [M, h, w, 3]. Block indices of rectangles.
:param strides: [list] List of 4 int, convolution strides.
:param padding: [string] `VALID` or `SAME`, padding method for sparse convolution.
:return [Tensor] [N, H', W', C]. Convolution results.
"""
blk_indices_ = tf.reshape(blk_indices, [-1, 3])
blk_shape = tf.shape(blk_indices)
ksize = tf.shape(w)
# Calculate the block strides.
bstrides = _calc_block_strides(blk_shape, ksize, strides)
# Calculate the output size.
x_shape = tf.shape(x)
out_shape = calc_out_size_4d(x_shape, ksize, strides, padding)
# Pad input.
x_ = _pad_input(
x, ksize, strides, padding, bsize=[1, blk_shape[1], blk_shape[2], 1], bstrides=bstrides)
|
tensorflow.reshape
| 9,151 |
import tensorflow as tf
mode = mode,
predictions = predictions_dict,
loss = loss,
train_op = train_op,
eval_metric_ops = eval_metric_ops,
export_outputs = export_outputs)
# Create serving input function
def serving_input_fn():
feature_placeholders = {
TIMESERIES_COL: tf.placeholder(tf.float32, [None, N_INPUTS])
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
features[TIMESERIES_COL] = tf.squeeze(features[TIMESERIES_COL], axis = [2])
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create custom estimator's train and evaluate function
def train_and_evaluate(output_dir, use_keras):
if use_keras:
estimator = make_keras_estimator(output_dir)
else:
estimator = tf.estimator.Estimator(model_fn = simple_rnn,
model_dir = output_dir)
|
tensorflow.expand_dims
| 9,152 |
import tensorflow as tf
[self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1))
print(h3.get_shape())
h4 = deconv2d(tf.concat([h3, skip_h0], 3),
[self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0)
return h4
with tf.variable_scope("deconv") as scope:
output_h4 = decode(trans_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0)
scope.reuse_variables()
truthoutput_h4 = decode(tgtimg_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0)
self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3
print(tgtimg_z.get_shape())
self.out = output_h4
self.out2 = truthoutput_h4
print(self.out.get_shape())
self.recon1 = tf.nn.l2_loss(tgtimg - self.out)
self.recon2 = tf.nn.l2_loss(tgtimg - self.out2)
self.loss = self.recon1 + self.recon2 + self.simloss
if ablation_type == "None":
self.loss = self.recon1 + self.recon2 + self.simloss
|
tensorflow.reduce_mean
| 9,153 |
from tensorflow.python.training import training_util
self._training_initial_clusters,
self._num_clusters, self._random_seed,
self._covariance_type,
self._params)
incr_step = state_ops.assign_add(training_util.get_global_step(), 1)
loss = math_ops.reduce_sum(losses)
training_op = with_dependencies([training_op, incr_step], loss)
training_hooks = [_InitializeClustersHook(
|
tensorflow.python.training.training_util.get_global_step
| 9,154 |
import tensorflow as tf
gtboxes_and_label_h = get_horizen_minAreaRectangle(
tf.reshape(gtboxes_and_label_batch[start:end], [-1, 9]))
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
gtboxes_and_label_q = tf.reshape(gtboxes_and_label_batch[start:end], [cfgs.BATCH_SIZE, -1, 9])
num_objects = num_objects_batch[start:end]
num_objects = tf.cast(tf.reshape(num_objects, [cfgs.BATCH_SIZE, -1, ]), tf.float32)
img_h = img_h_batch[start:end]
img_w = img_w_batch[start:end]
inputs_list.append([img, gtboxes_and_label_h,
gtboxes_and_label_q, num_objects, img_h, img_w])
|
tensorflow.reshape
| 9,155 |
import tensorflow as tf
pi = tf.constant(np.pi, dtype=tf.float64, name="pi")
sqrt2pi = tf.constant(np.sqrt(2 * np.pi), dtype=tf.float64, name="sqrt2pi")
two = tf.constant(2, dtype=tf.float64, name="two")
one = tf.constant(1, dtype=tf.float64, name="one")
zero = tf.constant(0, dtype=tf.float64, name="zero")
def gradsafe_sqrt(x, clip_low=1e-18, name=None):
with tf.name_scope(name, "gradsafe_sqrt"):
return tf.sqrt(tf.clip_by_value(x, clip_low, x))
def argus_integral_phalf(m_low, m_high, m0, c):
"""
Only valid for argus_pdf with p=0.5! Otherwise need to do numerical
integral.
