code
stringlengths
2k
1.04M
repo_path
stringlengths
5
517
parsed_code
stringlengths
0
1.04M
quality_prob
float64
0.02
0.95
learning_prob
float64
0.02
0.93
from __future__ import print_function # summary provider for CF(Mutable)BitVector import lldb import ctypes import lldb.runtime.objc.objc_runtime import lldb.formatters.metrics import lldb.formatters.Logger # first define some utility functions def byte_index(abs_pos): logger = lldb.formatters.Logger.Logger() return abs_pos / 8 def bit_index(abs_pos): logger = lldb.formatters.Logger.Logger() return abs_pos & 7 def get_bit(byte, index): logger = lldb.formatters.Logger.Logger() if index < 0 or index > 7: return None return (byte >> (7 - index)) & 1 def grab_array_item_data(pointer, index): logger = lldb.formatters.Logger.Logger() return pointer.GetPointeeData(index, 1) statistics = lldb.formatters.metrics.Metrics() statistics.add_metric('invalid_isa') statistics.add_metric('invalid_pointer') statistics.add_metric('unknown_class') statistics.add_metric('code_notrun') # despite the similary to synthetic children providers, these classes are not # trying to provide anything but a summary for a CF*BitVector, so they need not # obey the interface specification for synthetic children providers class CFBitVectorKnown_SummaryProvider: def adjust_for_architecture(self): logger = lldb.formatters.Logger.Logger() self.uiint_size = self.sys_params.types_cache.NSUInteger.GetByteSize() pass def __init__(self, valobj, params): logger = lldb.formatters.Logger.Logger() self.valobj = valobj self.sys_params = params if not(self.sys_params.types_cache.NSUInteger): if self.sys_params.is_64_bit: self.sys_params.types_cache.NSUInteger = self.valobj.GetType( ).GetBasicType(lldb.eBasicTypeUnsignedLong) else: self.sys_params.types_cache.NSUInteger = self.valobj.GetType( ).GetBasicType(lldb.eBasicTypeUnsignedInt) if not(self.sys_params.types_cache.charptr): self.sys_params.types_cache.charptr = self.valobj.GetType( ).GetBasicType(lldb.eBasicTypeChar).GetPointerType() self.update() def update(self): logger = lldb.formatters.Logger.Logger() self.adjust_for_architecture() # we skip the CFRuntimeBase # then the next CFIndex is the count # then we skip another CFIndex and then we get at a byte array # that wraps the individual bits def contents(self): logger = lldb.formatters.Logger.Logger() count_vo = self.valobj.CreateChildAtOffset( "count", self.sys_params.cfruntime_size, self.sys_params.types_cache.NSUInteger) count = count_vo.GetValueAsUnsigned(0) if count == 0: return '(empty)' array_vo = self.valobj.CreateChildAtOffset( "data", self.sys_params.cfruntime_size + 2 * self.uiint_size, self.sys_params.types_cache.charptr) data_list = [] cur_byte_pos = None for i in range(0, count): if cur_byte_pos is None: cur_byte_pos = byte_index(i) cur_byte = grab_array_item_data(array_vo, cur_byte_pos) cur_byte_val = cur_byte.uint8[0] else: byte_pos = byte_index(i) # do not fetch the pointee data every single time through if byte_pos != cur_byte_pos: cur_byte_pos = byte_pos cur_byte = grab_array_item_data(array_vo, cur_byte_pos) cur_byte_val = cur_byte.uint8[0] bit = get_bit(cur_byte_val, bit_index(i)) if (i % 4) == 0: data_list.append(' ') if bit == 1: data_list.append('1') else: data_list.append('0') return ''.join(data_list) class CFBitVectorUnknown_SummaryProvider: def adjust_for_architecture(self): pass def __init__(self, valobj, params): logger = lldb.formatters.Logger.Logger() self.valobj = valobj self.sys_params = params self.update() def update(self): logger = lldb.formatters.Logger.Logger() self.adjust_for_architecture() def contents(self): logger = lldb.formatters.Logger.Logger() return '<unable to summarize this CFBitVector>' def GetSummary_Impl(valobj): logger = lldb.formatters.Logger.Logger() global statistics class_data, wrapper = lldb.runtime.objc.objc_runtime.Utilities.prepare_class_detection( valobj, statistics) if wrapper: return wrapper name_string = class_data.class_name() actual_name = name_string logger >> "name string got was " + \ str(name_string) + " but actual name is " + str(actual_name) if class_data.is_cftype(): # CFBitVectorRef does not expose an actual NSWrapper type, so we have to check that this is # an NSCFType and then check we are a pointer-to CFBitVectorRef valobj_type = valobj.GetType() if valobj_type.IsValid() and valobj_type.IsPointerType(): valobj_type = valobj_type.GetPointeeType() if valobj_type.IsValid(): actual_name = valobj_type.GetName() if actual_name == '__CFBitVector' or actual_name == '__CFMutableBitVector': wrapper = CFBitVectorKnown_SummaryProvider( valobj, class_data.sys_params) statistics.metric_hit('code_notrun', valobj) else: wrapper = CFBitVectorUnknown_SummaryProvider( valobj, class_data.sys_params) print(actual_name) else: wrapper = CFBitVectorUnknown_SummaryProvider( valobj, class_data.sys_params) print(name_string) statistics.metric_hit( 'unknown_class', valobj.GetName() + " seen as " + name_string) return wrapper def CFBitVector_SummaryProvider(valobj, dict): logger = lldb.formatters.Logger.Logger() provider = GetSummary_Impl(valobj) if provider is not None: if isinstance( provider, lldb.runtime.objc.objc_runtime.SpecialSituation_Description): return provider.message() try: summary = provider.contents() except: summary = None logger >> "summary got from provider: " + str(summary) if summary is None or summary == '': summary = '<variable is not CFBitVector>' return summary return 'Summary Unavailable' def __lldb_init_module(debugger, dict): debugger.HandleCommand( "type summary add -F CFBitVector.CFBitVector_SummaryProvider CFBitVectorRef CFMutableBitVectorRef")
lldb/examples/summaries/cocoa/CFBitVector.py
from __future__ import print_function # summary provider for CF(Mutable)BitVector import lldb import ctypes import lldb.runtime.objc.objc_runtime import lldb.formatters.metrics import lldb.formatters.Logger # first define some utility functions def byte_index(abs_pos): logger = lldb.formatters.Logger.Logger() return abs_pos / 8 def bit_index(abs_pos): logger = lldb.formatters.Logger.Logger() return abs_pos & 7 def get_bit(byte, index): logger = lldb.formatters.Logger.Logger() if index < 0 or index > 7: return None return (byte >> (7 - index)) & 1 def grab_array_item_data(pointer, index): logger = lldb.formatters.Logger.Logger() return pointer.GetPointeeData(index, 1) statistics = lldb.formatters.metrics.Metrics() statistics.add_metric('invalid_isa') statistics.add_metric('invalid_pointer') statistics.add_metric('unknown_class') statistics.add_metric('code_notrun') # despite the similary to synthetic children providers, these classes are not # trying to provide anything but a summary for a CF*BitVector, so they need not # obey the interface specification for synthetic children providers class CFBitVectorKnown_SummaryProvider: def adjust_for_architecture(self): logger = lldb.formatters.Logger.Logger() self.uiint_size = self.sys_params.types_cache.NSUInteger.GetByteSize() pass def __init__(self, valobj, params): logger = lldb.formatters.Logger.Logger() self.valobj = valobj self.sys_params = params if not(self.sys_params.types_cache.NSUInteger): if self.sys_params.is_64_bit: self.sys_params.types_cache.NSUInteger = self.valobj.GetType( ).GetBasicType(lldb.eBasicTypeUnsignedLong) else: self.sys_params.types_cache.NSUInteger = self.valobj.GetType( ).GetBasicType(lldb.eBasicTypeUnsignedInt) if not(self.sys_params.types_cache.charptr): self.sys_params.types_cache.charptr = self.valobj.GetType( ).GetBasicType(lldb.eBasicTypeChar).GetPointerType() self.update() def update(self): logger = lldb.formatters.Logger.Logger() self.adjust_for_architecture() # we skip the CFRuntimeBase # then the next CFIndex is the count # then we skip another CFIndex and then we get at a byte array # that wraps the individual bits def contents(self): logger = lldb.formatters.Logger.Logger() count_vo = self.valobj.CreateChildAtOffset( "count", self.sys_params.cfruntime_size, self.sys_params.types_cache.NSUInteger) count = count_vo.GetValueAsUnsigned(0) if count == 0: return '(empty)' array_vo = self.valobj.CreateChildAtOffset( "data", self.sys_params.cfruntime_size + 2 * self.uiint_size, self.sys_params.types_cache.charptr) data_list = [] cur_byte_pos = None for i in range(0, count): if cur_byte_pos is None: cur_byte_pos = byte_index(i) cur_byte = grab_array_item_data(array_vo, cur_byte_pos) cur_byte_val = cur_byte.uint8[0] else: byte_pos = byte_index(i) # do not fetch the pointee data every single time through if byte_pos != cur_byte_pos: cur_byte_pos = byte_pos cur_byte = grab_array_item_data(array_vo, cur_byte_pos) cur_byte_val = cur_byte.uint8[0] bit = get_bit(cur_byte_val, bit_index(i)) if (i % 4) == 0: data_list.append(' ') if bit == 1: data_list.append('1') else: data_list.append('0') return ''.join(data_list) class CFBitVectorUnknown_SummaryProvider: def adjust_for_architecture(self): pass def __init__(self, valobj, params): logger = lldb.formatters.Logger.Logger() self.valobj = valobj self.sys_params = params self.update() def update(self): logger = lldb.formatters.Logger.Logger() self.adjust_for_architecture() def contents(self): logger = lldb.formatters.Logger.Logger() return '<unable to summarize this CFBitVector>' def GetSummary_Impl(valobj): logger = lldb.formatters.Logger.Logger() global statistics class_data, wrapper = lldb.runtime.objc.objc_runtime.Utilities.prepare_class_detection( valobj, statistics) if wrapper: return wrapper name_string = class_data.class_name() actual_name = name_string logger >> "name string got was " + \ str(name_string) + " but actual name is " + str(actual_name) if class_data.is_cftype(): # CFBitVectorRef does not expose an actual NSWrapper type, so we have to check that this is # an NSCFType and then check we are a pointer-to CFBitVectorRef valobj_type = valobj.GetType() if valobj_type.IsValid() and valobj_type.IsPointerType(): valobj_type = valobj_type.GetPointeeType() if valobj_type.IsValid(): actual_name = valobj_type.GetName() if actual_name == '__CFBitVector' or actual_name == '__CFMutableBitVector': wrapper = CFBitVectorKnown_SummaryProvider( valobj, class_data.sys_params) statistics.metric_hit('code_notrun', valobj) else: wrapper = CFBitVectorUnknown_SummaryProvider( valobj, class_data.sys_params) print(actual_name) else: wrapper = CFBitVectorUnknown_SummaryProvider( valobj, class_data.sys_params) print(name_string) statistics.metric_hit( 'unknown_class', valobj.GetName() + " seen as " + name_string) return wrapper def CFBitVector_SummaryProvider(valobj, dict): logger = lldb.formatters.Logger.Logger() provider = GetSummary_Impl(valobj) if provider is not None: if isinstance( provider, lldb.runtime.objc.objc_runtime.SpecialSituation_Description): return provider.message() try: summary = provider.contents() except: summary = None logger >> "summary got from provider: " + str(summary) if summary is None or summary == '': summary = '<variable is not CFBitVector>' return summary return 'Summary Unavailable' def __lldb_init_module(debugger, dict): debugger.HandleCommand( "type summary add -F CFBitVector.CFBitVector_SummaryProvider CFBitVectorRef CFMutableBitVectorRef")
0.587943
0.32748
import re import math from time import time HEX_RE = re.compile("#([0-9a-fA-F]{3}|[0-9a-fA-F]{6})") class Py3status: """ """ # available configuration parameters cycle_time = 1 force = False format = "{output}" gradient = [ "#FF0000", "#FFFF00", "#00FF00", "#00FFFF", "#0000FF", "#FF00FF", "#FF0000", ] multi_color = True steps = 10 class Meta: container = True def post_config_hook(self): def from_hex(color): """ Convert hex color #xxx or #xxxxxx to [r, g, b]. """ if not HEX_RE.match(color): color = "#FFF" if len(color) == 7: return (int(color[1:3], 16), int(color[3:5], 16), int(color[5:], 16)) return ( int(color[1], 16) * 17, int(color[2], 16) * 17, int(color[3], 16) * 17, ) def to_hex(color): """ Convert [r, g, b] to hex. """ return "#{:02X}{:02X}{:02X}".format( int(color[0]), int(color[1]), int(color[2]) ) def make_color(c1, c2, t): """ Generate a mid color between c1 and c2. """ def fade(i): a = c1[i] b = c2[i] x = b * t x += a * (1 - t) return x c1 = from_hex(c1) c2 = from_hex(c2) return (fade(0), fade(1), fade(2)) colors = [] if self.steps == 1: colors = [to_hex(from_hex(x)) for x in self.gradient] else: for i in range(len(self.gradient) - 1): for j in range(self.steps): colors.append( to_hex( make_color( self.gradient[i], self.gradient[i + 1], j / (self.steps) ) ) ) self.colors = colors self.active_color = 0 self._set_cycle_time() def _set_cycle_time(self): """ Set next cycle update time synced to nearest second or 0.1 of second. """ now = time() try: cycle_time = now - self._cycle_time if cycle_time < 0: cycle_time = 0 except AttributeError: cycle_time = 0 cycle_time += self.cycle_time if cycle_time == int(cycle_time): self._cycle_time = math.ceil(now + cycle_time) else: self._cycle_time = math.ceil((now + cycle_time) * 10) / 10 self._cycle_time = now + self.cycle_time def _get_current_output(self): """ Get child modules output. """ output = [] for item in self.items: out = self.py3.get_output(item) if out and "separator" not in out[-1]: out[-1]["separator"] = True output += out return output def rainbow(self): """ Make a rainbow! """ if not self.items: return {"full_text": "", "cached_until": self.py3.CACHE_FOREVER} if time() >= self._cycle_time - (self.cycle_time / 10): self.active_color = (self.active_color + 1) % len(self.colors) self._set_cycle_time() color = self.colors[self.active_color] content = self._get_current_output() output = [] if content: step = len(self.colors) // len(content) for index, item in enumerate(content): if self.multi_color: offset = (self.active_color + (index * step)) % len(self.colors) color = self.colors[offset] obj = item.copy() if self.force or not obj.get("color"): obj["color"] = color output.append(obj) composites = {"output": self.py3.composite_create(output)} rainbow = self.py3.safe_format(self.format, composites) return {"cached_until": self._cycle_time, "full_text": rainbow} if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
py3status/modules/rainbow.py
import re import math from time import time HEX_RE = re.compile("#([0-9a-fA-F]{3}|[0-9a-fA-F]{6})") class Py3status: """ """ # available configuration parameters cycle_time = 1 force = False format = "{output}" gradient = [ "#FF0000", "#FFFF00", "#00FF00", "#00FFFF", "#0000FF", "#FF00FF", "#FF0000", ] multi_color = True steps = 10 class Meta: container = True def post_config_hook(self): def from_hex(color): """ Convert hex color #xxx or #xxxxxx to [r, g, b]. """ if not HEX_RE.match(color): color = "#FFF" if len(color) == 7: return (int(color[1:3], 16), int(color[3:5], 16), int(color[5:], 16)) return ( int(color[1], 16) * 17, int(color[2], 16) * 17, int(color[3], 16) * 17, ) def to_hex(color): """ Convert [r, g, b] to hex. """ return "#{:02X}{:02X}{:02X}".format( int(color[0]), int(color[1]), int(color[2]) ) def make_color(c1, c2, t): """ Generate a mid color between c1 and c2. """ def fade(i): a = c1[i] b = c2[i] x = b * t x += a * (1 - t) return x c1 = from_hex(c1) c2 = from_hex(c2) return (fade(0), fade(1), fade(2)) colors = [] if self.steps == 1: colors = [to_hex(from_hex(x)) for x in self.gradient] else: for i in range(len(self.gradient) - 1): for j in range(self.steps): colors.append( to_hex( make_color( self.gradient[i], self.gradient[i + 1], j / (self.steps) ) ) ) self.colors = colors self.active_color = 0 self._set_cycle_time() def _set_cycle_time(self): """ Set next cycle update time synced to nearest second or 0.1 of second. """ now = time() try: cycle_time = now - self._cycle_time if cycle_time < 0: cycle_time = 0 except AttributeError: cycle_time = 0 cycle_time += self.cycle_time if cycle_time == int(cycle_time): self._cycle_time = math.ceil(now + cycle_time) else: self._cycle_time = math.ceil((now + cycle_time) * 10) / 10 self._cycle_time = now + self.cycle_time def _get_current_output(self): """ Get child modules output. """ output = [] for item in self.items: out = self.py3.get_output(item) if out and "separator" not in out[-1]: out[-1]["separator"] = True output += out return output def rainbow(self): """ Make a rainbow! """ if not self.items: return {"full_text": "", "cached_until": self.py3.CACHE_FOREVER} if time() >= self._cycle_time - (self.cycle_time / 10): self.active_color = (self.active_color + 1) % len(self.colors) self._set_cycle_time() color = self.colors[self.active_color] content = self._get_current_output() output = [] if content: step = len(self.colors) // len(content) for index, item in enumerate(content): if self.multi_color: offset = (self.active_color + (index * step)) % len(self.colors) color = self.colors[offset] obj = item.copy() if self.force or not obj.get("color"): obj["color"] = color output.append(obj) composites = {"output": self.py3.composite_create(output)} rainbow = self.py3.safe_format(self.format, composites) return {"cached_until": self._cycle_time, "full_text": rainbow} if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
0.425367
0.282668
import os from PyQt5.QtCore import Qt, pyqtSignal from PyQt5.QtGui import QPixmap from PyQt5.QtWidgets import (QDialog, QLabel, QDialogButtonBox, QLineEdit, QCheckBox, QHBoxLayout, QVBoxLayout, QFormLayout, QFileDialog) from lanzou.gui.qss import dialog_qss_style from lanzou.gui.others import MyLineEdit, AutoResizingTextEdit from lanzou.debug import SRC_DIR class SettingDialog(QDialog): saved = pyqtSignal() def __init__(self, parent=None): super(SettingDialog, self).__init__(parent) self._config = object self.download_threads = 3 self.max_size = 100 self.timeout = 5 self.dl_path = None self.time_fmt = False self.to_tray = False self.watch_clipboard = False self.debug = False self.set_pwd = False self.set_desc = False self.upload_delay = 0 self.allow_big_file = False self.upgrade = True self.pwd = "" self.desc = "" self.initUI() self.setStyleSheet(dialog_qss_style) def open_dialog(self, config): """"打开前先更新一下显示界面""" self._config = config if self._config.name: self.setWindowTitle(f"设置 <{self._config.name}>") else: self.setWindowTitle("设置") self.cwd = self._config.path self.set_values() self.exec() def show_values(self): """控件显示值""" self.download_threads_var.setText(str(self.download_threads)) self.max_size_var.setText(str(self.max_size)) self.timeout_var.setText(str(self.timeout)) self.dl_path_var.setText(str(self.dl_path)) self.time_fmt_box.setChecked(self.time_fmt) self.to_tray_box.setChecked(self.to_tray) self.watch_clipboard_box.setChecked(self.watch_clipboard) self.debug_box.setChecked(self.debug) self.set_pwd_box.setChecked(self.set_pwd) self.set_pwd_var.setEnabled(self.set_pwd) self.set_pwd_var.setText(self.pwd) self.set_desc_box.setChecked(self.set_desc) self.set_desc_var.setEnabled(self.set_desc) self.set_desc_var.setText(self.desc) self.upload_delay_var.setText(str(self.upload_delay)) self.big_file_box.setChecked(self.allow_big_file) self.big_file_box.setText(f"允许上传超过 {self.max_size}MB 的大文件") self.big_file_box.setDisabled(True) # 关闭允许上传大文件设置入口 self.upgrade_box.setChecked(self.upgrade) def set_values(self, reset=False): """设置控件对应变量初始值""" settings = self._config.default_settings if reset else self._config.settings self.download_threads = settings["download_threads"] self.max_size = settings["max_size"] self.timeout = settings["timeout"] self.dl_path = settings["dl_path"] self.time_fmt = settings["time_fmt"] self.to_tray = settings["to_tray"] self.watch_clipboard = settings["watch_clipboard"] self.debug = settings["debug"] self.set_pwd = settings["set_pwd"] self.pwd = settings["<PASSWORD>"] self.set_desc = settings["set_desc"] self.desc = settings["desc"] self.upload_delay = settings["upload_delay"] if 'upgrade' in settings: self.upgrade = settings["upgrade"] self.show_values() def get_values(self) -> dict: """读取输入控件的值""" if self.download_threads_var.text(): self.download_threads = int(self.download_threads_var.text()) if self.max_size_var.text(): self.max_size = int(self.max_size_var.text()) if self.timeout_var.text(): self.timeout = int(self.timeout_var.text()) if self.upload_delay_var.text(): self.upload_delay = int(self.upload_delay_var.text()) self.dl_path = str(self.dl_path_var.text()) self.pwd = str(self.set_pwd_var.toPlainText()) self.desc = str(self.set_desc_var.toPlainText()) return {"download_threads": self.download_threads, "max_size": self.max_size, "timeout": self.timeout, "dl_path": self.dl_path, "time_fmt": self.time_fmt, "to_tray": self.to_tray, "watch_clipboard": self.watch_clipboard, "debug": self.debug, "set_pwd": self.set_pwd, "pwd": self.<PASSWORD>, "set_desc": self.set_desc, "desc": self.desc, "upload_delay": self.upload_delay, "allow_big_file": self.allow_big_file, "upgrade": self.upgrade} def initUI(self): self.setWindowTitle("设置") logo = QLabel() logo.setPixmap(QPixmap(SRC_DIR + "logo2.gif")) logo.setStyleSheet("background-color:rgb(255,255,255);") logo.setAlignment(Qt.AlignCenter) self.download_threads_lb = QLabel("同时下载文件数") self.download_threads_var = QLineEdit() self.download_threads_var.setPlaceholderText("范围:1-9") self.download_threads_var.setToolTip("范围:1-9") self.download_threads_var.setInputMask("D") self.max_size_lb = QLabel("分卷大小(MB)") self.max_size_var = QLineEdit() self.max_size_var.setPlaceholderText("普通用户最大100,vip用户根据具体情况设置") self.max_size_var.setToolTip("普通用户最大100,vip用户根据具体情况设置") self.max_size_var.setInputMask("D99") self.timeout_lb = QLabel("请求超时(秒)") self.timeout_var = QLineEdit() self.timeout_var.setPlaceholderText("范围:1-99") self.timeout_var.setToolTip("范围:1-99") self.timeout_var.setInputMask("D9") self.upload_delay_lb = QLabel("上传延时(秒)") self.upload_delay_var = QLineEdit() self.upload_delay_var.setPlaceholderText("范围:1-99") self.upload_delay_var.setToolTip("范围:1-99") self.upload_delay_var.setInputMask("D9") self.dl_path_lb = QLabel("下载保存路径") self.dl_path_var = MyLineEdit(self) self.dl_path_var.clicked.connect(self.set_download_path) self.time_fmt_box = QCheckBox("使用[年-月-日]时间格式") self.time_fmt_box.setToolTip("文件上传日期显示格式") self.to_tray_box = QCheckBox("关闭到系统托盘") self.to_tray_box.setToolTip("点击关闭软件按钮是最小化软件至系统托盘") self.watch_clipboard_box = QCheckBox("监听系统剪切板") self.watch_clipboard_box.setToolTip("检测到系统剪切板中有符合规范的蓝奏链接时自动唤起软件,并提取") self.debug_box = QCheckBox("开启调试日志") self.debug_box.setToolTip("记录软件 debug 信息至 debug-lanzou-gui.log 文件") self.set_pwd_box = QCheckBox("上传文件自动设置密码") self.set_pwd_var = AutoResizingTextEdit() self.set_pwd_var.setPlaceholderText(" 2-8 位数字或字母") self.set_pwd_var.setToolTip("2-8 位数字或字母") self.set_desc_box = QCheckBox("上传文件自动设置描述") self.set_desc_var = AutoResizingTextEdit() self.big_file_box = QCheckBox(f"允许上传超过 {self.max_size}MB 的大文件") self.big_file_box.setToolTip("开启大文件上传支持 (功能下线)") self.upgrade_box = QCheckBox("自动检测新版本") self.upgrade_box.setToolTip("在软件打开时自动检测是否有新的版本发布,如有则弹出更新信息") self.time_fmt_box.toggle() self.time_fmt_box.stateChanged.connect(self.change_time_fmt) self.to_tray_box.stateChanged.connect(self.change_to_tray) self.watch_clipboard_box.stateChanged.connect(self.change_watch_clipboard) self.debug_box.stateChanged.connect(self.change_debug) self.set_pwd_box.stateChanged.connect(self.change_set_pwd) self.set_pwd_var.editingFinished.connect(self.check_pwd) self.set_desc_box.stateChanged.connect(self.change_set_desc) self.big_file_box.stateChanged.connect(self.change_big_file) self.upgrade_box.stateChanged.connect(self.change_upgrade) buttonBox = QDialogButtonBox() buttonBox.setOrientation(Qt.Horizontal) buttonBox.setStandardButtons(QDialogButtonBox.Reset | QDialogButtonBox.Save | QDialogButtonBox.Cancel) buttonBox.button(QDialogButtonBox.Reset).setText("重置") buttonBox.button(QDialogButtonBox.Save).setText("保存") buttonBox.button(QDialogButtonBox.Cancel).setText("取消") buttonBox.button(QDialogButtonBox.Reset).clicked.connect(lambda: self.set_values(reset=True)) buttonBox.button(QDialogButtonBox.Save).clicked.connect(self.slot_save) buttonBox.rejected.connect(self.reject) form = QFormLayout() form.setLabelAlignment(Qt.AlignRight) form.setSpacing(10) form.addRow(self.download_threads_lb, self.download_threads_var) form.addRow(self.timeout_lb, self.timeout_var) form.addRow(self.upload_delay_lb, self.upload_delay_var) form.addRow(self.max_size_lb, self.max_size_var) form.addRow(self.dl_path_lb, self.dl_path_var) vbox = QVBoxLayout() vbox.addWidget(logo) vbox.addStretch(1) vbox.addLayout(form) vbox.addStretch(1) hbox = QHBoxLayout() hbox.addWidget(self.time_fmt_box) hbox.addWidget(self.to_tray_box) hbox.addWidget(self.watch_clipboard_box) hbox.addWidget(self.debug_box) vbox.addLayout(hbox) vbox.addStretch(1) hbox_2 = QHBoxLayout() hbox_2.addWidget(self.set_pwd_box) hbox_2.addWidget(self.set_pwd_var) vbox.addLayout(hbox_2) vbox.addStretch(1) hbox_3 = QHBoxLayout() hbox_3.addWidget(self.set_desc_box) hbox_3.addWidget(self.set_desc_var) vbox.addLayout(hbox_3) hbox_4 = QHBoxLayout() hbox_4.addWidget(self.big_file_box) hbox_4.addWidget(self.upgrade_box) vbox.addStretch(1) vbox.addLayout(hbox_4) vbox.addStretch(2) vbox.addWidget(buttonBox) self.setLayout(vbox) self.setMinimumWidth(500) def change_time_fmt(self, state): if state == Qt.Checked: self.time_fmt = True else: self.time_fmt = False def change_to_tray(self, state): if state == Qt.Checked: self.to_tray = True else: self.to_tray = False def change_watch_clipboard(self, state): if state == Qt.Checked: self.watch_clipboard = True else: self.watch_clipboard = False def change_debug(self, state): if state == Qt.Checked: self.debug = True else: self.debug = False def change_big_file(self, state): if state == Qt.Checked: self.allow_big_file = True else: self.allow_big_file = False def change_upgrade(self, state): if state == Qt.Checked: self.upgrade = True else: self.upgrade = False def change_set_pwd(self, state): if state == Qt.Checked: self.set_pwd = True self.set_pwd_var.setDisabled(False) else: self.set_pwd = False self.set_pwd_var.setDisabled(True) def change_set_desc(self, state): if state == Qt.Checked: self.set_desc = True self.set_desc_var.setDisabled(False) else: self.set_desc = False self.set_desc_var.setDisabled(True) def check_pwd(self): pwd = self.set_pwd_var.toPlainText() pwd = ''.join(list(filter(str.isalnum, pwd))) if len(pwd) < 2: pwd = "" self.set_pwd_var.setText(pwd[:8]) def set_download_path(self): """设置下载路径""" dl_path = QFileDialog.getExistingDirectory(self, "选择文件下载保存文件夹", self.cwd) dl_path = os.path.normpath(dl_path) # windows backslash if dl_path == self.dl_path or dl_path == ".": return None self.dl_path_var.setText(dl_path) self.dl_path = dl_path def slot_save(self): """保存槽函数""" self._config.settings = self.get_values() self.saved.emit() self.close()
lanzou/gui/dialogs/setting.py
import os from PyQt5.QtCore import Qt, pyqtSignal from PyQt5.QtGui import QPixmap from PyQt5.QtWidgets import (QDialog, QLabel, QDialogButtonBox, QLineEdit, QCheckBox, QHBoxLayout, QVBoxLayout, QFormLayout, QFileDialog) from lanzou.gui.qss import dialog_qss_style from lanzou.gui.others import MyLineEdit, AutoResizingTextEdit from lanzou.debug import SRC_DIR class SettingDialog(QDialog): saved = pyqtSignal() def __init__(self, parent=None): super(SettingDialog, self).__init__(parent) self._config = object self.download_threads = 3 self.max_size = 100 self.timeout = 5 self.dl_path = None self.time_fmt = False self.to_tray = False self.watch_clipboard = False self.debug = False self.set_pwd = False self.set_desc = False self.upload_delay = 0 self.allow_big_file = False self.upgrade = True self.pwd = "" self.desc = "" self.initUI() self.setStyleSheet(dialog_qss_style) def open_dialog(self, config): """"打开前先更新一下显示界面""" self._config = config if self._config.name: self.setWindowTitle(f"设置 <{self._config.name}>") else: self.setWindowTitle("设置") self.cwd = self._config.path self.set_values() self.exec() def show_values(self): """控件显示值""" self.download_threads_var.setText(str(self.download_threads)) self.max_size_var.setText(str(self.max_size)) self.timeout_var.setText(str(self.timeout)) self.dl_path_var.setText(str(self.dl_path)) self.time_fmt_box.setChecked(self.time_fmt) self.to_tray_box.setChecked(self.to_tray) self.watch_clipboard_box.setChecked(self.watch_clipboard) self.debug_box.setChecked(self.debug) self.set_pwd_box.setChecked(self.set_pwd) self.set_pwd_var.setEnabled(self.set_pwd) self.set_pwd_var.setText(self.pwd) self.set_desc_box.setChecked(self.set_desc) self.set_desc_var.setEnabled(self.set_desc) self.set_desc_var.setText(self.desc) self.upload_delay_var.setText(str(self.upload_delay)) self.big_file_box.setChecked(self.allow_big_file) self.big_file_box.setText(f"允许上传超过 {self.max_size}MB 的大文件") self.big_file_box.setDisabled(True) # 关闭允许上传大文件设置入口 self.upgrade_box.setChecked(self.upgrade) def set_values(self, reset=False): """设置控件对应变量初始值""" settings = self._config.default_settings if reset else self._config.settings self.download_threads = settings["download_threads"] self.max_size = settings["max_size"] self.timeout = settings["timeout"] self.dl_path = settings["dl_path"] self.time_fmt = settings["time_fmt"] self.to_tray = settings["to_tray"] self.watch_clipboard = settings["watch_clipboard"] self.debug = settings["debug"] self.set_pwd = settings["set_pwd"] self.pwd = settings["<PASSWORD>"] self.set_desc = settings["set_desc"] self.desc = settings["desc"] self.upload_delay = settings["upload_delay"] if 'upgrade' in settings: self.upgrade = settings["upgrade"] self.show_values() def get_values(self) -> dict: """读取输入控件的值""" if self.download_threads_var.text(): self.download_threads = int(self.download_threads_var.text()) if self.max_size_var.text(): self.max_size = int(self.max_size_var.text()) if self.timeout_var.text(): self.timeout = int(self.timeout_var.text()) if self.upload_delay_var.text(): self.upload_delay = int(self.upload_delay_var.text()) self.dl_path = str(self.dl_path_var.text()) self.pwd = str(self.set_pwd_var.toPlainText()) self.desc = str(self.set_desc_var.toPlainText()) return {"download_threads": self.download_threads, "max_size": self.max_size, "timeout": self.timeout, "dl_path": self.dl_path, "time_fmt": self.time_fmt, "to_tray": self.to_tray, "watch_clipboard": self.watch_clipboard, "debug": self.debug, "set_pwd": self.set_pwd, "pwd": self.<PASSWORD>, "set_desc": self.set_desc, "desc": self.desc, "upload_delay": self.upload_delay, "allow_big_file": self.allow_big_file, "upgrade": self.upgrade} def initUI(self): self.setWindowTitle("设置") logo = QLabel() logo.setPixmap(QPixmap(SRC_DIR + "logo2.gif")) logo.setStyleSheet("background-color:rgb(255,255,255);") logo.setAlignment(Qt.AlignCenter) self.download_threads_lb = QLabel("同时下载文件数") self.download_threads_var = QLineEdit() self.download_threads_var.setPlaceholderText("范围:1-9") self.download_threads_var.setToolTip("范围:1-9") self.download_threads_var.setInputMask("D") self.max_size_lb = QLabel("分卷大小(MB)") self.max_size_var = QLineEdit() self.max_size_var.setPlaceholderText("普通用户最大100,vip用户根据具体情况设置") self.max_size_var.setToolTip("普通用户最大100,vip用户根据具体情况设置") self.max_size_var.setInputMask("D99") self.timeout_lb = QLabel("请求超时(秒)") self.timeout_var = QLineEdit() self.timeout_var.setPlaceholderText("范围:1-99") self.timeout_var.setToolTip("范围:1-99") self.timeout_var.setInputMask("D9") self.upload_delay_lb = QLabel("上传延时(秒)") self.upload_delay_var = QLineEdit() self.upload_delay_var.setPlaceholderText("范围:1-99") self.upload_delay_var.setToolTip("范围:1-99") self.upload_delay_var.setInputMask("D9") self.dl_path_lb = QLabel("下载保存路径") self.dl_path_var = MyLineEdit(self) self.dl_path_var.clicked.connect(self.set_download_path) self.time_fmt_box = QCheckBox("使用[年-月-日]时间格式") self.time_fmt_box.setToolTip("文件上传日期显示格式") self.to_tray_box = QCheckBox("关闭到系统托盘") self.to_tray_box.setToolTip("点击关闭软件按钮是最小化软件至系统托盘") self.watch_clipboard_box = QCheckBox("监听系统剪切板") self.watch_clipboard_box.setToolTip("检测到系统剪切板中有符合规范的蓝奏链接时自动唤起软件,并提取") self.debug_box = QCheckBox("开启调试日志") self.debug_box.setToolTip("记录软件 debug 信息至 debug-lanzou-gui.log 文件") self.set_pwd_box = QCheckBox("上传文件自动设置密码") self.set_pwd_var = AutoResizingTextEdit() self.set_pwd_var.setPlaceholderText(" 2-8 位数字或字母") self.set_pwd_var.setToolTip("2-8 位数字或字母") self.set_desc_box = QCheckBox("上传文件自动设置描述") self.set_desc_var = AutoResizingTextEdit() self.big_file_box = QCheckBox(f"允许上传超过 {self.max_size}MB 的大文件") self.big_file_box.setToolTip("开启大文件上传支持 (功能下线)") self.upgrade_box = QCheckBox("自动检测新版本") self.upgrade_box.setToolTip("在软件打开时自动检测是否有新的版本发布,如有则弹出更新信息") self.time_fmt_box.toggle() self.time_fmt_box.stateChanged.connect(self.change_time_fmt) self.to_tray_box.stateChanged.connect(self.change_to_tray) self.watch_clipboard_box.stateChanged.connect(self.change_watch_clipboard) self.debug_box.stateChanged.connect(self.change_debug) self.set_pwd_box.stateChanged.connect(self.change_set_pwd) self.set_pwd_var.editingFinished.connect(self.check_pwd) self.set_desc_box.stateChanged.connect(self.change_set_desc) self.big_file_box.stateChanged.connect(self.change_big_file) self.upgrade_box.stateChanged.connect(self.change_upgrade) buttonBox = QDialogButtonBox() buttonBox.setOrientation(Qt.Horizontal) buttonBox.setStandardButtons(QDialogButtonBox.Reset | QDialogButtonBox.Save | QDialogButtonBox.Cancel) buttonBox.button(QDialogButtonBox.Reset).setText("重置") buttonBox.button(QDialogButtonBox.Save).setText("保存") buttonBox.button(QDialogButtonBox.Cancel).setText("取消") buttonBox.button(QDialogButtonBox.Reset).clicked.connect(lambda: self.set_values(reset=True)) buttonBox.button(QDialogButtonBox.Save).clicked.connect(self.slot_save) buttonBox.rejected.connect(self.reject) form = QFormLayout() form.setLabelAlignment(Qt.AlignRight) form.setSpacing(10) form.addRow(self.download_threads_lb, self.download_threads_var) form.addRow(self.timeout_lb, self.timeout_var) form.addRow(self.upload_delay_lb, self.upload_delay_var) form.addRow(self.max_size_lb, self.max_size_var) form.addRow(self.dl_path_lb, self.dl_path_var) vbox = QVBoxLayout() vbox.addWidget(logo) vbox.addStretch(1) vbox.addLayout(form) vbox.addStretch(1) hbox = QHBoxLayout() hbox.addWidget(self.time_fmt_box) hbox.addWidget(self.to_tray_box) hbox.addWidget(self.watch_clipboard_box) hbox.addWidget(self.debug_box) vbox.addLayout(hbox) vbox.addStretch(1) hbox_2 = QHBoxLayout() hbox_2.addWidget(self.set_pwd_box) hbox_2.addWidget(self.set_pwd_var) vbox.addLayout(hbox_2) vbox.addStretch(1) hbox_3 = QHBoxLayout() hbox_3.addWidget(self.set_desc_box) hbox_3.addWidget(self.set_desc_var) vbox.addLayout(hbox_3) hbox_4 = QHBoxLayout() hbox_4.addWidget(self.big_file_box) hbox_4.addWidget(self.upgrade_box) vbox.addStretch(1) vbox.addLayout(hbox_4) vbox.addStretch(2) vbox.addWidget(buttonBox) self.setLayout(vbox) self.setMinimumWidth(500) def change_time_fmt(self, state): if state == Qt.Checked: self.time_fmt = True else: self.time_fmt = False def change_to_tray(self, state): if state == Qt.Checked: self.to_tray = True else: self.to_tray = False def change_watch_clipboard(self, state): if state == Qt.Checked: self.watch_clipboard = True else: self.watch_clipboard = False def change_debug(self, state): if state == Qt.Checked: self.debug = True else: self.debug = False def change_big_file(self, state): if state == Qt.Checked: self.allow_big_file = True else: self.allow_big_file = False def change_upgrade(self, state): if state == Qt.Checked: self.upgrade = True else: self.upgrade = False def change_set_pwd(self, state): if state == Qt.Checked: self.set_pwd = True self.set_pwd_var.setDisabled(False) else: self.set_pwd = False self.set_pwd_var.setDisabled(True) def change_set_desc(self, state): if state == Qt.Checked: self.set_desc = True self.set_desc_var.setDisabled(False) else: self.set_desc = False self.set_desc_var.setDisabled(True) def check_pwd(self): pwd = self.set_pwd_var.toPlainText() pwd = ''.join(list(filter(str.isalnum, pwd))) if len(pwd) < 2: pwd = "" self.set_pwd_var.setText(pwd[:8]) def set_download_path(self): """设置下载路径""" dl_path = QFileDialog.getExistingDirectory(self, "选择文件下载保存文件夹", self.cwd) dl_path = os.path.normpath(dl_path) # windows backslash if dl_path == self.dl_path or dl_path == ".": return None self.dl_path_var.setText(dl_path) self.dl_path = dl_path def slot_save(self): """保存槽函数""" self._config.settings = self.get_values() self.saved.emit() self.close()
0.22051
0.08292
import os import platform import argparse class Common(): def __init__(self, sudo_cmd): # Assumption is nvidia-smi is installed on systems with gpu self.is_gpu_instance = True if os.system("nvidia-smi") == 0 else False self.torch_stable_url = "https://download.pytorch.org/whl/torch_stable.html" self.sudo_cmd = sudo_cmd def install_java(self): pass def install_nodejs(self): pass def install_torch_packages(self, cuda_version): if self.is_gpu_instance: if (cuda_version is not None) and cuda_version == 'cu101': os.system(f"pip install -U -r requirements/torch_cu101.txt -f {self.torch_stable_url}") else: os.system(f"pip install -U -r requirements/torch.txt -f {self.torch_stable_url}") else: os.system(f"pip install -U -r requirements/torch_cpu.txt -f {self.torch_stable_url}") def install_python_packages(self, cuda_version): self.install_torch_packages(cuda_version) os.system("pip install -U -r requirements/developer.txt") # developer.txt also installs packages from common.txt if os.system("conda") == 0: # If conda is available install conda-build package os.system("conda install -y conda-build") def install_node_packages(self): os.system(f"{self.sudo_cmd}apt-get update") os.system(f"{self.sudo_cmd}npm install -g newman newman-reporter-html markdown-link-check") def install_jmeter(self): pass class Linux(Common): def __init__(self, sudo_cmd): super().__init__(sudo_cmd) def install_java(self): os.system(f"{self.sudo_cmd}apt-get update") os.system(f"{self.sudo_cmd}apt-get install -y openjdk-11-jdk") def install_nodejs(self): os.system(f"{self.sudo_cmd}apt-get update") os.system(f"{self.sudo_cmd}curl -sL https://deb.nodesource.com/setup_14.x | {self.sudo_cmd}bash -") os.system(f"{self.sudo_cmd}apt-get install -y nodejs") class Windows(Common): def __init__(self, sudo_cmd): super().__init__(sudo_cmd) def install_java(self): pass def install_nodejs(self): pass class Darwin(Common): def __init__(self, sudo_cmd): super().__init__(sudo_cmd) def install_java(self): os.system("brew tap AdoptOpenJDK/openjdk") os.system("brew cask install adoptopenjdk11") def install_nodejs(self): os.system("brew install node") def install_torch_packages(self, cuda_version=''): os.system(f"pip install -U -r requirements/torch.txt -f {self.torch_stable_url}") def install_dependencies(sudo_cmd='sudo ', cuda_version=None): os_map = { "Linux": Linux, "Windows": Windows, "Darwin": Darwin } system = os_map[platform.system()](sudo_cmd) import sys # Sequence of installation to be maintained system.install_java() system.install_nodejs() system.install_python_packages(cuda_version) system.install_node_packages() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Install various build and test dependencies of TorchServe") parser.add_argument('--cuda', default=None, choices=['cu101'], help="CUDA version for torch") args = parser.parse_args() install_dependencies('', cuda_version=args.cuda)
ts_scripts/install_dependencies.py
import os import platform import argparse class Common(): def __init__(self, sudo_cmd): # Assumption is nvidia-smi is installed on systems with gpu self.is_gpu_instance = True if os.system("nvidia-smi") == 0 else False self.torch_stable_url = "https://download.pytorch.org/whl/torch_stable.html" self.sudo_cmd = sudo_cmd def install_java(self): pass def install_nodejs(self): pass def install_torch_packages(self, cuda_version): if self.is_gpu_instance: if (cuda_version is not None) and cuda_version == 'cu101': os.system(f"pip install -U -r requirements/torch_cu101.txt -f {self.torch_stable_url}") else: os.system(f"pip install -U -r requirements/torch.txt -f {self.torch_stable_url}") else: os.system(f"pip install -U -r requirements/torch_cpu.txt -f {self.torch_stable_url}") def install_python_packages(self, cuda_version): self.install_torch_packages(cuda_version) os.system("pip install -U -r requirements/developer.txt") # developer.txt also installs packages from common.txt if os.system("conda") == 0: # If conda is available install conda-build package os.system("conda install -y conda-build") def install_node_packages(self): os.system(f"{self.sudo_cmd}apt-get update") os.system(f"{self.sudo_cmd}npm install -g newman newman-reporter-html markdown-link-check") def install_jmeter(self): pass class Linux(Common): def __init__(self, sudo_cmd): super().__init__(sudo_cmd) def install_java(self): os.system(f"{self.sudo_cmd}apt-get update") os.system(f"{self.sudo_cmd}apt-get install -y openjdk-11-jdk") def install_nodejs(self): os.system(f"{self.sudo_cmd}apt-get update") os.system(f"{self.sudo_cmd}curl -sL https://deb.nodesource.com/setup_14.x | {self.sudo_cmd}bash -") os.system(f"{self.sudo_cmd}apt-get install -y nodejs") class Windows(Common): def __init__(self, sudo_cmd): super().__init__(sudo_cmd) def install_java(self): pass def install_nodejs(self): pass class Darwin(Common): def __init__(self, sudo_cmd): super().__init__(sudo_cmd) def install_java(self): os.system("brew tap AdoptOpenJDK/openjdk") os.system("brew cask install adoptopenjdk11") def install_nodejs(self): os.system("brew install node") def install_torch_packages(self, cuda_version=''): os.system(f"pip install -U -r requirements/torch.txt -f {self.torch_stable_url}") def install_dependencies(sudo_cmd='sudo ', cuda_version=None): os_map = { "Linux": Linux, "Windows": Windows, "Darwin": Darwin } system = os_map[platform.system()](sudo_cmd) import sys # Sequence of installation to be maintained system.install_java() system.install_nodejs() system.install_python_packages(cuda_version) system.install_node_packages() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Install various build and test dependencies of TorchServe") parser.add_argument('--cuda', default=None, choices=['cu101'], help="CUDA version for torch") args = parser.parse_args() install_dependencies('', cuda_version=args.cuda)
0.294114
0.097648
