code
stringlengths
2k
1.04M
repo_path
stringlengths
5
517
parsed_code
stringlengths
0
1.04M
quality_prob
float64
0.02
0.95
learning_prob
float64
0.02
0.93
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class Histogram(object): """ To capture all the histograms data related to profiling """ def __init__(self, **kwargs): """ Initializes a new Histogram object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param ranges: The value to assign to the ranges property of this Histogram. :type ranges: list[str] :param counts: The value to assign to the counts property of this Histogram. :type counts: list[int] """ self.swagger_types = { 'ranges': 'list[str]', 'counts': 'list[int]' } self.attribute_map = { 'ranges': 'ranges', 'counts': 'counts' } self._ranges = None self._counts = None @property def ranges(self): """ Gets the ranges of this Histogram. Range of values :return: The ranges of this Histogram. :rtype: list[str] """ return self._ranges @ranges.setter def ranges(self, ranges): """ Sets the ranges of this Histogram. Range of values :param ranges: The ranges of this Histogram. :type: list[str] """ self._ranges = ranges @property def counts(self): """ Gets the counts of this Histogram. Count of each ranges. :return: The counts of this Histogram. :rtype: list[int] """ return self._counts @counts.setter def counts(self, counts): """ Sets the counts of this Histogram. Count of each ranges. :param counts: The counts of this Histogram. :type: list[int] """ self._counts = counts def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
src/oci/data_connectivity/models/histogram.py
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class Histogram(object): """ To capture all the histograms data related to profiling """ def __init__(self, **kwargs): """ Initializes a new Histogram object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param ranges: The value to assign to the ranges property of this Histogram. :type ranges: list[str] :param counts: The value to assign to the counts property of this Histogram. :type counts: list[int] """ self.swagger_types = { 'ranges': 'list[str]', 'counts': 'list[int]' } self.attribute_map = { 'ranges': 'ranges', 'counts': 'counts' } self._ranges = None self._counts = None @property def ranges(self): """ Gets the ranges of this Histogram. Range of values :return: The ranges of this Histogram. :rtype: list[str] """ return self._ranges @ranges.setter def ranges(self, ranges): """ Sets the ranges of this Histogram. Range of values :param ranges: The ranges of this Histogram. :type: list[str] """ self._ranges = ranges @property def counts(self): """ Gets the counts of this Histogram. Count of each ranges. :return: The counts of this Histogram. :rtype: list[int] """ return self._counts @counts.setter def counts(self, counts): """ Sets the counts of this Histogram. Count of each ranges. :param counts: The counts of this Histogram. :type: list[int] """ self._counts = counts def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
0.851027
0.430806
from ...flash.flash import Flash from ...core.coresight_target import CoreSightTarget from ...core.memory_map import (FlashRegion, RamRegion, MemoryMap) from ...debug.svd.loader import SVDFile import logging FLASH_ALGO = { 'load_address' : 0x20000000, 'instructions' : [ 0xE00ABE00, 0x062D780D, 0x24084068, 0xD3000040, 0x1E644058, 0x1C49D1FA, 0x2A001E52, 0x4770D1F2, 0x4603B510, 0x4893460C, 0x68414448, 0xF0006888, 0xB1087080, 0xBD102001, 0x4448488E, 0x60486880, 0xE7F82000, 0x488B4602, 0x68414448, 0xF0206888, 0x60884070, 0x47702000, 0x44484886, 0x68886841, 0x7080F000, 0x2001B108, 0x6A484770, 0x2000B148, 0x6A486248, 0x2002B128, 0x6A486248, 0x2001B108, 0x6888E7F2, 0x4070F020, 0x5000F040, 0x20006088, 0xB510E7EA, 0x44484877, 0xF7FF6844, 0xB108FFDD, 0xBD102001, 0xF42068A0, 0xF440407F, 0x60A0402A, 0xF04068A0, 0x60A00002, 0x68A0BF00, 0x7080F000, 0xD1FA2800, 0xF02068A0, 0x60A04070, 0xF0006A60, 0xB1080002, 0xE7E42001, 0xE7E22000, 0x4605B570, 0x44484864, 0xF7FF6844, 0xB108FFB7, 0xBD702001, 0xF42068A0, 0xF440407F, 0x60A040AA, 0x68A06025, 0x0004F040, 0xBF0060A0, 0xF00068A0, 0x28007080, 0x68A0D1FA, 0x4070F020, 0x6A6060A0, 0x0002F000, 0x2001B108, 0x2000E7E3, 0xE92DE7E1, 0x460747F0, 0x4690468A, 0x4448484F, 0x46566844, 0xF0084645, 0xB1100003, 0xE8BD2001, 0x464587F0, 0xFF84F7FF, 0x2001B108, 0x68A0E7F7, 0x6000F020, 0x68A060A0, 0x0010F040, 0xE00E60A0, 0xCD016027, 0x68A06320, 0x0001F040, 0xBF0060A0, 0xF00068A0, 0x28007080, 0x1D3FD1FA, 0x2E041F36, 0xF007D303, 0x2800001F, 0x4838D1EA, 0x68C04448, 0xD1212880, 0xD31F2E10, 0xF02068A0, 0x60A00010, 0xF04068A0, 0x60A06000, 0x6027E014, 0x6320CD01, 0x6360CD01, 0x63A0CD01, 0x63E0CD01, 0xF04068A0, 0x60A00001, 0x68A0BF00, 0x7080F000, 0xD1FA2800, 0x3E103710, 0xD2E82E10, 0xD3192E04, 0xF02068A0, 0x60A06000, 0xF04068A0, 0x60A00010, 0x6027E00E, 0x6320CD01, 0xF04068A0, 0x60A00001, 0x68A0BF00, 0x7080F000, 0xD1FA2800, 0x1F361D3F, 0xD2EE2E04, 0x68A2B306, 0x6200F022, 0x68A260A2, 0x0210F042, 0xF04F60A2, 0x21FF30FF, 0x682AE005, 0x0201EA62, 0x02094010, 0x2E001E76, 0x6027D1F7, 0x68A26320, 0x0201F042, 0xBF0060A2, 0xF00268A2, 0x2A007280, 0xBF00D1FA, 0xF02068A0, 0x60A04070, 0xF0006A60, 0xB1080002, 0xE76A2001, 0xE7682000, 0x00000004, 0x00000000, 0x00000000, # FLC_BASE, CLK_DIV, BRST_SIZE, FLASH_BASE, FLASH_SIZE, FLASH_SECTOR 0x40002000, 0x00000060, 0x00000020, 0x00000000, 0x00200000, 0x00002000 ], 'pc_init' : 0x20000021, 'pc_eraseAll' : 0x20000093, 'pc_erase_sector' : 0x200000DD, 'pc_program_page' : 0x2000012B, 'begin_data' : 0x20004000, # Analyzer uses a max of 128B data (32 pages * 4 bytes / page) 'page_buffers' : [0x20006000, 0x20008000], # Enable double buffering 'begin_stack' : 0x20002000, 'static_base' : 0x20000278, 'min_program_length' : 4, 'analyzer_supported' : True, 'analyzer_address' : 0x2000A000 # Analyzer 0x2000A000..0x2000A600 } class MAX32630(CoreSightTarget): VENDOR = "Maxim" memoryMap = MemoryMap( FlashRegion( start=0, length=0x200000, blocksize=0x2000, is_boot_memory=True, algo=FLASH_ALGO), RamRegion( start=0x20000000, length=0x40000), ) def __init__(self, link): super(MAX32630, self).__init__(link, self.memoryMap) self._svd_location = SVDFile.from_builtin("max32630.svd")
pyocd/target/builtin/target_MAX32630.py
from ...flash.flash import Flash from ...core.coresight_target import CoreSightTarget from ...core.memory_map import (FlashRegion, RamRegion, MemoryMap) from ...debug.svd.loader import SVDFile import logging FLASH_ALGO = { 'load_address' : 0x20000000, 'instructions' : [ 0xE00ABE00, 0x062D780D, 0x24084068, 0xD3000040, 0x1E644058, 0x1C49D1FA, 0x2A001E52, 0x4770D1F2, 0x4603B510, 0x4893460C, 0x68414448, 0xF0006888, 0xB1087080, 0xBD102001, 0x4448488E, 0x60486880, 0xE7F82000, 0x488B4602, 0x68414448, 0xF0206888, 0x60884070, 0x47702000, 0x44484886, 0x68886841, 0x7080F000, 0x2001B108, 0x6A484770, 0x2000B148, 0x6A486248, 0x2002B128, 0x6A486248, 0x2001B108, 0x6888E7F2, 0x4070F020, 0x5000F040, 0x20006088, 0xB510E7EA, 0x44484877, 0xF7FF6844, 0xB108FFDD, 0xBD102001, 0xF42068A0, 0xF440407F, 0x60A0402A, 0xF04068A0, 0x60A00002, 0x68A0BF00, 0x7080F000, 0xD1FA2800, 0xF02068A0, 0x60A04070, 0xF0006A60, 0xB1080002, 0xE7E42001, 0xE7E22000, 0x4605B570, 0x44484864, 0xF7FF6844, 0xB108FFB7, 0xBD702001, 0xF42068A0, 0xF440407F, 0x60A040AA, 0x68A06025, 0x0004F040, 0xBF0060A0, 0xF00068A0, 0x28007080, 0x68A0D1FA, 0x4070F020, 0x6A6060A0, 0x0002F000, 0x2001B108, 0x2000E7E3, 0xE92DE7E1, 0x460747F0, 0x4690468A, 0x4448484F, 0x46566844, 0xF0084645, 0xB1100003, 0xE8BD2001, 0x464587F0, 0xFF84F7FF, 0x2001B108, 0x68A0E7F7, 0x6000F020, 0x68A060A0, 0x0010F040, 0xE00E60A0, 0xCD016027, 0x68A06320, 0x0001F040, 0xBF0060A0, 0xF00068A0, 0x28007080, 0x1D3FD1FA, 0x2E041F36, 0xF007D303, 0x2800001F, 0x4838D1EA, 0x68C04448, 0xD1212880, 0xD31F2E10, 0xF02068A0, 0x60A00010, 0xF04068A0, 0x60A06000, 0x6027E014, 0x6320CD01, 0x6360CD01, 0x63A0CD01, 0x63E0CD01, 0xF04068A0, 0x60A00001, 0x68A0BF00, 0x7080F000, 0xD1FA2800, 0x3E103710, 0xD2E82E10, 0xD3192E04, 0xF02068A0, 0x60A06000, 0xF04068A0, 0x60A00010, 0x6027E00E, 0x6320CD01, 0xF04068A0, 0x60A00001, 0x68A0BF00, 0x7080F000, 0xD1FA2800, 0x1F361D3F, 0xD2EE2E04, 0x68A2B306, 0x6200F022, 0x68A260A2, 0x0210F042, 0xF04F60A2, 0x21FF30FF, 0x682AE005, 0x0201EA62, 0x02094010, 0x2E001E76, 0x6027D1F7, 0x68A26320, 0x0201F042, 0xBF0060A2, 0xF00268A2, 0x2A007280, 0xBF00D1FA, 0xF02068A0, 0x60A04070, 0xF0006A60, 0xB1080002, 0xE76A2001, 0xE7682000, 0x00000004, 0x00000000, 0x00000000, # FLC_BASE, CLK_DIV, BRST_SIZE, FLASH_BASE, FLASH_SIZE, FLASH_SECTOR 0x40002000, 0x00000060, 0x00000020, 0x00000000, 0x00200000, 0x00002000 ], 'pc_init' : 0x20000021, 'pc_eraseAll' : 0x20000093, 'pc_erase_sector' : 0x200000DD, 'pc_program_page' : 0x2000012B, 'begin_data' : 0x20004000, # Analyzer uses a max of 128B data (32 pages * 4 bytes / page) 'page_buffers' : [0x20006000, 0x20008000], # Enable double buffering 'begin_stack' : 0x20002000, 'static_base' : 0x20000278, 'min_program_length' : 4, 'analyzer_supported' : True, 'analyzer_address' : 0x2000A000 # Analyzer 0x2000A000..0x2000A600 } class MAX32630(CoreSightTarget): VENDOR = "Maxim" memoryMap = MemoryMap( FlashRegion( start=0, length=0x200000, blocksize=0x2000, is_boot_memory=True, algo=FLASH_ALGO), RamRegion( start=0x20000000, length=0x40000), ) def __init__(self, link): super(MAX32630, self).__init__(link, self.memoryMap) self._svd_location = SVDFile.from_builtin("max32630.svd")
0.39222
0.311126
"""Classes and functions related to Quality Control of incoming data.""" # Python imports from __future__ import absolute_import import logging # weewx imports import weeutil.weeutil import weewx.units from weeutil.weeutil import to_float log = logging.getLogger(__name__) # ============================================================================== # Class QC # ============================================================================== class QC(object): """Class to apply quality checks to a record.""" def __init__(self, mm_dict): """ Initialize Args: mm_dict: A dictionary containing the limits. The key is an observation type, the value is a 2- or 3-way tuple. If a 2-way tuple, then the values are (min, max) acceptable value in a record for that observation type. If a 3-way tuple, then the values are (min, max, unit), where min and max are as before, but the value 'unit' is the unit the min and max values are in. If 'unit' is not specified, then the values must be in the same unit as the incoming record (a risky supposition!). """ self.mm_dict = {} for obs_type in mm_dict: self.mm_dict[obs_type] = list(mm_dict[obs_type]) # The incoming min, max values may be from a ConfigObj, which are typically strings. # Convert to floats. self.mm_dict[obs_type][0] = to_float(self.mm_dict[obs_type][0]) self.mm_dict[obs_type][1] = to_float(self.mm_dict[obs_type][1]) def apply_qc(self, data_dict, data_type=''): """Apply quality checks to the data in a record""" converter = weewx.units.StdUnitConverters[data_dict['usUnits']] for obs_type in self.mm_dict: if obs_type in data_dict and data_dict[obs_type] is not None: # Extract the minimum and maximum acceptable values min_v, max_v = self.mm_dict[obs_type][0:2] # If a unit has been specified, convert the min, max acceptable value to the same # unit system as the incoming record: if len(self.mm_dict[obs_type]) == 3: min_max_unit = self.mm_dict[obs_type][2] group = weewx.units.getUnitGroup(obs_type) min_v = converter.convert((min_v, min_max_unit, group))[0] max_v = converter.convert((max_v, min_max_unit, group))[0] if not min_v <= data_dict[obs_type] <= max_v: log.warning("%s %s value '%s' %s outside limits (%s, %s)", weeutil.weeutil.timestamp_to_string(data_dict['dateTime']), data_type, obs_type, data_dict[obs_type], min_v, max_v) data_dict[obs_type] = None
dist/weewx-4.6.0b7/bin/weewx/qc.py
"""Classes and functions related to Quality Control of incoming data.""" # Python imports from __future__ import absolute_import import logging # weewx imports import weeutil.weeutil import weewx.units from weeutil.weeutil import to_float log = logging.getLogger(__name__) # ============================================================================== # Class QC # ============================================================================== class QC(object): """Class to apply quality checks to a record.""" def __init__(self, mm_dict): """ Initialize Args: mm_dict: A dictionary containing the limits. The key is an observation type, the value is a 2- or 3-way tuple. If a 2-way tuple, then the values are (min, max) acceptable value in a record for that observation type. If a 3-way tuple, then the values are (min, max, unit), where min and max are as before, but the value 'unit' is the unit the min and max values are in. If 'unit' is not specified, then the values must be in the same unit as the incoming record (a risky supposition!). """ self.mm_dict = {} for obs_type in mm_dict: self.mm_dict[obs_type] = list(mm_dict[obs_type]) # The incoming min, max values may be from a ConfigObj, which are typically strings. # Convert to floats. self.mm_dict[obs_type][0] = to_float(self.mm_dict[obs_type][0]) self.mm_dict[obs_type][1] = to_float(self.mm_dict[obs_type][1]) def apply_qc(self, data_dict, data_type=''): """Apply quality checks to the data in a record""" converter = weewx.units.StdUnitConverters[data_dict['usUnits']] for obs_type in self.mm_dict: if obs_type in data_dict and data_dict[obs_type] is not None: # Extract the minimum and maximum acceptable values min_v, max_v = self.mm_dict[obs_type][0:2] # If a unit has been specified, convert the min, max acceptable value to the same # unit system as the incoming record: if len(self.mm_dict[obs_type]) == 3: min_max_unit = self.mm_dict[obs_type][2] group = weewx.units.getUnitGroup(obs_type) min_v = converter.convert((min_v, min_max_unit, group))[0] max_v = converter.convert((max_v, min_max_unit, group))[0] if not min_v <= data_dict[obs_type] <= max_v: log.warning("%s %s value '%s' %s outside limits (%s, %s)", weeutil.weeutil.timestamp_to_string(data_dict['dateTime']), data_type, obs_type, data_dict[obs_type], min_v, max_v) data_dict[obs_type] = None
0.906091
0.650939
import re from pygments.lexer import RegexLexer, bygroups, default from pygments.token import Keyword, Punctuation, String, Number, Operator, \ Whitespace, Name, Literal, Comment, Text __all__ = ['SparqlLexer'] class SparqlLexer(RegexLexer): """ Lexer for `SPARQL <http://www.w3.org/TR/rdf-sparql-query/>`_ query language. .. versionadded:: 2.0 """ name = 'SPARQL' aliases = ['sparql'] filenames = ['*.rq', '*.sparql'] mimetypes = ['application/sparql-query'] flags = re.IGNORECASE tokens = { 'root': [ (r'\s+', Whitespace), (r'(select|construct|describe|ask|where|filter|group\s+by|minus|' r'distinct|reduced|from named|from|order\s+by|limit|' r'offset|bindings|load|clear|drop|create|add|move|copy|' r'insert\s+data|delete\s+data|delete\s+where|delete|insert|' r'using named|using|graph|default|named|all|optional|service|' r'silent|bind|union|not in|in|as|a)', Keyword), (r'(prefix|base)(\s+)([a-z][\w-]*)(\s*)(\:)', bygroups(Keyword, Whitespace, Name.Namespace, Whitespace, Punctuation)), (r'\?[a-z_]\w*', Name.Variable), (r'<[^>]+>', Name.Label), (r'([a-z][\w-]*)(\:)([a-z][\w-]*)', bygroups(Name.Namespace, Punctuation, Name.Tag)), (r'(str|lang|langmatches|datatype|bound|iri|uri|bnode|rand|abs|' r'ceil|floor|round|concat|strlen|ucase|lcase|encode_for_uri|' r'contains|strstarts|strends|strbefore|strafter|year|month|day|' r'hours|minutes|seconds|timezone|tz|now|md5|sha1|sha256|sha384|' r'sha512|coalesce|if|strlang|strdt|sameterm|isiri|isuri|isblank|' r'isliteral|isnumeric|regex|substr|replace|exists|not exists|' r'count|sum|min|max|avg|sample|group_concat|separator)\b', Name.Function), (r'(true|false)', Literal), (r'[+\-]?\d*\.\d+', Number.Float), (r'[+\-]?\d*(:?\.\d+)?E[+\-]?\d+', Number.Float), (r'[+\-]?\d+', Number.Integer), (r'(\|\||&&|=|\*|\-|\+|/)', Operator), (r'[(){}.;,:^]', Punctuation), (r'#[^\n]+', Comment), (r'"""', String, 'triple-double-quoted-string'), (r'"', String, 'single-double-quoted-string'), (r"'''", String, 'triple-single-quoted-string'), (r"'", String, 'single-single-quoted-string'), ], 'triple-double-quoted-string': [ (r'"""', String, 'end-of-string'), (r'[^\\]+', String), (r'\\', String, 'string-escape'), ], 'single-double-quoted-string': [ (r'"', String, 'end-of-string'), (r'[^"\\\n]+', String), (r'\\', String, 'string-escape'), ], 'triple-single-quoted-string': [ (r"'''", String, 'end-of-string'), (r'[^\\]+', String), (r'\\', String, 'string-escape'), ], 'single-single-quoted-string': [ (r"'", String, 'end-of-string'), (r"[^'\\\n]+", String), (r'\\', String, 'string-escape'), ], 'string-escape': [ (r'.', String, '#pop'), ], 'end-of-string': [ (r'(@)([a-z]+(:?-[a-z0-9]+)*)', bygroups(Operator, Name.Function), '#pop:2'), (r'\^\^', Operator, '#pop:2'), default('#pop:2'), ], }
OmniMarkupLib/Renderers/libs/pygments/lexers/rdf.py
import re from pygments.lexer import RegexLexer, bygroups, default from pygments.token import Keyword, Punctuation, String, Number, Operator, \ Whitespace, Name, Literal, Comment, Text __all__ = ['SparqlLexer'] class SparqlLexer(RegexLexer): """ Lexer for `SPARQL <http://www.w3.org/TR/rdf-sparql-query/>`_ query language. .. versionadded:: 2.0 """ name = 'SPARQL' aliases = ['sparql'] filenames = ['*.rq', '*.sparql'] mimetypes = ['application/sparql-query'] flags = re.IGNORECASE tokens = { 'root': [ (r'\s+', Whitespace), (r'(select|construct|describe|ask|where|filter|group\s+by|minus|' r'distinct|reduced|from named|from|order\s+by|limit|' r'offset|bindings|load|clear|drop|create|add|move|copy|' r'insert\s+data|delete\s+data|delete\s+where|delete|insert|' r'using named|using|graph|default|named|all|optional|service|' r'silent|bind|union|not in|in|as|a)', Keyword), (r'(prefix|base)(\s+)([a-z][\w-]*)(\s*)(\:)', bygroups(Keyword, Whitespace, Name.Namespace, Whitespace, Punctuation)), (r'\?[a-z_]\w*', Name.Variable), (r'<[^>]+>', Name.Label), (r'([a-z][\w-]*)(\:)([a-z][\w-]*)', bygroups(Name.Namespace, Punctuation, Name.Tag)), (r'(str|lang|langmatches|datatype|bound|iri|uri|bnode|rand|abs|' r'ceil|floor|round|concat|strlen|ucase|lcase|encode_for_uri|' r'contains|strstarts|strends|strbefore|strafter|year|month|day|' r'hours|minutes|seconds|timezone|tz|now|md5|sha1|sha256|sha384|' r'sha512|coalesce|if|strlang|strdt|sameterm|isiri|isuri|isblank|' r'isliteral|isnumeric|regex|substr|replace|exists|not exists|' r'count|sum|min|max|avg|sample|group_concat|separator)\b', Name.Function), (r'(true|false)', Literal), (r'[+\-]?\d*\.\d+', Number.Float), (r'[+\-]?\d*(:?\.\d+)?E[+\-]?\d+', Number.Float), (r'[+\-]?\d+', Number.Integer), (r'(\|\||&&|=|\*|\-|\+|/)', Operator), (r'[(){}.;,:^]', Punctuation), (r'#[^\n]+', Comment), (r'"""', String, 'triple-double-quoted-string'), (r'"', String, 'single-double-quoted-string'), (r"'''", String, 'triple-single-quoted-string'), (r"'", String, 'single-single-quoted-string'), ], 'triple-double-quoted-string': [ (r'"""', String, 'end-of-string'), (r'[^\\]+', String), (r'\\', String, 'string-escape'), ], 'single-double-quoted-string': [ (r'"', String, 'end-of-string'), (r'[^"\\\n]+', String), (r'\\', String, 'string-escape'), ], 'triple-single-quoted-string': [ (r"'''", String, 'end-of-string'), (r'[^\\]+', String), (r'\\', String, 'string-escape'), ], 'single-single-quoted-string': [ (r"'", String, 'end-of-string'), (r"[^'\\\n]+", String), (r'\\', String, 'string-escape'), ], 'string-escape': [ (r'.', String, '#pop'), ], 'end-of-string': [ (r'(@)([a-z]+(:?-[a-z0-9]+)*)', bygroups(Operator, Name.Function), '#pop:2'), (r'\^\^', Operator, '#pop:2'), default('#pop:2'), ], }
0.460532
0.336481
from functools import partial from typing import Iterator, List, Optional, Mapping from preacher.compilation.argument import Arguments, inject_arguments from preacher.compilation.error import on_key from preacher.compilation.parameter import Parameter, compile_parameter from preacher.compilation.util.functional import ( map_compile, compile_flattening, ) from preacher.compilation.util.type import ( ensure_bool, ensure_optional_str, ensure_list, ensure_mapping, ) from preacher.compilation.verification import DescriptionCompiler from preacher.core.scenario import Scenario, Case from .case import CaseCompiler _KEY_LABEL = "label" _KEY_WHEN = "when" _KEY_DEFAULT = "default" _KEY_ORDERED = "ordered" _KEY_CASES = "cases" _KEY_PARAMETERS = "parameters" _KEY_SUBSCENARIOS = "subscenarios" class ScenarioCompiler: def __init__(self, description: DescriptionCompiler, case: CaseCompiler): self._description = description self._case = case def compile(self, obj: object, arguments: Optional[Arguments] = None) -> Scenario: """ Compile the given object into a scenario. Args: obj: A compiled object, which should be a mapping. arguments: Arguments to inject. Returns: The scenario as the result of compilation. Raises: CompilationError: when the compilation fails. """ obj = ensure_mapping(obj) arguments = arguments or {} label_obj = inject_arguments(obj.get(_KEY_LABEL), arguments) with on_key(_KEY_LABEL): label = ensure_optional_str(label_obj) parameters_obj = obj.get(_KEY_PARAMETERS) if parameters_obj is not None: with on_key(_KEY_PARAMETERS): parameters_obj = ensure_list(parameters_obj) parameters = list(map_compile(compile_parameter, parameters_obj)) subscenarios = [ self._compile_parameterized(obj, arguments, parameter) for parameter in parameters ] return Scenario(label=label, subscenarios=subscenarios) ordered_obj = inject_arguments(obj.get(_KEY_ORDERED, True), arguments) with on_key(_KEY_ORDERED): ordered = ensure_bool(ordered_obj) default_obj = inject_arguments(obj.get(_KEY_DEFAULT, {}), arguments) with on_key(_KEY_DEFAULT): case_compiler = self._case.compile_default(default_obj) condition_obj = inject_arguments(obj.get(_KEY_WHEN, []), arguments) with on_key(_KEY_WHEN): conditions = self._compile_conditions(condition_obj) case_obj = inject_arguments(obj.get(_KEY_CASES, []), arguments) with on_key(_KEY_CASES): cases = self._compile_cases(case_compiler, case_obj) subscenario_obj = obj.get(_KEY_SUBSCENARIOS, []) with on_key(_KEY_SUBSCENARIOS): subscenarios = self._compile_subscenarios( case_compiler, subscenario_obj, arguments, ) return Scenario( label=label, ordered=ordered, conditions=conditions, cases=cases, subscenarios=subscenarios, ) def compile_flattening( self, obj: object, arguments: Optional[Arguments] = None, ) -> Iterator[Scenario]: """ Compile the given object into a scenario with flattening: a nested object list results in a flattened scenario. Args: obj: A compiled object or a list. arguments: Arguments to inject. Returns: A scenario iterator as the result of compilation. Raises: CompilationError: when the compilation fails for each iteration. """ compile = partial(self.compile, arguments=arguments) return compile_flattening(compile, obj) def _compile_conditions(self, obj: object): return list(map_compile(self._description.compile, ensure_list(obj))) @staticmethod def _compile_cases(case_compiler: CaseCompiler, obj: object) -> List[Case]: return list(map_compile(case_compiler.compile_fixed, ensure_list(obj))) def _compile_subscenarios( self, case: CaseCompiler, obj: object, arguments: Arguments, ) -> List[Scenario]: compiler = ScenarioCompiler(description=self._description, case=case) return list( map_compile( lambda sub_obj: compiler.compile(sub_obj, arguments=arguments), ensure_list(obj), ) ) def _compile_parameterized( self, obj: Mapping, arguments: Arguments, parameter: Parameter, ) -> Scenario: template = {k: v for (k, v) in obj.items() if k not in (_KEY_LABEL, _KEY_PARAMETERS)} template["label"] = parameter.label arguments = dict(arguments) arguments.update(parameter.arguments) return self.compile(template, arguments)
preacher/compilation/scenario/scenario.py
from functools import partial from typing import Iterator, List, Optional, Mapping from preacher.compilation.argument import Arguments, inject_arguments from preacher.compilation.error import on_key from preacher.compilation.parameter import Parameter, compile_parameter from preacher.compilation.util.functional import ( map_compile, compile_flattening, ) from preacher.compilation.util.type import ( ensure_bool, ensure_optional_str, ensure_list, ensure_mapping, ) from preacher.compilation.verification import DescriptionCompiler from preacher.core.scenario import Scenario, Case from .case import CaseCompiler _KEY_LABEL = "label" _KEY_WHEN = "when" _KEY_DEFAULT = "default" _KEY_ORDERED = "ordered" _KEY_CASES = "cases" _KEY_PARAMETERS = "parameters" _KEY_SUBSCENARIOS = "subscenarios" class ScenarioCompiler: def __init__(self, description: DescriptionCompiler, case: CaseCompiler): self._description = description self._case = case def compile(self, obj: object, arguments: Optional[Arguments] = None) -> Scenario: """ Compile the given object into a scenario. Args: obj: A compiled object, which should be a mapping. arguments: Arguments to inject. Returns: The scenario as the result of compilation. Raises: CompilationError: when the compilation fails. """ obj = ensure_mapping(obj) arguments = arguments or {} label_obj = inject_arguments(obj.get(_KEY_LABEL), arguments) with on_key(_KEY_LABEL): label = ensure_optional_str(label_obj) parameters_obj = obj.get(_KEY_PARAMETERS) if parameters_obj is not None: with on_key(_KEY_PARAMETERS): parameters_obj = ensure_list(parameters_obj) parameters = list(map_compile(compile_parameter, parameters_obj)) subscenarios = [ self._compile_parameterized(obj, arguments, parameter) for parameter in parameters ] return Scenario(label=label, subscenarios=subscenarios) ordered_obj = inject_arguments(obj.get(_KEY_ORDERED, True), arguments) with on_key(_KEY_ORDERED): ordered = ensure_bool(ordered_obj) default_obj = inject_arguments(obj.get(_KEY_DEFAULT, {}), arguments) with on_key(_KEY_DEFAULT): case_compiler = self._case.compile_default(default_obj) condition_obj = inject_arguments(obj.get(_KEY_WHEN, []), arguments) with on_key(_KEY_WHEN): conditions = self._compile_conditions(condition_obj) case_obj = inject_arguments(obj.get(_KEY_CASES, []), arguments) with on_key(_KEY_CASES): cases = self._compile_cases(case_compiler, case_obj) subscenario_obj = obj.get(_KEY_SUBSCENARIOS, []) with on_key(_KEY_SUBSCENARIOS): subscenarios = self._compile_subscenarios( case_compiler, subscenario_obj, arguments, ) return Scenario( label=label, ordered=ordered, conditions=conditions, cases=cases, subscenarios=subscenarios, ) def compile_flattening( self, obj: object, arguments: Optional[Arguments] = None, ) -> Iterator[Scenario]: """ Compile the given object into a scenario with flattening: a nested object list results in a flattened scenario. Args: obj: A compiled object or a list. arguments: Arguments to inject. Returns: A scenario iterator as the result of compilation. Raises: CompilationError: when the compilation fails for each iteration. """ compile = partial(self.compile, arguments=arguments) return compile_flattening(compile, obj) def _compile_conditions(self, obj: object): return list(map_compile(self._description.compile, ensure_list(obj))) @staticmethod def _compile_cases(case_compiler: CaseCompiler, obj: object) -> List[Case]: return list(map_compile(case_compiler.compile_fixed, ensure_list(obj))) def _compile_subscenarios( self, case: CaseCompiler, obj: object, arguments: Arguments, ) -> List[Scenario]: compiler = ScenarioCompiler(description=self._description, case=case) return list( map_compile( lambda sub_obj: compiler.compile(sub_obj, arguments=arguments), ensure_list(obj), ) ) def _compile_parameterized( self, obj: Mapping, arguments: Arguments, parameter: Parameter, ) -> Scenario: template = {k: v for (k, v) in obj.items() if k not in (_KEY_LABEL, _KEY_PARAMETERS)} template["label"] = parameter.label arguments = dict(arguments) arguments.update(parameter.arguments) return self.compile(template, arguments)
0.914565
0.238018
import logging from horizon import exceptions from horizon import forms from horizon import messages from django.core.urlresolvers import reverse_lazy from django.utils.translation import ugettext_lazy as _ from openstack_dashboard.dashboards.cdn.cdn_domain_manager.models import Domain, CdnBillMethod import uuid import datetime import calendar from openstack_dashboard.dashboards.cdn.middware import DomainManage from openstack_dashboard import api from openstack_dashboard.utils.memcache_manager import set_memcache_value level_choice = [ ('ip', _("Origin IP")), ('url', _("Origin Domain Name"))] LOG = logging.getLogger(__name__) access_choice = [ ('white', _("White List")), ('black', _('Black List')) ] class CreateForm(forms.SelfHandlingForm): '''创建加速域名自处理modal表单''' domain_name = forms.CharField(max_length=64, label=_("Domain Name"), required=True) source_type = forms.ChoiceField(label=_("Origin Domain Type"), choices=level_choice, widget=forms.Select(attrs={'class': 'switchable', 'data-slug': 'origintype'},), required=True) origin_config_a = forms.CharField(label=_("IP Address"), widget=forms.Textarea(attrs={'class': 'switched', 'data-switch-on': 'origintype', 'data-origintype-ip': _("IP Address List"), }), required=False) origin_config_b = forms.CharField(max_length=64, label=_("Origin Domain Name"), widget=forms.TextInput(attrs={'class': 'switched', 'data-switch-on': 'origintype', 'data-origintype-url': _("Origin Domain Name"), }), required=False) failure_url = 'horizon:cdn:cdn_domain_manager:index' def __init__(self, request, *args, **kwargs): super(CreateForm, self).__init__(request, *args, **kwargs) def handle(self, request, data): try: tenant_id = self.request.user.tenant_id user_name = self.request.user.username project_name = self.request.user.project_name domain = Domain.objects.filter(domain_name=data['domain_name']) # 判断域名是否已添加 if domain: if domain[0].status != 'deleted': message = _('%s has created') % data['domain_name'] messages.warning(request, message) return True if domain[0].status == 'deleted': domainId=domain[0].domain_id domain_api = DomainManage() domain_api.enable(domainId=domainId) domain[0].status = 'inProgress' domain[0].save() message = _('%s has been in database,it will be enable for you') % data['domain_name'] messages.success(request, message) return True else: # 添加记费类型 billing_type = CdnBillMethod.objects.get(tenant_id=tenant_id) domain_name = data['domain_name'].strip() p = Domain(tenant_id=tenant_id, user_name=user_name, project_name=project_name, domain_name=domain_name, domain_cname='-', source_type=data['source_type'], current_type=billing_type.current_type,update_type=billing_type.update_type, update_at=billing_type.update_at,effect_at=billing_type.effect_at) p.save() if data['source_type'] == 'ip': for i in data['origin_config_a'].strip('\r\n').split('\r\n'): o = p.sourceaddress_set.create(source_address=i) o.save() else: o = p.sourceaddress_set.create(source_address=data['origin_config_b']) o.save() # 插入操作日志 api.logger.Logger(self.request).create(resource_type='CDN', action_name='Create Domain Name', resource_name='CDN', config=_('Domain: %s') %data['domain_name'], status='Success') # 将domain_name和随机生成的uuid绑定存储到memcache中,为域名鉴权提供依据 set_memcache_value(str(data['domain_name']), str(uuid.uuid4())) message = _('Domain %s was successfully created') % data['domain_name'] messages.success(request, message) return data['domain_name'] except exceptions: # 插入操作日志 api.logger.Logger(self.request).create(resource_type='CDN', action_name='Create Domain Name', resource_name='CDN', config=_('Domain: %s') %data['domain_name'], status='Error') msg = _('Failed to create Domain %s') % data['name'] redirect = self.failure_url exceptions.handle(request, msg, redirect=redirect) return False class VerifyForm(forms.SelfHandlingForm): redirect_url = reverse_lazy('horizon:cdn:cdn_domain_manager:index') def __init__(self, request, *args, **kwargs): super(VerifyForm, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class ModifyDomain(CreateForm): domain_name = forms.CharField(max_length=64, label=_("Domain Name"), required=True, widget=forms.TextInput(attrs={'readonly': 'readonly'})) def __init__(self, request, *args, **kwargs): super(ModifyDomain, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class CreateAccess(forms.SelfHandlingForm): failure_url = 'horizon:cdn:cdn_domain_manager:update' type = forms.CharField(max_length=255, label=_("Type"), required=True) access_type = forms.ChoiceField(label=_("Access Type"), choices=access_choice, widget=forms.Select(attrs={'class': 'switchable', 'data-slug': 'accesstype'},), required=True) refer = forms.BooleanField(label=_("refer"), required=False) black_list = forms.CharField(label=_("Black List"), widget=forms.Textarea(attrs={'class': 'switched', 'data-switch-on': 'accesstype', 'data-accesstype-black': _("Black List"), }), required=False) white_list = forms.CharField(label=_("White List"), widget=forms.Textarea(attrs={'class': 'switched', 'data-switch-on': 'accesstype', 'data-accesstype-white': _("White List"), }), required=False) forbid_ip = forms.CharField(label=_("Forbid IP"), widget=forms.Textarea(), required=False) def handle(self, request, data): return True class ModifyAccess(CreateAccess): def __init__(self, request, *args, **kwargs): super(ModifyAccess, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class CreateCache(forms.SelfHandlingForm): failure_url = 'horizon:cdn:cdn_domain_manager:update' type = forms.CharField(max_length=255, label=_("Type")) ignore = forms.BooleanField(label=_("ignore"), required=False) time = forms.IntegerField(label=_("Time")) def handle(self, request, data): return True class ModifyCache(CreateCache): def __init__(self, request, *args, **kwargs): super(ModifyCache, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class ModifyAccountModeForm(forms.SelfHandlingForm): failure_url = 'horizon:cdn:cdn_domain_manager:index' account_mode = forms.ChoiceField(label=_("Account Mode"), choices=(('cdnflow', _("Flow Account")),( 'cdnbandwidth',_('Bandwidth Account')))) def handle(self, request, data): try: now_date = datetime.datetime.utcnow() days = calendar.monthrange(now_date.year,now_date.month)[1] effect_date = (datetime.date.today().replace(day=1) + datetime.timedelta(days)).replace(day=1) tenant_id = self.request.user.tenant_id billing_type = CdnBillMethod.objects.get(tenant_id=tenant_id) update_type = billing_type.update_type post_type = data.get('account_mode') if post_type != update_type: domain_list = Domain.objects.filter(tenant_id=tenant_id) for i in domain_list: i.update_type = post_type i.update_at = now_date i.effect_at = effect_date i.save() # change billing method billing_type.update_type = post_type billing_type.update_at = now_date billing_type.effect_at = effect_date billing_type.save() message = _('Modfiy account method successfully') messages.success(request, message) else: message = _('Your account method is same, do not modify') messages.success(request, message) return True except exceptions: msg = _('Failed to change account method') LOG.info(msg) redirect = self.failure_url exceptions.handle(request, msg, redirect=redirect) return False
horizon/openstack_dashboard/dashboards/cdn/cdn_domain_manager/forms.py
import logging from horizon import exceptions from horizon import forms from horizon import messages from django.core.urlresolvers import reverse_lazy from django.utils.translation import ugettext_lazy as _ from openstack_dashboard.dashboards.cdn.cdn_domain_manager.models import Domain, CdnBillMethod import uuid import datetime import calendar from openstack_dashboard.dashboards.cdn.middware import DomainManage from openstack_dashboard import api from openstack_dashboard.utils.memcache_manager import set_memcache_value level_choice = [ ('ip', _("Origin IP")), ('url', _("Origin Domain Name"))] LOG = logging.getLogger(__name__) access_choice = [ ('white', _("White List")), ('black', _('Black List')) ] class CreateForm(forms.SelfHandlingForm): '''创建加速域名自处理modal表单''' domain_name = forms.CharField(max_length=64, label=_("Domain Name"), required=True) source_type = forms.ChoiceField(label=_("Origin Domain Type"), choices=level_choice, widget=forms.Select(attrs={'class': 'switchable', 'data-slug': 'origintype'},), required=True) origin_config_a = forms.CharField(label=_("IP Address"), widget=forms.Textarea(attrs={'class': 'switched', 'data-switch-on': 'origintype', 'data-origintype-ip': _("IP Address List"), }), required=False) origin_config_b = forms.CharField(max_length=64, label=_("Origin Domain Name"), widget=forms.TextInput(attrs={'class': 'switched', 'data-switch-on': 'origintype', 'data-origintype-url': _("Origin Domain Name"), }), required=False) failure_url = 'horizon:cdn:cdn_domain_manager:index' def __init__(self, request, *args, **kwargs): super(CreateForm, self).__init__(request, *args, **kwargs) def handle(self, request, data): try: tenant_id = self.request.user.tenant_id user_name = self.request.user.username project_name = self.request.user.project_name domain = Domain.objects.filter(domain_name=data['domain_name']) # 判断域名是否已添加 if domain: if domain[0].status != 'deleted': message = _('%s has created') % data['domain_name'] messages.warning(request, message) return True if domain[0].status == 'deleted': domainId=domain[0].domain_id domain_api = DomainManage() domain_api.enable(domainId=domainId) domain[0].status = 'inProgress' domain[0].save() message = _('%s has been in database,it will be enable for you') % data['domain_name'] messages.success(request, message) return True else: # 添加记费类型 billing_type = CdnBillMethod.objects.get(tenant_id=tenant_id) domain_name = data['domain_name'].strip() p = Domain(tenant_id=tenant_id, user_name=user_name, project_name=project_name, domain_name=domain_name, domain_cname='-', source_type=data['source_type'], current_type=billing_type.current_type,update_type=billing_type.update_type, update_at=billing_type.update_at,effect_at=billing_type.effect_at) p.save() if data['source_type'] == 'ip': for i in data['origin_config_a'].strip('\r\n').split('\r\n'): o = p.sourceaddress_set.create(source_address=i) o.save() else: o = p.sourceaddress_set.create(source_address=data['origin_config_b']) o.save() # 插入操作日志 api.logger.Logger(self.request).create(resource_type='CDN', action_name='Create Domain Name', resource_name='CDN', config=_('Domain: %s') %data['domain_name'], status='Success') # 将domain_name和随机生成的uuid绑定存储到memcache中,为域名鉴权提供依据 set_memcache_value(str(data['domain_name']), str(uuid.uuid4())) message = _('Domain %s was successfully created') % data['domain_name'] messages.success(request, message) return data['domain_name'] except exceptions: # 插入操作日志 api.logger.Logger(self.request).create(resource_type='CDN', action_name='Create Domain Name', resource_name='CDN', config=_('Domain: %s') %data['domain_name'], status='Error') msg = _('Failed to create Domain %s') % data['name'] redirect = self.failure_url exceptions.handle(request, msg, redirect=redirect) return False class VerifyForm(forms.SelfHandlingForm): redirect_url = reverse_lazy('horizon:cdn:cdn_domain_manager:index') def __init__(self, request, *args, **kwargs): super(VerifyForm, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class ModifyDomain(CreateForm): domain_name = forms.CharField(max_length=64, label=_("Domain Name"), required=True, widget=forms.TextInput(attrs={'readonly': 'readonly'})) def __init__(self, request, *args, **kwargs): super(ModifyDomain, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class CreateAccess(forms.SelfHandlingForm): failure_url = 'horizon:cdn:cdn_domain_manager:update' type = forms.CharField(max_length=255, label=_("Type"), required=True) access_type = forms.ChoiceField(label=_("Access Type"), choices=access_choice, widget=forms.Select(attrs={'class': 'switchable', 'data-slug': 'accesstype'},), required=True) refer = forms.BooleanField(label=_("refer"), required=False) black_list = forms.CharField(label=_("Black List"), widget=forms.Textarea(attrs={'class': 'switched', 'data-switch-on': 'accesstype', 'data-accesstype-black': _("Black List"), }), required=False) white_list = forms.CharField(label=_("White List"), widget=forms.Textarea(attrs={'class': 'switched', 'data-switch-on': 'accesstype', 'data-accesstype-white': _("White List"), }), required=False) forbid_ip = forms.CharField(label=_("Forbid IP"), widget=forms.Textarea(), required=False) def handle(self, request, data): return True class ModifyAccess(CreateAccess): def __init__(self, request, *args, **kwargs): super(ModifyAccess, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class CreateCache(forms.SelfHandlingForm): failure_url = 'horizon:cdn:cdn_domain_manager:update' type = forms.CharField(max_length=255, label=_("Type")) ignore = forms.BooleanField(label=_("ignore"), required=False) time = forms.IntegerField(label=_("Time")) def handle(self, request, data): return True class ModifyCache(CreateCache): def __init__(self, request, *args, **kwargs): super(ModifyCache, self).__init__(request, *args, **kwargs) def handle(self, request, data): return True class ModifyAccountModeForm(forms.SelfHandlingForm): failure_url = 'horizon:cdn:cdn_domain_manager:index' account_mode = forms.ChoiceField(label=_("Account Mode"), choices=(('cdnflow', _("Flow Account")),( 'cdnbandwidth',_('Bandwidth Account')))) def handle(self, request, data): try: now_date = datetime.datetime.utcnow() days = calendar.monthrange(now_date.year,now_date.month)[1] effect_date = (datetime.date.today().replace(day=1) + datetime.timedelta(days)).replace(day=1) tenant_id = self.request.user.tenant_id billing_type = CdnBillMethod.objects.get(tenant_id=tenant_id) update_type = billing_type.update_type post_type = data.get('account_mode') if post_type != update_type: domain_list = Domain.objects.filter(tenant_id=tenant_id) for i in domain_list: i.update_type = post_type i.update_at = now_date i.effect_at = effect_date i.save() # change billing method billing_type.update_type = post_type billing_type.update_at = now_date billing_type.effect_at = effect_date billing_type.save() message = _('Modfiy account method successfully') messages.success(request, message) else: message = _('Your account method is same, do not modify') messages.success(request, message) return True except exceptions: msg = _('Failed to change account method') LOG.info(msg) redirect = self.failure_url exceptions.handle(request, msg, redirect=redirect) return False
0.354768
0.063599
import pathlib import typing from os import environ as env from typing import Any, Dict, Mapping, TypeVar from urllib.parse import parse_qs, urlencode import ipywidgets as w import weldx import weldx_widgets import weldx_widgets.widget_base import weldx_widgets.widget_factory from weldx_widgets.translation_utils import _i18n as _ from weldx_widgets.widget_factory import button_layout __all__ = [ "SaveAndNext", "build_url", "get_param_from_env", "invoke_url", ] def get_param_from_env(name, default=None) -> str: """Extract parameter from env.QUERY_STRING. Parameters ---------- name : name of the parameter to extract. default : optional default value, if parameter is not set. Returns ------- str : value of the requested parameter. """ query_string = env.get("QUERY_STRING", "") parameters = parse_qs(query_string) try: value = parameters[name][0] except KeyError: # TODO: this can also raise something else, right? if default: return default else: raise RuntimeError( f"parameter '{name}' unset and no default provided." f" Given parameters: {parameters}" ) return value def build_url(board: str, parameters: dict = None, invoke=True, out=None) -> str: """Build an URL with given parameters. Parameters ---------- board : dash board to invoke next. May contain a relative path. parameters : optional parameters to encode. invoke : should the url be invoked in a web browser? Returns ------- str : the built url. """ if invoke and not out: raise ValueError("need output to invoke Javascript.") server = env.get("SERVER_NAME", "localhost") protocol = env.get("SERVER_PROTOCOL", "HTTP") if "HTTPS" in protocol: url = "https://" else: url = "http://" url += server # TODO: this only works from voila! port = env.get("SERVER_PORT", "8888") if port: url += f":{port}/" else: url += "/" voila = "voila" in env.get("SERVER_SOFTWARE", "") prefix = "voila/render" if voila else "" url += f"{prefix}/{board}" if parameters: params_encoded = urlencode(parameters) url += f"?{params_encoded}" if invoke: invoke_url(url, out) return url def invoke_url(url, out): """Invoke url in new browser tab. We cannot use python stdlib webbrowser here, because this code will be executed on the server. So we impl this via Javascript. """ from IPython.display import Javascript, clear_output, display with out: clear_output() js = Javascript(f'window.open("{url}");') display(js) _KeyType = TypeVar("KeyType") def _deep_update_inplace( mapping: Dict[_KeyType, Any], *updating_mappings: Dict[_KeyType, Any] ) -> Dict[_KeyType, Any]: for updating_mapping in updating_mappings: for k, v in updating_mapping.items(): if k in mapping and isinstance(mapping[k], dict) and isinstance(v, Mapping): mapping[k] = _deep_update_inplace(mapping[k], v) else: mapping[k] = v return mapping class SaveAndNext(weldx_widgets.widget_base.WidgetMyVBox): """Collect all the data from passed import/output widget list and stores it. Parameters ---------- filename: output file name. next_notebook: next dashboard/notebook to invoke. status : the file update will contain the new status. collect_data_from : a list of widgets to build a tree from. next_notebook_params : optional parameters for next dashboard. Notes ----- The passed status will be set into the wx_user["kisa"]["status"] dict. """ def __init__( self, filename, next_notebook: str, status: str, collect_data_from: typing.List[weldx_widgets.widget_base.WeldxImportExport], next_notebook_desc: str = "Invoke next step", next_notebook_params=None, title="Save results", disable_next_button=True, ): self.status = status self.collect_data_from = collect_data_from self.out = w.Output() if not disable_next_button: self.btn_next = w.Button( description=_(next_notebook_desc), layout=button_layout ) if next_notebook_params is None: next_notebook_params = dict() self.next_notebook_params = next_notebook_params self.next_notebook = next_notebook self.btn_next.on_click(self.on_next) self._initial_file = filename # remember initial choice of file. fn_path = pathlib.Path(filename) path = str(fn_path.parent) fn = str(fn_path.name) self.save_button = weldx_widgets.WidgetSaveButton( desc="1." + _("Save") if not disable_next_button else _("Save"), filename=fn, path=path, select_default=True, ) self.save_button.set_handler(self.on_save) if not disable_next_button: self.save_button.children += (self.btn_next,) children = [ weldx_widgets.widget_factory.make_title(title), self.save_button, self.out, ] super(SaveAndNext, self).__init__(children=children) @property def filename(self): """Return output file name.""" return self.save_button.path def on_save(self, _): """Handle saving data to file.""" from IPython.display import clear_output, display clear_output() result = dict() for widget in self.collect_data_from: _deep_update_inplace(result, widget.to_tree()) # set status result["wx_user"] = {"KISA": {"status": self.status}} def show_header(handle): with self.out: clear_output() display(handle.show_asdf_header(False, True)) # open (existing) file and update it. if pathlib.Path(self.filename).stem.endswith("_r"): with self.out: print("Refusing to save a read-only (template) file!") print("Please choose another name with the '_r' suffix.") return if self.filename != self._initial_file: # we want to save the previous file under a different name, so load contents with weldx.WeldxFile(self._initial_file, mode="r") as fh: _deep_update_inplace(fh, result) if not pathlib.Path(self.filename).exists(): fh.write_to(self.filename) show_header(fh) else: with weldx.WeldxFile(self.filename, mode="rw") as fh2: _deep_update_inplace(fh2, fh) show_header(fh2) else: with weldx.WeldxFile(self.filename, mode="rw", sync=True) as fh: _deep_update_inplace(fh, result) show_header(fh) def on_next(self, _): """Invoke next notebook.""" build_url( board=self.next_notebook, parameters=dict(file=self.filename, **self.next_notebook_params), invoke=True, out=self.out, )
weldx_widgets/kisa/save.py
import pathlib import typing from os import environ as env from typing import Any, Dict, Mapping, TypeVar from urllib.parse import parse_qs, urlencode import ipywidgets as w import weldx import weldx_widgets import weldx_widgets.widget_base import weldx_widgets.widget_factory from weldx_widgets.translation_utils import _i18n as _ from weldx_widgets.widget_factory import button_layout __all__ = [ "SaveAndNext", "build_url", "get_param_from_env", "invoke_url", ] def get_param_from_env(name, default=None) -> str: """Extract parameter from env.QUERY_STRING. Parameters ---------- name : name of the parameter to extract. default : optional default value, if parameter is not set. Returns ------- str : value of the requested parameter. """ query_string = env.get("QUERY_STRING", "") parameters = parse_qs(query_string) try: value = parameters[name][0] except KeyError: # TODO: this can also raise something else, right? if default: return default else: raise RuntimeError( f"parameter '{name}' unset and no default provided." f" Given parameters: {parameters}" ) return value def build_url(board: str, parameters: dict = None, invoke=True, out=None) -> str: """Build an URL with given parameters. Parameters ---------- board : dash board to invoke next. May contain a relative path. parameters : optional parameters to encode. invoke : should the url be invoked in a web browser? Returns ------- str : the built url. """ if invoke and not out: raise ValueError("need output to invoke Javascript.") server = env.get("SERVER_NAME", "localhost") protocol = env.get("SERVER_PROTOCOL", "HTTP") if "HTTPS" in protocol: url = "https://" else: url = "http://" url += server # TODO: this only works from voila! port = env.get("SERVER_PORT", "8888") if port: url += f":{port}/" else: url += "/" voila = "voila" in env.get("SERVER_SOFTWARE", "") prefix = "voila/render" if voila else "" url += f"{prefix}/{board}" if parameters: params_encoded = urlencode(parameters) url += f"?{params_encoded}" if invoke: invoke_url(url, out) return url def invoke_url(url, out): """Invoke url in new browser tab. We cannot use python stdlib webbrowser here, because this code will be executed on the server. So we impl this via Javascript. """ from IPython.display import Javascript, clear_output, display with out: clear_output() js = Javascript(f'window.open("{url}");') display(js) _KeyType = TypeVar("KeyType") def _deep_update_inplace( mapping: Dict[_KeyType, Any], *updating_mappings: Dict[_KeyType, Any] ) -> Dict[_KeyType, Any]: for updating_mapping in updating_mappings: for k, v in updating_mapping.items(): if k in mapping and isinstance(mapping[k], dict) and isinstance(v, Mapping): mapping[k] = _deep_update_inplace(mapping[k], v) else: mapping[k] = v return mapping class SaveAndNext(weldx_widgets.widget_base.WidgetMyVBox): """Collect all the data from passed import/output widget list and stores it. Parameters ---------- filename: output file name. next_notebook: next dashboard/notebook to invoke. status : the file update will contain the new status. collect_data_from : a list of widgets to build a tree from. next_notebook_params : optional parameters for next dashboard. Notes ----- The passed status will be set into the wx_user["kisa"]["status"] dict. """ def __init__( self, filename, next_notebook: str, status: str, collect_data_from: typing.List[weldx_widgets.widget_base.WeldxImportExport], next_notebook_desc: str = "Invoke next step", next_notebook_params=None, title="Save results", disable_next_button=True, ): self.status = status self.collect_data_from = collect_data_from self.out = w.Output() if not disable_next_button: self.btn_next = w.Button( description=_(next_notebook_desc), layout=button_layout ) if next_notebook_params is None: next_notebook_params = dict() self.next_notebook_params = next_notebook_params self.next_notebook = next_notebook self.btn_next.on_click(self.on_next) self._initial_file = filename # remember initial choice of file. fn_path = pathlib.Path(filename) path = str(fn_path.parent) fn = str(fn_path.name) self.save_button = weldx_widgets.WidgetSaveButton( desc="1." + _("Save") if not disable_next_button else _("Save"), filename=fn, path=path, select_default=True, ) self.save_button.set_handler(self.on_save) if not disable_next_button: self.save_button.children += (self.btn_next,) children = [ weldx_widgets.widget_factory.make_title(title), self.save_button, self.out, ] super(SaveAndNext, self).__init__(children=children) @property def filename(self): """Return output file name.""" return self.save_button.path def on_save(self, _): """Handle saving data to file.""" from IPython.display import clear_output, display clear_output() result = dict() for widget in self.collect_data_from: _deep_update_inplace(result, widget.to_tree()) # set status result["wx_user"] = {"KISA": {"status": self.status}} def show_header(handle): with self.out: clear_output() display(handle.show_asdf_header(False, True)) # open (existing) file and update it. if pathlib.Path(self.filename).stem.endswith("_r"): with self.out: print("Refusing to save a read-only (template) file!") print("Please choose another name with the '_r' suffix.") return if self.filename != self._initial_file: # we want to save the previous file under a different name, so load contents with weldx.WeldxFile(self._initial_file, mode="r") as fh: _deep_update_inplace(fh, result) if not pathlib.Path(self.filename).exists(): fh.write_to(self.filename) show_header(fh) else: with weldx.WeldxFile(self.filename, mode="rw") as fh2: _deep_update_inplace(fh2, fh) show_header(fh2) else: with weldx.WeldxFile(self.filename, mode="rw", sync=True) as fh: _deep_update_inplace(fh, result) show_header(fh) def on_next(self, _): """Invoke next notebook.""" build_url( board=self.next_notebook, parameters=dict(file=self.filename, **self.next_notebook_params), invoke=True, out=self.out, )
0.507812
0.173989
from datetime import datetime from json import load from requests import get, head, post, put from urllib.parse import quote_plus from uuid import uuid4 class DaoElastic(object): _INDEX = 'unfact' _TYPE = 'news' _MAX_FETCH_SIZE = 300 _BASE_HOST = 'http://127.0.0.1:9200' _MAPPING_FILE = '../resources/mapping.json' @staticmethod def _assert_response(response): assert response.status_code in [200, 201], \ 'Unexpected response [%d]: [%s]' % ( response.status_code, response.json()) return response def __init__(self, base_host=None): self._base_host = self._BASE_HOST if base_host is None else base_host self._base_index = self._base_host + '/' + self._INDEX self._base_url = self._base_index + '/' + self._TYPE self._init_schema() def _init_schema(self): """Sets up the index schema.""" response = head('%s/_mapping/%s' % (self._base_index, self._TYPE)) if response.status_code == 404: print('Index not found, creating mapping.') with open(self._MAPPING_FILE) as file: json = load(file) response = put(self._base_index, json=json) self._assert_response(response) elif response.status_code != 200: raise ValueError('Connection error to [%s]: [%r]' % ( self._base_url, response.text)) def save_new_link( self, *, short_url, full_url, domain, skip, newsletter_date): """ Arguments: short_url (str) full_url (str) domain (str) skip (boolean) newsletter_date (datetime) """ assert short_url is not None and len(short_url) > 0 assert full_url is not None and len(full_url) > 0 assert skip is not None assert newsletter_date is not None date_str = newsletter_date.strftime('%Y-%m-%d') news_id = str(uuid4()).replace('-', '') url = '%s/%s/_create' % (self._base_url, news_id) response = post(url, json={'id': news_id, 'short_url': short_url, 'full_url': full_url, 'domain': domain, 'skip': skip, 'newsletter_date': date_str}) self._assert_response(response) def exists_short_url(self, *, short_url): assert short_url is not None url = '%s/_search' % self._base_url query = {'query': {'constant_score': {'filter': { 'term': {'short_url': short_url}}}}} response = get(url, json=query) self._assert_response(response) return response.json()['hits']['total'] > 0 def exists_full_url(self, *, full_url): assert full_url is not None url = '%s/_search' % self._base_url query = {'query': {'constant_score': {'filter': { 'term': {'full_url': full_url}}}}} response = get(url, json=query) self._assert_response(response) return response.json()['hits']['total'] > 0 def save_text_analysis(self, news, text_original, authors, text_en, translator, language, sentiment_score, sentiment_magnitude, entities, extractor): """ Arguments: news (dict): The complete news object text_original (str) authors (str): Comma separated list of authors text_en (str) translator (str) language (str) sentiment_score (str) sentiment_magnitude (str) entities (list of obj) extractor (str) """ assert news['short_url'] is not None and len(news['short_url']) > 0 assert news['id'] is not None and len(news['id']) > 0 assert text_original is not None and len(text_original) > 0 assert text_en is not None and len(text_en) > 0 assert language is not None and len(language) > 0 assert entities, 'Missing entities' entities_dict = [{'name': entity.name, 'type': entity.entity_type, 'salience': entity.salience, 'wikipedia_url': entity.wikipedia_url} for entity in entities] news['text_original'] = text_original news['authors'] = authors news['text_en'] = text_en news['translator'] = translator news['language'] = language news['sentiment_score'] = sentiment_score news['sentiment_magnitude'] = sentiment_magnitude news['entities'] = entities_dict news['extractor'] = extractor url = '%s/%s' % (self._base_url, news['id']) response = put(url, json=news) self._assert_response(response) def save_error(self, *, news, error_message, error_class): """ Arguments: news (dict): The complete news object error_message (str) error_class (str) """ assert news['short_url'] is not None and len(news['short_url']) > 0 assert news['id'] is not None and len(news['id']) > 0 if 'text_analysed' in news: del news['text_analysed'] news['error_message'] = error_message news['error_class'] = error_class url = '%s/%s' % (self._base_url, news['id']) response = put(url, json=news) self._assert_response(response) def import_news(self, news): news['id'] = str(news.pop('_id')) if 'tokens' in news: del news['tokens'] if 'sentences' in news: del news['sentences'] url = '%s/%s/_create' % (self._base_url, news['id']) response = put(url, json=news) if response.status_code == 409: print('Document [%s] was already present.', news['id']) return else: self._assert_response(response) def find_for_text_analysis(self, include_errors=False): must_not = [{'term': {'skip': 'true'}}, {'term': {'text_analysed': 'true'}}] if not include_errors: must_not.append({'exists': {'field': 'error_class'}}) query = {'size': self._MAX_FETCH_SIZE, 'query': {'constant_score': {'filter': {'bool': { 'must_not': must_not}}}}} response = get('%s/_search' % self._base_url, json=query) data = self._assert_response(response).json() if data['hits']['total'] > 0: for hit in data['hits']['hits']: yield hit['_source'] else: return []
python/scripts/dao_elastic.py
from datetime import datetime from json import load from requests import get, head, post, put from urllib.parse import quote_plus from uuid import uuid4 class DaoElastic(object): _INDEX = 'unfact' _TYPE = 'news' _MAX_FETCH_SIZE = 300 _BASE_HOST = 'http://127.0.0.1:9200' _MAPPING_FILE = '../resources/mapping.json' @staticmethod def _assert_response(response): assert response.status_code in [200, 201], \ 'Unexpected response [%d]: [%s]' % ( response.status_code, response.json()) return response def __init__(self, base_host=None): self._base_host = self._BASE_HOST if base_host is None else base_host self._base_index = self._base_host + '/' + self._INDEX self._base_url = self._base_index + '/' + self._TYPE self._init_schema() def _init_schema(self): """Sets up the index schema.""" response = head('%s/_mapping/%s' % (self._base_index, self._TYPE)) if response.status_code == 404: print('Index not found, creating mapping.') with open(self._MAPPING_FILE) as file: json = load(file) response = put(self._base_index, json=json) self._assert_response(response) elif response.status_code != 200: raise ValueError('Connection error to [%s]: [%r]' % ( self._base_url, response.text)) def save_new_link( self, *, short_url, full_url, domain, skip, newsletter_date): """ Arguments: short_url (str) full_url (str) domain (str) skip (boolean) newsletter_date (datetime) """ assert short_url is not None and len(short_url) > 0 assert full_url is not None and len(full_url) > 0 assert skip is not None assert newsletter_date is not None date_str = newsletter_date.strftime('%Y-%m-%d') news_id = str(uuid4()).replace('-', '') url = '%s/%s/_create' % (self._base_url, news_id) response = post(url, json={'id': news_id, 'short_url': short_url, 'full_url': full_url, 'domain': domain, 'skip': skip, 'newsletter_date': date_str}) self._assert_response(response) def exists_short_url(self, *, short_url): assert short_url is not None url = '%s/_search' % self._base_url query = {'query': {'constant_score': {'filter': { 'term': {'short_url': short_url}}}}} response = get(url, json=query) self._assert_response(response) return response.json()['hits']['total'] > 0 def exists_full_url(self, *, full_url): assert full_url is not None url = '%s/_search' % self._base_url query = {'query': {'constant_score': {'filter': { 'term': {'full_url': full_url}}}}} response = get(url, json=query) self._assert_response(response) return response.json()['hits']['total'] > 0 def save_text_analysis(self, news, text_original, authors, text_en, translator, language, sentiment_score, sentiment_magnitude, entities, extractor): """ Arguments: news (dict): The complete news object text_original (str) authors (str): Comma separated list of authors text_en (str) translator (str) language (str) sentiment_score (str) sentiment_magnitude (str) entities (list of obj) extractor (str) """ assert news['short_url'] is not None and len(news['short_url']) > 0 assert news['id'] is not None and len(news['id']) > 0 assert text_original is not None and len(text_original) > 0 assert text_en is not None and len(text_en) > 0 assert language is not None and len(language) > 0 assert entities, 'Missing entities' entities_dict = [{'name': entity.name, 'type': entity.entity_type, 'salience': entity.salience, 'wikipedia_url': entity.wikipedia_url} for entity in entities] news['text_original'] = text_original news['authors'] = authors news['text_en'] = text_en news['translator'] = translator news['language'] = language news['sentiment_score'] = sentiment_score news['sentiment_magnitude'] = sentiment_magnitude news['entities'] = entities_dict news['extractor'] = extractor url = '%s/%s' % (self._base_url, news['id']) response = put(url, json=news) self._assert_response(response) def save_error(self, *, news, error_message, error_class): """ Arguments: news (dict): The complete news object error_message (str) error_class (str) """ assert news['short_url'] is not None and len(news['short_url']) > 0 assert news['id'] is not None and len(news['id']) > 0 if 'text_analysed' in news: del news['text_analysed'] news['error_message'] = error_message news['error_class'] = error_class url = '%s/%s' % (self._base_url, news['id']) response = put(url, json=news) self._assert_response(response) def import_news(self, news): news['id'] = str(news.pop('_id')) if 'tokens' in news: del news['tokens'] if 'sentences' in news: del news['sentences'] url = '%s/%s/_create' % (self._base_url, news['id']) response = put(url, json=news) if response.status_code == 409: print('Document [%s] was already present.', news['id']) return else: self._assert_response(response) def find_for_text_analysis(self, include_errors=False): must_not = [{'term': {'skip': 'true'}}, {'term': {'text_analysed': 'true'}}] if not include_errors: must_not.append({'exists': {'field': 'error_class'}}) query = {'size': self._MAX_FETCH_SIZE, 'query': {'constant_score': {'filter': {'bool': { 'must_not': must_not}}}}} response = get('%s/_search' % self._base_url, json=query) data = self._assert_response(response).json() if data['hits']['total'] > 0: for hit in data['hits']['hits']: yield hit['_source'] else: return []
0.640748
0.168515
number_string = """08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48""" # convert the big block number string into a two dimensional array of integers # This list comprehension parses the rows first and then each column, which means that we will # end up with matrix[y][x] instead of matrix[x][y] which would have been more intuitive int_matrix = [[int(number_string) for number_string in row_string.split(" ")] for row_string in number_string.split("\n")] def get_cell(x, y): if (0 <= x <= 19 and 0 <= y <= 19): # reversed coordinate axis (use y,x instead of x,y) due to parsing return int_matrix[y][x] else: # hack to make sure products involving this cell value will be zero # wow this is sooo ugly :-( return 0 def check_vertical(x, y): return get_cell(x,y) * get_cell(x,y+1) * get_cell(x,y+2) * get_cell(x,y+3) def check_horizontal(x, y): return get_cell(x,y) * get_cell(x+1,y) * get_cell(x+2,y) * get_cell(x+3,y) # south west (sw) to north east (ne) def check_nw_se_diagonal(x, y): return get_cell(x,y) * get_cell(x+1,y+1) * get_cell(x+2,y+2) * get_cell(x+3,y+3) # north east (ne) to south west (sw) def check_ne_sw_diagonal(x, y): return get_cell(x,y) * get_cell(x-1,y+1) * get_cell(x-2,y+2) * get_cell(x-3,y+3) def get_highest_cell_product(x, y): return max(check_vertical(x, y), check_horizontal(x, y), check_nw_se_diagonal(x, y), check_ne_sw_diagonal(x, y)) for y in xrange(0,20): for x in xrange(0,20): print str(get_cell(x,y)).zfill(2), print "" greatest_cell_product = 0 for y in xrange(0,20): for x in xrange(0,20): cell_product = get_highest_cell_product(x, y) if (cell_product > greatest_cell_product): greatest_cell_product = cell_product print "greatest_product==", greatest_cell_product
python/problem11.py
number_string = """08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48""" # convert the big block number string into a two dimensional array of integers # This list comprehension parses the rows first and then each column, which means that we will # end up with matrix[y][x] instead of matrix[x][y] which would have been more intuitive int_matrix = [[int(number_string) for number_string in row_string.split(" ")] for row_string in number_string.split("\n")] def get_cell(x, y): if (0 <= x <= 19 and 0 <= y <= 19): # reversed coordinate axis (use y,x instead of x,y) due to parsing return int_matrix[y][x] else: # hack to make sure products involving this cell value will be zero # wow this is sooo ugly :-( return 0 def check_vertical(x, y): return get_cell(x,y) * get_cell(x,y+1) * get_cell(x,y+2) * get_cell(x,y+3) def check_horizontal(x, y): return get_cell(x,y) * get_cell(x+1,y) * get_cell(x+2,y) * get_cell(x+3,y) # south west (sw) to north east (ne) def check_nw_se_diagonal(x, y): return get_cell(x,y) * get_cell(x+1,y+1) * get_cell(x+2,y+2) * get_cell(x+3,y+3) # north east (ne) to south west (sw) def check_ne_sw_diagonal(x, y): return get_cell(x,y) * get_cell(x-1,y+1) * get_cell(x-2,y+2) * get_cell(x-3,y+3) def get_highest_cell_product(x, y): return max(check_vertical(x, y), check_horizontal(x, y), check_nw_se_diagonal(x, y), check_ne_sw_diagonal(x, y)) for y in xrange(0,20): for x in xrange(0,20): print str(get_cell(x,y)).zfill(2), print "" greatest_cell_product = 0 for y in xrange(0,20): for x in xrange(0,20): cell_product = get_highest_cell_product(x, y) if (cell_product > greatest_cell_product): greatest_cell_product = cell_product print "greatest_product==", greatest_cell_product
0.362066
0.335569
from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange import logging import numpy as np from keras import backend as K from keras import optimizers from keras import objectives from keras.layers import Input, Concatenate, MaxPooling1D from keras.models import Model, load_model, model_from_json from .. import objectives as hyp_obj from ..keras_utils import * from ..layers import * from ..losses import categorical_mbr from ...hyp_model import HypModel class SeqEmbed(HypModel): def __init__(self, enc_net, pt_net, loss='categorical_crossentropy', pooling='mean+std', left_context=0, right_context=0, begin_context=None, end_context=None, enc_downsampling=None, **kwargs): super(SeqEmbed, self).__init__(**kwargs) self.enc_net = enc_net self.pt_net = pt_net self.pooling = pooling self.loss = loss self.model = None self.pool_net = None self.left_context = left_context self.right_context = right_context self.begin_context = left_context if begin_context is None else begin_context self.end_context = right_context if end_context is None else end_context self._enc_downsampling = enc_downsampling self.max_seq_length = None @property def x_dim(self): return self.enc_net.get_input_shape_at(0)[-1] @property def num_classes(self): return self.pt_net.get_output_shape_at(0)[-1] @property def pool_in_dim(self): return self.enc_net.get_output_shape_at(0)[-1] @property def pool_out_dim(self): return self.pt_net.get_input_shape_at(0)[-1] @property def in_length(self): if self.max_seq_length is None: return self.enc_net.get_input_shape_at(0)[-2] return self.max_seq_length @property def pool_in_length(self): pool_length = self.enc_net.get_output_shape_at(0)[-2] if pool_length is None: in_length = self.in_length if in_length is None: return None x = Input(shape=(in_length, self.x_dim)) net = Model(x, self.enc_net(x)) pool_length = net.get_output_shape_at(0)[-2] return pool_length @property def enc_downsampling(self): if self._enc_downsampling is None: assert self.in_length is not None assert self.pool_in_length is not None r = self.in_length/self.pool_in_length assert np.ceil(r) == np.floor(r) self._enc_downsampling = int(r) return self._enc_downsampling def _apply_pooling(self, x, mask): if self.pooling == 'mean+std': pool = Concatenate(axis=-1, name='pooling')( GlobalWeightedMeanStdPooling1D(name='mean--std')([x, mask])) elif self.pooling == 'mean+logvar': pool = Concatenate(axis=-1, name='pooling')( GlobalWeightedMeanLogVarPooling1D(name='mean--logvar')([x, mask])) elif self.pooling == 'mean': pool = GlobalWeightedAveragePooling1D(name='pooling')([x, mask]) else: raise ValueError('Invalid pooling %s' % self.pooling) return pool def compile(self, metrics=None, **kwargs): if self.loss == 'categorical_mbr': loss = categorical_mbr else: loss = self.loss if metrics is None: self.model.compile(loss=loss, **kwargs) else: self.model.compile(loss=loss, metrics=metrics, weighted_metrics=metrics, **kwargs) def freeze_enc_net(self): self.enc_net.trainable = False def freeze_enc_net_layers(self, layers): for layer_name in layers: self.enc_net.get_layer(layer_name).trainable = False def freeze_pt_net_layers(self, layers): for layer_name in layers: self.pt_net.get_layer(layer_name).trainable = False def build(self, max_seq_length=None): if max_seq_length is None: max_seq_length = self.enc_net.get_input_shape_at(0)[-2] self.max_seq_length = max_seq_length x = Input(shape=(max_seq_length, self.x_dim,)) mask = CreateMask(0)(x) frame_embed = self.enc_net(x) dec_ratio = int(max_seq_length/frame_embed._keras_shape[1]) if dec_ratio > 1: mask = MaxPooling1D(dec_ratio, padding='same')(mask) pool = self._apply_pooling(frame_embed, mask) y = self.pt_net(pool) self.model = Model(x, y) self.model.summary() def build_embed(self, layers): frame_embed = Input(shape=(None, self.pool_in_dim,)) mask = Input(shape=(None,)) pool = self._apply_pooling(frame_embed, mask) outputs = [] for layer_name in layers: embed_i = Model(self.pt_net.get_input_at(0), self.pt_net.get_layer(layer_name).get_output_at(0))(pool) outputs.append(embed_i) self.pool_net = Model([frame_embed, mask], outputs) self.pool_net.summary() def predict_embed(self, x, **kwargs): in_seq_length = self.in_length pool_seq_length = self.pool_in_length r = self.enc_downsampling assert np.ceil(self.left_context/r) == np.floor(self.left_context/r) assert np.ceil(self.right_context/r) == np.floor(self.right_context/r) assert np.ceil(self.begin_context/r) == np.floor(self.begin_context/r) assert np.ceil(self.end_context/r) == np.floor(self.end_context/r) pool_begin_context = int(self.begin_context/r) pool_end_context = int(self.end_context/r) pool_left_context = int(self.left_context/r) pool_right_context = int(self.right_context/r) in_length = x.shape[-2] pool_length = int(in_length/r) in_shift = in_seq_length - self.left_context - self.right_context pool_shift = int(in_shift/r) y = np.zeros((pool_length, self.pool_in_dim), dtype=float_keras()) mask = np.ones((1, pool_length), dtype=float_keras()) mask[0,:pool_begin_context] = 0 mask[0,pool_length - pool_end_context:] = 0 num_batches = max(int(np.ceil((in_length-in_seq_length)/in_shift+1)), 1) x_i = np.zeros((1,in_seq_length, x.shape[-1]), dtype=float_keras()) j_in = 0 j_out = 0 for i in xrange(num_batches): k_in = min(j_in+in_seq_length, in_length) k_out = min(j_out+pool_seq_length, pool_length) l_in = k_in - j_in l_out = k_out - j_out x_i[0,:l_in] = x[j_in:k_in] y_i = self.enc_net.predict(x_i, batch_size=1, **kwargs)[0] y[j_out:k_out] = y_i[:l_out] j_in += in_shift j_out += pool_shift if i==0: j_out += pool_left_context logging.debug(pool_seq_length) logging.debug(pool_left_context) logging.debug(pool_right_context) logging.debug(pool_begin_context) logging.debug(pool_end_context) logging.debug('embed2 %d %d %d' % (pool_length, j_out-pool_shift, j_out-pool_shift+l_out)) y = np.expand_dims(y, axis=0) embeds = self.pool_net.predict([y, mask], batch_size=1, **kwargs) return np.hstack(tuple(embeds)) @property def embed_dim(self): if self.pool_net is None: return None embed_dim=0 for node in xrange(len(self.pool_net._inbound_nodes)): output_shape = self.pool_net.get_output_shape_at(node) if isinstance(output_shape, list): for shape in output_shape: embed_dim += shape[-1] else: embed_dim += output_shape[-1] return embed_dim def build_eval(self): frame_embed = Input(shape=(None, self.pool_in_dim,)) mask = Input(shape=(None,)) pool = self._apply_pooling(frame_embed, mask) score = self.pt_net(pool) self.pool_net = Model([frame_embed, mask], score) self.pool_net.summary() def predict_eval(self, x, **kwargs): return np.log(self.predict_embed(x, **kwargs)+1e-10) def fit(self, x, y, **kwargs): self.model.fit(x, y, **kwargs) def fit_generator(self, generator, steps_per_epoch, **kwargs): self.model.fit_generator(generator, steps_per_epoch, **kwargs) def get_config(self): config = { 'pooling': self.pooling, 'loss': self.loss, 'left_context': self.left_context, 'right_context': self.right_context, 'begin_context': self.begin_context, 'end_context': self.end_context} base_config = super(SeqEmbed, self).get_config() return dict(list(base_config.items()) + list(config.items())) def save(self, file_path): file_model = '%s.json' % (file_path) with open(file_model, 'w') as f: f.write(self.to_json()) file_model = '%s.enc.h5' % (file_path) self.enc_net.save(file_model) file_model = '%s.pt.h5' % (file_path) self.pt_net.save(file_model) @classmethod def load(cls, file_path): file_config = '%s.json' % (file_path) config = SeqEmbed.load_config(file_config) file_model = '%s.enc.h5' % (file_path) enc_net = load_model(file_model, custom_objects=get_keras_custom_obj()) file_model = '%s.pt.h5' % (file_path) pt_net = load_model(file_model, custom_objects=get_keras_custom_obj()) filter_args = ('loss', 'pooling', 'left_context', 'right_context', 'begin_context', 'end_context', 'name') kwargs = {k: config[k] for k in filter_args if k in config } return cls(enc_net, pt_net, **kwargs) @staticmethod def filter_args(prefix=None, **kwargs): if prefix is None: p = '' else: p = prefix + '_' valid_args = ('pooling', 'left_context', 'right_context', 'begin_context', 'end_context') return dict((k, kwargs[p+k]) for k in valid_args if p+k in kwargs) @staticmethod def add_argparse_args(parser, prefix=None): if prefix is None: p1 = '--' p2 = '' else: p1 = '--' + prefix + '-' p2 = prefix + '_' parser.add_argument(p1+'pooling', dest=p2+'pooling', default='mean+std', choices=['mean+std', 'mean+logvar', 'mean']) parser.add_argument(p1+'left-context', dest=(p2+'left_context'), default=0, type=int) parser.add_argument(p1+'right-context', dest=(p2+'right_context'), default=0, type=int) parser.add_argument(p1+'begin-context', dest=(p2+'begin_context'), default=None, type=int) parser.add_argument(p1+'end-context', dest=(p2+'end_context'), default=None, type=int)
hyperion/keras/embed/seq_embed.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange import logging import numpy as np from keras import backend as K from keras import optimizers from keras import objectives from keras.layers import Input, Concatenate, MaxPooling1D from keras.models import Model, load_model, model_from_json from .. import objectives as hyp_obj from ..keras_utils import * from ..layers import * from ..losses import categorical_mbr from ...hyp_model import HypModel class SeqEmbed(HypModel): def __init__(self, enc_net, pt_net, loss='categorical_crossentropy', pooling='mean+std', left_context=0, right_context=0, begin_context=None, end_context=None, enc_downsampling=None, **kwargs): super(SeqEmbed, self).__init__(**kwargs) self.enc_net = enc_net self.pt_net = pt_net self.pooling = pooling self.loss = loss self.model = None self.pool_net = None self.left_context = left_context self.right_context = right_context self.begin_context = left_context if begin_context is None else begin_context self.end_context = right_context if end_context is None else end_context self._enc_downsampling = enc_downsampling self.max_seq_length = None @property def x_dim(self): return self.enc_net.get_input_shape_at(0)[-1] @property def num_classes(self): return self.pt_net.get_output_shape_at(0)[-1] @property def pool_in_dim(self): return self.enc_net.get_output_shape_at(0)[-1] @property def pool_out_dim(self): return self.pt_net.get_input_shape_at(0)[-1] @property def in_length(self): if self.max_seq_length is None: return self.enc_net.get_input_shape_at(0)[-2] return self.max_seq_length @property def pool_in_length(self): pool_length = self.enc_net.get_output_shape_at(0)[-2] if pool_length is None: in_length = self.in_length if in_length is None: return None x = Input(shape=(in_length, self.x_dim)) net = Model(x, self.enc_net(x)) pool_length = net.get_output_shape_at(0)[-2] return pool_length @property def enc_downsampling(self): if self._enc_downsampling is None: assert self.in_length is not None assert self.pool_in_length is not None r = self.in_length/self.pool_in_length assert np.ceil(r) == np.floor(r) self._enc_downsampling = int(r) return self._enc_downsampling def _apply_pooling(self, x, mask): if self.pooling == 'mean+std': pool = Concatenate(axis=-1, name='pooling')( GlobalWeightedMeanStdPooling1D(name='mean--std')([x, mask])) elif self.pooling == 'mean+logvar': pool = Concatenate(axis=-1, name='pooling')( GlobalWeightedMeanLogVarPooling1D(name='mean--logvar')([x, mask])) elif self.pooling == 'mean': pool = GlobalWeightedAveragePooling1D(name='pooling')([x, mask]) else: raise ValueError('Invalid pooling %s' % self.pooling) return pool def compile(self, metrics=None, **kwargs): if self.loss == 'categorical_mbr': loss = categorical_mbr else: loss = self.loss if metrics is None: self.model.compile(loss=loss, **kwargs) else: self.model.compile(loss=loss, metrics=metrics, weighted_metrics=metrics, **kwargs) def freeze_enc_net(self): self.enc_net.trainable = False def freeze_enc_net_layers(self, layers): for layer_name in layers: self.enc_net.get_layer(layer_name).trainable = False def freeze_pt_net_layers(self, layers): for layer_name in layers: self.pt_net.get_layer(layer_name).trainable = False def build(self, max_seq_length=None): if max_seq_length is None: max_seq_length = self.enc_net.get_input_shape_at(0)[-2] self.max_seq_length = max_seq_length x = Input(shape=(max_seq_length, self.x_dim,)) mask = CreateMask(0)(x) frame_embed = self.enc_net(x) dec_ratio = int(max_seq_length/frame_embed._keras_shape[1]) if dec_ratio > 1: mask = MaxPooling1D(dec_ratio, padding='same')(mask) pool = self._apply_pooling(frame_embed, mask) y = self.pt_net(pool) self.model = Model(x, y) self.model.summary() def build_embed(self, layers): frame_embed = Input(shape=(None, self.pool_in_dim,)) mask = Input(shape=(None,)) pool = self._apply_pooling(frame_embed, mask) outputs = [] for layer_name in layers: embed_i = Model(self.pt_net.get_input_at(0), self.pt_net.get_layer(layer_name).get_output_at(0))(pool) outputs.append(embed_i) self.pool_net = Model([frame_embed, mask], outputs) self.pool_net.summary() def predict_embed(self, x, **kwargs): in_seq_length = self.in_length pool_seq_length = self.pool_in_length r = self.enc_downsampling assert np.ceil(self.left_context/r) == np.floor(self.left_context/r) assert np.ceil(self.right_context/r) == np.floor(self.right_context/r) assert np.ceil(self.begin_context/r) == np.floor(self.begin_context/r) assert np.ceil(self.end_context/r) == np.floor(self.end_context/r) pool_begin_context = int(self.begin_context/r) pool_end_context = int(self.end_context/r) pool_left_context = int(self.left_context/r) pool_right_context = int(self.right_context/r) in_length = x.shape[-2] pool_length = int(in_length/r) in_shift = in_seq_length - self.left_context - self.right_context pool_shift = int(in_shift/r) y = np.zeros((pool_length, self.pool_in_dim), dtype=float_keras()) mask = np.ones((1, pool_length), dtype=float_keras()) mask[0,:pool_begin_context] = 0 mask[0,pool_length - pool_end_context:] = 0 num_batches = max(int(np.ceil((in_length-in_seq_length)/in_shift+1)), 1) x_i = np.zeros((1,in_seq_length, x.shape[-1]), dtype=float_keras()) j_in = 0 j_out = 0 for i in xrange(num_batches): k_in = min(j_in+in_seq_length, in_length) k_out = min(j_out+pool_seq_length, pool_length) l_in = k_in - j_in l_out = k_out - j_out x_i[0,:l_in] = x[j_in:k_in] y_i = self.enc_net.predict(x_i, batch_size=1, **kwargs)[0] y[j_out:k_out] = y_i[:l_out] j_in += in_shift j_out += pool_shift if i==0: j_out += pool_left_context logging.debug(pool_seq_length) logging.debug(pool_left_context) logging.debug(pool_right_context) logging.debug(pool_begin_context) logging.debug(pool_end_context) logging.debug('embed2 %d %d %d' % (pool_length, j_out-pool_shift, j_out-pool_shift+l_out)) y = np.expand_dims(y, axis=0) embeds = self.pool_net.predict([y, mask], batch_size=1, **kwargs) return np.hstack(tuple(embeds)) @property def embed_dim(self): if self.pool_net is None: return None embed_dim=0 for node in xrange(len(self.pool_net._inbound_nodes)): output_shape = self.pool_net.get_output_shape_at(node) if isinstance(output_shape, list): for shape in output_shape: embed_dim += shape[-1] else: embed_dim += output_shape[-1] return embed_dim def build_eval(self): frame_embed = Input(shape=(None, self.pool_in_dim,)) mask = Input(shape=(None,)) pool = self._apply_pooling(frame_embed, mask) score = self.pt_net(pool) self.pool_net = Model([frame_embed, mask], score) self.pool_net.summary() def predict_eval(self, x, **kwargs): return np.log(self.predict_embed(x, **kwargs)+1e-10) def fit(self, x, y, **kwargs): self.model.fit(x, y, **kwargs) def fit_generator(self, generator, steps_per_epoch, **kwargs): self.model.fit_generator(generator, steps_per_epoch, **kwargs) def get_config(self): config = { 'pooling': self.pooling, 'loss': self.loss, 'left_context': self.left_context, 'right_context': self.right_context, 'begin_context': self.begin_context, 'end_context': self.end_context} base_config = super(SeqEmbed, self).get_config() return dict(list(base_config.items()) + list(config.items())) def save(self, file_path): file_model = '%s.json' % (file_path) with open(file_model, 'w') as f: f.write(self.to_json()) file_model = '%s.enc.h5' % (file_path) self.enc_net.save(file_model) file_model = '%s.pt.h5' % (file_path) self.pt_net.save(file_model) @classmethod def load(cls, file_path): file_config = '%s.json' % (file_path) config = SeqEmbed.load_config(file_config) file_model = '%s.enc.h5' % (file_path) enc_net = load_model(file_model, custom_objects=get_keras_custom_obj()) file_model = '%s.pt.h5' % (file_path) pt_net = load_model(file_model, custom_objects=get_keras_custom_obj()) filter_args = ('loss', 'pooling', 'left_context', 'right_context', 'begin_context', 'end_context', 'name') kwargs = {k: config[k] for k in filter_args if k in config } return cls(enc_net, pt_net, **kwargs) @staticmethod def filter_args(prefix=None, **kwargs): if prefix is None: p = '' else: p = prefix + '_' valid_args = ('pooling', 'left_context', 'right_context', 'begin_context', 'end_context') return dict((k, kwargs[p+k]) for k in valid_args if p+k in kwargs) @staticmethod def add_argparse_args(parser, prefix=None): if prefix is None: p1 = '--' p2 = '' else: p1 = '--' + prefix + '-' p2 = prefix + '_' parser.add_argument(p1+'pooling', dest=p2+'pooling', default='mean+std', choices=['mean+std', 'mean+logvar', 'mean']) parser.add_argument(p1+'left-context', dest=(p2+'left_context'), default=0, type=int) parser.add_argument(p1+'right-context', dest=(p2+'right_context'), default=0, type=int) parser.add_argument(p1+'begin-context', dest=(p2+'begin_context'), default=None, type=int) parser.add_argument(p1+'end-context', dest=(p2+'end_context'), default=None, type=int)
0.808029
0.176193
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import utility from utils.loss import discriminator class Adversarial(nn.Module): def __init__(self, args, gan_type): super(Adversarial, self).__init__() self.gan_type = gan_type self.gan_k = args.gan_k self.discriminator = discriminator.Discriminator(args, gan_type) if gan_type != 'WGAN_GP': self.optimizer = utility.make_optimizer(args, self.discriminator) else: self.optimizer = optim.Adam( self.discriminator.parameters(), betas=(0, 0.9), eps=1e-8, lr=1e-5 ) self.scheduler = utility.make_scheduler(args, self.optimizer) def forward(self, fake, real): fake_detach = fake.detach() self.loss = 0 for _ in range(self.gan_k): self.optimizer.zero_grad() d_fake = self.discriminator(fake_detach) d_real = self.discriminator(real) if self.gan_type == 'GAN': label_fake = torch.zeros_like(d_fake) label_real = torch.ones_like(d_real) loss_d \ = F.binary_cross_entropy_with_logits(d_fake, label_fake) \ + F.binary_cross_entropy_with_logits(d_real, label_real) elif self.gan_type.find('WGAN') >= 0: loss_d = (d_fake - d_real).mean() if self.gan_type.find('GP') >= 0: epsilon = torch.rand_like(fake).view(-1, 1, 1, 1) hat = fake_detach.mul(1 - epsilon) + real.mul(epsilon) hat.requires_grad = True d_hat = self.discriminator(hat) gradients = torch.autograd.grad( outputs=d_hat.sum(), inputs=hat, retain_graph=True, create_graph=True, only_inputs=True )[0] gradients = gradients.view(gradients.size(0), -1) gradient_norm = gradients.norm(2, dim=1) gradient_penalty = 10 * gradient_norm.sub(1).pow(2).mean() loss_d += gradient_penalty # Discriminator update self.loss += loss_d.item() loss_d.backward() self.optimizer.step() if self.gan_type == 'WGAN': for p in self.discriminator.parameters(): p.data.clamp_(-1, 1) self.loss /= self.gan_k d_fake_for_g = self.discriminator(fake) if self.gan_type == 'GAN': loss_g = F.binary_cross_entropy_with_logits( d_fake_for_g, label_real ) elif self.gan_type.find('WGAN') >= 0: loss_g = -d_fake_for_g.mean() # Generator loss return loss_g def state_dict(self, *args, **kwargs): state_discriminator = self.discriminator.state_dict(*args, **kwargs) state_optimizer = self.optimizer.state_dict() return dict(**state_discriminator, **state_optimizer) # Some references # https://github.com/kuc2477/pytorch-wgan-gp/blob/master/model.py # OR # https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
utils/loss/adversarial.py
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import utility from utils.loss import discriminator class Adversarial(nn.Module): def __init__(self, args, gan_type): super(Adversarial, self).__init__() self.gan_type = gan_type self.gan_k = args.gan_k self.discriminator = discriminator.Discriminator(args, gan_type) if gan_type != 'WGAN_GP': self.optimizer = utility.make_optimizer(args, self.discriminator) else: self.optimizer = optim.Adam( self.discriminator.parameters(), betas=(0, 0.9), eps=1e-8, lr=1e-5 ) self.scheduler = utility.make_scheduler(args, self.optimizer) def forward(self, fake, real): fake_detach = fake.detach() self.loss = 0 for _ in range(self.gan_k): self.optimizer.zero_grad() d_fake = self.discriminator(fake_detach) d_real = self.discriminator(real) if self.gan_type == 'GAN': label_fake = torch.zeros_like(d_fake) label_real = torch.ones_like(d_real) loss_d \ = F.binary_cross_entropy_with_logits(d_fake, label_fake) \ + F.binary_cross_entropy_with_logits(d_real, label_real) elif self.gan_type.find('WGAN') >= 0: loss_d = (d_fake - d_real).mean() if self.gan_type.find('GP') >= 0: epsilon = torch.rand_like(fake).view(-1, 1, 1, 1) hat = fake_detach.mul(1 - epsilon) + real.mul(epsilon) hat.requires_grad = True d_hat = self.discriminator(hat) gradients = torch.autograd.grad( outputs=d_hat.sum(), inputs=hat, retain_graph=True, create_graph=True, only_inputs=True )[0] gradients = gradients.view(gradients.size(0), -1) gradient_norm = gradients.norm(2, dim=1) gradient_penalty = 10 * gradient_norm.sub(1).pow(2).mean() loss_d += gradient_penalty # Discriminator update self.loss += loss_d.item() loss_d.backward() self.optimizer.step() if self.gan_type == 'WGAN': for p in self.discriminator.parameters(): p.data.clamp_(-1, 1) self.loss /= self.gan_k d_fake_for_g = self.discriminator(fake) if self.gan_type == 'GAN': loss_g = F.binary_cross_entropy_with_logits( d_fake_for_g, label_real ) elif self.gan_type.find('WGAN') >= 0: loss_g = -d_fake_for_g.mean() # Generator loss return loss_g def state_dict(self, *args, **kwargs): state_discriminator = self.discriminator.state_dict(*args, **kwargs) state_optimizer = self.optimizer.state_dict() return dict(**state_discriminator, **state_optimizer) # Some references # https://github.com/kuc2477/pytorch-wgan-gp/blob/master/model.py # OR # https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
0.930616
0.292861
from glue.viewers.image.composite_array import CompositeArray from bqplot_image_gl.viewlistener import ViewListener from ...link import on_change from ..common.viewer import BqplotBaseView from ..scatter.layer_artist import BqplotScatterLayerArtist from .layer_artist import BqplotImageLayerArtist, BqplotImageSubsetLayerArtist from .frb_mark import FRBImage from glue_jupyter.bqplot.image.state import BqplotImageViewerState from glue_jupyter.common.state_widgets.layer_scatter import ScatterLayerStateWidget from glue_jupyter.common.state_widgets.layer_image import (ImageLayerStateWidget, ImageSubsetLayerStateWidget) from glue_jupyter.common.state_widgets.viewer_image import ImageViewerStateWidget __all__ = ['BqplotImageView'] class BqplotImageView(BqplotBaseView): allow_duplicate_data = False allow_duplicate_subset = False large_data_size = 2e7 _layer_style_widget_cls = {BqplotImageLayerArtist: ImageLayerStateWidget, BqplotImageSubsetLayerArtist: ImageSubsetLayerStateWidget, BqplotScatterLayerArtist: ScatterLayerStateWidget} _state_cls = BqplotImageViewerState _options_cls = ImageViewerStateWidget tools = ['bqplot:home', 'bqplot:panzoom', 'bqplot:rectangle', 'bqplot:circle'] def __init__(self, session): super(BqplotImageView, self).__init__(session) self.shape = None self._composite = CompositeArray() self._composite_image = FRBImage(self, self._composite) self.figure.marks = list(self.figure.marks) + [self._composite_image] self.state.add_callback('reference_data', self._reset_limits) self.state.add_callback('x_att', self._reset_limits) self.state.add_callback('y_att', self._reset_limits) self._setup_view_listener() on_change([(self.state, 'aspect')])(self._sync_figure_aspect) self._sync_figure_aspect() def _setup_view_listener(self): self._vl = ViewListener(widget=self.figure, css_selector=".plotarea_events") self._vl.observe(self._on_view_change, names=['view_data']) def _reset_limits(self, *args): self.state.reset_limits() def _on_view_change(self, *args): views = sorted(self._vl.view_data) if len(views) > 0: first_view = self._vl.view_data[views[0]] self.shape = (int(first_view['height']), int(first_view['width'])) self._composite_image.update() else: self.shape = None self._sync_figure_aspect() def _sync_figure_aspect(self, *args, **kwargs): with self.figure.hold_trait_notifications(): if self.state.aspect == 'equal': if self.shape is None: axes_ratio = None else: height, width = self._composite_image.shape axes_ratio = height / width else: axes_ratio = None self.state._set_axes_aspect_ratio(axes_ratio) def get_data_layer_artist(self, layer=None, layer_state=None): if layer.ndim == 1: cls = BqplotScatterLayerArtist else: cls = BqplotImageLayerArtist return self.get_layer_artist(cls, layer=layer, layer_state=layer_state) def get_subset_layer_artist(self, layer=None, layer_state=None): if layer.ndim == 1: cls = BqplotScatterLayerArtist else: cls = BqplotImageSubsetLayerArtist return self.get_layer_artist(cls, layer=layer, layer_state=layer_state)
glue_jupyter/bqplot/image/viewer.py
from glue.viewers.image.composite_array import CompositeArray from bqplot_image_gl.viewlistener import ViewListener from ...link import on_change from ..common.viewer import BqplotBaseView from ..scatter.layer_artist import BqplotScatterLayerArtist from .layer_artist import BqplotImageLayerArtist, BqplotImageSubsetLayerArtist from .frb_mark import FRBImage from glue_jupyter.bqplot.image.state import BqplotImageViewerState from glue_jupyter.common.state_widgets.layer_scatter import ScatterLayerStateWidget from glue_jupyter.common.state_widgets.layer_image import (ImageLayerStateWidget, ImageSubsetLayerStateWidget) from glue_jupyter.common.state_widgets.viewer_image import ImageViewerStateWidget __all__ = ['BqplotImageView'] class BqplotImageView(BqplotBaseView): allow_duplicate_data = False allow_duplicate_subset = False large_data_size = 2e7 _layer_style_widget_cls = {BqplotImageLayerArtist: ImageLayerStateWidget, BqplotImageSubsetLayerArtist: ImageSubsetLayerStateWidget, BqplotScatterLayerArtist: ScatterLayerStateWidget} _state_cls = BqplotImageViewerState _options_cls = ImageViewerStateWidget tools = ['bqplot:home', 'bqplot:panzoom', 'bqplot:rectangle', 'bqplot:circle'] def __init__(self, session): super(BqplotImageView, self).__init__(session) self.shape = None self._composite = CompositeArray() self._composite_image = FRBImage(self, self._composite) self.figure.marks = list(self.figure.marks) + [self._composite_image] self.state.add_callback('reference_data', self._reset_limits) self.state.add_callback('x_att', self._reset_limits) self.state.add_callback('y_att', self._reset_limits) self._setup_view_listener() on_change([(self.state, 'aspect')])(self._sync_figure_aspect) self._sync_figure_aspect() def _setup_view_listener(self): self._vl = ViewListener(widget=self.figure, css_selector=".plotarea_events") self._vl.observe(self._on_view_change, names=['view_data']) def _reset_limits(self, *args): self.state.reset_limits() def _on_view_change(self, *args): views = sorted(self._vl.view_data) if len(views) > 0: first_view = self._vl.view_data[views[0]] self.shape = (int(first_view['height']), int(first_view['width'])) self._composite_image.update() else: self.shape = None self._sync_figure_aspect() def _sync_figure_aspect(self, *args, **kwargs): with self.figure.hold_trait_notifications(): if self.state.aspect == 'equal': if self.shape is None: axes_ratio = None else: height, width = self._composite_image.shape axes_ratio = height / width else: axes_ratio = None self.state._set_axes_aspect_ratio(axes_ratio) def get_data_layer_artist(self, layer=None, layer_state=None): if layer.ndim == 1: cls = BqplotScatterLayerArtist else: cls = BqplotImageLayerArtist return self.get_layer_artist(cls, layer=layer, layer_state=layer_state) def get_subset_layer_artist(self, layer=None, layer_state=None): if layer.ndim == 1: cls = BqplotScatterLayerArtist else: cls = BqplotImageSubsetLayerArtist return self.get_layer_artist(cls, layer=layer, layer_state=layer_state)
0.647241
0.354852
"""Command for creating target HTTP proxies.""" from googlecloudapis.compute.v1 import compute_v1_messages as messages from googlecloudsdk.compute.lib import base_classes class Create(base_classes.BaseAsyncMutator): """Create a target HTTP proxy.""" @staticmethod def Args(parser): parser.add_argument( '--description', help='An optional, textual description for the target HTTP proxy.') url_map = parser.add_argument( '--url-map', required=True, help=('A reference to a URL map resource that defines the mapping of ' 'URLs to backend services.')) url_map.detailed_help = """\ A reference to a URL map resource that defines the mapping of URLs to backend services. The URL map must exist and cannot be deleted while referenced by a target HTTP proxy. """ parser.add_argument( 'name', help='The name of the target HTTP proxy.') @property def service(self): return self.context['compute'].targetHttpProxies @property def method(self): return 'Insert' @property def print_resource_type(self): return 'targetHttpProxies' def CreateRequests(self, args): url_map_uri = self.context['uri-builder'].Build( 'global', 'urlMaps', args.url_map) request = messages.ComputeTargetHttpProxiesInsertRequest( project=self.context['project'], targetHttpProxy=messages.TargetHttpProxy( description=args.description, name=args.name, urlMap=url_map_uri)) return [request] Create.detailed_help = { 'brief': 'Create a target HTTP proxy', 'DESCRIPTION': """ *{command}* is used to create target HTTP proxies. A target HTTP proxy is referenced by one or more forwarding rules which define which packets the proxy is responsible for routing. The target HTTP proxy points to a URL map that defines the rules for routing the requests. The URL map's job is to map URLs to backend services which handle the actual requests. """, }
lib/googlecloudsdk/compute/subcommands/target_http_proxies/create.py
"""Command for creating target HTTP proxies.""" from googlecloudapis.compute.v1 import compute_v1_messages as messages from googlecloudsdk.compute.lib import base_classes class Create(base_classes.BaseAsyncMutator): """Create a target HTTP proxy.""" @staticmethod def Args(parser): parser.add_argument( '--description', help='An optional, textual description for the target HTTP proxy.') url_map = parser.add_argument( '--url-map', required=True, help=('A reference to a URL map resource that defines the mapping of ' 'URLs to backend services.')) url_map.detailed_help = """\ A reference to a URL map resource that defines the mapping of URLs to backend services. The URL map must exist and cannot be deleted while referenced by a target HTTP proxy. """ parser.add_argument( 'name', help='The name of the target HTTP proxy.') @property def service(self): return self.context['compute'].targetHttpProxies @property def method(self): return 'Insert' @property def print_resource_type(self): return 'targetHttpProxies' def CreateRequests(self, args): url_map_uri = self.context['uri-builder'].Build( 'global', 'urlMaps', args.url_map) request = messages.ComputeTargetHttpProxiesInsertRequest( project=self.context['project'], targetHttpProxy=messages.TargetHttpProxy( description=args.description, name=args.name, urlMap=url_map_uri)) return [request] Create.detailed_help = { 'brief': 'Create a target HTTP proxy', 'DESCRIPTION': """ *{command}* is used to create target HTTP proxies. A target HTTP proxy is referenced by one or more forwarding rules which define which packets the proxy is responsible for routing. The target HTTP proxy points to a URL map that defines the rules for routing the requests. The URL map's job is to map URLs to backend services which handle the actual requests. """, }
0.881341
0.16099
from __future__ import print_function import time import numpy as np import sympy as sy from bokeh.browserlib import view from bokeh.document import Document from bokeh.glyphs import Line from bokeh.objects import Plot, DataRange1d, LinearAxis, ColumnDataSource, Grid, Legend from bokeh.session import Session from bokeh.widgets import Slider, TextInput, HBox, VBox, Dialog from requests.exceptions import ConnectionError document = Document() session = Session() session.use_doc('taylor_server') session.load_document(document) xs = sy.Symbol('x') expr = sy.exp(-xs)*sy.sin(xs) order = 1 def taylor(fx, xs, order, x_range=(0, 1), n=200): x0, x1 = x_range x = np.linspace(float(x0), float(x1), n) fy = sy.lambdify(xs, fx, modules=['numpy'])(x) tx = fx.series(xs, n=order).removeO() if tx.is_Number: ty = np.zeros_like(x) ty.fill(float(tx)) else: ty = sy.lambdify(xs, tx, modules=['numpy'])(x) return x, fy, ty def update_data(): x, fy, ty = taylor(expr, xs, order, (-2*sy.pi, 2*sy.pi), 200) plot.title = "%s vs. taylor(%s, n=%d)" % (expr, expr, order) legend.legends = { "%s" % expr: [line_f_glyph], "taylor(%s)" % expr: [line_t_glyph], } source.data = dict(x=x, fy=fy, ty=ty) slider.value = order session.store_document(document) source = ColumnDataSource(data=dict(x=[], fy=[], ty=[])) xdr = DataRange1d(sources=[source.columns("x")]) ydr = DataRange1d(sources=[source.columns("fy")]) plot = Plot(x_range=xdr, y_range=ydr, plot_width=800, plot_height=400) line_f = Line(x="x", y="fy", line_color="blue", line_width=2) line_f_glyph = plot.add_glyph(source, line_f) plot.add_layout(line_f_glyph) line_t = Line(x="x", y="ty", line_color="red", line_width=2) line_t_glyph = plot.add_glyph(source, line_t) plot.add_layout(line_t_glyph) xaxis = LinearAxis() plot.add_layout(xaxis, 'below') yaxis = LinearAxis() plot.add_layout(yaxis, 'left') xgrid = Grid(dimension=0, ticker=xaxis.ticker) ygrid = Grid(dimension=1, ticker=yaxis.ticker) legend = Legend(orientation="bottom_left") plot.add_layout(legend) def on_slider_value_change(obj, attr, old, new): global order order = int(new) update_data() def on_text_value_change(obj, attr, old, new): try: global expr expr = sy.sympify(new, dict(x=xs)) except (sy.SympifyError, TypeError, ValueError) as exception: dialog.content = str(exception) dialog.visible = True session.store_objects(dialog) else: update_data() dialog = Dialog(title="Invalid expression", buttons=["Close"]) slider = Slider(start=1, end=20, value=order, step=1, title="Order:") slider.on_change('value', on_slider_value_change) text = TextInput(value=str(expr), title="Expression:") text.on_change('value', on_text_value_change) inputs = HBox(children=[slider, text]) layout = VBox(children=[inputs, plot, dialog]) document.add(layout) update_data() if __name__ == "__main__": link = session.object_link(document.context) print("Please visit %s to see the plots" % link) view (link) print("\npress ctrl-C to exit") try: while True: session.load_document(document) time.sleep(0.5) except KeyboardInterrupt: print() except ConnectionError: print("Connection to bokeh-server was terminated")
examples/glyphs/taylor_server.py
from __future__ import print_function import time import numpy as np import sympy as sy from bokeh.browserlib import view from bokeh.document import Document from bokeh.glyphs import Line from bokeh.objects import Plot, DataRange1d, LinearAxis, ColumnDataSource, Grid, Legend from bokeh.session import Session from bokeh.widgets import Slider, TextInput, HBox, VBox, Dialog from requests.exceptions import ConnectionError document = Document() session = Session() session.use_doc('taylor_server') session.load_document(document) xs = sy.Symbol('x') expr = sy.exp(-xs)*sy.sin(xs) order = 1 def taylor(fx, xs, order, x_range=(0, 1), n=200): x0, x1 = x_range x = np.linspace(float(x0), float(x1), n) fy = sy.lambdify(xs, fx, modules=['numpy'])(x) tx = fx.series(xs, n=order).removeO() if tx.is_Number: ty = np.zeros_like(x) ty.fill(float(tx)) else: ty = sy.lambdify(xs, tx, modules=['numpy'])(x) return x, fy, ty def update_data(): x, fy, ty = taylor(expr, xs, order, (-2*sy.pi, 2*sy.pi), 200) plot.title = "%s vs. taylor(%s, n=%d)" % (expr, expr, order) legend.legends = { "%s" % expr: [line_f_glyph], "taylor(%s)" % expr: [line_t_glyph], } source.data = dict(x=x, fy=fy, ty=ty) slider.value = order session.store_document(document) source = ColumnDataSource(data=dict(x=[], fy=[], ty=[])) xdr = DataRange1d(sources=[source.columns("x")]) ydr = DataRange1d(sources=[source.columns("fy")]) plot = Plot(x_range=xdr, y_range=ydr, plot_width=800, plot_height=400) line_f = Line(x="x", y="fy", line_color="blue", line_width=2) line_f_glyph = plot.add_glyph(source, line_f) plot.add_layout(line_f_glyph) line_t = Line(x="x", y="ty", line_color="red", line_width=2) line_t_glyph = plot.add_glyph(source, line_t) plot.add_layout(line_t_glyph) xaxis = LinearAxis() plot.add_layout(xaxis, 'below') yaxis = LinearAxis() plot.add_layout(yaxis, 'left') xgrid = Grid(dimension=0, ticker=xaxis.ticker) ygrid = Grid(dimension=1, ticker=yaxis.ticker) legend = Legend(orientation="bottom_left") plot.add_layout(legend) def on_slider_value_change(obj, attr, old, new): global order order = int(new) update_data() def on_text_value_change(obj, attr, old, new): try: global expr expr = sy.sympify(new, dict(x=xs)) except (sy.SympifyError, TypeError, ValueError) as exception: dialog.content = str(exception) dialog.visible = True session.store_objects(dialog) else: update_data() dialog = Dialog(title="Invalid expression", buttons=["Close"]) slider = Slider(start=1, end=20, value=order, step=1, title="Order:") slider.on_change('value', on_slider_value_change) text = TextInput(value=str(expr), title="Expression:") text.on_change('value', on_text_value_change) inputs = HBox(children=[slider, text]) layout = VBox(children=[inputs, plot, dialog]) document.add(layout) update_data() if __name__ == "__main__": link = session.object_link(document.context) print("Please visit %s to see the plots" % link) view (link) print("\npress ctrl-C to exit") try: while True: session.load_document(document) time.sleep(0.5) except KeyboardInterrupt: print() except ConnectionError: print("Connection to bokeh-server was terminated")
0.57081
0.381969
import io import sys import pyxb import pyxb.binding # Import bindings for namespaces imported into schema import pyxb.binding.datatypes import pyxb.binding.saxer import pyxb.utils.domutils import pyxb.utils.six import pyxb.utils.utility from . import dataoneTypes_v1 as _ImportedBinding_dataoneTypes_v1 # Unique identifier for bindings created at the same time _GenerationUID = pyxb.utils.utility.UniqueIdentifier( 'urn:uuid:c90f2764-b359-11e7-b444-080027018ba0' ) # Version of PyXB used to generate the bindings _PyXBVersion = '1.2.6' # Generated bindings are not compatible across PyXB versions if pyxb.__version__ != _PyXBVersion: raise pyxb.PyXBVersionError(_PyXBVersion) # A holder for module-level binding classes so we can access them from # inside class definitions where property names may conflict. _module_typeBindings = pyxb.utils.utility.Object() # NOTE: All namespace declarations are reserved within the binding Namespace = pyxb.namespace.NamespaceForURI( 'http://ns.dataone.org/service/types/v1.1', create_if_missing=True ) Namespace.configureCategories(['typeBinding', 'elementBinding']) def CreateFromDocument(xml_text, default_namespace=None, location_base=None): """Parse the given XML and use the document element to create a Python instance. @param xml_text An XML document. This should be data (Python 2 str or Python 3 bytes), or a text (Python 2 unicode or Python 3 str) in the L{pyxb._InputEncoding} encoding. @keyword default_namespace The L{pyxb.Namespace} instance to use as the default namespace where there is no default namespace in scope. If unspecified or C{None}, the namespace of the module containing this function will be used. @keyword location_base: An object to be recorded as the base of all L{pyxb.utils.utility.Location} instances associated with events and objects handled by the parser. You might pass the URI from which the document was obtained. """ if pyxb.XMLStyle_saxer != pyxb._XMLStyle: dom = pyxb.utils.domutils.StringToDOM(xml_text) return CreateFromDOM(dom.documentElement, default_namespace=default_namespace) if default_namespace is None: default_namespace = Namespace.fallbackNamespace() saxer = pyxb.binding.saxer.make_parser( fallback_namespace=default_namespace, location_base=location_base ) handler = saxer.getContentHandler() xmld = xml_text if isinstance(xmld, pyxb.utils.six.text_type): xmld = xmld.encode(pyxb._InputEncoding) saxer.parse(io.BytesIO(xmld)) instance = handler.rootObject() return instance def CreateFromDOM(node, default_namespace=None): """Create a Python instance from the given DOM node. The node tag must correspond to an element declaration in this module. @deprecated: Forcing use of DOM interface is unnecessary; use L{CreateFromDocument}. """ if default_namespace is None: default_namespace = Namespace.fallbackNamespace() return pyxb.binding.basis.element.AnyCreateFromDOM(node, default_namespace) # Complex type {http://ns.dataone.org/service/types/v1.1}QueryEngineDescription with content type ELEMENT_ONLY class QueryEngineDescription(pyxb.binding.basis.complexTypeDefinition): """Describes a query engine that can be used to search content on the node. Query engines may be general purpose or specialized for particular communities or domains. """ _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'QueryEngineDescription') _XSDLocation = pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 72, 2, ) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element queryEngineVersion uses Python identifier queryEngineVersion __queryEngineVersion = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'queryEngineVersion'), 'queryEngineVersion', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_queryEngineVersion', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 78, 6, ), ) queryEngineVersion = property( __queryEngineVersion.value, __queryEngineVersion.set, None, 'The version of the underlying query engine. Used by clients to determine possible\n compatibility concerns or features available.', ) # Element querySchemaVersion uses Python identifier querySchemaVersion __querySchemaVersion = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'querySchemaVersion'), 'querySchemaVersion', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_querySchemaVersion', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) querySchemaVersion = property( __querySchemaVersion.value, __querySchemaVersion.set, None, 'Version of the schema in use by the query engine, e.g. "1.0.1"', ) # Element name uses Python identifier name __name = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_name', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 89, 6, ), ) name = property( __name.value, __name.set, None, 'The full, human readable name of the query engine. For example: \n "Apache SOLR"', ) # Element additionalInfo uses Python identifier additionalInfo __additionalInfo = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'additionalInfo'), 'additionalInfo', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_additionalInfo', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) additionalInfo = property( __additionalInfo.value, __additionalInfo.set, None, 'An optional human readable description of the query engine. This can be \n used to describe any special capabilities or intended uses for the query engine. For example, \n a query engine may be tuned to suit a particular audience or domain as opposed to providing \n a general purpose discovery mechanism.This field may also contain links to additional information about the query engine, \n such as documentation for the search syntax provided by the query engine implemntors.', ) # Element queryField uses Python identifier queryField __queryField = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'queryField'), 'queryField', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_queryField', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) queryField = property( __queryField.value, __queryField.set, None, 'A list of query fields supported by the query engine.', ) _ElementMap.update( { __queryEngineVersion.name(): __queryEngineVersion, __querySchemaVersion.name(): __querySchemaVersion, __name.name(): __name, __additionalInfo.name(): __additionalInfo, __queryField.name(): __queryField, } ) _AttributeMap.update({}) _module_typeBindings.QueryEngineDescription = QueryEngineDescription Namespace.addCategoryObject( 'typeBinding', 'QueryEngineDescription', QueryEngineDescription ) # Complex type {http://ns.dataone.org/service/types/v1.1}QueryEngineList with content type ELEMENT_ONLY class QueryEngineList(pyxb.binding.basis.complexTypeDefinition): """A list of query engine names that indicate the possible values for CNRead.getQueryEngineDescription and CNRead.query REST API endpoints.""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'QueryEngineList') _XSDLocation = pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 114, 2, ) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element queryEngine uses Python identifier queryEngine __queryEngine = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'queryEngine'), 'queryEngine', '__httpns_dataone_orgservicetypesv1_1_QueryEngineList_queryEngine', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) queryEngine = property( __queryEngine.value, __queryEngine.set, None, 'The name of a queryEngine. This value will be used as a path element in \n REST API calls and so should not contain characters that will need to be escaped.', ) _ElementMap.update({__queryEngine.name(): __queryEngine}) _AttributeMap.update({}) _module_typeBindings.QueryEngineList = QueryEngineList Namespace.addCategoryObject('typeBinding', 'QueryEngineList', QueryEngineList) # Complex type {http://ns.dataone.org/service/types/v1.1}QueryField with content type ELEMENT_ONLY class QueryField(pyxb.binding.basis.complexTypeDefinition): """""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'QueryField') _XSDLocation = pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 131, 2, ) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element name uses Python identifier name __name = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpns_dataone_orgservicetypesv1_1_QueryField_name', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 136, 6, ), ) name = property( __name.value, __name.set, None, 'The name of the field as used programmatically when \n constructing queries or other rferences to the field.', ) # Element description uses Python identifier description __description = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'description'), 'description', '__httpns_dataone_orgservicetypesv1_1_QueryField_description', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) description = property( __description.value, __description.set, None, 'An optional, repeatable, brief description of the field that can be\n used to help guide developers or end users in appropriate use of the field. May for \n example, contain a links to additional documentation.', ) # Element type uses Python identifier type __type = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'type'), 'type', '__httpns_dataone_orgservicetypesv1_1_QueryField_type', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 149, 6, ), ) type = property( __type.value, __type.set, None, 'The type of the field, expressed in the language peculiar to the \n query engine being described.', ) # Element searchable uses Python identifier searchable __searchable = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'searchable'), 'searchable', '__httpns_dataone_orgservicetypesv1_1_QueryField_searchable', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 155, 6, ), ) searchable = property( __searchable.value, __searchable.set, None, 'Indicates if the field may be used in constructing queries (as opposed \n to only appearing in results)', ) # Element returnable uses Python identifier returnable __returnable = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'returnable'), 'returnable', '__httpns_dataone_orgservicetypesv1_1_QueryField_returnable', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 161, 6, ), ) returnable = property( __returnable.value, __returnable.set, None, 'Indicates if the field values may be returned in search results.', ) # Element sortable uses Python identifier sortable __sortable = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'sortable'), 'sortable', '__httpns_dataone_orgservicetypesv1_1_QueryField_sortable', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 166, 6, ), ) sortable = property( __sortable.value, __sortable.set, None, 'Indicates if the field can be used for sorting results.', ) # Element multivalued uses Python identifier multivalued __multivalued = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'multivalued'), 'multivalued', '__httpns_dataone_orgservicetypesv1_1_QueryField_multivalued', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) multivalued = property( __multivalued.value, __multivalued.set, None, 'Indicates if the field may contain multiple values. Some query engines\n such as SOLR support this capability.', ) _ElementMap.update( { __name.name(): __name, __description.name(): __description, __type.name(): __type, __searchable.name(): __searchable, __returnable.name(): __returnable, __sortable.name(): __sortable, __multivalued.name(): __multivalued, } ) _AttributeMap.update({}) _module_typeBindings.QueryField = QueryField Namespace.addCategoryObject('typeBinding', 'QueryField', QueryField) queryEngineList = pyxb.binding.basis.element( pyxb.namespace.ExpandedName(Namespace, 'queryEngineList'), QueryEngineList, location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 194, 2, ), ) Namespace.addCategoryObject( 'elementBinding', queryEngineList.name().localName(), queryEngineList ) queryEngineDescription = pyxb.binding.basis.element( pyxb.namespace.ExpandedName(Namespace, 'queryEngineDescription'), QueryEngineDescription, location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 195, 2, ), ) Namespace.addCategoryObject( 'elementBinding', queryEngineDescription.name().localName(), queryEngineDescription ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'queryEngineVersion'), pyxb.binding.datatypes.string, scope=QueryEngineDescription, documentation='The version of the underlying query engine. Used by clients to determine possible\n compatibility concerns or features available.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 78, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'querySchemaVersion'), pyxb.binding.datatypes.string, scope=QueryEngineDescription, documentation='Version of the schema in use by the query engine, e.g. "1.0.1"', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'name'), pyxb.binding.datatypes.string, scope=QueryEngineDescription, documentation='The full, human readable name of the query engine. For example: \n "Apache SOLR"', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 89, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'additionalInfo'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryEngineDescription, documentation='An optional human readable description of the query engine. This can be \n used to describe any special capabilities or intended uses for the query engine. For example, \n a query engine may be tuned to suit a particular audience or domain as opposed to providing \n a general purpose discovery mechanism.This field may also contain links to additional information about the query engine, \n such as documentation for the search syntax provided by the query engine implemntors.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'queryField'), QueryField, scope=QueryEngineDescription, documentation='A list of query fields supported by the query engine.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) ) def _BuildAutomaton(): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton del _BuildAutomaton import pyxb.utils.fac counters = set() cc_0 = pyxb.utils.fac.CounterCondition( min=0, max=1, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) counters.add(cc_0) cc_1 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) counters.add(cc_1) cc_2 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) counters.add(cc_2) states = [] final_update = None symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'queryEngineVersion') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 78, 6, ), ) st_0 = pyxb.utils.fac.State( symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False, ) states.append(st_0) final_update = None symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'querySchemaVersion') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) st_1 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_1) final_update = set() symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag(pyxb.namespace.ExpandedName(None, 'name')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 89, 6, ), ) st_2 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_2) final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'additionalInfo') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) st_3 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_3) final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'queryField') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) st_4 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_4) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_1, [])) transitions.append(pyxb.utils.fac.Transition(st_2, [])) st_0._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_1, [pyxb.utils.fac.UpdateInstruction(cc_0, True)]) ) transitions.append( pyxb.utils.fac.Transition(st_2, [pyxb.utils.fac.UpdateInstruction(cc_0, False)]) ) st_1._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_3, [])) transitions.append(pyxb.utils.fac.Transition(st_4, [])) st_2._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_3, [pyxb.utils.fac.UpdateInstruction(cc_1, True)]) ) transitions.append( pyxb.utils.fac.Transition(st_4, [pyxb.utils.fac.UpdateInstruction(cc_1, False)]) ) st_3._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_4, [pyxb.utils.fac.UpdateInstruction(cc_2, True)]) ) st_4._set_transitionSet(transitions) return pyxb.utils.fac.Automaton(states, counters, False, containing_state=None) QueryEngineDescription._Automaton = _BuildAutomaton() QueryEngineList._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'queryEngine'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryEngineList, documentation='The name of a queryEngine. This value will be used as a path element in \n REST API calls and so should not contain characters that will need to be escaped.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) ) def _BuildAutomaton_(): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_ del _BuildAutomaton_ import pyxb.utils.fac counters = set() cc_0 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) counters.add(cc_0) states = [] final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse( QueryEngineList._UseForTag(pyxb.namespace.ExpandedName(None, 'queryEngine')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) st_0 = pyxb.utils.fac.State( symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False, ) states.append(st_0) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_0, [pyxb.utils.fac.UpdateInstruction(cc_0, True)]) ) st_0._set_transitionSet(transitions) return pyxb.utils.fac.Automaton(states, counters, True, containing_state=None) QueryEngineList._Automaton = _BuildAutomaton_() QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'name'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryField, documentation='The name of the field as used programmatically when \n constructing queries or other rferences to the field.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 136, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'description'), pyxb.binding.datatypes.string, scope=QueryField, documentation='An optional, repeatable, brief description of the field that can be\n used to help guide developers or end users in appropriate use of the field. May for \n example, contain a links to additional documentation.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'type'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryField, documentation='The type of the field, expressed in the language peculiar to the \n query engine being described.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 149, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'searchable'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field may be used in constructing queries (as opposed \n to only appearing in results)', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 155, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'returnable'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field values may be returned in search results.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 161, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'sortable'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field can be used for sorting results.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 166, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'multivalued'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field may contain multiple values. Some query engines\n such as SOLR support this capability.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) ) def _BuildAutomaton_2(): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_2 del _BuildAutomaton_2 import pyxb.utils.fac counters = set() cc_0 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) counters.add(cc_0) cc_1 = pyxb.utils.fac.CounterCondition( min=0, max=1, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) counters.add(cc_1) states = [] final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'name')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 136, 6, ), ) st_0 = pyxb.utils.fac.State( symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False, ) states.append(st_0) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'description')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) st_1 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_1) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'type')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 149, 6, ), ) st_2 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_2) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'searchable')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 155, 6, ), ) st_3 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_3) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'returnable')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 161, 6, ), ) st_4 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_4) final_update = set() symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'sortable')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 166, 6, ), ) st_5 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_5) final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'multivalued')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) st_6 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_6) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_1, [])) transitions.append(pyxb.utils.fac.Transition(st_2, [])) st_0._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_1, [pyxb.utils.fac.UpdateInstruction(cc_0, True)]) ) transitions.append( pyxb.utils.fac.Transition(st_2, [pyxb.utils.fac.UpdateInstruction(cc_0, False)]) ) st_1._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_3, [])) st_2._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_4, [])) st_3._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_5, [])) st_4._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_6, [])) st_5._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_6, [pyxb.utils.fac.UpdateInstruction(cc_1, True)]) ) st_6._set_transitionSet(transitions) return pyxb.utils.fac.Automaton(states, counters, False, containing_state=None) QueryField._Automaton = _BuildAutomaton_2()
lib_common/src/d1_common/types/generated/dataoneTypes_v1_1.py