"""
def F(m_bound, name=None):
|
tensorflow.clip_by_value
| 9,156 |
import tensorflow as tf
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as writer:
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, prediction) in enumerate(result):
probabilities = prediction["probabilities"]
|
tensorflow.logging.info
| 9,157 |
import tensorflow as tf
import tensorflow as tf
from tensorflow import keras as tf_keras
# prevent Keras from using up all gpu memory
if tf.executing_eagerly():
gpus = tf.config.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
else:
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session(tf.Session(config=config))
|
tensorflow.config.experimental.set_memory_growth
| 9,158 |
import tensorflow as tf
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
if "plugin" in args.optimizer:
init_op = tf.group(init_op, emb_opt.initializer)
save_op = list()
for i, embedding_layer in enumerate(sok_sparse_demo.embedding_layers):
control_inputs = [save_op[-1]] if save_op else None
with tf.control_dependencies(control_inputs):
if args.save_params:
filepath = r"./embedding_variables/"
utils.try_make_dirs(filepath)
op = sok_saver.dump_to_file(embedding_layer.embedding_variable, filepath)
else:
op = tf.constant(1.0)
|
tensorflow.control_dependencies
| 9,159 |
import tensorflow as tf
import utils as ut
import input as inp
import visualization as vis
import matplotlib.pyplot as plt
import time
import sys
import getch
import model_interpreter as interpreter
import network_utils as nut
import math
from tensorflow.contrib.tensorboard.plugins import projector
from Bunch import Bunch
tf.app.flags.DEFINE_string('input_path', '../data/tmp/grid03.14.c.tar.gz', 'input folder')
tf.app.flags.DEFINE_string('input_name', '', 'input folder')
tf.app.flags.DEFINE_string('test_path', '', 'test set folder')
tf.app.flags.DEFINE_string('net', 'f100-f3', 'model configuration')
tf.app.flags.DEFINE_string('model', 'noise', 'Type of the model to use: Autoencoder (ae)'
'WhatWhereAe (ww) U-netAe (u)')
tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder')
tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight')
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
|
tensorflow.app.flags.DEFINE_string
| 9,160 |
import tensorflow as tf
idx1 = cell_arch[bi][0]
idx2 = cell_arch[bi][2]
block_use = tf.one_hot(idx1, ni, dtype=tf.int32) + tf.one_hot(idx2, ni, dtype=tf.int32)
block_uses.append(block_use)
block_uses = tf.add_n(block_uses)
unused_indices = tf.reshape(tf.cast(tf.where(tf.equal(block_uses, 0)), tf.int32), [-1])
num_out_blocks = tf.size(unused_indices)
# Select only unused blocks
with tf.variable_scope('select'):
stacked_blocks = tf.stack(cell_inputs + blocks)
out_blocks = tf.gather(stacked_blocks, unused_indices, axis=0)
|
tensorflow.size
| 9,161 |
import tensorflow as tf
self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)])
self.t_replace_counter += 1
def choose_action(self, s):
s = s[np.newaxis, :] # single state
return self.sess.run(self.a, feed_dict={S: s})[0] # single action
def add_grad_to_graph(self, a_grads):
with tf.variable_scope('policy_grads'):
# ys = policy;
# xs = policy's parameters;
# self.a_grads = the gradients of the policy to get more Q
# tf.gradients will calculate dys/dxs with a initial gradients for ys, so this is dq/da * da/dparams
self.policy_grads_and_vars = tf.gradients(ys=self.a, xs=self.e_params, grad_ys=a_grads)
with tf.variable_scope('A_train'):
opt = tf.train.RMSPropOptimizer(-self.lr) # (- 1_tensorflow_new rate) for ascent policy
self.train_op = opt.apply_gradients(zip(self.policy_grads_and_vars, self.e_params), global_step=GLOBAL_STEP)
############################### Critic ####################################
class Critic(object):
def __init__(self, sess, state_dim, action_dim, learning_rate, gamma, t_replace_iter, a, a_):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.lr = learning_rate
self.gamma = gamma
self.t_replace_iter = t_replace_iter
|