import pytest import numpy as np from shapely.geometry import Polygon, Point, LineString import geopandas as gpd import earthpy.clip as cl @pytest.fixture def point_gdf(): """Create a point GeoDataFrame.""" pts = np.array([[2, 2], [3, 4], [9, 8], [-12, -15]]) gdf = gpd.GeoDataFrame( [Point(xy) for xy in pts], columns=["geometry"], crs="epsg:4326", ) return gdf @pytest.fixture def single_rectangle_gdf(): """Create a single rectangle for clipping.""" poly_inters = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)]) gdf = gpd.GeoDataFrame([1], geometry=[poly_inters], crs="epsg:4326") gdf["attr2"] = "site-boundary" return gdf @pytest.fixture def two_line_gdf(): """Create Line Objects For Testing """ linea = LineString([(1, 1), (2, 2), (3, 2), (5, 3)]) lineb = LineString([(3, 4), (5, 7), (12, 2), (10, 5), (9, 7.5)]) gdf = gpd.GeoDataFrame([1, 2], geometry=[linea, lineb], crs="epsg:4326") return gdf @pytest.fixture def multi_line(two_line_gdf): """Create a multi-line GeoDataFrame. This has one multi line and another regular line. """ # Create a single and multi line object multiline_feat = two_line_gdf.unary_union linec = LineString([(2, 1), (3, 1), (4, 1), (5, 2)]) out_df = gpd.GeoDataFrame( geometry=gpd.GeoSeries([multiline_feat, linec]), crs="epsg:4326", ) out_df = out_df.rename(columns={0: "geometry"}).set_geometry("geometry") out_df["attr"] = ["road", "stream"] return out_df @pytest.fixture def multi_point(point_gdf): """Create a multi-point GeoDataFrame.""" multi_point = point_gdf.unary_union out_df = gpd.GeoDataFrame( gpd.GeoSeries( [multi_point, Point(2, 5), Point(-11, -14), Point(-10, -12)] ), crs="epsg:4326", ) out_df = out_df.rename(columns={0: "geometry"}).set_geometry("geometry") out_df["attr"] = ["tree", "another tree", "shrub", "berries"] return out_df def test_warning_main_clip_function(point_gdf, single_rectangle_gdf): """Check that clip_shp returns a deprecated warning.""" with pytest.raises(Warning, match="clip_shp is deprecated in earthpy"): cl.clip_shp(point_gdf, single_rectangle_gdf) def test_warning_multi_line_clip_function(multi_line, single_rectangle_gdf): """Check that _clip_multi_poly_line returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_multi_poly_line is deprecated. Use the " "_clip_line_poly()", ): cl._clip_multi_poly_line(multi_line, single_rectangle_gdf) def test_warning_line_clip_function(two_line_gdf, single_rectangle_gdf): """Check that _clip_line_poly returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_line_poly is deprecated. Use the _clip_line_poly()", ): cl._clip_line_poly(two_line_gdf, single_rectangle_gdf) def test_warning_mutli_point_clip_function(multi_point, single_rectangle_gdf): """Check that _clip_multi_point returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_multi_point is deprecated. Use the _clip_points()", ): cl._clip_multi_point(multi_point, single_rectangle_gdf) def test_warning_point_clip_function(point_gdf, single_rectangle_gdf): """Check that _clip_points returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_points is deprecated. Use the _clip_points()", ): cl._clip_points(point_gdf, single_rectangle_gdf)
earthpy/tests/test_clip.py
import pytest import numpy as np from shapely.geometry import Polygon, Point, LineString import geopandas as gpd import earthpy.clip as cl @pytest.fixture def point_gdf(): """Create a point GeoDataFrame.""" pts = np.array([[2, 2], [3, 4], [9, 8], [-12, -15]]) gdf = gpd.GeoDataFrame( [Point(xy) for xy in pts], columns=["geometry"], crs="epsg:4326", ) return gdf @pytest.fixture def single_rectangle_gdf(): """Create a single rectangle for clipping.""" poly_inters = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)]) gdf = gpd.GeoDataFrame([1], geometry=[poly_inters], crs="epsg:4326") gdf["attr2"] = "site-boundary" return gdf @pytest.fixture def two_line_gdf(): """Create Line Objects For Testing """ linea = LineString([(1, 1), (2, 2), (3, 2), (5, 3)]) lineb = LineString([(3, 4), (5, 7), (12, 2), (10, 5), (9, 7.5)]) gdf = gpd.GeoDataFrame([1, 2], geometry=[linea, lineb], crs="epsg:4326") return gdf @pytest.fixture def multi_line(two_line_gdf): """Create a multi-line GeoDataFrame. This has one multi line and another regular line. """ # Create a single and multi line object multiline_feat = two_line_gdf.unary_union linec = LineString([(2, 1), (3, 1), (4, 1), (5, 2)]) out_df = gpd.GeoDataFrame( geometry=gpd.GeoSeries([multiline_feat, linec]), crs="epsg:4326", ) out_df = out_df.rename(columns={0: "geometry"}).set_geometry("geometry") out_df["attr"] = ["road", "stream"] return out_df @pytest.fixture def multi_point(point_gdf): """Create a multi-point GeoDataFrame.""" multi_point = point_gdf.unary_union out_df = gpd.GeoDataFrame( gpd.GeoSeries( [multi_point, Point(2, 5), Point(-11, -14), Point(-10, -12)] ), crs="epsg:4326", ) out_df = out_df.rename(columns={0: "geometry"}).set_geometry("geometry") out_df["attr"] = ["tree", "another tree", "shrub", "berries"] return out_df def test_warning_main_clip_function(point_gdf, single_rectangle_gdf): """Check that clip_shp returns a deprecated warning.""" with pytest.raises(Warning, match="clip_shp is deprecated in earthpy"): cl.clip_shp(point_gdf, single_rectangle_gdf) def test_warning_multi_line_clip_function(multi_line, single_rectangle_gdf): """Check that _clip_multi_poly_line returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_multi_poly_line is deprecated. Use the " "_clip_line_poly()", ): cl._clip_multi_poly_line(multi_line, single_rectangle_gdf) def test_warning_line_clip_function(two_line_gdf, single_rectangle_gdf): """Check that _clip_line_poly returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_line_poly is deprecated. Use the _clip_line_poly()", ): cl._clip_line_poly(two_line_gdf, single_rectangle_gdf) def test_warning_mutli_point_clip_function(multi_point, single_rectangle_gdf): """Check that _clip_multi_point returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_multi_point is deprecated. Use the _clip_points()", ): cl._clip_multi_point(multi_point, single_rectangle_gdf) def test_warning_point_clip_function(point_gdf, single_rectangle_gdf): """Check that _clip_points returns a deprecated warning.""" with pytest.raises( Warning, match="_clip_points is deprecated. Use the _clip_points()", ): cl._clip_points(point_gdf, single_rectangle_gdf)
0.845879
0.687172
"""Layer for modelling and scoring secondary structure.""" import os from absl import logging import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import # 8-class classes (Q8) SECONDARY_STRUCTURES = '-HETSGBI' # Equivalence classes for 3-class (Q3) from Li & Yu 2016. # See https://swift.cmbi.umcn.nl/gv/dssp/ for letter explanations. # This below is a SPECIFIC Q3 map for a specific protein Q3_MAP = ['-TSGIB', 'H', 'E'] def make_q3_matrices(): """Generate mapping matrices for secstruct Q8:Q3 equivalence classes.""" dimension = len(SECONDARY_STRUCTURES) q3_map_matrix = np.zeros((dimension, len(Q3_MAP))) q3_lookup = np.zeros((dimension,), dtype=np.int32) for i, eclass in enumerate(Q3_MAP): # equivalence classes for m in eclass: # Members of the class. ss_type = SECONDARY_STRUCTURES.index(m) q3_map_matrix[ss_type, i] = 1.0 q3_lookup[ss_type] = i return q3_map_matrix, q3_lookup class Secstruct(object): """Make a layer that computes hierarchical secstruct.""" # Build static, shared structures: q3_map_matrix, q3_lookup = make_q3_matrices() static_dimension = len(SECONDARY_STRUCTURES) def __init__(self, name='secstruct'): self.name = name self._dimension = Secstruct.static_dimension def make_layer_new(self, activations): """Make the layer.""" with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): logging.info('Creating secstruct %s', activations) self.logits = tf.contrib.layers.linear(activations, self._dimension) self.ss_q8_probs = tf.nn.softmax(self.logits) self.ss_q3_probs = tf.matmul( self.ss_q8_probs, tf.constant(self.q3_map_matrix, dtype=tf.float32)) def get_q8_probs(self): return self.ss_q8_probs def save_secstructs(dump_dir_path, name, index, sequence, probs, label='Deepmind secstruct'): """Write secstruct prob distributions to an ss2 file. Can be overloaded to write out asa values too. Args: dump_dir_path: directory where to write files. name: name of domain index: index number of multiple samples. (or None for no index) sequence: string of L residue labels probs: L x D matrix of probabilities. L is length of sequence, D is probability dimension (usually 3). label: A label for the file. """ filename = os.path.join(dump_dir_path, '%s.ss2' % name) if index is not None: filename = os.path.join(dump_dir_path, '%s_%04d.ss2' % (name, index)) with tf.io.gfile.GFile(filename, 'w') as gf: logging.info('Saving secstruct to %s', filename) gf.write('# %s CLASSES [%s] %s sample %s\n\n' % ( label, ''.join(SECONDARY_STRUCTURES[:probs.shape[1]]), name, index)) for l in range(probs.shape[0]): ss = SECONDARY_STRUCTURES[np.argmax(probs[l, :])] gf.write('%4d %1s %1s %s\n' % (l + 1, sequence[l], ss, ''.join( [('%6.3f' % p) for p in probs[l, :]])))
alphafold_casp13/secstruct.py
"""Layer for modelling and scoring secondary structure.""" import os from absl import logging import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import # 8-class classes (Q8) SECONDARY_STRUCTURES = '-HETSGBI' # Equivalence classes for 3-class (Q3) from Li & Yu 2016. # See https://swift.cmbi.umcn.nl/gv/dssp/ for letter explanations. # This below is a SPECIFIC Q3 map for a specific protein Q3_MAP = ['-TSGIB', 'H', 'E'] def make_q3_matrices(): """Generate mapping matrices for secstruct Q8:Q3 equivalence classes.""" dimension = len(SECONDARY_STRUCTURES) q3_map_matrix = np.zeros((dimension, len(Q3_MAP))) q3_lookup = np.zeros((dimension,), dtype=np.int32) for i, eclass in enumerate(Q3_MAP): # equivalence classes for m in eclass: # Members of the class. ss_type = SECONDARY_STRUCTURES.index(m) q3_map_matrix[ss_type, i] = 1.0 q3_lookup[ss_type] = i return q3_map_matrix, q3_lookup class Secstruct(object): """Make a layer that computes hierarchical secstruct.""" # Build static, shared structures: q3_map_matrix, q3_lookup = make_q3_matrices() static_dimension = len(SECONDARY_STRUCTURES) def __init__(self, name='secstruct'): self.name = name self._dimension = Secstruct.static_dimension def make_layer_new(self, activations): """Make the layer.""" with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): logging.info('Creating secstruct %s', activations) self.logits = tf.contrib.layers.linear(activations, self._dimension) self.ss_q8_probs = tf.nn.softmax(self.logits) self.ss_q3_probs = tf.matmul( self.ss_q8_probs, tf.constant(self.q3_map_matrix, dtype=tf.float32)) def get_q8_probs(self): return self.ss_q8_probs def save_secstructs(dump_dir_path, name, index, sequence, probs, label='Deepmind secstruct'): """Write secstruct prob distributions to an ss2 file. Can be overloaded to write out asa values too. Args: dump_dir_path: directory where to write files. name: name of domain index: index number of multiple samples. (or None for no index) sequence: string of L residue labels probs: L x D matrix of probabilities. L is length of sequence, D is probability dimension (usually 3). label: A label for the file. """ filename = os.path.join(dump_dir_path, '%s.ss2' % name) if index is not None: filename = os.path.join(dump_dir_path, '%s_%04d.ss2' % (name, index)) with tf.io.gfile.GFile(filename, 'w') as gf: logging.info('Saving secstruct to %s', filename) gf.write('# %s CLASSES [%s] %s sample %s\n\n' % ( label, ''.join(SECONDARY_STRUCTURES[:probs.shape[1]]), name, index)) for l in range(probs.shape[0]): ss = SECONDARY_STRUCTURES[np.argmax(probs[l, :])] gf.write('%4d %1s %1s %s\n' % (l + 1, sequence[l], ss, ''.join( [('%6.3f' % p) for p in probs[l, :]])))
0.858881
0.445107
from enum import Enum from typing import Any, Dict, List from mypy_extensions import TypedDict from typing_extensions import Protocol from openslides_backend.shared.interfaces import Filter from openslides_backend.shared.patterns import Collection, FullQualifiedId PartialModel = Dict[str, Any] Found = TypedDict("Found", {"exists": bool, "position": int}) Count = TypedDict("Count", {"count": int, "position": int}) Aggregate = Dict[str, Any] class DeletedModelsBehaviour(Enum): NO_DELETED = 1 ONLY_DELETED = 2 ALL_MODELS = 3 class GetManyRequest: """Encapsulates a single GetManyRequests """ def __init__( self, collection: Collection, ids: List[int], mapped_fields: List[str] = None, ): self.collection = collection self.ids = ids self.mapped_fields = mapped_fields def to_dict(self) -> Dict[str, Any]: result: Dict[str, Any] = {} result["collection"] = str(self.collection) if self.ids is not None: result["ids"] = self.ids if self.mapped_fields is not None: result["mapped_fields"] = self.mapped_fields return result class Datastore(Protocol): """Datastore defines the interface to the datastore """ def get( self, fqid: FullQualifiedId, mapped_fields: List[str] = None, position: int = None, get_deleted_models: int = None, ) -> PartialModel: ... def getMany( self, get_many_requests: List[GetManyRequest], mapped_fields: List[str] = None, position: int = None, get_deleted_models: int = None, ) -> Dict[str, Dict[int, PartialModel]]: ... def getManyByFQIDs( self, ids: List[FullQualifiedId] ) -> Dict[str, Dict[int, PartialModel]]: ... def getAll( self, collection: Collection, mapped_fields: List[str] = None, get_deleted_models: int = None, ) -> List[PartialModel]: ... def filter( self, collection: Collection, filter: Filter, meeting_id: int = None, mapped_fields: List[str] = None, ) -> List[PartialModel]: ... def exists(self, collection: Collection, filter: Filter) -> Found: ... def count(self, collection: Collection, filter: Filter) -> Count: ... def min( self, collection: Collection, filter: Filter, field: str, type: str = None ) -> Aggregate: ... def max( self, collection: Collection, filter: Filter, field: str, type: str = None ) -> Aggregate: ...
openslides_backend/services/database/adapter/interface.py
from enum import Enum from typing import Any, Dict, List from mypy_extensions import TypedDict from typing_extensions import Protocol from openslides_backend.shared.interfaces import Filter from openslides_backend.shared.patterns import Collection, FullQualifiedId PartialModel = Dict[str, Any] Found = TypedDict("Found", {"exists": bool, "position": int}) Count = TypedDict("Count", {"count": int, "position": int}) Aggregate = Dict[str, Any] class DeletedModelsBehaviour(Enum): NO_DELETED = 1 ONLY_DELETED = 2 ALL_MODELS = 3 class GetManyRequest: """Encapsulates a single GetManyRequests """ def __init__( self, collection: Collection, ids: List[int], mapped_fields: List[str] = None, ): self.collection = collection self.ids = ids self.mapped_fields = mapped_fields def to_dict(self) -> Dict[str, Any]: result: Dict[str, Any] = {} result["collection"] = str(self.collection) if self.ids is not None: result["ids"] = self.ids if self.mapped_fields is not None: result["mapped_fields"] = self.mapped_fields return result class Datastore(Protocol): """Datastore defines the interface to the datastore """ def get( self, fqid: FullQualifiedId, mapped_fields: List[str] = None, position: int = None, get_deleted_models: int = None, ) -> PartialModel: ... def getMany( self, get_many_requests: List[GetManyRequest], mapped_fields: List[str] = None, position: int = None, get_deleted_models: int = None, ) -> Dict[str, Dict[int, PartialModel]]: ... def getManyByFQIDs( self, ids: List[FullQualifiedId] ) -> Dict[str, Dict[int, PartialModel]]: ... def getAll( self, collection: Collection, mapped_fields: List[str] = None, get_deleted_models: int = None, ) -> List[PartialModel]: ... def filter( self, collection: Collection, filter: Filter, meeting_id: int = None, mapped_fields: List[str] = None, ) -> List[PartialModel]: ... def exists(self, collection: Collection, filter: Filter) -> Found: ... def count(self, collection: Collection, filter: Filter) -> Count: ... def min( self, collection: Collection, filter: Filter, field: str, type: str = None ) -> Aggregate: ... def max( self, collection: Collection, filter: Filter, field: str, type: str = None ) -> Aggregate: ...
0.857067
0.213172
import base64 import jwt from allauth.socialaccount.providers.oauth2.views import OAuth2Adapter, OAuth2CallbackView, OAuth2LoginView from cryptography import x509 from cryptography.hazmat.backends import default_backend from .provider import EspooADFSProvider, HelsinkiADFSProvider x509_backend = default_backend() class ADFSOAuth2Adapter(OAuth2Adapter): @classmethod def get_login_view(cls): return OAuth2LoginView.adapter_view(cls) @classmethod def get_callback_view(cls): return OAuth2CallbackView.adapter_view(cls) def complete_login(self, request, app, token, **kwargs): cert_der = base64.b64decode(self.cert) x509_cert = x509.load_der_x509_certificate(cert_der, backend=x509_backend) jwt_token = jwt.decode(token.token, key=x509_cert.public_key(), leeway=10, options={'verify_aud': False}) data = self.clean_attributes(jwt_token) return self.get_provider().sociallogin_from_response(request, data) class HelsinkiADFSOAuth2Adapter(ADFSOAuth2Adapter): provider_id = HelsinkiADFSProvider.id realm = 'helsinki' access_token_url = 'https://fs.hel.fi/adfs/oauth2/token' authorize_url = 'https://fs.hel.fi/adfs/oauth2/authorize' profile_url = 'https://api.hel.fi/sso/user/' cert = ( 'MIIDMDCCAhigAwIBAgIBATANBgkqhkiG9w0BAQsFADAjMSEwHwYDVQQDExhBR' 'EZTIFNpZ25pbmcgLSBmcy5oZWwuZmkwHhcNMTYwNDAzMjIxMTAwWhcNMjEwND' 'AzMjIxMTAwWjAjMSEwHwYDVQQDExhBREZTIFNpZ25pbmcgLSBmcy5oZWwuZmk' 'wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCrCo9kuzljk4F8R12A' 'eIYMARztxkMojcrN1KN3KQeoxcCPaFOTMYHWk8ww1N+m0PJoLl1Eray+cMsoH' 'rdd3iVxmApcQBxD02SnGsEn/3D/sTHcoi9WzqwM8ESbtm0jGIvfWrpJtMO/g7' 'ELW0dXBcWq4LRvBtyTt3jiehIO0HohS8xfQ4+vURFpjvfD0kjPemsMJ7QB8Eo' <KEY>2CNFO9vct1IJiQJUfRbVWk8I/JFA65ZuXrCjY//<KEY>' '<KEY>' 'wSsMXiNXh8AitTLUMgpAgMBAAGjbzBtMAwGA1UdEwEB/wQCMAAwHQYDVR0OBB' 'YEFBDL4FpHu+kQEI7MIpSjSACaA9ajMAsGA1UdDwQEAwIFIDARBglghkgBhvh' 'CAQEEBAMCBkAwHgYJYIZIAYb4QgENBBEWD3hjYSBjZXJ0aWZpY2F0ZTANBgkq' 'hkiG9w0BAQsFAAOCAQEAISn44oOdtfdMHh0Z4nezAuDHtKqTd6iV3MY7MwTFm' 'iUFQhJADO2ezpoW3Xj64wWeg3eVXyC7iHk/SV5OVmmo4uU/1YJHiBc5jEUZ5E' 'dvaZQaDH5iaJlK6aiCTznqwu7XJS7LbLeLrVqj3H3IYsV6BiGlT4Z1rXYX+nD' 'fi46TJCKqxE0zTArQQROocfKS+7JM+JU5dLMNOOC+6tCUOP3GEjuE3PMetpbH' '+k6Wu6d3LzhpU2QICWJnFpj1yJTAb94pWRUKNoBhpxQlWvNzRgFgJesIfkZ4C' 'qqhmHqnV/BO+7MMv/g+WXRD09fo/YIXozpWzmO9LBzEvFe7Itz6C1R4Ng==') def clean_attributes(self, attrs_in): attr_map = { 'primarysid': 'primary_sid', 'company': 'department_name', 'email': 'email', 'winaccountname': 'username', 'group': 'ad_groups', 'unique_name': 'last_first_name', 'given_name': 'first_name', 'family_name': 'last_name', } # Convert attribute names to lowercase attrs_in = {k.lower(): v for k, v in attrs_in.items()} attrs = {} for in_name, out_name in attr_map.items(): val = attrs_in.get(in_name, None) if val is not None: if out_name in ('department_name', 'email', 'username'): val = val.lower() attrs[out_name] = val attrs[out_name] = val if 'last_first_name' in attrs: names = attrs['last_first_name'].split(' ') if 'first_name' not in attrs: attrs['first_name'] = [names[0]] if 'last_name' not in attrs: attrs['last_name'] = [' '.join(names[1:])] del attrs['last_first_name'] return attrs class EspooADFSOAuth2Adapter(ADFSOAuth2Adapter): provider_id = EspooADFSProvider.id realm = 'espoo' access_token_url = 'https://fs.espoo.fi/adfs/oauth2/token' authorize_url = 'https://fs.espoo.fi/adfs/oauth2/authorize' profile_url = 'https://api.hel.fi/sso/user/' cert = ( 'MIIG1zCCBL+gAwIBAgITGgAAfQoAbggMFZQDYAAAAAB9CjANBgkqhkiG9w0BAQsF' 'ADBaMRQwEgYKCZImiZPyLGQBGRYEY2l0eTESMBAGCgmSJomT8ixkARkWAmFkMRUw' '<KEY>kVzcG9vIEggU3ViIENBMB4X' 'DTE3MTEyMjEzMDIxMVoXDTIyMTEyMjEzMTIxMVowKDEmMCQGA1UEAxMdQURGUyBT' '<KEY>' '<KEY>' '<KEY>' 'AZVm6TxMvX4eletZT8iGdb6Al40EriFtdPrTX5NhoTG6YwcQtFa7UHstjsxDktb+' 'ZXphpPoFB65kSi948ThVPdo6UwIhLKioSw/<KEY>5CvqKdPbrhXZYRx4' 'dQY1gKScfbD1XMi+wVMwhp5Abn4D9BNbesMNsZqYHdzyANwMLqszJ6ASRuWoW4xp' '/sjs/cs16HDOYyTHy09ppaCUx3wD7tqfAgMBAAGjggLGMIICwjA+BgkrBgEEAYI3' 'FQcEMTAvBicrBgEEAYI3FQiE3KFUgeH0QIS5mziD5egZh7aYPoEbhtfpHYSAlToC' 'AWQCAQYwEwYDVR0lBAwwCgYIKwYBBQUHAwEwDgYDVR0PAQH/BAQDAgWgMBsGCSsG' 'AQQBgjcVCgQOMAwwCgYIKwYBBQUHAwEwHQYDVR0OBBYEFA3f0BbRJG1stycIZ+gZ' 'djezdJ3mMB8GA1UdIwQYMBaAFKnS5DPbd9hr720Fh3H1s8Djw+GXMIH+BgNVHR8E' '<KEY>' '<KEY>' '<KEY>' 'PVNlcnZpY2VzLENOPUNvbmZpZ3VyYXRpb24sREM9YWQsREM9Y2l0eT9jZXJ0aWZp' 'Y2F0ZVJldm9jYXRpb25MaXN0P2Jhc2U/b2JqZWN0Q2xhc3M9Y1JMRGlzdHJpYnV0' 'aW9uUG9pbnQwgfwGCCsGAQUFBwEBBIHvMIHsMDgGCCsGAQUFBzAChixodHRwOi8v' 'cGtpLmVzcG9vLmZpL0VzcG9vJTIwSCUyMFN1YiUyMENBLmNydDCBrwYIKwYBBQUH' 'MAKGgaJsZGFwOi8vL0NOPUVzcG9vJTIwSCUyMFN1YiUyMENBLENOPUFJQSxDTj1Q' 'dWJsaWMlMjBLZXklMjBTZXJ2aWNlcyxDTj1TZXJ2aWNlcyxDTj1Db25maWd1cmF0' 'aW9uLERDPWFkLERDPWNpdHk/Y0FDZXJ0aWZpY2F0ZT9iYXNlP29iamVjdENsYXNz' 'PWNlcnRpZmljYXRpb25BdXRob3JpdHkwDQYJKoZIhvcNAQELBQADggIBAIGhXVtM' 'rRq2dNz66P1eO+NzZoV7g5RrN/tcOsBvplj4QjhIeyG9I22eESZNHrege0qZDHng' '<KEY>' 'B4c4r8QeDXn7zcVvh0Z0FbIskAVEA9MoWdo7+uTMb/I+K6h97A9ysg9ry2bwAv/B' 'UletFRVJtMRHqDHd9QeS/G1EmkOP/PstDK5REN9TMo/EUpXYV1mNJF7k0TRtpXu1' 'pd14EaD2xI993Tf4Vzmeht34RjuKMGS3Rwn6DV4OoTr/49RlO6HARnkLrDz7hAT8' '+CVM2iTOuDoswyP6Slbt/vZh9KJB+0g4f/GZCrcsq44DfpxEPAyomIAmSi0TPsjQ' 'mvQDQQXieY9b6ojxleHMGMD27GpTszXkmtS01Imwy2X7yeZyPEJuPyr0xW2tC6t9' 'ilyfuetzFr9cNawj2z0JvObVQ8X68Bq0MTBiMdtA/IWgzukGlFhCrLG+KCn/Idqz' 'dtXrlETkTPhKlm84Pr3MbEueS0MuIwGf6TGUt7arWJe6zDMf1/ZfBQV1kOjFOH6S' 'DNQhLHEL0mYumZUawi+EaNQOtTE8SN1tbKicI09WR0jdvNs7lvePrB/K1q19hz5m' 'U+rbNk9+8Jgpzd5ielj37oqQOJazbSxNt+xF' ) def clean_attributes(self, attrs_in): attr_map = { 'primarysid': 'primary_sid', 'given_name': 'first_name', 'family_name': 'last_name', 'email': 'email', } attrs = {} for in_name, out_name in attr_map.items(): val = attrs_in.get(in_name, None) if val is not None: if out_name in ('department_name', 'email', 'username'): val = val.lower() attrs[out_name] = val attrs[out_name] = val return attrs
adfs_provider/views.py
import base64 import jwt from allauth.socialaccount.providers.oauth2.views import OAuth2Adapter, OAuth2CallbackView, OAuth2LoginView from cryptography import x509 from cryptography.hazmat.backends import default_backend from .provider import EspooADFSProvider, HelsinkiADFSProvider x509_backend = default_backend() class ADFSOAuth2Adapter(OAuth2Adapter): @classmethod def get_login_view(cls): return OAuth2LoginView.adapter_view(cls) @classmethod def get_callback_view(cls): return OAuth2CallbackView.adapter_view(cls) def complete_login(self, request, app, token, **kwargs): cert_der = base64.b64decode(self.cert) x509_cert = x509.load_der_x509_certificate(cert_der, backend=x509_backend) jwt_token = jwt.decode(token.token, key=x509_cert.public_key(), leeway=10, options={'verify_aud': False}) data = self.clean_attributes(jwt_token) return self.get_provider().sociallogin_from_response(request, data) class HelsinkiADFSOAuth2Adapter(ADFSOAuth2Adapter): provider_id = HelsinkiADFSProvider.id realm = 'helsinki' access_token_url = 'https://fs.hel.fi/adfs/oauth2/token' authorize_url = 'https://fs.hel.fi/adfs/oauth2/authorize' profile_url = 'https://api.hel.fi/sso/user/' cert = ( 'MIIDMDCCAhigAwIBAgIBATANBgkqhkiG9w0BAQsFADAjMSEwHwYDVQQDExhBR' 'EZTIFNpZ25pbmcgLSBmcy5oZWwuZmkwHhcNMTYwNDAzMjIxMTAwWhcNMjEwND' 'AzMjIxMTAwWjAjMSEwHwYDVQQDExhBREZTIFNpZ25pbmcgLSBmcy5oZWwuZmk' 'wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCrCo9kuzljk4F8R12A' 'eIYMARztxkMojcrN1KN3KQeoxcCPaFOTMYHWk8ww1N+m0PJoLl1Eray+cMsoH' 'rdd3iVxmApcQBxD02SnGsEn/3D/sTHcoi9WzqwM8ESbtm0jGIvfWrpJtMO/g7' 'ELW0dXBcWq4LRvBtyTt3jiehIO0HohS8xfQ4+vURFpjvfD0kjPemsMJ7QB8Eo' <KEY>2CNFO9vct1IJiQJUfRbVWk8I/JFA65ZuXrCjY//<KEY>' '<KEY>' 'wSsMXiNXh8AitTLUMgpAgMBAAGjbzBtMAwGA1UdEwEB/wQCMAAwHQYDVR0OBB' 'YEFBDL4FpHu+kQEI7MIpSjSACaA9ajMAsGA1UdDwQEAwIFIDARBglghkgBhvh' 'CAQEEBAMCBkAwHgYJYIZIAYb4QgENBBEWD3hjYSBjZXJ0aWZpY2F0ZTANBgkq' 'hkiG9w0BAQsFAAOCAQEAISn44oOdtfdMHh0Z4nezAuDHtKqTd6iV3MY7MwTFm' 'iUFQhJADO2ezpoW3Xj64wWeg3eVXyC7iHk/SV5OVmmo4uU/1YJHiBc5jEUZ5E' 'dvaZQaDH5iaJlK6aiCTznqwu7XJS7LbLeLrVqj3H3IYsV6BiGlT4Z1rXYX+nD' 'fi46TJCKqxE0zTArQQROocfKS+7JM+JU5dLMNOOC+6tCUOP3GEjuE3PMetpbH' '+k6Wu6d3LzhpU2QICWJnFpj1yJTAb94pWRUKNoBhpxQlWvNzRgFgJesIfkZ4C' 'qqhmHqnV/BO+7MMv/g+WXRD09fo/YIXozpWzmO9LBzEvFe7Itz6C1R4Ng==') def clean_attributes(self, attrs_in): attr_map = { 'primarysid': 'primary_sid', 'company': 'department_name', 'email': 'email', 'winaccountname': 'username', 'group': 'ad_groups', 'unique_name': 'last_first_name', 'given_name': 'first_name', 'family_name': 'last_name', } # Convert attribute names to lowercase attrs_in = {k.lower(): v for k, v in attrs_in.items()} attrs = {} for in_name, out_name in attr_map.items(): val = attrs_in.get(in_name, None) if val is not None: if out_name in ('department_name', 'email', 'username'): val = val.lower() attrs[out_name] = val attrs[out_name] = val if 'last_first_name' in attrs: names = attrs['last_first_name'].split(' ') if 'first_name' not in attrs: attrs['first_name'] = [names[0]] if 'last_name' not in attrs: attrs['last_name'] = [' '.join(names[1:])] del attrs['last_first_name'] return attrs class EspooADFSOAuth2Adapter(ADFSOAuth2Adapter): provider_id = EspooADFSProvider.id realm = 'espoo' access_token_url = 'https://fs.espoo.fi/adfs/oauth2/token' authorize_url = 'https://fs.espoo.fi/adfs/oauth2/authorize' profile_url = 'https://api.hel.fi/sso/user/' cert = ( 'MIIG1zCCBL+gAwIBAgITGgAAfQoAbggMFZQDYAAAAAB9CjANBgkqhkiG9w0BAQsF' 'ADBaMRQwEgYKCZImiZPyLGQBGRYEY2l0eTESMBAGCgmSJomT8ixkARkWAmFkMRUw' '<KEY>kVzcG9vIEggU3ViIENBMB4X' 'DTE3MTEyMjEzMDIxMVoXDTIyMTEyMjEzMTIxMVowKDEmMCQGA1UEAxMdQURGUyBT' '<KEY>' '<KEY>' '<KEY>' 'AZVm6TxMvX4eletZT8iGdb6Al40EriFtdPrTX5NhoTG6YwcQtFa7UHstjsxDktb+' 'ZXphpPoFB65kSi948ThVPdo6UwIhLKioSw/<KEY>5CvqKdPbrhXZYRx4' 'dQY1gKScfbD1XMi+wVMwhp5Abn4D9BNbesMNsZqYHdzyANwMLqszJ6ASRuWoW4xp' '/sjs/cs16HDOYyTHy09ppaCUx3wD7tqfAgMBAAGjggLGMIICwjA+BgkrBgEEAYI3' 'FQcEMTAvBicrBgEEAYI3FQiE3KFUgeH0QIS5mziD5egZh7aYPoEbhtfpHYSAlToC' 'AWQCAQYwEwYDVR0lBAwwCgYIKwYBBQUHAwEwDgYDVR0PAQH/BAQDAgWgMBsGCSsG' 'AQQBgjcVCgQOMAwwCgYIKwYBBQUHAwEwHQYDVR0OBBYEFA3f0BbRJG1stycIZ+gZ' 'djezdJ3mMB8GA1UdIwQYMBaAFKnS5DPbd9hr720Fh3H1s8Djw+GXMIH+BgNVHR8E' '<KEY>' '<KEY>' '<KEY>' 'PVNlcnZpY2VzLENOPUNvbmZpZ3VyYXRpb24sREM9YWQsREM9Y2l0eT9jZXJ0aWZp' 'Y2F0ZVJldm9jYXRpb25MaXN0P2Jhc2U/b2JqZWN0Q2xhc3M9Y1JMRGlzdHJpYnV0' 'aW9uUG9pbnQwgfwGCCsGAQUFBwEBBIHvMIHsMDgGCCsGAQUFBzAChixodHRwOi8v' 'cGtpLmVzcG9vLmZpL0VzcG9vJTIwSCUyMFN1YiUyMENBLmNydDCBrwYIKwYBBQUH' 'MAKGgaJsZGFwOi8vL0NOPUVzcG9vJTIwSCUyMFN1YiUyMENBLENOPUFJQSxDTj1Q' 'dWJsaWMlMjBLZXklMjBTZXJ2aWNlcyxDTj1TZXJ2aWNlcyxDTj1Db25maWd1cmF0' 'aW9uLERDPWFkLERDPWNpdHk/Y0FDZXJ0aWZpY2F0ZT9iYXNlP29iamVjdENsYXNz' 'PWNlcnRpZmljYXRpb25BdXRob3JpdHkwDQYJKoZIhvcNAQELBQADggIBAIGhXVtM' 'rRq2dNz66P1eO+NzZoV7g5RrN/tcOsBvplj4QjhIeyG9I22eESZNHrege0qZDHng' '<KEY>' 'B4c4r8QeDXn7zcVvh0Z0FbIskAVEA9MoWdo7+uTMb/I+K6h97A9ysg9ry2bwAv/B' 'UletFRVJtMRHqDHd9QeS/G1EmkOP/PstDK5REN9TMo/EUpXYV1mNJF7k0TRtpXu1' 'pd14EaD2xI993Tf4Vzmeht34RjuKMGS3Rwn6DV4OoTr/49RlO6HARnkLrDz7hAT8' '+CVM2iTOuDoswyP6Slbt/vZh9KJB+0g4f/GZCrcsq44DfpxEPAyomIAmSi0TPsjQ' 'mvQDQQXieY9b6ojxleHMGMD27GpTszXkmtS01Imwy2X7yeZyPEJuPyr0xW2tC6t9' 'ilyfuetzFr9cNawj2z0JvObVQ8X68Bq0MTBiMdtA/IWgzukGlFhCrLG+KCn/Idqz' 'dtXrlETkTPhKlm84Pr3MbEueS0MuIwGf6TGUt7arWJe6zDMf1/ZfBQV1kOjFOH6S' 'DNQhLHEL0mYumZUawi+EaNQOtTE8SN1tbKicI09WR0jdvNs7lvePrB/K1q19hz5m' 'U+rbNk9+8Jgpzd5ielj37oqQOJazbSxNt+xF' ) def clean_attributes(self, attrs_in): attr_map = { 'primarysid': 'primary_sid', 'given_name': 'first_name', 'family_name': 'last_name', 'email': 'email', } attrs = {} for in_name, out_name in attr_map.items(): val = attrs_in.get(in_name, None) if val is not None: if out_name in ('department_name', 'email', 'username'): val = val.lower() attrs[out_name] = val attrs[out_name] = val return attrs
0.396419
0.104752
# For parsing cli arguments import argparse # For parsing JSON files import json # Plotting library import matplotlib as plt plt.use('Agg') import matplotlib.pyplot as pyplot # To access more matplotlib functionality, i.e., default calculated figure # size from pylab import rcParams _version = 0.2 def getVersion(parser): '''Print program name, description and current version''' return "{} - {} - Version {}".format(parser.prog, parser.description, _version) class PlottingConfiguration: '''Configuration of the benchmark plot''' def __init__(self, args): self.inputFile = args.inputFile self.outputFile = args.outputFile self.plotTitle = args.plotTitle self.timeUnit = args.timeUnit self.xValue = args.xValue self.yValue = args.yValue if args.xLabel is None: self.xLabel = args.xValue else: self.xLabel = args.xLabel if args.yLabel is None: self.yLabel = "Time in {}".format(args.timeUnit) else: self.yLabel = args.yLabel self.xTickBegin = args.xTickBegin self.xTickEnd = args.xTickEnd self.xTickStep = args.xTickStep self.benchmarkDescription = args.benchmarkDescription self.xSize = args.xSize self.ySize = args.ySize self.dpi = args.dpi def convertTimeUnit(value, src, dest): '''Convert time units''' # This function is necessary since popular libraries like datatime cannot # handle nanoseconds if src == dest: return value if src == "ns": if dest == "us": return value / 1000 if dest == "ms": return value / 1000000 elif src == "us": if dest == "ns": return value * 1000 if dest == "ms": return value / 1000 elif src == "ms": if dest == "ns": return value * 1000000 if dest == "us": return value * 10000 def parseJSON(configuration): '''Parses JSON file containing benchmark results''' with open(configuration.inputFile) as fd: data = json.load(fd) ret = [] for bench in data["benchmarks"]: # Convert time units if necessary if bench["time_unit"] != configuration.timeUnit: bench[configuration.yValue] = convertTimeUnit(bench[configuration.yValue], bench["time_unit"], configuration.timeUnit) ret.append((bench["benchmark_visualizer_group"], bench[configuration.xValue], bench[configuration.yValue], configuration.timeUnit)) return ret def plot(data, configuration): benchmarkDict = dict() for bench in data: # If no list for this benchmark (group) exist, we create one if bench[0] not in benchmarkDict: benchmarkDict.update({bench[0]: ([], [])}) # Append x value if necessary if bench[1] not in benchmarkDict[bench[0]][0]: benchmarkDict[bench[0]][0].append(bench[1]) # Append y value benchmarkDict[bench[0]][1].append(bench[2]) # Use passed arguments if possible, otherwise use automatically calculated # figure size if configuration.xSize is None and configuration.xSize is None: pyplot.figure(dpi=configuration.dpi) elif configuration.xSize is None: pyplot.figure(figsize=(rcParams['figure.figsize'][0], float(configuration.ySize)), dpi=configuration.dpi) elif configuration.ySize is None: pyplot.figure(figsize=(float(configuration.xSize), rcParams['figure.figsize'][1]), dpi=configuration.dpi) else: pyplot.figure(figsize=(float(configuration.xSize), float(configuration.ySize)), dpi=configuration.dpi) for key, value in benchmarkDict.items(): # Add plotting data pyplot.plot(value[0], value[1], marker='o', label=configuration.benchmarkDescription[int(key)]) pyplot.title(configuration.plotTitle) pyplot.ylabel(configuration.yLabel) pyplot.xlabel(configuration.xLabel) pyplot.legend() pyplot.grid() # If no end for the x values is set, just take the maximum of them if configuration.xTickEnd == -1: for key, val in benchmarkDict.items(): if max(val[0]) > configuration.xTickEnd: configuration.xTickEnd = max(val[0]) if configuration.xTickStep != "auto": pyplot.xticks(range(int(configuration.xTickBegin), int(configuration.xTickEnd)+1, int(configuration.xTickStep))) pyplot.savefig(configuration.outputFile, bbox_inches='tight') def main(): # Parse command line arguments parser = argparse.ArgumentParser(description = "Visualize Google Benchmark.", prog = "Benchmark Visualizer") parser.add_argument("--version", "-v", version = getVersion(parser), action = "version") parser.add_argument("--input_file", "-i", metavar = "FILE", help = "Path to JSON file with benchmark results", dest = "inputFile", required = True) parser.add_argument("--output_file", "-o", metavar = "FILE", help = "Path to file where the image of the diagram will " "be stored.", dest = "outputFile", required = True) parser.add_argument("--title", metavar = "TITLE", help = "Diagram title", dest = "plotTitle", default = "Benchmark Results") parser.add_argument("--time_unit", choices = ["ns", "us", "ms"], help = "Time unit for measured durations", dest = "timeUnit", default = "ns") parser.add_argument("--x_label", metavar = "X_LABEL", dest = "xLabel", help = "Label on the x axis") parser.add_argument("--y_label", metavar = "Y_LABEL", dest = "yLabel", help = "Lable on the y axis") parser.add_argument("--x_value", "-x", metavar = "X_VALUE", dest = "xValue", help = "Name of the counter that stores the x value", required = True) parser.add_argument("--y_value", "-y", choices = ["real_time", "cpu_time"], metavar = "y_VALUE", dest = "yValue", help = "Name of the y value that will be considered", default = "real_time") parser.add_argument("--x_tick_begin", metavar = "VALUE", help = "Set the begin of the x ticks manually", dest = "xTickBegin", default = 0) parser.add_argument("--x_tick_end", metavar = "VALUE", help = "Set the end of the x ticks manually", dest = "xTickEnd", default = -1) parser.add_argument("--x_tick_step", metavar = "VALUE", help = "Set the steps of the x ticks manually", dest = "xTickStep", default = "auto") parser.add_argument("--benchmark_description", "-d", metavar = "DESC", nargs='*', help = "Description of benchmarks", dest = "benchmarkDescription", required = True) parser.add_argument("--x_size", metavar = "VALUE", help = "The horizontal size of the produced plot in inches", dest = "xSize") parser.add_argument("--y_size", metavar = "VALUE", help = "The vertical size of the produced plot in inches", dest = "ySize") parser.add_argument("--dpi", type=int, metavar = "VALUE", help = "DPI of the produced plot", dest = "dpi", default = None) args = parser.parse_args() configuration = PlottingConfiguration(args) data = parseJSON(configuration) plot(data, configuration) if __name__ == "__main__": main()
benchmark_visualizer.py
# For parsing cli arguments import argparse # For parsing JSON files import json # Plotting library import matplotlib as plt plt.use('Agg') import matplotlib.pyplot as pyplot # To access more matplotlib functionality, i.e., default calculated figure # size from pylab import rcParams _version = 0.2 def getVersion(parser): '''Print program name, description and current version''' return "{} - {} - Version {}".format(parser.prog, parser.description, _version) class PlottingConfiguration: '''Configuration of the benchmark plot''' def __init__(self, args): self.inputFile = args.inputFile self.outputFile = args.outputFile self.plotTitle = args.plotTitle self.timeUnit = args.timeUnit self.xValue = args.xValue self.yValue = args.yValue if args.xLabel is None: self.xLabel = args.xValue else: self.xLabel = args.xLabel if args.yLabel is None: self.yLabel = "Time in {}".format(args.timeUnit) else: self.yLabel = args.yLabel self.xTickBegin = args.xTickBegin self.xTickEnd = args.xTickEnd self.xTickStep = args.xTickStep self.benchmarkDescription = args.benchmarkDescription self.xSize = args.xSize self.ySize = args.ySize self.dpi = args.dpi def convertTimeUnit(value, src, dest): '''Convert time units''' # This function is necessary since popular libraries like datatime cannot # handle nanoseconds if src == dest: return value if src == "ns": if dest == "us": return value / 1000 if dest == "ms": return value / 1000000 elif src == "us": if dest == "ns": return value * 1000 if dest == "ms": return value / 1000 elif src == "ms": if dest == "ns": return value * 1000000 if dest == "us": return value * 10000 def parseJSON(configuration): '''Parses JSON file containing benchmark results''' with open(configuration.inputFile) as fd: data = json.load(fd) ret = [] for bench in data["benchmarks"]: # Convert time units if necessary if bench["time_unit"] != configuration.timeUnit: bench[configuration.yValue] = convertTimeUnit(bench[configuration.yValue], bench["time_unit"], configuration.timeUnit) ret.append((bench["benchmark_visualizer_group"], bench[configuration.xValue], bench[configuration.yValue], configuration.timeUnit)) return ret def plot(data, configuration): benchmarkDict = dict() for bench in data: # If no list for this benchmark (group) exist, we create one if bench[0] not in benchmarkDict: benchmarkDict.update({bench[0]: ([], [])}) # Append x value if necessary if bench[1] not in benchmarkDict[bench[0]][0]: benchmarkDict[bench[0]][0].append(bench[1]) # Append y value benchmarkDict[bench[0]][1].append(bench[2]) # Use passed arguments if possible, otherwise use automatically calculated # figure size if configuration.xSize is None and configuration.xSize is None: pyplot.figure(dpi=configuration.dpi) elif configuration.xSize is None: pyplot.figure(figsize=(rcParams['figure.figsize'][0], float(configuration.ySize)), dpi=configuration.dpi) elif configuration.ySize is None: pyplot.figure(figsize=(float(configuration.xSize), rcParams['figure.figsize'][1]), dpi=configuration.dpi) else: pyplot.figure(figsize=(float(configuration.xSize), float(configuration.ySize)), dpi=configuration.dpi) for key, value in benchmarkDict.items(): # Add plotting data pyplot.plot(value[0], value[1], marker='o', label=configuration.benchmarkDescription[int(key)]) pyplot.title(configuration.plotTitle) pyplot.ylabel(configuration.yLabel) pyplot.xlabel(configuration.xLabel) pyplot.legend() pyplot.grid() # If no end for the x values is set, just take the maximum of them if configuration.xTickEnd == -1: for key, val in benchmarkDict.items(): if max(val[0]) > configuration.xTickEnd: configuration.xTickEnd = max(val[0]) if configuration.xTickStep != "auto": pyplot.xticks(range(int(configuration.xTickBegin), int(configuration.xTickEnd)+1, int(configuration.xTickStep))) pyplot.savefig(configuration.outputFile, bbox_inches='tight') def main(): # Parse command line arguments parser = argparse.ArgumentParser(description = "Visualize Google Benchmark.", prog = "Benchmark Visualizer") parser.add_argument("--version", "-v", version = getVersion(parser), action = "version") parser.add_argument("--input_file", "-i", metavar = "FILE", help = "Path to JSON file with benchmark results", dest = "inputFile", required = True) parser.add_argument("--output_file", "-o", metavar = "FILE", help = "Path to file where the image of the diagram will " "be stored.", dest = "outputFile", required = True) parser.add_argument("--title", metavar = "TITLE", help = "Diagram title", dest = "plotTitle", default = "Benchmark Results") parser.add_argument("--time_unit", choices = ["ns", "us", "ms"], help = "Time unit for measured durations", dest = "timeUnit", default = "ns") parser.add_argument("--x_label", metavar = "X_LABEL", dest = "xLabel", help = "Label on the x axis") parser.add_argument("--y_label", metavar = "Y_LABEL", dest = "yLabel", help = "Lable on the y axis") parser.add_argument("--x_value", "-x", metavar = "X_VALUE", dest = "xValue", help = "Name of the counter that stores the x value", required = True) parser.add_argument("--y_value", "-y", choices = ["real_time", "cpu_time"], metavar = "y_VALUE", dest = "yValue", help = "Name of the y value that will be considered", default = "real_time") parser.add_argument("--x_tick_begin", metavar = "VALUE", help = "Set the begin of the x ticks manually", dest = "xTickBegin", default = 0) parser.add_argument("--x_tick_end", metavar = "VALUE", help = "Set the end of the x ticks manually", dest = "xTickEnd", default = -1) parser.add_argument("--x_tick_step", metavar = "VALUE", help = "Set the steps of the x ticks manually", dest = "xTickStep", default = "auto") parser.add_argument("--benchmark_description", "-d", metavar = "DESC", nargs='*', help = "Description of benchmarks", dest = "benchmarkDescription", required = True) parser.add_argument("--x_size", metavar = "VALUE", help = "The horizontal size of the produced plot in inches", dest = "xSize") parser.add_argument("--y_size", metavar = "VALUE", help = "The vertical size of the produced plot in inches", dest = "ySize") parser.add_argument("--dpi", type=int, metavar = "VALUE", help = "DPI of the produced plot", dest = "dpi", default = None) args = parser.parse_args() configuration = PlottingConfiguration(args) data = parseJSON(configuration) plot(data, configuration) if __name__ == "__main__": main()
0.654453
0.327144
import numpy as np import logging from ..common.utils import get_command_args, configure_logger from ..common.gen_samples import read_anomaly_dataset from .aad_globals import ( IFOR_SCORE_TYPE_NEG_PATH_LEN, ENSEMBLE_SCORE_LINEAR, AAD_IFOREST, INIT_UNIF ) from .data_stream import DataStream, IdServer from .random_split_trees import TREE_UPD_INCREMENTAL from .forest_aad_detector import AadForest from .anomaly_dataset_support import dataset_configs """ pythonw -m ad_examples.aad.test_concept_drift --debug --plot --log_file=temp/test_concept_drift.log --dataset=weather """ def get_iforest_model(x): model = AadForest(n_estimators=100, # 100, max_samples=256, score_type=IFOR_SCORE_TYPE_NEG_PATH_LEN, random_state=42, add_leaf_nodes_only=True, max_depth=100, ensemble_score=ENSEMBLE_SCORE_LINEAR, detector_type=AAD_IFOREST, n_jobs=4, tree_update_type=TREE_UPD_INCREMENTAL, feature_partitions=None) model.fit(x) model.init_weights(init_type=INIT_UNIF) return model def test_kl_data_drift(): logger = logging.getLogger(__name__) args = get_command_args(debug=False, debug_args=["--debug", "--plot", "--log_file=temp/test_concept_drift.log"]) configure_logger(args) np.random.seed(42) dataset_config = dataset_configs[args.dataset] stream_window = dataset_config[2] alpha = 0.05 X_full, y_full = read_anomaly_dataset(args.dataset) logger.debug("dataset: %s (%d, %d), stream_window: %d, alpha: %0.3f" % (args.dataset, X_full.shape[0], X_full.shape[1], stream_window, alpha)) stream = DataStream(X_full, y_full, IdServer(initial=0)) training_set = stream.read_next_from_stream(stream_window) x, y, ids = training_set.x, training_set.y, training_set.ids model = get_iforest_model(x) all_kl_q_alpha = list() all_reference_kls = list() all_compare_kls = list() trees_replaced = list() # compute KL replacement threshold *without* p ref_kls, kl_q_alpha = model.get_KL_divergence_distribution(x, p=None, alpha=alpha) # now initialize reference p p = model.get_node_sample_distributions(x) max_kl = np.max(ref_kls) window = 0 # already read the first window while True: buffer = stream.read_next_from_stream(stream_window) if buffer is None: break window += 1 x, y, ids = buffer.x, buffer.y, buffer.ids # logger.debug("#new: %d" % x.shape[0]) model.add_samples(X=x) all_kl_q_alpha.append(kl_q_alpha) all_reference_kls.append(ref_kls) # compare KL-divergence of current data dist against reference dist p comp_kls, _ = model.get_KL_divergence_distribution(x, p=p) all_compare_kls.append(comp_kls) max_kl = max(max_kl, np.max(comp_kls)) # find which trees exceed alpha-level threshold replace_trees_by_kl = model.get_trees_to_replace(comp_kls, kl_q_alpha) n_trees = model.clf.n_estimators n_replace = 0 if replace_trees_by_kl is None else len(replace_trees_by_kl) n_threshold = int(2*alpha*n_trees) # we will replace if 2*alpha number of trees exceed the alpha-threshold do_replace = n_trees > 0 and n_replace >= n_threshold logger.debug("window %d: n_replace: %d, threshold num: %d, do_replace: %s" % (window, n_replace, n_threshold, str(do_replace))) if do_replace: if False: logger.debug("window %d: #replace_trees_by_kl: %d\n%s" % (window, len(replace_trees_by_kl), str(list(replace_trees_by_kl)))) trees_replaced.append(len(replace_trees_by_kl)) model.update_model_from_stream_buffer(replace_trees=replace_trees_by_kl) # recompute KL replacement threshold *without* p ref_kls, kl_q_alpha = model.get_KL_divergence_distribution(x, p=None, alpha=alpha) max_kl = max(max_kl, np.max(ref_kls)) # now recompute reference p p = model.get_node_sample_distributions(x) else: if False: logger.debug("window %d: model not updated; replace_trees_by_kl: %s" % (window, str(list(replace_trees_by_kl)) if replace_trees_by_kl is not None else None)) trees_replaced.append(0) if args.plot: legend_datasets = None # legend_datasets = ['ann_thyroid_1v3', 'weather'] xlim = [0, window+1] ylim = [0, max_kl+3] dp = DataPlotter(pdfpath="./temp/test_concept_drift_%s.pdf" % args.dataset, rows=1, cols=1) pl = dp.get_next_plot() plt.xlim(xlim) plt.ylim(ylim) plt.xlabel('window', fontsize=18) plt.ylabel('KL-divergence', fontsize=18) for i in range(window): ref_label = com_label = threshold_label = replaced_label = None ref_kls = all_reference_kls[i] com_kls = all_compare_kls[i] mkl = max(np.max(ref_kls), np.max(com_kls)) x_coord = i+1 replaced_y_coord = mkl+2 if i == 0: ref_label = "ref. KL dist" com_label = "KL-dist w.r.t ref. dist" threshold_label = "%0.2f-alpha KL" % alpha replaced_label = "(.) - number of trees replaced" pl.scatter([x_coord], [replaced_y_coord], color="black", marker=".", s=0, label=replaced_label) pl.scatter(np.ones(len(ref_kls), dtype=np.float32)*x_coord, ref_kls, color="orange", marker="*", s=8, label=ref_label) pl.scatter([x_coord], [all_kl_q_alpha[i]], color="red", marker="+", s=30, label=threshold_label) pl.scatter(np.ones(len(ref_kls), dtype=np.float32)*x_coord + 0.1, com_kls, color="green", marker="*", s=8, label=com_label) pl.text(x_coord-0.2, replaced_y_coord, "(%d)"%trees_replaced[i], fontsize=10, label=replaced_label) if legend_datasets is None or args.dataset in legend_datasets: pl.legend(loc='upper left', prop={'size': 14}) dp.close() if __name__ == "__main__": test_kl_data_drift()