import io import sys import pyxb import pyxb.binding # Import bindings for namespaces imported into schema import pyxb.binding.datatypes import pyxb.binding.saxer import pyxb.utils.domutils import pyxb.utils.six import pyxb.utils.utility from . import dataoneTypes_v1 as _ImportedBinding_dataoneTypes_v1 # Unique identifier for bindings created at the same time _GenerationUID = pyxb.utils.utility.UniqueIdentifier( 'urn:uuid:c90f2764-b359-11e7-b444-080027018ba0' ) # Version of PyXB used to generate the bindings _PyXBVersion = '1.2.6' # Generated bindings are not compatible across PyXB versions if pyxb.__version__ != _PyXBVersion: raise pyxb.PyXBVersionError(_PyXBVersion) # A holder for module-level binding classes so we can access them from # inside class definitions where property names may conflict. _module_typeBindings = pyxb.utils.utility.Object() # NOTE: All namespace declarations are reserved within the binding Namespace = pyxb.namespace.NamespaceForURI( 'http://ns.dataone.org/service/types/v1.1', create_if_missing=True ) Namespace.configureCategories(['typeBinding', 'elementBinding']) def CreateFromDocument(xml_text, default_namespace=None, location_base=None): """Parse the given XML and use the document element to create a Python instance. @param xml_text An XML document. This should be data (Python 2 str or Python 3 bytes), or a text (Python 2 unicode or Python 3 str) in the L{pyxb._InputEncoding} encoding. @keyword default_namespace The L{pyxb.Namespace} instance to use as the default namespace where there is no default namespace in scope. If unspecified or C{None}, the namespace of the module containing this function will be used. @keyword location_base: An object to be recorded as the base of all L{pyxb.utils.utility.Location} instances associated with events and objects handled by the parser. You might pass the URI from which the document was obtained. """ if pyxb.XMLStyle_saxer != pyxb._XMLStyle: dom = pyxb.utils.domutils.StringToDOM(xml_text) return CreateFromDOM(dom.documentElement, default_namespace=default_namespace) if default_namespace is None: default_namespace = Namespace.fallbackNamespace() saxer = pyxb.binding.saxer.make_parser( fallback_namespace=default_namespace, location_base=location_base ) handler = saxer.getContentHandler() xmld = xml_text if isinstance(xmld, pyxb.utils.six.text_type): xmld = xmld.encode(pyxb._InputEncoding) saxer.parse(io.BytesIO(xmld)) instance = handler.rootObject() return instance def CreateFromDOM(node, default_namespace=None): """Create a Python instance from the given DOM node. The node tag must correspond to an element declaration in this module. @deprecated: Forcing use of DOM interface is unnecessary; use L{CreateFromDocument}. """ if default_namespace is None: default_namespace = Namespace.fallbackNamespace() return pyxb.binding.basis.element.AnyCreateFromDOM(node, default_namespace) # Complex type {http://ns.dataone.org/service/types/v1.1}QueryEngineDescription with content type ELEMENT_ONLY class QueryEngineDescription(pyxb.binding.basis.complexTypeDefinition): """Describes a query engine that can be used to search content on the node. Query engines may be general purpose or specialized for particular communities or domains. """ _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'QueryEngineDescription') _XSDLocation = pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 72, 2, ) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element queryEngineVersion uses Python identifier queryEngineVersion __queryEngineVersion = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'queryEngineVersion'), 'queryEngineVersion', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_queryEngineVersion', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 78, 6, ), ) queryEngineVersion = property( __queryEngineVersion.value, __queryEngineVersion.set, None, 'The version of the underlying query engine. Used by clients to determine possible\n compatibility concerns or features available.', ) # Element querySchemaVersion uses Python identifier querySchemaVersion __querySchemaVersion = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'querySchemaVersion'), 'querySchemaVersion', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_querySchemaVersion', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) querySchemaVersion = property( __querySchemaVersion.value, __querySchemaVersion.set, None, 'Version of the schema in use by the query engine, e.g. "1.0.1"', ) # Element name uses Python identifier name __name = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_name', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 89, 6, ), ) name = property( __name.value, __name.set, None, 'The full, human readable name of the query engine. For example: \n "Apache SOLR"', ) # Element additionalInfo uses Python identifier additionalInfo __additionalInfo = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'additionalInfo'), 'additionalInfo', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_additionalInfo', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) additionalInfo = property( __additionalInfo.value, __additionalInfo.set, None, 'An optional human readable description of the query engine. This can be \n used to describe any special capabilities or intended uses for the query engine. For example, \n a query engine may be tuned to suit a particular audience or domain as opposed to providing \n a general purpose discovery mechanism.This field may also contain links to additional information about the query engine, \n such as documentation for the search syntax provided by the query engine implemntors.', ) # Element queryField uses Python identifier queryField __queryField = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'queryField'), 'queryField', '__httpns_dataone_orgservicetypesv1_1_QueryEngineDescription_queryField', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) queryField = property( __queryField.value, __queryField.set, None, 'A list of query fields supported by the query engine.', ) _ElementMap.update( { __queryEngineVersion.name(): __queryEngineVersion, __querySchemaVersion.name(): __querySchemaVersion, __name.name(): __name, __additionalInfo.name(): __additionalInfo, __queryField.name(): __queryField, } ) _AttributeMap.update({}) _module_typeBindings.QueryEngineDescription = QueryEngineDescription Namespace.addCategoryObject( 'typeBinding', 'QueryEngineDescription', QueryEngineDescription ) # Complex type {http://ns.dataone.org/service/types/v1.1}QueryEngineList with content type ELEMENT_ONLY class QueryEngineList(pyxb.binding.basis.complexTypeDefinition): """A list of query engine names that indicate the possible values for CNRead.getQueryEngineDescription and CNRead.query REST API endpoints.""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'QueryEngineList') _XSDLocation = pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 114, 2, ) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element queryEngine uses Python identifier queryEngine __queryEngine = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'queryEngine'), 'queryEngine', '__httpns_dataone_orgservicetypesv1_1_QueryEngineList_queryEngine', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) queryEngine = property( __queryEngine.value, __queryEngine.set, None, 'The name of a queryEngine. This value will be used as a path element in \n REST API calls and so should not contain characters that will need to be escaped.', ) _ElementMap.update({__queryEngine.name(): __queryEngine}) _AttributeMap.update({}) _module_typeBindings.QueryEngineList = QueryEngineList Namespace.addCategoryObject('typeBinding', 'QueryEngineList', QueryEngineList) # Complex type {http://ns.dataone.org/service/types/v1.1}QueryField with content type ELEMENT_ONLY class QueryField(pyxb.binding.basis.complexTypeDefinition): """""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, 'QueryField') _XSDLocation = pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 131, 2, ) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Element name uses Python identifier name __name = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'name'), 'name', '__httpns_dataone_orgservicetypesv1_1_QueryField_name', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 136, 6, ), ) name = property( __name.value, __name.set, None, 'The name of the field as used programmatically when \n constructing queries or other rferences to the field.', ) # Element description uses Python identifier description __description = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'description'), 'description', '__httpns_dataone_orgservicetypesv1_1_QueryField_description', True, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) description = property( __description.value, __description.set, None, 'An optional, repeatable, brief description of the field that can be\n used to help guide developers or end users in appropriate use of the field. May for \n example, contain a links to additional documentation.', ) # Element type uses Python identifier type __type = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'type'), 'type', '__httpns_dataone_orgservicetypesv1_1_QueryField_type', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 149, 6, ), ) type = property( __type.value, __type.set, None, 'The type of the field, expressed in the language peculiar to the \n query engine being described.', ) # Element searchable uses Python identifier searchable __searchable = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'searchable'), 'searchable', '__httpns_dataone_orgservicetypesv1_1_QueryField_searchable', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 155, 6, ), ) searchable = property( __searchable.value, __searchable.set, None, 'Indicates if the field may be used in constructing queries (as opposed \n to only appearing in results)', ) # Element returnable uses Python identifier returnable __returnable = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'returnable'), 'returnable', '__httpns_dataone_orgservicetypesv1_1_QueryField_returnable', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 161, 6, ), ) returnable = property( __returnable.value, __returnable.set, None, 'Indicates if the field values may be returned in search results.', ) # Element sortable uses Python identifier sortable __sortable = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'sortable'), 'sortable', '__httpns_dataone_orgservicetypesv1_1_QueryField_sortable', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 166, 6, ), ) sortable = property( __sortable.value, __sortable.set, None, 'Indicates if the field can be used for sorting results.', ) # Element multivalued uses Python identifier multivalued __multivalued = pyxb.binding.content.ElementDeclaration( pyxb.namespace.ExpandedName(None, 'multivalued'), 'multivalued', '__httpns_dataone_orgservicetypesv1_1_QueryField_multivalued', False, pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) multivalued = property( __multivalued.value, __multivalued.set, None, 'Indicates if the field may contain multiple values. Some query engines\n such as SOLR support this capability.', ) _ElementMap.update( { __name.name(): __name, __description.name(): __description, __type.name(): __type, __searchable.name(): __searchable, __returnable.name(): __returnable, __sortable.name(): __sortable, __multivalued.name(): __multivalued, } ) _AttributeMap.update({}) _module_typeBindings.QueryField = QueryField Namespace.addCategoryObject('typeBinding', 'QueryField', QueryField) queryEngineList = pyxb.binding.basis.element( pyxb.namespace.ExpandedName(Namespace, 'queryEngineList'), QueryEngineList, location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 194, 2, ), ) Namespace.addCategoryObject( 'elementBinding', queryEngineList.name().localName(), queryEngineList ) queryEngineDescription = pyxb.binding.basis.element( pyxb.namespace.ExpandedName(Namespace, 'queryEngineDescription'), QueryEngineDescription, location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 195, 2, ), ) Namespace.addCategoryObject( 'elementBinding', queryEngineDescription.name().localName(), queryEngineDescription ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'queryEngineVersion'), pyxb.binding.datatypes.string, scope=QueryEngineDescription, documentation='The version of the underlying query engine. Used by clients to determine possible\n compatibility concerns or features available.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 78, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'querySchemaVersion'), pyxb.binding.datatypes.string, scope=QueryEngineDescription, documentation='Version of the schema in use by the query engine, e.g. "1.0.1"', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'name'), pyxb.binding.datatypes.string, scope=QueryEngineDescription, documentation='The full, human readable name of the query engine. For example: \n "Apache SOLR"', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 89, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'additionalInfo'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryEngineDescription, documentation='An optional human readable description of the query engine. This can be \n used to describe any special capabilities or intended uses for the query engine. For example, \n a query engine may be tuned to suit a particular audience or domain as opposed to providing \n a general purpose discovery mechanism.This field may also contain links to additional information about the query engine, \n such as documentation for the search syntax provided by the query engine implemntors.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) ) QueryEngineDescription._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'queryField'), QueryField, scope=QueryEngineDescription, documentation='A list of query fields supported by the query engine.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) ) def _BuildAutomaton(): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton del _BuildAutomaton import pyxb.utils.fac counters = set() cc_0 = pyxb.utils.fac.CounterCondition( min=0, max=1, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) counters.add(cc_0) cc_1 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) counters.add(cc_1) cc_2 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) counters.add(cc_2) states = [] final_update = None symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'queryEngineVersion') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 78, 6, ), ) st_0 = pyxb.utils.fac.State( symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False, ) states.append(st_0) final_update = None symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'querySchemaVersion') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 84, 6, ), ) st_1 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_1) final_update = set() symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag(pyxb.namespace.ExpandedName(None, 'name')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 89, 6, ), ) st_2 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_2) final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'additionalInfo') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 95, 6, ), ) st_3 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_3) final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_2, False)) symbol = pyxb.binding.content.ElementUse( QueryEngineDescription._UseForTag( pyxb.namespace.ExpandedName(None, 'queryField') ), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 105, 6, ), ) st_4 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_4) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_1, [])) transitions.append(pyxb.utils.fac.Transition(st_2, [])) st_0._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_1, [pyxb.utils.fac.UpdateInstruction(cc_0, True)]) ) transitions.append( pyxb.utils.fac.Transition(st_2, [pyxb.utils.fac.UpdateInstruction(cc_0, False)]) ) st_1._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_3, [])) transitions.append(pyxb.utils.fac.Transition(st_4, [])) st_2._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_3, [pyxb.utils.fac.UpdateInstruction(cc_1, True)]) ) transitions.append( pyxb.utils.fac.Transition(st_4, [pyxb.utils.fac.UpdateInstruction(cc_1, False)]) ) st_3._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_4, [pyxb.utils.fac.UpdateInstruction(cc_2, True)]) ) st_4._set_transitionSet(transitions) return pyxb.utils.fac.Automaton(states, counters, False, containing_state=None) QueryEngineDescription._Automaton = _BuildAutomaton() QueryEngineList._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'queryEngine'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryEngineList, documentation='The name of a queryEngine. This value will be used as a path element in \n REST API calls and so should not contain characters that will need to be escaped.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) ) def _BuildAutomaton_(): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_ del _BuildAutomaton_ import pyxb.utils.fac counters = set() cc_0 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) counters.add(cc_0) states = [] final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_0, False)) symbol = pyxb.binding.content.ElementUse( QueryEngineList._UseForTag(pyxb.namespace.ExpandedName(None, 'queryEngine')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 120, 6, ), ) st_0 = pyxb.utils.fac.State( symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False, ) states.append(st_0) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_0, [pyxb.utils.fac.UpdateInstruction(cc_0, True)]) ) st_0._set_transitionSet(transitions) return pyxb.utils.fac.Automaton(states, counters, True, containing_state=None) QueryEngineList._Automaton = _BuildAutomaton_() QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'name'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryField, documentation='The name of the field as used programmatically when \n constructing queries or other rferences to the field.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 136, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'description'), pyxb.binding.datatypes.string, scope=QueryField, documentation='An optional, repeatable, brief description of the field that can be\n used to help guide developers or end users in appropriate use of the field. May for \n example, contain a links to additional documentation.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'type'), _ImportedBinding_dataoneTypes_v1.NonEmptyString, scope=QueryField, documentation='The type of the field, expressed in the language peculiar to the \n query engine being described.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 149, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'searchable'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field may be used in constructing queries (as opposed \n to only appearing in results)', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 155, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'returnable'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field values may be returned in search results.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 161, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'sortable'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field can be used for sorting results.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 166, 6, ), ) ) QueryField._AddElement( pyxb.binding.basis.element( pyxb.namespace.ExpandedName(None, 'multivalued'), pyxb.binding.datatypes.boolean, scope=QueryField, documentation='Indicates if the field may contain multiple values. Some query engines\n such as SOLR support this capability.', location=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) ) def _BuildAutomaton_2(): # Remove this helper function from the namespace after it is invoked global _BuildAutomaton_2 del _BuildAutomaton_2 import pyxb.utils.fac counters = set() cc_0 = pyxb.utils.fac.CounterCondition( min=0, max=None, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) counters.add(cc_0) cc_1 = pyxb.utils.fac.CounterCondition( min=0, max=1, metadata=pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) counters.add(cc_1) states = [] final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'name')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 136, 6, ), ) st_0 = pyxb.utils.fac.State( symbol, is_initial=True, final_update=final_update, is_unordered_catenation=False, ) states.append(st_0) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'description')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 142, 6, ), ) st_1 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_1) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'type')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 149, 6, ), ) st_2 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_2) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'searchable')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 155, 6, ), ) st_3 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_3) final_update = None symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'returnable')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 161, 6, ), ) st_4 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_4) final_update = set() symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'sortable')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 166, 6, ), ) st_5 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_5) final_update = set() final_update.add(pyxb.utils.fac.UpdateInstruction(cc_1, False)) symbol = pyxb.binding.content.ElementUse( QueryField._UseForTag(pyxb.namespace.ExpandedName(None, 'multivalued')), pyxb.utils.utility.Location( '/home/dahl/dev/d1_python/lib_common/src/d1_common/types/schemas/dataoneTypes_v1.1.xsd', 171, 6, ), ) st_6 = pyxb.utils.fac.State( symbol, is_initial=False, final_update=final_update, is_unordered_catenation=False, ) states.append(st_6) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_1, [])) transitions.append(pyxb.utils.fac.Transition(st_2, [])) st_0._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_1, [pyxb.utils.fac.UpdateInstruction(cc_0, True)]) ) transitions.append( pyxb.utils.fac.Transition(st_2, [pyxb.utils.fac.UpdateInstruction(cc_0, False)]) ) st_1._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_3, [])) st_2._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_4, [])) st_3._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_5, [])) st_4._set_transitionSet(transitions) transitions = [] transitions.append(pyxb.utils.fac.Transition(st_6, [])) st_5._set_transitionSet(transitions) transitions = [] transitions.append( pyxb.utils.fac.Transition(st_6, [pyxb.utils.fac.UpdateInstruction(cc_1, True)]) ) st_6._set_transitionSet(transitions) return pyxb.utils.fac.Automaton(states, counters, False, containing_state=None) QueryField._Automaton = _BuildAutomaton_2()
0.551332
0.231593
import sys import time import curses import argparse import httplib2 import _thread import colorama from bs4 import BeautifulSoup from urllib.parse import urljoin, urlparse from threading import Thread from colorama import Fore, Back, Style class HttpRequest(Thread): stop = False request_depth = 0 lock = _thread.allocate_lock() requested_count = 0 error_count = 0 def __init__(self, url, max_request, do_like_a_spider, stop_on_error, delay_between_each_call, username, password): self.url = url self.max_request = max_request self.do_like_a_spider = do_like_a_spider self.stop_on_error = stop_on_error self.delay_between_each_call = delay_between_each_call self.username = username self.password = password # Create root_url parse_result = urlparse(url) self.root_url = parse_result.scheme + '://' + parse_result.netloc # Call super method super(HttpRequest, self).__init__() def run(self): for i in range(self.max_request): if (not self.do_request(self.url) and self.stop_on_error) or HttpRequest.stop: break def do_request(self, url, depth=0): time.sleep(self.delay_between_each_call) if not HttpRequest.stop: self.print_status(url) http = httplib2.Http() if len(self.username) > 0 and len(self.password) > 0: http.add_credentials(self.username, self.password) try: header, content = http.request(url) if self.do_like_a_spider and depth <= self.request_depth: links = self.get_links(content.decode(), url, self.root_url) for link in links: self.do_request(link, depth + 1) except: self.inc_error() if self.stop_on_error: HttpRequest.stop = True return False return True else: return False @staticmethod def print_status(url): HttpRequest.lock.acquire() HttpRequest.requested_count = HttpRequest.requested_count + 1 print_with_color(1, 0, Fore.GREEN, 'Requested: ' + str(HttpRequest.requested_count).rjust(10) + ' - ' + Fore.RED + 'Error: ' + str(HttpRequest.error_count).rjust(10)) print_with_color((HttpRequest.requested_count - 1) % 10 + 2, 0, Fore.WHITE, 'Requesting..' + url, end='\n\r') HttpRequest.lock.release() @staticmethod def inc_error(): HttpRequest.lock.acquire() HttpRequest.error_count = HttpRequest.error_count + 1 HttpRequest.lock.release() @staticmethod def get_links(html, base_url, root_url): result = [] html_parser = BeautifulSoup(html, 'lxml') anchor_tags = html_parser.find_all('a') for tag in anchor_tags: url = urljoin(base_url, tag.get('href')).split('#')[0] url.rstrip(r'/') try: result.index(url) except ValueError: try: if url.index(root_url) == 0: result.append(url) except: pass result.sort() return result def pos_escape(y, x): return '\x1b[%d;%dH' % (y, x) def clear_screen(): print('\033[2J') def print_with_color(row, col, color, text, end=''): print(pos_escape(row, col) + color + text, Style.RESET_ALL, end=end) sys.stdout.flush() # Init screen handler stdscr = curses.initscr() stdscr.refresh() colorama.init() # Parse the arguments arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--num_of_thread', help='Num of thread', type=int) arg_parser.add_argument('--max_request_per_thread', help='Max request per thread', type=int) arg_parser.add_argument('--do_like_a_spider', help='Do like a spider', type=str) arg_parser.add_argument('--stop_on_error', help='Stop on error', type=str) arg_parser.add_argument('--delay_between_each_call', help='Delay between each call', type=int) arg_parser.add_argument('--username', help='Username for Basic-Authentication', type=str) arg_parser.add_argument('--password', help='Password for Basic-Authentication', type=str) arg_parser.add_argument('--url', help='Url', type=str, required=True) args = arg_parser.parse_args() # Prepare params num_of_thread = args.num_of_thread if args.num_of_thread else 10 max_request_per_thread = args.max_request_per_thread if args.max_request_per_thread else 100 do_like_a_spider = args.do_like_a_spider == 'true' if args.do_like_a_spider else True stop_on_error = args.stop_on_error == 'true' if args.stop_on_error else True delay_between_each_call = args.delay_between_each_call if args.delay_between_each_call else 0 username = args.username if args.username else '' password = args.password if args.password else '' url = args.url # Run.. requests = [] for i in range(num_of_thread): request = HttpRequest(url, max_request_per_thread, do_like_a_spider, stop_on_error, delay_between_each_call, username, password) requests.append(request) request.start() try: # Wait for all requests finished for request in requests: request.join() except KeyboardInterrupt: HttpRequest.stop = True if HttpRequest.requested_count >= 9: print_with_color(12, 0, Fore.YELLOW, 'Done..Press ENTER to exit...') else: print_with_color((HttpRequest.requested_count % 10) + 3, 0, Fore.YELLOW, 'Done..Press ENTER to exit...') stdscr.getkey() curses.endwin()
stress_http_server.py
import sys import time import curses import argparse import httplib2 import _thread import colorama from bs4 import BeautifulSoup from urllib.parse import urljoin, urlparse from threading import Thread from colorama import Fore, Back, Style class HttpRequest(Thread): stop = False request_depth = 0 lock = _thread.allocate_lock() requested_count = 0 error_count = 0 def __init__(self, url, max_request, do_like_a_spider, stop_on_error, delay_between_each_call, username, password): self.url = url self.max_request = max_request self.do_like_a_spider = do_like_a_spider self.stop_on_error = stop_on_error self.delay_between_each_call = delay_between_each_call self.username = username self.password = password # Create root_url parse_result = urlparse(url) self.root_url = parse_result.scheme + '://' + parse_result.netloc # Call super method super(HttpRequest, self).__init__() def run(self): for i in range(self.max_request): if (not self.do_request(self.url) and self.stop_on_error) or HttpRequest.stop: break def do_request(self, url, depth=0): time.sleep(self.delay_between_each_call) if not HttpRequest.stop: self.print_status(url) http = httplib2.Http() if len(self.username) > 0 and len(self.password) > 0: http.add_credentials(self.username, self.password) try: header, content = http.request(url) if self.do_like_a_spider and depth <= self.request_depth: links = self.get_links(content.decode(), url, self.root_url) for link in links: self.do_request(link, depth + 1) except: self.inc_error() if self.stop_on_error: HttpRequest.stop = True return False return True else: return False @staticmethod def print_status(url): HttpRequest.lock.acquire() HttpRequest.requested_count = HttpRequest.requested_count + 1 print_with_color(1, 0, Fore.GREEN, 'Requested: ' + str(HttpRequest.requested_count).rjust(10) + ' - ' + Fore.RED + 'Error: ' + str(HttpRequest.error_count).rjust(10)) print_with_color((HttpRequest.requested_count - 1) % 10 + 2, 0, Fore.WHITE, 'Requesting..' + url, end='\n\r') HttpRequest.lock.release() @staticmethod def inc_error(): HttpRequest.lock.acquire() HttpRequest.error_count = HttpRequest.error_count + 1 HttpRequest.lock.release() @staticmethod def get_links(html, base_url, root_url): result = [] html_parser = BeautifulSoup(html, 'lxml') anchor_tags = html_parser.find_all('a') for tag in anchor_tags: url = urljoin(base_url, tag.get('href')).split('#')[0] url.rstrip(r'/') try: result.index(url) except ValueError: try: if url.index(root_url) == 0: result.append(url) except: pass result.sort() return result def pos_escape(y, x): return '\x1b[%d;%dH' % (y, x) def clear_screen(): print('\033[2J') def print_with_color(row, col, color, text, end=''): print(pos_escape(row, col) + color + text, Style.RESET_ALL, end=end) sys.stdout.flush() # Init screen handler stdscr = curses.initscr() stdscr.refresh() colorama.init() # Parse the arguments arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--num_of_thread', help='Num of thread', type=int) arg_parser.add_argument('--max_request_per_thread', help='Max request per thread', type=int) arg_parser.add_argument('--do_like_a_spider', help='Do like a spider', type=str) arg_parser.add_argument('--stop_on_error', help='Stop on error', type=str) arg_parser.add_argument('--delay_between_each_call', help='Delay between each call', type=int) arg_parser.add_argument('--username', help='Username for Basic-Authentication', type=str) arg_parser.add_argument('--password', help='Password for Basic-Authentication', type=str) arg_parser.add_argument('--url', help='Url', type=str, required=True) args = arg_parser.parse_args() # Prepare params num_of_thread = args.num_of_thread if args.num_of_thread else 10 max_request_per_thread = args.max_request_per_thread if args.max_request_per_thread else 100 do_like_a_spider = args.do_like_a_spider == 'true' if args.do_like_a_spider else True stop_on_error = args.stop_on_error == 'true' if args.stop_on_error else True delay_between_each_call = args.delay_between_each_call if args.delay_between_each_call else 0 username = args.username if args.username else '' password = args.password if args.password else '' url = args.url # Run.. requests = [] for i in range(num_of_thread): request = HttpRequest(url, max_request_per_thread, do_like_a_spider, stop_on_error, delay_between_each_call, username, password) requests.append(request) request.start() try: # Wait for all requests finished for request in requests: request.join() except KeyboardInterrupt: HttpRequest.stop = True if HttpRequest.requested_count >= 9: print_with_color(12, 0, Fore.YELLOW, 'Done..Press ENTER to exit...') else: print_with_color((HttpRequest.requested_count % 10) + 3, 0, Fore.YELLOW, 'Done..Press ENTER to exit...') stdscr.getkey() curses.endwin()
0.179638
0.044974
from datetime import datetime from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.hybrid import hybrid_method, hybrid_property from sqlalchemy import create_engine, UniqueConstraint, desc, Index from sqlalchemy import Column, Integer, String, Date, Time, DateTime, SmallInteger, CHAR, func, text from args import args time_now = func.datetime("now", "localtime") if args.localtime else func.now() # check_same_thread 不检测是否和创建线程为同一线程--可供多线程使用 # echo 输出具体执行的sql语句 engine = create_engine('sqlite:///myData.db?check_same_thread=False', echo=bool(args.debug)) # 增查改删(CRUD)操作需要使用session进行操作 Session = sessionmaker(bind=engine) # 基本映射类,子孙们都需要继承它 Base = declarative_base() """ # 查看映射对应的表 KeyMouse.__table__ # 创建数据表。一方面通过engine来连接数据库,另一方面根据哪些类继承了Base来决定创建哪些表 # checkfirst=True,表示创建表前先检查该表是否存在,如同名表已存在则不再创建。其实默认就是True Base.metadata.create_all(engine, checkfirst=True) # 上边的写法会在engine对应的数据库中创建所有继承Base的类对应的表,但很多时候很多只是用来则试的或是其他库的 # 此时可以通过tables参数指定方式,指示仅创建哪些表 # Base.metadata.create_all(engine,tables=[Base.metadata.tables['keymouse']],checkfirst=True) # 在项目中由于model经常在别的文件定义,没主动加载时上边的写法可能写导致报错,可使用下边这种更明确的写法 # KeyMouse.__table__.create(engine, checkfirst=True) # 另外我们说这一步的作用是创建表,当我们已经确定表已经在数据库中存在时,我完可以跳过这一步 # 针对已存放有关键数据的表,或大家共用的表,直接不写这创建代码更让人心里踏实 所以我就不写了,结果不是默认执行的,所以再加上吧... # 反向生成代码 # sqlacodegen mysql+pymysql://user:password@localhost/dbname [--tables table_name1,table_name2] [--outfile model.py] """ # 定义键盘鼠标事件类KeyMouse,其继承上一步创建的Base class KeyMouse(Base): """ # 如果有多个类指向同一张表,那么在后边的类需要把extend_existing设为True,表示在已有列基础上进行扩展 # 或者换句话说,sqlalchemy允许类是表的子集 # __table_args__ = {'extend_existing': True} # 如果表在同一个数据库服务(datebase)的不同数据库中(schema),可使用schema参数进一步指定数据库 # __table_args__ = {'schema': 'test_database'} # 各变量名一定要与表的各字段名一样,因为相同的名字是他们之间的唯一关联关系 # 从语法上说,各变量类型和表的类型可以不完全一致,如表字段是String(64),但我就定义成String(32) # 但为了避免造成不必要的错误,变量的类型和其对应的表的字段的类型还是要相一致 # sqlalchemy强制要求必须要有主键字段不然会报错,如果要映射一张已存在且没有主键的表,那么可行的做法是将所有字段都设为primary_key=True # 不要看随便将一个非主键字段设为primary_key,然后似乎就没报错就能使用了,sqlalchemy在接收到查询结果后还会自己根据主键进行一次去重 """ # 指定本类映射到`keymouse`表 __tablename__ = 'keymouse' # 指定id映射到id字段; id字段为整型,为主键,自动增长(其实整型主键默认就自动增长) id = Column(Integer, primary_key=True, autoincrement=True) # 指定name映射到name字段; name字段为字符串类形 name = Column(CHAR(1), nullable=False) create_time = Column(DateTime(timezone=8), server_default=time_now, comment='创建时间 datetime') update_time = Column(DateTime, server_default=time_now, onupdate=time_now, comment='修改时间') count = Column(Integer, server_default=text('1'), comment='次数统计') device = Column(SmallInteger, nullable=False, server_default=text('0'), comment='设备1: 键盘, 0: 鼠标') UniqueConstraint('name', 'create_time', name='fcx_name_date') # __repr__方法用于输出该类的对象被print()时输出的字符串,如果不想写可以不写 def __repr__(self): return "<KeyMouse(name='%s', create_time='%s', count='%d')>" % ( self.name, datetime2str(self.create_time), self.count) # 定义工作时间状态类WorkInfo class WorkInfo(Base): """ pass """ __tablename__ = 'workinfo' id = Column(Integer, primary_key=True, autoincrement=True) type = Column(SmallInteger, server_default=text('1'), comment='类型, 见 type_map') continued = Column(Integer, nullable=False, comment="此条状态持续时间,create_time-continued为这条状态真正开始时间") star = Column(SmallInteger, server_default=text('0'), comment='星级, 允许收藏一些东西') create_time = Column(DateTime(timezone=8), server_default=time_now, comment='创建时间 datetime, 在状态结束/状态切换时才会插入') update_time = Column(DateTime, server_default=time_now, onupdate=time_now, comment='修改时间') note = Column(String, comment='笔记,比如小憩前可以先记录一下当前工作的进度.提醒性文字,再小憩') UniqueConstraint('type', 'create_time', name='notefx_type_crtime') Index("date_max", "create_time", "continued") type_map = {1: "工作", 2: "开会", -1: "小憩", -2: "午休"} type_map_reverse = dict(zip(type_map.values(), type_map.keys())) @hybrid_property def name(self): # 返回值中可获取name return self.type_map(self.type) @hybrid_method def point_type(self, _type): # 大则大,小则小,无则全 if _type > 0: return self.type > _type elif _type < 0: return self.type < _type else: return True def __repr__(self): return "<WorkInfo(name='%s', create_time='%s', type='%d')>" % ( self.name, datetime2str(self.create_time), self.type) WorkInfo.__table__.create(engine, checkfirst=True) KeyMouse.__table__.create(engine, checkfirst=True)
data_alchemy/models.py
from datetime import datetime from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.hybrid import hybrid_method, hybrid_property from sqlalchemy import create_engine, UniqueConstraint, desc, Index from sqlalchemy import Column, Integer, String, Date, Time, DateTime, SmallInteger, CHAR, func, text from args import args time_now = func.datetime("now", "localtime") if args.localtime else func.now() # check_same_thread 不检测是否和创建线程为同一线程--可供多线程使用 # echo 输出具体执行的sql语句 engine = create_engine('sqlite:///myData.db?check_same_thread=False', echo=bool(args.debug)) # 增查改删(CRUD)操作需要使用session进行操作 Session = sessionmaker(bind=engine) # 基本映射类,子孙们都需要继承它 Base = declarative_base() """ # 查看映射对应的表 KeyMouse.__table__ # 创建数据表。一方面通过engine来连接数据库,另一方面根据哪些类继承了Base来决定创建哪些表 # checkfirst=True,表示创建表前先检查该表是否存在,如同名表已存在则不再创建。其实默认就是True Base.metadata.create_all(engine, checkfirst=True) # 上边的写法会在engine对应的数据库中创建所有继承Base的类对应的表,但很多时候很多只是用来则试的或是其他库的 # 此时可以通过tables参数指定方式,指示仅创建哪些表 # Base.metadata.create_all(engine,tables=[Base.metadata.tables['keymouse']],checkfirst=True) # 在项目中由于model经常在别的文件定义,没主动加载时上边的写法可能写导致报错,可使用下边这种更明确的写法 # KeyMouse.__table__.create(engine, checkfirst=True) # 另外我们说这一步的作用是创建表,当我们已经确定表已经在数据库中存在时,我完可以跳过这一步 # 针对已存放有关键数据的表,或大家共用的表,直接不写这创建代码更让人心里踏实 所以我就不写了,结果不是默认执行的,所以再加上吧... # 反向生成代码 # sqlacodegen mysql+pymysql://user:password@localhost/dbname [--tables table_name1,table_name2] [--outfile model.py] """ # 定义键盘鼠标事件类KeyMouse,其继承上一步创建的Base class KeyMouse(Base): """ # 如果有多个类指向同一张表,那么在后边的类需要把extend_existing设为True,表示在已有列基础上进行扩展 # 或者换句话说,sqlalchemy允许类是表的子集 # __table_args__ = {'extend_existing': True} # 如果表在同一个数据库服务(datebase)的不同数据库中(schema),可使用schema参数进一步指定数据库 # __table_args__ = {'schema': 'test_database'} # 各变量名一定要与表的各字段名一样,因为相同的名字是他们之间的唯一关联关系 # 从语法上说,各变量类型和表的类型可以不完全一致,如表字段是String(64),但我就定义成String(32) # 但为了避免造成不必要的错误,变量的类型和其对应的表的字段的类型还是要相一致 # sqlalchemy强制要求必须要有主键字段不然会报错,如果要映射一张已存在且没有主键的表,那么可行的做法是将所有字段都设为primary_key=True # 不要看随便将一个非主键字段设为primary_key,然后似乎就没报错就能使用了,sqlalchemy在接收到查询结果后还会自己根据主键进行一次去重 """ # 指定本类映射到`keymouse`表 __tablename__ = 'keymouse' # 指定id映射到id字段; id字段为整型,为主键,自动增长(其实整型主键默认就自动增长) id = Column(Integer, primary_key=True, autoincrement=True) # 指定name映射到name字段; name字段为字符串类形 name = Column(CHAR(1), nullable=False) create_time = Column(DateTime(timezone=8), server_default=time_now, comment='创建时间 datetime') update_time = Column(DateTime, server_default=time_now, onupdate=time_now, comment='修改时间') count = Column(Integer, server_default=text('1'), comment='次数统计') device = Column(SmallInteger, nullable=False, server_default=text('0'), comment='设备1: 键盘, 0: 鼠标') UniqueConstraint('name', 'create_time', name='fcx_name_date') # __repr__方法用于输出该类的对象被print()时输出的字符串,如果不想写可以不写 def __repr__(self): return "<KeyMouse(name='%s', create_time='%s', count='%d')>" % ( self.name, datetime2str(self.create_time), self.count) # 定义工作时间状态类WorkInfo class WorkInfo(Base): """ pass """ __tablename__ = 'workinfo' id = Column(Integer, primary_key=True, autoincrement=True) type = Column(SmallInteger, server_default=text('1'), comment='类型, 见 type_map') continued = Column(Integer, nullable=False, comment="此条状态持续时间,create_time-continued为这条状态真正开始时间") star = Column(SmallInteger, server_default=text('0'), comment='星级, 允许收藏一些东西') create_time = Column(DateTime(timezone=8), server_default=time_now, comment='创建时间 datetime, 在状态结束/状态切换时才会插入') update_time = Column(DateTime, server_default=time_now, onupdate=time_now, comment='修改时间') note = Column(String, comment='笔记,比如小憩前可以先记录一下当前工作的进度.提醒性文字,再小憩') UniqueConstraint('type', 'create_time', name='notefx_type_crtime') Index("date_max", "create_time", "continued") type_map = {1: "工作", 2: "开会", -1: "小憩", -2: "午休"} type_map_reverse = dict(zip(type_map.values(), type_map.keys())) @hybrid_property def name(self): # 返回值中可获取name return self.type_map(self.type) @hybrid_method def point_type(self, _type): # 大则大,小则小,无则全 if _type > 0: return self.type > _type elif _type < 0: return self.type < _type else: return True def __repr__(self): return "<WorkInfo(name='%s', create_time='%s', type='%d')>" % ( self.name, datetime2str(self.create_time), self.type) WorkInfo.__table__.create(engine, checkfirst=True) KeyMouse.__table__.create(engine, checkfirst=True)
0.306423
0.290292
import asyncio import logging from abc import ABC, abstractmethod from typing import Optional, Awaitable, Tuple, Union, Any, TYPE_CHECKING import grpc from google.protobuf import empty_pb2 from . import rpc from .settings import Settings, configure, get_stack, get_project, get_root_resource from .sync_await import _sync_await from ..runtime.proto import engine_pb2, engine_pb2_grpc, provider_pb2, resource_pb2, resource_pb2_grpc from ..runtime.stack import Stack, run_pulumi_func from ..output import Output if TYPE_CHECKING: from ..resource import Resource def test(fn): def wrapper(*args, **kwargs): _sync_await(run_pulumi_func(lambda: _sync_await(Output.from_input(fn(*args, **kwargs)).future()))) return wrapper class Mocks(ABC): """ Mocks is an abstract class that allows subclasses to replace operations normally implemented by the Pulumi engine with their own implementations. This can be used during testing to ensure that calls to provider functions and resource constructors return predictable values. """ @abstractmethod def call(self, token: str, args: dict, provider: Optional[str]) -> dict: """ call mocks provider-implemented function calls (e.g. aws.get_availability_zones). :param str token: The token that indicates which function is being called. This token is of the form "package:module:function". :param dict args: The arguments provided to the function call. :param Optional[str] provider: If provided, the identifier of the provider instance being used to make the call. """ return {} @abstractmethod def new_resource(self, type_: str, name: str, inputs: dict, provider: Optional[str], id_: Optional[str]) -> Tuple[str, dict]: """ new_resource mocks resource construction calls. This function should return the physical identifier and the output properties for the resource being constructed. :param str type_: The token that indicates which resource type is being constructed. This token is of the form "package:module:type". :param str name: The logical name of the resource instance. :param dict inputs: The inputs for the resource. :param Optional[str] provider: If provided, the identifier of the provider instnace being used to manage this resource. :param Optional[str] id_: If provided, the physical identifier of an existing resource to read or import. """ return ("", {}) class MockMonitor: mocks: Mocks def __init__(self, mocks: Mocks): self.mocks = mocks def make_urn(self, parent: str, type_: str, name: str) -> str: if parent != "": qualifiedType = parent.split("::")[2] parentType = qualifiedType.split("$").pop() type_ = parentType + "$" + type_ return "urn:pulumi:" + "::".join([get_stack(), get_project(), type_, name]) def Invoke(self, request): args = rpc.deserialize_properties(request.args) ret = self.mocks.call(request.tok, args, request.provider) ret_proto = _sync_await(rpc.serialize_properties(ret, {})) fields = {"failures": None, "return": ret_proto} return provider_pb2.InvokeResponse(**fields) def ReadResource(self, request): state = rpc.deserialize_properties(request.properties) _, state = self.mocks.new_resource(request.type, request.name, state, request.provider, request.id) props_proto = _sync_await(rpc.serialize_properties(state, {})) urn = self.make_urn(request.parent, request.type, request.name) return resource_pb2.ReadResourceResponse(urn=urn, properties=props_proto) def RegisterResource(self, request): urn = self.make_urn(request.parent, request.type, request.name) if request.type == "pulumi:pulumi:Stack": return resource_pb2.RegisterResourceResponse(urn=urn) inputs = rpc.deserialize_properties(request.object) id_, state = self.mocks.new_resource(request.type, request.name, inputs, request.provider, request.importId) obj_proto = _sync_await(rpc.serialize_properties(state, {})) return resource_pb2.RegisterResourceResponse(urn=urn, id=id_, object=obj_proto) def RegisterResourceOutputs(self, request): #pylint: disable=unused-argument return empty_pb2.Empty() def SupportsFeature(self, request): #pylint: disable=unused-argument return type('SupportsFeatureResponse', (object,), {'hasSupport' : True}) class MockEngine: logger: logging.Logger def __init__(self, logger: Optional[logging.Logger]): self.logger = logger if logger is not None else logging.getLogger() def Log(self, request): if request.severity == engine_pb2.DEBUG: self.logger.debug(request.message) elif request.severity == engine_pb2.INFO: self.logger.info(request.message) elif request.severity == engine_pb2.WARNING: self.logger.warning(request.message) elif request.severity == engine_pb2.ERROR: self.logger.error(request.message) def set_mocks(mocks: Mocks, project: Optional[str] = None, stack: Optional[str] = None, preview: Optional[bool] = None, logger: Optional[logging.Logger] = None): """ set_mocks configures the Pulumi runtime to use the given mocks for testing. """ settings = Settings(monitor=MockMonitor(mocks), engine=MockEngine(logger), project=project if project is not None else 'project', stack=stack if stack is not None else 'stack', dry_run=preview, test_mode_enabled=True) configure(settings) # Ensure a new root stack resource has been initialized. if get_root_resource() is None: Stack(lambda: None)
sdk/python/lib/pulumi/runtime/mocks.py
import asyncio import logging from abc import ABC, abstractmethod from typing import Optional, Awaitable, Tuple, Union, Any, TYPE_CHECKING import grpc from google.protobuf import empty_pb2 from . import rpc from .settings import Settings, configure, get_stack, get_project, get_root_resource from .sync_await import _sync_await from ..runtime.proto import engine_pb2, engine_pb2_grpc, provider_pb2, resource_pb2, resource_pb2_grpc from ..runtime.stack import Stack, run_pulumi_func from ..output import Output if TYPE_CHECKING: from ..resource import Resource def test(fn): def wrapper(*args, **kwargs): _sync_await(run_pulumi_func(lambda: _sync_await(Output.from_input(fn(*args, **kwargs)).future()))) return wrapper class Mocks(ABC): """ Mocks is an abstract class that allows subclasses to replace operations normally implemented by the Pulumi engine with their own implementations. This can be used during testing to ensure that calls to provider functions and resource constructors return predictable values. """ @abstractmethod def call(self, token: str, args: dict, provider: Optional[str]) -> dict: """ call mocks provider-implemented function calls (e.g. aws.get_availability_zones). :param str token: The token that indicates which function is being called. This token is of the form "package:module:function". :param dict args: The arguments provided to the function call. :param Optional[str] provider: If provided, the identifier of the provider instance being used to make the call. """ return {} @abstractmethod def new_resource(self, type_: str, name: str, inputs: dict, provider: Optional[str], id_: Optional[str]) -> Tuple[str, dict]: """ new_resource mocks resource construction calls. This function should return the physical identifier and the output properties for the resource being constructed. :param str type_: The token that indicates which resource type is being constructed. This token is of the form "package:module:type". :param str name: The logical name of the resource instance. :param dict inputs: The inputs for the resource. :param Optional[str] provider: If provided, the identifier of the provider instnace being used to manage this resource. :param Optional[str] id_: If provided, the physical identifier of an existing resource to read or import. """ return ("", {}) class MockMonitor: mocks: Mocks def __init__(self, mocks: Mocks): self.mocks = mocks def make_urn(self, parent: str, type_: str, name: str) -> str: if parent != "": qualifiedType = parent.split("::")[2] parentType = qualifiedType.split("$").pop() type_ = parentType + "$" + type_ return "urn:pulumi:" + "::".join([get_stack(), get_project(), type_, name]) def Invoke(self, request): args = rpc.deserialize_properties(request.args) ret = self.mocks.call(request.tok, args, request.provider) ret_proto = _sync_await(rpc.serialize_properties(ret, {})) fields = {"failures": None, "return": ret_proto} return provider_pb2.InvokeResponse(**fields) def ReadResource(self, request): state = rpc.deserialize_properties(request.properties) _, state = self.mocks.new_resource(request.type, request.name, state, request.provider, request.id) props_proto = _sync_await(rpc.serialize_properties(state, {})) urn = self.make_urn(request.parent, request.type, request.name) return resource_pb2.ReadResourceResponse(urn=urn, properties=props_proto) def RegisterResource(self, request): urn = self.make_urn(request.parent, request.type, request.name) if request.type == "pulumi:pulumi:Stack": return resource_pb2.RegisterResourceResponse(urn=urn) inputs = rpc.deserialize_properties(request.object) id_, state = self.mocks.new_resource(request.type, request.name, inputs, request.provider, request.importId) obj_proto = _sync_await(rpc.serialize_properties(state, {})) return resource_pb2.RegisterResourceResponse(urn=urn, id=id_, object=obj_proto) def RegisterResourceOutputs(self, request): #pylint: disable=unused-argument return empty_pb2.Empty() def SupportsFeature(self, request): #pylint: disable=unused-argument return type('SupportsFeatureResponse', (object,), {'hasSupport' : True}) class MockEngine: logger: logging.Logger def __init__(self, logger: Optional[logging.Logger]): self.logger = logger if logger is not None else logging.getLogger() def Log(self, request): if request.severity == engine_pb2.DEBUG: self.logger.debug(request.message) elif request.severity == engine_pb2.INFO: self.logger.info(request.message) elif request.severity == engine_pb2.WARNING: self.logger.warning(request.message) elif request.severity == engine_pb2.ERROR: self.logger.error(request.message) def set_mocks(mocks: Mocks, project: Optional[str] = None, stack: Optional[str] = None, preview: Optional[bool] = None, logger: Optional[logging.Logger] = None): """ set_mocks configures the Pulumi runtime to use the given mocks for testing. """ settings = Settings(monitor=MockMonitor(mocks), engine=MockEngine(logger), project=project if project is not None else 'project', stack=stack if stack is not None else 'stack', dry_run=preview, test_mode_enabled=True) configure(settings) # Ensure a new root stack resource has been initialized. if get_root_resource() is None: Stack(lambda: None)
0.827375
0.213869
from collections import namedtuple from dataclasses import dataclass from utils import to_form_url @dataclass class EntryInfo: required: bool prompt: bool type: str key: str title: str value: str # See README's Config section for more info TYPES = { "words": ["w", "word", "text"], "choice": ["m", "mc", "multiple choice"], "checkboxes": ["c", "checkbox"], "date": ["d"], "time": ["t"], "extra": ["x", "xD", "extra data"], } @classmethod def from_string(cls, string): """ Return info on a config file line. Parse a string of the format `[*] [!] type - key ; title = value`. Return a dataclass (simple object) with the config info. A string "*!type-key;title=value" would give `EntryInfo(required=True, prompt=True, type="type", key="key", title="title", value="value")`. Examples of config lines: w-1000;Question=Default ! time - 1001 ; Time = current *multiple choice - 1001 ; Class = checkbox-1002; Languages = Python, Java, C++ *! extra-emailAddress; Email Address = """ string = string.strip() if not string: raise ValueError("Empty entry") required = (string[0] == "*") string = string.removeprefix("*").strip() if not string: raise ValueError("Missing type") prompt = (string[0] == "!") string = string.removeprefix("!").strip() type, split, string = map(str.strip, string.partition("-")) for name, aliases in cls.TYPES.items(): if type == name: break elif type in aliases: type = name break else: raise ValueError(f"Type not valid: {type}") if not split: raise ValueError("Missing type-key split '-'") key, split, string = map(str.strip, string.partition(";")) if not key: raise ValueError("Missing key") if not split: raise ValueError("Missing key-title split ';'") title, split, value = map(str.strip, string.partition("=")) if not title: title = key # Title defaults to the key if absent. if not split: raise ValueError("Missing title-value split '='") return cls(required, prompt, type, key, title, value) def __str__(self): return ( f"{'*'*self.required}{'!'*self.prompt}{self.type}" f"-{self.key};{self.title}={self.value}" ) ConfigInfo = namedtuple("ConfigInfo", "url entries") def open_config(file): """ Open config file and return the URL and entries. """ if isinstance(file, str): file = open(file) with file: url = to_form_url(file.readline()) entries = [] for line in file: line = line.strip() if not line: continue if line.startswith("#"): continue entries.append(EntryInfo.from_string(line)) return ConfigInfo(url, entries) # - Tests def test_entry_from_string(): # TODO: Add tests for ValueError (maybe use pytest) a = EntryInfo(True, True, "words", "key", "title", "value") assert EntryInfo.from_string(" *!words-key;title=value ") == a assert EntryInfo.from_string(" * ! words - key ; title = value ") == a b = EntryInfo(False, False, "words", "key", "key", "") assert EntryInfo.from_string("words-key;=") == b assert EntryInfo.from_string("w-key;=") == b assert EntryInfo.from_string("word-key;=") == b assert EntryInfo.from_string("text-key;=") == b def test_entry_str(): entry = EntryInfo(True, True, "words", "key", "title", "value") assert EntryInfo.from_string(str(entry)) == entry line = "*!words-key;title=value" assert str(entry) == line assert str(EntryInfo.from_string(line)) == line
config.py
from collections import namedtuple from dataclasses import dataclass from utils import to_form_url @dataclass class EntryInfo: required: bool prompt: bool type: str key: str title: str value: str # See README's Config section for more info TYPES = { "words": ["w", "word", "text"], "choice": ["m", "mc", "multiple choice"], "checkboxes": ["c", "checkbox"], "date": ["d"], "time": ["t"], "extra": ["x", "xD", "extra data"], } @classmethod def from_string(cls, string): """ Return info on a config file line. Parse a string of the format `[*] [!] type - key ; title = value`. Return a dataclass (simple object) with the config info. A string "*!type-key;title=value" would give `EntryInfo(required=True, prompt=True, type="type", key="key", title="title", value="value")`. Examples of config lines: w-1000;Question=Default ! time - 1001 ; Time = current *multiple choice - 1001 ; Class = checkbox-1002; Languages = Python, Java, C++ *! extra-emailAddress; Email Address = """ string = string.strip() if not string: raise ValueError("Empty entry") required = (string[0] == "*") string = string.removeprefix("*").strip() if not string: raise ValueError("Missing type") prompt = (string[0] == "!") string = string.removeprefix("!").strip() type, split, string = map(str.strip, string.partition("-")) for name, aliases in cls.TYPES.items(): if type == name: break elif type in aliases: type = name break else: raise ValueError(f"Type not valid: {type}") if not split: raise ValueError("Missing type-key split '-'") key, split, string = map(str.strip, string.partition(";")) if not key: raise ValueError("Missing key") if not split: raise ValueError("Missing key-title split ';'") title, split, value = map(str.strip, string.partition("=")) if not title: title = key # Title defaults to the key if absent. if not split: raise ValueError("Missing title-value split '='") return cls(required, prompt, type, key, title, value) def __str__(self): return ( f"{'*'*self.required}{'!'*self.prompt}{self.type}" f"-{self.key};{self.title}={self.value}" ) ConfigInfo = namedtuple("ConfigInfo", "url entries") def open_config(file): """ Open config file and return the URL and entries. """ if isinstance(file, str): file = open(file) with file: url = to_form_url(file.readline()) entries = [] for line in file: line = line.strip() if not line: continue if line.startswith("#"): continue entries.append(EntryInfo.from_string(line)) return ConfigInfo(url, entries) # - Tests def test_entry_from_string(): # TODO: Add tests for ValueError (maybe use pytest) a = EntryInfo(True, True, "words", "key", "title", "value") assert EntryInfo.from_string(" *!words-key;title=value ") == a assert EntryInfo.from_string(" * ! words - key ; title = value ") == a b = EntryInfo(False, False, "words", "key", "key", "") assert EntryInfo.from_string("words-key;=") == b assert EntryInfo.from_string("w-key;=") == b assert EntryInfo.from_string("word-key;=") == b assert EntryInfo.from_string("text-key;=") == b def test_entry_str(): entry = EntryInfo(True, True, "words", "key", "title", "value") assert EntryInfo.from_string(str(entry)) == entry line = "*!words-key;title=value" assert str(entry) == line assert str(EntryInfo.from_string(line)) == line
0.751101
0.316079
import argparse import asyncio import fcntl import json import logging import os import pty import shlex import signal import struct import sys import termios import traceback import zmq, zmq.asyncio from .compat import current_loop from .logging import BraceStyleAdapter from .utils import safe_close_task log = BraceStyleAdapter(logging.getLogger()) class Terminal: ''' A wrapper for a terminal-based app. ''' def __init__(self, shell_cmd, ev_term, sock_out, *, auto_restart=True, loop=None): self._sorna_media = [] self.loop = loop if loop else current_loop() self.zctx = sock_out.context self.ev_term = ev_term self.pid = None self.fd = None self.shell_cmd = shell_cmd self.auto_restart = auto_restart # For command output self.sock_out = sock_out # For terminal I/O self.sock_term_in = None self.sock_term_out = None self.term_in_task = None self.term_out_task = None self.start_lock = asyncio.Lock(loop=self.loop) self.accept_term_input = False self.cmdparser = argparse.ArgumentParser() self.subparsers = self.cmdparser.add_subparsers() # Base commands for generic terminal-based app parser_ping = self.subparsers.add_parser('ping') parser_ping.set_defaults(func=self.do_ping) parser_resize = self.subparsers.add_parser('resize') parser_resize.add_argument('rows', type=int) parser_resize.add_argument('cols', type=int) parser_resize.set_defaults(func=self.do_resize_term) async def do_ping(self, args) -> int: await self.sock_out.send_multipart([b'stdout', b'pong!']) return 0 async def do_resize_term(self, args) -> int: if self.fd is None: return origsz = struct.pack('HHHH', 0, 0, 0, 0) origsz = fcntl.ioctl(self.fd, termios.TIOCGWINSZ, origsz) _, _, origx, origy = struct.unpack('HHHH', origsz) newsz = struct.pack('HHHH', args.rows, args.cols, origx, origy) newsz = fcntl.ioctl(self.fd, termios.TIOCSWINSZ, newsz) newr, newc, _, _ = struct.unpack('HHHH', newsz) await self.sock_out.send_multipart([ b'stdout', f'OK; terminal resized to {newr} rows and {newc} cols'.encode(), ]) return 0 async def handle_command(self, code_txt) -> int: try: if code_txt.startswith('%'): args = self.cmdparser.parse_args( shlex.split(code_txt[1:], comments=True)) if asyncio.iscoroutine(args.func) or \ asyncio.iscoroutinefunction(args.func): return await args.func(args) else: return args.func(args) else: await self.sock_out.send_multipart([b'stderr', b'Invalid command.']) return 127 except: exc_type, exc_val, tb = sys.exc_info() trace = traceback.format_exception(exc_type, exc_val, tb) await self.sock_out.send_multipart([b'stderr', trace.encode()]) return 1 finally: opts = { 'upload_output_files': False, } body = json.dumps(opts).encode() await self.sock_out.send_multipart([b'finished', body]) async def start(self): assert not self.accept_term_input await safe_close_task(self.term_in_task) await safe_close_task(self.term_out_task) pid, fd = pty.fork() if pid == 0: args = shlex.split(self.shell_cmd) os.execv(args[0], args) else: self.pid = pid self.fd = fd if self.sock_term_in is None: self.sock_term_in = self.zctx.socket(zmq.SUB) self.sock_term_in.bind('tcp://*:2002') self.sock_term_in.subscribe(b'') if self.sock_term_out is None: self.sock_term_out = self.zctx.socket(zmq.PUB) self.sock_term_out.bind('tcp://*:2003') term_reader = asyncio.StreamReader() term_read_protocol = asyncio.StreamReaderProtocol(term_reader) await self.loop.connect_read_pipe( lambda: term_read_protocol, os.fdopen(self.fd, 'rb')) _reader_factory = lambda: asyncio.StreamReaderProtocol( asyncio.StreamReader()) term_writer_transport, term_writer_protocol = \ await self.loop.connect_write_pipe(_reader_factory, os.fdopen(self.fd, 'wb')) term_writer = asyncio.StreamWriter(term_writer_transport, term_writer_protocol, None, self.loop) self.term_in_task = self.loop.create_task(self.term_in(term_writer)) self.term_out_task = self.loop.create_task(self.term_out(term_reader)) # noqa self.accept_term_input = True await asyncio.sleep(0) async def restart(self): try: async with self.start_lock: if not self.accept_term_input: return self.accept_term_input = False await self.sock_term_out.send_multipart([b'Restarting...\r\n']) os.waitpid(self.pid, 0) await self.start() except Exception: log.exception('Unexpected error during restart of terminal') async def term_in(self, term_writer): try: while True: data = await self.sock_term_in.recv_multipart() if not data: break if self.accept_term_input: try: term_writer.write(data[0]) await term_writer.drain() except IOError: break except asyncio.CancelledError: pass except Exception: log.exception('Unexpected error at term_in()') async def term_out(self, term_reader): try: while not term_reader.at_eof(): try: data = await term_reader.read(4096) except IOError: # In docker containers, this path is taken. break if not data: # In macOS, this path is taken. break await self.sock_term_out.send_multipart([data]) self.fd = None if not self.auto_restart: await self.sock_term_out.send_multipart([b'Terminated.\r\n']) return if not self.ev_term.is_set() and self.accept_term_input: self.loop.create_task(self.restart()) except asyncio.CancelledError: pass except Exception: log.exception('Unexpected error at term_out()') async def shutdown(self): self.term_in_task.cancel() self.term_out_task.cancel() await self.term_in_task await self.term_out_task self.sock_term_in.close() self.sock_term_out.close() os.kill(self.pid, signal.SIGHUP) os.kill(self.pid, signal.SIGCONT) await asyncio.sleep(0) os.waitpid(self.pid, 0) self.pid = None self.fd = None
src/ai/backend/kernel/terminal.py
import argparse import asyncio import fcntl import json import logging import os import pty import shlex import signal import struct import sys import termios import traceback import zmq, zmq.asyncio from .compat import current_loop from .logging import BraceStyleAdapter from .utils import safe_close_task log = BraceStyleAdapter(logging.getLogger()) class Terminal: ''' A wrapper for a terminal-based app. ''' def __init__(self, shell_cmd, ev_term, sock_out, *, auto_restart=True, loop=None): self._sorna_media = [] self.loop = loop if loop else current_loop() self.zctx = sock_out.context self.ev_term = ev_term self.pid = None self.fd = None self.shell_cmd = shell_cmd self.auto_restart = auto_restart # For command output self.sock_out = sock_out # For terminal I/O self.sock_term_in = None self.sock_term_out = None self.term_in_task = None self.term_out_task = None self.start_lock = asyncio.Lock(loop=self.loop) self.accept_term_input = False self.cmdparser = argparse.ArgumentParser() self.subparsers = self.cmdparser.add_subparsers() # Base commands for generic terminal-based app parser_ping = self.subparsers.add_parser('ping') parser_ping.set_defaults(func=self.do_ping) parser_resize = self.subparsers.add_parser('resize') parser_resize.add_argument('rows', type=int) parser_resize.add_argument('cols', type=int) parser_resize.set_defaults(func=self.do_resize_term) async def do_ping(self, args) -> int: await self.sock_out.send_multipart([b'stdout', b'pong!']) return 0 async def do_resize_term(self, args) -> int: if self.fd is None: return origsz = struct.pack('HHHH', 0, 0, 0, 0) origsz = fcntl.ioctl(self.fd, termios.TIOCGWINSZ, origsz) _, _, origx, origy = struct.unpack('HHHH', origsz) newsz = struct.pack('HHHH', args.rows, args.cols, origx, origy) newsz = fcntl.ioctl(self.fd, termios.TIOCSWINSZ, newsz) newr, newc, _, _ = struct.unpack('HHHH', newsz) await self.sock_out.send_multipart([ b'stdout', f'OK; terminal resized to {newr} rows and {newc} cols'.encode(), ]) return 0 async def handle_command(self, code_txt) -> int: try: if code_txt.startswith('%'): args = self.cmdparser.parse_args( shlex.split(code_txt[1:], comments=True)) if asyncio.iscoroutine(args.func) or \ asyncio.iscoroutinefunction(args.func): return await args.func(args) else: return args.func(args) else: await self.sock_out.send_multipart([b'stderr', b'Invalid command.']) return 127 except: exc_type, exc_val, tb = sys.exc_info() trace = traceback.format_exception(exc_type, exc_val, tb) await self.sock_out.send_multipart([b'stderr', trace.encode()]) return 1 finally: opts = { 'upload_output_files': False, } body = json.dumps(opts).encode() await self.sock_out.send_multipart([b'finished', body]) async def start(self): assert not self.accept_term_input await safe_close_task(self.term_in_task) await safe_close_task(self.term_out_task) pid, fd = pty.fork() if pid == 0: args = shlex.split(self.shell_cmd) os.execv(args[0], args) else: self.pid = pid self.fd = fd if self.sock_term_in is None: self.sock_term_in = self.zctx.socket(zmq.SUB) self.sock_term_in.bind('tcp://*:2002') self.sock_term_in.subscribe(b'') if self.sock_term_out is None: self.sock_term_out = self.zctx.socket(zmq.PUB) self.sock_term_out.bind('tcp://*:2003') term_reader = asyncio.StreamReader() term_read_protocol = asyncio.StreamReaderProtocol(term_reader) await self.loop.connect_read_pipe( lambda: term_read_protocol, os.fdopen(self.fd, 'rb')) _reader_factory = lambda: asyncio.StreamReaderProtocol( asyncio.StreamReader()) term_writer_transport, term_writer_protocol = \ await self.loop.connect_write_pipe(_reader_factory, os.fdopen(self.fd, 'wb')) term_writer = asyncio.StreamWriter(term_writer_transport, term_writer_protocol, None, self.loop) self.term_in_task = self.loop.create_task(self.term_in(term_writer)) self.term_out_task = self.loop.create_task(self.term_out(term_reader)) # noqa self.accept_term_input = True await asyncio.sleep(0) async def restart(self): try: async with self.start_lock: if not self.accept_term_input: return self.accept_term_input = False await self.sock_term_out.send_multipart([b'Restarting...\r\n']) os.waitpid(self.pid, 0) await self.start() except Exception: log.exception('Unexpected error during restart of terminal') async def term_in(self, term_writer): try: while True: data = await self.sock_term_in.recv_multipart() if not data: break if self.accept_term_input: try: term_writer.write(data[0]) await term_writer.drain() except IOError: break except asyncio.CancelledError: pass except Exception: log.exception('Unexpected error at term_in()') async def term_out(self, term_reader): try: while not term_reader.at_eof(): try: data = await term_reader.read(4096) except IOError: # In docker containers, this path is taken. break if not data: # In macOS, this path is taken. break await self.sock_term_out.send_multipart([data]) self.fd = None if not self.auto_restart: await self.sock_term_out.send_multipart([b'Terminated.\r\n']) return if not self.ev_term.is_set() and self.accept_term_input: self.loop.create_task(self.restart()) except asyncio.CancelledError: pass except Exception: log.exception('Unexpected error at term_out()') async def shutdown(self): self.term_in_task.cancel() self.term_out_task.cancel() await self.term_in_task await self.term_out_task self.sock_term_in.close() self.sock_term_out.close() os.kill(self.pid, signal.SIGHUP) os.kill(self.pid, signal.SIGCONT) await asyncio.sleep(0) os.waitpid(self.pid, 0) self.pid = None self.fd = None
0.218669
0.072276
from consolemenu import ConsoleMenu from consolemenu.items import SelectionItem class SelectionMenu(ConsoleMenu): """ A menu that simplifies item creation, just give it a list of strings and it builds the menu for you Args: strings (:obj:`list` of :obj:`str`): The list of strings this menu should be built from. title (str): The title of the menu. subtitle (str): The subtitle of the menu. screen (:obj:`consolemenu.screen.Screen`): The screen object associated with this menu. formatter (:obj:`MenuFormatBuilder`): The MenuFormatBuilder instance used to format this menu. prologue_text (str): Text to include in the "prologue" section of the menu. epilogue_text (str): Text to include in the "epilogue" section of the menu. show_exit_option (bool): Specifies whether this menu should show an exit item by default. Defaults to True. Can be overridden when the menu is started. exit_option_text (str): Text for the Exit menu item. Defaults to 'Exit'. clear_screen (bool): Set to False to disable clearing of screen between menus """ def __init__(self, strings, title=None, subtitle=None, screen=None, formatter=None, prologue_text=None, epilogue_text=None, show_exit_option=True, exit_option_text='Exit', clear_screen=True): super(SelectionMenu, self).__init__(title, subtitle, screen=screen, formatter=formatter, prologue_text=prologue_text, epilogue_text=epilogue_text, show_exit_option=show_exit_option, exit_option_text=exit_option_text, clear_screen=clear_screen) for index, item in enumerate(strings): self.append_item(SelectionItem(item, index, self)) @classmethod def get_selection(cls, strings, title="Select an option", subtitle=None, show_exit_option=True, _menu=None): """ Single-method way of getting a selection out of a list of strings. Args: strings (:obj:`list` of :obj:`str`): The list of strings this menu should be built from. title (str): The title of the menu. subtitle (str): The subtitle of the menu. show_exit_option (bool): Specifies whether this menu should show an exit item by default. Defaults to True. _menu: Should probably only be used for testing, pass in a list and the created menu used internally by the method will be appended to it Returns: int: The index of the selected option. """ menu = cls(strings, title, subtitle, show_exit_option=show_exit_option) if _menu is not None: _menu.append(menu) menu.show() menu.join() return menu.selected_option def append_string(self, string): self.append_item(SelectionItem(string))
consolemenu/selection_menu.py
from consolemenu import ConsoleMenu from consolemenu.items import SelectionItem class SelectionMenu(ConsoleMenu): """ A menu that simplifies item creation, just give it a list of strings and it builds the menu for you Args: strings (:obj:`list` of :obj:`str`): The list of strings this menu should be built from. title (str): The title of the menu. subtitle (str): The subtitle of the menu. screen (:obj:`consolemenu.screen.Screen`): The screen object associated with this menu. formatter (:obj:`MenuFormatBuilder`): The MenuFormatBuilder instance used to format this menu. prologue_text (str): Text to include in the "prologue" section of the menu. epilogue_text (str): Text to include in the "epilogue" section of the menu. show_exit_option (bool): Specifies whether this menu should show an exit item by default. Defaults to True. Can be overridden when the menu is started. exit_option_text (str): Text for the Exit menu item. Defaults to 'Exit'. clear_screen (bool): Set to False to disable clearing of screen between menus """ def __init__(self, strings, title=None, subtitle=None, screen=None, formatter=None, prologue_text=None, epilogue_text=None, show_exit_option=True, exit_option_text='Exit', clear_screen=True): super(SelectionMenu, self).__init__(title, subtitle, screen=screen, formatter=formatter, prologue_text=prologue_text, epilogue_text=epilogue_text, show_exit_option=show_exit_option, exit_option_text=exit_option_text, clear_screen=clear_screen) for index, item in enumerate(strings): self.append_item(SelectionItem(item, index, self)) @classmethod def get_selection(cls, strings, title="Select an option", subtitle=None, show_exit_option=True, _menu=None): """ Single-method way of getting a selection out of a list of strings. Args: strings (:obj:`list` of :obj:`str`): The list of strings this menu should be built from. title (str): The title of the menu. subtitle (str): The subtitle of the menu. show_exit_option (bool): Specifies whether this menu should show an exit item by default. Defaults to True. _menu: Should probably only be used for testing, pass in a list and the created menu used internally by the method will be appended to it Returns: int: The index of the selected option. """ menu = cls(strings, title, subtitle, show_exit_option=show_exit_option) if _menu is not None: _menu.append(menu) menu.show() menu.join() return menu.selected_option def append_string(self, string): self.append_item(SelectionItem(string))
0.549882
0.09899
import os import sys import re import subprocess import plistlib import shutil CLT_BINARY = os.path.dirname(os.path.realpath(__file__)) + '/platypus' def profile_plist_for_args(args): pnargs = [CLT_BINARY] pnargs.extend(args) pnargs.extend(['-O', '-']) out = subprocess.check_output(pnargs) return plistlib.readPlistFromString(out) def create_app_with_args(args, name='MyApp'): pnargs = [CLT_BINARY] pnargs.extend(args) pnargs.extend(['--overwrite', '--name', name, 'args.py', name + '.app']) with open(os.devnull, 'w') as devnull: out = subprocess.check_output(pnargs, stderr=devnull) return 'MyApp.app' def create_profile_with_args(args, name='dummy.profile'): pass def run_app(name='MyApp', args=[]): with open(os.devnull, 'w') as devnull: cmd = ['./' + name + '.app/Contents/MacOS/' + name] cmd.extend(args) out = subprocess.check_output(cmd, stderr=devnull) with open('args.txt', 'r') as f: arglist = [l.rstrip('\n') for l in f.readlines()] return arglist os.chdir(os.path.dirname(os.path.realpath(__file__))) print("Checking basic sanity of default profile") plist = profile_plist_for_args([]) assert(plist['Version'] == '1.0') assert(plist['InterpreterPath'] == '/bin/sh') assert(plist['InterfaceType'] == 'Text Window') assert(len(plist['BundledFiles']) == 0) assert(plist['Authentication'] == False) assert(plist['Name'] != '') assert(re.match('\w+\.\w+\.\w+', plist['Identifier'])) print("Profile generation: Testing boolean switches") boolean_opts = { '-A': 'Authentication', '-D': ['Droppable', 'AcceptsFiles'], '-F': 'AcceptsText', '-N': 'DeclareService', '-B': 'RunInBackground', '-Z': 'PromptForFileOnLaunch', '-c': 'StatusItemUseSystemFont', '-d': 'DevelopmentVersion', '-l': 'OptimizeApplication', '-y': 'Overwrite' } for k,v in boolean_opts.iteritems(): plist = profile_plist_for_args([k]) l = v if isinstance(v, basestring): l = [v] for m in l: assert(plist[m] == True) inv_boolean_opts = { '-R': 'RemainRunning' } for k,v in inv_boolean_opts.iteritems(): plist = profile_plist_for_args([k]) assert(plist[v] == False) print("Profile generation: Testing strings") string_opts = { '-a': ['Name', 'MyAppName'], '-o': ['InterfaceType', 'Progress Bar'], '-p': ['InterpreterPath', '/usr/bin/perl'], '-V': ['Version', '3.2'], '-u': ['Author', '<NAME>'], '-I': ['Identifier', 'org.something.Blergh'], '-b': ['TextBackground', '#000000'], '-g': ['TextForeground', '#ffeeee'], # '-n': ['TextFont', 'Comic Sans 13'], '-K': ['StatusItemDisplayType', 'Icon'], '-Y': ['StatusItemTitle', 'MySillyTitle'], } for k,v in string_opts.iteritems(): plist = profile_plist_for_args([k, v[1]]) assert(plist[v[0]] == v[1]) print("Profile generation: Testing data args") dummy_icon_path = os.path.abspath('dummy.icns') data_opts = { '-i': ['IconPath', dummy_icon_path], '-Q': ['DocIconPath', dummy_icon_path], '-L': ['StatusItemIcon', dummy_icon_path] } for k,v in data_opts.iteritems(): plist = profile_plist_for_args([k, v[1]]) # print plist[v[0]] assert(plist[v[0]] != None) print("Profile generation: Testing flags w. multiple args") # Create dummy bundled files open('dummy1', 'w').close() open('dummy2', 'w').close() multiple_items_opts = { '-G': ['InterpreterArgs', ['-a','-b','-c']], '-C': ['ScriptArgs', ['-e','-f','-g']], '-f': ['BundledFiles', [os.path.abspath('dummy1'),os.path.abspath('dummy2')]], '-X': ['Suffixes', ['txt','png','pdf']], '-T': ['UniformTypes', ['public.text', 'public.rtf']], '-U': ['URISchemes', ['https', 'ssh']] } for k,v in multiple_items_opts.iteritems(): plist = profile_plist_for_args([k, '|'.join(v[1])]) items = plist[v[0]] #print items for i in items: assert(i in v[1]) os.remove('dummy1') os.remove('dummy2') print("Verifying app directory structure and permissions") app_path = create_app_with_args(['-R']) files = [ app_path + '/', app_path + '/Contents', app_path + '/Contents/Info.plist', app_path + '/Contents/MacOS', app_path + '/Contents/MacOS/MyApp', app_path + '/Contents/Resources', app_path + '/Contents/Resources/AppIcon.icns', app_path + '/Contents/Resources/AppSettings.plist', app_path + '/Contents/Resources/MainMenu.nib', app_path + '/Contents/Resources/script' ] for p in files: assert(os.path.exists(p)) assert(os.access(files[4], os.X_OK)) # app binary assert(os.access(files[9], os.X_OK)) # script # Verify keys in AppSettings.plist # Create new app from python, perl scripts, verify # that correct interpreter is automatically selected # Run app print("Verifying app argument handling") assert(run_app(args=['a', 'b', 'c']) == ['a', 'b', 'c']) # Create app with droppable settings, test opening file #shutil.rmtree('MyApp.app')
Tests/clt_tests.py
import os import sys import re import subprocess import plistlib import shutil CLT_BINARY = os.path.dirname(os.path.realpath(__file__)) + '/platypus' def profile_plist_for_args(args): pnargs = [CLT_BINARY] pnargs.extend(args) pnargs.extend(['-O', '-']) out = subprocess.check_output(pnargs) return plistlib.readPlistFromString(out) def create_app_with_args(args, name='MyApp'): pnargs = [CLT_BINARY] pnargs.extend(args) pnargs.extend(['--overwrite', '--name', name, 'args.py', name + '.app']) with open(os.devnull, 'w') as devnull: out = subprocess.check_output(pnargs, stderr=devnull) return 'MyApp.app' def create_profile_with_args(args, name='dummy.profile'): pass def run_app(name='MyApp', args=[]): with open(os.devnull, 'w') as devnull: cmd = ['./' + name + '.app/Contents/MacOS/' + name] cmd.extend(args) out = subprocess.check_output(cmd, stderr=devnull) with open('args.txt', 'r') as f: arglist = [l.rstrip('\n') for l in f.readlines()] return arglist os.chdir(os.path.dirname(os.path.realpath(__file__))) print("Checking basic sanity of default profile") plist = profile_plist_for_args([]) assert(plist['Version'] == '1.0') assert(plist['InterpreterPath'] == '/bin/sh') assert(plist['InterfaceType'] == 'Text Window') assert(len(plist['BundledFiles']) == 0) assert(plist['Authentication'] == False) assert(plist['Name'] != '') assert(re.match('\w+\.\w+\.\w+', plist['Identifier'])) print("Profile generation: Testing boolean switches") boolean_opts = { '-A': 'Authentication', '-D': ['Droppable', 'AcceptsFiles'], '-F': 'AcceptsText', '-N': 'DeclareService', '-B': 'RunInBackground', '-Z': 'PromptForFileOnLaunch', '-c': 'StatusItemUseSystemFont', '-d': 'DevelopmentVersion', '-l': 'OptimizeApplication', '-y': 'Overwrite' } for k,v in boolean_opts.iteritems(): plist = profile_plist_for_args([k]) l = v if isinstance(v, basestring): l = [v] for m in l: assert(plist[m] == True) inv_boolean_opts = { '-R': 'RemainRunning' } for k,v in inv_boolean_opts.iteritems(): plist = profile_plist_for_args([k]) assert(plist[v] == False) print("Profile generation: Testing strings") string_opts = { '-a': ['Name', 'MyAppName'], '-o': ['InterfaceType', 'Progress Bar'], '-p': ['InterpreterPath', '/usr/bin/perl'], '-V': ['Version', '3.2'], '-u': ['Author', '<NAME>'], '-I': ['Identifier', 'org.something.Blergh'], '-b': ['TextBackground', '#000000'], '-g': ['TextForeground', '#ffeeee'], # '-n': ['TextFont', 'Comic Sans 13'], '-K': ['StatusItemDisplayType', 'Icon'], '-Y': ['StatusItemTitle', 'MySillyTitle'], } for k,v in string_opts.iteritems(): plist = profile_plist_for_args([k, v[1]]) assert(plist[v[0]] == v[1]) print("Profile generation: Testing data args") dummy_icon_path = os.path.abspath('dummy.icns') data_opts = { '-i': ['IconPath', dummy_icon_path], '-Q': ['DocIconPath', dummy_icon_path], '-L': ['StatusItemIcon', dummy_icon_path] } for k,v in data_opts.iteritems(): plist = profile_plist_for_args([k, v[1]]) # print plist[v[0]] assert(plist[v[0]] != None) print("Profile generation: Testing flags w. multiple args") # Create dummy bundled files open('dummy1', 'w').close() open('dummy2', 'w').close() multiple_items_opts = { '-G': ['InterpreterArgs', ['-a','-b','-c']], '-C': ['ScriptArgs', ['-e','-f','-g']], '-f': ['BundledFiles', [os.path.abspath('dummy1'),os.path.abspath('dummy2')]], '-X': ['Suffixes', ['txt','png','pdf']], '-T': ['UniformTypes', ['public.text', 'public.rtf']], '-U': ['URISchemes', ['https', 'ssh']] } for k,v in multiple_items_opts.iteritems(): plist = profile_plist_for_args([k, '|'.join(v[1])]) items = plist[v[0]] #print items for i in items: assert(i in v[1]) os.remove('dummy1') os.remove('dummy2') print("Verifying app directory structure and permissions") app_path = create_app_with_args(['-R']) files = [ app_path + '/', app_path + '/Contents', app_path + '/Contents/Info.plist', app_path + '/Contents/MacOS', app_path + '/Contents/MacOS/MyApp', app_path + '/Contents/Resources', app_path + '/Contents/Resources/AppIcon.icns', app_path + '/Contents/Resources/AppSettings.plist', app_path + '/Contents/Resources/MainMenu.nib', app_path + '/Contents/Resources/script' ] for p in files: assert(os.path.exists(p)) assert(os.access(files[4], os.X_OK)) # app binary assert(os.access(files[9], os.X_OK)) # script # Verify keys in AppSettings.plist # Create new app from python, perl scripts, verify # that correct interpreter is automatically selected # Run app print("Verifying app argument handling") assert(run_app(args=['a', 'b', 'c']) == ['a', 'b', 'c']) # Create app with droppable settings, test opening file #shutil.rmtree('MyApp.app')
0.151686
0.187411
import os import matplotlib.pyplot as plt import numpy as np import plotly.express as px import pandas as pd import seaborn as sns from dotenv import find_dotenv, load_dotenv from IPython.core.interactiveshell import InteractiveShell # Setting styles InteractiveShell.ast_node_interactivity = "all" sns.set(style="whitegrid", color_codes=True, rc={"figure.figsize": (12.7, 9.27)}) # %% load data df = pd.read_csv(os.path.join("data", "processed", "bhci.csv")) # %% df.head() # %% df.isna().sum() # %% df_all_eth_sex = df[(df["Race/Ethnicity"] == "All") & (df["Sex"] == "Both")].copy() df_all_eth_sex.drop(columns=["Race/Ethnicity", "Sex"], inplace=True) # %% df_all_eth_sex.isna().sum() # %% indicators = [ "AIDS Diagnoses Rate (Per 100,000 people)", "All Types of Cancer Mortality Rate (Age-Adjusted; Per 100,000 people)", "All-Cause Mortality Rate (Age-Adjusted; Per 100,000 people)", "Asthma Emergency Department Visit Rate (Age-Adjusted; Per 10,000)", "Bike Score", "Chlamydia Rate (Per 100,000 People)", "Congenital Syphilis Rate (Per 100,000 Live Births)", "Diabetes Mortality Rate (Age-Adjusted; Per 100,000 people)", "Female Breast Cancer Mortality Rate (Age-Adjusted; Per 100,000 people)", "Firearm-Related Emergency Department Visit Rate (Age-Adjusted; Per 10,000 people)", "Firearm-Related Mortality Rate (Age-Adjusted; Per 100,000 people)", "Gonorrhea Rate (Per 100,000 People)", "HIV Diagnoses Rate (Per 100,000 people)", "HIV-Related Mortality Rate (Age-Adjusted; Per 100,000 people)", "Heart Disease Mortality Rate (Age-Adjusted; Per 100,000 people)", "Homicide Rate (Age-Adjusted; Per 100,000 people)", "Infant Mortality Rate (Per 1,000 live births)", "Life Expectancy at Birth (Years)", "Lung Cancer Mortality Rate (Age-Adjusted; Per 100,000 people)", "Median Household Income (Dollars)", "Motor Vehicle Mortality Rate (Age-Adjusted; Per 100,000 people)", "Opioid-Related Unintentional Drug Overdose Mortality Rate (Age-Adjusted; Per 100,000 people)", "Percent Foreign Born", "Percent Living Below 200% Poverty Level", "Percent Unemployed", "Percent Who Only Speak English at Home", "Percent Who Speak Spanish at Home", "Percent of 3 and 4 Year Olds Currently Enrolled in Preschool", "Percent of Adults 65 and Over Who Received Pneumonia Vaccine", "Percent of Adults Who Are Obese", "Percent of Adults Who Binge Drank", "Percent of Adults Who Currently Smoke", "Percent of Adults Who Meet CDC-Recommended Physical Activity Levels", "Percent of Adults Who Received Seasonal Flu Shot", "Percent of Children (Tested) Under Age 6 with Elevated Blood Lead Levels", "Percent of Children Living in Poverty", "Percent of Children Who Received Seasonal Flu Shot", "Percent of High School Graduates (Over Age 18)", "Percent of High School Students Who Are Obese", "Percent of High School Students Who Binge Drank", "Percent of High School Students Who Currently Smoke", "Percent of High School Students Who Meet CDC-Recommended Physical Activity Levels", "Percent of Households Whose Housing Costs Exceed 35% of Income", "Percent of Low Birth Weight Babies Born", "Percent of Mothers Under Age 20", "Percent of Population 65 and Over", "Percent of Population Under 18", "Percent of Population Uninsured", "Percent of Population with a Disability", "Persons Living with HIV/AIDS Rate (Per 100,000 people)", "Pneumonia and Influenza Mortality Rate (Age-Adjusted; Per 100,000 people)", "Primary and Secondary Syphilis Rate (Per 100,000 People)", "Race/Ethnicity (Percent)", "Rate of Laboratory Confirmed Infections Caused by Salmonella (Per 100,000 people)", "Rate of Laboratory Confirmed Infections Caused by Shiga Toxin-Producing E-Coli (Per 100,000 people)", "Sex (Percent)", "Suicide Rate (Age-Adjusted; Per 100,000 people)", "Total Population (People)", "Transit Score", "Tuberculosis Incidence Rate (Per 100,000 people)", "Walkability", ] # %% initial exploration for indicator in indicators: sns.lineplot(x="Year", y=indicator, hue="Place", data=df_all_eth_sex) plt.title(indicator) plt.show() # %% Opioids fig = px.line( df_all_eth_sex, x="Year", y="Opioid-Related Unintentional Drug Overdose Mortality Rate (Age-Adjusted; Per 100,000 people)", color="Place", ) fig.show() # %%
notebooks/data_exploraton.py
import os import matplotlib.pyplot as plt import numpy as np import plotly.express as px import pandas as pd import seaborn as sns from dotenv import find_dotenv, load_dotenv from IPython.core.interactiveshell import InteractiveShell # Setting styles InteractiveShell.ast_node_interactivity = "all" sns.set(style="whitegrid", color_codes=True, rc={"figure.figsize": (12.7, 9.27)}) # %% load data df = pd.read_csv(os.path.join("data", "processed", "bhci.csv")) # %% df.head() # %% df.isna().sum() # %% df_all_eth_sex = df[(df["Race/Ethnicity"] == "All") & (df["Sex"] == "Both")].copy() df_all_eth_sex.drop(columns=["Race/Ethnicity", "Sex"], inplace=True) # %% df_all_eth_sex.isna().sum() # %% indicators = [ "AIDS Diagnoses Rate (Per 100,000 people)", "All Types of Cancer Mortality Rate (Age-Adjusted; Per 100,000 people)", "All-Cause Mortality Rate (Age-Adjusted; Per 100,000 people)", "Asthma Emergency Department Visit Rate (Age-Adjusted; Per 10,000)", "Bike Score", "Chlamydia Rate (Per 100,000 People)", "Congenital Syphilis Rate (Per 100,000 Live Births)", "Diabetes Mortality Rate (Age-Adjusted; Per 100,000 people)", "Female Breast Cancer Mortality Rate (Age-Adjusted; Per 100,000 people)", "Firearm-Related Emergency Department Visit Rate (Age-Adjusted; Per 10,000 people)", "Firearm-Related Mortality Rate (Age-Adjusted; Per 100,000 people)", "Gonorrhea Rate (Per 100,000 People)", "HIV Diagnoses Rate (Per 100,000 people)", "HIV-Related Mortality Rate (Age-Adjusted; Per 100,000 people)", "Heart Disease Mortality Rate (Age-Adjusted; Per 100,000 people)", "Homicide Rate (Age-Adjusted; Per 100,000 people)", "Infant Mortality Rate (Per 1,000 live births)", "Life Expectancy at Birth (Years)", "Lung Cancer Mortality Rate (Age-Adjusted; Per 100,000 people)", "Median Household Income (Dollars)", "Motor Vehicle Mortality Rate (Age-Adjusted; Per 100,000 people)", "Opioid-Related Unintentional Drug Overdose Mortality Rate (Age-Adjusted; Per 100,000 people)", "Percent Foreign Born", "Percent Living Below 200% Poverty Level", "Percent Unemployed", "Percent Who Only Speak English at Home", "Percent Who Speak Spanish at Home", "Percent of 3 and 4 Year Olds Currently Enrolled in Preschool", "Percent of Adults 65 and Over Who Received Pneumonia Vaccine", "Percent of Adults Who Are Obese", "Percent of Adults Who Binge Drank", "Percent of Adults Who Currently Smoke", "Percent of Adults Who Meet CDC-Recommended Physical Activity Levels", "Percent of Adults Who Received Seasonal Flu Shot", "Percent of Children (Tested) Under Age 6 with Elevated Blood Lead Levels", "Percent of Children Living in Poverty", "Percent of Children Who Received Seasonal Flu Shot", "Percent of High School Graduates (Over Age 18)", "Percent of High School Students Who Are Obese", "Percent of High School Students Who Binge Drank", "Percent of High School Students Who Currently Smoke", "Percent of High School Students Who Meet CDC-Recommended Physical Activity Levels", "Percent of Households Whose Housing Costs Exceed 35% of Income", "Percent of Low Birth Weight Babies Born", "Percent of Mothers Under Age 20", "Percent of Population 65 and Over", "Percent of Population Under 18", "Percent of Population Uninsured", "Percent of Population with a Disability", "Persons Living with HIV/AIDS Rate (Per 100,000 people)", "Pneumonia and Influenza Mortality Rate (Age-Adjusted; Per 100,000 people)", "Primary and Secondary Syphilis Rate (Per 100,000 People)", "Race/Ethnicity (Percent)", "Rate of Laboratory Confirmed Infections Caused by Salmonella (Per 100,000 people)", "Rate of Laboratory Confirmed Infections Caused by Shiga Toxin-Producing E-Coli (Per 100,000 people)", "Sex (Percent)", "Suicide Rate (Age-Adjusted; Per 100,000 people)", "Total Population (People)", "Transit Score", "Tuberculosis Incidence Rate (Per 100,000 people)", "Walkability", ] # %% initial exploration for indicator in indicators: sns.lineplot(x="Year", y=indicator, hue="Place", data=df_all_eth_sex) plt.title(indicator) plt.show() # %% Opioids fig = px.line( df_all_eth_sex, x="Year", y="Opioid-Related Unintentional Drug Overdose Mortality Rate (Age-Adjusted; Per 100,000 people)", color="Place", ) fig.show() # %%
0.474875
0.448185
from __future__ import division from past.builtins import cmp from future import standard_library standard_library.install_aliases() from builtins import object import errno import logging import math import os import posixpath import random import subprocess import sys from django.utils.encoding import smart_str from desktop.lib import i18n import hadoop.conf from hadoop.fs import normpath, SEEK_SET, SEEK_CUR, SEEK_END from hadoop.fs.exceptions import PermissionDeniedException if sys.version_info[0] > 2: from django.utils.encoding import force_str from urllib.parse import urlsplit as lib_urlsplit from django.utils.translation import gettext as _ else: from django.utils.encoding import force_unicode as force_str from urlparse import urlsplit as lib_urlsplit from django.utils.translation import ugettext as _ LOG = logging.getLogger(__name__) DEFAULT_USER = "webui" # The number of bytes to read if not specified DEFAULT_READ_SIZE = 1024*1024 # 1MB # The buffer size of the pipe to hdfs -put during upload WRITE_BUFFER_SIZE = 128*1024 # 128K # Class that we translate into PermissionDeniedException HADOOP_ACCESSCONTROLEXCEPTION = "org.apache.hadoop.security.AccessControlException" # Timeout for thrift calls to NameNode NN_THRIFT_TIMEOUT = 15 DN_THRIFT_TIMEOUT = 3 # Encoding used by HDFS namespace HDFS_ENCODING = 'utf-8' def encode_fs_path(path): """encode_fs_path(path) -> byte string in utf8""" return smart_str(path, HDFS_ENCODING, errors='strict') def decode_fs_path(path): """decode_fs_path(bytestring) -> unicode path""" return force_str(path, HDFS_ENCODING, errors='strict') def _coerce_exceptions(function): """ Decorator that causes exceptions thrown by the decorated function to be coerced into generic exceptions from the hadoop.fs.exceptions module. """ def wrapper(*args, **kwargs): try: return function(*args, **kwargs) except Exception as e: e.msg = force_str(e.msg, errors='replace') e.stack = force_str(e.stack, errors='replace') LOG.exception("Exception in Hadoop FS call " + function.__name__) if e.clazz == HADOOP_ACCESSCONTROLEXCEPTION: raise PermissionDeniedException(e.msg, e) else: raise return wrapper class Hdfs(object): """ An abstract HDFS proxy """ @staticmethod def basename(path): return posixpath.basename(path) @staticmethod def dirname(path): return posixpath.dirname(path) @staticmethod def split(path): return posixpath.split(path) @staticmethod def join(first, *comp_list): return posixpath.join(first, *comp_list) @staticmethod def abspath(path): return posixpath.abspath(path) @staticmethod def normpath(path): res = posixpath.normpath(path) # Python normpath() doesn't eliminate leading double slashes if res.startswith('//'): return res[1:] return res @staticmethod def parent_path(path): return Hdfs.join(path, "..") @staticmethod def urlsplit(url): """ Take an HDFS path (hdfs://nn:port/foo) or just (/foo) and split it into the standard urlsplit's 5-tuple. """ i = url.find('://') if i == -1: # Not found. Treat the entire argument as an HDFS path return ('hdfs', '', normpath(url), '', '') schema = url[:i] if schema not in ('hdfs', 'viewfs'): # Default to standard for non-hdfs return lib_urlsplit(url) url = url[i+3:] i = url.find('/') if i == -1: # Everything is netloc. Assume path is root. return (schema, url, '/', '', '') netloc = url[:i] path = url[i:] return (schema, netloc, normpath(path), '', '') def listdir_recursive(self, path, glob=None): """ listdir_recursive(path, glob=None) -> [ entry names ] Get directory entry names without stats, recursively. """ paths = [path] while paths: path = paths.pop() if self.isdir(path): hdfs_paths = self.listdir_stats(path, glob) paths[:0] = [x.path for x in hdfs_paths] yield path def create_home_dir(self, home_path=None): if home_path is None: home_path = self.get_home_dir() from hadoop.hdfs_site import get_umask_mode from useradmin.conf import HOME_DIR_PERMISSIONS, USE_HOME_DIR_PERMISSIONS from desktop.conf import DEFAULT_HDFS_SUPERUSER mode = int(HOME_DIR_PERMISSIONS.get(), 8) if USE_HOME_DIR_PERMISSIONS.get() else (0o777 & (0o1777 ^ get_umask_mode())) if not self.exists(home_path): user = self.user LOG.debug('superuser used for home directory creation: %s' % self.superuser) try: try: self.setuser(DEFAULT_HDFS_SUPERUSER.get()) self.mkdir(home_path) self.chmod(home_path, mode) self.chown(home_path, user) try: # Handle the case when there is no group with the same name as the user. self.chown(home_path, group=user) except IOError: LOG.exception('Failed to change the group of "{}" to "{}" when creating a home directory ' 'for user "{}"'.format(home_path, user, user)) except IOError: msg = 'Failed to create home dir ("%s") as superuser %s' % (home_path, self.superuser) LOG.exception(msg) raise finally: self.setuser(user) def copyFromLocal(self, local_src, remote_dst, mode=0o755): remote_dst = remote_dst.endswith(posixpath.sep) and remote_dst[:-1] or remote_dst local_src = local_src.endswith(posixpath.sep) and local_src[:-1] or local_src if os.path.isdir(local_src): self._copy_dir(local_src, remote_dst, mode) else: (basename, filename) = os.path.split(local_src) self._copy_file(local_src, self.isdir(remote_dst) and self.join(remote_dst, filename) or remote_dst) def _copy_dir(self, local_dir, remote_dir, mode=0o755): self.mkdir(remote_dir, mode=mode) for f in os.listdir(local_dir): local_src = os.path.join(local_dir, f) remote_dst = self.join(remote_dir, f) if os.path.isdir(local_src): self._copy_dir(local_src, remote_dst, mode) else: self._copy_file(local_src, remote_dst) def _copy_file(self, local_src, remote_dst, chunk_size=1024 * 1024 * 64): if os.path.isfile(local_src): if self.exists(remote_dst): LOG.info(_('%(remote_dst)s already exists. Skipping.') % {'remote_dst': remote_dst}) return else: LOG.info(_('%(remote_dst)s does not exist. Trying to copy.') % {'remote_dst': remote_dst}) src = file(local_src) try: try: self.create(remote_dst, permission=0o755) chunk = src.read(chunk_size) while chunk: self.append(remote_dst, chunk) chunk = src.read(chunk_size) LOG.info(_('Copied %s -> %s.') % (local_src, remote_dst)) except: LOG.exception(_('Copying %s -> %s failed.') % (local_src, remote_dst)) raise finally: src.close() else: LOG.info(_('Skipping %s (not a file).') % local_src) @_coerce_exceptions def mktemp(self, subdir='', prefix='tmp', basedir=None): """ mktemp(prefix) -> <temp_dir or basedir>/<subdir>/prefix.<rand> Return a unique temporary filename with prefix in the cluster's temp dir. """ RANDOM_BITS = 64 base = self.join(basedir or self._temp_dir, subdir) if not self.isdir(base): self.mkdir(base) while True: name = prefix + '.' + str(random.getrandbits(RANDOM_BITS)) candidate = self.join(base, name) if not self.exists(candidate): return candidate def mkswap(self, filename, subdir='', suffix='swp', basedir=None): """ mkswap(filename, suffix) -> <temp_dir or basedir>/<subdir>/filename.<suffix> Return a unique temporary filename with prefix in the cluster's temp dir. """ RANDOM_BITS = 64 base = self.join(basedir or self._temp_dir, subdir) if not self.isdir(base): self.mkdir(base) candidate = self.join(base, "%s.%s" % (filename, suffix)) return candidate def exists(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'exists'}) def do_as_user(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'do_as_user'}) def create(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'exists'}) def append(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'append'}) def mkdir(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'mkdir'}) def isdir(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'isdir'}) def listdir_stats(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'listdir_stats'}) def require_open(func): """ Decorator that ensures that the file instance isn't closed when the function is run. """ def wrapper(self, *args, **kwargs): if self.closed: raise IOError(errno.EBADF, "I/O operation on closed file") return func(self, *args, **kwargs) return wrapper class File(object): """ Represents an open file on HDFS. """ def __init__(self, fs, path, mode="r", buffering=False): self.fs = fs self.path = normpath(path) self.pos = 0 self.closed = False self._block_cache = BlockCache() if buffering or mode != "r": raise Exception("buffering and write support not yet implemented") # NYI stat = self._stat() if stat is None: raise IOError(errno.ENOENT, "No such file or directory: '%s'" % path) if stat.isDir: raise IOError(errno.EISDIR, "Is a directory: '%s'" % path) #TODO(todd) somehow we need to check permissions here - maybe we need an access() call? # Minimal context manager implementation. # See: http://www.python.org/doc/2.5.2/lib/typecontextmanager.html def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() return False # don't supress exceptions. @require_open def seek(self, offset, whence=0): """ Set the file pointer to the given spot. @see file.seek """ if whence == SEEK_SET: self.pos = offset elif whence == SEEK_CUR: self.pos += offset elif whence == SEEK_END: self.pos = self._stat().length + offset else: raise IOError(errno.EINVAL, "Invalid argument to seek for whence") @require_open def tell(self): return self.pos def _get_block(self, pos): """Return the Block instance that contains the given offset""" cached_block = self._block_cache.find_block(pos) if cached_block: return cached_block # Cache "miss" - fetch ahead 500MB worth of blocks new_blocks = self.fs._get_blocks(self.path, pos, 500*1024*1024) self._block_cache.insert_new_blocks(new_blocks) result = self._block_cache.find_block(pos) if not result: raise IOError("No block for position %d in file %s" % (pos, self.path)) return result @require_open def _read_in_block(self, length=DEFAULT_READ_SIZE): """ Tries to read up to length bytes, but will often read fewer, since a single call will not read across a block boundary. """ end_pos = min(self.pos + length, self._stat().length) # If we're at EOF, return empty string if end_pos == self.pos: return "" block = self._get_block(self.pos) assert _block_contains_pos(block, self.pos) assert block.path == self.path in_block_pos = self.pos - block.startOffset assert in_block_pos >= 0 in_block_len = min(length, block.numBytes - in_block_pos) result = self.fs._read_block(block, in_block_pos, in_block_len) self.pos += len(result) assert self.pos <= end_pos return result @require_open def read(self, length=DEFAULT_READ_SIZE): """ Read the given number of bytes from this file. If EOF has been reached, returns the empty string. @param length the number of bytes wanted """ result = [] read_so_far = 0 while read_so_far < length: this_data = self._read_in_block(length - read_so_far) if this_data == "": # eof break read_so_far += len(this_data) result.append(this_data) return "".join(result) def close(self): self.closed = True def _stat(self): if not hasattr(self, "_stat_cache"): self._stat_cache = self.fs._hadoop_stat(self.path) return self._stat_cache class FileUpload(object): """A write-only file that supports no seeking and cannot exist prior to opening. """ def __init__(self, fs, path, mode="w", block_size=None): self.fs = fs self.closed = False assert mode == "w" extra_confs = [] if block_size: extra_confs.append("-Ddfs.block.size=%d" % block_size) self.subprocess_cmd = [self.fs.hadoop_bin_path, "jar", hadoop.conf.SUDO_SHELL_JAR.get(), self.fs.user, "-Dfs.default.name=" + self.fs.uri] + \ extra_confs + \ ["-put", "-", encode_fs_path(path)] self.subprocess_env = i18n.make_utf8_env() if 'HADOOP_CLASSPATH' in self.subprocess_env: self.subprocess_env['HADOOP_CLASSPATH'] += ':' + hadoop.conf.HADOOP_EXTRA_CLASSPATH_STRING.get() else: self.subprocess_env['HADOOP_CLASSPATH'] = hadoop.conf.HADOOP_EXTRA_CLASSPATH_STRING.get() if hadoop.conf.HADOOP_CONF_DIR.get(): self.subprocess_env['HADOOP_CONF_DIR'] = hadoop.conf.HADOOP_CONF_DIR.get() self.path = path self.putter = subprocess.Popen(self.subprocess_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, env=self.subprocess_env, bufsize=WRITE_BUFFER_SIZE) @require_open def write(self, data): """May raise IOError, particularly EPIPE""" self.putter.stdin.write(data) @require_open def close(self): try: (stdout, stderr) = self.putter.communicate() except IOError as ioe: logging.debug("Saw IOError writing %r" % self.path, exc_info=1) if ioe.errno == errno.EPIPE: stdout, stderr = self.putter.communicate() self.closed = True if stderr: LOG.warning("HDFS FileUpload (cmd='%s', env='%s') outputted stderr:\n%s" % (repr(self.subprocess_cmd), repr(self.subprocess_env), stderr)) if stdout: LOG.info("HDFS FileUpload (cmd='%s', env='%s') outputted stdout:\n%s" % (repr(self.subprocess_cmd), repr(self.subprocess_env), stdout)) if self.putter.returncode != 0: raise IOError("hdfs put returned bad code: %d\nstderr: %s" % (self.putter.returncode, stderr)) LOG.info("Completed upload: %s" % repr(self.subprocess_cmd)) @require_open def flush(self): self.putter.stdin.flush() def _block_contains_pos(block, pos): return pos >= block.startOffset and pos < block.startOffset + block.numBytes class BlockCache(object): """ A cache of block locations used by a single HDFS input file. Essentially this keeps the blocks in sorted order and does binary search to find the block that contains a given offset. It also provides the ability to merge in the response of a NN getBlocks response to the cache. """ def __init__(self): self.blocks = [] def find_block(self, pos, _min_idx=0, _max_idx=None): """ Return the Block object that contains the specified position pos, or None if it is not in the cache. """ if _max_idx is None: _max_idx = len(self.blocks) - 1 if _max_idx < _min_idx: return None pivot_idx = math.floor((_max_idx + _min_idx) / 2) pivot_block = self.blocks[pivot_idx] if pos < pivot_block.startOffset: return self.find_block(pos, _min_idx, pivot_idx - 1) elif pos >= pivot_block.startOffset + pivot_block.numBytes: return self.find_block(pos, pivot_idx + 1, _max_idx) else: return pivot_block def insert_new_blocks(self, new_blocks): """ Merge a list of Block objects from the NN into the list of cached blocks. If the set of blocks overlaps, the new blocks take precedence. """ # We could do a more efficient merge here since both lists # are already sorted, but these data structures are small, so let's # do the easy thing. blocks_dict = dict((b.blockId, b) for b in self.blocks) # Merge in new data to dictionary for nb in new_blocks: blocks_dict[nb.blockId] = nb # Convert back to sorted list block_list = list(blocks_dict.values()) block_list.sort(cmp=lambda a, b: cmp(a.startOffset, b.startOffset)) # Update cache with new data self.blocks = block_list
desktop/libs/hadoop/src/hadoop/fs/hadoopfs.py
from __future__ import division from past.builtins import cmp from future import standard_library standard_library.install_aliases() from builtins import object import errno import logging import math import os import posixpath import random import subprocess import sys from django.utils.encoding import smart_str from desktop.lib import i18n import hadoop.conf from hadoop.fs import normpath, SEEK_SET, SEEK_CUR, SEEK_END from hadoop.fs.exceptions import PermissionDeniedException if sys.version_info[0] > 2: from django.utils.encoding import force_str from urllib.parse import urlsplit as lib_urlsplit from django.utils.translation import gettext as _ else: from django.utils.encoding import force_unicode as force_str from urlparse import urlsplit as lib_urlsplit from django.utils.translation import ugettext as _ LOG = logging.getLogger(__name__) DEFAULT_USER = "webui" # The number of bytes to read if not specified DEFAULT_READ_SIZE = 1024*1024 # 1MB # The buffer size of the pipe to hdfs -put during upload WRITE_BUFFER_SIZE = 128*1024 # 128K # Class that we translate into PermissionDeniedException HADOOP_ACCESSCONTROLEXCEPTION = "org.apache.hadoop.security.AccessControlException" # Timeout for thrift calls to NameNode NN_THRIFT_TIMEOUT = 15 DN_THRIFT_TIMEOUT = 3 # Encoding used by HDFS namespace HDFS_ENCODING = 'utf-8' def encode_fs_path(path): """encode_fs_path(path) -> byte string in utf8""" return smart_str(path, HDFS_ENCODING, errors='strict') def decode_fs_path(path): """decode_fs_path(bytestring) -> unicode path""" return force_str(path, HDFS_ENCODING, errors='strict') def _coerce_exceptions(function): """ Decorator that causes exceptions thrown by the decorated function to be coerced into generic exceptions from the hadoop.fs.exceptions module. """ def wrapper(*args, **kwargs): try: return function(*args, **kwargs) except Exception as e: e.msg = force_str(e.msg, errors='replace') e.stack = force_str(e.stack, errors='replace') LOG.exception("Exception in Hadoop FS call " + function.__name__) if e.clazz == HADOOP_ACCESSCONTROLEXCEPTION: raise PermissionDeniedException(e.msg, e) else: raise return wrapper class Hdfs(object): """ An abstract HDFS proxy """ @staticmethod def basename(path): return posixpath.basename(path) @staticmethod def dirname(path): return posixpath.dirname(path) @staticmethod def split(path): return posixpath.split(path) @staticmethod def join(first, *comp_list): return posixpath.join(first, *comp_list) @staticmethod def abspath(path): return posixpath.abspath(path) @staticmethod def normpath(path): res = posixpath.normpath(path) # Python normpath() doesn't eliminate leading double slashes if res.startswith('//'): return res[1:] return res @staticmethod def parent_path(path): return Hdfs.join(path, "..") @staticmethod def urlsplit(url): """ Take an HDFS path (hdfs://nn:port/foo) or just (/foo) and split it into the standard urlsplit's 5-tuple. """ i = url.find('://') if i == -1: # Not found. Treat the entire argument as an HDFS path return ('hdfs', '', normpath(url), '', '') schema = url[:i] if schema not in ('hdfs', 'viewfs'): # Default to standard for non-hdfs return lib_urlsplit(url) url = url[i+3:] i = url.find('/') if i == -1: # Everything is netloc. Assume path is root. return (schema, url, '/', '', '') netloc = url[:i] path = url[i:] return (schema, netloc, normpath(path), '', '') def listdir_recursive(self, path, glob=None): """ listdir_recursive(path, glob=None) -> [ entry names ] Get directory entry names without stats, recursively. """ paths = [path] while paths: path = paths.pop() if self.isdir(path): hdfs_paths = self.listdir_stats(path, glob) paths[:0] = [x.path for x in hdfs_paths] yield path def create_home_dir(self, home_path=None): if home_path is None: home_path = self.get_home_dir() from hadoop.hdfs_site import get_umask_mode from useradmin.conf import HOME_DIR_PERMISSIONS, USE_HOME_DIR_PERMISSIONS from desktop.conf import DEFAULT_HDFS_SUPERUSER mode = int(HOME_DIR_PERMISSIONS.get(), 8) if USE_HOME_DIR_PERMISSIONS.get() else (0o777 & (0o1777 ^ get_umask_mode())) if not self.exists(home_path): user = self.user LOG.debug('superuser used for home directory creation: %s' % self.superuser) try: try: self.setuser(DEFAULT_HDFS_SUPERUSER.get()) self.mkdir(home_path) self.chmod(home_path, mode) self.chown(home_path, user) try: # Handle the case when there is no group with the same name as the user. self.chown(home_path, group=user) except IOError: LOG.exception('Failed to change the group of "{}" to "{}" when creating a home directory ' 'for user "{}"'.format(home_path, user, user)) except IOError: msg = 'Failed to create home dir ("%s") as superuser %s' % (home_path, self.superuser) LOG.exception(msg) raise finally: self.setuser(user) def copyFromLocal(self, local_src, remote_dst, mode=0o755): remote_dst = remote_dst.endswith(posixpath.sep) and remote_dst[:-1] or remote_dst local_src = local_src.endswith(posixpath.sep) and local_src[:-1] or local_src if os.path.isdir(local_src): self._copy_dir(local_src, remote_dst, mode) else: (basename, filename) = os.path.split(local_src) self._copy_file(local_src, self.isdir(remote_dst) and self.join(remote_dst, filename) or remote_dst) def _copy_dir(self, local_dir, remote_dir, mode=0o755): self.mkdir(remote_dir, mode=mode) for f in os.listdir(local_dir): local_src = os.path.join(local_dir, f) remote_dst = self.join(remote_dir, f) if os.path.isdir(local_src): self._copy_dir(local_src, remote_dst, mode) else: self._copy_file(local_src, remote_dst) def _copy_file(self, local_src, remote_dst, chunk_size=1024 * 1024 * 64): if os.path.isfile(local_src): if self.exists(remote_dst): LOG.info(_('%(remote_dst)s already exists. Skipping.') % {'remote_dst': remote_dst}) return else: LOG.info(_('%(remote_dst)s does not exist. Trying to copy.') % {'remote_dst': remote_dst}) src = file(local_src) try: try: self.create(remote_dst, permission=0o755) chunk = src.read(chunk_size) while chunk: self.append(remote_dst, chunk) chunk = src.read(chunk_size) LOG.info(_('Copied %s -> %s.') % (local_src, remote_dst)) except: LOG.exception(_('Copying %s -> %s failed.') % (local_src, remote_dst)) raise finally: src.close() else: LOG.info(_('Skipping %s (not a file).') % local_src) @_coerce_exceptions def mktemp(self, subdir='', prefix='tmp', basedir=None): """ mktemp(prefix) -> <temp_dir or basedir>/<subdir>/prefix.<rand> Return a unique temporary filename with prefix in the cluster's temp dir. """ RANDOM_BITS = 64 base = self.join(basedir or self._temp_dir, subdir) if not self.isdir(base): self.mkdir(base) while True: name = prefix + '.' + str(random.getrandbits(RANDOM_BITS)) candidate = self.join(base, name) if not self.exists(candidate): return candidate def mkswap(self, filename, subdir='', suffix='swp', basedir=None): """ mkswap(filename, suffix) -> <temp_dir or basedir>/<subdir>/filename.<suffix> Return a unique temporary filename with prefix in the cluster's temp dir. """ RANDOM_BITS = 64 base = self.join(basedir or self._temp_dir, subdir) if not self.isdir(base): self.mkdir(base) candidate = self.join(base, "%s.%s" % (filename, suffix)) return candidate def exists(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'exists'}) def do_as_user(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'do_as_user'}) def create(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'exists'}) def append(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'append'}) def mkdir(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'mkdir'}) def isdir(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'isdir'}) def listdir_stats(self): raise NotImplementedError(_("%(function)s has not been implemented.") % {'function': 'listdir_stats'}) def require_open(func): """ Decorator that ensures that the file instance isn't closed when the function is run. """ def wrapper(self, *args, **kwargs): if self.closed: raise IOError(errno.EBADF, "I/O operation on closed file") return func(self, *args, **kwargs) return wrapper class File(object): """ Represents an open file on HDFS. """ def __init__(self, fs, path, mode="r", buffering=False): self.fs = fs self.path = normpath(path) self.pos = 0 self.closed = False self._block_cache = BlockCache() if buffering or mode != "r": raise Exception("buffering and write support not yet implemented") # NYI stat = self._stat() if stat is None: raise IOError(errno.ENOENT, "No such file or directory: '%s'" % path) if stat.isDir: raise IOError(errno.EISDIR, "Is a directory: '%s'" % path) #TODO(todd) somehow we need to check permissions here - maybe we need an access() call? # Minimal context manager implementation. # See: http://www.python.org/doc/2.5.2/lib/typecontextmanager.html def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() return False # don't supress exceptions. @require_open def seek(self, offset, whence=0): """ Set the file pointer to the given spot. @see file.seek """ if whence == SEEK_SET: self.pos = offset elif whence == SEEK_CUR: self.pos += offset elif whence == SEEK_END: self.pos = self._stat().length + offset else: raise IOError(errno.EINVAL, "Invalid argument to seek for whence") @require_open def tell(self): return self.pos def _get_block(self, pos): """Return the Block instance that contains the given offset""" cached_block = self._block_cache.find_block(pos) if cached_block: return cached_block # Cache "miss" - fetch ahead 500MB worth of blocks new_blocks = self.fs._get_blocks(self.path, pos, 500*1024*1024) self._block_cache.insert_new_blocks(new_blocks) result = self._block_cache.find_block(pos) if not result: raise IOError("No block for position %d in file %s" % (pos, self.path)) return result @require_open def _read_in_block(self, length=DEFAULT_READ_SIZE): """ Tries to read up to length bytes, but will often read fewer, since a single call will not read across a block boundary. """ end_pos = min(self.pos + length, self._stat().length) # If we're at EOF, return empty string if end_pos == self.pos: return "" block = self._get_block(self.pos) assert _block_contains_pos(block, self.pos) assert block.path == self.path in_block_pos = self.pos - block.startOffset assert in_block_pos >= 0 in_block_len = min(length, block.numBytes - in_block_pos) result = self.fs._read_block(block, in_block_pos, in_block_len) self.pos += len(result) assert self.pos <= end_pos return result @require_open def read(self, length=DEFAULT_READ_SIZE): """ Read the given number of bytes from this file. If EOF has been reached, returns the empty string. @param length the number of bytes wanted """ result = [] read_so_far = 0 while read_so_far < length: this_data = self._read_in_block(length - read_so_far) if this_data == "": # eof break read_so_far += len(this_data) result.append(this_data) return "".join(result) def close(self): self.closed = True def _stat(self): if not hasattr(self, "_stat_cache"): self._stat_cache = self.fs._hadoop_stat(self.path) return self._stat_cache class FileUpload(object): """A write-only file that supports no seeking and cannot exist prior to opening. """ def __init__(self, fs, path, mode="w", block_size=None): self.fs = fs self.closed = False assert mode == "w" extra_confs = [] if block_size: extra_confs.append("-Ddfs.block.size=%d" % block_size) self.subprocess_cmd = [self.fs.hadoop_bin_path, "jar", hadoop.conf.SUDO_SHELL_JAR.get(), self.fs.user, "-Dfs.default.name=" + self.fs.uri] + \ extra_confs + \ ["-put", "-", encode_fs_path(path)] self.subprocess_env = i18n.make_utf8_env() if 'HADOOP_CLASSPATH' in self.subprocess_env: self.subprocess_env['HADOOP_CLASSPATH'] += ':' + hadoop.conf.HADOOP_EXTRA_CLASSPATH_STRING.get() else: self.subprocess_env['HADOOP_CLASSPATH'] = hadoop.conf.HADOOP_EXTRA_CLASSPATH_STRING.get() if hadoop.conf.HADOOP_CONF_DIR.get(): self.subprocess_env['HADOOP_CONF_DIR'] = hadoop.conf.HADOOP_CONF_DIR.get() self.path = path self.putter = subprocess.Popen(self.subprocess_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, env=self.subprocess_env, bufsize=WRITE_BUFFER_SIZE) @require_open def write(self, data): """May raise IOError, particularly EPIPE""" self.putter.stdin.write(data) @require_open def close(self): try: (stdout, stderr) = self.putter.communicate() except IOError as ioe: logging.debug("Saw IOError writing %r" % self.path, exc_info=1) if ioe.errno == errno.EPIPE: stdout, stderr = self.putter.communicate() self.closed = True if stderr: LOG.warning("HDFS FileUpload (cmd='%s', env='%s') outputted stderr:\n%s" % (repr(self.subprocess_cmd), repr(self.subprocess_env), stderr)) if stdout: LOG.info("HDFS FileUpload (cmd='%s', env='%s') outputted stdout:\n%s" % (repr(self.subprocess_cmd), repr(self.subprocess_env), stdout)) if self.putter.returncode != 0: raise IOError("hdfs put returned bad code: %d\nstderr: %s" % (self.putter.returncode, stderr)) LOG.info("Completed upload: %s" % repr(self.subprocess_cmd)) @require_open def flush(self): self.putter.stdin.flush() def _block_contains_pos(block, pos): return pos >= block.startOffset and pos < block.startOffset + block.numBytes class BlockCache(object): """ A cache of block locations used by a single HDFS input file. Essentially this keeps the blocks in sorted order and does binary search to find the block that contains a given offset. It also provides the ability to merge in the response of a NN getBlocks response to the cache. """ def __init__(self): self.blocks = [] def find_block(self, pos, _min_idx=0, _max_idx=None): """ Return the Block object that contains the specified position pos, or None if it is not in the cache. """ if _max_idx is None: _max_idx = len(self.blocks) - 1 if _max_idx < _min_idx: return None pivot_idx = math.floor((_max_idx + _min_idx) / 2) pivot_block = self.blocks[pivot_idx] if pos < pivot_block.startOffset: return self.find_block(pos, _min_idx, pivot_idx - 1) elif pos >= pivot_block.startOffset + pivot_block.numBytes: return self.find_block(pos, pivot_idx + 1, _max_idx) else: return pivot_block def insert_new_blocks(self, new_blocks): """ Merge a list of Block objects from the NN into the list of cached blocks. If the set of blocks overlaps, the new blocks take precedence. """ # We could do a more efficient merge here since both lists # are already sorted, but these data structures are small, so let's # do the easy thing. blocks_dict = dict((b.blockId, b) for b in self.blocks) # Merge in new data to dictionary for nb in new_blocks: blocks_dict[nb.blockId] = nb # Convert back to sorted list block_list = list(blocks_dict.values()) block_list.sort(cmp=lambda a, b: cmp(a.startOffset, b.startOffset)) # Update cache with new data self.blocks = block_list
0.361503
0.094887
import asyncio, base64, discord, requests, time, traceback from utils.datautils import config, set_client from utils.discordbot import BotClient, send client = None class TimerClient(BotClient): def __init__(self): BotClient.__init__(self, "") self.name = "timer" client = TimerClient() timers = {} @client.command("Timer Commands", ["-start"], "-start", "Start a 5-minute BP timer; 30 seconds protected time, 15 seconds grace.") async def command_start(command, message): cid = message.channel.id mid = message.id timers[cid] = timers.get(cid, []) + [mid] replies = [] replies.append(await send(message, "5-minute timer started!", reaction = "check")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "Protected time over!")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "4 minutes remaining!")) await asyncio.sleep(60) if mid in timers[cid]: replies.append(await send(message, "3 minutes remaining!")) await asyncio.sleep(60) if mid in timers[cid]: replies.append(await send(message, "2 minutes remaining!")) await asyncio.sleep(60) if mid in timers[cid]: replies.append(await send(message, "1 minute remaining!")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "Protected time!")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "15-second grace period!")) await asyncio.sleep(5) if mid in timers[cid]: replies.append(await send(message, "10 seconds!")) await asyncio.sleep(5) if mid in timers[cid]: replies.append(await send(message, "5 seconds!")) await asyncio.sleep(5) if mid in timers[cid]: replies.append(await send(message, "Time's Up!")) await asyncio.sleep(5) if mid in timers[cid]: await send(message, "[a 5-minute timer was run]") if mid in timers[cid]: await message.channel.delete_messages(replies) @client.command("Timer Commands", ["-stop"], "-stop", "Stops all timers in this channel.") async def command_stop(command, message): timers[message.channel.id] = [] await send(message, "All timers in this channel stopped!", reaction = "check") set_client(client)
src/bots/timer/main.py
import asyncio, base64, discord, requests, time, traceback from utils.datautils import config, set_client from utils.discordbot import BotClient, send client = None class TimerClient(BotClient): def __init__(self): BotClient.__init__(self, "") self.name = "timer" client = TimerClient() timers = {} @client.command("Timer Commands", ["-start"], "-start", "Start a 5-minute BP timer; 30 seconds protected time, 15 seconds grace.") async def command_start(command, message): cid = message.channel.id mid = message.id timers[cid] = timers.get(cid, []) + [mid] replies = [] replies.append(await send(message, "5-minute timer started!", reaction = "check")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "Protected time over!")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "4 minutes remaining!")) await asyncio.sleep(60) if mid in timers[cid]: replies.append(await send(message, "3 minutes remaining!")) await asyncio.sleep(60) if mid in timers[cid]: replies.append(await send(message, "2 minutes remaining!")) await asyncio.sleep(60) if mid in timers[cid]: replies.append(await send(message, "1 minute remaining!")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "Protected time!")) await asyncio.sleep(30) if mid in timers[cid]: replies.append(await send(message, "15-second grace period!")) await asyncio.sleep(5) if mid in timers[cid]: replies.append(await send(message, "10 seconds!")) await asyncio.sleep(5) if mid in timers[cid]: replies.append(await send(message, "5 seconds!")) await asyncio.sleep(5) if mid in timers[cid]: replies.append(await send(message, "Time's Up!")) await asyncio.sleep(5) if mid in timers[cid]: await send(message, "[a 5-minute timer was run]") if mid in timers[cid]: await message.channel.delete_messages(replies) @client.command("Timer Commands", ["-stop"], "-stop", "Stops all timers in this channel.") async def command_stop(command, message): timers[message.channel.id] = [] await send(message, "All timers in this channel stopped!", reaction = "check") set_client(client)
0.188847
0.058426
from dataclasses import dataclass from typing import Final from jupiter.domain.adate import ADate from jupiter.domain.entity_name import EntityName from jupiter.domain.storage_engine import StorageEngine from jupiter.domain.vacations.infra.vacation_notion_manager import VacationNotionManager from jupiter.framework.base.entity_id import EntityId from jupiter.framework.update_action import UpdateAction from jupiter.framework.use_case import UseCase from jupiter.utils.time_provider import TimeProvider class VacationUpdateUseCase(UseCase['VacationUpdateUseCase.Args', None]): """The command for updating a vacation's properties.""" @dataclass() class Args: """Args.""" ref_id: EntityId name: UpdateAction[EntityName] start_date: UpdateAction[ADate] end_date: UpdateAction[ADate] _time_provider: Final[TimeProvider] _storage_engine: Final[StorageEngine] _vacation_notion_manager: Final[VacationNotionManager] def __init__( self, time_provider: TimeProvider, storage_engine: StorageEngine, notion_manager: VacationNotionManager) -> None: """Constructor.""" self._time_provider = time_provider self._storage_engine = storage_engine self._vacation_notion_manager = notion_manager def execute(self, args: Args) -> None: """Execute the command's action.""" with self._storage_engine.get_unit_of_work() as uow: vacation = uow.vacation_repository.load_by_id(args.ref_id) if args.name.should_change: vacation.change_name(args.name.value, self._time_provider.get_current_time()) if args.start_date.should_change: vacation.change_start_date(args.start_date.value, self._time_provider.get_current_time()) if args.end_date.should_change: vacation.change_end_date(args.end_date.value, self._time_provider.get_current_time()) uow.vacation_repository.save(vacation) self._vacation_notion_manager.upsert_vacation(vacation)
jupiter/use_cases/vacations/update.py
from dataclasses import dataclass from typing import Final from jupiter.domain.adate import ADate from jupiter.domain.entity_name import EntityName from jupiter.domain.storage_engine import StorageEngine from jupiter.domain.vacations.infra.vacation_notion_manager import VacationNotionManager from jupiter.framework.base.entity_id import EntityId from jupiter.framework.update_action import UpdateAction from jupiter.framework.use_case import UseCase from jupiter.utils.time_provider import TimeProvider class VacationUpdateUseCase(UseCase['VacationUpdateUseCase.Args', None]): """The command for updating a vacation's properties.""" @dataclass() class Args: """Args.""" ref_id: EntityId name: UpdateAction[EntityName] start_date: UpdateAction[ADate] end_date: UpdateAction[ADate] _time_provider: Final[TimeProvider] _storage_engine: Final[StorageEngine] _vacation_notion_manager: Final[VacationNotionManager] def __init__( self, time_provider: TimeProvider, storage_engine: StorageEngine, notion_manager: VacationNotionManager) -> None: """Constructor.""" self._time_provider = time_provider self._storage_engine = storage_engine self._vacation_notion_manager = notion_manager def execute(self, args: Args) -> None: """Execute the command's action.""" with self._storage_engine.get_unit_of_work() as uow: vacation = uow.vacation_repository.load_by_id(args.ref_id) if args.name.should_change: vacation.change_name(args.name.value, self._time_provider.get_current_time()) if args.start_date.should_change: vacation.change_start_date(args.start_date.value, self._time_provider.get_current_time()) if args.end_date.should_change: vacation.change_end_date(args.end_date.value, self._time_provider.get_current_time()) uow.vacation_repository.save(vacation) self._vacation_notion_manager.upsert_vacation(vacation)
0.904068
0.123736
from django.shortcuts import render from django.http import JsonResponse import os import json import time from .api import GoogleAPI from threpose.settings import BASE_DIR from src.caching.caching_gmap import APICaching from decouple import config gapi = GoogleAPI() api_caching = APICaching() PLACE_IMG_PATH = os.path.join(BASE_DIR, 'media', 'places_image') # Place List page def get_next_page_from_token(request): # pragma: no cover """Get places list data by next_page_token.""" # Check request if request.method != 'POST': return JsonResponse({"status": "INVALID METHOD"}) if 'token' not in request.POST: return JsonResponse({"status": "INVALID PAYLOAD"}) # Get next page token from request token = request.POST['token'] context = [] # Check next_page cache if api_caching.get(f'{token[:30]}') is None: for _ in range(6): # Request data for 6 times, if response is not OK # and reached maximum, it will return empty data = json.loads(gapi.next_search_nearby(token)) if data['status'] == "OK": context = restruct_nearby_place(data['results']) break time.sleep(0.2) # write cache file byte_context = json.dumps({"cache": context, "status": "OK"}, indent=3).encode() api_caching.add(f'{token[:30]}', byte_context) if len(context) > 0: return JsonResponse({"places": context, "status": "OK"}) return JsonResponse({"places": context, "status": "NOT FOUND"}) else: # Have cache # load cache context = json.loads(api_caching.get(f'{token[:30]}')) # check place images context = check_downloaded_image(context['cache']) return JsonResponse({"places": context, "status": "OK"}) def place_list(request, *args, **kwargs): # pragma: no cover """Place_list view for list place that nearby the user search input.""" data = request.GET # get lat and lng from url # Our default search type types = ['restaurant', 'zoo', 'tourist_attraction', 'museum', 'cafe', 'aquarium'] lat = data['lat'] lng = data['lng'] # Get place cache if api_caching.get(f'{lat}{lng}searchresult'): # data exists data = json.loads(api_caching.get(f'{lat}{lng}searchresult')) context = data['cache'] token = data['next_page_token'] else: # data not exist context, token = get_new_context(types, lat, lng) context = check_downloaded_image(context) # get all image file name in static/images/place_image api_key = config('FRONTEND_API_KEY') return render(request, "search/place_list.html", {'places': context, 'all_token': token, 'api_key': api_key}) # Helper function def get_new_context(types: list, lat: int, lng: int) -> list: # pragma: no cover """Cache new data and return the new data file Args: types: place type lat, lng: latitude and longitude of user search input for Returns: context: places nearby data token: next page token """ token = {} # This create for keeping data from search nearby tempo_context = [] for type in types: data = json.loads(gapi.search_nearby(lat, lng, type)) if 'next_page_token' in data: token[type] = data['next_page_token'] places = data['results'] restructed_places = restruct_nearby_place(places) tempo_context = add_more_place(tempo_context, restructed_places) # Caching places nearby cache = {'cache': tempo_context, 'next_page_token': token} api_caching.add(f'{lat}{lng}searchresult', json.dumps(cache, indent=3).encode()) # Load data from cache context = json.loads(api_caching.get(f'{lat}{lng}searchresult'))['cache'] return context, token def restruct_nearby_place(places: list) -> list: """Process data for frontend Args: places: A place nearby data from google map api. Returns: context: A place data that place-list page needed. Data struct: [ { # Essential key 'place_name': <name>, 'place_id': <place_id>, 'photo_ref': [<photo_ref], 'types': [], # other... } . . . ] """ context = [] for place in places: init_place = { 'place_name': None, 'place_id': None, 'photo_ref': [], 'types': [], } if 'photos' in place: # Place have an image photo_ref = place['photos'][0]['photo_reference'] init_place['photo_ref'].append(photo_ref) else: # Place don't have an image continue init_place['place_name'] = place['name'] init_place['place_id'] = place['place_id'] init_place['types'] = place['types'] context.append(init_place) return context def check_downloaded_image(context: list) -> list: """Check that image from static/images/place_image that is ready for frontend to display or not Args: context: place nearby data Returns: context: place nearby data with telling the image of each place were downloaded or not """ # Check places_image dir that is exists if os.path.exists(PLACE_IMG_PATH): # Get image file name from static/images/places_image all_img_file = [f for f in os.listdir(PLACE_IMG_PATH) if os.path.isfile(os.path.join(PLACE_IMG_PATH, f))] for place in context: # If place that have photo_ref imply that place have an images if 'photo_ref' in place: place_id = place['place_id'] downloaded_img = f'{place_id}photo.jpeg' in all_img_file have_image = len(place['photo_ref']) == 0 if downloaded_img or have_image: place['downloaded'] = True else: place['downloaded'] = False return context def add_more_place(context: list, new: list): """Append places to context Args: context: total nearby palce data new: new data by next page tokens Returns: context: total nearby place that append new to is's with out duplicated place """ place_exist = [place['place_id'] for place in context] for place in new: # Check that place is exists or not if place['place_id'] in place_exist: continue context.append(place) return context
search/views.py
from django.shortcuts import render from django.http import JsonResponse import os import json import time from .api import GoogleAPI from threpose.settings import BASE_DIR from src.caching.caching_gmap import APICaching from decouple import config gapi = GoogleAPI() api_caching = APICaching() PLACE_IMG_PATH = os.path.join(BASE_DIR, 'media', 'places_image') # Place List page def get_next_page_from_token(request): # pragma: no cover """Get places list data by next_page_token.""" # Check request if request.method != 'POST': return JsonResponse({"status": "INVALID METHOD"}) if 'token' not in request.POST: return JsonResponse({"status": "INVALID PAYLOAD"}) # Get next page token from request token = request.POST['token'] context = [] # Check next_page cache if api_caching.get(f'{token[:30]}') is None: for _ in range(6): # Request data for 6 times, if response is not OK # and reached maximum, it will return empty data = json.loads(gapi.next_search_nearby(token)) if data['status'] == "OK": context = restruct_nearby_place(data['results']) break time.sleep(0.2) # write cache file byte_context = json.dumps({"cache": context, "status": "OK"}, indent=3).encode() api_caching.add(f'{token[:30]}', byte_context) if len(context) > 0: return JsonResponse({"places": context, "status": "OK"}) return JsonResponse({"places": context, "status": "NOT FOUND"}) else: # Have cache # load cache context = json.loads(api_caching.get(f'{token[:30]}')) # check place images context = check_downloaded_image(context['cache']) return JsonResponse({"places": context, "status": "OK"}) def place_list(request, *args, **kwargs): # pragma: no cover """Place_list view for list place that nearby the user search input.""" data = request.GET # get lat and lng from url # Our default search type types = ['restaurant', 'zoo', 'tourist_attraction', 'museum', 'cafe', 'aquarium'] lat = data['lat'] lng = data['lng'] # Get place cache if api_caching.get(f'{lat}{lng}searchresult'): # data exists data = json.loads(api_caching.get(f'{lat}{lng}searchresult')) context = data['cache'] token = data['next_page_token'] else: # data not exist context, token = get_new_context(types, lat, lng) context = check_downloaded_image(context) # get all image file name in static/images/place_image api_key = config('FRONTEND_API_KEY') return render(request, "search/place_list.html", {'places': context, 'all_token': token, 'api_key': api_key}) # Helper function def get_new_context(types: list, lat: int, lng: int) -> list: # pragma: no cover """Cache new data and return the new data file Args: types: place type lat, lng: latitude and longitude of user search input for Returns: context: places nearby data token: next page token """ token = {} # This create for keeping data from search nearby tempo_context = [] for type in types: data = json.loads(gapi.search_nearby(lat, lng, type)) if 'next_page_token' in data: token[type] = data['next_page_token'] places = data['results'] restructed_places = restruct_nearby_place(places) tempo_context = add_more_place(tempo_context, restructed_places) # Caching places nearby cache = {'cache': tempo_context, 'next_page_token': token} api_caching.add(f'{lat}{lng}searchresult', json.dumps(cache, indent=3).encode()) # Load data from cache context = json.loads(api_caching.get(f'{lat}{lng}searchresult'))['cache'] return context, token def restruct_nearby_place(places: list) -> list: """Process data for frontend Args: places: A place nearby data from google map api. Returns: context: A place data that place-list page needed. Data struct: [ { # Essential key 'place_name': <name>, 'place_id': <place_id>, 'photo_ref': [<photo_ref], 'types': [], # other... } . . . ] """ context = [] for place in places: init_place = { 'place_name': None, 'place_id': None, 'photo_ref': [], 'types': [], } if 'photos' in place: # Place have an image photo_ref = place['photos'][0]['photo_reference'] init_place['photo_ref'].append(photo_ref) else: # Place don't have an image continue init_place['place_name'] = place['name'] init_place['place_id'] = place['place_id'] init_place['types'] = place['types'] context.append(init_place) return context def check_downloaded_image(context: list) -> list: """Check that image from static/images/place_image that is ready for frontend to display or not Args: context: place nearby data Returns: context: place nearby data with telling the image of each place were downloaded or not """ # Check places_image dir that is exists if os.path.exists(PLACE_IMG_PATH): # Get image file name from static/images/places_image all_img_file = [f for f in os.listdir(PLACE_IMG_PATH) if os.path.isfile(os.path.join(PLACE_IMG_PATH, f))] for place in context: # If place that have photo_ref imply that place have an images if 'photo_ref' in place: place_id = place['place_id'] downloaded_img = f'{place_id}photo.jpeg' in all_img_file have_image = len(place['photo_ref']) == 0 if downloaded_img or have_image: place['downloaded'] = True else: place['downloaded'] = False return context def add_more_place(context: list, new: list): """Append places to context Args: context: total nearby palce data new: new data by next page tokens Returns: context: total nearby place that append new to is's with out duplicated place """ place_exist = [place['place_id'] for place in context] for place in new: # Check that place is exists or not if place['place_id'] in place_exist: continue context.append(place) return context