tensorflow.variable_scope
| 9,162 |
import tensorflow as tf
# Reshape x_discrete
shape_x = common_layers.shape_list(x)
shape_discrete = shape_x[:-1]
x_discrete = tf.reshape(x_discrete, shape_discrete)
x_means = tf.reshape(x_means, shape=shape_x)
h1 = x + tf.stop_gradient(x_means - x)
h2 = tf.layers.dense(tf.nn.relu(h1), self.hparams.filter_size, name="vch2")
res = tf.layers.dense(
|
tensorflow.reshape
| 9,163 |
import tensorflow as tf
num_filters = int(arguments['--num-filters'])
batch_size = int(arguments['--batch-size'])
print(' * [INFO] %s model (Filters: %d, Batch Size: %d)' % (
model, num_filters, batch_size))
save_path = atari_learn(
env,
session,
num_timesteps=int(arguments['--timesteps']),
num_filters=num_filters,
model=model,
batch_size=batch_size,
restore=arguments['--restore'],
checkpoint_dir=arguments['--ckpt-dir'],
learning_starts=arguments['--learning-starts'])
reader = tf.train.NewCheckpointReader(save_path)
W = reader.get_tensor('q_func/action_value/fully_connected/weights')
print('Largest entry:', np.linalg.norm(W, ord=np.inf))
print('Frobenius norm:', np.linalg.norm(W, ord='fro'))
if __name__ == "__main__":
main()
|
tensorflow.train.NewCheckpointReader
| 9,164 |
from tensorflow.contrib.eager.python.examples.linear_regression import linear_regression
# Perform burn-in.
linear_regression.fit(model, burn_in_dataset, optimizer)
|
tensorflow.contrib.eager.python.examples.linear_regression.linear_regression.fit
| 9,165 |
from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils
'accuracy/threshold_0.500000_mean',
metrics)
estimator_test_utils.assert_in_range(
0.9, 1.0, 'precision/positive_threshold_0.500000_mean', metrics)
estimator_test_utils.assert_in_range(
0.9, 1.0, 'recall/positive_threshold_0.500000_mean', metrics)
self._assertCommonMetrics(metrics)
def _assertCommonMetrics(self, metrics):
estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step',
metrics)
estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics)
estimator_test_utils.assert_in_range(0.0, 0.2, 'loss', metrics)
self.report_benchmark(
iters=metrics['global_step'],
extras={k: v
for k, v in metrics.items() if k in _METRIC_KEYS})
def benchmarkMatrixData(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
|
tensorflow.contrib.learn.python.learn.estimators.estimator_test_utils.assert_in_range
| 9,166 |
import tensorflow as tf
def _transform(theta, input_dim, out_size, z_near, z_far):
with tf.variable_scope('_transform'):
num_batch = input_dim.get_shape().as_list()[0]
num_channels = input_dim.get_shape().as_list()[4]
theta = tf.reshape(theta, (-1, 4, 4))
theta = tf.cast(theta, 'float32')
out_depth = out_size[0]
out_height = out_size[1]
out_width = out_size[2]
grid = _meshgrid(out_depth, out_height, out_width, z_near, z_far)
grid = tf.expand_dims(grid, 0)
grid = tf.reshape(grid, [-1])
grid = tf.tile(grid, tf.stack([num_batch]))
grid = tf.reshape(grid, tf.stack([num_batch, 4, -1]))
# Transform A x (x_t', y_t', 1, d_t)^T -> (x_s, y_s, z_s, 1).
t_g = tf.matmul(theta, grid)
z_s = tf.slice(t_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(t_g, [0, 1, 0], [-1, 1, -1])
x_s = tf.slice(t_g, [0, 2, 0], [-1, 1, -1])
z_s_flat = tf.reshape(z_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
x_s_flat = tf.reshape(x_s, [-1])
|
tensorflow.stack
| 9,167 |
import tensorflow as tf
Returns
Tensor with same shape as bboxes but making sure that none
of the bboxes are outside the image.
"""
with tf.name_scope('BoundingBoxTransform/clip_bboxes'):
bboxes = tf.cast(bboxes, dtype=tf.float32)
imshape = tf.cast(imshape, dtype=tf.float32)
x1, y1, x2, y2 = tf.split(bboxes, 4, axis=1)
width = imshape[1]
height = imshape[0]
x1 = tf.maximum(tf.minimum(x1, width - 1.0), 0.0)
x2 = tf.maximum(tf.minimum(x2, width - 1.0), 0.0)
y1 = tf.maximum(tf.minimum(y1, height - 1.0), 0.0)
y2 = tf.maximum(tf.minimum(y2, height - 1.0), 0.0)
bboxes = tf.concat([x1, y1, x2, y2], axis=1)
return bboxes
def change_order(bboxes):
"""Change bounding box encoding order.