ad_examples/aad/test_concept_drift.py
import numpy as np import logging from ..common.utils import get_command_args, configure_logger from ..common.gen_samples import read_anomaly_dataset from .aad_globals import ( IFOR_SCORE_TYPE_NEG_PATH_LEN, ENSEMBLE_SCORE_LINEAR, AAD_IFOREST, INIT_UNIF ) from .data_stream import DataStream, IdServer from .random_split_trees import TREE_UPD_INCREMENTAL from .forest_aad_detector import AadForest from .anomaly_dataset_support import dataset_configs """ pythonw -m ad_examples.aad.test_concept_drift --debug --plot --log_file=temp/test_concept_drift.log --dataset=weather """ def get_iforest_model(x): model = AadForest(n_estimators=100, # 100, max_samples=256, score_type=IFOR_SCORE_TYPE_NEG_PATH_LEN, random_state=42, add_leaf_nodes_only=True, max_depth=100, ensemble_score=ENSEMBLE_SCORE_LINEAR, detector_type=AAD_IFOREST, n_jobs=4, tree_update_type=TREE_UPD_INCREMENTAL, feature_partitions=None) model.fit(x) model.init_weights(init_type=INIT_UNIF) return model def test_kl_data_drift(): logger = logging.getLogger(__name__) args = get_command_args(debug=False, debug_args=["--debug", "--plot", "--log_file=temp/test_concept_drift.log"]) configure_logger(args) np.random.seed(42) dataset_config = dataset_configs[args.dataset] stream_window = dataset_config[2] alpha = 0.05 X_full, y_full = read_anomaly_dataset(args.dataset) logger.debug("dataset: %s (%d, %d), stream_window: %d, alpha: %0.3f" % (args.dataset, X_full.shape[0], X_full.shape[1], stream_window, alpha)) stream = DataStream(X_full, y_full, IdServer(initial=0)) training_set = stream.read_next_from_stream(stream_window) x, y, ids = training_set.x, training_set.y, training_set.ids model = get_iforest_model(x) all_kl_q_alpha = list() all_reference_kls = list() all_compare_kls = list() trees_replaced = list() # compute KL replacement threshold *without* p ref_kls, kl_q_alpha = model.get_KL_divergence_distribution(x, p=None, alpha=alpha) # now initialize reference p p = model.get_node_sample_distributions(x) max_kl = np.max(ref_kls) window = 0 # already read the first window while True: buffer = stream.read_next_from_stream(stream_window) if buffer is None: break window += 1 x, y, ids = buffer.x, buffer.y, buffer.ids # logger.debug("#new: %d" % x.shape[0]) model.add_samples(X=x) all_kl_q_alpha.append(kl_q_alpha) all_reference_kls.append(ref_kls) # compare KL-divergence of current data dist against reference dist p comp_kls, _ = model.get_KL_divergence_distribution(x, p=p) all_compare_kls.append(comp_kls) max_kl = max(max_kl, np.max(comp_kls)) # find which trees exceed alpha-level threshold replace_trees_by_kl = model.get_trees_to_replace(comp_kls, kl_q_alpha) n_trees = model.clf.n_estimators n_replace = 0 if replace_trees_by_kl is None else len(replace_trees_by_kl) n_threshold = int(2*alpha*n_trees) # we will replace if 2*alpha number of trees exceed the alpha-threshold do_replace = n_trees > 0 and n_replace >= n_threshold logger.debug("window %d: n_replace: %d, threshold num: %d, do_replace: %s" % (window, n_replace, n_threshold, str(do_replace))) if do_replace: if False: logger.debug("window %d: #replace_trees_by_kl: %d\n%s" % (window, len(replace_trees_by_kl), str(list(replace_trees_by_kl)))) trees_replaced.append(len(replace_trees_by_kl)) model.update_model_from_stream_buffer(replace_trees=replace_trees_by_kl) # recompute KL replacement threshold *without* p ref_kls, kl_q_alpha = model.get_KL_divergence_distribution(x, p=None, alpha=alpha) max_kl = max(max_kl, np.max(ref_kls)) # now recompute reference p p = model.get_node_sample_distributions(x) else: if False: logger.debug("window %d: model not updated; replace_trees_by_kl: %s" % (window, str(list(replace_trees_by_kl)) if replace_trees_by_kl is not None else None)) trees_replaced.append(0) if args.plot: legend_datasets = None # legend_datasets = ['ann_thyroid_1v3', 'weather'] xlim = [0, window+1] ylim = [0, max_kl+3] dp = DataPlotter(pdfpath="./temp/test_concept_drift_%s.pdf" % args.dataset, rows=1, cols=1) pl = dp.get_next_plot() plt.xlim(xlim) plt.ylim(ylim) plt.xlabel('window', fontsize=18) plt.ylabel('KL-divergence', fontsize=18) for i in range(window): ref_label = com_label = threshold_label = replaced_label = None ref_kls = all_reference_kls[i] com_kls = all_compare_kls[i] mkl = max(np.max(ref_kls), np.max(com_kls)) x_coord = i+1 replaced_y_coord = mkl+2 if i == 0: ref_label = "ref. KL dist" com_label = "KL-dist w.r.t ref. dist" threshold_label = "%0.2f-alpha KL" % alpha replaced_label = "(.) - number of trees replaced" pl.scatter([x_coord], [replaced_y_coord], color="black", marker=".", s=0, label=replaced_label) pl.scatter(np.ones(len(ref_kls), dtype=np.float32)*x_coord, ref_kls, color="orange", marker="*", s=8, label=ref_label) pl.scatter([x_coord], [all_kl_q_alpha[i]], color="red", marker="+", s=30, label=threshold_label) pl.scatter(np.ones(len(ref_kls), dtype=np.float32)*x_coord + 0.1, com_kls, color="green", marker="*", s=8, label=com_label) pl.text(x_coord-0.2, replaced_y_coord, "(%d)"%trees_replaced[i], fontsize=10, label=replaced_label) if legend_datasets is None or args.dataset in legend_datasets: pl.legend(loc='upper left', prop={'size': 14}) dp.close() if __name__ == "__main__": test_kl_data_drift()
0.384565
0.200734
import gzip import itertools import numpy as np import pandas as pd from scipy import stats import six.moves.cPickle as pickle def df_to_struct(df): """Converts a DataFrame to RPy-compatible structured array.""" struct_array = df.to_records() arr_dtype = struct_array.dtype.descr for i, dtype in enumerate(arr_dtype): if dtype[1] == np.dtype('object'): arr_dtype[i] = (dtype[0], dtype[1].replace("|O", "|S")) struct_array = np.asarray([tuple(d) for d in struct_array], dtype=arr_dtype) return struct_array def df_ttest(df, by, key, paired=False, nice=True, **kwargs): """Perform a T-test over a DataFrame groupby.""" test_kind = "rel" if paired else "ind" test_func = getattr(stats, "ttest_" + test_kind) args = [d[key] for i, d in df.groupby(by)] t, p = test_func(*args, **kwargs) dof = (len(df) / 2) - 1 if paired else len(df) - 2 if nice: return "t(%d) = %.3f; p = %.3g%s" % (dof, t, p, sig_stars(p)) else: return pd.Series([t, p], ["t", "p"]) def df_oneway(df, by, key, nice=True, **kwargs): """Perform a oneway analysis over variance on a DataFrame groupby.""" args = [d[key] for i, d in df.groupby(by)] f, p = stats.f_oneway(*args, **kwargs) dof_b = len(args) - 1 dof_w = len(df) - dof_b if nice: return "F(%d, %d) = %.3f; p = %.3g%s" % (dof_b, dof_w, f, p, sig_stars(p)) else: return pd.Series([f, p], ["F", "p"]) def product_index(values, names=None): """Make a MultiIndex from the combinatorial product of the values.""" iterable = itertools.product(*values) idx = pd.MultiIndex.from_tuples(list(iterable), names=names) return idx def make_master_schedule(evs): """Take a list of event specifications and make one schedule. Parameters ---------- evs : sequence of n x 3 arrays list of (onset, duration, amplitude) event secifications Returns ------- sched : n_event x 5 array schedule of event specifications with event and presentation ids """ evs = np.asarray(evs) n_cond = len(evs) # Make a vector of condition ids and stimulus indices cond_ids = [np.ones(evs[i].shape[0]) * i for i in range(n_cond)] cond_ids = np.concatenate(cond_ids) stim_idxs = np.concatenate([np.arange(len(ev)) for ev in evs]) # Make a schedule of the whole run sched = np.row_stack(evs) sched = np.column_stack((sched, cond_ids, stim_idxs)) # Sort the master schedule by onset time timesorter = np.argsort(sched[:, 0]) sched = sched[timesorter] return sched def sig_stars(p): """Return a R-style significance string corresponding to p values.""" if p < 0.001: return "***" elif p < 0.01: return "**" elif p < 0.05: return "*" elif p < 0.1: return "." return "" def iqr(a): """Calculate the IQR for an array of numbers.""" a = np.asarray(a) q1 = stats.scoreatpercentile(a, 25) q3 = stats.scoreatpercentile(a, 75) return q3 - q1 class Results(object): """Extremely simple namespace for passing around and pickling data.""" def __init__(self, **kwargs): for key, val in kwargs.items(): setattr(self, key, val) def load_pkl(fname, zip=True): """Read pickled data from disk, possible decompressing.""" if zip: open = gzip.open with open(fname, "rb") as fid: res = pickle.load(fid) return res def save_pkl(fname, res, zip=True): """Write pickled data to disk, possible compressing.""" if zip: open = gzip.open with open(fname, "wb") as fid: pickle.dump(res, fid)
moss/misc.py
import gzip import itertools import numpy as np import pandas as pd from scipy import stats import six.moves.cPickle as pickle def df_to_struct(df): """Converts a DataFrame to RPy-compatible structured array.""" struct_array = df.to_records() arr_dtype = struct_array.dtype.descr for i, dtype in enumerate(arr_dtype): if dtype[1] == np.dtype('object'): arr_dtype[i] = (dtype[0], dtype[1].replace("|O", "|S")) struct_array = np.asarray([tuple(d) for d in struct_array], dtype=arr_dtype) return struct_array def df_ttest(df, by, key, paired=False, nice=True, **kwargs): """Perform a T-test over a DataFrame groupby.""" test_kind = "rel" if paired else "ind" test_func = getattr(stats, "ttest_" + test_kind) args = [d[key] for i, d in df.groupby(by)] t, p = test_func(*args, **kwargs) dof = (len(df) / 2) - 1 if paired else len(df) - 2 if nice: return "t(%d) = %.3f; p = %.3g%s" % (dof, t, p, sig_stars(p)) else: return pd.Series([t, p], ["t", "p"]) def df_oneway(df, by, key, nice=True, **kwargs): """Perform a oneway analysis over variance on a DataFrame groupby.""" args = [d[key] for i, d in df.groupby(by)] f, p = stats.f_oneway(*args, **kwargs) dof_b = len(args) - 1 dof_w = len(df) - dof_b if nice: return "F(%d, %d) = %.3f; p = %.3g%s" % (dof_b, dof_w, f, p, sig_stars(p)) else: return pd.Series([f, p], ["F", "p"]) def product_index(values, names=None): """Make a MultiIndex from the combinatorial product of the values.""" iterable = itertools.product(*values) idx = pd.MultiIndex.from_tuples(list(iterable), names=names) return idx def make_master_schedule(evs): """Take a list of event specifications and make one schedule. Parameters ---------- evs : sequence of n x 3 arrays list of (onset, duration, amplitude) event secifications Returns ------- sched : n_event x 5 array schedule of event specifications with event and presentation ids """ evs = np.asarray(evs) n_cond = len(evs) # Make a vector of condition ids and stimulus indices cond_ids = [np.ones(evs[i].shape[0]) * i for i in range(n_cond)] cond_ids = np.concatenate(cond_ids) stim_idxs = np.concatenate([np.arange(len(ev)) for ev in evs]) # Make a schedule of the whole run sched = np.row_stack(evs) sched = np.column_stack((sched, cond_ids, stim_idxs)) # Sort the master schedule by onset time timesorter = np.argsort(sched[:, 0]) sched = sched[timesorter] return sched def sig_stars(p): """Return a R-style significance string corresponding to p values.""" if p < 0.001: return "***" elif p < 0.01: return "**" elif p < 0.05: return "*" elif p < 0.1: return "." return "" def iqr(a): """Calculate the IQR for an array of numbers.""" a = np.asarray(a) q1 = stats.scoreatpercentile(a, 25) q3 = stats.scoreatpercentile(a, 75) return q3 - q1 class Results(object): """Extremely simple namespace for passing around and pickling data.""" def __init__(self, **kwargs): for key, val in kwargs.items(): setattr(self, key, val) def load_pkl(fname, zip=True): """Read pickled data from disk, possible decompressing.""" if zip: open = gzip.open with open(fname, "rb") as fid: res = pickle.load(fid) return res def save_pkl(fname, res, zip=True): """Write pickled data to disk, possible compressing.""" if zip: open = gzip.open with open(fname, "wb") as fid: pickle.dump(res, fid)
0.771069
0.400046
from password import Password def create_password(flo,me,beat,joby): new_password = Password(flo,me,beat,joby) return new_password def save_passwords(password): password.save_Password() def del_password(password): password.delete_password() def find_password(user_name): return Password.find_by_user_name(user_name) def check_existng_passwords(user_name): return Password.password_exist(user_name) def display_passwords(): return Password.display_passwords() def main(): print("Hello,What is your name?") user_name = input() print(f"Hello {user_name}. What would u like to do?") print ('\n') while True: print("Use these short codes : cc - create a credentials, del - delete credential dc - display password, fc -find a password, ex -exit the password list ") short_code = input().lower() if short_code == 'cc': print("Credential") print("-"*10) print("first_name") f_name = input() print("last_name") last_name = input() print("user_name") u_user_name = input() print("password") p_password = input() save_passwords(create_password(f_name,last_name,u_user_name,p_password)) print ('\n') print(f"New credential {f_name} {last_name} created") print ('\n') elif short_code == 'dc': if display_passwords(): print("Here is a list of all your passwords") print('\n') for password in display_passwords(): print(f"{password.first_name} {password.last_name} {password.user_name} {password.password}") print('\n') else: print('\n') print("You dont seem to have any passwords saved yet") print('\n') elif short_code == 'del': print("Enter the username you want to delete") search_user_name = input() if check_existng_passwords(search_user_name): search_password = find_password(search_user_name) del_password(search_password) print("account successfully deleted!") else: print("That account does not exist") elif short_code == 'fc': print("Enter the username you want to search for") search_user_name = input() if check_existng_passwords(search_user_name): search_password = find_password(search_user_name) print(f"{search_password.first_name} {search_password.last_name}") print('-' * 20) print(f"user_name.......{search_password.user_name}") print(f"password.......{<PASSWORD>}") else: print("That password does not exist") elif short_code == "ex": print("Bye") break else: print("I really didn't get that. Please use the short codes") if __name__ == '__main__': main()
run.py
from password import Password def create_password(flo,me,beat,joby): new_password = Password(flo,me,beat,joby) return new_password def save_passwords(password): password.save_Password() def del_password(password): password.delete_password() def find_password(user_name): return Password.find_by_user_name(user_name) def check_existng_passwords(user_name): return Password.password_exist(user_name) def display_passwords(): return Password.display_passwords() def main(): print("Hello,What is your name?") user_name = input() print(f"Hello {user_name}. What would u like to do?") print ('\n') while True: print("Use these short codes : cc - create a credentials, del - delete credential dc - display password, fc -find a password, ex -exit the password list ") short_code = input().lower() if short_code == 'cc': print("Credential") print("-"*10) print("first_name") f_name = input() print("last_name") last_name = input() print("user_name") u_user_name = input() print("password") p_password = input() save_passwords(create_password(f_name,last_name,u_user_name,p_password)) print ('\n') print(f"New credential {f_name} {last_name} created") print ('\n') elif short_code == 'dc': if display_passwords(): print("Here is a list of all your passwords") print('\n') for password in display_passwords(): print(f"{password.first_name} {password.last_name} {password.user_name} {password.password}") print('\n') else: print('\n') print("You dont seem to have any passwords saved yet") print('\n') elif short_code == 'del': print("Enter the username you want to delete") search_user_name = input() if check_existng_passwords(search_user_name): search_password = find_password(search_user_name) del_password(search_password) print("account successfully deleted!") else: print("That account does not exist") elif short_code == 'fc': print("Enter the username you want to search for") search_user_name = input() if check_existng_passwords(search_user_name): search_password = find_password(search_user_name) print(f"{search_password.first_name} {search_password.last_name}") print('-' * 20) print(f"user_name.......{search_password.user_name}") print(f"password.......{<PASSWORD>}") else: print("That password does not exist") elif short_code == "ex": print("Bye") break else: print("I really didn't get that. Please use the short codes") if __name__ == '__main__': main()
0.276105
0.118998
from functools import partial from typing import Callable, List from pyglet.window import mouse from engine.models.ship import ShipModel from engine.views.ship_parts.factories import ConfigViewFactory from .base import BaseMenu, BaseButton from .drydock import ControlConfiguration class ControlConfigMenu(BaseMenu): def __init__(self, heading: str, buttons, x, y, control_config: ControlConfiguration): super().__init__(heading, buttons, x, y) self.control_config = control_config self.components: List[ControlConfiguration] = [control_config] @classmethod def manufacture_for_ship_model(cls, ship_model: ShipModel, close_menu_function: Callable, x, y, font_size=36, screen_width=1280, screen_height=720): left = 0 right = screen_width bottom = 0 top = screen_height control_config = ControlConfiguration(left, right, bottom, top, ship=ship_model, view_factory=ConfigViewFactory()) heading = "Configure controls" callables = [("<- Back", close_menu_function), ("Keyboard", partial(control_config.set_mode, "keyboard")), ("Gamepad", partial(control_config.set_mode, "gamepad")), ("Reset", control_config.reset), ("Save", control_config.save_all)] height = int(font_size * 1.6) width = int(height * 6) height_spacing = int(height * 1.1) buttons = [] for i, (name, func) in enumerate(callables): i += 1 button = BaseButton.labeled_button(name, font_size=font_size, left=x, right=x + width, bottom=y - height_spacing * i, top=y - height_spacing * i + height, func=func) buttons.append(button) return cls(heading, buttons, x, y, control_config) def _component_at(self, x, y): for component in self.components: if component.in_area(x, y): return component def draw(self): super(ControlConfigMenu, self).draw() self.control_config.draw() def on_mouse_motion(self, x, y, dx, dy): super(ControlConfigMenu, self).on_mouse_motion(x, y, dx, dy) self.control_config.highlight_at(x, y) def on_mouse_press(self, x, y, button, modifiers): super(ControlConfigMenu, self).on_mouse_press(x, y, button, modifiers) self.control_config.on_mouse_press(x, y, button, modifiers) def on_mouse_release(self, x, y, button, modifiers): self.control_config.on_mouse_release(x, y, button, modifiers) def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): component = self._component_at(x, y) if component: if buttons & mouse.RIGHT: component.translate(dx, dy) if buttons & mouse.LEFT: self.control_config.on_mouse_drag(x, y, dx, dy, buttons, modifiers) def on_key_press(self, symbol, modifiers): self.control_config.on_key_press(symbol, modifiers) def on_joybutton_press(self, joystick, button): self.control_config.on_joybutton_press(joystick, button) def on_joyaxis_motion(self, joystick, axis, value): if abs(value) > 0.9: self.control_config.on_joyaxis_motion(joystick, axis, value)
engine/views/menus/control_config.py
from functools import partial from typing import Callable, List from pyglet.window import mouse from engine.models.ship import ShipModel from engine.views.ship_parts.factories import ConfigViewFactory from .base import BaseMenu, BaseButton from .drydock import ControlConfiguration class ControlConfigMenu(BaseMenu): def __init__(self, heading: str, buttons, x, y, control_config: ControlConfiguration): super().__init__(heading, buttons, x, y) self.control_config = control_config self.components: List[ControlConfiguration] = [control_config] @classmethod def manufacture_for_ship_model(cls, ship_model: ShipModel, close_menu_function: Callable, x, y, font_size=36, screen_width=1280, screen_height=720): left = 0 right = screen_width bottom = 0 top = screen_height control_config = ControlConfiguration(left, right, bottom, top, ship=ship_model, view_factory=ConfigViewFactory()) heading = "Configure controls" callables = [("<- Back", close_menu_function), ("Keyboard", partial(control_config.set_mode, "keyboard")), ("Gamepad", partial(control_config.set_mode, "gamepad")), ("Reset", control_config.reset), ("Save", control_config.save_all)] height = int(font_size * 1.6) width = int(height * 6) height_spacing = int(height * 1.1) buttons = [] for i, (name, func) in enumerate(callables): i += 1 button = BaseButton.labeled_button(name, font_size=font_size, left=x, right=x + width, bottom=y - height_spacing * i, top=y - height_spacing * i + height, func=func) buttons.append(button) return cls(heading, buttons, x, y, control_config) def _component_at(self, x, y): for component in self.components: if component.in_area(x, y): return component def draw(self): super(ControlConfigMenu, self).draw() self.control_config.draw() def on_mouse_motion(self, x, y, dx, dy): super(ControlConfigMenu, self).on_mouse_motion(x, y, dx, dy) self.control_config.highlight_at(x, y) def on_mouse_press(self, x, y, button, modifiers): super(ControlConfigMenu, self).on_mouse_press(x, y, button, modifiers) self.control_config.on_mouse_press(x, y, button, modifiers) def on_mouse_release(self, x, y, button, modifiers): self.control_config.on_mouse_release(x, y, button, modifiers) def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): component = self._component_at(x, y) if component: if buttons & mouse.RIGHT: component.translate(dx, dy) if buttons & mouse.LEFT: self.control_config.on_mouse_drag(x, y, dx, dy, buttons, modifiers) def on_key_press(self, symbol, modifiers): self.control_config.on_key_press(symbol, modifiers) def on_joybutton_press(self, joystick, button): self.control_config.on_joybutton_press(joystick, button) def on_joyaxis_motion(self, joystick, axis, value): if abs(value) > 0.9: self.control_config.on_joyaxis_motion(joystick, axis, value)
0.707405
0.161221
import sys import argparse from workflow import Workflow, ICON_WEB, ICON_WARNING, ICON_NOTE, web, PasswordNotFound, Workflow3 def main(wf): def googleFilter(filename): return 'google' in filename def exchangeFilter(filename): return 'exchange' in filename import os from workflow.notify import notify key = os.environ['settings_value'] value = os.environ['value_to_store'] wf.logger.debug(" Key: %s", key) wf.logger.debug(" Value: %s", value) if key == 'password': wf.save_password('<PASSWORD>',value) notify('Password updated') else: wf.settings[key] = {'value':value} # wf.store_data(key, value) text = os.environ['text_to_display'] if key == 'use_google': wf.clear_cache(googleFilter) if value == '0': notify("Google Calendar Support", u'\u274C Disabled') else: notify("Google Calendar Support", u'\u2705 Enabled') elif key == 'use_exchange': wf.clear_cache(exchangeFilter) if '0' == value: notify("Exchange Server Support", u'\u274c Disabled') else: notify("Exchange Server Support", u'\u2705 Enabled') elif key == 'use_ntlm': def exchangeFilter(filename): return 'exchange' in filename # Clear outlook events because we are changing the auth type wf.clear_cache(exchangeFilter) if '0' == value: notify("NTLM Authentication", u'\u274c Disabled') else: notify("NTLM Authentication", u'\u2705 Enabled') elif key == 'use_ssl': if '0' == value: value = u'\u274c Disabled' else: value = u'\u2705 Enabled' notify(text, value) else: notify('Updated ' + text, "To: " + value) if __name__ == u"__main__": wf = Workflow3(libraries=['./lib']) wf.logger.debug(' _______________ ____ ______ ') wf.logger.debug(' / ___/_ __/ __ \/ __ \/ ____/ ') wf.logger.debug(' \__ \ / / / / / / /_/ / __/ ') wf.logger.debug(' ___/ // / / /_/ / _, _/ /___ ') wf.logger.debug(' /____//_/ \____/_/ |_/_____/ DATA ') wf.logger.debug(' ') sys.exit(wf.run(main))
src/store_data.py
import sys import argparse from workflow import Workflow, ICON_WEB, ICON_WARNING, ICON_NOTE, web, PasswordNotFound, Workflow3 def main(wf): def googleFilter(filename): return 'google' in filename def exchangeFilter(filename): return 'exchange' in filename import os from workflow.notify import notify key = os.environ['settings_value'] value = os.environ['value_to_store'] wf.logger.debug(" Key: %s", key) wf.logger.debug(" Value: %s", value) if key == 'password': wf.save_password('<PASSWORD>',value) notify('Password updated') else: wf.settings[key] = {'value':value} # wf.store_data(key, value) text = os.environ['text_to_display'] if key == 'use_google': wf.clear_cache(googleFilter) if value == '0': notify("Google Calendar Support", u'\u274C Disabled') else: notify("Google Calendar Support", u'\u2705 Enabled') elif key == 'use_exchange': wf.clear_cache(exchangeFilter) if '0' == value: notify("Exchange Server Support", u'\u274c Disabled') else: notify("Exchange Server Support", u'\u2705 Enabled') elif key == 'use_ntlm': def exchangeFilter(filename): return 'exchange' in filename # Clear outlook events because we are changing the auth type wf.clear_cache(exchangeFilter) if '0' == value: notify("NTLM Authentication", u'\u274c Disabled') else: notify("NTLM Authentication", u'\u2705 Enabled') elif key == 'use_ssl': if '0' == value: value = u'\u274c Disabled' else: value = u'\u2705 Enabled' notify(text, value) else: notify('Updated ' + text, "To: " + value) if __name__ == u"__main__": wf = Workflow3(libraries=['./lib']) wf.logger.debug(' _______________ ____ ______ ') wf.logger.debug(' / ___/_ __/ __ \/ __ \/ ____/ ') wf.logger.debug(' \__ \ / / / / / / /_/ / __/ ') wf.logger.debug(' ___/ // / / /_/ / _, _/ /___ ') wf.logger.debug(' /____//_/ \____/_/ |_/_____/ DATA ') wf.logger.debug(' ') sys.exit(wf.run(main))
0.107601
0.111
import os import torch import torch.utils.data as data import torchvision.transforms as transforms import torchvision.datasets as datasets from .misc import get_cifar_models from collections import OrderedDict __all__ = [ 'load_optimizer', 'load_learning_rate_schedule', 'load_checkpoint', # cifar 'load_transform', 'load_dataset', 'load_model', # detection 'load_state_dict_path', 'load_checkpoint_path', 'load_ensemble_path', ] def __process_state_dict(state_dict): new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] if k[:7] == "module." else k new_state_dict[name] = v return new_state_dict # General loaders compatible with cifar and imagenet def load_optimizer(args, model): # Get optimiser name opt_name = args.optim.lower() # Print message to LOG print("==> Creating '{}' optimiser".format(opt_name)) # Supports only SGD and RMSprop if opt_name.startswith("sgd"): optimizer = torch.optim.SGD( model.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = "nesterov" in opt_name, ) elif opt_name.startswith("adam"): optimizer = torch.optim.Adam( model.parameters(), lr = args.lr, weight_decay = args.weight_decay, ) elif opt_name == "rmsprop": optimizer = torch.optim.RMSprop( model.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, eps = 0.0316, alpha = 0.9, ) else: msg = "Invalid optimizer {}. Only SGD and RMSprop are supported." raise RuntimeError(msg.format(args.opt)) return optimizer def load_learning_rate_schedule(args, optimizer): args.lr_scheduler = args.lr_scheduler.lower() # Print message to LOG print("==> Creating '{}' learning rate scheduler".format(args.lr_scheduler)) # Supports only MultiStep and Step and Exponential schedules if args.lr_scheduler == "multisteplr": main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones = args.schedule, gamma = args.gamma) elif args.lr_scheduler == "steplr": main_lr_scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=args.schedule_step, gamma = args.gamma) elif args.lr_scheduler == "exponentiallr": main_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer, gamma = args.gamma) elif args.lr_scheduler == "cycliclr": step_size_up = args.total_steps // 2 step_size_down = args.total_steps - step_size_up main_lr_scheduler = torch.optim.lr_scheduler.CyclicLR( optimizer, base_lr = args.base_lr, max_lr = args.max_lr, step_size_up=step_size_up, step_size_down=step_size_down) else: raise RuntimeError( "Invalid lr scheduler '{}'. Only MultiStepLR, StepLR and ExponentialLR " "are supported.".format(args.lr_scheduler) ) return main_lr_scheduler # Use this when training models def load_checkpoint(args, model, optimizer, reset = False): # Defaults best_acc = 0.0 start_epoch = 0 # Load checkpoint # args.checkpoint = os.path.dirname(args.resume) checkpoint = torch.load(args.resume) # Extract information if not reset: best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] # For dataparallell and loading issues try: model.load_state_dict(__process_state_dict(checkpoint['state_dict'])) except RuntimeError: model.model.load_state_dict(__process_state_dict(checkpoint['state_dict'])) # optimizer.load_state_dict(checkpoint['optimizer']) return model, optimizer, best_acc, start_epoch # Loaders only compatible with cifar def load_transform(args): # Let the normalisation layer be different for daf normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) if args.arch.startswith('daf'): normalize = transforms.Normalize((0.50, 0.50, 0.50), (0.50, 0.50, 0.50)) # Default transformation transform_train = transform_test = transforms.Compose([ transforms.ToTensor(), normalize, ]) # And with data augmentation if args.augment: transform_train = transforms.Compose([ transforms.RandomCrop(32, padding = 4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) return transform_train, transform_test def load_dataset(args, transform_train, transform_test, return_sets = False): if args.dataset == 'cifar10': dataloader = datasets.CIFAR10 num_classes = 10 else: dataloader = datasets.CIFAR100 num_classes = 100 trainloader = None if transform_train is not None: trainset = dataloader(root='./data', train=True, download=True, transform=transform_train) trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers) testloader = None if transform_test is not None: testset = dataloader(root='./data', train=False, download=False, transform=transform_test) testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers) if return_sets: return trainloader, testloader, num_classes, (trainset, testset) return trainloader, testloader, num_classes def load_model(args, models, num_classes): if 'densenet' in args.arch: model = models.__dict__[args.arch](args = args) elif 'daf' in args.arch: model = models.__dict__[args.arch](args = args) else: raise ValueError("==> Model architecture can not be loaded.") return model # These loaders are used for detection def load_state_dict_path(path): # Load checkpoint assert os.path.isfile(path) or os.path.islink(path), 'Error: no checkpoint directory found!' # Get checkpoint dict checkpoint = torch.load(path) # Get attributes best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] state_dict = checkpoint['state_dict'] return __process_state_dict(state_dict), {'best_acc': best_acc, 'start_epoch': start_epoch} def load_checkpoint_path(args, num_classes, path, use_cuda): # Get model directory if 'cifar' in args.dataset: models = get_cifar_models() model = load_model(args, models, num_classes) if use_cuda: model = model.cuda() # Get state dict state_dict, info = load_state_dict_path(path) model.load_state_dict(state_dict) return model def load_ensemble_path(args, num_classes, path, use_cuda): # Load every model in ensemble ensemble = [] for file in os.listdir(path): # Create full path to file filepath = os.path.join(path, file) print("Loading model from:", filepath) ensemble.append(load_checkpoint_path(args, num_classes, filepath, use_cuda)) return ensemble
utils/loaders.py
import os import torch import torch.utils.data as data import torchvision.transforms as transforms import torchvision.datasets as datasets from .misc import get_cifar_models from collections import OrderedDict __all__ = [ 'load_optimizer', 'load_learning_rate_schedule', 'load_checkpoint', # cifar 'load_transform', 'load_dataset', 'load_model', # detection 'load_state_dict_path', 'load_checkpoint_path', 'load_ensemble_path', ] def __process_state_dict(state_dict): new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] if k[:7] == "module." else k new_state_dict[name] = v return new_state_dict # General loaders compatible with cifar and imagenet def load_optimizer(args, model): # Get optimiser name opt_name = args.optim.lower() # Print message to LOG print("==> Creating '{}' optimiser".format(opt_name)) # Supports only SGD and RMSprop if opt_name.startswith("sgd"): optimizer = torch.optim.SGD( model.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, nesterov = "nesterov" in opt_name, ) elif opt_name.startswith("adam"): optimizer = torch.optim.Adam( model.parameters(), lr = args.lr, weight_decay = args.weight_decay, ) elif opt_name == "rmsprop": optimizer = torch.optim.RMSprop( model.parameters(), lr = args.lr, momentum = args.momentum, weight_decay = args.weight_decay, eps = 0.0316, alpha = 0.9, ) else: msg = "Invalid optimizer {}. Only SGD and RMSprop are supported." raise RuntimeError(msg.format(args.opt)) return optimizer def load_learning_rate_schedule(args, optimizer): args.lr_scheduler = args.lr_scheduler.lower() # Print message to LOG print("==> Creating '{}' learning rate scheduler".format(args.lr_scheduler)) # Supports only MultiStep and Step and Exponential schedules if args.lr_scheduler == "multisteplr": main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones = args.schedule, gamma = args.gamma) elif args.lr_scheduler == "steplr": main_lr_scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=args.schedule_step, gamma = args.gamma) elif args.lr_scheduler == "exponentiallr": main_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer, gamma = args.gamma) elif args.lr_scheduler == "cycliclr": step_size_up = args.total_steps // 2 step_size_down = args.total_steps - step_size_up main_lr_scheduler = torch.optim.lr_scheduler.CyclicLR( optimizer, base_lr = args.base_lr, max_lr = args.max_lr, step_size_up=step_size_up, step_size_down=step_size_down) else: raise RuntimeError( "Invalid lr scheduler '{}'. Only MultiStepLR, StepLR and ExponentialLR " "are supported.".format(args.lr_scheduler) ) return main_lr_scheduler # Use this when training models def load_checkpoint(args, model, optimizer, reset = False): # Defaults best_acc = 0.0 start_epoch = 0 # Load checkpoint # args.checkpoint = os.path.dirname(args.resume) checkpoint = torch.load(args.resume) # Extract information if not reset: best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] # For dataparallell and loading issues try: model.load_state_dict(__process_state_dict(checkpoint['state_dict'])) except RuntimeError: model.model.load_state_dict(__process_state_dict(checkpoint['state_dict'])) # optimizer.load_state_dict(checkpoint['optimizer']) return model, optimizer, best_acc, start_epoch # Loaders only compatible with cifar def load_transform(args): # Let the normalisation layer be different for daf normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) if args.arch.startswith('daf'): normalize = transforms.Normalize((0.50, 0.50, 0.50), (0.50, 0.50, 0.50)) # Default transformation transform_train = transform_test = transforms.Compose([ transforms.ToTensor(), normalize, ]) # And with data augmentation if args.augment: transform_train = transforms.Compose([ transforms.RandomCrop(32, padding = 4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) return transform_train, transform_test def load_dataset(args, transform_train, transform_test, return_sets = False): if args.dataset == 'cifar10': dataloader = datasets.CIFAR10 num_classes = 10 else: dataloader = datasets.CIFAR100 num_classes = 100 trainloader = None if transform_train is not None: trainset = dataloader(root='./data', train=True, download=True, transform=transform_train) trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers) testloader = None if transform_test is not None: testset = dataloader(root='./data', train=False, download=False, transform=transform_test) testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers) if return_sets: return trainloader, testloader, num_classes, (trainset, testset) return trainloader, testloader, num_classes def load_model(args, models, num_classes): if 'densenet' in args.arch: model = models.__dict__[args.arch](args = args) elif 'daf' in args.arch: model = models.__dict__[args.arch](args = args) else: raise ValueError("==> Model architecture can not be loaded.") return model # These loaders are used for detection def load_state_dict_path(path): # Load checkpoint assert os.path.isfile(path) or os.path.islink(path), 'Error: no checkpoint directory found!' # Get checkpoint dict checkpoint = torch.load(path) # Get attributes best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] state_dict = checkpoint['state_dict'] return __process_state_dict(state_dict), {'best_acc': best_acc, 'start_epoch': start_epoch} def load_checkpoint_path(args, num_classes, path, use_cuda): # Get model directory if 'cifar' in args.dataset: models = get_cifar_models() model = load_model(args, models, num_classes) if use_cuda: model = model.cuda() # Get state dict state_dict, info = load_state_dict_path(path) model.load_state_dict(state_dict) return model def load_ensemble_path(args, num_classes, path, use_cuda): # Load every model in ensemble ensemble = [] for file in os.listdir(path): # Create full path to file filepath = os.path.join(path, file) print("Loading model from:", filepath) ensemble.append(load_checkpoint_path(args, num_classes, filepath, use_cuda)) return ensemble
0.79657
0.365372
from ._fitting import __fit_single_decay__, __fit_triple_decay__ from numpy import array, unique from pandas import Series, concat from tqdm import tqdm def fit_relaxation(flevel, seq_time, seq, datetime, blank=0, sat_len=100, rel_len=60, sat_flashlets=None, single_decay=False, bounds=True, single_lims=[100,50000], tau1_lims=[100, 800], tau2_lims=[800, 2000], tau3_lims=[2000, 50000], method='trf', loss='soft_l1', f_scale=0.1, max_nfev=None, xtol=1e-9): """ Process the raw transient data and perform the Kolber et al. 1998 relaxation model. Parameters ---------- seq_time : np.array, dtype=float, shape=[n,] The sequence time of the flashlets in μs. flevel : np.array, dtype=float, shape=[n,] The fluorescence yield of the instrument. seq : np.array, dtype=int, shape=[n,] The measurement number. datetime : np.array, dtype=datetime64, shape=[n,] The date & time of each measurement in the numpy datetime64 format. blank : np.array, dtype=float, shape=[n,] The blank value, must be the same length as flevel. sat_len : int, default=100 The number of flashlets in the saturation sequence. rel_len : int, default=60 The number of flashlets in the relaxation sequence. sat_flashlets : int, default=0 The number of saturation flashlets to include at the start. single_decay : bool, default=False If True, will fit a single decay relaxation. bounds : bool, default=True If True, will set lower and upper limit bounds for the estimation, not suitable for methods 'lm'. single_lims : [int, int], default=[100, 50000] The lower and upper limit bounds for fitting τ, only required if single_decay is True. tau1_lims: [int, int], default=[100, 800] The lower and upper limit bounds for fitting τ1. tau2_lims: [int, int], default=[800, 2000] The lower and upper limit bounds for fitting τ2. tau3_lims: [int, int], default=[2000, 50000] The lower and upper limit bounds for fitting τ3. fit_method : str, default='trf' The algorithm to perform minimization. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. loss_method : str, default='soft_l1' The loss function to be used. Note: Method ‘lm’ supports only ‘linear’ loss. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. fscale : float, default=0.1 The soft margin value between inlier and outlier residuals. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. max_nfev : int, default=None The number of iterations to perform fitting routine. If None, the value is chosen automatically. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. xtol : float, default=1e-9 The tolerance for termination by the change of the independent variables. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. Returns ------- res: pandas.DataFrame The results of the fitting routine with columns as below: fo_r : np.array, dtype=float, shape=[n,] The minimum fluorescence level of relaxation phase. fm_r : np.array, dtype=float, shape=[n,] The maximum fluorescence level of relaxation phase tau : np.array, dtype=float, shape=[n,] The rate of QA\ :sup:`-` reoxidation in μs, only returned if single_decay is True. alpha1 : np.array, dtype=float, shape=[n,] The decay coefficient of τ\ :sub:`1`, only returned if single_decay is False. tau1 : np.array, dtype=float, shape=[n,] The rate of QA\ :sup:`-` reoxidation in μs, only returned if single_decay is False. alpha2 : np.array, dtype=float, shape=[n,] The decay coefficient of τ\ :sub:`2`. tau2 : np.array, dtype=float, shape=[n,] The rate of QB\ :sup:`-` reoxidation in μs, only returned if single_decay is False. alpha3 : np.array, dtype=float, shape=[n,] The decay coefficient of τ\ :sub:`3`, only returned if single_decay is False. tau3 : np.array, dtype=float, shape=[n,] The rate of PQ reoxidation in μs, only returned if single_decay is False. bias : np.array, dtype=float, shape=[n,] The bias of fit in %. rmse : np.array, dtype=float, shape=[n,] The root mean squared error of the fit. nrmse : np.array, dtype=float, shape=[n,] The root mean squared error of the fit normalised to the mean of the fluorescence level. fo_err : np.array, dtype=float, shape=[n,] The fit error of Fo_relax in %. fm_err : np.array, dtype=float, shape=[n,] The fit error of Fm_relax in %. tau_err : np.array, dtype=float, shape=[n,] The fit error of τ, only returned if single_decay is True. alpha1_err : np.array, dtype=float, shape=[n,] The fit error of α\ :sub:`1`, only returned if single_decay is False. tau1_err : np.array, dtype=float, shape=[n,] The fit error of τ\ :sub:`1`, only returned if single_decay is False. alpha2_err : np.array, dtype=float, shape=[n,] The fit error of α\ :sub:`2`, only returned if single_decay is False. tau2_err : np.array, dtype=float, shape=[n,] The fit error of τ\ :sub:`2`, only returned if single_decay is False. alpha3_err : np.array, dtype=float, shape=[n,] The fit error of α\ :sub:`3`, only returned if single_decay is False. tau3_err : np.array, dtype=float, shape=[n,] The fit error of τ\ :sub:`3`, only returned if single_decay is False. nfl : np.array, dtype=int, shape=[n,] The number of flashlets used for fitting. niters : np.array, dype=int, shape=[n,] The number of functional evaluations done on the fitting routine. flag : np.array, dtype=int, shape=[n,] The code associated with the fitting routine success, positive values = SUCCESS, negative values = FAILURE. -3 : Unable to calculate parameter errors -2 : F\ :sub:`o` Relax > F\ :sub:`m` Relax -1 : improper input parameters status returned from MINPACK. 0 : the maximum number of function evaluations is exceeded. 1 : gtol termination condition is satisfied. 2 : ftol termination condition is satisfied. 3 : xtol termination condition is satisfied. 4 : Both ftol and xtol termination conditions are satisfied. success : np.array, dtype=bool, shape=[n,] A boolean array reporting whether fit was successful (TRUE) or if not successful (FALSE) datetime : np.array, dtype=datetime64, shape=[n,] The date and time associated with the measurement. Example ------- >>> rel = ppu.calculate_relaxation(flevel, seq_time, seq, datetime, blank=0, sat_len=100, rel_len=40, single_decay=True, bounds=True, tau_lims=[100, 50000]) """ seq_time = array(seq_time) flevel = array(flevel) seq = array(seq) dt = array(datetime) if single_decay: opts = {'sat_flashlets':sat_flashlets, 'bounds':bounds, 'single_lims':single_lims, 'method':method,'loss':loss, 'f_scale':f_scale, 'max_nfev':max_nfev, 'xtol':xtol} else: opts = {'sat_flashlets':sat_flashlets, 'bounds':bounds, 'tau1_lims':tau1_lims, 'tau2_lims':tau2_lims, 'tau3_lims':tau3_lims, 'method':method,'loss':loss, 'f_scale':f_scale, 'max_nfev':max_nfev, 'xtol':xtol} res = [] for s in tqdm(unique(seq)): i = seq == s x = seq_time[i] y = flevel[i] x_min = min(x[sat_len:]) x = x[sat_len-sat_flashlets:sat_len+rel_len] - x_min y = y[sat_len-sat_flashlets:sat_len+rel_len] if single_decay: rel = __fit_single_decay__(x, y, **opts) else: rel = __fit_triple_decay__(x, y, **opts) res.append(Series(rel)) res = concat(res, axis=1) res = res.T if res.empty: pass else: if single_decay: res.columns = ['fo_r', 'fm_r', 'tau', 'bias', 'rmse', 'nrmse', 'fo_err', 'fm_err', 'tau_err', 'nfl', 'niters', 'flag', 'success'] else: res.columns = ['fo_r', 'fm_r', 'alpha1', 'tau1', 'alpha2','tau2', 'alpha3', 'tau3', 'bias', 'rsme', 'nrmse', 'for_err', 'fmr_err', 'alpha1_err', 'tau1_err', 'alpha2_err', 'tau2_err', 'alpha3_err', 'tau3_err', 'nfl', 'niters', 'flag', 'success'] res['datetime'] = unique(dt) return res