0.668123
0.118181
from __future__ import division, unicode_literals, print_function import os import sys import hashlib import time import logging import sqlite3 import numpy as np from io import BytesIO from ..debugging import DebugPlot try: import tqdm except ImportError: tqdm = None logger = logging.getLogger(__name__) def silent_progress_bar(iterable): """ Dummy function, just returns an iterator. :param iterable: the iterable to turn into an iterable :type iterable: iterable :return: iterable :rtype: iterable >>> next(silent_progress_bar([1, 2, 3])) 1 """ return iter(iterable) def fancy_progress_bar(iterable): """ Returns in iterator which will show progress as well. Will either use the tqdm module when available, or a simpler implementation. :param iterable: the iterable to progress-ify :type iterable: iterable :rtype: iterable :return: progress-ified iterable """ if tqdm: # weird bug: if the threading magic in tqdm is active, multiprocessing in molyso gets stuck! # should be investigated further, but for now, let us just disable it ... tqdm.tqdm.monitor_interval = 0 for item in tqdm.tqdm(iterable): yield item else: times = np.zeros(len(iterable), dtype=float) for n, i in enumerate(iterable): start_time = time.time() yield i stop_time = time.time() times[n] = stop_time - start_time eta = " ETA %.2fs" % float(np.mean(times[:n + 1]) * (len(iterable) - (n + 1))) logger.info("processed %d/%d [took %.3fs%s]" % (n + 1, len(iterable), times[n], eta)) def iter_time(iterable): """ Will print the total time elapsed during iteration of ``iterable`` afterwards. :param iterable: iterable :type iterable: iterable :rtype: iterable :return: iterable """ start_time = time.time() for n in iterable: yield n stop_time = time.time() logger.info("whole step took %.3fs" % (stop_time - start_time,)) _fancy_progress_bar = fancy_progress_bar def fancy_progress_bar(iterable): """ :param iterable: :return: """ return iter_time(_fancy_progress_bar(iterable)) def dummy_progress_indicator(): """ :return: """ return iter(int, 1) def ignorant_next(iterable): """ Will try to iterate to the next value, or return None if none is available. :param iterable: :return: """ try: return next(iterable) except StopIteration: return None class QuickTableDumper(object): """ :param recipient: """ delimiter = '\t' line_end = '\n' precision = 8 def __init__(self, recipient=None): if recipient is None: recipient = sys.stdout self.recipient = recipient self.headers = [] def write_list(self, the_list): """ :param the_list: """ self.recipient.write(self.delimiter.join(map(self.stringify, the_list)) + self.line_end) def add(self, row): """ :param row: """ if len(self.headers) == 0: self.headers = list(sorted(row.keys())) self.write_list(self.headers) self.write_list(row[k] for k in self.headers) def stringify(self, obj): """ :param obj: :return: """ if type(obj) in (float, np.float32, np.float64) and self.precision: return str(round(obj, self.precision)) else: return str(obj) try: # noinspection PyUnresolvedReferences import cPickle pickle = cPickle except ImportError: import pickle try: import _thread except ImportError: import thread as _thread if os.name != 'nt': def correct_windows_signal_handlers(): """ Dummy for non-windows os. """ pass else: def correct_windows_signal_handlers(): """ Corrects Windows signal handling, otherwise multiprocessing solutions will not correctly exit if Ctrl-C is used to interrupt them. :return: """ os.environ['PATH'] += os.path.pathsep + os.path.dirname(os.path.abspath(sys.executable)) try: # noinspection PyUnresolvedReferences import win32api def _handler(_, hook=_thread.interrupt_main): hook() return 1 win32api.SetConsoleCtrlHandler(_handler, 1) except ImportError: logger.warning("Running on Windows, but module 'win32api' could not be imported to fix signal handler.\n" + "Ctrl-C might break the program ..." + "Fix: Install the module!") def debug_init(): """ Initialized debug mode, as of now this means that DebugPlot is set to active (it will produce a debug.pdf) """ DebugPlot.force_active = True np.set_printoptions(threshold=sys.maxsize) def parse_range(s, maximum=0): """ :param s: :param maximum: :return: """ maximum -= 1 splits = s.replace(' ', '').replace(';', ',').split(',') ranges = [] remove = [] not_values = False for frag in splits: if frag[0] == '~': not_values = not not_values frag = frag[1:] if '-' in frag: f, t = frag.split('-') interval = 1 if '%' in t: t, _interval = t.split('%') interval = int(_interval) if t == '': t = maximum f, t = int(f), int(t) t = min(t, maximum) parsed_fragment = range(f, t + 1, interval) else: parsed_fragment = [int(frag)] if not_values: remove += parsed_fragment else: ranges += parsed_fragment return list(sorted(set(ranges) - set(remove))) def prettify_numpy_array(arr, space_or_prefix): """ Returns a properly indented string representation of a numpy array. :param arr: :param space_or_prefix: :return: """ six_spaces = ' ' * 6 prepared = repr(np.array(arr)).replace(')', '').replace('array(', six_spaces) if isinstance(space_or_prefix, int): return prepared.replace(six_spaces, ' ' * space_or_prefix) else: return space_or_prefix + prepared.replace(six_spaces, ' ' * len(space_or_prefix)).lstrip() def bits_to_numpy_type(bits): """ Returns a numpy.dtype for one of the common image bit-depths: 8 for unsigned int, 16 for unsigned short, 32 for float :param bits: :return: """ # this is supposed to throw an error return { 8: np.uint8, 16: np.uint16, 32: np.float32 }[int(bits)] class BaseCache(object): """ A caching class """ @staticmethod def prepare_key(key): """ :param key: :return: """ if isinstance(key, type('')): return key else: return repr(key) @staticmethod def serialize(data): """ :param data: :return: """ try: bio = BytesIO() pickle.dump(data, bio, protocol=pickle.HIGHEST_PROTOCOL) try: # noinspection PyUnresolvedReferences pickled_data = bio.getbuffer() except AttributeError: pickled_data = bio.getvalue() except ImportError: pickled_data = pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL) return pickled_data @staticmethod def deserialize(data): """ :param data: :return: """ assert data is not None bio = BytesIO(data) return pickle.load(bio) def __init__(self, filename_to_be_hashed, ignore_cache='nothing', cache_token=None): self.logger = logging.getLogger(__name__ + '.' + self.__class__.__name__) self.filename_hash_source = filename_to_be_hashed if cache_token is None: self.cache_token = "%s.%s" % ( os.path.basename(filename_to_be_hashed).replace('.', '_').replace('?', '_').replace(',', '_'), hashlib.sha1(str(os.path.abspath(filename_to_be_hashed).lower()).encode()).hexdigest()[:8]) else: self.cache_token = cache_token if ignore_cache == 'everything': self.ignore_cache = True elif ignore_cache == 'nothing': self.ignore_cache = [] else: self.ignore_cache = ignore_cache.split(',') def contains(self, key): """ :param key: :return: """ return False def get(self, key): """ :param key: :return: """ return '' def set(self, key, value): """ :param key: :param value: :return: """ return def __contains__(self, key): if self.ignore_cache is True or key in self.ignore_cache: return False else: try: self.logger.debug("Checking whether '%s' exists", key) return self.contains(self.prepare_key(key)) except Exception as e: self.logger.exception( "While %s an Exception occurred (but continuing): %", repr(self.__contains__), repr(e) ) return False def __getitem__(self, key): try: self.logger.debug("Getting data for '%s'", key) return self.deserialize(self.get(self.prepare_key(key))) except Exception as e: self.logger.exception( "While %s an Exception occurred (but continuing): %s. Note that this will yield undefined behavior.", repr(self.__getitem__), repr(e) ) # this is technically wrong ... return None def __setitem__(self, key, value): if self.ignore_cache is True or key in self.ignore_cache: return else: try: self.logger.debug("Setting data for '%s'", key) self.set(self.prepare_key(key), self.serialize(value)) except Exception as e: self.logger.exception( "While %s an Exception occurred (but continuing): %s", repr(self.__setitem__), repr(e) ) class FileCache(BaseCache): """ A caching class which stores the data in flat files. """ def build_cache_filename(self, suffix): """ :param suffix: :return: """ return "%s.%s.cache" % (self.cache_token, suffix,) def contains(self, key): """ :param key: :return: """ return os.path.isfile(self.build_cache_filename(key)) def get(self, key): """ :param key: :return: """ with open(self.build_cache_filename(key), 'rb') as fp: return fp.read(os.path.getsize(self.build_cache_filename(key))) def set(self, key, value): """ :param key: :param value: """ with open(self.build_cache_filename(key), 'wb+') as fp: fp.write(value) Cache = FileCache class Sqlite3Cache(BaseCache): """ A caching class which stores the data in a sqlite3 database. """ def contains(self, key): """ :param key: :return: """ result = self.conn.execute('SELECT COUNT(*) FROM entries WHERE name = ?', (key,)) for row in result: return row[0] == 1 return False def get(self, key): """ :param key: :return: """ result = self.conn.execute('SELECT value FROM entries WHERE name = ?', (key,)) for row in result: return row[0] def keys(self): """ :return: """ result = self.conn.execute('SELECT name FROM entries') return [row[0] for row in result] def set(self, key, value): """ :param key: :param value: """ self.conn.execute('DELETE FROM entries WHERE name = ?', (key,)) self.conn.execute( 'INSERT INTO entries (name, value) VALUES (?, ?)', (key, sqlite3.Binary(value),) ) self.conn.commit() def __init__(self, *args, **kwargs): super(Sqlite3Cache, self).__init__(*args, **kwargs) self.conn = None if self.ignore_cache is not True: self.conn = sqlite3.connect('%s.sq3.cache' % (self.cache_token, )) self.conn.isolation_level = None self.conn.execute('PRAGMA journal_mode = WAL') self.conn.execute('PRAGMA synchronous = NORMAL') self.conn.isolation_level = 'DEFERRED' self.conn.execute('CREATE TABLE IF NOT EXISTS entries (name TEXT, value BLOB)') self.conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS entries_name ON entries (name)') def __del__(self): if self.conn: self.conn.close() class NotReallyATree(list): """ The class is a some-what duck-type compatible (it has a ``query`` method) dumb replacement for (c)KDTrees. It can be used to find the nearest matching point to a query point. (And does that by exhaustive search...) """ def __init__(self, iterable): """ :param iterable: input data :type iterable: iterable :return: the queryable object :rtype: NotReallyAtree """ super(NotReallyATree, self).__init__(self) for i in iterable: self.append(i) self.na = np.array(iterable) def query(self, q): # w_numpy """ Finds the point which is nearest to ``q``. Uses the Euclidean distance. :param q: query point :return: distance, index :rtype: float, int >>> t = NotReallyATree([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]) >>> t.query([1.25, 1.25]) (0.3535533905932738, 0) >>> t = NotReallyATree([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]) >>> t.query([2.3535533905932737622, 2.3535533905932737622]) (0.5000000000000002, 1) """ distances = np.sqrt(np.sum(np.power(self.na - q, 2.0), 1)) pos = np.argmin(distances, 0) return distances[pos], pos
molyso/generic/etc.py
from __future__ import division, unicode_literals, print_function import os import sys import hashlib import time import logging import sqlite3 import numpy as np from io import BytesIO from ..debugging import DebugPlot try: import tqdm except ImportError: tqdm = None logger = logging.getLogger(__name__) def silent_progress_bar(iterable): """ Dummy function, just returns an iterator. :param iterable: the iterable to turn into an iterable :type iterable: iterable :return: iterable :rtype: iterable >>> next(silent_progress_bar([1, 2, 3])) 1 """ return iter(iterable) def fancy_progress_bar(iterable): """ Returns in iterator which will show progress as well. Will either use the tqdm module when available, or a simpler implementation. :param iterable: the iterable to progress-ify :type iterable: iterable :rtype: iterable :return: progress-ified iterable """ if tqdm: # weird bug: if the threading magic in tqdm is active, multiprocessing in molyso gets stuck! # should be investigated further, but for now, let us just disable it ... tqdm.tqdm.monitor_interval = 0 for item in tqdm.tqdm(iterable): yield item else: times = np.zeros(len(iterable), dtype=float) for n, i in enumerate(iterable): start_time = time.time() yield i stop_time = time.time() times[n] = stop_time - start_time eta = " ETA %.2fs" % float(np.mean(times[:n + 1]) * (len(iterable) - (n + 1))) logger.info("processed %d/%d [took %.3fs%s]" % (n + 1, len(iterable), times[n], eta)) def iter_time(iterable): """ Will print the total time elapsed during iteration of ``iterable`` afterwards. :param iterable: iterable :type iterable: iterable :rtype: iterable :return: iterable """ start_time = time.time() for n in iterable: yield n stop_time = time.time() logger.info("whole step took %.3fs" % (stop_time - start_time,)) _fancy_progress_bar = fancy_progress_bar def fancy_progress_bar(iterable): """ :param iterable: :return: """ return iter_time(_fancy_progress_bar(iterable)) def dummy_progress_indicator(): """ :return: """ return iter(int, 1) def ignorant_next(iterable): """ Will try to iterate to the next value, or return None if none is available. :param iterable: :return: """ try: return next(iterable) except StopIteration: return None class QuickTableDumper(object): """ :param recipient: """ delimiter = '\t' line_end = '\n' precision = 8 def __init__(self, recipient=None): if recipient is None: recipient = sys.stdout self.recipient = recipient self.headers = [] def write_list(self, the_list): """ :param the_list: """ self.recipient.write(self.delimiter.join(map(self.stringify, the_list)) + self.line_end) def add(self, row): """ :param row: """ if len(self.headers) == 0: self.headers = list(sorted(row.keys())) self.write_list(self.headers) self.write_list(row[k] for k in self.headers) def stringify(self, obj): """ :param obj: :return: """ if type(obj) in (float, np.float32, np.float64) and self.precision: return str(round(obj, self.precision)) else: return str(obj) try: # noinspection PyUnresolvedReferences import cPickle pickle = cPickle except ImportError: import pickle try: import _thread except ImportError: import thread as _thread if os.name != 'nt': def correct_windows_signal_handlers(): """ Dummy for non-windows os. """ pass else: def correct_windows_signal_handlers(): """ Corrects Windows signal handling, otherwise multiprocessing solutions will not correctly exit if Ctrl-C is used to interrupt them. :return: """ os.environ['PATH'] += os.path.pathsep + os.path.dirname(os.path.abspath(sys.executable)) try: # noinspection PyUnresolvedReferences import win32api def _handler(_, hook=_thread.interrupt_main): hook() return 1 win32api.SetConsoleCtrlHandler(_handler, 1) except ImportError: logger.warning("Running on Windows, but module 'win32api' could not be imported to fix signal handler.\n" + "Ctrl-C might break the program ..." + "Fix: Install the module!") def debug_init(): """ Initialized debug mode, as of now this means that DebugPlot is set to active (it will produce a debug.pdf) """ DebugPlot.force_active = True np.set_printoptions(threshold=sys.maxsize) def parse_range(s, maximum=0): """ :param s: :param maximum: :return: """ maximum -= 1 splits = s.replace(' ', '').replace(';', ',').split(',') ranges = [] remove = [] not_values = False for frag in splits: if frag[0] == '~': not_values = not not_values frag = frag[1:] if '-' in frag: f, t = frag.split('-') interval = 1 if '%' in t: t, _interval = t.split('%') interval = int(_interval) if t == '': t = maximum f, t = int(f), int(t) t = min(t, maximum) parsed_fragment = range(f, t + 1, interval) else: parsed_fragment = [int(frag)] if not_values: remove += parsed_fragment else: ranges += parsed_fragment return list(sorted(set(ranges) - set(remove))) def prettify_numpy_array(arr, space_or_prefix): """ Returns a properly indented string representation of a numpy array. :param arr: :param space_or_prefix: :return: """ six_spaces = ' ' * 6 prepared = repr(np.array(arr)).replace(')', '').replace('array(', six_spaces) if isinstance(space_or_prefix, int): return prepared.replace(six_spaces, ' ' * space_or_prefix) else: return space_or_prefix + prepared.replace(six_spaces, ' ' * len(space_or_prefix)).lstrip() def bits_to_numpy_type(bits): """ Returns a numpy.dtype for one of the common image bit-depths: 8 for unsigned int, 16 for unsigned short, 32 for float :param bits: :return: """ # this is supposed to throw an error return { 8: np.uint8, 16: np.uint16, 32: np.float32 }[int(bits)] class BaseCache(object): """ A caching class """ @staticmethod def prepare_key(key): """ :param key: :return: """ if isinstance(key, type('')): return key else: return repr(key) @staticmethod def serialize(data): """ :param data: :return: """ try: bio = BytesIO() pickle.dump(data, bio, protocol=pickle.HIGHEST_PROTOCOL) try: # noinspection PyUnresolvedReferences pickled_data = bio.getbuffer() except AttributeError: pickled_data = bio.getvalue() except ImportError: pickled_data = pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL) return pickled_data @staticmethod def deserialize(data): """ :param data: :return: """ assert data is not None bio = BytesIO(data) return pickle.load(bio) def __init__(self, filename_to_be_hashed, ignore_cache='nothing', cache_token=None): self.logger = logging.getLogger(__name__ + '.' + self.__class__.__name__) self.filename_hash_source = filename_to_be_hashed if cache_token is None: self.cache_token = "%s.%s" % ( os.path.basename(filename_to_be_hashed).replace('.', '_').replace('?', '_').replace(',', '_'), hashlib.sha1(str(os.path.abspath(filename_to_be_hashed).lower()).encode()).hexdigest()[:8]) else: self.cache_token = cache_token if ignore_cache == 'everything': self.ignore_cache = True elif ignore_cache == 'nothing': self.ignore_cache = [] else: self.ignore_cache = ignore_cache.split(',') def contains(self, key): """ :param key: :return: """ return False def get(self, key): """ :param key: :return: """ return '' def set(self, key, value): """ :param key: :param value: :return: """ return def __contains__(self, key): if self.ignore_cache is True or key in self.ignore_cache: return False else: try: self.logger.debug("Checking whether '%s' exists", key) return self.contains(self.prepare_key(key)) except Exception as e: self.logger.exception( "While %s an Exception occurred (but continuing): %", repr(self.__contains__), repr(e) ) return False def __getitem__(self, key): try: self.logger.debug("Getting data for '%s'", key) return self.deserialize(self.get(self.prepare_key(key))) except Exception as e: self.logger.exception( "While %s an Exception occurred (but continuing): %s. Note that this will yield undefined behavior.", repr(self.__getitem__), repr(e) ) # this is technically wrong ... return None def __setitem__(self, key, value): if self.ignore_cache is True or key in self.ignore_cache: return else: try: self.logger.debug("Setting data for '%s'", key) self.set(self.prepare_key(key), self.serialize(value)) except Exception as e: self.logger.exception( "While %s an Exception occurred (but continuing): %s", repr(self.__setitem__), repr(e) ) class FileCache(BaseCache): """ A caching class which stores the data in flat files. """ def build_cache_filename(self, suffix): """ :param suffix: :return: """ return "%s.%s.cache" % (self.cache_token, suffix,) def contains(self, key): """ :param key: :return: """ return os.path.isfile(self.build_cache_filename(key)) def get(self, key): """ :param key: :return: """ with open(self.build_cache_filename(key), 'rb') as fp: return fp.read(os.path.getsize(self.build_cache_filename(key))) def set(self, key, value): """ :param key: :param value: """ with open(self.build_cache_filename(key), 'wb+') as fp: fp.write(value) Cache = FileCache class Sqlite3Cache(BaseCache): """ A caching class which stores the data in a sqlite3 database. """ def contains(self, key): """ :param key: :return: """ result = self.conn.execute('SELECT COUNT(*) FROM entries WHERE name = ?', (key,)) for row in result: return row[0] == 1 return False def get(self, key): """ :param key: :return: """ result = self.conn.execute('SELECT value FROM entries WHERE name = ?', (key,)) for row in result: return row[0] def keys(self): """ :return: """ result = self.conn.execute('SELECT name FROM entries') return [row[0] for row in result] def set(self, key, value): """ :param key: :param value: """ self.conn.execute('DELETE FROM entries WHERE name = ?', (key,)) self.conn.execute( 'INSERT INTO entries (name, value) VALUES (?, ?)', (key, sqlite3.Binary(value),) ) self.conn.commit() def __init__(self, *args, **kwargs): super(Sqlite3Cache, self).__init__(*args, **kwargs) self.conn = None if self.ignore_cache is not True: self.conn = sqlite3.connect('%s.sq3.cache' % (self.cache_token, )) self.conn.isolation_level = None self.conn.execute('PRAGMA journal_mode = WAL') self.conn.execute('PRAGMA synchronous = NORMAL') self.conn.isolation_level = 'DEFERRED' self.conn.execute('CREATE TABLE IF NOT EXISTS entries (name TEXT, value BLOB)') self.conn.execute('CREATE UNIQUE INDEX IF NOT EXISTS entries_name ON entries (name)') def __del__(self): if self.conn: self.conn.close() class NotReallyATree(list): """ The class is a some-what duck-type compatible (it has a ``query`` method) dumb replacement for (c)KDTrees. It can be used to find the nearest matching point to a query point. (And does that by exhaustive search...) """ def __init__(self, iterable): """ :param iterable: input data :type iterable: iterable :return: the queryable object :rtype: NotReallyAtree """ super(NotReallyATree, self).__init__(self) for i in iterable: self.append(i) self.na = np.array(iterable) def query(self, q): # w_numpy """ Finds the point which is nearest to ``q``. Uses the Euclidean distance. :param q: query point :return: distance, index :rtype: float, int >>> t = NotReallyATree([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]) >>> t.query([1.25, 1.25]) (0.3535533905932738, 0) >>> t = NotReallyATree([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]) >>> t.query([2.3535533905932737622, 2.3535533905932737622]) (0.5000000000000002, 1) """ distances = np.sqrt(np.sum(np.power(self.na - q, 2.0), 1)) pos = np.argmin(distances, 0) return distances[pos], pos
0.540681
0.336604
def countComponents1(n: int, edges: list[list[int]]) -> int: """ quick find based implemenation Args: n (int): number of nodes edges (list[list[int]]): list of edges Returns: int: number of connected components """ connections = [n for n in range(n)] for edge in edges: left, right = edge[0], edge[1] if connections[left] != connections[right]: old_group = connections[right] connections[right] = connections[left] for index in range(n): if connections[index] == old_group: connections[index] = connections[left] return len(set(connections)) def countComponents2(n: int, edges: list[list[int]]) -> int: """ quick union based implementation Args: n (int): number of nodes edges (list[list[int]]): list of edges Returns: int: number of connected components """ connections = [n for n in range(n)] def get_parent(node): while node != connections[node]: node = connections[node] return node for edge in edges: u, v = get_parent(edge[0]), get_parent(edge[1]) connections[u] = connections[v] components = set([get_parent(n) for n in range(n)]) return len(components) def countComponents3(n: int, edges: list[list[int]]) -> int: """ union by rank based implementation Args: n (int): [description] edges (list[list[int]]): [description] Returns: int: number of connected components """ connections = [idx for idx in range(n)] rank = [1] * n def get_group(node : int): while node != connections[node]: node = connections[node] return node def connect(u, v) -> None: gu, gv = get_group(u), get_group(v) if gu != gv: if rank[gu] > rank[gv]: connections[gv] = gu elif rank[gv] > rank[gu]: connections[gv] = gu else: connections[gv] = gu rank[v] = rank[v] + 1 for edge in edges: u, v = edge[0], edge[1] connect(u, v) components = set() for node in range(n): components.add(get_group(node)) return len(components) def countComponents4(n: int, edges: list[list[int]]) -> int: connections = [idx for idx in range(n)] rank = [1] * n def get_parent(node : int) -> int: if node == connections[node]: return node connections[node] = get_parent(connections[node]) return connections[node] def connect(u, v) -> None: pu, pv = get_parent(u), get_parent(v) if pu != pv: if rank[pu] > rank[pv]: connections[pv] = pu elif rank[pu] < rank[pv]: connections[pu] = pv else: connections[pv] = pu rank[pv] = rank[pv] + 1 for edge in edges: u, v = edge[0], edge[1] connect(u, v) components = set() for node in range(n): components.add(get_parent(node)) return len(components) def countComponents5(n: int, edges: list[list[int]]) -> int: from collections import defaultdict from queue import Queue graph = defaultdict(list) for edge in edges: u, v = edge[0], edge[1] graph[u].append(v) graph[v].append(u) seen = set() def bfs(node : int): path, queue = [], Queue() queue.put(node) while not queue.empty(): v = queue.get() if v not in seen: path.append(v) seen.add(v) for u in graph[v]: if u not in seen: queue.put(u) return path components = [] for node in range(n): if node not in seen: path = bfs(node) components.append(len(path)) return len(components) def countComponents6(n: int, edges: list[list[int]]) -> int: from collections import defaultdict graph = defaultdict(list) for edge in edges: u, v = edge[0], edge[1] graph[u].append(v) graph[v].append(u) seen = set() def dfs(node : int): path, stack = [], [node] while stack: v = stack.pop() for u in graph[v]: if u not in seen: seen.add(u) stack.append(u) path.append(v) seen.add(v) return path components = [] for node in range(n): if node not in seen: path = dfs(node) components.append(len(path)) return len(components)
py/dcp/leetcode/graph/connected_components.py
def countComponents1(n: int, edges: list[list[int]]) -> int: """ quick find based implemenation Args: n (int): number of nodes edges (list[list[int]]): list of edges Returns: int: number of connected components """ connections = [n for n in range(n)] for edge in edges: left, right = edge[0], edge[1] if connections[left] != connections[right]: old_group = connections[right] connections[right] = connections[left] for index in range(n): if connections[index] == old_group: connections[index] = connections[left] return len(set(connections)) def countComponents2(n: int, edges: list[list[int]]) -> int: """ quick union based implementation Args: n (int): number of nodes edges (list[list[int]]): list of edges Returns: int: number of connected components """ connections = [n for n in range(n)] def get_parent(node): while node != connections[node]: node = connections[node] return node for edge in edges: u, v = get_parent(edge[0]), get_parent(edge[1]) connections[u] = connections[v] components = set([get_parent(n) for n in range(n)]) return len(components) def countComponents3(n: int, edges: list[list[int]]) -> int: """ union by rank based implementation Args: n (int): [description] edges (list[list[int]]): [description] Returns: int: number of connected components """ connections = [idx for idx in range(n)] rank = [1] * n def get_group(node : int): while node != connections[node]: node = connections[node] return node def connect(u, v) -> None: gu, gv = get_group(u), get_group(v) if gu != gv: if rank[gu] > rank[gv]: connections[gv] = gu elif rank[gv] > rank[gu]: connections[gv] = gu else: connections[gv] = gu rank[v] = rank[v] + 1 for edge in edges: u, v = edge[0], edge[1] connect(u, v) components = set() for node in range(n): components.add(get_group(node)) return len(components) def countComponents4(n: int, edges: list[list[int]]) -> int: connections = [idx for idx in range(n)] rank = [1] * n def get_parent(node : int) -> int: if node == connections[node]: return node connections[node] = get_parent(connections[node]) return connections[node] def connect(u, v) -> None: pu, pv = get_parent(u), get_parent(v) if pu != pv: if rank[pu] > rank[pv]: connections[pv] = pu elif rank[pu] < rank[pv]: connections[pu] = pv else: connections[pv] = pu rank[pv] = rank[pv] + 1 for edge in edges: u, v = edge[0], edge[1] connect(u, v) components = set() for node in range(n): components.add(get_parent(node)) return len(components) def countComponents5(n: int, edges: list[list[int]]) -> int: from collections import defaultdict from queue import Queue graph = defaultdict(list) for edge in edges: u, v = edge[0], edge[1] graph[u].append(v) graph[v].append(u) seen = set() def bfs(node : int): path, queue = [], Queue() queue.put(node) while not queue.empty(): v = queue.get() if v not in seen: path.append(v) seen.add(v) for u in graph[v]: if u not in seen: queue.put(u) return path components = [] for node in range(n): if node not in seen: path = bfs(node) components.append(len(path)) return len(components) def countComponents6(n: int, edges: list[list[int]]) -> int: from collections import defaultdict graph = defaultdict(list) for edge in edges: u, v = edge[0], edge[1] graph[u].append(v) graph[v].append(u) seen = set() def dfs(node : int): path, stack = [], [node] while stack: v = stack.pop() for u in graph[v]: if u not in seen: seen.add(u) stack.append(u) path.append(v) seen.add(v) return path components = [] for node in range(n): if node not in seen: path = dfs(node) components.append(len(path)) return len(components)
0.796134
0.579876
from pydantic import BaseModel, IPvAnyAddress, Field, validator from socialserver.constants import MAX_PIXEL_RATIO from typing import Literal, Optional class _ServerConfigNetwork(BaseModel): host: IPvAnyAddress # 1-65535 is the valid TCP port range, hence the limit. port: int = Field(..., ge=1, le=65535) class _ServerConfigMisc(BaseModel): enable_landing_page: bool class _ServerConfigDatabase(BaseModel): # these are optional depending on the connector, # handled by the connection_validation validator below. filename: Optional[str] username: Optional[str] password: Optional[str] database_name: Optional[str] host: Optional[str] connector: Literal["sqlite", "postgres"] @validator("connector") def connector_validation(cls, value, values): if value == "sqlite": filename = values.get("filename") assert filename not in [ None, "", ], "filename required when using the sqlite connector" if value == "postgres": required_values = ["username", "password", "database_name", "host"] for reqd_value in required_values: assert ( values.get(reqd_value) is not None ), "username, password, filename, database_name, host required when using the postgres connector" return value class _ServerConfigMediaImages(BaseModel): quality: int = Field(..., ge=1, le=100) post_quality: int = Field(..., ge=1, le=100) storage_dir: str # max size cannot be negative. god knows what would happen if it was. # probably not much. but you definitely wouldn't be uploading any images. max_image_request_size_mb: float = Field(..., ge=0) class _ServerConfigMediaVideos(BaseModel): storage_dir: str class _ServerConfigMedia(BaseModel): images: _ServerConfigMediaImages videos: _ServerConfigMediaVideos class _ServerConfigAuthRegistration(BaseModel): enabled: bool approval_required: bool auto_approve_when_approval_disabled: bool class _ServerConfigAuthTotp(BaseModel): replay_prevention_enabled: bool issuer: str # it makes no sense for a time in the future to be < 0, # and would just cause issues. unconfirmed_expiry_time: int = Field(..., ge=0) class _ServerConfigAuth(BaseModel): registration: _ServerConfigAuthRegistration totp: _ServerConfigAuthTotp class _ServerConfigPosts(BaseModel): silent_fail_on_double_report: bool class _ServerConfigLegacyApiInterface(BaseModel): enable: bool image_pixel_ratio: int = Field(..., ge=0, le=MAX_PIXEL_RATIO) signup_enabled: bool deliver_full_post_images: bool report_legacy_version: bool enable_less_secure_password_change: bool provide_legacy_video_thumbnails: bool provide_incompatible_video_thumbnail_text_overlay: bool class ServerConfig(BaseModel): network: _ServerConfigNetwork misc: _ServerConfigMisc database: _ServerConfigDatabase media: _ServerConfigMedia auth: _ServerConfigAuth posts: _ServerConfigPosts legacy_api_interface: _ServerConfigLegacyApiInterface
socialserver/resources/config/schema.py
from pydantic import BaseModel, IPvAnyAddress, Field, validator from socialserver.constants import MAX_PIXEL_RATIO from typing import Literal, Optional class _ServerConfigNetwork(BaseModel): host: IPvAnyAddress # 1-65535 is the valid TCP port range, hence the limit. port: int = Field(..., ge=1, le=65535) class _ServerConfigMisc(BaseModel): enable_landing_page: bool class _ServerConfigDatabase(BaseModel): # these are optional depending on the connector, # handled by the connection_validation validator below. filename: Optional[str] username: Optional[str] password: Optional[str] database_name: Optional[str] host: Optional[str] connector: Literal["sqlite", "postgres"] @validator("connector") def connector_validation(cls, value, values): if value == "sqlite": filename = values.get("filename") assert filename not in [ None, "", ], "filename required when using the sqlite connector" if value == "postgres": required_values = ["username", "password", "database_name", "host"] for reqd_value in required_values: assert ( values.get(reqd_value) is not None ), "username, password, filename, database_name, host required when using the postgres connector" return value class _ServerConfigMediaImages(BaseModel): quality: int = Field(..., ge=1, le=100) post_quality: int = Field(..., ge=1, le=100) storage_dir: str # max size cannot be negative. god knows what would happen if it was. # probably not much. but you definitely wouldn't be uploading any images. max_image_request_size_mb: float = Field(..., ge=0) class _ServerConfigMediaVideos(BaseModel): storage_dir: str class _ServerConfigMedia(BaseModel): images: _ServerConfigMediaImages videos: _ServerConfigMediaVideos class _ServerConfigAuthRegistration(BaseModel): enabled: bool approval_required: bool auto_approve_when_approval_disabled: bool class _ServerConfigAuthTotp(BaseModel): replay_prevention_enabled: bool issuer: str # it makes no sense for a time in the future to be < 0, # and would just cause issues. unconfirmed_expiry_time: int = Field(..., ge=0) class _ServerConfigAuth(BaseModel): registration: _ServerConfigAuthRegistration totp: _ServerConfigAuthTotp class _ServerConfigPosts(BaseModel): silent_fail_on_double_report: bool class _ServerConfigLegacyApiInterface(BaseModel): enable: bool image_pixel_ratio: int = Field(..., ge=0, le=MAX_PIXEL_RATIO) signup_enabled: bool deliver_full_post_images: bool report_legacy_version: bool enable_less_secure_password_change: bool provide_legacy_video_thumbnails: bool provide_incompatible_video_thumbnail_text_overlay: bool class ServerConfig(BaseModel): network: _ServerConfigNetwork misc: _ServerConfigMisc database: _ServerConfigDatabase media: _ServerConfigMedia auth: _ServerConfigAuth posts: _ServerConfigPosts legacy_api_interface: _ServerConfigLegacyApiInterface
0.818519
0.282425
import os import sys import codecs import re import sem.importers from sem.storage import Document, SEMCorpus, Annotation from sem.exporters import BratExporter lang2months = { # firt element is empty so index method returns values from 1 to 12 u"fr": [u"", u"janvier", u"février", u"mars", u"avril", u"mai", u"juin", u"juillet", u"août", u"septembre", u"octobre", u"novembre", u"décembre"], u"en": [u"", u"january", u"febuary", u"march", u"april", u"may", u"june", u"july", u"august", u"september", u"october", u"november", u"december"] } def main(infilename, outdir=u".", lang="fr"): months = lang2months[lang] try: infilename = infilename.decode(sys.getfilesystemencoding()) except: pass numbers = re.compile("([0-9]+)", re.U + re.I) corpus = SEMCorpus.from_xml(infilename) link_filename = os.path.join(os.path.dirname(infilename), os.path.basename(infilename)[:7] + "-urls.txt") with codecs.open(link_filename, "rU", "utf-8") as link_file: l = [line.strip() for line in link_file if line.strip()] documents = corpus.documents documents.sort(key=lambda x: l.index(x.name)) try: os.makedirs(outdir) except: pass couples = {u"NER": u"NER"} exporter = BratExporter() prev_timestamp = u"" nth_timestamp = 1 with codecs.open(os.path.join(outdir, "%s" %(os.path.basename(link_filename))), "w", "utf-8") as O: for nth, document in enumerate(documents, 1): dates = [annotation for annotation in document.annotation("NER") if annotation.value == "Date"] dates = [date for date in dates if len(document.content[date.lb : date.ub].strip().split()) == 3] try: parts = document.content[dates[0].lb : dates[0].ub].split() parts[0] = int(numbers.findall(parts[0])[0]) except: parts = document.content[dates[1].lb : dates[1].ub].split() parts[0] = int(numbers.findall(parts[0])[0]) parts[1] = months.index(parts[1].lower()) parts[2] = int(parts[2]) timestamp = u"%04i_%02i_%02i" %(parts[2], parts[1], parts[0]) if timestamp == prev_timestamp: nth_timestamp += 1 else: nth_timestamp = 1 prev_timestamp = timestamp docname = u"%s-%03i" %(timestamp, nth_timestamp) O.write("%s\t%s\n" %(docname, document.name)) actual_outdir = os.path.join(outdir, str(parts[2]), u"%02i" %parts[1]) try: os.makedirs(actual_outdir) except: pass with codecs.open(os.path.join(actual_outdir, docname + ".txt"), "w", "utf-8") as txt: txt.write(document.content) with codecs.open(os.path.join(actual_outdir, docname + ".ann"), "w", "utf-8") as ann: ann.write(exporter.document_to_unicode(document, couples)) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("...") parser.add_argument("infilename", help="the input file (SEM XML)") parser.add_argument("-o", "--outdir", default=".", help="the output directory (default: %(default)s)") parser.add_argument("-l", "--lang", default="fr", help="the language for months (default: %(default)s)") args = parser.parse_args() main(args.infilename, outdir=args.outdir) sys.exit(0)
make_matches.py
import os import sys import codecs import re import sem.importers from sem.storage import Document, SEMCorpus, Annotation from sem.exporters import BratExporter lang2months = { # firt element is empty so index method returns values from 1 to 12 u"fr": [u"", u"janvier", u"février", u"mars", u"avril", u"mai", u"juin", u"juillet", u"août", u"septembre", u"octobre", u"novembre", u"décembre"], u"en": [u"", u"january", u"febuary", u"march", u"april", u"may", u"june", u"july", u"august", u"september", u"october", u"november", u"december"] } def main(infilename, outdir=u".", lang="fr"): months = lang2months[lang] try: infilename = infilename.decode(sys.getfilesystemencoding()) except: pass numbers = re.compile("([0-9]+)", re.U + re.I) corpus = SEMCorpus.from_xml(infilename) link_filename = os.path.join(os.path.dirname(infilename), os.path.basename(infilename)[:7] + "-urls.txt") with codecs.open(link_filename, "rU", "utf-8") as link_file: l = [line.strip() for line in link_file if line.strip()] documents = corpus.documents documents.sort(key=lambda x: l.index(x.name)) try: os.makedirs(outdir) except: pass couples = {u"NER": u"NER"} exporter = BratExporter() prev_timestamp = u"" nth_timestamp = 1 with codecs.open(os.path.join(outdir, "%s" %(os.path.basename(link_filename))), "w", "utf-8") as O: for nth, document in enumerate(documents, 1): dates = [annotation for annotation in document.annotation("NER") if annotation.value == "Date"] dates = [date for date in dates if len(document.content[date.lb : date.ub].strip().split()) == 3] try: parts = document.content[dates[0].lb : dates[0].ub].split() parts[0] = int(numbers.findall(parts[0])[0]) except: parts = document.content[dates[1].lb : dates[1].ub].split() parts[0] = int(numbers.findall(parts[0])[0]) parts[1] = months.index(parts[1].lower()) parts[2] = int(parts[2]) timestamp = u"%04i_%02i_%02i" %(parts[2], parts[1], parts[0]) if timestamp == prev_timestamp: nth_timestamp += 1 else: nth_timestamp = 1 prev_timestamp = timestamp docname = u"%s-%03i" %(timestamp, nth_timestamp) O.write("%s\t%s\n" %(docname, document.name)) actual_outdir = os.path.join(outdir, str(parts[2]), u"%02i" %parts[1]) try: os.makedirs(actual_outdir) except: pass with codecs.open(os.path.join(actual_outdir, docname + ".txt"), "w", "utf-8") as txt: txt.write(document.content) with codecs.open(os.path.join(actual_outdir, docname + ".ann"), "w", "utf-8") as ann: ann.write(exporter.document_to_unicode(document, couples)) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("...") parser.add_argument("infilename", help="the input file (SEM XML)") parser.add_argument("-o", "--outdir", default=".", help="the output directory (default: %(default)s)") parser.add_argument("-l", "--lang", default="fr", help="the language for months (default: %(default)s)") args = parser.parse_args() main(args.infilename, outdir=args.outdir) sys.exit(0)
0.143938
0.201263
from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import pandas as pd import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors # K Local Level Prior Sample Size # This is equal to the original [R package](https://github.com/google/CausalImpact/blob/07b60e1bf5c9c8d74e31ea602db39d7256a53b6f/R/impact_model.R#L25) # noqa: E501 kLocalLevelPriorSampleSize = 32 def process_model_args(model_args: Dict[str, Any]) -> Dict[str, Any]: """ Process general parameters related to how Causal Impact will be implemented, such as standardization procedure or the addition of seasonal components to the model. Args ---- model_args: niter: int How many iterations to run either for `hmc` or `vi` algorithms. standardize: bool If `True`, standardize data so result has zero mean and unitary standard deviation. prior_level_sd: float Standard deviation that sets initial local level distribution. Default value is 0.01 which means the linear regression is expected to explain well the observed data. In cases where this is not expected, then it's also possible to use the value 0.1. Still, this value will increase considerably the extension of the random walk variance modeling data which can lead to unreliable predictions (this might indicate that better covariates are required). fit_method: str Which method to use when fitting the structural time series model. Can be either `hmc` which stands for "Hamiltonian Monte Carlo" or "vi", i.e., "variational inference". The first is slower but more accurate whilst the latter is the opposite. Defaults to `vi` which prioritizes performance. nseasons: int Specifies the duration of the period of the seasonal component; if input data is specified in terms of days, then choosing nseasons=7 adds a weekly seasonal effect. season_duration: int Specifies how many data points each value in season spans over. A good example to understand this argument is to consider a hourly data as input. For modeling a weekly season on this data, one can specify `nseasons=7` and season_duration=24 which means each value that builds the season component is repeated for 24 data points. Default value is 1 which means the season component spans over just 1 point (this in practice doesn't change anything). If this value is specified and bigger than 1 then `nseasons` must be specified and bigger than 1 as well. Returns ------- Dict[str, Any] standardize: bool prior_level_sd: float niter: int fit_method: str nseasons: int season_duration: int Raises ------ ValueError: if `standardize` is not of type `bool`. if `prior_level_sd` is not `float`. if `niter` is not `int`. if `fit_method` not in {'hmc', 'vi'}. if `nseasons` is not `int`. if `season_duration` is not `int`. if `season_duration` is bigger than 1 and `nseasons` is 1. """ standardize = model_args.get('standardize', True) if not isinstance(standardize, bool): raise ValueError('standardize argument must be of type bool.') model_args['standardize'] = standardize prior_level_sd = model_args.get('prior_level_sd', 0.01) if not isinstance(prior_level_sd, float): raise ValueError('prior_level_sd argument must be of type float.') model_args['prior_level_sd'] = prior_level_sd niter = model_args.get('niter', 1000) if not isinstance(niter, int): raise ValueError('niter argument must be of type int.') model_args['niter'] = niter fit_method = model_args.get('fit_method', 'vi') if fit_method not in {'hmc', 'vi'}: raise ValueError('fit_method can be either "hmc" or "vi".') model_args['fit_method'] = fit_method nseasons = model_args.get('nseasons', 1) if not isinstance(nseasons, int): raise ValueError('nseasons argument must be of type int.') model_args['nseasons'] = nseasons season_duration = model_args.get('season_duration', 1) if not isinstance(season_duration, int): raise ValueError('season_duration argument must be of type int.') if nseasons <= 1 and season_duration > 1: raise ValueError('nseasons must be bigger than 1 when season_duration is also ' 'bigger than 1.') model_args['season_duration'] = season_duration return model_args def check_input_model( model: tfp.sts.StructuralTimeSeries, pre_data: pd.DataFrame, post_data: pd.DataFrame ) -> None: """ Checkes whether input model was properly built and is ready to be run. This function is only invoked if the client sent a customized input model. Various assertions are performed to guarantee it has been created appropriately, such as each component should have `len(pre_data)` points for the argument `observed_time_series`. In case the component is of type `tfp.sts.LinearRegression` or `SparseLinearRegression` then the design matrix must have `shape = (len(pre_data) + len(post_data), cols(pre_data) - 1)` which allows not only to fit the model as well as to run the forecasts. The model must be built with data of dtype=tf.float32 or np.float32 as otherwise an error will be thrown when fitting the markov chains. Args ---- model: StructuralTimeSeries Can be either default `LocalLevel` or user specified generic model. pre_data: pd.DataFrame Raises ------ ValueError: if model is not of appropriate type. if model is built without appropriate observed time series data. if model components don't have dtype=tf.float32 or np.float32 """ def _check_component(component): if isinstance( component, (tfp.sts.LinearRegression, tfp.sts.SparseLinearRegression) ): covariates_shape = (len(pre_data) + len(post_data), len(pre_data.columns) - 1) if component.design_matrix.shape != covariates_shape: raise ValueError( 'Customized Linear Regression Models must have total ' 'points equal to pre_data and post_data points and ' 'same number of covariates. Input design_matrix shape was ' f'{component.design_matrix.shape} and expected ' f'{(len(pre_data) + len(post_data), len(pre_data.columns) -1)} ' 'instead.' ) assert component.design_matrix.dtype == tf.float32 else: for parameter in component.parameters: assert parameter.prior.dtype == tf.float32 if not isinstance(model, tfp.sts.StructuralTimeSeries): raise ValueError('Input model must be of type StructuralTimeSeries.') if isinstance(model, tfp.sts.Sum): for component in model.components: _check_component(component) else: _check_component(model) def build_inv_gamma_sd_prior(sigma_guess: float) -> tfd.Distribution: """ helper function to build the sd_prior distribution for standard deviation modeling. Args ---- sigma_guess: float Initial guess of where the standard deviation of the parameter is located. Returns ------- tfd.Distribution InverseGamma distribution modeling the standard deviation. """ sample_size = kLocalLevelPriorSampleSize df = sample_size a = np.float32(df / 2) ss = sample_size * sigma_guess ** 2 b = np.float32(ss / 2) return tfd.InverseGamma(a, b) def build_bijector(dist: tfd.Distribution) -> tfd.Distribution: """ helper function for building final bijector given sd_prior. The bijector is implemented through the `tfd.TransformedDistribution` class. Args ---- dist: tfd.Distribution Distribution to receive the transformation `G(X)`. Returns ------- new_dist: tfd.Distribution New distribution given by `y = G(X)`. """ bijector = SquareRootBijector() new_dist = tfd.TransformedDistribution(dist, bijector) return new_dist def build_default_model( observed_time_series: pd.DataFrame, pre_data: pd.DataFrame, post_data: pd.DataFrame, prior_level_sd: float, nseasons: int, season_duration: int ) -> tfp.sts.StructuralTimeSeries: """ When input model is `None` then proceeds to build a default `tfp.sts.LocalLevel` model. If input data has covariates then also adds a `tfp.sts.SparseLinearRegression` component. The level_prior follows `1 / prior_level_sd ** 2 ~ Gamma(a, b)` according to the original [BOOM](https://github.com/steve-the-bayesian/BOOM/blob/63f08a708153c8405b809405fa1ab5ed7193d648/Interfaces/python/R/R/bayes.py#L4:L12) package. # noqa: E501 This is achieved by using the InverseGamma(a, b) and a [bijector](https://tiao.io/post/building-probability-distributions-with-tensorflow-probability-bijector-api/) # noqa: E501 transformation for the square root operator. As for the linear regressor, the `tfp.sts.SparseLinearRegression` operation is similar to the spike-and-slab from the original R package; main difference is that it follows instead a horseshoe distribution which tends to penalize less the meaningful weights in the shrinking process.[https://github.com/tensorflow/probability/blob/v0.12.1/tensorflow_probability/python/sts/regression.py#L265-L523] # noaq: E501 Args ---- observed_time_series: pd.DataFrame pre_data: pd.DataFrame post_data: pd.DataFrame prior_level_sd: float Sets an initial estimation for the standard deviation 'sigma' of the local level prior. The bigger this value is, the wider is expected to be the random walk extension on forecasts. nseasons: int season_duration: int Returns ------- model: tfp.sts.Sum A `tfp.sts.LocalLevel` default model with possible another `tfp.sts.SparseLinearRegression` and `tfp.sts.Seasonal` components representing covariates and seasonal patterns. """ components = [] # use `values` to avoid batching dims obs_sd = observed_time_series.std(skipna=True, ddof=0).values[0] sd_prior = build_inv_gamma_sd_prior(prior_level_sd) sd_prior = build_bijector(sd_prior) # This is an approximation to simulate the bsts package from R. It's expected that # given a few data points the posterior will converge appropriately given this # distribution, that's why it's divided by 2. obs_prior = build_inv_gamma_sd_prior(obs_sd / 2) obs_prior = build_bijector(obs_prior) level_component = tfp.sts.LocalLevel( level_scale_prior=sd_prior, observed_time_series=observed_time_series ) components.append(level_component) # If it has more than 1 column then it has covariates X so add a linear regressor # component. if len(pre_data.columns) > 1: # We need to concatenate both pre and post data as this will allow the linear # regressor component to use the post data when running forecasts. As first # column is supposed to have response variable `y` then we filter out just the # remaining columns for the `X` value. complete_data = pd.concat([pre_data, post_data]).astype(np.float32) # Set NaN values to zero so to not break TFP linear regression complete_data.fillna(0, inplace=True) linear_component = tfp.sts.SparseLinearRegression( design_matrix=complete_data.iloc[:, 1:] ) components.append(linear_component) if nseasons > 1: seasonal_component = tfp.sts.Seasonal( num_seasons=nseasons, num_steps_per_season=season_duration, observed_time_series=observed_time_series ) components.append(seasonal_component) # Model must be built with `tfp.sts.Sum` so to add the observed noise `epsilon` # parameter. model = tfp.sts.Sum(components, observed_time_series=observed_time_series, observation_noise_scale_prior=obs_prior) return model def fit_model( model: tfp.sts.StructuralTimeSeries, observed_time_series: pd.DataFrame, method: str = 'hmc' ) -> Tuple[Union[List[tf.Tensor], Dict[str, tf.Tensor]], Optional[Dict[str, Any]]]: """ Run the Markovian Monte Carlo fitting process for finding the posterior `P(z | y)` where z represents the structural components of the input state space model. Two main methods can be used, either `hmc` which stands for 'Hamiltonian Monte Carlo' and `vi` standing for 'Variational Inference'. The first method is expected to be more accurate while less performante whereas the second is the opposite, that is, faster but less accurate. Args ---- model: tfp.sts.StructuralTimeSeries Structural time series model built to explain the observed data. It may contain several components such as local level, seasons and so on. observed_time_series: pd.DataFrame Contains the pre-period response variable `y`. method: str Either 'hmc' or 'vi' which selects which fitting process to run. Returns ------- (samples, kernel_results): Tuple[Union[List[tf.Tensor], Dict[str, tf.Tensor]], Dict[str, Any]] Raises ------ ValueError: If input method is invalid. """ if method == 'hmc': # this method does not need to be wrapped in a `tf.function` context as the # internal sampling method already is: # https://github.com/tensorflow/probability/blob/v0.11.1/tensorflow_probability/python/sts/fitting.py#L422 # noqa: E501 # https://github.com/tensorflow/probability/issues/348 samples, kernel_results = tfp.sts.fit_with_hmc( model=model, observed_time_series=observed_time_series, ) return samples, kernel_results elif method == 'vi': optimizer = tf.optimizers.Adam(learning_rate=0.1) variational_steps = 200 # Hardcoded for now variational_posteriors = tfp.sts.build_factored_surrogate_posterior(model=model) @tf.function() def _run_vi(): # pragma: no cover tfp.vi.fit_surrogate_posterior( target_log_prob_fn=model.joint_log_prob( observed_time_series=observed_time_series ), surrogate_posterior=variational_posteriors, optimizer=optimizer, num_steps=variational_steps ) # Don't sample too much as varitional inference method is built aiming for # performance first. samples = variational_posteriors.sample(100) return samples, None return _run_vi() else: raise ValueError( f'Input method "{method}" not valid. Choose between "hmc" or "vi".' ) def build_one_step_dist( model: tfp.sts.StructuralTimeSeries, observed_time_series: pd.DataFrame, parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]] ) -> tfd.Distribution: # pragma: no cover """ Builds one step distribution for pre-intervention data given samples from the posterior `P(z | y)`. Args ---- model: tfp.StructuralTimeSeries observed_time_series: pd.DataFrame Corresponds to the `y` value. parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]] samples from the posterior for each state component in `model`. Returns ------- one_step_dist: tfd.Distribution """ return tfp.sts.one_step_predictive( model=model, observed_time_series=observed_time_series, parameter_samples=parameter_samples ) def build_posterior_dist( model: tfp.sts.StructuralTimeSeries, observed_time_series: pd.DataFrame, parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]], num_steps_forecast: int ) -> tfd.Distribution: # pragma: no cover """ Builds the distribution for post-intervention data given samples from the posterior `P(z | y)`. Args ---- model: tfp.StructuralTimeSeries observed_time_series: pd.DataFrame Corresponds to the `y` value. parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]] samples from the posterior for each state component in `model`. num_steps_forecast: int How many time steps to forecast into the future. These will be compared against the real value of `y` to extract the estimation of impact. Returns ------- posterior_dist: tfd.Distribution """ return tfp.sts.forecast( model=model, observed_time_series=observed_time_series, parameter_samples=parameter_samples, num_steps_forecast=num_steps_forecast ) class SquareRootBijector(tfb.Bijector): """ Compute `Y = g(X) = X ** (1 / 2) which transforms variance into standard deviation. Main reference for building this bijector is the original [PowerTransform](https://github.com/tensorflow/probability/blob/v0.11.1/tensorflow_probability/python/bijectors/power_transform.py) # noqa: E501 """ def __init__( self, validate_args: bool = False, name: str = 'square_root_bijector' ): """ Args ---- validate_args: bool Indicates whether arguments should be checked for correctness. name: str Name given to ops managed by this object. """ # Without these `parameters` the code won't be compatible with future versions # of tfp: # https://github.com/tensorflow/probability/issues/1202 parameters = dict(locals()) with tf.name_scope(name) as name: super().__init__( forward_min_event_ndims=0, validate_args=validate_args, parameters=parameters, name=name) def _forward(self, x: Union[float, np.array, tf.Tensor]) -> tf.Tensor: """ Implements the forward pass `G` as given by `Y = G(X)`. In this case, it's a simple square root of X. Args ---- x: Union[float, np.array, tf.Tensor]) Variable `X` to receive the transformation. Returns ------- X: tf.Tensor Square root of `x`. """ return tf.sqrt(x) def _inverse(self, y: Union[float, np.array, tf.Tensor]) -> tf.Tensor: """ Implements G^-1(y). Args ---- y: Union[float, np.array, tf.Tensor] Values to be transformed back. In this case, they will be squared. Returns ------- y: tf.Tensor Squared `y`. """ return tf.square(y) def _inverse_log_det_jacobian(self, y: tf.Tensor) -> tf.Tensor: """ When transforming from `P(X)` to `P(Y)` it's necessary to compute the log of the determinant of the Jacobian matrix for each correspondent function `G` which accounts for the volumetric transformations on each domain. The inverse log determinant is given by: `ln(|J(G^-1(Y)|) = ln(|J(Y ** 2)|) = ln(|2 * Y|) = ln(2 * Y)` Args ---- y: tf.Tensor Returns ------- tf.Tensor """ return tf.math.log(2 * y) def _forward_log_det_jacobian(self, x: tf.Tensor) -> tf.Tensor: """ Computes the volumetric change when moving forward from `P(X)` to `P(Y)`, given by: `ln(|J(G(X))|) = ln(|J(sqrt(X))|) = ln(|(1 / 2) * X ** (-1 / 2)|) = = (-1 / 2) * ln(4.0 * X) Args ---- x: tf.Tensor Returns ------- tf.tensor """ return -0.5 * tf.math.log(4.0 * x)
causalimpact/model.py
from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import pandas as pd import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors # K Local Level Prior Sample Size # This is equal to the original [R package](https://github.com/google/CausalImpact/blob/07b60e1bf5c9c8d74e31ea602db39d7256a53b6f/R/impact_model.R#L25) # noqa: E501 kLocalLevelPriorSampleSize = 32 def process_model_args(model_args: Dict[str, Any]) -> Dict[str, Any]: """ Process general parameters related to how Causal Impact will be implemented, such as standardization procedure or the addition of seasonal components to the model. Args ---- model_args: niter: int How many iterations to run either for `hmc` or `vi` algorithms. standardize: bool If `True`, standardize data so result has zero mean and unitary standard deviation. prior_level_sd: float Standard deviation that sets initial local level distribution. Default value is 0.01 which means the linear regression is expected to explain well the observed data. In cases where this is not expected, then it's also possible to use the value 0.1. Still, this value will increase considerably the extension of the random walk variance modeling data which can lead to unreliable predictions (this might indicate that better covariates are required). fit_method: str Which method to use when fitting the structural time series model. Can be either `hmc` which stands for "Hamiltonian Monte Carlo" or "vi", i.e., "variational inference". The first is slower but more accurate whilst the latter is the opposite. Defaults to `vi` which prioritizes performance. nseasons: int Specifies the duration of the period of the seasonal component; if input data is specified in terms of days, then choosing nseasons=7 adds a weekly seasonal effect. season_duration: int Specifies how many data points each value in season spans over. A good example to understand this argument is to consider a hourly data as input. For modeling a weekly season on this data, one can specify `nseasons=7` and season_duration=24 which means each value that builds the season component is repeated for 24 data points. Default value is 1 which means the season component spans over just 1 point (this in practice doesn't change anything). If this value is specified and bigger than 1 then `nseasons` must be specified and bigger than 1 as well. Returns ------- Dict[str, Any] standardize: bool prior_level_sd: float niter: int fit_method: str nseasons: int season_duration: int Raises ------ ValueError: if `standardize` is not of type `bool`. if `prior_level_sd` is not `float`. if `niter` is not `int`. if `fit_method` not in {'hmc', 'vi'}. if `nseasons` is not `int`. if `season_duration` is not `int`. if `season_duration` is bigger than 1 and `nseasons` is 1. """ standardize = model_args.get('standardize', True) if not isinstance(standardize, bool): raise ValueError('standardize argument must be of type bool.') model_args['standardize'] = standardize prior_level_sd = model_args.get('prior_level_sd', 0.01) if not isinstance(prior_level_sd, float): raise ValueError('prior_level_sd argument must be of type float.') model_args['prior_level_sd'] = prior_level_sd niter = model_args.get('niter', 1000) if not isinstance(niter, int): raise ValueError('niter argument must be of type int.') model_args['niter'] = niter fit_method = model_args.get('fit_method', 'vi') if fit_method not in {'hmc', 'vi'}: raise ValueError('fit_method can be either "hmc" or "vi".') model_args['fit_method'] = fit_method nseasons = model_args.get('nseasons', 1) if not isinstance(nseasons, int): raise ValueError('nseasons argument must be of type int.') model_args['nseasons'] = nseasons season_duration = model_args.get('season_duration', 1) if not isinstance(season_duration, int): raise ValueError('season_duration argument must be of type int.') if nseasons <= 1 and season_duration > 1: raise ValueError('nseasons must be bigger than 1 when season_duration is also ' 'bigger than 1.') model_args['season_duration'] = season_duration return model_args def check_input_model( model: tfp.sts.StructuralTimeSeries, pre_data: pd.DataFrame, post_data: pd.DataFrame ) -> None: """ Checkes whether input model was properly built and is ready to be run. This function is only invoked if the client sent a customized input model. Various assertions are performed to guarantee it has been created appropriately, such as each component should have `len(pre_data)` points for the argument `observed_time_series`. In case the component is of type `tfp.sts.LinearRegression` or `SparseLinearRegression` then the design matrix must have `shape = (len(pre_data) + len(post_data), cols(pre_data) - 1)` which allows not only to fit the model as well as to run the forecasts. The model must be built with data of dtype=tf.float32 or np.float32 as otherwise an error will be thrown when fitting the markov chains. Args ---- model: StructuralTimeSeries Can be either default `LocalLevel` or user specified generic model. pre_data: pd.DataFrame Raises ------ ValueError: if model is not of appropriate type. if model is built without appropriate observed time series data. if model components don't have dtype=tf.float32 or np.float32 """ def _check_component(component): if isinstance( component, (tfp.sts.LinearRegression, tfp.sts.SparseLinearRegression) ): covariates_shape = (len(pre_data) + len(post_data), len(pre_data.columns) - 1) if component.design_matrix.shape != covariates_shape: raise ValueError( 'Customized Linear Regression Models must have total ' 'points equal to pre_data and post_data points and ' 'same number of covariates. Input design_matrix shape was ' f'{component.design_matrix.shape} and expected ' f'{(len(pre_data) + len(post_data), len(pre_data.columns) -1)} ' 'instead.' ) assert component.design_matrix.dtype == tf.float32 else: for parameter in component.parameters: assert parameter.prior.dtype == tf.float32 if not isinstance(model, tfp.sts.StructuralTimeSeries): raise ValueError('Input model must be of type StructuralTimeSeries.') if isinstance(model, tfp.sts.Sum): for component in model.components: _check_component(component) else: _check_component(model) def build_inv_gamma_sd_prior(sigma_guess: float) -> tfd.Distribution: """ helper function to build the sd_prior distribution for standard deviation modeling. Args ---- sigma_guess: float Initial guess of where the standard deviation of the parameter is located. Returns ------- tfd.Distribution InverseGamma distribution modeling the standard deviation. """ sample_size = kLocalLevelPriorSampleSize df = sample_size a = np.float32(df / 2) ss = sample_size * sigma_guess ** 2 b = np.float32(ss / 2) return tfd.InverseGamma(a, b) def build_bijector(dist: tfd.Distribution) -> tfd.Distribution: """ helper function for building final bijector given sd_prior. The bijector is implemented through the `tfd.TransformedDistribution` class. Args ---- dist: tfd.Distribution Distribution to receive the transformation `G(X)`. Returns ------- new_dist: tfd.Distribution New distribution given by `y = G(X)`. """ bijector = SquareRootBijector() new_dist = tfd.TransformedDistribution(dist, bijector) return new_dist def build_default_model( observed_time_series: pd.DataFrame, pre_data: pd.DataFrame, post_data: pd.DataFrame, prior_level_sd: float, nseasons: int, season_duration: int ) -> tfp.sts.StructuralTimeSeries: """ When input model is `None` then proceeds to build a default `tfp.sts.LocalLevel` model. If input data has covariates then also adds a `tfp.sts.SparseLinearRegression` component. The level_prior follows `1 / prior_level_sd ** 2 ~ Gamma(a, b)` according to the original [BOOM](https://github.com/steve-the-bayesian/BOOM/blob/63f08a708153c8405b809405fa1ab5ed7193d648/Interfaces/python/R/R/bayes.py#L4:L12) package. # noqa: E501 This is achieved by using the InverseGamma(a, b) and a [bijector](https://tiao.io/post/building-probability-distributions-with-tensorflow-probability-bijector-api/) # noqa: E501 transformation for the square root operator. As for the linear regressor, the `tfp.sts.SparseLinearRegression` operation is similar to the spike-and-slab from the original R package; main difference is that it follows instead a horseshoe distribution which tends to penalize less the meaningful weights in the shrinking process.[https://github.com/tensorflow/probability/blob/v0.12.1/tensorflow_probability/python/sts/regression.py#L265-L523] # noaq: E501 Args ---- observed_time_series: pd.DataFrame pre_data: pd.DataFrame post_data: pd.DataFrame prior_level_sd: float Sets an initial estimation for the standard deviation 'sigma' of the local level prior. The bigger this value is, the wider is expected to be the random walk extension on forecasts. nseasons: int season_duration: int Returns ------- model: tfp.sts.Sum A `tfp.sts.LocalLevel` default model with possible another `tfp.sts.SparseLinearRegression` and `tfp.sts.Seasonal` components representing covariates and seasonal patterns. """ components = [] # use `values` to avoid batching dims obs_sd = observed_time_series.std(skipna=True, ddof=0).values[0] sd_prior = build_inv_gamma_sd_prior(prior_level_sd) sd_prior = build_bijector(sd_prior) # This is an approximation to simulate the bsts package from R. It's expected that # given a few data points the posterior will converge appropriately given this # distribution, that's why it's divided by 2. obs_prior = build_inv_gamma_sd_prior(obs_sd / 2) obs_prior = build_bijector(obs_prior) level_component = tfp.sts.LocalLevel( level_scale_prior=sd_prior, observed_time_series=observed_time_series ) components.append(level_component) # If it has more than 1 column then it has covariates X so add a linear regressor # component. if len(pre_data.columns) > 1: # We need to concatenate both pre and post data as this will allow the linear # regressor component to use the post data when running forecasts. As first # column is supposed to have response variable `y` then we filter out just the # remaining columns for the `X` value. complete_data = pd.concat([pre_data, post_data]).astype(np.float32) # Set NaN values to zero so to not break TFP linear regression complete_data.fillna(0, inplace=True) linear_component = tfp.sts.SparseLinearRegression( design_matrix=complete_data.iloc[:, 1:] ) components.append(linear_component) if nseasons > 1: seasonal_component = tfp.sts.Seasonal( num_seasons=nseasons, num_steps_per_season=season_duration, observed_time_series=observed_time_series ) components.append(seasonal_component) # Model must be built with `tfp.sts.Sum` so to add the observed noise `epsilon` # parameter. model = tfp.sts.Sum(components, observed_time_series=observed_time_series, observation_noise_scale_prior=obs_prior) return model def fit_model( model: tfp.sts.StructuralTimeSeries, observed_time_series: pd.DataFrame, method: str = 'hmc' ) -> Tuple[Union[List[tf.Tensor], Dict[str, tf.Tensor]], Optional[Dict[str, Any]]]: """ Run the Markovian Monte Carlo fitting process for finding the posterior `P(z | y)` where z represents the structural components of the input state space model. Two main methods can be used, either `hmc` which stands for 'Hamiltonian Monte Carlo' and `vi` standing for 'Variational Inference'. The first method is expected to be more accurate while less performante whereas the second is the opposite, that is, faster but less accurate. Args ---- model: tfp.sts.StructuralTimeSeries Structural time series model built to explain the observed data. It may contain several components such as local level, seasons and so on. observed_time_series: pd.DataFrame Contains the pre-period response variable `y`. method: str Either 'hmc' or 'vi' which selects which fitting process to run. Returns ------- (samples, kernel_results): Tuple[Union[List[tf.Tensor], Dict[str, tf.Tensor]], Dict[str, Any]] Raises ------ ValueError: If input method is invalid. """ if method == 'hmc': # this method does not need to be wrapped in a `tf.function` context as the # internal sampling method already is: # https://github.com/tensorflow/probability/blob/v0.11.1/tensorflow_probability/python/sts/fitting.py#L422 # noqa: E501 # https://github.com/tensorflow/probability/issues/348 samples, kernel_results = tfp.sts.fit_with_hmc( model=model, observed_time_series=observed_time_series, ) return samples, kernel_results elif method == 'vi': optimizer = tf.optimizers.Adam(learning_rate=0.1) variational_steps = 200 # Hardcoded for now variational_posteriors = tfp.sts.build_factored_surrogate_posterior(model=model) @tf.function() def _run_vi(): # pragma: no cover tfp.vi.fit_surrogate_posterior( target_log_prob_fn=model.joint_log_prob( observed_time_series=observed_time_series ), surrogate_posterior=variational_posteriors, optimizer=optimizer, num_steps=variational_steps ) # Don't sample too much as varitional inference method is built aiming for # performance first. samples = variational_posteriors.sample(100) return samples, None return _run_vi() else: raise ValueError( f'Input method "{method}" not valid. Choose between "hmc" or "vi".' ) def build_one_step_dist( model: tfp.sts.StructuralTimeSeries, observed_time_series: pd.DataFrame, parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]] ) -> tfd.Distribution: # pragma: no cover """ Builds one step distribution for pre-intervention data given samples from the posterior `P(z | y)`. Args ---- model: tfp.StructuralTimeSeries observed_time_series: pd.DataFrame Corresponds to the `y` value. parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]] samples from the posterior for each state component in `model`. Returns ------- one_step_dist: tfd.Distribution """ return tfp.sts.one_step_predictive( model=model, observed_time_series=observed_time_series, parameter_samples=parameter_samples ) def build_posterior_dist( model: tfp.sts.StructuralTimeSeries, observed_time_series: pd.DataFrame, parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]], num_steps_forecast: int ) -> tfd.Distribution: # pragma: no cover """ Builds the distribution for post-intervention data given samples from the posterior `P(z | y)`. Args ---- model: tfp.StructuralTimeSeries observed_time_series: pd.DataFrame Corresponds to the `y` value. parameter_samples: Union[List[tfd.Distribution], Dict[str, tfd.Distribution]] samples from the posterior for each state component in `model`. num_steps_forecast: int How many time steps to forecast into the future. These will be compared against the real value of `y` to extract the estimation of impact. Returns ------- posterior_dist: tfd.Distribution """ return tfp.sts.forecast( model=model, observed_time_series=observed_time_series, parameter_samples=parameter_samples, num_steps_forecast=num_steps_forecast ) class SquareRootBijector(tfb.Bijector): """ Compute `Y = g(X) = X ** (1 / 2) which transforms variance into standard deviation. Main reference for building this bijector is the original [PowerTransform](https://github.com/tensorflow/probability/blob/v0.11.1/tensorflow_probability/python/bijectors/power_transform.py) # noqa: E501 """ def __init__( self, validate_args: bool = False, name: str = 'square_root_bijector' ): """ Args ---- validate_args: bool Indicates whether arguments should be checked for correctness. name: str Name given to ops managed by this object. """ # Without these `parameters` the code won't be compatible with future versions # of tfp: # https://github.com/tensorflow/probability/issues/1202 parameters = dict(locals()) with tf.name_scope(name) as name: super().__init__( forward_min_event_ndims=0, validate_args=validate_args, parameters=parameters, name=name) def _forward(self, x: Union[float, np.array, tf.Tensor]) -> tf.Tensor: """ Implements the forward pass `G` as given by `Y = G(X)`. In this case, it's a simple square root of X. Args ---- x: Union[float, np.array, tf.Tensor]) Variable `X` to receive the transformation. Returns ------- X: tf.Tensor Square root of `x`. """ return tf.sqrt(x) def _inverse(self, y: Union[float, np.array, tf.Tensor]) -> tf.Tensor: """ Implements G^-1(y). Args ---- y: Union[float, np.array, tf.Tensor] Values to be transformed back. In this case, they will be squared. Returns ------- y: tf.Tensor Squared `y`. """ return tf.square(y) def _inverse_log_det_jacobian(self, y: tf.Tensor) -> tf.Tensor: """ When transforming from `P(X)` to `P(Y)` it's necessary to compute the log of the determinant of the Jacobian matrix for each correspondent function `G` which accounts for the volumetric transformations on each domain. The inverse log determinant is given by: `ln(|J(G^-1(Y)|) = ln(|J(Y ** 2)|) = ln(|2 * Y|) = ln(2 * Y)` Args ---- y: tf.Tensor Returns ------- tf.Tensor """ return tf.math.log(2 * y) def _forward_log_det_jacobian(self, x: tf.Tensor) -> tf.Tensor: """ Computes the volumetric change when moving forward from `P(X)` to `P(Y)`, given by: `ln(|J(G(X))|) = ln(|J(sqrt(X))|) = ln(|(1 / 2) * X ** (-1 / 2)|) = = (-1 / 2) * ln(4.0 * X) Args ---- x: tf.Tensor Returns ------- tf.tensor """ return -0.5 * tf.math.log(4.0 * x)
0.959126
0.604749
import backbone.support.configurations_variables as confv import backbone.support.data_loading as dl import backbone.support.data_analysis as da import backbone.support.data_cleaning as dc import backbone.support.configuration_classes as confc import backbone.support.saving_loading as sl import backbone.support.plots_and_charts as pc import backbone.support.build_features as bf import numpy as np import backbone.support.models as mdl from sklearn.utils.class_weight import compute_class_weight from tensorflow.keras.callbacks import TensorBoard import time import backbone.support.directory_file_checking as dfc import os from tensorflow.python.keras.callbacks import CSVLogger from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau import tensorflow as tf print("\t===========================================================================================\n" "\t\tMain program started for MAIN-DATABASE:{database}, GENDER-ISOLATION:{gender}\n" "\t\t\t\u2234 Dataset Name: {name}\n" "\t===========================================================================================" .format(database=confv.database_emodb, gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # DATA LOADING SECTION print("\n--------------------Started loading original data from the main database: {name}--------------------".format(name=confv.database_emodb)) data_info_emodb_df = dl.load_original_data(database=confv.database_emodb) print("No. of sample audio files in {database} database: {length}\n".format(database=confv.database_emodb, length=len(data_info_emodb_df))) print("Dataframe head of {database} database:".format(database=confv.database_emodb)) print(data_info_emodb_df.head()) print("\nDataframe tail of {database} database:".format(database=confv.database_emodb)) print(data_info_emodb_df.tail()) print("--------------------Finished loading original data from the main database: {name}--------------------".format(name=confv.database_emodb)) # RANDOM BASE AUDIO WAVE ANALYSIS SECTION print("\n\n--------------------Started random base audio wave analysis for the main database: {name}--------------------".format(name=confv.database_emodb)) da.base_audio_wave_analysis(data_info_emodb_df.audio_fname[500], database=confv.database_emodb, status=confv.original) print("--------------------Finished random base audio wave analysis for the main database: {name}--------------------".format(name=confv.database_emodb)) # DATAFRAME ADJUSTMENTS SECTION print("\n\n--------------------Started dataframe adjustment for the main database: {name}--------------------".format(name=confv.database_emodb)) data_info_emodb_df_m, data_info_emodb_df_f = dc.data_adjustments(data_info_emodb_df) print("--------------------Finished dataframe adjustment for the main database: {name}--------------------".format(name=confv.database_emodb)) # DATAFRAME SAVING print("\n\n--------------------Started dataframe saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) emodb_m_df_obj = confc.DataFrame(database=confv.database_emodb, gender=confv.gender_male, df=data_info_emodb_df_m) sl.save_dataframe(emodb_m_df_obj) print("--------------------Finished dataframe saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # LOAD REQUIRED PICKLE print("\n\n--------------------Started dataframe loading for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) emodb_m_df_obj = confc.DataFrame(database=confv.database_emodb, gender=confv.gender_male) emodb_m_df_obj = sl.load_dataframe(emodb_m_df_obj) data_info_emodb_df_m = emodb_m_df_obj.df print(emodb_m_df_obj.database) print(emodb_m_df_obj.gender) print(len(data_info_emodb_df_m)) print(data_info_emodb_df_m.head()) print(data_info_emodb_df_m.tail()) print(emodb_m_df_obj.dataset) print(emodb_m_df_obj.save_path) print("--------------------Finished dataframe loading for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # ORIGINAL DATA DISTRIBUTION ANALYSIS SECTION print("\n\n--------------------Started original data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) pc.emotion_distribution_bar_plot(df=data_info_emodb_df_m, title="{database} - {gender} Isolation - No. of Files".format(database=confv.database_emodb, gender=confv.gender_male)) pc.emotion_distribution_pie_plot(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, title="{database} - {gender} Isolation - Class/Data/Time Distribution".format(database=confv.database_emodb, gender=confv.gender_male)) print("--------------------Finished original data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # ORIGINAL DATA VISUAL ANALYSIS (signal, fft, fbank, mfcc) SECTION print("\n\n--------------------Started original data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, envelope=False, resample=False) da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, envelope=True, resample=True) print("--------------------Finished original data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # DATA CLEANING - DOWN SAMPLING AND NOISE FLOOR DETECTION print("\n\n--------------------Started data cleaning for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) dc.data_cleaning(df=data_info_emodb_df_m, database=confv.database_emodb) print("--------------------Finished data cleaning for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # DATA MINIMUM AUDIO LENGTH COMPLIANCE CHECK print("\n\n--------------------Started data minimum audio compliance check for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) data_info_emodb_df_m = dc.check_and_adjust_df_for_minimum_audio_length_after_cleaning(df=data_info_emodb_df_m, database=confv.database_emodb, gender=confv.gender_male) print("--------------------Finished data minimum audio compliance check for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # CLEANED DATA DISTRIBUTION ANALYSIS SECTION print("\n\n--------------------Started cleaned data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) pc.emotion_distribution_bar_plot(df=data_info_emodb_df_m, title="{database} - {gender} Isolation - No. of Files".format(database=confv.database_emodb, gender=confv.gender_male)) pc.emotion_distribution_pie_plot(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.clean, gender=confv.gender_male, title="{database} - {gender} Isolation - Class/Data/Time Distribution".format(database=confv.database_emodb, gender=confv.gender_male)) print("--------------------Finished cleaned data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # CLEANED DATA VISUAL ANALYSIS (signal, fft, fbank, mfcc) SECTION print("\n\n--------------------Started cleaned data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.clean, gender=confv.gender_male, envelope=False, resample=False) # This is same as, # da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, envelope=True, resample=True) # Since these cleaned data are already equipped with envelope and resampling, setting them to False or True does not matter. # (envelope and resample does not matter when its clean) print("--------------------Finished cleaned data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # Building Features print("\n\n--------------------Started building features for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) classes = list(np.unique(data_info_emodb_df_m.stress_emotion)) mconf_emodb_m = confc.ModelConfig(database=confv.database_emodb, gender=confv.gender_male, mode=confv.ml_mode_convolutional, classes=classes) print(mconf_emodb_m.database) print(mconf_emodb_m.gender) print(mconf_emodb_m.mode) print(mconf_emodb_m.nfilt) print(mconf_emodb_m.nfeat) print(mconf_emodb_m.nfft) print(mconf_emodb_m.step) print(mconf_emodb_m.classes) print(mconf_emodb_m.features_save_name) print(mconf_emodb_m.model_config_save_name) print(mconf_emodb_m.training_log_name) print(mconf_emodb_m.model_save_name) print(mconf_emodb_m.model_h5_save_name) print(mconf_emodb_m.model_tflite_save_name) print(mconf_emodb_m.feature_path) print(mconf_emodb_m.model_config_path) print(mconf_emodb_m.training_log_path) print(mconf_emodb_m.model_path) print(mconf_emodb_m.model_h5_path) print(mconf_emodb_m.model_tflite_path) rfpconf_emodb_m = confc.RandFeatParams(df=data_info_emodb_df_m, database=confv.database_emodb, gender=confv.gender_male) X, y = bf.build_random_features(modelconfig=mconf_emodb_m, randfeatparams=rfpconf_emodb_m) print("--------------------Finished building features for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # MODEL & TRAINING print("\n\n--------------------Started model training for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) input_shape = (X.shape[1], X.shape[2], 1) model = mdl.get_emodb_male_model(input_shape) y_flat = np.argmax(y, axis=1) class_weight = compute_class_weight('balanced', np.unique(y_flat), y_flat) class_weight = {i : class_weight[i] for i in range(2)} NAME = "{database}-{gender}-{modeltype}-{spec}-{time}".format(database=confv.database_emodb, gender=confv.gender_male, modeltype=confv.ml_mode_convolutional, spec="1st", time=int(time.time())) mdl_logs_pth = os.path.join(confv.base_store, confv.log_dir) tensorboard = TensorBoard(log_dir=mdl_logs_pth + '\\{}'.format(NAME)) dfc.check_dir_inside_saved_features_and_modelconfigs_and_models(parent=confv.saved_training_metrics_logs, database=confv.database_emodb, gender=confv.gender_male) csv_logger = CSVLogger(mconf_emodb_m.training_log_path) # earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min') # mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min') # reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, mode='min') model.fit(X, y, epochs=35, batch_size=32, shuffle=True, class_weight=class_weight, validation_split=0.2, callbacks=[tensorboard, csv_logger]) print("--------------------Finished model training for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # MODEL SAVING print("\n\n--------------------Started model saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) dfc.check_dir_inside_saved_features_and_modelconfigs_and_models(parent=confv.saved_models, database=confv.database_emodb, gender=confv.gender_male) model.save(mconf_emodb_m.model_path) model.save(mconf_emodb_m.model_h5_path) # Convert the model & save in tflite converter = tf.lite.TFLiteConverter.from_saved_model(mconf_emodb_m.model_path) tflite_model = converter.convert() with open(mconf_emodb_m.model_tflite_path, 'wb') as outfile: outfile.write(tflite_model) print("--------------------Finished model saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male))
backbone/mains-dataset_wise_structural/main_emodb_male.py
import backbone.support.configurations_variables as confv import backbone.support.data_loading as dl import backbone.support.data_analysis as da import backbone.support.data_cleaning as dc import backbone.support.configuration_classes as confc import backbone.support.saving_loading as sl import backbone.support.plots_and_charts as pc import backbone.support.build_features as bf import numpy as np import backbone.support.models as mdl from sklearn.utils.class_weight import compute_class_weight from tensorflow.keras.callbacks import TensorBoard import time import backbone.support.directory_file_checking as dfc import os from tensorflow.python.keras.callbacks import CSVLogger from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau import tensorflow as tf print("\t===========================================================================================\n" "\t\tMain program started for MAIN-DATABASE:{database}, GENDER-ISOLATION:{gender}\n" "\t\t\t\u2234 Dataset Name: {name}\n" "\t===========================================================================================" .format(database=confv.database_emodb, gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # DATA LOADING SECTION print("\n--------------------Started loading original data from the main database: {name}--------------------".format(name=confv.database_emodb)) data_info_emodb_df = dl.load_original_data(database=confv.database_emodb) print("No. of sample audio files in {database} database: {length}\n".format(database=confv.database_emodb, length=len(data_info_emodb_df))) print("Dataframe head of {database} database:".format(database=confv.database_emodb)) print(data_info_emodb_df.head()) print("\nDataframe tail of {database} database:".format(database=confv.database_emodb)) print(data_info_emodb_df.tail()) print("--------------------Finished loading original data from the main database: {name}--------------------".format(name=confv.database_emodb)) # RANDOM BASE AUDIO WAVE ANALYSIS SECTION print("\n\n--------------------Started random base audio wave analysis for the main database: {name}--------------------".format(name=confv.database_emodb)) da.base_audio_wave_analysis(data_info_emodb_df.audio_fname[500], database=confv.database_emodb, status=confv.original) print("--------------------Finished random base audio wave analysis for the main database: {name}--------------------".format(name=confv.database_emodb)) # DATAFRAME ADJUSTMENTS SECTION print("\n\n--------------------Started dataframe adjustment for the main database: {name}--------------------".format(name=confv.database_emodb)) data_info_emodb_df_m, data_info_emodb_df_f = dc.data_adjustments(data_info_emodb_df) print("--------------------Finished dataframe adjustment for the main database: {name}--------------------".format(name=confv.database_emodb)) # DATAFRAME SAVING print("\n\n--------------------Started dataframe saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) emodb_m_df_obj = confc.DataFrame(database=confv.database_emodb, gender=confv.gender_male, df=data_info_emodb_df_m) sl.save_dataframe(emodb_m_df_obj) print("--------------------Finished dataframe saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # LOAD REQUIRED PICKLE print("\n\n--------------------Started dataframe loading for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) emodb_m_df_obj = confc.DataFrame(database=confv.database_emodb, gender=confv.gender_male) emodb_m_df_obj = sl.load_dataframe(emodb_m_df_obj) data_info_emodb_df_m = emodb_m_df_obj.df print(emodb_m_df_obj.database) print(emodb_m_df_obj.gender) print(len(data_info_emodb_df_m)) print(data_info_emodb_df_m.head()) print(data_info_emodb_df_m.tail()) print(emodb_m_df_obj.dataset) print(emodb_m_df_obj.save_path) print("--------------------Finished dataframe loading for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # ORIGINAL DATA DISTRIBUTION ANALYSIS SECTION print("\n\n--------------------Started original data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) pc.emotion_distribution_bar_plot(df=data_info_emodb_df_m, title="{database} - {gender} Isolation - No. of Files".format(database=confv.database_emodb, gender=confv.gender_male)) pc.emotion_distribution_pie_plot(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, title="{database} - {gender} Isolation - Class/Data/Time Distribution".format(database=confv.database_emodb, gender=confv.gender_male)) print("--------------------Finished original data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # ORIGINAL DATA VISUAL ANALYSIS (signal, fft, fbank, mfcc) SECTION print("\n\n--------------------Started original data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, envelope=False, resample=False) da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, envelope=True, resample=True) print("--------------------Finished original data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # DATA CLEANING - DOWN SAMPLING AND NOISE FLOOR DETECTION print("\n\n--------------------Started data cleaning for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) dc.data_cleaning(df=data_info_emodb_df_m, database=confv.database_emodb) print("--------------------Finished data cleaning for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # DATA MINIMUM AUDIO LENGTH COMPLIANCE CHECK print("\n\n--------------------Started data minimum audio compliance check for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) data_info_emodb_df_m = dc.check_and_adjust_df_for_minimum_audio_length_after_cleaning(df=data_info_emodb_df_m, database=confv.database_emodb, gender=confv.gender_male) print("--------------------Finished data minimum audio compliance check for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # CLEANED DATA DISTRIBUTION ANALYSIS SECTION print("\n\n--------------------Started cleaned data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) pc.emotion_distribution_bar_plot(df=data_info_emodb_df_m, title="{database} - {gender} Isolation - No. of Files".format(database=confv.database_emodb, gender=confv.gender_male)) pc.emotion_distribution_pie_plot(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.clean, gender=confv.gender_male, title="{database} - {gender} Isolation - Class/Data/Time Distribution".format(database=confv.database_emodb, gender=confv.gender_male)) print("--------------------Finished cleaned data distribution analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # CLEANED DATA VISUAL ANALYSIS (signal, fft, fbank, mfcc) SECTION print("\n\n--------------------Started cleaned data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.clean, gender=confv.gender_male, envelope=False, resample=False) # This is same as, # da.visual_analysis(df=data_info_emodb_df_m, database=confv.database_emodb, status=confv.original, gender=confv.gender_male, envelope=True, resample=True) # Since these cleaned data are already equipped with envelope and resampling, setting them to False or True does not matter. # (envelope and resample does not matter when its clean) print("--------------------Finished cleaned data visual analysis for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) ''' # Building Features print("\n\n--------------------Started building features for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) classes = list(np.unique(data_info_emodb_df_m.stress_emotion)) mconf_emodb_m = confc.ModelConfig(database=confv.database_emodb, gender=confv.gender_male, mode=confv.ml_mode_convolutional, classes=classes) print(mconf_emodb_m.database) print(mconf_emodb_m.gender) print(mconf_emodb_m.mode) print(mconf_emodb_m.nfilt) print(mconf_emodb_m.nfeat) print(mconf_emodb_m.nfft) print(mconf_emodb_m.step) print(mconf_emodb_m.classes) print(mconf_emodb_m.features_save_name) print(mconf_emodb_m.model_config_save_name) print(mconf_emodb_m.training_log_name) print(mconf_emodb_m.model_save_name) print(mconf_emodb_m.model_h5_save_name) print(mconf_emodb_m.model_tflite_save_name) print(mconf_emodb_m.feature_path) print(mconf_emodb_m.model_config_path) print(mconf_emodb_m.training_log_path) print(mconf_emodb_m.model_path) print(mconf_emodb_m.model_h5_path) print(mconf_emodb_m.model_tflite_path) rfpconf_emodb_m = confc.RandFeatParams(df=data_info_emodb_df_m, database=confv.database_emodb, gender=confv.gender_male) X, y = bf.build_random_features(modelconfig=mconf_emodb_m, randfeatparams=rfpconf_emodb_m) print("--------------------Finished building features for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # MODEL & TRAINING print("\n\n--------------------Started model training for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) input_shape = (X.shape[1], X.shape[2], 1) model = mdl.get_emodb_male_model(input_shape) y_flat = np.argmax(y, axis=1) class_weight = compute_class_weight('balanced', np.unique(y_flat), y_flat) class_weight = {i : class_weight[i] for i in range(2)} NAME = "{database}-{gender}-{modeltype}-{spec}-{time}".format(database=confv.database_emodb, gender=confv.gender_male, modeltype=confv.ml_mode_convolutional, spec="1st", time=int(time.time())) mdl_logs_pth = os.path.join(confv.base_store, confv.log_dir) tensorboard = TensorBoard(log_dir=mdl_logs_pth + '\\{}'.format(NAME)) dfc.check_dir_inside_saved_features_and_modelconfigs_and_models(parent=confv.saved_training_metrics_logs, database=confv.database_emodb, gender=confv.gender_male) csv_logger = CSVLogger(mconf_emodb_m.training_log_path) # earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min') # mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min') # reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, mode='min') model.fit(X, y, epochs=35, batch_size=32, shuffle=True, class_weight=class_weight, validation_split=0.2, callbacks=[tensorboard, csv_logger]) print("--------------------Finished model training for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) # MODEL SAVING print("\n\n--------------------Started model saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male)) dfc.check_dir_inside_saved_features_and_modelconfigs_and_models(parent=confv.saved_models, database=confv.database_emodb, gender=confv.gender_male) model.save(mconf_emodb_m.model_path) model.save(mconf_emodb_m.model_h5_path) # Convert the model & save in tflite converter = tf.lite.TFLiteConverter.from_saved_model(mconf_emodb_m.model_path) tflite_model = converter.convert() with open(mconf_emodb_m.model_tflite_path, 'wb') as outfile: outfile.write(tflite_model) print("--------------------Finished model saving for adjusted and {gender} isolated dataset: {name}--------------------".format(gender=confv.gender_male, name=confv.dataset_emodb_male))
0.464416
0.202187
import pytest from mock import MagicMock from powerfulseal.node import Node, NodeInventory @pytest.fixture def nodes(): return [ Node(id="id1", ip="192.168.127.12", az="AZ1", no=1, name="node1"), Node(id="id2", ip="172.16.31.10", az="AZ2", no=2, name="node2"), Node(id="id3", ip="172.16.31.10", az="AZ2", no=3, name="node3"), ] @pytest.fixture def mock_driver(nodes): mock = MagicMock() mock.nodes = nodes def get_by_ip(ip): for node in mock.nodes: if node.ip == ip: return node mock.get_by_ip = get_by_ip return mock def test_sync(nodes, mock_driver): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() assert inventory.groups == { "TEST1": nodes[0:1], "TEST2": nodes[0:2] } assert inventory.get_azs() == ["AZ1", "AZ2"] @pytest.mark.parametrize("query, expected_indices", [ (None, [0, 1]), ("all", [0, 1]), ("id1,id2", [0, 1]), ("id1", [0]), ("id2", [1]), ("192.168.127.12", [0]), ("AZ2", [1]), ("2", [1]), ("node2", [1]), ("TEST2", [0, 1]), ("up", []), ("unknown", [0, 1]), ("something-weird", []), ]) def test_find(nodes, mock_driver, query, expected_indices): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() assert list(inventory.find_nodes(query)) == [nodes[x] for x in expected_indices] @pytest.mark.parametrize("ip, should_find, index", [ ("172.16.31.10", True, 1), ("doesn't exist", False, None), ]) def test_get_by_ip(nodes, mock_driver, ip, should_find, index): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() if should_find: assert inventory.get_node_by_ip(ip) is nodes[index] else: assert inventory.get_node_by_ip(ip) == None def test_groups(mock_driver): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() assert inventory.get_groups() == ["TEST1", "TEST2"]
tests/node/test_node_inventory.py
import pytest from mock import MagicMock from powerfulseal.node import Node, NodeInventory @pytest.fixture def nodes(): return [ Node(id="id1", ip="192.168.127.12", az="AZ1", no=1, name="node1"), Node(id="id2", ip="172.16.31.10", az="AZ2", no=2, name="node2"), Node(id="id3", ip="172.16.31.10", az="AZ2", no=3, name="node3"), ] @pytest.fixture def mock_driver(nodes): mock = MagicMock() mock.nodes = nodes def get_by_ip(ip): for node in mock.nodes: if node.ip == ip: return node mock.get_by_ip = get_by_ip return mock def test_sync(nodes, mock_driver): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() assert inventory.groups == { "TEST1": nodes[0:1], "TEST2": nodes[0:2] } assert inventory.get_azs() == ["AZ1", "AZ2"] @pytest.mark.parametrize("query, expected_indices", [ (None, [0, 1]), ("all", [0, 1]), ("id1,id2", [0, 1]), ("id1", [0]), ("id2", [1]), ("192.168.127.12", [0]), ("AZ2", [1]), ("2", [1]), ("node2", [1]), ("TEST2", [0, 1]), ("up", []), ("unknown", [0, 1]), ("something-weird", []), ]) def test_find(nodes, mock_driver, query, expected_indices): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() assert list(inventory.find_nodes(query)) == [nodes[x] for x in expected_indices] @pytest.mark.parametrize("ip, should_find, index", [ ("172.16.31.10", True, 1), ("doesn't exist", False, None), ]) def test_get_by_ip(nodes, mock_driver, ip, should_find, index): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() if should_find: assert inventory.get_node_by_ip(ip) is nodes[index] else: assert inventory.get_node_by_ip(ip) == None def test_groups(mock_driver): inventory = NodeInventory( driver=mock_driver, restrict_to_groups={ "TEST1": ["192.168.127.12"], "TEST2": ["192.168.127.12", "172.16.31.10"], } ) inventory.sync() assert inventory.get_groups() == ["TEST1", "TEST2"]
0.495117
0.634713
from __future__ import print_function import json import os import time from chromite.cbuildbot.stages import generic_stages from chromite.lib import buildbucket_lib from chromite.lib import build_requests from chromite.lib import constants from chromite.lib import config_lib from chromite.lib import cros_logging as logging from chromite.lib import failures_lib from chromite.lib.const import waterfall def BuilderName(build_config, active_waterfall, current_builder): """Gets the corresponding builder name of the build. Args: build_config: build config (string) of the build. active_waterfall: active waterfall to run the build. current_builder: buildbot builder name of the current builder, or None. Returns: Builder name to run the build on. """ # The builder name is configured differently for release builds in # chromeos and chromeos_release waterfalls. (see crbug.com/755276) if active_waterfall == waterfall.WATERFALL_RELEASE: assert current_builder # Example: master-release release-R64-10176.B named_branch = current_builder.split()[1] return '%s %s' % (build_config, named_branch) else: return build_config class ScheduleSlavesStage(generic_stages.BuilderStage): """Stage that schedules slaves for the master build.""" def __init__(self, builder_run, sync_stage, **kwargs): super(ScheduleSlavesStage, self).__init__(builder_run, **kwargs) self.sync_stage = sync_stage self.buildbucket_client = self.GetBuildbucketClient() def _GetBuildbucketBucket(self, build_name, build_config): """Get the corresponding Buildbucket bucket. Args: build_name: name of the build to put to Buildbucket. build_config: config of the build to put to Buildbucket. Raises: NoBuildbucketBucketFoundException when no Buildbucket bucket found. """ bucket = buildbucket_lib.WATERFALL_BUCKET_MAP.get( build_config.active_waterfall) if bucket is None: raise buildbucket_lib.NoBuildbucketBucketFoundException( 'No Buildbucket bucket found for builder %s waterfall: %s' % (build_name, build_config.active_waterfall)) return bucket def PostSlaveBuildToBuildbucket(self, build_name, build_config, master_build_id, master_buildbucket_id, buildset_tag, dryrun=False): """Send a Put slave build request to Buildbucket. Args: build_name: Salve build name to put to Buildbucket. build_config: Slave build config to put to Buildbucket. master_build_id: CIDB id of the master scheduling the slave build. master_buildbucket_id: buildbucket id of the master scheduling the slave build. buildset_tag: The buildset tag for strong consistent tag queries. More context: crbug.com/661689 dryrun: Whether a dryrun, default to False. """ current_buildername = os.environ.get('BUILDBOT_BUILDERNAME', None) builder_name = BuilderName( build_name, build_config.active_waterfall, current_buildername) # TODO: Find a way to unify these tags with # remote_try._GetRequestBody tags = ['buildset:%s' % buildset_tag, 'build_type:%s' % build_config.build_type, 'master:False', 'master_config:%s' % self._run.config.name, 'cbb_display_label:%s' % build_config.display_label, 'cbb_branch:%s' % self._run.manifest_branch, 'cbb_config:%s' % build_name, 'cbb_master_build_id:%s' % master_build_id, 'cbb_master_buildbucket_id:%s' % master_buildbucket_id, 'cbb_email:'] if build_config.boards: for board in build_config.boards: tags.append('board:%s' % board) body = json.dumps({ 'bucket': self._GetBuildbucketBucket(build_name, build_config), 'parameters_json': json.dumps({ 'builder_name': builder_name, 'properties': { 'cbb_config': build_name, 'cbb_branch': self._run.manifest_branch, 'cbb_master_build_id': master_build_id, } }), 'tags': tags }) content = self.buildbucket_client.PutBuildRequest(body, dryrun) buildbucket_id = buildbucket_lib.GetBuildId(content) created_ts = buildbucket_lib.GetBuildCreated_ts(content) logging.info('Build_name %s buildbucket_id %s created_timestamp %s', build_name, buildbucket_id, created_ts) return (buildbucket_id, created_ts) def ScheduleSlaveBuildsViaBuildbucket(self, important_only=False, dryrun=False): """Schedule slave builds by sending PUT requests to Buildbucket. Args: important_only: Whether only schedule important slave builds, default to False. dryrun: Whether a dryrun, default to False. """ if self.buildbucket_client is None: logging.info('No buildbucket_client. Skip scheduling slaves.') return build_id, db = self._run.GetCIDBHandle() if build_id is None: logging.info('No build id. Skip scheduling slaves.') return # May be None. This is okay. master_buildbucket_id = self._run.options.buildbucket_id buildset_tag = 'cbuildbot/%s/%s/%s' % ( self._run.manifest_branch, self._run.config.name, build_id) scheduled_important_slave_builds = [] scheduled_experimental_slave_builds = [] unscheduled_slave_builds = [] scheduled_build_reqs = [] # Get all active slave build configs. slave_config_map = self._GetSlaveConfigMap(important_only) for slave_config_name, slave_config in slave_config_map.iteritems(): try: buildbucket_id, created_ts = self.PostSlaveBuildToBuildbucket( slave_config_name, slave_config, build_id, master_buildbucket_id, buildset_tag, dryrun=dryrun) request_reason = None if slave_config.important: scheduled_important_slave_builds.append( (slave_config_name, buildbucket_id, created_ts)) request_reason = build_requests.REASON_IMPORTANT_CQ_SLAVE else: scheduled_experimental_slave_builds.append( (slave_config_name, buildbucket_id, created_ts)) request_reason = build_requests.REASON_EXPERIMENTAL_CQ_SLAVE scheduled_build_reqs.append(build_requests.BuildRequest( None, build_id, slave_config_name, None, buildbucket_id, request_reason, None)) except buildbucket_lib.BuildbucketResponseException as e: # Use 16-digit ts to be consistent with the created_ts from Buildbucket current_ts = int(round(time.time() * 1000000)) unscheduled_slave_builds.append((slave_config_name, None, current_ts)) if important_only or slave_config.important: raise else: logging.warning('Failed to schedule %s current timestamp %s: %s' % (slave_config_name, current_ts, e)) if config_lib.IsMasterCQ(self._run.config) and db and scheduled_build_reqs: db.InsertBuildRequests(scheduled_build_reqs) self._run.attrs.metadata.ExtendKeyListWithList( constants.METADATA_SCHEDULED_IMPORTANT_SLAVES, scheduled_important_slave_builds) self._run.attrs.metadata.ExtendKeyListWithList( constants.METADATA_SCHEDULED_EXPERIMENTAL_SLAVES, scheduled_experimental_slave_builds) self._run.attrs.metadata.ExtendKeyListWithList( constants.METADATA_UNSCHEDULED_SLAVES, unscheduled_slave_builds) @failures_lib.SetFailureType(failures_lib.InfrastructureFailure) def PerformStage(self): if (config_lib.IsMasterCQ(self._run.config) and not self.sync_stage.pool.HasPickedUpCLs()): logging.info('No new CLs or chumpped CLs found to verify in this CQ run,' 'do not schedule CQ slaves.') return self.ScheduleSlaveBuildsViaBuildbucket(important_only=False, dryrun=self._run.options.debug)
third_party/chromite/cbuildbot/stages/scheduler_stages.py
from __future__ import print_function import json import os import time from chromite.cbuildbot.stages import generic_stages from chromite.lib import buildbucket_lib from chromite.lib import build_requests from chromite.lib import constants from chromite.lib import config_lib from chromite.lib import cros_logging as logging from chromite.lib import failures_lib from chromite.lib.const import waterfall def BuilderName(build_config, active_waterfall, current_builder): """Gets the corresponding builder name of the build. Args: build_config: build config (string) of the build. active_waterfall: active waterfall to run the build. current_builder: buildbot builder name of the current builder, or None. Returns: Builder name to run the build on. """ # The builder name is configured differently for release builds in # chromeos and chromeos_release waterfalls. (see crbug.com/755276) if active_waterfall == waterfall.WATERFALL_RELEASE: assert current_builder # Example: master-release release-R64-10176.B named_branch = current_builder.split()[1] return '%s %s' % (build_config, named_branch) else: return build_config class ScheduleSlavesStage(generic_stages.BuilderStage): """Stage that schedules slaves for the master build.""" def __init__(self, builder_run, sync_stage, **kwargs): super(ScheduleSlavesStage, self).__init__(builder_run, **kwargs) self.sync_stage = sync_stage self.buildbucket_client = self.GetBuildbucketClient() def _GetBuildbucketBucket(self, build_name, build_config): """Get the corresponding Buildbucket bucket. Args: build_name: name of the build to put to Buildbucket. build_config: config of the build to put to Buildbucket. Raises: NoBuildbucketBucketFoundException when no Buildbucket bucket found. """ bucket = buildbucket_lib.WATERFALL_BUCKET_MAP.get( build_config.active_waterfall) if bucket is None: raise buildbucket_lib.NoBuildbucketBucketFoundException( 'No Buildbucket bucket found for builder %s waterfall: %s' % (build_name, build_config.active_waterfall)) return bucket def PostSlaveBuildToBuildbucket(self, build_name, build_config, master_build_id, master_buildbucket_id, buildset_tag, dryrun=False): """Send a Put slave build request to Buildbucket. Args: build_name: Salve build name to put to Buildbucket. build_config: Slave build config to put to Buildbucket. master_build_id: CIDB id of the master scheduling the slave build. master_buildbucket_id: buildbucket id of the master scheduling the slave build. buildset_tag: The buildset tag for strong consistent tag queries. More context: crbug.com/661689 dryrun: Whether a dryrun, default to False. """ current_buildername = os.environ.get('BUILDBOT_BUILDERNAME', None) builder_name = BuilderName( build_name, build_config.active_waterfall, current_buildername) # TODO: Find a way to unify these tags with # remote_try._GetRequestBody tags = ['buildset:%s' % buildset_tag, 'build_type:%s' % build_config.build_type, 'master:False', 'master_config:%s' % self._run.config.name, 'cbb_display_label:%s' % build_config.display_label, 'cbb_branch:%s' % self._run.manifest_branch, 'cbb_config:%s' % build_name, 'cbb_master_build_id:%s' % master_build_id, 'cbb_master_buildbucket_id:%s' % master_buildbucket_id, 'cbb_email:'] if build_config.boards: for board in build_config.boards: tags.append('board:%s' % board) body = json.dumps({ 'bucket': self._GetBuildbucketBucket(build_name, build_config), 'parameters_json': json.dumps({ 'builder_name': builder_name, 'properties': { 'cbb_config': build_name, 'cbb_branch': self._run.manifest_branch, 'cbb_master_build_id': master_build_id, } }), 'tags': tags }) content = self.buildbucket_client.PutBuildRequest(body, dryrun) buildbucket_id = buildbucket_lib.GetBuildId(content) created_ts = buildbucket_lib.GetBuildCreated_ts(content) logging.info('Build_name %s buildbucket_id %s created_timestamp %s', build_name, buildbucket_id, created_ts) return (buildbucket_id, created_ts) def ScheduleSlaveBuildsViaBuildbucket(self, important_only=False, dryrun=False): """Schedule slave builds by sending PUT requests to Buildbucket. Args: important_only: Whether only schedule important slave builds, default to False. dryrun: Whether a dryrun, default to False. """ if self.buildbucket_client is None: logging.info('No buildbucket_client. Skip scheduling slaves.') return build_id, db = self._run.GetCIDBHandle() if build_id is None: logging.info('No build id. Skip scheduling slaves.') return # May be None. This is okay. master_buildbucket_id = self._run.options.buildbucket_id buildset_tag = 'cbuildbot/%s/%s/%s' % ( self._run.manifest_branch, self._run.config.name, build_id) scheduled_important_slave_builds = [] scheduled_experimental_slave_builds = [] unscheduled_slave_builds = [] scheduled_build_reqs = [] # Get all active slave build configs. slave_config_map = self._GetSlaveConfigMap(important_only) for slave_config_name, slave_config in slave_config_map.iteritems(): try: buildbucket_id, created_ts = self.PostSlaveBuildToBuildbucket( slave_config_name, slave_config, build_id, master_buildbucket_id, buildset_tag, dryrun=dryrun) request_reason = None if slave_config.important: scheduled_important_slave_builds.append( (slave_config_name, buildbucket_id, created_ts)) request_reason = build_requests.REASON_IMPORTANT_CQ_SLAVE else: scheduled_experimental_slave_builds.append( (slave_config_name, buildbucket_id, created_ts)) request_reason = build_requests.REASON_EXPERIMENTAL_CQ_SLAVE scheduled_build_reqs.append(build_requests.BuildRequest( None, build_id, slave_config_name, None, buildbucket_id, request_reason, None)) except buildbucket_lib.BuildbucketResponseException as e: # Use 16-digit ts to be consistent with the created_ts from Buildbucket current_ts = int(round(time.time() * 1000000)) unscheduled_slave_builds.append((slave_config_name, None, current_ts)) if important_only or slave_config.important: raise else: logging.warning('Failed to schedule %s current timestamp %s: %s' % (slave_config_name, current_ts, e)) if config_lib.IsMasterCQ(self._run.config) and db and scheduled_build_reqs: db.InsertBuildRequests(scheduled_build_reqs) self._run.attrs.metadata.ExtendKeyListWithList( constants.METADATA_SCHEDULED_IMPORTANT_SLAVES, scheduled_important_slave_builds) self._run.attrs.metadata.ExtendKeyListWithList( constants.METADATA_SCHEDULED_EXPERIMENTAL_SLAVES, scheduled_experimental_slave_builds) self._run.attrs.metadata.ExtendKeyListWithList( constants.METADATA_UNSCHEDULED_SLAVES, unscheduled_slave_builds) @failures_lib.SetFailureType(failures_lib.InfrastructureFailure) def PerformStage(self): if (config_lib.IsMasterCQ(self._run.config) and not self.sync_stage.pool.HasPickedUpCLs()): logging.info('No new CLs or chumpped CLs found to verify in this CQ run,' 'do not schedule CQ slaves.') return self.ScheduleSlaveBuildsViaBuildbucket(important_only=False, dryrun=self._run.options.debug)
0.677687
0.110327
import torch class Generator(torch.nn.Module): """ Simple Generator Network """ def __init__( self, latent_dim, n_classes, code_dim, img_size, num_channels): """ Parameters ---------- latent_dim : int size of the latent dimension n_classes : int number of classes code_dim : int size of the code dimension img_size : int number of pixels per image side num_channels : int number of channels to generate """ super().__init__() input_dim = latent_dim + n_classes + code_dim self.init_size = img_size // 4 # Initial size before upsampling self.l1 = torch.nn.Linear(input_dim, 128 * self.init_size ** 2) self.conv_blocks = torch.nn.Sequential( torch.nn.BatchNorm2d(128), torch.nn.Upsample(scale_factor=2), torch.nn.Conv2d(128, 128, 3, stride=1, padding=1), torch.nn.BatchNorm2d(128, 0.8), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Upsample(scale_factor=2), torch.nn.Conv2d(128, 64, 3, stride=1, padding=1), torch.nn.BatchNorm2d(64, 0.8), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Conv2d(64, num_channels, 3, stride=1, padding=1), torch.nn.Tanh(), ) def forward(self, noise, labels, code): """ Forwards a single batch through the network Parameters ---------- noise : :class:`torch.Tensor` the noise vector labels : :class:`torch.Tensor` the label batch code : :class:`torch.Tensor` the code Returns ------- :class:`torch.Tensor` the image batch """ gen_input = torch.cat((noise, labels.to(noise.dtype), code), -1) out = self.l1(gen_input) out = out.view(out.shape[0], 128, self.init_size, self.init_size) img = self.conv_blocks(out) return img class Discriminator(torch.nn.Module): """ A simple discriminator network """ def __init__(self, code_dim, n_classes, num_channels, img_size): """ Parameters ---------- code_dim : int size of the code dimension n_classes : int number of image classes num_channels : int number of image channels img_size : int number of pixels per side """ super().__init__() def discriminator_block(in_filters, out_filters, bn=True): """Returns layers of each discriminator block""" block = [torch.nn.Conv2d(in_filters, out_filters, 3, 2, 1), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Dropout2d(0.25)] if bn: block.append(torch.nn.BatchNorm2d(out_filters, 0.8)) return block self.conv_blocks = torch.nn.Sequential( *discriminator_block(num_channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = self.conv_blocks(torch.rand(1, num_channels, img_size, img_size)).size(2) # Output layers self.adv_layer = torch.nn.Linear(128 * ds_size ** 2, 1) self.aux_layer = torch.nn.Sequential( torch.nn.Linear(128 * ds_size ** 2, n_classes), torch.nn.Softmax()) self.latent_layer = torch.nn.Linear(128 * ds_size ** 2, code_dim) def forward(self, img): """ Feeds a single image batch through the network Parameters ---------- img : :class:`torch.Tensor` the image batch Returns ------- :class:`torch.Tensor` the validity for each image :class:`torch.Tensor` the predicted label for each image :class:`torch.Tensor` the predicted latent code for each image """ out = self.conv_blocks(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) label = self.aux_layer(out) latent_code = self.latent_layer(out) return validity, label, latent_code
dlutils/models/gans/info/models.py
import torch class Generator(torch.nn.Module): """ Simple Generator Network """ def __init__( self, latent_dim, n_classes, code_dim, img_size, num_channels): """ Parameters ---------- latent_dim : int size of the latent dimension n_classes : int number of classes code_dim : int size of the code dimension img_size : int number of pixels per image side num_channels : int number of channels to generate """ super().__init__() input_dim = latent_dim + n_classes + code_dim self.init_size = img_size // 4 # Initial size before upsampling self.l1 = torch.nn.Linear(input_dim, 128 * self.init_size ** 2) self.conv_blocks = torch.nn.Sequential( torch.nn.BatchNorm2d(128), torch.nn.Upsample(scale_factor=2), torch.nn.Conv2d(128, 128, 3, stride=1, padding=1), torch.nn.BatchNorm2d(128, 0.8), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Upsample(scale_factor=2), torch.nn.Conv2d(128, 64, 3, stride=1, padding=1), torch.nn.BatchNorm2d(64, 0.8), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Conv2d(64, num_channels, 3, stride=1, padding=1), torch.nn.Tanh(), ) def forward(self, noise, labels, code): """ Forwards a single batch through the network Parameters ---------- noise : :class:`torch.Tensor` the noise vector labels : :class:`torch.Tensor` the label batch code : :class:`torch.Tensor` the code Returns ------- :class:`torch.Tensor` the image batch """ gen_input = torch.cat((noise, labels.to(noise.dtype), code), -1) out = self.l1(gen_input) out = out.view(out.shape[0], 128, self.init_size, self.init_size) img = self.conv_blocks(out) return img class Discriminator(torch.nn.Module): """ A simple discriminator network """ def __init__(self, code_dim, n_classes, num_channels, img_size): """ Parameters ---------- code_dim : int size of the code dimension n_classes : int number of image classes num_channels : int number of image channels img_size : int number of pixels per side """ super().__init__() def discriminator_block(in_filters, out_filters, bn=True): """Returns layers of each discriminator block""" block = [torch.nn.Conv2d(in_filters, out_filters, 3, 2, 1), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Dropout2d(0.25)] if bn: block.append(torch.nn.BatchNorm2d(out_filters, 0.8)) return block self.conv_blocks = torch.nn.Sequential( *discriminator_block(num_channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = self.conv_blocks(torch.rand(1, num_channels, img_size, img_size)).size(2) # Output layers self.adv_layer = torch.nn.Linear(128 * ds_size ** 2, 1) self.aux_layer = torch.nn.Sequential( torch.nn.Linear(128 * ds_size ** 2, n_classes), torch.nn.Softmax()) self.latent_layer = torch.nn.Linear(128 * ds_size ** 2, code_dim) def forward(self, img): """ Feeds a single image batch through the network Parameters ---------- img : :class:`torch.Tensor` the image batch Returns ------- :class:`torch.Tensor` the validity for each image :class:`torch.Tensor` the predicted label for each image :class:`torch.Tensor` the predicted latent code for each image """ out = self.conv_blocks(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) label = self.aux_layer(out) latent_code = self.latent_layer(out) return validity, label, latent_code
0.947247
0.695441
import json import uuid from datetime import timedelta from unittest.mock import patch from alpaca_trade_api.entity import Account as AlpacaAccount from alpaca_trade_api.entity import Order as AlpacaOrder from alpaca_trade_api.entity import Position as AlpacaPosition from assets.models import Asset, Bar from assets.tests.factories import AssetFactory from core.tasks import ( fetch_bar_data_for_strategy, moving_average_strategy, run_strategies_for_users, ) from core.tests.factories import StrategyFactory from django.core.exceptions import ValidationError from django.test import TestCase from django.utils import timezone from orders.models import Order from users.tests.factories import UserFactory class CoreTaskTests(TestCase): def setUp(self): self.tsla = AssetFactory(symbol="TSLA") self.user_1 = UserFactory() self.user_2 = UserFactory() self.user_3 = UserFactory() self.strategy_1 = StrategyFactory( asset=self.tsla, user=self.user_1, trade_value=1000 ) self.strategy_2 = StrategyFactory( asset=self.tsla, user=self.user_2, trade_value=1000 ) self.inactive_strategy = StrategyFactory( user=self.user_3, start_date=timezone.now() - timedelta(days=7), end_date=timezone.now() - timedelta(days=5), ) def refresh_tsla_bars(self, max_epoch=1648443600): tsla = Asset.objects.get(symbol="TSLA") Bar.objects.filter(asset=tsla).delete() with open("assets/tests/sample_tsla_bars.json") as f: bars = json.load(f) objs = [ Bar( asset=tsla, t=bar["t"], o=bar["o"], h=bar["h"], l=bar["l"], c=bar["c"], v=bar["v"], ) for bar in bars if int(bar["t"]) <= max_epoch ] Bar.objects.bulk_create(objs, batch_size=1000, ignore_conflicts=True) @patch("core.tasks.TradeApiRest") @patch("core.tasks.moving_average_strategy") def test_run_strategies_for_user( self, mock_moving_average_strategy, mock_trade_api ): """Moving average strategies that are active are run for users.""" mock_trade_api.return_value.is_market_open.return_value = True run_strategies_for_users() self.assertEqual(mock_moving_average_strategy.call_count, 2) mock_moving_average_strategy.assert_any_call(self.user_1) mock_moving_average_strategy.assert_any_call(self.user_2) @patch("core.tasks.logger") @patch("core.tasks.fetch_bar_data_for_strategy") @patch("core.tasks.update_bars") @patch("core.tasks.TradeApiRest") def test_moving_average_strategy_not_enough_data( self, mock_trade_api, mock_update_bars, mock_fetch_bar_data_for_strategy, mock_logger, ): """Active strategy does not create an order if there is not enough bar data.""" mock_fetch_bar_data_for_strategy.return_value = None moving_average_strategy(self.user_1) mock_logger.info.assert_called_once_with( f"Insufficient bar data for asset: {self.strategy_1.asset.id}" ) @patch("core.tasks.time.mktime") @patch("core.tasks.update_bars") def test_fetch_bar_data_for_strategy(self, mock_update_bars, mock_mktime): """Bar data is fetched when required.""" self.refresh_tsla_bars() with self.subTest(msg="bar data is not required."): # Enough bar data exists in sample data at this time mock_mktime.return_value = "1614229200" fetch_bar_data_for_strategy(self.strategy_1) mock_update_bars.assert_not_called() mock_mktime.reset_mock() mock_update_bars.reset_mock() with self.subTest(msg="bar data is required."): # Not enough bar data exists in sample data at this time mock_mktime.return_value = "1648443600" fetch_bar_data_for_strategy(self.strategy_1) mock_update_bars.assert_called_once_with(["TSLA"], "15Min", 131) @patch("core.tasks.TradeApiRest") @patch("core.tasks.time.mktime") @patch("core.tasks.update_bars") @patch("core.tasks.fetch_bar_data_for_strategy") def test_moving_average_strategy( self, mock_fetch_bar_data_for_strategy, mock_update_bars, mock_mktime, mock_trade_api, ): """Active strategy creates an order if required.""" account_info = AlpacaAccount( { "account_blocked": False, "account_number": "GS78FJEUMA4P", "buying_power": "200000", "cash": "100000", "created_at": "2020-10-31T23:40:50.376107Z", "currency": "USD", "daytrade_count": 0, "daytrading_buying_power": "0", "equity": "100000", "id": str(uuid.uuid4()), "initial_margin": "0", "last_equity": "100000", "last_maintenance_margin": "0", "long_market_value": "0", "maintenance_margin": "0", "multiplier": "2", "non_marginable_buying_power": "100000", "pattern_day_trader": True, "pending_transfer_in": "0", "portfolio_value": "100000", "regt_buying_power": "200000", "short_market_value": "0", "shorting_enabled": True, "sma": "0", "status": "ACTIVE", "trade_suspended_by_user": False, "trading_blocked": False, "transfers_blocked": False, } ) position = AlpacaPosition( { "asset_id": "0", "symbol": "TSLA", "exchange": "0", "asset_class": "0", "avg_entry_price": "0", "qty": "10", "side": "long", "market_value": "2000.0", "cost_basis": "0", "unrealized_pl": "0", "unrealized_plpc": "0", "unrealized_intraday_pl": "0", "unrealized_intraday_plpc": "0", "current_price": "0", "lastday_price": "0", "change_today": "0", } ) order = AlpacaOrder( { "id": str(uuid.uuid4()), "client_order_id": str(uuid.uuid4()), "created_at": "2021-03-16T18:38:01.942282Z", "updated_at": "2021-03-16T18:38:01.942282Z", "submitted_at": "2021-03-16T18:38:01.937734Z", "filled_at": None, "expired_at": None, "canceled_at": None, "failed_at": None, "replaced_at": None, "replaced_by": None, "replaces": None, "asset_id": self.tsla.pk, "symbol": "TSLA", "asset_class": "us_equity", "notional": "500", "qty": None, "filled_qty": "0", "filled_avg_price": None, "order_class": "", "order_type": "market", "type": "market", "side": "buy", "time_in_force": "day", "limit_price": None, "stop_price": None, "status": "accepted", "extended_hours": False, "trail_percent": None, "trail_price": None, "hwm": None, } ) mock_fetch_bar_data_for_strategy.return_value = 130 mock_trade_api.return_value.is_market_open.return_value = True mock_trade_api.return_value.account_info.return_value = account_info mock_trade_api.return_value.list_position_by_symbol.return_value = position mock_trade_api.return_value.submit_order.return_value = order seven_days_epoch = 104 * 86400 with self.subTest(msg="buy order is placed."): max_epoch_time = 1630818000 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_trade_api.return_value.submit_order.assert_called_once_with( symbol=self.strategy_1.asset.symbol, notional=float(self.strategy_1.trade_value), side=Order.BUY, type=Order.MARKET, time_in_force=Order.GTC, ) mock_mktime.reset_mock() mock_trade_api.reset_mock() Order.objects.all().delete() with self.subTest(msg="sell order is placed."): max_epoch_time = 1618894800 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_trade_api.return_value.submit_order.assert_called_once_with( symbol=self.strategy_1.asset.symbol, notional=float(self.strategy_1.trade_value), side=Order.SELL, type=Order.MARKET, time_in_force=Order.GTC, ) mock_mktime.reset_mock() mock_trade_api.reset_mock() Order.objects.all().delete() with self.subTest(msg="no order is placed."): max_epoch_time = 1633150800 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_trade_api.return_value.submit_order.assert_not_called() @patch("core.tasks.logger") @patch("core.tasks.TradeApiRest") @patch("core.tasks.time.mktime") @patch("core.tasks.update_bars") @patch("core.tasks.fetch_bar_data_for_strategy") def test_moving_average_strategy_fails( self, mock_fetch_bar_data_for_strategy, mock_update_bars, mock_mktime, mock_trade_api, mock_logger, ): """If trade view api fails to submit an order, an order object is not created.""" account_info = AlpacaAccount( { "account_blocked": False, "account_number": "GS78FJEUMA4P", "buying_power": "200000", "cash": "100000", "created_at": "2020-10-31T23:40:50.376107Z", "currency": "USD", "daytrade_count": 0, "daytrading_buying_power": "0", "equity": "100000", "id": str(uuid.uuid4()), "initial_margin": "0", "last_equity": "100000", "last_maintenance_margin": "0", "long_market_value": "0", "maintenance_margin": "0", "multiplier": "2", "non_marginable_buying_power": "100000", "pattern_day_trader": True, "pending_transfer_in": "0", "portfolio_value": "100000", "regt_buying_power": "200000", "short_market_value": "0", "shorting_enabled": True, "sma": "0", "status": "ACTIVE", "trade_suspended_by_user": False, "trading_blocked": False, "transfers_blocked": False, } ) position = AlpacaPosition( { "asset_id": "0", "symbol": "TSLA", "exchange": "0", "asset_class": "0", "avg_entry_price": "0", "qty": "10", "side": "long", "market_value": "2000.0", "cost_basis": "0", "unrealized_pl": "0", "unrealized_plpc": "0", "unrealized_intraday_pl": "0", "unrealized_intraday_plpc": "0", "current_price": "0", "lastday_price": "0", "change_today": "0", } ) order = AlpacaOrder( { "id": str(uuid.uuid4()), "client_order_id": str(uuid.uuid4()), "created_at": "2021-03-16T18:38:01.942282Z", "updated_at": "2021-03-16T18:38:01.942282Z", "submitted_at": "2021-03-16T18:38:01.937734Z", "filled_at": None, "expired_at": None, "canceled_at": None, "failed_at": None, "replaced_at": None, "replaced_by": None, "replaces": None, "asset_id": self.tsla.pk, "symbol": "TSLA", "asset_class": "us_equity", "notional": "500", "qty": None, "filled_qty": "0", "filled_avg_price": None, "order_class": "", "order_type": "market", "type": "market", "side": "buy", "time_in_force": "day", "limit_price": None, "stop_price": None, "status": "accepted", "extended_hours": False, "trail_percent": None, "trail_price": None, "hwm": None, } ) mock_fetch_bar_data_for_strategy.return_value = 130 mock_trade_api.return_value.is_market_open.return_value = True mock_trade_api.return_value.account_info.return_value = account_info mock_trade_api.return_value.list_position_by_symbol.return_value = position mock_trade_api.return_value.submit_order.side_effect = ValidationError( "Mock error" ) seven_days_epoch = 104 * 86400 max_epoch_time = 1630818000 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_logger.warning.assert_called_once() self.assertEqual(Order.objects.count(), 0)
server/core/tests/test_tasks.py