|
tensorflow.minimum
| 9,168 |
import tensorflow as tf
sel = tf.reshape(sel, xs[:-1] + [1, nr_mix])
# select logistic parameters
means = tf.reduce_sum(l[:, :, :, :, :nr_mix] * sel, 4)
log_scales = tf.maximum(tf.reduce_sum(
l[:, :, :, :, nr_mix:2 * nr_mix] * sel, 4), -7.)
coeffs = tf.reduce_sum(tf.nn.tanh(
l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5)
x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u))
x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.)
x1 = tf.minimum(tf.maximum(
x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.)
x2 = tf.minimum(tf.maximum(
x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.)
return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
|
tensorflow.log
| 9,169 |
import tensorflow as tf
sequence_max_length = hidden.shape[1]
multipliers = tf.concat(
|
tensorflow.concat
| 9,170 |
from tensorflow.contrib.rnn import BasicLSTMCell, RNNCell, DropoutWrapper, MultiRNNCell
cell = PLSTM(encoder.cell_size, reuse=reuse, fact_size=encoder.lstm_fact_size,
proj_size=encoder.lstm_proj_size)
elif encoder.cell_type.lower() == 'dropoutgru':
cell = DropoutGRUCell(encoder.cell_size, reuse=reuse, layer_norm=encoder.layer_norm,
input_size=input_size, input_keep_prob=encoder.rnn_input_keep_prob,
state_keep_prob=encoder.rnn_state_keep_prob)
else:
cell = GRUCell(encoder.cell_size, reuse=reuse, layer_norm=encoder.layer_norm)
if encoder.use_dropout and encoder.cell_type.lower() != 'dropoutgru':
cell = DropoutWrapper(cell, input_keep_prob=encoder.rnn_input_keep_prob,
output_keep_prob=encoder.rnn_output_keep_prob,
state_keep_prob=encoder.rnn_state_keep_prob,
variational_recurrent=encoder.pervasive_dropout,
dtype=tf.float32, input_size=input_size)
return cell
batch_size = tf.shape(encoder_inputs_)[0]
time_steps = tf.shape(encoder_inputs_)[1]
|
tensorflow.contrib.rnn.DropoutWrapper
| 9,171 |
import tensorflow as tf
value_estimator = np.zeros(n_particles,dtype=object);
# call proper policy and value estimators for each envs
for i in range(n_particles):
if(ENV_NAME=="Pendulum-v0"):
policy_estimator[i] = PolicyEstimator_Pendulum(entropy_beta=ENTROPY_BETA,learning_rate=POLICY_LR,par_idx=i)
value_estimator[i] = ValueEstimator_Pendulum(learning_rate=VALUE_LR,par_idx=i)
if(ENV_NAME=="MountainCarContinuous-v0"):
policy_estimator[i] = PolicyEstimator_MountainCarContinuous(entropy_beta=ENTROPY_BETA,learning_rate=POLICY_LR,par_idx=i)
value_estimator[i] = ValueEstimator_MountainCarContinuous(learning_rate=VALUE_LR,par_idx=i)
svpg=SVPG(policy_estimator,independent_flag_svpg,learning_rate=POLICY_LR);
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Note, due to randomness in the policy the number of episodes you need varies