phyto_photo_utils/_relaxation.py
from ._fitting import __fit_single_decay__, __fit_triple_decay__ from numpy import array, unique from pandas import Series, concat from tqdm import tqdm def fit_relaxation(flevel, seq_time, seq, datetime, blank=0, sat_len=100, rel_len=60, sat_flashlets=None, single_decay=False, bounds=True, single_lims=[100,50000], tau1_lims=[100, 800], tau2_lims=[800, 2000], tau3_lims=[2000, 50000], method='trf', loss='soft_l1', f_scale=0.1, max_nfev=None, xtol=1e-9): """ Process the raw transient data and perform the Kolber et al. 1998 relaxation model. Parameters ---------- seq_time : np.array, dtype=float, shape=[n,] The sequence time of the flashlets in μs. flevel : np.array, dtype=float, shape=[n,] The fluorescence yield of the instrument. seq : np.array, dtype=int, shape=[n,] The measurement number. datetime : np.array, dtype=datetime64, shape=[n,] The date & time of each measurement in the numpy datetime64 format. blank : np.array, dtype=float, shape=[n,] The blank value, must be the same length as flevel. sat_len : int, default=100 The number of flashlets in the saturation sequence. rel_len : int, default=60 The number of flashlets in the relaxation sequence. sat_flashlets : int, default=0 The number of saturation flashlets to include at the start. single_decay : bool, default=False If True, will fit a single decay relaxation. bounds : bool, default=True If True, will set lower and upper limit bounds for the estimation, not suitable for methods 'lm'. single_lims : [int, int], default=[100, 50000] The lower and upper limit bounds for fitting τ, only required if single_decay is True. tau1_lims: [int, int], default=[100, 800] The lower and upper limit bounds for fitting τ1. tau2_lims: [int, int], default=[800, 2000] The lower and upper limit bounds for fitting τ2. tau3_lims: [int, int], default=[2000, 50000] The lower and upper limit bounds for fitting τ3. fit_method : str, default='trf' The algorithm to perform minimization. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. loss_method : str, default='soft_l1' The loss function to be used. Note: Method ‘lm’ supports only ‘linear’ loss. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. fscale : float, default=0.1 The soft margin value between inlier and outlier residuals. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. max_nfev : int, default=None The number of iterations to perform fitting routine. If None, the value is chosen automatically. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. xtol : float, default=1e-9 The tolerance for termination by the change of the independent variables. See ``scipy.optimize.least_squares`` documentation for more information on non-linear least squares fitting options. Returns ------- res: pandas.DataFrame The results of the fitting routine with columns as below: fo_r : np.array, dtype=float, shape=[n,] The minimum fluorescence level of relaxation phase. fm_r : np.array, dtype=float, shape=[n,] The maximum fluorescence level of relaxation phase tau : np.array, dtype=float, shape=[n,] The rate of QA\ :sup:`-` reoxidation in μs, only returned if single_decay is True. alpha1 : np.array, dtype=float, shape=[n,] The decay coefficient of τ\ :sub:`1`, only returned if single_decay is False. tau1 : np.array, dtype=float, shape=[n,] The rate of QA\ :sup:`-` reoxidation in μs, only returned if single_decay is False. alpha2 : np.array, dtype=float, shape=[n,] The decay coefficient of τ\ :sub:`2`. tau2 : np.array, dtype=float, shape=[n,] The rate of QB\ :sup:`-` reoxidation in μs, only returned if single_decay is False. alpha3 : np.array, dtype=float, shape=[n,] The decay coefficient of τ\ :sub:`3`, only returned if single_decay is False. tau3 : np.array, dtype=float, shape=[n,] The rate of PQ reoxidation in μs, only returned if single_decay is False. bias : np.array, dtype=float, shape=[n,] The bias of fit in %. rmse : np.array, dtype=float, shape=[n,] The root mean squared error of the fit. nrmse : np.array, dtype=float, shape=[n,] The root mean squared error of the fit normalised to the mean of the fluorescence level. fo_err : np.array, dtype=float, shape=[n,] The fit error of Fo_relax in %. fm_err : np.array, dtype=float, shape=[n,] The fit error of Fm_relax in %. tau_err : np.array, dtype=float, shape=[n,] The fit error of τ, only returned if single_decay is True. alpha1_err : np.array, dtype=float, shape=[n,] The fit error of α\ :sub:`1`, only returned if single_decay is False. tau1_err : np.array, dtype=float, shape=[n,] The fit error of τ\ :sub:`1`, only returned if single_decay is False. alpha2_err : np.array, dtype=float, shape=[n,] The fit error of α\ :sub:`2`, only returned if single_decay is False. tau2_err : np.array, dtype=float, shape=[n,] The fit error of τ\ :sub:`2`, only returned if single_decay is False. alpha3_err : np.array, dtype=float, shape=[n,] The fit error of α\ :sub:`3`, only returned if single_decay is False. tau3_err : np.array, dtype=float, shape=[n,] The fit error of τ\ :sub:`3`, only returned if single_decay is False. nfl : np.array, dtype=int, shape=[n,] The number of flashlets used for fitting. niters : np.array, dype=int, shape=[n,] The number of functional evaluations done on the fitting routine. flag : np.array, dtype=int, shape=[n,] The code associated with the fitting routine success, positive values = SUCCESS, negative values = FAILURE. -3 : Unable to calculate parameter errors -2 : F\ :sub:`o` Relax > F\ :sub:`m` Relax -1 : improper input parameters status returned from MINPACK. 0 : the maximum number of function evaluations is exceeded. 1 : gtol termination condition is satisfied. 2 : ftol termination condition is satisfied. 3 : xtol termination condition is satisfied. 4 : Both ftol and xtol termination conditions are satisfied. success : np.array, dtype=bool, shape=[n,] A boolean array reporting whether fit was successful (TRUE) or if not successful (FALSE) datetime : np.array, dtype=datetime64, shape=[n,] The date and time associated with the measurement. Example ------- >>> rel = ppu.calculate_relaxation(flevel, seq_time, seq, datetime, blank=0, sat_len=100, rel_len=40, single_decay=True, bounds=True, tau_lims=[100, 50000]) """ seq_time = array(seq_time) flevel = array(flevel) seq = array(seq) dt = array(datetime) if single_decay: opts = {'sat_flashlets':sat_flashlets, 'bounds':bounds, 'single_lims':single_lims, 'method':method,'loss':loss, 'f_scale':f_scale, 'max_nfev':max_nfev, 'xtol':xtol} else: opts = {'sat_flashlets':sat_flashlets, 'bounds':bounds, 'tau1_lims':tau1_lims, 'tau2_lims':tau2_lims, 'tau3_lims':tau3_lims, 'method':method,'loss':loss, 'f_scale':f_scale, 'max_nfev':max_nfev, 'xtol':xtol} res = [] for s in tqdm(unique(seq)): i = seq == s x = seq_time[i] y = flevel[i] x_min = min(x[sat_len:]) x = x[sat_len-sat_flashlets:sat_len+rel_len] - x_min y = y[sat_len-sat_flashlets:sat_len+rel_len] if single_decay: rel = __fit_single_decay__(x, y, **opts) else: rel = __fit_triple_decay__(x, y, **opts) res.append(Series(rel)) res = concat(res, axis=1) res = res.T if res.empty: pass else: if single_decay: res.columns = ['fo_r', 'fm_r', 'tau', 'bias', 'rmse', 'nrmse', 'fo_err', 'fm_err', 'tau_err', 'nfl', 'niters', 'flag', 'success'] else: res.columns = ['fo_r', 'fm_r', 'alpha1', 'tau1', 'alpha2','tau2', 'alpha3', 'tau3', 'bias', 'rsme', 'nrmse', 'for_err', 'fmr_err', 'alpha1_err', 'tau1_err', 'alpha2_err', 'tau2_err', 'alpha3_err', 'tau3_err', 'nfl', 'niters', 'flag', 'success'] res['datetime'] = unique(dt) return res
0.864353
0.577972
import re import sys import os from io import StringIO import tkinter import IPython from functools import reduce #Works by itself, but not able to import it into the GUI at this time. class IterableIPShell: def __init__(self,argv=None,user_ns=None,user_global_ns=None, cin=None, cout=None,cerr=None, input_func=None): if input_func: IPython.iplib.raw_input_original = input_func if cin: IPython.Shell.Term.cin = cin if cout: IPython.Shell.Term.cout = cout if cerr: IPython.Shell.Term.cerr = cerr if argv is None: argv=[] # This is to get rid of the blockage that occurs during # IPython.Shell.InteractiveShell.user_setup() IPython.iplib.raw_input = lambda x: None self.term = IPython.genutils.IOTerm(cin=cin, cout=cout, cerr=cerr) os.environ['TERM'] = 'dumb' excepthook = sys.excepthook self.IP = IPython.Shell.make_IPython(argv,user_ns=user_ns, user_global_ns=user_global_ns, embedded=True, shell_class=IPython.Shell.InteractiveShell) self.IP.system = lambda cmd: self.shell(self.IP.var_expand(cmd), header='IPython system call: ', verbose=self.IP.rc.system_verbose) sys.excepthook = excepthook self.iter_more = 0 self.history_level = 0 self.complete_sep = re.compile('[\s\{\}\[\]\(\)]') def execute(self): self.history_level = 0 orig_stdout = sys.stdout sys.stdout = IPython.Shell.Term.cout try: line = self.IP.raw_input(None, self.iter_more) if self.IP.autoindent: self.IP.readline_startup_hook(None) except KeyboardInterrupt: self.IP.write('\nKeyboardInterrupt\n') self.IP.resetbuffer() # keep cache in sync with the prompt counter: self.IP.outputcache.prompt_count -= 1 if self.IP.autoindent: self.IP.indent_current_nsp = 0 self.iter_more = 0 except: self.IP.showtraceback() else: self.iter_more = self.IP.push(line) if (self.IP.SyntaxTB.last_syntax_error and self.IP.rc.autoedit_syntax): self.IP.edit_syntax_error() if self.iter_more: self.prompt = str(self.IP.outputcache.prompt2).strip() if self.IP.autoindent: self.IP.readline_startup_hook(self.IP.pre_readline) else: self.prompt = str(self.IP.outputcache.prompt1).strip() sys.stdout = orig_stdout def historyBack(self): self.history_level -= 1 return self._getHistory() def historyForward(self): self.history_level += 1 return self._getHistory() def _getHistory(self): try: rv = self.IP.user_ns['In'][self.history_level].strip('\n') except IndexError: self.history_level = 0 rv = '' return rv def updateNamespace(self, ns_dict): self.IP.user_ns.update(ns_dict) def complete(self, line): split_line = self.complete_sep.split(line) possibilities = self.IP.complete(split_line[-1]) if possibilities: common_prefix = reduce(self._commonPrefix, possibilities) completed = line[:-len(split_line[-1])]+common_prefix else: completed = line return completed, possibilities def _commonPrefix(self, str1, str2): for i in range(len(str1)): if not str2.startswith(str1[:i+1]): return str1[:i] return str1 def shell(self, cmd,verbose=0,debug=0,header=''): stat = 0 if verbose or debug: print(header+cmd) # flush stdout so we don't mangle python's buffering if not debug: input, output = os.popen4(cmd) print(output.read()) output.close() input.close() ansi_colors = {'0;30': 'Black', '0;31': 'Red', '0;32': 'Green', '0;33': 'Brown', '0;34': 'Blue', '0;35': 'Purple', '0;36': 'Cyan', '0;37': 'LightGray', '1;30': 'DarkGray', '1;31': 'DarkRed', '1;32': 'SeaGreen', '1;33': 'Yellow', '1;34': 'LightBlue', '1;35': 'MediumPurple', '1;36': 'LightCyan', '1;37': 'White'} class TkConsoleView(tkinter.Text): def __init__(self,root): tkinter.Text.__init__(self,root) # As the stdout,stderr etc. get fiddled about with we need to put any # debug output into a file self.debug=0 if self.debug: self.o = open('debug.out','w') # Keeps track of where the insert cursor should be on the entry line self.mark = 'scroll_mark' self.mark_set(self.mark,tkinter.END) self.mark_gravity(self.mark,tkinter.RIGHT) # Set the tags for colouring the text for code in ansi_colors: self.tag_config(code, foreground=ansi_colors[code]) self.tag_config('notouch') # Tag for indicating what areas of the widget aren't editable # colour_pat matches the colour tags and places these in a group # match character with hex value 01 (start of heading?) zero or more times, followed by # the hex character 1b (escape) then "[" and group ...things.. followed by m (?) and then # hex character 02 (start of text) zero or more times self.color_pat = re.compile('\x01?\x1b\[(.*?)m\x02?') self.line_start = 'line_start' # Tracks start of user input on the line (excluding prompt) self.mark_set(self.line_start,tkinter.INSERT) self.mark_gravity(self.line_start,tkinter.LEFT) self._setBindings() def write(self, text, editable=False): segments = self.color_pat.split(text) # First is blank line segment = segments.pop(0) # Keep track of where we started entering text so we can set as non-editable self.start_mark = 'start_mark' self.mark_set(self.start_mark,tkinter.INSERT) self.mark_gravity(self.start_mark,tkinter.LEFT) self.insert(tkinter.END, segment) if segments: # Just return the colour tags ansi_tags = self.color_pat.findall(text) for tag in ansi_tags: i = segments.index(tag) self.insert(tkinter.END,segments[i+1],tag) segments.pop(i) if not editable: if self.debug: print("adding notouch between %s : %s" % ( self.index(self.start_mark),\ self.index(tkinter.INSERT) )) self.tag_add('notouch',self.start_mark,"%s-1c" % tkinter.INSERT) self.mark_unset(self.start_mark) #jmht self.scroll_mark_onscreen(self.mark) def showBanner(self,banner): """Print the supplied banner on starting the shell""" self.write(banner) def showPrompt(self, prompt): self.write(prompt) self.mark_set(self.line_start,tkinter.INSERT) self.see(tkinter.INSERT) #Make sure we can always see the prompt def changeLine(self, text): self.delete(self.line_start,"%s lineend" % self.line_start) self.write(text, True) def getCurrentLine(self): rv = self.get(self.line_start,tkinter.END) if self.debug: print("getCurrentline: %s" % rv, file=self.o) print("INSERT: %s" % tkinter.END, file=self.o) print("END: %s" % tkinter.INSERT, file=self.o) print("line_start: %s" % self.index(self.line_start), file=self.o) return rv def showReturned(self, text): self.tag_add('notouch',self.line_start,"%s lineend" % self.line_start ) self.write('\n'+text) if text: self.write('\n') self.showPrompt(self.prompt) #self.mark_set(self.line_start,Tkinter.END) #jmht don't need this as showprompt sets mark def _setBindings(self): """ Bind the keys we require. REM: if a bound function returns "break" then no other bindings are called If it returns None, then the other default bindings are called. """ self.bind("<Key>",self.processKeyPress) self.bind("<Return>",self.processEnterPress) self.bind("<Up>",self.processUpPress) self.bind("<Down>",self.processDownPress) self.bind("<Tab>",self.processTabPress) self.bind("<BackSpace>",self.processBackSpacePress) def isEditable(self): """ Scan the notouch tag range in pairs and see if the INSERT index falls between any of them. """ ranges = self.tag_ranges('notouch') first=None for idx in ranges: if not first: first=idx continue else: if self.debug: print("Comparing %s between %s : %s " % (self.index(tkinter.INSERT),first,idx)) if self.compare( tkinter.INSERT,'>=',first ) and \ self.compare( tkinter.INSERT,'<=',idx ): return False first=None return True def processKeyPress(self,event): if self.debug: print("processKeyPress got key: %s" % event.char, file=self.o) print("processKeyPress INSERT: %s" % self.index(tkinter.INSERT), file=self.o) print("processKeyPress END: %s" % self.index(tkinter.END), file=self.o) if not self.isEditable(): # Move cursor mark to start of line self.mark_set(tkinter.INSERT,self.mark) # Make sure line_start follows inserted text self.mark_set(self.mark,"%s+1c" % tkinter.INSERT) def processBackSpacePress(self,event): if not self.isEditable(): return "break" def processEnterPress(self,event): self._processLine() return "break" # Need break to stop the other bindings being called def processUpPress(self,event): self.changeLine(self.historyBack()) return "break" def processDownPress(self,event): self.changeLine(self.historyForward()) return "break" def processTabPress(self,event): if not self.getCurrentLine().strip(): return completed, possibilities = self.complete(self.getCurrentLine()) if len(possibilities) > 1: slice = self.getCurrentLine() self.write('\n') for symbol in possibilities: self.write(symbol+'\n') self.showPrompt(self.prompt) self.changeLine(completed or slice) return "break" class IPythonView(TkConsoleView, IterableIPShell): def __init__(self,root,banner=None): TkConsoleView.__init__(self,root) self.cout = StringIO() IterableIPShell.__init__(self, cout=self.cout,cerr=self.cout, input_func=self.raw_input) if banner: self.showBanner(banner) self.execute() self.cout.truncate(0) self.showPrompt(self.prompt) self.interrupt = False def raw_input(self, prompt=''): if self.interrupt: self.interrupt = False raise KeyboardInterrupt return self.getCurrentLine() def _processLine(self): self.history_pos = 0 self.execute() rv = self.cout.getvalue() if self.debug: print("_processLine got rv: %s" % rv, file=self.o) if rv: rv = rv.strip('\n') self.showReturned(rv) self.cout.truncate(0) if __name__ == "__main__": root = tkinter.Tk() s=IPythonView(root) s.pack() root.mainloop()
jade2/pyrosetta_toolkit/window_modules/interactive_terminal/interactive_terminal.py
import re import sys import os from io import StringIO import tkinter import IPython from functools import reduce #Works by itself, but not able to import it into the GUI at this time. class IterableIPShell: def __init__(self,argv=None,user_ns=None,user_global_ns=None, cin=None, cout=None,cerr=None, input_func=None): if input_func: IPython.iplib.raw_input_original = input_func if cin: IPython.Shell.Term.cin = cin if cout: IPython.Shell.Term.cout = cout if cerr: IPython.Shell.Term.cerr = cerr if argv is None: argv=[] # This is to get rid of the blockage that occurs during # IPython.Shell.InteractiveShell.user_setup() IPython.iplib.raw_input = lambda x: None self.term = IPython.genutils.IOTerm(cin=cin, cout=cout, cerr=cerr) os.environ['TERM'] = 'dumb' excepthook = sys.excepthook self.IP = IPython.Shell.make_IPython(argv,user_ns=user_ns, user_global_ns=user_global_ns, embedded=True, shell_class=IPython.Shell.InteractiveShell) self.IP.system = lambda cmd: self.shell(self.IP.var_expand(cmd), header='IPython system call: ', verbose=self.IP.rc.system_verbose) sys.excepthook = excepthook self.iter_more = 0 self.history_level = 0 self.complete_sep = re.compile('[\s\{\}\[\]\(\)]') def execute(self): self.history_level = 0 orig_stdout = sys.stdout sys.stdout = IPython.Shell.Term.cout try: line = self.IP.raw_input(None, self.iter_more) if self.IP.autoindent: self.IP.readline_startup_hook(None) except KeyboardInterrupt: self.IP.write('\nKeyboardInterrupt\n') self.IP.resetbuffer() # keep cache in sync with the prompt counter: self.IP.outputcache.prompt_count -= 1 if self.IP.autoindent: self.IP.indent_current_nsp = 0 self.iter_more = 0 except: self.IP.showtraceback() else: self.iter_more = self.IP.push(line) if (self.IP.SyntaxTB.last_syntax_error and self.IP.rc.autoedit_syntax): self.IP.edit_syntax_error() if self.iter_more: self.prompt = str(self.IP.outputcache.prompt2).strip() if self.IP.autoindent: self.IP.readline_startup_hook(self.IP.pre_readline) else: self.prompt = str(self.IP.outputcache.prompt1).strip() sys.stdout = orig_stdout def historyBack(self): self.history_level -= 1 return self._getHistory() def historyForward(self): self.history_level += 1 return self._getHistory() def _getHistory(self): try: rv = self.IP.user_ns['In'][self.history_level].strip('\n') except IndexError: self.history_level = 0 rv = '' return rv def updateNamespace(self, ns_dict): self.IP.user_ns.update(ns_dict) def complete(self, line): split_line = self.complete_sep.split(line) possibilities = self.IP.complete(split_line[-1]) if possibilities: common_prefix = reduce(self._commonPrefix, possibilities) completed = line[:-len(split_line[-1])]+common_prefix else: completed = line return completed, possibilities def _commonPrefix(self, str1, str2): for i in range(len(str1)): if not str2.startswith(str1[:i+1]): return str1[:i] return str1 def shell(self, cmd,verbose=0,debug=0,header=''): stat = 0 if verbose or debug: print(header+cmd) # flush stdout so we don't mangle python's buffering if not debug: input, output = os.popen4(cmd) print(output.read()) output.close() input.close() ansi_colors = {'0;30': 'Black', '0;31': 'Red', '0;32': 'Green', '0;33': 'Brown', '0;34': 'Blue', '0;35': 'Purple', '0;36': 'Cyan', '0;37': 'LightGray', '1;30': 'DarkGray', '1;31': 'DarkRed', '1;32': 'SeaGreen', '1;33': 'Yellow', '1;34': 'LightBlue', '1;35': 'MediumPurple', '1;36': 'LightCyan', '1;37': 'White'} class TkConsoleView(tkinter.Text): def __init__(self,root): tkinter.Text.__init__(self,root) # As the stdout,stderr etc. get fiddled about with we need to put any # debug output into a file self.debug=0 if self.debug: self.o = open('debug.out','w') # Keeps track of where the insert cursor should be on the entry line self.mark = 'scroll_mark' self.mark_set(self.mark,tkinter.END) self.mark_gravity(self.mark,tkinter.RIGHT) # Set the tags for colouring the text for code in ansi_colors: self.tag_config(code, foreground=ansi_colors[code]) self.tag_config('notouch') # Tag for indicating what areas of the widget aren't editable # colour_pat matches the colour tags and places these in a group # match character with hex value 01 (start of heading?) zero or more times, followed by # the hex character 1b (escape) then "[" and group ...things.. followed by m (?) and then # hex character 02 (start of text) zero or more times self.color_pat = re.compile('\x01?\x1b\[(.*?)m\x02?') self.line_start = 'line_start' # Tracks start of user input on the line (excluding prompt) self.mark_set(self.line_start,tkinter.INSERT) self.mark_gravity(self.line_start,tkinter.LEFT) self._setBindings() def write(self, text, editable=False): segments = self.color_pat.split(text) # First is blank line segment = segments.pop(0) # Keep track of where we started entering text so we can set as non-editable self.start_mark = 'start_mark' self.mark_set(self.start_mark,tkinter.INSERT) self.mark_gravity(self.start_mark,tkinter.LEFT) self.insert(tkinter.END, segment) if segments: # Just return the colour tags ansi_tags = self.color_pat.findall(text) for tag in ansi_tags: i = segments.index(tag) self.insert(tkinter.END,segments[i+1],tag) segments.pop(i) if not editable: if self.debug: print("adding notouch between %s : %s" % ( self.index(self.start_mark),\ self.index(tkinter.INSERT) )) self.tag_add('notouch',self.start_mark,"%s-1c" % tkinter.INSERT) self.mark_unset(self.start_mark) #jmht self.scroll_mark_onscreen(self.mark) def showBanner(self,banner): """Print the supplied banner on starting the shell""" self.write(banner) def showPrompt(self, prompt): self.write(prompt) self.mark_set(self.line_start,tkinter.INSERT) self.see(tkinter.INSERT) #Make sure we can always see the prompt def changeLine(self, text): self.delete(self.line_start,"%s lineend" % self.line_start) self.write(text, True) def getCurrentLine(self): rv = self.get(self.line_start,tkinter.END) if self.debug: print("getCurrentline: %s" % rv, file=self.o) print("INSERT: %s" % tkinter.END, file=self.o) print("END: %s" % tkinter.INSERT, file=self.o) print("line_start: %s" % self.index(self.line_start), file=self.o) return rv def showReturned(self, text): self.tag_add('notouch',self.line_start,"%s lineend" % self.line_start ) self.write('\n'+text) if text: self.write('\n') self.showPrompt(self.prompt) #self.mark_set(self.line_start,Tkinter.END) #jmht don't need this as showprompt sets mark def _setBindings(self): """ Bind the keys we require. REM: if a bound function returns "break" then no other bindings are called If it returns None, then the other default bindings are called. """ self.bind("<Key>",self.processKeyPress) self.bind("<Return>",self.processEnterPress) self.bind("<Up>",self.processUpPress) self.bind("<Down>",self.processDownPress) self.bind("<Tab>",self.processTabPress) self.bind("<BackSpace>",self.processBackSpacePress) def isEditable(self): """ Scan the notouch tag range in pairs and see if the INSERT index falls between any of them. """ ranges = self.tag_ranges('notouch') first=None for idx in ranges: if not first: first=idx continue else: if self.debug: print("Comparing %s between %s : %s " % (self.index(tkinter.INSERT),first,idx)) if self.compare( tkinter.INSERT,'>=',first ) and \ self.compare( tkinter.INSERT,'<=',idx ): return False first=None return True def processKeyPress(self,event): if self.debug: print("processKeyPress got key: %s" % event.char, file=self.o) print("processKeyPress INSERT: %s" % self.index(tkinter.INSERT), file=self.o) print("processKeyPress END: %s" % self.index(tkinter.END), file=self.o) if not self.isEditable(): # Move cursor mark to start of line self.mark_set(tkinter.INSERT,self.mark) # Make sure line_start follows inserted text self.mark_set(self.mark,"%s+1c" % tkinter.INSERT) def processBackSpacePress(self,event): if not self.isEditable(): return "break" def processEnterPress(self,event): self._processLine() return "break" # Need break to stop the other bindings being called def processUpPress(self,event): self.changeLine(self.historyBack()) return "break" def processDownPress(self,event): self.changeLine(self.historyForward()) return "break" def processTabPress(self,event): if not self.getCurrentLine().strip(): return completed, possibilities = self.complete(self.getCurrentLine()) if len(possibilities) > 1: slice = self.getCurrentLine() self.write('\n') for symbol in possibilities: self.write(symbol+'\n') self.showPrompt(self.prompt) self.changeLine(completed or slice) return "break" class IPythonView(TkConsoleView, IterableIPShell): def __init__(self,root,banner=None): TkConsoleView.__init__(self,root) self.cout = StringIO() IterableIPShell.__init__(self, cout=self.cout,cerr=self.cout, input_func=self.raw_input) if banner: self.showBanner(banner) self.execute() self.cout.truncate(0) self.showPrompt(self.prompt) self.interrupt = False def raw_input(self, prompt=''): if self.interrupt: self.interrupt = False raise KeyboardInterrupt return self.getCurrentLine() def _processLine(self): self.history_pos = 0 self.execute() rv = self.cout.getvalue() if self.debug: print("_processLine got rv: %s" % rv, file=self.o) if rv: rv = rv.strip('\n') self.showReturned(rv) self.cout.truncate(0) if __name__ == "__main__": root = tkinter.Tk() s=IPythonView(root) s.pack() root.mainloop()
0.192615
0.089177
import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("core", "0023_add_referral_answer_attachment_with_base_class"), ] operations = [ migrations.CreateModel( name="ReferralUrgency", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "duration", models.DurationField( help_text="Expected treatment duration", verbose_name="duration" ), ), ( "is_default", models.BooleanField( default=False, help_text="Whether this urgency level is the default level for new referrals", verbose_name="is default", ), ), ("name", models.CharField(max_length=200, verbose_name="name")), ( "requires_justification", models.BooleanField( help_text="Whether to require a justification when this urgency is selected", verbose_name="requires justification", ), ), ], options={ "verbose_name": "referral urgency", "db_table": "partaj_referral_urgency", }, ), migrations.AddField( model_name="referral", name="urgency_level", field=models.ForeignKey( blank=True, help_text="Urgency level. When is the referral answer needed?", null=True, on_delete=django.db.models.deletion.PROTECT, related_name="+", to="core.ReferralUrgency", verbose_name="urgency", ), ), ]
src/backend/partaj/core/migrations/0024_add_urgency_model.py
import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("core", "0023_add_referral_answer_attachment_with_base_class"), ] operations = [ migrations.CreateModel( name="ReferralUrgency", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "duration", models.DurationField( help_text="Expected treatment duration", verbose_name="duration" ), ), ( "is_default", models.BooleanField( default=False, help_text="Whether this urgency level is the default level for new referrals", verbose_name="is default", ), ), ("name", models.CharField(max_length=200, verbose_name="name")), ( "requires_justification", models.BooleanField( help_text="Whether to require a justification when this urgency is selected", verbose_name="requires justification", ), ), ], options={ "verbose_name": "referral urgency", "db_table": "partaj_referral_urgency", }, ), migrations.AddField( model_name="referral", name="urgency_level", field=models.ForeignKey( blank=True, help_text="Urgency level. When is the referral answer needed?", null=True, on_delete=django.db.models.deletion.PROTECT, related_name="+", to="core.ReferralUrgency", verbose_name="urgency", ), ), ]
0.509276
0.156362
import cs_grading as CS import os text_editor = 'subl' #Options for p5 run_p5_test = 1 # Change to 0 to turn off these tests . p5_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p5_source_files = '../barry.cpp' # The name and location of the student's solution file relative to this script. p5_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p5_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. #Options for p6 run_p6_test = 1 # Change to 0 to turn off these tests . p6_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p6_source_files = '../hw1q6.cpp' # The name and location of the student's solution file relative to this script. p6_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p6_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. #Options for p7 run_p7_test = 1 # Change to 0 to turn off these tests . p7_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p7_source_files = '../game_of_pointers.cpp' # The name and location of the student's solution file relative to this script. p7_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p7_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. ### p5 run tests if run_p5_test: p5_result_file = 'p5_result.txt' p5_valgrind_file = 'p5_valgrind.txt' p5_target = 'barry' if CS.check_file_existence(p5_result_file): CS.remove_file(p5_result_file) if CS.check_file_existence(p5_valgrind_file): CS.remove_file(p5_valgrind_file) CS.compile_student_code(0, source_files=p5_source_files, target=p5_target, flags='-g -Wall -std=c++11') CS.mkdir('q5_student_output') f = open('q5_input/input.txt', 'r') correct_test = 0 for i in xrange(1,11): string = f.readline().strip() output_file = 'q5_student_output/output' + str(i) + '.out' expected_output_file = 'q5_output/output' + str(i) + '.txt' CS.run_executable('./', p5_target, string + ' > ' + output_file, use_valgrind=p5_use_valgrind, valgrind_log_filename=p5_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p5_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p5_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p5_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p5_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == 10: CS.write_message(p5_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p5_result_file, 'Failed ' + str(10 - correct_test) + ' tests!') if p5_open_results: CS.open_file(p5_result_file, text_editor) if p5_use_valgrind: CS.open_file(p5_valgrind_file, text_editor) # Clean up if p5_remove_files: CS.remove_file(p5_target) os.system('rm -r q5_student_output') ### p6 run tests if run_p6_test: p6_result_file = 'p6_result.txt' p6_valgrind_file = 'p6_valgrind.txt' p6_target = 'hw1q6' if CS.check_file_existence(p6_result_file): CS.remove_file(p6_result_file) if CS.check_file_existence(p6_valgrind_file): CS.remove_file(p6_valgrind_file) CS.compile_student_code(0, source_files=p6_source_files, target=p6_target, flags='-g -Wall -std=c++11') CS.mkdir('q6_student_output') correct_test = 0 for i in xrange(1,11): string = 'q6_input/input' + str(i) + '.txt' output_file = 'q6_student_output/output' + str(i) + '.out' expected_output_file = 'q6_output/output' + str(i) + '.txt' CS.run_executable('./', p6_target, string + ' > ' + output_file, use_valgrind=p6_use_valgrind, valgrind_log_filename=p6_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p6_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p6_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p6_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p6_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == 10: CS.write_message(p6_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p6_result_file, 'Failed ' + str(10 - correct_test) + ' tests!') if p6_open_results: CS.open_file(p6_result_file, text_editor) if p6_use_valgrind: CS.open_file(p6_valgrind_file, text_editor) # Clean up if p6_remove_files: CS.remove_file(p6_target) os.system('rm -r q6_student_output') if run_p7_test: p7_result_file = 'got_result.txt' p7_valgrind_file = 'got_valgrind.txt' p7_target = 'game_of_pointers' p7_test_count = 16 if CS.check_file_existence(p7_result_file): CS.remove_file(p7_result_file) if CS.check_file_existence(p7_valgrind_file): CS.remove_file(p7_valgrind_file) CS.compile_student_code(0, source_files=p7_source_files, target=p7_target, flags='-g -Wall -std=c++11') CS.mkdir('q7_student_output') correct_test = 0 for i in xrange(1,p7_test_count + 1): parameters = 'q7_input/input' + str(i) + '.txt' parameters += ' q7_student_output/output' + str(i) +'.txt' output_file = 'q7_student_output/output' + str(i) +'.txt' expected_output_file = 'q7_input/solution' + str(i) + '.txt' CS.run_executable('./', p7_target, parameters, use_valgrind=p7_use_valgrind, valgrind_log_filename=p7_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p7_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p7_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p7_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p7_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == p7_test_count: CS.write_message(p7_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p7_result_file, 'Failed ' + str(p7_test_count - correct_test) + ' tests!') if p6_open_results: CS.open_file(p7_result_file, text_editor) if p6_use_valgrind: CS.open_file(p7_valgrind_file, text_editor) # Clean up if p7_remove_files: CS.remove_file(p7_target) os.system('rm -r q7_student_output')
CSCI-104/homework-resources/hw1-test/hw1-checker.py
import cs_grading as CS import os text_editor = 'subl' #Options for p5 run_p5_test = 1 # Change to 0 to turn off these tests . p5_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p5_source_files = '../barry.cpp' # The name and location of the student's solution file relative to this script. p5_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p5_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. #Options for p6 run_p6_test = 1 # Change to 0 to turn off these tests . p6_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p6_source_files = '../hw1q6.cpp' # The name and location of the student's solution file relative to this script. p6_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p6_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. #Options for p7 run_p7_test = 1 # Change to 0 to turn off these tests . p7_use_valgrind = 1 # Change to 0 if you don't want valgrind to be run. p7_source_files = '../game_of_pointers.cpp' # The name and location of the student's solution file relative to this script. p7_open_results = 1 # Change to 0 if you don't want the results files opened automatically. p7_remove_files = 1 # Change to 0 if you don't want intermediary files to be removed. ### p5 run tests if run_p5_test: p5_result_file = 'p5_result.txt' p5_valgrind_file = 'p5_valgrind.txt' p5_target = 'barry' if CS.check_file_existence(p5_result_file): CS.remove_file(p5_result_file) if CS.check_file_existence(p5_valgrind_file): CS.remove_file(p5_valgrind_file) CS.compile_student_code(0, source_files=p5_source_files, target=p5_target, flags='-g -Wall -std=c++11') CS.mkdir('q5_student_output') f = open('q5_input/input.txt', 'r') correct_test = 0 for i in xrange(1,11): string = f.readline().strip() output_file = 'q5_student_output/output' + str(i) + '.out' expected_output_file = 'q5_output/output' + str(i) + '.txt' CS.run_executable('./', p5_target, string + ' > ' + output_file, use_valgrind=p5_use_valgrind, valgrind_log_filename=p5_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p5_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p5_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p5_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p5_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == 10: CS.write_message(p5_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p5_result_file, 'Failed ' + str(10 - correct_test) + ' tests!') if p5_open_results: CS.open_file(p5_result_file, text_editor) if p5_use_valgrind: CS.open_file(p5_valgrind_file, text_editor) # Clean up if p5_remove_files: CS.remove_file(p5_target) os.system('rm -r q5_student_output') ### p6 run tests if run_p6_test: p6_result_file = 'p6_result.txt' p6_valgrind_file = 'p6_valgrind.txt' p6_target = 'hw1q6' if CS.check_file_existence(p6_result_file): CS.remove_file(p6_result_file) if CS.check_file_existence(p6_valgrind_file): CS.remove_file(p6_valgrind_file) CS.compile_student_code(0, source_files=p6_source_files, target=p6_target, flags='-g -Wall -std=c++11') CS.mkdir('q6_student_output') correct_test = 0 for i in xrange(1,11): string = 'q6_input/input' + str(i) + '.txt' output_file = 'q6_student_output/output' + str(i) + '.out' expected_output_file = 'q6_output/output' + str(i) + '.txt' CS.run_executable('./', p6_target, string + ' > ' + output_file, use_valgrind=p6_use_valgrind, valgrind_log_filename=p6_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p6_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p6_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p6_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p6_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == 10: CS.write_message(p6_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p6_result_file, 'Failed ' + str(10 - correct_test) + ' tests!') if p6_open_results: CS.open_file(p6_result_file, text_editor) if p6_use_valgrind: CS.open_file(p6_valgrind_file, text_editor) # Clean up if p6_remove_files: CS.remove_file(p6_target) os.system('rm -r q6_student_output') if run_p7_test: p7_result_file = 'got_result.txt' p7_valgrind_file = 'got_valgrind.txt' p7_target = 'game_of_pointers' p7_test_count = 16 if CS.check_file_existence(p7_result_file): CS.remove_file(p7_result_file) if CS.check_file_existence(p7_valgrind_file): CS.remove_file(p7_valgrind_file) CS.compile_student_code(0, source_files=p7_source_files, target=p7_target, flags='-g -Wall -std=c++11') CS.mkdir('q7_student_output') correct_test = 0 for i in xrange(1,p7_test_count + 1): parameters = 'q7_input/input' + str(i) + '.txt' parameters += ' q7_student_output/output' + str(i) +'.txt' output_file = 'q7_student_output/output' + str(i) +'.txt' expected_output_file = 'q7_input/solution' + str(i) + '.txt' CS.run_executable('./', p7_target, parameters, use_valgrind=p7_use_valgrind, valgrind_log_filename=p7_valgrind_file) if CS.check_file_existence(output_file): results = CS.compare_files_with_order( output_file, expected_output_file, p7_result_file, skip_white_space=1, detailed_results=0) CS.write_message(p7_result_file, '\n') if results[1] == 0 and results[2] == 0: correct_test += 1 CS.write_message(p7_result_file, 'Test ' + str(i) + ' passed!\n\n') else: CS.write_message(p7_result_file, 'Test ' + str(i) + ' failed.\n\n') if correct_test == p7_test_count: CS.write_message(p7_result_file, '\nAll Test Cases Passed!') else: CS.write_message(p7_result_file, 'Failed ' + str(p7_test_count - correct_test) + ' tests!') if p6_open_results: CS.open_file(p7_result_file, text_editor) if p6_use_valgrind: CS.open_file(p7_valgrind_file, text_editor) # Clean up if p7_remove_files: CS.remove_file(p7_target) os.system('rm -r q7_student_output')
0.095592
0.131675