import json import uuid from datetime import timedelta from unittest.mock import patch from alpaca_trade_api.entity import Account as AlpacaAccount from alpaca_trade_api.entity import Order as AlpacaOrder from alpaca_trade_api.entity import Position as AlpacaPosition from assets.models import Asset, Bar from assets.tests.factories import AssetFactory from core.tasks import ( fetch_bar_data_for_strategy, moving_average_strategy, run_strategies_for_users, ) from core.tests.factories import StrategyFactory from django.core.exceptions import ValidationError from django.test import TestCase from django.utils import timezone from orders.models import Order from users.tests.factories import UserFactory class CoreTaskTests(TestCase): def setUp(self): self.tsla = AssetFactory(symbol="TSLA") self.user_1 = UserFactory() self.user_2 = UserFactory() self.user_3 = UserFactory() self.strategy_1 = StrategyFactory( asset=self.tsla, user=self.user_1, trade_value=1000 ) self.strategy_2 = StrategyFactory( asset=self.tsla, user=self.user_2, trade_value=1000 ) self.inactive_strategy = StrategyFactory( user=self.user_3, start_date=timezone.now() - timedelta(days=7), end_date=timezone.now() - timedelta(days=5), ) def refresh_tsla_bars(self, max_epoch=1648443600): tsla = Asset.objects.get(symbol="TSLA") Bar.objects.filter(asset=tsla).delete() with open("assets/tests/sample_tsla_bars.json") as f: bars = json.load(f) objs = [ Bar( asset=tsla, t=bar["t"], o=bar["o"], h=bar["h"], l=bar["l"], c=bar["c"], v=bar["v"], ) for bar in bars if int(bar["t"]) <= max_epoch ] Bar.objects.bulk_create(objs, batch_size=1000, ignore_conflicts=True) @patch("core.tasks.TradeApiRest") @patch("core.tasks.moving_average_strategy") def test_run_strategies_for_user( self, mock_moving_average_strategy, mock_trade_api ): """Moving average strategies that are active are run for users.""" mock_trade_api.return_value.is_market_open.return_value = True run_strategies_for_users() self.assertEqual(mock_moving_average_strategy.call_count, 2) mock_moving_average_strategy.assert_any_call(self.user_1) mock_moving_average_strategy.assert_any_call(self.user_2) @patch("core.tasks.logger") @patch("core.tasks.fetch_bar_data_for_strategy") @patch("core.tasks.update_bars") @patch("core.tasks.TradeApiRest") def test_moving_average_strategy_not_enough_data( self, mock_trade_api, mock_update_bars, mock_fetch_bar_data_for_strategy, mock_logger, ): """Active strategy does not create an order if there is not enough bar data.""" mock_fetch_bar_data_for_strategy.return_value = None moving_average_strategy(self.user_1) mock_logger.info.assert_called_once_with( f"Insufficient bar data for asset: {self.strategy_1.asset.id}" ) @patch("core.tasks.time.mktime") @patch("core.tasks.update_bars") def test_fetch_bar_data_for_strategy(self, mock_update_bars, mock_mktime): """Bar data is fetched when required.""" self.refresh_tsla_bars() with self.subTest(msg="bar data is not required."): # Enough bar data exists in sample data at this time mock_mktime.return_value = "1614229200" fetch_bar_data_for_strategy(self.strategy_1) mock_update_bars.assert_not_called() mock_mktime.reset_mock() mock_update_bars.reset_mock() with self.subTest(msg="bar data is required."): # Not enough bar data exists in sample data at this time mock_mktime.return_value = "1648443600" fetch_bar_data_for_strategy(self.strategy_1) mock_update_bars.assert_called_once_with(["TSLA"], "15Min", 131) @patch("core.tasks.TradeApiRest") @patch("core.tasks.time.mktime") @patch("core.tasks.update_bars") @patch("core.tasks.fetch_bar_data_for_strategy") def test_moving_average_strategy( self, mock_fetch_bar_data_for_strategy, mock_update_bars, mock_mktime, mock_trade_api, ): """Active strategy creates an order if required.""" account_info = AlpacaAccount( { "account_blocked": False, "account_number": "GS78FJEUMA4P", "buying_power": "200000", "cash": "100000", "created_at": "2020-10-31T23:40:50.376107Z", "currency": "USD", "daytrade_count": 0, "daytrading_buying_power": "0", "equity": "100000", "id": str(uuid.uuid4()), "initial_margin": "0", "last_equity": "100000", "last_maintenance_margin": "0", "long_market_value": "0", "maintenance_margin": "0", "multiplier": "2", "non_marginable_buying_power": "100000", "pattern_day_trader": True, "pending_transfer_in": "0", "portfolio_value": "100000", "regt_buying_power": "200000", "short_market_value": "0", "shorting_enabled": True, "sma": "0", "status": "ACTIVE", "trade_suspended_by_user": False, "trading_blocked": False, "transfers_blocked": False, } ) position = AlpacaPosition( { "asset_id": "0", "symbol": "TSLA", "exchange": "0", "asset_class": "0", "avg_entry_price": "0", "qty": "10", "side": "long", "market_value": "2000.0", "cost_basis": "0", "unrealized_pl": "0", "unrealized_plpc": "0", "unrealized_intraday_pl": "0", "unrealized_intraday_plpc": "0", "current_price": "0", "lastday_price": "0", "change_today": "0", } ) order = AlpacaOrder( { "id": str(uuid.uuid4()), "client_order_id": str(uuid.uuid4()), "created_at": "2021-03-16T18:38:01.942282Z", "updated_at": "2021-03-16T18:38:01.942282Z", "submitted_at": "2021-03-16T18:38:01.937734Z", "filled_at": None, "expired_at": None, "canceled_at": None, "failed_at": None, "replaced_at": None, "replaced_by": None, "replaces": None, "asset_id": self.tsla.pk, "symbol": "TSLA", "asset_class": "us_equity", "notional": "500", "qty": None, "filled_qty": "0", "filled_avg_price": None, "order_class": "", "order_type": "market", "type": "market", "side": "buy", "time_in_force": "day", "limit_price": None, "stop_price": None, "status": "accepted", "extended_hours": False, "trail_percent": None, "trail_price": None, "hwm": None, } ) mock_fetch_bar_data_for_strategy.return_value = 130 mock_trade_api.return_value.is_market_open.return_value = True mock_trade_api.return_value.account_info.return_value = account_info mock_trade_api.return_value.list_position_by_symbol.return_value = position mock_trade_api.return_value.submit_order.return_value = order seven_days_epoch = 104 * 86400 with self.subTest(msg="buy order is placed."): max_epoch_time = 1630818000 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_trade_api.return_value.submit_order.assert_called_once_with( symbol=self.strategy_1.asset.symbol, notional=float(self.strategy_1.trade_value), side=Order.BUY, type=Order.MARKET, time_in_force=Order.GTC, ) mock_mktime.reset_mock() mock_trade_api.reset_mock() Order.objects.all().delete() with self.subTest(msg="sell order is placed."): max_epoch_time = 1618894800 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_trade_api.return_value.submit_order.assert_called_once_with( symbol=self.strategy_1.asset.symbol, notional=float(self.strategy_1.trade_value), side=Order.SELL, type=Order.MARKET, time_in_force=Order.GTC, ) mock_mktime.reset_mock() mock_trade_api.reset_mock() Order.objects.all().delete() with self.subTest(msg="no order is placed."): max_epoch_time = 1633150800 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_trade_api.return_value.submit_order.assert_not_called() @patch("core.tasks.logger") @patch("core.tasks.TradeApiRest") @patch("core.tasks.time.mktime") @patch("core.tasks.update_bars") @patch("core.tasks.fetch_bar_data_for_strategy") def test_moving_average_strategy_fails( self, mock_fetch_bar_data_for_strategy, mock_update_bars, mock_mktime, mock_trade_api, mock_logger, ): """If trade view api fails to submit an order, an order object is not created.""" account_info = AlpacaAccount( { "account_blocked": False, "account_number": "GS78FJEUMA4P", "buying_power": "200000", "cash": "100000", "created_at": "2020-10-31T23:40:50.376107Z", "currency": "USD", "daytrade_count": 0, "daytrading_buying_power": "0", "equity": "100000", "id": str(uuid.uuid4()), "initial_margin": "0", "last_equity": "100000", "last_maintenance_margin": "0", "long_market_value": "0", "maintenance_margin": "0", "multiplier": "2", "non_marginable_buying_power": "100000", "pattern_day_trader": True, "pending_transfer_in": "0", "portfolio_value": "100000", "regt_buying_power": "200000", "short_market_value": "0", "shorting_enabled": True, "sma": "0", "status": "ACTIVE", "trade_suspended_by_user": False, "trading_blocked": False, "transfers_blocked": False, } ) position = AlpacaPosition( { "asset_id": "0", "symbol": "TSLA", "exchange": "0", "asset_class": "0", "avg_entry_price": "0", "qty": "10", "side": "long", "market_value": "2000.0", "cost_basis": "0", "unrealized_pl": "0", "unrealized_plpc": "0", "unrealized_intraday_pl": "0", "unrealized_intraday_plpc": "0", "current_price": "0", "lastday_price": "0", "change_today": "0", } ) order = AlpacaOrder( { "id": str(uuid.uuid4()), "client_order_id": str(uuid.uuid4()), "created_at": "2021-03-16T18:38:01.942282Z", "updated_at": "2021-03-16T18:38:01.942282Z", "submitted_at": "2021-03-16T18:38:01.937734Z", "filled_at": None, "expired_at": None, "canceled_at": None, "failed_at": None, "replaced_at": None, "replaced_by": None, "replaces": None, "asset_id": self.tsla.pk, "symbol": "TSLA", "asset_class": "us_equity", "notional": "500", "qty": None, "filled_qty": "0", "filled_avg_price": None, "order_class": "", "order_type": "market", "type": "market", "side": "buy", "time_in_force": "day", "limit_price": None, "stop_price": None, "status": "accepted", "extended_hours": False, "trail_percent": None, "trail_price": None, "hwm": None, } ) mock_fetch_bar_data_for_strategy.return_value = 130 mock_trade_api.return_value.is_market_open.return_value = True mock_trade_api.return_value.account_info.return_value = account_info mock_trade_api.return_value.list_position_by_symbol.return_value = position mock_trade_api.return_value.submit_order.side_effect = ValidationError( "Mock error" ) seven_days_epoch = 104 * 86400 max_epoch_time = 1630818000 base_epoch = max_epoch_time - seven_days_epoch mock_mktime.return_value = base_epoch self.refresh_tsla_bars(max_epoch=max_epoch_time) moving_average_strategy(self.user_1) mock_logger.warning.assert_called_once() self.assertEqual(Order.objects.count(), 0)
0.574037
0.235614
from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html import pandas as pd from textwrap import dedent import dash_table from tutorial import styles, tools examples = { example: tools.load_example('tutorial/examples/table/{}'.format(example)) for example in [ 'callbacks_paging.py', 'callbacks_paging_page_count.py', 'callbacks_paging_and_sorting.py', 'callbacks_paging_multicolumn_sorting.py', 'callbacks_filtering.py', 'callbacks_sorting_filtering.py', 'callbacks_filtering_graph.py' ] } layout = html.Div([ dcc.Markdown('# DataTable - Python Callbacks'), dcc.Markdown(dedent( ''' ### Backend Paging With backend paging, we can load data into our table progressively. Instead of loading all of the data at once, we'll only load data as the user requests it when they click on the "previous" and "next" buttons. Since backend paging integrates directly with your Dash callbacks, you can load your data from any Python data source. ''')), dcc.Markdown( examples['callbacks_paging.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging.py'][1], className='example-container' ), html.Hr(), dcc.Markdown(dedent(''' With backend paging, we can have front-end sorting and filtering but it will only filter and sort the data that exists on the page. This should be avoided. Your users will expect that sorting and filtering is happening on the entire dataset and, with large pages, might not be aware that this is only occuring on the current page. Instead, we recommend implmenting sorting and filtering on the backend as well. That is, on the entire underlying dataset. **Note for returning users - changed property names:** - Sorted fields are now in `sort_by`, not `sorting_settings` - The filter string is now in `filter`, not `filtering_settings` ''')), dcc.Markdown('### Backend Paging and Page Numbers'), dcc.Markdown(dedent(''' The pagination menu includes the number of the current page and the total page count. With native (i.e., frontend) pagination, the page count is calculated by the table. However, when using backend pagination, the data are served to the table through a callback; this makes it impossible for the table to calculate the total page count. As a consequence, the last-page navigation button is disabled (although all of the other buttons, as well as the direct navigation, are still functional). To get around this, supply a value to the `page_count` parameter of the table. This will serve as the "last page", which will re-enable the last-page navigation button and be displayed in the pagination menu. *Please note that you will not be able to use the pagination menu to navigate to a page that comes after the last page specified by `page_count`!* ''')), dcc.Markdown( examples['callbacks_paging_page_count.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging_page_count.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Sorting'), dcc.Markdown( examples['callbacks_paging_and_sorting.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging_and_sorting.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Multi Column Sorting'), dcc.Markdown(dedent(''' Multi-column sort allows you to sort by multiple columns. This is useful when you have categorical columns with repeated values and you're interested in seeing the sorted values for each category. In this example, try sorting by continent and then any other column. ''')), dcc.Markdown( examples['callbacks_paging_multicolumn_sorting.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging_multicolumn_sorting.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Filtering'), dcc.Markdown(dedent(''' DataTable's front-end filtering has its own filtering expression language. Currently, backend filtering must parse the same filtering language. If you write an expression that is not "valid" under the filtering language, then it will not be passed to the backend. This limitation will be removed in the future to allow you to write your own expression query language. In this example, we've written a Pandas backend for the filtering language. It supports `eq`, `<`, and `>`. For example, try: - Enter `eq Asia` in the "continent" column - Enter `> 5000` in the "gdpPercap" column - Enter `< 80` in the `lifeExp` column > Note that unlike the front-end filtering, our backend filtering > expression language doesn't require or support `num()` or wrapping > items in double quotes (`"`). > We will improve this syntax in the future, > follow [dash-table#169](https://github.com/plotly/dash-table/issues/169) > for more. ''')), dcc.Markdown( examples['callbacks_filtering.py'][0], style=styles.code_container ), html.Div( examples['callbacks_filtering.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Filtering and Multi-Column Sorting'), dcc.Markdown( examples['callbacks_sorting_filtering.py'][0], style=styles.code_container ), html.Div( examples['callbacks_sorting_filtering.py'][1], className='example-container' ), dcc.Markdown('### Connecting Backend Paging with a Graph'), dcc.Markdown(dedent(''' This final example ties it all together: the graph component displays the current page of the `data`. ''')), dcc.Markdown( examples['callbacks_filtering_graph.py'][0], style=styles.code_container ), html.Div( examples['callbacks_filtering_graph.py'][1], className='example-container' ), ])
tutorial/table/table_callbacks_chapter.py
from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html import pandas as pd from textwrap import dedent import dash_table from tutorial import styles, tools examples = { example: tools.load_example('tutorial/examples/table/{}'.format(example)) for example in [ 'callbacks_paging.py', 'callbacks_paging_page_count.py', 'callbacks_paging_and_sorting.py', 'callbacks_paging_multicolumn_sorting.py', 'callbacks_filtering.py', 'callbacks_sorting_filtering.py', 'callbacks_filtering_graph.py' ] } layout = html.Div([ dcc.Markdown('# DataTable - Python Callbacks'), dcc.Markdown(dedent( ''' ### Backend Paging With backend paging, we can load data into our table progressively. Instead of loading all of the data at once, we'll only load data as the user requests it when they click on the "previous" and "next" buttons. Since backend paging integrates directly with your Dash callbacks, you can load your data from any Python data source. ''')), dcc.Markdown( examples['callbacks_paging.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging.py'][1], className='example-container' ), html.Hr(), dcc.Markdown(dedent(''' With backend paging, we can have front-end sorting and filtering but it will only filter and sort the data that exists on the page. This should be avoided. Your users will expect that sorting and filtering is happening on the entire dataset and, with large pages, might not be aware that this is only occuring on the current page. Instead, we recommend implmenting sorting and filtering on the backend as well. That is, on the entire underlying dataset. **Note for returning users - changed property names:** - Sorted fields are now in `sort_by`, not `sorting_settings` - The filter string is now in `filter`, not `filtering_settings` ''')), dcc.Markdown('### Backend Paging and Page Numbers'), dcc.Markdown(dedent(''' The pagination menu includes the number of the current page and the total page count. With native (i.e., frontend) pagination, the page count is calculated by the table. However, when using backend pagination, the data are served to the table through a callback; this makes it impossible for the table to calculate the total page count. As a consequence, the last-page navigation button is disabled (although all of the other buttons, as well as the direct navigation, are still functional). To get around this, supply a value to the `page_count` parameter of the table. This will serve as the "last page", which will re-enable the last-page navigation button and be displayed in the pagination menu. *Please note that you will not be able to use the pagination menu to navigate to a page that comes after the last page specified by `page_count`!* ''')), dcc.Markdown( examples['callbacks_paging_page_count.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging_page_count.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Sorting'), dcc.Markdown( examples['callbacks_paging_and_sorting.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging_and_sorting.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Multi Column Sorting'), dcc.Markdown(dedent(''' Multi-column sort allows you to sort by multiple columns. This is useful when you have categorical columns with repeated values and you're interested in seeing the sorted values for each category. In this example, try sorting by continent and then any other column. ''')), dcc.Markdown( examples['callbacks_paging_multicolumn_sorting.py'][0], style=styles.code_container ), html.Div( examples['callbacks_paging_multicolumn_sorting.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Filtering'), dcc.Markdown(dedent(''' DataTable's front-end filtering has its own filtering expression language. Currently, backend filtering must parse the same filtering language. If you write an expression that is not "valid" under the filtering language, then it will not be passed to the backend. This limitation will be removed in the future to allow you to write your own expression query language. In this example, we've written a Pandas backend for the filtering language. It supports `eq`, `<`, and `>`. For example, try: - Enter `eq Asia` in the "continent" column - Enter `> 5000` in the "gdpPercap" column - Enter `< 80` in the `lifeExp` column > Note that unlike the front-end filtering, our backend filtering > expression language doesn't require or support `num()` or wrapping > items in double quotes (`"`). > We will improve this syntax in the future, > follow [dash-table#169](https://github.com/plotly/dash-table/issues/169) > for more. ''')), dcc.Markdown( examples['callbacks_filtering.py'][0], style=styles.code_container ), html.Div( examples['callbacks_filtering.py'][1], className='example-container' ), dcc.Markdown('### Backend Paging with Filtering and Multi-Column Sorting'), dcc.Markdown( examples['callbacks_sorting_filtering.py'][0], style=styles.code_container ), html.Div( examples['callbacks_sorting_filtering.py'][1], className='example-container' ), dcc.Markdown('### Connecting Backend Paging with a Graph'), dcc.Markdown(dedent(''' This final example ties it all together: the graph component displays the current page of the `data`. ''')), dcc.Markdown( examples['callbacks_filtering_graph.py'][0], style=styles.code_container ), html.Div( examples['callbacks_filtering_graph.py'][1], className='example-container' ), ])
0.76769
0.478529
from django import forms from .models import OwnerProfileInfo, RenterProfileInfo, User, Boat, RentContract, BoatCrew, RepairContract, Crew from django.utils import timezone class UserForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput()) class Meta: model = User fields = ['username', 'email', 'password', 'first_name', 'last_name'] class OwnerProfileInfoForm(forms.ModelForm): class Meta(): model = OwnerProfileInfo fields = ('date_of_birth', 'phone_number', 'avatar') class RenterProfileInfoForm(forms.ModelForm): class Meta(): model = RenterProfileInfo fields = ('date_of_birth', 'phone_number', 'avatar') class BoatForm(forms.ModelForm): #owner_id = forms.IntegerField(required=False, widget=forms.HiddenInput()) type = forms.ChoiceField(widget=forms.Select(), choices=([('Go-Fast Boat', 'Go-Fast Boat'), ('Luxury Yacht', 'Luxury Yacht'), ('Cabin cruiser', 'Cabin cruiser'), ('Yacht', 'Yacht'), ])) date_of_registration = forms.DateField(widget=forms.HiddenInput(), required=False, initial=timezone.localtime(timezone.now()).date()) class Meta: model = Boat fields = ['name', 'type', 'licence_plate', 'price', 'date_of_registration', 'boat_photo', 'bay_id', 'owner_id'] class RentForm(forms.ModelForm): #renter = forms.IntegerField(required=False, widget=forms.HiddenInput()) #boat = forms.IntegerField(required=False, widget=forms.HiddenInput()) #total_price = forms.IntegerField(required=False, widget=forms.HiddenInput()) class Meta: model = RentContract fields = ['date_begin', 'date_end', 'renter', 'boat', 'total_price'] class CrewContractForm(forms.ModelForm): post = forms.ChoiceField(widget=forms.Select(), choices=([('Sailor', 'Sailor'), ('Lieutenant', 'Lieutenant'), ('Midshipman', 'Midshipman'), ('Navigator', 'Navigator'), ('Captain', 'Captain'), ])) date_take_post = forms.DateField(widget=forms.HiddenInput(), required=False, initial=timezone.localtime(timezone.now()).date()) class Meta: model = BoatCrew fields = ['crew', 'boat', 'post', 'salary', 'date_take_post'] def __init__(self, *args, **kwargs): super(CrewContractForm, self).__init__(*args, **kwargs) self.fields["crew"].queryset = Crew.objects.filter(recruited=False) class RepairContractForm(forms.ModelForm): date_end = forms.DateField(widget=forms.HiddenInput(), required=False) class Meta: model = RepairContract fields = ['elling', 'boat', 'date_begin', 'date_end', 'repair_price', 'repair_cause'] def __init__(self, u_id, *args, **kwargs): super(RepairContractForm, self).__init__(*args, **kwargs) self.fields["boat"].queryset = Boat.objects.filter(owner_id=u_id)
boats/forms.py
from django import forms from .models import OwnerProfileInfo, RenterProfileInfo, User, Boat, RentContract, BoatCrew, RepairContract, Crew from django.utils import timezone class UserForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput()) class Meta: model = User fields = ['username', 'email', 'password', 'first_name', 'last_name'] class OwnerProfileInfoForm(forms.ModelForm): class Meta(): model = OwnerProfileInfo fields = ('date_of_birth', 'phone_number', 'avatar') class RenterProfileInfoForm(forms.ModelForm): class Meta(): model = RenterProfileInfo fields = ('date_of_birth', 'phone_number', 'avatar') class BoatForm(forms.ModelForm): #owner_id = forms.IntegerField(required=False, widget=forms.HiddenInput()) type = forms.ChoiceField(widget=forms.Select(), choices=([('Go-Fast Boat', 'Go-Fast Boat'), ('Luxury Yacht', 'Luxury Yacht'), ('Cabin cruiser', 'Cabin cruiser'), ('Yacht', 'Yacht'), ])) date_of_registration = forms.DateField(widget=forms.HiddenInput(), required=False, initial=timezone.localtime(timezone.now()).date()) class Meta: model = Boat fields = ['name', 'type', 'licence_plate', 'price', 'date_of_registration', 'boat_photo', 'bay_id', 'owner_id'] class RentForm(forms.ModelForm): #renter = forms.IntegerField(required=False, widget=forms.HiddenInput()) #boat = forms.IntegerField(required=False, widget=forms.HiddenInput()) #total_price = forms.IntegerField(required=False, widget=forms.HiddenInput()) class Meta: model = RentContract fields = ['date_begin', 'date_end', 'renter', 'boat', 'total_price'] class CrewContractForm(forms.ModelForm): post = forms.ChoiceField(widget=forms.Select(), choices=([('Sailor', 'Sailor'), ('Lieutenant', 'Lieutenant'), ('Midshipman', 'Midshipman'), ('Navigator', 'Navigator'), ('Captain', 'Captain'), ])) date_take_post = forms.DateField(widget=forms.HiddenInput(), required=False, initial=timezone.localtime(timezone.now()).date()) class Meta: model = BoatCrew fields = ['crew', 'boat', 'post', 'salary', 'date_take_post'] def __init__(self, *args, **kwargs): super(CrewContractForm, self).__init__(*args, **kwargs) self.fields["crew"].queryset = Crew.objects.filter(recruited=False) class RepairContractForm(forms.ModelForm): date_end = forms.DateField(widget=forms.HiddenInput(), required=False) class Meta: model = RepairContract fields = ['elling', 'boat', 'date_begin', 'date_end', 'repair_price', 'repair_cause'] def __init__(self, u_id, *args, **kwargs): super(RepairContractForm, self).__init__(*args, **kwargs) self.fields["boat"].queryset = Boat.objects.filter(owner_id=u_id)
0.563138
0.084041
# Common Imports import rospy import roslib from harmoni_common_lib.constants import State from harmoni_common_lib.service_server import HarmoniServiceServer from harmoni_common_lib.service_manager import HarmoniServiceManager import harmoni_common_lib.helper_functions as hf # Specific Imports from harmoni_common_lib.constants import ActuatorNameSpace from std_msgs.msg import String import boto3 import json import ast class WebService(HarmoniServiceManager): """ Web service """ def __init__(self, name, param): """ Initialization of variables and web parameters """ super().__init__(name) self.name = name self.user_id = param["user_id"] self.timer_interval = param["timer_interval"] self.service_id = hf.get_child_id(self.name) self.is_request = True """Setup publisher and subscriber """ self.web_sub = rospy.Subscriber( ActuatorNameSpace.web.value + self.service_id + "/listen_click_event", String, self._event_click_callback, queue_size=1, ) print(ActuatorNameSpace.web.value + self.service_id + "/set_view") self.web_pub = rospy.Publisher( ActuatorNameSpace.web.value + self.service_id + "/set_view", String, queue_size=1, ) """ Setup the web request """ self.setup_web() """Setup the web service as server """ self.state = State.INIT return def setup_web(self): rospy.loginfo("Setting up the %s" % self.name) rospy.loginfo("Checking that web is connected to ROS websocket") rospy.wait_for_service( ActuatorNameSpace.web.value + self.service_id + "/is_connected" ) rospy.loginfo("Done, web is connected to ROS websocket") return def do(self, data): """ Do the display view""" rospy.loginfo("Start the %s do" % self.name) self.state = State.REQUEST self.actuation_completed = False data_array = self._get_web_data(data) try: rospy.sleep(1) for data in data_array: self.send_request(data) rospy.sleep(0.2) self.state = State.SUCCESS self.actuation_completed = True except Exception: self.state = State.FAILED self.actuation_completed = True return def _get_web_data(self, data): data = ast.literal_eval(data) web_array = [] if not isinstance(data, list): if "behavior_data" in data.keys(): behavior_data = ast.literal_eval(data["behavior_data"]) for b in behavior_data: if "type" in b.keys(): if b["type"] == "web": container_id = b["args"][0] set_view = "" if len(b["args"]) > 1: set_view = b["args"][1] web_array.append( str( { "component_id": container_id, "set_content": set_view, "start": b["start"], } ) ) else: web_array.append(str(data)) else: for item in data: web_array.append(str(item)) return web_array def send_request(self, display_view): """ Send the request to the web page""" rospy.loginfo("Sending request to webpage") print(display_view) self.web_pub.publish(display_view) return def _event_click_callback(self, event): """Callback for subscription to the web page""" rospy.loginfo("Received an event from the webpage") return def main(): service_name = ActuatorNameSpace.web.name name = rospy.get_param("/name_" + service_name + "/") test = rospy.get_param("/test_" + service_name + "/") test_input = rospy.get_param("/test_input_" + service_name + "/") test_id = rospy.get_param("/test_id_" + service_name + "/") try: rospy.init_node(service_name) param = rospy.get_param(name + "/" + test_id + "_param/") if not hf.check_if_id_exist(service_name, test_id): rospy.logerr("ERROR: Remember to add your configuration ID also in the harmoni_core config file") return service = hf.set_service_server(service_name, test_id) s = WebService(service, param) service_server = HarmoniServiceServer(name=service, service_manager=s) if test: rospy.loginfo("Testing the %s" % (service)) rospy.sleep(2) s.do(test_input) else: service_server.update_feedback() rospy.spin() except rospy.ROSInterruptException: pass if __name__ == "__main__": main()
harmoni_actuators/harmoni_web/scripts/harmoni_web/web_service.py
# Common Imports import rospy import roslib from harmoni_common_lib.constants import State from harmoni_common_lib.service_server import HarmoniServiceServer from harmoni_common_lib.service_manager import HarmoniServiceManager import harmoni_common_lib.helper_functions as hf # Specific Imports from harmoni_common_lib.constants import ActuatorNameSpace from std_msgs.msg import String import boto3 import json import ast class WebService(HarmoniServiceManager): """ Web service """ def __init__(self, name, param): """ Initialization of variables and web parameters """ super().__init__(name) self.name = name self.user_id = param["user_id"] self.timer_interval = param["timer_interval"] self.service_id = hf.get_child_id(self.name) self.is_request = True """Setup publisher and subscriber """ self.web_sub = rospy.Subscriber( ActuatorNameSpace.web.value + self.service_id + "/listen_click_event", String, self._event_click_callback, queue_size=1, ) print(ActuatorNameSpace.web.value + self.service_id + "/set_view") self.web_pub = rospy.Publisher( ActuatorNameSpace.web.value + self.service_id + "/set_view", String, queue_size=1, ) """ Setup the web request """ self.setup_web() """Setup the web service as server """ self.state = State.INIT return def setup_web(self): rospy.loginfo("Setting up the %s" % self.name) rospy.loginfo("Checking that web is connected to ROS websocket") rospy.wait_for_service( ActuatorNameSpace.web.value + self.service_id + "/is_connected" ) rospy.loginfo("Done, web is connected to ROS websocket") return def do(self, data): """ Do the display view""" rospy.loginfo("Start the %s do" % self.name) self.state = State.REQUEST self.actuation_completed = False data_array = self._get_web_data(data) try: rospy.sleep(1) for data in data_array: self.send_request(data) rospy.sleep(0.2) self.state = State.SUCCESS self.actuation_completed = True except Exception: self.state = State.FAILED self.actuation_completed = True return def _get_web_data(self, data): data = ast.literal_eval(data) web_array = [] if not isinstance(data, list): if "behavior_data" in data.keys(): behavior_data = ast.literal_eval(data["behavior_data"]) for b in behavior_data: if "type" in b.keys(): if b["type"] == "web": container_id = b["args"][0] set_view = "" if len(b["args"]) > 1: set_view = b["args"][1] web_array.append( str( { "component_id": container_id, "set_content": set_view, "start": b["start"], } ) ) else: web_array.append(str(data)) else: for item in data: web_array.append(str(item)) return web_array def send_request(self, display_view): """ Send the request to the web page""" rospy.loginfo("Sending request to webpage") print(display_view) self.web_pub.publish(display_view) return def _event_click_callback(self, event): """Callback for subscription to the web page""" rospy.loginfo("Received an event from the webpage") return def main(): service_name = ActuatorNameSpace.web.name name = rospy.get_param("/name_" + service_name + "/") test = rospy.get_param("/test_" + service_name + "/") test_input = rospy.get_param("/test_input_" + service_name + "/") test_id = rospy.get_param("/test_id_" + service_name + "/") try: rospy.init_node(service_name) param = rospy.get_param(name + "/" + test_id + "_param/") if not hf.check_if_id_exist(service_name, test_id): rospy.logerr("ERROR: Remember to add your configuration ID also in the harmoni_core config file") return service = hf.set_service_server(service_name, test_id) s = WebService(service, param) service_server = HarmoniServiceServer(name=service, service_manager=s) if test: rospy.loginfo("Testing the %s" % (service)) rospy.sleep(2) s.do(test_input) else: service_server.update_feedback() rospy.spin() except rospy.ROSInterruptException: pass if __name__ == "__main__": main()
0.474388
0.103703
import tensorflow as tf from tensorflow import keras from tensorflow.python.keras.models import Model from tensorflow.python.keras import layers from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.optimizers import Adam, SGD, RMSprop from tensorflow.python.keras.layers import concatenate, Input, Conv2DTranspose, Activation, Reshape, Dropout, Flatten, Conv2D, MaxPooling2D, Dense, BatchNormalization, GlobalAveragePooling2D def conv2d_block(input_tensor, n_filters, kernel_size = 3, batchnorm = True): # first layer x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\ kernel_initializer = 'he_normal', padding = 'same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) # second layer x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\ kernel_initializer = 'he_normal', padding = 'same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(input_data, n_filters = 16, dropout = 0.1, batchnorm = True): # Contracting Path c1 = conv2d_block(input_data, n_filters * 1, kernel_size = 3, batchnorm = batchnorm) p1 = MaxPooling2D((2, 2))(c1) p1 = Dropout(dropout)(p1) c2 = conv2d_block(p1, n_filters * 2, kernel_size = 3, batchnorm = batchnorm) p2 = MaxPooling2D((2, 2))(c2) p2 = Dropout(dropout)(p2) c3 = conv2d_block(p2, n_filters * 4, kernel_size = 3, batchnorm = batchnorm) p3 = MaxPooling2D((2, 2))(c3) p3 = Dropout(dropout)(p3) c4 = conv2d_block(p3, n_filters * 8, kernel_size = 3, batchnorm = batchnorm) p4 = MaxPooling2D((2, 2))(c4) p4 = Dropout(dropout)(p4) c5 = conv2d_block(p4, n_filters = n_filters * 16, kernel_size = 3, batchnorm = batchnorm) # Expansive Path u6 = Conv2DTranspose(n_filters * 8, (3, 3), strides = (2, 2), padding = 'same')(c5) u6 = concatenate([u6, c4]) u6 = Dropout(dropout)(u6) c6 = conv2d_block(u6, n_filters * 8, kernel_size = 3, batchnorm = batchnorm) u7 = Conv2DTranspose(n_filters * 4, (3, 3), strides = (2, 2), padding = 'same')(c6) u7 = concatenate([u7, c3]) u7 = Dropout(dropout)(u7) c7 = conv2d_block(u7, n_filters * 4, kernel_size = 3, batchnorm = batchnorm) u8 = Conv2DTranspose(n_filters * 2, (3, 3), strides = (2, 2), padding = 'same')(c7) u8 = concatenate([u8, c2]) u8 = Dropout(dropout)(u8) c8 = conv2d_block(u8, n_filters * 2, kernel_size = 3, batchnorm = batchnorm) u9 = Conv2DTranspose(n_filters * 1, (3, 3), strides = (2, 2), padding = 'same')(c8) u9 = concatenate([u9, c1]) u9 = Dropout(dropout)(u9) c9 = conv2d_block(u9, n_filters * 1, kernel_size = 3, batchnorm = batchnorm) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = Model(inputs=[input_data], outputs=[outputs]) return model
unet.py
import tensorflow as tf from tensorflow import keras from tensorflow.python.keras.models import Model from tensorflow.python.keras import layers from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.optimizers import Adam, SGD, RMSprop from tensorflow.python.keras.layers import concatenate, Input, Conv2DTranspose, Activation, Reshape, Dropout, Flatten, Conv2D, MaxPooling2D, Dense, BatchNormalization, GlobalAveragePooling2D def conv2d_block(input_tensor, n_filters, kernel_size = 3, batchnorm = True): # first layer x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\ kernel_initializer = 'he_normal', padding = 'same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) # second layer x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\ kernel_initializer = 'he_normal', padding = 'same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(input_data, n_filters = 16, dropout = 0.1, batchnorm = True): # Contracting Path c1 = conv2d_block(input_data, n_filters * 1, kernel_size = 3, batchnorm = batchnorm) p1 = MaxPooling2D((2, 2))(c1) p1 = Dropout(dropout)(p1) c2 = conv2d_block(p1, n_filters * 2, kernel_size = 3, batchnorm = batchnorm) p2 = MaxPooling2D((2, 2))(c2) p2 = Dropout(dropout)(p2) c3 = conv2d_block(p2, n_filters * 4, kernel_size = 3, batchnorm = batchnorm) p3 = MaxPooling2D((2, 2))(c3) p3 = Dropout(dropout)(p3) c4 = conv2d_block(p3, n_filters * 8, kernel_size = 3, batchnorm = batchnorm) p4 = MaxPooling2D((2, 2))(c4) p4 = Dropout(dropout)(p4) c5 = conv2d_block(p4, n_filters = n_filters * 16, kernel_size = 3, batchnorm = batchnorm) # Expansive Path u6 = Conv2DTranspose(n_filters * 8, (3, 3), strides = (2, 2), padding = 'same')(c5) u6 = concatenate([u6, c4]) u6 = Dropout(dropout)(u6) c6 = conv2d_block(u6, n_filters * 8, kernel_size = 3, batchnorm = batchnorm) u7 = Conv2DTranspose(n_filters * 4, (3, 3), strides = (2, 2), padding = 'same')(c6) u7 = concatenate([u7, c3]) u7 = Dropout(dropout)(u7) c7 = conv2d_block(u7, n_filters * 4, kernel_size = 3, batchnorm = batchnorm) u8 = Conv2DTranspose(n_filters * 2, (3, 3), strides = (2, 2), padding = 'same')(c7) u8 = concatenate([u8, c2]) u8 = Dropout(dropout)(u8) c8 = conv2d_block(u8, n_filters * 2, kernel_size = 3, batchnorm = batchnorm) u9 = Conv2DTranspose(n_filters * 1, (3, 3), strides = (2, 2), padding = 'same')(c8) u9 = concatenate([u9, c1]) u9 = Dropout(dropout)(u9) c9 = conv2d_block(u9, n_filters * 1, kernel_size = 3, batchnorm = batchnorm) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = Model(inputs=[input_data], outputs=[outputs]) return model
0.896733
0.569583
import arcanelaunch from arcanelaunch import setenv,getenv import sys import os import copy import shutil import optparse import re link_dirs = "@ARCANE_LINK_DIRECTORIES@" #TODO: traiter correctement les espaces dans les chemins link_dirs.replace(" ",os.pathsep) #print "link_dirs=",link_dirs path_bin = "@ARCANE_INSTALL_BIN@" path_lib = "@ARCANE_INSTALL_LIB@" path_shr = "@ARCANE_INSTALL_SHR@" stdenv_exe = os.path.join(path_lib,"arcane_axl") + getenv("STDENV_PURE","") setenv("STDENV_PARALLEL","FALSE") setenv("STDENV_APPLICATION_NAME","axl2cc") setenv("STDENV_QUIET","TRUE") setenv("STDENV_TRACE","off") nb_arg = len(sys.argv) pargs = [] do_copy = False if nb_arg==6 and sys.argv[5]==".xml": # Vieux format. print "WARNING: this format is deprecated. Use axl" path = sys.argv[2] component_name = sys.argv[3] name = sys.argv[4] extension = sys.argv[5] pargs = copy.copy(sys.argv) full_name = os.path.join(path,name) + extension else: parser = optparse.OptionParser(usage="%prog [-i header] [-o output_path] axlfile") #print "nb_arg",nb_arg parser.add_option("-i","--header-path",type="string",dest="header_path",help="header sub path") parser.add_option("-o","--output-path",type="string",dest="output_path",help="path to write output files") parser.add_option("-c","--copy",action="store_true",dest="do_copy",help="true if installing in share path") (options, args) = parser.parse_args() print str(options) print str(args) output_path = os.getcwd() if options.output_path: output_path = options.output_path print "OutputPath=",output_path component_name = "." if options.header_path: component_name = options.header_path if len(args)!=1: parser.error("axl file not specified") sys.exit(1) full_name = args[0] file_name = os.path.basename(full_name) file_path = os.path.dirname(full_name) if len(file_path)==0: file_path = "." file_name_no_extension_re = re.compile("(.*)\.axl").match(file_name) if file_name_no_extension_re == None: parser.error("axlfile has to have extension '.axl'") sys.exit(1) file_name_no_extension = file_name_no_extension_re.group(1) print "Infos: file_path=",file_path," name=",file_name_no_extension name = file_name_no_extension extension = ".axl" pargs.append(sys.argv[0]) pargs.append(output_path) pargs.append(file_path) pargs.append(component_name) pargs.append(file_name_no_extension) pargs.append(".axl") output_name = os.path.join(path_shr,name) if component_name != ".": output_name += "_" + component_name output_name += extension al = arcanelaunch.ArcaneLaunchExec() al.setApplicationExecutable(stdenv_exe) al.setParallelService(None) al.addToLdPath(link_dirs) r = al.process(pargs) if r == 0 and do_copy: print "Installing file input=",full_name,"output=",output_name shutil.copy(full_name,output_name) print "Return value: v=",r sys.exit(r)
cmake/build-system/csharp/axl/axl2cc.py
import arcanelaunch from arcanelaunch import setenv,getenv import sys import os import copy import shutil import optparse import re link_dirs = "@ARCANE_LINK_DIRECTORIES@" #TODO: traiter correctement les espaces dans les chemins link_dirs.replace(" ",os.pathsep) #print "link_dirs=",link_dirs path_bin = "@ARCANE_INSTALL_BIN@" path_lib = "@ARCANE_INSTALL_LIB@" path_shr = "@ARCANE_INSTALL_SHR@" stdenv_exe = os.path.join(path_lib,"arcane_axl") + getenv("STDENV_PURE","") setenv("STDENV_PARALLEL","FALSE") setenv("STDENV_APPLICATION_NAME","axl2cc") setenv("STDENV_QUIET","TRUE") setenv("STDENV_TRACE","off") nb_arg = len(sys.argv) pargs = [] do_copy = False if nb_arg==6 and sys.argv[5]==".xml": # Vieux format. print "WARNING: this format is deprecated. Use axl" path = sys.argv[2] component_name = sys.argv[3] name = sys.argv[4] extension = sys.argv[5] pargs = copy.copy(sys.argv) full_name = os.path.join(path,name) + extension else: parser = optparse.OptionParser(usage="%prog [-i header] [-o output_path] axlfile") #print "nb_arg",nb_arg parser.add_option("-i","--header-path",type="string",dest="header_path",help="header sub path") parser.add_option("-o","--output-path",type="string",dest="output_path",help="path to write output files") parser.add_option("-c","--copy",action="store_true",dest="do_copy",help="true if installing in share path") (options, args) = parser.parse_args() print str(options) print str(args) output_path = os.getcwd() if options.output_path: output_path = options.output_path print "OutputPath=",output_path component_name = "." if options.header_path: component_name = options.header_path if len(args)!=1: parser.error("axl file not specified") sys.exit(1) full_name = args[0] file_name = os.path.basename(full_name) file_path = os.path.dirname(full_name) if len(file_path)==0: file_path = "." file_name_no_extension_re = re.compile("(.*)\.axl").match(file_name) if file_name_no_extension_re == None: parser.error("axlfile has to have extension '.axl'") sys.exit(1) file_name_no_extension = file_name_no_extension_re.group(1) print "Infos: file_path=",file_path," name=",file_name_no_extension name = file_name_no_extension extension = ".axl" pargs.append(sys.argv[0]) pargs.append(output_path) pargs.append(file_path) pargs.append(component_name) pargs.append(file_name_no_extension) pargs.append(".axl") output_name = os.path.join(path_shr,name) if component_name != ".": output_name += "_" + component_name output_name += extension al = arcanelaunch.ArcaneLaunchExec() al.setApplicationExecutable(stdenv_exe) al.setParallelService(None) al.addToLdPath(link_dirs) r = al.process(pargs) if r == 0 and do_copy: print "Installing file input=",full_name,"output=",output_name shutil.copy(full_name,output_name) print "Return value: v=",r sys.exit(r)
0.052838
0.062445
import sys import time import boto3 import logging import kraken.kubernetes.client as kubecli import kraken.node_actions.common_node_functions as nodeaction from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios class AWS: def __init__(self): self.boto_client = boto3.client("ec2") self.boto_instance = boto3.resource("ec2").Instance("id") # Get the instance ID of the node def get_instance_id(self, node): return self.boto_client.describe_instances(Filters=[{"Name": "private-dns-name", "Values": [node]}])[ "Reservations" ][0]["Instances"][0]["InstanceId"] # Start the node instance def start_instances(self, instance_id): try: self.boto_client.start_instances(InstanceIds=[instance_id]) logging.info("EC2 instance: " + str(instance_id) + " started") except Exception as e: logging.error( "Failed to start node instance %s. Encountered following " "exception: %s." % (instance_id, e) ) sys.exit(1) # Stop the node instance def stop_instances(self, instance_id): try: self.boto_client.stop_instances(InstanceIds=[instance_id]) logging.info("EC2 instance: " + str(instance_id) + " stopped") except Exception as e: logging.error("Failed to stop node instance %s. Encountered following " "exception: %s." % (instance_id, e)) sys.exit(1) # Terminate the node instance def terminate_instances(self, instance_id): try: self.boto_client.terminate_instances(InstanceIds=[instance_id]) logging.info("EC2 instance: " + str(instance_id) + " terminated") except Exception as e: logging.error( "Failed to terminate node instance %s. Encountered following " "exception: %s." % (instance_id, e) ) sys.exit(1) # Reboot the node instance def reboot_instances(self, instance_id): try: self.boto_client.reboot_instances(InstanceIds=[instance_id]) logging.info("EC2 instance " + str(instance_id) + " rebooted") except Exception as e: logging.error( "Failed to reboot node instance %s. Encountered following " "exception: %s." % (instance_id, e) ) sys.exit(1) # Below functions poll EC2.Client.describe_instances() every 15 seconds # until a successful state is reached. An error is returned after 40 failed checks # Setting timeout for consistency with other cloud functions # Wait until the node instance is running def wait_until_running(self, instance_id, timeout=600): try: self.boto_instance.wait_until_running(InstanceIds=[instance_id]) return True except Exception as e: logging.error("Failed to get status waiting for %s to be running %s" % (instance_id, e)) return False # Wait until the node instance is stopped def wait_until_stopped(self, instance_id, timeout=600): try: self.boto_instance.wait_until_stopped(InstanceIds=[instance_id]) return True except Exception as e: logging.error("Failed to get status waiting for %s to be stopped %s" % (instance_id, e)) return False # Wait until the node instance is terminated def wait_until_terminated(self, instance_id, timeout=600): try: self.boto_instance.wait_until_terminated(InstanceIds=[instance_id]) return True except Exception as e: logging.error("Failed to get status waiting for %s to be terminated %s" % (instance_id, e)) return False # Creates a deny network acl and returns the id def create_default_network_acl(self, vpc_id): try: logging.info("Trying to create a default deny network acl") response = self.boto_client.create_network_acl(VpcId=vpc_id) acl_id = response["NetworkAcl"]["NetworkAclId"] logging.info("Created a network acl, id=%s" % acl_id) except Exception as e: logging.error( "Failed to create the default network_acl: %s" "Making sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (e) ) sys.exit(1) return acl_id # Replace network acl association def replace_network_acl_association(self, association_id, acl_id): try: logging.info("Replacing the network acl associated with the subnet") status = self.boto_client.replace_network_acl_association(AssociationId=association_id, NetworkAclId=acl_id) logging.info(status) new_association_id = status["NewAssociationId"] except Exception as e: logging.error("Failed to replace network acl association: %s" % (e)) sys.exit(1) return new_association_id # Describe network acl def describe_network_acls(self, vpc_id, subnet_id): try: response = self.boto_client.describe_network_acls( Filters=[ {"Name": "vpc-id", "Values": [vpc_id]}, {"Name": "association.subnet-id", "Values": [subnet_id]}, ] ) except Exception as e: logging.error( "Failed to describe network acl: %s." "Making sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (e) ) sys.exit(1) associations = response["NetworkAcls"][0]["Associations"] # grab the current network_acl in use original_acl_id = response["NetworkAcls"][0]["Associations"][0]["NetworkAclId"] return associations, original_acl_id # Delete network acl def delete_network_acl(self, acl_id): try: logging.info("Deleting the network acl: %s" % (acl_id)) self.boto_client.delete_network_acl(NetworkAclId=acl_id) except Exception as e: logging.error( "Failed to delete network_acl %s: %s" "Making sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (acl_id, e) ) sys.exit(1) class aws_node_scenarios(abstract_node_scenarios): def __init__(self): self.aws = AWS() # Node scenario to start the node def node_start_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_start_scenario injection") instance_id = self.aws.get_instance_id(node) logging.info("Starting the node %s with instance ID: %s " % (node, instance_id)) self.aws.start_instances(instance_id) self.aws.wait_until_running(instance_id) nodeaction.wait_for_ready_status(node, timeout) logging.info("Node with instance ID: %s is in running state" % (instance_id)) logging.info("node_start_scenario has been successfully injected!") except Exception as e: logging.error( "Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e) ) logging.error("node_start_scenario injection failed!") sys.exit(1) # Node scenario to stop the node def node_stop_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_stop_scenario injection") instance_id = self.aws.get_instance_id(node) logging.info("Stopping the node %s with instance ID: %s " % (node, instance_id)) self.aws.stop_instances(instance_id) self.aws.wait_until_stopped(instance_id) logging.info("Node with instance ID: %s is in stopped state" % (instance_id)) nodeaction.wait_for_unknown_status(node, timeout) except Exception as e: logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % (e)) logging.error("node_stop_scenario injection failed!") sys.exit(1) # Node scenario to terminate the node def node_termination_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_termination_scenario injection") instance_id = self.aws.get_instance_id(node) logging.info("Terminating the node %s with instance ID: %s " % (node, instance_id)) self.aws.terminate_instances(instance_id) self.aws.wait_until_terminated(instance_id) for _ in range(timeout): if node not in kubecli.list_nodes(): break time.sleep(1) if node in kubecli.list_nodes(): raise Exception("Node could not be terminated") logging.info("Node with instance ID: %s has been terminated" % (instance_id)) logging.info("node_termination_scenario has been successfuly injected!") except Exception as e: logging.error( "Failed to terminate node instance. Encountered following exception:" " %s. Test Failed" % (e) ) logging.error("node_termination_scenario injection failed!") sys.exit(1) # Node scenario to reboot the node def node_reboot_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_reboot_scenario injection" + str(node)) instance_id = self.aws.get_instance_id(node) logging.info("Rebooting the node %s with instance ID: %s " % (node, instance_id)) self.aws.reboot_instances(instance_id) nodeaction.wait_for_unknown_status(node, timeout) nodeaction.wait_for_ready_status(node, timeout) logging.info("Node with instance ID: %s has been rebooted" % (instance_id)) logging.info("node_reboot_scenario has been successfuly injected!") except Exception as e: logging.error( "Failed to reboot node instance. Encountered following exception:" " %s. Test Failed" % (e) ) logging.error("node_reboot_scenario injection failed!") sys.exit(1)
kraken/node_actions/aws_node_scenarios.py
import sys import time import boto3 import logging import kraken.kubernetes.client as kubecli import kraken.node_actions.common_node_functions as nodeaction from kraken.node_actions.abstract_node_scenarios import abstract_node_scenarios class AWS: def __init__(self): self.boto_client = boto3.client("ec2") self.boto_instance = boto3.resource("ec2").Instance("id") # Get the instance ID of the node def get_instance_id(self, node): return self.boto_client.describe_instances(Filters=[{"Name": "private-dns-name", "Values": [node]}])[ "Reservations" ][0]["Instances"][0]["InstanceId"] # Start the node instance def start_instances(self, instance_id): try: self.boto_client.start_instances(InstanceIds=[instance_id]) logging.info("EC2 instance: " + str(instance_id) + " started") except Exception as e: logging.error( "Failed to start node instance %s. Encountered following " "exception: %s." % (instance_id, e) ) sys.exit(1) # Stop the node instance def stop_instances(self, instance_id): try: self.boto_client.stop_instances(InstanceIds=[instance_id]) logging.info("EC2 instance: " + str(instance_id) + " stopped") except Exception as e: logging.error("Failed to stop node instance %s. Encountered following " "exception: %s." % (instance_id, e)) sys.exit(1) # Terminate the node instance def terminate_instances(self, instance_id): try: self.boto_client.terminate_instances(InstanceIds=[instance_id]) logging.info("EC2 instance: " + str(instance_id) + " terminated") except Exception as e: logging.error( "Failed to terminate node instance %s. Encountered following " "exception: %s." % (instance_id, e) ) sys.exit(1) # Reboot the node instance def reboot_instances(self, instance_id): try: self.boto_client.reboot_instances(InstanceIds=[instance_id]) logging.info("EC2 instance " + str(instance_id) + " rebooted") except Exception as e: logging.error( "Failed to reboot node instance %s. Encountered following " "exception: %s." % (instance_id, e) ) sys.exit(1) # Below functions poll EC2.Client.describe_instances() every 15 seconds # until a successful state is reached. An error is returned after 40 failed checks # Setting timeout for consistency with other cloud functions # Wait until the node instance is running def wait_until_running(self, instance_id, timeout=600): try: self.boto_instance.wait_until_running(InstanceIds=[instance_id]) return True except Exception as e: logging.error("Failed to get status waiting for %s to be running %s" % (instance_id, e)) return False # Wait until the node instance is stopped def wait_until_stopped(self, instance_id, timeout=600): try: self.boto_instance.wait_until_stopped(InstanceIds=[instance_id]) return True except Exception as e: logging.error("Failed to get status waiting for %s to be stopped %s" % (instance_id, e)) return False # Wait until the node instance is terminated def wait_until_terminated(self, instance_id, timeout=600): try: self.boto_instance.wait_until_terminated(InstanceIds=[instance_id]) return True except Exception as e: logging.error("Failed to get status waiting for %s to be terminated %s" % (instance_id, e)) return False # Creates a deny network acl and returns the id def create_default_network_acl(self, vpc_id): try: logging.info("Trying to create a default deny network acl") response = self.boto_client.create_network_acl(VpcId=vpc_id) acl_id = response["NetworkAcl"]["NetworkAclId"] logging.info("Created a network acl, id=%s" % acl_id) except Exception as e: logging.error( "Failed to create the default network_acl: %s" "Making sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (e) ) sys.exit(1) return acl_id # Replace network acl association def replace_network_acl_association(self, association_id, acl_id): try: logging.info("Replacing the network acl associated with the subnet") status = self.boto_client.replace_network_acl_association(AssociationId=association_id, NetworkAclId=acl_id) logging.info(status) new_association_id = status["NewAssociationId"] except Exception as e: logging.error("Failed to replace network acl association: %s" % (e)) sys.exit(1) return new_association_id # Describe network acl def describe_network_acls(self, vpc_id, subnet_id): try: response = self.boto_client.describe_network_acls( Filters=[ {"Name": "vpc-id", "Values": [vpc_id]}, {"Name": "association.subnet-id", "Values": [subnet_id]}, ] ) except Exception as e: logging.error( "Failed to describe network acl: %s." "Making sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (e) ) sys.exit(1) associations = response["NetworkAcls"][0]["Associations"] # grab the current network_acl in use original_acl_id = response["NetworkAcls"][0]["Associations"][0]["NetworkAclId"] return associations, original_acl_id # Delete network acl def delete_network_acl(self, acl_id): try: logging.info("Deleting the network acl: %s" % (acl_id)) self.boto_client.delete_network_acl(NetworkAclId=acl_id) except Exception as e: logging.error( "Failed to delete network_acl %s: %s" "Making sure you have aws cli configured on the host and set for the region of your vpc/subnet" % (acl_id, e) ) sys.exit(1) class aws_node_scenarios(abstract_node_scenarios): def __init__(self): self.aws = AWS() # Node scenario to start the node def node_start_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_start_scenario injection") instance_id = self.aws.get_instance_id(node) logging.info("Starting the node %s with instance ID: %s " % (node, instance_id)) self.aws.start_instances(instance_id) self.aws.wait_until_running(instance_id) nodeaction.wait_for_ready_status(node, timeout) logging.info("Node with instance ID: %s is in running state" % (instance_id)) logging.info("node_start_scenario has been successfully injected!") except Exception as e: logging.error( "Failed to start node instance. Encountered following " "exception: %s. Test Failed" % (e) ) logging.error("node_start_scenario injection failed!") sys.exit(1) # Node scenario to stop the node def node_stop_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_stop_scenario injection") instance_id = self.aws.get_instance_id(node) logging.info("Stopping the node %s with instance ID: %s " % (node, instance_id)) self.aws.stop_instances(instance_id) self.aws.wait_until_stopped(instance_id) logging.info("Node with instance ID: %s is in stopped state" % (instance_id)) nodeaction.wait_for_unknown_status(node, timeout) except Exception as e: logging.error("Failed to stop node instance. Encountered following exception: %s. " "Test Failed" % (e)) logging.error("node_stop_scenario injection failed!") sys.exit(1) # Node scenario to terminate the node def node_termination_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_termination_scenario injection") instance_id = self.aws.get_instance_id(node) logging.info("Terminating the node %s with instance ID: %s " % (node, instance_id)) self.aws.terminate_instances(instance_id) self.aws.wait_until_terminated(instance_id) for _ in range(timeout): if node not in kubecli.list_nodes(): break time.sleep(1) if node in kubecli.list_nodes(): raise Exception("Node could not be terminated") logging.info("Node with instance ID: %s has been terminated" % (instance_id)) logging.info("node_termination_scenario has been successfuly injected!") except Exception as e: logging.error( "Failed to terminate node instance. Encountered following exception:" " %s. Test Failed" % (e) ) logging.error("node_termination_scenario injection failed!") sys.exit(1) # Node scenario to reboot the node def node_reboot_scenario(self, instance_kill_count, node, timeout): for _ in range(instance_kill_count): try: logging.info("Starting node_reboot_scenario injection" + str(node)) instance_id = self.aws.get_instance_id(node) logging.info("Rebooting the node %s with instance ID: %s " % (node, instance_id)) self.aws.reboot_instances(instance_id) nodeaction.wait_for_unknown_status(node, timeout) nodeaction.wait_for_ready_status(node, timeout) logging.info("Node with instance ID: %s has been rebooted" % (instance_id)) logging.info("node_reboot_scenario has been successfuly injected!") except Exception as e: logging.error( "Failed to reboot node instance. Encountered following exception:" " %s. Test Failed" % (e) ) logging.error("node_reboot_scenario injection failed!") sys.exit(1)
0.349755
0.125708
# ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import numpy as np import SUAVE from SUAVE.Core import Units from SUAVE.Methods.Propulsion.turbofan_sizing import turbofan_sizing from SUAVE.Methods.Geometry.Two_Dimensional.Planform import segment_properties from copy import deepcopy # ---------------------------------------------------------------------- # Define the Vehicle # ---------------------------------------------------------------------- def vehicle_setup(): # ------------------------------------------------------------------ # Initialize the Vehicle # ------------------------------------------------------------------ vehicle = SUAVE.Vehicle() vehicle.tag = 'Boeing_737800' # ------------------------------------------------------------------ # Vehicle-level Properties # ------------------------------------------------------------------ # mass properties vehicle.mass_properties.max_takeoff = 79015.8 # kg vehicle.mass_properties.takeoff = 79015.8 # kg vehicle.mass_properties.operating_empty = 62746.4 # kg vehicle.mass_properties.takeoff = 79015.8 # kg vehicle.mass_properties.max_zero_fuel = 62732.0 # kg vehicle.mass_properties.cargo = 10000. * Units.kilogram vehicle.mass_properties.center_of_gravity = [[ 15.30987849, 0. , -0.48023939]] vehicle.mass_properties.moments_of_inertia.tensor = [[3173074.17, 0 , 28752.77565],[0 , 3019041.443, 0],[0, 0, 5730017.433]] # estimated, not correct vehicle.design_mach_number = 0.78 vehicle.design_range = 3582 * Units.miles vehicle.design_cruise_alt = 35000.0 * Units.ft # envelope properties vehicle.envelope.ultimate_load = 3.75 vehicle.envelope.limit_load = 1.5 # basic parameters vehicle.reference_area = 124.862 vehicle.passengers = 170 vehicle.systems.control = "fully powered" vehicle.systems.accessories = "medium range" # ------------------------------------------------------------------ # Main Wing # ------------------------------------------------------------------ wing = SUAVE.Components.Wings.Main_Wing() wing.tag = 'main_wing' wing.aspect_ratio = 10.18 wing.sweeps.quarter_chord = 25 * Units.deg wing.thickness_to_chord = 0.1 wing.taper = 0.1 wing.spans.projected = 34.32 wing.chords.root = 7.760 * Units.meter wing.chords.tip = 0.782 * Units.meter wing.chords.mean_aerodynamic = 4.235 * Units.meter wing.areas.reference = 124.862 wing.areas.wetted = 225.08 wing.twists.root = 4.0 * Units.degrees wing.twists.tip = 0.0 * Units.degrees wing.origin = [[13.61,0,-0.93]] wing.aerodynamic_center = [0,0,0] wing.vertical = False wing.symmetric = True wing.high_lift = True wing.dynamic_pressure_ratio = 1.0 # Wing Segments root_airfoil = SUAVE.Components.Airfoils.Airfoil() root_airfoil.coordinate_file = '../Vehicles/Airfoils/B737a.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Root' segment.percent_span_location = 0.0 segment.twist = 4. * Units.deg segment.root_chord_percent = 1. segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 2.5 * Units.degrees segment.sweeps.quarter_chord = 28.225 * Units.degrees segment.thickness_to_chord = .1 segment.append_airfoil(root_airfoil) wing.append_segment(segment) yehudi_airfoil = SUAVE.Components.Airfoils.Airfoil() yehudi_airfoil.coordinate_file = '../Vehicles/Airfoils/B737b.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Yehudi' segment.percent_span_location = 0.324 segment.twist = 0.047193 * Units.deg segment.root_chord_percent = 0.5 segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 5.5 * Units.degrees segment.sweeps.quarter_chord = 25. * Units.degrees segment.thickness_to_chord = .1 segment.append_airfoil(yehudi_airfoil) wing.append_segment(segment) mid_airfoil = SUAVE.Components.Airfoils.Airfoil() mid_airfoil.coordinate_file = '../Vehicles/Airfoils/B737c.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Section_2' segment.percent_span_location = 0.963 segment.twist = 0.00258 * Units.deg segment.root_chord_percent = 0.220 segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 5.5 * Units.degrees segment.sweeps.quarter_chord = 56.75 * Units.degrees segment.thickness_to_chord = .1 segment.append_airfoil(mid_airfoil) wing.append_segment(segment) tip_airfoil = SUAVE.Components.Airfoils.Airfoil() tip_airfoil.coordinate_file = '../Vehicles/Airfoils/B737d.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Tip' segment.percent_span_location = 1. segment.twist = 0. * Units.degrees segment.root_chord_percent = 0.10077 segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 0. segment.sweeps.quarter_chord = 0. segment.thickness_to_chord = .1 segment.append_airfoil(tip_airfoil) wing.append_segment(segment) # Fill out more segment properties automatically wing = segment_properties(wing) # control surfaces ------------------------------------------- slat = SUAVE.Components.Wings.Control_Surfaces.Slat() slat.tag = 'slat' slat.span_fraction_start = 0.2 slat.span_fraction_end = 0.963 slat.deflection = 0.0 * Units.degrees slat.chord_fraction = 0.075 wing.append_control_surface(slat) flap = SUAVE.Components.Wings.Control_Surfaces.Flap() flap.tag = 'flap' flap.span_fraction_start = 0.2 flap.span_fraction_end = 0.7 flap.deflection = 0.0 * Units.degrees flap.configuration_type = 'double_slotted' flap.chord_fraction = 0.30 wing.append_control_surface(flap) aileron = SUAVE.Components.Wings.Control_Surfaces.Aileron() aileron.tag = 'aileron' aileron.span_fraction_start = 0.7 aileron.span_fraction_end = 0.963 aileron.deflection = 0.0 * Units.degrees aileron.chord_fraction = 0.16 wing.append_control_surface(aileron) # add to vehicle vehicle.append_component(wing) # ------------------------------------------------------------------ # Horizontal Stabilizer # ------------------------------------------------------------------ wing = SUAVE.Components.Wings.Horizontal_Tail() wing.tag = 'horizontal_stabilizer' wing.aspect_ratio = 4.99 wing.sweeps.quarter_chord = 28.2250 * Units.deg wing.thickness_to_chord = 0.08 wing.taper = 0.3333 wing.spans.projected = 14.4 wing.chords.root = 4.2731 wing.chords.tip = 1.4243 wing.chords.mean_aerodynamic = 8.0 wing.areas.reference = 41.49 wing.areas.exposed = 59.354 # Exposed area of the horizontal tail wing.areas.wetted = 71.81 # Wetted area of the horizontal tail wing.twists.root = 3.0 * Units.degrees wing.twists.tip = 3.0 * Units.degrees wing.origin = [[33.02,0,1.466]] wing.aerodynamic_center = [0,0,0] wing.vertical = False wing.symmetric = True wing.dynamic_pressure_ratio = 0.9 # Wing Segments segment = SUAVE.Components.Wings.Segment() segment.tag = 'root_segment' segment.percent_span_location = 0.0 segment.twist = 0. * Units.deg segment.root_chord_percent = 1.0 segment.dihedral_outboard = 8.63 * Units.degrees segment.sweeps.quarter_chord = 28.2250 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) segment = SUAVE.Components.Wings.Segment() segment.tag = 'tip_segment' segment.percent_span_location = 1. segment.twist = 0. * Units.deg segment.root_chord_percent = 0.3333 segment.dihedral_outboard = 0 * Units.degrees segment.sweeps.quarter_chord = 0 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) # Fill out more segment properties automatically wing = segment_properties(wing) # control surfaces ------------------------------------------- elevator = SUAVE.Components.Wings.Control_Surfaces.Elevator() elevator.tag = 'elevator' elevator.span_fraction_start = 0.09 elevator.span_fraction_end = 0.92 elevator.deflection = 0.0 * Units.deg elevator.chord_fraction = 0.3 wing.append_control_surface(elevator) # add to vehicle vehicle.append_component(wing) # ------------------------------------------------------------------ # Vertical Stabilizer # ------------------------------------------------------------------ wing = SUAVE.Components.Wings.Vertical_Tail() wing.tag = 'vertical_stabilizer' wing.aspect_ratio = 1.98865 wing.sweeps.quarter_chord = 31.2 * Units.deg wing.thickness_to_chord = 0.08 wing.taper = 0.1183 wing.spans.projected = 8.33 wing.total_length = wing.spans.projected wing.chords.root = 10.1 wing.chords.tip = 1.20 wing.chords.mean_aerodynamic = 4.0 wing.areas.reference = 34.89 wing.areas.wetted = 57.25 wing.twists.root = 0.0 * Units.degrees wing.twists.tip = 0.0 * Units.degrees wing.origin = [[26.944,0,1.54]] wing.aerodynamic_center = [0,0,0] wing.vertical = True wing.symmetric = False wing.t_tail = False wing.dynamic_pressure_ratio = 1.0 # Wing Segments segment = SUAVE.Components.Wings.Segment() segment.tag = 'root' segment.percent_span_location = 0.0 segment.twist = 0. * Units.deg segment.root_chord_percent = 1. segment.dihedral_outboard = 0 * Units.degrees segment.sweeps.quarter_chord = 61.485 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) segment = SUAVE.Components.Wings.Segment() segment.tag = 'segment_1' segment.percent_span_location = 0.2962 segment.twist = 0. * Units.deg segment.root_chord_percent = 0.45 segment.dihedral_outboard = 0. * Units.degrees segment.sweeps.quarter_chord = 31.2 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) segment = SUAVE.Components.Wings.Segment() segment.tag = 'segment_2' segment.percent_span_location = 1.0 segment.twist = 0. * Units.deg segment.root_chord_percent = 0.1183 segment.dihedral_outboard = 0.0 * Units.degrees segment.sweeps.quarter_chord = 0.0 segment.thickness_to_chord = .1 wing.append_segment(segment) # Fill out more segment properties automatically wing = segment_properties(wing) # add to vehicle vehicle.append_component(wing) # ------------------------------------------------------------------ # Fuselage # ------------------------------------------------------------------ fuselage = SUAVE.Components.Fuselages.Fuselage() fuselage.tag = 'fuselage' fuselage.number_coach_seats = vehicle.passengers fuselage.seats_abreast = 6 fuselage.seat_pitch = 31. * Units.inches fuselage.fineness.nose = 1.6 fuselage.fineness.tail = 2. fuselage.lengths.nose = 6.4 fuselage.lengths.tail = 8.0 fuselage.lengths.cabin = 28.85 fuselage.lengths.total = 38.02 fuselage.lengths.fore_space = 6. fuselage.lengths.aft_space = 5. fuselage.width = 3.74 fuselage.heights.maximum = 3.74 fuselage.heights.at_quarter_length = 3.74 fuselage.heights.at_three_quarters_length = 3.65 fuselage.heights.at_wing_root_quarter_chord = 3.74 fuselage.areas.side_projected = 142.1948 fuselage.areas.wetted = 385.51 fuselage.areas.front_projected = 12.57 fuselage.effective_diameter = 3.74 fuselage.differential_pressure = 5.0e4 * Units.pascal # Maximum differential pressure # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_0' segment.percent_x_location = 0.0000 segment.percent_z_location = -0.00144 segment.height = 0.0100 segment.width = 0.0100 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_1' segment.percent_x_location = 0.00576 segment.percent_z_location = -0.00144 segment.height = 0.7500 segment.width = 0.6500 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_2' segment.percent_x_location = 0.02017 segment.percent_z_location = 0.00000 segment.height = 1.52783 segment.width = 1.20043 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_3' segment.percent_x_location = 0.03170 segment.percent_z_location = 0.00000 segment.height = 1.96435 segment.width = 1.52783 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_4' segment.percent_x_location = 0.04899 segment.percent_z_location = 0.00431 segment.height = 2.72826 segment.width = 1.96435 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_5' segment.percent_x_location = 0.07781 segment.percent_z_location = 0.00861 segment.height = 3.49217 segment.width = 2.61913 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_6' segment.percent_x_location = 0.10375 segment.percent_z_location = 0.01005 segment.height = 3.70130 segment.width = 3.05565 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_7' segment.percent_x_location = 0.16427 segment.percent_z_location = 0.01148 segment.height = 3.92870 segment.width = 3.71043 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_8' segment.percent_x_location = 0.22478 segment.percent_z_location = 0.01148 segment.height = 3.92870 segment.width = 3.92870 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_9' segment.percent_x_location = 0.69164 segment.percent_z_location = 0.01292 segment.height = 3.81957 segment.width = 3.81957 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_10' segment.percent_x_location = 0.71758 segment.percent_z_location = 0.01292 segment.height = 3.81957 segment.width = 3.81957 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_11' segment.percent_x_location = 0.78098 segment.percent_z_location = 0.01722 segment.height = 3.49217 segment.width = 3.71043 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_12' segment.percent_x_location = 0.85303 segment.percent_z_location = 0.02296 segment.height = 3.05565 segment.width = 3.16478 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_13' segment.percent_x_location = 0.91931 segment.percent_z_location = 0.03157 segment.height = 2.40087 segment.width = 1.96435 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_14' segment.percent_x_location = 1.00 segment.percent_z_location = 0.04593 segment.height = 1.09130 segment.width = 0.21826 fuselage.Segments.append(segment) # add to vehicle vehicle.append_component(fuselage) # ------------------------------------------------------------------ # Nacelles # ------------------------------------------------------------------ nacelle = SUAVE.Components.Nacelles.Nacelle() nacelle.tag = 'nacelle_1' nacelle.length = 2.71 nacelle.inlet_diameter = 1.90 nacelle.diameter = 2.05 nacelle.areas.wetted = 1.1*np.pi*nacelle.diameter*nacelle.length nacelle.origin = [[13.72, -4.86,-1.9]] nacelle.flow_through = True nacelle_airfoil = SUAVE.Components.Airfoils.Airfoil() nacelle_airfoil.naca_4_series_airfoil = '2410' nacelle.append_airfoil(nacelle_airfoil) nacelle_2 = deepcopy(nacelle) nacelle_2.tag = 'nacelle_2' nacelle_2.origin = [[13.72, 4.86,-1.9]] vehicle.append_component(nacelle) vehicle.append_component(nacelle_2) # ------------------------------------------------------------------ # Turbofan Network # ------------------------------------------------------------------ #instantiate the gas turbine network turbofan = SUAVE.Components.Energy.Networks.Turbofan() turbofan.tag = 'turbofan' # setup turbofan.number_of_engines = 2.0 turbofan.bypass_ratio = 5.4 turbofan.engine_length = 2.71 # This origin is overwritten by compute_component_centers_of_gravity(base,compute_propulsor_origin=True) turbofan.origin = [[13.72, 4.86,-1.9],[13.72, -4.86,-1.9]] # working fluid turbofan.working_fluid = SUAVE.Attributes.Gases.Air() # ------------------------------------------------------------------ # Component 1 - Ram # to convert freestream static to stagnation quantities # instantiate ram = SUAVE.Components.Energy.Converters.Ram() ram.tag = 'ram' # add to the network turbofan.append(ram) # ------------------------------------------------------------------ # Component 2 - Inlet Nozzle # instantiate inlet_nozzle = SUAVE.Components.Energy.Converters.Compression_Nozzle() inlet_nozzle.tag = 'inlet_nozzle' # setup inlet_nozzle.polytropic_efficiency = 0.98 inlet_nozzle.pressure_ratio = 0.98 # add to network turbofan.append(inlet_nozzle) # ------------------------------------------------------------------ # Component 3 - Low Pressure Compressor # instantiate compressor = SUAVE.Components.Energy.Converters.Compressor() compressor.tag = 'low_pressure_compressor' # setup compressor.polytropic_efficiency = 0.91 compressor.pressure_ratio = 1.14 # add to network turbofan.append(compressor) # ------------------------------------------------------------------ # Component 4 - High Pressure Compressor # instantiate compressor = SUAVE.Components.Energy.Converters.Compressor() compressor.tag = 'high_pressure_compressor' # setup compressor.polytropic_efficiency = 0.91 compressor.pressure_ratio = 13.415 # add to network turbofan.append(compressor) # ------------------------------------------------------------------ # Component 5 - Low Pressure Turbine # instantiate turbine = SUAVE.Components.Energy.Converters.Turbine() turbine.tag='low_pressure_turbine' # setup turbine.mechanical_efficiency = 0.99 turbine.polytropic_efficiency = 0.93 # add to network turbofan.append(turbine) # ------------------------------------------------------------------ # Component 6 - High Pressure Turbine # instantiate turbine = SUAVE.Components.Energy.Converters.Turbine() turbine.tag='high_pressure_turbine' # setup turbine.mechanical_efficiency = 0.99 turbine.polytropic_efficiency = 0.93 # add to network turbofan.append(turbine) # ------------------------------------------------------------------ # Component 7 - Combustor # instantiate combustor = SUAVE.Components.Energy.Converters.Combustor() combustor.tag = 'combustor' # setup combustor.efficiency = 0.99 combustor.alphac = 1.0 combustor.turbine_inlet_temperature = 1450 combustor.pressure_ratio = 0.95 combustor.fuel_data = SUAVE.Attributes.Propellants.Jet_A() # add to network turbofan.append(combustor) # ------------------------------------------------------------------ # Component 8 - Core Nozzle # instantiate nozzle = SUAVE.Components.Energy.Converters.Expansion_Nozzle() nozzle.tag = 'core_nozzle' # setup nozzle.polytropic_efficiency = 0.95 nozzle.pressure_ratio = 0.99 # add to network turbofan.append(nozzle) # ------------------------------------------------------------------ # Component 9 - Fan Nozzle # instantiate nozzle = SUAVE.Components.Energy.Converters.Expansion_Nozzle() nozzle.tag = 'fan_nozzle' # setup nozzle.polytropic_efficiency = 0.95 nozzle.pressure_ratio = 0.99 # add to network turbofan.append(nozzle) # ------------------------------------------------------------------ # Component 10 - Fan # instantiate fan = SUAVE.Components.Energy.Converters.Fan() fan.tag = 'fan' # setup fan.polytropic_efficiency = 0.93 fan.pressure_ratio = 1.7 # add to network turbofan.append(fan) # ------------------------------------------------------------------ #Component 10 : thrust (to compute the thrust) thrust = SUAVE.Components.Energy.Processes.Thrust() thrust.tag ='compute_thrust' #total design thrust (includes all the engines) thrust.total_design = 2*24000. * Units.N #Newtons #design sizing conditions altitude = 35000.0*Units.ft mach_number = 0.78 isa_deviation = 0. #Engine setup for noise module # add to network turbofan.thrust = thrust turbofan.core_nozzle_diameter = 0.92 turbofan.fan_nozzle_diameter = 1.659 turbofan.engine_height = 0.5 #Engine centerline heigh above the ground plane turbofan.exa = 1 #distance from fan face to fan exit/ fan diameter) turbofan.plug_diameter = 0.1 #dimater of the engine plug turbofan.geometry_xe = 1. # Geometry information for the installation effects function turbofan.geometry_ye = 1. # Geometry information for the installation effects function turbofan.geometry_Ce = 2. # Geometry information for the installation effects function #size the turbofan turbofan_sizing(turbofan,mach_number,altitude) # add gas turbine network turbofan to the vehicle vehicle.append_component(turbofan) # ------------------------------------------------------------------ # Fuel # ------------------------------------------------------------------ fuel = SUAVE.Components.Physical_Component() vehicle.fuel = fuel fuel.mass_properties.mass = vehicle.mass_properties.max_takeoff-vehicle.mass_properties.max_fuel fuel.origin = vehicle.wings.main_wing.mass_properties.center_of_gravity fuel.mass_properties.center_of_gravity= vehicle.wings.main_wing.aerodynamic_center # ------------------------------------------------------------------ # Landing Gear # ------------------------------------------------------------------ landing_gear = SUAVE.Components.Landing_Gear.Landing_Gear() landing_gear.tag = "main_landing_gear" landing_gear.main_tire_diameter = 1.12000 * Units.m landing_gear.nose_tire_diameter = 0.6858 * Units.m landing_gear.main_strut_length = 1.8 * Units.m landing_gear.nose_strut_length = 1.3 * Units.m landing_gear.main_units = 1 #number of nose landing gear landing_gear.nose_units = 1 #number of nose landing gear landing_gear.main_wheels = 2 #number of wheels on the main landing gear landing_gear.nose_wheels = 2 #number of wheels on the nose landing gear vehicle.landing_gear = landing_gear # ------------------------------------------------------------------ # Vehicle Definition Complete # ------------------------------------------------------------------ return vehicle # ---------------------------------------------------------------------- # Define the Configurations # --------------------------------------------------------------------- def configs_setup(vehicle): # ------------------------------------------------------------------ # Initialize Configurations # ------------------------------------------------------------------ configs = SUAVE.Components.Configs.Config.Container() base_config = SUAVE.Components.Configs.Config(vehicle) base_config.tag = 'base' base_config.landing_gear.gear_condition = 'up' configs.append(base_config) # ------------------------------------------------------------------ # Cruise Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'cruise' configs.append(config) config.wings['main_wing'].control_surfaces.flap.deflection = 0. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 0. * Units.deg # ------------------------------------------------------------------ # Takeoff Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'takeoff' config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 25. * Units.deg #Noise input for the landing gear config.landing_gear.gear_condition = 'up' config.output_filename = 'Flyover_' config.networks['turbofan'].fan.rotation = 3470. #N1 speed config.networks['turbofan'].fan_nozzle.noise_speed = 315. config.networks['turbofan'].core_nozzle.noise_speed = 415. configs.append(config) # ------------------------------------------------------------------ # Cutback Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'cutback' config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 20. * Units.deg #Noise input for the landing gear config.landing_gear.gear_condition = 'up' config.output_filename = 'Cutback_' config.networks['turbofan'].fan.rotation = 2780. #N1 speed config.networks['turbofan'].fan_nozzle.noise_speed = 210. config.networks['turbofan'].core_nozzle.noise_speed = 360. configs.append(config) # ------------------------------------------------------------------ # Landing Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'landing' config.wings['main_wing'].control_surfaces.flap.deflection = 30. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 25. * Units.deg #Noise input for the landing gear config.landing_gear.gear_condition = 'down' config.output_filename = 'Approach_' config.networks['turbofan'].fan.rotation = 2030. #N1 speed config.networks['turbofan'].fan_nozzle.noise_speed = 109.3 config.networks['turbofan'].core_nozzle.noise_speed = 92. configs.append(config) # ------------------------------------------------------------------ # Short Field Takeoff Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'short_field_takeoff' config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 20. * Units.deg configs.append(config) return configs
SUAVE/SUAVE-2.5.0/regression/scripts/Vehicles/Boeing_737.py
# ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import numpy as np import SUAVE from SUAVE.Core import Units from SUAVE.Methods.Propulsion.turbofan_sizing import turbofan_sizing from SUAVE.Methods.Geometry.Two_Dimensional.Planform import segment_properties from copy import deepcopy # ---------------------------------------------------------------------- # Define the Vehicle # ---------------------------------------------------------------------- def vehicle_setup(): # ------------------------------------------------------------------ # Initialize the Vehicle # ------------------------------------------------------------------ vehicle = SUAVE.Vehicle() vehicle.tag = 'Boeing_737800' # ------------------------------------------------------------------ # Vehicle-level Properties # ------------------------------------------------------------------ # mass properties vehicle.mass_properties.max_takeoff = 79015.8 # kg vehicle.mass_properties.takeoff = 79015.8 # kg vehicle.mass_properties.operating_empty = 62746.4 # kg vehicle.mass_properties.takeoff = 79015.8 # kg vehicle.mass_properties.max_zero_fuel = 62732.0 # kg vehicle.mass_properties.cargo = 10000. * Units.kilogram vehicle.mass_properties.center_of_gravity = [[ 15.30987849, 0. , -0.48023939]] vehicle.mass_properties.moments_of_inertia.tensor = [[3173074.17, 0 , 28752.77565],[0 , 3019041.443, 0],[0, 0, 5730017.433]] # estimated, not correct vehicle.design_mach_number = 0.78 vehicle.design_range = 3582 * Units.miles vehicle.design_cruise_alt = 35000.0 * Units.ft # envelope properties vehicle.envelope.ultimate_load = 3.75 vehicle.envelope.limit_load = 1.5 # basic parameters vehicle.reference_area = 124.862 vehicle.passengers = 170 vehicle.systems.control = "fully powered" vehicle.systems.accessories = "medium range" # ------------------------------------------------------------------ # Main Wing # ------------------------------------------------------------------ wing = SUAVE.Components.Wings.Main_Wing() wing.tag = 'main_wing' wing.aspect_ratio = 10.18 wing.sweeps.quarter_chord = 25 * Units.deg wing.thickness_to_chord = 0.1 wing.taper = 0.1 wing.spans.projected = 34.32 wing.chords.root = 7.760 * Units.meter wing.chords.tip = 0.782 * Units.meter wing.chords.mean_aerodynamic = 4.235 * Units.meter wing.areas.reference = 124.862 wing.areas.wetted = 225.08 wing.twists.root = 4.0 * Units.degrees wing.twists.tip = 0.0 * Units.degrees wing.origin = [[13.61,0,-0.93]] wing.aerodynamic_center = [0,0,0] wing.vertical = False wing.symmetric = True wing.high_lift = True wing.dynamic_pressure_ratio = 1.0 # Wing Segments root_airfoil = SUAVE.Components.Airfoils.Airfoil() root_airfoil.coordinate_file = '../Vehicles/Airfoils/B737a.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Root' segment.percent_span_location = 0.0 segment.twist = 4. * Units.deg segment.root_chord_percent = 1. segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 2.5 * Units.degrees segment.sweeps.quarter_chord = 28.225 * Units.degrees segment.thickness_to_chord = .1 segment.append_airfoil(root_airfoil) wing.append_segment(segment) yehudi_airfoil = SUAVE.Components.Airfoils.Airfoil() yehudi_airfoil.coordinate_file = '../Vehicles/Airfoils/B737b.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Yehudi' segment.percent_span_location = 0.324 segment.twist = 0.047193 * Units.deg segment.root_chord_percent = 0.5 segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 5.5 * Units.degrees segment.sweeps.quarter_chord = 25. * Units.degrees segment.thickness_to_chord = .1 segment.append_airfoil(yehudi_airfoil) wing.append_segment(segment) mid_airfoil = SUAVE.Components.Airfoils.Airfoil() mid_airfoil.coordinate_file = '../Vehicles/Airfoils/B737c.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Section_2' segment.percent_span_location = 0.963 segment.twist = 0.00258 * Units.deg segment.root_chord_percent = 0.220 segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 5.5 * Units.degrees segment.sweeps.quarter_chord = 56.75 * Units.degrees segment.thickness_to_chord = .1 segment.append_airfoil(mid_airfoil) wing.append_segment(segment) tip_airfoil = SUAVE.Components.Airfoils.Airfoil() tip_airfoil.coordinate_file = '../Vehicles/Airfoils/B737d.txt' segment = SUAVE.Components.Wings.Segment() segment.tag = 'Tip' segment.percent_span_location = 1. segment.twist = 0. * Units.degrees segment.root_chord_percent = 0.10077 segment.thickness_to_chord = 0.1 segment.dihedral_outboard = 0. segment.sweeps.quarter_chord = 0. segment.thickness_to_chord = .1 segment.append_airfoil(tip_airfoil) wing.append_segment(segment) # Fill out more segment properties automatically wing = segment_properties(wing) # control surfaces ------------------------------------------- slat = SUAVE.Components.Wings.Control_Surfaces.Slat() slat.tag = 'slat' slat.span_fraction_start = 0.2 slat.span_fraction_end = 0.963 slat.deflection = 0.0 * Units.degrees slat.chord_fraction = 0.075 wing.append_control_surface(slat) flap = SUAVE.Components.Wings.Control_Surfaces.Flap() flap.tag = 'flap' flap.span_fraction_start = 0.2 flap.span_fraction_end = 0.7 flap.deflection = 0.0 * Units.degrees flap.configuration_type = 'double_slotted' flap.chord_fraction = 0.30 wing.append_control_surface(flap) aileron = SUAVE.Components.Wings.Control_Surfaces.Aileron() aileron.tag = 'aileron' aileron.span_fraction_start = 0.7 aileron.span_fraction_end = 0.963 aileron.deflection = 0.0 * Units.degrees aileron.chord_fraction = 0.16 wing.append_control_surface(aileron) # add to vehicle vehicle.append_component(wing) # ------------------------------------------------------------------ # Horizontal Stabilizer # ------------------------------------------------------------------ wing = SUAVE.Components.Wings.Horizontal_Tail() wing.tag = 'horizontal_stabilizer' wing.aspect_ratio = 4.99 wing.sweeps.quarter_chord = 28.2250 * Units.deg wing.thickness_to_chord = 0.08 wing.taper = 0.3333 wing.spans.projected = 14.4 wing.chords.root = 4.2731 wing.chords.tip = 1.4243 wing.chords.mean_aerodynamic = 8.0 wing.areas.reference = 41.49 wing.areas.exposed = 59.354 # Exposed area of the horizontal tail wing.areas.wetted = 71.81 # Wetted area of the horizontal tail wing.twists.root = 3.0 * Units.degrees wing.twists.tip = 3.0 * Units.degrees wing.origin = [[33.02,0,1.466]] wing.aerodynamic_center = [0,0,0] wing.vertical = False wing.symmetric = True wing.dynamic_pressure_ratio = 0.9 # Wing Segments segment = SUAVE.Components.Wings.Segment() segment.tag = 'root_segment' segment.percent_span_location = 0.0 segment.twist = 0. * Units.deg segment.root_chord_percent = 1.0 segment.dihedral_outboard = 8.63 * Units.degrees segment.sweeps.quarter_chord = 28.2250 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) segment = SUAVE.Components.Wings.Segment() segment.tag = 'tip_segment' segment.percent_span_location = 1. segment.twist = 0. * Units.deg segment.root_chord_percent = 0.3333 segment.dihedral_outboard = 0 * Units.degrees segment.sweeps.quarter_chord = 0 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) # Fill out more segment properties automatically wing = segment_properties(wing) # control surfaces ------------------------------------------- elevator = SUAVE.Components.Wings.Control_Surfaces.Elevator() elevator.tag = 'elevator' elevator.span_fraction_start = 0.09 elevator.span_fraction_end = 0.92 elevator.deflection = 0.0 * Units.deg elevator.chord_fraction = 0.3 wing.append_control_surface(elevator) # add to vehicle vehicle.append_component(wing) # ------------------------------------------------------------------ # Vertical Stabilizer # ------------------------------------------------------------------ wing = SUAVE.Components.Wings.Vertical_Tail() wing.tag = 'vertical_stabilizer' wing.aspect_ratio = 1.98865 wing.sweeps.quarter_chord = 31.2 * Units.deg wing.thickness_to_chord = 0.08 wing.taper = 0.1183 wing.spans.projected = 8.33 wing.total_length = wing.spans.projected wing.chords.root = 10.1 wing.chords.tip = 1.20 wing.chords.mean_aerodynamic = 4.0 wing.areas.reference = 34.89 wing.areas.wetted = 57.25 wing.twists.root = 0.0 * Units.degrees wing.twists.tip = 0.0 * Units.degrees wing.origin = [[26.944,0,1.54]] wing.aerodynamic_center = [0,0,0] wing.vertical = True wing.symmetric = False wing.t_tail = False wing.dynamic_pressure_ratio = 1.0 # Wing Segments segment = SUAVE.Components.Wings.Segment() segment.tag = 'root' segment.percent_span_location = 0.0 segment.twist = 0. * Units.deg segment.root_chord_percent = 1. segment.dihedral_outboard = 0 * Units.degrees segment.sweeps.quarter_chord = 61.485 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) segment = SUAVE.Components.Wings.Segment() segment.tag = 'segment_1' segment.percent_span_location = 0.2962 segment.twist = 0. * Units.deg segment.root_chord_percent = 0.45 segment.dihedral_outboard = 0. * Units.degrees segment.sweeps.quarter_chord = 31.2 * Units.degrees segment.thickness_to_chord = .1 wing.append_segment(segment) segment = SUAVE.Components.Wings.Segment() segment.tag = 'segment_2' segment.percent_span_location = 1.0 segment.twist = 0. * Units.deg segment.root_chord_percent = 0.1183 segment.dihedral_outboard = 0.0 * Units.degrees segment.sweeps.quarter_chord = 0.0 segment.thickness_to_chord = .1 wing.append_segment(segment) # Fill out more segment properties automatically wing = segment_properties(wing) # add to vehicle vehicle.append_component(wing) # ------------------------------------------------------------------ # Fuselage # ------------------------------------------------------------------ fuselage = SUAVE.Components.Fuselages.Fuselage() fuselage.tag = 'fuselage' fuselage.number_coach_seats = vehicle.passengers fuselage.seats_abreast = 6 fuselage.seat_pitch = 31. * Units.inches fuselage.fineness.nose = 1.6 fuselage.fineness.tail = 2. fuselage.lengths.nose = 6.4 fuselage.lengths.tail = 8.0 fuselage.lengths.cabin = 28.85 fuselage.lengths.total = 38.02 fuselage.lengths.fore_space = 6. fuselage.lengths.aft_space = 5. fuselage.width = 3.74 fuselage.heights.maximum = 3.74 fuselage.heights.at_quarter_length = 3.74 fuselage.heights.at_three_quarters_length = 3.65 fuselage.heights.at_wing_root_quarter_chord = 3.74 fuselage.areas.side_projected = 142.1948 fuselage.areas.wetted = 385.51 fuselage.areas.front_projected = 12.57 fuselage.effective_diameter = 3.74 fuselage.differential_pressure = 5.0e4 * Units.pascal # Maximum differential pressure # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_0' segment.percent_x_location = 0.0000 segment.percent_z_location = -0.00144 segment.height = 0.0100 segment.width = 0.0100 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_1' segment.percent_x_location = 0.00576 segment.percent_z_location = -0.00144 segment.height = 0.7500 segment.width = 0.6500 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_2' segment.percent_x_location = 0.02017 segment.percent_z_location = 0.00000 segment.height = 1.52783 segment.width = 1.20043 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_3' segment.percent_x_location = 0.03170 segment.percent_z_location = 0.00000 segment.height = 1.96435 segment.width = 1.52783 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_4' segment.percent_x_location = 0.04899 segment.percent_z_location = 0.00431 segment.height = 2.72826 segment.width = 1.96435 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_5' segment.percent_x_location = 0.07781 segment.percent_z_location = 0.00861 segment.height = 3.49217 segment.width = 2.61913 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_6' segment.percent_x_location = 0.10375 segment.percent_z_location = 0.01005 segment.height = 3.70130 segment.width = 3.05565 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_7' segment.percent_x_location = 0.16427 segment.percent_z_location = 0.01148 segment.height = 3.92870 segment.width = 3.71043 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_8' segment.percent_x_location = 0.22478 segment.percent_z_location = 0.01148 segment.height = 3.92870 segment.width = 3.92870 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_9' segment.percent_x_location = 0.69164 segment.percent_z_location = 0.01292 segment.height = 3.81957 segment.width = 3.81957 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_10' segment.percent_x_location = 0.71758 segment.percent_z_location = 0.01292 segment.height = 3.81957 segment.width = 3.81957 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_11' segment.percent_x_location = 0.78098 segment.percent_z_location = 0.01722 segment.height = 3.49217 segment.width = 3.71043 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_12' segment.percent_x_location = 0.85303 segment.percent_z_location = 0.02296 segment.height = 3.05565 segment.width = 3.16478 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_13' segment.percent_x_location = 0.91931 segment.percent_z_location = 0.03157 segment.height = 2.40087 segment.width = 1.96435 fuselage.Segments.append(segment) # Segment segment = SUAVE.Components.Lofted_Body_Segment.Segment() segment.tag = 'segment_14' segment.percent_x_location = 1.00 segment.percent_z_location = 0.04593 segment.height = 1.09130 segment.width = 0.21826 fuselage.Segments.append(segment) # add to vehicle vehicle.append_component(fuselage) # ------------------------------------------------------------------ # Nacelles # ------------------------------------------------------------------ nacelle = SUAVE.Components.Nacelles.Nacelle() nacelle.tag = 'nacelle_1' nacelle.length = 2.71 nacelle.inlet_diameter = 1.90 nacelle.diameter = 2.05 nacelle.areas.wetted = 1.1*np.pi*nacelle.diameter*nacelle.length nacelle.origin = [[13.72, -4.86,-1.9]] nacelle.flow_through = True nacelle_airfoil = SUAVE.Components.Airfoils.Airfoil() nacelle_airfoil.naca_4_series_airfoil = '2410' nacelle.append_airfoil(nacelle_airfoil) nacelle_2 = deepcopy(nacelle) nacelle_2.tag = 'nacelle_2' nacelle_2.origin = [[13.72, 4.86,-1.9]] vehicle.append_component(nacelle) vehicle.append_component(nacelle_2) # ------------------------------------------------------------------ # Turbofan Network # ------------------------------------------------------------------ #instantiate the gas turbine network turbofan = SUAVE.Components.Energy.Networks.Turbofan() turbofan.tag = 'turbofan' # setup turbofan.number_of_engines = 2.0 turbofan.bypass_ratio = 5.4 turbofan.engine_length = 2.71 # This origin is overwritten by compute_component_centers_of_gravity(base,compute_propulsor_origin=True) turbofan.origin = [[13.72, 4.86,-1.9],[13.72, -4.86,-1.9]] # working fluid turbofan.working_fluid = SUAVE.Attributes.Gases.Air() # ------------------------------------------------------------------ # Component 1 - Ram # to convert freestream static to stagnation quantities # instantiate ram = SUAVE.Components.Energy.Converters.Ram() ram.tag = 'ram' # add to the network turbofan.append(ram) # ------------------------------------------------------------------ # Component 2 - Inlet Nozzle # instantiate inlet_nozzle = SUAVE.Components.Energy.Converters.Compression_Nozzle() inlet_nozzle.tag = 'inlet_nozzle' # setup inlet_nozzle.polytropic_efficiency = 0.98 inlet_nozzle.pressure_ratio = 0.98 # add to network turbofan.append(inlet_nozzle) # ------------------------------------------------------------------ # Component 3 - Low Pressure Compressor # instantiate compressor = SUAVE.Components.Energy.Converters.Compressor() compressor.tag = 'low_pressure_compressor' # setup compressor.polytropic_efficiency = 0.91 compressor.pressure_ratio = 1.14 # add to network turbofan.append(compressor) # ------------------------------------------------------------------ # Component 4 - High Pressure Compressor # instantiate compressor = SUAVE.Components.Energy.Converters.Compressor() compressor.tag = 'high_pressure_compressor' # setup compressor.polytropic_efficiency = 0.91 compressor.pressure_ratio = 13.415 # add to network turbofan.append(compressor) # ------------------------------------------------------------------ # Component 5 - Low Pressure Turbine # instantiate turbine = SUAVE.Components.Energy.Converters.Turbine() turbine.tag='low_pressure_turbine' # setup turbine.mechanical_efficiency = 0.99 turbine.polytropic_efficiency = 0.93 # add to network turbofan.append(turbine) # ------------------------------------------------------------------ # Component 6 - High Pressure Turbine # instantiate turbine = SUAVE.Components.Energy.Converters.Turbine() turbine.tag='high_pressure_turbine' # setup turbine.mechanical_efficiency = 0.99 turbine.polytropic_efficiency = 0.93 # add to network turbofan.append(turbine) # ------------------------------------------------------------------ # Component 7 - Combustor # instantiate combustor = SUAVE.Components.Energy.Converters.Combustor() combustor.tag = 'combustor' # setup combustor.efficiency = 0.99 combustor.alphac = 1.0 combustor.turbine_inlet_temperature = 1450 combustor.pressure_ratio = 0.95 combustor.fuel_data = SUAVE.Attributes.Propellants.Jet_A() # add to network turbofan.append(combustor) # ------------------------------------------------------------------ # Component 8 - Core Nozzle # instantiate nozzle = SUAVE.Components.Energy.Converters.Expansion_Nozzle() nozzle.tag = 'core_nozzle' # setup nozzle.polytropic_efficiency = 0.95 nozzle.pressure_ratio = 0.99 # add to network turbofan.append(nozzle) # ------------------------------------------------------------------ # Component 9 - Fan Nozzle # instantiate nozzle = SUAVE.Components.Energy.Converters.Expansion_Nozzle() nozzle.tag = 'fan_nozzle' # setup nozzle.polytropic_efficiency = 0.95 nozzle.pressure_ratio = 0.99 # add to network turbofan.append(nozzle) # ------------------------------------------------------------------ # Component 10 - Fan # instantiate fan = SUAVE.Components.Energy.Converters.Fan() fan.tag = 'fan' # setup fan.polytropic_efficiency = 0.93 fan.pressure_ratio = 1.7 # add to network turbofan.append(fan) # ------------------------------------------------------------------ #Component 10 : thrust (to compute the thrust) thrust = SUAVE.Components.Energy.Processes.Thrust() thrust.tag ='compute_thrust' #total design thrust (includes all the engines) thrust.total_design = 2*24000. * Units.N #Newtons #design sizing conditions altitude = 35000.0*Units.ft mach_number = 0.78 isa_deviation = 0. #Engine setup for noise module # add to network turbofan.thrust = thrust turbofan.core_nozzle_diameter = 0.92 turbofan.fan_nozzle_diameter = 1.659 turbofan.engine_height = 0.5 #Engine centerline heigh above the ground plane turbofan.exa = 1 #distance from fan face to fan exit/ fan diameter) turbofan.plug_diameter = 0.1 #dimater of the engine plug turbofan.geometry_xe = 1. # Geometry information for the installation effects function turbofan.geometry_ye = 1. # Geometry information for the installation effects function turbofan.geometry_Ce = 2. # Geometry information for the installation effects function #size the turbofan turbofan_sizing(turbofan,mach_number,altitude) # add gas turbine network turbofan to the vehicle vehicle.append_component(turbofan) # ------------------------------------------------------------------ # Fuel # ------------------------------------------------------------------ fuel = SUAVE.Components.Physical_Component() vehicle.fuel = fuel fuel.mass_properties.mass = vehicle.mass_properties.max_takeoff-vehicle.mass_properties.max_fuel fuel.origin = vehicle.wings.main_wing.mass_properties.center_of_gravity fuel.mass_properties.center_of_gravity= vehicle.wings.main_wing.aerodynamic_center # ------------------------------------------------------------------ # Landing Gear # ------------------------------------------------------------------ landing_gear = SUAVE.Components.Landing_Gear.Landing_Gear() landing_gear.tag = "main_landing_gear" landing_gear.main_tire_diameter = 1.12000 * Units.m landing_gear.nose_tire_diameter = 0.6858 * Units.m landing_gear.main_strut_length = 1.8 * Units.m landing_gear.nose_strut_length = 1.3 * Units.m landing_gear.main_units = 1 #number of nose landing gear landing_gear.nose_units = 1 #number of nose landing gear landing_gear.main_wheels = 2 #number of wheels on the main landing gear landing_gear.nose_wheels = 2 #number of wheels on the nose landing gear vehicle.landing_gear = landing_gear # ------------------------------------------------------------------ # Vehicle Definition Complete # ------------------------------------------------------------------ return vehicle # ---------------------------------------------------------------------- # Define the Configurations # --------------------------------------------------------------------- def configs_setup(vehicle): # ------------------------------------------------------------------ # Initialize Configurations # ------------------------------------------------------------------ configs = SUAVE.Components.Configs.Config.Container() base_config = SUAVE.Components.Configs.Config(vehicle) base_config.tag = 'base' base_config.landing_gear.gear_condition = 'up' configs.append(base_config) # ------------------------------------------------------------------ # Cruise Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'cruise' configs.append(config) config.wings['main_wing'].control_surfaces.flap.deflection = 0. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 0. * Units.deg # ------------------------------------------------------------------ # Takeoff Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'takeoff' config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 25. * Units.deg #Noise input for the landing gear config.landing_gear.gear_condition = 'up' config.output_filename = 'Flyover_' config.networks['turbofan'].fan.rotation = 3470. #N1 speed config.networks['turbofan'].fan_nozzle.noise_speed = 315. config.networks['turbofan'].core_nozzle.noise_speed = 415. configs.append(config) # ------------------------------------------------------------------ # Cutback Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'cutback' config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 20. * Units.deg #Noise input for the landing gear config.landing_gear.gear_condition = 'up' config.output_filename = 'Cutback_' config.networks['turbofan'].fan.rotation = 2780. #N1 speed config.networks['turbofan'].fan_nozzle.noise_speed = 210. config.networks['turbofan'].core_nozzle.noise_speed = 360. configs.append(config) # ------------------------------------------------------------------ # Landing Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'landing' config.wings['main_wing'].control_surfaces.flap.deflection = 30. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 25. * Units.deg #Noise input for the landing gear config.landing_gear.gear_condition = 'down' config.output_filename = 'Approach_' config.networks['turbofan'].fan.rotation = 2030. #N1 speed config.networks['turbofan'].fan_nozzle.noise_speed = 109.3 config.networks['turbofan'].core_nozzle.noise_speed = 92. configs.append(config) # ------------------------------------------------------------------ # Short Field Takeoff Configuration # ------------------------------------------------------------------ config = SUAVE.Components.Configs.Config(base_config) config.tag = 'short_field_takeoff' config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg config.wings['main_wing'].control_surfaces.slat.deflection = 20. * Units.deg configs.append(config) return configs
0.584271
0.254871
import logging from newrelic_plugin_agent.plugins import base LOGGER = logging.getLogger(__name__) class Riak(base.JSONStatsPlugin): DEFAULT_PATH = '/stats' GUID = 'com.meetme.newrelic_riak_agent' def add_datapoints(self, stats): """Add all of the data points for a node :param dict stats: all of the nodes """ self.add_gauge_value('Delays/Convergence', 'us', stats.get('converge_delay_total', 0), min_val=stats.get('converge_delay_min', 0), max_val=stats.get('converge_delay_max', 0)) self.add_gauge_value('Delays/Rebalance', 'us', stats.get('rebalance_delay_total', 0), min_val=stats.get('rebalance_delay_min', 0), max_val=stats.get('rebalance_delay_max', 0)) self.add_gauge_value('FSM/Object Size/Mean', 'bytes', stats.get('node_get_fsm_objsize_mean', 0)) self.add_gauge_value('FSM/Object Size/Median', 'bytes', stats.get('node_get_fsm_objsize_median', 0)) self.add_gauge_value('FSM/Object Size/90th Percentile', 'bytes', stats.get('node_get_fsm_objsize_90', 0)) self.add_gauge_value('FSM/Object Size/95th Percentile', 'bytes', stats.get('node_get_fsm_objsize_95', 0)) self.add_gauge_value('FSM/Object Size/100th Percentile', 'bytes', stats.get('node_get_fsm_objsize_100', 0)) self.add_gauge_value('FSM/Siblings/Mean', 'siblings', stats.get('node_get_fsm_siblings_mean', 0)) self.add_gauge_value('FSM/Siblings/Mean', 'siblings', stats.get('node_get_fsm_siblings_media', 0)) self.add_gauge_value('FSM/Siblings/90th Percentile', 'siblings', stats.get('node_get_fsm_siblings_90', 0)) self.add_gauge_value('FSM/Siblings/95th Percentile', 'siblings', stats.get('node_get_fsm_siblings_95', 0)) self.add_gauge_value('FSM/Siblings/100th Percentile', 'siblings', stats.get('node_get_fsm_siblings_100', 0)) self.add_gauge_value('FSM/Time/Get/Mean', 'us', stats.get('node_get_fsm_time_mean', 0)) self.add_gauge_value('FSM/Time/Get/Median', 'us', stats.get('node_get_fsm_time_media', 0)) self.add_gauge_value('FSM/Time/Get/90th Percentile', 'us', stats.get('node_get_fsm_time_90', 0)) self.add_gauge_value('FSM/Time/Get/95th Percentile', 'us', stats.get('node_get_fsm_time_95', 0)) self.add_gauge_value('FSM/Time/Get/100th Percentile', 'us', stats.get('node_get_fsm_time_100', 0)) self.add_gauge_value('FSM/Time/Put/Mean', 'us', stats.get('node_put_fsm_time_mean', 0)) self.add_gauge_value('FSM/Time/Put/Median', 'us', stats.get('node_put_fsm_time_media', 0)) self.add_gauge_value('FSM/Time/Put/90th Percentile', 'us', stats.get('node_put_fsm_time_90', 0)) self.add_gauge_value('FSM/Time/Put/95th Percentile', 'us', stats.get('node_put_fsm_time_95', 0)) self.add_gauge_value('FSM/Time/Put/100th Percentile', 'us', stats.get('node_put_fsm_time_100', 0)) self.add_derive_value('Failures/Pre-commit', 'failures', stats.get('precommit_fail', 0)) self.add_derive_value('Failures/Post-commit', 'failures', stats.get('postcommit_fail', 0)) self.add_derive_value('Gossip/Ignored', 'gossip', stats.get('ignored_gossip_total', 0)) self.add_derive_value('Gossip/Received', 'gossip', stats.get('gossip_received', 0)) self.add_derive_value('Handoff Timeouts', '', stats.get('handoff_timeouts', 0)) self.add_gauge_value('Mappers/Executing', 'timeouts', stats.get('executing_mappers', 0)) self.add_gauge_value('Memory/Allocated', 'bytes', stats.get('mem_allocated', 0)) self.add_gauge_value('Memory/Total', 'bytes', stats.get('mem_total', 0)) self.add_gauge_value('Memory/Erlang/Atom/Allocated', 'bytes', stats.get('memory_atom', 0)) self.add_gauge_value('Memory/Erlang/Atom/Used', 'bytes', stats.get('memory_atom_used', 0)) self.add_gauge_value('Memory/Erlang/Binary', 'bytes', stats.get('memory_binary', 0)) self.add_gauge_value('Memory/Erlang/Code', 'bytes', stats.get('memory_code', 0)) self.add_gauge_value('Memory/Erlang/ETS', 'bytes', stats.get('memory_ets', 0)) self.add_gauge_value('Memory/Erlang/Processes/Allocated', 'bytes', stats.get('memory_processes', 0)) self.add_gauge_value('Memory/Erlang/Processes/Used', 'bytes', stats.get('memory_processes_used', 0)) self.add_gauge_value('Memory/Erlang/System', 'bytes', stats.get('memory_system', 0)) self.add_gauge_value('Memory/Erlang/Total', 'bytes', stats.get('memory_total', 0)) self.add_gauge_value('Nodes/Connected', 'nodes', len(stats.get('connected_nodes', list()))) self.add_gauge_value('Pipeline/Active', 'pipelines', stats.get('pipeline_active', 0)) self.add_derive_value('Pipeline/Created', 'pipelines', stats.get('pipeline_create_count', 0)) self.add_derive_value('Pipeline/Creation Errors', 'pipelines', stats.get('pipeline_create_error_count', 0)) self.add_gauge_value('Processes/OS', 'processes', stats.get('cpu_nprocs', 0)) self.add_gauge_value('Processes/Erlang', 'processes', stats.get('cpu_nprocs', 0)) self.add_gauge_value('Protocol Buffer Connections', 'active', stats.get('pbc_active', 0)) self.add_derive_value('Protocol Buffer Connections', 'total', stats.get('pbc_connects_total', 0)) self.add_derive_value('Read Repairs', 'reads', stats.get('read_repairs_total', 0)) self.add_derive_value('Requests/Gets', 'requests', stats.get('node_gets_total', 0)) self.add_derive_value('Requests/Puts', 'requests', stats.get('node_puts_total', 0)) self.add_derive_value('Requests/Redirected', 'requests', stats.get('coord_redirs_total', 0)) self.add_gauge_value('Ring/Members', 'members', len(stats.get('ring_members', list()))) self.add_gauge_value('Ring/Partitions', 'partitions', stats.get('ring_num_partitions', 0)) self.add_gauge_value('Ring/Size', 'members', stats.get('ring_creation_size', 0)) self.add_derive_value('Ring/Reconciled', 'members', stats.get('rings_reconciled_total', 0)) self.add_derive_value('VNodes/Gets', 'vnodes', stats.get('vnode_gets_total', 0)) self.add_derive_value('VNodes/Puts', 'vnodes', stats.get('vnode_puts_total', 0)) self.add_derive_value('VNodes/Index', 'deletes', stats.get('vnode_index_deletes_total', 0)) self.add_derive_value('VNodes/Index', 'delete-postings', stats.get('vnode_index_deletes_postings_total', 0)) self.add_derive_value('VNodes/Index', 'reads', stats.get('vnode_index_reads_total', 0)) self.add_derive_value('VNodes/Index', 'writes', stats.get('vnode_index_writes_total', 0)) self.add_derive_value('VNodes/Index', 'postings', stats.get('vnode_writes_postings_total', 0))
newrelic_plugin_agent/plugins/riak.py
import logging from newrelic_plugin_agent.plugins import base LOGGER = logging.getLogger(__name__) class Riak(base.JSONStatsPlugin): DEFAULT_PATH = '/stats' GUID = 'com.meetme.newrelic_riak_agent' def add_datapoints(self, stats): """Add all of the data points for a node :param dict stats: all of the nodes """ self.add_gauge_value('Delays/Convergence', 'us', stats.get('converge_delay_total', 0), min_val=stats.get('converge_delay_min', 0), max_val=stats.get('converge_delay_max', 0)) self.add_gauge_value('Delays/Rebalance', 'us', stats.get('rebalance_delay_total', 0), min_val=stats.get('rebalance_delay_min', 0), max_val=stats.get('rebalance_delay_max', 0)) self.add_gauge_value('FSM/Object Size/Mean', 'bytes', stats.get('node_get_fsm_objsize_mean', 0)) self.add_gauge_value('FSM/Object Size/Median', 'bytes', stats.get('node_get_fsm_objsize_median', 0)) self.add_gauge_value('FSM/Object Size/90th Percentile', 'bytes', stats.get('node_get_fsm_objsize_90', 0)) self.add_gauge_value('FSM/Object Size/95th Percentile', 'bytes', stats.get('node_get_fsm_objsize_95', 0)) self.add_gauge_value('FSM/Object Size/100th Percentile', 'bytes', stats.get('node_get_fsm_objsize_100', 0)) self.add_gauge_value('FSM/Siblings/Mean', 'siblings', stats.get('node_get_fsm_siblings_mean', 0)) self.add_gauge_value('FSM/Siblings/Mean', 'siblings', stats.get('node_get_fsm_siblings_media', 0)) self.add_gauge_value('FSM/Siblings/90th Percentile', 'siblings', stats.get('node_get_fsm_siblings_90', 0)) self.add_gauge_value('FSM/Siblings/95th Percentile', 'siblings', stats.get('node_get_fsm_siblings_95', 0)) self.add_gauge_value('FSM/Siblings/100th Percentile', 'siblings', stats.get('node_get_fsm_siblings_100', 0)) self.add_gauge_value('FSM/Time/Get/Mean', 'us', stats.get('node_get_fsm_time_mean', 0)) self.add_gauge_value('FSM/Time/Get/Median', 'us', stats.get('node_get_fsm_time_media', 0)) self.add_gauge_value('FSM/Time/Get/90th Percentile', 'us', stats.get('node_get_fsm_time_90', 0)) self.add_gauge_value('FSM/Time/Get/95th Percentile', 'us', stats.get('node_get_fsm_time_95', 0)) self.add_gauge_value('FSM/Time/Get/100th Percentile', 'us', stats.get('node_get_fsm_time_100', 0)) self.add_gauge_value('FSM/Time/Put/Mean', 'us', stats.get('node_put_fsm_time_mean', 0)) self.add_gauge_value('FSM/Time/Put/Median', 'us', stats.get('node_put_fsm_time_media', 0)) self.add_gauge_value('FSM/Time/Put/90th Percentile', 'us', stats.get('node_put_fsm_time_90', 0)) self.add_gauge_value('FSM/Time/Put/95th Percentile', 'us', stats.get('node_put_fsm_time_95', 0)) self.add_gauge_value('FSM/Time/Put/100th Percentile', 'us', stats.get('node_put_fsm_time_100', 0)) self.add_derive_value('Failures/Pre-commit', 'failures', stats.get('precommit_fail', 0)) self.add_derive_value('Failures/Post-commit', 'failures', stats.get('postcommit_fail', 0)) self.add_derive_value('Gossip/Ignored', 'gossip', stats.get('ignored_gossip_total', 0)) self.add_derive_value('Gossip/Received', 'gossip', stats.get('gossip_received', 0)) self.add_derive_value('Handoff Timeouts', '', stats.get('handoff_timeouts', 0)) self.add_gauge_value('Mappers/Executing', 'timeouts', stats.get('executing_mappers', 0)) self.add_gauge_value('Memory/Allocated', 'bytes', stats.get('mem_allocated', 0)) self.add_gauge_value('Memory/Total', 'bytes', stats.get('mem_total', 0)) self.add_gauge_value('Memory/Erlang/Atom/Allocated', 'bytes', stats.get('memory_atom', 0)) self.add_gauge_value('Memory/Erlang/Atom/Used', 'bytes', stats.get('memory_atom_used', 0)) self.add_gauge_value('Memory/Erlang/Binary', 'bytes', stats.get('memory_binary', 0)) self.add_gauge_value('Memory/Erlang/Code', 'bytes', stats.get('memory_code', 0)) self.add_gauge_value('Memory/Erlang/ETS', 'bytes', stats.get('memory_ets', 0)) self.add_gauge_value('Memory/Erlang/Processes/Allocated', 'bytes', stats.get('memory_processes', 0)) self.add_gauge_value('Memory/Erlang/Processes/Used', 'bytes', stats.get('memory_processes_used', 0)) self.add_gauge_value('Memory/Erlang/System', 'bytes', stats.get('memory_system', 0)) self.add_gauge_value('Memory/Erlang/Total', 'bytes', stats.get('memory_total', 0)) self.add_gauge_value('Nodes/Connected', 'nodes', len(stats.get('connected_nodes', list()))) self.add_gauge_value('Pipeline/Active', 'pipelines', stats.get('pipeline_active', 0)) self.add_derive_value('Pipeline/Created', 'pipelines', stats.get('pipeline_create_count', 0)) self.add_derive_value('Pipeline/Creation Errors', 'pipelines', stats.get('pipeline_create_error_count', 0)) self.add_gauge_value('Processes/OS', 'processes', stats.get('cpu_nprocs', 0)) self.add_gauge_value('Processes/Erlang', 'processes', stats.get('cpu_nprocs', 0)) self.add_gauge_value('Protocol Buffer Connections', 'active', stats.get('pbc_active', 0)) self.add_derive_value('Protocol Buffer Connections', 'total', stats.get('pbc_connects_total', 0)) self.add_derive_value('Read Repairs', 'reads', stats.get('read_repairs_total', 0)) self.add_derive_value('Requests/Gets', 'requests', stats.get('node_gets_total', 0)) self.add_derive_value('Requests/Puts', 'requests', stats.get('node_puts_total', 0)) self.add_derive_value('Requests/Redirected', 'requests', stats.get('coord_redirs_total', 0)) self.add_gauge_value('Ring/Members', 'members', len(stats.get('ring_members', list()))) self.add_gauge_value('Ring/Partitions', 'partitions', stats.get('ring_num_partitions', 0)) self.add_gauge_value('Ring/Size', 'members', stats.get('ring_creation_size', 0)) self.add_derive_value('Ring/Reconciled', 'members', stats.get('rings_reconciled_total', 0)) self.add_derive_value('VNodes/Gets', 'vnodes', stats.get('vnode_gets_total', 0)) self.add_derive_value('VNodes/Puts', 'vnodes', stats.get('vnode_puts_total', 0)) self.add_derive_value('VNodes/Index', 'deletes', stats.get('vnode_index_deletes_total', 0)) self.add_derive_value('VNodes/Index', 'delete-postings', stats.get('vnode_index_deletes_postings_total', 0)) self.add_derive_value('VNodes/Index', 'reads', stats.get('vnode_index_reads_total', 0)) self.add_derive_value('VNodes/Index', 'writes', stats.get('vnode_index_writes_total', 0)) self.add_derive_value('VNodes/Index', 'postings', stats.get('vnode_writes_postings_total', 0))
0.558327
0.104112
from django.db import models from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from rest_framework.exceptions import NotAuthenticated from baserow.core.user_files.models import UserFile from .mixins import ( OrderableMixin, PolymorphicContentTypeMixin, CreatedAndUpdatedOnMixin, TrashableModelMixin, ParentGroupTrashableModelMixin, ) from .exceptions import UserNotInGroup, UserInvalidGroupPermissionsError __all__ = [ "Settings", "Group", "GroupUser", "GroupInvitation", "Application", "TemplateCategory", "Template", "UserLogEntry", "TrashEntry", "UserFile", ] User = get_user_model() # The difference between an admin and member right now is that an admin has # permissions to update, delete and manage the members of a group. GROUP_USER_PERMISSION_ADMIN = "ADMIN" GROUP_USER_PERMISSION_MEMBER = "MEMBER" GROUP_USER_PERMISSION_CHOICES = ( (GROUP_USER_PERMISSION_ADMIN, "Admin"), (GROUP_USER_PERMISSION_MEMBER, "Member"), ) def get_default_application_content_type(): return ContentType.objects.get_for_model(Application) class Settings(models.Model): """ The settings model represents the application wide settings that only admins can change. This table can only contain a single row. """ allow_new_signups = models.BooleanField( default=True, help_text="Indicates whether new users can create a new account when signing " "up.", ) class Group(TrashableModelMixin, CreatedAndUpdatedOnMixin): name = models.CharField(max_length=100) users = models.ManyToManyField(User, through="GroupUser") def application_set_including_trash(self): """ :return: The applications for this group including any trashed applications. """ return self.application_set(manager="objects_and_trash") def has_template(self): return self.template_set.all().exists() def has_user( self, user, permissions=None, raise_error=False, allow_if_template=False, include_trash=False, ): """ Checks if the provided user belongs to the group. :param user: The user that must be in the group. :type user: User :param permissions: One or multiple permissions can optionally be provided and if so, the user must have one of those permissions. :type permissions: None, str or list :param raise_error: If True an error will be raised when the user does not belong to the group or doesn't have the right permissions. :type raise_error: bool :param allow_if_template: If true and if the group is related to a template, then True is always returned and no exception will be raised. :type allow_if_template: bool :param include_trash: If true then also checks if the group has been trashed instead of raising a DoesNotExist exception. :type include_trash: bool :raises UserNotInGroup: If the user does not belong to the group. :raises UserInvalidGroupPermissionsError: If the user does belong to the group, but doesn't have the right permissions. :return: Indicates if the user belongs to the group. :rtype: bool """ if permissions and not isinstance(permissions, list): permissions = [permissions] if allow_if_template and self.has_template(): return True elif not bool(user and user.is_authenticated): if raise_error: raise NotAuthenticated() else: return False if include_trash: manager = GroupUser.objects_and_trash else: manager = GroupUser.objects queryset = manager.filter(user_id=user.id, group_id=self.id) if raise_error: try: group_user = queryset.get() except GroupUser.DoesNotExist: raise UserNotInGroup(user, self) if permissions is not None and group_user.permissions not in permissions: raise UserInvalidGroupPermissionsError(user, self, permissions) else: if permissions is not None: queryset = queryset.filter(permissions__in=permissions) return queryset.exists() def __str__(self): return f"<Group id={self.id}, name={self.name}>" class GroupUser( ParentGroupTrashableModelMixin, CreatedAndUpdatedOnMixin, OrderableMixin, models.Model, ): user = models.ForeignKey( User, on_delete=models.CASCADE, help_text="The user that has access to the group.", ) group = models.ForeignKey( Group, on_delete=models.CASCADE, help_text="The group that the user has access to.", ) order = models.PositiveIntegerField( help_text="Unique order that the group has for the user." ) permissions = models.CharField( default=GROUP_USER_PERMISSION_MEMBER, max_length=32, choices=GROUP_USER_PERMISSION_CHOICES, help_text="The permissions that the user has within the group.", ) class Meta: unique_together = [["user", "group"]] ordering = ("order",) @classmethod def get_last_order(cls, user): queryset = cls.objects.filter(user=user) return cls.get_highest_order_of_queryset(queryset) + 1 class GroupInvitation( ParentGroupTrashableModelMixin, CreatedAndUpdatedOnMixin, models.Model ): group = models.ForeignKey( Group, on_delete=models.CASCADE, help_text="The group that the user will get access to once the invitation is " "accepted.", ) invited_by = models.ForeignKey( User, on_delete=models.CASCADE, help_text="The user that created the invitation.", ) email = models.EmailField( db_index=True, help_text="The email address of the user that the invitation is meant for. " "Only a user with that email address can accept it.", ) permissions = models.CharField( default=GROUP_USER_PERMISSION_MEMBER, max_length=32, choices=GROUP_USER_PERMISSION_CHOICES, help_text="The permissions that the user is going to get within the group " "after accepting the invitation.", ) message = models.TextField( blank=True, help_text="An optional message that the invitor can provide. This will be " "visible to the receiver of the invitation.", ) class Meta: ordering = ("id",) class Application( TrashableModelMixin, CreatedAndUpdatedOnMixin, OrderableMixin, PolymorphicContentTypeMixin, models.Model, ): group = models.ForeignKey(Group, on_delete=models.CASCADE) name = models.CharField(max_length=50) order = models.PositiveIntegerField() content_type = models.ForeignKey( ContentType, verbose_name="content type", related_name="applications", on_delete=models.SET(get_default_application_content_type), ) class Meta: ordering = ("order",) @classmethod def get_last_order(cls, group): queryset = Application.objects.filter(group=group) return cls.get_highest_order_of_queryset(queryset) + 1 class TemplateCategory(models.Model): name = models.CharField(max_length=32) class Meta: ordering = ("name",) class Template(models.Model): name = models.CharField(max_length=64) slug = models.SlugField( help_text="The template slug that is used to match the template with the JSON " "file name." ) icon = models.CharField( max_length=32, help_text="The font awesome class name that can be used for displaying " "purposes.", ) categories = models.ManyToManyField(TemplateCategory, related_name="templates") group = models.ForeignKey( Group, on_delete=models.SET_NULL, null=True, help_text="The group containing the applications related to the template. The " "read endpoints related to that group are publicly accessible for " "preview purposes.", ) export_hash = models.CharField( max_length=64, blank=True, help_text="The export hash that is used to compare if the exported group " "applications have changed when syncing the templates.", ) keywords = models.TextField( default="", blank=True, help_text="Keywords related to the template that can be used for search.", ) class Meta: ordering = ("name",) class UserLogEntry(models.Model): actor = models.ForeignKey(User, on_delete=models.CASCADE) action = models.CharField(max_length=20, choices=(("SIGNED_IN", "Signed in"),)) timestamp = models.DateTimeField(auto_now_add=True) class Meta: get_latest_by = "timestamp" ordering = ["-timestamp"] class TrashEntry(models.Model): """ A TrashEntry is a record indicating that another model in Baserow has a trashed row. When a user deletes certain things in Baserow they are not actually deleted from the database, but instead marked as trashed. Trashed rows can be restored or permanently deleted. The other model must mixin the TrashableModelMixin and also have a corresponding TrashableItemType registered specifying exactly how to delete and restore that model. """ # The TrashableItemType.type of the item that is trashed. trash_item_type = models.TextField() # We need to also store the parent id as for some trashable items the # trash_item_type and the trash_item_id is not unique as the items of that type # could be spread over multiple tables with the same id. parent_trash_item_id = models.PositiveIntegerField(null=True, blank=True) # The actual id of the item that is trashed trash_item_id = models.PositiveIntegerField() # If the user who trashed something gets deleted we still wish to preserve this # trash record as it is independent of if the user exists or not. user_who_trashed = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, blank=True ) # The group and application fields are used to group trash into separate "bins" # which can be viewed and emptied independently of each other. # The group the item that is trashed is found in, if the trashed item is the # group itself then this should also be set to that trashed group. group = models.ForeignKey(Group, on_delete=models.CASCADE) # The application the item that is trashed is found in, if the trashed item is the # application itself then this should also be set to that trashed application. application = models.ForeignKey( Application, on_delete=models.CASCADE, null=True, blank=True ) # When set to true this trash entry will be picked up by a periodic job and the # underlying item will be actually permanently deleted along with the entry. should_be_permanently_deleted = models.BooleanField(default=False) trashed_at = models.DateTimeField(auto_now_add=True) # The name, name of the parent and any extra description are cached so lookups # of trashed items are simple and do not require joining to many different tables # to simply get these details. name = models.TextField() parent_name = models.TextField(null=True, blank=True) extra_description = models.TextField(null=True, blank=True) class Meta: unique_together = ("trash_item_type", "parent_trash_item_id", "trash_item_id") indexes = [ models.Index( fields=["-trashed_at", "trash_item_type", "group", "application"] ) ]
backend/src/baserow/core/models.py
from django.db import models from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from rest_framework.exceptions import NotAuthenticated from baserow.core.user_files.models import UserFile from .mixins import ( OrderableMixin, PolymorphicContentTypeMixin, CreatedAndUpdatedOnMixin, TrashableModelMixin, ParentGroupTrashableModelMixin, ) from .exceptions import UserNotInGroup, UserInvalidGroupPermissionsError __all__ = [ "Settings", "Group", "GroupUser", "GroupInvitation", "Application", "TemplateCategory", "Template", "UserLogEntry", "TrashEntry", "UserFile", ] User = get_user_model() # The difference between an admin and member right now is that an admin has # permissions to update, delete and manage the members of a group. GROUP_USER_PERMISSION_ADMIN = "ADMIN" GROUP_USER_PERMISSION_MEMBER = "MEMBER" GROUP_USER_PERMISSION_CHOICES = ( (GROUP_USER_PERMISSION_ADMIN, "Admin"), (GROUP_USER_PERMISSION_MEMBER, "Member"), ) def get_default_application_content_type(): return ContentType.objects.get_for_model(Application) class Settings(models.Model): """ The settings model represents the application wide settings that only admins can change. This table can only contain a single row. """ allow_new_signups = models.BooleanField( default=True, help_text="Indicates whether new users can create a new account when signing " "up.", ) class Group(TrashableModelMixin, CreatedAndUpdatedOnMixin): name = models.CharField(max_length=100) users = models.ManyToManyField(User, through="GroupUser") def application_set_including_trash(self): """ :return: The applications for this group including any trashed applications. """ return self.application_set(manager="objects_and_trash") def has_template(self): return self.template_set.all().exists() def has_user( self, user, permissions=None, raise_error=False, allow_if_template=False, include_trash=False, ): """ Checks if the provided user belongs to the group. :param user: The user that must be in the group. :type user: User :param permissions: One or multiple permissions can optionally be provided and if so, the user must have one of those permissions. :type permissions: None, str or list :param raise_error: If True an error will be raised when the user does not belong to the group or doesn't have the right permissions. :type raise_error: bool :param allow_if_template: If true and if the group is related to a template, then True is always returned and no exception will be raised. :type allow_if_template: bool :param include_trash: If true then also checks if the group has been trashed instead of raising a DoesNotExist exception. :type include_trash: bool :raises UserNotInGroup: If the user does not belong to the group. :raises UserInvalidGroupPermissionsError: If the user does belong to the group, but doesn't have the right permissions. :return: Indicates if the user belongs to the group. :rtype: bool """ if permissions and not isinstance(permissions, list): permissions = [permissions] if allow_if_template and self.has_template(): return True elif not bool(user and user.is_authenticated): if raise_error: raise NotAuthenticated() else: return False if include_trash: manager = GroupUser.objects_and_trash else: manager = GroupUser.objects queryset = manager.filter(user_id=user.id, group_id=self.id) if raise_error: try: group_user = queryset.get() except GroupUser.DoesNotExist: raise UserNotInGroup(user, self) if permissions is not None and group_user.permissions not in permissions: raise UserInvalidGroupPermissionsError(user, self, permissions) else: if permissions is not None: queryset = queryset.filter(permissions__in=permissions) return queryset.exists() def __str__(self): return f"<Group id={self.id}, name={self.name}>" class GroupUser( ParentGroupTrashableModelMixin, CreatedAndUpdatedOnMixin, OrderableMixin, models.Model, ): user = models.ForeignKey( User, on_delete=models.CASCADE, help_text="The user that has access to the group.", ) group = models.ForeignKey( Group, on_delete=models.CASCADE, help_text="The group that the user has access to.", ) order = models.PositiveIntegerField( help_text="Unique order that the group has for the user." ) permissions = models.CharField( default=GROUP_USER_PERMISSION_MEMBER, max_length=32, choices=GROUP_USER_PERMISSION_CHOICES, help_text="The permissions that the user has within the group.", ) class Meta: unique_together = [["user", "group"]] ordering = ("order",) @classmethod def get_last_order(cls, user): queryset = cls.objects.filter(user=user) return cls.get_highest_order_of_queryset(queryset) + 1 class GroupInvitation( ParentGroupTrashableModelMixin, CreatedAndUpdatedOnMixin, models.Model ): group = models.ForeignKey( Group, on_delete=models.CASCADE, help_text="The group that the user will get access to once the invitation is " "accepted.", ) invited_by = models.ForeignKey( User, on_delete=models.CASCADE, help_text="The user that created the invitation.", ) email = models.EmailField( db_index=True, help_text="The email address of the user that the invitation is meant for. " "Only a user with that email address can accept it.", ) permissions = models.CharField( default=GROUP_USER_PERMISSION_MEMBER, max_length=32, choices=GROUP_USER_PERMISSION_CHOICES, help_text="The permissions that the user is going to get within the group " "after accepting the invitation.", ) message = models.TextField( blank=True, help_text="An optional message that the invitor can provide. This will be " "visible to the receiver of the invitation.", ) class Meta: ordering = ("id",) class Application( TrashableModelMixin, CreatedAndUpdatedOnMixin, OrderableMixin, PolymorphicContentTypeMixin, models.Model, ): group = models.ForeignKey(Group, on_delete=models.CASCADE) name = models.CharField(max_length=50) order = models.PositiveIntegerField() content_type = models.ForeignKey( ContentType, verbose_name="content type", related_name="applications", on_delete=models.SET(get_default_application_content_type), ) class Meta: ordering = ("order",) @classmethod def get_last_order(cls, group): queryset = Application.objects.filter(group=group) return cls.get_highest_order_of_queryset(queryset) + 1 class TemplateCategory(models.Model): name = models.CharField(max_length=32) class Meta: ordering = ("name",) class Template(models.Model): name = models.CharField(max_length=64) slug = models.SlugField( help_text="The template slug that is used to match the template with the JSON " "file name." ) icon = models.CharField( max_length=32, help_text="The font awesome class name that can be used for displaying " "purposes.", ) categories = models.ManyToManyField(TemplateCategory, related_name="templates") group = models.ForeignKey( Group, on_delete=models.SET_NULL, null=True, help_text="The group containing the applications related to the template. The " "read endpoints related to that group are publicly accessible for " "preview purposes.", ) export_hash = models.CharField( max_length=64, blank=True, help_text="The export hash that is used to compare if the exported group " "applications have changed when syncing the templates.", ) keywords = models.TextField( default="", blank=True, help_text="Keywords related to the template that can be used for search.", ) class Meta: ordering = ("name",) class UserLogEntry(models.Model): actor = models.ForeignKey(User, on_delete=models.CASCADE) action = models.CharField(max_length=20, choices=(("SIGNED_IN", "Signed in"),)) timestamp = models.DateTimeField(auto_now_add=True) class Meta: get_latest_by = "timestamp" ordering = ["-timestamp"] class TrashEntry(models.Model): """ A TrashEntry is a record indicating that another model in Baserow has a trashed row. When a user deletes certain things in Baserow they are not actually deleted from the database, but instead marked as trashed. Trashed rows can be restored or permanently deleted. The other model must mixin the TrashableModelMixin and also have a corresponding TrashableItemType registered specifying exactly how to delete and restore that model. """ # The TrashableItemType.type of the item that is trashed. trash_item_type = models.TextField() # We need to also store the parent id as for some trashable items the # trash_item_type and the trash_item_id is not unique as the items of that type # could be spread over multiple tables with the same id. parent_trash_item_id = models.PositiveIntegerField(null=True, blank=True) # The actual id of the item that is trashed trash_item_id = models.PositiveIntegerField() # If the user who trashed something gets deleted we still wish to preserve this # trash record as it is independent of if the user exists or not. user_who_trashed = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, blank=True ) # The group and application fields are used to group trash into separate "bins" # which can be viewed and emptied independently of each other. # The group the item that is trashed is found in, if the trashed item is the # group itself then this should also be set to that trashed group. group = models.ForeignKey(Group, on_delete=models.CASCADE) # The application the item that is trashed is found in, if the trashed item is the # application itself then this should also be set to that trashed application. application = models.ForeignKey( Application, on_delete=models.CASCADE, null=True, blank=True ) # When set to true this trash entry will be picked up by a periodic job and the # underlying item will be actually permanently deleted along with the entry. should_be_permanently_deleted = models.BooleanField(default=False) trashed_at = models.DateTimeField(auto_now_add=True) # The name, name of the parent and any extra description are cached so lookups # of trashed items are simple and do not require joining to many different tables # to simply get these details. name = models.TextField() parent_name = models.TextField(null=True, blank=True) extra_description = models.TextField(null=True, blank=True) class Meta: unique_together = ("trash_item_type", "parent_trash_item_id", "trash_item_id") indexes = [ models.Index( fields=["-trashed_at", "trash_item_type", "group", "application"] ) ]