# TODO: Sometimes the algorithm gets stuck, I'm not sure what exactly is happening there.
stats = advantage_actor_critic(env, policy_estimator, value_estimator, svpg, NUM_EPISODES, MAX_EPI_STEP,discount_factor=DISCOUNT_FACTOR)
|
tensorflow.Session
| 9,172 |
import tensorflow as tf
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def softmax_loss(self,predicts,labels):
predicts=tf.nn.softmax(predicts)
labels=tf.one_hot(labels,classnum)
loss=-tf.reduce_sum(labels*tf.log(predicts))
return loss
def optimer(self,loss,lr=0.001):
train_step=tf.train.GradientDescentOptimizer(lr).minimize(loss)
|
tensorflow.nn.relu
| 9,173 |
from tensorflow.python.platform import gfile
sd = save.as_saver_def()
self.assertTrue(sd.sharded)
class MaxToKeepTest(tf.test.TestCase):
def testNonSharded(self):
save_dir = os.path.join(self.get_temp_dir(), "max_to_keep_non_sharded")
try:
gfile.DeleteRecursively(save_dir)
except OSError:
pass # Ignore
gfile.MakeDirs(save_dir)
with self.test_session() as sess:
v = tf.Variable(10.0, name="v")
save = tf.train.Saver({"v": v}, max_to_keep=2)
tf.initialize_all_variables().run()
|
tensorflow.python.platform.gfile.DeleteRecursively
| 9,174 |
import tensorflow as tf
dists.Exponential,
dists.Gamma,
dists.InverseGamma,
dists.Laplace,
dists.StudentT,
dists.Uniform]
sample_shapes = [(), (10,), (10, 20, 30)]
with self.test_session():
for cls in classes:
for sample_shape in sample_shapes:
param_shapes = cls.param_shapes(sample_shape)
params = dict([(name, tf.random_normal(shape))
for name, shape in param_shapes.items()])
dist = cls(**params)
self.assertAllEqual(sample_shape, tf.shape(dist.sample()).eval())
dist_copy = dist.copy()
self.assertAllEqual(sample_shape,
tf.shape(dist_copy.sample()).eval())
self.assertEqual(dist.parameters, dist_copy.parameters)
def testCopyExtraArgs(self):
with self.test_session():
# Note: we cannot easily test all distributions since each requires
|
tensorflow.random_normal
| 9,175 |
from tensorflow.python.ops import array_ops
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
0, (ones[:dim], (multiple,), ones[dim:]), name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
def sparse_average_precision_at_k(predictions, labels, k):
"""Computes average precision@k of predictions with respect to sparse labels.
From en.wikipedia.org/wiki/Information_retrieval#Average_precision, formula
for each row is:
AveP = sum_{i=1...k} P_{i} * rel_{i} / num_relevant_items
A "row" is the elements in dimension [D1, ... DN] of `predictions`, `labels`,
|
tensorflow.python.ops.array_ops.concat
| 9,176 |
import tensorflow as tf
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone.scope))
if total_loss is not None:
# Add total_loss to summary.
summaries.add(tf.summary.scalar('total_loss', total_loss))
if summaries:
# Merge all summaries together.
summary_op = tf.merge_summary(list(summaries), name='summary_op')
else:
summary_op = None
|
tensorflow.summary.scalar
| 9,177 |
from tensorflow.python import tf2
def _check_tensorflow_version():
"""Check that we're using a compatible TF version.
Raises a warning if either Tensorflow version is less that 2.0 or TF 2.x is
not enabled.
If TF 2.x is enabled, but version is < TF 2.3, raises a warning to indicate
that resources may not be initialized.
"""
major, minor, _ = tf.version.VERSION.split('.')
if not (int(major) >= 2 and tf2.enabled()):
tf.compat.v1.logging.warning(
'Tensorflow version (%s) found. TransformFeaturesLayer is supported '
'only for TF 2.x with TF 2.x behaviors enabled and may not work as '
'intended.', tf.version.VERSION)
elif int(major) == 2 and int(minor) < 3:
# TODO(varshaan): Log a more specific warning.
tf.compat.v1.logging.warning(
'Tensorflow version (%s) found. TransformFeaturesLayer may not work '
'as intended if the SavedModel contains an initialization op.',
tf.version.VERSION)
|
tensorflow.python.tf2.enabled
| 9,178 |
import tensorflow as tf
conv7 = utils.conv2d_basic(relu_dropout6, W7, b7)
relu7 = tf.nn.relu(conv7, name="relu7")
if FLAGS.debug:
utils.add_activation_summary(relu7)
relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)
W8 = utils.weight_variable([1, 1, 4096, 150], name="W8")
b8 = utils.bias_variable([150], name="b8")
|
tensorflow.nn.dropout
| 9,179 |
import tensorflow as tf
if bstrides is not None:
# Here we do not use the standard padding on the right hand side.
# If the convolution results is larger than expected, the scatter function will not use
# out-of-boundary points.
assert bsize is not None, 'Must pass in bsize and bstrides together.'
h = x_shape[1] + pad_h0 + pad_h1
w = x_shape[2] + pad_w0 + pad_w1
pad_h1 += tf.mod(-h + bsize[1], bstrides[1])
pad_w1 += tf.mod(-w + bsize[2], bstrides[2])
return tf.pad(x, [[0, 0], [pad_h0, pad_h1], [pad_w0, pad_w1], [0, 0]])
else:
if bstrides is not None:
assert bsize is not None, 'Must pass in bsize and bstrides together.'