import numpy as np import tvm import topi def verify_expand_dims(in_shape, out_shape, axis, num_newaxis): A = tvm.placeholder(shape=in_shape, name="A") B = topi.cpp.expand_dims(A, axis, num_newaxis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) foo = tvm.build(s, [A, B], device, name="expand_dims") data_npy = np.random.uniform(size=in_shape).astype(A.dtype) out_npy = data_npy.reshape(out_shape) data_nd = tvm.nd.array(data_npy, ctx) out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), ctx) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_tranpose(in_shape, axes): A = tvm.placeholder(shape=in_shape, name="A") B = topi.cpp.transpose(A, axes) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) ctx = tvm.context(device, 0) foo = tvm.build(s, [A, B], device, name="tranpose") data_npy = np.arange(np.prod(in_shape)).reshape(in_shape).astype(A.dtype) out_npy = data_npy.transpose(axes) data_nd = tvm.nd.array(data_npy, ctx) out_nd = tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=B.dtype) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_reshape(src_shape, dst_shape): A = tvm.placeholder(shape=src_shape, name="A") B = topi.cpp.reshape(A, dst_shape) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) foo = tvm.build(s, [A, B], device, name="reshape") data_npy = np.random.normal(size=src_shape).astype(A.dtype) out_npy = np.reshape(data_npy, newshape=dst_shape) data_nd = tvm.nd.array(data_npy, ctx) out_nd = tvm.nd.empty(dst_shape, ctx=ctx, dtype=B.dtype) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_squeeze(src_shape, axis): A = tvm.placeholder(shape=src_shape, name="A") B = topi.cpp.squeeze(A, axis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) foo = tvm.build(s, [A, B], device, name="squeeze") data_npy = np.random.normal(size=src_shape).astype(A.dtype) out_npy = np.squeeze(data_npy, axis=axis) data_nd = tvm.nd.array(data_npy, ctx) out_nd_shape = out_npy.shape out_nd = tvm.nd.empty(out_nd_shape, ctx=ctx, dtype=B.dtype) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_concatenate(shapes, axis): tensor_l = [] for i, shape in enumerate(shapes): tensor_l.append(tvm.placeholder(shape, name="A" + str(i))) out_tensor = topi.cpp.concatenate(tensor_l, axis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [out_tensor]) else: s = topi.cpp.cuda.schedule_injective(target, [out_tensor]) foo = tvm.build(s, tensor_l + [out_tensor], device, name="concatenate") data_npys = [np.random.normal(size=shape).astype(tensor_l[0].dtype) for shape in shapes] out_npy = np.concatenate(data_npys, axis=axis) data_nds = [tvm.nd.array(data_npy, ctx) for data_npy in data_npys] out_nd = tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=out_tensor.dtype) foo(*(data_nds + [out_nd])) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_split(src_shape, indices_or_sections, axis): A = tvm.placeholder(shape=src_shape, name="A") tensor_l = topi.cpp.split(A, indices_or_sections, axis) tensor_l = list(tensor_l) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, tensor_l) else: s = topi.cpp.cuda.schedule_injective(target, tensor_l) ctx = tvm.context(device, 0) foo = tvm.build(s, [A] + tensor_l, device, name="split") data_npy = np.random.normal(size=src_shape).astype(A.dtype) out_npys = np.split(data_npy, indices_or_sections, axis=axis) data_nd = tvm.nd.array(data_npy, ctx) out_nds = [tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=tensor_l[0].dtype) for out_npy in out_npys] foo(*([data_nd] + out_nds)) for out_nd, out_npy in zip(out_nds, out_npys): tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_take(src_shape, indices_src, axis=None): src_dtype = "float32" indices_dtype = "int32" indices_src = np.array(indices_src, dtype=indices_dtype) A = tvm.placeholder(shape=src_shape, dtype=src_dtype, name="A") indices = tvm.placeholder(shape=indices_src.shape, dtype=indices_dtype, name="indices") if axis is None: out_tensor = topi.cpp.take(A, indices) else: out_tensor = topi.cpp.take(A, indices, axis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_injective(out_tensor) foo = tvm.build(s, [A] + [indices] + [out_tensor] , device, name="take") shape_size = 1 for i in range(len(src_shape)): shape_size = shape_size * src_shape[i] data_npy = np.arange(shape_size, dtype=src_dtype).reshape((src_shape)) if axis is None: out_npys = np.take(data_npy, indices_src) else: out_npys = np.take(data_npy, indices_src, axis=axis) data_nd = tvm.nd.array(data_npy, ctx) indices_nd = tvm.nd.array(indices_src, ctx) out_nd = tvm.nd.empty(out_npys.shape, ctx=ctx, dtype=src_dtype) foo(data_nd, indices_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npys) for device in ["llvm", "opencl"]: check_device(device) def verify_where(condition, x, y): dtype = "float32" if len(condition.shape) == 1: np_out = np.array([xv if c else yv for (c,xv,yv) in zip(condition,x,y)]) else: np_out = np.where(condition, x, y) A = tvm.placeholder(shape=condition.shape, dtype=dtype, name="condition") B = tvm.placeholder(shape=x.shape, dtype=dtype, name="x") C = tvm.placeholder(shape=y.shape, dtype=dtype, name="y") out_tensor = topi.cpp.where(A, B, C) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_injective(out_tensor) foo = tvm.build(s, [A, B, C, out_tensor], device, name="where") tvm_out = tvm.nd.empty(x.shape, ctx=ctx, dtype=dtype) foo(tvm.nd.array(condition, ctx), tvm.nd.array(x, ctx), tvm.nd.array(y, ctx), tvm_out) tvm.testing.assert_allclose(tvm_out.asnumpy(), np_out) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_concatenate_split(shapes, axis, indices_or_sections): tensor_l_concatenate = [] for i, shape in enumerate(shapes): tensor_l_concatenate.append(tvm.placeholder(shape, name="A" + str(i))) out_tensor = topi.cpp.concatenate(tensor_l_concatenate, axis) tensor_l = topi.cpp.split(out_tensor, indices_or_sections, axis) tensor_l = list(tensor_l) def check_device(device): if not tvm.module.enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, tensor_l) else: s = topi.cpp.cuda.schedule_injective(target, tensor_l) ctx = tvm.context(device, 0) foo = tvm.build(s, tensor_l_concatenate + tensor_l, device, name="concatenate_split") data_npys = [np.random.normal(size=shape).astype(tensor_l_concatenate[0].dtype) for shape in shapes] out_npy_conc = np.concatenate(data_npys, axis=axis) out_npys_split = np.split(out_npy_conc, indices_or_sections, axis=axis) data_nds = [tvm.nd.array(data_npy, ctx) for data_npy in data_npys] out_nds = [tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=tensor_l[0].dtype) for out_npy in out_npys_split] foo(*(data_nds + out_nds)) for out_nd, out_npy in zip(out_nds, out_npys_split): tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_concatenate_broadcast(shapes, axis, rhs_shape): B = tvm.placeholder(shape=rhs_shape, name="B") tensor_l = [] for i, shape in enumerate(shapes): tensor_l.append(tvm.placeholder(shape, name="A" + str(i))) out_tensor = topi.cpp.concatenate(tensor_l, axis) C = out_tensor + B def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [C]) else: s = topi.cpp.cuda.schedule_injective(target, [C]) ctx = tvm.context(device, 0) foo = tvm.build(s, tensor_l + [B, C], device, name="broadcast_binary_add") data_npys = [np.random.normal(size=shape).astype(tensor_l[0].dtype) for shape in shapes] lhs_npy = np.concatenate(data_npys, axis=axis) rhs_npy = np.random.uniform(size=rhs_shape).astype(B.dtype) out_npy = lhs_npy + rhs_npy data_nds = [tvm.nd.array(data_npy, ctx) for data_npy in data_npys] rhs_nd = tvm.nd.array(rhs_npy, ctx) out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(B.dtype), ctx) for _ in range(1): foo(*(data_nds + [rhs_nd] + [out_nd])) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy, rtol=1E-4, atol=1E-4) for device in ["llvm", "cuda", "opencl", "metal", "rocm"]: check_device(device) def test_expand_dims(): verify_expand_dims((3, 10), (3, 10, 1, 1), 2, 2) verify_expand_dims((3, 10), (1, 3, 10), -3, 1) def test_tranpose(): verify_tranpose((3, 10, 2), (1, 0, 2)) verify_tranpose((3, 10, 5), (2, 0, 1)) verify_tranpose((3, 10), None) verify_tranpose((3, 10, 5), (2, -3, 1)) def test_reshape(): verify_reshape((1, 2, 3, 4), (2, 3, 4)) verify_reshape((4, 2, 3, 4), (2, 4, 12)) verify_reshape((4, 2, 3, 4), (2, 48)) verify_reshape((16, ), (2, 2, 2, 2)) def test_squeeze(): verify_squeeze((1, 2, 3, 4), 0) verify_squeeze((1, 2, 1, 4), None) verify_squeeze((1, 1, 1, 4), (1, 2)) verify_squeeze((1, 1, 1, 1), None) def test_concatenate(): verify_concatenate([(2,), (2,), (2,)], 0) verify_concatenate([(2, 3, 4), (2, 2, 4), (2, 5, 4)], 1) verify_concatenate([(1, 2, 4), (1, 2, 3), (1, 2, 7), (1, 2, 8), (1, 2, 1)], -1) verify_concatenate([(5, 6, 7, 3), (16, 6, 7, 3), (12, 6, 7, 3), (8, 6, 7, 3), (2, 6, 7, 3)], 0) def test_split(): verify_split((2, 12, 3), 3, 1) verify_split((2, 12, 3), 3, -1) verify_split((2, 12, 3), [2, 4], 1) verify_split((10, 12, 24), [5, 7, 9], -1) def test_take(): verify_take((4,), [1]) verify_take((4,), [[0,1,2,3]]) verify_take((3,3,3), [[11,25]]) verify_take((4,), [[0,1],[2,3]]) verify_take((4,), [1], 0) verify_take((2,2), [[[1,0],[0,1]]], 0) verify_take((2,2), [[[1,0],[0,1]]], 1) verify_take((4,3,5,6), [[2,1,0,0]], -2) def test_where(): shape = (10, 3, 7, 13) condition = np.random.uniform(low=-1, high=1, size=shape).astype("float32") x = np.random.uniform(size=shape).astype("float32") y = np.random.uniform(size=shape).astype("float32") verify_where(condition, x, y) condition = np.random.uniform(low=-1, high=1, size=(shape[0],)).astype("float32") x = np.random.uniform(size=shape).astype("float32") y = np.random.uniform(size=shape).astype("float32") verify_where(condition, x, y) def test_regression_1(): verify_concatenate_split([(2, 3, 4), (2, 2, 4), (2, 5, 4)], 1, [3, 7]) verify_concatenate_split([(3, 4), (2, 4), (3, 4)], 0, [1, 2, 3, 4]) def test_regression_2(): verify_concatenate_broadcast([(5, 1, 3), (5, 1, 3)], 1, [2, 1]) verify_concatenate_broadcast([(5, 1, 2), (5, 1, 3)], 2, [1, 5]) if __name__ == "__main__": test_concatenate() test_tranpose() test_expand_dims() test_reshape() test_squeeze() test_split() test_take() test_where() test_regression_1() test_regression_2()
topi/tests/python_cpp/test_topi_transform.py
import numpy as np import tvm import topi def verify_expand_dims(in_shape, out_shape, axis, num_newaxis): A = tvm.placeholder(shape=in_shape, name="A") B = topi.cpp.expand_dims(A, axis, num_newaxis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) foo = tvm.build(s, [A, B], device, name="expand_dims") data_npy = np.random.uniform(size=in_shape).astype(A.dtype) out_npy = data_npy.reshape(out_shape) data_nd = tvm.nd.array(data_npy, ctx) out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), ctx) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_tranpose(in_shape, axes): A = tvm.placeholder(shape=in_shape, name="A") B = topi.cpp.transpose(A, axes) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) ctx = tvm.context(device, 0) foo = tvm.build(s, [A, B], device, name="tranpose") data_npy = np.arange(np.prod(in_shape)).reshape(in_shape).astype(A.dtype) out_npy = data_npy.transpose(axes) data_nd = tvm.nd.array(data_npy, ctx) out_nd = tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=B.dtype) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_reshape(src_shape, dst_shape): A = tvm.placeholder(shape=src_shape, name="A") B = topi.cpp.reshape(A, dst_shape) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) foo = tvm.build(s, [A, B], device, name="reshape") data_npy = np.random.normal(size=src_shape).astype(A.dtype) out_npy = np.reshape(data_npy, newshape=dst_shape) data_nd = tvm.nd.array(data_npy, ctx) out_nd = tvm.nd.empty(dst_shape, ctx=ctx, dtype=B.dtype) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_squeeze(src_shape, axis): A = tvm.placeholder(shape=src_shape, name="A") B = topi.cpp.squeeze(A, axis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [B]) else: s = topi.cpp.cuda.schedule_injective(target, [B]) foo = tvm.build(s, [A, B], device, name="squeeze") data_npy = np.random.normal(size=src_shape).astype(A.dtype) out_npy = np.squeeze(data_npy, axis=axis) data_nd = tvm.nd.array(data_npy, ctx) out_nd_shape = out_npy.shape out_nd = tvm.nd.empty(out_nd_shape, ctx=ctx, dtype=B.dtype) foo(data_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_concatenate(shapes, axis): tensor_l = [] for i, shape in enumerate(shapes): tensor_l.append(tvm.placeholder(shape, name="A" + str(i))) out_tensor = topi.cpp.concatenate(tensor_l, axis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [out_tensor]) else: s = topi.cpp.cuda.schedule_injective(target, [out_tensor]) foo = tvm.build(s, tensor_l + [out_tensor], device, name="concatenate") data_npys = [np.random.normal(size=shape).astype(tensor_l[0].dtype) for shape in shapes] out_npy = np.concatenate(data_npys, axis=axis) data_nds = [tvm.nd.array(data_npy, ctx) for data_npy in data_npys] out_nd = tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=out_tensor.dtype) foo(*(data_nds + [out_nd])) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_split(src_shape, indices_or_sections, axis): A = tvm.placeholder(shape=src_shape, name="A") tensor_l = topi.cpp.split(A, indices_or_sections, axis) tensor_l = list(tensor_l) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, tensor_l) else: s = topi.cpp.cuda.schedule_injective(target, tensor_l) ctx = tvm.context(device, 0) foo = tvm.build(s, [A] + tensor_l, device, name="split") data_npy = np.random.normal(size=src_shape).astype(A.dtype) out_npys = np.split(data_npy, indices_or_sections, axis=axis) data_nd = tvm.nd.array(data_npy, ctx) out_nds = [tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=tensor_l[0].dtype) for out_npy in out_npys] foo(*([data_nd] + out_nds)) for out_nd, out_npy in zip(out_nds, out_npys): tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_take(src_shape, indices_src, axis=None): src_dtype = "float32" indices_dtype = "int32" indices_src = np.array(indices_src, dtype=indices_dtype) A = tvm.placeholder(shape=src_shape, dtype=src_dtype, name="A") indices = tvm.placeholder(shape=indices_src.shape, dtype=indices_dtype, name="indices") if axis is None: out_tensor = topi.cpp.take(A, indices) else: out_tensor = topi.cpp.take(A, indices, axis) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_injective(out_tensor) foo = tvm.build(s, [A] + [indices] + [out_tensor] , device, name="take") shape_size = 1 for i in range(len(src_shape)): shape_size = shape_size * src_shape[i] data_npy = np.arange(shape_size, dtype=src_dtype).reshape((src_shape)) if axis is None: out_npys = np.take(data_npy, indices_src) else: out_npys = np.take(data_npy, indices_src, axis=axis) data_nd = tvm.nd.array(data_npy, ctx) indices_nd = tvm.nd.array(indices_src, ctx) out_nd = tvm.nd.empty(out_npys.shape, ctx=ctx, dtype=src_dtype) foo(data_nd, indices_nd, out_nd) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npys) for device in ["llvm", "opencl"]: check_device(device) def verify_where(condition, x, y): dtype = "float32" if len(condition.shape) == 1: np_out = np.array([xv if c else yv for (c,xv,yv) in zip(condition,x,y)]) else: np_out = np.where(condition, x, y) A = tvm.placeholder(shape=condition.shape, dtype=dtype, name="condition") B = tvm.placeholder(shape=x.shape, dtype=dtype, name="x") C = tvm.placeholder(shape=y.shape, dtype=dtype, name="y") out_tensor = topi.cpp.where(A, B, C) def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_injective(out_tensor) foo = tvm.build(s, [A, B, C, out_tensor], device, name="where") tvm_out = tvm.nd.empty(x.shape, ctx=ctx, dtype=dtype) foo(tvm.nd.array(condition, ctx), tvm.nd.array(x, ctx), tvm.nd.array(y, ctx), tvm_out) tvm.testing.assert_allclose(tvm_out.asnumpy(), np_out) for device in ["llvm", "nvptx", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_concatenate_split(shapes, axis, indices_or_sections): tensor_l_concatenate = [] for i, shape in enumerate(shapes): tensor_l_concatenate.append(tvm.placeholder(shape, name="A" + str(i))) out_tensor = topi.cpp.concatenate(tensor_l_concatenate, axis) tensor_l = topi.cpp.split(out_tensor, indices_or_sections, axis) tensor_l = list(tensor_l) def check_device(device): if not tvm.module.enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, tensor_l) else: s = topi.cpp.cuda.schedule_injective(target, tensor_l) ctx = tvm.context(device, 0) foo = tvm.build(s, tensor_l_concatenate + tensor_l, device, name="concatenate_split") data_npys = [np.random.normal(size=shape).astype(tensor_l_concatenate[0].dtype) for shape in shapes] out_npy_conc = np.concatenate(data_npys, axis=axis) out_npys_split = np.split(out_npy_conc, indices_or_sections, axis=axis) data_nds = [tvm.nd.array(data_npy, ctx) for data_npy in data_npys] out_nds = [tvm.nd.empty(out_npy.shape, ctx=ctx, dtype=tensor_l[0].dtype) for out_npy in out_npys_split] foo(*(data_nds + out_nds)) for out_nd, out_npy in zip(out_nds, out_npys_split): tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy) for device in ["llvm", "cuda", "opencl", "metal", "rocm"]: check_device(device) def verify_concatenate_broadcast(shapes, axis, rhs_shape): B = tvm.placeholder(shape=rhs_shape, name="B") tensor_l = [] for i, shape in enumerate(shapes): tensor_l.append(tvm.placeholder(shape, name="A" + str(i))) out_tensor = topi.cpp.concatenate(tensor_l, axis) C = out_tensor + B def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) target = topi.cpp.TEST_create_target(device) if device == "llvm": s = topi.cpp.generic.schedule_injective(target, [C]) else: s = topi.cpp.cuda.schedule_injective(target, [C]) ctx = tvm.context(device, 0) foo = tvm.build(s, tensor_l + [B, C], device, name="broadcast_binary_add") data_npys = [np.random.normal(size=shape).astype(tensor_l[0].dtype) for shape in shapes] lhs_npy = np.concatenate(data_npys, axis=axis) rhs_npy = np.random.uniform(size=rhs_shape).astype(B.dtype) out_npy = lhs_npy + rhs_npy data_nds = [tvm.nd.array(data_npy, ctx) for data_npy in data_npys] rhs_nd = tvm.nd.array(rhs_npy, ctx) out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(B.dtype), ctx) for _ in range(1): foo(*(data_nds + [rhs_nd] + [out_nd])) tvm.testing.assert_allclose(out_nd.asnumpy(), out_npy, rtol=1E-4, atol=1E-4) for device in ["llvm", "cuda", "opencl", "metal", "rocm"]: check_device(device) def test_expand_dims(): verify_expand_dims((3, 10), (3, 10, 1, 1), 2, 2) verify_expand_dims((3, 10), (1, 3, 10), -3, 1) def test_tranpose(): verify_tranpose((3, 10, 2), (1, 0, 2)) verify_tranpose((3, 10, 5), (2, 0, 1)) verify_tranpose((3, 10), None) verify_tranpose((3, 10, 5), (2, -3, 1)) def test_reshape(): verify_reshape((1, 2, 3, 4), (2, 3, 4)) verify_reshape((4, 2, 3, 4), (2, 4, 12)) verify_reshape((4, 2, 3, 4), (2, 48)) verify_reshape((16, ), (2, 2, 2, 2)) def test_squeeze(): verify_squeeze((1, 2, 3, 4), 0) verify_squeeze((1, 2, 1, 4), None) verify_squeeze((1, 1, 1, 4), (1, 2)) verify_squeeze((1, 1, 1, 1), None) def test_concatenate(): verify_concatenate([(2,), (2,), (2,)], 0) verify_concatenate([(2, 3, 4), (2, 2, 4), (2, 5, 4)], 1) verify_concatenate([(1, 2, 4), (1, 2, 3), (1, 2, 7), (1, 2, 8), (1, 2, 1)], -1) verify_concatenate([(5, 6, 7, 3), (16, 6, 7, 3), (12, 6, 7, 3), (8, 6, 7, 3), (2, 6, 7, 3)], 0) def test_split(): verify_split((2, 12, 3), 3, 1) verify_split((2, 12, 3), 3, -1) verify_split((2, 12, 3), [2, 4], 1) verify_split((10, 12, 24), [5, 7, 9], -1) def test_take(): verify_take((4,), [1]) verify_take((4,), [[0,1,2,3]]) verify_take((3,3,3), [[11,25]]) verify_take((4,), [[0,1],[2,3]]) verify_take((4,), [1], 0) verify_take((2,2), [[[1,0],[0,1]]], 0) verify_take((2,2), [[[1,0],[0,1]]], 1) verify_take((4,3,5,6), [[2,1,0,0]], -2) def test_where(): shape = (10, 3, 7, 13) condition = np.random.uniform(low=-1, high=1, size=shape).astype("float32") x = np.random.uniform(size=shape).astype("float32") y = np.random.uniform(size=shape).astype("float32") verify_where(condition, x, y) condition = np.random.uniform(low=-1, high=1, size=(shape[0],)).astype("float32") x = np.random.uniform(size=shape).astype("float32") y = np.random.uniform(size=shape).astype("float32") verify_where(condition, x, y) def test_regression_1(): verify_concatenate_split([(2, 3, 4), (2, 2, 4), (2, 5, 4)], 1, [3, 7]) verify_concatenate_split([(3, 4), (2, 4), (3, 4)], 0, [1, 2, 3, 4]) def test_regression_2(): verify_concatenate_broadcast([(5, 1, 3), (5, 1, 3)], 1, [2, 1]) verify_concatenate_broadcast([(5, 1, 2), (5, 1, 3)], 2, [1, 5]) if __name__ == "__main__": test_concatenate() test_tranpose() test_expand_dims() test_reshape() test_squeeze() test_split() test_take() test_where() test_regression_1() test_regression_2()
0.346541
0.436622
import numpy import talib class ChartFeature(object): def __init__(self, selector): self.selector = selector self.supported = {"ROCP", "OROCP", "HROCP", "LROCP", "MACD", "RSI", "VROCP", "BOLL", "MA", "VMA", "PRICE_VOLUME"} self.feature = [] def moving_extract(self, window=30, open_prices=None, close_prices=None, high_prices=None, low_prices=None, volumes=None, with_label=True, flatten=True): self.extract(open_prices=open_prices, close_prices=close_prices, high_prices=high_prices, low_prices=low_prices, volumes=volumes) feature_arr = numpy.asarray(self.feature) p = 0 # rows = feature_arr.shape[0] # print("feature dimension: %s" % rows) if with_label: moving_features = [] moving_labels = [] while p + window <= feature_arr.shape[1]: x = feature_arr[:, p:p + window] # y = cmp(close_prices[p + window], close_prices[p + window - 1]) + 1 if p + window < feature_arr.shape[1]: p_change = (close_prices[p + window] - close_prices[p + window - 1]) / close_prices[p + window - 1] else: p_change = 0 # use percent of change as label y = p_change if flatten: x = x.flatten("F") moving_features.append(numpy.nan_to_num(x)) moving_labels.append(y) p += 1 return numpy.asarray(moving_features), numpy.asarray(moving_labels) else: moving_features = [] while p + window <= feature_arr.shape[1]: x = feature_arr[:, p:p + window] if flatten: x = x.flatten("F") moving_features.append(numpy.nan_to_num(x)) p += 1 return moving_features def extract(self, open_prices=None, close_prices=None, high_prices=None, low_prices=None, volumes=None): self.feature = [] for feature_type in self.selector: if feature_type in self.supported: # print("extracting feature : %s" % feature_type) self.extract_by_type(feature_type, open_prices=open_prices, close_prices=close_prices, high_prices=high_prices, low_prices=low_prices, volumes=volumes) else: print("feature type not supported: %s" % feature_type) # self.feature_distribution() return self.feature def feature_distribution(self): k = 0 for feature_column in self.feature: fc = numpy.nan_to_num(feature_column) mean = numpy.mean(fc) var = numpy.var(fc) max_value = numpy.max(fc) min_value = numpy.min(fc) print("[%s_th feature] mean: %s, var: %s, max: %s, min: %s" % (k, mean, var, max_value, min_value)) k = k + 1 def extract_by_type(self, feature_type, open_prices=None, close_prices=None, high_prices=None, low_prices=None, volumes=None): if feature_type == 'ROCP': rocp = talib.ROCP(close_prices, timeperiod=1) self.feature.append(rocp) if feature_type == 'OROCP': orocp = talib.ROCP(open_prices, timeperiod=1) self.feature.append(orocp) if feature_type == 'HROCP': hrocp = talib.ROCP(high_prices, timeperiod=1) self.feature.append(hrocp) if feature_type == 'LROCP': lrocp = talib.ROCP(low_prices, timeperiod=1) self.feature.append(lrocp) if feature_type == 'MACD': macd, signal, hist = talib.MACD(close_prices, fastperiod=12, slowperiod=26, signalperiod=9) norm_signal = numpy.minimum(numpy.maximum(numpy.nan_to_num(signal), -1), 1) norm_hist = numpy.minimum(numpy.maximum(numpy.nan_to_num(hist), -1), 1) norm_macd = numpy.minimum(numpy.maximum(numpy.nan_to_num(macd), -1), 1) zero = numpy.asarray([0]) macdrocp = numpy.minimum(numpy.maximum(numpy.concatenate((zero, numpy.diff(numpy.nan_to_num(macd)))), -1), 1) signalrocp = numpy.minimum(numpy.maximum(numpy.concatenate((zero, numpy.diff(numpy.nan_to_num(signal)))), -1), 1) histrocp = numpy.minimum(numpy.maximum(numpy.concatenate((zero, numpy.diff(numpy.nan_to_num(hist)))), -1), 1) self.feature.append(norm_macd) self.feature.append(norm_signal) self.feature.append(norm_hist) self.feature.append(macdrocp) self.feature.append(signalrocp) self.feature.append(histrocp) if feature_type == 'RSI': rsi6 = talib.RSI(close_prices, timeperiod=6) rsi12 = talib.RSI(close_prices, timeperiod=12) rsi24 = talib.RSI(close_prices, timeperiod=24) rsi6rocp = talib.ROCP(rsi6 + 100., timeperiod=1) rsi12rocp = talib.ROCP(rsi12 + 100., timeperiod=1) rsi24rocp = talib.ROCP(rsi24 + 100., timeperiod=1) self.feature.append(rsi6 / 100.0 - 0.5) self.feature.append(rsi12 / 100.0 - 0.5) self.feature.append(rsi24 / 100.0 - 0.5) # self.feature.append(numpy.maximum(rsi6 / 100.0 - 0.8, 0)) # self.feature.append(numpy.maximum(rsi12 / 100.0 - 0.8, 0)) # self.feature.append(numpy.maximum(rsi24 / 100.0 - 0.8, 0)) # self.feature.append(numpy.minimum(rsi6 / 100.0 - 0.2, 0)) # self.feature.append(numpy.minimum(rsi6 / 100.0 - 0.2, 0)) # self.feature.append(numpy.minimum(rsi6 / 100.0 - 0.2, 0)) # self.feature.append(numpy.maximum(numpy.minimum(rsi6 / 100.0 - 0.5, 0.3), -0.3)) # self.feature.append(numpy.maximum(numpy.minimum(rsi6 / 100.0 - 0.5, 0.3), -0.3)) # self.feature.append(numpy.maximum(numpy.minimum(rsi6 / 100.0 - 0.5, 0.3), -0.3)) self.feature.append(rsi6rocp) self.feature.append(rsi12rocp) self.feature.append(rsi24rocp) if feature_type == 'VROCP': vrocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(numpy.maximum(volumes, 1), timeperiod=1))) # norm_volumes = (volumes - numpy.mean(volumes)) / math.sqrt(numpy.var(volumes)) # vrocp = talib.ROCP(norm_volumes + numpy.max(norm_volumes) - numpy.min(norm_volumes), timeperiod=1) # self.feature.append(norm_volumes) self.feature.append(vrocp) if feature_type == 'BOLL': upperband, middleband, lowerband = talib.BBANDS(close_prices, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) self.feature.append((upperband - close_prices) / close_prices) self.feature.append((middleband - close_prices) / close_prices) self.feature.append((lowerband - close_prices) / close_prices) if feature_type == 'MA': ma5 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=5)) ma10 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=10)) ma20 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=20)) ma30 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=30)) ma60 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=60)) ma90 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=90)) ma120 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=120)) ma180 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=180)) ma360 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=360)) ma720 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=720)) ma5rocp = talib.ROCP(ma5, timeperiod=1) ma10rocp = talib.ROCP(ma10, timeperiod=1) ma20rocp = talib.ROCP(ma20, timeperiod=1) ma30rocp = talib.ROCP(ma30, timeperiod=1) ma60rocp = talib.ROCP(ma60, timeperiod=1) ma90rocp = talib.ROCP(ma90, timeperiod=1) ma120rocp = talib.ROCP(ma120, timeperiod=1) ma180rocp = talib.ROCP(ma180, timeperiod=1) ma360rocp = talib.ROCP(ma360, timeperiod=1) ma720rocp = talib.ROCP(ma720, timeperiod=1) self.feature.append(ma5rocp) self.feature.append(ma10rocp) self.feature.append(ma20rocp) self.feature.append(ma30rocp) self.feature.append(ma60rocp) self.feature.append(ma90rocp) self.feature.append(ma120rocp) self.feature.append(ma180rocp) self.feature.append(ma360rocp) self.feature.append(ma720rocp) self.feature.append((ma5 - close_prices) / close_prices) self.feature.append((ma10 - close_prices) / close_prices) self.feature.append((ma20 - close_prices) / close_prices) self.feature.append((ma30 - close_prices) / close_prices) self.feature.append((ma60 - close_prices) / close_prices) self.feature.append((ma90 - close_prices) / close_prices) self.feature.append((ma120 - close_prices) / close_prices) self.feature.append((ma180 - close_prices) / close_prices) self.feature.append((ma360 - close_prices) / close_prices) self.feature.append((ma720 - close_prices) / close_prices) if feature_type == 'VMA': ma5 = talib.MA(volumes, timeperiod=5) ma10 = talib.MA(volumes, timeperiod=10) ma20 = talib.MA(volumes, timeperiod=20) ma30 = talib.MA(volumes, timeperiod=30) ma60 = talib.MA(volumes, timeperiod=60) ma90 = talib.MA(volumes, timeperiod=90) ma120 = talib.MA(volumes, timeperiod=120) ma180 = talib.MA(volumes, timeperiod=180) ma360 = talib.MA(volumes, timeperiod=360) ma720 = talib.MA(volumes, timeperiod=720) ma5rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma5, timeperiod=1))) ma10rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma10, timeperiod=1))) ma20rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma20, timeperiod=1))) ma30rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma30, timeperiod=1))) ma60rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma60, timeperiod=1))) ma90rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma90, timeperiod=1))) ma120rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma120, timeperiod=1))) ma180rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma180, timeperiod=1))) ma360rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma360, timeperiod=1))) ma720rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma720, timeperiod=1))) self.feature.append(ma5rocp) self.feature.append(ma10rocp) self.feature.append(ma20rocp) self.feature.append(ma30rocp) self.feature.append(ma60rocp) self.feature.append(ma90rocp) self.feature.append(ma120rocp) self.feature.append(ma180rocp) self.feature.append(ma360rocp) self.feature.append(ma720rocp) self.feature.append(numpy.arctan(numpy.nan_to_num((ma5 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma10 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma20 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma30 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma60 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma90 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma120 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma180 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma360 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma720 - volumes) / (volumes + 1)))) if feature_type == 'PRICE_VOLUME': rocp = talib.ROCP(close_prices, timeperiod=1) # norm_volumes = (volumes - numpy.mean(volumes)) / math.sqrt(numpy.var(volumes)) # vrocp = talib.ROCP(norm_volumes + numpy.max(norm_volumes) - numpy.min(norm_volumes), timeperiod=1) vrocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(numpy.maximum(volumes, 1), timeperiod=1))) pv = rocp * vrocp self.feature.append(pv) def extract_feature(raw_data, selector, window=30, with_label=True, flatten=True): chart_feature = ChartFeature(selector) closes = raw_data.close.values opens = raw_data.open.values highs = raw_data.high.values lows = raw_data.low.values volumes = raw_data.volume.values if with_label: moving_features, moving_labels = chart_feature.moving_extract(window=window, open_prices=opens, close_prices=closes, high_prices=highs, low_prices=lows, volumes=volumes, with_label=with_label, flatten=flatten) return moving_features, moving_labels else: moving_features = chart_feature.moving_extract(window=window, open_prices=opens, close_prices=closes, high_prices=highs, low_prices=lows, volumes=volumes, with_label=with_label, flatten=flatten) return moving_features
chart.py
import numpy import talib class ChartFeature(object): def __init__(self, selector): self.selector = selector self.supported = {"ROCP", "OROCP", "HROCP", "LROCP", "MACD", "RSI", "VROCP", "BOLL", "MA", "VMA", "PRICE_VOLUME"} self.feature = [] def moving_extract(self, window=30, open_prices=None, close_prices=None, high_prices=None, low_prices=None, volumes=None, with_label=True, flatten=True): self.extract(open_prices=open_prices, close_prices=close_prices, high_prices=high_prices, low_prices=low_prices, volumes=volumes) feature_arr = numpy.asarray(self.feature) p = 0 # rows = feature_arr.shape[0] # print("feature dimension: %s" % rows) if with_label: moving_features = [] moving_labels = [] while p + window <= feature_arr.shape[1]: x = feature_arr[:, p:p + window] # y = cmp(close_prices[p + window], close_prices[p + window - 1]) + 1 if p + window < feature_arr.shape[1]: p_change = (close_prices[p + window] - close_prices[p + window - 1]) / close_prices[p + window - 1] else: p_change = 0 # use percent of change as label y = p_change if flatten: x = x.flatten("F") moving_features.append(numpy.nan_to_num(x)) moving_labels.append(y) p += 1 return numpy.asarray(moving_features), numpy.asarray(moving_labels) else: moving_features = [] while p + window <= feature_arr.shape[1]: x = feature_arr[:, p:p + window] if flatten: x = x.flatten("F") moving_features.append(numpy.nan_to_num(x)) p += 1 return moving_features def extract(self, open_prices=None, close_prices=None, high_prices=None, low_prices=None, volumes=None): self.feature = [] for feature_type in self.selector: if feature_type in self.supported: # print("extracting feature : %s" % feature_type) self.extract_by_type(feature_type, open_prices=open_prices, close_prices=close_prices, high_prices=high_prices, low_prices=low_prices, volumes=volumes) else: print("feature type not supported: %s" % feature_type) # self.feature_distribution() return self.feature def feature_distribution(self): k = 0 for feature_column in self.feature: fc = numpy.nan_to_num(feature_column) mean = numpy.mean(fc) var = numpy.var(fc) max_value = numpy.max(fc) min_value = numpy.min(fc) print("[%s_th feature] mean: %s, var: %s, max: %s, min: %s" % (k, mean, var, max_value, min_value)) k = k + 1 def extract_by_type(self, feature_type, open_prices=None, close_prices=None, high_prices=None, low_prices=None, volumes=None): if feature_type == 'ROCP': rocp = talib.ROCP(close_prices, timeperiod=1) self.feature.append(rocp) if feature_type == 'OROCP': orocp = talib.ROCP(open_prices, timeperiod=1) self.feature.append(orocp) if feature_type == 'HROCP': hrocp = talib.ROCP(high_prices, timeperiod=1) self.feature.append(hrocp) if feature_type == 'LROCP': lrocp = talib.ROCP(low_prices, timeperiod=1) self.feature.append(lrocp) if feature_type == 'MACD': macd, signal, hist = talib.MACD(close_prices, fastperiod=12, slowperiod=26, signalperiod=9) norm_signal = numpy.minimum(numpy.maximum(numpy.nan_to_num(signal), -1), 1) norm_hist = numpy.minimum(numpy.maximum(numpy.nan_to_num(hist), -1), 1) norm_macd = numpy.minimum(numpy.maximum(numpy.nan_to_num(macd), -1), 1) zero = numpy.asarray([0]) macdrocp = numpy.minimum(numpy.maximum(numpy.concatenate((zero, numpy.diff(numpy.nan_to_num(macd)))), -1), 1) signalrocp = numpy.minimum(numpy.maximum(numpy.concatenate((zero, numpy.diff(numpy.nan_to_num(signal)))), -1), 1) histrocp = numpy.minimum(numpy.maximum(numpy.concatenate((zero, numpy.diff(numpy.nan_to_num(hist)))), -1), 1) self.feature.append(norm_macd) self.feature.append(norm_signal) self.feature.append(norm_hist) self.feature.append(macdrocp) self.feature.append(signalrocp) self.feature.append(histrocp) if feature_type == 'RSI': rsi6 = talib.RSI(close_prices, timeperiod=6) rsi12 = talib.RSI(close_prices, timeperiod=12) rsi24 = talib.RSI(close_prices, timeperiod=24) rsi6rocp = talib.ROCP(rsi6 + 100., timeperiod=1) rsi12rocp = talib.ROCP(rsi12 + 100., timeperiod=1) rsi24rocp = talib.ROCP(rsi24 + 100., timeperiod=1) self.feature.append(rsi6 / 100.0 - 0.5) self.feature.append(rsi12 / 100.0 - 0.5) self.feature.append(rsi24 / 100.0 - 0.5) # self.feature.append(numpy.maximum(rsi6 / 100.0 - 0.8, 0)) # self.feature.append(numpy.maximum(rsi12 / 100.0 - 0.8, 0)) # self.feature.append(numpy.maximum(rsi24 / 100.0 - 0.8, 0)) # self.feature.append(numpy.minimum(rsi6 / 100.0 - 0.2, 0)) # self.feature.append(numpy.minimum(rsi6 / 100.0 - 0.2, 0)) # self.feature.append(numpy.minimum(rsi6 / 100.0 - 0.2, 0)) # self.feature.append(numpy.maximum(numpy.minimum(rsi6 / 100.0 - 0.5, 0.3), -0.3)) # self.feature.append(numpy.maximum(numpy.minimum(rsi6 / 100.0 - 0.5, 0.3), -0.3)) # self.feature.append(numpy.maximum(numpy.minimum(rsi6 / 100.0 - 0.5, 0.3), -0.3)) self.feature.append(rsi6rocp) self.feature.append(rsi12rocp) self.feature.append(rsi24rocp) if feature_type == 'VROCP': vrocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(numpy.maximum(volumes, 1), timeperiod=1))) # norm_volumes = (volumes - numpy.mean(volumes)) / math.sqrt(numpy.var(volumes)) # vrocp = talib.ROCP(norm_volumes + numpy.max(norm_volumes) - numpy.min(norm_volumes), timeperiod=1) # self.feature.append(norm_volumes) self.feature.append(vrocp) if feature_type == 'BOLL': upperband, middleband, lowerband = talib.BBANDS(close_prices, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) self.feature.append((upperband - close_prices) / close_prices) self.feature.append((middleband - close_prices) / close_prices) self.feature.append((lowerband - close_prices) / close_prices) if feature_type == 'MA': ma5 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=5)) ma10 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=10)) ma20 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=20)) ma30 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=30)) ma60 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=60)) ma90 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=90)) ma120 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=120)) ma180 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=180)) ma360 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=360)) ma720 = numpy.nan_to_num(talib.MA(close_prices, timeperiod=720)) ma5rocp = talib.ROCP(ma5, timeperiod=1) ma10rocp = talib.ROCP(ma10, timeperiod=1) ma20rocp = talib.ROCP(ma20, timeperiod=1) ma30rocp = talib.ROCP(ma30, timeperiod=1) ma60rocp = talib.ROCP(ma60, timeperiod=1) ma90rocp = talib.ROCP(ma90, timeperiod=1) ma120rocp = talib.ROCP(ma120, timeperiod=1) ma180rocp = talib.ROCP(ma180, timeperiod=1) ma360rocp = talib.ROCP(ma360, timeperiod=1) ma720rocp = talib.ROCP(ma720, timeperiod=1) self.feature.append(ma5rocp) self.feature.append(ma10rocp) self.feature.append(ma20rocp) self.feature.append(ma30rocp) self.feature.append(ma60rocp) self.feature.append(ma90rocp) self.feature.append(ma120rocp) self.feature.append(ma180rocp) self.feature.append(ma360rocp) self.feature.append(ma720rocp) self.feature.append((ma5 - close_prices) / close_prices) self.feature.append((ma10 - close_prices) / close_prices) self.feature.append((ma20 - close_prices) / close_prices) self.feature.append((ma30 - close_prices) / close_prices) self.feature.append((ma60 - close_prices) / close_prices) self.feature.append((ma90 - close_prices) / close_prices) self.feature.append((ma120 - close_prices) / close_prices) self.feature.append((ma180 - close_prices) / close_prices) self.feature.append((ma360 - close_prices) / close_prices) self.feature.append((ma720 - close_prices) / close_prices) if feature_type == 'VMA': ma5 = talib.MA(volumes, timeperiod=5) ma10 = talib.MA(volumes, timeperiod=10) ma20 = talib.MA(volumes, timeperiod=20) ma30 = talib.MA(volumes, timeperiod=30) ma60 = talib.MA(volumes, timeperiod=60) ma90 = talib.MA(volumes, timeperiod=90) ma120 = talib.MA(volumes, timeperiod=120) ma180 = talib.MA(volumes, timeperiod=180) ma360 = talib.MA(volumes, timeperiod=360) ma720 = talib.MA(volumes, timeperiod=720) ma5rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma5, timeperiod=1))) ma10rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma10, timeperiod=1))) ma20rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma20, timeperiod=1))) ma30rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma30, timeperiod=1))) ma60rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma60, timeperiod=1))) ma90rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma90, timeperiod=1))) ma120rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma120, timeperiod=1))) ma180rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma180, timeperiod=1))) ma360rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma360, timeperiod=1))) ma720rocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(ma720, timeperiod=1))) self.feature.append(ma5rocp) self.feature.append(ma10rocp) self.feature.append(ma20rocp) self.feature.append(ma30rocp) self.feature.append(ma60rocp) self.feature.append(ma90rocp) self.feature.append(ma120rocp) self.feature.append(ma180rocp) self.feature.append(ma360rocp) self.feature.append(ma720rocp) self.feature.append(numpy.arctan(numpy.nan_to_num((ma5 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma10 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma20 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma30 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma60 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma90 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma120 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma180 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma360 - volumes) / (volumes + 1)))) self.feature.append(numpy.arctan(numpy.nan_to_num((ma720 - volumes) / (volumes + 1)))) if feature_type == 'PRICE_VOLUME': rocp = talib.ROCP(close_prices, timeperiod=1) # norm_volumes = (volumes - numpy.mean(volumes)) / math.sqrt(numpy.var(volumes)) # vrocp = talib.ROCP(norm_volumes + numpy.max(norm_volumes) - numpy.min(norm_volumes), timeperiod=1) vrocp = numpy.arctan(numpy.nan_to_num(talib.ROCP(numpy.maximum(volumes, 1), timeperiod=1))) pv = rocp * vrocp self.feature.append(pv) def extract_feature(raw_data, selector, window=30, with_label=True, flatten=True): chart_feature = ChartFeature(selector) closes = raw_data.close.values opens = raw_data.open.values highs = raw_data.high.values lows = raw_data.low.values volumes = raw_data.volume.values if with_label: moving_features, moving_labels = chart_feature.moving_extract(window=window, open_prices=opens, close_prices=closes, high_prices=highs, low_prices=lows, volumes=volumes, with_label=with_label, flatten=flatten) return moving_features, moving_labels else: moving_features = chart_feature.moving_extract(window=window, open_prices=opens, close_prices=closes, high_prices=highs, low_prices=lows, volumes=volumes, with_label=with_label, flatten=flatten) return moving_features
0.252661
0.348091