0.635788
0.158956
import decimal from blingalytics import sources DIVISION_BY_ZERO = (decimal.InvalidOperation, ZeroDivisionError) class DerivedSource(sources.Source): def post_process(self, row, clean_inputs): # Compute derived values for all columns on this row for name, column in self._columns: row[name] = column.get_derived_value(row) return row class DerivedColumn(sources.Column): source = DerivedSource class Value(DerivedColumn): """ A column that derives its value from other columns in the row. In addition to the standard column options, this takes one positional argument: the function used to derive the value. The function you provide will be passed one argument: the row, as pulled from other data sources but before the ``post_process`` step. The row is a dict with the column names as keys. Your function should return just the derived value for this column in the row. The function is often provided as a lambda, but more complex functions can be defined wherever you like. Continuing the example from above:: derived.Value(lambda row: row['net'] / row['gross'] * Decimal('100.00')) By default, the footer for this column performs the same operation over the appropriate footer columns. This is generally the footer you want for a derived column, as opposed to simply summing or averaging the values in the column. If one of the columns involved in the derive function does not return a footer, this will return a total. """ def __init__(self, derive_func, **kwargs): self.derive_func = derive_func super(Value, self).__init__(**kwargs) def get_derived_value(self, row): try: return self.derive_func(row) except TypeError: # Got None for a value, so return None return None except DIVISION_BY_ZERO: return decimal.Decimal('0.00') def finalize_footer(self, total, footer): # The footer is the derive function run over the other footer columns if self.footer: try: return self.derive_func(footer) except TypeError: # Got None for a value, so return None return total except DIVISION_BY_ZERO: return decimal.Decimal('0.00') class Aggregate(DerivedColumn): """ A column that outputs a running total of another column. Example usage:: derived.Aggregate(lambda row: row['subs'], format=formats.Integer) This column does not compute or output a footer. """ def __init__(self, derive_func, **kwargs): self.total = 0 self.derive_func = derive_func super(Aggregate, self).__init__(**kwargs) # Never return a footer self.footer = False def get_derived_value(self, row): result = self.derive_func(row) if result: self.total += result return self.total def finalize(self): self.total = 0
blingalytics/sources/derived.py
import decimal from blingalytics import sources DIVISION_BY_ZERO = (decimal.InvalidOperation, ZeroDivisionError) class DerivedSource(sources.Source): def post_process(self, row, clean_inputs): # Compute derived values for all columns on this row for name, column in self._columns: row[name] = column.get_derived_value(row) return row class DerivedColumn(sources.Column): source = DerivedSource class Value(DerivedColumn): """ A column that derives its value from other columns in the row. In addition to the standard column options, this takes one positional argument: the function used to derive the value. The function you provide will be passed one argument: the row, as pulled from other data sources but before the ``post_process`` step. The row is a dict with the column names as keys. Your function should return just the derived value for this column in the row. The function is often provided as a lambda, but more complex functions can be defined wherever you like. Continuing the example from above:: derived.Value(lambda row: row['net'] / row['gross'] * Decimal('100.00')) By default, the footer for this column performs the same operation over the appropriate footer columns. This is generally the footer you want for a derived column, as opposed to simply summing or averaging the values in the column. If one of the columns involved in the derive function does not return a footer, this will return a total. """ def __init__(self, derive_func, **kwargs): self.derive_func = derive_func super(Value, self).__init__(**kwargs) def get_derived_value(self, row): try: return self.derive_func(row) except TypeError: # Got None for a value, so return None return None except DIVISION_BY_ZERO: return decimal.Decimal('0.00') def finalize_footer(self, total, footer): # The footer is the derive function run over the other footer columns if self.footer: try: return self.derive_func(footer) except TypeError: # Got None for a value, so return None return total except DIVISION_BY_ZERO: return decimal.Decimal('0.00') class Aggregate(DerivedColumn): """ A column that outputs a running total of another column. Example usage:: derived.Aggregate(lambda row: row['subs'], format=formats.Integer) This column does not compute or output a footer. """ def __init__(self, derive_func, **kwargs): self.total = 0 self.derive_func = derive_func super(Aggregate, self).__init__(**kwargs) # Never return a footer self.footer = False def get_derived_value(self, row): result = self.derive_func(row) if result: self.total += result return self.total def finalize(self): self.total = 0
0.75401
0.46308
from scikits.audiolab import wavread from scikits.audiolab import wavwrite import operator def weighting_vector(size, sigma, mu, fs): weights = [] mu = mu/(fs/2) * size weights = [] for t in range(size): a = 1/(sigma * np.sqrt(2 * math.pi *sigma)) val = a * math.exp( - math.pow(t - mu, 2) / (2 * math.pow(sigma, 2))) weights.append(val) return weights def sibilant_detector(filename): """ The aim of this algorithm is to detect where are the parts in filename where the energy is maximal. This algorithm works as follows: 1- First compute the spectrogram 2- Then compute a gaussian curve centered in the frequency researched. Usually for sibilants it's around 6000 Hz 3- Multiply the spectrum and the gaussian in order to weight the spectrum 4- Mean all the resultant signal and normalize 5- The peaks in the resulting signal are the parts in time where the energy in the researched area is the most important. """ sound_data, fs, enc = wavread(filename) #Gaussian coefs sigma = 5 mu = 10000 # mean frequency NFFT=512 #Spectre Pxx, freqs, bins, im = specgram(sound_data, NFFT=NFFT, noverlap=128 , Fs=fs) show() #Siflantes detector nb_of_windows = Pxx.shape[1] nb_of_fft_coefs = Pxx.shape[0] #Compute the gaussian vector and plot weights = weighting_vector(nb_of_fft_coefs, sigma, mu, fs) f_wweights = np.linspace(0, fs/2, len(weights), endpoint=True) plot(f_wweights, weights) show() fft_coeficients = np.zeros(nb_of_fft_coefs) sibilant_desc = [] weighted_ffts = [] #Multiply the weights and the spectrum and show the multiplication for i in range(nb_of_windows): weighted_fft = Pxx[:, i] * weights if len(weighted_ffts) == 0: weighted_ffts = weighted_fft else: weighted_ffts = np.c_[weighted_ffts, weighted_fft] sibilant_desc.append(sum(weighted_fft)) imshow(weighted_ffts, interpolation='nearest', aspect='auto') show() #Now mean the matrix to have only one descriptor sibilant_desc = [float(i)/max(sibilant_desc) for i in sibilant_desc] plot(sibilant_desc) show() #export audio max_index, max_value = max(enumerate(sibilant_desc), key=operator.itemgetter(1)) wavwrite(sound_data[(max_index-5)*NFFT:(max_index+5)*NFFT], 'test.wav', fs=44100)
scripts/sibilant_detector.py
from scikits.audiolab import wavread from scikits.audiolab import wavwrite import operator def weighting_vector(size, sigma, mu, fs): weights = [] mu = mu/(fs/2) * size weights = [] for t in range(size): a = 1/(sigma * np.sqrt(2 * math.pi *sigma)) val = a * math.exp( - math.pow(t - mu, 2) / (2 * math.pow(sigma, 2))) weights.append(val) return weights def sibilant_detector(filename): """ The aim of this algorithm is to detect where are the parts in filename where the energy is maximal. This algorithm works as follows: 1- First compute the spectrogram 2- Then compute a gaussian curve centered in the frequency researched. Usually for sibilants it's around 6000 Hz 3- Multiply the spectrum and the gaussian in order to weight the spectrum 4- Mean all the resultant signal and normalize 5- The peaks in the resulting signal are the parts in time where the energy in the researched area is the most important. """ sound_data, fs, enc = wavread(filename) #Gaussian coefs sigma = 5 mu = 10000 # mean frequency NFFT=512 #Spectre Pxx, freqs, bins, im = specgram(sound_data, NFFT=NFFT, noverlap=128 , Fs=fs) show() #Siflantes detector nb_of_windows = Pxx.shape[1] nb_of_fft_coefs = Pxx.shape[0] #Compute the gaussian vector and plot weights = weighting_vector(nb_of_fft_coefs, sigma, mu, fs) f_wweights = np.linspace(0, fs/2, len(weights), endpoint=True) plot(f_wweights, weights) show() fft_coeficients = np.zeros(nb_of_fft_coefs) sibilant_desc = [] weighted_ffts = [] #Multiply the weights and the spectrum and show the multiplication for i in range(nb_of_windows): weighted_fft = Pxx[:, i] * weights if len(weighted_ffts) == 0: weighted_ffts = weighted_fft else: weighted_ffts = np.c_[weighted_ffts, weighted_fft] sibilant_desc.append(sum(weighted_fft)) imshow(weighted_ffts, interpolation='nearest', aspect='auto') show() #Now mean the matrix to have only one descriptor sibilant_desc = [float(i)/max(sibilant_desc) for i in sibilant_desc] plot(sibilant_desc) show() #export audio max_index, max_value = max(enumerate(sibilant_desc), key=operator.itemgetter(1)) wavwrite(sound_data[(max_index-5)*NFFT:(max_index+5)*NFFT], 'test.wav', fs=44100)
0.587352
0.484868
import numpy as np from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier class StackingEnsemble: def __init__(self, layers=None, final=None): if layers == None: self.layers = [[SVC(), LogisticRegression()], [DecisionTreeClassifier()]] else: self.layers = layers if final == None: self.final = GaussianNB() else: self.final = final self.network = [] def network_constructor(self): """ Creates a network containing layers of estimators. """ network = self.network layers = self.layers final = self.final network.append(layers) network.append(final) return network def forward_pass(self, X, y): """ Do a forward pass of the stacked network """ network = self.network_constructor() output = y input_current_layer = [] input_next_layer = [] for index, layer in enumerate(network): if index == 0: input_current_layer = X for estimator in layer: estimator.fit(input_current_layer, output) input_next_layer.append(estimator.predict(input_current_layer)) else: input_current_layer = input_next_layer input_next_layer = [] for estimator in layer: estimator.fit(input_current_layer, output) input_next_layer.append(estimator.predict(input_current_layer)) return network def fit(self, X, y): input_length = len(X) target_lenght = len(y) if input_length == target_lenght: return self.forward_pass(X, y) else: raise ValueError("X and y must have the same length") def predict(self, X): """ Do a prediction for a test data """ network = self.network prediction_current_layer = np.array([]) input_current_layer = [] for index, layer in enumerate(network): if index == 0: input_current_layer = X for estimator in layer: prediction_current_layer = np.concatenate( ( prediction_current_layer, estimator.predict(input_current_layer), ) ) prediction_current_layer = np.reshape(prediction_current_layer, (1, 2)) else: input_current_layer = prediction_current_layer prediction_current_layer = np.array([]) for estimator in layer: prediction_current_layer = np.concatenate( ( prediction_current_layer, estimator.predict(input_current_layer), ) ) return prediction_current_layer if __name__ == "__main__": X_train = [[0, 0], [1, 1]] y_train = [0, 1] X_test = [[2.0, 2.0]] y_test = [1] ensemble = StackingEnsemble([SVC(), DecisionTreeClassifier()], [SVC()]) ensemble.fit(X_train, y_train) y_pred = ensemble.predict(X_test)
autogoal/experimental/stacking.py
import numpy as np from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier class StackingEnsemble: def __init__(self, layers=None, final=None): if layers == None: self.layers = [[SVC(), LogisticRegression()], [DecisionTreeClassifier()]] else: self.layers = layers if final == None: self.final = GaussianNB() else: self.final = final self.network = [] def network_constructor(self): """ Creates a network containing layers of estimators. """ network = self.network layers = self.layers final = self.final network.append(layers) network.append(final) return network def forward_pass(self, X, y): """ Do a forward pass of the stacked network """ network = self.network_constructor() output = y input_current_layer = [] input_next_layer = [] for index, layer in enumerate(network): if index == 0: input_current_layer = X for estimator in layer: estimator.fit(input_current_layer, output) input_next_layer.append(estimator.predict(input_current_layer)) else: input_current_layer = input_next_layer input_next_layer = [] for estimator in layer: estimator.fit(input_current_layer, output) input_next_layer.append(estimator.predict(input_current_layer)) return network def fit(self, X, y): input_length = len(X) target_lenght = len(y) if input_length == target_lenght: return self.forward_pass(X, y) else: raise ValueError("X and y must have the same length") def predict(self, X): """ Do a prediction for a test data """ network = self.network prediction_current_layer = np.array([]) input_current_layer = [] for index, layer in enumerate(network): if index == 0: input_current_layer = X for estimator in layer: prediction_current_layer = np.concatenate( ( prediction_current_layer, estimator.predict(input_current_layer), ) ) prediction_current_layer = np.reshape(prediction_current_layer, (1, 2)) else: input_current_layer = prediction_current_layer prediction_current_layer = np.array([]) for estimator in layer: prediction_current_layer = np.concatenate( ( prediction_current_layer, estimator.predict(input_current_layer), ) ) return prediction_current_layer if __name__ == "__main__": X_train = [[0, 0], [1, 1]] y_train = [0, 1] X_test = [[2.0, 2.0]] y_test = [1] ensemble = StackingEnsemble([SVC(), DecisionTreeClassifier()], [SVC()]) ensemble.fit(X_train, y_train) y_pred = ensemble.predict(X_test)
0.829699
0.393705
from utlis.rank import setrank,isrank,remrank,remsudos,setsudo, GPranks from utlis.send import Name,Glang from utlis.tg import Bot from config import * from pyrogram import ReplyKeyboardMarkup, InlineKeyboardMarkup, InlineKeyboardButton import threading, requests, time, random, re,json import importlib def delete(client, message,redis): type = message.chat.type userID = message.from_user.id userFN = message.from_user.first_name chatID = message.chat.id rank = isrank(redis,userID,chatID) if message.text : text = message.text elif message.caption: text = message.caption else: text = 0 c = importlib.import_module("lang.arcmd") r = importlib.import_module("lang.arreply") if redis.sismember("{}Nbot:restricteds".format(BOT_ID),userID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if redis.sismember("{}Nbot:bans".format(BOT_ID),userID): Bot("kickChatMember",{"chat_id":chatID,"user_id":userID}) if redis.sismember(f"{BOT_ID}Nbot:{chatID}:muteusers",userID) and (rank is False or rank is 0): message.delete() if text : if text == c.kickme and not redis.sismember("{}Nbot:kickme".format(BOT_ID),chatID): GetGprank = GPranks(userID,chatID) if GetGprank == "member": reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton(r.yes,callback_data=json.dumps(["kickme-yes","",userID])),InlineKeyboardButton(r.no,callback_data=json.dumps(["kickme-no","",userID])),]]) Bot("sendMessage",{"chat_id":chatID,"text":r.kickme,"reply_to_message_id":message.message_id,"parse_mode":"html","reply_markup":reply_markup}) if re.findall("[Hh][Tt][Tt][Pp][Ss]:/|[Hh][Tt][Tt][Pp]://|.[Ii][Rr]|.[Cc][Oo][Mm]|.[Oo][Rr][Gg]|.[Ii][Nn][Ff][Oo]|[Ww][Ww][Ww]|.[Tt][Kk]|.[Mm][Ee]", text): if redis.sismember("{}Nbot:Llink".format(BOT_ID),chatID): #1 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Llink:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall('@', text): if redis.sismember("{}Nbot:Lusername".format(BOT_ID),chatID):#2 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lusername:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.forward_date: if redis.sismember("{}Nbot:Lfwd".format(BOT_ID),chatID):#18 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lfwd:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall('#', text): if redis.sismember("{}Nbot:Ltag".format(BOT_ID),chatID):#3 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Ltag:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall("[a-zA-Z0-9$@$!%*?&#^-_. +]+", text): if redis.sismember("{}Nbot:Lenglish".format(BOT_ID),chatID):#4 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lenglish:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall("[ا-ي٠-٩]", text): if redis.sismember("{}Nbot:Larabic".format(BOT_ID),chatID):#5 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Larabic:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) Nlongtext = (redis.get("{}Nbot:Nlongtext".format(BOT_ID)) or 250) if len(text) >= Nlongtext: if redis.sismember("{}Nbot:Llongtext".format(BOT_ID),chatID):#2 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Llongtext:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) li = redis.smembers("{}Nbot:{}:blockTEXTs".format(BOT_ID,chatID)) for word in li: if re.findall(word, text): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) break # text ^ if message.entities : if redis.sismember("{}Nbot:Lmarkdown".format(BOT_ID),chatID):#6 for entitie in message.entities: if entitie.type is "text_link": Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lmarkdown:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) break if message.via_bot: if redis.sismember("{}Nbot:Linline".format(BOT_ID),chatID):#7 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Linline:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.reply_markup: if redis.sismember("{}Nbot:Linline".format(BOT_ID),chatID): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Linline:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.sticker: if redis.sismember("{}Nbot:Lsticker".format(BOT_ID),chatID):#8 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lsticker:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) elif redis.sismember("{}Nbot:{}:blockSTICKERs".format(BOT_ID,chatID),message.sticker.file_id): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.animation: if redis.sismember("{}Nbot:Lgifs".format(BOT_ID),chatID):#9 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lgifs:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) elif redis.sismember("{}Nbot:{}:blockanimations".format(BOT_ID,chatID),message.animation.file_id): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.audio: if redis.sismember("{}Nbot:Lmusic".format(BOT_ID),chatID):#10 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lmusic:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.voice: if redis.sismember("{}Nbot:Lvoice".format(BOT_ID),chatID):#11 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lvoice:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.video: if redis.sismember("{}Nbot:Lvideo".format(BOT_ID),chatID):#12 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lvideo:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.document: if redis.sismember("{}Nbot:Lfiles".format(BOT_ID),chatID):#13 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lfiles:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.photo: if redis.sismember("{}Nbot:Lphoto".format(BOT_ID),chatID):#14 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lphoto:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) elif redis.sismember("{}Nbot:{}:blockphotos".format(BOT_ID,chatID),message.photo.file_id): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.contact: if redis.sismember("{}Nbot:Lcontact".format(BOT_ID),chatID):#15 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lcontact:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.new_chat_members: if message.new_chat_members[0].is_bot: if redis.sismember("{}Nbot:Lbots".format(BOT_ID),chatID):#16 first_name = message.new_chat_members[0].first_name username = message.new_chat_members[0].username Bot("kickChatMember",{"chat_id":chatID,"user_id":message.new_chat_members[0].id}) Bot("sendMessage",{"chat_id":chatID,"text":r.kickbotadd.format(username,first_name),"reply_to_message_id":message.message_id,"parse_mode":"html"}) if redis.sismember("{}Nbot:Ljoin".format(BOT_ID),chatID):#17 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.forward_date: if redis.sismember("{}Nbot:Lfwd".format(BOT_ID),chatID):#18 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lfwd:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.video_note: if redis.sismember("{}Nbot:Lnote".format(BOT_ID),chatID):#19 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lnote:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if redis.sismember("{}Nbot:Lflood".format(BOT_ID),chatID) :#20 Max_msg = int((redis.hget("{}Nbot:max_msg".format(BOT_ID),chatID) or 10)) Time_ck = int((redis.hget("{}Nbot:time_ck".format(BOT_ID),chatID) or 3)) User_msg = int((redis.get("{}Nbot:{}:{}:flood".format(BOT_ID,chatID,userID)) or 1)) if User_msg > Max_msg: GetGprank = GPranks(userID,chatID) if GetGprank == "member": if redis.hexists("{}Nbot:floodset".format(BOT_ID),chatID): get = redis.hget("{}Nbot:floodset".format(BOT_ID),chatID) else: get = "res" if get == "res": Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if get == "ban": Bot("kickChatMember",{"chat_id":chatID,"user_id":userID}) redis.sadd("{}Nbot:{}:restricteds".format(BOT_ID,chatID),userID) BY = "<a href=\"tg://user?id={}\">{}</a>".format(userID,Name(userFN)) Bot("sendMessage",{"chat_id":chatID,"text":r.TKflood.format(BY,Max_msg,Time_ck),"parse_mode":"html"}) redis.setex("{}Nbot:{}:{}:flood".format(BOT_ID,chatID,userID), Time_ck, User_msg+1)
handlers/delete.py
from utlis.rank import setrank,isrank,remrank,remsudos,setsudo, GPranks from utlis.send import Name,Glang from utlis.tg import Bot from config import * from pyrogram import ReplyKeyboardMarkup, InlineKeyboardMarkup, InlineKeyboardButton import threading, requests, time, random, re,json import importlib def delete(client, message,redis): type = message.chat.type userID = message.from_user.id userFN = message.from_user.first_name chatID = message.chat.id rank = isrank(redis,userID,chatID) if message.text : text = message.text elif message.caption: text = message.caption else: text = 0 c = importlib.import_module("lang.arcmd") r = importlib.import_module("lang.arreply") if redis.sismember("{}Nbot:restricteds".format(BOT_ID),userID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if redis.sismember("{}Nbot:bans".format(BOT_ID),userID): Bot("kickChatMember",{"chat_id":chatID,"user_id":userID}) if redis.sismember(f"{BOT_ID}Nbot:{chatID}:muteusers",userID) and (rank is False or rank is 0): message.delete() if text : if text == c.kickme and not redis.sismember("{}Nbot:kickme".format(BOT_ID),chatID): GetGprank = GPranks(userID,chatID) if GetGprank == "member": reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton(r.yes,callback_data=json.dumps(["kickme-yes","",userID])),InlineKeyboardButton(r.no,callback_data=json.dumps(["kickme-no","",userID])),]]) Bot("sendMessage",{"chat_id":chatID,"text":r.kickme,"reply_to_message_id":message.message_id,"parse_mode":"html","reply_markup":reply_markup}) if re.findall("[Hh][Tt][Tt][Pp][Ss]:/|[Hh][Tt][Tt][Pp]://|.[Ii][Rr]|.[Cc][Oo][Mm]|.[Oo][Rr][Gg]|.[Ii][Nn][Ff][Oo]|[Ww][Ww][Ww]|.[Tt][Kk]|.[Mm][Ee]", text): if redis.sismember("{}Nbot:Llink".format(BOT_ID),chatID): #1 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Llink:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall('@', text): if redis.sismember("{}Nbot:Lusername".format(BOT_ID),chatID):#2 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lusername:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.forward_date: if redis.sismember("{}Nbot:Lfwd".format(BOT_ID),chatID):#18 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lfwd:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall('#', text): if redis.sismember("{}Nbot:Ltag".format(BOT_ID),chatID):#3 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Ltag:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall("[a-zA-Z0-9$@$!%*?&#^-_. +]+", text): if redis.sismember("{}Nbot:Lenglish".format(BOT_ID),chatID):#4 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lenglish:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if re.findall("[ا-ي٠-٩]", text): if redis.sismember("{}Nbot:Larabic".format(BOT_ID),chatID):#5 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Larabic:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) Nlongtext = (redis.get("{}Nbot:Nlongtext".format(BOT_ID)) or 250) if len(text) >= Nlongtext: if redis.sismember("{}Nbot:Llongtext".format(BOT_ID),chatID):#2 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Llongtext:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) li = redis.smembers("{}Nbot:{}:blockTEXTs".format(BOT_ID,chatID)) for word in li: if re.findall(word, text): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) break # text ^ if message.entities : if redis.sismember("{}Nbot:Lmarkdown".format(BOT_ID),chatID):#6 for entitie in message.entities: if entitie.type is "text_link": Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lmarkdown:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) break if message.via_bot: if redis.sismember("{}Nbot:Linline".format(BOT_ID),chatID):#7 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Linline:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.reply_markup: if redis.sismember("{}Nbot:Linline".format(BOT_ID),chatID): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Linline:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.sticker: if redis.sismember("{}Nbot:Lsticker".format(BOT_ID),chatID):#8 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lsticker:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) elif redis.sismember("{}Nbot:{}:blockSTICKERs".format(BOT_ID,chatID),message.sticker.file_id): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.animation: if redis.sismember("{}Nbot:Lgifs".format(BOT_ID),chatID):#9 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lgifs:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) elif redis.sismember("{}Nbot:{}:blockanimations".format(BOT_ID,chatID),message.animation.file_id): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.audio: if redis.sismember("{}Nbot:Lmusic".format(BOT_ID),chatID):#10 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lmusic:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.voice: if redis.sismember("{}Nbot:Lvoice".format(BOT_ID),chatID):#11 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lvoice:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.video: if redis.sismember("{}Nbot:Lvideo".format(BOT_ID),chatID):#12 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lvideo:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.document: if redis.sismember("{}Nbot:Lfiles".format(BOT_ID),chatID):#13 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lfiles:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.photo: if redis.sismember("{}Nbot:Lphoto".format(BOT_ID),chatID):#14 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lphoto:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) elif redis.sismember("{}Nbot:{}:blockphotos".format(BOT_ID,chatID),message.photo.file_id): Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.contact: if redis.sismember("{}Nbot:Lcontact".format(BOT_ID),chatID):#15 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lcontact:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.new_chat_members: if message.new_chat_members[0].is_bot: if redis.sismember("{}Nbot:Lbots".format(BOT_ID),chatID):#16 first_name = message.new_chat_members[0].first_name username = message.new_chat_members[0].username Bot("kickChatMember",{"chat_id":chatID,"user_id":message.new_chat_members[0].id}) Bot("sendMessage",{"chat_id":chatID,"text":r.kickbotadd.format(username,first_name),"reply_to_message_id":message.message_id,"parse_mode":"html"}) if redis.sismember("{}Nbot:Ljoin".format(BOT_ID),chatID):#17 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if message.forward_date: if redis.sismember("{}Nbot:Lfwd".format(BOT_ID),chatID):#18 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lfwd:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if message.video_note: if redis.sismember("{}Nbot:Lnote".format(BOT_ID),chatID):#19 Bot("deleteMessage",{"chat_id":chatID,"message_id":message.message_id}) if redis.sismember("{}Nbot:Lnote:res".format(BOT_ID),chatID): Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if redis.sismember("{}Nbot:Lflood".format(BOT_ID),chatID) :#20 Max_msg = int((redis.hget("{}Nbot:max_msg".format(BOT_ID),chatID) or 10)) Time_ck = int((redis.hget("{}Nbot:time_ck".format(BOT_ID),chatID) or 3)) User_msg = int((redis.get("{}Nbot:{}:{}:flood".format(BOT_ID,chatID,userID)) or 1)) if User_msg > Max_msg: GetGprank = GPranks(userID,chatID) if GetGprank == "member": if redis.hexists("{}Nbot:floodset".format(BOT_ID),chatID): get = redis.hget("{}Nbot:floodset".format(BOT_ID),chatID) else: get = "res" if get == "res": Bot("restrictChatMember",{"chat_id": chatID,"user_id": userId,"can_send_messages": 0,"can_send_media_messages": 0,"can_send_other_messages": 0, "can_send_polls": 0,"can_change_info": 0,"can_add_web_page_previews": 0,"can_pin_messages": 0,"can_invite_users": 0,}) if get == "ban": Bot("kickChatMember",{"chat_id":chatID,"user_id":userID}) redis.sadd("{}Nbot:{}:restricteds".format(BOT_ID,chatID),userID) BY = "<a href=\"tg://user?id={}\">{}</a>".format(userID,Name(userFN)) Bot("sendMessage",{"chat_id":chatID,"text":r.TKflood.format(BY,Max_msg,Time_ck),"parse_mode":"html"}) redis.setex("{}Nbot:{}:{}:flood".format(BOT_ID,chatID,userID), Time_ck, User_msg+1)
0.15219
0.116036
import paddle import paddle.nn as nn import paddle.fluid.layers as layers from .builder import NECKS from paddle.vision.models.resnet import BasicBlock, BottleneckBlock from ...modules.init import init_backbone_weight, normal_init, kaiming_init, constant_, reset_parameters, xavier_init, init_backbone_weight_simclr def _init_parameters(module, init_linear='normal', std=0.01, bias=0.): assert init_linear in ['normal', 'kaiming'], \ "Undefined init_linear: {}".format(init_linear) for m in module.sublayers(): if isinstance(m, nn.Linear): if init_linear == 'normal': normal_init(m, std=std, bias=bias) else: kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance( m, (nn.BatchNorm1D, nn.BatchNorm2D, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: constant_(m.weight, 1) if m.bias is not None: constant_(m.bias, 0) elif isinstance(m, nn.Conv2D): kaiming_init(m, mode='fan_in', nonlinearity='relu') @NECKS.register() class LinearNeck(nn.Layer): """Linear neck: fc only. """ def __init__(self, in_channels, out_channels, with_avg_pool=True): super(LinearNeck, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.fc = nn.Linear(in_channels, out_channels) # init_backbone_weight(self.fc) self.init_parameters() def init_parameters(self, init_linear='kaiming'): _init_parameters(self, init_linear) def forward(self, x): if self.with_avg_pool: x = self.avgpool(x) return self.fc(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckV1(nn.Layer): """The non-linear neck in MoCo v2: fc-relu-fc. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckV1, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels)) # init_backbone_weight(self.mlp) self.init_parameters() def init_parameters(self, init_linear='kaiming'): _init_parameters(self, init_linear) def forward(self, x): if self.with_avg_pool: x = self.avgpool(x) return self.mlp(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckV2(nn.Layer): """The non-linear neck in MoCo v2: fc-relu-fc. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckV2, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.BatchNorm1D(hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels)) # init_backbone_weight(self.mlp) # self.init_parameters() def init_parameters(self, init_linear='kaiming'): # _init_parameters(self, init_linear) for m in self.sublayers(): if isinstance(m, nn.Linear): xavier_init(m, distribution='uniform') elif isinstance(m, (nn.BatchNorm1D, nn.BatchNorm2D, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: constant_(m.weight, 1) if m.bias is not None: constant_(m.bias, 0) def forward(self, x): if self.with_avg_pool: x = self.avgpool(x) return self.mlp(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckV3(nn.Layer): """MLP""" def __init__(self, in_channels, hid_channels, out_channels): super(NonLinearNeckV3, self).__init__() self.l1 = nn.Linear(in_channels, hid_channels) self.bn1 = nn.BatchNorm1D(hid_channels) self.relu1 = nn.ReLU() self.l2 = nn.Linear(hid_channels, out_channels) def init_parameters(self, init_linear='kaiming'): # _init_parameters(self, init_linear) for m in self.sublayers(): if isinstance(m, nn.Linear): xavier_init(m, distribution='uniform') elif isinstance(m, (nn.BatchNorm1D, nn.BatchNorm2D, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: constant_(m.weight, 1) if m.bias is not None: constant_(m.bias, 0) def forward(self, x): """forward""" x = self.l1(x) x = self.bn1(x) x = self.relu1(x) x = self.l2(x) return x @NECKS.register() class ConvNonLinearNeck(nn.Layer): """ The Convolutioanl Neck proposed by F. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(ConvNonLinearNeck, self).__init__() self.with_avg_pool = with_avg_pool assert with_avg_pool, 'The with_avg_pool must be set to True in ConvNonLinearNeck!' if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.conv = BottleneckBlock(in_channels, in_channels // 4) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels)) init_backbone_weight(self.mlp) def init_parameters(self, init_linear='normal'): _init_parameters(self, init_linear) def forward(self, x): x = self.conv(x) if self.with_avg_pool: x = self.avgpool(x) return self.mlp(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckfc3(nn.Layer): """The non-linear neck in MoCo v2: fc-relu-fc-relu-fc. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckfc3, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.BatchNorm1D(hid_channels), nn.ReLU(), nn.Linear(hid_channels, hid_channels), nn.BatchNorm1D(hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels), nn.BatchNorm1D(out_channels)) init_backbone_weight_simclr(self.mlp) def init_parameters(self, init_linear='normal'): _init_parameters(self, init_linear) def forward(self, x): x = layers.squeeze(x, axes=[]) hidden = self.mlp(x) hidden = layers.l2_normalize(hidden, -1) return hidden @NECKS.register() class MLP2d(nn.Layer): """The non-linear neck in pixpro. """ def __init__(self, in_channels, hid_channels=4096, out_channels=256): super(MLP2d, self).__init__() self.linear1 = nn.Conv2D(in_channels, hid_channels, kernel_size=1, stride=1, padding=0, bias_attr=True) self.bn1 = nn.BatchNorm2D(hid_channels) self.relu1 = nn.ReLU() self.linear2 = nn.Conv2D(hid_channels, out_channels, kernel_size=1, stride=1, padding=0, bias_attr=True) self.init_parameters() def init_parameters(self, init_linear='kaiming'): _init_parameters(self, init_linear) return def forward(self, x): x = self.linear1(x) x = self.bn1(x) x = self.relu1(x) x = self.linear2(x) return x
passl/modeling/necks/base_neck.py
import paddle import paddle.nn as nn import paddle.fluid.layers as layers from .builder import NECKS from paddle.vision.models.resnet import BasicBlock, BottleneckBlock from ...modules.init import init_backbone_weight, normal_init, kaiming_init, constant_, reset_parameters, xavier_init, init_backbone_weight_simclr def _init_parameters(module, init_linear='normal', std=0.01, bias=0.): assert init_linear in ['normal', 'kaiming'], \ "Undefined init_linear: {}".format(init_linear) for m in module.sublayers(): if isinstance(m, nn.Linear): if init_linear == 'normal': normal_init(m, std=std, bias=bias) else: kaiming_init(m, mode='fan_in', nonlinearity='relu') elif isinstance( m, (nn.BatchNorm1D, nn.BatchNorm2D, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: constant_(m.weight, 1) if m.bias is not None: constant_(m.bias, 0) elif isinstance(m, nn.Conv2D): kaiming_init(m, mode='fan_in', nonlinearity='relu') @NECKS.register() class LinearNeck(nn.Layer): """Linear neck: fc only. """ def __init__(self, in_channels, out_channels, with_avg_pool=True): super(LinearNeck, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.fc = nn.Linear(in_channels, out_channels) # init_backbone_weight(self.fc) self.init_parameters() def init_parameters(self, init_linear='kaiming'): _init_parameters(self, init_linear) def forward(self, x): if self.with_avg_pool: x = self.avgpool(x) return self.fc(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckV1(nn.Layer): """The non-linear neck in MoCo v2: fc-relu-fc. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckV1, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels)) # init_backbone_weight(self.mlp) self.init_parameters() def init_parameters(self, init_linear='kaiming'): _init_parameters(self, init_linear) def forward(self, x): if self.with_avg_pool: x = self.avgpool(x) return self.mlp(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckV2(nn.Layer): """The non-linear neck in MoCo v2: fc-relu-fc. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckV2, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.BatchNorm1D(hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels)) # init_backbone_weight(self.mlp) # self.init_parameters() def init_parameters(self, init_linear='kaiming'): # _init_parameters(self, init_linear) for m in self.sublayers(): if isinstance(m, nn.Linear): xavier_init(m, distribution='uniform') elif isinstance(m, (nn.BatchNorm1D, nn.BatchNorm2D, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: constant_(m.weight, 1) if m.bias is not None: constant_(m.bias, 0) def forward(self, x): if self.with_avg_pool: x = self.avgpool(x) return self.mlp(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckV3(nn.Layer): """MLP""" def __init__(self, in_channels, hid_channels, out_channels): super(NonLinearNeckV3, self).__init__() self.l1 = nn.Linear(in_channels, hid_channels) self.bn1 = nn.BatchNorm1D(hid_channels) self.relu1 = nn.ReLU() self.l2 = nn.Linear(hid_channels, out_channels) def init_parameters(self, init_linear='kaiming'): # _init_parameters(self, init_linear) for m in self.sublayers(): if isinstance(m, nn.Linear): xavier_init(m, distribution='uniform') elif isinstance(m, (nn.BatchNorm1D, nn.BatchNorm2D, nn.GroupNorm, nn.SyncBatchNorm)): if m.weight is not None: constant_(m.weight, 1) if m.bias is not None: constant_(m.bias, 0) def forward(self, x): """forward""" x = self.l1(x) x = self.bn1(x) x = self.relu1(x) x = self.l2(x) return x @NECKS.register() class ConvNonLinearNeck(nn.Layer): """ The Convolutioanl Neck proposed by F. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(ConvNonLinearNeck, self).__init__() self.with_avg_pool = with_avg_pool assert with_avg_pool, 'The with_avg_pool must be set to True in ConvNonLinearNeck!' if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.conv = BottleneckBlock(in_channels, in_channels // 4) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels)) init_backbone_weight(self.mlp) def init_parameters(self, init_linear='normal'): _init_parameters(self, init_linear) def forward(self, x): x = self.conv(x) if self.with_avg_pool: x = self.avgpool(x) return self.mlp(x.reshape([x.shape[0], -1])) @NECKS.register() class NonLinearNeckfc3(nn.Layer): """The non-linear neck in MoCo v2: fc-relu-fc-relu-fc. """ def __init__(self, in_channels, hid_channels, out_channels, with_avg_pool=True): super(NonLinearNeckfc3, self).__init__() self.with_avg_pool = with_avg_pool if with_avg_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.mlp = nn.Sequential(nn.Linear(in_channels, hid_channels), nn.BatchNorm1D(hid_channels), nn.ReLU(), nn.Linear(hid_channels, hid_channels), nn.BatchNorm1D(hid_channels), nn.ReLU(), nn.Linear(hid_channels, out_channels), nn.BatchNorm1D(out_channels)) init_backbone_weight_simclr(self.mlp) def init_parameters(self, init_linear='normal'): _init_parameters(self, init_linear) def forward(self, x): x = layers.squeeze(x, axes=[]) hidden = self.mlp(x) hidden = layers.l2_normalize(hidden, -1) return hidden @NECKS.register() class MLP2d(nn.Layer): """The non-linear neck in pixpro. """ def __init__(self, in_channels, hid_channels=4096, out_channels=256): super(MLP2d, self).__init__() self.linear1 = nn.Conv2D(in_channels, hid_channels, kernel_size=1, stride=1, padding=0, bias_attr=True) self.bn1 = nn.BatchNorm2D(hid_channels) self.relu1 = nn.ReLU() self.linear2 = nn.Conv2D(hid_channels, out_channels, kernel_size=1, stride=1, padding=0, bias_attr=True) self.init_parameters() def init_parameters(self, init_linear='kaiming'): _init_parameters(self, init_linear) return def forward(self, x): x = self.linear1(x) x = self.bn1(x) x = self.relu1(x) x = self.linear2(x) return x
0.887881
0.321021
__author__ = "<NAME> <<EMAIL>>, <NAME> <<EMAIL>>" import os import md5 import json import Queue import threading import time class Worker(object): ''' Worker thread for concurrent process of tasks from a queue using multiple threads. This worker is designed to never die, always keeping num_threads threads active. It can work on any function with arbitrary arguemtns using the add_task() method. Example: worker = Worker(50) for i in xrange(100): worker.add_task(func, arg1, arg2) # blocks when queue is full worker.join() # blocks here Args: num_threads: the number of num_threads threads to use from the Queue. queue_size: the number of elements that can be placed in Queue. If 0 then infinite. ''' def __init__(self, num_threads=1, queue_size=0, keep_alive=True, quiet=False): if queue_size != 0 and queue_size < num_threads: raise Exception('queue_size has to be > num_threads to make sense') self.num_threads = num_threads self.queue = Queue.Queue(queue_size) self.threads = [] self.keep_alive = keep_alive self.quiet = quiet self._retain_threads() # Start the threads. # The following extra thread keeps all the threads alive even if they are crashing. # This makes it possible to block on a queue size, have threads fail, and still be able to add # more to the queue because this thread will spawn more new ones to take some stuff off the # queue. self.thr = threading.Thread(target=self._keep_alive, args=[self]) self.thr.setDaemon(True) self.thr.start() def _retain_threads(self): ''' Make sure there at self.num_threads always. ''' while len(self.threads) < self.num_threads: t = threading.Thread(target=self._run, args=[self]) t.setDaemon(True) t.start() self.threads.append(t) def _keep_alive(self, *args): ''' This is called by thread self.t to keep all the self.threads alive forever. ''' while self.keep_alive: # This join(1) here checks if the thread hit an exception and terminated self.threads = [t.join(1) or t for t in self.threads if t.isAlive()] if not self.queue.empty() and self.keep_alive: self._retain_threads() def _end_func(self): ''' Dummy function that when added it stops the threads. ''' pass def _run(self, *args): ''' This is the function the threads have as their targets. ''' while True: (func, args, kargs) = self.queue.get() if func == self._end_func: # Check for dummy function and if so end thread. break func(*args, **kargs) def restart(self): ''' If the threads have been killed by a KeyboardInterrupt, then you can call this on the worker to set keep_alive to True and recreate the extra thread which in turn creates worker threads. ''' self.keep_alive = True self._retain_threads() del self.thr self.thr = threading.Thread(target=self._keep_alive, args=[self]) self.thr.setDaemon(True) self.thr.start() def apply_async(self, func, args): # to match multiprocessing.ThreadPool self.add_task(func, *args) def add_task(self, func, *args, **kargs): ''' Add a task to the queue, blocking if the queue is full. This also resets the threads to do work. ''' if not self.threads: self.restart() self.queue.put((func, args, kargs)) def close(self): # to match multiprocessing.ThreadPool pass def join(self, block=True, timeout=None): ''' Wait for the queue to empty. Args: block: If block is True, this will stall the interpreter at that line until the queue is empty, recreating threads if they die until the queue is empty. If False, this just recreates any stalled threads once, and returns so the interpreter can go on. Setting to False does not ensure that threads will stay alive, but is handy to keep more tasks to work on until you finally want to wait on all them to be finished at the end of your program. ''' if timeout is not None: start_time = time.time() time_join = timeout else: time_join = 100 if block: try: # Keep the threads going until the queue is emptied. # This is the marker to to the threads, so put it in the queue now. for t in range(self.num_threads): self.add_task(self._end_func) while self.threads and (timeout is None or time.time() - start_time < timeout): if self.queue.empty(): raise Exception() time.sleep(0.0001) except KeyboardInterrupt: # self.threads = [t.join(0.01 / self.num_threads) or t for t in self.threads if t.isAlive()] self.keep_alive = False for t in range(self.num_threads): self.add_task(self._end_func) except Exception: # Prevent the keep_alive thread from running self.keep_alive = False # Stop all the work threads. for t in range(self.num_threads): self.add_task(self._end_func) # Wait on threads. self.threads = [t.join(time_join) or t for t in self.threads if t.isAlive()]
web-search-engine/final/utils.py
__author__ = "<NAME> <<EMAIL>>, <NAME> <<EMAIL>>" import os import md5 import json import Queue import threading import time class Worker(object): ''' Worker thread for concurrent process of tasks from a queue using multiple threads. This worker is designed to never die, always keeping num_threads threads active. It can work on any function with arbitrary arguemtns using the add_task() method. Example: worker = Worker(50) for i in xrange(100): worker.add_task(func, arg1, arg2) # blocks when queue is full worker.join() # blocks here Args: num_threads: the number of num_threads threads to use from the Queue. queue_size: the number of elements that can be placed in Queue. If 0 then infinite. ''' def __init__(self, num_threads=1, queue_size=0, keep_alive=True, quiet=False): if queue_size != 0 and queue_size < num_threads: raise Exception('queue_size has to be > num_threads to make sense') self.num_threads = num_threads self.queue = Queue.Queue(queue_size) self.threads = [] self.keep_alive = keep_alive self.quiet = quiet self._retain_threads() # Start the threads. # The following extra thread keeps all the threads alive even if they are crashing. # This makes it possible to block on a queue size, have threads fail, and still be able to add # more to the queue because this thread will spawn more new ones to take some stuff off the # queue. self.thr = threading.Thread(target=self._keep_alive, args=[self]) self.thr.setDaemon(True) self.thr.start() def _retain_threads(self): ''' Make sure there at self.num_threads always. ''' while len(self.threads) < self.num_threads: t = threading.Thread(target=self._run, args=[self]) t.setDaemon(True) t.start() self.threads.append(t) def _keep_alive(self, *args): ''' This is called by thread self.t to keep all the self.threads alive forever. ''' while self.keep_alive: # This join(1) here checks if the thread hit an exception and terminated self.threads = [t.join(1) or t for t in self.threads if t.isAlive()] if not self.queue.empty() and self.keep_alive: self._retain_threads() def _end_func(self): ''' Dummy function that when added it stops the threads. ''' pass def _run(self, *args): ''' This is the function the threads have as their targets. ''' while True: (func, args, kargs) = self.queue.get() if func == self._end_func: # Check for dummy function and if so end thread. break func(*args, **kargs) def restart(self): ''' If the threads have been killed by a KeyboardInterrupt, then you can call this on the worker to set keep_alive to True and recreate the extra thread which in turn creates worker threads. ''' self.keep_alive = True self._retain_threads() del self.thr self.thr = threading.Thread(target=self._keep_alive, args=[self]) self.thr.setDaemon(True) self.thr.start() def apply_async(self, func, args): # to match multiprocessing.ThreadPool self.add_task(func, *args) def add_task(self, func, *args, **kargs): ''' Add a task to the queue, blocking if the queue is full. This also resets the threads to do work. ''' if not self.threads: self.restart() self.queue.put((func, args, kargs)) def close(self): # to match multiprocessing.ThreadPool pass def join(self, block=True, timeout=None): ''' Wait for the queue to empty. Args: block: If block is True, this will stall the interpreter at that line until the queue is empty, recreating threads if they die until the queue is empty. If False, this just recreates any stalled threads once, and returns so the interpreter can go on. Setting to False does not ensure that threads will stay alive, but is handy to keep more tasks to work on until you finally want to wait on all them to be finished at the end of your program. ''' if timeout is not None: start_time = time.time() time_join = timeout else: time_join = 100 if block: try: # Keep the threads going until the queue is emptied. # This is the marker to to the threads, so put it in the queue now. for t in range(self.num_threads): self.add_task(self._end_func) while self.threads and (timeout is None or time.time() - start_time < timeout): if self.queue.empty(): raise Exception() time.sleep(0.0001) except KeyboardInterrupt: # self.threads = [t.join(0.01 / self.num_threads) or t for t in self.threads if t.isAlive()] self.keep_alive = False for t in range(self.num_threads): self.add_task(self._end_func) except Exception: # Prevent the keep_alive thread from running self.keep_alive = False # Stop all the work threads. for t in range(self.num_threads): self.add_task(self._end_func) # Wait on threads. self.threads = [t.join(time_join) or t for t in self.threads if t.isAlive()]
0.535827
0.194483
import typing as tp import numpy as np from static_frame.core.util import mloc from static_frame.core.util import FilePathOrFileLike from static_frame.core.util import write_optional_file from static_frame.core.display import DisplayFormats from static_frame.core.display import DisplayActive from static_frame.core.display import DisplayConfig from static_frame.core.doc_str import doc_inject class IndexBase: STATIC = True _IMMUTABLE_CONSTRUCTOR = None _UFUNC_UNION = None _UFUNC_INTERSECTION = None __slots__ = () # defined in dervied classes #--------------------------------------------------------------------------- # constructors @classmethod def from_pandas(cls, value, *, is_go: bool = False) -> 'IndexBase': ''' Given a Pandas index, return the appropriate IndexBase derived class. ''' import pandas from static_frame import Index from static_frame import IndexGO from static_frame import IndexDate from static_frame import IndexHierarchy from static_frame import IndexHierarchyGO if isinstance(value, pandas.MultiIndex): # iterating over a hierarchucal index will iterate over labels if is_go: return IndexHierarchyGO.from_labels(value) return IndexHierarchy.from_labels(value) elif isinstance(value, pandas.DatetimeIndex): if is_go: raise NotImplementedError('No grow-only version of IndexDate yet exists') return IndexDate(value) if is_go: return IndexGO(value) return Index(value) #--------------------------------------------------------------------------- # name interface @property def name(self) -> tp.Hashable: return self._name #--------------------------------------------------------------------------- # common attributes from the numpy array @property def mloc(self): '''Memory location ''' if self._recache: self._update_array_cache() return mloc(self._labels) @property def dtype(self) -> np.dtype: ''' Return the dtype of the underlying NumPy array. Returns: :py:class:`numpy.dtype` ''' if self._recache: self._update_array_cache() return self._labels.dtype @property def shape(self) -> tp.Tuple[int]: ''' Return a tuple describing the shape of the underlying NumPy array. Returns: :py:class:`tp.Tuple[int]` ''' if self._recache: self._update_array_cache() return self.values.shape @property def ndim(self) -> int: ''' Return the number of dimensions. Returns: :py:class:`int` ''' if self._recache: self._update_array_cache() return self._labels.ndim @property def size(self) -> int: ''' Return the size of the underlying NumPy array. Returns: :py:class:`int` ''' if self._recache: self._update_array_cache() return self._labels.size @property def nbytes(self) -> int: ''' Return the total bytes of the underlying NumPy array. Returns: :py:class:`int` ''' if self._recache: self._update_array_cache() return self._labels.nbytes #--------------------------------------------------------------------------- # set operations def intersection(self, other) -> 'Index': if self._recache: self._update_array_cache() if isinstance(other, np.ndarray): opperand = other else: # assume we can get it from a .values attribute opperand = other.values cls = self.__class__ return cls.from_labels(cls._UFUNC_INTERSECTION(self._labels, opperand)) def union(self, other) -> 'Index': if self._recache: self._update_array_cache() if isinstance(other, np.ndarray): opperand = other else: # assume we can get it from a .values attribute opperand = other.values cls = self.__class__ return cls.from_labels(cls._UFUNC_UNION(self._labels, opperand)) #--------------------------------------------------------------------------- # common display def __repr__(self) -> str: return repr(self.display()) def _repr_html_(self): ''' Provide HTML representation for Jupyter Notebooks. ''' # modify the active display to be force HTML config = DisplayActive.get( display_format=DisplayFormats.HTML_TABLE, type_show=False ) return repr(self.display(config)) #--------------------------------------------------------------------------- # exporters @doc_inject(class_name='Index') def to_html(self, config: tp.Optional[DisplayConfig] = None ): ''' {} ''' config = config or DisplayActive.get(type_show=False) config = config.to_display_config( display_format=DisplayFormats.HTML_TABLE, ) return repr(self.display(config)) @doc_inject(class_name='Index') def to_html_datatables(self, fp: tp.Optional[FilePathOrFileLike] = None, *, show: bool = True, config: tp.Optional[DisplayConfig] = None ) -> str: ''' {} ''' config = config or DisplayActive.get(type_show=False) config = config.to_display_config( display_format=DisplayFormats.HTML_DATATABLES, ) content = repr(self.display(config)) fp = write_optional_file(content=content, fp=fp) if fp and show: import webbrowser webbrowser.open_new_tab(fp) return fp
static_frame/core/index_base.py
import typing as tp import numpy as np from static_frame.core.util import mloc from static_frame.core.util import FilePathOrFileLike from static_frame.core.util import write_optional_file from static_frame.core.display import DisplayFormats from static_frame.core.display import DisplayActive from static_frame.core.display import DisplayConfig from static_frame.core.doc_str import doc_inject class IndexBase: STATIC = True _IMMUTABLE_CONSTRUCTOR = None _UFUNC_UNION = None _UFUNC_INTERSECTION = None __slots__ = () # defined in dervied classes #--------------------------------------------------------------------------- # constructors @classmethod def from_pandas(cls, value, *, is_go: bool = False) -> 'IndexBase': ''' Given a Pandas index, return the appropriate IndexBase derived class. ''' import pandas from static_frame import Index from static_frame import IndexGO from static_frame import IndexDate from static_frame import IndexHierarchy from static_frame import IndexHierarchyGO if isinstance(value, pandas.MultiIndex): # iterating over a hierarchucal index will iterate over labels if is_go: return IndexHierarchyGO.from_labels(value) return IndexHierarchy.from_labels(value) elif isinstance(value, pandas.DatetimeIndex): if is_go: raise NotImplementedError('No grow-only version of IndexDate yet exists') return IndexDate(value) if is_go: return IndexGO(value) return Index(value) #--------------------------------------------------------------------------- # name interface @property def name(self) -> tp.Hashable: return self._name #--------------------------------------------------------------------------- # common attributes from the numpy array @property def mloc(self): '''Memory location ''' if self._recache: self._update_array_cache() return mloc(self._labels) @property def dtype(self) -> np.dtype: ''' Return the dtype of the underlying NumPy array. Returns: :py:class:`numpy.dtype` ''' if self._recache: self._update_array_cache() return self._labels.dtype @property def shape(self) -> tp.Tuple[int]: ''' Return a tuple describing the shape of the underlying NumPy array. Returns: :py:class:`tp.Tuple[int]` ''' if self._recache: self._update_array_cache() return self.values.shape @property def ndim(self) -> int: ''' Return the number of dimensions. Returns: :py:class:`int` ''' if self._recache: self._update_array_cache() return self._labels.ndim @property def size(self) -> int: ''' Return the size of the underlying NumPy array. Returns: :py:class:`int` ''' if self._recache: self._update_array_cache() return self._labels.size @property def nbytes(self) -> int: ''' Return the total bytes of the underlying NumPy array. Returns: :py:class:`int` ''' if self._recache: self._update_array_cache() return self._labels.nbytes #--------------------------------------------------------------------------- # set operations def intersection(self, other) -> 'Index': if self._recache: self._update_array_cache() if isinstance(other, np.ndarray): opperand = other else: # assume we can get it from a .values attribute opperand = other.values cls = self.__class__ return cls.from_labels(cls._UFUNC_INTERSECTION(self._labels, opperand)) def union(self, other) -> 'Index': if self._recache: self._update_array_cache() if isinstance(other, np.ndarray): opperand = other else: # assume we can get it from a .values attribute opperand = other.values cls = self.__class__ return cls.from_labels(cls._UFUNC_UNION(self._labels, opperand)) #--------------------------------------------------------------------------- # common display def __repr__(self) -> str: return repr(self.display()) def _repr_html_(self): ''' Provide HTML representation for Jupyter Notebooks. ''' # modify the active display to be force HTML config = DisplayActive.get( display_format=DisplayFormats.HTML_TABLE, type_show=False ) return repr(self.display(config)) #--------------------------------------------------------------------------- # exporters @doc_inject(class_name='Index') def to_html(self, config: tp.Optional[DisplayConfig] = None ): ''' {} ''' config = config or DisplayActive.get(type_show=False) config = config.to_display_config( display_format=DisplayFormats.HTML_TABLE, ) return repr(self.display(config)) @doc_inject(class_name='Index') def to_html_datatables(self, fp: tp.Optional[FilePathOrFileLike] = None, *, show: bool = True, config: tp.Optional[DisplayConfig] = None ) -> str: ''' {} ''' config = config or DisplayActive.get(type_show=False) config = config.to_display_config( display_format=DisplayFormats.HTML_DATATABLES, ) content = repr(self.display(config)) fp = write_optional_file(content=content, fp=fp) if fp and show: import webbrowser webbrowser.open_new_tab(fp) return fp
0.613005
0.315024
import struct def recv_all(sock, size): received = "" while len(received) < size: data = sock.recv(size - len(received)) if data == "": raise Exception("Lost connection") else: received += data return received class basePacker(object): @classmethod def pack(cls, value): return struct.pack(cls._format, value) @classmethod def unpack(cls, buf, offset = 0): size = struct.calcsize(cls._format) value, = struct.unpack(cls._format, buf[offset:offset + size]) return value, offset + size @classmethod def recv(cls, sock): size = struct.calcsize(cls._format) data = recv_all(sock, size) value, = struct.unpack(cls._format, data) return value class int8Packer(basePacker): _format = '>b' class int16Packer(basePacker): _format = '>h' class int32Packer(basePacker): _format = '>i' class int64Packer(basePacker): _format = '>q' class uint8Packer(basePacker): _format = '>B' class uint16Packer(basePacker): _format = '>H' class uint32Packer(basePacker): _format = '>I' class uint64Packer(basePacker): _format = '>Q' class float32Packer(basePacker): _format = '>f' class float64Packer(basePacker): _format = '>d' class astringPacker(object): @staticmethod def pack(value): asc = value.encode('ascii') return struct.pack(">I", len(asc)) + asc @staticmethod def unpack(buf, offset = 0): length, offset = uint32Packer.unpack(buf, offset) asc = buf[offset:offset + length] return asc.decode('ascii'), offset + length @staticmethod def recv(sock): length = uint32Packer.recv(sock) data = recv_all(sock, length) return str(data) class ustringPacker(object): @staticmethod def pack(value): utf8 = value.encode('utf-8') return struct.pack(">I", len(utf8)) + utf8 @staticmethod def unpack(buf, offset = 0): length, offset = uint32Packer.unpack(buf, offset) utf8 = buf[offset:offset + length] return utf8.decode('utf-8'), offset + length @staticmethod def recv(sock): length = uint32Packer.recv(sock) data = recv_all(sock, length) return data.decode('utf-8') if __name__ == '__main__': s = "abc" print("s = %s" % s) buf = astringPacker.pack(s) print("packed:\n", repr(buf)) s, offset = astringPacker.unpack(buf) print("unpacked: s =", s, ", offset =", offset) s = U"αߢ" print("s = %s" % s) buf = ustringPacker.pack(s) print("packed:\n", repr(buf)) s, offset = ustringPacker.unpack(buf) print("unpacked: s =", s, ", offset =", offset)
tyger.py
import struct def recv_all(sock, size): received = "" while len(received) < size: data = sock.recv(size - len(received)) if data == "": raise Exception("Lost connection") else: received += data return received class basePacker(object): @classmethod def pack(cls, value): return struct.pack(cls._format, value) @classmethod def unpack(cls, buf, offset = 0): size = struct.calcsize(cls._format) value, = struct.unpack(cls._format, buf[offset:offset + size]) return value, offset + size @classmethod def recv(cls, sock): size = struct.calcsize(cls._format) data = recv_all(sock, size) value, = struct.unpack(cls._format, data) return value class int8Packer(basePacker): _format = '>b' class int16Packer(basePacker): _format = '>h' class int32Packer(basePacker): _format = '>i' class int64Packer(basePacker): _format = '>q' class uint8Packer(basePacker): _format = '>B' class uint16Packer(basePacker): _format = '>H' class uint32Packer(basePacker): _format = '>I' class uint64Packer(basePacker): _format = '>Q' class float32Packer(basePacker): _format = '>f' class float64Packer(basePacker): _format = '>d' class astringPacker(object): @staticmethod def pack(value): asc = value.encode('ascii') return struct.pack(">I", len(asc)) + asc @staticmethod def unpack(buf, offset = 0): length, offset = uint32Packer.unpack(buf, offset) asc = buf[offset:offset + length] return asc.decode('ascii'), offset + length @staticmethod def recv(sock): length = uint32Packer.recv(sock) data = recv_all(sock, length) return str(data) class ustringPacker(object): @staticmethod def pack(value): utf8 = value.encode('utf-8') return struct.pack(">I", len(utf8)) + utf8 @staticmethod def unpack(buf, offset = 0): length, offset = uint32Packer.unpack(buf, offset) utf8 = buf[offset:offset + length] return utf8.decode('utf-8'), offset + length @staticmethod def recv(sock): length = uint32Packer.recv(sock) data = recv_all(sock, length) return data.decode('utf-8') if __name__ == '__main__': s = "abc" print("s = %s" % s) buf = astringPacker.pack(s) print("packed:\n", repr(buf)) s, offset = astringPacker.unpack(buf) print("unpacked: s =", s, ", offset =", offset) s = U"αߢ" print("s = %s" % s) buf = ustringPacker.pack(s) print("packed:\n", repr(buf)) s, offset = ustringPacker.unpack(buf) print("unpacked: s =", s, ", offset =", offset)
0.451568
0.225961
import torch.nn as nn import torch.nn.utils.spectral_norm as SN import torchvision import torch def conv_block(in_channels, out_channels, kernel_size, stride, padding=1, bias=True, activation=nn.ReLU(), transpose=False, no_BN=False, all_tanh=False, spec_norm=False): if(transpose): block = [nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, stride=stride, kernel_size=kernel_size, padding=padding, bias=bias) ] else: block = [nn.Conv2d(in_channels=in_channels, out_channels=out_channels, stride=stride, kernel_size=kernel_size, padding=padding, bias=bias) ] if(spec_norm): block[0] = SN(block[0]) elif(not no_BN): block.append(nn.BatchNorm2d(num_features=out_channels)) if(all_tanh): block.append(nn.Tanh()) elif(activation != None): block.append(activation) return block class StandardCNN_Generator(nn.Module): def __init__(self, no_BN=False, all_tanh=False): super(StandardCNN_Generator, self).__init__() self.linear = nn.Sequential(nn.Flatten(), nn.Linear(128, 512*4*4)) self.model = nn.Sequential( *conv_block(in_channels=512, out_channels=256, stride=2, kernel_size=4, transpose=True, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=256, out_channels=128, stride=2, kernel_size=4, transpose=True, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=128, out_channels=64, stride=2, kernel_size=4, transpose=True, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=64, out_channels=3, stride=1, kernel_size=3, transpose=True, no_BN=True, all_tanh=True) ) def forward(self, z): linear = self.linear(z) reshaped = linear.view(-1,512,4,4) return self.model(reshaped) class StandardCNN_Discriminator(nn.Module): def __init__(self, no_BN=False, all_tanh=False, spec_norm=True): super(StandardCNN_Discriminator, self).__init__() self.model = nn.Sequential( *conv_block(in_channels=3, out_channels=64, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=64, out_channels=64, stride=2, no_BN=no_BN, kernel_size=4, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=64, out_channels=128, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=128, out_channels=128, stride=2, no_BN=no_BN, kernel_size=4, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=128, out_channels=256, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=256, out_channels=256, stride=2, no_BN=no_BN, kernel_size=4, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=256, out_channels=512, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation=nn.LeakyReLU(negative_slope=1e-1)), nn.Flatten(), ( SN(nn.Linear(512*4*4, 1)) if spec_norm else nn.Linear(512*4*4, 1)) ) def forward(self, x): return self.model(x) class DCGAN_64_Generator(nn.Module): def __init__(self, no_BN=False, all_tanh=False): super(DCGAN_64_Generator, self).__init__() self.model = nn.Sequential( *conv_block(in_channels=128, out_channels=512, stride=1, bias=False, padding=0, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=512, out_channels=256, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=256, out_channels=128, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=128, out_channels=64, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=64, out_channels=3, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=True, all_tanh=True) ) def forward(self, z): return self.model(z) class DCGAN_64_Discriminator(nn.Module): def __init__(self, no_BN=False, all_tanh=False, spec_norm=False): super(DCGAN_64_Discriminator, self).__init__() self.model = nn.Sequential( *conv_block(in_channels=3, out_channels=64, stride=2, no_BN=True, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=64, out_channels=128, stride=2, no_BN=no_BN, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=128, out_channels=256, stride=2, no_BN=no_BN, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=256, out_channels=512, stride=2, no_BN=no_BN, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=512, out_channels=1, stride=2, no_BN=True, kernel_size=4, bias=False, all_tanh=False, spec_norm=spec_norm, activation=None) ) def forward(self, x): return self.model(x) class InceptionV3(nn.Module): def __init__(self, verbose = False): super(InceptionV3, self).__init__() if verbose: print("Loading the pretrained InceptionV3 model...") inception = torchvision.models.inception_v3(pretrained = True) if verbose: print("Model succesfully loaded!") # Removed the last average pooling layer, so this network outputs the input image features instead of some scalar. self.layers = [ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size = 3, stride = 2), inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size = 3, stride = 2), inception.Mixed_5b, inception.Mixed_5c, inception.Mixed_5d, inception.Mixed_6a, inception.Mixed_6b, inception.Mixed_6c, inception.Mixed_6d, inception.Mixed_6e, inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c ] self.model = nn.Sequential(*self.layers) # This model will not be trained for the purposes of this project. for parameter in self.parameters(): parameter.requires_grad = False def forward(self, x): x = torch.nn.functional.interpolate(x, size = (299, 299), mode = 'bilinear', align_corners = False) # Move input from range [0, 1] to [-1, 1] x = 2 * x - 1 # Run model through the network (last layer removed) x = self.model(x) return x
models.py
import torch.nn as nn import torch.nn.utils.spectral_norm as SN import torchvision import torch def conv_block(in_channels, out_channels, kernel_size, stride, padding=1, bias=True, activation=nn.ReLU(), transpose=False, no_BN=False, all_tanh=False, spec_norm=False): if(transpose): block = [nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, stride=stride, kernel_size=kernel_size, padding=padding, bias=bias) ] else: block = [nn.Conv2d(in_channels=in_channels, out_channels=out_channels, stride=stride, kernel_size=kernel_size, padding=padding, bias=bias) ] if(spec_norm): block[0] = SN(block[0]) elif(not no_BN): block.append(nn.BatchNorm2d(num_features=out_channels)) if(all_tanh): block.append(nn.Tanh()) elif(activation != None): block.append(activation) return block class StandardCNN_Generator(nn.Module): def __init__(self, no_BN=False, all_tanh=False): super(StandardCNN_Generator, self).__init__() self.linear = nn.Sequential(nn.Flatten(), nn.Linear(128, 512*4*4)) self.model = nn.Sequential( *conv_block(in_channels=512, out_channels=256, stride=2, kernel_size=4, transpose=True, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=256, out_channels=128, stride=2, kernel_size=4, transpose=True, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=128, out_channels=64, stride=2, kernel_size=4, transpose=True, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=64, out_channels=3, stride=1, kernel_size=3, transpose=True, no_BN=True, all_tanh=True) ) def forward(self, z): linear = self.linear(z) reshaped = linear.view(-1,512,4,4) return self.model(reshaped) class StandardCNN_Discriminator(nn.Module): def __init__(self, no_BN=False, all_tanh=False, spec_norm=True): super(StandardCNN_Discriminator, self).__init__() self.model = nn.Sequential( *conv_block(in_channels=3, out_channels=64, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=64, out_channels=64, stride=2, no_BN=no_BN, kernel_size=4, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=64, out_channels=128, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=128, out_channels=128, stride=2, no_BN=no_BN, kernel_size=4, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=128, out_channels=256, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=256, out_channels=256, stride=2, no_BN=no_BN, kernel_size=4, spec_norm=spec_norm, all_tanh=all_tanh, activation= nn.LeakyReLU(negative_slope=1e-1)), *conv_block(in_channels=256, out_channels=512, stride=1, no_BN=no_BN, kernel_size=3, spec_norm=spec_norm, all_tanh=all_tanh, activation=nn.LeakyReLU(negative_slope=1e-1)), nn.Flatten(), ( SN(nn.Linear(512*4*4, 1)) if spec_norm else nn.Linear(512*4*4, 1)) ) def forward(self, x): return self.model(x) class DCGAN_64_Generator(nn.Module): def __init__(self, no_BN=False, all_tanh=False): super(DCGAN_64_Generator, self).__init__() self.model = nn.Sequential( *conv_block(in_channels=128, out_channels=512, stride=1, bias=False, padding=0, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=512, out_channels=256, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=256, out_channels=128, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=128, out_channels=64, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=no_BN, all_tanh=all_tanh), *conv_block(in_channels=64, out_channels=3, stride=2, bias=False, transpose=True, kernel_size=4, no_BN=True, all_tanh=True) ) def forward(self, z): return self.model(z) class DCGAN_64_Discriminator(nn.Module): def __init__(self, no_BN=False, all_tanh=False, spec_norm=False): super(DCGAN_64_Discriminator, self).__init__() self.model = nn.Sequential( *conv_block(in_channels=3, out_channels=64, stride=2, no_BN=True, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=64, out_channels=128, stride=2, no_BN=no_BN, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=128, out_channels=256, stride=2, no_BN=no_BN, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=256, out_channels=512, stride=2, no_BN=no_BN, kernel_size=4, bias=False, all_tanh=all_tanh, spec_norm=spec_norm, activation= nn.LeakyReLU(negative_slope=2e-1)), *conv_block(in_channels=512, out_channels=1, stride=2, no_BN=True, kernel_size=4, bias=False, all_tanh=False, spec_norm=spec_norm, activation=None) ) def forward(self, x): return self.model(x) class InceptionV3(nn.Module): def __init__(self, verbose = False): super(InceptionV3, self).__init__() if verbose: print("Loading the pretrained InceptionV3 model...") inception = torchvision.models.inception_v3(pretrained = True) if verbose: print("Model succesfully loaded!") # Removed the last average pooling layer, so this network outputs the input image features instead of some scalar. self.layers = [ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size = 3, stride = 2), inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size = 3, stride = 2), inception.Mixed_5b, inception.Mixed_5c, inception.Mixed_5d, inception.Mixed_6a, inception.Mixed_6b, inception.Mixed_6c, inception.Mixed_6d, inception.Mixed_6e, inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c ] self.model = nn.Sequential(*self.layers) # This model will not be trained for the purposes of this project. for parameter in self.parameters(): parameter.requires_grad = False def forward(self, x): x = torch.nn.functional.interpolate(x, size = (299, 299), mode = 'bilinear', align_corners = False) # Move input from range [0, 1] to [-1, 1] x = 2 * x - 1 # Run model through the network (last layer removed) x = self.model(x) return x
0.922731
0.345906
from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 9 _modified_time = 1396763868.373039 _enable_loop = True _template_filename = 'C:\\Users\\<NAME>\\Desktop\\MyStuff\\account\\scripts/user.jsm' _template_uri = 'user.jsm' _source_encoding = 'ascii' import os, os.path, re _exports = [] def render_body(context,**pageargs): __M_caller = context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) user = context.get('user', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 1 __M_writer("\n\n//Ajax call to create a modal\n$(function() {\n\n\t$('#password_button').off('click.password').on('click.password', function(){\n\n\t\t$('#password_button').loadmodal({\n\t\t\turl: '/account/user__password/") # SOURCE LINE 9 __M_writer(str(user.id)) __M_writer("',\n\t\t\tid: 'password_modal',\n\t\t\ttitle: '<h2>Edit Password</h2>',\n\t\t\twidth: '600px',\n\t\t\tajax: {\n\t\t\t\tdataType: 'html',\n\t\t\t\tmethod: 'POST',\n\t\t\t\tsuccess: function(data, status, xhr) {\n\t\t\t\t\tconsole.log($('#password_modal'));\n\t\t\t\t},//\n\t\t\t// any other options from the regular $.ajax call (see JQuery docs)\n\t\t\t\n\t\t\t},\n\t\t});\n\t});\n});\n\n//Ajax call to create a modal\n$(function() {\n\n\t$('#edit_button').off('click.edit').on('click.edit', function(){\n\n\t\t$('#edit_button').loadmodal({\n\t\t\turl: '/account/user__edit/") # SOURCE LINE 32 __M_writer(str(user.id)) __M_writer("',\n\t\t\tid: 'edit_modal',\n\t\t\ttitle: '<h2>Edit Account Info</h2>',\n\t\t\twidth: '600px',\n\t\t\tajax: {\n\t\t\t\tdataType: 'html',\n\t\t\t\tmethod: 'POST',\n\t\t\t\tsuccess: function(data, status, xhr) {\n\t\t\t\t\tconsole.log($('#edit_modal'));\n\t\t\t\t},//\n\t\t\t// any other options from the regular $.ajax call (see JQuery docs)\n\t\t\t\n\t\t\t},\n\t\t});\n\t});\n});") return '' finally: context.caller_stack._pop_frame()
account/cached_templates/scripts/user.jsm.py
from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 9 _modified_time = 1396763868.373039 _enable_loop = True _template_filename = 'C:\\Users\\<NAME>\\Desktop\\MyStuff\\account\\scripts/user.jsm' _template_uri = 'user.jsm' _source_encoding = 'ascii' import os, os.path, re _exports = [] def render_body(context,**pageargs): __M_caller = context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) user = context.get('user', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 1 __M_writer("\n\n//Ajax call to create a modal\n$(function() {\n\n\t$('#password_button').off('click.password').on('click.password', function(){\n\n\t\t$('#password_button').loadmodal({\n\t\t\turl: '/account/user__password/") # SOURCE LINE 9 __M_writer(str(user.id)) __M_writer("',\n\t\t\tid: 'password_modal',\n\t\t\ttitle: '<h2>Edit Password</h2>',\n\t\t\twidth: '600px',\n\t\t\tajax: {\n\t\t\t\tdataType: 'html',\n\t\t\t\tmethod: 'POST',\n\t\t\t\tsuccess: function(data, status, xhr) {\n\t\t\t\t\tconsole.log($('#password_modal'));\n\t\t\t\t},//\n\t\t\t// any other options from the regular $.ajax call (see JQuery docs)\n\t\t\t\n\t\t\t},\n\t\t});\n\t});\n});\n\n//Ajax call to create a modal\n$(function() {\n\n\t$('#edit_button').off('click.edit').on('click.edit', function(){\n\n\t\t$('#edit_button').loadmodal({\n\t\t\turl: '/account/user__edit/") # SOURCE LINE 32 __M_writer(str(user.id)) __M_writer("',\n\t\t\tid: 'edit_modal',\n\t\t\ttitle: '<h2>Edit Account Info</h2>',\n\t\t\twidth: '600px',\n\t\t\tajax: {\n\t\t\t\tdataType: 'html',\n\t\t\t\tmethod: 'POST',\n\t\t\t\tsuccess: function(data, status, xhr) {\n\t\t\t\t\tconsole.log($('#edit_modal'));\n\t\t\t\t},//\n\t\t\t// any other options from the regular $.ajax call (see JQuery docs)\n\t\t\t\n\t\t\t},\n\t\t});\n\t});\n});") return '' finally: context.caller_stack._pop_frame()
0.218253
0.121009
class Item: def __init__(self, itemID, modid='minecraft'): super().__init__() self.modid = modid self.id = itemID def __str__(self) -> str: return f"{self.modid}:{self.id}" WHITE_CANDLE = Item('white_candle') ORANGE_CANDLE = Item('orange_candle') MAGENTA_CANDLE = Item('magenta_candle') LIGHT_BLUE_CANDLE = Item('lisgt_blue_cnadle') YELLOW_CANDLE = Item('yellow_cnadle') LIME_CANDLE = Item('lime_cnadle') PINK_CANDLE = Item('pink_candle') GRAY_CANDLE = Item('gray_cnadle') LIGHT_GRAY_CANDLE = Item('light_gray_candle') CYAN_CANDLE = Item('cyan_candle') PURPLE_CANDLE = Item('purple_candle') BLUE_CANDLE = Item('blue_candle') BROWN_CANDLE = Item('brown_candle') GREEN_CANDLE = Item('green_candle') RED_CANDLE = Item('red_candle') BLACK_CANDLE = Item('black_candle') CANDLE = Item('candle') DEEPSLATE_COAL_ORE = Item('deepslate_coal_ore') COPPER_ORE = Item('copper_ore') DEEPSLATE_COPPER_ORE = Item('deepslate_copper_ore') DEEPSLATE_DIAMOND_ORE = Item('DEEPSLATE_DIAMOND_ORE'.lower()) DEEPSLATE_EMERALD_ORE = Item('DEEPSLATE_EMERALD_ORE'.lower()) FLOWERING_AZALEA_LEAVES = Item('FLOWERING_AZALEA_LEAVES'.lower()) FLOWERING_AZALEA = Item('FLOWERING_AZALEA'.lower()) GLOW_BERRIES = Item('GLOW_BERRIES'.lower()) DEEPSLATE_GOLD_ORE = Item('DEEPSLATE_GOLD_ORE'.lower()) DEEPSLATE_IRON_ORE = Item('DEEPSLATE_IRON_ORE'.lower()) DEEPSLATE_LAPIS_ORE = Item('DEEPSLATE_LAPIS_ORE'.lower()) DEEPSLATE_REDSTONE_ORE = Item('DEEPSLATE_REDSTONE_ORE'.lower()) COBBLED_DEEPSLATE = Item('COBBLED_DEEPSLATE'.lower()) COBBLED_DEEPSLATE_WALL = Item('COBBLED_DEEPSLATE_WALL'.lower()) POLISHED_DEEPSLATE_WALL = Item('POLISHED_DEEPSLATE_WALL'.lower()) POLISHED_DEEPSLATE_STAIRS = Item('polished_deepslate_stairs') DEEPSLATE_TILE_STAIRS = Item('deepslate_tile_stairs') DEEPSLATE_BRICK_STAIRS = Item('deepslate_brick_stairs') OXIDIZED_CUT_COPPER_STAIRS = Item('oxidized_cut_copper_stairs') WEATHERED_CUT_COPPER_STAIRS = Item('weathered_cut_copper_stairs') EXPOSED_CUT_COPPER_STAIRS = Item('exposed_cut_copper_stairs') CUT_COPPER_STAIRS = Item('cut_copper_stairs') WAXED_WEATHERED_CUT_COPPER_STAIRS = Item('waxed_weathered_cut_copper_stairs') WAXED_EXPOSED_CUT_COPPER_STAIRS = Item('waxed_exposed_cut_copper_stairs') WAXED_CUT_COPPER_STAIRS = Item('waxed_cut_copper_stairs') WAXED_OXIDIZED_CUT_COPPER_STAIRS = Item('waxed_oxidized_cut_copper_stairs') COBBLED_DEEPSLATE_SLAB = Item('cobbled_deepslate_slab') POLISHED_DEEPSLATE_SLAB = Item('polished_deepslate_slab') DEEPSLATE_TILE_SLAB = Item('deepslate_tile_slab') DEEPSLATE_BRICK_SLAB = Item('deepslate_brick_slab') WAXED_WEATHERED_CUT_COPPER_SLAB = Item('waxed_weathered_cut_copper_slab') WAXED_EXPOSED_CUT_COPPER_SLAB = Item('waxed_exposed_cut_copper_slab') WAXED_CUT_COPPER_SLAB = Item('waxed_cut_copper_slab') OXIDIZED_CUT_COPPER_SLAB = Item('oxidized_cut_copper_slab') WEATHERED_CUT_COPPER_SLAB = Item('weathered_cut_copper_slab') EXPOSED_CUT_COPPER_SLAB = Item('exposed_cut_copper_slab') CUT_COPPER_SLAB = Item('cut_copper_slab') WAXED_OXIDIZED_CUT_COPPER_SLAB = Item('waxed_oxidized_cut_copper_slab') COBBLED_DEEPSLATE_STAIRS = Item('COBBLED_DEEPSLATE_STAIRS'.lower()) DEEPSLATE_TILE_WALL = Item('DEEPSLATE_TILE_WALL'.lower()) DEEPSLATE_BRICK_WALL = Item('DEEPSLATE_BRICK_WALL'.lower()) CUT_SANDSTONE_SLAB = Item('CUT_SANDSTONE_SLAB'.lower()) AZALEA_LEAVES = Item('AZALEA_LEAVES'.lower()) RAW_GOLD = Item('RAW_GOLD'.lower()) RAW_GOLD_BLOCK = Item('RAW_GOLD_BLOCK'.lower()) AZALEA = Item('AZALEA'.lower()) AIR = Item('air') STONE = Item('stone') GRANITE = Item('granite') POLISHED_GRANITE = Item('polished_granite') DIORITE = Item('diorite') POLISHED_DIORITE = Item('polished_diorite') ANDESITE = Item('andesite') POLISHED_ANDESITE = Item('polished_andesite') GRASS_BLOCK = Item('grass_block') DIRT = Item('dirt') COARSE_DIRT = Item('coarse_dirt') PODZOL = Item('podzol') CRIMSON_NYLIUM = Item('crimson_nylium') WARPED_NYLIUM = Item('warped_nylium') COBBLESTONE = Item('cobblestone') OAK_PLANKS = Item('oak_planks') SPRUCE_PLANKS = Item('spruce_planks') BIRCH_PLANKS = Item('birch_planks') JUNGLE_PLANKS = Item('jungle_planks') ACACIA_PLANKS = Item('acacia_planks') DARK_OAK_PLANKS = Item('dark_oak_planks') CRIMSON_PLANKS = Item('crimson_planks') WARPED_PLANKS = Item('warped_planks') OAK_SAPLING = Item('oak_sapling') SPRUCE_SAPLING = Item('spruce_sapling') BIRCH_SAPLING = Item('birch_sapling') JUNGLE_SAPLING = Item('jungle_sapling') ACACIA_SAPLING = Item('acacia_sapling') DARK_OAK_SAPLING = Item('dark_oak_sapling') BEDROCK = Item('bedrock') SAND = Item('sand') RED_SAND = Item('red_sand') GRAVEL = Item('gravel') GOLD_ORE = Item('gold_ore') IRON_ORE = Item('iron_ore') COAL_ORE = Item('coal_ore') NETHER_GOLD_ORE = Item('nether_gold_ore') OAK_LOG = Item('oak_log') SPRUCE_LOG = Item('spruce_log') BIRCH_LOG = Item('birch_log') JUNGLE_LOG = Item('jungle_log') ACACIA_LOG = Item('acacia_log') DARK_OAK_LOG = Item('dark_oak_log') CRIMSON_STEM = Item('crimson_stem') WARPED_STEM = Item('warped_stem') STRIPPED_OAK_LOG = Item('stripped_oak_log') STRIPPED_SPRUCE_LOG = Item('stripped_spruce_log') STRIPPED_BIRCH_LOG = Item('stripped_birch_log') STRIPPED_JUNGLE_LOG = Item('stripped_jungle_log') STRIPPED_ACACIA_LOG = Item('stripped_acacia_log') STRIPPED_DARK_OAK_LOG = Item('stripped_dark_oak_log') STRIPPED_CRIMSON_STEM = Item('stripped_crimson_stem') STRIPPED_WARPED_STEM = Item('stripped_warped_stem') STRIPPED_OAK_WOOD = Item('stripped_oak_wood') STRIPPED_SPRUCE_WOOD = Item('stripped_spruce_wood') STRIPPED_BIRCH_WOOD = Item('stripped_birch_wood') STRIPPED_JUNGLE_WOOD = Item('stripped_jungle_wood') STRIPPED_ACACIA_WOOD = Item('stripped_acacia_wood') STRIPPED_DARK_OAK_WOOD = Item('stripped_dark_oak_wood') STRIPPED_CRIMSON_HYPHAE = Item('stripped_crimson_hyphae') STRIPPED_WARPED_HYPHAE = Item('stripped_warped_hyphae') OAK_WOOD = Item('oak_wood') SPRUCE_WOOD = Item('spruce_wood') BIRCH_WOOD = Item('birch_wood') JUNGLE_WOOD = Item('jungle_wood') ACACIA_WOOD = Item('acacia_wood') DARK_OAK_WOOD = Item('dark_oak_wood') CRIMSON_HYPHAE = Item('crimson_hyphae') WARPED_HYPHAE = Item('warped_hyphae') OAK_LEAVES = Item('oak_leaves') SPRUCE_LEAVES = Item('spruce_leaves') BIRCH_LEAVES = Item('birch_leaves') JUNGLE_LEAVES = Item('jungle_leaves') ACACIA_LEAVES = Item('acacia_leaves') DARK_OAK_LEAVES = Item('dark_oak_leaves') SPONGE = Item('sponge') WET_SPONGE = Item('wet_sponge') GLASS = Item('glass') LAPIS_ORE = Item('lapis_ore') LAPIS_BLOCK = Item('lapis_block') DISPENSER = Item('dispenser') SANDSTONE = Item('sandstone') CHISELED_SANDSTONE = Item('chiseled_sandstone') CUT_SANDSTONE = Item('cut_sandstone') NOTE_BLOCK = Item('note_block') POWERED_RAIL = Item('powered_rail') DETECTOR_RAIL = Item('detector_rail') STICKY_PISTON = Item('sticky_piston') COBWEB = Item('cobweb') GRASS = Item('grass') FERN = Item('fern') DEAD_BUSH = Item('dead_bush') SEAGRASS = Item('seagrass') SEA_PICKLE = Item('sea_pickle') PISTON = Item('piston') WHITE_WOOL = Item('white_wool') ORANGE_WOOL = Item('orange_wool') MAGENTA_WOOL = Item('magenta_wool') LIGHT_BLUE_WOOL = Item('light_blue_wool') YELLOW_WOOL = Item('yellow_wool') LIME_WOOL = Item('lime_wool') PINK_WOOL = Item('pink_wool') GRAY_WOOL = Item('gray_wool') LIGHT_GRAY_WOOL = Item('light_gray_wool') CYAN_WOOL = Item('cyan_wool') PURPLE_WOOL = Item('purple_wool') BLUE_WOOL = Item('blue_wool') BROWN_WOOL = Item('brown_wool') GREEN_WOOL = Item('green_wool') RED_WOOL = Item('red_wool') BLACK_WOOL = Item('black_wool') DANDELION = Item('dandelion') POPPY = Item('poppy') BLUE_ORCHID = Item('blue_orchid') ALLIUM = Item('allium') AZURE_BLUET = Item('azure_bluet') RED_TULIP = Item('red_tulip') ORANGE_TULIP = Item('orange_tulip') WHITE_TULIP = Item('white_tulip') PINK_TULIP = Item('pink_tulip') OXEYE_DAISY = Item('oxeye_daisy') CORNFLOWER = Item('cornflower') LILY_OF_THE_VALLEY = Item('lily_of_the_valley') WITHER_ROSE = Item('wither_rose') BROWN_MUSHROOM = Item('brown_mushroom') RED_MUSHROOM = Item('red_mushroom') CRIMSON_FUNGUS = Item('crimson_fungus') WARPED_FUNGUS = Item('warped_fungus') CRIMSON_ROOTS = Item('crimson_roots') WARPED_ROOTS = Item('warped_roots') NETHER_SPROUTS = Item('nether_sprouts') WEEPING_VINES = Item('weeping_vines') TWISTING_VINES = Item('twisting_vines') SUGAR_CANE = Item('sugar_cane') KELP = Item('kelp') BAMBOO = Item('bamboo') GOLD_BLOCK = Item('gold_block') IRON_BLOCK = Item('iron_block') OAK_SLAB = Item('oak_slab') SPRUCE_SLAB = Item('spruce_slab') BIRCH_SLAB = Item('birch_slab') JUNGLE_SLAB = Item('jungle_slab') ACACIA_SLAB = Item('acacia_slab') DARK_OAK_SLAB = Item('dark_oak_slab') CRIMSON_SLAB = Item('crimson_slab') WARPED_SLAB = Item('warped_slab') STONE_SLAB = Item('stone_slab') SMOOTH_STONE_SLAB = Item('smooth_stone_slab') SANDSTONE_SLAB = Item('sandstone_slab') CUT_STANDSTONE_SLAB = Item('cut_standstone_slab') PETRIFIED_OAK_SLAB = Item('petrified_oak_slab') COBBLESTONE_SLAB = Item('cobblestone_slab') BRICK_SLAB = Item('brick_slab') STONE_BRICK_SLAB = Item('stone_brick_slab') NETHER_BRICK_SLAB = Item('nether_brick_slab') QUARTZ_SLAB = Item('quartz_slab') RED_SANDSTONE_SLAB = Item('red_sandstone_slab') CUT_RED_SANDSTONE_SLAB = Item('cut_red_sandstone_slab') PURPUR_SLAB = Item('purpur_slab') PRISMARINE_SLAB = Item('prismarine_slab') PRISMARINE_BRICK_SLAB = Item('prismarine_brick_slab') DARK_PRISMARINE_SLAB = Item('dark_prismarine_slab') SMOOTH_QUARTZ = Item('smooth_quartz') SMOOTH_RED_SANDSTONE = Item('smooth_red_sandstone') SMOOTH_SANDSTONE = Item('smooth_sandstone') SMOOTH_STONE = Item('smooth_stone') BRICKS = Item('bricks') TNT = Item('tnt') BOOKSHELF = Item('bookshelf') MOSSY_COBBLESTONE = Item('mossy_cobblestone') OBSIDIAN = Item('obsidian') TORCH = Item('torch') END_ROD = Item('end_rod') CHORUS_PLANT = Item('chorus_plant') CHORUS_FLOWER = Item('chorus_flower') PURPUR_BLOCK = Item('purpur_block') PURPUR_PILLAR = Item('purpur_pillar') PURPUR_STAIRS = Item('purpur_stairs') SPAWNER = Item('spawner') OAK_STAIRS = Item('oak_stairs') CHEST = Item('chest') DIAMOND_ORE = Item('diamond_ore') DIAMOND_BLOCK = Item('diamond_block') CRAFTING_TABLE = Item('crafting_table') FARMLAND = Item('farmland') FURNACE = Item('furnace') LADDER = Item('ladder') RAIL = Item('rail') COBBLESTONE_STAIRS = Item('cobblestone_stairs') LEVER = Item('lever') STONE_PRESSURE_PLATE = Item('stone_pressure_plate') OAK_PRESSURE_PLATE = Item('oak_pressure_plate') SPRUCE_PRESSURE_PLATE = Item('spruce_pressure_plate') BIRCH_PRESSURE_PLATE = Item('birch_pressure_plate') JUNGLE_PRESSURE_PLATE = Item('jungle_pressure_plate') ACACIA_PRESSURE_PLATE = Item('acacia_pressure_plate') DARK_OAK_PRESSURE_PLATE = Item('dark_oak_pressure_plate') CRIMSON_PRESSURE_PLATE = Item('crimson_pressure_plate') WARPED_PRESSURE_PLATE = Item('warped_pressure_plate') POLISHED_BLACKSTONE_PRESSURE_PLATE = Item('polished_blackstone_pressure_plate') REDSTONE_ORE = Item('redstone_ore') REDSTONE_TORCH = Item('redstone_torch') SNOW = Item('snow') ICE = Item('ice') SNOW_BLOCK = Item('snow_block') CACTUS = Item('cactus') CLAY = Item('clay') JUKEBOX = Item('jukebox') OAK_FENCE = Item('oak_fence') SPRUCE_FENCE = Item('spruce_fence') BIRCH_FENCE = Item('birch_fence') JUNGLE_FENCE = Item('jungle_fence') ACACIA_FENCE = Item('acacia_fence') DARK_OAK_FENCE = Item('dark_oak_fence') CRIMSON_FENCE = Item('crimson_fence') WARPED_FENCE = Item('warped_fence') PUMPKIN = Item('pumpkin') CARVED_PUMPKIN = Item('carved_pumpkin') NETHERRACK = Item('netherrack') SOUL_SAND = Item('soul_sand') SOUL_SOIL = Item('soul_soil') BASALT = Item('basalt') POLISHED_BASALT = Item('polished_basalt') SOUL_TORCH = Item('soul_torch') GLOWSTONE = Item('glowstone') JACK_O_LANTERN = Item('jack_o_lantern') OAK_TRAPDOOR = Item('oak_trapdoor') SPRUCE_TRAPDOOR = Item('spruce_trapdoor') BIRCH_TRAPDOOR = Item('birch_trapdoor') JUNGLE_TRAPDOOR = Item('jungle_trapdoor') ACACIA_TRAPDOOR = Item('acacia_trapdoor') DARK_OAK_TRAPDOOR = Item('dark_oak_trapdoor') CRIMSON_TRAPDOOR = Item('crimson_trapdoor') WARPED_TRAPDOOR = Item('warped_trapdoor') INFESTED_STONE = Item('infested_stone') INFESTED_COBBLESTONE = Item('infested_cobblestone') INFESTED_STONE_BRICKS = Item('infested_stone_bricks') INFESTED_MOSSY_STONE_BRICKS = Item('infested_mossy_stone_bricks') INFESTED_CRACKED_STONE_BRICKS = Item('infested_cracked_stone_bricks') INFESTED_CHISELED_STONE_BRICKS = Item('infested_chiseled_stone_bricks') STONE_BRICKS = Item('stone_bricks') MOSSY_STONE_BRICKS = Item('mossy_stone_bricks') CRACKED_STONE_BRICKS = Item('cracked_stone_bricks') CHISELED_STONE_BRICKS = Item('chiseled_stone_bricks') BROWN_MUSHROOM_BLOCK = Item('brown_mushroom_block') RED_MUSHROOM_BLOCK = Item('red_mushroom_block') MUSHROOM_STEM = Item('mushroom_stem') IRON_BARS = Item('iron_bars') CHAIN = Item('chain') GLASS_PANE = Item('glass_pane') MELON = Item('melon') VINE = Item('vine') OAK_FENCE_GATE = Item('oak_fence_gate') SPRUCE_FENCE_GATE = Item('spruce_fence_gate') BIRCH_FENCE_GATE = Item('birch_fence_gate') JUNGLE_FENCE_GATE = Item('jungle_fence_gate') ACACIA_FENCE_GATE = Item('acacia_fence_gate') DARK_OAK_FENCE_GATE = Item('dark_oak_fence_gate') CRIMSON_FENCE_GATE = Item('crimson_fence_gate') WARPED_FENCE_GATE = Item('warped_fence_gate') BRICK_STAIRS = Item('brick_stairs') STONE_BRICK_STAIRS = Item('stone_brick_stairs') MYCELIUM = Item('mycelium') LILY_PAD = Item('lily_pad') NETHER_BRICKS = Item('nether_bricks') CRACKED_NETHER_BRICKS = Item('cracked_nether_bricks') CHISELED_NETHER_BRICKS = Item('chiseled_nether_bricks') NETHER_BRICK_FENCE = Item('nether_brick_fence') NETHER_BRICK_STAIRS = Item('nether_brick_stairs') ENCHANTING_TABLE = Item('enchanting_table') END_PORTAL_FRAME = Item('end_portal_frame') END_STONE = Item('end_stone') END_STONE_BRICKS = Item('end_stone_bricks') DRAGON_EGG = Item('dragon_egg') REDSTONE_LAMP = Item('redstone_lamp') SANDSTONE_STAIRS = Item('sandstone_stairs') EMERALD_ORE = Item('emerald_ore') ENDER_CHEST = Item('ender_chest') TRIPWIRE_HOOK = Item('tripwire_hook') EMERALD_BLOCK = Item('emerald_block') SPRUCE_STAIRS = Item('spruce_stairs') BIRCH_STAIRS = Item('birch_stairs') JUNGLE_STAIRS = Item('jungle_stairs') CRIMSON_STAIRS = Item('crimson_stairs') WARPED_STAIRS = Item('warped_stairs') COMMAND_BLOCK = Item('command_block') BEACON = Item('beacon') COBBLESTONE_WALL = Item('cobblestone_wall') MOSSY_COBBLESTONE_WALL = Item('mossy_cobblestone_wall') BRICK_WALL = Item('brick_wall') PRISMARINE_WALL = Item('prismarine_wall') RED_SANDSTONE_WALL = Item('red_sandstone_wall') MOSSY_STONE_BRICK_WALL = Item('mossy_stone_brick_wall') GRANITE_WALL = Item('granite_wall') STONE_BRICK_WALL = Item('stone_brick_wall') NETHER_BRICK_WALL = Item('nether_brick_wall') ANDESITE_WALL = Item('andesite_wall') RED_NETHER_BRICK_WALL = Item('red_nether_brick_wall') SANDSTONE_WALL = Item('sandstone_wall') END_STONE_BRICK_WALL = Item('end_stone_brick_wall') DIORITE_WALL = Item('diorite_wall') BLACKSTONE_WALL = Item('blackstone_wall') POLISHED_BLACKSTONE_WALL = Item('polished_blackstone_wall') POLISHED_BLACKSTONE_BRICK_WALL = Item('polished_blackstone_brick_wall') STONE_BUTTON = Item('stone_button') OAK_BUTTON = Item('oak_button') SPRUCE_BUTTON = Item('spruce_button') BIRCH_BUTTON = Item('birch_button') JUNGLE_BUTTON = Item('jungle_button') ACACIA_BUTTON = Item('acacia_button') DARK_OAK_BUTTON = Item('dark_oak_button') CRIMSON_BUTTON = Item('crimson_button') WARPED_BUTTON = Item('warped_button') POLISHED_BLACKSTONE_BUTTON = Item('polished_blackstone_button') ANVIL = Item('anvil') CHIPPED_ANVIL = Item('chipped_anvil') DAMAGED_ANVIL = Item('damaged_anvil') TRAPPED_CHEST = Item('trapped_chest') LIGHT_WEIGHTED_PRESSURE_PLATE = Item('light_weighted_pressure_plate') HEAVY_WEIGHTED_PRESSURE_PLATE = Item('heavy_weighted_pressure_plate') DAYLIGHT_DETECTOR = Item('daylight_detector') REDSTONE_BLOCK = Item('redstone_block') NETHER_QUARTZ_ORE = Item('nether_quartz_ore') HOPPER = Item('hopper') CHISELED_QUARTZ_BLOCK = Item('chiseled_quartz_block') QUARTZ_BLOCK = Item('quartz_block') QUARTZ_BRICKS = Item('quartz_bricks') QUARTZ_PILLAR = Item('quartz_pillar') QUARTZ_STAIRS = Item('quartz_stairs') ACTIVATOR_RAIL = Item('activator_rail') DROPPER = Item('dropper') WHITE_TERRACOTTA = Item('white_terracotta') ORANGE_TERRACOTTA = Item('orange_terracotta') MAGENTA_TERRACOTTA = Item('magenta_terracotta') LIGHT_BLUE_TERRACOTTA = Item('light_blue_terracotta') YELLOW_TERRACOTTA = Item('yellow_terracotta') LIME_TERRACOTTA = Item('lime_terracotta') PINK_TERRACOTTA = Item('pink_terracotta') GRAY_TERRACOTTA = Item('gray_terracotta') LIGHT_GRAY_TERRACOTTA = Item('light_gray_terracotta') CYAN_TERRACOTTA = Item('cyan_terracotta') PURPLE_TERRACOTTA = Item('purple_terracotta') BLUE_TERRACOTTA = Item('blue_terracotta') BROWN_TERRACOTTA = Item('brown_terracotta') GREEN_TERRACOTTA = Item('green_terracotta') RED_TERRACOTTA = Item('red_terracotta') BLACK_TERRACOTTA = Item('black_terracotta') BARRIER = Item('barrier') IRON_TRAPDOOR = Item('iron_trapdoor') HAY_BLOCK = Item('hay_block') WHITE_CARPET = Item('white_carpet') ORANGE_CARPET = Item('orange_carpet') MAGENTA_CARPET = Item('magenta_carpet') LIGHT_BLUE_CARPET = Item('light_blue_carpet') YELLOW_CARPET = Item('yellow_carpet') LIME_CARPET = Item('lime_carpet') PINK_CARPET = Item('pink_carpet') GRAY_CARPET = Item('gray_carpet') LIGHT_GRAY_CARPET = Item('light_gray_carpet') CYAN_CARPET = Item('cyan_carpet') PURPLE_CARPET = Item('purple_carpet') BLUE_CARPET = Item('blue_carpet') BROWN_CARPET = Item('brown_carpet') GREEN_CARPET = Item('green_carpet') RED_CARPET = Item('red_carpet') BLACK_CARPET = Item('black_carpet') TERRACOTTA = Item('terracotta') COAL_BLOCK = Item('coal_block') PACKED_ICE = Item('packed_ice') ACACIA_STAIRS = Item('acacia_stairs') DARK_OAK_STAIRS = Item('dark_oak_stairs') SLIME_BLOCK = Item('slime_block') GRASS_PATH = Item('grass_path') SUNFLOWER = Item('sunflower') LILAC = Item('lilac') ROSE_BUSH = Item('rose_bush') PEONY = Item('peony') TALL_GRASS = Item('tall_grass') LARGE_FERN = Item('large_fern') WHITE_STAINED_GLASS = Item('white_stained_glass') ORANGE_STAINED_GLASS = Item('orange_stained_glass') MAGENTA_STAINED_GLASS = Item('magenta_stained_glass') LIGHT_BLUE_STAINED_GLASS = Item('light_blue_stained_glass') YELLOW_STAINED_GLASS = Item('yellow_stained_glass') LIME_STAINED_GLASS = Item('lime_stained_glass') PINK_STAINED_GLASS = Item('pink_stained_glass') GRAY_STAINED_GLASS = Item('gray_stained_glass') LIGHT_GRAY_STAINED_GLASS = Item('light_gray_stained_glass') CYAN_STAINED_GLASS = Item('cyan_stained_glass') PURPLE_STAINED_GLASS = Item('purple_stained_glass') BLUE_STAINED_GLASS = Item('blue_stained_glass') BROWN_STAINED_GLASS = Item('brown_stained_glass') GREEN_STAINED_GLASS = Item('green_stained_glass') RED_STAINED_GLASS = Item('red_stained_glass') BLACK_STAINED_GLASS = Item('black_stained_glass') WHITE_STAINED_GLASS_PANE = Item('white_stained_glass_pane') ORANGE_STAINED_GLASS_PANE = Item('orange_stained_glass_pane') MAGENTA_STAINED_GLASS_PANE = Item('magenta_stained_glass_pane') LIGHT_BLUE_STAINED_GLASS_PANE = Item('light_blue_stained_glass_pane') YELLOW_STAINED_GLASS_PANE = Item('yellow_stained_glass_pane') LIME_STAINED_GLASS_PANE = Item('lime_stained_glass_pane') PINK_STAINED_GLASS_PANE = Item('pink_stained_glass_pane') GRAY_STAINED_GLASS_PANE = Item('gray_stained_glass_pane') LIGHT_GRAY_STAINED_GLASS_PANE = Item('light_gray_stained_glass_pane') CYAN_STAINED_GLASS_PANE = Item('cyan_stained_glass_pane') PURPLE_STAINED_GLASS_PANE = Item('purple_stained_glass_pane') BLUE_STAINED_GLASS_PANE = Item('blue_stained_glass_pane') BROWN_STAINED_GLASS_PANE = Item('brown_stained_glass_pane') GREEN_STAINED_GLASS_PANE = Item('green_stained_glass_pane') RED_STAINED_GLASS_PANE = Item('red_stained_glass_pane') BLACK_STAINED_GLASS_PANE = Item('black_stained_glass_pane') PRISMARINE = Item('prismarine') PRISMARINE_BRICKS = Item('prismarine_bricks') DARK_PRISMARINE = Item('dark_prismarine') PRISMARINE_STAIRS = Item('prismarine_stairs') PRISMARINE_BRICK_STAIRS = Item('prismarine_brick_stairs') DARK_PRISMARINE_STAIRS = Item('dark_prismarine_stairs') SEA_LANTERN = Item('sea_lantern') RED_SANDSTONE = Item('red_sandstone') CHISELED_RED_SANDSTONE = Item('chiseled_red_sandstone') CUT_RED_SANDSTONE = Item('cut_red_sandstone') RED_SANDSTONE_STAIRS = Item('red_sandstone_stairs') REPEATING_COMMAND_BLOCK = Item('repeating_command_block') CHAIN_COMMAND_BLOCK = Item('chain_command_block') MAGMA_BLOCK = Item('magma_block') NETHER_WART_BLOCK = Item('nether_wart_block') WARPED_WART_BLOCK = Item('warped_wart_block') RED_NETHER_BRICKS = Item('red_nether_bricks') BONE_BLOCK = Item('bone_block') STRUCTURE_VOID = Item('structure_void') OBSERVER = Item('observer') SHULKER_BOX = Item('shulker_box') WHITE_SHULKER_BOX = Item('white_shulker_box') ORANGE_SHULKER_BOX = Item('orange_shulker_box') MAGENTA_SHULKER_BOX = Item('magenta_shulker_box') LIGHT_BLUE_SHULKER_BOX = Item('light_blue_shulker_box') YELLOW_SHULKER_BOX = Item('yellow_shulker_box') LIME_SHULKER_BOX = Item('lime_shulker_box') PINK_SHULKER_BOX = Item('pink_shulker_box') GRAY_SHULKER_BOX = Item('gray_shulker_box') LIGHT_GRAY_SHULKER_BOX = Item('light_gray_shulker_box') CYAN_SHULKER_BOX = Item('cyan_shulker_box') PURPLE_SHULKER_BOX = Item('purple_shulker_box') BLUE_SHULKER_BOX = Item('blue_shulker_box') BROWN_SHULKER_BOX = Item('brown_shulker_box') GREEN_SHULKER_BOX = Item('green_shulker_box') RED_SHULKER_BOX = Item('red_shulker_box') BLACK_SHULKER_BOX = Item('black_shulker_box') WHITE_GLAZED_TERRACOTTA = Item('white_glazed_terracotta') ORANGE_GLAZED_TERRACOTTA = Item('orange_glazed_terracotta') MAGENTA_GLAZED_TERRACOTTA = Item('magenta_glazed_terracotta') LIGHT_BLUE_GLAZED_TERRACOTTA = Item('light_blue_glazed_terracotta') YELLOW_GLAZED_TERRACOTTA = Item('yellow_glazed_terracotta') LIME_GLAZED_TERRACOTTA = Item('lime_glazed_terracotta') PINK_GLAZED_TERRACOTTA = Item('pink_glazed_terracotta') GRAY_GLAZED_TERRACOTTA = Item('gray_glazed_terracotta') LIGHT_GRAY_GLAZED_TERRACOTTA = Item('light_gray_glazed_terracotta') CYAN_GLAZED_TERRACOTTA = Item('cyan_glazed_terracotta') PURPLE_GLAZED_TERRACOTTA = Item('purple_glazed_terracotta') BLUE_GLAZED_TERRACOTTA = Item('blue_glazed_terracotta') BROWN_GLAZED_TERRACOTTA = Item('brown_glazed_terracotta') GREEN_GLAZED_TERRACOTTA = Item('green_glazed_terracotta') RED_GLAZED_TERRACOTTA = Item('red_glazed_terracotta') BLACK_GLAZED_TERRACOTTA = Item('black_glazed_terracotta') WHITE_CONCRETE = Item('white_concrete') ORANGE_CONCRETE = Item('orange_concrete') MAGENTA_CONCRETE = Item('magenta_concrete') LIGHT_BLUE_CONCRETE = Item('light_blue_concrete') YELLOW_CONCRETE = Item('yellow_concrete') LIME_CONCRETE = Item('lime_concrete') PINK_CONCRETE = Item('pink_concrete') GRAY_CONCRETE = Item('gray_concrete') LIGHT_GRAY_CONCRETE = Item('light_gray_concrete') CYAN_CONCRETE = Item('cyan_concrete') PURPLE_CONCRETE = Item('purple_concrete') BLUE_CONCRETE = Item('blue_concrete') BROWN_CONCRETE = Item('brown_concrete') GREEN_CONCRETE = Item('green_concrete') RED_CONCRETE = Item('red_concrete') BLACK_CONCRETE = Item('black_concrete') WHITE_CONCRETE_POWDER = Item('white_concrete_powder') ORANGE_CONCRETE_POWDER = Item('orange_concrete_powder') MAGENTA_CONCRETE_POWDER = Item('magenta_concrete_powder') LIGHT_BLUE_CONCRETE_POWDER = Item('light_blue_concrete_powder') YELLOW_CONCRETE_POWDER = Item('yellow_concrete_powder') LIME_CONCRETE_POWDER = Item('lime_concrete_powder') PINK_CONCRETE_POWDER = Item('pink_concrete_powder') GRAY_CONCRETE_POWDER = Item('gray_concrete_powder') LIGHT_GRAY_CONCRETE_POWDER = Item('light_gray_concrete_powder') CYAN_CONCRETE_POWDER = Item('cyan_concrete_powder') PURPLE_CONCRETE_POWDER = Item('purple_concrete_powder') BLUE_CONCRETE_POWDER = Item('blue_concrete_powder') BROWN_CONCRETE_POWDER = Item('brown_concrete_powder') GREEN_CONCRETE_POWDER = Item('green_concrete_powder') RED_CONCRETE_POWDER = Item('red_concrete_powder') BLACK_CONCRETE_POWDER = Item('black_concrete_powder') TURTLE_EGG = Item('turtle_egg') DEAD_TUBE_CORAL_BLOCK = Item('dead_tube_coral_block') DEAD_BRAIN_CORAL_BLOCK = Item('dead_brain_coral_block') DEAD_BUBBLE_CORAL_BLOCK = Item('dead_bubble_coral_block') DEAD_FIRE_CORAL_BLOCK = Item('dead_fire_coral_block') DEAD_HORN_CORAL_BLOCK = Item('dead_horn_coral_block') TUBE_CORAL_BLOCK = Item('tube_coral_block') BRAIN_CORAL_BLOCK = Item('brain_coral_block') BUBBLE_CORAL_BLOCK = Item('bubble_coral_block') FIRE_CORAL_BLOCK = Item('fire_coral_block') HORN_CORAL_BLOCK = Item('horn_coral_block') TUBE_CORAL = Item('tube_coral') BRAIN_CORAL = Item('brain_coral') BUBBLE_CORAL = Item('bubble_coral') FIRE_CORAL = Item('fire_coral') HORN_CORAL = Item('horn_coral') DEAD_BRAIN_CORAL = Item('dead_brain_coral') DEAD_BUBBLE_CORAL = Item('dead_bubble_coral') DEAD_FIRE_CORAL = Item('dead_fire_coral') DEAD_HORN_CORAL = Item('dead_horn_coral') DEAD_TUBE_CORAL = Item('dead_tube_coral') TUBE_CORAL_FAN = Item('tube_coral_fan') BRAIN_CORAL_FAN = Item('brain_coral_fan') BUBBLE_CORAL_FAN = Item('bubble_coral_fan') FIRE_CORAL_FAN = Item('fire_coral_fan') HORN_CORAL_FAN = Item('horn_coral_fan') DEAD_TUBE_CORAL_FAN = Item('dead_tube_coral_fan') DEAD_BRAIN_CORAL_FAN = Item('dead_brain_coral_fan') DEAD_BUBBLE_CORAL_FAN = Item('dead_bubble_coral_fan') DEAD_FIRE_CORAL_FAN = Item('dead_fire_coral_fan') DEAD_HORN_CORAL_FAN = Item('dead_horn_coral_fan') BLUE_ICE = Item('blue_ice') CONDUIT = Item('conduit') POLISHED_GRANITE_STAIRS = Item('polished_granite_stairs') SMOOTH_RED_SANDSTONE_STAIRS = Item('smooth_red_sandstone_stairs') MOSSY_STONE_BRICK_STAIRS = Item('mossy_stone_brick_stairs') POLISHED_DIORITE_STAIRS = Item('polished_diorite_stairs') MOSSY_COBBLESTONE_STAIRS = Item('mossy_cobblestone_stairs') END_STONE_BRICK_STAIRS = Item('end_stone_brick_stairs') STONE_STAIRS = Item('stone_stairs') SMOOTH_SANDSTONE_STAIRS = Item('smooth_sandstone_stairs') SMOOTH_QUARTZ_STAIRS = Item('smooth_quartz_stairs') GRANITE_STAIRS = Item('granite_stairs') ANDESITE_STAIRS = Item('andesite_stairs') RED_NETHER_BRICK_STAIRS = Item('red_nether_brick_stairs') POLISHED_ANDESITE_STAIRS = Item('polished_andesite_stairs') DIORITE_STAIRS = Item('diorite_stairs') POLISHED_GRANITE_SLAB = Item('polished_granite_slab') SMOOTH_RED_SANDSTONE_SLAB = Item('smooth_red_sandstone_slab') MOSSY_STONE_BRICK_SLAB = Item('mossy_stone_brick_slab') POLISHED_DIORITE_SLAB = Item('polished_diorite_slab') MOSSY_COBBLESTONE_SLAB = Item('mossy_cobblestone_slab') END_STONE_BRICK_SLAB = Item('end_stone_brick_slab') SMOOTH_SANDSTONE_SLAB = Item('smooth_sandstone_slab') SMOOTH_QUARTZ_SLAB = Item('smooth_quartz_slab') GRANITE_SLAB = Item('granite_slab') ANDESITE_SLAB = Item('andesite_slab') RED_NETHER_BRICK_SLAB = Item('red_nether_brick_slab') POLISHED_ANDESITE_SLAB = Item('polished_andesite_slab') DIORITE_SLAB = Item('diorite_slab') SCAFFOLDING = Item('scaffolding') IRON_DOOR = Item('iron_door') OAK_DOOR = Item('oak_door') SPRUCE_DOOR = Item('spruce_door') BIRCH_DOOR = Item('birch_door') JUNGLE_DOOR = Item('jungle_door') ACACIA_DOOR = Item('acacia_door') DARK_OAK_DOOR = Item('dark_oak_door') CRIMSON_DOOR = Item('crimson_door') WARPED_DOOR = Item('warped_door') REPEATER = Item('repeater') COMPARATOR = Item('comparator') STRUCTURE_BLOCK = Item('structure_block') JIGSAW = Item('jigsaw') TURTLE_HELMET = Item('turtle_helmet') SCUTE = Item('scute') FLINT_AND_STEEL = Item('flint_and_steel') APPLE = Item('apple') BOW = Item('bow') ARROW = Item('arrow') COAL = Item('coal') CHARCOAL = Item('charcoal') DIAMOND = Item('diamond') IRON_INGOT = Item('iron_ingot') GOLD_INGOT = Item('gold_ingot') NETHERITE_INGOT = Item('netherite_ingot') NETHERITE_SCRAP = Item('netherite_scrap') WOODEN_SWORD = Item('wooden_sword') WOODEN_SHOVEL = Item('wooden_shovel') WOODEN_PICKAXE = Item('wooden_pickaxe') WOODEN_AXE = Item('wooden_axe') WOODEN_HOE = Item('wooden_hoe') STONE_SWORD = Item('stone_sword') STONE_SHOVEL = Item('stone_shovel') STONE_PICKAXE = Item('stone_pickaxe') STONE_AXE = Item('stone_axe') STONE_HOE = Item('stone_hoe') GOLDEN_SWORD = Item('golden_sword') GOLDEN_SHOVEL = Item('golden_shovel') GOLDEN_PICKAXE = Item('golden_pickaxe') GOLDEN_AXE = Item('golden_axe') GOLDEN_HOE = Item('golden_hoe') IRON_SWORD = Item('iron_sword') IRON_SHOVEL = Item('iron_shovel') IRON_PICKAXE = Item('iron_pickaxe') IRON_AXE = Item('iron_axe') IRON_HOE = Item('iron_hoe') DIAMOND_SWORD = Item('diamond_sword') DIAMOND_SHOVEL = Item('diamond_shovel') DIAMOND_PICKAXE = Item('diamond_pickaxe') DIAMOND_AXE = Item('diamond_axe') DIAMOND_HOE = Item('diamond_hoe') NETHERITE_SWORD = Item('netherite_sword') NETHERITE_SHOVEL = Item('netherite_shovel') NETHERITE_PICKAXE = Item('netherite_pickaxe') NETHERITE_AXE = Item('netherite_axe') NETHERITE_HOE = Item('netherite_hoe') STICK = Item('stick') BOWL = Item('bowl') MUSHROOM_STEW = Item('mushroom_stew') STRING = Item('string') FEATHER = Item('feather') GUNPOWDER = Item('gunpowder') WHEAT_SEEDS = Item('wheat_seeds') WHEAT = Item('wheat') BREAD = Item('bread') LEATHER_HELMET = Item('leather_helmet') LEATHER_CHESTPLATE = Item('leather_chestplate') LEATHER_LEGGINGS = Item('leather_leggings') LEATHER_BOOTS = Item('leather_boots') CHAINMAIL_HELMET = Item('chainmail_helmet') CHAINMAIL_CHESTPLATE = Item('chainmail_chestplate') CHAINMAIL_LEGGINGS = Item('chainmail_leggings') CHAINMAIL_BOOTS = Item('chainmail_boots') IRON_HELMET = Item('iron_helmet') IRON_CHESTPLATE = Item('iron_chestplate') IRON_LEGGINGS = Item('iron_leggings') IRON_BOOTS = Item('iron_boots') DIAMOND_HELMET = Item('diamond_helmet') DIAMOND_CHESTPLATE = Item('diamond_chestplate') DIAMOND_LEGGINGS = Item('diamond_leggings') DIAMOND_BOOTS = Item('diamond_boots') GOLDEN_HELMET = Item('golden_helmet') GOLDEN_CHESTPLATE = Item('golden_chestplate') GOLDEN_LEGGINGS = Item('golden_leggings') GOLDEN_BOOTS = Item('golden_boots') NETHERITE_HELMET = Item('netherite_helmet') NETHERITE_CHESTPLATE = Item('netherite_chestplate') NETHERITE_LEGGINGS = Item('netherite_leggings') NETHERITE_BOOTS = Item('netherite_boots') FLINT = Item('flint') PORKCHOP = Item('porkchop') COOKED_PORKCHOP = Item('cooked_porkchop') PAINTING = Item('painting') GOLDEN_APPLE = Item('golden_apple') ENCHANTED_GOLDEN_APPLE = Item('enchanted_golden_apple') OAK_SIGN = Item('oak_sign') SPRUCE_SIGN = Item('spruce_sign') BIRCH_SIGN = Item('birch_sign') JUNGLE_SIGN = Item('jungle_sign') ACACIA_SIGN = Item('acacia_sign') DARK_OAK_SIGN = Item('dark_oak_sign') CRIMSON_SIGN = Item('crimson_sign') WARPED_SIGN = Item('warped_sign') BUCKET = Item('bucket') WATER_BUCKET = Item('water_bucket') LAVA_BUCKET = Item('lava_bucket') MINECART = Item('minecart') SADDLE = Item('saddle') REDSTONE = Item('redstone') SNOWBALL = Item('snowball') OAK_BOAT = Item('oak_boat') LEATHER = Item('leather') MILK_BUCKET = Item('milk_bucket') PUFFERFISH_BUCKET = Item('pufferfish_bucket') SALMON_BUCKET = Item('salmon_bucket') COD_BUCKET = Item('cod_bucket') TROPICAL_FISH_BUCKET = Item('tropical_fish_bucket') BRICK = Item('brick') CLAY_BALL = Item('clay_ball') DRIED_KELP_BLOCK = Item('dried_kelp_block') PAPER = Item('paper') BOOK = Item('book') SLIME_BALL = Item('slime_ball') CHEST_MINECART = Item('chest_minecart') FURNACE_MINECART = Item('furnace_minecart') EGG = Item('egg') COMPASS = Item('compass') FISHING_ROD = Item('fishing_rod') CLOCK = Item('clock') GLOWSTONE_DUST = Item('glowstone_dust') COD = Item('cod') SALMON = Item('salmon') TROPICAL_FISH = Item('tropical_fish') PUFFERFISH = Item('pufferfish') COOKED_COD = Item('cooked_cod') COOKED_SALMON = Item('cooked_salmon') INK_SAC = Item('ink_sac') COCOA_BEANS = Item('cocoa_beans') LAPIS_LAZULI = Item('lapis_lazuli') WHITE_DYE = Item('white_dye') ORANGE_DYE = Item('orange_dye') MAGENTA_DYE = Item('magenta_dye') LIGHT_BLUE_DYE = Item('light_blue_dye') YELLOW_DYE = Item('yellow_dye') LIME_DYE = Item('lime_dye') PINK_DYE = Item('pink_dye') GRAY_DYE = Item('gray_dye') LIGHT_GRAY_DYE = Item('light_gray_dye') CYAN_DYE = Item('cyan_dye') PURPLE_DYE = Item('purple_dye') BLUE_DYE = Item('blue_dye') BROWN_DYE = Item('brown_dye') GREEN_DYE = Item('green_dye') RED_DYE = Item('red_dye') BLACK_DYE = Item('black_dye') BONE_MEAL = Item('bone_meal') BONE = Item('bone') SUGAR = Item('sugar') CAKE = Item('cake') WHITE_BED = Item('white_bed') ORANGE_BED = Item('orange_bed') MAGENTA_BED = Item('magenta_bed') LIGHT_BLUE_BED = Item('light_blue_bed') YELLOW_BED = Item('yellow_bed') LIME_BED = Item('lime_bed') PINK_BED = Item('pink_bed') GRAY_BED = Item('gray_bed') LIGHT_GRAY_BED = Item('light_gray_bed') CYAN_BED = Item('cyan_bed') PURPLE_BED = Item('purple_bed') BLUE_BED = Item('blue_bed') BROWN_BED = Item('brown_bed') GREEN_BED = Item('green_bed') RED_BED = Item('red_bed') BLACK_BED = Item('black_bed') COOKIE = Item('cookie') FILLED_MAP = Item('filled_map') SHEARS = Item('shears') MELON_SLICE = Item('melon_slice') DRIED_KELP = Item('dried_kelp') PUMPKIN_SEEDS = Item('pumpkin_seeds') MELON_SEEDS = Item('melon_seeds') BEEF = Item('beef') COOKED_BEEF = Item('cooked_beef') CHICKEN = Item('chicken') COOKED_CHICKEN = Item('cooked_chicken') ROTTEN_FLESH = Item('rotten_flesh') ENDER_PEARL = Item('ender_pearl') BLAZE_ROD = Item('blaze_rod') GHAST_TEAR = Item('ghast_tear') GOLD_NUGGET = Item('gold_nugget') NETHER_WART = Item('nether_wart') POTION = Item('potion') GLASS_BOTTLE = Item('glass_bottle') SPIDER_EYE = Item('spider_eye') FERMENTED_SPIDER_EYE = Item('fermented_spider_eye') BLAZE_POWDER = Item('blaze_powder') MAGMA_CREAM = Item('magma_cream') BREWING_STAND = Item('brewing_stand') CAULDRON = Item('cauldron') ENDER_EYE = Item('ender_eye') GLISTERING_MELON_SLICE = Item('glistering_melon_slice') BAT_SPAWN_EGG = Item('bat_spawn_egg') BEE_SPAWN_EGG = Item('bee_spawn_egg') BLAZE_SPAWN_EGG = Item('blaze_spawn_egg') CAT_SPAWN_EGG = Item('cat_spawn_egg') CAVE_SPIDER_SPAWN_EGG = Item('cave_spider_spawn_egg') CHICKEN_SPAWN_EGG = Item('chicken_spawn_egg') COD_SPAWN_EGG = Item('cod_spawn_egg') COW_SPAWN_EGG = Item('cow_spawn_egg') CREEPER_SPAWN_EGG = Item('creeper_spawn_egg') DOLPHIN_SPAWN_EGG = Item('dolphin_spawn_egg') DONKEY_SPAWN_EGG = Item('donkey_spawn_egg') DROWNED_SPAWN_EGG = Item('drowned_spawn_egg') ELDER_GUARDIAN_SPAWN_EGG = Item('elder_guardian_spawn_egg') ENDERMAN_SPAWN_EGG = Item('enderman_spawn_egg') ENDERMITE_SPAWN_EGG = Item('endermite_spawn_egg') EVOKER_SPAWN_EGG = Item('evoker_spawn_egg') FOX_SPAWN_EGG = Item('fox_spawn_egg') GHAST_SPAWN_EGG = Item('ghast_spawn_egg') GUARDIAN_SPAWN_EGG = Item('guardian_spawn_egg') HOGLIN_SPAWN_EGG = Item('hoglin_spawn_egg') HORSE_SPAWN_EGG = Item('horse_spawn_egg') HUSK_SPAWN_EGG = Item('husk_spawn_egg') LLAMA_SPAWN_EGG = Item('llama_spawn_egg') MAGMA_CUBE_SPAWN_EGG = Item('magma_cube_spawn_egg') MOOSHROOM_SPAWN_EGG = Item('mooshroom_spawn_egg') MULE_SPAWN_EGG = Item('mule_spawn_egg') OCELOT_SPAWN_EGG = Item('ocelot_spawn_egg') PANDA_SPAWN_EGG = Item('panda_spawn_egg') PARROT_SPAWN_EGG = Item('parrot_spawn_egg') PHANTOM_SPAWN_EGG = Item('phantom_spawn_egg') PIG_SPAWN_EGG = Item('pig_spawn_egg') PIGLIN_SPAWN_EGG = Item('piglin_spawn_egg') PIGLIN_BRUTE_SPAWN_EGG = Item('piglin_brute_spawn_egg') PILLAGER_SPAWN_EGG = Item('pillager_spawn_egg') POLAR_BEAR_SPAWN_EGG = Item('polar_bear_spawn_egg') PUFFERFISH_SPAWN_EGG = Item('pufferfish_spawn_egg') RABBIT_SPAWN_EGG = Item('rabbit_spawn_egg') RAVAGER_SPAWN_EGG = Item('ravager_spawn_egg') SALMON_SPAWN_EGG = Item('salmon_spawn_egg') SHEEP_SPAWN_EGG = Item('sheep_spawn_egg') SHULKER_SPAWN_EGG = Item('shulker_spawn_egg') SILVERFISH_SPAWN_EGG = Item('silverfish_spawn_egg') SKELETON_SPAWN_EGG = Item('skeleton_spawn_egg') SKELETON_HORSE_SPAWN_EGG = Item('skeleton_horse_spawn_egg') SLIME_SPAWN_EGG = Item('slime_spawn_egg') SPIDER_SPAWN_EGG = Item('spider_spawn_egg') SQUID_SPAWN_EGG = Item('squid_spawn_egg') STRAY_SPAWN_EGG = Item('stray_spawn_egg') STRIDER_SPAWN_EGG = Item('strider_spawn_egg') TRADER_LLAMA_SPAWN_EGG = Item('trader_llama_spawn_egg') TROPICAL_FISH_SPAWN_EGG = Item('tropical_fish_spawn_egg') TURTLE_SPAWN_EGG = Item('turtle_spawn_egg') VEX_SPAWN_EGG = Item('vex_spawn_egg') VILLAGER_SPAWN_EGG = Item('villager_spawn_egg') VINDICATOR_SPAWN_EGG = Item('vindicator_spawn_egg') WANDERING_TRADER_SPAWN_EGG = Item('wandering_trader_spawn_egg') WITCH_SPAWN_EGG = Item('witch_spawn_egg') WITHER_SKELETON_SPAWN_EGG = Item('wither_skeleton_spawn_egg') WOLF_SPAWN_EGG = Item('wolf_spawn_egg') ZOGLIN_SPAWN_EGG = Item('zoglin_spawn_egg') ZOMBIE_SPAWN_EGG = Item('zombie_spawn_egg') ZOMBIE_HORSE_SPAWN_EGG = Item('zombie_horse_spawn_egg') ZOMBIE_VILLAGER_SPAWN_EGG = Item('zombie_villager_spawn_egg') ZOMBIFIED_PIGLIN_SPAWN_EGG = Item('zombified_piglin_spawn_egg') EXPERIENCE_BOTTLE = Item('experience_bottle') FIRE_CHARGE = Item('fire_charge') WRITABLE_BOOK = Item('writable_book') WRITTEN_BOOK = Item('written_book') EMERALD = Item('emerald') ITEM_FRAME = Item('item_frame') FLOWER_POT = Item('flower_pot') CARROT = Item('carrot') POTATO = Item('potato') BAKED_POTATO = Item('baked_potato') POISONOUS_POTATO = Item('poisonous_potato') MAP = Item('map') GOLDEN_CARROT = Item('golden_carrot') SKELETON_SKULL = Item('skeleton_skull') WITHER_SKELETON_SKULL = Item('wither_skeleton_skull') PLAYER_HEAD = Item('player_head') ZOMBIE_HEAD = Item('zombie_head') CREEPER_HEAD = Item('creeper_head') DRAGON_HEAD = Item('dragon_head') CARROT_ON_A_STICK = Item('carrot_on_a_stick') WARPED_FUNGUS_ON_A_STICK = Item('warped_fungus_on_a_stick') NETHER_STAR = Item('nether_star') PUMPKIN_PIE = Item('pumpkin_pie') FIREWORK_ROCKET = Item('firework_rocket') FIREWORK_STAR = Item('firework_star') ENCHANTED_BOOK = Item('enchanted_book') NETHER_BRICK = Item('nether_brick') QUARTZ = Item('quartz') TNT_MINECART = Item('tnt_minecart') HOPPER_MINECART = Item('hopper_minecart') PRISMARINE_SHARD = Item('prismarine_shard') PRISMARINE_CRYSTALS = Item('prismarine_crystals') RABBIT = Item('rabbit') COOKED_RABBIT = Item('cooked_rabbit') RABBIT_STEW = Item('rabbit_stew') RABBIT_FOOT = Item('rabbit_foot') RABBIT_HIDE = Item('rabbit_hide') ARMOR_STAND = Item('armor_stand') IRON_HORSE_ARMOR = Item('iron_horse_armor') GOLDEN_HORSE_ARMOR = Item('golden_horse_armor') DIAMOND_HORSE_ARMOR = Item('diamond_horse_armor') LEATHER_HORSE_ARMOR = Item('leather_horse_armor') LEAD = Item('lead') NAME_TAG = Item('name_tag') COMMAND_BLOCK_MINECART = Item('command_block_minecart') MUTTON = Item('mutton') COOKED_MUTTON = Item('cooked_mutton') WHITE_BANNER = Item('white_banner') ORANGE_BANNER = Item('orange_banner') MAGENTA_BANNER = Item('magenta_banner') LIGHT_BLUE_BANNER = Item('light_blue_banner') YELLOW_BANNER = Item('yellow_banner') LIME_BANNER = Item('lime_banner') PINK_BANNER = Item('pink_banner') GRAY_BANNER = Item('gray_banner') LIGHT_GRAY_BANNER = Item('light_gray_banner') CYAN_BANNER = Item('cyan_banner') PURPLE_BANNER = Item('purple_banner') BLUE_BANNER = Item('blue_banner') BROWN_BANNER = Item('brown_banner') GREEN_BANNER = Item('green_banner') RED_BANNER = Item('red_banner') BLACK_BANNER = Item('black_banner') END_CRYSTAL = Item('end_crystal') CHORUS_FRUIT = Item('chorus_fruit') POPPED_CHORUS_FRUIT = Item('popped_chorus_fruit') BEETROOT = Item('beetroot') BEETROOT_SEEDS = Item('beetroot_seeds') BEETROOT_SOUP = Item('beetroot_soup') DRAGON_BREATH = Item('dragon_breath') SPLASH_POTION = Item('splash_potion') SPECTRAL_ARROW = Item('spectral_arrow') TIPPED_ARROW = Item('tipped_arrow') LINGERING_POTION = Item('lingering_potion') SHIELD = Item('shield') ELYTRA = Item('elytra') SPRUCE_BOAT = Item('spruce_boat') BIRCH_BOAT = Item('birch_boat') JUNGLE_BOAT = Item('jungle_boat') ACACIA_BOAT = Item('acacia_boat') DARK_OAK_BOAT = Item('dark_oak_boat') TOTEM_OF_UNDYING = Item('totem_of_undying') SHULKER_SHELL = Item('shulker_shell') IRON_NUGGET = Item('iron_nugget') KNOWLEDGE_BOOK = Item('knowledge_book') DEBUG_STICK = Item('debug_stick') MUSIC_DISC_13 = Item('music_disc_13') MUSIC_DISC_CAT = Item('music_disc_cat') MUSIC_DISC_BLOCKS = Item('music_disc_blocks') MUSIC_DISC_CHIRP = Item('music_disc_chirp') MUSIC_DISC_FAR = Item('music_disc_far') MUSIC_DISC_MALL = Item('music_disc_mall') MUSIC_DISC_MELLOHI = Item('music_disc_mellohi') MUSIC_DISC_STAL = Item('music_disc_stal') MUSIC_DISC_STRAD = Item('music_disc_strad') MUSIC_DISC_WARD = Item('music_disc_ward') MUSIC_DISC_11 = Item('music_disc_11') MUSIC_DISC_WAIT = Item('music_disc_wait') MUSIC_DISC_PIGSTEP = Item('music_disc_pigstep') TRIDENT = Item('trident') PHANTOM_MEMBRANE = Item('phantom_membrane') NAUTILUS_SHELL = Item('nautilus_shell') HEART_OF_THE_SEA = Item('heart_of_the_sea') CROSSBOW = Item('crossbow') SUSPICIOUS_STEW = Item('suspicious_stew') LOOM = Item('loom') FLOWER_BANNER_PATTERN = Item('flower_banner_pattern') CREEPER_BANNER_PATTERN = Item('creeper_banner_pattern') SKULL_BANNER_PATTERN = Item('skull_banner_pattern') MOJANG_BANNER_PATTERN = Item('mojang_banner_pattern') GLOBE_BANNER_PATTER = Item('globe_banner_patter') PIGLIN_BANNER_PATTERN = Item('piglin_banner_pattern') COMPOSTER = Item('composter') BARREL = Item('barrel') SMOKER = Item('smoker') BLAST_FURNACE = Item('blast_furnace') CARTOGRAPHY_TABLE = Item('cartography_table') FLETCHING_TABLE = Item('fletching_table') GRINDSTONE = Item('grindstone') LECTERN = Item('lectern') SMITHING_TABLE = Item('smithing_table') STONECUTTER = Item('stonecutter') BELL = Item('bell') LANTERN = Item('lantern') SOUL_LANTERN = Item('soul_lantern') SWEET_BERRIES = Item('sweet_berries') CAMPFIRE = Item('campfire') SOUL_CAMPFIRE = Item('soul_campfire') SHROOMLIGHT = Item('shroomlight') HONEYCOMB = Item('honeycomb') BEE_NEST = Item('bee_nest') BEEHIVE = Item('beehive') HONEY_BOTTLE = Item('honey_bottle') HONEY_BLOCK = Item('honey_block') HONEYCOMB_BLOCK = Item('honeycomb_block') LODESTONE = Item('lodestone') NETHERITE_BLOCK = Item('netherite_block') ANCIENT_DEBRIS = Item('ancient_debris') TARGET = Item('target') CRYING_OBSIDIAN = Item('crying_obsidian') BLACKSTONE = Item('blackstone') BLACKSTONE_SLAB = Item('blackstone_slab') BLACKSTONE_STAIRS = Item('blackstone_stairs') GILDED_BLACKSTONE = Item('gilded_blackstone') POLISHED_BLACKSTONE = Item('polished_blackstone') POLISHED_BLACKSTONE_SLAB = Item('polished_blackstone_slab') POLISHED_BLACKSTONE_STAIRS = Item('polished_blackstone_stairs') CHISELED_POLISHED_BLACKSTONE = Item('chiseled_polished_blackstone') POLISHED_BLACKSTONE_BRICKS = Item('polished_blackstone_bricks') POLISHED_BLACKSTONE_BRICK_SLAB = Item('polished_blackstone_brick_slab') POLISHED_BLACKSTONE_BRICK_STAIRS = Item('polished_blackstone_brick_stairs') CRACKED_POLISHED_BLACKSTONE_BRICKS = Item('cracked_polished_blackstone_bricks') RESPAWN_ANCHOR = Item('respawn_anchor')
MinecraftDataHelper/items.py