h = x_shape[1]
w = x_shape[2]
pad_h1 = tf.mod(-h + bsize[1], bstrides[1])
pad_w1 = tf.mod(-w + bsize[2], bstrides[2])
return tf.cond(
tf.logical_or(tf.greater(pad_h1, 0), tf.greater(pad_w1, 0)),
|
tensorflow.pad
| 9,180 |
import tensorflow as tf
try:
pred_label = tf.argmax(distillation_loss["st_logits"], axis=-1, output_type=tf.int32)
|
tensorflow.argmax
| 9,181 |
import tensorflow as tf
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if FLAGS.do_train_eval:
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_files=input_files,
|
tensorflow.logging.info
| 9,182 |
from tensorflow.python.framework import tensor_shape
array_ops.shape(self.alpha), array_ops.shape(self.beta))
def _get_batch_shape(self):
return array_ops.broadcast_static_shape(
self.alpha.get_shape(), self.beta.get_shape())
def _event_shape(self):
return constant_op.constant([], dtype=dtypes.int32)
def _get_event_shape(self):
return tensor_shape.scalar()
def _sample_n(self, n, seed=None):
"""See the documentation for tf.random_gamma for more details."""
return 1. / random_ops.random_gamma([n], self.alpha, beta=self.beta,
dtype=self.dtype, seed=seed)
def _log_prob(self, x):
x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if
self.validate_args else [], x)
|
tensorflow.python.framework.tensor_shape.scalar
| 9,183 |
from tensorflow.contrib.framework import tensor_util
tuple.
"""
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
|
tensorflow.contrib.framework.tensor_util.remove_squeezable_dimensions
| 9,184 |
from tensorflow.python.framework import ops
return features
return {"": features}
def _get_train_ops(self, features, targets):
"""See base class."""
global_step = contrib_variables.get_global_step()
assert global_step
features = self._get_feature_dict(features)
logits = self._logits(features, is_training=True)
if self._enable_centered_bias:
centered_bias_step = [self._centered_bias_step(targets, features)]
else:
centered_bias_step = []
with ops.control_dependencies(centered_bias_step):
loss = self._target_column.loss(logits, targets, features)
logging_ops.scalar_summary("loss", loss)
linear_train_step = self._linear_model.get_train_step(loss)
dnn_train_step = (self._dnn_model.get_train_step(loss)
if self._dnn_model else [])
with ops.control_dependencies(linear_train_step + dnn_train_step):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op, loss
def _get_eval_ops(self, features, targets, metrics=None):
raise NotImplementedError
|
tensorflow.python.framework.ops.control_dependencies
| 9,185 |
import tensorflow as tf
elif params.learning_rate_decay == "new_warmup_rsqrt_decay":
step = tf.to_float(global_step)
warmup_steps = tf.to_float(params.warmup_steps)
multiplier = params.hidden_size ** -0.5
decay = params.r0 * multiplier * tf.minimum((step + 1) * (warmup_steps ** -1.0) * (warmup_steps ** -0.5),
(step + 1) ** -0.5)
return learning_rate * decay
elif params.learning_rate_decay == "rnnplus_warmup_decay":
step = tf.to_float(global_step)
n = float(len(params.device_list))
warmup_steps = tf.to_float(params.warmup_steps)
decay = tf.minimum(1 + step * (n - 1) / (n * warmup_steps), tf.minimum(n, n * ((2*n) ** ((params.s - n * step) / (params.e - params.s)))))
return tf.maximum(learning_rate * decay, 5e-6)
elif params.learning_rate_decay == "piecewise_constant":
return tf.train.piecewise_constant(tf.to_int32(global_step),
params.learning_rate_boundaries,
|
tensorflow.to_float
| 9,186 |
import tensorflow as tf
|
tensorflow.zeros
| 9,187 |
import tensorflow as tf
x, prediction, output_class = self.buildModel(
self.buildLstmLayer(), is_dynamic_rnn=True)
self.trainModel(x, prediction, output_class, sess)
saver = tf.train.Saver()
x, prediction, output_class, new_sess = self.saveAndRestoreModel(
self.buildLstmLayer(), sess, saver, is_dynamic_rnn=True)
|
tensorflow.train.Saver
| 9,188 |
import tensorflow as tf
total_loss += tf.add_n(self.regularizers, name="regularization")