import string from collections import defaultdict import torch import torch.nn as nn from citextract.utils.model import load_model_params class TitleTagging(nn.Module): """TitleTagging model.""" def __init__(self, input_size, hidden_size, n_layers, n_classes, device): """Initialize the model. Parameters ---------- input_size : int The number of input neurons. hidden_size : int The number of hidden neurons. n_layers : int The number of layers. n_classes : int The number of output classes. device : torch.device The device to run the computations on. """ super(TitleTagging, self).__init__() self.device = device self.hidden_size = hidden_size self.n_layers = n_layers self.lstm = nn.LSTM(input_size, hidden_size, n_layers, batch_first=True, bidirectional=True, dropout=0.5) self.fc = nn.Linear(hidden_size * 2, n_classes) def forward(self, x): """Forward-propagate the input data. Parameters ---------- x : torch.Tensor The input tensor of size (batch_size, sequence_length, input_size). Returns ------- torch.Tensor The output tensor of size (batch_size, sequence_length, n_classes). """ # Initiatlize parameters for the first step h_0 = torch.zeros(2 * self.n_layers, x.size(0), self.hidden_size).to(self.device) c_0 = torch.zeros(2 * self.n_layers, x.size(0), self.hidden_size).to(self.device) # Return the output and parameters for the n-th step (n=sequence_len) lstm_output, _ = self.lstm(x, (h_0, c_0)) # Fully connected layer (hidden_size*2 --> n_classes) fc_output = self.fc(lstm_output) # Softmax softmax_output = nn.Softmax(dim=2)(fc_output) return softmax_output def build_titlextract_model(preprocessor, embed_size=32, hidden_size=64, device=None): """Build an instance of the TitleXtract model. Parameters ---------- preprocessor : TitleXtractPreprocessor The preprocessor to use. embed_size : int The number of embedding neurons to use. hidden_size : int The number of hidden neurons to use. device : torch.device The device to compute on. Returns ------- torch.nn.modules.container.Sequential A RefXtract model instance. """ vocab_size = len(preprocessor.chars) n_classes = 2 return nn.Sequential( torch.nn.Embedding(vocab_size, embed_size), TitleTagging(input_size=embed_size, hidden_size=hidden_size, n_layers=2, n_classes=n_classes, device=device).to( device) ).to(device) class TitleXtractPreprocessor: """TitleXtract preprocessor.""" def __init__(self, device=None): """Initialize the preprocessor. Parameters ---------- device : torch.device The device to use. """ chars = list(string.ascii_letters + string.digits + string.punctuation + string.whitespace) self.chars = ['<PAD>', '<UNK>'] + chars self.device = device self.char_mapping = defaultdict(lambda: 1) for index, char in enumerate(self.chars): self.char_mapping[char] = index def map_text_chars(self, text): """Map text to numerical character representations. Parameters ---------- text : str The text to map. Returns ------- torch.Tensor The tensor representing the mapped characters. """ mapped_chars = list(map(lambda char: self.char_mapping.get(char, 1), text)) return torch.Tensor(mapped_chars).long().view(1, -1).to(self.device) def map_text_targets(self, text, title): """Align and map the targets of a text. Parameters ---------- text : str The text to map. title : str The title (substring of the text) to map. Returns ------- torch.Tensor A tensor representing the characters of the text for which an element is 1 if and only if a character is both represented by the text and by the title, 0 otherwise. """ start_position = text.index(title) mapped_target = [1 if start_position <= index < start_position + len(title) else 0 for index in range(len(text))] return torch.Tensor(mapped_target).view(1, -1).long().to(self.device) def __call__(self, text, title): """Preprocess a text and a title. Parameters ---------- text : str The text to preprocess. title : str The title to preprocess. Returns ------- tuple A tuple consisting of the following elements: - A tensor of the characters of the text. - A tensor of the targets of the characters of the text. """ return self.map_text_chars(text), self.map_text_targets(text, title) class TitleXtractor: """TitleXtractor wrapper class.""" def __init__(self, model=None, preprocessor=None, device=None): """Initialize the TitleXtractor. Parameters ---------- model : torch.nn.modules.container.Sequential The model to use. preprocessor : TitleXtractPreprocessor The preprocessor to use. device : torch.device The device to use. """ self.device = device self.preprocessor = preprocessor if preprocessor else TitleXtractPreprocessor(device=device) self.model = model if model else build_titlextract_model(self.preprocessor, device=device) def load(self, model_uri=None, ignore_cache=False): """Load model parameters from the internet. Parameters ---------- model_uri : str The model URI to load from. ignore_cache : bool When true, all caches are ignored and the model parameters are forcefully downloaded. Returns ------- TitleXtractor The wrapper itself. """ self.model = load_model_params(self.model, 'titlextract', model_uri, ignore_cache=ignore_cache, device=self.device) return self def __call__(self, ref): """Run the TitleXtract model. Parameters ---------- ref : str Reference to find a title for. Returns ------- str The found title, and none if no title was found. """ result = self.model(self.preprocessor.map_text_chars(ref)).argmax(dim=2).cpu()[0].detach().numpy().tolist() if 1 not in result: return None start_pos = result.index(1) subselection = result[start_pos:] if 0 in subselection: length = result[start_pos:].index(0) title = ref[start_pos:start_pos + length] else: title = ref[start_pos:] return title.strip()
citextract/models/titlextract.py
import string from collections import defaultdict import torch import torch.nn as nn from citextract.utils.model import load_model_params class TitleTagging(nn.Module): """TitleTagging model.""" def __init__(self, input_size, hidden_size, n_layers, n_classes, device): """Initialize the model. Parameters ---------- input_size : int The number of input neurons. hidden_size : int The number of hidden neurons. n_layers : int The number of layers. n_classes : int The number of output classes. device : torch.device The device to run the computations on. """ super(TitleTagging, self).__init__() self.device = device self.hidden_size = hidden_size self.n_layers = n_layers self.lstm = nn.LSTM(input_size, hidden_size, n_layers, batch_first=True, bidirectional=True, dropout=0.5) self.fc = nn.Linear(hidden_size * 2, n_classes) def forward(self, x): """Forward-propagate the input data. Parameters ---------- x : torch.Tensor The input tensor of size (batch_size, sequence_length, input_size). Returns ------- torch.Tensor The output tensor of size (batch_size, sequence_length, n_classes). """ # Initiatlize parameters for the first step h_0 = torch.zeros(2 * self.n_layers, x.size(0), self.hidden_size).to(self.device) c_0 = torch.zeros(2 * self.n_layers, x.size(0), self.hidden_size).to(self.device) # Return the output and parameters for the n-th step (n=sequence_len) lstm_output, _ = self.lstm(x, (h_0, c_0)) # Fully connected layer (hidden_size*2 --> n_classes) fc_output = self.fc(lstm_output) # Softmax softmax_output = nn.Softmax(dim=2)(fc_output) return softmax_output def build_titlextract_model(preprocessor, embed_size=32, hidden_size=64, device=None): """Build an instance of the TitleXtract model. Parameters ---------- preprocessor : TitleXtractPreprocessor The preprocessor to use. embed_size : int The number of embedding neurons to use. hidden_size : int The number of hidden neurons to use. device : torch.device The device to compute on. Returns ------- torch.nn.modules.container.Sequential A RefXtract model instance. """ vocab_size = len(preprocessor.chars) n_classes = 2 return nn.Sequential( torch.nn.Embedding(vocab_size, embed_size), TitleTagging(input_size=embed_size, hidden_size=hidden_size, n_layers=2, n_classes=n_classes, device=device).to( device) ).to(device) class TitleXtractPreprocessor: """TitleXtract preprocessor.""" def __init__(self, device=None): """Initialize the preprocessor. Parameters ---------- device : torch.device The device to use. """ chars = list(string.ascii_letters + string.digits + string.punctuation + string.whitespace) self.chars = ['<PAD>', '<UNK>'] + chars self.device = device self.char_mapping = defaultdict(lambda: 1) for index, char in enumerate(self.chars): self.char_mapping[char] = index def map_text_chars(self, text): """Map text to numerical character representations. Parameters ---------- text : str The text to map. Returns ------- torch.Tensor The tensor representing the mapped characters. """ mapped_chars = list(map(lambda char: self.char_mapping.get(char, 1), text)) return torch.Tensor(mapped_chars).long().view(1, -1).to(self.device) def map_text_targets(self, text, title): """Align and map the targets of a text. Parameters ---------- text : str The text to map. title : str The title (substring of the text) to map. Returns ------- torch.Tensor A tensor representing the characters of the text for which an element is 1 if and only if a character is both represented by the text and by the title, 0 otherwise. """ start_position = text.index(title) mapped_target = [1 if start_position <= index < start_position + len(title) else 0 for index in range(len(text))] return torch.Tensor(mapped_target).view(1, -1).long().to(self.device) def __call__(self, text, title): """Preprocess a text and a title. Parameters ---------- text : str The text to preprocess. title : str The title to preprocess. Returns ------- tuple A tuple consisting of the following elements: - A tensor of the characters of the text. - A tensor of the targets of the characters of the text. """ return self.map_text_chars(text), self.map_text_targets(text, title) class TitleXtractor: """TitleXtractor wrapper class.""" def __init__(self, model=None, preprocessor=None, device=None): """Initialize the TitleXtractor. Parameters ---------- model : torch.nn.modules.container.Sequential The model to use. preprocessor : TitleXtractPreprocessor The preprocessor to use. device : torch.device The device to use. """ self.device = device self.preprocessor = preprocessor if preprocessor else TitleXtractPreprocessor(device=device) self.model = model if model else build_titlextract_model(self.preprocessor, device=device) def load(self, model_uri=None, ignore_cache=False): """Load model parameters from the internet. Parameters ---------- model_uri : str The model URI to load from. ignore_cache : bool When true, all caches are ignored and the model parameters are forcefully downloaded. Returns ------- TitleXtractor The wrapper itself. """ self.model = load_model_params(self.model, 'titlextract', model_uri, ignore_cache=ignore_cache, device=self.device) return self def __call__(self, ref): """Run the TitleXtract model. Parameters ---------- ref : str Reference to find a title for. Returns ------- str The found title, and none if no title was found. """ result = self.model(self.preprocessor.map_text_chars(ref)).argmax(dim=2).cpu()[0].detach().numpy().tolist() if 1 not in result: return None start_pos = result.index(1) subselection = result[start_pos:] if 0 in subselection: length = result[start_pos:].index(0) title = ref[start_pos:start_pos + length] else: title = ref[start_pos:] return title.strip()
0.937304
0.602354
#%% import cv2 from pathlib import Path import matplotlib.pyplot as plt from collections import defaultdict import numpy as np PATTERN_SIZE = (9, 6) SQUARE_SIZE_CM = 3.4 # Measured from my source checkerboard ROTATE_CAMERA_180 = True im_paths = list(Path('./calib_data').glob('*.png')) ims = [cv2.imread(str(p)) for p in im_paths] if ROTATE_CAMERA_180: ims = [cv2.rotate(im, cv2.ROTATE_180) for im in ims] # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((PATTERN_SIZE[0] * PATTERN_SIZE[1], 3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) objp *= SQUARE_SIZE_CM retval = [None] * len(ims) corners = [None] * len(ims) corners2 = [None] * len(ims) display_ims = [None] * len(ims) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. for i, im in enumerate(ims): im = im.copy() gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) retval[i], corners[i] = cv2.findChessboardCorners(gray, PATTERN_SIZE) display_ims[i] = cv2.drawChessboardCorners(im, PATTERN_SIZE, corners[i], retval[i]) if retval[i] == True: objpoints.append(objp) corners2[i] = cv2.cornerSubPix(gray, corners[i], (11,11), (-1,-1), criteria) imgpoints.append(corners2[i]) # draw_axis and display the corners cv2.drawChessboardCorners(im, PATTERN_SIZE, corners2[i], retval[i]) cv2.imshow('img', im) cv2.waitKey(500) cv2.destroyAllWindows() #%% ok, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) assert ok #%% def draw_axis(img, corners, imgpts): corner = tuple(corners[0].ravel()) corner = tuple(int(x) for x in corner) imgpts = imgpts.astype(int) img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5) img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5) img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5) return img axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3) for i, im in enumerate(ims): gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) if retval[i] == True: # Find the rotation and translation vectors. objp = objpoints[i] ret,rvecs, tvecs = cv2.solvePnP(objp, corners2[i], mtx, dist) # project 3D points to image plane imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist) img = draw_axis(im, corners2[i], imgpts) cv2.imshow('img',img) k = cv2.waitKey(500) cv2.destroyAllWindows() #%% floor_im = cv2.imread(r"C:\Users\avivh\Pictures\vlcsnap-2021-09-16-14h33m12s424.png") if ROTATE_CAMERA_180: floor_im = cv2.rotate(floor_im, cv2.ROTATE_180) points = [(158, 127), (240, 121), (292, 144), (173, 151)] plt.imshow(floor_im) for pt in points: plt.plot(pt[0], pt[1], marker='+') FLOOR_TILE_SIZE_CM = 20 floor_tile_points = np.array([(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0)]) * FLOOR_TILE_SIZE_CM # Find the rotation and translation vectors. ret, rvecs, tvecs = cv2.solvePnP(np.array(floor_tile_points).astype(float), np.array(points).astype(float), mtx, dist) rotM = cv2.Rodrigues(rvecs.flatten())[0] cameraPosition = -np.matrix(rotM).T @ np.matrix(tvecs.flatten()).T uvPoint = np.array([0, 0, 1]) zConst = 0 tempMat = np.linalg.inv(rotM) @ np.linalg.inv(mtx) @ uvPoint tempMat2 = np.linalg.inv(rotM) @ tvecs s = zConst + tempMat2[2,0] s /= tempMat[2] wcPoint = np.linalg.inv(rotM) @ (s * np.linalg.inv(mtx) @ uvPoint - tvecs) ppp = wcPoint / wcPoint.flatten()[-1] # Plot points between camera and focus tile minx = cameraPosition # Draw image around tile xs = np.arange(-20, 20, 1) ys = np.arange(-20, 20, 1) pts = np.meshgrid(xs, ys) def transform_points(pts, m): if pts.shape[1] == 2: pts = np.hstack((pts, np.ones((len(pts), 1)))) assert pts.shape[1] == 3 res = m @ pts.T res = res / res[-1, :] return res # Make a new homography that maps the image center point into 0,0 img_center_pt = np.array((320/2, 150)) img_points = np.array(points).astype(float) img_points[:, 0] += -img_points[0, 0] + img_center_pt[0] img_points[:, 1] += -img_points[0, 1] + img_center_pt[1] homog, _ = cv2.findHomography(img_points, np.array(floor_tile_points).astype(float), ) # img_center_pt_world = transform_points(img_center_pt, homog) # homog2 = homog.copy() # homog2[0, 2] -= img_center_pt_world.flatten()[0] # homog2[1, 2] -= img_center_pt_world.flatten()[1] # delta = [ # [1, 0, -img_center_pt_world.flatten()[0]], # [0, 1, -img_center_pt_world.flatten()[1]], # [0, 0, 1]] # delta @ np.array([[1,0,1]]).T # homog2 = homog + delta # homog @ np.array([0, 0, 1]).T roi_to_render = [-20, -20, 0] transform_points(np.array([img_center_pt]), homog) transform_points(np.array([img_center_pt]), homog) im_dst = cv2.warpPerspective(floor_im, homog, (40, 40)) H, W = floor_im.shape[:2] img_roi = np.array([[0, H/2], [W, H/2], [W, H], [0, H]]) floor_roi = transform_points(img_roi, homog) transform_points(np.array([img_center_pt]), np.linalg.inv(homog)) pts = np.array(points).astype(float) pts.shape[1] pts2 = np.hstack((pts, np.ones((len(pts), 1)))) res = homog @ pts2.T res = res / res[-1, :] transform_points(aaa, homog) aaa = np.array(floor_tile_points).astype(float) aaa = aaa[:, 0:2] cv2.perspectiveTransform(np.array(floor_tile_points).astype(float), homog) plt.imshow(im_dst) plt.show() a = homog @ np.array([240, 121, 1]).T a /= a[2] points # %%
calib.py
#%% import cv2 from pathlib import Path import matplotlib.pyplot as plt from collections import defaultdict import numpy as np PATTERN_SIZE = (9, 6) SQUARE_SIZE_CM = 3.4 # Measured from my source checkerboard ROTATE_CAMERA_180 = True im_paths = list(Path('./calib_data').glob('*.png')) ims = [cv2.imread(str(p)) for p in im_paths] if ROTATE_CAMERA_180: ims = [cv2.rotate(im, cv2.ROTATE_180) for im in ims] # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((PATTERN_SIZE[0] * PATTERN_SIZE[1], 3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) objp *= SQUARE_SIZE_CM retval = [None] * len(ims) corners = [None] * len(ims) corners2 = [None] * len(ims) display_ims = [None] * len(ims) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. for i, im in enumerate(ims): im = im.copy() gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) retval[i], corners[i] = cv2.findChessboardCorners(gray, PATTERN_SIZE) display_ims[i] = cv2.drawChessboardCorners(im, PATTERN_SIZE, corners[i], retval[i]) if retval[i] == True: objpoints.append(objp) corners2[i] = cv2.cornerSubPix(gray, corners[i], (11,11), (-1,-1), criteria) imgpoints.append(corners2[i]) # draw_axis and display the corners cv2.drawChessboardCorners(im, PATTERN_SIZE, corners2[i], retval[i]) cv2.imshow('img', im) cv2.waitKey(500) cv2.destroyAllWindows() #%% ok, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) assert ok #%% def draw_axis(img, corners, imgpts): corner = tuple(corners[0].ravel()) corner = tuple(int(x) for x in corner) imgpts = imgpts.astype(int) img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5) img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5) img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5) return img axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3) for i, im in enumerate(ims): gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) if retval[i] == True: # Find the rotation and translation vectors. objp = objpoints[i] ret,rvecs, tvecs = cv2.solvePnP(objp, corners2[i], mtx, dist) # project 3D points to image plane imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist) img = draw_axis(im, corners2[i], imgpts) cv2.imshow('img',img) k = cv2.waitKey(500) cv2.destroyAllWindows() #%% floor_im = cv2.imread(r"C:\Users\avivh\Pictures\vlcsnap-2021-09-16-14h33m12s424.png") if ROTATE_CAMERA_180: floor_im = cv2.rotate(floor_im, cv2.ROTATE_180) points = [(158, 127), (240, 121), (292, 144), (173, 151)] plt.imshow(floor_im) for pt in points: plt.plot(pt[0], pt[1], marker='+') FLOOR_TILE_SIZE_CM = 20 floor_tile_points = np.array([(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0)]) * FLOOR_TILE_SIZE_CM # Find the rotation and translation vectors. ret, rvecs, tvecs = cv2.solvePnP(np.array(floor_tile_points).astype(float), np.array(points).astype(float), mtx, dist) rotM = cv2.Rodrigues(rvecs.flatten())[0] cameraPosition = -np.matrix(rotM).T @ np.matrix(tvecs.flatten()).T uvPoint = np.array([0, 0, 1]) zConst = 0 tempMat = np.linalg.inv(rotM) @ np.linalg.inv(mtx) @ uvPoint tempMat2 = np.linalg.inv(rotM) @ tvecs s = zConst + tempMat2[2,0] s /= tempMat[2] wcPoint = np.linalg.inv(rotM) @ (s * np.linalg.inv(mtx) @ uvPoint - tvecs) ppp = wcPoint / wcPoint.flatten()[-1] # Plot points between camera and focus tile minx = cameraPosition # Draw image around tile xs = np.arange(-20, 20, 1) ys = np.arange(-20, 20, 1) pts = np.meshgrid(xs, ys) def transform_points(pts, m): if pts.shape[1] == 2: pts = np.hstack((pts, np.ones((len(pts), 1)))) assert pts.shape[1] == 3 res = m @ pts.T res = res / res[-1, :] return res # Make a new homography that maps the image center point into 0,0 img_center_pt = np.array((320/2, 150)) img_points = np.array(points).astype(float) img_points[:, 0] += -img_points[0, 0] + img_center_pt[0] img_points[:, 1] += -img_points[0, 1] + img_center_pt[1] homog, _ = cv2.findHomography(img_points, np.array(floor_tile_points).astype(float), ) # img_center_pt_world = transform_points(img_center_pt, homog) # homog2 = homog.copy() # homog2[0, 2] -= img_center_pt_world.flatten()[0] # homog2[1, 2] -= img_center_pt_world.flatten()[1] # delta = [ # [1, 0, -img_center_pt_world.flatten()[0]], # [0, 1, -img_center_pt_world.flatten()[1]], # [0, 0, 1]] # delta @ np.array([[1,0,1]]).T # homog2 = homog + delta # homog @ np.array([0, 0, 1]).T roi_to_render = [-20, -20, 0] transform_points(np.array([img_center_pt]), homog) transform_points(np.array([img_center_pt]), homog) im_dst = cv2.warpPerspective(floor_im, homog, (40, 40)) H, W = floor_im.shape[:2] img_roi = np.array([[0, H/2], [W, H/2], [W, H], [0, H]]) floor_roi = transform_points(img_roi, homog) transform_points(np.array([img_center_pt]), np.linalg.inv(homog)) pts = np.array(points).astype(float) pts.shape[1] pts2 = np.hstack((pts, np.ones((len(pts), 1)))) res = homog @ pts2.T res = res / res[-1, :] transform_points(aaa, homog) aaa = np.array(floor_tile_points).astype(float) aaa = aaa[:, 0:2] cv2.perspectiveTransform(np.array(floor_tile_points).astype(float), homog) plt.imshow(im_dst) plt.show() a = homog @ np.array([240, 121, 1]).T a /= a[2] points # %%
0.439507
0.515559
import ipaddress import json import logging import re from tests.common.devices.base import AnsibleHostBase logger = logging.getLogger(__name__) def _raise_err(msg): logger.error(msg) raise Exception(msg) class EosHost(AnsibleHostBase): """ @summary: Class for Eos switch For running ansible module on the Eos switch """ def __init__(self, ansible_adhoc, hostname, eos_user, eos_passwd, shell_user=None, shell_passwd=None, gather_facts=False): '''Initialize an object for interacting with EoS type device using ansible modules Args: ansible_adhoc (): The pytest-ansible fixture hostname (string): hostname of the EOS device eos_user (string): Username for accessing the EOS CLI interface eos_passwd (string): Password for the <PASSWORD> shell_user (string, optional): Username for accessing the Linux shell CLI interface. Defaults to None. shell_passwd (string, optional): Password for the shell_user. Defaults to None. gather_facts (bool, optional): Whether to gather some basic facts. Defaults to False. ''' self.eos_user = eos_user self.eos_passwd = <PASSWORD> self.shell_user = shell_user self.shell_passwd = <PASSWORD> AnsibleHostBase.__init__(self, ansible_adhoc, hostname) self.localhost = ansible_adhoc(inventory='localhost', connection='local', host_pattern="localhost")["localhost"] def __getattr__(self, module_name): if module_name.startswith('eos_'): evars = { 'ansible_connection':'network_cli', 'ansible_network_os':'eos', 'ansible_user': self.eos_user, 'ansible_password': self.eos_passwd, 'ansible_ssh_user': self.eos_user, 'ansible_ssh_pass': self.eos_passwd, 'ansible_become_method': 'enable' } else: if not self.shell_user or not self.shell_passwd: raise Exception("Please specify shell_user and shell_passwd for {}".format(self.hostname)) evars = { 'ansible_connection':'ssh', 'ansible_network_os':'linux', 'ansible_user': self.shell_user, 'ansible_password': self.<PASSWORD>, 'ansible_ssh_user': self.shell_user, 'ansible_ssh_pass': self.shell_passwd, 'ansible_become_method': 'sudo' } self.host.options['variable_manager'].extra_vars.update(evars) return super(EosHost, self).__getattr__(module_name) def shutdown(self, interface_name): out = self.eos_config( lines=['shutdown'], parents=['interface {}'.format(interface_name)]) logging.info('Shut interface [%s]' % interface_name) return out def shutdown_multiple(self, interfaces): intf_str = ','.join(interfaces) return self.shutdown(intf_str) def no_shutdown(self, interface_name): out = self.eos_config( lines=['no shutdown'], parents=['interface {}'.format(interface_name)]) logging.info('No shut interface [%s]' % interface_name) return out def no_shutdown_multiple(self, interfaces): intf_str = ','.join(interfaces) return self.no_shutdown(intf_str) def check_intf_link_state(self, interface_name): show_int_result = self.eos_command( commands=['show interface %s' % interface_name]) return 'Up' in show_int_result['stdout_lines'][0] def set_interface_lacp_rate_mode(self, interface_name, mode): out = self.eos_config( lines=['lacp rate %s' % mode], parents='interface %s' % interface_name) # FIXME: out['failed'] will be False even when a command is deprecated, so we have to check out['changed'] # However, if the lacp rate is already in expected state, out['changed'] will be False and treated as # error. if out['failed'] == True or out['changed'] == False: # new eos deprecate lacp rate and use lacp timer command out = self.eos_config( lines=['lacp timer %s' % mode], parents='interface %s' % interface_name) if out['changed'] == False: logging.warning("Unable to set interface [%s] lacp timer to [%s]" % (interface_name, mode)) raise Exception("Unable to set interface [%s] lacp timer to [%s]" % (interface_name, mode)) else: logging.info("Set interface [%s] lacp timer to [%s]" % (interface_name, mode)) else: logging.info("Set interface [%s] lacp rate to [%s]" % (interface_name, mode)) return out def kill_bgpd(self): out = self.eos_config(lines=['agent Rib shutdown']) return out def start_bgpd(self): out = self.eos_config(lines=['no agent Rib shutdown']) return out def no_shutdown_bgp(self, asn): out = self.eos_config( lines=['no shut'], parents=['router bgp {}'.format(asn)]) logging.info('No shut BGP [%s]' % asn) return out def check_bgp_session_state(self, neigh_ips, neigh_desc, state="established"): """ @summary: check if current bgp session equals to the target state @param neigh_ips: bgp neighbor IPs @param neigh_desc: bgp neighbor description @param state: target state """ neigh_ips = [ip.lower() for ip in neigh_ips] neigh_ips_ok = [] neigh_desc_ok = [] neigh_desc_available = False out_v4 = self.eos_command( commands=['show ip bgp summary | json']) logging.info("ip bgp summary: {}".format(out_v4)) out_v6 = self.eos_command( commands=['show ipv6 bgp summary | json']) logging.info("ipv6 bgp summary: {}".format(out_v6)) # when bgpd is inactive, the bgp summary output: [{u'vrfs': {}, u'warnings': [u'BGP inactive']}] if 'BGP inactive' in out_v4['stdout'][0].get('warnings', '') and 'BGP inactive' in out_v6['stdout'][0].get('warnings', ''): return False try: for k, v in out_v4['stdout'][0]['vrfs']['default']['peers'].items(): if v['peerState'].lower() == state.lower(): if k in neigh_ips: neigh_ips_ok.append(k) if 'description' in v: neigh_desc_available = True if v['description'] in neigh_desc: neigh_desc_ok.append(v['description']) for k, v in out_v6['stdout'][0]['vrfs']['default']['peers'].items(): if v['peerState'].lower() == state.lower(): if k.lower() in neigh_ips: neigh_ips_ok.append(k) if 'description' in v: neigh_desc_available = True if v['description'] in neigh_desc: neigh_desc_ok.append(v['description']) except KeyError: # ignore any KeyError due to unexpected BGP summary output pass logging.info("neigh_ips_ok={} neigh_desc_available={} neigh_desc_ok={}"\ .format(str(neigh_ips_ok), str(neigh_desc_available), str(neigh_desc_ok))) if neigh_desc_available: if len(neigh_ips) == len(neigh_ips_ok) and len(neigh_desc) == len(neigh_desc_ok): return True else: if len(neigh_ips) == len(neigh_ips_ok): return True return False def exec_template(self, ansible_root, ansible_playbook, inventory, **kwargs): playbook_template = 'cd {ansible_path}; ansible-playbook {playbook} -i {inventory} -l {fanout_host} --extra-vars \'{extra_vars}\' -vvvvv' cli_cmd = playbook_template.format(ansible_path=ansible_root, playbook=ansible_playbook, inventory=inventory, fanout_host=self.hostname, extra_vars=json.dumps(kwargs)) res = self.localhost.shell(cli_cmd) if res["localhost"]["rc"] != 0: raise Exception("Unable to execute template\n{}".format(res["stdout"])) def get_route(self, prefix): cmd = 'show ip bgp' if ipaddress.ip_network(unicode(prefix)).version == 4 else 'show ipv6 bgp' return self.eos_command(commands=[{ 'command': '{} {}'.format(cmd, prefix), 'output': 'json' }])['stdout'][0] def get_auto_negotiation_mode(self, interface_name): output = self.eos_command(commands=[{ 'command': 'show interfaces %s status' % interface_name, 'output': 'json' }]) if self._has_cli_cmd_failed(output): _raise_err('Failed to get auto neg state for {}: {}'.format(interface_name, output['msg'])) autoneg_enabled = output['stdout'][0]['interfaceStatuses'][interface_name]['autoNegotiateActive'] return autoneg_enabled def _reset_port_speed(self, interface_name): out = self.eos_config( lines=['default speed'], parents=['interface {}'.format(interface_name)]) logger.debug('Reset port speed for %s: %s' % (interface_name, out)) return not self._has_cli_cmd_failed(out) def set_auto_negotiation_mode(self, interface_name, enabled): if self.get_auto_negotiation_mode(interface_name) == enabled: return True if enabled: speed_to_advertise = self.get_supported_speeds(interface_name)[-1] speed_to_advertise = speed_to_advertise[:-3] + 'gfull' out = self.eos_config( lines=['speed auto %s' % speed_to_advertise], parents=['interface {}'.format(interface_name)]) logger.debug('Set auto neg to {} for port {}: {}'.format(enabled, interface_name, out)) return not self._has_cli_cmd_failed(out) return self._reset_port_speed(interface_name) def get_speed(self, interface_name): output = self.eos_command(commands=['show interfaces %s transceiver properties' % interface_name]) found_txt = re.search(r'Operational Speed: (\S+)', output['stdout'][0]) if found_txt is None: _raise_err('Not able to extract interface %s speed from output: %s' % (interface_name, output['stdout'])) v = found_txt.groups()[0] return v[:-1] + '000' def _has_cli_cmd_failed(self, cmd_output_obj): return 'failed' in cmd_output_obj and cmd_output_obj['failed'] def set_speed(self, interface_name, speed): if not speed: # other set_speed implementations advertise port speeds when speed=None # but in EOS autoneg activation and speeds advertisement is done via a single CLI cmd # so this branch left nop intentionally return True speed_mode = 'auto' if self.get_auto_negotiation_mode(interface_name) else 'forced' speed = speed[:-3] + 'gfull' out = self.host.eos_config( lines=['speed {} {}'.format(speed_mode, speed)], parents='interface %s' % interface_name)[self.hostname] logger.debug('Set force speed for port {} : {}'.format(interface_name, out)) return not self._has_cli_cmd_failed(out) def get_supported_speeds(self, interface_name): """Get supported speeds for a given interface Args: interface_name (str): Interface name Returns: list: A list of supported speed strings or None """ commands = ['show interfaces {} capabilities'.format(interface_name), 'show interface {} hardware'.format(interface_name)] for command in commands: output = self.eos_command(commands=[command]) found_txt = re.search("Speed/Duplex: (.+)", output['stdout'][0]) if found_txt is not None: break if found_txt is None: _raise_err('Failed to find port speeds list in output: %s' % output['stdout']) speed_list = found_txt.groups()[0] speed_list = speed_list.split(',') speed_list.remove('auto') def extract_speed_only(v): return re.match('\d+', v.strip()).group() + '000' return list(map(extract_speed_only, speed_list))
tests/common/devices/eos.py
import ipaddress import json import logging import re from tests.common.devices.base import AnsibleHostBase logger = logging.getLogger(__name__) def _raise_err(msg): logger.error(msg) raise Exception(msg) class EosHost(AnsibleHostBase): """ @summary: Class for Eos switch For running ansible module on the Eos switch """ def __init__(self, ansible_adhoc, hostname, eos_user, eos_passwd, shell_user=None, shell_passwd=None, gather_facts=False): '''Initialize an object for interacting with EoS type device using ansible modules Args: ansible_adhoc (): The pytest-ansible fixture hostname (string): hostname of the EOS device eos_user (string): Username for accessing the EOS CLI interface eos_passwd (string): Password for the <PASSWORD> shell_user (string, optional): Username for accessing the Linux shell CLI interface. Defaults to None. shell_passwd (string, optional): Password for the shell_user. Defaults to None. gather_facts (bool, optional): Whether to gather some basic facts. Defaults to False. ''' self.eos_user = eos_user self.eos_passwd = <PASSWORD> self.shell_user = shell_user self.shell_passwd = <PASSWORD> AnsibleHostBase.__init__(self, ansible_adhoc, hostname) self.localhost = ansible_adhoc(inventory='localhost', connection='local', host_pattern="localhost")["localhost"] def __getattr__(self, module_name): if module_name.startswith('eos_'): evars = { 'ansible_connection':'network_cli', 'ansible_network_os':'eos', 'ansible_user': self.eos_user, 'ansible_password': self.eos_passwd, 'ansible_ssh_user': self.eos_user, 'ansible_ssh_pass': self.eos_passwd, 'ansible_become_method': 'enable' } else: if not self.shell_user or not self.shell_passwd: raise Exception("Please specify shell_user and shell_passwd for {}".format(self.hostname)) evars = { 'ansible_connection':'ssh', 'ansible_network_os':'linux', 'ansible_user': self.shell_user, 'ansible_password': self.<PASSWORD>, 'ansible_ssh_user': self.shell_user, 'ansible_ssh_pass': self.shell_passwd, 'ansible_become_method': 'sudo' } self.host.options['variable_manager'].extra_vars.update(evars) return super(EosHost, self).__getattr__(module_name) def shutdown(self, interface_name): out = self.eos_config( lines=['shutdown'], parents=['interface {}'.format(interface_name)]) logging.info('Shut interface [%s]' % interface_name) return out def shutdown_multiple(self, interfaces): intf_str = ','.join(interfaces) return self.shutdown(intf_str) def no_shutdown(self, interface_name): out = self.eos_config( lines=['no shutdown'], parents=['interface {}'.format(interface_name)]) logging.info('No shut interface [%s]' % interface_name) return out def no_shutdown_multiple(self, interfaces): intf_str = ','.join(interfaces) return self.no_shutdown(intf_str) def check_intf_link_state(self, interface_name): show_int_result = self.eos_command( commands=['show interface %s' % interface_name]) return 'Up' in show_int_result['stdout_lines'][0] def set_interface_lacp_rate_mode(self, interface_name, mode): out = self.eos_config( lines=['lacp rate %s' % mode], parents='interface %s' % interface_name) # FIXME: out['failed'] will be False even when a command is deprecated, so we have to check out['changed'] # However, if the lacp rate is already in expected state, out['changed'] will be False and treated as # error. if out['failed'] == True or out['changed'] == False: # new eos deprecate lacp rate and use lacp timer command out = self.eos_config( lines=['lacp timer %s' % mode], parents='interface %s' % interface_name) if out['changed'] == False: logging.warning("Unable to set interface [%s] lacp timer to [%s]" % (interface_name, mode)) raise Exception("Unable to set interface [%s] lacp timer to [%s]" % (interface_name, mode)) else: logging.info("Set interface [%s] lacp timer to [%s]" % (interface_name, mode)) else: logging.info("Set interface [%s] lacp rate to [%s]" % (interface_name, mode)) return out def kill_bgpd(self): out = self.eos_config(lines=['agent Rib shutdown']) return out def start_bgpd(self): out = self.eos_config(lines=['no agent Rib shutdown']) return out def no_shutdown_bgp(self, asn): out = self.eos_config( lines=['no shut'], parents=['router bgp {}'.format(asn)]) logging.info('No shut BGP [%s]' % asn) return out def check_bgp_session_state(self, neigh_ips, neigh_desc, state="established"): """ @summary: check if current bgp session equals to the target state @param neigh_ips: bgp neighbor IPs @param neigh_desc: bgp neighbor description @param state: target state """ neigh_ips = [ip.lower() for ip in neigh_ips] neigh_ips_ok = [] neigh_desc_ok = [] neigh_desc_available = False out_v4 = self.eos_command( commands=['show ip bgp summary | json']) logging.info("ip bgp summary: {}".format(out_v4)) out_v6 = self.eos_command( commands=['show ipv6 bgp summary | json']) logging.info("ipv6 bgp summary: {}".format(out_v6)) # when bgpd is inactive, the bgp summary output: [{u'vrfs': {}, u'warnings': [u'BGP inactive']}] if 'BGP inactive' in out_v4['stdout'][0].get('warnings', '') and 'BGP inactive' in out_v6['stdout'][0].get('warnings', ''): return False try: for k, v in out_v4['stdout'][0]['vrfs']['default']['peers'].items(): if v['peerState'].lower() == state.lower(): if k in neigh_ips: neigh_ips_ok.append(k) if 'description' in v: neigh_desc_available = True if v['description'] in neigh_desc: neigh_desc_ok.append(v['description']) for k, v in out_v6['stdout'][0]['vrfs']['default']['peers'].items(): if v['peerState'].lower() == state.lower(): if k.lower() in neigh_ips: neigh_ips_ok.append(k) if 'description' in v: neigh_desc_available = True if v['description'] in neigh_desc: neigh_desc_ok.append(v['description']) except KeyError: # ignore any KeyError due to unexpected BGP summary output pass logging.info("neigh_ips_ok={} neigh_desc_available={} neigh_desc_ok={}"\ .format(str(neigh_ips_ok), str(neigh_desc_available), str(neigh_desc_ok))) if neigh_desc_available: if len(neigh_ips) == len(neigh_ips_ok) and len(neigh_desc) == len(neigh_desc_ok): return True else: if len(neigh_ips) == len(neigh_ips_ok): return True return False def exec_template(self, ansible_root, ansible_playbook, inventory, **kwargs): playbook_template = 'cd {ansible_path}; ansible-playbook {playbook} -i {inventory} -l {fanout_host} --extra-vars \'{extra_vars}\' -vvvvv' cli_cmd = playbook_template.format(ansible_path=ansible_root, playbook=ansible_playbook, inventory=inventory, fanout_host=self.hostname, extra_vars=json.dumps(kwargs)) res = self.localhost.shell(cli_cmd) if res["localhost"]["rc"] != 0: raise Exception("Unable to execute template\n{}".format(res["stdout"])) def get_route(self, prefix): cmd = 'show ip bgp' if ipaddress.ip_network(unicode(prefix)).version == 4 else 'show ipv6 bgp' return self.eos_command(commands=[{ 'command': '{} {}'.format(cmd, prefix), 'output': 'json' }])['stdout'][0] def get_auto_negotiation_mode(self, interface_name): output = self.eos_command(commands=[{ 'command': 'show interfaces %s status' % interface_name, 'output': 'json' }]) if self._has_cli_cmd_failed(output): _raise_err('Failed to get auto neg state for {}: {}'.format(interface_name, output['msg'])) autoneg_enabled = output['stdout'][0]['interfaceStatuses'][interface_name]['autoNegotiateActive'] return autoneg_enabled def _reset_port_speed(self, interface_name): out = self.eos_config( lines=['default speed'], parents=['interface {}'.format(interface_name)]) logger.debug('Reset port speed for %s: %s' % (interface_name, out)) return not self._has_cli_cmd_failed(out) def set_auto_negotiation_mode(self, interface_name, enabled): if self.get_auto_negotiation_mode(interface_name) == enabled: return True if enabled: speed_to_advertise = self.get_supported_speeds(interface_name)[-1] speed_to_advertise = speed_to_advertise[:-3] + 'gfull' out = self.eos_config( lines=['speed auto %s' % speed_to_advertise], parents=['interface {}'.format(interface_name)]) logger.debug('Set auto neg to {} for port {}: {}'.format(enabled, interface_name, out)) return not self._has_cli_cmd_failed(out) return self._reset_port_speed(interface_name) def get_speed(self, interface_name): output = self.eos_command(commands=['show interfaces %s transceiver properties' % interface_name]) found_txt = re.search(r'Operational Speed: (\S+)', output['stdout'][0]) if found_txt is None: _raise_err('Not able to extract interface %s speed from output: %s' % (interface_name, output['stdout'])) v = found_txt.groups()[0] return v[:-1] + '000' def _has_cli_cmd_failed(self, cmd_output_obj): return 'failed' in cmd_output_obj and cmd_output_obj['failed'] def set_speed(self, interface_name, speed): if not speed: # other set_speed implementations advertise port speeds when speed=None # but in EOS autoneg activation and speeds advertisement is done via a single CLI cmd # so this branch left nop intentionally return True speed_mode = 'auto' if self.get_auto_negotiation_mode(interface_name) else 'forced' speed = speed[:-3] + 'gfull' out = self.host.eos_config( lines=['speed {} {}'.format(speed_mode, speed)], parents='interface %s' % interface_name)[self.hostname] logger.debug('Set force speed for port {} : {}'.format(interface_name, out)) return not self._has_cli_cmd_failed(out) def get_supported_speeds(self, interface_name): """Get supported speeds for a given interface Args: interface_name (str): Interface name Returns: list: A list of supported speed strings or None """ commands = ['show interfaces {} capabilities'.format(interface_name), 'show interface {} hardware'.format(interface_name)] for command in commands: output = self.eos_command(commands=[command]) found_txt = re.search("Speed/Duplex: (.+)", output['stdout'][0]) if found_txt is not None: break if found_txt is None: _raise_err('Failed to find port speeds list in output: %s' % output['stdout']) speed_list = found_txt.groups()[0] speed_list = speed_list.split(',') speed_list.remove('auto') def extract_speed_only(v): return re.match('\d+', v.strip()).group() + '000' return list(map(extract_speed_only, speed_list))
0.451206
0.131452
import requests from typing import List from bs4 import BeautifulSoup from src.lyrics.entity import Lyrics class LyricsSearcher: def __init__(self, albums_searcher, track_searcher, configurations): self.albums_searcher = albums_searcher self.track_searcher = track_searcher self.__genius_search_url = 'https://api.genius.com/search' self.__genius_token = configurations.GENIUS_ACCESS_TOKEN def request_song_info(self, track_name, track_artist): return requests.get(url=self.__genius_search_url, data={'q': track_name + ' ' + track_artist}, headers={'Authorization': 'Bearer ' + self.__genius_token}) def check_hits(self, response, artist): json = response.json() remote_song_info = None for hit in json['response']['hits']: if artist.lower() in hit['result']['primary_artist']['name'].lower(): remote_song_info = hit break return remote_song_info def scrape_lyrics(self, remote_song_info: str): page = requests.get(remote_song_info['result']['url']) html = BeautifulSoup(page.text, 'html.parser') lyrics = None lyrics_one = html.find("div", class_="lyrics") if lyrics_one: lyrics = lyrics_one.get_text() return lyrics lyrics_two = html.find("div", class_="Lyrics__Container-sc-1ynbvzw-2 jgQsqn") if lyrics_two: lyrics = lyrics_two.get_text() return lyrics return lyrics def get_breno(self, artist: str, track: str): response = self.request_song_info(track, artist) remote_song_info = self.check_hits(response, artist) if remote_song_info: lyrics = self.scrape_lyrics(remote_song_info) return lyrics return None def get_lyrics(self, artist: str) -> List[Lyrics]: albums = self.albums_searcher.get_albums(artist) albums = self.albums_searcher.remove_remaster_and_live_albums(albums) track_lyrics = [] albums_to_tracks = self.__get_tracks_for(albums) self.__search_lyrics(albums_to_tracks, artist, track_lyrics) return track_lyrics def __search_lyrics(self, albums_to_tracks, artist, track_lyrics): for album, tracks in albums_to_tracks.items(): for track in tracks: lyrics = self.get_breno(artist, track) if not lyrics: continue track_lyrics.append(Lyrics(artist=artist, album=album, track=track, lyrics=lyrics)) def __get_tracks_for(self, albums): albums_to_tracks = {} for album in albums: if not albums_to_tracks.get(album): albums_to_tracks[album] = [] albums_to_tracks[album] = self.track_searcher.get_tracks(album) return albums_to_tracks
src/lyrics/searchers/lyrics_searcher.py
import requests from typing import List from bs4 import BeautifulSoup from src.lyrics.entity import Lyrics class LyricsSearcher: def __init__(self, albums_searcher, track_searcher, configurations): self.albums_searcher = albums_searcher self.track_searcher = track_searcher self.__genius_search_url = 'https://api.genius.com/search' self.__genius_token = configurations.GENIUS_ACCESS_TOKEN def request_song_info(self, track_name, track_artist): return requests.get(url=self.__genius_search_url, data={'q': track_name + ' ' + track_artist}, headers={'Authorization': 'Bearer ' + self.__genius_token}) def check_hits(self, response, artist): json = response.json() remote_song_info = None for hit in json['response']['hits']: if artist.lower() in hit['result']['primary_artist']['name'].lower(): remote_song_info = hit break return remote_song_info def scrape_lyrics(self, remote_song_info: str): page = requests.get(remote_song_info['result']['url']) html = BeautifulSoup(page.text, 'html.parser') lyrics = None lyrics_one = html.find("div", class_="lyrics") if lyrics_one: lyrics = lyrics_one.get_text() return lyrics lyrics_two = html.find("div", class_="Lyrics__Container-sc-1ynbvzw-2 jgQsqn") if lyrics_two: lyrics = lyrics_two.get_text() return lyrics return lyrics def get_breno(self, artist: str, track: str): response = self.request_song_info(track, artist) remote_song_info = self.check_hits(response, artist) if remote_song_info: lyrics = self.scrape_lyrics(remote_song_info) return lyrics return None def get_lyrics(self, artist: str) -> List[Lyrics]: albums = self.albums_searcher.get_albums(artist) albums = self.albums_searcher.remove_remaster_and_live_albums(albums) track_lyrics = [] albums_to_tracks = self.__get_tracks_for(albums) self.__search_lyrics(albums_to_tracks, artist, track_lyrics) return track_lyrics def __search_lyrics(self, albums_to_tracks, artist, track_lyrics): for album, tracks in albums_to_tracks.items(): for track in tracks: lyrics = self.get_breno(artist, track) if not lyrics: continue track_lyrics.append(Lyrics(artist=artist, album=album, track=track, lyrics=lyrics)) def __get_tracks_for(self, albums): albums_to_tracks = {} for album in albums: if not albums_to_tracks.get(album): albums_to_tracks[album] = [] albums_to_tracks[album] = self.track_searcher.get_tracks(album) return albums_to_tracks