class Item: def __init__(self, itemID, modid='minecraft'): super().__init__() self.modid = modid self.id = itemID def __str__(self) -> str: return f"{self.modid}:{self.id}" WHITE_CANDLE = Item('white_candle') ORANGE_CANDLE = Item('orange_candle') MAGENTA_CANDLE = Item('magenta_candle') LIGHT_BLUE_CANDLE = Item('lisgt_blue_cnadle') YELLOW_CANDLE = Item('yellow_cnadle') LIME_CANDLE = Item('lime_cnadle') PINK_CANDLE = Item('pink_candle') GRAY_CANDLE = Item('gray_cnadle') LIGHT_GRAY_CANDLE = Item('light_gray_candle') CYAN_CANDLE = Item('cyan_candle') PURPLE_CANDLE = Item('purple_candle') BLUE_CANDLE = Item('blue_candle') BROWN_CANDLE = Item('brown_candle') GREEN_CANDLE = Item('green_candle') RED_CANDLE = Item('red_candle') BLACK_CANDLE = Item('black_candle') CANDLE = Item('candle') DEEPSLATE_COAL_ORE = Item('deepslate_coal_ore') COPPER_ORE = Item('copper_ore') DEEPSLATE_COPPER_ORE = Item('deepslate_copper_ore') DEEPSLATE_DIAMOND_ORE = Item('DEEPSLATE_DIAMOND_ORE'.lower()) DEEPSLATE_EMERALD_ORE = Item('DEEPSLATE_EMERALD_ORE'.lower()) FLOWERING_AZALEA_LEAVES = Item('FLOWERING_AZALEA_LEAVES'.lower()) FLOWERING_AZALEA = Item('FLOWERING_AZALEA'.lower()) GLOW_BERRIES = Item('GLOW_BERRIES'.lower()) DEEPSLATE_GOLD_ORE = Item('DEEPSLATE_GOLD_ORE'.lower()) DEEPSLATE_IRON_ORE = Item('DEEPSLATE_IRON_ORE'.lower()) DEEPSLATE_LAPIS_ORE = Item('DEEPSLATE_LAPIS_ORE'.lower()) DEEPSLATE_REDSTONE_ORE = Item('DEEPSLATE_REDSTONE_ORE'.lower()) COBBLED_DEEPSLATE = Item('COBBLED_DEEPSLATE'.lower()) COBBLED_DEEPSLATE_WALL = Item('COBBLED_DEEPSLATE_WALL'.lower()) POLISHED_DEEPSLATE_WALL = Item('POLISHED_DEEPSLATE_WALL'.lower()) POLISHED_DEEPSLATE_STAIRS = Item('polished_deepslate_stairs') DEEPSLATE_TILE_STAIRS = Item('deepslate_tile_stairs') DEEPSLATE_BRICK_STAIRS = Item('deepslate_brick_stairs') OXIDIZED_CUT_COPPER_STAIRS = Item('oxidized_cut_copper_stairs') WEATHERED_CUT_COPPER_STAIRS = Item('weathered_cut_copper_stairs') EXPOSED_CUT_COPPER_STAIRS = Item('exposed_cut_copper_stairs') CUT_COPPER_STAIRS = Item('cut_copper_stairs') WAXED_WEATHERED_CUT_COPPER_STAIRS = Item('waxed_weathered_cut_copper_stairs') WAXED_EXPOSED_CUT_COPPER_STAIRS = Item('waxed_exposed_cut_copper_stairs') WAXED_CUT_COPPER_STAIRS = Item('waxed_cut_copper_stairs') WAXED_OXIDIZED_CUT_COPPER_STAIRS = Item('waxed_oxidized_cut_copper_stairs') COBBLED_DEEPSLATE_SLAB = Item('cobbled_deepslate_slab') POLISHED_DEEPSLATE_SLAB = Item('polished_deepslate_slab') DEEPSLATE_TILE_SLAB = Item('deepslate_tile_slab') DEEPSLATE_BRICK_SLAB = Item('deepslate_brick_slab') WAXED_WEATHERED_CUT_COPPER_SLAB = Item('waxed_weathered_cut_copper_slab') WAXED_EXPOSED_CUT_COPPER_SLAB = Item('waxed_exposed_cut_copper_slab') WAXED_CUT_COPPER_SLAB = Item('waxed_cut_copper_slab') OXIDIZED_CUT_COPPER_SLAB = Item('oxidized_cut_copper_slab') WEATHERED_CUT_COPPER_SLAB = Item('weathered_cut_copper_slab') EXPOSED_CUT_COPPER_SLAB = Item('exposed_cut_copper_slab') CUT_COPPER_SLAB = Item('cut_copper_slab') WAXED_OXIDIZED_CUT_COPPER_SLAB = Item('waxed_oxidized_cut_copper_slab') COBBLED_DEEPSLATE_STAIRS = Item('COBBLED_DEEPSLATE_STAIRS'.lower()) DEEPSLATE_TILE_WALL = Item('DEEPSLATE_TILE_WALL'.lower()) DEEPSLATE_BRICK_WALL = Item('DEEPSLATE_BRICK_WALL'.lower()) CUT_SANDSTONE_SLAB = Item('CUT_SANDSTONE_SLAB'.lower()) AZALEA_LEAVES = Item('AZALEA_LEAVES'.lower()) RAW_GOLD = Item('RAW_GOLD'.lower()) RAW_GOLD_BLOCK = Item('RAW_GOLD_BLOCK'.lower()) AZALEA = Item('AZALEA'.lower()) AIR = Item('air') STONE = Item('stone') GRANITE = Item('granite') POLISHED_GRANITE = Item('polished_granite') DIORITE = Item('diorite') POLISHED_DIORITE = Item('polished_diorite') ANDESITE = Item('andesite') POLISHED_ANDESITE = Item('polished_andesite') GRASS_BLOCK = Item('grass_block') DIRT = Item('dirt') COARSE_DIRT = Item('coarse_dirt') PODZOL = Item('podzol') CRIMSON_NYLIUM = Item('crimson_nylium') WARPED_NYLIUM = Item('warped_nylium') COBBLESTONE = Item('cobblestone') OAK_PLANKS = Item('oak_planks') SPRUCE_PLANKS = Item('spruce_planks') BIRCH_PLANKS = Item('birch_planks') JUNGLE_PLANKS = Item('jungle_planks') ACACIA_PLANKS = Item('acacia_planks') DARK_OAK_PLANKS = Item('dark_oak_planks') CRIMSON_PLANKS = Item('crimson_planks') WARPED_PLANKS = Item('warped_planks') OAK_SAPLING = Item('oak_sapling') SPRUCE_SAPLING = Item('spruce_sapling') BIRCH_SAPLING = Item('birch_sapling') JUNGLE_SAPLING = Item('jungle_sapling') ACACIA_SAPLING = Item('acacia_sapling') DARK_OAK_SAPLING = Item('dark_oak_sapling') BEDROCK = Item('bedrock') SAND = Item('sand') RED_SAND = Item('red_sand') GRAVEL = Item('gravel') GOLD_ORE = Item('gold_ore') IRON_ORE = Item('iron_ore') COAL_ORE = Item('coal_ore') NETHER_GOLD_ORE = Item('nether_gold_ore') OAK_LOG = Item('oak_log') SPRUCE_LOG = Item('spruce_log') BIRCH_LOG = Item('birch_log') JUNGLE_LOG = Item('jungle_log') ACACIA_LOG = Item('acacia_log') DARK_OAK_LOG = Item('dark_oak_log') CRIMSON_STEM = Item('crimson_stem') WARPED_STEM = Item('warped_stem') STRIPPED_OAK_LOG = Item('stripped_oak_log') STRIPPED_SPRUCE_LOG = Item('stripped_spruce_log') STRIPPED_BIRCH_LOG = Item('stripped_birch_log') STRIPPED_JUNGLE_LOG = Item('stripped_jungle_log') STRIPPED_ACACIA_LOG = Item('stripped_acacia_log') STRIPPED_DARK_OAK_LOG = Item('stripped_dark_oak_log') STRIPPED_CRIMSON_STEM = Item('stripped_crimson_stem') STRIPPED_WARPED_STEM = Item('stripped_warped_stem') STRIPPED_OAK_WOOD = Item('stripped_oak_wood') STRIPPED_SPRUCE_WOOD = Item('stripped_spruce_wood') STRIPPED_BIRCH_WOOD = Item('stripped_birch_wood') STRIPPED_JUNGLE_WOOD = Item('stripped_jungle_wood') STRIPPED_ACACIA_WOOD = Item('stripped_acacia_wood') STRIPPED_DARK_OAK_WOOD = Item('stripped_dark_oak_wood') STRIPPED_CRIMSON_HYPHAE = Item('stripped_crimson_hyphae') STRIPPED_WARPED_HYPHAE = Item('stripped_warped_hyphae') OAK_WOOD = Item('oak_wood') SPRUCE_WOOD = Item('spruce_wood') BIRCH_WOOD = Item('birch_wood') JUNGLE_WOOD = Item('jungle_wood') ACACIA_WOOD = Item('acacia_wood') DARK_OAK_WOOD = Item('dark_oak_wood') CRIMSON_HYPHAE = Item('crimson_hyphae') WARPED_HYPHAE = Item('warped_hyphae') OAK_LEAVES = Item('oak_leaves') SPRUCE_LEAVES = Item('spruce_leaves') BIRCH_LEAVES = Item('birch_leaves') JUNGLE_LEAVES = Item('jungle_leaves') ACACIA_LEAVES = Item('acacia_leaves') DARK_OAK_LEAVES = Item('dark_oak_leaves') SPONGE = Item('sponge') WET_SPONGE = Item('wet_sponge') GLASS = Item('glass') LAPIS_ORE = Item('lapis_ore') LAPIS_BLOCK = Item('lapis_block') DISPENSER = Item('dispenser') SANDSTONE = Item('sandstone') CHISELED_SANDSTONE = Item('chiseled_sandstone') CUT_SANDSTONE = Item('cut_sandstone') NOTE_BLOCK = Item('note_block') POWERED_RAIL = Item('powered_rail') DETECTOR_RAIL = Item('detector_rail') STICKY_PISTON = Item('sticky_piston') COBWEB = Item('cobweb') GRASS = Item('grass') FERN = Item('fern') DEAD_BUSH = Item('dead_bush') SEAGRASS = Item('seagrass') SEA_PICKLE = Item('sea_pickle') PISTON = Item('piston') WHITE_WOOL = Item('white_wool') ORANGE_WOOL = Item('orange_wool') MAGENTA_WOOL = Item('magenta_wool') LIGHT_BLUE_WOOL = Item('light_blue_wool') YELLOW_WOOL = Item('yellow_wool') LIME_WOOL = Item('lime_wool') PINK_WOOL = Item('pink_wool') GRAY_WOOL = Item('gray_wool') LIGHT_GRAY_WOOL = Item('light_gray_wool') CYAN_WOOL = Item('cyan_wool') PURPLE_WOOL = Item('purple_wool') BLUE_WOOL = Item('blue_wool') BROWN_WOOL = Item('brown_wool') GREEN_WOOL = Item('green_wool') RED_WOOL = Item('red_wool') BLACK_WOOL = Item('black_wool') DANDELION = Item('dandelion') POPPY = Item('poppy') BLUE_ORCHID = Item('blue_orchid') ALLIUM = Item('allium') AZURE_BLUET = Item('azure_bluet') RED_TULIP = Item('red_tulip') ORANGE_TULIP = Item('orange_tulip') WHITE_TULIP = Item('white_tulip') PINK_TULIP = Item('pink_tulip') OXEYE_DAISY = Item('oxeye_daisy') CORNFLOWER = Item('cornflower') LILY_OF_THE_VALLEY = Item('lily_of_the_valley') WITHER_ROSE = Item('wither_rose') BROWN_MUSHROOM = Item('brown_mushroom') RED_MUSHROOM = Item('red_mushroom') CRIMSON_FUNGUS = Item('crimson_fungus') WARPED_FUNGUS = Item('warped_fungus') CRIMSON_ROOTS = Item('crimson_roots') WARPED_ROOTS = Item('warped_roots') NETHER_SPROUTS = Item('nether_sprouts') WEEPING_VINES = Item('weeping_vines') TWISTING_VINES = Item('twisting_vines') SUGAR_CANE = Item('sugar_cane') KELP = Item('kelp') BAMBOO = Item('bamboo') GOLD_BLOCK = Item('gold_block') IRON_BLOCK = Item('iron_block') OAK_SLAB = Item('oak_slab') SPRUCE_SLAB = Item('spruce_slab') BIRCH_SLAB = Item('birch_slab') JUNGLE_SLAB = Item('jungle_slab') ACACIA_SLAB = Item('acacia_slab') DARK_OAK_SLAB = Item('dark_oak_slab') CRIMSON_SLAB = Item('crimson_slab') WARPED_SLAB = Item('warped_slab') STONE_SLAB = Item('stone_slab') SMOOTH_STONE_SLAB = Item('smooth_stone_slab') SANDSTONE_SLAB = Item('sandstone_slab') CUT_STANDSTONE_SLAB = Item('cut_standstone_slab') PETRIFIED_OAK_SLAB = Item('petrified_oak_slab') COBBLESTONE_SLAB = Item('cobblestone_slab') BRICK_SLAB = Item('brick_slab') STONE_BRICK_SLAB = Item('stone_brick_slab') NETHER_BRICK_SLAB = Item('nether_brick_slab') QUARTZ_SLAB = Item('quartz_slab') RED_SANDSTONE_SLAB = Item('red_sandstone_slab') CUT_RED_SANDSTONE_SLAB = Item('cut_red_sandstone_slab') PURPUR_SLAB = Item('purpur_slab') PRISMARINE_SLAB = Item('prismarine_slab') PRISMARINE_BRICK_SLAB = Item('prismarine_brick_slab') DARK_PRISMARINE_SLAB = Item('dark_prismarine_slab') SMOOTH_QUARTZ = Item('smooth_quartz') SMOOTH_RED_SANDSTONE = Item('smooth_red_sandstone') SMOOTH_SANDSTONE = Item('smooth_sandstone') SMOOTH_STONE = Item('smooth_stone') BRICKS = Item('bricks') TNT = Item('tnt') BOOKSHELF = Item('bookshelf') MOSSY_COBBLESTONE = Item('mossy_cobblestone') OBSIDIAN = Item('obsidian') TORCH = Item('torch') END_ROD = Item('end_rod') CHORUS_PLANT = Item('chorus_plant') CHORUS_FLOWER = Item('chorus_flower') PURPUR_BLOCK = Item('purpur_block') PURPUR_PILLAR = Item('purpur_pillar') PURPUR_STAIRS = Item('purpur_stairs') SPAWNER = Item('spawner') OAK_STAIRS = Item('oak_stairs') CHEST = Item('chest') DIAMOND_ORE = Item('diamond_ore') DIAMOND_BLOCK = Item('diamond_block') CRAFTING_TABLE = Item('crafting_table') FARMLAND = Item('farmland') FURNACE = Item('furnace') LADDER = Item('ladder') RAIL = Item('rail') COBBLESTONE_STAIRS = Item('cobblestone_stairs') LEVER = Item('lever') STONE_PRESSURE_PLATE = Item('stone_pressure_plate') OAK_PRESSURE_PLATE = Item('oak_pressure_plate') SPRUCE_PRESSURE_PLATE = Item('spruce_pressure_plate') BIRCH_PRESSURE_PLATE = Item('birch_pressure_plate') JUNGLE_PRESSURE_PLATE = Item('jungle_pressure_plate') ACACIA_PRESSURE_PLATE = Item('acacia_pressure_plate') DARK_OAK_PRESSURE_PLATE = Item('dark_oak_pressure_plate') CRIMSON_PRESSURE_PLATE = Item('crimson_pressure_plate') WARPED_PRESSURE_PLATE = Item('warped_pressure_plate') POLISHED_BLACKSTONE_PRESSURE_PLATE = Item('polished_blackstone_pressure_plate') REDSTONE_ORE = Item('redstone_ore') REDSTONE_TORCH = Item('redstone_torch') SNOW = Item('snow') ICE = Item('ice') SNOW_BLOCK = Item('snow_block') CACTUS = Item('cactus') CLAY = Item('clay') JUKEBOX = Item('jukebox') OAK_FENCE = Item('oak_fence') SPRUCE_FENCE = Item('spruce_fence') BIRCH_FENCE = Item('birch_fence') JUNGLE_FENCE = Item('jungle_fence') ACACIA_FENCE = Item('acacia_fence') DARK_OAK_FENCE = Item('dark_oak_fence') CRIMSON_FENCE = Item('crimson_fence') WARPED_FENCE = Item('warped_fence') PUMPKIN = Item('pumpkin') CARVED_PUMPKIN = Item('carved_pumpkin') NETHERRACK = Item('netherrack') SOUL_SAND = Item('soul_sand') SOUL_SOIL = Item('soul_soil') BASALT = Item('basalt') POLISHED_BASALT = Item('polished_basalt') SOUL_TORCH = Item('soul_torch') GLOWSTONE = Item('glowstone') JACK_O_LANTERN = Item('jack_o_lantern') OAK_TRAPDOOR = Item('oak_trapdoor') SPRUCE_TRAPDOOR = Item('spruce_trapdoor') BIRCH_TRAPDOOR = Item('birch_trapdoor') JUNGLE_TRAPDOOR = Item('jungle_trapdoor') ACACIA_TRAPDOOR = Item('acacia_trapdoor') DARK_OAK_TRAPDOOR = Item('dark_oak_trapdoor') CRIMSON_TRAPDOOR = Item('crimson_trapdoor') WARPED_TRAPDOOR = Item('warped_trapdoor') INFESTED_STONE = Item('infested_stone') INFESTED_COBBLESTONE = Item('infested_cobblestone') INFESTED_STONE_BRICKS = Item('infested_stone_bricks') INFESTED_MOSSY_STONE_BRICKS = Item('infested_mossy_stone_bricks') INFESTED_CRACKED_STONE_BRICKS = Item('infested_cracked_stone_bricks') INFESTED_CHISELED_STONE_BRICKS = Item('infested_chiseled_stone_bricks') STONE_BRICKS = Item('stone_bricks') MOSSY_STONE_BRICKS = Item('mossy_stone_bricks') CRACKED_STONE_BRICKS = Item('cracked_stone_bricks') CHISELED_STONE_BRICKS = Item('chiseled_stone_bricks') BROWN_MUSHROOM_BLOCK = Item('brown_mushroom_block') RED_MUSHROOM_BLOCK = Item('red_mushroom_block') MUSHROOM_STEM = Item('mushroom_stem') IRON_BARS = Item('iron_bars') CHAIN = Item('chain') GLASS_PANE = Item('glass_pane') MELON = Item('melon') VINE = Item('vine') OAK_FENCE_GATE = Item('oak_fence_gate') SPRUCE_FENCE_GATE = Item('spruce_fence_gate') BIRCH_FENCE_GATE = Item('birch_fence_gate') JUNGLE_FENCE_GATE = Item('jungle_fence_gate') ACACIA_FENCE_GATE = Item('acacia_fence_gate') DARK_OAK_FENCE_GATE = Item('dark_oak_fence_gate') CRIMSON_FENCE_GATE = Item('crimson_fence_gate') WARPED_FENCE_GATE = Item('warped_fence_gate') BRICK_STAIRS = Item('brick_stairs') STONE_BRICK_STAIRS = Item('stone_brick_stairs') MYCELIUM = Item('mycelium') LILY_PAD = Item('lily_pad') NETHER_BRICKS = Item('nether_bricks') CRACKED_NETHER_BRICKS = Item('cracked_nether_bricks') CHISELED_NETHER_BRICKS = Item('chiseled_nether_bricks') NETHER_BRICK_FENCE = Item('nether_brick_fence') NETHER_BRICK_STAIRS = Item('nether_brick_stairs') ENCHANTING_TABLE = Item('enchanting_table') END_PORTAL_FRAME = Item('end_portal_frame') END_STONE = Item('end_stone') END_STONE_BRICKS = Item('end_stone_bricks') DRAGON_EGG = Item('dragon_egg') REDSTONE_LAMP = Item('redstone_lamp') SANDSTONE_STAIRS = Item('sandstone_stairs') EMERALD_ORE = Item('emerald_ore') ENDER_CHEST = Item('ender_chest') TRIPWIRE_HOOK = Item('tripwire_hook') EMERALD_BLOCK = Item('emerald_block') SPRUCE_STAIRS = Item('spruce_stairs') BIRCH_STAIRS = Item('birch_stairs') JUNGLE_STAIRS = Item('jungle_stairs') CRIMSON_STAIRS = Item('crimson_stairs') WARPED_STAIRS = Item('warped_stairs') COMMAND_BLOCK = Item('command_block') BEACON = Item('beacon') COBBLESTONE_WALL = Item('cobblestone_wall') MOSSY_COBBLESTONE_WALL = Item('mossy_cobblestone_wall') BRICK_WALL = Item('brick_wall') PRISMARINE_WALL = Item('prismarine_wall') RED_SANDSTONE_WALL = Item('red_sandstone_wall') MOSSY_STONE_BRICK_WALL = Item('mossy_stone_brick_wall') GRANITE_WALL = Item('granite_wall') STONE_BRICK_WALL = Item('stone_brick_wall') NETHER_BRICK_WALL = Item('nether_brick_wall') ANDESITE_WALL = Item('andesite_wall') RED_NETHER_BRICK_WALL = Item('red_nether_brick_wall') SANDSTONE_WALL = Item('sandstone_wall') END_STONE_BRICK_WALL = Item('end_stone_brick_wall') DIORITE_WALL = Item('diorite_wall') BLACKSTONE_WALL = Item('blackstone_wall') POLISHED_BLACKSTONE_WALL = Item('polished_blackstone_wall') POLISHED_BLACKSTONE_BRICK_WALL = Item('polished_blackstone_brick_wall') STONE_BUTTON = Item('stone_button') OAK_BUTTON = Item('oak_button') SPRUCE_BUTTON = Item('spruce_button') BIRCH_BUTTON = Item('birch_button') JUNGLE_BUTTON = Item('jungle_button') ACACIA_BUTTON = Item('acacia_button') DARK_OAK_BUTTON = Item('dark_oak_button') CRIMSON_BUTTON = Item('crimson_button') WARPED_BUTTON = Item('warped_button') POLISHED_BLACKSTONE_BUTTON = Item('polished_blackstone_button') ANVIL = Item('anvil') CHIPPED_ANVIL = Item('chipped_anvil') DAMAGED_ANVIL = Item('damaged_anvil') TRAPPED_CHEST = Item('trapped_chest') LIGHT_WEIGHTED_PRESSURE_PLATE = Item('light_weighted_pressure_plate') HEAVY_WEIGHTED_PRESSURE_PLATE = Item('heavy_weighted_pressure_plate') DAYLIGHT_DETECTOR = Item('daylight_detector') REDSTONE_BLOCK = Item('redstone_block') NETHER_QUARTZ_ORE = Item('nether_quartz_ore') HOPPER = Item('hopper') CHISELED_QUARTZ_BLOCK = Item('chiseled_quartz_block') QUARTZ_BLOCK = Item('quartz_block') QUARTZ_BRICKS = Item('quartz_bricks') QUARTZ_PILLAR = Item('quartz_pillar') QUARTZ_STAIRS = Item('quartz_stairs') ACTIVATOR_RAIL = Item('activator_rail') DROPPER = Item('dropper') WHITE_TERRACOTTA = Item('white_terracotta') ORANGE_TERRACOTTA = Item('orange_terracotta') MAGENTA_TERRACOTTA = Item('magenta_terracotta') LIGHT_BLUE_TERRACOTTA = Item('light_blue_terracotta') YELLOW_TERRACOTTA = Item('yellow_terracotta') LIME_TERRACOTTA = Item('lime_terracotta') PINK_TERRACOTTA = Item('pink_terracotta') GRAY_TERRACOTTA = Item('gray_terracotta') LIGHT_GRAY_TERRACOTTA = Item('light_gray_terracotta') CYAN_TERRACOTTA = Item('cyan_terracotta') PURPLE_TERRACOTTA = Item('purple_terracotta') BLUE_TERRACOTTA = Item('blue_terracotta') BROWN_TERRACOTTA = Item('brown_terracotta') GREEN_TERRACOTTA = Item('green_terracotta') RED_TERRACOTTA = Item('red_terracotta') BLACK_TERRACOTTA = Item('black_terracotta') BARRIER = Item('barrier') IRON_TRAPDOOR = Item('iron_trapdoor') HAY_BLOCK = Item('hay_block') WHITE_CARPET = Item('white_carpet') ORANGE_CARPET = Item('orange_carpet') MAGENTA_CARPET = Item('magenta_carpet') LIGHT_BLUE_CARPET = Item('light_blue_carpet') YELLOW_CARPET = Item('yellow_carpet') LIME_CARPET = Item('lime_carpet') PINK_CARPET = Item('pink_carpet') GRAY_CARPET = Item('gray_carpet') LIGHT_GRAY_CARPET = Item('light_gray_carpet') CYAN_CARPET = Item('cyan_carpet') PURPLE_CARPET = Item('purple_carpet') BLUE_CARPET = Item('blue_carpet') BROWN_CARPET = Item('brown_carpet') GREEN_CARPET = Item('green_carpet') RED_CARPET = Item('red_carpet') BLACK_CARPET = Item('black_carpet') TERRACOTTA = Item('terracotta') COAL_BLOCK = Item('coal_block') PACKED_ICE = Item('packed_ice') ACACIA_STAIRS = Item('acacia_stairs') DARK_OAK_STAIRS = Item('dark_oak_stairs') SLIME_BLOCK = Item('slime_block') GRASS_PATH = Item('grass_path') SUNFLOWER = Item('sunflower') LILAC = Item('lilac') ROSE_BUSH = Item('rose_bush') PEONY = Item('peony') TALL_GRASS = Item('tall_grass') LARGE_FERN = Item('large_fern') WHITE_STAINED_GLASS = Item('white_stained_glass') ORANGE_STAINED_GLASS = Item('orange_stained_glass') MAGENTA_STAINED_GLASS = Item('magenta_stained_glass') LIGHT_BLUE_STAINED_GLASS = Item('light_blue_stained_glass') YELLOW_STAINED_GLASS = Item('yellow_stained_glass') LIME_STAINED_GLASS = Item('lime_stained_glass') PINK_STAINED_GLASS = Item('pink_stained_glass') GRAY_STAINED_GLASS = Item('gray_stained_glass') LIGHT_GRAY_STAINED_GLASS = Item('light_gray_stained_glass') CYAN_STAINED_GLASS = Item('cyan_stained_glass') PURPLE_STAINED_GLASS = Item('purple_stained_glass') BLUE_STAINED_GLASS = Item('blue_stained_glass') BROWN_STAINED_GLASS = Item('brown_stained_glass') GREEN_STAINED_GLASS = Item('green_stained_glass') RED_STAINED_GLASS = Item('red_stained_glass') BLACK_STAINED_GLASS = Item('black_stained_glass') WHITE_STAINED_GLASS_PANE = Item('white_stained_glass_pane') ORANGE_STAINED_GLASS_PANE = Item('orange_stained_glass_pane') MAGENTA_STAINED_GLASS_PANE = Item('magenta_stained_glass_pane') LIGHT_BLUE_STAINED_GLASS_PANE = Item('light_blue_stained_glass_pane') YELLOW_STAINED_GLASS_PANE = Item('yellow_stained_glass_pane') LIME_STAINED_GLASS_PANE = Item('lime_stained_glass_pane') PINK_STAINED_GLASS_PANE = Item('pink_stained_glass_pane') GRAY_STAINED_GLASS_PANE = Item('gray_stained_glass_pane') LIGHT_GRAY_STAINED_GLASS_PANE = Item('light_gray_stained_glass_pane') CYAN_STAINED_GLASS_PANE = Item('cyan_stained_glass_pane') PURPLE_STAINED_GLASS_PANE = Item('purple_stained_glass_pane') BLUE_STAINED_GLASS_PANE = Item('blue_stained_glass_pane') BROWN_STAINED_GLASS_PANE = Item('brown_stained_glass_pane') GREEN_STAINED_GLASS_PANE = Item('green_stained_glass_pane') RED_STAINED_GLASS_PANE = Item('red_stained_glass_pane') BLACK_STAINED_GLASS_PANE = Item('black_stained_glass_pane') PRISMARINE = Item('prismarine') PRISMARINE_BRICKS = Item('prismarine_bricks') DARK_PRISMARINE = Item('dark_prismarine') PRISMARINE_STAIRS = Item('prismarine_stairs') PRISMARINE_BRICK_STAIRS = Item('prismarine_brick_stairs') DARK_PRISMARINE_STAIRS = Item('dark_prismarine_stairs') SEA_LANTERN = Item('sea_lantern') RED_SANDSTONE = Item('red_sandstone') CHISELED_RED_SANDSTONE = Item('chiseled_red_sandstone') CUT_RED_SANDSTONE = Item('cut_red_sandstone') RED_SANDSTONE_STAIRS = Item('red_sandstone_stairs') REPEATING_COMMAND_BLOCK = Item('repeating_command_block') CHAIN_COMMAND_BLOCK = Item('chain_command_block') MAGMA_BLOCK = Item('magma_block') NETHER_WART_BLOCK = Item('nether_wart_block') WARPED_WART_BLOCK = Item('warped_wart_block') RED_NETHER_BRICKS = Item('red_nether_bricks') BONE_BLOCK = Item('bone_block') STRUCTURE_VOID = Item('structure_void') OBSERVER = Item('observer') SHULKER_BOX = Item('shulker_box') WHITE_SHULKER_BOX = Item('white_shulker_box') ORANGE_SHULKER_BOX = Item('orange_shulker_box') MAGENTA_SHULKER_BOX = Item('magenta_shulker_box') LIGHT_BLUE_SHULKER_BOX = Item('light_blue_shulker_box') YELLOW_SHULKER_BOX = Item('yellow_shulker_box') LIME_SHULKER_BOX = Item('lime_shulker_box') PINK_SHULKER_BOX = Item('pink_shulker_box') GRAY_SHULKER_BOX = Item('gray_shulker_box') LIGHT_GRAY_SHULKER_BOX = Item('light_gray_shulker_box') CYAN_SHULKER_BOX = Item('cyan_shulker_box') PURPLE_SHULKER_BOX = Item('purple_shulker_box') BLUE_SHULKER_BOX = Item('blue_shulker_box') BROWN_SHULKER_BOX = Item('brown_shulker_box') GREEN_SHULKER_BOX = Item('green_shulker_box') RED_SHULKER_BOX = Item('red_shulker_box') BLACK_SHULKER_BOX = Item('black_shulker_box') WHITE_GLAZED_TERRACOTTA = Item('white_glazed_terracotta') ORANGE_GLAZED_TERRACOTTA = Item('orange_glazed_terracotta') MAGENTA_GLAZED_TERRACOTTA = Item('magenta_glazed_terracotta') LIGHT_BLUE_GLAZED_TERRACOTTA = Item('light_blue_glazed_terracotta') YELLOW_GLAZED_TERRACOTTA = Item('yellow_glazed_terracotta') LIME_GLAZED_TERRACOTTA = Item('lime_glazed_terracotta') PINK_GLAZED_TERRACOTTA = Item('pink_glazed_terracotta') GRAY_GLAZED_TERRACOTTA = Item('gray_glazed_terracotta') LIGHT_GRAY_GLAZED_TERRACOTTA = Item('light_gray_glazed_terracotta') CYAN_GLAZED_TERRACOTTA = Item('cyan_glazed_terracotta') PURPLE_GLAZED_TERRACOTTA = Item('purple_glazed_terracotta') BLUE_GLAZED_TERRACOTTA = Item('blue_glazed_terracotta') BROWN_GLAZED_TERRACOTTA = Item('brown_glazed_terracotta') GREEN_GLAZED_TERRACOTTA = Item('green_glazed_terracotta') RED_GLAZED_TERRACOTTA = Item('red_glazed_terracotta') BLACK_GLAZED_TERRACOTTA = Item('black_glazed_terracotta') WHITE_CONCRETE = Item('white_concrete') ORANGE_CONCRETE = Item('orange_concrete') MAGENTA_CONCRETE = Item('magenta_concrete') LIGHT_BLUE_CONCRETE = Item('light_blue_concrete') YELLOW_CONCRETE = Item('yellow_concrete') LIME_CONCRETE = Item('lime_concrete') PINK_CONCRETE = Item('pink_concrete') GRAY_CONCRETE = Item('gray_concrete') LIGHT_GRAY_CONCRETE = Item('light_gray_concrete') CYAN_CONCRETE = Item('cyan_concrete') PURPLE_CONCRETE = Item('purple_concrete') BLUE_CONCRETE = Item('blue_concrete') BROWN_CONCRETE = Item('brown_concrete') GREEN_CONCRETE = Item('green_concrete') RED_CONCRETE = Item('red_concrete') BLACK_CONCRETE = Item('black_concrete') WHITE_CONCRETE_POWDER = Item('white_concrete_powder') ORANGE_CONCRETE_POWDER = Item('orange_concrete_powder') MAGENTA_CONCRETE_POWDER = Item('magenta_concrete_powder') LIGHT_BLUE_CONCRETE_POWDER = Item('light_blue_concrete_powder') YELLOW_CONCRETE_POWDER = Item('yellow_concrete_powder') LIME_CONCRETE_POWDER = Item('lime_concrete_powder') PINK_CONCRETE_POWDER = Item('pink_concrete_powder') GRAY_CONCRETE_POWDER = Item('gray_concrete_powder') LIGHT_GRAY_CONCRETE_POWDER = Item('light_gray_concrete_powder') CYAN_CONCRETE_POWDER = Item('cyan_concrete_powder') PURPLE_CONCRETE_POWDER = Item('purple_concrete_powder') BLUE_CONCRETE_POWDER = Item('blue_concrete_powder') BROWN_CONCRETE_POWDER = Item('brown_concrete_powder') GREEN_CONCRETE_POWDER = Item('green_concrete_powder') RED_CONCRETE_POWDER = Item('red_concrete_powder') BLACK_CONCRETE_POWDER = Item('black_concrete_powder') TURTLE_EGG = Item('turtle_egg') DEAD_TUBE_CORAL_BLOCK = Item('dead_tube_coral_block') DEAD_BRAIN_CORAL_BLOCK = Item('dead_brain_coral_block') DEAD_BUBBLE_CORAL_BLOCK = Item('dead_bubble_coral_block') DEAD_FIRE_CORAL_BLOCK = Item('dead_fire_coral_block') DEAD_HORN_CORAL_BLOCK = Item('dead_horn_coral_block') TUBE_CORAL_BLOCK = Item('tube_coral_block') BRAIN_CORAL_BLOCK = Item('brain_coral_block') BUBBLE_CORAL_BLOCK = Item('bubble_coral_block') FIRE_CORAL_BLOCK = Item('fire_coral_block') HORN_CORAL_BLOCK = Item('horn_coral_block') TUBE_CORAL = Item('tube_coral') BRAIN_CORAL = Item('brain_coral') BUBBLE_CORAL = Item('bubble_coral') FIRE_CORAL = Item('fire_coral') HORN_CORAL = Item('horn_coral') DEAD_BRAIN_CORAL = Item('dead_brain_coral') DEAD_BUBBLE_CORAL = Item('dead_bubble_coral') DEAD_FIRE_CORAL = Item('dead_fire_coral') DEAD_HORN_CORAL = Item('dead_horn_coral') DEAD_TUBE_CORAL = Item('dead_tube_coral') TUBE_CORAL_FAN = Item('tube_coral_fan') BRAIN_CORAL_FAN = Item('brain_coral_fan') BUBBLE_CORAL_FAN = Item('bubble_coral_fan') FIRE_CORAL_FAN = Item('fire_coral_fan') HORN_CORAL_FAN = Item('horn_coral_fan') DEAD_TUBE_CORAL_FAN = Item('dead_tube_coral_fan') DEAD_BRAIN_CORAL_FAN = Item('dead_brain_coral_fan') DEAD_BUBBLE_CORAL_FAN = Item('dead_bubble_coral_fan') DEAD_FIRE_CORAL_FAN = Item('dead_fire_coral_fan') DEAD_HORN_CORAL_FAN = Item('dead_horn_coral_fan') BLUE_ICE = Item('blue_ice') CONDUIT = Item('conduit') POLISHED_GRANITE_STAIRS = Item('polished_granite_stairs') SMOOTH_RED_SANDSTONE_STAIRS = Item('smooth_red_sandstone_stairs') MOSSY_STONE_BRICK_STAIRS = Item('mossy_stone_brick_stairs') POLISHED_DIORITE_STAIRS = Item('polished_diorite_stairs') MOSSY_COBBLESTONE_STAIRS = Item('mossy_cobblestone_stairs') END_STONE_BRICK_STAIRS = Item('end_stone_brick_stairs') STONE_STAIRS = Item('stone_stairs') SMOOTH_SANDSTONE_STAIRS = Item('smooth_sandstone_stairs') SMOOTH_QUARTZ_STAIRS = Item('smooth_quartz_stairs') GRANITE_STAIRS = Item('granite_stairs') ANDESITE_STAIRS = Item('andesite_stairs') RED_NETHER_BRICK_STAIRS = Item('red_nether_brick_stairs') POLISHED_ANDESITE_STAIRS = Item('polished_andesite_stairs') DIORITE_STAIRS = Item('diorite_stairs') POLISHED_GRANITE_SLAB = Item('polished_granite_slab') SMOOTH_RED_SANDSTONE_SLAB = Item('smooth_red_sandstone_slab') MOSSY_STONE_BRICK_SLAB = Item('mossy_stone_brick_slab') POLISHED_DIORITE_SLAB = Item('polished_diorite_slab') MOSSY_COBBLESTONE_SLAB = Item('mossy_cobblestone_slab') END_STONE_BRICK_SLAB = Item('end_stone_brick_slab') SMOOTH_SANDSTONE_SLAB = Item('smooth_sandstone_slab') SMOOTH_QUARTZ_SLAB = Item('smooth_quartz_slab') GRANITE_SLAB = Item('granite_slab') ANDESITE_SLAB = Item('andesite_slab') RED_NETHER_BRICK_SLAB = Item('red_nether_brick_slab') POLISHED_ANDESITE_SLAB = Item('polished_andesite_slab') DIORITE_SLAB = Item('diorite_slab') SCAFFOLDING = Item('scaffolding') IRON_DOOR = Item('iron_door') OAK_DOOR = Item('oak_door') SPRUCE_DOOR = Item('spruce_door') BIRCH_DOOR = Item('birch_door') JUNGLE_DOOR = Item('jungle_door') ACACIA_DOOR = Item('acacia_door') DARK_OAK_DOOR = Item('dark_oak_door') CRIMSON_DOOR = Item('crimson_door') WARPED_DOOR = Item('warped_door') REPEATER = Item('repeater') COMPARATOR = Item('comparator') STRUCTURE_BLOCK = Item('structure_block') JIGSAW = Item('jigsaw') TURTLE_HELMET = Item('turtle_helmet') SCUTE = Item('scute') FLINT_AND_STEEL = Item('flint_and_steel') APPLE = Item('apple') BOW = Item('bow') ARROW = Item('arrow') COAL = Item('coal') CHARCOAL = Item('charcoal') DIAMOND = Item('diamond') IRON_INGOT = Item('iron_ingot') GOLD_INGOT = Item('gold_ingot') NETHERITE_INGOT = Item('netherite_ingot') NETHERITE_SCRAP = Item('netherite_scrap') WOODEN_SWORD = Item('wooden_sword') WOODEN_SHOVEL = Item('wooden_shovel') WOODEN_PICKAXE = Item('wooden_pickaxe') WOODEN_AXE = Item('wooden_axe') WOODEN_HOE = Item('wooden_hoe') STONE_SWORD = Item('stone_sword') STONE_SHOVEL = Item('stone_shovel') STONE_PICKAXE = Item('stone_pickaxe') STONE_AXE = Item('stone_axe') STONE_HOE = Item('stone_hoe') GOLDEN_SWORD = Item('golden_sword') GOLDEN_SHOVEL = Item('golden_shovel') GOLDEN_PICKAXE = Item('golden_pickaxe') GOLDEN_AXE = Item('golden_axe') GOLDEN_HOE = Item('golden_hoe') IRON_SWORD = Item('iron_sword') IRON_SHOVEL = Item('iron_shovel') IRON_PICKAXE = Item('iron_pickaxe') IRON_AXE = Item('iron_axe') IRON_HOE = Item('iron_hoe') DIAMOND_SWORD = Item('diamond_sword') DIAMOND_SHOVEL = Item('diamond_shovel') DIAMOND_PICKAXE = Item('diamond_pickaxe') DIAMOND_AXE = Item('diamond_axe') DIAMOND_HOE = Item('diamond_hoe') NETHERITE_SWORD = Item('netherite_sword') NETHERITE_SHOVEL = Item('netherite_shovel') NETHERITE_PICKAXE = Item('netherite_pickaxe') NETHERITE_AXE = Item('netherite_axe') NETHERITE_HOE = Item('netherite_hoe') STICK = Item('stick') BOWL = Item('bowl') MUSHROOM_STEW = Item('mushroom_stew') STRING = Item('string') FEATHER = Item('feather') GUNPOWDER = Item('gunpowder') WHEAT_SEEDS = Item('wheat_seeds') WHEAT = Item('wheat') BREAD = Item('bread') LEATHER_HELMET = Item('leather_helmet') LEATHER_CHESTPLATE = Item('leather_chestplate') LEATHER_LEGGINGS = Item('leather_leggings') LEATHER_BOOTS = Item('leather_boots') CHAINMAIL_HELMET = Item('chainmail_helmet') CHAINMAIL_CHESTPLATE = Item('chainmail_chestplate') CHAINMAIL_LEGGINGS = Item('chainmail_leggings') CHAINMAIL_BOOTS = Item('chainmail_boots') IRON_HELMET = Item('iron_helmet') IRON_CHESTPLATE = Item('iron_chestplate') IRON_LEGGINGS = Item('iron_leggings') IRON_BOOTS = Item('iron_boots') DIAMOND_HELMET = Item('diamond_helmet') DIAMOND_CHESTPLATE = Item('diamond_chestplate') DIAMOND_LEGGINGS = Item('diamond_leggings') DIAMOND_BOOTS = Item('diamond_boots') GOLDEN_HELMET = Item('golden_helmet') GOLDEN_CHESTPLATE = Item('golden_chestplate') GOLDEN_LEGGINGS = Item('golden_leggings') GOLDEN_BOOTS = Item('golden_boots') NETHERITE_HELMET = Item('netherite_helmet') NETHERITE_CHESTPLATE = Item('netherite_chestplate') NETHERITE_LEGGINGS = Item('netherite_leggings') NETHERITE_BOOTS = Item('netherite_boots') FLINT = Item('flint') PORKCHOP = Item('porkchop') COOKED_PORKCHOP = Item('cooked_porkchop') PAINTING = Item('painting') GOLDEN_APPLE = Item('golden_apple') ENCHANTED_GOLDEN_APPLE = Item('enchanted_golden_apple') OAK_SIGN = Item('oak_sign') SPRUCE_SIGN = Item('spruce_sign') BIRCH_SIGN = Item('birch_sign') JUNGLE_SIGN = Item('jungle_sign') ACACIA_SIGN = Item('acacia_sign') DARK_OAK_SIGN = Item('dark_oak_sign') CRIMSON_SIGN = Item('crimson_sign') WARPED_SIGN = Item('warped_sign') BUCKET = Item('bucket') WATER_BUCKET = Item('water_bucket') LAVA_BUCKET = Item('lava_bucket') MINECART = Item('minecart') SADDLE = Item('saddle') REDSTONE = Item('redstone') SNOWBALL = Item('snowball') OAK_BOAT = Item('oak_boat') LEATHER = Item('leather') MILK_BUCKET = Item('milk_bucket') PUFFERFISH_BUCKET = Item('pufferfish_bucket') SALMON_BUCKET = Item('salmon_bucket') COD_BUCKET = Item('cod_bucket') TROPICAL_FISH_BUCKET = Item('tropical_fish_bucket') BRICK = Item('brick') CLAY_BALL = Item('clay_ball') DRIED_KELP_BLOCK = Item('dried_kelp_block') PAPER = Item('paper') BOOK = Item('book') SLIME_BALL = Item('slime_ball') CHEST_MINECART = Item('chest_minecart') FURNACE_MINECART = Item('furnace_minecart') EGG = Item('egg') COMPASS = Item('compass') FISHING_ROD = Item('fishing_rod') CLOCK = Item('clock') GLOWSTONE_DUST = Item('glowstone_dust') COD = Item('cod') SALMON = Item('salmon') TROPICAL_FISH = Item('tropical_fish') PUFFERFISH = Item('pufferfish') COOKED_COD = Item('cooked_cod') COOKED_SALMON = Item('cooked_salmon') INK_SAC = Item('ink_sac') COCOA_BEANS = Item('cocoa_beans') LAPIS_LAZULI = Item('lapis_lazuli') WHITE_DYE = Item('white_dye') ORANGE_DYE = Item('orange_dye') MAGENTA_DYE = Item('magenta_dye') LIGHT_BLUE_DYE = Item('light_blue_dye') YELLOW_DYE = Item('yellow_dye') LIME_DYE = Item('lime_dye') PINK_DYE = Item('pink_dye') GRAY_DYE = Item('gray_dye') LIGHT_GRAY_DYE = Item('light_gray_dye') CYAN_DYE = Item('cyan_dye') PURPLE_DYE = Item('purple_dye') BLUE_DYE = Item('blue_dye') BROWN_DYE = Item('brown_dye') GREEN_DYE = Item('green_dye') RED_DYE = Item('red_dye') BLACK_DYE = Item('black_dye') BONE_MEAL = Item('bone_meal') BONE = Item('bone') SUGAR = Item('sugar') CAKE = Item('cake') WHITE_BED = Item('white_bed') ORANGE_BED = Item('orange_bed') MAGENTA_BED = Item('magenta_bed') LIGHT_BLUE_BED = Item('light_blue_bed') YELLOW_BED = Item('yellow_bed') LIME_BED = Item('lime_bed') PINK_BED = Item('pink_bed') GRAY_BED = Item('gray_bed') LIGHT_GRAY_BED = Item('light_gray_bed') CYAN_BED = Item('cyan_bed') PURPLE_BED = Item('purple_bed') BLUE_BED = Item('blue_bed') BROWN_BED = Item('brown_bed') GREEN_BED = Item('green_bed') RED_BED = Item('red_bed') BLACK_BED = Item('black_bed') COOKIE = Item('cookie') FILLED_MAP = Item('filled_map') SHEARS = Item('shears') MELON_SLICE = Item('melon_slice') DRIED_KELP = Item('dried_kelp') PUMPKIN_SEEDS = Item('pumpkin_seeds') MELON_SEEDS = Item('melon_seeds') BEEF = Item('beef') COOKED_BEEF = Item('cooked_beef') CHICKEN = Item('chicken') COOKED_CHICKEN = Item('cooked_chicken') ROTTEN_FLESH = Item('rotten_flesh') ENDER_PEARL = Item('ender_pearl') BLAZE_ROD = Item('blaze_rod') GHAST_TEAR = Item('ghast_tear') GOLD_NUGGET = Item('gold_nugget') NETHER_WART = Item('nether_wart') POTION = Item('potion') GLASS_BOTTLE = Item('glass_bottle') SPIDER_EYE = Item('spider_eye') FERMENTED_SPIDER_EYE = Item('fermented_spider_eye') BLAZE_POWDER = Item('blaze_powder') MAGMA_CREAM = Item('magma_cream') BREWING_STAND = Item('brewing_stand') CAULDRON = Item('cauldron') ENDER_EYE = Item('ender_eye') GLISTERING_MELON_SLICE = Item('glistering_melon_slice') BAT_SPAWN_EGG = Item('bat_spawn_egg') BEE_SPAWN_EGG = Item('bee_spawn_egg') BLAZE_SPAWN_EGG = Item('blaze_spawn_egg') CAT_SPAWN_EGG = Item('cat_spawn_egg') CAVE_SPIDER_SPAWN_EGG = Item('cave_spider_spawn_egg') CHICKEN_SPAWN_EGG = Item('chicken_spawn_egg') COD_SPAWN_EGG = Item('cod_spawn_egg') COW_SPAWN_EGG = Item('cow_spawn_egg') CREEPER_SPAWN_EGG = Item('creeper_spawn_egg') DOLPHIN_SPAWN_EGG = Item('dolphin_spawn_egg') DONKEY_SPAWN_EGG = Item('donkey_spawn_egg') DROWNED_SPAWN_EGG = Item('drowned_spawn_egg') ELDER_GUARDIAN_SPAWN_EGG = Item('elder_guardian_spawn_egg') ENDERMAN_SPAWN_EGG = Item('enderman_spawn_egg') ENDERMITE_SPAWN_EGG = Item('endermite_spawn_egg') EVOKER_SPAWN_EGG = Item('evoker_spawn_egg') FOX_SPAWN_EGG = Item('fox_spawn_egg') GHAST_SPAWN_EGG = Item('ghast_spawn_egg') GUARDIAN_SPAWN_EGG = Item('guardian_spawn_egg') HOGLIN_SPAWN_EGG = Item('hoglin_spawn_egg') HORSE_SPAWN_EGG = Item('horse_spawn_egg') HUSK_SPAWN_EGG = Item('husk_spawn_egg') LLAMA_SPAWN_EGG = Item('llama_spawn_egg') MAGMA_CUBE_SPAWN_EGG = Item('magma_cube_spawn_egg') MOOSHROOM_SPAWN_EGG = Item('mooshroom_spawn_egg') MULE_SPAWN_EGG = Item('mule_spawn_egg') OCELOT_SPAWN_EGG = Item('ocelot_spawn_egg') PANDA_SPAWN_EGG = Item('panda_spawn_egg') PARROT_SPAWN_EGG = Item('parrot_spawn_egg') PHANTOM_SPAWN_EGG = Item('phantom_spawn_egg') PIG_SPAWN_EGG = Item('pig_spawn_egg') PIGLIN_SPAWN_EGG = Item('piglin_spawn_egg') PIGLIN_BRUTE_SPAWN_EGG = Item('piglin_brute_spawn_egg') PILLAGER_SPAWN_EGG = Item('pillager_spawn_egg') POLAR_BEAR_SPAWN_EGG = Item('polar_bear_spawn_egg') PUFFERFISH_SPAWN_EGG = Item('pufferfish_spawn_egg') RABBIT_SPAWN_EGG = Item('rabbit_spawn_egg') RAVAGER_SPAWN_EGG = Item('ravager_spawn_egg') SALMON_SPAWN_EGG = Item('salmon_spawn_egg') SHEEP_SPAWN_EGG = Item('sheep_spawn_egg') SHULKER_SPAWN_EGG = Item('shulker_spawn_egg') SILVERFISH_SPAWN_EGG = Item('silverfish_spawn_egg') SKELETON_SPAWN_EGG = Item('skeleton_spawn_egg') SKELETON_HORSE_SPAWN_EGG = Item('skeleton_horse_spawn_egg') SLIME_SPAWN_EGG = Item('slime_spawn_egg') SPIDER_SPAWN_EGG = Item('spider_spawn_egg') SQUID_SPAWN_EGG = Item('squid_spawn_egg') STRAY_SPAWN_EGG = Item('stray_spawn_egg') STRIDER_SPAWN_EGG = Item('strider_spawn_egg') TRADER_LLAMA_SPAWN_EGG = Item('trader_llama_spawn_egg') TROPICAL_FISH_SPAWN_EGG = Item('tropical_fish_spawn_egg') TURTLE_SPAWN_EGG = Item('turtle_spawn_egg') VEX_SPAWN_EGG = Item('vex_spawn_egg') VILLAGER_SPAWN_EGG = Item('villager_spawn_egg') VINDICATOR_SPAWN_EGG = Item('vindicator_spawn_egg') WANDERING_TRADER_SPAWN_EGG = Item('wandering_trader_spawn_egg') WITCH_SPAWN_EGG = Item('witch_spawn_egg') WITHER_SKELETON_SPAWN_EGG = Item('wither_skeleton_spawn_egg') WOLF_SPAWN_EGG = Item('wolf_spawn_egg') ZOGLIN_SPAWN_EGG = Item('zoglin_spawn_egg') ZOMBIE_SPAWN_EGG = Item('zombie_spawn_egg') ZOMBIE_HORSE_SPAWN_EGG = Item('zombie_horse_spawn_egg') ZOMBIE_VILLAGER_SPAWN_EGG = Item('zombie_villager_spawn_egg') ZOMBIFIED_PIGLIN_SPAWN_EGG = Item('zombified_piglin_spawn_egg') EXPERIENCE_BOTTLE = Item('experience_bottle') FIRE_CHARGE = Item('fire_charge') WRITABLE_BOOK = Item('writable_book') WRITTEN_BOOK = Item('written_book') EMERALD = Item('emerald') ITEM_FRAME = Item('item_frame') FLOWER_POT = Item('flower_pot') CARROT = Item('carrot') POTATO = Item('potato') BAKED_POTATO = Item('baked_potato') POISONOUS_POTATO = Item('poisonous_potato') MAP = Item('map') GOLDEN_CARROT = Item('golden_carrot') SKELETON_SKULL = Item('skeleton_skull') WITHER_SKELETON_SKULL = Item('wither_skeleton_skull') PLAYER_HEAD = Item('player_head') ZOMBIE_HEAD = Item('zombie_head') CREEPER_HEAD = Item('creeper_head') DRAGON_HEAD = Item('dragon_head') CARROT_ON_A_STICK = Item('carrot_on_a_stick') WARPED_FUNGUS_ON_A_STICK = Item('warped_fungus_on_a_stick') NETHER_STAR = Item('nether_star') PUMPKIN_PIE = Item('pumpkin_pie') FIREWORK_ROCKET = Item('firework_rocket') FIREWORK_STAR = Item('firework_star') ENCHANTED_BOOK = Item('enchanted_book') NETHER_BRICK = Item('nether_brick') QUARTZ = Item('quartz') TNT_MINECART = Item('tnt_minecart') HOPPER_MINECART = Item('hopper_minecart') PRISMARINE_SHARD = Item('prismarine_shard') PRISMARINE_CRYSTALS = Item('prismarine_crystals') RABBIT = Item('rabbit') COOKED_RABBIT = Item('cooked_rabbit') RABBIT_STEW = Item('rabbit_stew') RABBIT_FOOT = Item('rabbit_foot') RABBIT_HIDE = Item('rabbit_hide') ARMOR_STAND = Item('armor_stand') IRON_HORSE_ARMOR = Item('iron_horse_armor') GOLDEN_HORSE_ARMOR = Item('golden_horse_armor') DIAMOND_HORSE_ARMOR = Item('diamond_horse_armor') LEATHER_HORSE_ARMOR = Item('leather_horse_armor') LEAD = Item('lead') NAME_TAG = Item('name_tag') COMMAND_BLOCK_MINECART = Item('command_block_minecart') MUTTON = Item('mutton') COOKED_MUTTON = Item('cooked_mutton') WHITE_BANNER = Item('white_banner') ORANGE_BANNER = Item('orange_banner') MAGENTA_BANNER = Item('magenta_banner') LIGHT_BLUE_BANNER = Item('light_blue_banner') YELLOW_BANNER = Item('yellow_banner') LIME_BANNER = Item('lime_banner') PINK_BANNER = Item('pink_banner') GRAY_BANNER = Item('gray_banner') LIGHT_GRAY_BANNER = Item('light_gray_banner') CYAN_BANNER = Item('cyan_banner') PURPLE_BANNER = Item('purple_banner') BLUE_BANNER = Item('blue_banner') BROWN_BANNER = Item('brown_banner') GREEN_BANNER = Item('green_banner') RED_BANNER = Item('red_banner') BLACK_BANNER = Item('black_banner') END_CRYSTAL = Item('end_crystal') CHORUS_FRUIT = Item('chorus_fruit') POPPED_CHORUS_FRUIT = Item('popped_chorus_fruit') BEETROOT = Item('beetroot') BEETROOT_SEEDS = Item('beetroot_seeds') BEETROOT_SOUP = Item('beetroot_soup') DRAGON_BREATH = Item('dragon_breath') SPLASH_POTION = Item('splash_potion') SPECTRAL_ARROW = Item('spectral_arrow') TIPPED_ARROW = Item('tipped_arrow') LINGERING_POTION = Item('lingering_potion') SHIELD = Item('shield') ELYTRA = Item('elytra') SPRUCE_BOAT = Item('spruce_boat') BIRCH_BOAT = Item('birch_boat') JUNGLE_BOAT = Item('jungle_boat') ACACIA_BOAT = Item('acacia_boat') DARK_OAK_BOAT = Item('dark_oak_boat') TOTEM_OF_UNDYING = Item('totem_of_undying') SHULKER_SHELL = Item('shulker_shell') IRON_NUGGET = Item('iron_nugget') KNOWLEDGE_BOOK = Item('knowledge_book') DEBUG_STICK = Item('debug_stick') MUSIC_DISC_13 = Item('music_disc_13') MUSIC_DISC_CAT = Item('music_disc_cat') MUSIC_DISC_BLOCKS = Item('music_disc_blocks') MUSIC_DISC_CHIRP = Item('music_disc_chirp') MUSIC_DISC_FAR = Item('music_disc_far') MUSIC_DISC_MALL = Item('music_disc_mall') MUSIC_DISC_MELLOHI = Item('music_disc_mellohi') MUSIC_DISC_STAL = Item('music_disc_stal') MUSIC_DISC_STRAD = Item('music_disc_strad') MUSIC_DISC_WARD = Item('music_disc_ward') MUSIC_DISC_11 = Item('music_disc_11') MUSIC_DISC_WAIT = Item('music_disc_wait') MUSIC_DISC_PIGSTEP = Item('music_disc_pigstep') TRIDENT = Item('trident') PHANTOM_MEMBRANE = Item('phantom_membrane') NAUTILUS_SHELL = Item('nautilus_shell') HEART_OF_THE_SEA = Item('heart_of_the_sea') CROSSBOW = Item('crossbow') SUSPICIOUS_STEW = Item('suspicious_stew') LOOM = Item('loom') FLOWER_BANNER_PATTERN = Item('flower_banner_pattern') CREEPER_BANNER_PATTERN = Item('creeper_banner_pattern') SKULL_BANNER_PATTERN = Item('skull_banner_pattern') MOJANG_BANNER_PATTERN = Item('mojang_banner_pattern') GLOBE_BANNER_PATTER = Item('globe_banner_patter') PIGLIN_BANNER_PATTERN = Item('piglin_banner_pattern') COMPOSTER = Item('composter') BARREL = Item('barrel') SMOKER = Item('smoker') BLAST_FURNACE = Item('blast_furnace') CARTOGRAPHY_TABLE = Item('cartography_table') FLETCHING_TABLE = Item('fletching_table') GRINDSTONE = Item('grindstone') LECTERN = Item('lectern') SMITHING_TABLE = Item('smithing_table') STONECUTTER = Item('stonecutter') BELL = Item('bell') LANTERN = Item('lantern') SOUL_LANTERN = Item('soul_lantern') SWEET_BERRIES = Item('sweet_berries') CAMPFIRE = Item('campfire') SOUL_CAMPFIRE = Item('soul_campfire') SHROOMLIGHT = Item('shroomlight') HONEYCOMB = Item('honeycomb') BEE_NEST = Item('bee_nest') BEEHIVE = Item('beehive') HONEY_BOTTLE = Item('honey_bottle') HONEY_BLOCK = Item('honey_block') HONEYCOMB_BLOCK = Item('honeycomb_block') LODESTONE = Item('lodestone') NETHERITE_BLOCK = Item('netherite_block') ANCIENT_DEBRIS = Item('ancient_debris') TARGET = Item('target') CRYING_OBSIDIAN = Item('crying_obsidian') BLACKSTONE = Item('blackstone') BLACKSTONE_SLAB = Item('blackstone_slab') BLACKSTONE_STAIRS = Item('blackstone_stairs') GILDED_BLACKSTONE = Item('gilded_blackstone') POLISHED_BLACKSTONE = Item('polished_blackstone') POLISHED_BLACKSTONE_SLAB = Item('polished_blackstone_slab') POLISHED_BLACKSTONE_STAIRS = Item('polished_blackstone_stairs') CHISELED_POLISHED_BLACKSTONE = Item('chiseled_polished_blackstone') POLISHED_BLACKSTONE_BRICKS = Item('polished_blackstone_bricks') POLISHED_BLACKSTONE_BRICK_SLAB = Item('polished_blackstone_brick_slab') POLISHED_BLACKSTONE_BRICK_STAIRS = Item('polished_blackstone_brick_stairs') CRACKED_POLISHED_BLACKSTONE_BRICKS = Item('cracked_polished_blackstone_bricks') RESPAWN_ANCHOR = Item('respawn_anchor')
0.381104
0.040541
import os import shutil import sys from typing import List, Union, Callable import functools import importlib def require(pkg_name) -> Callable: """Returns a decorator function, ensures pkg_name is available and can be imported. Parameters ---------- pkg_name: str Name of the package required. Returns ------- deco_require: Callable Decorator function Raises ------ ModuleNotFoundError When pkg_name is not found. Example: -------- @require("some_pkg") def foo(...): ... """ def deco_require(func): @functools.wraps(func) def inner_func(*args, **kwargs): if not which_import(pkg_name, return_bool=True): raise ModuleNotFoundError(f"Could not find or import {pkg_name}.") return func(*args, **kwargs) return inner_func return deco_require def which_import( module: str, *, return_bool: bool = False, raise_error: bool = False, raise_msg: str = None, package: str = None, namespace_ok: bool = False, ) -> Union[bool, None, str, List[str]]: """Tests to see if a Python module is available. Returns ------- str or None By default, returns `__init__.py`-like path if `module` found or `None` if not. For namespace packages and if `namespace_ok=True`, returns the list of pieces locations if `module` found or `None` if not. bool When `return_bool=True`, returns whether or not found. Namespace packages only `True` if `namespace_ok=True`. Raises ------ ModuleNotFoundError When `raise_error=True` and module not found. Raises generic message plus any `raise_msg`. """ try: module_spec = importlib.util.find_spec(module, package=package) except ModuleNotFoundError: module_spec = None # module_spec.origin is 'namespace' for py36, None for >=py37 namespace_package = module_spec is not None and module_spec.origin in [ None, "namespace", ] if (module_spec is None) or (namespace_package and not namespace_ok): if raise_error: raise ModuleNotFoundError( f"Python module '{module}' not found in envvar PYTHONPATH.{' ' + raise_msg if raise_msg else ''}" ) elif return_bool: return False else: return None else: if return_bool: return True else: if namespace_package: return module_spec.submodule_search_locations else: return module_spec.origin def which( command: str, *, return_bool: bool = False, raise_error: bool = False, raise_msg: str = None, env: str = None, ) -> Union[bool, None, str]: """Test to see if a command is available. Returns ------- str or None By default, returns command path if command found or `None` if not. Environment is $PATH or `os.pathsep`-separated `env`, less any None values. bool When `return_bool=True`, returns whether or not found. Raises ------ ModuleNotFoundError When `raises_error=True` and command not found. Raises generic message plus any `raise_msg`. """ if env is None: lenv = { "PATH": os.pathsep + os.environ.get("PATH", "") + os.path.dirname(sys.executable) } else: lenv = { "PATH": os.pathsep.join( [os.path.abspath(x) for x in env.split(os.pathsep) if x != ""] ) } lenv = {k: v for k, v in lenv.items() if v is not None} ans = shutil.which(command, mode=os.F_OK | os.X_OK, path=lenv["PATH"]) if raise_error and ans is None: raise ModuleNotFoundError( f"Command '{command}' not found in envvar PATH.{' ' + raise_msg if raise_msg else ''}" ) if return_bool: return bool(ans) else: return ans def safe_version(*args, **kwargs) -> str: """ Package resources is a very slow load """ import pkg_resources return pkg_resources.safe_version(*args, **kwargs) def parse_version(*args, **kwargs): """ Package resources is a very slow load """ import pkg_resources return pkg_resources.parse_version(*args, **kwargs)
cmselemental/util/importing.py
import os import shutil import sys from typing import List, Union, Callable import functools import importlib def require(pkg_name) -> Callable: """Returns a decorator function, ensures pkg_name is available and can be imported. Parameters ---------- pkg_name: str Name of the package required. Returns ------- deco_require: Callable Decorator function Raises ------ ModuleNotFoundError When pkg_name is not found. Example: -------- @require("some_pkg") def foo(...): ... """ def deco_require(func): @functools.wraps(func) def inner_func(*args, **kwargs): if not which_import(pkg_name, return_bool=True): raise ModuleNotFoundError(f"Could not find or import {pkg_name}.") return func(*args, **kwargs) return inner_func return deco_require def which_import( module: str, *, return_bool: bool = False, raise_error: bool = False, raise_msg: str = None, package: str = None, namespace_ok: bool = False, ) -> Union[bool, None, str, List[str]]: """Tests to see if a Python module is available. Returns ------- str or None By default, returns `__init__.py`-like path if `module` found or `None` if not. For namespace packages and if `namespace_ok=True`, returns the list of pieces locations if `module` found or `None` if not. bool When `return_bool=True`, returns whether or not found. Namespace packages only `True` if `namespace_ok=True`. Raises ------ ModuleNotFoundError When `raise_error=True` and module not found. Raises generic message plus any `raise_msg`. """ try: module_spec = importlib.util.find_spec(module, package=package) except ModuleNotFoundError: module_spec = None # module_spec.origin is 'namespace' for py36, None for >=py37 namespace_package = module_spec is not None and module_spec.origin in [ None, "namespace", ] if (module_spec is None) or (namespace_package and not namespace_ok): if raise_error: raise ModuleNotFoundError( f"Python module '{module}' not found in envvar PYTHONPATH.{' ' + raise_msg if raise_msg else ''}" ) elif return_bool: return False else: return None else: if return_bool: return True else: if namespace_package: return module_spec.submodule_search_locations else: return module_spec.origin def which( command: str, *, return_bool: bool = False, raise_error: bool = False, raise_msg: str = None, env: str = None, ) -> Union[bool, None, str]: """Test to see if a command is available. Returns ------- str or None By default, returns command path if command found or `None` if not. Environment is $PATH or `os.pathsep`-separated `env`, less any None values. bool When `return_bool=True`, returns whether or not found. Raises ------ ModuleNotFoundError When `raises_error=True` and command not found. Raises generic message plus any `raise_msg`. """ if env is None: lenv = { "PATH": os.pathsep + os.environ.get("PATH", "") + os.path.dirname(sys.executable) } else: lenv = { "PATH": os.pathsep.join( [os.path.abspath(x) for x in env.split(os.pathsep) if x != ""] ) } lenv = {k: v for k, v in lenv.items() if v is not None} ans = shutil.which(command, mode=os.F_OK | os.X_OK, path=lenv["PATH"]) if raise_error and ans is None: raise ModuleNotFoundError( f"Command '{command}' not found in envvar PATH.{' ' + raise_msg if raise_msg else ''}" ) if return_bool: return bool(ans) else: return ans def safe_version(*args, **kwargs) -> str: """ Package resources is a very slow load """ import pkg_resources return pkg_resources.safe_version(*args, **kwargs) def parse_version(*args, **kwargs): """ Package resources is a very slow load """ import pkg_resources return pkg_resources.parse_version(*args, **kwargs)
0.61115
0.306929
import numpy as np import cvxpy as cp import scipy.linalg import scipy.optimize import matplotlib.pyplot as plt from pytope import Polytope if __name__ == '__main__': from generate_invariant_set import invariant_set else: from envs.generate_invariant_set import invariant_set import torch #%%% XX = np.array([[-.5,0],[0,7.5],[.6,5],[.95,-7.5]]) def vertices(A,B,E,X,U,D,h,env_name): # Generate the matrices Y and V. # The columns of V are the vertices of the action polytope at each vertex of the invariant set. # The columns of Y are the vertices of the invariant set, repeated once for each corresponding vertex of the action polytope. # The set {x: Fx @ x <= gx} describes the target set: u must be chosen such that Fx @ (Ax + Bu) <= gx. This set is smaller than the invariant set in order to account for disturbances. # The set {x: Fi @ x <= gi} is the actual invariant set. # Generate invariant and target set: Fx,gx,Fi,gi = invariant_set(A,B,E,X,U,D,h,env_name) S_targ = Polytope(A = Fx, b = gx) S_safe = Polytope(A = Fi, b = gi) # Get dimensions: p = np.shape(S_safe.V)[0] n,m = np.shape(B) # Matrix whose columns are vertices of invariant set: Y = (S_safe.V).T YY = Y if __name__ == '__main__': plt.figure(3,figsize=(8,4),dpi=500) plt.subplot(122) plt.plot(U.V,[0,0],'-ok',label='U',linewidth=3) plt.autoscale(enable=True) # Build V matrix and expand Y matrix: V = np.zeros((m,p)) for i,x in enumerate(list(YY.T)): x = np.reshape(x,(n,1)) Ui_H = np.block([[Fx@B,gx - Fx@A@x],[U.A,U.b]]) Ui = Polytope(A = Ui_H[:,:-1],b = Ui_H[:,-1]) qi = np.shape(Ui.V)[0] # Number of vertices of Ui Y_new_i = np.tile(np.reshape(Y[:,i],(n,1)),(1,qi)) if i == 0: V = Ui.V.T Y_new = Y_new_i else: V = np.append(V,Ui.V.T,axis = 1) Y_new = np.append(Y_new,Y_new_i,axis = 1) if __name__ == '__main__': for i,x in enumerate(list(XX)): x = np.reshape(x,(n,1)) Ui_H = np.block([[Fx@B,gx - Fx@A@x],[U.A,U.b]]) Ui = Polytope(A = Ui_H[:,:-1],b = Ui_H[:,-1]) plt.figure(3) plt.subplot(122) if i == 0: plt.plot(Ui.V,(i+1)*np.ones(len(Ui.V)),'-bo',label=r'$\Omega(x_i)$',linewidth=3) else: plt.plot(Ui.V,(i+1)*np.ones(len(Ui.V)),'-bo',linewidth=3) Y = Y_new p = np.shape(Y)[1] Y = torch.tensor(Y).type(torch.FloatTensor) V = torch.tensor(V).type(torch.FloatTensor) if __name__ == '__main__': return Y,V,YY,S_safe else: return Y,V,Fx,gx,Fi,gi if __name__ == '__main__': def parameters_power_system_2(): max_speed = 8 max_action = 15. dt = .05 g = -1. m = 1. l = 1. safe_th = 1. # safe region [-1, 1] env_name = 'power_system_2' d = 0.1 # damping # Linearized dynamics: A = np.array([[1,dt],[0,1-dt*d]]) # Linear portion of dynamics C = 3*g/(2*l) * np.array([[dt**2],[dt]])@np.array([[1,0]]) # Linearized nonlinear portion of dynamics A = A + C B = 3/(m*l**2) * np.array([[dt**2],[dt]]) # Control input E = 3*g/(2*l) * np.array([[dt**2],[dt]]) # Linearization error disturbance input # State and input bounds: noise_max = .5 d_max = safe_th - np.sin(safe_th) + noise_max # Max linearization error inside safe set, plus noise # Constraint sets: X = Polytope(lb = (-safe_th,-max_speed),ub = (safe_th,max_speed)) # Safe set U = Polytope(lb = -max_action, ub = max_action) # Control set D = Polytope(lb = -d_max, ub = d_max) # Disturbance set return A,B,E,X,U,D,dt,env_name def parameters_pendulum(): # Parameters: h = .05 g = 10. m = 1. l = 1. env_name = 'pendulum' # Linearized dynamics: A = np.array([[1,h],[0,1]]) # Linear portion of dynamics C = 3*g/(2*l) * np.array([[h**2],[h]])@np.array([[1,0]]) # Linearized nonlinear portion of dynamics A = A + C # Linearized dynamics B = 3/(m*l**2) * np.array([[h**2],[h]]) # Control input E = 3*g/(2*l) * np.array([[h**2],[h]]) # Linearization error disturbance input # State and input bounds: theta_max = 1. # Max angle omega_max = 8 # Max speed u_max = 15 # Max control noise_max = 0 d_max = theta_max - np.sin(theta_max) + noise_max # Max linearization error inside safe set, plus noise # Constraints sets: X = Polytope(lb = (-theta_max,-omega_max),ub = (theta_max,omega_max)) # Safe set U = Polytope(lb = -u_max, ub = u_max) # Control set D = Polytope(lb = -d_max, ub = d_max) # Disturbance set return A,B,E,X,U,D,h,env_name A,B,E,X,U,D,h,env_name = parameters_power_system_2() Y,V,YY,S = vertices(A,B,E,X,U,D,h,env_name) print(np.round(Y,2)) p = Y.size()[1] z = np.ones((1,p)) for i,x in enumerate(list(XX)): x = np.reshape(x,(2,1)) vmin = scipy.optimize.linprog(c=V.numpy().flatten(),A_eq = np.block([[Y.numpy()],[z]]),b_eq = np.block([[x],[1]]),bounds=(0,None)).fun vmax = -scipy.optimize.linprog(c=-V.numpy().flatten(),A_eq = np.block([[Y.numpy()],[z]]),b_eq = np.block([[x],[1]]),bounds=(0,None)).fun plt.figure(3) plt.subplot(122) if i == 0: plt.plot([vmin,vmax],(i+1)*np.ones(2),'--ro',label = r'$V(x_i)$',linewidth=3) else: plt.plot([vmin,vmax],(i+1)*np.ones(2),'--ro',linewidth=3) plt.legend(fontsize=15) plt.figure(3) plt.subplot(121) X.plot(alpha = 0.5,color = (0,1,0),label = 'X') S.plot(alpha=0.5,color = (0,0,1),label = 'S') plt.xlabel('Angle (rad)',fontsize=25) plt.ylabel('Frequency (rad/sec)',fontsize=25) plt.title('Safe and invariant sets',fontsize=25) plt.xticks(fontsize=20) plt.yticks([-8,-4,0,4,8],fontsize=20) plt.subplot(121) plt.plot(XX[:,0],XX[:,1],'kd',label=r'$x_i$') plt.legend(fontsize=15) plt.annotate(r'$x_1$',.05+XX[0,:],fontsize=20) plt.annotate(r'$x_2$',np.array([0,-1.5])+XX[1,:],fontsize=20) plt.annotate(r'$x_3$',np.array([0,-2.])+XX[2,:],fontsize=20) plt.annotate(r'$x_4$',np.array([-.3,.3])+XX[3,:],fontsize=20) plt.subplot(122) plt.xlabel('Control input',fontsize=25) plt.ylabel('Sample point',fontsize=25) plt.title('Sample action sets',fontsize=25) plt.yticks(ticks = [0,1,2,3,4],labels=['U',r'$x_1$',r'$x_2$',r'$x_3$',r'$x_4$'],fontsize=20) plt.xticks([-15,0,15],fontsize=20) plt.tight_layout() '''a_1 = torch.rand((p,1))**5 a_1 = a_1/torch.norm(a_1,p=1) a_1_traj = a_1 plt.figure(3) for i in range(10): a_1 = (torch.eye(p) - [email protected]([email protected])@Y) @ a_1 a_1 = a_1 + [email protected]([email protected])@x a_1 = torch.maximum(a_1,torch.zeros((p,1))) #a_1 = a_1/torch.norm(a_1,p=1) a_1 = a_1 + z/p*(1-torch.sum(a_1)) a_1_traj = torch.cat((a_1_traj,a_1),dim = 1) plt.plot(a_1_traj.T)''' def newton_step(Y,a,x,t): n,p = np.shape(Y) z = np.ones(p) P = [email protected]([email protected]) #g = Y.T@Y@a - Y.T@x + np.ones((p,p))@a - z - 1/t * np.diag(1/a) @ z g = P@Y@a - P@x + np.ones((p,p))@a - z - 1/t * np.diag(1/a) @ z #Z = np.block([[P@Y],[z.T]]) Z1 = np.block([P,np.ones((p,1))]) Z2 = np.block([[Y],[np.ones((1,p))]]) Dinv = np.diag(a**2) Hinv = t*Dinv - t**2*Dinv@[email protected](np.eye(n+1) + t*Z2@Dinv@Z1)@Z2@Dinv da_nt = -Hinv@g return a + .25*da_nt Y = Y.numpy() P = [email protected]([email protected]) x = np.array([.6,5]) a = np.random.rand(p) a = a**10 a = a/sum(a) penalty_traj = [np.linalg.norm(P@(Y@a-x))] for t in np.logspace(2,7,15): for j in range(3): a = newton_step(Y,a,x,t) penalty_traj.append(np.linalg.norm(P@(Y@a-x))) plt.figure() plt.semilogy(penalty_traj)
Cyclic_projections/envs/generate_vertices.py
import numpy as np import cvxpy as cp import scipy.linalg import scipy.optimize import matplotlib.pyplot as plt from pytope import Polytope if __name__ == '__main__': from generate_invariant_set import invariant_set else: from envs.generate_invariant_set import invariant_set import torch #%%% XX = np.array([[-.5,0],[0,7.5],[.6,5],[.95,-7.5]]) def vertices(A,B,E,X,U,D,h,env_name): # Generate the matrices Y and V. # The columns of V are the vertices of the action polytope at each vertex of the invariant set. # The columns of Y are the vertices of the invariant set, repeated once for each corresponding vertex of the action polytope. # The set {x: Fx @ x <= gx} describes the target set: u must be chosen such that Fx @ (Ax + Bu) <= gx. This set is smaller than the invariant set in order to account for disturbances. # The set {x: Fi @ x <= gi} is the actual invariant set. # Generate invariant and target set: Fx,gx,Fi,gi = invariant_set(A,B,E,X,U,D,h,env_name) S_targ = Polytope(A = Fx, b = gx) S_safe = Polytope(A = Fi, b = gi) # Get dimensions: p = np.shape(S_safe.V)[0] n,m = np.shape(B) # Matrix whose columns are vertices of invariant set: Y = (S_safe.V).T YY = Y if __name__ == '__main__': plt.figure(3,figsize=(8,4),dpi=500) plt.subplot(122) plt.plot(U.V,[0,0],'-ok',label='U',linewidth=3) plt.autoscale(enable=True) # Build V matrix and expand Y matrix: V = np.zeros((m,p)) for i,x in enumerate(list(YY.T)): x = np.reshape(x,(n,1)) Ui_H = np.block([[Fx@B,gx - Fx@A@x],[U.A,U.b]]) Ui = Polytope(A = Ui_H[:,:-1],b = Ui_H[:,-1]) qi = np.shape(Ui.V)[0] # Number of vertices of Ui Y_new_i = np.tile(np.reshape(Y[:,i],(n,1)),(1,qi)) if i == 0: V = Ui.V.T Y_new = Y_new_i else: V = np.append(V,Ui.V.T,axis = 1) Y_new = np.append(Y_new,Y_new_i,axis = 1) if __name__ == '__main__': for i,x in enumerate(list(XX)): x = np.reshape(x,(n,1)) Ui_H = np.block([[Fx@B,gx - Fx@A@x],[U.A,U.b]]) Ui = Polytope(A = Ui_H[:,:-1],b = Ui_H[:,-1]) plt.figure(3) plt.subplot(122) if i == 0: plt.plot(Ui.V,(i+1)*np.ones(len(Ui.V)),'-bo',label=r'$\Omega(x_i)$',linewidth=3) else: plt.plot(Ui.V,(i+1)*np.ones(len(Ui.V)),'-bo',linewidth=3) Y = Y_new p = np.shape(Y)[1] Y = torch.tensor(Y).type(torch.FloatTensor) V = torch.tensor(V).type(torch.FloatTensor) if __name__ == '__main__': return Y,V,YY,S_safe else: return Y,V,Fx,gx,Fi,gi if __name__ == '__main__': def parameters_power_system_2(): max_speed = 8 max_action = 15. dt = .05 g = -1. m = 1. l = 1. safe_th = 1. # safe region [-1, 1] env_name = 'power_system_2' d = 0.1 # damping # Linearized dynamics: A = np.array([[1,dt],[0,1-dt*d]]) # Linear portion of dynamics C = 3*g/(2*l) * np.array([[dt**2],[dt]])@np.array([[1,0]]) # Linearized nonlinear portion of dynamics A = A + C B = 3/(m*l**2) * np.array([[dt**2],[dt]]) # Control input E = 3*g/(2*l) * np.array([[dt**2],[dt]]) # Linearization error disturbance input # State and input bounds: noise_max = .5 d_max = safe_th - np.sin(safe_th) + noise_max # Max linearization error inside safe set, plus noise # Constraint sets: X = Polytope(lb = (-safe_th,-max_speed),ub = (safe_th,max_speed)) # Safe set U = Polytope(lb = -max_action, ub = max_action) # Control set D = Polytope(lb = -d_max, ub = d_max) # Disturbance set return A,B,E,X,U,D,dt,env_name def parameters_pendulum(): # Parameters: h = .05 g = 10. m = 1. l = 1. env_name = 'pendulum' # Linearized dynamics: A = np.array([[1,h],[0,1]]) # Linear portion of dynamics C = 3*g/(2*l) * np.array([[h**2],[h]])@np.array([[1,0]]) # Linearized nonlinear portion of dynamics A = A + C # Linearized dynamics B = 3/(m*l**2) * np.array([[h**2],[h]]) # Control input E = 3*g/(2*l) * np.array([[h**2],[h]]) # Linearization error disturbance input # State and input bounds: theta_max = 1. # Max angle omega_max = 8 # Max speed u_max = 15 # Max control noise_max = 0 d_max = theta_max - np.sin(theta_max) + noise_max # Max linearization error inside safe set, plus noise # Constraints sets: X = Polytope(lb = (-theta_max,-omega_max),ub = (theta_max,omega_max)) # Safe set U = Polytope(lb = -u_max, ub = u_max) # Control set D = Polytope(lb = -d_max, ub = d_max) # Disturbance set return A,B,E,X,U,D,h,env_name A,B,E,X,U,D,h,env_name = parameters_power_system_2() Y,V,YY,S = vertices(A,B,E,X,U,D,h,env_name) print(np.round(Y,2)) p = Y.size()[1] z = np.ones((1,p)) for i,x in enumerate(list(XX)): x = np.reshape(x,(2,1)) vmin = scipy.optimize.linprog(c=V.numpy().flatten(),A_eq = np.block([[Y.numpy()],[z]]),b_eq = np.block([[x],[1]]),bounds=(0,None)).fun vmax = -scipy.optimize.linprog(c=-V.numpy().flatten(),A_eq = np.block([[Y.numpy()],[z]]),b_eq = np.block([[x],[1]]),bounds=(0,None)).fun plt.figure(3) plt.subplot(122) if i == 0: plt.plot([vmin,vmax],(i+1)*np.ones(2),'--ro',label = r'$V(x_i)$',linewidth=3) else: plt.plot([vmin,vmax],(i+1)*np.ones(2),'--ro',linewidth=3) plt.legend(fontsize=15) plt.figure(3) plt.subplot(121) X.plot(alpha = 0.5,color = (0,1,0),label = 'X') S.plot(alpha=0.5,color = (0,0,1),label = 'S') plt.xlabel('Angle (rad)',fontsize=25) plt.ylabel('Frequency (rad/sec)',fontsize=25) plt.title('Safe and invariant sets',fontsize=25) plt.xticks(fontsize=20) plt.yticks([-8,-4,0,4,8],fontsize=20) plt.subplot(121) plt.plot(XX[:,0],XX[:,1],'kd',label=r'$x_i$') plt.legend(fontsize=15) plt.annotate(r'$x_1$',.05+XX[0,:],fontsize=20) plt.annotate(r'$x_2$',np.array([0,-1.5])+XX[1,:],fontsize=20) plt.annotate(r'$x_3$',np.array([0,-2.])+XX[2,:],fontsize=20) plt.annotate(r'$x_4$',np.array([-.3,.3])+XX[3,:],fontsize=20) plt.subplot(122) plt.xlabel('Control input',fontsize=25) plt.ylabel('Sample point',fontsize=25) plt.title('Sample action sets',fontsize=25) plt.yticks(ticks = [0,1,2,3,4],labels=['U',r'$x_1$',r'$x_2$',r'$x_3$',r'$x_4$'],fontsize=20) plt.xticks([-15,0,15],fontsize=20) plt.tight_layout() '''a_1 = torch.rand((p,1))**5 a_1 = a_1/torch.norm(a_1,p=1) a_1_traj = a_1 plt.figure(3) for i in range(10): a_1 = (torch.eye(p) - [email protected]([email protected])@Y) @ a_1 a_1 = a_1 + [email protected]([email protected])@x a_1 = torch.maximum(a_1,torch.zeros((p,1))) #a_1 = a_1/torch.norm(a_1,p=1) a_1 = a_1 + z/p*(1-torch.sum(a_1)) a_1_traj = torch.cat((a_1_traj,a_1),dim = 1) plt.plot(a_1_traj.T)''' def newton_step(Y,a,x,t): n,p = np.shape(Y) z = np.ones(p) P = [email protected]([email protected]) #g = Y.T@Y@a - Y.T@x + np.ones((p,p))@a - z - 1/t * np.diag(1/a) @ z g = P@Y@a - P@x + np.ones((p,p))@a - z - 1/t * np.diag(1/a) @ z #Z = np.block([[P@Y],[z.T]]) Z1 = np.block([P,np.ones((p,1))]) Z2 = np.block([[Y],[np.ones((1,p))]]) Dinv = np.diag(a**2) Hinv = t*Dinv - t**2*Dinv@[email protected](np.eye(n+1) + t*Z2@Dinv@Z1)@Z2@Dinv da_nt = -Hinv@g return a + .25*da_nt Y = Y.numpy() P = [email protected]([email protected]) x = np.array([.6,5]) a = np.random.rand(p) a = a**10 a = a/sum(a) penalty_traj = [np.linalg.norm(P@(Y@a-x))] for t in np.logspace(2,7,15): for j in range(3): a = newton_step(Y,a,x,t) penalty_traj.append(np.linalg.norm(P@(Y@a-x))) plt.figure() plt.semilogy(penalty_traj)
0.539954
0.466481
import os import unittest from functools import partial from textwrap import dedent from typing import Dict, List, Optional from pants.base.build_environment import get_buildroot from pants.option.option_value_container import OptionValueContainer from pants.option.options_bootstrapper import OptionsBootstrapper from pants.option.scope import ScopeInfo from pants.util.contextutil import temporary_dir, temporary_file, temporary_file_path from pants.util.logging import LogLevel class OptionsBootstrapperTest(unittest.TestCase): @staticmethod def _config_path(path: Optional[str]) -> List[str]: if path is None: return ["--pants-config-files=[]"] return [f"--pants-config-files=['{path}']"] def assert_bootstrap_options( self, *, config: Optional[Dict[str, str]] = None, env: Optional[Dict[str, str]] = None, args: Optional[List[str]] = None, **expected_entries, ) -> None: with temporary_file(binary_mode=False) as fp: fp.write("[DEFAULT]\n") if config: for k, v in config.items(): fp.write(f"{k} = {repr(v)}\n") fp.close() args = [*self._config_path(fp.name), *(args or [])] bootstrapper = OptionsBootstrapper.create(env=env or {}, args=args, allow_pantsrc=False) vals = bootstrapper.get_bootstrap_options().for_global_scope() vals_dict = {k: getattr(vals, k) for k in expected_entries} self.assertEqual(expected_entries, vals_dict) def test_bootstrap_seed_values(self) -> None: def assert_seed_values( *, config: Optional[Dict[str, str]] = None, env: Optional[Dict[str, str]] = None, args: Optional[List[str]] = None, workdir: Optional[str] = None, supportdir: Optional[str] = None, distdir: Optional[str] = None, ) -> None: self.assert_bootstrap_options( config=config, env=env, args=args, pants_workdir=workdir or os.path.join(get_buildroot(), ".pants.d"), pants_supportdir=supportdir or os.path.join(get_buildroot(), "build-support"), pants_distdir=distdir or os.path.join(get_buildroot(), "dist"), ) # Check for valid default seed values assert_seed_values() # Check getting values from config, env and args. assert_seed_values( config={"pants_workdir": "/from_config/.pants.d"}, workdir="/from_config/.pants.d", ) assert_seed_values( env={"PANTS_SUPPORTDIR": "/from_env/build-support"}, supportdir="/from_env/build-support", ) assert_seed_values(args=["--pants-distdir=/from_args/dist"], distdir="/from_args/dist") # Check that args > env > config. assert_seed_values( config={ "pants_workdir": "/from_config/.pants.d", "pants_supportdir": "/from_config/build-support", "pants_distdir": "/from_config/dist", }, env={"PANTS_SUPPORTDIR": "/from_env/build-support", "PANTS_DISTDIR": "/from_env/dist"}, args=["--pants-distdir=/from_args/dist"], workdir="/from_config/.pants.d", supportdir="/from_env/build-support", distdir="/from_args/dist", ) # Check that unrelated args and config don't confuse us. assert_seed_values( config={ "pants_workdir": "/from_config/.pants.d", "pants_supportdir": "/from_config/build-support", "pants_distdir": "/from_config/dist", "unrelated": "foo", }, env={ "PANTS_SUPPORTDIR": "/from_env/build-support", "PANTS_DISTDIR": "/from_env/dist", "PANTS_NO_RELATIONSHIP": "foo", }, args=["--pants-distdir=/from_args/dist", "--foo=bar", "--baz"], workdir="/from_config/.pants.d", supportdir="/from_env/build-support", distdir="/from_args/dist", ) def test_bootstrap_bool_option_values(self) -> None: # Check the default. self.assert_bootstrap_options(pantsrc=True) assert_pantsrc_is_false = partial(self.assert_bootstrap_options, pantsrc=False) assert_pantsrc_is_false(args=["--no-pantsrc"]) assert_pantsrc_is_false(config={"pantsrc": "false"}) assert_pantsrc_is_false(env={"PANTS_PANTSRC": "False"}) def test_create_bootstrapped_options(self) -> None: # Check that we can set a bootstrap option from a cmd-line flag and have that interpolate # correctly into regular config. with temporary_file(binary_mode=False) as fp: fp.write( dedent( """ [foo] bar = "%(pants_workdir)s/baz" [fruit] apple = "%(pants_supportdir)s/banana" """ ) ) fp.close() args = ["--pants-workdir=/qux"] + self._config_path(fp.name) bootstrapper = OptionsBootstrapper.create( env={"PANTS_SUPPORTDIR": "/pear"}, args=args, allow_pantsrc=False ) opts = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("foo"), ScopeInfo("fruit"), ] ) # So we don't choke on these on the cmd line. opts.register("", "--pants-workdir") opts.register("", "--pants-config-files") opts.register("foo", "--bar") opts.register("fruit", "--apple") self.assertEqual("/qux/baz", opts.for_scope("foo").bar) self.assertEqual("/pear/banana", opts.for_scope("fruit").apple) def test_bootstrapped_options_ignore_irrelevant_env(self) -> None: included = "PANTS_SUPPORTDIR" excluded = "NON_PANTS_ENV" bootstrapper = OptionsBootstrapper.create( env={excluded: "pear", included: "banana"}, args=[], allow_pantsrc=False ) self.assertIn(included, bootstrapper.env) self.assertNotIn(excluded, bootstrapper.env) def test_create_bootstrapped_multiple_pants_config_files(self) -> None: """When given multiple config files, the later files should take precedence when options conflict.""" def create_options_bootstrapper(*config_paths: str) -> OptionsBootstrapper: return OptionsBootstrapper.create( env={}, args=[f"--pants-config-files={cp}" for cp in config_paths], allow_pantsrc=False, ) def assert_config_read_correctly( options_bootstrapper: OptionsBootstrapper, *, expected_worker_count: int, ) -> None: options = options_bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("compile.apt"), ScopeInfo("fruit"), ], ) # So we don't choke on these on the cmd line. options.register("", "--pants-config-files", type=list) options.register("", "--config-override", type=list) options.register("compile.apt", "--worker-count") options.register("fruit", "--apple") self.assertEqual( str(expected_worker_count), options.for_scope("compile.apt").worker_count ) self.assertEqual("red", options.for_scope("fruit").apple) with temporary_file(binary_mode=False) as fp1, temporary_file(binary_mode=False) as fp2: fp1.write( dedent( """\ [compile.apt] worker_count = 1 [fruit] apple = "red" """ ) ) fp2.write( dedent( """\ [compile.apt] worker_count = 2 """ ) ) fp1.close() fp2.close() assert_config_read_correctly( create_options_bootstrapper(fp1.name), expected_worker_count=1, ) assert_config_read_correctly( create_options_bootstrapper(fp1.name, fp2.name), expected_worker_count=2, ) assert_config_read_correctly( create_options_bootstrapper(fp2.name, fp1.name), expected_worker_count=1, ) def test_options_pantsrc_files(self) -> None: def create_options_bootstrapper(*config_paths: str) -> OptionsBootstrapper: return OptionsBootstrapper.create( env={}, args=[f"--pantsrc-files={cp}" for cp in config_paths], allow_pantsrc=True, ) with temporary_file(binary_mode=False) as fp: fp.write( dedent( """ [resolver] resolver = "coursier" """ ) ) fp.close() bootstrapped_options = create_options_bootstrapper(fp.name) opts_single_config = bootstrapped_options.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("resolver"), ] ) opts_single_config.register("", "--pantsrc-files", type=list) opts_single_config.register("resolver", "--resolver") self.assertEqual("coursier", opts_single_config.for_scope("resolver").resolver) def test_full_options_caching(self) -> None: with temporary_file_path() as config: args = self._config_path(config) bootstrapper = OptionsBootstrapper.create(env={}, args=args, allow_pantsrc=False) opts1 = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("foo"), ] ) opts2 = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo("foo"), ScopeInfo(""), ] ) assert opts1 is opts2 opts3 = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("foo"), ScopeInfo(""), ] ) assert opts1 is opts3 opts4 = bootstrapper.get_full_options(known_scope_infos=[ScopeInfo("")]) assert opts1 is not opts4 opts5 = bootstrapper.get_full_options(known_scope_infos=[ScopeInfo("")]) assert opts4 is opts5 assert opts1 is not opts5 def test_bootstrap_short_options(self) -> None: def parse_options(*args: str) -> OptionValueContainer: full_args = [*args, *self._config_path(None)] return ( OptionsBootstrapper.create(env={}, args=full_args, allow_pantsrc=False) .get_bootstrap_options() .for_global_scope() ) # No short options passed - defaults presented. vals = parse_options() self.assertIsNone(vals.logdir) self.assertEqual(LogLevel.INFO, vals.level) # Unrecognized short options passed and ignored - defaults presented. vals = parse_options("-_UnderscoreValue", "-^") self.assertIsNone(vals.logdir) self.assertEqual(LogLevel.INFO, vals.level) vals = parse_options("-d/tmp/logs", "-ldebug") self.assertEqual("/tmp/logs", vals.logdir) self.assertEqual(LogLevel.DEBUG, vals.level) def test_bootstrap_options_passthrough_dup_ignored(self) -> None: def parse_options(*args: str) -> OptionValueContainer: full_args = [*args, *self._config_path(None)] return ( OptionsBootstrapper.create(env={}, args=full_args, allow_pantsrc=False) .get_bootstrap_options() .for_global_scope() ) vals = parse_options("main", "args", "-d/tmp/frogs", "--", "-d/tmp/logs") self.assertEqual("/tmp/frogs", vals.logdir) vals = parse_options("main", "args", "--", "-d/tmp/logs") self.assertIsNone(vals.logdir) def test_bootstrap_options_explicit_config_path(self) -> None: def config_path(*args, **env): return OptionsBootstrapper.get_config_file_paths(env, args) self.assertEqual( ["/foo/bar/pants.toml"], config_path("main", "args", "--pants-config-files=['/foo/bar/pants.toml']"), ) self.assertEqual( ["/from/env1", "/from/env2"], config_path("main", "args", PANTS_CONFIG_FILES="['/from/env1', '/from/env2']"), ) self.assertEqual( ["/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="['/from/env']", ), ) # Test appending to the default. self.assertEqual( [f"{get_buildroot()}/pants.toml", "/from/env", "/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=+['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="+['/from/env']", ), ) # Test replacing the default, then appending. self.assertEqual( ["/from/env", "/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=+['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="['/from/env']", ), ) self.assertEqual( ["/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="+['/from/env']", ), ) def test_setting_pants_config_in_config(self) -> None: # Test that setting pants_config in the config file has no effect. with temporary_dir() as tmpdir: config1 = os.path.join(tmpdir, "config1") config2 = os.path.join(tmpdir, "config2") with open(config1, "w") as out1: out1.write(f"[DEFAULT]\npants_config_files = ['{config2}']\nlogdir = 'logdir1'\n") with open(config2, "w") as out2: out2.write("[DEFAULT]\nlogdir = 'logdir2'\n") ob = OptionsBootstrapper.create( env={}, args=[f"--pants-config-files=['{config1}']"], allow_pantsrc=False ) logdir = ob.get_bootstrap_options().for_global_scope().logdir self.assertEqual("logdir1", logdir)
src/python/pants/option/options_bootstrapper_test.py
import os import unittest from functools import partial from textwrap import dedent from typing import Dict, List, Optional from pants.base.build_environment import get_buildroot from pants.option.option_value_container import OptionValueContainer from pants.option.options_bootstrapper import OptionsBootstrapper from pants.option.scope import ScopeInfo from pants.util.contextutil import temporary_dir, temporary_file, temporary_file_path from pants.util.logging import LogLevel class OptionsBootstrapperTest(unittest.TestCase): @staticmethod def _config_path(path: Optional[str]) -> List[str]: if path is None: return ["--pants-config-files=[]"] return [f"--pants-config-files=['{path}']"] def assert_bootstrap_options( self, *, config: Optional[Dict[str, str]] = None, env: Optional[Dict[str, str]] = None, args: Optional[List[str]] = None, **expected_entries, ) -> None: with temporary_file(binary_mode=False) as fp: fp.write("[DEFAULT]\n") if config: for k, v in config.items(): fp.write(f"{k} = {repr(v)}\n") fp.close() args = [*self._config_path(fp.name), *(args or [])] bootstrapper = OptionsBootstrapper.create(env=env or {}, args=args, allow_pantsrc=False) vals = bootstrapper.get_bootstrap_options().for_global_scope() vals_dict = {k: getattr(vals, k) for k in expected_entries} self.assertEqual(expected_entries, vals_dict) def test_bootstrap_seed_values(self) -> None: def assert_seed_values( *, config: Optional[Dict[str, str]] = None, env: Optional[Dict[str, str]] = None, args: Optional[List[str]] = None, workdir: Optional[str] = None, supportdir: Optional[str] = None, distdir: Optional[str] = None, ) -> None: self.assert_bootstrap_options( config=config, env=env, args=args, pants_workdir=workdir or os.path.join(get_buildroot(), ".pants.d"), pants_supportdir=supportdir or os.path.join(get_buildroot(), "build-support"), pants_distdir=distdir or os.path.join(get_buildroot(), "dist"), ) # Check for valid default seed values assert_seed_values() # Check getting values from config, env and args. assert_seed_values( config={"pants_workdir": "/from_config/.pants.d"}, workdir="/from_config/.pants.d", ) assert_seed_values( env={"PANTS_SUPPORTDIR": "/from_env/build-support"}, supportdir="/from_env/build-support", ) assert_seed_values(args=["--pants-distdir=/from_args/dist"], distdir="/from_args/dist") # Check that args > env > config. assert_seed_values( config={ "pants_workdir": "/from_config/.pants.d", "pants_supportdir": "/from_config/build-support", "pants_distdir": "/from_config/dist", }, env={"PANTS_SUPPORTDIR": "/from_env/build-support", "PANTS_DISTDIR": "/from_env/dist"}, args=["--pants-distdir=/from_args/dist"], workdir="/from_config/.pants.d", supportdir="/from_env/build-support", distdir="/from_args/dist", ) # Check that unrelated args and config don't confuse us. assert_seed_values( config={ "pants_workdir": "/from_config/.pants.d", "pants_supportdir": "/from_config/build-support", "pants_distdir": "/from_config/dist", "unrelated": "foo", }, env={ "PANTS_SUPPORTDIR": "/from_env/build-support", "PANTS_DISTDIR": "/from_env/dist", "PANTS_NO_RELATIONSHIP": "foo", }, args=["--pants-distdir=/from_args/dist", "--foo=bar", "--baz"], workdir="/from_config/.pants.d", supportdir="/from_env/build-support", distdir="/from_args/dist", ) def test_bootstrap_bool_option_values(self) -> None: # Check the default. self.assert_bootstrap_options(pantsrc=True) assert_pantsrc_is_false = partial(self.assert_bootstrap_options, pantsrc=False) assert_pantsrc_is_false(args=["--no-pantsrc"]) assert_pantsrc_is_false(config={"pantsrc": "false"}) assert_pantsrc_is_false(env={"PANTS_PANTSRC": "False"}) def test_create_bootstrapped_options(self) -> None: # Check that we can set a bootstrap option from a cmd-line flag and have that interpolate # correctly into regular config. with temporary_file(binary_mode=False) as fp: fp.write( dedent( """ [foo] bar = "%(pants_workdir)s/baz" [fruit] apple = "%(pants_supportdir)s/banana" """ ) ) fp.close() args = ["--pants-workdir=/qux"] + self._config_path(fp.name) bootstrapper = OptionsBootstrapper.create( env={"PANTS_SUPPORTDIR": "/pear"}, args=args, allow_pantsrc=False ) opts = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("foo"), ScopeInfo("fruit"), ] ) # So we don't choke on these on the cmd line. opts.register("", "--pants-workdir") opts.register("", "--pants-config-files") opts.register("foo", "--bar") opts.register("fruit", "--apple") self.assertEqual("/qux/baz", opts.for_scope("foo").bar) self.assertEqual("/pear/banana", opts.for_scope("fruit").apple) def test_bootstrapped_options_ignore_irrelevant_env(self) -> None: included = "PANTS_SUPPORTDIR" excluded = "NON_PANTS_ENV" bootstrapper = OptionsBootstrapper.create( env={excluded: "pear", included: "banana"}, args=[], allow_pantsrc=False ) self.assertIn(included, bootstrapper.env) self.assertNotIn(excluded, bootstrapper.env) def test_create_bootstrapped_multiple_pants_config_files(self) -> None: """When given multiple config files, the later files should take precedence when options conflict.""" def create_options_bootstrapper(*config_paths: str) -> OptionsBootstrapper: return OptionsBootstrapper.create( env={}, args=[f"--pants-config-files={cp}" for cp in config_paths], allow_pantsrc=False, ) def assert_config_read_correctly( options_bootstrapper: OptionsBootstrapper, *, expected_worker_count: int, ) -> None: options = options_bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("compile.apt"), ScopeInfo("fruit"), ], ) # So we don't choke on these on the cmd line. options.register("", "--pants-config-files", type=list) options.register("", "--config-override", type=list) options.register("compile.apt", "--worker-count") options.register("fruit", "--apple") self.assertEqual( str(expected_worker_count), options.for_scope("compile.apt").worker_count ) self.assertEqual("red", options.for_scope("fruit").apple) with temporary_file(binary_mode=False) as fp1, temporary_file(binary_mode=False) as fp2: fp1.write( dedent( """\ [compile.apt] worker_count = 1 [fruit] apple = "red" """ ) ) fp2.write( dedent( """\ [compile.apt] worker_count = 2 """ ) ) fp1.close() fp2.close() assert_config_read_correctly( create_options_bootstrapper(fp1.name), expected_worker_count=1, ) assert_config_read_correctly( create_options_bootstrapper(fp1.name, fp2.name), expected_worker_count=2, ) assert_config_read_correctly( create_options_bootstrapper(fp2.name, fp1.name), expected_worker_count=1, ) def test_options_pantsrc_files(self) -> None: def create_options_bootstrapper(*config_paths: str) -> OptionsBootstrapper: return OptionsBootstrapper.create( env={}, args=[f"--pantsrc-files={cp}" for cp in config_paths], allow_pantsrc=True, ) with temporary_file(binary_mode=False) as fp: fp.write( dedent( """ [resolver] resolver = "coursier" """ ) ) fp.close() bootstrapped_options = create_options_bootstrapper(fp.name) opts_single_config = bootstrapped_options.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("resolver"), ] ) opts_single_config.register("", "--pantsrc-files", type=list) opts_single_config.register("resolver", "--resolver") self.assertEqual("coursier", opts_single_config.for_scope("resolver").resolver) def test_full_options_caching(self) -> None: with temporary_file_path() as config: args = self._config_path(config) bootstrapper = OptionsBootstrapper.create(env={}, args=args, allow_pantsrc=False) opts1 = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("foo"), ] ) opts2 = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo("foo"), ScopeInfo(""), ] ) assert opts1 is opts2 opts3 = bootstrapper.get_full_options( known_scope_infos=[ ScopeInfo(""), ScopeInfo("foo"), ScopeInfo(""), ] ) assert opts1 is opts3 opts4 = bootstrapper.get_full_options(known_scope_infos=[ScopeInfo("")]) assert opts1 is not opts4 opts5 = bootstrapper.get_full_options(known_scope_infos=[ScopeInfo("")]) assert opts4 is opts5 assert opts1 is not opts5 def test_bootstrap_short_options(self) -> None: def parse_options(*args: str) -> OptionValueContainer: full_args = [*args, *self._config_path(None)] return ( OptionsBootstrapper.create(env={}, args=full_args, allow_pantsrc=False) .get_bootstrap_options() .for_global_scope() ) # No short options passed - defaults presented. vals = parse_options() self.assertIsNone(vals.logdir) self.assertEqual(LogLevel.INFO, vals.level) # Unrecognized short options passed and ignored - defaults presented. vals = parse_options("-_UnderscoreValue", "-^") self.assertIsNone(vals.logdir) self.assertEqual(LogLevel.INFO, vals.level) vals = parse_options("-d/tmp/logs", "-ldebug") self.assertEqual("/tmp/logs", vals.logdir) self.assertEqual(LogLevel.DEBUG, vals.level) def test_bootstrap_options_passthrough_dup_ignored(self) -> None: def parse_options(*args: str) -> OptionValueContainer: full_args = [*args, *self._config_path(None)] return ( OptionsBootstrapper.create(env={}, args=full_args, allow_pantsrc=False) .get_bootstrap_options() .for_global_scope() ) vals = parse_options("main", "args", "-d/tmp/frogs", "--", "-d/tmp/logs") self.assertEqual("/tmp/frogs", vals.logdir) vals = parse_options("main", "args", "--", "-d/tmp/logs") self.assertIsNone(vals.logdir) def test_bootstrap_options_explicit_config_path(self) -> None: def config_path(*args, **env): return OptionsBootstrapper.get_config_file_paths(env, args) self.assertEqual( ["/foo/bar/pants.toml"], config_path("main", "args", "--pants-config-files=['/foo/bar/pants.toml']"), ) self.assertEqual( ["/from/env1", "/from/env2"], config_path("main", "args", PANTS_CONFIG_FILES="['/from/env1', '/from/env2']"), ) self.assertEqual( ["/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="['/from/env']", ), ) # Test appending to the default. self.assertEqual( [f"{get_buildroot()}/pants.toml", "/from/env", "/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=+['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="+['/from/env']", ), ) # Test replacing the default, then appending. self.assertEqual( ["/from/env", "/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=+['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="['/from/env']", ), ) self.assertEqual( ["/from/flag"], config_path( "main", "args", "-x", "--pants-config-files=['/from/flag']", "goal", "--other-flag", PANTS_CONFIG_FILES="+['/from/env']", ), ) def test_setting_pants_config_in_config(self) -> None: # Test that setting pants_config in the config file has no effect. with temporary_dir() as tmpdir: config1 = os.path.join(tmpdir, "config1") config2 = os.path.join(tmpdir, "config2") with open(config1, "w") as out1: out1.write(f"[DEFAULT]\npants_config_files = ['{config2}']\nlogdir = 'logdir1'\n") with open(config2, "w") as out2: out2.write("[DEFAULT]\nlogdir = 'logdir2'\n") ob = OptionsBootstrapper.create( env={}, args=[f"--pants-config-files=['{config1}']"], allow_pantsrc=False ) logdir = ob.get_bootstrap_options().for_global_scope().logdir self.assertEqual("logdir1", logdir)
0.787114
0.238151
import requests import time import pandas as pd from selenium import webdriver from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup import json url = 'https://stats.nba.com/players/traditional/?PerMode=Totals&Season=2019-20&SeasonType=Regular%20Season&sort=PLAYER_NAME&dir=-1' options = Options() driver = webdriver.Chrome() driver.get(url) driver.implicitly_wait(5) # Abrindo o site no navegador top10 = {} rankings = { 'points': {'field': 'PTS', 'label': 'PTS'}, 'assistants': {'field': 'AST', 'label': 'AST'}, 'rebounds': {'field': 'REB', 'label': 'REB'}, 'steals': {'field': 'STL', 'label': 'STL'}, 'blocks': {'field': 'BLK', 'label': 'BLK'}, 'vitorias': {'field': 'W','label':'W'} } # Definindo os campos do ranking def buildrank(type): field = rankings[type]['field'] label = rankings[type]['label'] driver.find_element_by_xpath(f"/html/body/div[3]/div[3]/div/div/div[2]/div/div/button").click() time.sleep(3) # Aceitando os cookies driver.find_element_by_xpath(f"/html/body/main/div[2]/div/div[2]/div/div/nba-stat-table/div[2]/div[1]/table/thead/tr/th[@data-field='{field}']").click() #Resolver isso # Clicando na tabela de pontos para ver o ranking element = driver.find_element_by_xpath(f'/html/body/main/div[2]/div/div[2]/div/div/nba-stat-table/div[2]/div[1]/table') # Procurando a tabela no html html_content = element.get_attribute('outerHTML') # Pegando o conteudo soup = BeautifulSoup(html_content, 'html.parser') # Parseando o htmli da página table = soup.find(name='table') # Encontrando a tabela df_full = pd.read_html(str (table))[0].head(10) df = df_full[['Unnamed: 0', 'PLAYER','TEAM',label]] df.columns = ['Posicao', 'Jogador', 'Time', 'Pontos'] # Definindo o data frame return df.to_dict('records') # Retornando com um dicionario for r in rankings: top10[r] = buildrank(r) driver.quit() with open('ranking.json', 'w', encoding='utf-8') as jp: js = json.dumps(top10, indent=4) jp.write(js)
exemplo_02/Exemplo_02.py
import requests import time import pandas as pd from selenium import webdriver from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup import json url = 'https://stats.nba.com/players/traditional/?PerMode=Totals&Season=2019-20&SeasonType=Regular%20Season&sort=PLAYER_NAME&dir=-1' options = Options() driver = webdriver.Chrome() driver.get(url) driver.implicitly_wait(5) # Abrindo o site no navegador top10 = {} rankings = { 'points': {'field': 'PTS', 'label': 'PTS'}, 'assistants': {'field': 'AST', 'label': 'AST'}, 'rebounds': {'field': 'REB', 'label': 'REB'}, 'steals': {'field': 'STL', 'label': 'STL'}, 'blocks': {'field': 'BLK', 'label': 'BLK'}, 'vitorias': {'field': 'W','label':'W'} } # Definindo os campos do ranking def buildrank(type): field = rankings[type]['field'] label = rankings[type]['label'] driver.find_element_by_xpath(f"/html/body/div[3]/div[3]/div/div/div[2]/div/div/button").click() time.sleep(3) # Aceitando os cookies driver.find_element_by_xpath(f"/html/body/main/div[2]/div/div[2]/div/div/nba-stat-table/div[2]/div[1]/table/thead/tr/th[@data-field='{field}']").click() #Resolver isso # Clicando na tabela de pontos para ver o ranking element = driver.find_element_by_xpath(f'/html/body/main/div[2]/div/div[2]/div/div/nba-stat-table/div[2]/div[1]/table') # Procurando a tabela no html html_content = element.get_attribute('outerHTML') # Pegando o conteudo soup = BeautifulSoup(html_content, 'html.parser') # Parseando o htmli da página table = soup.find(name='table') # Encontrando a tabela df_full = pd.read_html(str (table))[0].head(10) df = df_full[['Unnamed: 0', 'PLAYER','TEAM',label]] df.columns = ['Posicao', 'Jogador', 'Time', 'Pontos'] # Definindo o data frame return df.to_dict('records') # Retornando com um dicionario for r in rankings: top10[r] = buildrank(r) driver.quit() with open('ranking.json', 'w', encoding='utf-8') as jp: js = json.dumps(top10, indent=4) jp.write(js)
0.250546
0.078184
from urllib.request import Request from api.drivers.student import student_drivers from api.middlewares import authentication_middleware from api.schemas.admin.admin_request_schema import admin_request_schemas from api.schemas.student.request_schemas import student_request_schemas from api.schemas.student.response_schemas import student_response_schemas from api.utils.exceptions import exceptions from fastapi import APIRouter, Depends, HTTPException, Request, status from fastapi.responses import JSONResponse from api.repository import admin_repo import json def construct_router(): admin = APIRouter(tags=["Admin"]) @admin.post("/notify/student") async def notify_by_batch(): pass @admin.post("/add/student/subscription") async def add_student_subscription( request: admin_request_schemas.ManipulateStudentSubscriptionSchema, ): try: response = await student_drivers.Student().update_array_of_str( request.__dict__ ) return JSONResponse(status_code=200, content={"message": "info updated"}) except exceptions.DuplicateStudent: return JSONResponse( status_code=409, content={"message": "info cannot be updated"} ) except exceptions.UnexpectedError: return JSONResponse( status_code=500, content={"message": "internal server error"} ) @admin.post("/remove/student/subscription") async def remove_student_subscription( request: admin_request_schemas.ManipulateStudentSubscriptionSchema, ): try: response = await student_drivers.Student().delete_from_array_of_str( request.__dict__ ) if response: return JSONResponse( status_code=200, content={"message": "subscription deleted successfully"}, ) return JSONResponse( status_code=500, content={"message": "subscription deletion failed"} ) except exceptions.DuplicateStudent: return JSONResponse( status_code=409, content={"message": "info cannot be updated"} ) except exceptions.UnexpectedError: return JSONResponse( status_code=500, content={"message": "internal server error"} ) @admin.post("/verify/student") async def verify_student(request: Request): request = await request.json() response = await admin_repo.assign_otp(request["student_ids"]) if response: return JSONResponse( status_code=200, content={"message": "otp assigned successfully"} ) return JSONResponse( status_code=500, content={ "message": """otp cannot be assigned successfully for all student""" }, ) @admin.get("/ban/student/{student_id}") async def ban_student_account(student_id: str): response = await student_drivers.Student().ban_student(student_id) if response == "already_banned": return JSONResponse( status_code=404, content={"message": "student aleady banned"} ) elif response: return JSONResponse( status_code=200, content={"message": "student banned successfully"} ) return JSONResponse( status_code=500, content={"message": "internal server error"} ) @admin.delete("/delete/student/{student_id}") async def delete_student_account(student_id: str): response = await student_drivers.Student().delete_student(student_id) if response: return JSONResponse( status_code=200, content={"message": "student deleted successfully"} ) return JSONResponse( status_code=404, content={"message": "student does not exist"} ) @admin.get("/all_student") async def get_student_profile(): try: response = await ( student_drivers.Student().get_all_students() ) return JSONResponse( status_code=200, content=response ) except Exception as e: print(e, "exception") return admin
api/routes/admin/admin_student_routes.py
from urllib.request import Request from api.drivers.student import student_drivers from api.middlewares import authentication_middleware from api.schemas.admin.admin_request_schema import admin_request_schemas from api.schemas.student.request_schemas import student_request_schemas from api.schemas.student.response_schemas import student_response_schemas from api.utils.exceptions import exceptions from fastapi import APIRouter, Depends, HTTPException, Request, status from fastapi.responses import JSONResponse from api.repository import admin_repo import json def construct_router(): admin = APIRouter(tags=["Admin"]) @admin.post("/notify/student") async def notify_by_batch(): pass @admin.post("/add/student/subscription") async def add_student_subscription( request: admin_request_schemas.ManipulateStudentSubscriptionSchema, ): try: response = await student_drivers.Student().update_array_of_str( request.__dict__ ) return JSONResponse(status_code=200, content={"message": "info updated"}) except exceptions.DuplicateStudent: return JSONResponse( status_code=409, content={"message": "info cannot be updated"} ) except exceptions.UnexpectedError: return JSONResponse( status_code=500, content={"message": "internal server error"} ) @admin.post("/remove/student/subscription") async def remove_student_subscription( request: admin_request_schemas.ManipulateStudentSubscriptionSchema, ): try: response = await student_drivers.Student().delete_from_array_of_str( request.__dict__ ) if response: return JSONResponse( status_code=200, content={"message": "subscription deleted successfully"}, ) return JSONResponse( status_code=500, content={"message": "subscription deletion failed"} ) except exceptions.DuplicateStudent: return JSONResponse( status_code=409, content={"message": "info cannot be updated"} ) except exceptions.UnexpectedError: return JSONResponse( status_code=500, content={"message": "internal server error"} ) @admin.post("/verify/student") async def verify_student(request: Request): request = await request.json() response = await admin_repo.assign_otp(request["student_ids"]) if response: return JSONResponse( status_code=200, content={"message": "otp assigned successfully"} ) return JSONResponse( status_code=500, content={ "message": """otp cannot be assigned successfully for all student""" }, ) @admin.get("/ban/student/{student_id}") async def ban_student_account(student_id: str): response = await student_drivers.Student().ban_student(student_id) if response == "already_banned": return JSONResponse( status_code=404, content={"message": "student aleady banned"} ) elif response: return JSONResponse( status_code=200, content={"message": "student banned successfully"} ) return JSONResponse( status_code=500, content={"message": "internal server error"} ) @admin.delete("/delete/student/{student_id}") async def delete_student_account(student_id: str): response = await student_drivers.Student().delete_student(student_id) if response: return JSONResponse( status_code=200, content={"message": "student deleted successfully"} ) return JSONResponse( status_code=404, content={"message": "student does not exist"} ) @admin.get("/all_student") async def get_student_profile(): try: response = await ( student_drivers.Student().get_all_students() ) return JSONResponse( status_code=200, content=response ) except Exception as e: print(e, "exception") return admin
0.404743
0.060975
import pytest from distutils.version import LooseVersion from f5.bigip.resource import MissingRequiredCreationParameter from f5.bigip.tm.security.nat import Destination_Translation from f5.bigip.tm.security.nat import Policy from f5.bigip.tm.security.nat import Rule from f5.bigip.tm.security.nat import Source_Translation from f5.sdk_exception import ExclusiveAttributesPresent from requests.exceptions import HTTPError DESC = 'TESTADDED' @pytest.fixture(scope='function') def srctranslation(mgmt_root): s1 = mgmt_root.tm.security.nat.source_translations.source_translation.create( name='fake_src', partition='Common', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='dynamic-pat') yield s1 s1.delete() @pytest.fixture(scope='function') def dsttranslation(mgmt_root): d1 = mgmt_root.tm.security.nat.destination_translations.destination_translation.create( partition='Common', name='fake_dst', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='static-pat') yield d1 d1.delete() @pytest.fixture(scope='function') def policy(mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') yield p1 p1.delete() @pytest.fixture(scope='function') def rule(mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'place-after': 'last'} rule1 = rule_lst.rule.create(**param_set) yield rule1 rule1.delete() p1.delete() @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestSrcTranslation(object): def test_create_missing_mandatory_attr_raises(self, mgmt_root): s1 = mgmt_root.tm.security.nat.source_translations.source_translation with pytest.raises(HTTPError) as err: s1.create(name='fail', partition='Common', type='dynamic-pat') assert err.value.response.status_code == 400 def test_create_req_args(self, srctranslation): s1 = srctranslation URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) assert s1.kind == 'tm:security:nat:source-translation:source-translationstate' assert not hasattr(s1, 'description') def test_create_opt_args(self, mgmt_root): s1 = mgmt_root.tm.security.nat.source_translations.source_translation.create( name='fake_src', partition='Common', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='dynamic-pat') URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) s1.modify(description=DESC) assert hasattr(s1, 'description') assert s1.description == DESC s1.delete() def test_refresh(self, mgmt_root, srctranslation): sc = mgmt_root.tm.security.nat.source_translations s1 = srctranslation s2 = sc.source_translation.load(name='fake_src', partition='Common') assert s1.name == s2.name assert s1.kind == s2.kind assert s1.selfLink == s2.selfLink assert not hasattr(s1, 'description') assert not hasattr(s2, 'description') s2.modify(description=DESC) assert hasattr(s2, 'description') assert s2.description == DESC s1.refresh() assert s1.selfLink == s2.selfLink assert hasattr(s1, 'description') assert s1.description == s2.description def test_delete(self, mgmt_root): src = mgmt_root.tm.security.nat.source_translations s1 = src.source_translation.create(name='fake_src', partition='Common', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='dynamic-pat') s1.delete() with pytest.raises(HTTPError) as err: src.source_translation.load(partition='Common', name='fake_src') assert err.value.response.status_code == 404 def test_load_no_object(self, mgmt_root): src = mgmt_root.tm.security.nat.source_translations with pytest.raises(HTTPError) as err: src.source_translation.load(partition='Common', name='not_exists') assert err.value.response.status_code == 404 def test_load_and_update(self, mgmt_root, srctranslation): s1 = srctranslation URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) assert not hasattr(s1, 'description') s1.description = DESC s1.update() assert hasattr(s1, 'description') assert s1.description == DESC sc = mgmt_root.tm.security.nat.source_translations s2 = sc.source_translation.load(partition='Common', name='fake_src') assert s1.name == s2.name assert s1.partition == s2.partition assert s1.selfLink == s2.selfLink assert hasattr(s2, 'description') assert s1.description == s2.description def test_src_translation_collection(self, mgmt_root, srctranslation): s1 = srctranslation URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) src = mgmt_root.tm.security.nat.source_translations.get_collection() assert isinstance(src, list) assert len(src) assert isinstance(src[0], Source_Translation) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestDstTranslation(object): def test_create_missing_mandatory_attr_raises(self, mgmt_root): d1 = mgmt_root.tm.security.nat.destination_translations.destination_translation with pytest.raises(HTTPError) as err: d1.create(name='fail', partition='Common', type='static-nat') assert err.value.response.status_code == 400 d2 = mgmt_root.tm.security.nat.destination_translations.destination_translation with pytest.raises(HTTPError) as err: d2.create(name='fail', partition='Common', type='static-pat') assert err.value.response.status_code == 400 def test_create_req_args(self, dsttranslation): d1 = dsttranslation URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) assert d1.kind == 'tm:security:nat:destination-translation:destination-translationstate' assert not hasattr(d1, 'description') def test_create_opt_args(self, mgmt_root): d1 = mgmt_root.tm.security.nat.destination_translations.destination_translation.create( partition='Common', name='fake_dst', addresses=['192.168.3.11', '192.168.3.11'], ports=['1025-65535'], type='static-pat') URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) d1.modify(description=DESC) assert hasattr(d1, 'description') assert d1.description == DESC d1.delete() def test_refresh(self, mgmt_root, dsttranslation): d1 = dsttranslation dst = mgmt_root.tm.security.nat.destination_translations d2 = dst.destination_translation.load( name='fake_dst', partition='Common') assert d1.name == d2.name assert d1.partition == d2.partition assert d1.kind == d2.kind assert d1.selfLink == d2.selfLink assert not hasattr(d1, 'description') assert not hasattr(d2, 'description') d2.modify(description=DESC) assert hasattr(d2, 'description') assert d2.description == DESC d1.refresh() assert d1.selfLink == d2.selfLink assert hasattr(d1, 'description') assert d1.description == d2.description def test_delete(self, mgmt_root): dst = mgmt_root.tm.security.nat.destination_translations d1 = dst.destination_translation.create( partition='Common', name='fake_dst', addresses=['192.168.3.11', '192.168.3.11'], ports=['1025-65535'], type='static-pat') d1.delete() with pytest.raises(HTTPError) as err: dst.destination_translation.load(partition='Common', name='fake_dst') assert err.value.response.status_code == 404 def test_load_no_object(self, mgmt_root): dst = mgmt_root.tm.security.nat.destination_translations with pytest.raises(HTTPError) as err: dst.destination_translation.load(partition='Common', name='not_exists') assert err.value.response.status_code == 404 def test_load_and_update(self, mgmt_root, dsttranslation): d1 = dsttranslation URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) assert not hasattr(d1, 'description') d1.description = DESC d1.update() assert hasattr(d1, 'description') assert d1.description == DESC dst = mgmt_root.tm.security.nat.destination_translations d2 = dst.destination_translation.load(partition='Common', name='fake_dst') assert d1.name == d2.name assert d1.partition == d2.partition assert d1.kind == d2.kind assert d1.selfLink == d2.selfLink assert hasattr(d2, 'description') assert d1.description == d2.description def test_dst_translation_collection(self, mgmt_root, dsttranslation): d1 = dsttranslation URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) dst = mgmt_root.tm.security.nat.destination_translations.get_collection() assert isinstance(dst, list) assert len(dst) assert isinstance(dst[0], Destination_Translation) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestRules(object): def test_mutually_exclusive_raises(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'place-after': 'first', 'action': 'reject', 'place-before': 'last'} ERR = 'Mutually exclusive arguments submitted. The following arguments cannot be set together: "place-after, place-before".' with pytest.raises(ExclusiveAttributesPresent) as err: rule_lst.rule.create(**param_set) assert str(err.value) == ERR p1.delete() def test_mandatory_attribute_missing(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'action': 'reject'} ERR = "This resource requires at least one of the mandatory additional parameters to be provided: place-after, place-before" with pytest.raises(MissingRequiredCreationParameter) as err: rule_lst.rule.create(**param_set) assert str(err.value) == ERR p1.delete() def test_create_req_arg(self, rule): r1 = rule URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert not hasattr(r1, 'description') def test_create_optional_args(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'action': 'reject', 'place-after': 'first', 'description': DESC} r1 = rule_lst.rule.create(**param_set) URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert r1.kind == 'tm:security:nat:policy:rules:rulesstate' assert r1.description == DESC r1.delete() p1.delete() def test_refresh(self, rule, mgmt_root): r1 = rule rc = mgmt_root.tm.security.nat.policy_s.policy.load( name='fake_policy', partition='Common') rule_lst = rc.rules_s r2 = rule_lst.rule.load(name='fake_rule') assert r1.name == r2.name assert r1.selfLink == r2.selfLink assert r1.kind == r2.kind assert not hasattr(r1, 'description') assert not hasattr(r2, 'description') r2.modify(description=DESC) assert hasattr(r2, 'description') assert r2.description == DESC r1.refresh() def test_delete(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'delete_me', 'place-after': 'first'} r1 = rule_lst.rule.create(**param_set) r1.delete() with pytest.raises(HTTPError) as err: rule_lst.rule.load(name='delete_me') assert err.value.response.status_code == 404 p1.delete() def test_load_no_object(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s with pytest.raises(HTTPError) as err: rule_lst.rule.load(name='not_exist') assert err.value.response.status_code == 404 p1.delete() def test_load_and_update(self, rule, mgmt_root): r1 = rule URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert not hasattr(r1, 'description') r1.description = DESC r1.update() assert hasattr(r1, 'description') assert r1.description == DESC rc = mgmt_root.tm.security.nat.policy_s.policy.load(name='fake_policy', partition='Common') rule_lst = rc.rules_s r2 = rule_lst.rule.load(name='fake_rule') assert r1.name == r2.name assert r1.selfLink == r2.selfLink assert hasattr(r2, 'description') assert r1.description == r2.description def test_rules_subcollection(self, rule, mgmt_root): r1 = rule URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert not hasattr(r1, 'description') nat_policy = mgmt_root.tm.security.nat.policy_s.policy.load(name='fake_policy', partition='Common') rule_list = nat_policy.rules_s rc = rule_list.get_collection() assert isinstance(rc, list) assert len(rc) assert isinstance(rc[0], Rule) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestPolicy(object): def test_create_req_args(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy1', partition='Common') URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy' assert p1.name == 'fake_policy1' assert p1.partition == 'Common' assert p1.selfLink.startswith(URI) assert not hasattr(p1, 'description') p1.delete() def test_refresh(self, mgmt_root, policy): p1 = policy p2 = mgmt_root.tm.security.nat.policy_s.policy.load( name='fake_policy', partition='Common') assert p1.name == p2.name assert p1.kind == p2.kind assert p1.selfLink == p2.selfLink assert not hasattr(p1, 'description') assert not hasattr(p2, 'description') p2.modify(description=DESC) p1.modify(description=DESC) assert hasattr(p2, 'description') assert p2.description == DESC p1.refresh() assert p1.selfLink == p2.selfLink assert hasattr(p1, 'description') assert p1.description == p2.description def test_delete(self, mgmt_root): p = mgmt_root.tm.security.nat.policy_s.policy p1 = p.create(name='delete_me', partition='Common') p1.delete() with pytest.raises(HTTPError) as err: mgmt_root.tm.security.nat.policy_s.policy.load( name='delete_me', partition='Common') assert err.value.response.status_code == 404 def test_load_no_object(self, mgmt_root): p = mgmt_root.tm.security.nat.policy_s.policy with pytest.raises(HTTPError) as err: p.load(name='not_exists', partition='Common') assert err.value.response.status_code == 404 def test_load_and_update(self, mgmt_root, policy): p1 = policy URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy' assert p1.name == 'fake_policy' assert p1.partition == 'Common' assert p1.selfLink.startswith(URI) assert not hasattr(p1, 'description') p1.description = DESC p1.update() assert hasattr(p1, 'description') assert p1.description == DESC p = mgmt_root.tm.security.nat.policy_s.policy p2 = p.load(name='fake_policy', partition='Common') assert p1.name == p2.name assert p1.partition == p2.partition assert p1.selfLink == p2.selfLink assert hasattr(p2, 'description') assert p1.description == p2.description def test_policies_collection(self, mgmt_root, policy): pc = mgmt_root.tm.security.nat.policy_s.get_collection() assert isinstance(pc, list) assert len(pc) assert isinstance(pc[0], Policy)
f5/bigip/tm/security/test/functional/test_nat.py
import pytest from distutils.version import LooseVersion from f5.bigip.resource import MissingRequiredCreationParameter from f5.bigip.tm.security.nat import Destination_Translation from f5.bigip.tm.security.nat import Policy from f5.bigip.tm.security.nat import Rule from f5.bigip.tm.security.nat import Source_Translation from f5.sdk_exception import ExclusiveAttributesPresent from requests.exceptions import HTTPError DESC = 'TESTADDED' @pytest.fixture(scope='function') def srctranslation(mgmt_root): s1 = mgmt_root.tm.security.nat.source_translations.source_translation.create( name='fake_src', partition='Common', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='dynamic-pat') yield s1 s1.delete() @pytest.fixture(scope='function') def dsttranslation(mgmt_root): d1 = mgmt_root.tm.security.nat.destination_translations.destination_translation.create( partition='Common', name='fake_dst', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='static-pat') yield d1 d1.delete() @pytest.fixture(scope='function') def policy(mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') yield p1 p1.delete() @pytest.fixture(scope='function') def rule(mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'place-after': 'last'} rule1 = rule_lst.rule.create(**param_set) yield rule1 rule1.delete() p1.delete() @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestSrcTranslation(object): def test_create_missing_mandatory_attr_raises(self, mgmt_root): s1 = mgmt_root.tm.security.nat.source_translations.source_translation with pytest.raises(HTTPError) as err: s1.create(name='fail', partition='Common', type='dynamic-pat') assert err.value.response.status_code == 400 def test_create_req_args(self, srctranslation): s1 = srctranslation URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) assert s1.kind == 'tm:security:nat:source-translation:source-translationstate' assert not hasattr(s1, 'description') def test_create_opt_args(self, mgmt_root): s1 = mgmt_root.tm.security.nat.source_translations.source_translation.create( name='fake_src', partition='Common', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='dynamic-pat') URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) s1.modify(description=DESC) assert hasattr(s1, 'description') assert s1.description == DESC s1.delete() def test_refresh(self, mgmt_root, srctranslation): sc = mgmt_root.tm.security.nat.source_translations s1 = srctranslation s2 = sc.source_translation.load(name='fake_src', partition='Common') assert s1.name == s2.name assert s1.kind == s2.kind assert s1.selfLink == s2.selfLink assert not hasattr(s1, 'description') assert not hasattr(s2, 'description') s2.modify(description=DESC) assert hasattr(s2, 'description') assert s2.description == DESC s1.refresh() assert s1.selfLink == s2.selfLink assert hasattr(s1, 'description') assert s1.description == s2.description def test_delete(self, mgmt_root): src = mgmt_root.tm.security.nat.source_translations s1 = src.source_translation.create(name='fake_src', partition='Common', addresses=['192.168.3.11', '172.16.17.32'], ports=['1025-65535'], type='dynamic-pat') s1.delete() with pytest.raises(HTTPError) as err: src.source_translation.load(partition='Common', name='fake_src') assert err.value.response.status_code == 404 def test_load_no_object(self, mgmt_root): src = mgmt_root.tm.security.nat.source_translations with pytest.raises(HTTPError) as err: src.source_translation.load(partition='Common', name='not_exists') assert err.value.response.status_code == 404 def test_load_and_update(self, mgmt_root, srctranslation): s1 = srctranslation URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) assert not hasattr(s1, 'description') s1.description = DESC s1.update() assert hasattr(s1, 'description') assert s1.description == DESC sc = mgmt_root.tm.security.nat.source_translations s2 = sc.source_translation.load(partition='Common', name='fake_src') assert s1.name == s2.name assert s1.partition == s2.partition assert s1.selfLink == s2.selfLink assert hasattr(s2, 'description') assert s1.description == s2.description def test_src_translation_collection(self, mgmt_root, srctranslation): s1 = srctranslation URI = 'https://localhost/mgmt/tm/security/nat/source-translation/~Common~fake_src' assert s1.name == 'fake_src' assert s1.partition == 'Common' assert s1.selfLink.startswith(URI) src = mgmt_root.tm.security.nat.source_translations.get_collection() assert isinstance(src, list) assert len(src) assert isinstance(src[0], Source_Translation) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestDstTranslation(object): def test_create_missing_mandatory_attr_raises(self, mgmt_root): d1 = mgmt_root.tm.security.nat.destination_translations.destination_translation with pytest.raises(HTTPError) as err: d1.create(name='fail', partition='Common', type='static-nat') assert err.value.response.status_code == 400 d2 = mgmt_root.tm.security.nat.destination_translations.destination_translation with pytest.raises(HTTPError) as err: d2.create(name='fail', partition='Common', type='static-pat') assert err.value.response.status_code == 400 def test_create_req_args(self, dsttranslation): d1 = dsttranslation URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) assert d1.kind == 'tm:security:nat:destination-translation:destination-translationstate' assert not hasattr(d1, 'description') def test_create_opt_args(self, mgmt_root): d1 = mgmt_root.tm.security.nat.destination_translations.destination_translation.create( partition='Common', name='fake_dst', addresses=['192.168.3.11', '192.168.3.11'], ports=['1025-65535'], type='static-pat') URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) d1.modify(description=DESC) assert hasattr(d1, 'description') assert d1.description == DESC d1.delete() def test_refresh(self, mgmt_root, dsttranslation): d1 = dsttranslation dst = mgmt_root.tm.security.nat.destination_translations d2 = dst.destination_translation.load( name='fake_dst', partition='Common') assert d1.name == d2.name assert d1.partition == d2.partition assert d1.kind == d2.kind assert d1.selfLink == d2.selfLink assert not hasattr(d1, 'description') assert not hasattr(d2, 'description') d2.modify(description=DESC) assert hasattr(d2, 'description') assert d2.description == DESC d1.refresh() assert d1.selfLink == d2.selfLink assert hasattr(d1, 'description') assert d1.description == d2.description def test_delete(self, mgmt_root): dst = mgmt_root.tm.security.nat.destination_translations d1 = dst.destination_translation.create( partition='Common', name='fake_dst', addresses=['192.168.3.11', '192.168.3.11'], ports=['1025-65535'], type='static-pat') d1.delete() with pytest.raises(HTTPError) as err: dst.destination_translation.load(partition='Common', name='fake_dst') assert err.value.response.status_code == 404 def test_load_no_object(self, mgmt_root): dst = mgmt_root.tm.security.nat.destination_translations with pytest.raises(HTTPError) as err: dst.destination_translation.load(partition='Common', name='not_exists') assert err.value.response.status_code == 404 def test_load_and_update(self, mgmt_root, dsttranslation): d1 = dsttranslation URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) assert not hasattr(d1, 'description') d1.description = DESC d1.update() assert hasattr(d1, 'description') assert d1.description == DESC dst = mgmt_root.tm.security.nat.destination_translations d2 = dst.destination_translation.load(partition='Common', name='fake_dst') assert d1.name == d2.name assert d1.partition == d2.partition assert d1.kind == d2.kind assert d1.selfLink == d2.selfLink assert hasattr(d2, 'description') assert d1.description == d2.description def test_dst_translation_collection(self, mgmt_root, dsttranslation): d1 = dsttranslation URI = 'https://localhost/mgmt/tm/security/' \ 'nat/destination-translation/~Common~fake_dst' assert d1.name == 'fake_dst' assert d1.partition == 'Common' assert d1.selfLink.startswith(URI) dst = mgmt_root.tm.security.nat.destination_translations.get_collection() assert isinstance(dst, list) assert len(dst) assert isinstance(dst[0], Destination_Translation) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestRules(object): def test_mutually_exclusive_raises(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'place-after': 'first', 'action': 'reject', 'place-before': 'last'} ERR = 'Mutually exclusive arguments submitted. The following arguments cannot be set together: "place-after, place-before".' with pytest.raises(ExclusiveAttributesPresent) as err: rule_lst.rule.create(**param_set) assert str(err.value) == ERR p1.delete() def test_mandatory_attribute_missing(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'action': 'reject'} ERR = "This resource requires at least one of the mandatory additional parameters to be provided: place-after, place-before" with pytest.raises(MissingRequiredCreationParameter) as err: rule_lst.rule.create(**param_set) assert str(err.value) == ERR p1.delete() def test_create_req_arg(self, rule): r1 = rule URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert not hasattr(r1, 'description') def test_create_optional_args(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'fake_rule', 'action': 'reject', 'place-after': 'first', 'description': DESC} r1 = rule_lst.rule.create(**param_set) URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert r1.kind == 'tm:security:nat:policy:rules:rulesstate' assert r1.description == DESC r1.delete() p1.delete() def test_refresh(self, rule, mgmt_root): r1 = rule rc = mgmt_root.tm.security.nat.policy_s.policy.load( name='fake_policy', partition='Common') rule_lst = rc.rules_s r2 = rule_lst.rule.load(name='fake_rule') assert r1.name == r2.name assert r1.selfLink == r2.selfLink assert r1.kind == r2.kind assert not hasattr(r1, 'description') assert not hasattr(r2, 'description') r2.modify(description=DESC) assert hasattr(r2, 'description') assert r2.description == DESC r1.refresh() def test_delete(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s param_set = {'name': 'delete_me', 'place-after': 'first'} r1 = rule_lst.rule.create(**param_set) r1.delete() with pytest.raises(HTTPError) as err: rule_lst.rule.load(name='delete_me') assert err.value.response.status_code == 404 p1.delete() def test_load_no_object(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy', partition='Common') rule_lst = p1.rules_s with pytest.raises(HTTPError) as err: rule_lst.rule.load(name='not_exist') assert err.value.response.status_code == 404 p1.delete() def test_load_and_update(self, rule, mgmt_root): r1 = rule URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert not hasattr(r1, 'description') r1.description = DESC r1.update() assert hasattr(r1, 'description') assert r1.description == DESC rc = mgmt_root.tm.security.nat.policy_s.policy.load(name='fake_policy', partition='Common') rule_lst = rc.rules_s r2 = rule_lst.rule.load(name='fake_rule') assert r1.name == r2.name assert r1.selfLink == r2.selfLink assert hasattr(r2, 'description') assert r1.description == r2.description def test_rules_subcollection(self, rule, mgmt_root): r1 = rule URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy/rules/fake_rule' assert r1.name == 'fake_rule' assert r1.selfLink.startswith(URI) assert not hasattr(r1, 'description') nat_policy = mgmt_root.tm.security.nat.policy_s.policy.load(name='fake_policy', partition='Common') rule_list = nat_policy.rules_s rc = rule_list.get_collection() assert isinstance(rc, list) assert len(rc) assert isinstance(rc[0], Rule) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.1.0'), reason='This collection is fully implemented on 12.1.0 or greater.' ) class TestPolicy(object): def test_create_req_args(self, mgmt_root): p1 = mgmt_root.tm.security.nat.policy_s.policy.create( name='fake_policy1', partition='Common') URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy' assert p1.name == 'fake_policy1' assert p1.partition == 'Common' assert p1.selfLink.startswith(URI) assert not hasattr(p1, 'description') p1.delete() def test_refresh(self, mgmt_root, policy): p1 = policy p2 = mgmt_root.tm.security.nat.policy_s.policy.load( name='fake_policy', partition='Common') assert p1.name == p2.name assert p1.kind == p2.kind assert p1.selfLink == p2.selfLink assert not hasattr(p1, 'description') assert not hasattr(p2, 'description') p2.modify(description=DESC) p1.modify(description=DESC) assert hasattr(p2, 'description') assert p2.description == DESC p1.refresh() assert p1.selfLink == p2.selfLink assert hasattr(p1, 'description') assert p1.description == p2.description def test_delete(self, mgmt_root): p = mgmt_root.tm.security.nat.policy_s.policy p1 = p.create(name='delete_me', partition='Common') p1.delete() with pytest.raises(HTTPError) as err: mgmt_root.tm.security.nat.policy_s.policy.load( name='delete_me', partition='Common') assert err.value.response.status_code == 404 def test_load_no_object(self, mgmt_root): p = mgmt_root.tm.security.nat.policy_s.policy with pytest.raises(HTTPError) as err: p.load(name='not_exists', partition='Common') assert err.value.response.status_code == 404 def test_load_and_update(self, mgmt_root, policy): p1 = policy URI = 'https://localhost/mgmt/tm/security/' \ 'nat/policy/~Common~fake_policy' assert p1.name == 'fake_policy' assert p1.partition == 'Common' assert p1.selfLink.startswith(URI) assert not hasattr(p1, 'description') p1.description = DESC p1.update() assert hasattr(p1, 'description') assert p1.description == DESC p = mgmt_root.tm.security.nat.policy_s.policy p2 = p.load(name='fake_policy', partition='Common') assert p1.name == p2.name assert p1.partition == p2.partition assert p1.selfLink == p2.selfLink assert hasattr(p2, 'description') assert p1.description == p2.description def test_policies_collection(self, mgmt_root, policy): pc = mgmt_root.tm.security.nat.policy_s.get_collection() assert isinstance(pc, list) assert len(pc) assert isinstance(pc[0], Policy)
0.569853
0.322953
from unittest import TestCase from profile_generator.unit import Point from .gamma import ( _exp, _inverse_exp, _inverse_linear, _inverse_sqrt, _linear, _sqrt, exp, inverse_exp, inverse_linear, inverse_sqrt, linear, sqrt, ) _GREY = Point(87 / 255, 119 / 255) class GammaTest(TestCase): def test_gamma_linear(self) -> None: gamma = _linear(2) inverse = _inverse_linear(2) self.assertAlmostEqual(0, inverse(gamma(0))) self.assertAlmostEqual(0.5, inverse(gamma(0.5))) self.assertAlmostEqual(1, inverse(gamma(1))) def test_gamma_of_linear(self) -> None: gamma = linear(_GREY.x, 0.5)[0] self.assertAlmostEqual(gamma(_GREY.x), 0.5) def test_gamma_of_inverse_linear(self) -> None: gamma_inverse = inverse_linear(0.5, _GREY.y)[0] self.assertAlmostEqual(gamma_inverse(0.5), _GREY.y) def test_gamma_sqrt(self) -> None: gamma = _sqrt(2) inverse = _inverse_sqrt(2) self.assertAlmostEqual(0, inverse(gamma(0))) self.assertAlmostEqual(0.5, inverse(gamma(0.5))) self.assertAlmostEqual(1, inverse(gamma(1))) def test_gamma_of_sqrt(self) -> None: gamma = sqrt(_GREY.x, 0.5) self.assertAlmostEqual(gamma(_GREY.x), 0.5) def test_gamma_of_inverse_sqrt(self) -> None: gamma_inverse = inverse_sqrt(0.5, _GREY.y) self.assertAlmostEqual(gamma_inverse(0.5), _GREY.y) def test_gamma_exp(self) -> None: gamma = _exp(2) inverse = _inverse_exp(-2) self.assertAlmostEqual(0, inverse(gamma(0))) self.assertAlmostEqual(0.5, inverse(gamma(0.5))) self.assertAlmostEqual(1, inverse(gamma(1))) def test_gamma_of_exp(self) -> None: gamma = exp(_GREY.x, 0.5)[0] self.assertAlmostEqual(gamma(_GREY.x), 0.5) def test_gamma_of_inverse_exp(self) -> None: gamma_inverse = inverse_exp(0.5, _GREY.y)[0] self.assertAlmostEqual(gamma_inverse(0.5), _GREY.y)
profile_generator/model/gamma_test.py
from unittest import TestCase from profile_generator.unit import Point from .gamma import ( _exp, _inverse_exp, _inverse_linear, _inverse_sqrt, _linear, _sqrt, exp, inverse_exp, inverse_linear, inverse_sqrt, linear, sqrt, ) _GREY = Point(87 / 255, 119 / 255) class GammaTest(TestCase): def test_gamma_linear(self) -> None: gamma = _linear(2) inverse = _inverse_linear(2) self.assertAlmostEqual(0, inverse(gamma(0))) self.assertAlmostEqual(0.5, inverse(gamma(0.5))) self.assertAlmostEqual(1, inverse(gamma(1))) def test_gamma_of_linear(self) -> None: gamma = linear(_GREY.x, 0.5)[0] self.assertAlmostEqual(gamma(_GREY.x), 0.5) def test_gamma_of_inverse_linear(self) -> None: gamma_inverse = inverse_linear(0.5, _GREY.y)[0] self.assertAlmostEqual(gamma_inverse(0.5), _GREY.y) def test_gamma_sqrt(self) -> None: gamma = _sqrt(2) inverse = _inverse_sqrt(2) self.assertAlmostEqual(0, inverse(gamma(0))) self.assertAlmostEqual(0.5, inverse(gamma(0.5))) self.assertAlmostEqual(1, inverse(gamma(1))) def test_gamma_of_sqrt(self) -> None: gamma = sqrt(_GREY.x, 0.5) self.assertAlmostEqual(gamma(_GREY.x), 0.5) def test_gamma_of_inverse_sqrt(self) -> None: gamma_inverse = inverse_sqrt(0.5, _GREY.y) self.assertAlmostEqual(gamma_inverse(0.5), _GREY.y) def test_gamma_exp(self) -> None: gamma = _exp(2) inverse = _inverse_exp(-2) self.assertAlmostEqual(0, inverse(gamma(0))) self.assertAlmostEqual(0.5, inverse(gamma(0.5))) self.assertAlmostEqual(1, inverse(gamma(1))) def test_gamma_of_exp(self) -> None: gamma = exp(_GREY.x, 0.5)[0] self.assertAlmostEqual(gamma(_GREY.x), 0.5) def test_gamma_of_inverse_exp(self) -> None: gamma_inverse = inverse_exp(0.5, _GREY.y)[0] self.assertAlmostEqual(gamma_inverse(0.5), _GREY.y)
0.890675
0.905322
''' Created on 23.06.2010 @author: <NAME> model description of a rope consisting of n pendulums as a benchmark test ''' ''' Masse = 4.91 Gramm Massenmittelpunkt: ( Millimeter ) X = -0.00 Y = 0.00 Z = -46.18 Trägheitsmomente: ( Gramm * QuadratMillimeter ) Bezogen auf den Massenmittelpunkt, ausgerichtet auf das Ausgabekoordinatensystem. Lxx = 876.78 Lxy = 0.00 Lxz = 0.62 Lyx = 0.00 Lyy = 3633.74 Lyz = 0.00 Lzx = 0.62 Lzy = 0.00 Lzz = 2777.40 Masse = 0.74 Gramm Massenmittelpunkt: ( Millimeter ) X = 0.00 Y = 0.00 Z = -22.32 Trägheitsmomente: ( Gramm * QuadratMillimeter ) Bezogen auf den Massenmittelpunkt, ausgerichtet auf das Ausgabekoordinatensystem. Lxx = 27.92 Lxy = 0.00 Lxz = 0.00 Lyx = 0.00 Lyy = 110.24 Lyz = 0.00 Lzx = 0.00 Lzy = 0.00 Lzz = 83.08 2: 1018 3: 2250 4: 4714 5: 9642 6: 19498 7: 39210 8: 78634 ''' d = 0.02 # Rotational Damping N = 8.0 # Recursoin Deepth from PyMbs.Input import * import os from time import * global globali globali = 0 def getName(): global globali globali = globali+1 return globali-1 def addBody(i,l,prebody,world,scale,m,c_z,I_xx,I_yy,I_zz): if (i > N): return name = getName() # Create Body and Frame body = world.addBody(name='part%s'%name, mass=m, cg=[0,0,c_z], inertia=diag([I_xx,I_yy,I_zz])) body.addFrame(name='left', p=[l*0.5,0,-l*0.7]) body.addFrame(name='right', p=[-l*0.5,0,-l*0.7]) # Create Joint joint = world.addJoint(name='rot%s_'%name, CS1=prebody, CS2=body, dofList='Ry') # Nice Graphics world.addVisualisation.File(body, 'RopeBody.stl', scale=scale) # Add Damping s = world.addSensor.Joint(symbol='state%s_'%name, joint=joint, name='Sensor%s_'%name) D = world.addExpression(name='Friction%s_'%name, symbol_str='T%s_'%name, exp=-d*s[1]) world.addLoad.Joint(joint=joint, symbol=D, name='Load%s_'%name) addBody(i+1,l/2.0,body.left,world,scale/2.0,m*0.15071283095723015,c_z*0.4833261152013859,I_xx*0.03184379205730058,I_yy*0.030337888786759647,I_zz*0.029912868150068408) addBody(i+1,l/2.0,body.right,world,scale/2.0,m*0.15071283095723015,c_z*0.4833261152013859,I_xx*0.03184379205730058,I_yy*0.030337888786759647,I_zz*0.029912868150068408) world=MbsSystem([0,0,-1]) # Parameters l = 100; m = 4.91 c_z = -46.18 I_xx = 876.78 I_yy = 3633.74 I_zz = 2777.40 d = 0.2 # Rotational Damping addBody(0,l,world,world,1000,m,c_z,I_xx,I_yy,I_zz) print('System has been assembled (n:%s)'%int(N)) world.genEquations.OrderN(graphOptimizations=True) world.genCode.Modelica('MultiRope%s_OrderN'%int(N), './Output') #world.show('MultiRope%s'%int(N))
examples/misc/multi_rope.py
''' Created on 23.06.2010 @author: <NAME> model description of a rope consisting of n pendulums as a benchmark test ''' ''' Masse = 4.91 Gramm Massenmittelpunkt: ( Millimeter ) X = -0.00 Y = 0.00 Z = -46.18 Trägheitsmomente: ( Gramm * QuadratMillimeter ) Bezogen auf den Massenmittelpunkt, ausgerichtet auf das Ausgabekoordinatensystem. Lxx = 876.78 Lxy = 0.00 Lxz = 0.62 Lyx = 0.00 Lyy = 3633.74 Lyz = 0.00 Lzx = 0.62 Lzy = 0.00 Lzz = 2777.40 Masse = 0.74 Gramm Massenmittelpunkt: ( Millimeter ) X = 0.00 Y = 0.00 Z = -22.32 Trägheitsmomente: ( Gramm * QuadratMillimeter ) Bezogen auf den Massenmittelpunkt, ausgerichtet auf das Ausgabekoordinatensystem. Lxx = 27.92 Lxy = 0.00 Lxz = 0.00 Lyx = 0.00 Lyy = 110.24 Lyz = 0.00 Lzx = 0.00 Lzy = 0.00 Lzz = 83.08 2: 1018 3: 2250 4: 4714 5: 9642 6: 19498 7: 39210 8: 78634 ''' d = 0.02 # Rotational Damping N = 8.0 # Recursoin Deepth from PyMbs.Input import * import os from time import * global globali globali = 0 def getName(): global globali globali = globali+1 return globali-1 def addBody(i,l,prebody,world,scale,m,c_z,I_xx,I_yy,I_zz): if (i > N): return name = getName() # Create Body and Frame body = world.addBody(name='part%s'%name, mass=m, cg=[0,0,c_z], inertia=diag([I_xx,I_yy,I_zz])) body.addFrame(name='left', p=[l*0.5,0,-l*0.7]) body.addFrame(name='right', p=[-l*0.5,0,-l*0.7]) # Create Joint joint = world.addJoint(name='rot%s_'%name, CS1=prebody, CS2=body, dofList='Ry') # Nice Graphics world.addVisualisation.File(body, 'RopeBody.stl', scale=scale) # Add Damping s = world.addSensor.Joint(symbol='state%s_'%name, joint=joint, name='Sensor%s_'%name) D = world.addExpression(name='Friction%s_'%name, symbol_str='T%s_'%name, exp=-d*s[1]) world.addLoad.Joint(joint=joint, symbol=D, name='Load%s_'%name) addBody(i+1,l/2.0,body.left,world,scale/2.0,m*0.15071283095723015,c_z*0.4833261152013859,I_xx*0.03184379205730058,I_yy*0.030337888786759647,I_zz*0.029912868150068408) addBody(i+1,l/2.0,body.right,world,scale/2.0,m*0.15071283095723015,c_z*0.4833261152013859,I_xx*0.03184379205730058,I_yy*0.030337888786759647,I_zz*0.029912868150068408) world=MbsSystem([0,0,-1]) # Parameters l = 100; m = 4.91 c_z = -46.18 I_xx = 876.78 I_yy = 3633.74 I_zz = 2777.40 d = 0.2 # Rotational Damping addBody(0,l,world,world,1000,m,c_z,I_xx,I_yy,I_zz) print('System has been assembled (n:%s)'%int(N)) world.genEquations.OrderN(graphOptimizations=True) world.genCode.Modelica('MultiRope%s_OrderN'%int(N), './Output') #world.show('MultiRope%s'%int(N))
0.496094
0.316581
import logging from genomic_operations.dts.single_pos import PSEQPos, GeminiPos, TwoColPos class Sniff(object): """ Creates and ordered list of functions that are used to try and sniff the datatype from arbitrary files. """ def __init__(self): self.sniffer_list = [] def add_sniffer_method(self, method, sniff_class): self.sniffer_list.append([method,sniff_class]) def sniff_datatype(self, file_input): for sniffer, sniff_class in self.sniffer_list: sniff_result = sniffer.sniff_file(file_input) if sniff_result.is_type: return SniffReturnObject(sniff_result,sniff_class) return None class AbstractSnifferMethod(object): """ Abstract class that represents a file type Sniffer for genomics data. This is currently limited to SNP data but could be extende to any kind of data. """ def sniff_file(self, input_file): """ Method needs to be overriden in the children this is the key method for a abrstract sniffer. Returns true of false depending on whether the datatype is one of the other. """ raise NotImplementedError class SniffResult(object): def __init__(self, truth, header=None): self.truth = truth self._header = header @property def is_type(self): return self.truth @property def has_header(self): return self._header is not None @property def header(self): return self._header @header.setter def header(self, value): self._header = value class SniffReturnObject(SniffResult): def __init__(self, sniff_result, sniffer_class): super(SniffReturnObject, self).__init__(sniff_result.truth, sniff_result.header) self._sniffer_class = sniffer_class @property def sniffer_class(self): return self._sniffer_class @sniffer_class.setter def sniffer_class(self, value): self._sniffer_class = value class PSEQSniffer(AbstractSnifferMethod): def sniff_file(self, input_file): header=None with open(input_file) as in_file: for line in in_file: s_line = line.split() if s_line[0] == "VAR": header = s_line[1:] continue if 'chr' in s_line[0] and ':' in s_line[0]: return SniffResult(True ,header) return SniffResult(False) # Adjust gemini having class GeminiSniffer(AbstractSnifferMethod): def sniff_file(self, input_file): header = None with open(input_file) as in_file: for line in in_file: s_line = line.split() if s_line[0] == 'chrom': header = s_line[3:] continue if 'chr' in s_line[0]: try: start = int(s_line[1]) end = int(s_line[2]) except ValueError: return SniffResult(False) if (end - start) == 1: return SniffResult(True, header) return SniffResult(False) class TwoColSniffer(AbstractSnifferMethod): def sniff_file(self, input_file): header = None with open(input_file) as in_file: for line in in_file: s_line = line.split() if s_line[0] == "chr": header = s_line[3:] continue if 'chr' in s_line[0]: try: int(s_line[1]) return SniffResult(True, header) except ValueError: pass return SniffResult(False) def setup_sniffers(): """ Creates sniffers for genomic datasets. The order matters here as these are determined in order. """ sniffer = Sniff() sniffer.add_sniffer_method(PSEQSniffer(), PSEQPos) sniffer.add_sniffer_method(GeminiSniffer(), GeminiPos) sniffer.add_sniffer_method(TwoColSniffer(), TwoColPos) return sniffer if __name__ == "__main__": import doctest doctest.testmod()
genomic_operations/sniff/sniffer.py
import logging from genomic_operations.dts.single_pos import PSEQPos, GeminiPos, TwoColPos class Sniff(object): """ Creates and ordered list of functions that are used to try and sniff the datatype from arbitrary files. """ def __init__(self): self.sniffer_list = [] def add_sniffer_method(self, method, sniff_class): self.sniffer_list.append([method,sniff_class]) def sniff_datatype(self, file_input): for sniffer, sniff_class in self.sniffer_list: sniff_result = sniffer.sniff_file(file_input) if sniff_result.is_type: return SniffReturnObject(sniff_result,sniff_class) return None class AbstractSnifferMethod(object): """ Abstract class that represents a file type Sniffer for genomics data. This is currently limited to SNP data but could be extende to any kind of data. """ def sniff_file(self, input_file): """ Method needs to be overriden in the children this is the key method for a abrstract sniffer. Returns true of false depending on whether the datatype is one of the other. """ raise NotImplementedError class SniffResult(object): def __init__(self, truth, header=None): self.truth = truth self._header = header @property def is_type(self): return self.truth @property def has_header(self): return self._header is not None @property def header(self): return self._header @header.setter def header(self, value): self._header = value class SniffReturnObject(SniffResult): def __init__(self, sniff_result, sniffer_class): super(SniffReturnObject, self).__init__(sniff_result.truth, sniff_result.header) self._sniffer_class = sniffer_class @property def sniffer_class(self): return self._sniffer_class @sniffer_class.setter def sniffer_class(self, value): self._sniffer_class = value class PSEQSniffer(AbstractSnifferMethod): def sniff_file(self, input_file): header=None with open(input_file) as in_file: for line in in_file: s_line = line.split() if s_line[0] == "VAR": header = s_line[1:] continue if 'chr' in s_line[0] and ':' in s_line[0]: return SniffResult(True ,header) return SniffResult(False) # Adjust gemini having class GeminiSniffer(AbstractSnifferMethod): def sniff_file(self, input_file): header = None with open(input_file) as in_file: for line in in_file: s_line = line.split() if s_line[0] == 'chrom': header = s_line[3:] continue if 'chr' in s_line[0]: try: start = int(s_line[1]) end = int(s_line[2]) except ValueError: return SniffResult(False) if (end - start) == 1: return SniffResult(True, header) return SniffResult(False) class TwoColSniffer(AbstractSnifferMethod): def sniff_file(self, input_file): header = None with open(input_file) as in_file: for line in in_file: s_line = line.split() if s_line[0] == "chr": header = s_line[3:] continue if 'chr' in s_line[0]: try: int(s_line[1]) return SniffResult(True, header) except ValueError: pass return SniffResult(False) def setup_sniffers(): """ Creates sniffers for genomic datasets. The order matters here as these are determined in order. """ sniffer = Sniff() sniffer.add_sniffer_method(PSEQSniffer(), PSEQPos) sniffer.add_sniffer_method(GeminiSniffer(), GeminiPos) sniffer.add_sniffer_method(TwoColSniffer(), TwoColPos) return sniffer if __name__ == "__main__": import doctest doctest.testmod()
0.672977
0.36886
import keras import numpy as np from skimage import io import matplotlib.pyplot as plt from keras.layers import Input, Dense, Reshape from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.models import Sequential, Model from keras.optimizers import Adam # Load the target Model and make it untrainable target_model = keras.models.load_model('./model.h5') target_model.trainable = False # Create the fake-ID-generator network. It takes as input the same kind of # vector that the target network would ouput (in our case, 10 different digits) attack_vector = Input(shape=(10,)) attack_model = Sequential() # Yes, its perfectly enough to have a single dense layer. We only want to create # a single image. We don't care about overfitting or generalisation or anything. attack_model = Dense(28 * 28, activation='relu', input_dim=10)(attack_vector) attack_img = Reshape((28, 28, 1))(attack_model) attack_model = Model(attack_vector, attack_img) # Now, we combine both models. Attack Network -> Target Network target_output = target_model(attack_img) combined_model = Model(attack_vector, target_output) combined_model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5)) # Time to train. 1000 epochs is probably way overkill, but just to make # sure it works for everyone. It's super fast anyway batch_size = 128 total_epochs = 1000 # Create the target "access granted" vector. In our case that means that # Digit 4 is set to 1. We added some minor randomness (0.9 - 1.0) just for # good measur final_target = np.zeros((batch_size, 10)) for i in range(batch_size): final_target[i][4] = 0.9 + np.random.random() * 0.1 for x in range(total_epochs): combined_model.train_on_batch(final_target, final_target) if x % (int(total_epochs / 10)) == 0: print('Epoch ' + str(x) + ' / ' + str(total_epochs)) # The model is trained, let's generate the fake-ID and save it! # Don't worry if it doesn't look anything like a digit 4, it will still work fake_id = attack_model.predict(final_target) fake_id = np.asarray(fake_id[0]) fake_id = np.reshape(fake_id, (28, 28)) # The scipy.misc.toimage() function was deprecated in Scipy 1.0.0, and was completely removed in version 1.3.0. io.imsave('./fake_id.png', fake_id)
2_ExtractingInformation/solution_2_0.py