# 1st part of minimize: compute_gradient
self.grads_and_vars = self._optimizer.compute_gradients(total_loss)
# clip gradients
clipped_grads_and_vars = self._clip_gradients(self.grads_and_vars, self._grad_clipping_tuple)
# compute norms in case they need to be logged
self.gradient_norms = [tf.norm(g) + NUMTOL for (g, v) in clipped_grads_and_vars]
self.weight_norms = [tf.norm(v) + NUMTOL for (g, v) in clipped_grads_and_vars]
# check that gradients are finite
grads = [tf.check_numerics(g, "grads is not finite") for (g, v) in clipped_grads_and_vars]
variables = [tf.check_numerics(v, "grads is not finite") for (g, v) in clipped_grads_and_vars]
self.gradient_weight_global_norms = [tf.global_norm(grads), tf.global_norm(variables)]
# 2nd part of minimize: apply_gradient
optimizer_step = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step)
update_ops = tf.group(*self.update_ops)
self.training_op = tf.group(update_ops, optimizer_step)
def set_check_ops(self):
self._check_ops = 1
# TODO argo2 This is not working anymore with the new session
#with self.sess.graph.as_default():
|
tensorflow.global_norm
| 9,189 |
import tensorflow as tf
t1, t2 = tf.split(traj_tgt, 2, axis=0)
soft_sign = tf.tanh((t1 - t2) * temp)
loss = tf.maximum(0.0, soft_sign * ((t1 - t2) - (p1 - p2)))
loss = tf.reduce_mean(loss)
return loss
def horizon_sumV1(input, horizon=12):
bs, epi_len = input.shape[:2]
new_w = epi_len - horizon + 1
weights = np.zeros([epi_len, new_w])
for i in range(new_w):
weights[i:i + horizon, i] = 1.0
weights = tf.convert_to_tensor(weights, dtype=tf.float32)
horizon_sum = tf.matmul(input, weights)
return horizon_sum
def horizon_sumV2(pred, tgt, horizon=12):
bs, epi_len = 50, 50
weights_list = []
for h in range(1, horizon + 1):
new_w = epi_len - h + 1
weights = np.zeros([epi_len, epi_len])
for i in range(new_w):
weights[i:i + h, i] = 1.0
weights_list += [weights]
weights_tensors = tf.stack([tf.convert_to_tensor(weights, dtype=tf.float32) for weights in weights_list])
|
tensorflow.matmul
| 9,190 |
import tensorflow as tf
batch_size = params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
|
tensorflow.constant
| 9,191 |
import tensorflow as tf
def _load_global_step_from_checkpoint_dir(checkpoint_dir):
try:
checkpoint_reader = tf.train.NewCheckpointReader(
tf.train.latest_checkpoint(checkpoint_dir))
return checkpoint_reader.get_tensor(tf.GraphKeys.GLOBAL_STEP)
except: # pylint: disable=bare-except
return 0
|
tensorflow.train.latest_checkpoint
| 9,192 |
import tensorflow as tf
fetches = [lrs.Value(_) for _ in steps]
values = sess.run(fetches)
self.assertAllClose([1.0, 0.1, 0.1, 0.01, 0.01, 0.001], values)
def testBatchSplit(self):
def Run(num_splits):
p = self._testParams()
with self.session(use_gpu=False, graph=tf.Graph()) as sess:
tf.set_random_seed(93820981)
p.is_eval = True
p.input.cur_iter_in_seed = False
p.input.bucket_batch_limit = [
b * 2 / num_splits for b in p.input.bucket_batch_limit
]
with cluster_factory.ForTestingWorker(gpus=num_splits):
|
tensorflow.Graph
| 9,193 |
import tensorflow as tf
print("Create model")
model = Model(
placeholders=placeholders,
num_feat=num_feat,
nonzero_feat=nonzero_feat,
edge_types=edge_types,
decoders=edge_type2decoder,
)
print("Create optimizer")
with tf.name_scope('optimizer'):
opt = Optimizer(
embeddings=model.embeddings,
latent_inters=model.latent_inters,
latent_varies=model.latent_varies,
degrees=degrees,
edge_types=edge_types,
edge_type2dim=edge_type2dim,
placeholders=placeholders,
batch_size=FLAGS.batch_size,
margin=FLAGS.max_margin
|
tensorflow.name_scope
| 9,194 |
import tensorflow as tf
self.block3_5 = self.res_block_3_layers(self.block3_4, [256, 256, 1024], "res4e")# 14*14
self.block3_6 = self.res_block_3_layers(self.block3_5, [256, 256, 1024], "res4f")# 14*14
#[None 7 7 512]
self.pool4 = self.max_pool(self.block3_6, 2, 2, "pool4")# 14*14
self.block4_1 = self.res_block_3_layers(self.pool4, [512, 512, 2048], "res5a", True)# 7*7