0.687735
0.083965
"""Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from ml2.tools.protos import ltl_pb2 as ml2_dot_tools_dot_protos_dot_ltl__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='ml2/tools/nuxmv/nuxmv.proto', package='', syntax='proto3', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1bml2/tools/nuxmv/nuxmv.proto\x1a\x1aml2/tools/protos/ltl.proto\"h\n\x07Problem\x12(\n\rspecification\x18\x01 \x01(\x0b\x32\x11.LTLSpecification\x12\x0e\n\x06system\x18\x02 \x01(\t\x12\x12\n\nrealizable\x18\x03 \x01(\x08\x12\x0f\n\x07timeout\x18\x04 \x01(\x02\"x\n\x08Solution\x12 \n\x06status\x18\x01 \x01(\x0e\x32\x10.Solution.Status\"J\n\x06Status\x12\r\n\tSATISFIED\x10\x00\x12\x0c\n\x08VIOLATED\x10\x01\x12\x0b\n\x07INVALID\x10\x02\x12\x0b\n\x07TIMEOUT\x10\x03\x12\t\n\x05\x45RROR\x10\x04\x32[\n\x05nuXmv\x12#\n\nModelCheck\x12\x08.Problem\x1a\t.Solution\"\x00\x12-\n\x10ModelCheckStream\x12\x08.Problem\x1a\t.Solution\"\x00(\x01\x30\x01\x62\x06proto3' , dependencies=[ml2_dot_tools_dot_protos_dot_ltl__pb2.DESCRIPTOR,]) _SOLUTION_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='Solution.Status', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='SATISFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='VIOLATED', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='TIMEOUT', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ERROR', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=211, serialized_end=285, ) _sym_db.RegisterEnumDescriptor(_SOLUTION_STATUS) _PROBLEM = _descriptor.Descriptor( name='Problem', full_name='Problem', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='specification', full_name='Problem.specification', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='system', full_name='Problem.system', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='realizable', full_name='Problem.realizable', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='timeout', full_name='Problem.timeout', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=163, ) _SOLUTION = _descriptor.Descriptor( name='Solution', full_name='Solution', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='status', full_name='Solution.status', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _SOLUTION_STATUS, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=165, serialized_end=285, ) _PROBLEM.fields_by_name['specification'].message_type = ml2_dot_tools_dot_protos_dot_ltl__pb2._LTLSPECIFICATION _SOLUTION.fields_by_name['status'].enum_type = _SOLUTION_STATUS _SOLUTION_STATUS.containing_type = _SOLUTION DESCRIPTOR.message_types_by_name['Problem'] = _PROBLEM DESCRIPTOR.message_types_by_name['Solution'] = _SOLUTION _sym_db.RegisterFileDescriptor(DESCRIPTOR) Problem = _reflection.GeneratedProtocolMessageType('Problem', (_message.Message,), { 'DESCRIPTOR' : _PROBLEM, '__module__' : 'ml2.tools.nuxmv.nuxmv_pb2' # @@protoc_insertion_point(class_scope:Problem) }) _sym_db.RegisterMessage(Problem) Solution = _reflection.GeneratedProtocolMessageType('Solution', (_message.Message,), { 'DESCRIPTOR' : _SOLUTION, '__module__' : 'ml2.tools.nuxmv.nuxmv_pb2' # @@protoc_insertion_point(class_scope:Solution) }) _sym_db.RegisterMessage(Solution) _NUXMV = _descriptor.ServiceDescriptor( name='nuXmv', full_name='nuXmv', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=287, serialized_end=378, methods=[ _descriptor.MethodDescriptor( name='ModelCheck', full_name='nuXmv.ModelCheck', index=0, containing_service=None, input_type=_PROBLEM, output_type=_SOLUTION, serialized_options=None, create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='ModelCheckStream', full_name='nuXmv.ModelCheckStream', index=1, containing_service=None, input_type=_PROBLEM, output_type=_SOLUTION, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_NUXMV) DESCRIPTOR.services_by_name['nuXmv'] = _NUXMV # @@protoc_insertion_point(module_scope)
ml2/tools/nuxmv/nuxmv_pb2.py
"""Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from ml2.tools.protos import ltl_pb2 as ml2_dot_tools_dot_protos_dot_ltl__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='ml2/tools/nuxmv/nuxmv.proto', package='', syntax='proto3', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1bml2/tools/nuxmv/nuxmv.proto\x1a\x1aml2/tools/protos/ltl.proto\"h\n\x07Problem\x12(\n\rspecification\x18\x01 \x01(\x0b\x32\x11.LTLSpecification\x12\x0e\n\x06system\x18\x02 \x01(\t\x12\x12\n\nrealizable\x18\x03 \x01(\x08\x12\x0f\n\x07timeout\x18\x04 \x01(\x02\"x\n\x08Solution\x12 \n\x06status\x18\x01 \x01(\x0e\x32\x10.Solution.Status\"J\n\x06Status\x12\r\n\tSATISFIED\x10\x00\x12\x0c\n\x08VIOLATED\x10\x01\x12\x0b\n\x07INVALID\x10\x02\x12\x0b\n\x07TIMEOUT\x10\x03\x12\t\n\x05\x45RROR\x10\x04\x32[\n\x05nuXmv\x12#\n\nModelCheck\x12\x08.Problem\x1a\t.Solution\"\x00\x12-\n\x10ModelCheckStream\x12\x08.Problem\x1a\t.Solution\"\x00(\x01\x30\x01\x62\x06proto3' , dependencies=[ml2_dot_tools_dot_protos_dot_ltl__pb2.DESCRIPTOR,]) _SOLUTION_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='Solution.Status', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='SATISFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='VIOLATED', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='INVALID', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='TIMEOUT', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ERROR', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=211, serialized_end=285, ) _sym_db.RegisterEnumDescriptor(_SOLUTION_STATUS) _PROBLEM = _descriptor.Descriptor( name='Problem', full_name='Problem', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='specification', full_name='Problem.specification', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='system', full_name='Problem.system', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='realizable', full_name='Problem.realizable', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='timeout', full_name='Problem.timeout', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=163, ) _SOLUTION = _descriptor.Descriptor( name='Solution', full_name='Solution', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='status', full_name='Solution.status', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _SOLUTION_STATUS, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=165, serialized_end=285, ) _PROBLEM.fields_by_name['specification'].message_type = ml2_dot_tools_dot_protos_dot_ltl__pb2._LTLSPECIFICATION _SOLUTION.fields_by_name['status'].enum_type = _SOLUTION_STATUS _SOLUTION_STATUS.containing_type = _SOLUTION DESCRIPTOR.message_types_by_name['Problem'] = _PROBLEM DESCRIPTOR.message_types_by_name['Solution'] = _SOLUTION _sym_db.RegisterFileDescriptor(DESCRIPTOR) Problem = _reflection.GeneratedProtocolMessageType('Problem', (_message.Message,), { 'DESCRIPTOR' : _PROBLEM, '__module__' : 'ml2.tools.nuxmv.nuxmv_pb2' # @@protoc_insertion_point(class_scope:Problem) }) _sym_db.RegisterMessage(Problem) Solution = _reflection.GeneratedProtocolMessageType('Solution', (_message.Message,), { 'DESCRIPTOR' : _SOLUTION, '__module__' : 'ml2.tools.nuxmv.nuxmv_pb2' # @@protoc_insertion_point(class_scope:Solution) }) _sym_db.RegisterMessage(Solution) _NUXMV = _descriptor.ServiceDescriptor( name='nuXmv', full_name='nuXmv', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=287, serialized_end=378, methods=[ _descriptor.MethodDescriptor( name='ModelCheck', full_name='nuXmv.ModelCheck', index=0, containing_service=None, input_type=_PROBLEM, output_type=_SOLUTION, serialized_options=None, create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='ModelCheckStream', full_name='nuXmv.ModelCheckStream', index=1, containing_service=None, input_type=_PROBLEM, output_type=_SOLUTION, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_NUXMV) DESCRIPTOR.services_by_name['nuXmv'] = _NUXMV # @@protoc_insertion_point(module_scope)
0.36693
0.077413
import os from requests_cache.backends.sqlite import DbDict, DbPickleDict class BaseCustomDictTestCase(object): dict_class = DbDict pickled_dict_class = DbPickleDict NAMESPACE = 'requests-cache-temporary-db-test-will-be-deleted' TABLES = ['table%s' % i for i in range(5)] def tearDown(self): if self.dict_class is DbDict: try: os.unlink(self.NAMESPACE) except Exception: pass return for table in self.TABLES: d = self.dict_class(self.NAMESPACE, table) d.clear() super().tearDown() def test_set_get(self): d1 = self.dict_class(self.NAMESPACE, self.TABLES[0]) d2 = self.dict_class(self.NAMESPACE, self.TABLES[1]) d3 = self.dict_class(self.NAMESPACE, self.TABLES[2]) d1[1] = 1 d2[2] = 2 d3[3] = 3 self.assertEqual(list(d1.keys()), [1]) self.assertEqual(list(d2.keys()), [2]) self.assertEqual(list(d3.keys()), [3]) with self.assertRaises(KeyError): d1[4] def test_str(self): d = self.dict_class(self.NAMESPACE) d.clear() d[1] = 1 d[2] = 2 self.assertEqual(str(d), '{1: 1, 2: 2}') def test_del(self): d = self.dict_class(self.NAMESPACE) d.clear() for i in range(5): d[i] = i del d[0] del d[1] del d[2] self.assertEqual(list(d.keys()), list(range(3, 5))) self.assertEqual(list(d.values()), list(range(3, 5))) with self.assertRaises(KeyError): del d[0] def test_picklable_dict(self): d = self.pickled_dict_class(self.NAMESPACE) d[1] = ForPickle() d = self.pickled_dict_class(self.NAMESPACE) self.assertEqual(d[1].a, 1) self.assertEqual(d[1].b, 2) def test_clear_and_work_again(self): d = self.dict_class(self.NAMESPACE) for _ in range(3): d.clear() d.clear() self.assertEqual(len(d), 0) n = 5 for i in range(n): d[i] = i * 2 self.assertEqual(len(d), n) self.assertEqual(d[2], 4) d.clear() self.assertEqual(len(d), 0) def test_same_settings(self): d1 = self.dict_class(self.NAMESPACE) d2 = self.dict_class(self.NAMESPACE, connection=d1.connection) d1.clear() d2.clear() d1[1] = 1 d2[2] = 2 self.assertEqual(d1, d2) def test_len(self): n = 5 d = self.dict_class(self.NAMESPACE) d.clear() for i in range(n): d[i] = i self.assertEqual(len(d), 5) class ForPickle(object): a = 1 b = 2
tests/test_custom_dict.py
import os from requests_cache.backends.sqlite import DbDict, DbPickleDict class BaseCustomDictTestCase(object): dict_class = DbDict pickled_dict_class = DbPickleDict NAMESPACE = 'requests-cache-temporary-db-test-will-be-deleted' TABLES = ['table%s' % i for i in range(5)] def tearDown(self): if self.dict_class is DbDict: try: os.unlink(self.NAMESPACE) except Exception: pass return for table in self.TABLES: d = self.dict_class(self.NAMESPACE, table) d.clear() super().tearDown() def test_set_get(self): d1 = self.dict_class(self.NAMESPACE, self.TABLES[0]) d2 = self.dict_class(self.NAMESPACE, self.TABLES[1]) d3 = self.dict_class(self.NAMESPACE, self.TABLES[2]) d1[1] = 1 d2[2] = 2 d3[3] = 3 self.assertEqual(list(d1.keys()), [1]) self.assertEqual(list(d2.keys()), [2]) self.assertEqual(list(d3.keys()), [3]) with self.assertRaises(KeyError): d1[4] def test_str(self): d = self.dict_class(self.NAMESPACE) d.clear() d[1] = 1 d[2] = 2 self.assertEqual(str(d), '{1: 1, 2: 2}') def test_del(self): d = self.dict_class(self.NAMESPACE) d.clear() for i in range(5): d[i] = i del d[0] del d[1] del d[2] self.assertEqual(list(d.keys()), list(range(3, 5))) self.assertEqual(list(d.values()), list(range(3, 5))) with self.assertRaises(KeyError): del d[0] def test_picklable_dict(self): d = self.pickled_dict_class(self.NAMESPACE) d[1] = ForPickle() d = self.pickled_dict_class(self.NAMESPACE) self.assertEqual(d[1].a, 1) self.assertEqual(d[1].b, 2) def test_clear_and_work_again(self): d = self.dict_class(self.NAMESPACE) for _ in range(3): d.clear() d.clear() self.assertEqual(len(d), 0) n = 5 for i in range(n): d[i] = i * 2 self.assertEqual(len(d), n) self.assertEqual(d[2], 4) d.clear() self.assertEqual(len(d), 0) def test_same_settings(self): d1 = self.dict_class(self.NAMESPACE) d2 = self.dict_class(self.NAMESPACE, connection=d1.connection) d1.clear() d2.clear() d1[1] = 1 d2[2] = 2 self.assertEqual(d1, d2) def test_len(self): n = 5 d = self.dict_class(self.NAMESPACE) d.clear() for i in range(n): d[i] = i self.assertEqual(len(d), 5) class ForPickle(object): a = 1 b = 2
0.278061
0.281198
class OptionalFeatures(object): def __init__(self, conn, scenario_id): """ :param cursor: :param scenario_id: """ of_column_names = [ n for n in get_scenario_table_columns(conn=conn) if n.startswith("of_") ] for of in of_column_names: setattr( self, of.upper(), db_column_to_self( column=of, conn=conn, scenario_id=scenario_id ) ) def get_all_available_features(self): all_features = [ attr[3:].lower() for attr, value in self.__dict__.items() ] return all_features def get_active_features(self): """ Get list of requested features :return: """ active_features = list() for attr, value in self.__dict__.items(): if value: active_features.append(attr[3:].lower()) return active_features class SubScenarios(object): """ The subscenario IDs will be used to format SQL queries, so we set them to "NULL" (not None) if an ID is not specified for the scenario. """ def __init__(self, conn, scenario_id): """ :param cursor: :param scenario_id: """ subscenario_column_names = [ n for n in get_scenario_table_columns(conn=conn) if n.endswith("_scenario_id") ] for subscenario in subscenario_column_names: setattr( self, subscenario.upper(), db_column_to_self( column=subscenario, conn=conn, scenario_id=scenario_id ) ) def get_all_available_subscenarios(self): all_subscenarios = [ attr.lower() for attr, value in self.__dict__.items() if attr != "SCENARIO_ID" ] return all_subscenarios class SubProblems(object): def __init__(self, conn, scenario_id): """ :param conn: :param scenario_id: """ cursor = conn.cursor() # TODO: make sure there is data integrity between subproblems_stages # and inputs_temporal_horizons and inputs_temporal subproblems = cursor.execute( """SELECT subproblem_id FROM inputs_temporal_subproblems INNER JOIN scenarios USING (temporal_scenario_id) WHERE scenario_id = {};""".format(scenario_id) ).fetchall() # SQL returns a list of tuples [(1,), (2,)] so convert to simple list self.SUBPROBLEMS = [subproblem[0] for subproblem in subproblems] # store subproblems and stages in dict {subproblem: [stages]} self.SUBPROBLEM_STAGE_DICT = {} for s in self.SUBPROBLEMS: stages = cursor.execute( """SELECT stage_id FROM inputs_temporal_subproblems_stages INNER JOIN scenarios USING (temporal_scenario_id) WHERE scenario_id = {} AND subproblem_id = {};""".format(scenario_id, s) ).fetchall() stages = [stage[0] for stage in stages] # convert to simple list self.SUBPROBLEM_STAGE_DICT[s] = stages class SolverOptions(object): def __init__(self, conn, scenario_id): """ :param cursor: :param scenario_id: """ cursor = conn.cursor() self.SOLVER_OPTIONS_ID = cursor.execute(""" SELECT solver_options_id FROM scenarios WHERE scenario_id = {} """.format(scenario_id) ).fetchone()[0] if self.SOLVER_OPTIONS_ID is None: self.SOLVER = None else: distinct_solvers = cursor.execute( """SELECT DISTINCT solver FROM inputs_options_solver WHERE solver_options_id = {}""".format(self.SOLVER_OPTIONS_ID) ).fetchall() if len(distinct_solvers) > 1: raise ValueError(""" ERROR: Solver options include more than one solver! Only a single solver must be specified for solver_options_id in the inputs_options_solver table. See solver_options_id {}. """.format(self.SOLVER_OPTIONS_ID)) else: self.SOLVER = distinct_solvers[0][0] self.SOLVER_OPTIONS = \ None if self.SOLVER_OPTIONS_ID is None \ else { row[0]: row[1] for row in cursor.execute(""" SELECT solver_option_name, solver_option_value FROM inputs_options_solver WHERE solver_options_id = {}; """.format(self.SOLVER_OPTIONS_ID) ).fetchall() if row[0] is not None and row[0] != "" } def db_column_to_self(column, conn, scenario_id): of = True if column.startswith("of") else False c = conn.cursor() query = c.execute( """SELECT {} FROM scenarios WHERE scenario_id = ?;""".format(column), (scenario_id,) ).fetchone()[0] self = "NULL" if query is None and not of else query return self def get_scenario_table_columns(conn): c = conn.cursor() scenario_query = c.execute( """ SELECT * FROM scenarios; """ ) column_names = [ description[0] for description in scenario_query.description ] return column_names
gridpath/auxiliary/scenario_chars.py
class OptionalFeatures(object): def __init__(self, conn, scenario_id): """ :param cursor: :param scenario_id: """ of_column_names = [ n for n in get_scenario_table_columns(conn=conn) if n.startswith("of_") ] for of in of_column_names: setattr( self, of.upper(), db_column_to_self( column=of, conn=conn, scenario_id=scenario_id ) ) def get_all_available_features(self): all_features = [ attr[3:].lower() for attr, value in self.__dict__.items() ] return all_features def get_active_features(self): """ Get list of requested features :return: """ active_features = list() for attr, value in self.__dict__.items(): if value: active_features.append(attr[3:].lower()) return active_features class SubScenarios(object): """ The subscenario IDs will be used to format SQL queries, so we set them to "NULL" (not None) if an ID is not specified for the scenario. """ def __init__(self, conn, scenario_id): """ :param cursor: :param scenario_id: """ subscenario_column_names = [ n for n in get_scenario_table_columns(conn=conn) if n.endswith("_scenario_id") ] for subscenario in subscenario_column_names: setattr( self, subscenario.upper(), db_column_to_self( column=subscenario, conn=conn, scenario_id=scenario_id ) ) def get_all_available_subscenarios(self): all_subscenarios = [ attr.lower() for attr, value in self.__dict__.items() if attr != "SCENARIO_ID" ] return all_subscenarios class SubProblems(object): def __init__(self, conn, scenario_id): """ :param conn: :param scenario_id: """ cursor = conn.cursor() # TODO: make sure there is data integrity between subproblems_stages # and inputs_temporal_horizons and inputs_temporal subproblems = cursor.execute( """SELECT subproblem_id FROM inputs_temporal_subproblems INNER JOIN scenarios USING (temporal_scenario_id) WHERE scenario_id = {};""".format(scenario_id) ).fetchall() # SQL returns a list of tuples [(1,), (2,)] so convert to simple list self.SUBPROBLEMS = [subproblem[0] for subproblem in subproblems] # store subproblems and stages in dict {subproblem: [stages]} self.SUBPROBLEM_STAGE_DICT = {} for s in self.SUBPROBLEMS: stages = cursor.execute( """SELECT stage_id FROM inputs_temporal_subproblems_stages INNER JOIN scenarios USING (temporal_scenario_id) WHERE scenario_id = {} AND subproblem_id = {};""".format(scenario_id, s) ).fetchall() stages = [stage[0] for stage in stages] # convert to simple list self.SUBPROBLEM_STAGE_DICT[s] = stages class SolverOptions(object): def __init__(self, conn, scenario_id): """ :param cursor: :param scenario_id: """ cursor = conn.cursor() self.SOLVER_OPTIONS_ID = cursor.execute(""" SELECT solver_options_id FROM scenarios WHERE scenario_id = {} """.format(scenario_id) ).fetchone()[0] if self.SOLVER_OPTIONS_ID is None: self.SOLVER = None else: distinct_solvers = cursor.execute( """SELECT DISTINCT solver FROM inputs_options_solver WHERE solver_options_id = {}""".format(self.SOLVER_OPTIONS_ID) ).fetchall() if len(distinct_solvers) > 1: raise ValueError(""" ERROR: Solver options include more than one solver! Only a single solver must be specified for solver_options_id in the inputs_options_solver table. See solver_options_id {}. """.format(self.SOLVER_OPTIONS_ID)) else: self.SOLVER = distinct_solvers[0][0] self.SOLVER_OPTIONS = \ None if self.SOLVER_OPTIONS_ID is None \ else { row[0]: row[1] for row in cursor.execute(""" SELECT solver_option_name, solver_option_value FROM inputs_options_solver WHERE solver_options_id = {}; """.format(self.SOLVER_OPTIONS_ID) ).fetchall() if row[0] is not None and row[0] != "" } def db_column_to_self(column, conn, scenario_id): of = True if column.startswith("of") else False c = conn.cursor() query = c.execute( """SELECT {} FROM scenarios WHERE scenario_id = ?;""".format(column), (scenario_id,) ).fetchone()[0] self = "NULL" if query is None and not of else query return self def get_scenario_table_columns(conn): c = conn.cursor() scenario_query = c.execute( """ SELECT * FROM scenarios; """ ) column_names = [ description[0] for description in scenario_query.description ] return column_names
0.639286
0.345381
from io import BytesIO import sys import os import zipfile import argparse import subprocess import requests import xml.etree.ElementTree as etree def request_data(root, tile_id, output_folder, verbose=False): namespaces = {"xmlns": "http://www.w3.org/2005/Atom", "xmlns:georss": "http://www.georss.org/georss"} tile = root.find('xmlns:entry[xmlns:id="{}.laz.zip"]'.format(tile_id), namespaces=namespaces) if tile is None: return False url = tile.find('xmlns:link', namespaces=namespaces).attrib['href'] zip_file = '{}{}.laz.zip'.format(output_folder, tile_id) with open(zip_file, 'wb') as f: if not verbose: zipped_data = requests.get(url) f.write(zipped_data.content) else: zipped_data = requests.get(url, stream=True, timeout=10) total_length = zipped_data.headers.get('content-length') if total_length is not None: total_length = int(total_length) else: size = tile.find('xmlns:content', namespaces=namespaces).text size = float(size.split(':')[1].split( ' ')[1].replace(',', '.')) total_length = int(size * 1048576) dl = 0 chunk = total_length//100 if total_length is not None else 1048576 for data in zipped_data.iter_content(chunk_size=chunk): f.write(data) dl += len(data) if total_length is not None: done = int(100 * dl / total_length) sys.stdout.write("\r[{}{}] - {}% {}/{} mb".format('=' * done, ' ' * (100 - done), done, dl/1048576, total_length/1048576)) sys.stdout.flush() elif verbose: sys.stdout.write( "\r {:0.1f} mb downloaded..".format(dl/1048576)) sys.stdout.flush() if verbose: sys.stdout.write("\n") if verbose: print("Download complete, unzipping..") with zipfile.ZipFile(zip_file) as data: data.extractall(output_folder) os.remove(zip_file) return True def request_tile(tile_id, output_folder, verbose=False): # uitgefilterd if verbose: print("Downloading filtered out AHN 2 data..") r = requests.get('http://geodata.nationaalgeoregister.nl/ahn2/' 'atom/ahn2_uitgefilterd.xml') root = etree.fromstring(r.content) success = request_data(root, 'u{}'.format(tile_id), output_folder, verbose) if verbose: if success: print("Complete.") else: print("Download failed. Tile not found.") # gefilterd if verbose: print("Downloading filtered AHN 2 data..") r = requests.get('http://geodata.nationaalgeoregister.nl/ahn2/' 'atom/ahn2_gefilterd.xml') root = etree.fromstring(r.content) success = request_data(root, 'g{}'.format(tile_id), output_folder, verbose) if verbose: if success: print("Download complete.") else: print("Download failed. Tile not found.") def argument_parser(): """ Define and return the arguments. """ description = "Download an AHN2 data tile by tile id." parser = argparse.ArgumentParser(description=description) required_named = parser.add_argument_group('required named arguments') required_named.add_argument('-t', '--tileid', help='The ID of the tile to download.', required=True) required_named.add_argument('-o', '--output', help='The folder to write the data to.', required=True) parser.add_argument('-m', '--merge', help='Merge the filtered and remaining data. ' 'Requires PDAL.', action='store_true', required=False, default=False) parser.add_argument('-v', '--verbose', help='Enable to print out the progress', action='store_true', required=False, default=False) args = parser.parse_args() return args def main(): args = argument_parser() args.output.replace('\\', '/') args.output = args.output + '/' if args.output[-1] != '/' else args.output request_tile(args.tileid, args.output, args.verbose) if args.merge: if args.verbose: print("Merging point clouds..") output_file = '{}{}.laz'.format(args.output, args.tileid) subprocess.call(['pdal', 'merge', '{}g{}.laz'.format(args.output, args.tileid), '{}u{}.laz'.format(args.output, args.tileid), output_file]) if os.path.isfile(output_file): if args.verbose: print("Done, removing old files..") os.remove('{}g{}.laz'.format(args.output, args.tileid)) os.remove('{}u{}.laz'.format(args.output, args.tileid)) if args.verbose: print("Done!") elif args.verbose: print("Merging failed. File not found. Keeping original files.") if __name__ == '__main__': main()
scripts/ahn2_download/ahn2_downloader.py
from io import BytesIO import sys import os import zipfile import argparse import subprocess import requests import xml.etree.ElementTree as etree def request_data(root, tile_id, output_folder, verbose=False): namespaces = {"xmlns": "http://www.w3.org/2005/Atom", "xmlns:georss": "http://www.georss.org/georss"} tile = root.find('xmlns:entry[xmlns:id="{}.laz.zip"]'.format(tile_id), namespaces=namespaces) if tile is None: return False url = tile.find('xmlns:link', namespaces=namespaces).attrib['href'] zip_file = '{}{}.laz.zip'.format(output_folder, tile_id) with open(zip_file, 'wb') as f: if not verbose: zipped_data = requests.get(url) f.write(zipped_data.content) else: zipped_data = requests.get(url, stream=True, timeout=10) total_length = zipped_data.headers.get('content-length') if total_length is not None: total_length = int(total_length) else: size = tile.find('xmlns:content', namespaces=namespaces).text size = float(size.split(':')[1].split( ' ')[1].replace(',', '.')) total_length = int(size * 1048576) dl = 0 chunk = total_length//100 if total_length is not None else 1048576 for data in zipped_data.iter_content(chunk_size=chunk): f.write(data) dl += len(data) if total_length is not None: done = int(100 * dl / total_length) sys.stdout.write("\r[{}{}] - {}% {}/{} mb".format('=' * done, ' ' * (100 - done), done, dl/1048576, total_length/1048576)) sys.stdout.flush() elif verbose: sys.stdout.write( "\r {:0.1f} mb downloaded..".format(dl/1048576)) sys.stdout.flush() if verbose: sys.stdout.write("\n") if verbose: print("Download complete, unzipping..") with zipfile.ZipFile(zip_file) as data: data.extractall(output_folder) os.remove(zip_file) return True def request_tile(tile_id, output_folder, verbose=False): # uitgefilterd if verbose: print("Downloading filtered out AHN 2 data..") r = requests.get('http://geodata.nationaalgeoregister.nl/ahn2/' 'atom/ahn2_uitgefilterd.xml') root = etree.fromstring(r.content) success = request_data(root, 'u{}'.format(tile_id), output_folder, verbose) if verbose: if success: print("Complete.") else: print("Download failed. Tile not found.") # gefilterd if verbose: print("Downloading filtered AHN 2 data..") r = requests.get('http://geodata.nationaalgeoregister.nl/ahn2/' 'atom/ahn2_gefilterd.xml') root = etree.fromstring(r.content) success = request_data(root, 'g{}'.format(tile_id), output_folder, verbose) if verbose: if success: print("Download complete.") else: print("Download failed. Tile not found.") def argument_parser(): """ Define and return the arguments. """ description = "Download an AHN2 data tile by tile id." parser = argparse.ArgumentParser(description=description) required_named = parser.add_argument_group('required named arguments') required_named.add_argument('-t', '--tileid', help='The ID of the tile to download.', required=True) required_named.add_argument('-o', '--output', help='The folder to write the data to.', required=True) parser.add_argument('-m', '--merge', help='Merge the filtered and remaining data. ' 'Requires PDAL.', action='store_true', required=False, default=False) parser.add_argument('-v', '--verbose', help='Enable to print out the progress', action='store_true', required=False, default=False) args = parser.parse_args() return args def main(): args = argument_parser() args.output.replace('\\', '/') args.output = args.output + '/' if args.output[-1] != '/' else args.output request_tile(args.tileid, args.output, args.verbose) if args.merge: if args.verbose: print("Merging point clouds..") output_file = '{}{}.laz'.format(args.output, args.tileid) subprocess.call(['pdal', 'merge', '{}g{}.laz'.format(args.output, args.tileid), '{}u{}.laz'.format(args.output, args.tileid), output_file]) if os.path.isfile(output_file): if args.verbose: print("Done, removing old files..") os.remove('{}g{}.laz'.format(args.output, args.tileid)) os.remove('{}u{}.laz'.format(args.output, args.tileid)) if args.verbose: print("Done!") elif args.verbose: print("Merging failed. File not found. Keeping original files.") if __name__ == '__main__': main()
0.345216
0.132066
from nltk.stem.porter import PorterStemmer import os def __stem_Tokens(words): porter_stemmer = PorterStemmer() return [porter_stemmer.stem(x) for x in words.split(" ")] def same_pre_post(tokens1, tokens2): if tokens1[0] == tokens2[0] or tokens1[-1] == tokens2[-1]: return True return False def single_token_same_pre_post_fix(tokens1, tokens2): if len(tokens1) == 1 and len(tokens2) == 1: w1 = tokens1[0] w2 = tokens2[0] if len(w1) > 3 and len(w2) > 3: return w1[:3] == w2[:3] or w1[-3:] == w2[-3:] return False def share_tokens(tokens1, tokens2): for tk1 in tokens1: for tk2 in tokens2: if tk1 == tk2: return True return False def is_heuristic_ones(w1, w2): w1_stems = __stem_Tokens(w1) w2_stems = __stem_Tokens(w2) if same_pre_post(w1_stems, w2_stems): return True return False for file_name in os.listdir("."): if not os.path.isfile(file_name) or (not file_name.endswith("txt") and not file_name.endswith("csv")): continue # file_name = "FeedForward_Result{}.txt".format(i) tn = 0 tp = 0 fn = 0 fp = 0 with open(file_name) as fin, open("../filter_result/{}".format(file_name), "w") as fout, open( "../filter_result/csv/{}".format(file_name), "w") as csv_fout: cnt = 0 for line in fin: cnt += 1 line = line.strip("\n") if "label, correctness, w1, w2" in line: if cnt == 1: continue precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * (precision * recall) / (precision + recall) accuracy = (tp + tn) / (tp + tn + fn + fp) csv_fout.write("{},{},{},{}\n".format(recall, precision, f1, accuracy)) tn = 0 tp = 0 fn = 0 fp = 0 else: parts = [x for x in line.split("\t") if len(x) > 0] if len(parts) < 5: print(parts) continue pre_label = parts[0] correctness = parts[1] score = parts[2] w1 = parts[3] w2 = parts[4] if is_heuristic_ones(w1, w2): continue if correctness == "Correct": if pre_label == "yes": tp += 1 else: tn += 1 else: if pre_label == "yes": fp += 1 else: fn += 1 fout.write(line + "\n") precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * (precision * recall) / (precision + recall) accuracy = (tp + tn) / (tp + tn + fn + fp) csv_fout.write("{},{},{},{}\n".format(recall, precision, f1, accuracy))
SENET/result/mergeRQ1.1ANDRQ1.2BySelectNonHeuristic(OriginVerisionIncluded)/not_filter_result/filter_result.py
from nltk.stem.porter import PorterStemmer import os def __stem_Tokens(words): porter_stemmer = PorterStemmer() return [porter_stemmer.stem(x) for x in words.split(" ")] def same_pre_post(tokens1, tokens2): if tokens1[0] == tokens2[0] or tokens1[-1] == tokens2[-1]: return True return False def single_token_same_pre_post_fix(tokens1, tokens2): if len(tokens1) == 1 and len(tokens2) == 1: w1 = tokens1[0] w2 = tokens2[0] if len(w1) > 3 and len(w2) > 3: return w1[:3] == w2[:3] or w1[-3:] == w2[-3:] return False def share_tokens(tokens1, tokens2): for tk1 in tokens1: for tk2 in tokens2: if tk1 == tk2: return True return False def is_heuristic_ones(w1, w2): w1_stems = __stem_Tokens(w1) w2_stems = __stem_Tokens(w2) if same_pre_post(w1_stems, w2_stems): return True return False for file_name in os.listdir("."): if not os.path.isfile(file_name) or (not file_name.endswith("txt") and not file_name.endswith("csv")): continue # file_name = "FeedForward_Result{}.txt".format(i) tn = 0 tp = 0 fn = 0 fp = 0 with open(file_name) as fin, open("../filter_result/{}".format(file_name), "w") as fout, open( "../filter_result/csv/{}".format(file_name), "w") as csv_fout: cnt = 0 for line in fin: cnt += 1 line = line.strip("\n") if "label, correctness, w1, w2" in line: if cnt == 1: continue precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * (precision * recall) / (precision + recall) accuracy = (tp + tn) / (tp + tn + fn + fp) csv_fout.write("{},{},{},{}\n".format(recall, precision, f1, accuracy)) tn = 0 tp = 0 fn = 0 fp = 0 else: parts = [x for x in line.split("\t") if len(x) > 0] if len(parts) < 5: print(parts) continue pre_label = parts[0] correctness = parts[1] score = parts[2] w1 = parts[3] w2 = parts[4] if is_heuristic_ones(w1, w2): continue if correctness == "Correct": if pre_label == "yes": tp += 1 else: tn += 1 else: if pre_label == "yes": fp += 1 else: fn += 1 fout.write(line + "\n") precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * (precision * recall) / (precision + recall) accuracy = (tp + tn) / (tp + tn + fn + fp) csv_fout.write("{},{},{},{}\n".format(recall, precision, f1, accuracy))
0.448909
0.275635
from app.extensions.redis.redis_utils import redis_db from app.extensions.redis.redis_operation import set_multi_hash_in_redis from app.extensions.redis.redis_operation import set_single_hash_in_redis from app.extensions.redis.redis_operation import update_single_hash_in_redis from app.extensions.redis.redis_operation import get_all_in_redis, get_one_in_redis from app.models.user import User from app.models.user_info import UserInfo from app.models.match_game import MatchGame from app.models.game_rule import GameRule from app.models.user_mail import UserMail from app.models.email_info import EmailInfo from app.models.good_info import GoodInfo from app.models.reward_info import RewardInfo from app.models.prop_info import PropInfo from app.models.income_support import IncomeSupport def check_user_is_exist(username): return User.check_user_is_exist(username) def get_user_info_by_username(username): return User.get_user_info_by_username(username) def validate_password(username, password): return User.validate_password(username, password) def get_user_info_in_cache(uid): r_key = 'hu:' + str(uid) ret = get_one_in_redis(r_key) return ret def save_user_info_in_cache(uid, user_info): r_key = 'hu:' + str(uid) return set_single_hash_in_redis({r_key: user_info}) def update_user_in_cache(uid, user_info): r_key = 'hu:' + str(uid) return update_single_hash_in_redis({r_key: user_info}) def get_match_data_in_cache(uid): r_key = 'hu:' + str(uid) + ':match' return get_one_in_redis(r_key) def get_match_data_by_uid(uid): return MatchGame.get_user_match_data_by_uid(uid) def save_match_data_in_cache(uid, match_data): r_key = 'hu:' + str(uid) + ':match' return set_single_hash_in_redis({r_key: match_data}) def get_game_rule_in_cache(uid): r_key = 'hu:' + str(uid) + ':rule' return get_one_in_redis(r_key) def get_game_rule_by_uid(uid): return GameRule.get_user_game_rule_by_uid(uid) def save_game_rule_in_cache(uid, game_rule): r_key = 'hu:' + str(uid) + ':rule' return set_single_hash_in_redis({r_key: game_rule}) def validate_user_mail_in_table(uid): return UserMail.validate_user_mail_in_table(uid) def get_user_mail_by_uid(uid): return UserMail.get_user_mail_by_uid(uid) def get_one_user_mail_by_id(id): return UserMail.get_one_user_mail_by_id(id) def update_user_mail_by_id(id, data): return UserMail.update_user_mail_by_id(id, data) def get_email_info_by_id(id): return EmailInfo.get_email_info_by_id(id) def get_all_email_info(): return EmailInfo.get_all_email_info() def get_all_good_info(): return GoodInfo.get_all_good_info() def get_good_info_by_id(id): return GoodInfo.get_good_info_by_id(id) def get_all_reward_info(): return RewardInfo.get_all_reward_info() def get_all_prop_info(): return PropInfo.get_all_prop_info() def get_income_support_by_uid(uid): return IncomeSupport.get_income_support_by_uid(uid) def save_income_support(data): return IncomeSupport.add(data) def update_income_support_by_id(id, data): return IncomeSupport.update_income_support_by_id(id, data) def save_user(data): return User.add(data) def save_user_info(data): return UserInfo.add(data) def get_user_info_by_id(id): return User.get_info_by_uid(id)
echecs_hall/app/data_bridge/mj_hall_bridge.py
from app.extensions.redis.redis_utils import redis_db from app.extensions.redis.redis_operation import set_multi_hash_in_redis from app.extensions.redis.redis_operation import set_single_hash_in_redis from app.extensions.redis.redis_operation import update_single_hash_in_redis from app.extensions.redis.redis_operation import get_all_in_redis, get_one_in_redis from app.models.user import User from app.models.user_info import UserInfo from app.models.match_game import MatchGame from app.models.game_rule import GameRule from app.models.user_mail import UserMail from app.models.email_info import EmailInfo from app.models.good_info import GoodInfo from app.models.reward_info import RewardInfo from app.models.prop_info import PropInfo from app.models.income_support import IncomeSupport def check_user_is_exist(username): return User.check_user_is_exist(username) def get_user_info_by_username(username): return User.get_user_info_by_username(username) def validate_password(username, password): return User.validate_password(username, password) def get_user_info_in_cache(uid): r_key = 'hu:' + str(uid) ret = get_one_in_redis(r_key) return ret def save_user_info_in_cache(uid, user_info): r_key = 'hu:' + str(uid) return set_single_hash_in_redis({r_key: user_info}) def update_user_in_cache(uid, user_info): r_key = 'hu:' + str(uid) return update_single_hash_in_redis({r_key: user_info}) def get_match_data_in_cache(uid): r_key = 'hu:' + str(uid) + ':match' return get_one_in_redis(r_key) def get_match_data_by_uid(uid): return MatchGame.get_user_match_data_by_uid(uid) def save_match_data_in_cache(uid, match_data): r_key = 'hu:' + str(uid) + ':match' return set_single_hash_in_redis({r_key: match_data}) def get_game_rule_in_cache(uid): r_key = 'hu:' + str(uid) + ':rule' return get_one_in_redis(r_key) def get_game_rule_by_uid(uid): return GameRule.get_user_game_rule_by_uid(uid) def save_game_rule_in_cache(uid, game_rule): r_key = 'hu:' + str(uid) + ':rule' return set_single_hash_in_redis({r_key: game_rule}) def validate_user_mail_in_table(uid): return UserMail.validate_user_mail_in_table(uid) def get_user_mail_by_uid(uid): return UserMail.get_user_mail_by_uid(uid) def get_one_user_mail_by_id(id): return UserMail.get_one_user_mail_by_id(id) def update_user_mail_by_id(id, data): return UserMail.update_user_mail_by_id(id, data) def get_email_info_by_id(id): return EmailInfo.get_email_info_by_id(id) def get_all_email_info(): return EmailInfo.get_all_email_info() def get_all_good_info(): return GoodInfo.get_all_good_info() def get_good_info_by_id(id): return GoodInfo.get_good_info_by_id(id) def get_all_reward_info(): return RewardInfo.get_all_reward_info() def get_all_prop_info(): return PropInfo.get_all_prop_info() def get_income_support_by_uid(uid): return IncomeSupport.get_income_support_by_uid(uid) def save_income_support(data): return IncomeSupport.add(data) def update_income_support_by_id(id, data): return IncomeSupport.update_income_support_by_id(id, data) def save_user(data): return User.add(data) def save_user_info(data): return UserInfo.add(data) def get_user_info_by_id(id): return User.get_info_by_uid(id)
0.41052
0.110807
import os import time import pytest import zmq from jina.excepts import RuntimeFailToStart, RuntimeRunForeverEarlyError from jina.executors import BaseExecutor from jina.parsers import set_gateway_parser, set_pea_parser from jina.peapods import Pea from jina.peapods.runtimes.zmq.zed import ZEDRuntime from jina.types.message.common import ControlMessage def bad_func(*args, **kwargs): raise Exception('intentional error') def test_base_pea_with_runtime_bad_init(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) mocker.patch.object(ZEDRuntime, '__init__', bad_func) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') with pytest.raises(RuntimeFailToStart): with Pea1(arg): pass # teardown should be called, cancel should not be called teardown_spy.assert_not_called() run_spy.assert_not_called() cancel_spy.assert_not_called() @pytest.mark.slow def test_base_pea_with_runtime_bad_run_forever(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) def mock_run_forever(runtime): bad_func() arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) mocker.patch.object(ZEDRuntime, 'run_forever', mock_run_forever) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') with pytest.raises(RuntimeRunForeverEarlyError): with Pea1(arg): pass # teardown should be called, cancel should not be called teardown_spy.assert_called() run_spy.assert_called() cancel_spy.assert_not_called() @pytest.mark.slow def test_base_pea_with_runtime_bad_teardown(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) def mock_run_forever(*args, **kwargs): time.sleep(3) def mock_is_ready(*args, **kwargs): return True def mock_cancel(*args, **kwargs): pass mocker.patch.object(ZEDRuntime, 'run_forever', mock_run_forever) mocker.patch.object(ZEDRuntime, 'is_ready', mock_is_ready) mocker.patch.object(ZEDRuntime, 'teardown', lambda x: bad_func) mocker.patch.object(ZEDRuntime, 'cancel', lambda *args, **kwargs: mock_cancel) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) with Pea1(arg): pass teardown_spy.assert_called() run_spy.assert_called() cancel_spy.assert_called_once() # 3s > .join(1), need to cancel # run_forever cancel should all be called def test_base_pea_with_runtime_bad_cancel(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) def mock_run_forever(runtime): time.sleep(3) def mock_is_ready(*args, **kwargs): return True mocker.patch.object(ZEDRuntime, 'run_forever', mock_run_forever) mocker.patch.object(ZEDRuntime, 'is_ready', mock_is_ready) mocker.patch.object(Pea, '_cancel_runtime', bad_func) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) with Pea1(arg): time.sleep(0.1) pass teardown_spy.assert_called() run_spy.assert_called() cancel_spy.assert_called_once() # run_forever cancel should all be called @pytest.fixture() def fake_env(): os.environ['key_parent'] = 'value3' yield os.environ.pop('key_parent', None) class EnvChecker1(BaseExecutor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # pea/pod-specific assert os.environ['key1'] == 'value1' assert os.environ['key2'] == 'value2' # inherit from parent process assert os.environ['key_parent'] == 'value3' def test_pea_runtime_env_setting_in_process(fake_env): with Pea( set_pea_parser().parse_args( [ '--uses', 'EnvChecker1', '--env', 'key1=value1', '--env', 'key2=value2', '--runtime-backend', 'process', ] ) ): pass # should not affect the main process assert 'key1' not in os.environ assert 'key2' not in os.environ assert 'key_parent' in os.environ class EnvChecker2(BaseExecutor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # pea/pod-specific assert 'key1' not in os.environ assert 'key2' not in os.environ # inherit from parent process assert os.environ['key_parent'] == 'value3' def test_pea_runtime_env_setting_in_thread(fake_env): os.environ['key_parent'] = 'value3' with Pea( set_pea_parser().parse_args( [ '--uses', 'EnvChecker2', '--env', 'key1=value1', '--env', 'key2=value2', '--runtime-backend', 'thread', ] ) ): pass # should not affect the main process assert 'key1' not in os.environ assert 'key2' not in os.environ assert 'key_parent' in os.environ os.environ.pop('key_parent') @pytest.mark.parametrize( 'protocol, expected', [ ('grpc', 'GRPCRuntime'), ('websocket', 'WebSocketRuntime'), ('http', 'HTTPRuntime'), ], ) def test_gateway_args(protocol, expected): args = set_gateway_parser().parse_args( [ '--host', 'jina-custom-gateway', '--port-expose', '23456', '--protocol', protocol, ] ) p = Pea(args) assert p.runtime_cls.__name__ == expected @pytest.mark.timeout(30) @pytest.mark.slow @pytest.mark.parametrize( 'command, response_expected', [ ('IDLE', 0), ('CANCEL', 0), ('TERMINATE', 1), ('STATUS', 1), ('ACTIVATE', 1), ('DEACTIVATE', 1), ], ) def test_idle_does_not_create_response(command, response_expected): args = set_pea_parser().parse_args([]) with Pea(args) as p: msg = ControlMessage(command, pod_name='fake_pod') with zmq.Context().socket(zmq.PAIR) as socket: socket.connect(f'tcp://localhost:{p.args.port_ctrl}') socket.send_multipart(msg.dump()) assert socket.poll(timeout=1000) == response_expected