import keras import numpy as np from skimage import io import matplotlib.pyplot as plt from keras.layers import Input, Dense, Reshape from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.models import Sequential, Model from keras.optimizers import Adam # Load the target Model and make it untrainable target_model = keras.models.load_model('./model.h5') target_model.trainable = False # Create the fake-ID-generator network. It takes as input the same kind of # vector that the target network would ouput (in our case, 10 different digits) attack_vector = Input(shape=(10,)) attack_model = Sequential() # Yes, its perfectly enough to have a single dense layer. We only want to create # a single image. We don't care about overfitting or generalisation or anything. attack_model = Dense(28 * 28, activation='relu', input_dim=10)(attack_vector) attack_img = Reshape((28, 28, 1))(attack_model) attack_model = Model(attack_vector, attack_img) # Now, we combine both models. Attack Network -> Target Network target_output = target_model(attack_img) combined_model = Model(attack_vector, target_output) combined_model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5)) # Time to train. 1000 epochs is probably way overkill, but just to make # sure it works for everyone. It's super fast anyway batch_size = 128 total_epochs = 1000 # Create the target "access granted" vector. In our case that means that # Digit 4 is set to 1. We added some minor randomness (0.9 - 1.0) just for # good measur final_target = np.zeros((batch_size, 10)) for i in range(batch_size): final_target[i][4] = 0.9 + np.random.random() * 0.1 for x in range(total_epochs): combined_model.train_on_batch(final_target, final_target) if x % (int(total_epochs / 10)) == 0: print('Epoch ' + str(x) + ' / ' + str(total_epochs)) # The model is trained, let's generate the fake-ID and save it! # Don't worry if it doesn't look anything like a digit 4, it will still work fake_id = attack_model.predict(final_target) fake_id = np.asarray(fake_id[0]) fake_id = np.reshape(fake_id, (28, 28)) # The scipy.misc.toimage() function was deprecated in Scipy 1.0.0, and was completely removed in version 1.3.0. io.imsave('./fake_id.png', fake_id)
0.792263
0.416322
from __future__ import print_function import logging import sys import os import cPickle import numpy as np from scipy.sparse import dok_matrix from scipy.io import mmwrite, mmread import text_entail.dictionary as td import text_entail.io as tio def w1Asfeature(d_triples, d_w1): """ """ w1_mat = dok_matrix((len(d_triples), len(d_triples._m2ids))) for w1, ids in d_triples._m2ids.items(): j = d_w1.add(w1) for i in ids: w1_mat[i,j] = 1 return w1_mat def w2Asfeature(d_triples, d_w2): """ """ w2_mat = dok_matrix((len(d_triples), len(d_triples._r2ids))) for w2, ids in d_triples._r2ids.items(): j = d_w2.add(w2) for i in ids: w2_mat[i,j] = 1 return w2_mat def ctxAsfeature(d_triples, d_ctx): """ """ ctx_mat = dok_matrix((len(d_triples), len(d_triples._l2ids))) for ctx, ids in d_triples._l2ids.items(): j = d_ctx.add(ctx) for i in ids: ctx_mat[i,j] = 1 return ctx_mat def binarize_sparse_matrix(mat): """ """ logging.info('binarizing feature matrix') mat = mat.astype(bool) mat = mat.astype(np.float64) logging.info('finished binarizing feature matrix') return mat def pred_vectors_with_context(preds_file, has_header=True): """ """ logging.info("creating predicate pairs class vector '{}'".format(preds_file)) temp = [] xy_predl_predr_entail = tio.read_preds_w_ctx(preds_file, has_header=has_header) d_triples = td.TripleDict() # rows duplicates = 0 contradicting_duplicates = 0 for ctx_X, ctx_Y, pred_l, pred_r, entailing in xy_predl_predr_entail: ctx = '{}\t{}'.format(ctx_X, ctx_Y) i = d_triples.add((ctx, pred_l, pred_r)) if i < len(temp): label = 1 if entailing.strip().lower() == 'true' else 0 print("omitting duplicate example: '{} {} {} {}' ".format(ctx, pred_l, pred_r, entailing) ,file=sys.stderr) duplicates += 1 if temp[i] != label: print("duplicate example has different label: '{}' vs. '{}'".format(temp[i], label) ,file=sys.stderr) contradicting_duplicates += 1 else: temp.append(1 if entailing.strip().lower() == 'true' else 0) vec = np.array(temp, dtype=np.float64) logging.info("finished creating arg pairs class vector '{}'".format(preds_file)) logging.info("found {} duplicate examples with {} having contradicting labels.".format(duplicates, contradicting_duplicates)) return vec, d_triples def arg_l_arg_r_pairs_vector(args_file, file_contains_context=False, has_header=True): """ """ logging.info("creating arg pairs class vector '{}'".format(args_file)) temp = [] if file_contains_context: ctx_argl_argr_entail = tio.read_args_w_ctx(args_file, has_header=has_header) else: argl_argr_entail = tio.read_args_wo_ctx(args_file, has_header=has_header) def append_empty_context(tuples): for l,r,e in tuples: yield '', l, r, e ctx_argl_argr_entail = append_empty_context(argl_argr_entail) d_triples = td.TripleDict() # rows duplicates = 0 contradicting_duplicates = 0 for ctx, arg_l, arg_r, entailing in ctx_argl_argr_entail: i = d_triples.add((ctx, arg_l, arg_r)) if i < len(temp): label = 1 if entailing.strip().lower() == 'true' else 0 print("omitting duplicate example: '{} {} {} {}' ".format(ctx, arg_l, arg_r, entailing) ,file=sys.stderr) duplicates += 1 if temp[i] != label: print("duplicate example has different label: '{}' vs. '{}'".format(temp[i], label) ,file=sys.stderr) contradicting_duplicates += 1 else: temp.append(1 if entailing.strip().lower() == 'true' else 0) vec = np.array(temp, dtype=np.float64) logging.info("finished creating arg pairs class vector '{}'".format(args_file)) logging.info("found {} duplicate examples with {} having contradicting labels.".format(duplicates, contradicting_duplicates)) return vec, d_triples def arg_l_arg_r_asjo_matrix( row_indices, jb_file, num_rows, col_indices, transform_w1 = lambda w1 : (w1[:w1.find('::@')], w1[w1.find('@::')+3:]), transform_w2sig = lambda w2sig : w2sig, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( jb_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = jb_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(jb_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) with open(mm_file+'i','r') as f: col_indices._id2w = cPickle.load(f) for i, w in enumerate(col_indices._id2w): col_indices._w2id[w] = i logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating arg pair feature matrix '{}'".format(jb_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # len(d_pairs) = number of rows j_bs = tio.read_jb_file_filter_by_jo(jb_file, lambda jo : transform_w1(jo) in row_indices) for j, bs in j_bs: ks = row_indices[transform_w1(j)] for b, s in transform_w2sig(bs): l = col_indices.add(b) if mat.shape[1] <= l: mat.resize((mat.shape[0],l+1)) for k in ks: mat[k,l] = float(s) logging.info("finished creating arg pair feature matrix '{}'".format(jb_file)) logging.info("saving matrix to '{}'.".format(mm_file)) with open(mm_file,'w') as f: mmwrite(f, mat) with open(mm_file+'i','w') as f: cPickle.dump(col_indices._id2w, f) logging.info("finshed saving matrix") return mat def arg_asjo_matrix( row_indices, col_indices, jb_file, num_rows, transform_w1 = lambda w1 : w1, transform_w2sig = lambda w2sig : w2sig, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( jb_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = jb_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(jb_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) with open(mm_file+'i','r') as f: col_indices._id2w = cPickle.load(f) for i, w in enumerate(col_indices._id2w): col_indices._w2id[w] = i logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating arg feature matrix '{}'".format(jb_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 j_bs = tio.read_jb_file_filter_by_jo(jb_file, lambda jo : transform_w1(jo) in row_indices) for j, bs in j_bs: j = transform_w1(j) ks = row_indices[j] for b, s in transform_w2sig(bs): l = col_indices.add(b) if mat.shape[1] <= l: mat.resize((mat.shape[0],l+1)) for k in ks: mat[k,l] = float(s) logging.info("finished creating arg feature matrix '{}'".format(jb_file)) logging.info("saving matrix to '{}'.".format(mm_file)) with open(mm_file,'w') as f: mmwrite(f, mat) with open(mm_file+'i','w') as f: cPickle.dump(col_indices._id2w, f) logging.info("finshed saving matrix") return mat def arg_to_topic_matrix( args, word2topic_file, num_rows, transform_w = lambda w: w, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( word2topic_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = word2topic_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(word2topic_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating topic feature matrix '{}'".format(word2topic_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 w2t = tio.read_word2topicfile(word2topic_file) for w, t in w2t: w = transform_w(w) if not w in args: continue ks = args[w] if mat.shape[1] <= t: mat.resize((mat.shape[0],t+1)) for k in ks: mat[k,t] = 1 logging.info("finished creating topic feature matrix '{}'".format(word2topic_file)) logging.info("saving matrix to '{}'.".format(word2topic_file)) with open(mm_file,'w') as f: mmwrite(f, mat) logging.info("finished saving matrix") return mat def arg_l_arg_r_to_topic_matrix( row_indices, pair2topic_file, num_rows, transform_w = lambda w1 : (w1[:w1.find('::@')], w1[w1.find('@::')+3:]), mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( pair2topic_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = pair2topic_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(pair2topic_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating topic feature matrix '{}'".format(pair2topic_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 w2t = tio.read_word2topicfile(pair2topic_file) for w, t in w2t: p = transform_w(w) if p not in row_indices: continue ks = row_indices[p] if mat.shape[1] <= t: mat.resize((mat.shape[0],t+1)) for k in ks: mat[k,t] = 1 logging.info("finished creating topic feature matrix '{}'".format(pair2topic_file)) logging.info("saving matrix to '{}'.".format(pair2topic_file)) with open(mm_file,'w') as f: mmwrite(f, mat) logging.info("finished saving matrix") return mat def topic_vector_matrix( row_indices, word2topicvector_file, num_rows, transform_w = lambda w: w, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext(word2topicvector_file)[0] + mmfile_presuffix + '.mm' if not reload: # # legacy condition ( for files with file extension inside filename ) # if not os.path.exists(mm_file): # mm_file = word2topic_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(word2topicvector_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating topic vector feature matrix '{}'".format(word2topicvector_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 w2t = tio.read_word2topicvectorfile(word2topicvector_file) for w, t in w2t: w = transform_w(w) if not w in row_indices: continue t = np.array(t.split(' '), dtype=np.float) ks = row_indices[w] if mat.shape[1] < len(t): mat.resize((mat.shape[0],len(t))) for k in ks: mat[k,:] = t logging.info("finished creating topic feature matrix '{}'".format(word2topicvector_file)) logging.info("saving matrix to '{}'.".format(word2topicvector_file)) with open(mm_file,'w') as f: mmwrite(f, mat) logging.info("finished saving matrix") return mat
src/text_entail/matrix.py
from __future__ import print_function import logging import sys import os import cPickle import numpy as np from scipy.sparse import dok_matrix from scipy.io import mmwrite, mmread import text_entail.dictionary as td import text_entail.io as tio def w1Asfeature(d_triples, d_w1): """ """ w1_mat = dok_matrix((len(d_triples), len(d_triples._m2ids))) for w1, ids in d_triples._m2ids.items(): j = d_w1.add(w1) for i in ids: w1_mat[i,j] = 1 return w1_mat def w2Asfeature(d_triples, d_w2): """ """ w2_mat = dok_matrix((len(d_triples), len(d_triples._r2ids))) for w2, ids in d_triples._r2ids.items(): j = d_w2.add(w2) for i in ids: w2_mat[i,j] = 1 return w2_mat def ctxAsfeature(d_triples, d_ctx): """ """ ctx_mat = dok_matrix((len(d_triples), len(d_triples._l2ids))) for ctx, ids in d_triples._l2ids.items(): j = d_ctx.add(ctx) for i in ids: ctx_mat[i,j] = 1 return ctx_mat def binarize_sparse_matrix(mat): """ """ logging.info('binarizing feature matrix') mat = mat.astype(bool) mat = mat.astype(np.float64) logging.info('finished binarizing feature matrix') return mat def pred_vectors_with_context(preds_file, has_header=True): """ """ logging.info("creating predicate pairs class vector '{}'".format(preds_file)) temp = [] xy_predl_predr_entail = tio.read_preds_w_ctx(preds_file, has_header=has_header) d_triples = td.TripleDict() # rows duplicates = 0 contradicting_duplicates = 0 for ctx_X, ctx_Y, pred_l, pred_r, entailing in xy_predl_predr_entail: ctx = '{}\t{}'.format(ctx_X, ctx_Y) i = d_triples.add((ctx, pred_l, pred_r)) if i < len(temp): label = 1 if entailing.strip().lower() == 'true' else 0 print("omitting duplicate example: '{} {} {} {}' ".format(ctx, pred_l, pred_r, entailing) ,file=sys.stderr) duplicates += 1 if temp[i] != label: print("duplicate example has different label: '{}' vs. '{}'".format(temp[i], label) ,file=sys.stderr) contradicting_duplicates += 1 else: temp.append(1 if entailing.strip().lower() == 'true' else 0) vec = np.array(temp, dtype=np.float64) logging.info("finished creating arg pairs class vector '{}'".format(preds_file)) logging.info("found {} duplicate examples with {} having contradicting labels.".format(duplicates, contradicting_duplicates)) return vec, d_triples def arg_l_arg_r_pairs_vector(args_file, file_contains_context=False, has_header=True): """ """ logging.info("creating arg pairs class vector '{}'".format(args_file)) temp = [] if file_contains_context: ctx_argl_argr_entail = tio.read_args_w_ctx(args_file, has_header=has_header) else: argl_argr_entail = tio.read_args_wo_ctx(args_file, has_header=has_header) def append_empty_context(tuples): for l,r,e in tuples: yield '', l, r, e ctx_argl_argr_entail = append_empty_context(argl_argr_entail) d_triples = td.TripleDict() # rows duplicates = 0 contradicting_duplicates = 0 for ctx, arg_l, arg_r, entailing in ctx_argl_argr_entail: i = d_triples.add((ctx, arg_l, arg_r)) if i < len(temp): label = 1 if entailing.strip().lower() == 'true' else 0 print("omitting duplicate example: '{} {} {} {}' ".format(ctx, arg_l, arg_r, entailing) ,file=sys.stderr) duplicates += 1 if temp[i] != label: print("duplicate example has different label: '{}' vs. '{}'".format(temp[i], label) ,file=sys.stderr) contradicting_duplicates += 1 else: temp.append(1 if entailing.strip().lower() == 'true' else 0) vec = np.array(temp, dtype=np.float64) logging.info("finished creating arg pairs class vector '{}'".format(args_file)) logging.info("found {} duplicate examples with {} having contradicting labels.".format(duplicates, contradicting_duplicates)) return vec, d_triples def arg_l_arg_r_asjo_matrix( row_indices, jb_file, num_rows, col_indices, transform_w1 = lambda w1 : (w1[:w1.find('::@')], w1[w1.find('@::')+3:]), transform_w2sig = lambda w2sig : w2sig, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( jb_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = jb_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(jb_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) with open(mm_file+'i','r') as f: col_indices._id2w = cPickle.load(f) for i, w in enumerate(col_indices._id2w): col_indices._w2id[w] = i logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating arg pair feature matrix '{}'".format(jb_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # len(d_pairs) = number of rows j_bs = tio.read_jb_file_filter_by_jo(jb_file, lambda jo : transform_w1(jo) in row_indices) for j, bs in j_bs: ks = row_indices[transform_w1(j)] for b, s in transform_w2sig(bs): l = col_indices.add(b) if mat.shape[1] <= l: mat.resize((mat.shape[0],l+1)) for k in ks: mat[k,l] = float(s) logging.info("finished creating arg pair feature matrix '{}'".format(jb_file)) logging.info("saving matrix to '{}'.".format(mm_file)) with open(mm_file,'w') as f: mmwrite(f, mat) with open(mm_file+'i','w') as f: cPickle.dump(col_indices._id2w, f) logging.info("finshed saving matrix") return mat def arg_asjo_matrix( row_indices, col_indices, jb_file, num_rows, transform_w1 = lambda w1 : w1, transform_w2sig = lambda w2sig : w2sig, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( jb_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = jb_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(jb_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) with open(mm_file+'i','r') as f: col_indices._id2w = cPickle.load(f) for i, w in enumerate(col_indices._id2w): col_indices._w2id[w] = i logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating arg feature matrix '{}'".format(jb_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 j_bs = tio.read_jb_file_filter_by_jo(jb_file, lambda jo : transform_w1(jo) in row_indices) for j, bs in j_bs: j = transform_w1(j) ks = row_indices[j] for b, s in transform_w2sig(bs): l = col_indices.add(b) if mat.shape[1] <= l: mat.resize((mat.shape[0],l+1)) for k in ks: mat[k,l] = float(s) logging.info("finished creating arg feature matrix '{}'".format(jb_file)) logging.info("saving matrix to '{}'.".format(mm_file)) with open(mm_file,'w') as f: mmwrite(f, mat) with open(mm_file+'i','w') as f: cPickle.dump(col_indices._id2w, f) logging.info("finshed saving matrix") return mat def arg_to_topic_matrix( args, word2topic_file, num_rows, transform_w = lambda w: w, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( word2topic_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = word2topic_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(word2topic_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating topic feature matrix '{}'".format(word2topic_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 w2t = tio.read_word2topicfile(word2topic_file) for w, t in w2t: w = transform_w(w) if not w in args: continue ks = args[w] if mat.shape[1] <= t: mat.resize((mat.shape[0],t+1)) for k in ks: mat[k,t] = 1 logging.info("finished creating topic feature matrix '{}'".format(word2topic_file)) logging.info("saving matrix to '{}'.".format(word2topic_file)) with open(mm_file,'w') as f: mmwrite(f, mat) logging.info("finished saving matrix") return mat def arg_l_arg_r_to_topic_matrix( row_indices, pair2topic_file, num_rows, transform_w = lambda w1 : (w1[:w1.find('::@')], w1[w1.find('@::')+3:]), mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext( pair2topic_file )[0] + mmfile_presuffix + '.mm' if not reload: # legacy condition ( for files with file extension inside filename ) if not os.path.exists(mm_file): mm_file = pair2topic_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(pair2topic_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating topic feature matrix '{}'".format(pair2topic_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 w2t = tio.read_word2topicfile(pair2topic_file) for w, t in w2t: p = transform_w(w) if p not in row_indices: continue ks = row_indices[p] if mat.shape[1] <= t: mat.resize((mat.shape[0],t+1)) for k in ks: mat[k,t] = 1 logging.info("finished creating topic feature matrix '{}'".format(pair2topic_file)) logging.info("saving matrix to '{}'.".format(pair2topic_file)) with open(mm_file,'w') as f: mmwrite(f, mat) logging.info("finished saving matrix") return mat def topic_vector_matrix( row_indices, word2topicvector_file, num_rows, transform_w = lambda w: w, mmfile_presuffix = '', reload = False): """ """ mm_file = os.path.splitext(word2topicvector_file)[0] + mmfile_presuffix + '.mm' if not reload: # # legacy condition ( for files with file extension inside filename ) # if not os.path.exists(mm_file): # mm_file = word2topic_file + mmfile_presuffix + '.mm' if os.path.exists(mm_file) and os.path.isfile(mm_file): logging.info("corresponding matrix file already exists for '{}'.".format(word2topicvector_file)) logging.info("loading '{}'.".format(mm_file)) mat = mmread(mm_file) logging.info("finished loading '{}'.".format(mm_file)) return mat logging.info("creating topic vector feature matrix '{}'".format(word2topicvector_file)) mat = dok_matrix((num_rows,1),dtype=np.float64) # number of rows x 1 w2t = tio.read_word2topicvectorfile(word2topicvector_file) for w, t in w2t: w = transform_w(w) if not w in row_indices: continue t = np.array(t.split(' '), dtype=np.float) ks = row_indices[w] if mat.shape[1] < len(t): mat.resize((mat.shape[0],len(t))) for k in ks: mat[k,:] = t logging.info("finished creating topic feature matrix '{}'".format(word2topicvector_file)) logging.info("saving matrix to '{}'.".format(word2topicvector_file)) with open(mm_file,'w') as f: mmwrite(f, mat) logging.info("finished saving matrix") return mat
0.340485
0.217961
import abc from typing import Any import torch AGGREGATION_MODES = ["mean", "max", "min"] class Metric(metaclass=abc.ABCMeta): """abstract class for Metric objects. Example: Simple usage of the Metric class:: class MyMetric(Metric): def _update(self, predictions, truth): # compute some metric return metric_value model = MyModel() mymetric = MyMetric() for batch, labels in dataset: predictions = model(batch) mymetric.update(predictions, labels) print(mymetric.get_metric(mode="mean")) """ def __init__(self) -> None: self.reset() def reset(self) -> None: """Clear metrics from class.""" self.metrics = [] def update(self, predictions: torch.Tensor, truth: torch.Tensor) -> None: """Compute metric value and append to the metrics array. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ self.metrics.append(self._update(predictions, truth)) @abc.abstractmethod def _update(self, predictions: torch.Tensor, truth: torch.Tensor) -> Any: """Compute the metric value. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ def __len__(self) -> int: return len(self.metrics) def get_metric(self, mode="mean") -> float: """Aggregate all values stored in the metric class. Args: mode (str, optional): aggregation type. mean, max or min. Defaults to "mean". Raises: ValueError: aggregation mode not supported Returns: float: aggregated metric. """ if len(self) == 0: return 0.0 if mode not in AGGREGATION_MODES: raise ValueError( f"Mode {mode} not supported. Supported modes: {AGGREGATION_MODES}" ) if mode == "mean": return sum(self.metrics) / len(self) elif mode == "max": return max(self.metrics) elif mode == "min": return min(self.metrics)
frarch/modules/metrics/base.py
import abc from typing import Any import torch AGGREGATION_MODES = ["mean", "max", "min"] class Metric(metaclass=abc.ABCMeta): """abstract class for Metric objects. Example: Simple usage of the Metric class:: class MyMetric(Metric): def _update(self, predictions, truth): # compute some metric return metric_value model = MyModel() mymetric = MyMetric() for batch, labels in dataset: predictions = model(batch) mymetric.update(predictions, labels) print(mymetric.get_metric(mode="mean")) """ def __init__(self) -> None: self.reset() def reset(self) -> None: """Clear metrics from class.""" self.metrics = [] def update(self, predictions: torch.Tensor, truth: torch.Tensor) -> None: """Compute metric value and append to the metrics array. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ self.metrics.append(self._update(predictions, truth)) @abc.abstractmethod def _update(self, predictions: torch.Tensor, truth: torch.Tensor) -> Any: """Compute the metric value. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ def __len__(self) -> int: return len(self.metrics) def get_metric(self, mode="mean") -> float: """Aggregate all values stored in the metric class. Args: mode (str, optional): aggregation type. mean, max or min. Defaults to "mean". Raises: ValueError: aggregation mode not supported Returns: float: aggregated metric. """ if len(self) == 0: return 0.0 if mode not in AGGREGATION_MODES: raise ValueError( f"Mode {mode} not supported. Supported modes: {AGGREGATION_MODES}" ) if mode == "mean": return sum(self.metrics) / len(self) elif mode == "max": return max(self.metrics) elif mode == "min": return min(self.metrics)
0.946014
0.363195
from pprint import pprint import sympy as sym sym.init_printing(use_latex=True) import numpy as np from .benchmark import Benchmark class Schubert(Benchmark): def __init__(self, case: str): super().__init__() if case not in {'p3', 'p8', 'p16', 'p22'}: raise ValueError('case must be one of p3, p8, p16, or p22') self.name = f"schubert {case}" def u(x_i, a, k, m): return sym.Piecewise( (k * (x_i - a)**m, sym.Gt(x_i, a)), (0, sym.And(sym.Ge(x[i], -a), sym.Le(x[i], a))), (k * (-x_i - a)**m, sym.Lt(x_i, -a)) ) a, k, m = sym.symbols('a k m') if case == 'p3': n = 2 x = sym.IndexedBase('x') self.x = [x[i] for i in range(0, n)] i = sym.Idx('i') term1 = sym.Sum(i * sym.cos((i + 1) * x[0] + 1), (i, 0, 4)) term2 = sym.Sum(i * sym.cos((i + 1) * x[1] + 1), (i, 0, 4)) self.expr = term1 * term2 + u(x[0], a, k, m) + u(x[1], a, k, m) self.params = {'a': [a, 10.], 'k': [k, 100.], 'm': [m, 2]} self.xmin = None self.domain = [-10. * np.ones(n), 10. * np.ones(n)] self.domain_plot = self.domain elif case == 'p8': n = 3 x = sym.IndexedBase('x') self.x = [x[i] for i in range(0, n)] y = sym.IndexedBase('y') i = sym.Idx('i') k_1, k_2 = sym.symbols('k_1 k_2') pprint(y) self.expr = (sym.pi / n) * ( k_1 * sym.sin(sym.pi * y[0])**2 + sym.Sum((y[i] - k_2)**2 * (1. + k_1 * sym.sin(sym.pi * y[i + 1])**2), (i, 0, n - 2)) + (y[n - 1] - k_2)**2) \ + sym.Sum(u(x[i], a, k, m), (i, 0, n - 1)) y_subs = {y[i]: 1. + 0.25 * (x[i] + 1.) for i in range(n)} self.expr = self.expr.doit().subs(y_subs) self.params = {'a': [a, 10.], 'k': [k, 100.], 'm': [m, 4], 'k_1': [k_1, 10.], 'k_2': [k_2, 1.]} self.xmin = [[1., 1., 1.], ] self.domain = [-10. * np.ones(n), 10. * np.ones(n)] self.domain_plot = None self.dims = n
zoo/schubert.py
from pprint import pprint import sympy as sym sym.init_printing(use_latex=True) import numpy as np from .benchmark import Benchmark class Schubert(Benchmark): def __init__(self, case: str): super().__init__() if case not in {'p3', 'p8', 'p16', 'p22'}: raise ValueError('case must be one of p3, p8, p16, or p22') self.name = f"schubert {case}" def u(x_i, a, k, m): return sym.Piecewise( (k * (x_i - a)**m, sym.Gt(x_i, a)), (0, sym.And(sym.Ge(x[i], -a), sym.Le(x[i], a))), (k * (-x_i - a)**m, sym.Lt(x_i, -a)) ) a, k, m = sym.symbols('a k m') if case == 'p3': n = 2 x = sym.IndexedBase('x') self.x = [x[i] for i in range(0, n)] i = sym.Idx('i') term1 = sym.Sum(i * sym.cos((i + 1) * x[0] + 1), (i, 0, 4)) term2 = sym.Sum(i * sym.cos((i + 1) * x[1] + 1), (i, 0, 4)) self.expr = term1 * term2 + u(x[0], a, k, m) + u(x[1], a, k, m) self.params = {'a': [a, 10.], 'k': [k, 100.], 'm': [m, 2]} self.xmin = None self.domain = [-10. * np.ones(n), 10. * np.ones(n)] self.domain_plot = self.domain elif case == 'p8': n = 3 x = sym.IndexedBase('x') self.x = [x[i] for i in range(0, n)] y = sym.IndexedBase('y') i = sym.Idx('i') k_1, k_2 = sym.symbols('k_1 k_2') pprint(y) self.expr = (sym.pi / n) * ( k_1 * sym.sin(sym.pi * y[0])**2 + sym.Sum((y[i] - k_2)**2 * (1. + k_1 * sym.sin(sym.pi * y[i + 1])**2), (i, 0, n - 2)) + (y[n - 1] - k_2)**2) \ + sym.Sum(u(x[i], a, k, m), (i, 0, n - 1)) y_subs = {y[i]: 1. + 0.25 * (x[i] + 1.) for i in range(n)} self.expr = self.expr.doit().subs(y_subs) self.params = {'a': [a, 10.], 'k': [k, 100.], 'm': [m, 4], 'k_1': [k_1, 10.], 'k_2': [k_2, 1.]} self.xmin = [[1., 1., 1.], ] self.domain = [-10. * np.ones(n), 10. * np.ones(n)] self.domain_plot = None self.dims = n
0.325092
0.329001
import logging import os import platform import shutil import sys import unittest import uuid from copy import copy import psutil from psutil import AccessDenied, NoSuchProcess from pyngrok.conf import PyngrokConfig from pyngrok import ngrok, installer, conf from pyngrok import process __author__ = "<NAME>" __copyright__ = "Copyright 2021, <NAME>" __version__ = "5.1.0" logger = logging.getLogger(__name__) ngrok_logger = logging.getLogger("{}.ngrok".format(__name__)) class NgrokTestCase(unittest.TestCase): def setUp(self): self.config_dir = os.path.normpath(os.path.join(os.path.abspath(os.path.dirname(__file__)), ".ngrok2")) if not os.path.exists(self.config_dir): os.makedirs(self.config_dir) config_path = os.path.join(self.config_dir, "config.yml") conf.DEFAULT_NGROK_CONFIG_PATH = config_path self.pyngrok_config = PyngrokConfig(config_path=conf.DEFAULT_NGROK_CONFIG_PATH) conf.set_default(self.pyngrok_config) # ngrok's CDN can be flaky, so make sure its flakiness isn't reflect in our CI/CD test runs installer.DEFAULT_RETRY_COUNT = 3 def tearDown(self): for p in list(process._current_processes.values()): try: process.kill_process(p.pyngrok_config.ngrok_path) p.proc.wait() except OSError: pass ngrok._current_tunnels.clear() if os.path.exists(self.config_dir): shutil.rmtree(self.config_dir) @staticmethod def given_ngrok_installed(pyngrok_config): ngrok.install_ngrok(pyngrok_config) @staticmethod def given_ngrok_not_installed(ngrok_path): if os.path.exists(ngrok_path): os.remove(ngrok_path) @staticmethod def create_unique_subdomain(): return "pyngrok-{}-{}-{}-{}{}-tcp".format(uuid.uuid4(), platform.system(), platform.python_implementation(), sys.version_info[0], sys.version_info[1]).lower() @staticmethod def copy_with_updates(to_copy, **kwargs): copied = copy(to_copy) for key, value in kwargs.items(): copied.__setattr__(key, value) return copied def assertNoZombies(self): try: self.assertEqual(0, len( list(filter(lambda p: p.name() == "ngrok" and p.status() == "zombie", psutil.process_iter())))) except (AccessDenied, NoSuchProcess): # Some OSes are flaky on this assertion, but that isn't an indication anything is wrong, so pass pass
tests/testcase.py
import logging import os import platform import shutil import sys import unittest import uuid from copy import copy import psutil from psutil import AccessDenied, NoSuchProcess from pyngrok.conf import PyngrokConfig from pyngrok import ngrok, installer, conf from pyngrok import process __author__ = "<NAME>" __copyright__ = "Copyright 2021, <NAME>" __version__ = "5.1.0" logger = logging.getLogger(__name__) ngrok_logger = logging.getLogger("{}.ngrok".format(__name__)) class NgrokTestCase(unittest.TestCase): def setUp(self): self.config_dir = os.path.normpath(os.path.join(os.path.abspath(os.path.dirname(__file__)), ".ngrok2")) if not os.path.exists(self.config_dir): os.makedirs(self.config_dir) config_path = os.path.join(self.config_dir, "config.yml") conf.DEFAULT_NGROK_CONFIG_PATH = config_path self.pyngrok_config = PyngrokConfig(config_path=conf.DEFAULT_NGROK_CONFIG_PATH) conf.set_default(self.pyngrok_config) # ngrok's CDN can be flaky, so make sure its flakiness isn't reflect in our CI/CD test runs installer.DEFAULT_RETRY_COUNT = 3 def tearDown(self): for p in list(process._current_processes.values()): try: process.kill_process(p.pyngrok_config.ngrok_path) p.proc.wait() except OSError: pass ngrok._current_tunnels.clear() if os.path.exists(self.config_dir): shutil.rmtree(self.config_dir) @staticmethod def given_ngrok_installed(pyngrok_config): ngrok.install_ngrok(pyngrok_config) @staticmethod def given_ngrok_not_installed(ngrok_path): if os.path.exists(ngrok_path): os.remove(ngrok_path) @staticmethod def create_unique_subdomain(): return "pyngrok-{}-{}-{}-{}{}-tcp".format(uuid.uuid4(), platform.system(), platform.python_implementation(), sys.version_info[0], sys.version_info[1]).lower() @staticmethod def copy_with_updates(to_copy, **kwargs): copied = copy(to_copy) for key, value in kwargs.items(): copied.__setattr__(key, value) return copied def assertNoZombies(self): try: self.assertEqual(0, len( list(filter(lambda p: p.name() == "ngrok" and p.status() == "zombie", psutil.process_iter())))) except (AccessDenied, NoSuchProcess): # Some OSes are flaky on this assertion, but that isn't an indication anything is wrong, so pass pass
0.247532
0.058025
import os import tempfile import unittest import pytorch_lightning as pl import torch.utils.data from hydra import compose, initialize_config_dir from nuplan.planning.script.builders.model_builder import build_nn_model from nuplan.planning.script.builders.scenario_building_builder import build_scenario_builder from nuplan.planning.script.builders.training_builder import build_lightning_datamodule from nuplan.planning.script.builders.utils.utils_config import update_config_for_training from nuplan.planning.script.builders.worker_pool_builder import build_worker from omegaconf import DictConfig, OmegaConf CONFIG_NAME = 'default_training' class TestDataLoader(unittest.TestCase): """ Tests data loading functionality """ def setUp(self) -> None: """ Setup hydra config. """ seed = 10 pl.seed_everything(seed, workers=True) main_path = os.path.dirname(os.path.realpath(__file__)) self.config_path = os.path.join(main_path, '../config/training/') # Todo: Investigate pkg in hydra # Since we are not using the default config in this test, we need to specify the Hydra search path in the # compose API override, otherwise the Jenkins build fails because bazel cannot find the simulation config file. common_dir = "file://" + os.path.join(main_path, '..', 'config', 'common') experiment_dir = "file://" + os.path.join(main_path, '..', 'experiments') self.search_path = f'hydra.searchpath=[{common_dir}, {experiment_dir}]' self.group = tempfile.TemporaryDirectory() self.cache_dir = os.path.join(self.group.name, 'cache_dir') def tearDown(self) -> None: """ Remove temporary folder. """ self.group.cleanup() @staticmethod def validate_cfg(cfg: DictConfig) -> None: """ validate hydra config. """ update_config_for_training(cfg) OmegaConf.set_struct(cfg, False) cfg.scenario_filter.max_scenarios_per_log = 1 cfg.data_loader.datamodule.train_fraction = 1.0 cfg.data_loader.datamodule.val_fraction = 1.0 cfg.data_loader.datamodule.test_fraction = 1.0 cfg.data_loader.params.batch_size = 2 cfg.data_loader.params.num_workers = 2 cfg.data_loader.params.pin_memory = False OmegaConf.set_struct(cfg, True) @staticmethod def _iterate_dataloader(dataloader: torch.utils.data.DataLoader) -> None: """ Iterate NUM_BATCHES of the dataloader :param dataloader: Data loader. """ dataloader_iter = iter(dataloader) num_batches = 5 iterations = min(len(dataloader), num_batches) for _ in range(iterations): next(dataloader_iter) def _run_dataloader(self, cfg: DictConfig) -> None: """ Tests that the training dataloader can be iterated without errors. :param cfg: Hydra config. """ worker = build_worker(cfg) scenario_builder = build_scenario_builder(cfg) planning_module = build_nn_model(cfg.model) datamodule = build_lightning_datamodule(cfg, scenario_builder, worker, planning_module) datamodule.setup('fit') datamodule.setup('test') train_dataloader = datamodule.train_dataloader() val_dataloader = datamodule.val_dataloader() test_dataloader = datamodule.test_dataloader() for dataloader in [train_dataloader, val_dataloader]: assert len(dataloader) > 0 self._iterate_dataloader(dataloader) self._iterate_dataloader(test_dataloader) def test_dataloader(self) -> None: """ Test dataloader on nuPlan DB. """ log_names = ['2021.05.26.20.05.14_38_1622073985538950.8_1622074969538793.5', # train '2021.07.21.02.32.00_26_1626834838399916.8_1626835894396760.2', # train '2021.06.04.19.10.47_47_1622848319071793.5_1622849413071686.2', # val '2021.05.28.21.56.29_24_1622239057169313.0_1622240664170207.2'] # test overrides = [ "scenario_builder=nuplan_mini", "splitter=nuplan", "scenario_builder.nuplan.scenario_filter.log_labels=null", f"scenario_builder.nuplan.scenario_filter.log_names={log_names}", f"group={self.group.name}", f"cache_dir={self.cache_dir}", ] with initialize_config_dir(config_dir=self.config_path): cfg = compose(config_name=CONFIG_NAME, overrides=[self.search_path, *overrides, '+training=training_raster_model']) self.validate_cfg(cfg) self._run_dataloader(cfg) if __name__ == '__main__': unittest.main()
nuplan/planning/script/test/test_config_dataloader.py
import os import tempfile import unittest import pytorch_lightning as pl import torch.utils.data from hydra import compose, initialize_config_dir from nuplan.planning.script.builders.model_builder import build_nn_model from nuplan.planning.script.builders.scenario_building_builder import build_scenario_builder from nuplan.planning.script.builders.training_builder import build_lightning_datamodule from nuplan.planning.script.builders.utils.utils_config import update_config_for_training from nuplan.planning.script.builders.worker_pool_builder import build_worker from omegaconf import DictConfig, OmegaConf CONFIG_NAME = 'default_training' class TestDataLoader(unittest.TestCase): """ Tests data loading functionality """ def setUp(self) -> None: """ Setup hydra config. """ seed = 10 pl.seed_everything(seed, workers=True) main_path = os.path.dirname(os.path.realpath(__file__)) self.config_path = os.path.join(main_path, '../config/training/') # Todo: Investigate pkg in hydra # Since we are not using the default config in this test, we need to specify the Hydra search path in the # compose API override, otherwise the Jenkins build fails because bazel cannot find the simulation config file. common_dir = "file://" + os.path.join(main_path, '..', 'config', 'common') experiment_dir = "file://" + os.path.join(main_path, '..', 'experiments') self.search_path = f'hydra.searchpath=[{common_dir}, {experiment_dir}]' self.group = tempfile.TemporaryDirectory() self.cache_dir = os.path.join(self.group.name, 'cache_dir') def tearDown(self) -> None: """ Remove temporary folder. """ self.group.cleanup() @staticmethod def validate_cfg(cfg: DictConfig) -> None: """ validate hydra config. """ update_config_for_training(cfg) OmegaConf.set_struct(cfg, False) cfg.scenario_filter.max_scenarios_per_log = 1 cfg.data_loader.datamodule.train_fraction = 1.0 cfg.data_loader.datamodule.val_fraction = 1.0 cfg.data_loader.datamodule.test_fraction = 1.0 cfg.data_loader.params.batch_size = 2 cfg.data_loader.params.num_workers = 2 cfg.data_loader.params.pin_memory = False OmegaConf.set_struct(cfg, True) @staticmethod def _iterate_dataloader(dataloader: torch.utils.data.DataLoader) -> None: """ Iterate NUM_BATCHES of the dataloader :param dataloader: Data loader. """ dataloader_iter = iter(dataloader) num_batches = 5 iterations = min(len(dataloader), num_batches) for _ in range(iterations): next(dataloader_iter) def _run_dataloader(self, cfg: DictConfig) -> None: """ Tests that the training dataloader can be iterated without errors. :param cfg: Hydra config. """ worker = build_worker(cfg) scenario_builder = build_scenario_builder(cfg) planning_module = build_nn_model(cfg.model) datamodule = build_lightning_datamodule(cfg, scenario_builder, worker, planning_module) datamodule.setup('fit') datamodule.setup('test') train_dataloader = datamodule.train_dataloader() val_dataloader = datamodule.val_dataloader() test_dataloader = datamodule.test_dataloader() for dataloader in [train_dataloader, val_dataloader]: assert len(dataloader) > 0 self._iterate_dataloader(dataloader) self._iterate_dataloader(test_dataloader) def test_dataloader(self) -> None: """ Test dataloader on nuPlan DB. """ log_names = ['2021.05.26.20.05.14_38_1622073985538950.8_1622074969538793.5', # train '2021.07.21.02.32.00_26_1626834838399916.8_1626835894396760.2', # train '2021.06.04.19.10.47_47_1622848319071793.5_1622849413071686.2', # val '2021.05.28.21.56.29_24_1622239057169313.0_1622240664170207.2'] # test overrides = [ "scenario_builder=nuplan_mini", "splitter=nuplan", "scenario_builder.nuplan.scenario_filter.log_labels=null", f"scenario_builder.nuplan.scenario_filter.log_names={log_names}", f"group={self.group.name}", f"cache_dir={self.cache_dir}", ] with initialize_config_dir(config_dir=self.config_path): cfg = compose(config_name=CONFIG_NAME, overrides=[self.search_path, *overrides, '+training=training_raster_model']) self.validate_cfg(cfg) self._run_dataloader(cfg) if __name__ == '__main__': unittest.main()
0.471467
0.301748
import numpy as np from qutip import ( rand_ket, rand_dm, rand_herm, rand_unitary, rand_ket_haar, rand_dm_hs, rand_super, rand_unitary_haar, rand_dm_ginibre, rand_super_bcsz, qeye, rand_stochastic, ) import pytest @pytest.mark.repeat(5) @pytest.mark.parametrize('func', [rand_unitary, rand_unitary_haar]) def test_rand_unitary(func): """ Random Qobjs: Tests that unitaries are actually unitary. """ random_qobj = func(5) I = qeye(5) assert random_qobj * random_qobj.dag() == I @pytest.mark.repeat(5) @pytest.mark.parametrize('density', [0.2, 0.8], ids=["sparse", "dense"]) @pytest.mark.parametrize('pos_def', [True, False]) def test_rand_herm(density, pos_def): """ Random Qobjs: Hermitian matrix """ random_qobj = rand_herm(5, density=density, pos_def=pos_def) if pos_def: assert all(random_qobj.eigenenergies() > -1e14) assert random_qobj.isherm @pytest.mark.repeat(5) def test_rand_herm_Eigs(): """ Random Qobjs: Hermitian matrix - Eigs given """ eigs = np.random.random(5) eigs /= np.sum(eigs) eigs.sort() random_qobj = rand_herm(eigs) np.testing.assert_allclose(random_qobj.eigenenergies(), eigs) # verify hermitian assert random_qobj.isherm @pytest.mark.repeat(5) @pytest.mark.parametrize('func', [rand_dm, rand_dm_hs]) def test_rand_dm(func): """ Random Qobjs: Density matrix """ random_qobj = func(5) assert abs(random_qobj.tr() - 1.0) < 1e-14 # verify all eigvals are >=0 assert all(random_qobj.eigenenergies() >= -1e-14) # verify hermitian assert random_qobj.isherm @pytest.mark.repeat(5) def test_rand_dm_Eigs(): """ Random Qobjs: Density matrix - Eigs given """ eigs = np.random.random(5) eigs /= np.sum(eigs) eigs.sort() random_qobj = rand_dm(eigs) assert abs(random_qobj.tr() - 1.0) < 1e-14 np.testing.assert_allclose(random_qobj.eigenenergies(), eigs) # verify hermitian assert random_qobj.isherm @pytest.mark.repeat(5) def test_rand_dm_ginibre_rank(): """ Random Qobjs: Ginibre-random density ops have correct rank. """ random_qobj = rand_dm_ginibre(5, rank=3) rank = sum([abs(E) >= 1e-10 for E in random_qobj.eigenenergies()]) assert rank == 3 @pytest.mark.repeat(5) @pytest.mark.parametrize('kind', ["left", "right"]) def test_rand_stochastic(kind): """ Random Qobjs: Test random stochastic """ random_qobj = rand_stochastic(5, kind=kind) axis = {"left":0, "right":1}[kind] np.testing.assert_allclose(np.sum(random_qobj.full(), axis=axis), 1, atol=1e-14) @pytest.mark.repeat(5) @pytest.mark.parametrize('func', [rand_ket, rand_ket_haar]) def test_rand_ket(func): """ Random Qobjs: Test random ket type and norm. """ random_qobj = func(5) assert random_qobj.type == 'ket' assert abs(random_qobj.norm() - 1) < 1e-14 @pytest.mark.repeat(5) def test_rand_super(): """ Random Qobjs: Super operator. """ random_qobj = rand_super(5) assert random_qobj.issuper @pytest.mark.repeat(5) def test_rand_super_bcsz_cptp(): """ Random Qobjs: Tests that BCSZ-random superoperators are CPTP. """ random_qobj = rand_super_bcsz(5) assert random_qobj.issuper assert random_qobj.iscptp @pytest.mark.parametrize('func', [ rand_unitary, rand_unitary_haar, rand_herm, rand_dm, rand_dm_hs, rand_dm_ginibre, rand_ket, rand_ket_haar, rand_super, rand_super_bcsz ]) def test_random_seeds(func): """ Random Qobjs: Random number generator seed """ seed = 12345 U0 = func(5, seed=seed) U1 = func(5, seed=None) U2 = func(5, seed=seed) assert U0 != U1 assert U0 == U2 @pytest.mark.parametrize('func', [rand_ket, rand_ket_haar]) @pytest.mark.parametrize(('args', 'kwargs', 'dims'), [ pytest.param((6,), {}, [[6], [1]], id="N"), pytest.param((), {'dims': [[2, 3], [1, 1]]}, [[2, 3], [1, 1]], id="dims"), pytest.param((6,), {'dims': [[2, 3], [1, 1]]}, [[2, 3], [1, 1]], id="both"), ]) def test_rand_vector_dims(func, args, kwargs, dims): shape = np.prod(dims[0]), np.prod(dims[1]) output = func(*args, **kwargs) assert output.shape == shape assert output.dims == dims @pytest.mark.parametrize('func', [rand_ket, rand_ket_haar]) def test_rand_ket_raises_if_no_args(func): with pytest.raises(ValueError): func() @pytest.mark.parametrize('func', [ rand_unitary, rand_herm, rand_dm, rand_unitary_haar, rand_dm_ginibre, rand_dm_hs, rand_stochastic, ]) @pytest.mark.parametrize(('args', 'kwargs', 'dims'), [ pytest.param((6,), {}, [[6], [6]], id="N"), pytest.param((6,), {'dims': [[2, 3], [2, 3]]}, [[2, 3], [2, 3]], id="both"), ]) def test_rand_oper_dims(func, args, kwargs, dims): shape = np.prod(dims[0]), np.prod(dims[1]) output = func(*args, **kwargs) assert output.shape == shape assert output.dims == dims _super_dims = [[[2, 3], [2, 3]], [[2, 3], [2, 3]]] @pytest.mark.parametrize('func', [rand_super, rand_super_bcsz]) @pytest.mark.parametrize(('args', 'kwargs', 'dims'), [ pytest.param((6,), {}, [[[6]]*2]*2, id="N"), pytest.param((6,), {'dims': _super_dims}, _super_dims, id="both"), ]) def test_rand_super_dims(func, args, kwargs, dims): shape = np.prod(dims[0]), np.prod(dims[1]) output = func(*args, **kwargs) assert output.shape == shape assert output.dims == dims
qutip/tests/test_random.py
import numpy as np from qutip import ( rand_ket, rand_dm, rand_herm, rand_unitary, rand_ket_haar, rand_dm_hs, rand_super, rand_unitary_haar, rand_dm_ginibre, rand_super_bcsz, qeye, rand_stochastic, ) import pytest @pytest.mark.repeat(5) @pytest.mark.parametrize('func', [rand_unitary, rand_unitary_haar]) def test_rand_unitary(func): """ Random Qobjs: Tests that unitaries are actually unitary. """ random_qobj = func(5) I = qeye(5) assert random_qobj * random_qobj.dag() == I @pytest.mark.repeat(5) @pytest.mark.parametrize('density', [0.2, 0.8], ids=["sparse", "dense"]) @pytest.mark.parametrize('pos_def', [True, False]) def test_rand_herm(density, pos_def): """ Random Qobjs: Hermitian matrix """ random_qobj = rand_herm(5, density=density, pos_def=pos_def) if pos_def: assert all(random_qobj.eigenenergies() > -1e14) assert random_qobj.isherm @pytest.mark.repeat(5) def test_rand_herm_Eigs(): """ Random Qobjs: Hermitian matrix - Eigs given """ eigs = np.random.random(5) eigs /= np.sum(eigs) eigs.sort() random_qobj = rand_herm(eigs) np.testing.assert_allclose(random_qobj.eigenenergies(), eigs) # verify hermitian assert random_qobj.isherm @pytest.mark.repeat(5) @pytest.mark.parametrize('func', [rand_dm, rand_dm_hs]) def test_rand_dm(func): """ Random Qobjs: Density matrix """ random_qobj = func(5) assert abs(random_qobj.tr() - 1.0) < 1e-14 # verify all eigvals are >=0 assert all(random_qobj.eigenenergies() >= -1e-14) # verify hermitian assert random_qobj.isherm @pytest.mark.repeat(5) def test_rand_dm_Eigs(): """ Random Qobjs: Density matrix - Eigs given """ eigs = np.random.random(5) eigs /= np.sum(eigs) eigs.sort() random_qobj = rand_dm(eigs) assert abs(random_qobj.tr() - 1.0) < 1e-14 np.testing.assert_allclose(random_qobj.eigenenergies(), eigs) # verify hermitian assert random_qobj.isherm @pytest.mark.repeat(5) def test_rand_dm_ginibre_rank(): """ Random Qobjs: Ginibre-random density ops have correct rank. """ random_qobj = rand_dm_ginibre(5, rank=3) rank = sum([abs(E) >= 1e-10 for E in random_qobj.eigenenergies()]) assert rank == 3 @pytest.mark.repeat(5) @pytest.mark.parametrize('kind', ["left", "right"]) def test_rand_stochastic(kind): """ Random Qobjs: Test random stochastic """ random_qobj = rand_stochastic(5, kind=kind) axis = {"left":0, "right":1}[kind] np.testing.assert_allclose(np.sum(random_qobj.full(), axis=axis), 1, atol=1e-14) @pytest.mark.repeat(5) @pytest.mark.parametrize('func', [rand_ket, rand_ket_haar]) def test_rand_ket(func): """ Random Qobjs: Test random ket type and norm. """ random_qobj = func(5) assert random_qobj.type == 'ket' assert abs(random_qobj.norm() - 1) < 1e-14 @pytest.mark.repeat(5) def test_rand_super(): """ Random Qobjs: Super operator. """ random_qobj = rand_super(5) assert random_qobj.issuper @pytest.mark.repeat(5) def test_rand_super_bcsz_cptp(): """ Random Qobjs: Tests that BCSZ-random superoperators are CPTP. """ random_qobj = rand_super_bcsz(5) assert random_qobj.issuper assert random_qobj.iscptp @pytest.mark.parametrize('func', [ rand_unitary, rand_unitary_haar, rand_herm, rand_dm, rand_dm_hs, rand_dm_ginibre, rand_ket, rand_ket_haar, rand_super, rand_super_bcsz ]) def test_random_seeds(func): """ Random Qobjs: Random number generator seed """ seed = 12345 U0 = func(5, seed=seed) U1 = func(5, seed=None) U2 = func(5, seed=seed) assert U0 != U1 assert U0 == U2 @pytest.mark.parametrize('func', [rand_ket, rand_ket_haar]) @pytest.mark.parametrize(('args', 'kwargs', 'dims'), [ pytest.param((6,), {}, [[6], [1]], id="N"), pytest.param((), {'dims': [[2, 3], [1, 1]]}, [[2, 3], [1, 1]], id="dims"), pytest.param((6,), {'dims': [[2, 3], [1, 1]]}, [[2, 3], [1, 1]], id="both"), ]) def test_rand_vector_dims(func, args, kwargs, dims): shape = np.prod(dims[0]), np.prod(dims[1]) output = func(*args, **kwargs) assert output.shape == shape assert output.dims == dims @pytest.mark.parametrize('func', [rand_ket, rand_ket_haar]) def test_rand_ket_raises_if_no_args(func): with pytest.raises(ValueError): func() @pytest.mark.parametrize('func', [ rand_unitary, rand_herm, rand_dm, rand_unitary_haar, rand_dm_ginibre, rand_dm_hs, rand_stochastic, ]) @pytest.mark.parametrize(('args', 'kwargs', 'dims'), [ pytest.param((6,), {}, [[6], [6]], id="N"), pytest.param((6,), {'dims': [[2, 3], [2, 3]]}, [[2, 3], [2, 3]], id="both"), ]) def test_rand_oper_dims(func, args, kwargs, dims): shape = np.prod(dims[0]), np.prod(dims[1]) output = func(*args, **kwargs) assert output.shape == shape assert output.dims == dims _super_dims = [[[2, 3], [2, 3]], [[2, 3], [2, 3]]] @pytest.mark.parametrize('func', [rand_super, rand_super_bcsz]) @pytest.mark.parametrize(('args', 'kwargs', 'dims'), [ pytest.param((6,), {}, [[[6]]*2]*2, id="N"), pytest.param((6,), {'dims': _super_dims}, _super_dims, id="both"), ]) def test_rand_super_dims(func, args, kwargs, dims): shape = np.prod(dims[0]), np.prod(dims[1]) output = func(*args, **kwargs) assert output.shape == shape assert output.dims == dims
0.627038
0.617657
import hmac import hashlib import sys from ..errors import SignatureVerificationError class Utility(object): def __init__(self, client=None): self.client = client def verify_payment_signature(self, parameters): order_id = str(parameters['razorpay_order_id']) payment_id = str(parameters['razorpay_payment_id']) razorpay_signature = str(parameters['razorpay_signature']) msg = "{}|{}".format(order_id, payment_id) secret = str(self.client.auth[1]) self.verify_signature(msg, razorpay_signature, secret) def verify_webhook_signature(self, body, signature, secret): self.verify_signature(body, signature, secret) def verify_signature(self, body, signature, key): if sys.version_info[0] == 3: # pragma: no cover key = bytes(key, 'utf-8') body = bytes(body, 'utf-8') dig = hmac.new(key=key, msg=body, digestmod=hashlib.sha256) generated_signature = dig.hexdigest() if sys.version_info[0:3] < (2, 7, 7): result = self.compare_string(generated_signature, signature) else: result = hmac.compare_digest(generated_signature, signature) if not result: raise SignatureVerificationError( 'Razorpay Signature Verification Failed') # Taken from Django Source Code # Used in python version < 2.7.7 # As hmac.compare_digest is not present in prev versions def compare_string(self, expected_str, actual_str): """ Returns True if the two strings are equal, False otherwise The time taken is independent of the number of characters that match For the sake of simplicity, this function executes in constant time only when the two strings have the same length. It short-circuits when they have different lengths """ if len(expected_str) != len(actual_str): return False result = 0 for x, y in zip(expected_str, actual_str): result |= ord(x) ^ ord(y) return result == 0
saleor/lib/python3.7/site-packages/razorpay/utility/utility.py
import hmac import hashlib import sys from ..errors import SignatureVerificationError class Utility(object): def __init__(self, client=None): self.client = client def verify_payment_signature(self, parameters): order_id = str(parameters['razorpay_order_id']) payment_id = str(parameters['razorpay_payment_id']) razorpay_signature = str(parameters['razorpay_signature']) msg = "{}|{}".format(order_id, payment_id) secret = str(self.client.auth[1]) self.verify_signature(msg, razorpay_signature, secret) def verify_webhook_signature(self, body, signature, secret): self.verify_signature(body, signature, secret) def verify_signature(self, body, signature, key): if sys.version_info[0] == 3: # pragma: no cover key = bytes(key, 'utf-8') body = bytes(body, 'utf-8') dig = hmac.new(key=key, msg=body, digestmod=hashlib.sha256) generated_signature = dig.hexdigest() if sys.version_info[0:3] < (2, 7, 7): result = self.compare_string(generated_signature, signature) else: result = hmac.compare_digest(generated_signature, signature) if not result: raise SignatureVerificationError( 'Razorpay Signature Verification Failed') # Taken from Django Source Code # Used in python version < 2.7.7 # As hmac.compare_digest is not present in prev versions def compare_string(self, expected_str, actual_str): """ Returns True if the two strings are equal, False otherwise The time taken is independent of the number of characters that match For the sake of simplicity, this function executes in constant time only when the two strings have the same length. It short-circuits when they have different lengths """ if len(expected_str) != len(actual_str): return False result = 0 for x, y in zip(expected_str, actual_str): result |= ord(x) ^ ord(y) return result == 0
0.409575
0.176636
import falcon from falcon.media.validators import jsonschema from management_api.utils.logger import get_logger from management_api.endpoints.endpoint_utils import create_endpoint, delete_endpoint, \ scale_endpoint, update_endpoint, view_endpoint, list_endpoints from management_api.schemas.endpoints import endpoint_post_schema, endpoint_delete_schema, \ endpoint_patch_schema logger = get_logger(__name__) class Endpoints(object): def on_get(self, req, resp, tenant_name): namespace = tenant_name endpoints = list_endpoints(namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = endpoints @jsonschema.validate(endpoint_post_schema) def on_post(self, req, resp, tenant_name): namespace = tenant_name body = req.media endpoint_url = create_endpoint(parameters=body, namespace=namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = 'Endpoint created\n {}'.format(endpoint_url) @jsonschema.validate(endpoint_delete_schema) def on_delete(self, req, resp, tenant_name): namespace = tenant_name body = req.media endpoint_url = delete_endpoint(parameters=body, namespace=namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = 'Endpoint {} deleted\n'.format(endpoint_url) class EndpointScale(object): @jsonschema.validate(endpoint_patch_schema) def on_patch(self, req, resp, tenant_name, endpoint_name): namespace = tenant_name body = req.media endpoint_url = scale_endpoint(parameters=body, namespace=namespace, endpoint_name=endpoint_name, id_token=req.get_header('Authorization')) message = 'Endpoint {} patched successfully. New values: {}\n'.format(endpoint_url, body) resp.status = falcon.HTTP_200 resp.body = message logger.info(message) class Endpoint(object): def on_get(self, req, resp, tenant_name, endpoint_name): namespace = tenant_name endpoint = view_endpoint(endpoint_name=endpoint_name, namespace=namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = endpoint @jsonschema.validate(endpoint_patch_schema) def on_patch(self, req, resp, tenant_name, endpoint_name): namespace = tenant_name body = req.media endpoint_url = update_endpoint(body, namespace, endpoint_name, id_token=req.get_header('Authorization')) message = 'Endpoint {} patched successfully. New values: {}\n'.format(endpoint_url, body) resp.status = falcon.HTTP_200 resp.body = message logger.info(message)
management/management_api/endpoints/endpoints.py
import falcon from falcon.media.validators import jsonschema from management_api.utils.logger import get_logger from management_api.endpoints.endpoint_utils import create_endpoint, delete_endpoint, \ scale_endpoint, update_endpoint, view_endpoint, list_endpoints from management_api.schemas.endpoints import endpoint_post_schema, endpoint_delete_schema, \ endpoint_patch_schema logger = get_logger(__name__) class Endpoints(object): def on_get(self, req, resp, tenant_name): namespace = tenant_name endpoints = list_endpoints(namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = endpoints @jsonschema.validate(endpoint_post_schema) def on_post(self, req, resp, tenant_name): namespace = tenant_name body = req.media endpoint_url = create_endpoint(parameters=body, namespace=namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = 'Endpoint created\n {}'.format(endpoint_url) @jsonschema.validate(endpoint_delete_schema) def on_delete(self, req, resp, tenant_name): namespace = tenant_name body = req.media endpoint_url = delete_endpoint(parameters=body, namespace=namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = 'Endpoint {} deleted\n'.format(endpoint_url) class EndpointScale(object): @jsonschema.validate(endpoint_patch_schema) def on_patch(self, req, resp, tenant_name, endpoint_name): namespace = tenant_name body = req.media endpoint_url = scale_endpoint(parameters=body, namespace=namespace, endpoint_name=endpoint_name, id_token=req.get_header('Authorization')) message = 'Endpoint {} patched successfully. New values: {}\n'.format(endpoint_url, body) resp.status = falcon.HTTP_200 resp.body = message logger.info(message) class Endpoint(object): def on_get(self, req, resp, tenant_name, endpoint_name): namespace = tenant_name endpoint = view_endpoint(endpoint_name=endpoint_name, namespace=namespace, id_token=req.get_header('Authorization')) resp.status = falcon.HTTP_200 resp.body = endpoint @jsonschema.validate(endpoint_patch_schema) def on_patch(self, req, resp, tenant_name, endpoint_name): namespace = tenant_name body = req.media endpoint_url = update_endpoint(body, namespace, endpoint_name, id_token=req.get_header('Authorization')) message = 'Endpoint {} patched successfully. New values: {}\n'.format(endpoint_url, body) resp.status = falcon.HTTP_200 resp.body = message logger.info(message)
0.358802
0.048339
import streamlit as st from PIL import Image def app(): st.title("Vegetation Analysis") st.markdown( """ The goal of this task is to discover the use of different vegetation indices to identify the level of desertification in northern Iraq. Indices of interest include NDVI, NDWI, NDBI, and MSAVI. In specfic, we conducted the analysis using NDVI index, for the years 2016, 2018 and 2021. A summary of what has been done for this task is shown below: """ ) # Summary st.subheader("Summary") st.markdown( """ 1. **Dataset:** Sentinel2 images using Google Earth Engine 2. **Region of Interest:** Mosul - Iraq 3. **Periods of study:** 2016, 2018, 2021 4. **Bands:** 5 Bands downloaded: R, G, B, NIR, SWIR 5. **Processing method:** Used rasterio to process the images """ ) # NDVI analysis st.subheader("1. NDVI Analysis") # NDVI Definitoin st.info(""" The normalized difference vegetation index (NDVI) is a simple graphical indicator that can be used to analyze remote sensing measurements, often from a space platform, assessing whether or not the target being observed contains live green vegetation """ ) st.markdown( """ The following shows NDVI values of Mosul for three different periods: **2016**, **2018** and **2021**, calculated using data from Sentinel2. """ ) # NDVI_classes_2016 st.markdown("""**NDVI: 2016**""") image1 = Image.open('NDVI_classes_2016.png') st.image(image1, use_column_width=True) st.markdown(""" ----- """) # NDVI_classes_2018 st.markdown("""**NDVI: 2018**""") image2 = Image.open('NDVI_classes_2018.png') st.image(image2, use_column_width=True) st.markdown(""" ----- """) # NDVI_classes_2021 st.markdown("""**NDVI: 2021**""") image3 = Image.open('NDVI_classes_2021.png') st.image(image3, use_column_width=True) # Pie chart Analysis st.subheader("2. Pie chart Analysis") st.markdown( """ The following shows pie chart analysis of Mosul over three periods: 2016, 2018 and 2021. The results clearly show that the arid area is reducing and the green area is increasing, which seems to be a good indication. """ ) st.markdown("""**Pie chart analysis of Mosul: 2016**""") image2 = Image.open('NDVI_2016.png') st.image(image2, use_column_width=True) st.markdown(""" ----- """) st.markdown("""**Pie chart analysis of Mosul: 2018**""") image3 = Image.open('NDVI_2018.png') st.image(image3, use_column_width=True) st.markdown(""" ----- """) st.markdown("""**Pie chart analysis of Mosul: 2021**""") image3 = Image.open('NDVI_2021.png') st.image(image3, use_column_width=True)
apps/vegetation_analysis.py
import streamlit as st from PIL import Image def app(): st.title("Vegetation Analysis") st.markdown( """ The goal of this task is to discover the use of different vegetation indices to identify the level of desertification in northern Iraq. Indices of interest include NDVI, NDWI, NDBI, and MSAVI. In specfic, we conducted the analysis using NDVI index, for the years 2016, 2018 and 2021. A summary of what has been done for this task is shown below: """ ) # Summary st.subheader("Summary") st.markdown( """ 1. **Dataset:** Sentinel2 images using Google Earth Engine 2. **Region of Interest:** Mosul - Iraq 3. **Periods of study:** 2016, 2018, 2021 4. **Bands:** 5 Bands downloaded: R, G, B, NIR, SWIR 5. **Processing method:** Used rasterio to process the images """ ) # NDVI analysis st.subheader("1. NDVI Analysis") # NDVI Definitoin st.info(""" The normalized difference vegetation index (NDVI) is a simple graphical indicator that can be used to analyze remote sensing measurements, often from a space platform, assessing whether or not the target being observed contains live green vegetation """ ) st.markdown( """ The following shows NDVI values of Mosul for three different periods: **2016**, **2018** and **2021**, calculated using data from Sentinel2. """ ) # NDVI_classes_2016 st.markdown("""**NDVI: 2016**""") image1 = Image.open('NDVI_classes_2016.png') st.image(image1, use_column_width=True) st.markdown(""" ----- """) # NDVI_classes_2018 st.markdown("""**NDVI: 2018**""") image2 = Image.open('NDVI_classes_2018.png') st.image(image2, use_column_width=True) st.markdown(""" ----- """) # NDVI_classes_2021 st.markdown("""**NDVI: 2021**""") image3 = Image.open('NDVI_classes_2021.png') st.image(image3, use_column_width=True) # Pie chart Analysis st.subheader("2. Pie chart Analysis") st.markdown( """ The following shows pie chart analysis of Mosul over three periods: 2016, 2018 and 2021. The results clearly show that the arid area is reducing and the green area is increasing, which seems to be a good indication. """ ) st.markdown("""**Pie chart analysis of Mosul: 2016**""") image2 = Image.open('NDVI_2016.png') st.image(image2, use_column_width=True) st.markdown(""" ----- """) st.markdown("""**Pie chart analysis of Mosul: 2018**""") image3 = Image.open('NDVI_2018.png') st.image(image3, use_column_width=True) st.markdown(""" ----- """) st.markdown("""**Pie chart analysis of Mosul: 2021**""") image3 = Image.open('NDVI_2021.png') st.image(image3, use_column_width=True)
0.795857
0.589894
"""Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='inference.proto', package='', syntax='proto3', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x0finference.proto\"\'\n\x0b\x44\x61taRequest\x12\x18\n\tdata_list\x18\x01 \x03(\x0b\x32\x05.Data\",\n\x04\x44\x61ta\x12\x11\n\tdata_file\x18\x01 \x01(\t\x12\x11\n\tdata_name\x18\x02 \x01(\t\"#\n\x0c\x44\x61taResponse\x12\x13\n\x0bjson_result\x18\x01 \x01(\t2>\n\x10InferenceService\x12*\n\tinference\x12\x0c.DataRequest\x1a\r.DataResponse\"\x00\x62\x06proto3' ) _DATAREQUEST = _descriptor.Descriptor( name='DataRequest', full_name='DataRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='data_list', full_name='DataRequest.data_list', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=19, serialized_end=58, ) _DATA = _descriptor.Descriptor( name='Data', full_name='Data', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='data_file', full_name='Data.data_file', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='data_name', full_name='Data.data_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=60, serialized_end=104, ) _DATARESPONSE = _descriptor.Descriptor( name='DataResponse', full_name='DataResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='json_result', full_name='DataResponse.json_result', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=106, serialized_end=141, ) _DATAREQUEST.fields_by_name['data_list'].message_type = _DATA DESCRIPTOR.message_types_by_name['DataRequest'] = _DATAREQUEST DESCRIPTOR.message_types_by_name['Data'] = _DATA DESCRIPTOR.message_types_by_name['DataResponse'] = _DATARESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataRequest = _reflection.GeneratedProtocolMessageType('DataRequest', (_message.Message,), { 'DESCRIPTOR' : _DATAREQUEST, '__module__' : 'inference_pb2' # @@protoc_insertion_point(class_scope:DataRequest) }) _sym_db.RegisterMessage(DataRequest) Data = _reflection.GeneratedProtocolMessageType('Data', (_message.Message,), { 'DESCRIPTOR' : _DATA, '__module__' : 'inference_pb2' # @@protoc_insertion_point(class_scope:Data) }) _sym_db.RegisterMessage(Data) DataResponse = _reflection.GeneratedProtocolMessageType('DataResponse', (_message.Message,), { 'DESCRIPTOR' : _DATARESPONSE, '__module__' : 'inference_pb2' # @@protoc_insertion_point(class_scope:DataResponse) }) _sym_db.RegisterMessage(DataResponse) _INFERENCESERVICE = _descriptor.ServiceDescriptor( name='InferenceService', full_name='InferenceService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=143, serialized_end=205, methods=[ _descriptor.MethodDescriptor( name='inference', full_name='InferenceService.inference', index=0, containing_service=None, input_type=_DATAREQUEST, output_type=_DATARESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_INFERENCESERVICE) DESCRIPTOR.services_by_name['InferenceService'] = _INFERENCESERVICE # @@protoc_insertion_point(module_scope)
tianshu_serving/proto/inference_pb2.py
"""Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='inference.proto', package='', syntax='proto3', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x0finference.proto\"\'\n\x0b\x44\x61taRequest\x12\x18\n\tdata_list\x18\x01 \x03(\x0b\x32\x05.Data\",\n\x04\x44\x61ta\x12\x11\n\tdata_file\x18\x01 \x01(\t\x12\x11\n\tdata_name\x18\x02 \x01(\t\"#\n\x0c\x44\x61taResponse\x12\x13\n\x0bjson_result\x18\x01 \x01(\t2>\n\x10InferenceService\x12*\n\tinference\x12\x0c.DataRequest\x1a\r.DataResponse\"\x00\x62\x06proto3' ) _DATAREQUEST = _descriptor.Descriptor( name='DataRequest', full_name='DataRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='data_list', full_name='DataRequest.data_list', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=19, serialized_end=58, ) _DATA = _descriptor.Descriptor( name='Data', full_name='Data', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='data_file', full_name='Data.data_file', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='data_name', full_name='Data.data_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=60, serialized_end=104, ) _DATARESPONSE = _descriptor.Descriptor( name='DataResponse', full_name='DataResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='json_result', full_name='DataResponse.json_result', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=106, serialized_end=141, ) _DATAREQUEST.fields_by_name['data_list'].message_type = _DATA DESCRIPTOR.message_types_by_name['DataRequest'] = _DATAREQUEST DESCRIPTOR.message_types_by_name['Data'] = _DATA DESCRIPTOR.message_types_by_name['DataResponse'] = _DATARESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataRequest = _reflection.GeneratedProtocolMessageType('DataRequest', (_message.Message,), { 'DESCRIPTOR' : _DATAREQUEST, '__module__' : 'inference_pb2' # @@protoc_insertion_point(class_scope:DataRequest) }) _sym_db.RegisterMessage(DataRequest) Data = _reflection.GeneratedProtocolMessageType('Data', (_message.Message,), { 'DESCRIPTOR' : _DATA, '__module__' : 'inference_pb2' # @@protoc_insertion_point(class_scope:Data) }) _sym_db.RegisterMessage(Data) DataResponse = _reflection.GeneratedProtocolMessageType('DataResponse', (_message.Message,), { 'DESCRIPTOR' : _DATARESPONSE, '__module__' : 'inference_pb2' # @@protoc_insertion_point(class_scope:DataResponse) }) _sym_db.RegisterMessage(DataResponse) _INFERENCESERVICE = _descriptor.ServiceDescriptor( name='InferenceService', full_name='InferenceService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=143, serialized_end=205, methods=[ _descriptor.MethodDescriptor( name='inference', full_name='InferenceService.inference', index=0, containing_service=None, input_type=_DATAREQUEST, output_type=_DATARESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_INFERENCESERVICE) DESCRIPTOR.services_by_name['InferenceService'] = _INFERENCESERVICE # @@protoc_insertion_point(module_scope)
0.224565
0.075585
import re from comply.rules.rule import * from comply.rules.patterns import FUNC_BODY_PATTERN from comply.util.scope import depth class ScopeTooDeep(Rule): """ Don't write deeply nested code. A deeply nested scope is often an indication of too high complexity and can be difficult to read. """ def __init__(self): Rule.__init__(self, name='scope-too-deep', description='Scope is too deep ({depth} > {max} levels)', suggestion='Avoid nesting code too deeply. Consider refactoring.') MAX = 3 pattern = re.compile(FUNC_BODY_PATTERN) def collect(self, file: CheckFile): offenders = [] text = file.stripped max_depth = ScopeTooDeep.MAX for scope_match in self.pattern.finditer(text): scope_index = scope_match.start() scope_depth = depth(scope_index, text) if scope_depth > max_depth: line_number, column = file.line_number_at(scope_index) offender = self.violate(at=(line_number, column), to=(line_number, column + 1), lines=[(line_number, file.lines[line_number - 1])], meta={'depth': scope_depth, 'max': max_depth}) offenders.append(offender) return offenders @property def triggers(self): return [ ('void func(...) {\n' ' if (true) {\n' ' if (false) {\n' ' if (true) {\n' ' if (true) ↓{\n' ' ...\n' ' }\n' ' }\n' ' }\n' ' }\n' '}') ] @property def nontriggers(self): return [ ('void func(...) {\n' ' if (true) {\n' ' if (false) {\n' ' if (true) {\n' ' ...\n' ' }\n' ' }\n' ' }\n' '}') ]
comply/rules/standard/scope_too_deep.py
import re from comply.rules.rule import * from comply.rules.patterns import FUNC_BODY_PATTERN from comply.util.scope import depth class ScopeTooDeep(Rule): """ Don't write deeply nested code. A deeply nested scope is often an indication of too high complexity and can be difficult to read. """ def __init__(self): Rule.__init__(self, name='scope-too-deep', description='Scope is too deep ({depth} > {max} levels)', suggestion='Avoid nesting code too deeply. Consider refactoring.') MAX = 3 pattern = re.compile(FUNC_BODY_PATTERN) def collect(self, file: CheckFile): offenders = [] text = file.stripped max_depth = ScopeTooDeep.MAX for scope_match in self.pattern.finditer(text): scope_index = scope_match.start() scope_depth = depth(scope_index, text) if scope_depth > max_depth: line_number, column = file.line_number_at(scope_index) offender = self.violate(at=(line_number, column), to=(line_number, column + 1), lines=[(line_number, file.lines[line_number - 1])], meta={'depth': scope_depth, 'max': max_depth}) offenders.append(offender) return offenders @property def triggers(self): return [ ('void func(...) {\n' ' if (true) {\n' ' if (false) {\n' ' if (true) {\n' ' if (true) ↓{\n' ' ...\n' ' }\n' ' }\n' ' }\n' ' }\n' '}') ] @property def nontriggers(self): return [ ('void func(...) {\n' ' if (true) {\n' ' if (false) {\n' ' if (true) {\n' ' ...\n' ' }\n' ' }\n' ' }\n' '}') ]
0.666714
0.246375
import pytest import datetime from pupa.scrape import Event def event_obj(): e = Event( name="get-together", start_date=datetime.datetime.utcnow().isoformat().split('.')[0] + 'Z', location_name="Joe's Place", ) e.add_source(url='http://example.com/foobar') return e def test_basic_event(): e = event_obj() e.validate() def test_no_location(): e = Event( name="get-together", start_date=datetime.datetime.utcnow().isoformat().split('.')[0] + 'Z', ) e.add_source(url='http://example.com/foobar') e.validate() def test_event_str(): e = event_obj() assert e.name in str(e) def test_bad_event(): e = event_obj() e.start_date = 6 with pytest.raises(ValueError): e.validate() def test_basic_agenda(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['description'] == 'foo bar' assert e.agenda[0] == agenda e.validate() def test_agenda_add_person(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_person(person='<NAME>', note='chair') assert len(e.agenda[0]['related_entities']) == 1 e.validate() def test_agenda_add_vote_event(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_vote_event(vote_event='Roll no. 12') assert len(e.agenda[0]['related_entities']) == 1 e.validate() def test_agenda_add_subject(): e = event_obj() agenda = e.add_agenda_item("foo bar") agenda.add_subject('test') assert e.agenda[0]['subjects'] == ['test'] agenda.add_subject('test2') assert e.agenda[0]['subjects'] == ['test', 'test2'] e.validate() def test_agenda_add_classification(): e = event_obj() agenda = e.add_agenda_item("foo bar") agenda.add_classification('test') assert e.agenda[0]['classification'] == ['test'] agenda.add_classification('test2') assert e.agenda[0]['classification'] == ['test', 'test2'] e.validate() def test_agenda_add_extra(): e = event_obj() a = e.add_agenda_item('foo bar') a['extras'] = dict(foo=1, bar=['baz']) assert e.agenda[0]['extras'] == {'foo': 1, 'bar': ['baz']} def test_add_committee(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_committee(committee='Hello, World', note='host') e.validate() def test_add_bill(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_bill(bill='HB 101', note='consideration') e.validate() def test_add_document(): e = event_obj() assert e.documents == [] e.add_document(note='hello', url='http://example.com', media_type="text/html") assert len(e.documents) == 1 o = e.documents[0] assert o['note'] == 'hello' assert o['links'] == [{'url': 'http://example.com', 'media_type': 'text/html', 'text': ''}] e.validate() def test_participants(): e = event_obj() e.add_participant('Committee of the Whole', type='committee', note='everyone') assert len(e.participants) == 1 assert e.participants[0]['name'] == 'Committee of the Whole' assert e.participants[0]['entity_type'] == 'committee' assert e.participants[0]['note'] == 'everyone' # and add_person, which is a shortcut e.add_person('<NAME>') assert len(e.participants) == 2 assert e.participants[1]['name'] == '<NAME>' assert e.participants[1]['entity_type'] == 'person' assert e.participants[1]['note'] == 'participant' def test_set_location(): e = event_obj() e.set_location('North Pole', note='it is cold here', url='https://www.northpole.com', coordinates={'latitude': '90.0000', 'longitude': '0.0000'}) assert e.location.get('name') == 'North Pole' assert e.location.get('note') == 'it is cold here' assert e.location.get('url') == 'https://www.northpole.com' assert e.location.get('coordinates').get('latitude') == '90.0000' assert e.location.get('coordinates').get('longitude') == '0.0000' e.validate() def test_add_media(): e = event_obj() name = "<NAME>" a = e.add_agenda_item(description='foo') a.add_media_link(note=name, url="http://pault.ag", media_type="text/html") a.add_media_link(note=name, url="ftp://pault.ag", media_type="text/plain") e.validate() assert len(e.agenda[0]['media']) == 1 assert len(e.agenda[0]['media'][0]['links']) == 2 e.add_media_link(note=name, url="http://pault.ag", media_type="text/html") e.add_media_link(note=name, url="ftp://pault.ag", media_type="text/plain") e.validate() assert len(e.media) == 1 assert len(e.media[0]['links']) == 2
pupa/tests/scrape/test_event_scrape.py
import pytest import datetime from pupa.scrape import Event def event_obj(): e = Event( name="get-together", start_date=datetime.datetime.utcnow().isoformat().split('.')[0] + 'Z', location_name="Joe's Place", ) e.add_source(url='http://example.com/foobar') return e def test_basic_event(): e = event_obj() e.validate() def test_no_location(): e = Event( name="get-together", start_date=datetime.datetime.utcnow().isoformat().split('.')[0] + 'Z', ) e.add_source(url='http://example.com/foobar') e.validate() def test_event_str(): e = event_obj() assert e.name in str(e) def test_bad_event(): e = event_obj() e.start_date = 6 with pytest.raises(ValueError): e.validate() def test_basic_agenda(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['description'] == 'foo bar' assert e.agenda[0] == agenda e.validate() def test_agenda_add_person(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_person(person='<NAME>', note='chair') assert len(e.agenda[0]['related_entities']) == 1 e.validate() def test_agenda_add_vote_event(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_vote_event(vote_event='Roll no. 12') assert len(e.agenda[0]['related_entities']) == 1 e.validate() def test_agenda_add_subject(): e = event_obj() agenda = e.add_agenda_item("foo bar") agenda.add_subject('test') assert e.agenda[0]['subjects'] == ['test'] agenda.add_subject('test2') assert e.agenda[0]['subjects'] == ['test', 'test2'] e.validate() def test_agenda_add_classification(): e = event_obj() agenda = e.add_agenda_item("foo bar") agenda.add_classification('test') assert e.agenda[0]['classification'] == ['test'] agenda.add_classification('test2') assert e.agenda[0]['classification'] == ['test', 'test2'] e.validate() def test_agenda_add_extra(): e = event_obj() a = e.add_agenda_item('foo bar') a['extras'] = dict(foo=1, bar=['baz']) assert e.agenda[0]['extras'] == {'foo': 1, 'bar': ['baz']} def test_add_committee(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_committee(committee='Hello, World', note='host') e.validate() def test_add_bill(): e = event_obj() agenda = e.add_agenda_item("foo bar") assert agenda['related_entities'] == [] agenda.add_bill(bill='HB 101', note='consideration') e.validate() def test_add_document(): e = event_obj() assert e.documents == [] e.add_document(note='hello', url='http://example.com', media_type="text/html") assert len(e.documents) == 1 o = e.documents[0] assert o['note'] == 'hello' assert o['links'] == [{'url': 'http://example.com', 'media_type': 'text/html', 'text': ''}] e.validate() def test_participants(): e = event_obj() e.add_participant('Committee of the Whole', type='committee', note='everyone') assert len(e.participants) == 1 assert e.participants[0]['name'] == 'Committee of the Whole' assert e.participants[0]['entity_type'] == 'committee' assert e.participants[0]['note'] == 'everyone' # and add_person, which is a shortcut e.add_person('<NAME>') assert len(e.participants) == 2 assert e.participants[1]['name'] == '<NAME>' assert e.participants[1]['entity_type'] == 'person' assert e.participants[1]['note'] == 'participant' def test_set_location(): e = event_obj() e.set_location('North Pole', note='it is cold here', url='https://www.northpole.com', coordinates={'latitude': '90.0000', 'longitude': '0.0000'}) assert e.location.get('name') == 'North Pole' assert e.location.get('note') == 'it is cold here' assert e.location.get('url') == 'https://www.northpole.com' assert e.location.get('coordinates').get('latitude') == '90.0000' assert e.location.get('coordinates').get('longitude') == '0.0000' e.validate() def test_add_media(): e = event_obj() name = "<NAME>" a = e.add_agenda_item(description='foo') a.add_media_link(note=name, url="http://pault.ag", media_type="text/html") a.add_media_link(note=name, url="ftp://pault.ag", media_type="text/plain") e.validate() assert len(e.agenda[0]['media']) == 1 assert len(e.agenda[0]['media'][0]['links']) == 2 e.add_media_link(note=name, url="http://pault.ag", media_type="text/html") e.add_media_link(note=name, url="ftp://pault.ag", media_type="text/plain") e.validate() assert len(e.media) == 1 assert len(e.media[0]['links']) == 2
0.574753
0.518363
import unittest from Multi_cell import * class MultiCellTestCase(unittest.TestCase): def test_multi_cell_INV_n_INV(self): str_netlist_1 = "M0001 GND IN001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" str_netlist_2 = "M0001 GND IN001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([], share) self.assertCountEqual([ "M0001 GND IN001 N0001 GND NMOS\n" "M0002 GND N0001 OUT01 GND NMOS\n" "M0003 N0001 IN001 VDD VDD PMOS\n" "M0004 OUT01 N0001 VDD VDD PMOS\n" ], iso) def test_multi_cell_with_one_internal(self): str_netlist_1 = "M0001 GND IN001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" str_netlist_2 = "M0001 GND N0001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([], share) self.assertCountEqual([ "M0001 GND IN001 N0002 GND NMOS\n" "M0002 GND N0001 OUT01 GND NMOS\n" "M0003 N0002 IN001 VDD VDD PMOS\n" "M0004 OUT01 N0002 VDD VDD PMOS\n" ], iso) def test_multi_cell_with_two_internal(self): str_netlist_1 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" str_netlist_2 = "M0001 GND N0001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([], share) self.assertCountEqual([ "M0001 GND IN001 N0001 GND NMOS\n" "M0002 GND N0002 OUT01 GND NMOS\n" "M0003 N0003 IN001 VDD VDD PMOS\n" "M0004 OUT01 N0003 VDD VDD PMOS\n" ], iso) def test_multi_cell_with_two_inputs(self): str_netlist_1 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 OUT01 IN002 VDD VDD NMOS\n" str_netlist_2 = "M0001 IN001 IN002 IN003 GND NMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) template_1 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 N0002 IN002 VDD GND NMOS\n"\ "M0003 IN003 N0002 IN004 GND NMOS\n" template_2 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 N0002 IN002 VDD GND NMOS\n" \ "M0003 N0002 IN003 IN004 GND NMOS\n" template_3 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 N0002 IN002 VDD GND NMOS\n" \ "M0003 IN003 IN004 N0002 GND NMOS\n" self.assertCountEqual([ template_1.replace('IN004', 'IN003'), template_2.replace('IN004', 'IN003'), template_3.replace('IN004', 'IN003') ], iso) shared_golden = list() for replacements in product(('IN001', 'IN002', 'IN003'), repeat=2): if replacements[0] == replacements[1] and replacements[0] == 'IN003': continue shared_golden.append(template_1.replace('IN003', replacements[0]).replace('IN004', replacements[1])) shared_golden.append(template_2.replace('IN003', replacements[0]).replace('IN004', replacements[1])) shared_golden.append(template_3.replace('IN003', replacements[0]).replace('IN004', replacements[1])) self.assertCountEqual(shared_golden, share) def test_multi_cell_with_1_2(self): str_netlist_1 = "M0001 OUT01 VDD IN001 GND NMOS\n" str_netlist_2 = "M0001 VDD IN001 OUT01 GND NMOS\n"\ "M0002 OUT01 IN001 IN002 VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([ "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD N0001 OUT01 GND NMOS\nM0003 OUT01 N0001 IN001 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD IN001 OUT01 GND NMOS\nM0003 OUT01 IN001 N0001 VDD PMOS\n" ], share) self.assertCountEqual([ "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD N0001 OUT01 GND NMOS\nM0003 OUT01 N0001 IN002 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD N0001 OUT01 GND NMOS\nM0003 OUT01 N0001 IN003 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD IN002 OUT01 GND NMOS\nM0003 OUT01 IN002 N0001 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD IN003 OUT01 GND NMOS\nM0003 OUT01 IN003 N0001 VDD PMOS\n" ], iso) if __name__ == '__main__': unittest.main()
MultiCellTest.py
import unittest from Multi_cell import * class MultiCellTestCase(unittest.TestCase): def test_multi_cell_INV_n_INV(self): str_netlist_1 = "M0001 GND IN001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" str_netlist_2 = "M0001 GND IN001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([], share) self.assertCountEqual([ "M0001 GND IN001 N0001 GND NMOS\n" "M0002 GND N0001 OUT01 GND NMOS\n" "M0003 N0001 IN001 VDD VDD PMOS\n" "M0004 OUT01 N0001 VDD VDD PMOS\n" ], iso) def test_multi_cell_with_one_internal(self): str_netlist_1 = "M0001 GND IN001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" str_netlist_2 = "M0001 GND N0001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([], share) self.assertCountEqual([ "M0001 GND IN001 N0002 GND NMOS\n" "M0002 GND N0001 OUT01 GND NMOS\n" "M0003 N0002 IN001 VDD VDD PMOS\n" "M0004 OUT01 N0002 VDD VDD PMOS\n" ], iso) def test_multi_cell_with_two_internal(self): str_netlist_1 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" str_netlist_2 = "M0001 GND N0001 OUT01 GND NMOS\n" \ "M0002 OUT01 IN001 VDD VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([], share) self.assertCountEqual([ "M0001 GND IN001 N0001 GND NMOS\n" "M0002 GND N0002 OUT01 GND NMOS\n" "M0003 N0003 IN001 VDD VDD PMOS\n" "M0004 OUT01 N0003 VDD VDD PMOS\n" ], iso) def test_multi_cell_with_two_inputs(self): str_netlist_1 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 OUT01 IN002 VDD VDD NMOS\n" str_netlist_2 = "M0001 IN001 IN002 IN003 GND NMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) template_1 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 N0002 IN002 VDD GND NMOS\n"\ "M0003 IN003 N0002 IN004 GND NMOS\n" template_2 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 N0002 IN002 VDD GND NMOS\n" \ "M0003 N0002 IN003 IN004 GND NMOS\n" template_3 = "M0001 GND IN001 N0001 GND NMOS\n" \ "M0002 N0002 IN002 VDD GND NMOS\n" \ "M0003 IN003 IN004 N0002 GND NMOS\n" self.assertCountEqual([ template_1.replace('IN004', 'IN003'), template_2.replace('IN004', 'IN003'), template_3.replace('IN004', 'IN003') ], iso) shared_golden = list() for replacements in product(('IN001', 'IN002', 'IN003'), repeat=2): if replacements[0] == replacements[1] and replacements[0] == 'IN003': continue shared_golden.append(template_1.replace('IN003', replacements[0]).replace('IN004', replacements[1])) shared_golden.append(template_2.replace('IN003', replacements[0]).replace('IN004', replacements[1])) shared_golden.append(template_3.replace('IN003', replacements[0]).replace('IN004', replacements[1])) self.assertCountEqual(shared_golden, share) def test_multi_cell_with_1_2(self): str_netlist_1 = "M0001 OUT01 VDD IN001 GND NMOS\n" str_netlist_2 = "M0001 VDD IN001 OUT01 GND NMOS\n"\ "M0002 OUT01 IN001 IN002 VDD PMOS\n" multi_cell = MultiCell() iso, share = multi_cell.construct(str_netlist_1, str_netlist_2) self.assertCountEqual([ "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD N0001 OUT01 GND NMOS\nM0003 OUT01 N0001 IN001 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD IN001 OUT01 GND NMOS\nM0003 OUT01 IN001 N0001 VDD PMOS\n" ], share) self.assertCountEqual([ "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD N0001 OUT01 GND NMOS\nM0003 OUT01 N0001 IN002 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD N0001 OUT01 GND NMOS\nM0003 OUT01 N0001 IN003 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD IN002 OUT01 GND NMOS\nM0003 OUT01 IN002 N0001 VDD PMOS\n", "M0001 N0001 VDD IN001 GND NMOS\nM0002 VDD IN003 OUT01 GND NMOS\nM0003 OUT01 IN003 N0001 VDD PMOS\n" ], iso) if __name__ == '__main__': unittest.main()
0.500488
0.364778
import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"]) def test_compare_axis(align_axis): # GH#30429 df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis in (1, "columns"): indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]], index=indices, columns=columns, ) else: indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) columns = pd.Index(["col1", "col3"]) expected = pd.DataFrame( [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "keep_shape, keep_equal", [ (True, False), (False, True), (True, True), # False, False case is already covered in test_compare_axis ], ) def test_compare_various_formats(keep_shape, keep_equal): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, keep_shape=keep_shape, keep_equal=keep_equal) if keep_shape: indices = pd.Index([0, 1, 2]) columns = pd.MultiIndex.from_product( [["col1", "col2", "col3"], ["self", "other"]] ) if keep_equal: expected = pd.DataFrame( [ ["a", "c", 1.0, 1.0, 1.0, 1.0], ["b", "b", 2.0, 2.0, 2.0, 2.0], ["c", "c", np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: expected = pd.DataFrame( [ ["a", "c", np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", 1.0, 1.0], ["c", "c", 3.0, 4.0]], index=indices, columns=columns ) tm.assert_frame_equal(result, expected) def test_compare_with_equal_nulls(): # We want to make sure two NaNs are considered the same # and dropped where applicable df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" result = df.compare(df2) indices = pd.Index([0]) columns = pd.MultiIndex.from_product([["col1"], ["self", "other"]]) expected = pd.DataFrame([["a", "c"]], index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_with_non_equal_nulls(): # We want to make sure the relevant NaNs do not get dropped # even if the entire row or column are NaNs df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = np.nan result = df.compare(df2) indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, np.nan]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("align_axis", [0, 1]) def test_compare_multi_index(align_axis): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]} ) df.columns = pd.MultiIndex.from_arrays([["a", "a", "b"], ["col1", "col2", "col3"]]) df.index = pd.MultiIndex.from_arrays([["x", "x", "y"], [0, 1, 2]]) df2 = df.copy() df2.iloc[0, 0] = "c" df2.iloc[2, 2] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis == 0: indices = pd.MultiIndex.from_arrays( [["x", "x", "y", "y"], [0, 0, 2, 2], ["self", "other", "self", "other"]] ) columns = pd.MultiIndex.from_arrays([["a", "b"], ["col1", "col3"]]) data = [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]] else: indices = pd.MultiIndex.from_arrays([["x", "y"], [0, 2]]) columns = pd.MultiIndex.from_arrays( [ ["a", "a", "b", "b"], ["col1", "col1", "col3", "col3"], ["self", "other", "self", "other"], ] ) data = [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]] expected = pd.DataFrame(data=data, index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_unaligned_objects(): # test DataFrames with different indices msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): df1 = pd.DataFrame([1, 2, 3], index=["a", "b", "c"]) df2 = pd.DataFrame([1, 2, 3], index=["a", "b", "d"]) df1.compare(df2) # test DataFrames with different shapes msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): df1 = pd.DataFrame(np.ones((3, 3))) df2 = pd.DataFrame(np.zeros((2, 1))) df1.compare(df2)
pandas/tests/frame/methods/test_compare.py
import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"]) def test_compare_axis(align_axis): # GH#30429 df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis in (1, "columns"): indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]], index=indices, columns=columns, ) else: indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) columns = pd.Index(["col1", "col3"]) expected = pd.DataFrame( [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "keep_shape, keep_equal", [ (True, False), (False, True), (True, True), # False, False case is already covered in test_compare_axis ], ) def test_compare_various_formats(keep_shape, keep_equal): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, keep_shape=keep_shape, keep_equal=keep_equal) if keep_shape: indices = pd.Index([0, 1, 2]) columns = pd.MultiIndex.from_product( [["col1", "col2", "col3"], ["self", "other"]] ) if keep_equal: expected = pd.DataFrame( [ ["a", "c", 1.0, 1.0, 1.0, 1.0], ["b", "b", 2.0, 2.0, 2.0, 2.0], ["c", "c", np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: expected = pd.DataFrame( [ ["a", "c", np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", 1.0, 1.0], ["c", "c", 3.0, 4.0]], index=indices, columns=columns ) tm.assert_frame_equal(result, expected) def test_compare_with_equal_nulls(): # We want to make sure two NaNs are considered the same # and dropped where applicable df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" result = df.compare(df2) indices = pd.Index([0]) columns = pd.MultiIndex.from_product([["col1"], ["self", "other"]]) expected = pd.DataFrame([["a", "c"]], index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_with_non_equal_nulls(): # We want to make sure the relevant NaNs do not get dropped # even if the entire row or column are NaNs df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = np.nan result = df.compare(df2) indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, np.nan]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("align_axis", [0, 1]) def test_compare_multi_index(align_axis): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]} ) df.columns = pd.MultiIndex.from_arrays([["a", "a", "b"], ["col1", "col2", "col3"]]) df.index = pd.MultiIndex.from_arrays([["x", "x", "y"], [0, 1, 2]]) df2 = df.copy() df2.iloc[0, 0] = "c" df2.iloc[2, 2] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis == 0: indices = pd.MultiIndex.from_arrays( [["x", "x", "y", "y"], [0, 0, 2, 2], ["self", "other", "self", "other"]] ) columns = pd.MultiIndex.from_arrays([["a", "b"], ["col1", "col3"]]) data = [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]] else: indices = pd.MultiIndex.from_arrays([["x", "y"], [0, 2]]) columns = pd.MultiIndex.from_arrays( [ ["a", "a", "b", "b"], ["col1", "col1", "col3", "col3"], ["self", "other", "self", "other"], ] ) data = [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]] expected = pd.DataFrame(data=data, index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_unaligned_objects(): # test DataFrames with different indices msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): df1 = pd.DataFrame([1, 2, 3], index=["a", "b", "c"]) df2 = pd.DataFrame([1, 2, 3], index=["a", "b", "d"]) df1.compare(df2) # test DataFrames with different shapes msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): df1 = pd.DataFrame(np.ones((3, 3))) df2 = pd.DataFrame(np.zeros((2, 1))) df1.compare(df2)
0.443841
0.648286
import json import logging from .base import WeTransferBase from .file import File LOG = logging.getLogger("wetransfer") LOG.addHandler(logging.NullHandler()) LOG.setLevel(logging.INFO) class WeTransfer(WeTransferBase): WE_ENDPOINT_DEV = 'https://dev.wetransfer.com' def __finalize_transfer(self, transfer_id): """ Finalize transfer. :param transfer_id: transfer id. :return: WeTransfer URL """ _, body = self.put('transfers/%s/finalize' % transfer_id, status=200) return body['url'] def __complete_file_upload(self, transfer_id, file_id, part_numbers): """ Complete file upload. :param transfer_id: transfer id :param file_id: file id :param part_numbers: part numbers :return: None """ data = {'part_numbers': part_numbers} LOG.debug(json.dumps(data, sort_keys=True, indent=2, separators=(',', ': '))) self.put('transfers/%s/files/%s/upload-complete' % (transfer_id, file_id), data=json.dumps(data), status=200) def __request_upload_url(self, transfer_id, file_id, part_number): """ Request special upload url, which is tailored for AWS S3 :param transfer_id: transfer id :param file_id: file id :param part_number: part number :return: AWS S3 upload url """ _, body = self.get('transfers/%s/files/%s/upload-url/%s' % (transfer_id, file_id, part_number), status=200) return body['url'] def __create_transfer(self, message, files): """ Create a new transfer. :param message: Message that goes with the transfer :param files: An array of files :return: """ files_stream = [{'name': file.name, 'size': file.size} for file in files] data = {'message': message, 'files': files_stream} _, body = self.post('transfers', data=json.dumps(data), status=201) LOG.debug(json.dumps(body, sort_keys=True, indent=2, separators=(',', ': '))) files_info = body['files'] for i in range(len(files_info)): file_info = files_info[i] multipart = file_info['multipart'] file = files[i] file.id = file_info['id'] file.part_numbers = multipart['part_numbers'] file.chunk_size = multipart['chunk_size'] return body['id'] def upload_files(self, message, filepaths): """ Main entrypoint for this class. Pass in a message and a list of filepaths to upload. :param message: Message to go with uploads :param filepaths: A list of filepaths of files to upload :return: The download URL generated by WeTransfer """ files = [File(filepath) for filepath in filepaths] transfer_id = self.__create_transfer(message, files) for file in files: part_number = 1 with open(file.path, 'rb') as fh: while True: bytes_read = fh.read(file.chunk_size) if not bytes_read: # empty string? break url = self.__request_upload_url(transfer_id, file.id, part_number) self.s3_file_upload(url, bytes_read) part_number += 1 self.__complete_file_upload(transfer_id, file.id, file.part_numbers) return self.__finalize_transfer(transfer_id) def upload_file(self, message, file_path): """ Upload a single file. :param message: Message :param file_path: Path of file to upload :return: The download URL generated by WeTransfer """ return self.upload_files(message, [file_path])
wetransfer/transfer.py
import json import logging from .base import WeTransferBase from .file import File LOG = logging.getLogger("wetransfer") LOG.addHandler(logging.NullHandler()) LOG.setLevel(logging.INFO) class WeTransfer(WeTransferBase): WE_ENDPOINT_DEV = 'https://dev.wetransfer.com' def __finalize_transfer(self, transfer_id): """ Finalize transfer. :param transfer_id: transfer id. :return: WeTransfer URL """ _, body = self.put('transfers/%s/finalize' % transfer_id, status=200) return body['url'] def __complete_file_upload(self, transfer_id, file_id, part_numbers): """ Complete file upload. :param transfer_id: transfer id :param file_id: file id :param part_numbers: part numbers :return: None """ data = {'part_numbers': part_numbers} LOG.debug(json.dumps(data, sort_keys=True, indent=2, separators=(',', ': '))) self.put('transfers/%s/files/%s/upload-complete' % (transfer_id, file_id), data=json.dumps(data), status=200) def __request_upload_url(self, transfer_id, file_id, part_number): """ Request special upload url, which is tailored for AWS S3 :param transfer_id: transfer id :param file_id: file id :param part_number: part number :return: AWS S3 upload url """ _, body = self.get('transfers/%s/files/%s/upload-url/%s' % (transfer_id, file_id, part_number), status=200) return body['url'] def __create_transfer(self, message, files): """ Create a new transfer. :param message: Message that goes with the transfer :param files: An array of files :return: """ files_stream = [{'name': file.name, 'size': file.size} for file in files] data = {'message': message, 'files': files_stream} _, body = self.post('transfers', data=json.dumps(data), status=201) LOG.debug(json.dumps(body, sort_keys=True, indent=2, separators=(',', ': '))) files_info = body['files'] for i in range(len(files_info)): file_info = files_info[i] multipart = file_info['multipart'] file = files[i] file.id = file_info['id'] file.part_numbers = multipart['part_numbers'] file.chunk_size = multipart['chunk_size'] return body['id'] def upload_files(self, message, filepaths): """ Main entrypoint for this class. Pass in a message and a list of filepaths to upload. :param message: Message to go with uploads :param filepaths: A list of filepaths of files to upload :return: The download URL generated by WeTransfer """ files = [File(filepath) for filepath in filepaths] transfer_id = self.__create_transfer(message, files) for file in files: part_number = 1 with open(file.path, 'rb') as fh: while True: bytes_read = fh.read(file.chunk_size) if not bytes_read: # empty string? break url = self.__request_upload_url(transfer_id, file.id, part_number) self.s3_file_upload(url, bytes_read) part_number += 1 self.__complete_file_upload(transfer_id, file.id, file.part_numbers) return self.__finalize_transfer(transfer_id) def upload_file(self, message, file_path): """ Upload a single file. :param message: Message :param file_path: Path of file to upload :return: The download URL generated by WeTransfer """ return self.upload_files(message, [file_path])
0.40028
0.14013
from datetime import datetime from dateutil.relativedelta import relativedelta from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models, transaction from django.db.models import Q from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from chamber.models import SmartModel from typing import TYPE_CHECKING, Iterable, Optional, Type from enumfields import NumEnumField from .enums import LegalReasonState from .loading import purpose_register if TYPE_CHECKING: from gdpr.purposes.default import AbstractPurpose class LegalReasonManager(models.Manager): def create_consent(self, purpose_slug: str, source_object, issued_at: Optional[datetime] = None, tag: Optional[str] = None, related_objects: Optional[Iterable[Type[models.Model]]] = None): """ Create (or update, if it exist) a LegalReason with purpose slug for concrete object instance Args: purpose_slug: String of Legal Reason purpose source_object: Source object this Legal Reason is related to issued_at: When the Legal Reason consent was given tag: String that the developer can add to the created consent and use it to mark his business processes related_objects: Objects this Legal Reason relates to (ie. order, registrations etc.) Returns: Legal Reason: LegalReason object """ try: purpose = purpose_register[purpose_slug] except KeyError: raise KeyError('Purpose with slug {} does not exits'.format(purpose_slug)) issued_at = issued_at or timezone.now() legal_reason, created = LegalReason.objects.get_or_create( source_object_content_type=ContentType.objects.get_for_model(source_object.__class__), source_object_id=str(source_object.pk), purpose_slug=purpose_slug, defaults={ 'issued_at': issued_at, 'expires_at': issued_at + purpose.expiration_timedelta, 'tag': tag, 'state': LegalReasonState.ACTIVE, } ) if not created: legal_reason.change_and_save( expires_at=timezone.now() + purpose.expiration_timedelta, tag=tag, state=LegalReasonState.ACTIVE ) for related_object in related_objects or (): legal_reason.related_objects.update_or_create( object_content_type=ContentType.objects.get_for_model(related_object.__class__), object_id=related_object.pk ) return legal_reason def deactivate_consent(self, purpose_slug: str, source_object): """ Deactivate/Remove consent (Legal reason) for source_object, purpose_slug combination Args: purpose_slug: Purpose slug to deactivate consent for source_object: Source object to deactivate consent for Returns: List of LegalReason objects """ reasons = [] for reason in LegalReason.objects.filter_source_instance_active_non_expired_purpose(source_object, purpose_slug): reason.deactivate() reasons.append(reason) return reasons def exists_valid_consent(self, purpose_slug: str, source_object): """ Returns True if source_object has valid (ie. active and non-expired) consent (Legal Reason) Args: purpose_slug: Purpose_slug to check consent for source_object: Source object to check consent for """ return LegalReason.objects.filter_source_instance_active_non_expired_purpose( source_object, purpose_slug).exists() def exists_deactivated_consent(self, purpose_slug: str, source_object): """ Returns True if source_object has deactivated consent (Legal Reason) Args: purpose_slug: Purpose_slug to check consent for source_object: Source object to check consent for """ return self.filter_source_instance(source_object).filter( state=LegalReasonState.DEACTIVATED, purpose_slug=purpose_slug ).exists() def expire_old_consents(self): """ Anonymize and expire consents which have past their `expires_at`. """ for reason in LegalReason.objects.filter_active_and_expired(): reason.expire() class LegalReasonQuerySet(models.QuerySet): def filter_expired_retaining_data_in_last_days(self, days=None): """ Filters all Legal Reason that retain data and that expired in last days Args: days: Number of days in the past. If not provided, all Legal Reasons retaining data which expired in the past will be returned. """ purpose_slugs_retaining_data = [slug for slug, cls in purpose_register.items() if cls.fields] filter_keys = { 'expires_at__lt': timezone.now(), } if days is None else { 'expires_at__gt': timezone.now() - relativedelta(days=days), 'expires_at__lt': timezone.now() } return self.filter(state=LegalReasonState.ACTIVE, purpose_slug__in=purpose_slugs_retaining_data, **filter_keys) def filter_non_expired(self): return self.filter(Q(expires_at__gte=timezone.now()) | Q(expires_at=None)) def filter_expired(self): return self.filter(expires_at__lte=timezone.now()) def filter_active(self): return self.filter(state=LegalReasonState.ACTIVE) def filter_active_and_non_expired(self): return self.filter_active().filter_non_expired() def filter_active_and_expired(self): return self.filter_active().filter_expired() def filter_source_instance(self, source_object): return self.filter( source_object_content_type=ContentType.objects.get_for_model(source_object.__class__), source_object_id=str(source_object.pk) ) def filter_source_instance_active_non_expired(self, source_object): return self.filter_source_instance(source_object).filter_active_and_non_expired() def filter_source_instance_active_non_expired_purpose(self, source_object, purpose_slug: str): return self.filter_source_instance_active_non_expired(source_object).filter( purpose_slug=purpose_slug ) class LegalReason(SmartModel): objects = LegalReasonManager.from_queryset(LegalReasonQuerySet)() issued_at = models.DateTimeField( verbose_name=_('issued at'), null=False, blank=False, ) expires_at = models.DateTimeField( verbose_name=_('expires at'), null=True, blank=True, db_index=True ) tag = models.CharField( verbose_name=_('tag'), null=True, blank=True, max_length=100 ) state = NumEnumField( verbose_name=_('state'), null=False, blank=False, enum=LegalReasonState, default=LegalReasonState.ACTIVE ) purpose_slug = models.CharField( verbose_name=_('purpose'), null=False, blank=False, max_length=100, db_index=True ) source_object_content_type = models.ForeignKey( ContentType, verbose_name=_('source object content type'), null=False, blank=False, on_delete=models.DO_NOTHING ) source_object_id = models.TextField( verbose_name=_('source object ID'), null=False, blank=False, db_index=True ) source_object = GenericForeignKey( 'source_object_content_type', 'source_object_id' ) class Meta: verbose_name = _('legal reason') verbose_name_plural = _('legal reasons') ordering = ('-created_at',) unique_together = ('purpose_slug', 'source_object_content_type', 'source_object_id') def __str__(self): return f'{self.purpose.name}' @property def is_active(self): return self.state == LegalReasonState.ACTIVE @property def purpose(self) -> Type["AbstractPurpose"]: return purpose_register.get(self.purpose_slug, None) def _anonymize_obj(self, *args, **kwargs): purpose_register[self.purpose_slug]().anonymize_obj(self.source_object, self, *args, **kwargs) def _deanonymize_obj(self, *args, **kwargs): purpose_register[self.purpose_slug]().deanonymize_obj(self.source_object, *args, **kwargs) def expire(self): """Anonymize obj and set state as expired.""" with transaction.atomic(): self._anonymize_obj() self.change_and_save(state=LegalReasonState.EXPIRED) def deactivate(self): """Deactivate obj and run anonymization.""" with transaction.atomic(): self._anonymize_obj() self.change_and_save(state=LegalReasonState.DEACTIVATED) def renew(self): with transaction.atomic(): self.change_and_save( expires_at=timezone.now() + purpose_register[self.purpose_slug]().expiration_timedelta, state=LegalReasonState.ACTIVE ) self._deanonymize_obj() class LegalReasonRelatedObject(SmartModel): legal_reason = models.ForeignKey( LegalReason, verbose_name=_('legal reason'), null=False, blank=False, related_name='related_objects', on_delete=models.CASCADE ) object_content_type = models.ForeignKey( ContentType, verbose_name=_('related object content type'), null=False, blank=False, on_delete=models.DO_NOTHING ) object_id = models.TextField( verbose_name=_('related object ID'), null=False, blank=False, db_index=True ) object = GenericForeignKey( 'object_content_type', 'object_id' ) class Meta: verbose_name = _('legal reason related object') verbose_name_plural = _('legal reasons related objects') ordering = ('-created_at',) unique_together = ('legal_reason', 'object_content_type', 'object_id') def __str__(self): return '{legal_reason} {object}'.format(legal_reason=self.legal_reason, object=self.object) class AnonymizedDataQuerySet(models.QuerySet): def filter_source_instance_active(self, source_object): return self.filter( content_type=ContentType.objects.get_for_model(source_object.__class__), object_id=str(source_object.pk), is_active=True ) class AnonymizedData(SmartModel): objects = models.Manager.from_queryset(AnonymizedDataQuerySet)() field = models.CharField( verbose_name=_('anonymized field name'), max_length=250, null=False, blank=False ) content_type = models.ForeignKey( ContentType, verbose_name=_('related object content type'), null=False, blank=False, on_delete=models.DO_NOTHING ) object_id = models.TextField( verbose_name=_('related object ID'), null=False, blank=False ) object = GenericForeignKey( 'content_type', 'object_id' ) is_active = models.BooleanField( verbose_name=_('is active'), default=True ) expired_reason = models.ForeignKey( LegalReason, verbose_name=_('expired reason'), null=True, blank=True, on_delete=models.SET_NULL ) class Meta: verbose_name = _('anonymized data') verbose_name_plural = _('anonymized data') ordering = ('-created_at',) unique_together = ('content_type', 'object_id', 'field') def __str__(self): return '{field} {object}'.format(field=self.field, object=self.object)
gdpr/models.py
from datetime import datetime from dateutil.relativedelta import relativedelta from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models, transaction from django.db.models import Q from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from chamber.models import SmartModel from typing import TYPE_CHECKING, Iterable, Optional, Type from enumfields import NumEnumField from .enums import LegalReasonState from .loading import purpose_register if TYPE_CHECKING: from gdpr.purposes.default import AbstractPurpose class LegalReasonManager(models.Manager): def create_consent(self, purpose_slug: str, source_object, issued_at: Optional[datetime] = None, tag: Optional[str] = None, related_objects: Optional[Iterable[Type[models.Model]]] = None): """ Create (or update, if it exist) a LegalReason with purpose slug for concrete object instance Args: purpose_slug: String of Legal Reason purpose source_object: Source object this Legal Reason is related to issued_at: When the Legal Reason consent was given tag: String that the developer can add to the created consent and use it to mark his business processes related_objects: Objects this Legal Reason relates to (ie. order, registrations etc.) Returns: Legal Reason: LegalReason object """ try: purpose = purpose_register[purpose_slug] except KeyError: raise KeyError('Purpose with slug {} does not exits'.format(purpose_slug)) issued_at = issued_at or timezone.now() legal_reason, created = LegalReason.objects.get_or_create( source_object_content_type=ContentType.objects.get_for_model(source_object.__class__), source_object_id=str(source_object.pk), purpose_slug=purpose_slug, defaults={ 'issued_at': issued_at, 'expires_at': issued_at + purpose.expiration_timedelta, 'tag': tag, 'state': LegalReasonState.ACTIVE, } ) if not created: legal_reason.change_and_save( expires_at=timezone.now() + purpose.expiration_timedelta, tag=tag, state=LegalReasonState.ACTIVE ) for related_object in related_objects or (): legal_reason.related_objects.update_or_create( object_content_type=ContentType.objects.get_for_model(related_object.__class__), object_id=related_object.pk ) return legal_reason def deactivate_consent(self, purpose_slug: str, source_object): """ Deactivate/Remove consent (Legal reason) for source_object, purpose_slug combination Args: purpose_slug: Purpose slug to deactivate consent for source_object: Source object to deactivate consent for Returns: List of LegalReason objects """ reasons = [] for reason in LegalReason.objects.filter_source_instance_active_non_expired_purpose(source_object, purpose_slug): reason.deactivate() reasons.append(reason) return reasons def exists_valid_consent(self, purpose_slug: str, source_object): """ Returns True if source_object has valid (ie. active and non-expired) consent (Legal Reason) Args: purpose_slug: Purpose_slug to check consent for source_object: Source object to check consent for """ return LegalReason.objects.filter_source_instance_active_non_expired_purpose( source_object, purpose_slug).exists() def exists_deactivated_consent(self, purpose_slug: str, source_object): """ Returns True if source_object has deactivated consent (Legal Reason) Args: purpose_slug: Purpose_slug to check consent for source_object: Source object to check consent for """ return self.filter_source_instance(source_object).filter( state=LegalReasonState.DEACTIVATED, purpose_slug=purpose_slug ).exists() def expire_old_consents(self): """ Anonymize and expire consents which have past their `expires_at`. """ for reason in LegalReason.objects.filter_active_and_expired(): reason.expire() class LegalReasonQuerySet(models.QuerySet): def filter_expired_retaining_data_in_last_days(self, days=None): """ Filters all Legal Reason that retain data and that expired in last days Args: days: Number of days in the past. If not provided, all Legal Reasons retaining data which expired in the past will be returned. """ purpose_slugs_retaining_data = [slug for slug, cls in purpose_register.items() if cls.fields] filter_keys = { 'expires_at__lt': timezone.now(), } if days is None else { 'expires_at__gt': timezone.now() - relativedelta(days=days), 'expires_at__lt': timezone.now() } return self.filter(state=LegalReasonState.ACTIVE, purpose_slug__in=purpose_slugs_retaining_data, **filter_keys) def filter_non_expired(self): return self.filter(Q(expires_at__gte=timezone.now()) | Q(expires_at=None)) def filter_expired(self): return self.filter(expires_at__lte=timezone.now()) def filter_active(self): return self.filter(state=LegalReasonState.ACTIVE) def filter_active_and_non_expired(self): return self.filter_active().filter_non_expired() def filter_active_and_expired(self): return self.filter_active().filter_expired() def filter_source_instance(self, source_object): return self.filter( source_object_content_type=ContentType.objects.get_for_model(source_object.__class__), source_object_id=str(source_object.pk) ) def filter_source_instance_active_non_expired(self, source_object): return self.filter_source_instance(source_object).filter_active_and_non_expired() def filter_source_instance_active_non_expired_purpose(self, source_object, purpose_slug: str): return self.filter_source_instance_active_non_expired(source_object).filter( purpose_slug=purpose_slug ) class LegalReason(SmartModel): objects = LegalReasonManager.from_queryset(LegalReasonQuerySet)() issued_at = models.DateTimeField( verbose_name=_('issued at'), null=False, blank=False, ) expires_at = models.DateTimeField( verbose_name=_('expires at'), null=True, blank=True, db_index=True ) tag = models.CharField( verbose_name=_('tag'), null=True, blank=True, max_length=100 ) state = NumEnumField( verbose_name=_('state'), null=False, blank=False, enum=LegalReasonState, default=LegalReasonState.ACTIVE ) purpose_slug = models.CharField( verbose_name=_('purpose'), null=False, blank=False, max_length=100, db_index=True ) source_object_content_type = models.ForeignKey( ContentType, verbose_name=_('source object content type'), null=False, blank=False, on_delete=models.DO_NOTHING ) source_object_id = models.TextField( verbose_name=_('source object ID'), null=False, blank=False, db_index=True ) source_object = GenericForeignKey( 'source_object_content_type', 'source_object_id' ) class Meta: verbose_name = _('legal reason') verbose_name_plural = _('legal reasons') ordering = ('-created_at',) unique_together = ('purpose_slug', 'source_object_content_type', 'source_object_id') def __str__(self): return f'{self.purpose.name}' @property def is_active(self): return self.state == LegalReasonState.ACTIVE @property def purpose(self) -> Type["AbstractPurpose"]: return purpose_register.get(self.purpose_slug, None) def _anonymize_obj(self, *args, **kwargs): purpose_register[self.purpose_slug]().anonymize_obj(self.source_object, self, *args, **kwargs) def _deanonymize_obj(self, *args, **kwargs): purpose_register[self.purpose_slug]().deanonymize_obj(self.source_object, *args, **kwargs) def expire(self): """Anonymize obj and set state as expired.""" with transaction.atomic(): self._anonymize_obj() self.change_and_save(state=LegalReasonState.EXPIRED) def deactivate(self): """Deactivate obj and run anonymization.""" with transaction.atomic(): self._anonymize_obj() self.change_and_save(state=LegalReasonState.DEACTIVATED) def renew(self): with transaction.atomic(): self.change_and_save( expires_at=timezone.now() + purpose_register[self.purpose_slug]().expiration_timedelta, state=LegalReasonState.ACTIVE ) self._deanonymize_obj() class LegalReasonRelatedObject(SmartModel): legal_reason = models.ForeignKey( LegalReason, verbose_name=_('legal reason'), null=False, blank=False, related_name='related_objects', on_delete=models.CASCADE ) object_content_type = models.ForeignKey( ContentType, verbose_name=_('related object content type'), null=False, blank=False, on_delete=models.DO_NOTHING ) object_id = models.TextField( verbose_name=_('related object ID'), null=False, blank=False, db_index=True ) object = GenericForeignKey( 'object_content_type', 'object_id' ) class Meta: verbose_name = _('legal reason related object') verbose_name_plural = _('legal reasons related objects') ordering = ('-created_at',) unique_together = ('legal_reason', 'object_content_type', 'object_id') def __str__(self): return '{legal_reason} {object}'.format(legal_reason=self.legal_reason, object=self.object) class AnonymizedDataQuerySet(models.QuerySet): def filter_source_instance_active(self, source_object): return self.filter( content_type=ContentType.objects.get_for_model(source_object.__class__), object_id=str(source_object.pk), is_active=True ) class AnonymizedData(SmartModel): objects = models.Manager.from_queryset(AnonymizedDataQuerySet)() field = models.CharField( verbose_name=_('anonymized field name'), max_length=250, null=False, blank=False ) content_type = models.ForeignKey( ContentType, verbose_name=_('related object content type'), null=False, blank=False, on_delete=models.DO_NOTHING ) object_id = models.TextField( verbose_name=_('related object ID'), null=False, blank=False ) object = GenericForeignKey( 'content_type', 'object_id' ) is_active = models.BooleanField( verbose_name=_('is active'), default=True ) expired_reason = models.ForeignKey( LegalReason, verbose_name=_('expired reason'), null=True, blank=True, on_delete=models.SET_NULL ) class Meta: verbose_name = _('anonymized data') verbose_name_plural = _('anonymized data') ordering = ('-created_at',) unique_together = ('content_type', 'object_id', 'field') def __str__(self): return '{field} {object}'.format(field=self.field, object=self.object)
0.804905
0.131982
import os import glob from PIL import Image from resizeimage import resizeimage import sys from xml.etree.ElementTree import ElementTree from xml.etree.ElementTree import Element import xml.etree.ElementTree as etree import xml.etree.cElementTree as ET from yattag import Doc, indent import shutil import pandas as pd from google_images_download import google_images_download from io import BytesIO import numpy as np import tensorflow as tf import datetime def size_and_name(root_dir,query,pypath): i = 1 z = 1 main_dir = root_dir+'/'+'downloads'+'/'+query for filename in glob.iglob(main_dir + '**/*.jpg', recursive=True): print(filename) im = Image.open(filename) im = im.convert('RGB') im.save(filename , 'JPEG', quality=90) for filename in glob.iglob(main_dir + '**/*.png', recursive=True): print(filename) im = Image.open(filename) im = im.convert('RGB') im.save(filename , 'JPEG', quality=90) for filename in os.listdir(main_dir): tst =query + str(i) +'.jpg' src =main_dir+'/'+filename tst =main_dir+'/'+tst os.rename(src, tst) i = i+1 for filename in glob.iglob(main_dir + '**/*.jpg', recursive=True): class DeepLabModel(object): INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): self.graph = tf.Graph() graph_def = None graph_def = tf.GraphDef.FromString(open(pypath+"/PSCMR_Tensorflow_object_trainer/"+tarball_path + "/frozen_inference_graph.pb", "rb").read()) if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): start = datetime.datetime.now() width, height = image.size resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height) target_size = (int(resize_ratio * width), int(resize_ratio * height)) resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] end = datetime.datetime.now() diff = end - start print("Time taken to evaluate segmentation is : " + str(diff)) return resized_image, seg_map def drawSegment(baseImg, matImg): width, height = baseImg.size dummyImg = np.zeros([height, width, 4], dtype=np.uint8) for x in range(width): for y in range(height): color = matImg[y,x] (r,g,b) = baseImg.getpixel((x,y)) if color == 0: dummyImg[y,x,3] = 0 else : dummyImg[y,x] = [r,g,b,255] img = Image.fromarray(dummyImg) print(filename) img.mode == 'RGB' img = img.convert('RGB') imResize = img.resize((600,600), Image.ANTIALIAS) imResize.save(filename , 'JPEG', quality=90) #img.save(outputFilePath) print(filename) inputFilePath = filename outputFilePath = root_dir+"/"+query+str(i)+'.jpg' i = i + 1 if inputFilePath is None or outputFilePath is None: print("Bad parameters. Please specify input file path and output file path") exit() modelType = "mobile_net_model" if len(sys.argv) > 3 and sys.argv[3] == "1": modelType = "xception_model" MODEL = DeepLabModel(modelType) print('model loaded successfully : ' + modelType) def run_visualization(filepath): try: print("Trying to open : " ) jpeg_str = open(filepath, "rb").read() orignal_im = Image.open(BytesIO(jpeg_str)) except IOError: print('Cannot retrieve image. Please check file: ' + filepath) return print('running deeplab on image %s...' % filepath) resized_im, seg_map = MODEL.run(orignal_im) drawSegment(resized_im, seg_map) run_visualization(inputFilePath)
size_name_background_removal.py
import os import glob from PIL import Image from resizeimage import resizeimage import sys from xml.etree.ElementTree import ElementTree from xml.etree.ElementTree import Element import xml.etree.ElementTree as etree import xml.etree.cElementTree as ET from yattag import Doc, indent import shutil import pandas as pd from google_images_download import google_images_download from io import BytesIO import numpy as np import tensorflow as tf import datetime def size_and_name(root_dir,query,pypath): i = 1 z = 1 main_dir = root_dir+'/'+'downloads'+'/'+query for filename in glob.iglob(main_dir + '**/*.jpg', recursive=True): print(filename) im = Image.open(filename) im = im.convert('RGB') im.save(filename , 'JPEG', quality=90) for filename in glob.iglob(main_dir + '**/*.png', recursive=True): print(filename) im = Image.open(filename) im = im.convert('RGB') im.save(filename , 'JPEG', quality=90) for filename in os.listdir(main_dir): tst =query + str(i) +'.jpg' src =main_dir+'/'+filename tst =main_dir+'/'+tst os.rename(src, tst) i = i+1 for filename in glob.iglob(main_dir + '**/*.jpg', recursive=True): class DeepLabModel(object): INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): self.graph = tf.Graph() graph_def = None graph_def = tf.GraphDef.FromString(open(pypath+"/PSCMR_Tensorflow_object_trainer/"+tarball_path + "/frozen_inference_graph.pb", "rb").read()) if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): start = datetime.datetime.now() width, height = image.size resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height) target_size = (int(resize_ratio * width), int(resize_ratio * height)) resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] end = datetime.datetime.now() diff = end - start print("Time taken to evaluate segmentation is : " + str(diff)) return resized_image, seg_map def drawSegment(baseImg, matImg): width, height = baseImg.size dummyImg = np.zeros([height, width, 4], dtype=np.uint8) for x in range(width): for y in range(height): color = matImg[y,x] (r,g,b) = baseImg.getpixel((x,y)) if color == 0: dummyImg[y,x,3] = 0 else : dummyImg[y,x] = [r,g,b,255] img = Image.fromarray(dummyImg) print(filename) img.mode == 'RGB' img = img.convert('RGB') imResize = img.resize((600,600), Image.ANTIALIAS) imResize.save(filename , 'JPEG', quality=90) #img.save(outputFilePath) print(filename) inputFilePath = filename outputFilePath = root_dir+"/"+query+str(i)+'.jpg' i = i + 1 if inputFilePath is None or outputFilePath is None: print("Bad parameters. Please specify input file path and output file path") exit() modelType = "mobile_net_model" if len(sys.argv) > 3 and sys.argv[3] == "1": modelType = "xception_model" MODEL = DeepLabModel(modelType) print('model loaded successfully : ' + modelType) def run_visualization(filepath): try: print("Trying to open : " ) jpeg_str = open(filepath, "rb").read() orignal_im = Image.open(BytesIO(jpeg_str)) except IOError: print('Cannot retrieve image. Please check file: ' + filepath) return print('running deeplab on image %s...' % filepath) resized_im, seg_map = MODEL.run(orignal_im) drawSegment(resized_im, seg_map) run_visualization(inputFilePath)
0.193414
0.098296
from utils.utils import block_diag, stack_matrices, sum_sparse from torch.nn.modules.module import Module from torch.nn.parameter import Parameter from torch import nn import math import torch class RelationalGraphConvolution(Module): """ Relational Graph Convolution (RGC) Layer (as described in https://arxiv.org/abs/1703.06103)""" def __init__(self, triples=None, num_nodes=None, num_relations=None, in_features=None, out_features=None, edge_dropout=None, edge_dropout_self_loop=None, bias=True, decomposition=None, vertical_stacking=False, reset_mode='xavier'): super(RelationalGraphConvolution, self).__init__() assert (triples is not None or num_nodes is not None or num_relations is not None or out_features is not None), \ "The following must be specified: triples, number of nodes, number of relations and output dimension!" # If featureless, use number of nodes instead as input dimension in_dim = in_features if in_features is not None else num_nodes out_dim = out_features # Unpack arguments weight_decomp = decomposition['type'] if decomposition is not None and 'type' in decomposition else None num_bases = decomposition['num_bases'] if decomposition is not None and 'num_bases' in decomposition else None num_blocks = decomposition['num_blocks'] if decomposition is not None and 'num_blocks' in decomposition else None self.triples = triples self.num_nodes = num_nodes self.num_relations = num_relations self.in_features = in_features self.out_features = out_features self.weight_decomp = weight_decomp self.num_bases = num_bases self.num_blocks = num_blocks self.vertical_stacking = vertical_stacking self.edge_dropout = edge_dropout self.edge_dropout_self_loop = edge_dropout_self_loop # Instantiate weights if self.weight_decomp is None: self.weights = Parameter(torch.FloatTensor(num_relations, in_dim, out_dim)) elif self.weight_decomp == 'basis': # Weight Regularisation through Basis Decomposition assert num_bases > 0, \ 'Number of bases should be set to higher than zero for basis decomposition!' self.bases = Parameter(torch.FloatTensor(num_bases, in_dim, out_dim)) self.comps = Parameter(torch.FloatTensor(num_relations, num_bases)) elif self.weight_decomp == 'block': # Weight Regularisation through Block Diagonal Decomposition assert self.num_blocks > 0, \ 'Number of blocks should be set to a value higher than zero for block diagonal decomposition!' assert in_dim % self.num_blocks == 0 and out_dim % self.num_blocks == 0,\ f'For block diagonal decomposition, input dimensions ({in_dim}, {out_dim}) must be divisible ' \ f'by number of blocks ({self.num_blocks})' self.blocks = nn.Parameter( torch.FloatTensor(num_relations, self.num_blocks, in_dim // self.num_blocks, out_dim // self.num_blocks)) else: raise NotImplementedError(f'{self.weight_decomp} decomposition has not been implemented') # Instantiate biases if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters(reset_mode) def reset_parameters(self, reset_mode='xavier'): """ Initialise biases and weights (xavier or uniform) """ if reset_mode == 'xavier': if self.weight_decomp == 'block': nn.init.xavier_uniform_(self.blocks, gain=nn.init.calculate_gain('relu')) elif self.weight_decomp == 'basis': nn.init.xavier_uniform_(self.bases, gain=nn.init.calculate_gain('relu')) nn.init.xavier_uniform_(self.comps, gain=nn.init.calculate_gain('relu')) else: nn.init.xavier_uniform_(self.weights, gain=nn.init.calculate_gain('relu')) if self.bias is not None: torch.nn.init.zeros_(self.bias) elif reset_mode == 'uniform': stdv = 1.0 / math.sqrt(self.weights.size(1)) if self.weight_decomp == 'block': self.blocks.data.uniform_(-stdv, stdv) elif self.weight_decomp == 'basis': self.bases.data.uniform_(-stdv, stdv) self.comps.data.uniform_(-stdv, stdv) else: self.weights.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) else: raise NotImplementedError(f'{reset_mode} parameter initialisation method has not been implemented') def forward(self, triples, features=None): """ Perform a single pass of message propagation """ assert (features is None) == (self.in_features is None), \ "Layer has not been properly configured to take in features!" in_dim = self.in_features if self.in_features is not None else self.num_nodes # triples = self.triples out_dim = self.out_features edge_dropout = self.edge_dropout weight_decomp = self.weight_decomp num_nodes = self.num_nodes num_relations = self.num_relations vertical_stacking = self.vertical_stacking # Apply edge dropout if edge_dropout is not None and self.training: assert 'general' in edge_dropout and 'self_loop' in edge_dropout, \ 'General and self-loop edge dropouts must be specified!' assert type(edge_dropout['general']) is float and 0.0 <= edge_dropout['general'] <= 1.0, \ "Edge dropout rates must between 0.0 and 1.0!" general_edo = edge_dropout['general'] self_loop_edo = edge_dropout['self_loop'] triples = drop_edges(triples, num_nodes, general_edo, self_loop_edo) # Choose weights if weight_decomp is None: weights = self.weights elif weight_decomp == 'basis': weights = torch.einsum('rb, bio -> rio', self.comps, self.bases) elif weight_decomp == 'block': weights = block_diag(self.blocks) else: raise NotImplementedError(f'{weight_decomp} decomposition has not been implemented') # Determine whether to use cuda or not if weights.is_cuda: device = 'cuda' else: device = 'cpu' # Stack adjacency matrices (vertically/horizontally) adj_indices, adj_size = stack_matrices( triples, num_nodes, num_relations, vertical_stacking=vertical_stacking, device=device ) num_triples = adj_indices.size(0) vals = torch.ones(num_triples, dtype=torch.float, device=device) # Apply normalisation (vertical-stacking -> row-wise rum & horizontal-stacking -> column-wise sum) sums = sum_sparse(adj_indices, vals, adj_size, row_normalisation=vertical_stacking, device=device) if not vertical_stacking: # Rearrange column-wise normalised value to reflect original order (because of transpose-trick) n = (len(vals) - num_nodes) // 2 sums = torch.cat([sums[n:2 * n], sums[:n], sums[2 * n:]], dim=0) vals = vals / sums # Construct adjacency matrix if device == 'cuda': adj = torch.cuda.sparse.FloatTensor(indices=adj_indices.t(), values=vals, size=adj_size) else: adj = torch.sparse.FloatTensor(indices=adj_indices.t(), values=vals, size=adj_size) assert weights.size() == (num_relations, in_dim, out_dim) if self.in_features is None: # Featureless output = torch.mm(adj, weights.view(num_relations * in_dim, out_dim)) elif self.vertical_stacking: # Adjacency matrix vertically stacked af = torch.spmm(adj, features) af = af.view(self.num_relations, self.num_nodes, in_dim) output = torch.einsum('rio, rni -> no', weights, af) else: # Adjacency matrix horizontally stacked fw = torch.einsum('ni, rio -> rno', features, weights).contiguous() output = torch.mm(adj, fw.view(self.num_relations * self.num_nodes, out_dim)) assert output.size() == (self.num_nodes, out_dim) if self.bias is not None: output = torch.add(output, self.bias) return output
torch_rgvae/layers/RGC_layers.py