self.block4_2 = self.res_block_3_layers(self.block4_1, [512, 512, 2048], "res5b")# 7*7
self.block4_3 = self.res_block_3_layers(self.block4_2, [512, 512, 2048], "res5c")# 7*7
# upsample layer begins
self.deconv_1 = self.deconv_bn_relu(self.block4_3, name = 'deconv_1',kernel_size = 3, output_channels = 1024,
initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 14*14
self.deconv_2 = self.deconv_bn_relu(self.deconv_1, name = 'deconv_2',kernel_size = 3, output_channels = 512,
initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 28*28
self.deconv_3 = self.deconv_bn_relu(self.deconv_2, name = 'deconv_3',kernel_size = 3, output_channels = 256,
initializer = tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 56*56
self.deconv_4 = self.deconv_bn_relu(self.deconv_3, name = 'deconv_4',kernel_size = 3, output_channels = 128,
initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 112*112
self.deconv_5 = self.deconv_bn_relu(self.deconv_4, name = 'deconv_5',kernel_size = 3, output_channels = 64,
initializer =tf.contrib.layers.variance_scaling_initializer(), stride=2, bn=True, training=self.is_training)# 224*224
# self.final_layer = self.conv_layer(bottom = self.deconv_5, kernal_size = 1, in_channels = 64, out_channels = 3, stride = 1, name = 'final_layer')
self.final_layer = self.conv_bn_relu(bottom = self.deconv_5, name = 'final_layer', kernel_size = 1, output_channels = 3, initializer =tf.contrib.layers.variance_scaling_initializer(), bn = False, training = self.is_training, relu=False)
# self.pool5 = self.avg_pool(self.block4_3, 7, 1, "pool5")
#self.fc0 = self.fc_layer(self.pool5, 2048, 1024, "fc0")
#self.relu1 = tf.nn.relu(self.fc0)
#if train_mode is not None:
# self.relu1 = tf.cond(train_mode, lambda: tf.nn.dropout(self.relu1, self.dropout), lambda: self.relu1)
|
tensorflow.contrib.layers.variance_scaling_initializer
| 9,195 |
import tensorflow as tf
scales_to_logits[MERGED_LOGITS_SCOPE],
tf.shape(images)[1:3],
scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits), 4))
if add_flipped_images:
scales_to_logits_reversed = (
outputs_to_scales_to_logits_reversed[output])
logits_reversed = _resize_bilinear(
tf.reverse_v2(scales_to_logits_reversed[MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
for output in sorted(outputs_to_predictions):
predictions = outputs_to_predictions[output]
# Compute average prediction across different scales and flipped images.
predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4)
outputs_to_predictions[output] = tf.argmax(predictions, 3, output_type=tf.dtypes.int32)
outputs_to_predictions[output + PROB_SUFFIX] = tf.nn.softmax(predictions)
return outputs_to_predictions
def predict_labels(images, model_options):
"""Predicts segmentation labels.
|
tensorflow.nn.softmax
| 9,196 |
from tensorflow.python.framework import ops
"""Makes assignments depend on the cached value, if any.
This prevents undefined behavior with reads not ordered wrt writes.
Yields:
None.
"""
if self._cached_value is not None:
with ops.control_dependencies([self._cached_value]):
yield
else:
yield
@property
def initializer(self):
return control_flow_ops.group([v.initializer for v in self._vars])
|
tensorflow.python.framework.ops.control_dependencies
| 9,197 |
import tensorflow as tf
for var in tf.all_variables():
print(var)
batch_size = tf.shape(policy.obs_ph)[0]
n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
_act = tf_util.function(inputs=[policy.obs_ph, stochastic_ph, update_eps_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True},
|
tensorflow.where
| 9,198 |
import tensorflow as tf
"""Constructs a `AlbertConfig` from a Python dictionary of parameters."""
config = AlbertConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `AlbertConfig` from a json file of parameters."""
with tf.gfile.GFile(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
|
tensorflow.gfile.GFile
| 9,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.