from utils.utils import block_diag, stack_matrices, sum_sparse from torch.nn.modules.module import Module from torch.nn.parameter import Parameter from torch import nn import math import torch class RelationalGraphConvolution(Module): """ Relational Graph Convolution (RGC) Layer (as described in https://arxiv.org/abs/1703.06103)""" def __init__(self, triples=None, num_nodes=None, num_relations=None, in_features=None, out_features=None, edge_dropout=None, edge_dropout_self_loop=None, bias=True, decomposition=None, vertical_stacking=False, reset_mode='xavier'): super(RelationalGraphConvolution, self).__init__() assert (triples is not None or num_nodes is not None or num_relations is not None or out_features is not None), \ "The following must be specified: triples, number of nodes, number of relations and output dimension!" # If featureless, use number of nodes instead as input dimension in_dim = in_features if in_features is not None else num_nodes out_dim = out_features # Unpack arguments weight_decomp = decomposition['type'] if decomposition is not None and 'type' in decomposition else None num_bases = decomposition['num_bases'] if decomposition is not None and 'num_bases' in decomposition else None num_blocks = decomposition['num_blocks'] if decomposition is not None and 'num_blocks' in decomposition else None self.triples = triples self.num_nodes = num_nodes self.num_relations = num_relations self.in_features = in_features self.out_features = out_features self.weight_decomp = weight_decomp self.num_bases = num_bases self.num_blocks = num_blocks self.vertical_stacking = vertical_stacking self.edge_dropout = edge_dropout self.edge_dropout_self_loop = edge_dropout_self_loop # Instantiate weights if self.weight_decomp is None: self.weights = Parameter(torch.FloatTensor(num_relations, in_dim, out_dim)) elif self.weight_decomp == 'basis': # Weight Regularisation through Basis Decomposition assert num_bases > 0, \ 'Number of bases should be set to higher than zero for basis decomposition!' self.bases = Parameter(torch.FloatTensor(num_bases, in_dim, out_dim)) self.comps = Parameter(torch.FloatTensor(num_relations, num_bases)) elif self.weight_decomp == 'block': # Weight Regularisation through Block Diagonal Decomposition assert self.num_blocks > 0, \ 'Number of blocks should be set to a value higher than zero for block diagonal decomposition!' assert in_dim % self.num_blocks == 0 and out_dim % self.num_blocks == 0,\ f'For block diagonal decomposition, input dimensions ({in_dim}, {out_dim}) must be divisible ' \ f'by number of blocks ({self.num_blocks})' self.blocks = nn.Parameter( torch.FloatTensor(num_relations, self.num_blocks, in_dim // self.num_blocks, out_dim // self.num_blocks)) else: raise NotImplementedError(f'{self.weight_decomp} decomposition has not been implemented') # Instantiate biases if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters(reset_mode) def reset_parameters(self, reset_mode='xavier'): """ Initialise biases and weights (xavier or uniform) """ if reset_mode == 'xavier': if self.weight_decomp == 'block': nn.init.xavier_uniform_(self.blocks, gain=nn.init.calculate_gain('relu')) elif self.weight_decomp == 'basis': nn.init.xavier_uniform_(self.bases, gain=nn.init.calculate_gain('relu')) nn.init.xavier_uniform_(self.comps, gain=nn.init.calculate_gain('relu')) else: nn.init.xavier_uniform_(self.weights, gain=nn.init.calculate_gain('relu')) if self.bias is not None: torch.nn.init.zeros_(self.bias) elif reset_mode == 'uniform': stdv = 1.0 / math.sqrt(self.weights.size(1)) if self.weight_decomp == 'block': self.blocks.data.uniform_(-stdv, stdv) elif self.weight_decomp == 'basis': self.bases.data.uniform_(-stdv, stdv) self.comps.data.uniform_(-stdv, stdv) else: self.weights.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) else: raise NotImplementedError(f'{reset_mode} parameter initialisation method has not been implemented') def forward(self, triples, features=None): """ Perform a single pass of message propagation """ assert (features is None) == (self.in_features is None), \ "Layer has not been properly configured to take in features!" in_dim = self.in_features if self.in_features is not None else self.num_nodes # triples = self.triples out_dim = self.out_features edge_dropout = self.edge_dropout weight_decomp = self.weight_decomp num_nodes = self.num_nodes num_relations = self.num_relations vertical_stacking = self.vertical_stacking # Apply edge dropout if edge_dropout is not None and self.training: assert 'general' in edge_dropout and 'self_loop' in edge_dropout, \ 'General and self-loop edge dropouts must be specified!' assert type(edge_dropout['general']) is float and 0.0 <= edge_dropout['general'] <= 1.0, \ "Edge dropout rates must between 0.0 and 1.0!" general_edo = edge_dropout['general'] self_loop_edo = edge_dropout['self_loop'] triples = drop_edges(triples, num_nodes, general_edo, self_loop_edo) # Choose weights if weight_decomp is None: weights = self.weights elif weight_decomp == 'basis': weights = torch.einsum('rb, bio -> rio', self.comps, self.bases) elif weight_decomp == 'block': weights = block_diag(self.blocks) else: raise NotImplementedError(f'{weight_decomp} decomposition has not been implemented') # Determine whether to use cuda or not if weights.is_cuda: device = 'cuda' else: device = 'cpu' # Stack adjacency matrices (vertically/horizontally) adj_indices, adj_size = stack_matrices( triples, num_nodes, num_relations, vertical_stacking=vertical_stacking, device=device ) num_triples = adj_indices.size(0) vals = torch.ones(num_triples, dtype=torch.float, device=device) # Apply normalisation (vertical-stacking -> row-wise rum & horizontal-stacking -> column-wise sum) sums = sum_sparse(adj_indices, vals, adj_size, row_normalisation=vertical_stacking, device=device) if not vertical_stacking: # Rearrange column-wise normalised value to reflect original order (because of transpose-trick) n = (len(vals) - num_nodes) // 2 sums = torch.cat([sums[n:2 * n], sums[:n], sums[2 * n:]], dim=0) vals = vals / sums # Construct adjacency matrix if device == 'cuda': adj = torch.cuda.sparse.FloatTensor(indices=adj_indices.t(), values=vals, size=adj_size) else: adj = torch.sparse.FloatTensor(indices=adj_indices.t(), values=vals, size=adj_size) assert weights.size() == (num_relations, in_dim, out_dim) if self.in_features is None: # Featureless output = torch.mm(adj, weights.view(num_relations * in_dim, out_dim)) elif self.vertical_stacking: # Adjacency matrix vertically stacked af = torch.spmm(adj, features) af = af.view(self.num_relations, self.num_nodes, in_dim) output = torch.einsum('rio, rni -> no', weights, af) else: # Adjacency matrix horizontally stacked fw = torch.einsum('ni, rio -> rno', features, weights).contiguous() output = torch.mm(adj, fw.view(self.num_relations * self.num_nodes, out_dim)) assert output.size() == (self.num_nodes, out_dim) if self.bias is not None: output = torch.add(output, self.bias) return output
0.917052
0.622517
import logging from rackattack.physical import logconfig from rackattack.ssh import connection connection.discardParamikoLogs() connection.discardSSHDebugMessages() logging.getLogger("pika").setLevel(logging.INFO) import time import argparse from rackattack.physical import config from rackattack.physical import network from rackattack.physical import dynamicconfig import rackattack.virtual.handlekill from rackattack.common import dnsmasq from rackattack.common import globallock from rackattack.common import tftpboot from rackattack.common import inaugurate from rackattack.common import timer from rackattack.common import hosts from rackattack.physical.alloc import freepool from rackattack.physical.alloc import allocations from rackattack.physical import ipcserver from rackattack.tcp import publish from rackattack.tcp import transportserver from twisted.internet import reactor from twisted.web import server from twisted.python import log from rackattack.common import httprootresource import inaugurator.server.config import yaml import sys parser = argparse.ArgumentParser() parser.add_argument("--requestPort", default=1014, type=int) parser.add_argument("--subscribePort", default=1015, type=int) parser.add_argument("--httpPort", default=1016, type=int) parser.add_argument("--rackYAML") parser.add_argument("--serialLogsDirectory") parser.add_argument("--managedPostMortemPacksDirectory") parser.add_argument("--configurationFile") args = parser.parse_args() if args.rackYAML: config.RACK_YAML = args.rackYAML if args.serialLogsDirectory: config.SERIAL_LOGS_DIRECTORY = args.serialLogsDirectory if args.configurationFile: config.CONFIGURATION_FILE = args.configurationFile if args.managedPostMortemPacksDirectory: config.MANAGED_POST_MORTEM_PACKS_DIRECTORY = args.managedPostMortemPacksDirectory with open(config.CONFIGURATION_FILE) as f: conf = yaml.load(f.read()) network.setGatewayIP(conf['GATEWAY_IP']) network.setUpStaticPortForwardingForSSH(conf['PUBLIC_INTERFACE']) timer.TimersThread() tftpbootInstance = tftpboot.TFTPBoot( netmask=network.NETMASK, inauguratorServerIP=network.BOOTSERVER_IP_ADDRESS, inauguratorServerPort=inaugurator.server.config.PORT, inauguratorGatewayIP=network.GATEWAY_IP_ADDRESS, osmosisServerIP=conf['OSMOSIS_SERVER_IP'], rootPassword=config.ROOT_PASSWORD, withLocalObjectStore=True) dnsmasq.DNSMasq.eraseLeasesFile() dnsmasq.DNSMasq.killAllPrevious() dnsmasqInstance = dnsmasq.DNSMasq( tftpboot=tftpbootInstance, serverIP=network.BOOTSERVER_IP_ADDRESS, netmask=network.NETMASK, firstIP=network.FIRST_IP, lastIP=network.LAST_IP, gateway=network.GATEWAY_IP_ADDRESS, nameserver=network.BOOTSERVER_IP_ADDRESS) inaugurateInstance = inaugurate.Inaugurate(config.RABBIT_MQ_DIRECTORY) publishInstance = publish.Publish("ampq://localhost:%d/%%2F" % inaugurator.server.config.PORT) hostsInstance = hosts.Hosts() freePool = freepool.FreePool(hostsInstance) allocationsInstance = allocations.Allocations( broadcaster=publishInstance, hosts=hostsInstance, freePool=freePool, osmosisServer=conf['OSMOSIS_SERVER_IP']) dynamicConfig = dynamicconfig.DynamicConfig( hosts=hostsInstance, dnsmasq=dnsmasqInstance, inaugurate=inaugurateInstance, tftpboot=tftpbootInstance, freePool=freePool, allocations=allocationsInstance) ipcServer = ipcserver.IPCServer( publicNATIP=conf['PUBLIC_NAT_IP'], osmosisServerIP=conf['OSMOSIS_SERVER_IP'], dnsmasq=dnsmasqInstance, allocations=allocationsInstance, hosts=hostsInstance, dynamicConfig=dynamicConfig) def serialLogFilename(vmID): with globallock.lock(): return hostsInstance.byID(vmID).hostImplementation().serialLogFilename() def createPostMortemPackForAllocationID(allocationID): with globallock.lock(): return allocationsInstance.byIndex(int(allocationID)).createPostMortemPack() log.startLogging(sys.stderr) root = httprootresource.HTTPRootResource( serialLogFilename, createPostMortemPackForAllocationID, config.MANAGED_POST_MORTEM_PACKS_DIRECTORY) reactor.listenTCP(args.httpPort, server.Site(root)) reactor.listenTCP(args.requestPort, transportserver.TransportFactory(ipcServer.handle)) logging.info("Physical RackAttack up and running") reactor.run()
rackattack/physical/main.py
import logging from rackattack.physical import logconfig from rackattack.ssh import connection connection.discardParamikoLogs() connection.discardSSHDebugMessages() logging.getLogger("pika").setLevel(logging.INFO) import time import argparse from rackattack.physical import config from rackattack.physical import network from rackattack.physical import dynamicconfig import rackattack.virtual.handlekill from rackattack.common import dnsmasq from rackattack.common import globallock from rackattack.common import tftpboot from rackattack.common import inaugurate from rackattack.common import timer from rackattack.common import hosts from rackattack.physical.alloc import freepool from rackattack.physical.alloc import allocations from rackattack.physical import ipcserver from rackattack.tcp import publish from rackattack.tcp import transportserver from twisted.internet import reactor from twisted.web import server from twisted.python import log from rackattack.common import httprootresource import inaugurator.server.config import yaml import sys parser = argparse.ArgumentParser() parser.add_argument("--requestPort", default=1014, type=int) parser.add_argument("--subscribePort", default=1015, type=int) parser.add_argument("--httpPort", default=1016, type=int) parser.add_argument("--rackYAML") parser.add_argument("--serialLogsDirectory") parser.add_argument("--managedPostMortemPacksDirectory") parser.add_argument("--configurationFile") args = parser.parse_args() if args.rackYAML: config.RACK_YAML = args.rackYAML if args.serialLogsDirectory: config.SERIAL_LOGS_DIRECTORY = args.serialLogsDirectory if args.configurationFile: config.CONFIGURATION_FILE = args.configurationFile if args.managedPostMortemPacksDirectory: config.MANAGED_POST_MORTEM_PACKS_DIRECTORY = args.managedPostMortemPacksDirectory with open(config.CONFIGURATION_FILE) as f: conf = yaml.load(f.read()) network.setGatewayIP(conf['GATEWAY_IP']) network.setUpStaticPortForwardingForSSH(conf['PUBLIC_INTERFACE']) timer.TimersThread() tftpbootInstance = tftpboot.TFTPBoot( netmask=network.NETMASK, inauguratorServerIP=network.BOOTSERVER_IP_ADDRESS, inauguratorServerPort=inaugurator.server.config.PORT, inauguratorGatewayIP=network.GATEWAY_IP_ADDRESS, osmosisServerIP=conf['OSMOSIS_SERVER_IP'], rootPassword=config.ROOT_PASSWORD, withLocalObjectStore=True) dnsmasq.DNSMasq.eraseLeasesFile() dnsmasq.DNSMasq.killAllPrevious() dnsmasqInstance = dnsmasq.DNSMasq( tftpboot=tftpbootInstance, serverIP=network.BOOTSERVER_IP_ADDRESS, netmask=network.NETMASK, firstIP=network.FIRST_IP, lastIP=network.LAST_IP, gateway=network.GATEWAY_IP_ADDRESS, nameserver=network.BOOTSERVER_IP_ADDRESS) inaugurateInstance = inaugurate.Inaugurate(config.RABBIT_MQ_DIRECTORY) publishInstance = publish.Publish("ampq://localhost:%d/%%2F" % inaugurator.server.config.PORT) hostsInstance = hosts.Hosts() freePool = freepool.FreePool(hostsInstance) allocationsInstance = allocations.Allocations( broadcaster=publishInstance, hosts=hostsInstance, freePool=freePool, osmosisServer=conf['OSMOSIS_SERVER_IP']) dynamicConfig = dynamicconfig.DynamicConfig( hosts=hostsInstance, dnsmasq=dnsmasqInstance, inaugurate=inaugurateInstance, tftpboot=tftpbootInstance, freePool=freePool, allocations=allocationsInstance) ipcServer = ipcserver.IPCServer( publicNATIP=conf['PUBLIC_NAT_IP'], osmosisServerIP=conf['OSMOSIS_SERVER_IP'], dnsmasq=dnsmasqInstance, allocations=allocationsInstance, hosts=hostsInstance, dynamicConfig=dynamicConfig) def serialLogFilename(vmID): with globallock.lock(): return hostsInstance.byID(vmID).hostImplementation().serialLogFilename() def createPostMortemPackForAllocationID(allocationID): with globallock.lock(): return allocationsInstance.byIndex(int(allocationID)).createPostMortemPack() log.startLogging(sys.stderr) root = httprootresource.HTTPRootResource( serialLogFilename, createPostMortemPackForAllocationID, config.MANAGED_POST_MORTEM_PACKS_DIRECTORY) reactor.listenTCP(args.httpPort, server.Site(root)) reactor.listenTCP(args.requestPort, transportserver.TransportFactory(ipcServer.handle)) logging.info("Physical RackAttack up and running") reactor.run()
0.32306
0.045058
import datetime STRING_UNAVAILABLE = "spaceapi: N/A" class Py3status: """ """ # available configuration parameters button_url = 3 cache_timeout = 60 format = "{state}[ {lastchanged}]" format_lastchanged = "since %H:%M" state_closed = "closed" state_open = "open" url = "https://status.chaospott.de/status.json" class Meta: deprecated = { "rename": [ { "param": "open_color", "new": "color_open", "msg": "obsolete parameter use `color_open`", }, { "param": "closed_color", "new": "color_closed", "msg": "obsolete parameter use `color_closed`", }, { "param": "closed_text", "new": "state_closed", "msg": "obsolete parameter use `state_closed`", }, { "param": "open_text", "new": "state_open", "msg": "obsolete parameter use `state_open`", }, { "param": "time_text", "new": "format_lastchanged", "msg": "obsolete parameter use `format_lastchanged`", }, ] } def post_config_hook(self): self.button_refresh = 2 self.color_open = self.py3.COLOR_OPEN or self.py3.COLOR_GOOD self.color_closed = self.py3.COLOR_CLOSED or self.py3.COLOR_BAD def spaceapi(self): color = self.color_closed state = self.state_closed lastchanged = "unknown" try: data = self.py3.request(self.url).json() self._url = data.get("url") if data["state"]["open"]: color = self.color_open state = self.state_open if "lastchange" in data["state"].keys(): try: dt = datetime.datetime.fromtimestamp(data["state"]["lastchange"]) lastchanged = dt.strftime(self.format_lastchanged) except TypeError: pass full_text = self.py3.safe_format( self.format, {"state": state, "lastchanged": lastchanged} ) except (self.py3.RequestException, KeyError): full_text = STRING_UNAVAILABLE return { "cached_until": self.py3.time_in(self.cache_timeout), "full_text": full_text, "color": color, } def on_click(self, event): button = event["button"] if self._url and self.button_url == button: self.py3.command_run("xdg-open {}".format(self._url)) self.py3.prevent_refresh() elif button != self.button_refresh: self.py3.prevent_refresh() if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
py3status/modules/spaceapi.py
import datetime STRING_UNAVAILABLE = "spaceapi: N/A" class Py3status: """ """ # available configuration parameters button_url = 3 cache_timeout = 60 format = "{state}[ {lastchanged}]" format_lastchanged = "since %H:%M" state_closed = "closed" state_open = "open" url = "https://status.chaospott.de/status.json" class Meta: deprecated = { "rename": [ { "param": "open_color", "new": "color_open", "msg": "obsolete parameter use `color_open`", }, { "param": "closed_color", "new": "color_closed", "msg": "obsolete parameter use `color_closed`", }, { "param": "closed_text", "new": "state_closed", "msg": "obsolete parameter use `state_closed`", }, { "param": "open_text", "new": "state_open", "msg": "obsolete parameter use `state_open`", }, { "param": "time_text", "new": "format_lastchanged", "msg": "obsolete parameter use `format_lastchanged`", }, ] } def post_config_hook(self): self.button_refresh = 2 self.color_open = self.py3.COLOR_OPEN or self.py3.COLOR_GOOD self.color_closed = self.py3.COLOR_CLOSED or self.py3.COLOR_BAD def spaceapi(self): color = self.color_closed state = self.state_closed lastchanged = "unknown" try: data = self.py3.request(self.url).json() self._url = data.get("url") if data["state"]["open"]: color = self.color_open state = self.state_open if "lastchange" in data["state"].keys(): try: dt = datetime.datetime.fromtimestamp(data["state"]["lastchange"]) lastchanged = dt.strftime(self.format_lastchanged) except TypeError: pass full_text = self.py3.safe_format( self.format, {"state": state, "lastchanged": lastchanged} ) except (self.py3.RequestException, KeyError): full_text = STRING_UNAVAILABLE return { "cached_until": self.py3.time_in(self.cache_timeout), "full_text": full_text, "color": color, } def on_click(self, event): button = event["button"] if self._url and self.button_url == button: self.py3.command_run("xdg-open {}".format(self._url)) self.py3.prevent_refresh() elif button != self.button_refresh: self.py3.prevent_refresh() if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
0.426799
0.278045
from odoo import models, fields, api, tools, _ from odoo.http import request, content_disposition from odoo.addons.hs_query.libs.query_libs import query_and_count_data, get_query_statement_by_code import json import traceback ERROR_NO_STATEMENT_CODE = u"数据库查询代码[ %s ]不存在, 请联系管理员!!" ERROR_SQL_QUERY = u"数据库查询异常, 请联系管理员!!<br/><br/> %s" class QueryAdapter(models.TransientModel): _name = 'hs.query.adapter' def query_data(self, *args, **kwargs): # 接口传值 query_condition = request.jsonrequest['context'].get('query_condition', {}) or {} _statement_code = request.jsonrequest['context']['_statement_code'] query = get_query_statement_by_code(request.env, _statement_code) if not query: return { 'error': 1, 'msg': ERROR_NO_STATEMENT_CODE % _statement_code, } sql = query.statement or '' wizard_name = query.wizard_name or '' page = request.jsonrequest['page'] # 页码 page_size = request.jsonrequest['pagesize'] # 每页显示数量 # try_catch try: sql = request.env[wizard_name].format_sql_by_condition(sql, query_condition) data = query_and_count_data(self.env, sql, page, page_size, query.get_columns()) except Exception, e: print(traceback.format_exc()) data = {'error': 1, 'msg': ERROR_SQL_QUERY % str(e)} return data def query_download(self, statement_code): wizard = self.env['query.select.wizard.parent'] download_data = wizard._generate_download_data(statement_code=statement_code) xls_name = download_data['xls_name'] base_data = download_data['base_data'] query_id = download_data['query_id'] wizard.create_download_file(xls_name, base_data, query_id) return request.make_response( base_data, headers=[ ('Content-Disposition', content_disposition(xls_name)), ('Content-Type', 'application/octet-stream')], )
hs_query/models/query_adapter.py
from odoo import models, fields, api, tools, _ from odoo.http import request, content_disposition from odoo.addons.hs_query.libs.query_libs import query_and_count_data, get_query_statement_by_code import json import traceback ERROR_NO_STATEMENT_CODE = u"数据库查询代码[ %s ]不存在, 请联系管理员!!" ERROR_SQL_QUERY = u"数据库查询异常, 请联系管理员!!<br/><br/> %s" class QueryAdapter(models.TransientModel): _name = 'hs.query.adapter' def query_data(self, *args, **kwargs): # 接口传值 query_condition = request.jsonrequest['context'].get('query_condition', {}) or {} _statement_code = request.jsonrequest['context']['_statement_code'] query = get_query_statement_by_code(request.env, _statement_code) if not query: return { 'error': 1, 'msg': ERROR_NO_STATEMENT_CODE % _statement_code, } sql = query.statement or '' wizard_name = query.wizard_name or '' page = request.jsonrequest['page'] # 页码 page_size = request.jsonrequest['pagesize'] # 每页显示数量 # try_catch try: sql = request.env[wizard_name].format_sql_by_condition(sql, query_condition) data = query_and_count_data(self.env, sql, page, page_size, query.get_columns()) except Exception, e: print(traceback.format_exc()) data = {'error': 1, 'msg': ERROR_SQL_QUERY % str(e)} return data def query_download(self, statement_code): wizard = self.env['query.select.wizard.parent'] download_data = wizard._generate_download_data(statement_code=statement_code) xls_name = download_data['xls_name'] base_data = download_data['base_data'] query_id = download_data['query_id'] wizard.create_download_file(xls_name, base_data, query_id) return request.make_response( base_data, headers=[ ('Content-Disposition', content_disposition(xls_name)), ('Content-Type', 'application/octet-stream')], )
0.283285
0.087525
import atexit import os import random import time import traceback from mpire.pool import WorkerPool import pickle from ditk import logging import tempfile import socket from os import path from typing import Callable, Dict, List, Optional, Tuple, Union, Set from threading import Thread from ding.framework.event_loop import EventLoop from ding.utils.design_helper import SingletonMetaclass from ding.framework.message_queue import * from ding.utils.registry_factory import MQ_REGISTRY # Avoid ipc address conflict, random should always use random seed random = random.Random() class Parallel(metaclass=SingletonMetaclass): def __init__(self) -> None: # Init will only be called once in a process self._listener = None self.is_active = False self.node_id = None self.labels = set() self._event_loop = EventLoop("parallel_{}".format(id(self))) self._retries = 0 # Retries in auto recovery def _run( self, node_id: int, labels: Optional[Set[str]] = None, auto_recover: bool = False, max_retries: int = float("inf"), mq_type: str = "nng", **kwargs ) -> None: self.node_id = node_id self.labels = labels or set() self.auto_recover = auto_recover self.max_retries = max_retries self._mq = MQ_REGISTRY.get(mq_type)(**kwargs) self._listener = Thread(target=self.listen, name="mq_listener", daemon=True) self._listener.start() @classmethod def runner( cls, n_parallel_workers: int, mq_type: str = "nng", attach_to: Optional[List[str]] = None, protocol: str = "ipc", address: Optional[str] = None, ports: Optional[Union[List[int], int]] = None, topology: str = "mesh", labels: Optional[Set[str]] = None, node_ids: Optional[Union[List[int], int]] = None, auto_recover: bool = False, max_retries: int = float("inf"), redis_host: Optional[str] = None, redis_port: Optional[int] = None ) -> Callable: """ Overview: This method allows you to configure parallel parameters, and now you are still in the parent process. Arguments: - n_parallel_workers (:obj:`int`): Workers to spawn. - mq_type (:obj:`str`): Embedded message queue type, i.e. nng, redis. - attach_to (:obj:`Optional[List[str]]`): The node's addresses you want to attach to. - protocol (:obj:`str`): Network protocol. - address (:obj:`Optional[str]`): Bind address, ip or file path. - ports (:obj:`Optional[List[int]]`): Candidate ports. - topology (:obj:`str`): Network topology, includes: `mesh` (default): fully connected between each other; `star`: only connect to the first node; `alone`: do not connect to any node, except the node attached to; - labels (:obj:`Optional[Set[str]]`): Labels. - node_ids (:obj:`Optional[List[int]]`): Candidate node ids. - auto_recover (:obj:`bool`): Auto recover from uncaught exceptions from main. - max_retries (:obj:`int`): Max retries for auto recover. - redis_host (:obj:`str`): Redis server host. - redis_port (:obj:`int`): Redis server port. Returns: - _runner (:obj:`Callable`): The wrapper function for main. """ all_args = locals() del all_args["cls"] args_parsers = {"nng": cls._nng_args_parser, "redis": cls._redis_args_parser} assert n_parallel_workers > 0, "Parallel worker number should bigger than 0" def _runner(main_process: Callable, *args, **kwargs) -> None: """ Overview: Prepare to run in subprocess. Arguments: - main_process (:obj:`Callable`): The main function, your program start from here. """ runner_params = args_parsers[mq_type](**all_args) params_group = [[runner_kwargs, (main_process, args, kwargs)] for runner_kwargs in runner_params] if n_parallel_workers == 1: cls._subprocess_runner(*params_group[0]) else: with WorkerPool(n_jobs=n_parallel_workers, start_method="spawn", daemon=False) as pool: # Cleanup the pool just in case the program crashes. atexit.register(pool.__exit__) pool.map(cls._subprocess_runner, params_group) return _runner @classmethod def _nng_args_parser( cls, n_parallel_workers: int, attach_to: Optional[List[str]] = None, protocol: str = "ipc", address: Optional[str] = None, ports: Optional[Union[List[int], int]] = None, topology: str = "mesh", node_ids: Optional[Union[List[int], int]] = None, **kwargs ) -> Dict[str, dict]: attach_to = attach_to or [] nodes = cls.get_node_addrs(n_parallel_workers, protocol=protocol, address=address, ports=ports) logging.info("Bind subprocesses on these addresses: {}".format(nodes)) def cleanup_nodes(): for node in nodes: protocol, file_path = node.split("://") if protocol == "ipc" and path.exists(file_path): os.remove(file_path) atexit.register(cleanup_nodes) def topology_network(i: int) -> List[str]: if topology == "mesh": return nodes[:i] + attach_to elif topology == "star": return nodes[:min(1, i)] + attach_to elif topology == "alone": return attach_to else: raise ValueError("Unknown topology: {}".format(topology)) runner_params = [] candidate_node_ids = cls.padding_param(node_ids, n_parallel_workers, 0) for i in range(n_parallel_workers): runner_kwargs = { **kwargs, "node_id": candidate_node_ids[i], "listen_to": nodes[i], "attach_to": topology_network(i), } runner_params.append(runner_kwargs) return runner_params @classmethod def _redis_args_parser(cls, n_parallel_workers: int, node_ids: Optional[Union[List[int], int]] = None, **kwargs): runner_params = [] candidate_node_ids = cls.padding_param(node_ids, n_parallel_workers, 0) for i in range(n_parallel_workers): runner_kwargs = {**kwargs, "node_id": candidate_node_ids[i]} runner_params.append(runner_kwargs) return runner_params @classmethod def _subprocess_runner(cls, runner_kwargs: dict, main_params: Tuple[Union[List, Dict]]) -> None: """ Overview: Really run in subprocess. Arguments: - runner_params (:obj:`Tuple[Union[List, Dict]]`): Args and kwargs for runner. - main_params (:obj:`Tuple[Union[List, Dict]]`): Args and kwargs for main function. """ main_process, args, kwargs = main_params with Parallel() as router: router.is_active = True router._run(**runner_kwargs) time.sleep(0.3) # Waiting for network pairing router._supervised_runner(main_process, *args, **kwargs) def _supervised_runner(self, main: Callable, *args, **kwargs) -> None: """ Overview: Run in supervised mode. Arguments: - main (:obj:`Callable`): Main function. """ if self.auto_recover: while True: try: main(*args, **kwargs) break except Exception as e: if self._retries < self.max_retries: logging.warning( "Auto recover from exception: {}, node: {}, retries: {}".format( e, self.node_id, self._retries ) ) logging.warning(traceback.format_exc()) self._retries += 1 else: logging.warning( "Exceed the max retries, node: {}, retries: {}, max_retries: {}".format( self.node_id, self._retries, self.max_retries ) ) raise e else: main(*args, **kwargs) @classmethod def get_node_addrs( cls, n_workers: int, protocol: str = "ipc", address: Optional[str] = None, ports: Optional[Union[List[int], int]] = None ) -> None: if protocol == "ipc": node_name = "".join(random.choices("abcdefghijklmnopqrstuvwxyz0123456789", k=4)) tmp_dir = tempfile.gettempdir() nodes = ["ipc://{}/ditask_{}_{}.ipc".format(tmp_dir, node_name, i) for i in range(n_workers)] elif protocol == "tcp": address = address or cls.get_ip() ports = cls.padding_param(ports, n_workers, 50515) assert len(ports) == n_workers, "The number of ports must be the same as the number of workers, \ now there are {} ports and {} workers".format(len(ports), n_workers) nodes = ["tcp://{}:{}".format(address, port) for port in ports] else: raise Exception("Unknown protocol {}".format(protocol)) return nodes @classmethod def padding_param(cls, int_or_list: Optional[Union[List[int], int]], n_max: int, start_value: int) -> List[int]: """ Overview: Padding int or list param to the length of n_max. Arguments: - int_or_list (:obj:`Optional[Union[List[int], int]]`): Int or list typed value. - n_max (:obj:`int`): Max length. - start_value (:obj:`int`): Start from value. """ param = int_or_list if isinstance(param, List) and len(param) == 1: param = param[0] # List with only 1 element is equal to int if isinstance(param, int): param = range(param, param + n_max) else: param = param or range(start_value, start_value + n_max) return param def listen(self): self._mq.listen() while True: msg = self._mq.recv() # msg is none means that the message queue is no longer being listened to, # especially if the message queue is already closed if not msg: break topic, msg = msg self._handle_message(topic, msg) def on(self, event: str, fn: Callable) -> None: """ Overview: Register an remote event on parallel instance, this function will be executed \ when a remote process emit this event via network. Arguments: - event (:obj:`str`): Event name. - fn (:obj:`Callable`): Function body. """ if self.is_active: self._mq.subscribe(event) self._event_loop.on(event, fn) def once(self, event: str, fn: Callable) -> None: """ Overview: Register an remote event which will only call once on parallel instance, this function will be executed when a remote process emit this event via network. Arguments: - event (:obj:`str`): Event name. - fn (:obj:`Callable`): Function body. """ if self.is_active: self._mq.subscribe(event) self._event_loop.once(event, fn) def off(self, event: str) -> None: """ Overview: Unregister an event. Arguments: - event (:obj:`str`): Event name. """ if self.is_active: self._mq.unsubscribe(event) self._event_loop.off(event) def emit(self, event: str, *args, **kwargs) -> None: """ Overview: Send an remote event via network to subscribed processes. Arguments: - event (:obj:`str`): Event name. """ if self.is_active: payload = {"a": args, "k": kwargs} try: data = pickle.dumps(payload, protocol=-1) except AttributeError as e: logging.error("Arguments are not pickable! Event: {}, Args: {}".format(event, args)) raise e self._mq.publish(event, data) def _handle_message(self, topic: str, msg: bytes) -> None: """ Overview: Recv and parse payload from other processes, and call local functions. Arguments: - topic (:obj:`str`): Recevied topic. - msg (:obj:`bytes`): Recevied message. """ event = topic if not self._event_loop.listened(event): logging.debug("Event {} was not listened in parallel {}".format(event, self.node_id)) return try: payload = pickle.loads(msg) except Exception as e: logging.error("Error when unpacking message on node {}, msg: {}".format(self.node_id, e)) return self._event_loop.emit(event, *payload["a"], **payload["k"]) @classmethod def get_ip(cls): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # doesn't even have to be reachable s.connect(('10.255.255.255', 1)) IP = s.getsockname()[0] except Exception: IP = '127.0.0.1' finally: s.close() return IP def __enter__(self) -> "Parallel": return self def __exit__(self, exc_type, exc_val, exc_tb): self.stop() def stop(self): logging.info("Stopping parallel worker on node: {}".format(self.node_id)) self.is_active = False time.sleep(0.03) if self._mq: self._mq.stop() self._mq = None if self._listener: self._listener.join(timeout=1) self._listener = None self._event_loop.stop()
ding/framework/parallel.py
import atexit import os import random import time import traceback from mpire.pool import WorkerPool import pickle from ditk import logging import tempfile import socket from os import path from typing import Callable, Dict, List, Optional, Tuple, Union, Set from threading import Thread from ding.framework.event_loop import EventLoop from ding.utils.design_helper import SingletonMetaclass from ding.framework.message_queue import * from ding.utils.registry_factory import MQ_REGISTRY # Avoid ipc address conflict, random should always use random seed random = random.Random() class Parallel(metaclass=SingletonMetaclass): def __init__(self) -> None: # Init will only be called once in a process self._listener = None self.is_active = False self.node_id = None self.labels = set() self._event_loop = EventLoop("parallel_{}".format(id(self))) self._retries = 0 # Retries in auto recovery def _run( self, node_id: int, labels: Optional[Set[str]] = None, auto_recover: bool = False, max_retries: int = float("inf"), mq_type: str = "nng", **kwargs ) -> None: self.node_id = node_id self.labels = labels or set() self.auto_recover = auto_recover self.max_retries = max_retries self._mq = MQ_REGISTRY.get(mq_type)(**kwargs) self._listener = Thread(target=self.listen, name="mq_listener", daemon=True) self._listener.start() @classmethod def runner( cls, n_parallel_workers: int, mq_type: str = "nng", attach_to: Optional[List[str]] = None, protocol: str = "ipc", address: Optional[str] = None, ports: Optional[Union[List[int], int]] = None, topology: str = "mesh", labels: Optional[Set[str]] = None, node_ids: Optional[Union[List[int], int]] = None, auto_recover: bool = False, max_retries: int = float("inf"), redis_host: Optional[str] = None, redis_port: Optional[int] = None ) -> Callable: """ Overview: This method allows you to configure parallel parameters, and now you are still in the parent process. Arguments: - n_parallel_workers (:obj:`int`): Workers to spawn. - mq_type (:obj:`str`): Embedded message queue type, i.e. nng, redis. - attach_to (:obj:`Optional[List[str]]`): The node's addresses you want to attach to. - protocol (:obj:`str`): Network protocol. - address (:obj:`Optional[str]`): Bind address, ip or file path. - ports (:obj:`Optional[List[int]]`): Candidate ports. - topology (:obj:`str`): Network topology, includes: `mesh` (default): fully connected between each other; `star`: only connect to the first node; `alone`: do not connect to any node, except the node attached to; - labels (:obj:`Optional[Set[str]]`): Labels. - node_ids (:obj:`Optional[List[int]]`): Candidate node ids. - auto_recover (:obj:`bool`): Auto recover from uncaught exceptions from main. - max_retries (:obj:`int`): Max retries for auto recover. - redis_host (:obj:`str`): Redis server host. - redis_port (:obj:`int`): Redis server port. Returns: - _runner (:obj:`Callable`): The wrapper function for main. """ all_args = locals() del all_args["cls"] args_parsers = {"nng": cls._nng_args_parser, "redis": cls._redis_args_parser} assert n_parallel_workers > 0, "Parallel worker number should bigger than 0" def _runner(main_process: Callable, *args, **kwargs) -> None: """ Overview: Prepare to run in subprocess. Arguments: - main_process (:obj:`Callable`): The main function, your program start from here. """ runner_params = args_parsers[mq_type](**all_args) params_group = [[runner_kwargs, (main_process, args, kwargs)] for runner_kwargs in runner_params] if n_parallel_workers == 1: cls._subprocess_runner(*params_group[0]) else: with WorkerPool(n_jobs=n_parallel_workers, start_method="spawn", daemon=False) as pool: # Cleanup the pool just in case the program crashes. atexit.register(pool.__exit__) pool.map(cls._subprocess_runner, params_group) return _runner @classmethod def _nng_args_parser( cls, n_parallel_workers: int, attach_to: Optional[List[str]] = None, protocol: str = "ipc", address: Optional[str] = None, ports: Optional[Union[List[int], int]] = None, topology: str = "mesh", node_ids: Optional[Union[List[int], int]] = None, **kwargs ) -> Dict[str, dict]: attach_to = attach_to or [] nodes = cls.get_node_addrs(n_parallel_workers, protocol=protocol, address=address, ports=ports) logging.info("Bind subprocesses on these addresses: {}".format(nodes)) def cleanup_nodes(): for node in nodes: protocol, file_path = node.split("://") if protocol == "ipc" and path.exists(file_path): os.remove(file_path) atexit.register(cleanup_nodes) def topology_network(i: int) -> List[str]: if topology == "mesh": return nodes[:i] + attach_to elif topology == "star": return nodes[:min(1, i)] + attach_to elif topology == "alone": return attach_to else: raise ValueError("Unknown topology: {}".format(topology)) runner_params = [] candidate_node_ids = cls.padding_param(node_ids, n_parallel_workers, 0) for i in range(n_parallel_workers): runner_kwargs = { **kwargs, "node_id": candidate_node_ids[i], "listen_to": nodes[i], "attach_to": topology_network(i), } runner_params.append(runner_kwargs) return runner_params @classmethod def _redis_args_parser(cls, n_parallel_workers: int, node_ids: Optional[Union[List[int], int]] = None, **kwargs): runner_params = [] candidate_node_ids = cls.padding_param(node_ids, n_parallel_workers, 0) for i in range(n_parallel_workers): runner_kwargs = {**kwargs, "node_id": candidate_node_ids[i]} runner_params.append(runner_kwargs) return runner_params @classmethod def _subprocess_runner(cls, runner_kwargs: dict, main_params: Tuple[Union[List, Dict]]) -> None: """ Overview: Really run in subprocess. Arguments: - runner_params (:obj:`Tuple[Union[List, Dict]]`): Args and kwargs for runner. - main_params (:obj:`Tuple[Union[List, Dict]]`): Args and kwargs for main function. """ main_process, args, kwargs = main_params with Parallel() as router: router.is_active = True router._run(**runner_kwargs) time.sleep(0.3) # Waiting for network pairing router._supervised_runner(main_process, *args, **kwargs) def _supervised_runner(self, main: Callable, *args, **kwargs) -> None: """ Overview: Run in supervised mode. Arguments: - main (:obj:`Callable`): Main function. """ if self.auto_recover: while True: try: main(*args, **kwargs) break except Exception as e: if self._retries < self.max_retries: logging.warning( "Auto recover from exception: {}, node: {}, retries: {}".format( e, self.node_id, self._retries ) ) logging.warning(traceback.format_exc()) self._retries += 1 else: logging.warning( "Exceed the max retries, node: {}, retries: {}, max_retries: {}".format( self.node_id, self._retries, self.max_retries ) ) raise e else: main(*args, **kwargs) @classmethod def get_node_addrs( cls, n_workers: int, protocol: str = "ipc", address: Optional[str] = None, ports: Optional[Union[List[int], int]] = None ) -> None: if protocol == "ipc": node_name = "".join(random.choices("abcdefghijklmnopqrstuvwxyz0123456789", k=4)) tmp_dir = tempfile.gettempdir() nodes = ["ipc://{}/ditask_{}_{}.ipc".format(tmp_dir, node_name, i) for i in range(n_workers)] elif protocol == "tcp": address = address or cls.get_ip() ports = cls.padding_param(ports, n_workers, 50515) assert len(ports) == n_workers, "The number of ports must be the same as the number of workers, \ now there are {} ports and {} workers".format(len(ports), n_workers) nodes = ["tcp://{}:{}".format(address, port) for port in ports] else: raise Exception("Unknown protocol {}".format(protocol)) return nodes @classmethod def padding_param(cls, int_or_list: Optional[Union[List[int], int]], n_max: int, start_value: int) -> List[int]: """ Overview: Padding int or list param to the length of n_max. Arguments: - int_or_list (:obj:`Optional[Union[List[int], int]]`): Int or list typed value. - n_max (:obj:`int`): Max length. - start_value (:obj:`int`): Start from value. """ param = int_or_list if isinstance(param, List) and len(param) == 1: param = param[0] # List with only 1 element is equal to int if isinstance(param, int): param = range(param, param + n_max) else: param = param or range(start_value, start_value + n_max) return param def listen(self): self._mq.listen() while True: msg = self._mq.recv() # msg is none means that the message queue is no longer being listened to, # especially if the message queue is already closed if not msg: break topic, msg = msg self._handle_message(topic, msg) def on(self, event: str, fn: Callable) -> None: """ Overview: Register an remote event on parallel instance, this function will be executed \ when a remote process emit this event via network. Arguments: - event (:obj:`str`): Event name. - fn (:obj:`Callable`): Function body. """ if self.is_active: self._mq.subscribe(event) self._event_loop.on(event, fn) def once(self, event: str, fn: Callable) -> None: """ Overview: Register an remote event which will only call once on parallel instance, this function will be executed when a remote process emit this event via network. Arguments: - event (:obj:`str`): Event name. - fn (:obj:`Callable`): Function body. """ if self.is_active: self._mq.subscribe(event) self._event_loop.once(event, fn) def off(self, event: str) -> None: """ Overview: Unregister an event. Arguments: - event (:obj:`str`): Event name. """ if self.is_active: self._mq.unsubscribe(event) self._event_loop.off(event) def emit(self, event: str, *args, **kwargs) -> None: """ Overview: Send an remote event via network to subscribed processes. Arguments: - event (:obj:`str`): Event name. """ if self.is_active: payload = {"a": args, "k": kwargs} try: data = pickle.dumps(payload, protocol=-1) except AttributeError as e: logging.error("Arguments are not pickable! Event: {}, Args: {}".format(event, args)) raise e self._mq.publish(event, data) def _handle_message(self, topic: str, msg: bytes) -> None: """ Overview: Recv and parse payload from other processes, and call local functions. Arguments: - topic (:obj:`str`): Recevied topic. - msg (:obj:`bytes`): Recevied message. """ event = topic if not self._event_loop.listened(event): logging.debug("Event {} was not listened in parallel {}".format(event, self.node_id)) return try: payload = pickle.loads(msg) except Exception as e: logging.error("Error when unpacking message on node {}, msg: {}".format(self.node_id, e)) return self._event_loop.emit(event, *payload["a"], **payload["k"]) @classmethod def get_ip(cls): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # doesn't even have to be reachable s.connect(('10.255.255.255', 1)) IP = s.getsockname()[0] except Exception: IP = '127.0.0.1' finally: s.close() return IP def __enter__(self) -> "Parallel": return self def __exit__(self, exc_type, exc_val, exc_tb): self.stop() def stop(self): logging.info("Stopping parallel worker on node: {}".format(self.node_id)) self.is_active = False time.sleep(0.03) if self._mq: self._mq.stop() self._mq = None if self._listener: self._listener.join(timeout=1) self._listener = None self._event_loop.stop()
0.722527
0.207014
import sys import typing from collections import OrderedDict def raises(err, lamda): try: lamda() return False except err: return True def expand_tuples(L): """ >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by <NAME> def _toposort(edges): """ Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> _toposort({1: (2, 3), 2: (3, )}) [1, 2, 3] Closely follows the wikipedia page [2] [1] Kahn, <NAME>. (1962), "Topological sorting of large networks", Communications of the ACM [2] http://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = OrderedDict((k, set(val)) for k, val in incoming_edges.items()) S = OrderedDict.fromkeys(v for v in edges if v not in incoming_edges) L = [] while S: n, _ = S.popitem() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S[m] = None if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """ Reverses direction of dependence dict >>> d = {'a': (1, 2), 'b': (2, 3), 'c':()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = OrderedDict() for key in d: for val in d[key]: result[val] = result.get(val, tuple()) + (key,) return result # Taken from toolz # Avoids licensing issues because this version was authored by <NAME> def groupby(func, seq): """ Group a collection by a key function >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank'] >>> groupby(len, names) # doctest: +SKIP {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']} >>> iseven = lambda x: x % 2 == 0 >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP {False: [1, 3, 5, 7], True: [2, 4, 6, 8]} See Also: ``countby`` """ d = OrderedDict() for item in seq: key = func(item) if key not in d: d[key] = list() d[key].append(item) return d def typename(type): """ Get the name of `type`. Parameters ---------- type : Union[Type, Tuple[Type]] Returns ------- str The name of `type` or a tuple of the names of the types in `type`. Examples -------- >>> typename(int) 'int' >>> typename((int, float)) '(int, float)' """ try: return type.__name__ except AttributeError: if len(type) == 1: return typename(*type) return "(%s)" % ", ".join(map(typename, type)) # parse typing.Union def parse_union(ann): if hasattr(typing, "UnionMeta"): if type(ann) is not typing.UnionMeta: return return ann.__union_params__ elif hasattr(typing, "_Union"): if type(ann) is not typing._Union: return return ann.__args__ elif hasattr(typing, "_GenericAlias"): if type(ann) is not typing._GenericAlias: if type(ann) is not typing.Union: return else: if ann.__origin__ is not typing.Union: return return ann.__args__ elif hasattr(typing, "Union"): if typing.get_origin(ann) is not typing.Union: return return typing.get_args(ann) else: raise NotImplementedError("unsupported Python version")
imperative/python/megengine/core/tensor/multipledispatch/utils.py
import sys import typing from collections import OrderedDict def raises(err, lamda): try: lamda() return False except err: return True def expand_tuples(L): """ >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by <NAME> def _toposort(edges): """ Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> _toposort({1: (2, 3), 2: (3, )}) [1, 2, 3] Closely follows the wikipedia page [2] [1] Kahn, <NAME>. (1962), "Topological sorting of large networks", Communications of the ACM [2] http://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = OrderedDict((k, set(val)) for k, val in incoming_edges.items()) S = OrderedDict.fromkeys(v for v in edges if v not in incoming_edges) L = [] while S: n, _ = S.popitem() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S[m] = None if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """ Reverses direction of dependence dict >>> d = {'a': (1, 2), 'b': (2, 3), 'c':()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = OrderedDict() for key in d: for val in d[key]: result[val] = result.get(val, tuple()) + (key,) return result # Taken from toolz # Avoids licensing issues because this version was authored by <NAME> def groupby(func, seq): """ Group a collection by a key function >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank'] >>> groupby(len, names) # doctest: +SKIP {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']} >>> iseven = lambda x: x % 2 == 0 >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP {False: [1, 3, 5, 7], True: [2, 4, 6, 8]} See Also: ``countby`` """ d = OrderedDict() for item in seq: key = func(item) if key not in d: d[key] = list() d[key].append(item) return d def typename(type): """ Get the name of `type`. Parameters ---------- type : Union[Type, Tuple[Type]] Returns ------- str The name of `type` or a tuple of the names of the types in `type`. Examples -------- >>> typename(int) 'int' >>> typename((int, float)) '(int, float)' """ try: return type.__name__ except AttributeError: if len(type) == 1: return typename(*type) return "(%s)" % ", ".join(map(typename, type)) # parse typing.Union def parse_union(ann): if hasattr(typing, "UnionMeta"): if type(ann) is not typing.UnionMeta: return return ann.__union_params__ elif hasattr(typing, "_Union"): if type(ann) is not typing._Union: return return ann.__args__ elif hasattr(typing, "_GenericAlias"): if type(ann) is not typing._GenericAlias: if type(ann) is not typing.Union: return else: if ann.__origin__ is not typing.Union: return return ann.__args__ elif hasattr(typing, "Union"): if typing.get_origin(ann) is not typing.Union: return return typing.get_args(ann) else: raise NotImplementedError("unsupported Python version")
0.596081
0.486697
"""Test materialized views""" import pytest from pyrseas.testutils import DatabaseToMapTestCase from pyrseas.testutils import InputMapToSqlTestCase, fix_indent CREATE_TABLE = "CREATE TABLE t1 (c1 INTEGER, c2 TEXT, c3 INTEGER)" VIEW_STMT = "SELECT c1, c3 * 2 AS mc3 FROM t1" CREATE_STMT = "CREATE MATERIALIZED VIEW sd.mv1 AS " + VIEW_STMT COMMENT_STMT = "COMMENT ON MATERIALIZED VIEW sd.mv1 IS 'Test matview mv1'" VIEW_DEFN = " SELECT t1.c1,\n t1.c3 * 2 AS mc3\n FROM sd.t1;" class MatViewToMapTestCase(DatabaseToMapTestCase): """Test mapping of created materialized views""" def test_map_view_simple(self): "Map a created materialized view" stmts = [CREATE_TABLE, CREATE_STMT] dbmap = self.to_map(stmts) expmap = {'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_DEFN, 'with_data': True, 'depends_on': ['table t1']} assert dbmap['schema sd']['materialized view mv1'] == expmap def test_map_view_comment(self): "Map a materialized view with a comment" dbmap = self.to_map([CREATE_TABLE, CREATE_STMT, COMMENT_STMT]) assert dbmap['schema sd']['materialized view mv1'][ 'description'] == 'Test matview mv1' def test_map_view_index(self): "Map a materialized view with an index" stmts = [CREATE_TABLE, CREATE_STMT, "CREATE INDEX idx1 ON mv1 (mc3)"] dbmap = self.to_map(stmts) expmap = {'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_DEFN, 'with_data': True, 'indexes': {'idx1': {'keys': ['mc3']}}, 'depends_on': ['table t1']} assert dbmap['schema sd']['materialized view mv1'] == expmap class MatViewToSqlTestCase(InputMapToSqlTestCase): """Test SQL generation from input materialized views""" def test_create_view(self): "Create a materialized view" inmap = self.std_map() inmap['schema sd'].update({'table t1': { 'columns': [{'c1': {'type': 'integer'}}, {'c2': {'type': 'text'}}, {'c3': {'type': 'integer'}}]}}) inmap['schema sd'].update({'materialized view mv1': { 'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': "SELECT c1, c3 * 2 AS mc3 FROM sd.t1", 'depends_on': ['table t1']}}) sql = self.to_sql(inmap) assert fix_indent(sql[0]) == "CREATE TABLE sd.t1 (c1 integer, " \ "c2 text, c3 integer)" assert fix_indent(sql[1]) == "CREATE MATERIALIZED VIEW sd.mv1 AS " \ "SELECT c1, c3 * 2 AS mc3 FROM sd.t1" def test_bad_view_map(self): "Error creating a materialized view with a bad map" inmap = self.std_map() inmap['schema sd'].update({'mv1': {'definition': VIEW_DEFN}}) with pytest.raises(KeyError): self.to_sql(inmap) def test_drop_view(self): "Drop an existing materialized view with table dependencies" stmts = ["CREATE TABLE t1 (c1 INTEGER, c2 TEXT)", "CREATE TABLE t2 (c1 INTEGER, c3 TEXT)", "CREATE MATERIALIZED VIEW mv1 AS SELECT t1.c1, c2, c3 " "FROM t1 JOIN t2 ON (t1.c1 = t2.c1)"] sql = self.to_sql(self.std_map(), stmts) assert sql[0] == "DROP MATERIALIZED VIEW sd.mv1" # can't control which table will be dropped first drt1 = 1 drt2 = 2 if 't1' in sql[2]: drt1 = 2 drt2 = 1 assert sql[drt1] == "DROP TABLE sd.t1" assert sql[drt2] == "DROP TABLE sd.t2" def test_view_with_comment(self): "Create a materialized view with a comment" inmap = self.std_map() inmap['schema sd'].update({'materialized view mv1': { 'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_STMT, 'description': "Test matview mv1"}}) sql = self.to_sql(inmap) assert fix_indent(sql[0]) == CREATE_STMT assert sql[1] == COMMENT_STMT def test_view_index(self): "Create an index on a materialized view" stmts = [CREATE_TABLE, CREATE_STMT] inmap = self.std_map() inmap['schema sd'].update({'table t1': { 'columns': [{'c1': {'type': 'integer'}}, {'c2': {'type': 'text'}}, {'c3': {'type': 'integer'}}]}}) inmap['schema sd'].update({'materialized view mv1': { 'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_DEFN, 'indexes': {'idx1': {'keys': ['mc3']}}}}) sql = self.to_sql(inmap, stmts) assert sql == ["CREATE INDEX idx1 ON sd.mv1 (mc3)"]
tests/dbobject/test_matview.py
"""Test materialized views""" import pytest from pyrseas.testutils import DatabaseToMapTestCase from pyrseas.testutils import InputMapToSqlTestCase, fix_indent CREATE_TABLE = "CREATE TABLE t1 (c1 INTEGER, c2 TEXT, c3 INTEGER)" VIEW_STMT = "SELECT c1, c3 * 2 AS mc3 FROM t1" CREATE_STMT = "CREATE MATERIALIZED VIEW sd.mv1 AS " + VIEW_STMT COMMENT_STMT = "COMMENT ON MATERIALIZED VIEW sd.mv1 IS 'Test matview mv1'" VIEW_DEFN = " SELECT t1.c1,\n t1.c3 * 2 AS mc3\n FROM sd.t1;" class MatViewToMapTestCase(DatabaseToMapTestCase): """Test mapping of created materialized views""" def test_map_view_simple(self): "Map a created materialized view" stmts = [CREATE_TABLE, CREATE_STMT] dbmap = self.to_map(stmts) expmap = {'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_DEFN, 'with_data': True, 'depends_on': ['table t1']} assert dbmap['schema sd']['materialized view mv1'] == expmap def test_map_view_comment(self): "Map a materialized view with a comment" dbmap = self.to_map([CREATE_TABLE, CREATE_STMT, COMMENT_STMT]) assert dbmap['schema sd']['materialized view mv1'][ 'description'] == 'Test matview mv1' def test_map_view_index(self): "Map a materialized view with an index" stmts = [CREATE_TABLE, CREATE_STMT, "CREATE INDEX idx1 ON mv1 (mc3)"] dbmap = self.to_map(stmts) expmap = {'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_DEFN, 'with_data': True, 'indexes': {'idx1': {'keys': ['mc3']}}, 'depends_on': ['table t1']} assert dbmap['schema sd']['materialized view mv1'] == expmap class MatViewToSqlTestCase(InputMapToSqlTestCase): """Test SQL generation from input materialized views""" def test_create_view(self): "Create a materialized view" inmap = self.std_map() inmap['schema sd'].update({'table t1': { 'columns': [{'c1': {'type': 'integer'}}, {'c2': {'type': 'text'}}, {'c3': {'type': 'integer'}}]}}) inmap['schema sd'].update({'materialized view mv1': { 'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': "SELECT c1, c3 * 2 AS mc3 FROM sd.t1", 'depends_on': ['table t1']}}) sql = self.to_sql(inmap) assert fix_indent(sql[0]) == "CREATE TABLE sd.t1 (c1 integer, " \ "c2 text, c3 integer)" assert fix_indent(sql[1]) == "CREATE MATERIALIZED VIEW sd.mv1 AS " \ "SELECT c1, c3 * 2 AS mc3 FROM sd.t1" def test_bad_view_map(self): "Error creating a materialized view with a bad map" inmap = self.std_map() inmap['schema sd'].update({'mv1': {'definition': VIEW_DEFN}}) with pytest.raises(KeyError): self.to_sql(inmap) def test_drop_view(self): "Drop an existing materialized view with table dependencies" stmts = ["CREATE TABLE t1 (c1 INTEGER, c2 TEXT)", "CREATE TABLE t2 (c1 INTEGER, c3 TEXT)", "CREATE MATERIALIZED VIEW mv1 AS SELECT t1.c1, c2, c3 " "FROM t1 JOIN t2 ON (t1.c1 = t2.c1)"] sql = self.to_sql(self.std_map(), stmts) assert sql[0] == "DROP MATERIALIZED VIEW sd.mv1" # can't control which table will be dropped first drt1 = 1 drt2 = 2 if 't1' in sql[2]: drt1 = 2 drt2 = 1 assert sql[drt1] == "DROP TABLE sd.t1" assert sql[drt2] == "DROP TABLE sd.t2" def test_view_with_comment(self): "Create a materialized view with a comment" inmap = self.std_map() inmap['schema sd'].update({'materialized view mv1': { 'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_STMT, 'description': "Test matview mv1"}}) sql = self.to_sql(inmap) assert fix_indent(sql[0]) == CREATE_STMT assert sql[1] == COMMENT_STMT def test_view_index(self): "Create an index on a materialized view" stmts = [CREATE_TABLE, CREATE_STMT] inmap = self.std_map() inmap['schema sd'].update({'table t1': { 'columns': [{'c1': {'type': 'integer'}}, {'c2': {'type': 'text'}}, {'c3': {'type': 'integer'}}]}}) inmap['schema sd'].update({'materialized view mv1': { 'columns': [{'c1': {'type': 'integer'}}, {'mc3': {'type': 'integer'}}], 'definition': VIEW_DEFN, 'indexes': {'idx1': {'keys': ['mc3']}}}}) sql = self.to_sql(inmap, stmts) assert sql == ["CREATE INDEX idx1 ON sd.mv1 (mc3)"]
0.587943
0.428622
from django import forms from django.contrib.localflavor.ar.forms import ARPostalCodeField from django.contrib.localflavor.ar.forms import ARProvinceSelect from django.forms.util import ErrorList from ventas.models import DatosDeEnvio, GastosDeEnvio, ARP class DumbSelect(forms.Select): EMPTY_CHOICES = [('Otra', 'Other'),] def __init__(self, attrs=None, choices=None): if choices: choices += DumbSelect.EMPTY_CHOICES else: choices = DumbSelect.EMPTY_CHOICES super(DumbSelect, self).__init__(attrs=attrs, choices=choices) class GastosDeEnvioSelect(forms.Select): def __init__(self, gastos_de_envio, attrs=None, choices=None): """ Shipping costs is a queryset from models.GastosDeEnvio. Assuming that provinces are being saved with province select """ choices_of_prov = [(p.provincia, ARP.get(p.provincia)) for p in gastos_de_envio] if choices: choices += list(choices) else: choices = choices_of_prov super(GastosDeEnvioSelect, self).__init__(attrs=attrs, choices=choices) def add_css_classes(f, **kwargs): """ From: http://djangosnippets.org/snippets/2097/ """ field = f.formfield(**kwargs) if field and field.required: attrs = field.widget.attrs attrs['class'] = attrs.get('class', '') + 'required' return field class DatosDeEnvioForm(forms.ModelForm): formfield_callback = add_css_classes direccion = forms.CharField(label=u'Dirección', required=True, widget=forms.TextInput(attrs={'class': 'required' })) localidad = forms.CharField(widget=DumbSelect(), required=False) codigo_de_area = forms.CharField(label=u'Código de Área', widget=forms.TextInput(attrs={'class': 'required' ' telefono'} )) telefono = forms.CharField(label=u'Teléfono', widget=forms.TextInput(attrs={'class': 'required' ' telefono' })) codigo_postal = ARPostalCodeField(label=u'Código Postal', widget=forms.TextInput(attrs={'class': 'required' })) def _add_msg_to_error_fields(self, fieldlist, msg): for fieldname in fieldlist: errorlist = self._errors.get(fieldname) if errorlist: errorlist.append(msg) else: self._errors[fieldname] = ErrorList([msg]) def clean(self, *args, **kwargs): super(DatosDeEnvioForm, self).clean() cleaned_data = self.cleaned_data codigo_de_area = cleaned_data.get('codigo_de_area') telefono = cleaned_data.get('telefono') if not (codigo_de_area and telefono): msg = u"Este campo sólo acepta números" self._add_msg_to_error_fields(('telefono',), msg) raise forms.ValidationError(msg) if not (codigo_de_area.isdigit() and telefono.isdigit()): msg = u"Este campo sólo acepta números" self._add_msg_to_error_fields(('telefono',), msg) raise forms.ValidationError(msg) return cleaned_data class Meta: model = DatosDeEnvio widgets = { 'provincia': GastosDeEnvioSelect( GastosDeEnvio.objects.filter(localidad="") ), } class GastosDeEnvioForm(forms.ModelForm): class Meta: model = GastosDeEnvio widgets = { 'provincia': ARProvinceSelect(), }
ventas/forms.py
from django import forms from django.contrib.localflavor.ar.forms import ARPostalCodeField from django.contrib.localflavor.ar.forms import ARProvinceSelect from django.forms.util import ErrorList from ventas.models import DatosDeEnvio, GastosDeEnvio, ARP class DumbSelect(forms.Select): EMPTY_CHOICES = [('Otra', 'Other'),] def __init__(self, attrs=None, choices=None): if choices: choices += DumbSelect.EMPTY_CHOICES else: choices = DumbSelect.EMPTY_CHOICES super(DumbSelect, self).__init__(attrs=attrs, choices=choices) class GastosDeEnvioSelect(forms.Select): def __init__(self, gastos_de_envio, attrs=None, choices=None): """ Shipping costs is a queryset from models.GastosDeEnvio. Assuming that provinces are being saved with province select """ choices_of_prov = [(p.provincia, ARP.get(p.provincia)) for p in gastos_de_envio] if choices: choices += list(choices) else: choices = choices_of_prov super(GastosDeEnvioSelect, self).__init__(attrs=attrs, choices=choices) def add_css_classes(f, **kwargs): """ From: http://djangosnippets.org/snippets/2097/ """ field = f.formfield(**kwargs) if field and field.required: attrs = field.widget.attrs attrs['class'] = attrs.get('class', '') + 'required' return field class DatosDeEnvioForm(forms.ModelForm): formfield_callback = add_css_classes direccion = forms.CharField(label=u'Dirección', required=True, widget=forms.TextInput(attrs={'class': 'required' })) localidad = forms.CharField(widget=DumbSelect(), required=False) codigo_de_area = forms.CharField(label=u'Código de Área', widget=forms.TextInput(attrs={'class': 'required' ' telefono'} )) telefono = forms.CharField(label=u'Teléfono', widget=forms.TextInput(attrs={'class': 'required' ' telefono' })) codigo_postal = ARPostalCodeField(label=u'Código Postal', widget=forms.TextInput(attrs={'class': 'required' })) def _add_msg_to_error_fields(self, fieldlist, msg): for fieldname in fieldlist: errorlist = self._errors.get(fieldname) if errorlist: errorlist.append(msg) else: self._errors[fieldname] = ErrorList([msg]) def clean(self, *args, **kwargs): super(DatosDeEnvioForm, self).clean() cleaned_data = self.cleaned_data codigo_de_area = cleaned_data.get('codigo_de_area') telefono = cleaned_data.get('telefono') if not (codigo_de_area and telefono): msg = u"Este campo sólo acepta números" self._add_msg_to_error_fields(('telefono',), msg) raise forms.ValidationError(msg) if not (codigo_de_area.isdigit() and telefono.isdigit()): msg = u"Este campo sólo acepta números" self._add_msg_to_error_fields(('telefono',), msg) raise forms.ValidationError(msg) return cleaned_data class Meta: model = DatosDeEnvio widgets = { 'provincia': GastosDeEnvioSelect( GastosDeEnvio.objects.filter(localidad="") ), } class GastosDeEnvioForm(forms.ModelForm): class Meta: model = GastosDeEnvio widgets = { 'provincia': ARProvinceSelect(), }
0.561936
0.128279
from hops import constants from hops.featurestore_impl.dao.datasets.training_dataset import TrainingDataset from hops.featurestore_impl.dao.featuregroups.featuregroup import Featuregroup from hops.featurestore_impl.dao.featurestore.featurestore import Featurestore from hops.featurestore_impl.dao.settings.featurestore_settings import FeaturestoreSettings from hops.featurestore_impl.dao.storageconnectors.hopsfs_connector import HopsfsStorageConnector from hops.featurestore_impl.dao.storageconnectors.jdbc_connector import JDBCStorageConnector from hops.featurestore_impl.dao.storageconnectors.s3_connector import S3StorageConnector from hops.featurestore_impl.util import fs_utils class FeaturestoreMetadata(object): """ Represents feature store metadata. This metadata is used by the feature store client to determine how to fetch and push features from/to the feature store """ def __init__(self, metadata_json): """ Initialize the featurestore metadata from JSON payload Args: :metadata_json: JSON metadata about the featurestore returned from Hopsworks REST API """ featuregroups, training_datasets, features_to_featuregroups, featurestore, settings, storage_connectors, \ online_featurestore_connector = self._parse_featurestore_metadata(metadata_json) self.featuregroups = featuregroups self.training_datasets = training_datasets self.features_to_featuregroups = features_to_featuregroups self.featurestore = featurestore self.settings = settings self.storage_connectors = storage_connectors constants.FEATURE_STORE.TRAINING_DATASET_SUPPORTED_FORMATS = settings.training_dataset_formats self.online_featurestore_connector = online_featurestore_connector def _parse_featurestore_metadata(self, metadata_json): """ Parses the featurestore metadata from the REST API and puts it into an optimized data structure with O(1) lookup time for features, featuregroups, and training datasets Args: :featurestore_metadata: the JSON metadata of the featurestore returned by hopsworks Returns: the parsed metadata """ featuregroups = {} training_datasets = {} features_to_featuregroups = {} storage_connectors = {} for fg in metadata_json[constants.REST_CONFIG.JSON_FEATUREGROUPS]: fg_obj = Featuregroup(fg) featuregroups[fs_utils._get_table_name(fg[constants.REST_CONFIG.JSON_FEATUREGROUP_NAME], fg[constants.REST_CONFIG.JSON_FEATUREGROUP_VERSION])] = fg_obj for f in fg[constants.REST_CONFIG.JSON_FEATUREGROUP_FEATURES]: if f[constants.REST_CONFIG.JSON_FEATURE_NAME] in features_to_featuregroups: features_to_featuregroups[f[constants.REST_CONFIG.JSON_FEATURE_NAME]].append(fg_obj) else: features_to_featuregroups[f[constants.REST_CONFIG.JSON_FEATURE_NAME]] = [fg_obj] for td in metadata_json[constants.REST_CONFIG.JSON_TRAINING_DATASETS]: training_datasets[fs_utils._get_table_name(td[constants.REST_CONFIG.JSON_TRAINING_DATASET_NAME], td[constants.REST_CONFIG.JSON_TRAINING_DATASET_VERSION])] = \ TrainingDataset(td) settings = FeaturestoreSettings(metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE_SETTINGS]) for sc in metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE_STORAGE_CONNECTORS]: if sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_TYPE] == \ settings.jdbc_connector_type: storage_connectors[sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_NAME]] = \ JDBCStorageConnector(sc) if sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_TYPE] == \ settings.s3_connector_type: storage_connectors[sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_NAME]] = S3StorageConnector(sc) if sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_TYPE] == \ settings.hopsfs_connector_type: storage_connectors[sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_NAME]] = \ HopsfsStorageConnector(sc) featurestore = Featurestore(metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE]) if constants.REST_CONFIG.JSON_FEATURESTORE_ONLINE_CONNECTOR in metadata_json: online_featurestore_connector = JDBCStorageConnector( metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE_ONLINE_CONNECTOR]) else: online_featurestore_connector = None return featuregroups, training_datasets, features_to_featuregroups, \ featurestore, settings, storage_connectors, online_featurestore_connector
hops/featurestore_impl/dao/common/featurestore_metadata.py
from hops import constants from hops.featurestore_impl.dao.datasets.training_dataset import TrainingDataset from hops.featurestore_impl.dao.featuregroups.featuregroup import Featuregroup from hops.featurestore_impl.dao.featurestore.featurestore import Featurestore from hops.featurestore_impl.dao.settings.featurestore_settings import FeaturestoreSettings from hops.featurestore_impl.dao.storageconnectors.hopsfs_connector import HopsfsStorageConnector from hops.featurestore_impl.dao.storageconnectors.jdbc_connector import JDBCStorageConnector from hops.featurestore_impl.dao.storageconnectors.s3_connector import S3StorageConnector from hops.featurestore_impl.util import fs_utils class FeaturestoreMetadata(object): """ Represents feature store metadata. This metadata is used by the feature store client to determine how to fetch and push features from/to the feature store """ def __init__(self, metadata_json): """ Initialize the featurestore metadata from JSON payload Args: :metadata_json: JSON metadata about the featurestore returned from Hopsworks REST API """ featuregroups, training_datasets, features_to_featuregroups, featurestore, settings, storage_connectors, \ online_featurestore_connector = self._parse_featurestore_metadata(metadata_json) self.featuregroups = featuregroups self.training_datasets = training_datasets self.features_to_featuregroups = features_to_featuregroups self.featurestore = featurestore self.settings = settings self.storage_connectors = storage_connectors constants.FEATURE_STORE.TRAINING_DATASET_SUPPORTED_FORMATS = settings.training_dataset_formats self.online_featurestore_connector = online_featurestore_connector def _parse_featurestore_metadata(self, metadata_json): """ Parses the featurestore metadata from the REST API and puts it into an optimized data structure with O(1) lookup time for features, featuregroups, and training datasets Args: :featurestore_metadata: the JSON metadata of the featurestore returned by hopsworks Returns: the parsed metadata """ featuregroups = {} training_datasets = {} features_to_featuregroups = {} storage_connectors = {} for fg in metadata_json[constants.REST_CONFIG.JSON_FEATUREGROUPS]: fg_obj = Featuregroup(fg) featuregroups[fs_utils._get_table_name(fg[constants.REST_CONFIG.JSON_FEATUREGROUP_NAME], fg[constants.REST_CONFIG.JSON_FEATUREGROUP_VERSION])] = fg_obj for f in fg[constants.REST_CONFIG.JSON_FEATUREGROUP_FEATURES]: if f[constants.REST_CONFIG.JSON_FEATURE_NAME] in features_to_featuregroups: features_to_featuregroups[f[constants.REST_CONFIG.JSON_FEATURE_NAME]].append(fg_obj) else: features_to_featuregroups[f[constants.REST_CONFIG.JSON_FEATURE_NAME]] = [fg_obj] for td in metadata_json[constants.REST_CONFIG.JSON_TRAINING_DATASETS]: training_datasets[fs_utils._get_table_name(td[constants.REST_CONFIG.JSON_TRAINING_DATASET_NAME], td[constants.REST_CONFIG.JSON_TRAINING_DATASET_VERSION])] = \ TrainingDataset(td) settings = FeaturestoreSettings(metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE_SETTINGS]) for sc in metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE_STORAGE_CONNECTORS]: if sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_TYPE] == \ settings.jdbc_connector_type: storage_connectors[sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_NAME]] = \ JDBCStorageConnector(sc) if sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_TYPE] == \ settings.s3_connector_type: storage_connectors[sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_NAME]] = S3StorageConnector(sc) if sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_TYPE] == \ settings.hopsfs_connector_type: storage_connectors[sc[constants.REST_CONFIG.JSON_FEATURESTORE_CONNECTOR_NAME]] = \ HopsfsStorageConnector(sc) featurestore = Featurestore(metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE]) if constants.REST_CONFIG.JSON_FEATURESTORE_ONLINE_CONNECTOR in metadata_json: online_featurestore_connector = JDBCStorageConnector( metadata_json[constants.REST_CONFIG.JSON_FEATURESTORE_ONLINE_CONNECTOR]) else: online_featurestore_connector = None return featuregroups, training_datasets, features_to_featuregroups, \ featurestore, settings, storage_connectors, online_featurestore_connector
0.651355
0.315604
import numpy as np from scipy.integrate import ode, odeint import matplotlib.pyplot as plt parsec = 3.086 * 1e16 #m year = 3.156 * 1e7 #s pi = 3.14159265358979323846 G = 6.67430 * 1e-11 #N * m2 / kg2 LO=93.016 * 1e9 * 9.461e15/2 #90 billions ly in m (diameter) a0=1 omega_R = 4.8e-5 omega_lambda = 0.683-omega_R omega_M = 0.317 T0 = 2.725 omega_K = 1 - (omega_R + omega_M + omega_lambda) H0_ = 69.8 #km/s/Mpc unit_correction = 1/(parsec*1e6) * (year) * (1e3) H0 = H0_ * unit_correction #converting in H0 in 1/y params = (H0, omega_R, omega_M, omega_lambda, omega_K) time_scale = 'linear' #time_scale = 'log' def main(): if time_scale == 'log': t0 = 0 y0 = 1e-18 t1 = 1e12 backend = 'dopri5' solver = ode(friedmann_ode).set_integrator(backend) sol = [] def solout(t, y): sol.append([t, *y]) solver.set_solout(solout) solver.set_initial_value(y0, t0).set_f_params(H0, omega_R, omega_M, omega_lambda, omega_K) solver.integrate(t1) sol = np.array(sol) time = sol[:,0] a = sol[:,1] else: y0 = [1e-19] #scale factor at t=0, should calculate it from plank density etc time = np.linspace(0, 40, 10000)*1e9 sol = odeint(friedmann_odeint, y0, time, args=params) a = sol[:,0] redshift = a0/a - 1 T = (1+redshift) * T0 adot = np.gradient(a,time) H = adot/a #expansion factor rho = np.power(H,2)*3/(8*pi*G)/1e15 #need to double check 1e15, should be 1e9*year index_now = np.argmin(np.abs(a-a0)) current_day = time[index_now] rho_R = omega_R*(a0/a)**4 rho_M = omega_M*(a0/a)**3 rho_lamb = omega_lambda rho_sum = rho_R + rho_M + rho_lamb rho_R = rho_R/rho_sum rho_M = rho_M/rho_sum rho_lamb = rho_lamb/rho_sum density_color = 'black' if time_scale == 'log': fig, ax1 = plt.subplots(1,figsize = (10,6)) ax1.plot(time*(year),a*LO,linewidth = 2, color = 'blue') ax1.plot(np.logspace(3,17),np.power(np.logspace(3,17),2/3)*1e15*0.65, linestyle = '--', color = 'blue') ax1.set_xlabel('Time after singularity [s]') ax1.set_ylabel('Radius of Obs. universe [Gly]', color='b') ax1.set_yscale('log') ax1.set_xscale('log') ax1.tick_params('y', colors='b') ax1.set_xlim(1000,1e23) ax1.set_ylim(np.min(a*LO)*1e6,np.max(a*LO)/1e14) ax2 = ax1.twinx() ax2.plot(time*(year),rho,linewidth = 2, color = density_color) ax2.axhline(y=rho[-1],xmin = 0.8, linewidth = 2, color = density_color) ax2.set_xlabel('Time after singularity [s]') ax2.set_ylabel('Density [kg/m3]', color=density_color) ax2.set_yscale('log') ax2.set_xscale('log') ax2.tick_params('y', colors=density_color) ax2.set_xlim(1000,1e23) ax2.set_ylim(ymin=1e-34,ymax = 1e10) ax3 = ax1.twinx() ax3.fill_between(time*(year), np.zeros(len(time)), rho_R, color = 'orange', label = 'Radiation $a \propto t^{1/2}$', alpha = 0.15) ax3.fill_between(time*(year), rho_R, rho_M + rho_R, color = 'green', label = 'Matter $a \propto t^{2/3}$', alpha = 0.15) ax3.fill_between(list(time*(year))+[1e25], list(rho_M + rho_R)+[0], list(rho_lamb + rho_M + rho_R)+[1], color = 'black', label = 'Dark Energy $a \propto e^{H t}$', alpha = 0.15) ax3.axhline(y=1,linewidth = 2, color = 'black', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'orange', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time*(year),rho_R,linewidth = 2, color = 'orange', alpha = 0.3) ax3.plot(time*(year),rho_M + rho_R,linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time*(year),rho_lamb + rho_M + rho_R,linewidth = 2, color = 'black', alpha = 0.3) ax3.axvline(x=current_day*(year), ymax = 0.03, linewidth = 6, color = 'purple')#, label = 'Current time') ax3.axvline(x=380000*(year), ymax = 0.03, linewidth = 6, color = 'brown')#, label = 'CMB') #ax3.axvline(x=current_day*(year), ymin = 0.97, linewidth = 6, color = 'purple')#, label = 'Current time') #ax3.axvline(x=380000*(year), ymin = 0.97, linewidth = 6, color = 'red')#, label = 'CMB') #ax3.axvline(x=current_day*(year), linewidth = 2, color = 'purple', alpha = 0.2)#, label = 'Current time') #ax3.axvline(x=380000*(year), linewidth = 2, color = 'red', alpha = 0.2)#, label = 'CMB') ax3.set_xlim(1000,1e23) ax3.set_ylim(ymin=0,ymax=1) ax3.set_xscale('log') #ax3.set_ylabel('Depth d', color='r') #ax3.set_ylim([0, max(y2)]) ax3.set_yticks([],[]) ax3.tick_params('y', colors='r') #ax3.legend(loc = (0.045,0.65), prop = {'size':12.5}) ax3.legend(loc = (0.3,0.65), prop = {'size':12.5}) fig.tight_layout() plt.show() else: a = a*46 time = time/1e9 fig, ax1 = plt.subplots(1,figsize = (8.5,6)) ax1.plot(time,a,linewidth = 2, color = 'blue') ax1.set_xlabel('Time after singularity [Gy]') ax1.set_ylabel('Radius of Obs. universe [Gly]', color='b') ax1.tick_params('y', colors='b') ax1.set_ylim(0,350/2) ax1.set_xlim(0,40) ax2 = ax1.twinx() ax2.plot(time,rho,linewidth = 2, color = density_color) ax2.set_xlabel('Time after singularity [Gy]') ax2.set_ylabel('Density [kg/m3]', color=density_color) ax2.set_yscale('log') ax2.tick_params('y', colors=density_color) ax2.set_xlim(np.min(time)-0.2,np.max(time)) ax2.set_ylim(1e-27,1e-20) ax3 = ax1.twinx() ax3.fill_between(time, rho_R, rho_M + rho_R, color = 'green', label = 'Matter $a \propto t^{2/3}$', alpha = 0.15) ax3.fill_between(time, rho_M + rho_R, rho_lamb + rho_M + rho_R, color = 'black', label = 'Dark Energy $a \propto e^{H t}$', alpha = 0.15) ax3.axhline(y=1,linewidth = 2, color = 'black', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'orange', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time,rho_R,linewidth = 2, color = 'orange', alpha = 0.3) ax3.plot(time,rho_M + rho_R,linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time,rho_lamb + rho_M + rho_R,linewidth = 2, color = 'black', alpha = 0.3) ax3.axvline(x=current_day/1e9, linewidth = 2, color = 'purple', linestyle = '--')#, label = 'Current time') ax3.set_ylim(ymin=0,ymax=1) ax3.set_yticks([],[]) ax3.legend(loc = (0.54,0.2), prop = {'size':12.5}) ax3.set_xlim(0,40) print("Current day is %.2f Gy from this model" % (current_day/1e9)) #Should be 13.813 Gy def friedmann_ode(t, y, H0, omega_R, omega_M, omega_lambda, omega_K): #(H0, omega_R, omega_M, omega_lambda, omega_K) = params a = y[0] dadt = a * H0 * np.sqrt( omega_R*(a0/a)**4 + omega_M*(a0/a)**3 + omega_K*(a0/a)**2 + omega_lambda) dydt = [dadt] return dydt def friedmann_odeint(y, t, H0, omega_R, omega_M, omega_lambda, omega_K): #(H0, omega_R, omega_M, omega_lambda, omega_K) = params a = y[0] dadt = a * H0 * np.sqrt( omega_R*(a0/a)**4 + omega_M*(a0/a)**3 + omega_K*(a0/a)**2 + omega_lambda) dydt = [dadt] return dydt if __name__ == '__main__': plt.rcParams.update({'font.size': 15}) main()
Rewinding the Universe to the Beginning of Time/Code/simulate_universe.py
import numpy as np from scipy.integrate import ode, odeint import matplotlib.pyplot as plt parsec = 3.086 * 1e16 #m year = 3.156 * 1e7 #s pi = 3.14159265358979323846 G = 6.67430 * 1e-11 #N * m2 / kg2 LO=93.016 * 1e9 * 9.461e15/2 #90 billions ly in m (diameter) a0=1 omega_R = 4.8e-5 omega_lambda = 0.683-omega_R omega_M = 0.317 T0 = 2.725 omega_K = 1 - (omega_R + omega_M + omega_lambda) H0_ = 69.8 #km/s/Mpc unit_correction = 1/(parsec*1e6) * (year) * (1e3) H0 = H0_ * unit_correction #converting in H0 in 1/y params = (H0, omega_R, omega_M, omega_lambda, omega_K) time_scale = 'linear' #time_scale = 'log' def main(): if time_scale == 'log': t0 = 0 y0 = 1e-18 t1 = 1e12 backend = 'dopri5' solver = ode(friedmann_ode).set_integrator(backend) sol = [] def solout(t, y): sol.append([t, *y]) solver.set_solout(solout) solver.set_initial_value(y0, t0).set_f_params(H0, omega_R, omega_M, omega_lambda, omega_K) solver.integrate(t1) sol = np.array(sol) time = sol[:,0] a = sol[:,1] else: y0 = [1e-19] #scale factor at t=0, should calculate it from plank density etc time = np.linspace(0, 40, 10000)*1e9 sol = odeint(friedmann_odeint, y0, time, args=params) a = sol[:,0] redshift = a0/a - 1 T = (1+redshift) * T0 adot = np.gradient(a,time) H = adot/a #expansion factor rho = np.power(H,2)*3/(8*pi*G)/1e15 #need to double check 1e15, should be 1e9*year index_now = np.argmin(np.abs(a-a0)) current_day = time[index_now] rho_R = omega_R*(a0/a)**4 rho_M = omega_M*(a0/a)**3 rho_lamb = omega_lambda rho_sum = rho_R + rho_M + rho_lamb rho_R = rho_R/rho_sum rho_M = rho_M/rho_sum rho_lamb = rho_lamb/rho_sum density_color = 'black' if time_scale == 'log': fig, ax1 = plt.subplots(1,figsize = (10,6)) ax1.plot(time*(year),a*LO,linewidth = 2, color = 'blue') ax1.plot(np.logspace(3,17),np.power(np.logspace(3,17),2/3)*1e15*0.65, linestyle = '--', color = 'blue') ax1.set_xlabel('Time after singularity [s]') ax1.set_ylabel('Radius of Obs. universe [Gly]', color='b') ax1.set_yscale('log') ax1.set_xscale('log') ax1.tick_params('y', colors='b') ax1.set_xlim(1000,1e23) ax1.set_ylim(np.min(a*LO)*1e6,np.max(a*LO)/1e14) ax2 = ax1.twinx() ax2.plot(time*(year),rho,linewidth = 2, color = density_color) ax2.axhline(y=rho[-1],xmin = 0.8, linewidth = 2, color = density_color) ax2.set_xlabel('Time after singularity [s]') ax2.set_ylabel('Density [kg/m3]', color=density_color) ax2.set_yscale('log') ax2.set_xscale('log') ax2.tick_params('y', colors=density_color) ax2.set_xlim(1000,1e23) ax2.set_ylim(ymin=1e-34,ymax = 1e10) ax3 = ax1.twinx() ax3.fill_between(time*(year), np.zeros(len(time)), rho_R, color = 'orange', label = 'Radiation $a \propto t^{1/2}$', alpha = 0.15) ax3.fill_between(time*(year), rho_R, rho_M + rho_R, color = 'green', label = 'Matter $a \propto t^{2/3}$', alpha = 0.15) ax3.fill_between(list(time*(year))+[1e25], list(rho_M + rho_R)+[0], list(rho_lamb + rho_M + rho_R)+[1], color = 'black', label = 'Dark Energy $a \propto e^{H t}$', alpha = 0.15) ax3.axhline(y=1,linewidth = 2, color = 'black', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'orange', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time*(year),rho_R,linewidth = 2, color = 'orange', alpha = 0.3) ax3.plot(time*(year),rho_M + rho_R,linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time*(year),rho_lamb + rho_M + rho_R,linewidth = 2, color = 'black', alpha = 0.3) ax3.axvline(x=current_day*(year), ymax = 0.03, linewidth = 6, color = 'purple')#, label = 'Current time') ax3.axvline(x=380000*(year), ymax = 0.03, linewidth = 6, color = 'brown')#, label = 'CMB') #ax3.axvline(x=current_day*(year), ymin = 0.97, linewidth = 6, color = 'purple')#, label = 'Current time') #ax3.axvline(x=380000*(year), ymin = 0.97, linewidth = 6, color = 'red')#, label = 'CMB') #ax3.axvline(x=current_day*(year), linewidth = 2, color = 'purple', alpha = 0.2)#, label = 'Current time') #ax3.axvline(x=380000*(year), linewidth = 2, color = 'red', alpha = 0.2)#, label = 'CMB') ax3.set_xlim(1000,1e23) ax3.set_ylim(ymin=0,ymax=1) ax3.set_xscale('log') #ax3.set_ylabel('Depth d', color='r') #ax3.set_ylim([0, max(y2)]) ax3.set_yticks([],[]) ax3.tick_params('y', colors='r') #ax3.legend(loc = (0.045,0.65), prop = {'size':12.5}) ax3.legend(loc = (0.3,0.65), prop = {'size':12.5}) fig.tight_layout() plt.show() else: a = a*46 time = time/1e9 fig, ax1 = plt.subplots(1,figsize = (8.5,6)) ax1.plot(time,a,linewidth = 2, color = 'blue') ax1.set_xlabel('Time after singularity [Gy]') ax1.set_ylabel('Radius of Obs. universe [Gly]', color='b') ax1.tick_params('y', colors='b') ax1.set_ylim(0,350/2) ax1.set_xlim(0,40) ax2 = ax1.twinx() ax2.plot(time,rho,linewidth = 2, color = density_color) ax2.set_xlabel('Time after singularity [Gy]') ax2.set_ylabel('Density [kg/m3]', color=density_color) ax2.set_yscale('log') ax2.tick_params('y', colors=density_color) ax2.set_xlim(np.min(time)-0.2,np.max(time)) ax2.set_ylim(1e-27,1e-20) ax3 = ax1.twinx() ax3.fill_between(time, rho_R, rho_M + rho_R, color = 'green', label = 'Matter $a \propto t^{2/3}$', alpha = 0.15) ax3.fill_between(time, rho_M + rho_R, rho_lamb + rho_M + rho_R, color = 'black', label = 'Dark Energy $a \propto e^{H t}$', alpha = 0.15) ax3.axhline(y=1,linewidth = 2, color = 'black', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'orange', alpha = 0.3) ax3.axhline(y=0,xmin = 0.8, linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time,rho_R,linewidth = 2, color = 'orange', alpha = 0.3) ax3.plot(time,rho_M + rho_R,linewidth = 2, color = 'green', alpha = 0.3) ax3.plot(time,rho_lamb + rho_M + rho_R,linewidth = 2, color = 'black', alpha = 0.3) ax3.axvline(x=current_day/1e9, linewidth = 2, color = 'purple', linestyle = '--')#, label = 'Current time') ax3.set_ylim(ymin=0,ymax=1) ax3.set_yticks([],[]) ax3.legend(loc = (0.54,0.2), prop = {'size':12.5}) ax3.set_xlim(0,40) print("Current day is %.2f Gy from this model" % (current_day/1e9)) #Should be 13.813 Gy def friedmann_ode(t, y, H0, omega_R, omega_M, omega_lambda, omega_K): #(H0, omega_R, omega_M, omega_lambda, omega_K) = params a = y[0] dadt = a * H0 * np.sqrt( omega_R*(a0/a)**4 + omega_M*(a0/a)**3 + omega_K*(a0/a)**2 + omega_lambda) dydt = [dadt] return dydt def friedmann_odeint(y, t, H0, omega_R, omega_M, omega_lambda, omega_K): #(H0, omega_R, omega_M, omega_lambda, omega_K) = params a = y[0] dadt = a * H0 * np.sqrt( omega_R*(a0/a)**4 + omega_M*(a0/a)**3 + omega_K*(a0/a)**2 + omega_lambda) dydt = [dadt] return dydt if __name__ == '__main__': plt.rcParams.update({'font.size': 15}) main()
0.357007
0.497864
import unittest from sliding_puzzle.algorithm.search import Search from sliding_puzzle.representation.puzzle import Puzzle class SolvableAtFirstTestCase(unittest.TestCase): def test_is_unsolvable(self): puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 35, 34], ] ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 15, 14]] ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 24, 23], ] ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle([[0, 1, 2], [3, 4, 5], [6, 8, 7]]) self.assertFalse(Search.is_solvable(puzzle)) def test_is_solvable(self): puzzle: Puzzle = Puzzle([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24], ] ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], ] ) self.assertTrue(Search.is_solvable(puzzle)) def test_is_solvable_8(self): solvable = [ [[0, 1, 2], [4, 5, 3], [7, 8, 6]], [[1, 2, 3], [0, 4, 6], [7, 5, 8]], [[1, 0, 3], [7, 2, 5], [8, 4, 6]], ] not_solvable = [ [[1, 2, 3], [6, 8, 4], [5, 7, 0]], [[1, 2, 3], [4, 5, 6], [8, 7, 0]], [[1, 5, 0], [3, 2, 8], [4, 6, 7]], ] [self.assertTrue(Search.is_solvable(Puzzle(p))) for p in solvable] [self.assertFalse(Search.is_solvable(Puzzle(p))) for p in not_solvable] def test_is_solvable_15(self): solvable = [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 0, 12], [13, 14, 15, 11]], [[4, 1, 2, 3], [5, 6, 7, 11], [8, 9, 10, 15], [12, 13, 14, 0]], ] not_solvable = [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 0]], [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 0, 11], [13, 14, 15, 12]], ] [self.assertTrue(Search.is_solvable(Puzzle(p))) for p in solvable] [self.assertFalse(Search.is_solvable(Puzzle(p))) for p in not_solvable] class SolvableAtLastTestCase(unittest.TestCase): def test_is_unsolvable(self): puzzle: Puzzle = Puzzle([[2, 1, 3], [4, 5, 6], [7, 8, 0]], blank_at_first=False) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [2, 1, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 0], ], blank_at_first=False, ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[2, 1, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 0]], blank_at_first=False, ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [2, 1, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 0], ], blank_at_first=False, ) self.assertFalse(Search.is_solvable(puzzle)) def test_is_solvable(self): puzzle: Puzzle = Puzzle([[1, 2, 3], [4, 5, 6], [7, 8, 0]], blank_at_first=False) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 0]], blank_at_first=False, ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 0], ], blank_at_first=False, ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 0], ], blank_at_first=False, ) self.assertTrue(Search.is_solvable(puzzle))
tests/test_solvable.py
import unittest from sliding_puzzle.algorithm.search import Search from sliding_puzzle.representation.puzzle import Puzzle class SolvableAtFirstTestCase(unittest.TestCase): def test_is_unsolvable(self): puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 35, 34], ] ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 15, 14]] ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 24, 23], ] ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle([[0, 1, 2], [3, 4, 5], [6, 8, 7]]) self.assertFalse(Search.is_solvable(puzzle)) def test_is_solvable(self): puzzle: Puzzle = Puzzle([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24], ] ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], ] ) self.assertTrue(Search.is_solvable(puzzle)) def test_is_solvable_8(self): solvable = [ [[0, 1, 2], [4, 5, 3], [7, 8, 6]], [[1, 2, 3], [0, 4, 6], [7, 5, 8]], [[1, 0, 3], [7, 2, 5], [8, 4, 6]], ] not_solvable = [ [[1, 2, 3], [6, 8, 4], [5, 7, 0]], [[1, 2, 3], [4, 5, 6], [8, 7, 0]], [[1, 5, 0], [3, 2, 8], [4, 6, 7]], ] [self.assertTrue(Search.is_solvable(Puzzle(p))) for p in solvable] [self.assertFalse(Search.is_solvable(Puzzle(p))) for p in not_solvable] def test_is_solvable_15(self): solvable = [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 0, 12], [13, 14, 15, 11]], [[4, 1, 2, 3], [5, 6, 7, 11], [8, 9, 10, 15], [12, 13, 14, 0]], ] not_solvable = [ [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 0]], [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 0, 11], [13, 14, 15, 12]], ] [self.assertTrue(Search.is_solvable(Puzzle(p))) for p in solvable] [self.assertFalse(Search.is_solvable(Puzzle(p))) for p in not_solvable] class SolvableAtLastTestCase(unittest.TestCase): def test_is_unsolvable(self): puzzle: Puzzle = Puzzle([[2, 1, 3], [4, 5, 6], [7, 8, 0]], blank_at_first=False) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [2, 1, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 0], ], blank_at_first=False, ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[2, 1, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 0]], blank_at_first=False, ) self.assertFalse(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [2, 1, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 0], ], blank_at_first=False, ) self.assertFalse(Search.is_solvable(puzzle)) def test_is_solvable(self): puzzle: Puzzle = Puzzle([[1, 2, 3], [4, 5, 6], [7, 8, 0]], blank_at_first=False) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 0]], blank_at_first=False, ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 0], ], blank_at_first=False, ) self.assertTrue(Search.is_solvable(puzzle)) puzzle: Puzzle = Puzzle( [ [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 0], ], blank_at_first=False, ) self.assertTrue(Search.is_solvable(puzzle))
0.551815
0.689422
import random from itertools import izip_longest, groupby, chain from wa.framework.configuration.core import (MetaConfiguration, RunConfiguration, JobGenerator, Status, settings) from wa.framework.configuration.parsers import ConfigParser from wa.framework.configuration.plugin_cache import PluginCache from wa.framework.exception import NotFoundError from wa.framework.job import Job from wa.utils import log class CombinedConfig(object): @staticmethod def from_pod(pod): instance = CombinedConfig() instance.settings = MetaConfiguration.from_pod(pod.get('settings', {})) instance.run_config = RunConfiguration.from_pod(pod.get('run_config', {})) return instance def __init__(self, settings=None, run_config=None): self.settings = settings self.run_config = run_config def to_pod(self): return {'settings': self.settings.to_pod(), 'run_config': self.run_config.to_pod()} class ConfigManager(object): """ Represents run-time state of WA. Mostly used as a container for loaded configuration and discovered plugins. This exists outside of any command or run and is associated with the running instance of wA itself. """ @property def enabled_instruments(self): return self.jobs_config.enabled_instruments @property def enabled_processors(self): return self.jobs_config.enabled_processors @property def job_specs(self): if not self._jobs_generated: msg = 'Attempting to access job specs before '\ 'jobs have been generated' raise RuntimeError(msg) return [j.spec for j in self._jobs] @property def jobs(self): if not self._jobs_generated: msg = 'Attempting to access jobs before '\ 'they have been generated' raise RuntimeError(msg) return self._jobs def __init__(self, settings=settings): self.settings = settings self.run_config = RunConfiguration() self.plugin_cache = PluginCache() self.jobs_config = JobGenerator(self.plugin_cache) self.loaded_config_sources = [] self._config_parser = ConfigParser() self._jobs = [] self._jobs_generated = False self.agenda = None def load_config_file(self, filepath): self._config_parser.load_from_path(self, filepath) self.loaded_config_sources.append(filepath) def load_config(self, values, source, wrap_exceptions=True): self._config_parser.load(self, values, source) self.loaded_config_sources.append(source) def get_plugin(self, name=None, kind=None, *args, **kwargs): return self.plugin_cache.get_plugin(name, kind, *args, **kwargs) def get_instruments(self, target): instruments = [] for name in self.enabled_instruments: try: instruments.append(self.get_plugin(name, kind='instrument', target=target)) except NotFoundError: msg = 'Instrument "{}" not found' raise NotFoundError(msg.format(name)) return instruments def get_processors(self): processors = [] for name in self.enabled_processors: try: proc = self.plugin_cache.get_plugin(name, kind='output_processor') except NotFoundError: msg = 'Output Processor "{}" not found' raise NotFoundError(msg.format(name)) processors.append(proc) return processors def finalize(self): if not self.agenda: msg = 'Attempting to finalize config before agenda has been set' raise RuntimeError(msg) self.run_config.merge_device_config(self.plugin_cache) return CombinedConfig(self.settings, self.run_config) def generate_jobs(self, context): job_specs = self.jobs_config.generate_job_specs(context.tm) exec_order = self.run_config.execution_order log.indent() for spec, i in permute_iterations(job_specs, exec_order): job = Job(spec, i, context) job.load(context.tm.target) self._jobs.append(job) context.run_state.add_job(job) log.dedent() self._jobs_generated = True def permute_by_job(specs): """ This is that "classic" implementation that executes all iterations of a workload spec before proceeding onto the next spec. """ for spec in specs: for i in range(1, spec.iterations + 1): yield (spec, i) def permute_by_iteration(specs): """ Runs the first iteration for all benchmarks first, before proceeding to the next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2, C1, C2... If multiple sections where specified in the agenda, this will run all sections for the first global spec first, followed by all sections for the second spec, etc. e.g. given sections X and Y, and global specs A and B, with 2 iterations, this will run X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2 """ groups = [list(g) for k, g in groupby(specs, lambda s: s.workload_id)] all_tuples = [] for spec in chain(*groups): all_tuples.append([(spec, i + 1) for i in xrange(spec.iterations)]) for t in chain(*map(list, izip_longest(*all_tuples))): if t is not None: yield t def permute_by_section(specs): """ Runs the first iteration for all benchmarks first, before proceeding to the next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2, C1, C2... If multiple sections where specified in the agenda, this will run all specs for the first section followed by all specs for the seciod section, etc. e.g. given sections X and Y, and global specs A and B, with 2 iterations, this will run X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2 """ groups = [list(g) for k, g in groupby(specs, lambda s: s.section_id)] all_tuples = [] for spec in chain(*groups): all_tuples.append([(spec, i + 1) for i in xrange(spec.iterations)]) for t in chain(*map(list, izip_longest(*all_tuples))): if t is not None: yield t def permute_randomly(specs): """ This will generate a random permutation of specs/iteration tuples. """ result = [] for spec in specs: for i in xrange(1, spec.iterations + 1): result.append((spec, i)) random.shuffle(result) for t in result: yield t permute_map = { 'by_iteration': permute_by_iteration, 'by_job': permute_by_job, 'by_section': permute_by_section, 'random': permute_randomly, } def permute_iterations(specs, exec_order): if exec_order not in permute_map: msg = 'Unknown execution order "{}"; must be in: {}' raise ValueError(msg.format(exec_order, permute_map.keys())) return permute_map[exec_order](specs)
wa/framework/configuration/execution.py
import random from itertools import izip_longest, groupby, chain from wa.framework.configuration.core import (MetaConfiguration, RunConfiguration, JobGenerator, Status, settings) from wa.framework.configuration.parsers import ConfigParser from wa.framework.configuration.plugin_cache import PluginCache from wa.framework.exception import NotFoundError from wa.framework.job import Job from wa.utils import log class CombinedConfig(object): @staticmethod def from_pod(pod): instance = CombinedConfig() instance.settings = MetaConfiguration.from_pod(pod.get('settings', {})) instance.run_config = RunConfiguration.from_pod(pod.get('run_config', {})) return instance def __init__(self, settings=None, run_config=None): self.settings = settings self.run_config = run_config def to_pod(self): return {'settings': self.settings.to_pod(), 'run_config': self.run_config.to_pod()} class ConfigManager(object): """ Represents run-time state of WA. Mostly used as a container for loaded configuration and discovered plugins. This exists outside of any command or run and is associated with the running instance of wA itself. """ @property def enabled_instruments(self): return self.jobs_config.enabled_instruments @property def enabled_processors(self): return self.jobs_config.enabled_processors @property def job_specs(self): if not self._jobs_generated: msg = 'Attempting to access job specs before '\ 'jobs have been generated' raise RuntimeError(msg) return [j.spec for j in self._jobs] @property def jobs(self): if not self._jobs_generated: msg = 'Attempting to access jobs before '\ 'they have been generated' raise RuntimeError(msg) return self._jobs def __init__(self, settings=settings): self.settings = settings self.run_config = RunConfiguration() self.plugin_cache = PluginCache() self.jobs_config = JobGenerator(self.plugin_cache) self.loaded_config_sources = [] self._config_parser = ConfigParser() self._jobs = [] self._jobs_generated = False self.agenda = None def load_config_file(self, filepath): self._config_parser.load_from_path(self, filepath) self.loaded_config_sources.append(filepath) def load_config(self, values, source, wrap_exceptions=True): self._config_parser.load(self, values, source) self.loaded_config_sources.append(source) def get_plugin(self, name=None, kind=None, *args, **kwargs): return self.plugin_cache.get_plugin(name, kind, *args, **kwargs) def get_instruments(self, target): instruments = [] for name in self.enabled_instruments: try: instruments.append(self.get_plugin(name, kind='instrument', target=target)) except NotFoundError: msg = 'Instrument "{}" not found' raise NotFoundError(msg.format(name)) return instruments def get_processors(self): processors = [] for name in self.enabled_processors: try: proc = self.plugin_cache.get_plugin(name, kind='output_processor') except NotFoundError: msg = 'Output Processor "{}" not found' raise NotFoundError(msg.format(name)) processors.append(proc) return processors def finalize(self): if not self.agenda: msg = 'Attempting to finalize config before agenda has been set' raise RuntimeError(msg) self.run_config.merge_device_config(self.plugin_cache) return CombinedConfig(self.settings, self.run_config) def generate_jobs(self, context): job_specs = self.jobs_config.generate_job_specs(context.tm) exec_order = self.run_config.execution_order log.indent() for spec, i in permute_iterations(job_specs, exec_order): job = Job(spec, i, context) job.load(context.tm.target) self._jobs.append(job) context.run_state.add_job(job) log.dedent() self._jobs_generated = True def permute_by_job(specs): """ This is that "classic" implementation that executes all iterations of a workload spec before proceeding onto the next spec. """ for spec in specs: for i in range(1, spec.iterations + 1): yield (spec, i) def permute_by_iteration(specs): """ Runs the first iteration for all benchmarks first, before proceeding to the next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2, C1, C2... If multiple sections where specified in the agenda, this will run all sections for the first global spec first, followed by all sections for the second spec, etc. e.g. given sections X and Y, and global specs A and B, with 2 iterations, this will run X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2 """ groups = [list(g) for k, g in groupby(specs, lambda s: s.workload_id)] all_tuples = [] for spec in chain(*groups): all_tuples.append([(spec, i + 1) for i in xrange(spec.iterations)]) for t in chain(*map(list, izip_longest(*all_tuples))): if t is not None: yield t def permute_by_section(specs): """ Runs the first iteration for all benchmarks first, before proceeding to the next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2, C1, C2... If multiple sections where specified in the agenda, this will run all specs for the first section followed by all specs for the seciod section, etc. e.g. given sections X and Y, and global specs A and B, with 2 iterations, this will run X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2 """ groups = [list(g) for k, g in groupby(specs, lambda s: s.section_id)] all_tuples = [] for spec in chain(*groups): all_tuples.append([(spec, i + 1) for i in xrange(spec.iterations)]) for t in chain(*map(list, izip_longest(*all_tuples))): if t is not None: yield t def permute_randomly(specs): """ This will generate a random permutation of specs/iteration tuples. """ result = [] for spec in specs: for i in xrange(1, spec.iterations + 1): result.append((spec, i)) random.shuffle(result) for t in result: yield t permute_map = { 'by_iteration': permute_by_iteration, 'by_job': permute_by_job, 'by_section': permute_by_section, 'random': permute_randomly, } def permute_iterations(specs, exec_order): if exec_order not in permute_map: msg = 'Unknown execution order "{}"; must be in: {}' raise ValueError(msg.format(exec_order, permute_map.keys())) return permute_map[exec_order](specs)
0.577853
0.120258
import apps.basics.op_drf.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('permission', '0001_initial'), ] operations = [ migrations.CreateModel( name='Api', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', apps.basics.op_drf.fields.DescriptionField(blank=True, default='', help_text='描述', null=True, verbose_name='描述')), ('modifier', apps.basics.op_drf.fields.ModifierCharField(blank=True, help_text='该记录最后修改者', max_length=255, null=True, verbose_name='修改者')), ('dept_belong_id', models.CharField(blank=True, max_length=64, null=True, verbose_name='数据归属部门')), ('update_datetime', apps.basics.op_drf.fields.UpdateDateTimeField(auto_now=True, help_text='修改时间', null=True, verbose_name='修改时间')), ('create_datetime', apps.basics.op_drf.fields.CreateDateTimeField(auto_now_add=True, help_text='创建时间', null=True, verbose_name='创建时间')), ('name', models.CharField(default=str, max_length=100, verbose_name='接口名称')), ('url', models.CharField(default=str, max_length=200, verbose_name='请求url')), ('headers', models.TextField(blank=True, default=dict, null=True, verbose_name='请求头信息')), ('params', models.TextField(blank=True, default=dict, null=True, verbose_name='请求参数')), ('validators', models.TextField(blank=True, default=list, null=True, verbose_name='验证器')), ('extractors', models.TextField(blank=True, default=list, null=True, verbose_name='提取器')), ('desc', models.CharField(blank=True, default=str, max_length=200, null=True, verbose_name='接口描述')), ('last_exe_status', models.IntegerField(choices=[(0, '未执行'), (1, '成功'), (2, '失败'), (3, '阻塞'), (4, '部分失败')], default=0, verbose_name='最后执行状态')), ('status', models.IntegerField(choices=[(0, '禁用'), (1, '正常'), (2, '仅自己可见')], default=1, verbose_name='状态')), ('creator', models.ForeignKey(db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_query_name='creator_query', to=settings.AUTH_USER_MODEL, verbose_name='创建者')), ], options={ 'verbose_name_plural': '接口', }, ), migrations.CreateModel( name='Suite', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', apps.basics.op_drf.fields.DescriptionField(blank=True, default='', help_text='描述', null=True, verbose_name='描述')), ('modifier', apps.basics.op_drf.fields.ModifierCharField(blank=True, help_text='该记录最后修改者', max_length=255, null=True, verbose_name='修改者')), ('dept_belong_id', models.CharField(blank=True, max_length=64, null=True, verbose_name='数据归属部门')), ('update_datetime', apps.basics.op_drf.fields.UpdateDateTimeField(auto_now=True, help_text='修改时间', null=True, verbose_name='修改时间')), ('create_datetime', apps.basics.op_drf.fields.CreateDateTimeField(auto_now_add=True, help_text='创建时间', null=True, verbose_name='创建时间')), ('name', models.CharField(default=str, max_length=100, verbose_name='用例集名称')), ('status', models.IntegerField(choices=[(0, '禁用'), (1, '正常'), (2, '仅自己可见')], default=1, verbose_name='状态')), ('apis', models.ManyToManyField(to='api.Api', verbose_name='接口')), ('creator', models.ForeignKey(db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_query_name='creator_query', to=settings.AUTH_USER_MODEL, verbose_name='创建者')), ('dept', models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='api_suite_dept', to='permission.Dept', verbose_name='模块分类')), ], options={ 'verbose_name_plural': '接口集', }, ), ]
backend/apps/projects/api/migrations/0001_initial.py
import apps.basics.op_drf.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('permission', '0001_initial'), ] operations = [ migrations.CreateModel( name='Api', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', apps.basics.op_drf.fields.DescriptionField(blank=True, default='', help_text='描述', null=True, verbose_name='描述')), ('modifier', apps.basics.op_drf.fields.ModifierCharField(blank=True, help_text='该记录最后修改者', max_length=255, null=True, verbose_name='修改者')), ('dept_belong_id', models.CharField(blank=True, max_length=64, null=True, verbose_name='数据归属部门')), ('update_datetime', apps.basics.op_drf.fields.UpdateDateTimeField(auto_now=True, help_text='修改时间', null=True, verbose_name='修改时间')), ('create_datetime', apps.basics.op_drf.fields.CreateDateTimeField(auto_now_add=True, help_text='创建时间', null=True, verbose_name='创建时间')), ('name', models.CharField(default=str, max_length=100, verbose_name='接口名称')), ('url', models.CharField(default=str, max_length=200, verbose_name='请求url')), ('headers', models.TextField(blank=True, default=dict, null=True, verbose_name='请求头信息')), ('params', models.TextField(blank=True, default=dict, null=True, verbose_name='请求参数')), ('validators', models.TextField(blank=True, default=list, null=True, verbose_name='验证器')), ('extractors', models.TextField(blank=True, default=list, null=True, verbose_name='提取器')), ('desc', models.CharField(blank=True, default=str, max_length=200, null=True, verbose_name='接口描述')), ('last_exe_status', models.IntegerField(choices=[(0, '未执行'), (1, '成功'), (2, '失败'), (3, '阻塞'), (4, '部分失败')], default=0, verbose_name='最后执行状态')), ('status', models.IntegerField(choices=[(0, '禁用'), (1, '正常'), (2, '仅自己可见')], default=1, verbose_name='状态')), ('creator', models.ForeignKey(db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_query_name='creator_query', to=settings.AUTH_USER_MODEL, verbose_name='创建者')), ], options={ 'verbose_name_plural': '接口', }, ), migrations.CreateModel( name='Suite', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', apps.basics.op_drf.fields.DescriptionField(blank=True, default='', help_text='描述', null=True, verbose_name='描述')), ('modifier', apps.basics.op_drf.fields.ModifierCharField(blank=True, help_text='该记录最后修改者', max_length=255, null=True, verbose_name='修改者')), ('dept_belong_id', models.CharField(blank=True, max_length=64, null=True, verbose_name='数据归属部门')), ('update_datetime', apps.basics.op_drf.fields.UpdateDateTimeField(auto_now=True, help_text='修改时间', null=True, verbose_name='修改时间')), ('create_datetime', apps.basics.op_drf.fields.CreateDateTimeField(auto_now_add=True, help_text='创建时间', null=True, verbose_name='创建时间')), ('name', models.CharField(default=str, max_length=100, verbose_name='用例集名称')), ('status', models.IntegerField(choices=[(0, '禁用'), (1, '正常'), (2, '仅自己可见')], default=1, verbose_name='状态')), ('apis', models.ManyToManyField(to='api.Api', verbose_name='接口')), ('creator', models.ForeignKey(db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_query_name='creator_query', to=settings.AUTH_USER_MODEL, verbose_name='创建者')), ('dept', models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='api_suite_dept', to='permission.Dept', verbose_name='模块分类')), ], options={ 'verbose_name_plural': '接口集', }, ), ]
0.385837
0.217504
from queue import PriorityQueue Coordinate = tuple[int, int] map: list[list[int]] = [] PART_TWO = True # For each position, we store the lowest cost path to get there. lowest_cost: list[list[None | tuple[int, list[Coordinate]]]] = [] with open('2021-12-15.txt') as f: for line in (l.strip() for l in f): map_values = [int(x) for x in line] if PART_TWO: for i in range(1,5): map_values += [(int(x)+i) for x in line] map.append(map_values) lowest_cost.append([None] * len(map_values)) if PART_TWO: # Expand map 4 times below. orig_map_len = len(map) for i in range(1,5): for y in range(orig_map_len): map.append([(x+i) for x in map[y]]) lowest_cost.append([None] * len(map[0])) # Deal with overflows: At most 9+4, so just subtract 9 as needed. for y in range(len(map)): for x in range(len(map[y])): if map[y][x] > 9: map[y][x] -= 9 # Priority queue always draws the current lowest cost path work_queue: PriorityQueue[tuple[int,Coordinate, list[Coordinate]]] = PriorityQueue() work_queue.put_nowait((0,(0,0),[(0,0)])) NEIGHBORS = ((-1, 0), (1, 0), (0, 1), (0, -1)) max_y, max_x = len(map)-1, len(map[0])-1 while not work_queue.empty(): cost, (x, y), path = work_queue.get_nowait() if lowest_cost[max_y][max_x] is not None: if lowest_cost[max_y][max_x][0] < cost: # Drain task if there is already a cheaper way to reach the end. work_queue.task_done() break if lowest_cost[y][x] is not None and lowest_cost[y][x][0] < cost: work_queue.task_done() continue lowest_cost[y][x] = (cost, path) for dx, dy in NEIGHBORS: nx, ny = x+dx, y+dy # Skip out of bounds if min(nx, ny) < 0 or ny > max_y or nx > max_x: continue new_cost = cost + map[ny][nx] new_path = path + [(nx, ny)] # Skip unless we're getting there cheaper. if lowest_cost[ny][nx] is not None: if lowest_cost[ny][nx][0] <= new_cost: continue # NOT THREAD SAFE: Per cell threading.Lock on lowest_cost cells would fix. lowest_cost[ny][nx] = (new_cost, new_path) work_queue.put_nowait((new_cost, (nx, ny), new_path)) work_queue.task_done() print(lowest_cost[max_y][max_x]) print(lowest_cost[max_y][max_x][0])
2021/2021-12-15.py
from queue import PriorityQueue Coordinate = tuple[int, int] map: list[list[int]] = [] PART_TWO = True # For each position, we store the lowest cost path to get there. lowest_cost: list[list[None | tuple[int, list[Coordinate]]]] = [] with open('2021-12-15.txt') as f: for line in (l.strip() for l in f): map_values = [int(x) for x in line] if PART_TWO: for i in range(1,5): map_values += [(int(x)+i) for x in line] map.append(map_values) lowest_cost.append([None] * len(map_values)) if PART_TWO: # Expand map 4 times below. orig_map_len = len(map) for i in range(1,5): for y in range(orig_map_len): map.append([(x+i) for x in map[y]]) lowest_cost.append([None] * len(map[0])) # Deal with overflows: At most 9+4, so just subtract 9 as needed. for y in range(len(map)): for x in range(len(map[y])): if map[y][x] > 9: map[y][x] -= 9 # Priority queue always draws the current lowest cost path work_queue: PriorityQueue[tuple[int,Coordinate, list[Coordinate]]] = PriorityQueue() work_queue.put_nowait((0,(0,0),[(0,0)])) NEIGHBORS = ((-1, 0), (1, 0), (0, 1), (0, -1)) max_y, max_x = len(map)-1, len(map[0])-1 while not work_queue.empty(): cost, (x, y), path = work_queue.get_nowait() if lowest_cost[max_y][max_x] is not None: if lowest_cost[max_y][max_x][0] < cost: # Drain task if there is already a cheaper way to reach the end. work_queue.task_done() break if lowest_cost[y][x] is not None and lowest_cost[y][x][0] < cost: work_queue.task_done() continue lowest_cost[y][x] = (cost, path) for dx, dy in NEIGHBORS: nx, ny = x+dx, y+dy # Skip out of bounds if min(nx, ny) < 0 or ny > max_y or nx > max_x: continue new_cost = cost + map[ny][nx] new_path = path + [(nx, ny)] # Skip unless we're getting there cheaper. if lowest_cost[ny][nx] is not None: if lowest_cost[ny][nx][0] <= new_cost: continue # NOT THREAD SAFE: Per cell threading.Lock on lowest_cost cells would fix. lowest_cost[ny][nx] = (new_cost, new_path) work_queue.put_nowait((new_cost, (nx, ny), new_path)) work_queue.task_done() print(lowest_cost[max_y][max_x]) print(lowest_cost[max_y][max_x][0])
0.302082
0.367015
import itertools import pytest from multpersist import OrderNotFound, compute_mp_order, \ efficient_candidate_generator, find_max_order, find_next, \ find_with_order, infinite_candidate_generator, is_in_order def predetermined_number_generator(): for x in [10, 18, 237, 2777778888899, 277777788888899]: yield x def ranged_generator(start, stop): for x in list(range(start, stop)): s = str(x) if '5' in s: next elif not is_in_order(s): next else: yield x def test_is_in_order(): assert is_in_order(str(11)) assert is_in_order(str(123)) assert not is_in_order(str(321)) def test_ranged_generator(): count = 0 for xl in ranged_generator(10, 999): count += 1 assert count == 155 def test_efficient_candidate_generator(): count = 0 for xl in efficient_candidate_generator(10, 999): count += 1 assert count == 155 def test_compute_order(): assert compute_mp_order(10) == 1 assert compute_mp_order(18) == 1 assert compute_mp_order(25) == 2 assert compute_mp_order(237) == 2 assert compute_mp_order(2777778888899) == 3 assert compute_mp_order(277777788888899) == 11 def test_find_order(): assert find_max_order(predetermined_number_generator) == \ (11, 277777788888899) def test_largest_order_under_1e6(): def generator(): return efficient_candidate_generator(10, 1000000) assert find_max_order(generator) == (7, 68889) def test_largest_order_between_1e6_3e6(): def generator(): return efficient_candidate_generator(1000000, 10000000) assert find_max_order(generator) == (8, 2677889) def test_infinite_generator(): generator = infinite_candidate_generator(10) items = list(itertools.islice(generator, 10)) assert items == [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] generator = infinite_candidate_generator(1000) items = list(itertools.islice(generator, 10)) assert items == [1111, 1112, 1113, 1114, 1116, 1117, 1118, 1119, 1122, 1123] def test_find_with_order_not_found(): def generator(): return predetermined_number_generator() with pytest.raises(OrderNotFound): find_with_order(generator, 10) def test_find_smallest_with_order(): def generator(): return infinite_candidate_generator(10) assert find_with_order(generator, 6) == (6, 6788) assert find_with_order(generator, 7) == (7, 68889) assert find_with_order(generator, 8) == (8, 2677889) assert find_with_order(generator, 9) == (9, 26888999) def test_find_next(): def generator(): return infinite_candidate_generator(10) results = list(itertools.islice(find_next(generator, 1), 4)) assert results == [(1, 10), (2, 25), (3, 39), (4, 77)]
tests/test_compute_order.py
import itertools import pytest from multpersist import OrderNotFound, compute_mp_order, \ efficient_candidate_generator, find_max_order, find_next, \ find_with_order, infinite_candidate_generator, is_in_order def predetermined_number_generator(): for x in [10, 18, 237, 2777778888899, 277777788888899]: yield x def ranged_generator(start, stop): for x in list(range(start, stop)): s = str(x) if '5' in s: next elif not is_in_order(s): next else: yield x def test_is_in_order(): assert is_in_order(str(11)) assert is_in_order(str(123)) assert not is_in_order(str(321)) def test_ranged_generator(): count = 0 for xl in ranged_generator(10, 999): count += 1 assert count == 155 def test_efficient_candidate_generator(): count = 0 for xl in efficient_candidate_generator(10, 999): count += 1 assert count == 155 def test_compute_order(): assert compute_mp_order(10) == 1 assert compute_mp_order(18) == 1 assert compute_mp_order(25) == 2 assert compute_mp_order(237) == 2 assert compute_mp_order(2777778888899) == 3 assert compute_mp_order(277777788888899) == 11 def test_find_order(): assert find_max_order(predetermined_number_generator) == \ (11, 277777788888899) def test_largest_order_under_1e6(): def generator(): return efficient_candidate_generator(10, 1000000) assert find_max_order(generator) == (7, 68889) def test_largest_order_between_1e6_3e6(): def generator(): return efficient_candidate_generator(1000000, 10000000) assert find_max_order(generator) == (8, 2677889) def test_infinite_generator(): generator = infinite_candidate_generator(10) items = list(itertools.islice(generator, 10)) assert items == [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] generator = infinite_candidate_generator(1000) items = list(itertools.islice(generator, 10)) assert items == [1111, 1112, 1113, 1114, 1116, 1117, 1118, 1119, 1122, 1123] def test_find_with_order_not_found(): def generator(): return predetermined_number_generator() with pytest.raises(OrderNotFound): find_with_order(generator, 10) def test_find_smallest_with_order(): def generator(): return infinite_candidate_generator(10) assert find_with_order(generator, 6) == (6, 6788) assert find_with_order(generator, 7) == (7, 68889) assert find_with_order(generator, 8) == (8, 2677889) assert find_with_order(generator, 9) == (9, 26888999) def test_find_next(): def generator(): return infinite_candidate_generator(10) results = list(itertools.islice(find_next(generator, 1), 4)) assert results == [(1, 10), (2, 25), (3, 39), (4, 77)]
0.426083
0.44059
from pprint import pformat from six import iteritems import re class CouponDiscount(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, created=None, changed_by=None, updated=None, pricing_component=None, pricing_component_name=None, pricing_component_id=None, unit_of_measure_name=None, unit_of_measure_id=None, units_free=None, percentage_discount=None, cash_discount=None): """ CouponDiscount - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'created': 'datetime', 'changed_by': 'str', 'updated': 'datetime', 'pricing_component': 'str', 'pricing_component_name': 'str', 'pricing_component_id': 'str', 'unit_of_measure_name': 'str', 'unit_of_measure_id': 'str', 'units_free': 'int', 'percentage_discount': 'float', 'cash_discount': 'float' } self.attribute_map = { 'created': 'created', 'changed_by': 'changedBy', 'updated': 'updated', 'pricing_component': 'pricingComponent', 'pricing_component_name': 'pricingComponentName', 'pricing_component_id': 'pricingComponentID', 'unit_of_measure_name': 'unitOfMeasureName', 'unit_of_measure_id': 'unitOfMeasureID', 'units_free': 'unitsFree', 'percentage_discount': 'percentageDiscount', 'cash_discount': 'cashDiscount' } self._created = created self._changed_by = changed_by self._updated = updated self._pricing_component = pricing_component self._pricing_component_name = pricing_component_name self._pricing_component_id = pricing_component_id self._unit_of_measure_name = unit_of_measure_name self._unit_of_measure_id = unit_of_measure_id self._units_free = units_free self._percentage_discount = percentage_discount self._cash_discount = cash_discount @property def created(self): """ Gets the created of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was created.\", \"verbs\":[] } :return: The created of this CouponDiscount. :rtype: datetime """ return self._created @created.setter def created(self, created): """ Sets the created of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was created.\", \"verbs\":[] } :param created: The created of this CouponDiscount. :type: datetime """ self._created = created @property def changed_by(self): """ Gets the changed_by of this CouponDiscount. { \"description\" : \"ID of the user who last updated the entity.\", \"verbs\":[] } :return: The changed_by of this CouponDiscount. :rtype: str """ return self._changed_by @changed_by.setter def changed_by(self, changed_by): """ Sets the changed_by of this CouponDiscount. { \"description\" : \"ID of the user who last updated the entity.\", \"verbs\":[] } :param changed_by: The changed_by of this CouponDiscount. :type: str """ self._changed_by = changed_by @property def updated(self): """ Gets the updated of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was last updated.\", \"verbs\":[] } :return: The updated of this CouponDiscount. :rtype: datetime """ return self._updated @updated.setter def updated(self, updated): """ Sets the updated of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was last updated.\", \"verbs\":[] } :param updated: The updated of this CouponDiscount. :type: datetime """ self._updated = updated @property def pricing_component(self): """ Gets the pricing_component of this CouponDiscount. { \"description\" : \"Name or ID of the pricing component to apply the discount to. If not set blank discount is applied at the invoice level.\", \"verbs\":[\"POST\"] } :return: The pricing_component of this CouponDiscount. :rtype: str """ return self._pricing_component @pricing_component.setter def pricing_component(self, pricing_component): """ Sets the pricing_component of this CouponDiscount. { \"description\" : \"Name or ID of the pricing component to apply the discount to. If not set blank discount is applied at the invoice level.\", \"verbs\":[\"POST\"] } :param pricing_component: The pricing_component of this CouponDiscount. :type: str """ self._pricing_component = pricing_component @property def pricing_component_name(self): """ Gets the pricing_component_name of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :return: The pricing_component_name of this CouponDiscount. :rtype: str """ return self._pricing_component_name @pricing_component_name.setter def pricing_component_name(self, pricing_component_name): """ Sets the pricing_component_name of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :param pricing_component_name: The pricing_component_name of this CouponDiscount. :type: str """ self._pricing_component_name = pricing_component_name @property def pricing_component_id(self): """ Gets the pricing_component_id of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :return: The pricing_component_id of this CouponDiscount. :rtype: str """ return self._pricing_component_id @pricing_component_id.setter def pricing_component_id(self, pricing_component_id): """ Sets the pricing_component_id of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :param pricing_component_id: The pricing_component_id of this CouponDiscount. :type: str """ self._pricing_component_id = pricing_component_id @property def unit_of_measure_name(self): """ Gets the unit_of_measure_name of this CouponDiscount. :return: The unit_of_measure_name of this CouponDiscount. :rtype: str """ return self._unit_of_measure_name @unit_of_measure_name.setter def unit_of_measure_name(self, unit_of_measure_name): """ Sets the unit_of_measure_name of this CouponDiscount. :param unit_of_measure_name: The unit_of_measure_name of this CouponDiscount. :type: str """ self._unit_of_measure_name = unit_of_measure_name @property def unit_of_measure_id(self): """ Gets the unit_of_measure_id of this CouponDiscount. :return: The unit_of_measure_id of this CouponDiscount. :rtype: str """ return self._unit_of_measure_id @unit_of_measure_id.setter def unit_of_measure_id(self, unit_of_measure_id): """ Sets the unit_of_measure_id of this CouponDiscount. :param unit_of_measure_id: The unit_of_measure_id of this CouponDiscount. :type: str """ self._unit_of_measure_id = unit_of_measure_id @property def units_free(self): """ Gets the units_free of this CouponDiscount. { \"description\" : \"Number of units that are free for a pricing-component.\", \"verbs\":[\"POST\",\"GET\"] } :return: The units_free of this CouponDiscount. :rtype: int """ return self._units_free @units_free.setter def units_free(self, units_free): """ Sets the units_free of this CouponDiscount. { \"description\" : \"Number of units that are free for a pricing-component.\", \"verbs\":[\"POST\",\"GET\"] } :param units_free: The units_free of this CouponDiscount. :type: int """ self._units_free = units_free @property def percentage_discount(self): """ Gets the percentage_discount of this CouponDiscount. { \"description\" : \"Percentage to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :return: The percentage_discount of this CouponDiscount. :rtype: float """ return self._percentage_discount @percentage_discount.setter def percentage_discount(self, percentage_discount): """ Sets the percentage_discount of this CouponDiscount. { \"description\" : \"Percentage to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :param percentage_discount: The percentage_discount of this CouponDiscount. :type: float """ self._percentage_discount = percentage_discount @property def cash_discount(self): """ Gets the cash_discount of this CouponDiscount. { \"description\" : \"Fixed monetary amount to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :return: The cash_discount of this CouponDiscount. :rtype: float """ return self._cash_discount @cash_discount.setter def cash_discount(self, cash_discount): """ Sets the cash_discount of this CouponDiscount. { \"description\" : \"Fixed monetary amount to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :param cash_discount: The cash_discount of this CouponDiscount. :type: float """ self._cash_discount = cash_discount def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
billforward/models/coupon_discount.py
from pprint import pformat from six import iteritems import re class CouponDiscount(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, created=None, changed_by=None, updated=None, pricing_component=None, pricing_component_name=None, pricing_component_id=None, unit_of_measure_name=None, unit_of_measure_id=None, units_free=None, percentage_discount=None, cash_discount=None): """ CouponDiscount - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'created': 'datetime', 'changed_by': 'str', 'updated': 'datetime', 'pricing_component': 'str', 'pricing_component_name': 'str', 'pricing_component_id': 'str', 'unit_of_measure_name': 'str', 'unit_of_measure_id': 'str', 'units_free': 'int', 'percentage_discount': 'float', 'cash_discount': 'float' } self.attribute_map = { 'created': 'created', 'changed_by': 'changedBy', 'updated': 'updated', 'pricing_component': 'pricingComponent', 'pricing_component_name': 'pricingComponentName', 'pricing_component_id': 'pricingComponentID', 'unit_of_measure_name': 'unitOfMeasureName', 'unit_of_measure_id': 'unitOfMeasureID', 'units_free': 'unitsFree', 'percentage_discount': 'percentageDiscount', 'cash_discount': 'cashDiscount' } self._created = created self._changed_by = changed_by self._updated = updated self._pricing_component = pricing_component self._pricing_component_name = pricing_component_name self._pricing_component_id = pricing_component_id self._unit_of_measure_name = unit_of_measure_name self._unit_of_measure_id = unit_of_measure_id self._units_free = units_free self._percentage_discount = percentage_discount self._cash_discount = cash_discount @property def created(self): """ Gets the created of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was created.\", \"verbs\":[] } :return: The created of this CouponDiscount. :rtype: datetime """ return self._created @created.setter def created(self, created): """ Sets the created of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was created.\", \"verbs\":[] } :param created: The created of this CouponDiscount. :type: datetime """ self._created = created @property def changed_by(self): """ Gets the changed_by of this CouponDiscount. { \"description\" : \"ID of the user who last updated the entity.\", \"verbs\":[] } :return: The changed_by of this CouponDiscount. :rtype: str """ return self._changed_by @changed_by.setter def changed_by(self, changed_by): """ Sets the changed_by of this CouponDiscount. { \"description\" : \"ID of the user who last updated the entity.\", \"verbs\":[] } :param changed_by: The changed_by of this CouponDiscount. :type: str """ self._changed_by = changed_by @property def updated(self): """ Gets the updated of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was last updated.\", \"verbs\":[] } :return: The updated of this CouponDiscount. :rtype: datetime """ return self._updated @updated.setter def updated(self, updated): """ Sets the updated of this CouponDiscount. { \"description\" : \"The UTC DateTime when the object was last updated.\", \"verbs\":[] } :param updated: The updated of this CouponDiscount. :type: datetime """ self._updated = updated @property def pricing_component(self): """ Gets the pricing_component of this CouponDiscount. { \"description\" : \"Name or ID of the pricing component to apply the discount to. If not set blank discount is applied at the invoice level.\", \"verbs\":[\"POST\"] } :return: The pricing_component of this CouponDiscount. :rtype: str """ return self._pricing_component @pricing_component.setter def pricing_component(self, pricing_component): """ Sets the pricing_component of this CouponDiscount. { \"description\" : \"Name or ID of the pricing component to apply the discount to. If not set blank discount is applied at the invoice level.\", \"verbs\":[\"POST\"] } :param pricing_component: The pricing_component of this CouponDiscount. :type: str """ self._pricing_component = pricing_component @property def pricing_component_name(self): """ Gets the pricing_component_name of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :return: The pricing_component_name of this CouponDiscount. :rtype: str """ return self._pricing_component_name @pricing_component_name.setter def pricing_component_name(self, pricing_component_name): """ Sets the pricing_component_name of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :param pricing_component_name: The pricing_component_name of this CouponDiscount. :type: str """ self._pricing_component_name = pricing_component_name @property def pricing_component_id(self): """ Gets the pricing_component_id of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :return: The pricing_component_id of this CouponDiscount. :rtype: str """ return self._pricing_component_id @pricing_component_id.setter def pricing_component_id(self, pricing_component_id): """ Sets the pricing_component_id of this CouponDiscount. { \"description\" : \"\", \"verbs\":[\"GET\"] } :param pricing_component_id: The pricing_component_id of this CouponDiscount. :type: str """ self._pricing_component_id = pricing_component_id @property def unit_of_measure_name(self): """ Gets the unit_of_measure_name of this CouponDiscount. :return: The unit_of_measure_name of this CouponDiscount. :rtype: str """ return self._unit_of_measure_name @unit_of_measure_name.setter def unit_of_measure_name(self, unit_of_measure_name): """ Sets the unit_of_measure_name of this CouponDiscount. :param unit_of_measure_name: The unit_of_measure_name of this CouponDiscount. :type: str """ self._unit_of_measure_name = unit_of_measure_name @property def unit_of_measure_id(self): """ Gets the unit_of_measure_id of this CouponDiscount. :return: The unit_of_measure_id of this CouponDiscount. :rtype: str """ return self._unit_of_measure_id @unit_of_measure_id.setter def unit_of_measure_id(self, unit_of_measure_id): """ Sets the unit_of_measure_id of this CouponDiscount. :param unit_of_measure_id: The unit_of_measure_id of this CouponDiscount. :type: str """ self._unit_of_measure_id = unit_of_measure_id @property def units_free(self): """ Gets the units_free of this CouponDiscount. { \"description\" : \"Number of units that are free for a pricing-component.\", \"verbs\":[\"POST\",\"GET\"] } :return: The units_free of this CouponDiscount. :rtype: int """ return self._units_free @units_free.setter def units_free(self, units_free): """ Sets the units_free of this CouponDiscount. { \"description\" : \"Number of units that are free for a pricing-component.\", \"verbs\":[\"POST\",\"GET\"] } :param units_free: The units_free of this CouponDiscount. :type: int """ self._units_free = units_free @property def percentage_discount(self): """ Gets the percentage_discount of this CouponDiscount. { \"description\" : \"Percentage to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :return: The percentage_discount of this CouponDiscount. :rtype: float """ return self._percentage_discount @percentage_discount.setter def percentage_discount(self, percentage_discount): """ Sets the percentage_discount of this CouponDiscount. { \"description\" : \"Percentage to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :param percentage_discount: The percentage_discount of this CouponDiscount. :type: float """ self._percentage_discount = percentage_discount @property def cash_discount(self): """ Gets the cash_discount of this CouponDiscount. { \"description\" : \"Fixed monetary amount to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :return: The cash_discount of this CouponDiscount. :rtype: float """ return self._cash_discount @cash_discount.setter def cash_discount(self, cash_discount): """ Sets the cash_discount of this CouponDiscount. { \"description\" : \"Fixed monetary amount to be discounted\", \"verbs\":[\"POST\",\"GET\"] } :param cash_discount: The cash_discount of this CouponDiscount. :type: float """ self._cash_discount = cash_discount def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
0.757884
0.188567