tests/unit/peapods/peas/test_pea.py
import os import time import pytest import zmq from jina.excepts import RuntimeFailToStart, RuntimeRunForeverEarlyError from jina.executors import BaseExecutor from jina.parsers import set_gateway_parser, set_pea_parser from jina.peapods import Pea from jina.peapods.runtimes.zmq.zed import ZEDRuntime from jina.types.message.common import ControlMessage def bad_func(*args, **kwargs): raise Exception('intentional error') def test_base_pea_with_runtime_bad_init(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) mocker.patch.object(ZEDRuntime, '__init__', bad_func) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') with pytest.raises(RuntimeFailToStart): with Pea1(arg): pass # teardown should be called, cancel should not be called teardown_spy.assert_not_called() run_spy.assert_not_called() cancel_spy.assert_not_called() @pytest.mark.slow def test_base_pea_with_runtime_bad_run_forever(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) def mock_run_forever(runtime): bad_func() arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) mocker.patch.object(ZEDRuntime, 'run_forever', mock_run_forever) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') with pytest.raises(RuntimeRunForeverEarlyError): with Pea1(arg): pass # teardown should be called, cancel should not be called teardown_spy.assert_called() run_spy.assert_called() cancel_spy.assert_not_called() @pytest.mark.slow def test_base_pea_with_runtime_bad_teardown(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) def mock_run_forever(*args, **kwargs): time.sleep(3) def mock_is_ready(*args, **kwargs): return True def mock_cancel(*args, **kwargs): pass mocker.patch.object(ZEDRuntime, 'run_forever', mock_run_forever) mocker.patch.object(ZEDRuntime, 'is_ready', mock_is_ready) mocker.patch.object(ZEDRuntime, 'teardown', lambda x: bad_func) mocker.patch.object(ZEDRuntime, 'cancel', lambda *args, **kwargs: mock_cancel) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) with Pea1(arg): pass teardown_spy.assert_called() run_spy.assert_called() cancel_spy.assert_called_once() # 3s > .join(1), need to cancel # run_forever cancel should all be called def test_base_pea_with_runtime_bad_cancel(mocker): class Pea1(Pea): def __init__(self, args): super().__init__(args) def mock_run_forever(runtime): time.sleep(3) def mock_is_ready(*args, **kwargs): return True mocker.patch.object(ZEDRuntime, 'run_forever', mock_run_forever) mocker.patch.object(ZEDRuntime, 'is_ready', mock_is_ready) mocker.patch.object(Pea, '_cancel_runtime', bad_func) teardown_spy = mocker.spy(ZEDRuntime, 'teardown') cancel_spy = mocker.spy(Pea, '_cancel_runtime') run_spy = mocker.spy(ZEDRuntime, 'run_forever') arg = set_pea_parser().parse_args(['--runtime-backend', 'thread']) with Pea1(arg): time.sleep(0.1) pass teardown_spy.assert_called() run_spy.assert_called() cancel_spy.assert_called_once() # run_forever cancel should all be called @pytest.fixture() def fake_env(): os.environ['key_parent'] = 'value3' yield os.environ.pop('key_parent', None) class EnvChecker1(BaseExecutor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # pea/pod-specific assert os.environ['key1'] == 'value1' assert os.environ['key2'] == 'value2' # inherit from parent process assert os.environ['key_parent'] == 'value3' def test_pea_runtime_env_setting_in_process(fake_env): with Pea( set_pea_parser().parse_args( [ '--uses', 'EnvChecker1', '--env', 'key1=value1', '--env', 'key2=value2', '--runtime-backend', 'process', ] ) ): pass # should not affect the main process assert 'key1' not in os.environ assert 'key2' not in os.environ assert 'key_parent' in os.environ class EnvChecker2(BaseExecutor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # pea/pod-specific assert 'key1' not in os.environ assert 'key2' not in os.environ # inherit from parent process assert os.environ['key_parent'] == 'value3' def test_pea_runtime_env_setting_in_thread(fake_env): os.environ['key_parent'] = 'value3' with Pea( set_pea_parser().parse_args( [ '--uses', 'EnvChecker2', '--env', 'key1=value1', '--env', 'key2=value2', '--runtime-backend', 'thread', ] ) ): pass # should not affect the main process assert 'key1' not in os.environ assert 'key2' not in os.environ assert 'key_parent' in os.environ os.environ.pop('key_parent') @pytest.mark.parametrize( 'protocol, expected', [ ('grpc', 'GRPCRuntime'), ('websocket', 'WebSocketRuntime'), ('http', 'HTTPRuntime'), ], ) def test_gateway_args(protocol, expected): args = set_gateway_parser().parse_args( [ '--host', 'jina-custom-gateway', '--port-expose', '23456', '--protocol', protocol, ] ) p = Pea(args) assert p.runtime_cls.__name__ == expected @pytest.mark.timeout(30) @pytest.mark.slow @pytest.mark.parametrize( 'command, response_expected', [ ('IDLE', 0), ('CANCEL', 0), ('TERMINATE', 1), ('STATUS', 1), ('ACTIVATE', 1), ('DEACTIVATE', 1), ], ) def test_idle_does_not_create_response(command, response_expected): args = set_pea_parser().parse_args([]) with Pea(args) as p: msg = ControlMessage(command, pod_name='fake_pod') with zmq.Context().socket(zmq.PAIR) as socket: socket.connect(f'tcp://localhost:{p.args.port_ctrl}') socket.send_multipart(msg.dump()) assert socket.poll(timeout=1000) == response_expected
0.481698
0.190329
import sys, time, array import png import weave from weave.base_info import custom_info import numpy as np from zope.interface import implements from twisted.internet import defer, reactor from twisted.internet.interfaces import IPushProducer import asynqueue from asynqueue.threads import Consumerator from mcmandelbrot.colormap import ColorMapper class my_info(custom_info): _extra_compile_args = ['-Wcpp'] class MandelbrotValuer(object): """ Returns the values (number of iterations to escape, if at all, inverted) of the Mandelbrot set at point cr + i*ci in the complex plane, for a range of real values with a constant imaginary component. C code adapted from <NAME>'s C{iterations} function at:: https://svn.enthought.com/svn/enthought/Mayavi/ branches/3.0.4/examples/mayavi/mandelbrot.py} with periodicity testing and test-interval updating adapted from Simpsons's code contribution at:: http://en.wikipedia.org/wiki/User:Simpsons_contributor/ periodicity_checking and period-2 bulb testing from Wikibooks:: http://en.wikibooks.org/wiki/Fractals/ Iterations_in_the_complex_plane/Mandelbrot_set The values are inverted, i.e., subtracted from the maximum value, so that no-escape points (technically, the only points actually in the Mandelbrot Set) have zero value and points that escape immediately have the maximum value. This allows simple mapping to the classic image with a black area in the middle. Then they are scaled to the 0.0-1.0 range, and an exponent is applied to emphasize changes at shorter escape times. Finally, they are mapped to RGB triples and returned. @ivar cm: A callable object that converts C{NumPy} array inputs in the 0.0-1.0 range to an unsigned-int8 Python array of RGB triples. """ support_code = """ bool region_test(double zr, double zr2, double zi2) { double q; // (x+1)^2 + y2 < 1/16 if (zr2 + 2*zr + 1 + zi2 < 0.0625) return(true); // q = (x-1/4)^2 + y^2 q = zr2 - 0.5*zr + 0.0625 + zi2; // q*(q+(x-1/4)) < 1/4*y^2 q *= (q + zr - 0.25); if (q < 0.25*zi2) return(true); return(false); } int eval_point(int j, int km, double cr, double ci) { int k = 1; int N = km; double zr = cr; double zi = ci; double zr2 = zr * zr, zi2 = zi * zi; // If we are in one of the two biggest "lakes," we need go no further if (region_test(zr, zr2, zi2)) return N; // Periodicity-testing variables double zrp = 0, zip = 0; int k_check = 0, N_check = 3, k_update = 0; while ( k < N ) { // Compute Z[n+1] = Z[n]^2 + C, with escape test if ( zr2+zi2 > 16.0 ) return k; zi = 2.0 * zr * zi + ci; zr = zr2 - zi2 + cr; k++; // Periodicity test: If same point is reached as previously, // there is no escape if ( zr == zrp ) if ( zi == zip ) return N; // Check if previous-value update needed if ( k_check == N_check ) { // Yes, do it zrp = zr; zip = zi; // Check again after another N_check iterations, an // interval that occasionally doubles k_check = 0; if ( k_update == 5 ) { k_update = 0; N_check *= 2; } k_update++; } k_check++; // Compute squares for next iteration zr2 = zr * zr; zi2 = zi * zi; } return k; } """ code = """ #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION int j, zint; int N = km; signed char kx, ky; double xk, yk; for (j=0; j<Nx[0]; j++) { // Evaluate five points in an X arrangement including and around the // one specified by X1(j) and ci zint = eval_point(j, km, X1(j), ci); Z1(j) = zint; kx = -1; ky = -1; while ((zint < km) && (kx < 2)) { xk = X1(j) + kx * qd; while ((zint < km) && (ky < 2)) { yk = (double)ci + ky * qd; zint = eval_point(j, km, xk, yk); Z1(j) += zint; ky += 2; } kx += 2; } if (zint == km) { // A no-escape evaluation at one point in the X is treated // as if there were no escape at any point in the X Z1(j) = 5*N; } } """ vars = ['x', 'z', 'ci', 'qd', 'km'] steepness = 3 def __init__(self, N_values): """ Constructor: @param N_values: The number of iterations to try, hence the range of integer values, for a single call to L{computeValues}. Because a 5-point star around each point is evaluated with the values summed, the actual range of values for each point is 5 times greater. """ self.N_values = N_values self.cm = ColorMapper() # The maximum possible escape value is mapped to 1.0, before # exponent and then color mapping are applied self.scale = 0.2 / N_values self.infoObj = my_info() def __call__(self, crMin, crMax, N, ci): """ Computes values for I{N} points along the real (horizontal) axis from I{crMin} to I{crMax}, with the constant imaginary component I{ci}. @return: A Python B-array I{3*N} containing RGB triples for an image representing the escape values. """ qd = 0.25 * (crMax - crMin) / N x = np.linspace(crMin, crMax, N, dtype=np.float64) z = self.computeValues(N, x, ci, qd) # Invert the iteration values so that trapped points have zero # value, then scale to the range [-1.0, +1.0] z = 2*self.scale * (5*self.N_values - z) - 1.0 # Transform to emphasize details in the middle z = self.transform(z, self.steepness) # [-1.0, +1.0] --> [0.0, 1.0] z = 0.5*(z + 1.0) # Map to my RGB colormap return self.cm(z) def computeValues(self, N, x, ci, qd): """ Computes and returns a row vector of escape iterations, integer values. """ km = self.N_values - 1 z = np.zeros(N, dtype=np.int) weave.inline( self.code, self.vars, customize=self.infoObj, support_code=self.support_code) return z def transform(self, x, k): """ Transforms the input vector I{x} by taking it to a power, which is zero (no transform) or odd-numbered. """ return np.power(x, k)
mcmandelbrot/valuer.py
import sys, time, array import png import weave from weave.base_info import custom_info import numpy as np from zope.interface import implements from twisted.internet import defer, reactor from twisted.internet.interfaces import IPushProducer import asynqueue from asynqueue.threads import Consumerator from mcmandelbrot.colormap import ColorMapper class my_info(custom_info): _extra_compile_args = ['-Wcpp'] class MandelbrotValuer(object): """ Returns the values (number of iterations to escape, if at all, inverted) of the Mandelbrot set at point cr + i*ci in the complex plane, for a range of real values with a constant imaginary component. C code adapted from <NAME>'s C{iterations} function at:: https://svn.enthought.com/svn/enthought/Mayavi/ branches/3.0.4/examples/mayavi/mandelbrot.py} with periodicity testing and test-interval updating adapted from Simpsons's code contribution at:: http://en.wikipedia.org/wiki/User:Simpsons_contributor/ periodicity_checking and period-2 bulb testing from Wikibooks:: http://en.wikibooks.org/wiki/Fractals/ Iterations_in_the_complex_plane/Mandelbrot_set The values are inverted, i.e., subtracted from the maximum value, so that no-escape points (technically, the only points actually in the Mandelbrot Set) have zero value and points that escape immediately have the maximum value. This allows simple mapping to the classic image with a black area in the middle. Then they are scaled to the 0.0-1.0 range, and an exponent is applied to emphasize changes at shorter escape times. Finally, they are mapped to RGB triples and returned. @ivar cm: A callable object that converts C{NumPy} array inputs in the 0.0-1.0 range to an unsigned-int8 Python array of RGB triples. """ support_code = """ bool region_test(double zr, double zr2, double zi2) { double q; // (x+1)^2 + y2 < 1/16 if (zr2 + 2*zr + 1 + zi2 < 0.0625) return(true); // q = (x-1/4)^2 + y^2 q = zr2 - 0.5*zr + 0.0625 + zi2; // q*(q+(x-1/4)) < 1/4*y^2 q *= (q + zr - 0.25); if (q < 0.25*zi2) return(true); return(false); } int eval_point(int j, int km, double cr, double ci) { int k = 1; int N = km; double zr = cr; double zi = ci; double zr2 = zr * zr, zi2 = zi * zi; // If we are in one of the two biggest "lakes," we need go no further if (region_test(zr, zr2, zi2)) return N; // Periodicity-testing variables double zrp = 0, zip = 0; int k_check = 0, N_check = 3, k_update = 0; while ( k < N ) { // Compute Z[n+1] = Z[n]^2 + C, with escape test if ( zr2+zi2 > 16.0 ) return k; zi = 2.0 * zr * zi + ci; zr = zr2 - zi2 + cr; k++; // Periodicity test: If same point is reached as previously, // there is no escape if ( zr == zrp ) if ( zi == zip ) return N; // Check if previous-value update needed if ( k_check == N_check ) { // Yes, do it zrp = zr; zip = zi; // Check again after another N_check iterations, an // interval that occasionally doubles k_check = 0; if ( k_update == 5 ) { k_update = 0; N_check *= 2; } k_update++; } k_check++; // Compute squares for next iteration zr2 = zr * zr; zi2 = zi * zi; } return k; } """ code = """ #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION int j, zint; int N = km; signed char kx, ky; double xk, yk; for (j=0; j<Nx[0]; j++) { // Evaluate five points in an X arrangement including and around the // one specified by X1(j) and ci zint = eval_point(j, km, X1(j), ci); Z1(j) = zint; kx = -1; ky = -1; while ((zint < km) && (kx < 2)) { xk = X1(j) + kx * qd; while ((zint < km) && (ky < 2)) { yk = (double)ci + ky * qd; zint = eval_point(j, km, xk, yk); Z1(j) += zint; ky += 2; } kx += 2; } if (zint == km) { // A no-escape evaluation at one point in the X is treated // as if there were no escape at any point in the X Z1(j) = 5*N; } } """ vars = ['x', 'z', 'ci', 'qd', 'km'] steepness = 3 def __init__(self, N_values): """ Constructor: @param N_values: The number of iterations to try, hence the range of integer values, for a single call to L{computeValues}. Because a 5-point star around each point is evaluated with the values summed, the actual range of values for each point is 5 times greater. """ self.N_values = N_values self.cm = ColorMapper() # The maximum possible escape value is mapped to 1.0, before # exponent and then color mapping are applied self.scale = 0.2 / N_values self.infoObj = my_info() def __call__(self, crMin, crMax, N, ci): """ Computes values for I{N} points along the real (horizontal) axis from I{crMin} to I{crMax}, with the constant imaginary component I{ci}. @return: A Python B-array I{3*N} containing RGB triples for an image representing the escape values. """ qd = 0.25 * (crMax - crMin) / N x = np.linspace(crMin, crMax, N, dtype=np.float64) z = self.computeValues(N, x, ci, qd) # Invert the iteration values so that trapped points have zero # value, then scale to the range [-1.0, +1.0] z = 2*self.scale * (5*self.N_values - z) - 1.0 # Transform to emphasize details in the middle z = self.transform(z, self.steepness) # [-1.0, +1.0] --> [0.0, 1.0] z = 0.5*(z + 1.0) # Map to my RGB colormap return self.cm(z) def computeValues(self, N, x, ci, qd): """ Computes and returns a row vector of escape iterations, integer values. """ km = self.N_values - 1 z = np.zeros(N, dtype=np.int) weave.inline( self.code, self.vars, customize=self.infoObj, support_code=self.support_code) return z def transform(self, x, k): """ Transforms the input vector I{x} by taking it to a power, which is zero (no transform) or odd-numbered. """ return np.power(x, k)
0.648244
0.421135
from pathlib import Path class Handheld: def __init__(self, instruction_file): self.accumulator = 0 # parse to function eval format self.instructions = [(inst.split()[0], inst.split()[1]) for inst in Path(input_file).read_text().splitlines()] self.instruction_counter = [0] * len(self.instructions) self.index = 0 def reset(self): self.instruction_counter = [0] * len(self.instructions) self.index = 0 self.accumulator = 0 def next(self): # program finished if self.index == len(self.instructions): return False elif self.index > len(self.instructions): raise RuntimeError(f'Invalid index at {self.index}') self.instruction_counter[self.index] += 1 if self.instruction_counter[self.index] > 1: raise RuntimeError('Infinite loop') next_inst = self.instructions[self.index] eval(f'self.{next_inst[0]}({next_inst[1]})') return True def fix(self): for i in range(len(self.instructions)): orig_instruction = self.instructions[i] if orig_instruction[0] == 'nop': self.instructions[i] = ('jmp', orig_instruction[1]) elif orig_instruction[0] == 'jmp': self.instructions[i] = ('nop', orig_instruction[1]) try: self.run() return except RuntimeError as e: self.instructions[i] = orig_instruction continue def acc(self, value): self.accumulator += value self.index += 1 def jmp(self, step): self.index += step def nop(self, value): self.index += 1 def run(self): self.reset() keep_running = True while keep_running: keep_running = self.next() def solve_first(input_file): handheld = Handheld(input_file) try: handheld.run() except RuntimeError as e: print(str(e) + f' --> Accumulator at {handheld.accumulator}') def solve_second(input_file): handheld = Handheld(input_file) handheld.fix() try: handheld.run() print(f'Program finished --> Accumulator at {handheld.accumulator}') except RuntimeError as e: print(str(e) + f' --> Accumulator at {handheld.accumulator}') if __name__ == "__main__": input_file = 'input.txt' print("Solution to first puzzle:") solve_first(input_file) print("Solution to second puzzle:") solve_second(input_file)
2020/day8/solve.py
from pathlib import Path class Handheld: def __init__(self, instruction_file): self.accumulator = 0 # parse to function eval format self.instructions = [(inst.split()[0], inst.split()[1]) for inst in Path(input_file).read_text().splitlines()] self.instruction_counter = [0] * len(self.instructions) self.index = 0 def reset(self): self.instruction_counter = [0] * len(self.instructions) self.index = 0 self.accumulator = 0 def next(self): # program finished if self.index == len(self.instructions): return False elif self.index > len(self.instructions): raise RuntimeError(f'Invalid index at {self.index}') self.instruction_counter[self.index] += 1 if self.instruction_counter[self.index] > 1: raise RuntimeError('Infinite loop') next_inst = self.instructions[self.index] eval(f'self.{next_inst[0]}({next_inst[1]})') return True def fix(self): for i in range(len(self.instructions)): orig_instruction = self.instructions[i] if orig_instruction[0] == 'nop': self.instructions[i] = ('jmp', orig_instruction[1]) elif orig_instruction[0] == 'jmp': self.instructions[i] = ('nop', orig_instruction[1]) try: self.run() return except RuntimeError as e: self.instructions[i] = orig_instruction continue def acc(self, value): self.accumulator += value self.index += 1 def jmp(self, step): self.index += step def nop(self, value): self.index += 1 def run(self): self.reset() keep_running = True while keep_running: keep_running = self.next() def solve_first(input_file): handheld = Handheld(input_file) try: handheld.run() except RuntimeError as e: print(str(e) + f' --> Accumulator at {handheld.accumulator}') def solve_second(input_file): handheld = Handheld(input_file) handheld.fix() try: handheld.run() print(f'Program finished --> Accumulator at {handheld.accumulator}') except RuntimeError as e: print(str(e) + f' --> Accumulator at {handheld.accumulator}') if __name__ == "__main__": input_file = 'input.txt' print("Solution to first puzzle:") solve_first(input_file) print("Solution to second puzzle:") solve_second(input_file)
0.424173
0.278186
import tempfile import unittest import mock import yaml from py import release class ReleaseTest(unittest.TestCase): @mock.patch("py.release.os.makedirs") @mock.patch("py.release.os.symlink") @mock.patch("py.release.util.install_go_deps") @mock.patch("py.release.util.clone_repo") @mock.patch("py.release.build_and_push") def test_build_postsubmit(self, mock_build_and_push, mock_clone, _mock_install, _mock_os, _mock_makedirs): # pylint: disable=no-self-use parser = release.build_parser() args = parser.parse_args(["postsubmit", "--src_dir=/top/src_dir"]) release.build_postsubmit(args) mock_build_and_push.assert_called_once_with( '/top/src_dir/go', '/top/src_dir/go/src/github.com/tensorflow/k8s', mock.ANY) mock_clone.assert_called_once_with( '/top/src_dir/git_tensorflow_k8s', 'tensorflow', 'k8s', None, None) @mock.patch("py.release.os.makedirs") @mock.patch("py.release.os.symlink") @mock.patch("py.release.util.install_go_deps") @mock.patch("py.release.util.clone_repo") @mock.patch("py.release.build_and_push") def test_build_pr(self, mock_build_and_push, mock_clone, _mock_install, _mock_os, _mock_makedirs): # pylint: disable=no-self-use parser = release.build_parser() args = parser.parse_args(["pr", "--pr=10", "--commit=22", "--src_dir=/top/src_dir"]) release.build_pr(args) mock_build_and_push.assert_called_once_with( '/top/src_dir/go', '/top/src_dir/go/src/github.com/tensorflow/k8s', mock.ANY) mock_clone.assert_called_once_with( "/top/src_dir/git_tensorflow_k8s", "tensorflow", "k8s", "22", ["pull/10/head:pr"]) def test_update_values(self): with tempfile.NamedTemporaryFile(delete=False) as hf: hf.write("""# Test file image: gcr.io/image:latest ## Install Default RBAC roles and bindings rbac: install: false apiVersion: v1beta1""") values_file = hf.name release.update_values(hf.name, "gcr.io/image:v20171019") with open(values_file) as hf: output = hf.read() expected = """# Test file image: gcr.io/image:v20171019 ## Install Default RBAC roles and bindings rbac: install: false apiVersion: v1beta1""" self.assertEquals(expected, output) def test_update_chart_file(self): with tempfile.NamedTemporaryFile(delete=False) as hf: hf.write(""" name: tf-job-operator-chart home: https://github.com/jlewi/mlkube.io version: 0.1.0 appVersion: 0.1.0 """) chart_file = hf.name release.update_chart(chart_file, "v20171019") with open(chart_file) as hf: output = yaml.load(hf) expected = { "name": "tf-job-operator-chart", "home": "https://github.com/jlewi/mlkube.io", "version": "0.1.0-v20171019", "appVersion": "0.1.0-v20171019", } self.assertEquals(expected, output) if __name__ == "__main__": unittest.main()
py/release_test.py
import tempfile import unittest import mock import yaml from py import release class ReleaseTest(unittest.TestCase): @mock.patch("py.release.os.makedirs") @mock.patch("py.release.os.symlink") @mock.patch("py.release.util.install_go_deps") @mock.patch("py.release.util.clone_repo") @mock.patch("py.release.build_and_push") def test_build_postsubmit(self, mock_build_and_push, mock_clone, _mock_install, _mock_os, _mock_makedirs): # pylint: disable=no-self-use parser = release.build_parser() args = parser.parse_args(["postsubmit", "--src_dir=/top/src_dir"]) release.build_postsubmit(args) mock_build_and_push.assert_called_once_with( '/top/src_dir/go', '/top/src_dir/go/src/github.com/tensorflow/k8s', mock.ANY) mock_clone.assert_called_once_with( '/top/src_dir/git_tensorflow_k8s', 'tensorflow', 'k8s', None, None) @mock.patch("py.release.os.makedirs") @mock.patch("py.release.os.symlink") @mock.patch("py.release.util.install_go_deps") @mock.patch("py.release.util.clone_repo") @mock.patch("py.release.build_and_push") def test_build_pr(self, mock_build_and_push, mock_clone, _mock_install, _mock_os, _mock_makedirs): # pylint: disable=no-self-use parser = release.build_parser() args = parser.parse_args(["pr", "--pr=10", "--commit=22", "--src_dir=/top/src_dir"]) release.build_pr(args) mock_build_and_push.assert_called_once_with( '/top/src_dir/go', '/top/src_dir/go/src/github.com/tensorflow/k8s', mock.ANY) mock_clone.assert_called_once_with( "/top/src_dir/git_tensorflow_k8s", "tensorflow", "k8s", "22", ["pull/10/head:pr"]) def test_update_values(self): with tempfile.NamedTemporaryFile(delete=False) as hf: hf.write("""# Test file image: gcr.io/image:latest ## Install Default RBAC roles and bindings rbac: install: false apiVersion: v1beta1""") values_file = hf.name release.update_values(hf.name, "gcr.io/image:v20171019") with open(values_file) as hf: output = hf.read() expected = """# Test file image: gcr.io/image:v20171019 ## Install Default RBAC roles and bindings rbac: install: false apiVersion: v1beta1""" self.assertEquals(expected, output) def test_update_chart_file(self): with tempfile.NamedTemporaryFile(delete=False) as hf: hf.write(""" name: tf-job-operator-chart home: https://github.com/jlewi/mlkube.io version: 0.1.0 appVersion: 0.1.0 """) chart_file = hf.name release.update_chart(chart_file, "v20171019") with open(chart_file) as hf: output = yaml.load(hf) expected = { "name": "tf-job-operator-chart", "home": "https://github.com/jlewi/mlkube.io", "version": "0.1.0-v20171019", "appVersion": "0.1.0-v20171019", } self.assertEquals(expected, output) if __name__ == "__main__": unittest.main()
0.44553
0.241389
# coding=utf-8 import time from datetime import datetime from django.db import models from climate.models import TempHumidValue from plugins.arduino.models import Arduino, set_command from events.utils import event_setter MODEL = 'SensorDS18D20' LOCATION_TYPES = ( ('inside', 'В помещении'), ('outside', 'На улице'), ('other', 'Другое'), ) class SensorDS18D20(models.Model): """ Модель для добавления новых датчиков температуры DS18D20. """ CONTAINER = 'climate' TYPE = 'TempHumidSensor' WIDGET_TYPE = 'positioned' name = models.SlugField( max_length=20, verbose_name='Системное имя', unique=True ) controller = models.ForeignKey( Arduino, verbose_name='Контроллер Arduino', ) controller_pin = models.PositiveSmallIntegerField( verbose_name='Вывод (pin) на Arduino', ) location_type = models.SlugField( choices=LOCATION_TYPES, default='inside', verbose_name='Тип расположение датчика', ) class Meta(object): db_table = 'climate_sensords18d20_ext' verbose_name = 'Датчик DS18D20' verbose_name_plural = 'Датчики DS18D20' def __unicode__(self): return self.name def set_command(self): cmd = 'ds18d20:%d' % (self.controller_pin,) set_command(self, cmd) def set_result(self, result): if result is not None: try: temp = int(result) # Проверяем полученные данные на возможные ошибки показаний. if self.check_data(temp): # Добавляем данные датчика в таблицу БД только, если они отличаются от # предыдущего показания, иначе обновляем время у предыдущего показания. # Это сделано для более быстрой выгрузки данных для графиков, т.к. # количество точек существенно сокращается. try: value = TempHumidValue.objects.filter(object_id=self.id).latest('id') except TempHumidValue.DoesNotExist: value = None if value is not None and value.temperature == temp: value.datetime = datetime.now() value.save() else: TempHumidValue.objects.create(content_object=self, temperature=temp, humidity=0) self.set_event(temp) except ValueError: pass def set_event(self, temp): """ Запись в журнал событий данных, находящихся за пределами нормы. :param temp: int Значение температуры """ level = 2 if self.location_type == 'inside': if 28 < temp <= 40 or 13 <= temp < 18: msg = u'{0}: Температура вне нормы 18-28 С'.format(self.name) event_setter('climate', msg, 3) level = 3 elif temp > 40 or temp < 13: msg = u'{0}: Температура за границами 13-40 С'.format(self.name) event_setter('climate', msg, 4, email=True) level = 4 elif self.location_type == 'outside': if temp > 35: msg = u'{0}: Температура на улице более 35 С'.format(self.name) event_setter('climate', msg, 3) level = 3 elif temp < -15: msg = u'{0}: Температура на улице менее -15 С'.format(self.name) event_setter('climate', msg, 3) level = 3 self.level = level self.save() def check_data(self, temp): """ Проверка показаний датчика температуры и влажности на определенные условия. Функция нужна для многократной проверки показаний, если они превысили некоторые пороговые значения, т.к. датчики иногда врут, а повторный опрос происходит раз в 5 мин (см. RUN_EVERY_MINS). Для DS18D20: -55 < temp < 125 +-0.5C :param temp: int Значение температуры :returns: возвращает True, если показания попали за границы "нормальных" """ return temp < 125 or temp > -55
Servus/plugins/arduino_ds18d20/models.py
# coding=utf-8 import time from datetime import datetime from django.db import models from climate.models import TempHumidValue from plugins.arduino.models import Arduino, set_command from events.utils import event_setter MODEL = 'SensorDS18D20' LOCATION_TYPES = ( ('inside', 'В помещении'), ('outside', 'На улице'), ('other', 'Другое'), ) class SensorDS18D20(models.Model): """ Модель для добавления новых датчиков температуры DS18D20. """ CONTAINER = 'climate' TYPE = 'TempHumidSensor' WIDGET_TYPE = 'positioned' name = models.SlugField( max_length=20, verbose_name='Системное имя', unique=True ) controller = models.ForeignKey( Arduino, verbose_name='Контроллер Arduino', ) controller_pin = models.PositiveSmallIntegerField( verbose_name='Вывод (pin) на Arduino', ) location_type = models.SlugField( choices=LOCATION_TYPES, default='inside', verbose_name='Тип расположение датчика', ) class Meta(object): db_table = 'climate_sensords18d20_ext' verbose_name = 'Датчик DS18D20' verbose_name_plural = 'Датчики DS18D20' def __unicode__(self): return self.name def set_command(self): cmd = 'ds18d20:%d' % (self.controller_pin,) set_command(self, cmd) def set_result(self, result): if result is not None: try: temp = int(result) # Проверяем полученные данные на возможные ошибки показаний. if self.check_data(temp): # Добавляем данные датчика в таблицу БД только, если они отличаются от # предыдущего показания, иначе обновляем время у предыдущего показания. # Это сделано для более быстрой выгрузки данных для графиков, т.к. # количество точек существенно сокращается. try: value = TempHumidValue.objects.filter(object_id=self.id).latest('id') except TempHumidValue.DoesNotExist: value = None if value is not None and value.temperature == temp: value.datetime = datetime.now() value.save() else: TempHumidValue.objects.create(content_object=self, temperature=temp, humidity=0) self.set_event(temp) except ValueError: pass def set_event(self, temp): """ Запись в журнал событий данных, находящихся за пределами нормы. :param temp: int Значение температуры """ level = 2 if self.location_type == 'inside': if 28 < temp <= 40 or 13 <= temp < 18: msg = u'{0}: Температура вне нормы 18-28 С'.format(self.name) event_setter('climate', msg, 3) level = 3 elif temp > 40 or temp < 13: msg = u'{0}: Температура за границами 13-40 С'.format(self.name) event_setter('climate', msg, 4, email=True) level = 4 elif self.location_type == 'outside': if temp > 35: msg = u'{0}: Температура на улице более 35 С'.format(self.name) event_setter('climate', msg, 3) level = 3 elif temp < -15: msg = u'{0}: Температура на улице менее -15 С'.format(self.name) event_setter('climate', msg, 3) level = 3 self.level = level self.save() def check_data(self, temp): """ Проверка показаний датчика температуры и влажности на определенные условия. Функция нужна для многократной проверки показаний, если они превысили некоторые пороговые значения, т.к. датчики иногда врут, а повторный опрос происходит раз в 5 мин (см. RUN_EVERY_MINS). Для DS18D20: -55 < temp < 125 +-0.5C :param temp: int Значение температуры :returns: возвращает True, если показания попали за границы "нормальных" """ return temp < 125 or temp > -55
0.309232
0.199522
from pyspark.context import SparkContext from pyspark.sql.dataframe import DataFrame from pyspark.rdd import RDD from pyspark.sql import SparkSession from h2o.frame import H2OFrame from pysparkling.initializer import Initializer from pysparkling.conf import H2OConf import h2o from pysparkling.conversions import FrameConversions as fc import warnings import atexit import sys def _monkey_patch_H2OFrame(hc): @staticmethod def determine_java_vec_type(vec): if vec.isCategorical(): return "enum" elif vec.isUUID(): return "uuid" elif vec.isString(): return "string" elif vec.isInt(): if vec.isTime(): return "time" else: return "int" else: return "real" def get_java_h2o_frame(self): # Can we use cached H2O frame? # Only if we cached it before and cache was not invalidated by rapids expression if not hasattr(self, '_java_frame') or self._java_frame is None \ or self._ex._cache._id is None or self._ex._cache.is_empty() \ or not self._ex._cache._id == self._java_frame_sid: # Note: self.frame_id will trigger frame evaluation self._java_frame = hc._jhc.asH2OFrame(self.frame_id) return self._java_frame @staticmethod def from_java_h2o_frame(h2o_frame, h2o_frame_id, cols_limit=100): # Cache Java reference to the backend frame sid = h2o_frame_id.toString() cols = cols_limit if h2o_frame.numCols() > cols_limit else -1 fr = H2OFrame.get_frame(sid, cols=cols, light=True) fr._java_frame = h2o_frame fr._java_frame_sid = sid fr._backed_by_java_obj = True return fr H2OFrame.determine_java_vec_type = determine_java_vec_type H2OFrame.from_java_h2o_frame = from_java_h2o_frame H2OFrame.get_java_h2o_frame = get_java_h2o_frame def _is_of_simple_type(rdd): if not isinstance(rdd, RDD): raise ValueError('rdd is not of type pyspark.rdd.RDD') # Python 3.6 does not contain type long # this code ensures we are compatible with both, python 2.7 and python 3.6 if sys.version_info > (3,): type_checks = (str, int, bool, float) else: type_checks = (str, int, bool, long, float) if isinstance(rdd.first(), type_checks): return True else: return False def _get_first(rdd): if rdd.isEmpty(): raise ValueError('rdd is empty') return rdd.first() class H2OContext(object): def __init__(self, spark_session): """ This constructor is used just to initialize the environment. It does not start H2OContext. To start H2OContext use one of the getOrCreate methods. This constructor is internally used in those methods """ try: self.__do_init(spark_session) _monkey_patch_H2OFrame(self) # Load sparkling water jar only if it hasn't been already loaded Initializer.load_sparkling_jar(self._sc) except: raise def __do_init(self, spark_session): self._spark_session = spark_session self._sc = self._spark_session._sc self._sql_context = self._spark_session._wrapped self._jsql_context = self._spark_session._jwrapped self._jspark_session = self._spark_session._jsparkSession self._jvm = self._spark_session._jvm self.is_initialized = False @staticmethod def getOrCreate(spark, conf=None, verbose=True, **kwargs): """ Get existing or create new H2OContext based on provided H2O configuration. If the conf parameter is set then configuration from it is used. Otherwise the configuration properties passed to Sparkling Water are used. If the values are not found the default values are used in most of the cases. The default cluster mode is internal, ie. spark.ext.h2o.external.cluster.mode=false param - Spark Context or Spark Session returns H2O Context """ spark_session = spark if isinstance(spark, SparkContext): warnings.warn("Method H2OContext.getOrCreate with argument of type SparkContext is deprecated and " + "parameter of type SparkSession is preferred.") spark_session = SparkSession.builder.getOrCreate() h2o_context = H2OContext(spark_session) jvm = h2o_context._jvm # JVM jspark_session = h2o_context._jspark_session # Java Spark Session if conf is not None: selected_conf = conf else: selected_conf = H2OConf(spark_session) # Create backing Java H2OContext jhc = jvm.org.apache.spark.h2o.JavaH2OContext.getOrCreate(jspark_session, selected_conf._jconf) h2o_context._jhc = jhc h2o_context._conf = selected_conf h2o_context._client_ip = jhc.h2oLocalClientIp() h2o_context._client_port = jhc.h2oLocalClientPort() # Create H2O REST API client h2o.connect(ip=h2o_context._client_ip, port=h2o_context._client_port, verbose=verbose, **kwargs) h2o_context.is_initialized = True if verbose: print(h2o_context) # Stop h2o when running standalone pysparkling scripts, only in client deploy mode #, so the user does not need explicitly close h2o. # In driver mode the application would call exit which is handled by Spark AM as failure deploy_mode = spark_session.sparkContext._conf.get("spark.submit.deployMode") if deploy_mode != "cluster": atexit.register(lambda: h2o_context.__stop()) return h2o_context def __stop(self): try: h2o.cluster().shutdown() except: pass def stop(self): warnings.warn("Stopping H2OContext from PySparkling is not fully supported. Please restart your PySpark session and create a new H2OContext.") def __del__(self): self.stop() def __str__(self): if self.is_initialized: return self._jhc.toString() else: return "H2OContext: not initialized, call H2OContext.getOrCreate(spark) or H2OContext.getOrCreate(spark, conf)" def __repr__(self): self.show() return "" def show(self): print(self) def get_conf(self): return self._conf def as_spark_frame(self, h2o_frame, copy_metadata=True): """ Transforms given H2OFrame to Spark DataFrame Parameters ---------- h2o_frame : H2OFrame copy_metadata: Bool = True Returns ------- Spark DataFrame """ if isinstance(h2o_frame, H2OFrame): j_h2o_frame = h2o_frame.get_java_h2o_frame() jdf = self._jhc.asDataFrame(j_h2o_frame, copy_metadata, self._jsql_context) df = DataFrame(jdf, self._sql_context) # Attach h2o_frame to dataframe which forces python not to delete the frame when we leave the scope of this # method. # Without this, after leaving this method python would garbage collect the frame since it's not used # anywhere and spark. when executing any action on this dataframe, will fail since the frame # would be missing. df._h2o_frame = h2o_frame return df def as_h2o_frame(self, dataframe, framename=None): """ Transforms given Spark RDD or DataFrame to H2OFrame. Parameters ---------- dataframe : Spark RDD or DataFrame framename : Optional name for resulting H2OFrame Returns ------- H2OFrame which contains data of original input Spark data structure """ if isinstance(dataframe, DataFrame): return fc._as_h2o_frame_from_dataframe(self, dataframe, framename) elif isinstance(dataframe, RDD): # First check if the type T in RDD[T] is one of the python "primitive" types # String, Boolean, Int and Double (Python Long is converted to java.lang.BigInteger) if _is_of_simple_type(dataframe): first = _get_first(dataframe) # Make this code compatible with python 3.6 and python 2.7 global long if sys.version_info > (3,): long = int if isinstance(first, str): return fc._as_h2o_frame_from_RDD_String(self, dataframe, framename) elif isinstance(first, bool): return fc._as_h2o_frame_from_RDD_Bool(self, dataframe, framename) elif (isinstance(dataframe.min(), int) and isinstance(dataframe.max(), int)) or (isinstance(dataframe.min(), long) and isinstance(dataframe.max(), long)): if dataframe.min() >= self._jvm.Integer.MIN_VALUE and dataframe.max() <= self._jvm.Integer.MAX_VALUE: return fc._as_h2o_frame_from_RDD_Int(self, dataframe, framename) elif dataframe.min() >= self._jvm.Long.MIN_VALUE and dataframe.max() <= self._jvm.Long.MAX_VALUE: return fc._as_h2o_frame_from_RDD_Long(self, dataframe, framename) else: raise ValueError('Numbers in RDD Too Big') elif isinstance(first, float): return fc._as_h2o_frame_from_RDD_Float(self, dataframe, framename) else: return fc._as_h2o_frame_from_complex_type(self, dataframe, framename)
py/pysparkling/context.py
from pyspark.context import SparkContext from pyspark.sql.dataframe import DataFrame from pyspark.rdd import RDD from pyspark.sql import SparkSession from h2o.frame import H2OFrame from pysparkling.initializer import Initializer from pysparkling.conf import H2OConf import h2o from pysparkling.conversions import FrameConversions as fc import warnings import atexit import sys def _monkey_patch_H2OFrame(hc): @staticmethod def determine_java_vec_type(vec): if vec.isCategorical(): return "enum" elif vec.isUUID(): return "uuid" elif vec.isString(): return "string" elif vec.isInt(): if vec.isTime(): return "time" else: return "int" else: return "real" def get_java_h2o_frame(self): # Can we use cached H2O frame? # Only if we cached it before and cache was not invalidated by rapids expression if not hasattr(self, '_java_frame') or self._java_frame is None \ or self._ex._cache._id is None or self._ex._cache.is_empty() \ or not self._ex._cache._id == self._java_frame_sid: # Note: self.frame_id will trigger frame evaluation self._java_frame = hc._jhc.asH2OFrame(self.frame_id) return self._java_frame @staticmethod def from_java_h2o_frame(h2o_frame, h2o_frame_id, cols_limit=100): # Cache Java reference to the backend frame sid = h2o_frame_id.toString() cols = cols_limit if h2o_frame.numCols() > cols_limit else -1 fr = H2OFrame.get_frame(sid, cols=cols, light=True) fr._java_frame = h2o_frame fr._java_frame_sid = sid fr._backed_by_java_obj = True return fr H2OFrame.determine_java_vec_type = determine_java_vec_type H2OFrame.from_java_h2o_frame = from_java_h2o_frame H2OFrame.get_java_h2o_frame = get_java_h2o_frame def _is_of_simple_type(rdd): if not isinstance(rdd, RDD): raise ValueError('rdd is not of type pyspark.rdd.RDD') # Python 3.6 does not contain type long # this code ensures we are compatible with both, python 2.7 and python 3.6 if sys.version_info > (3,): type_checks = (str, int, bool, float) else: type_checks = (str, int, bool, long, float) if isinstance(rdd.first(), type_checks): return True else: return False def _get_first(rdd): if rdd.isEmpty(): raise ValueError('rdd is empty') return rdd.first() class H2OContext(object): def __init__(self, spark_session): """ This constructor is used just to initialize the environment. It does not start H2OContext. To start H2OContext use one of the getOrCreate methods. This constructor is internally used in those methods """ try: self.__do_init(spark_session) _monkey_patch_H2OFrame(self) # Load sparkling water jar only if it hasn't been already loaded Initializer.load_sparkling_jar(self._sc) except: raise def __do_init(self, spark_session): self._spark_session = spark_session self._sc = self._spark_session._sc self._sql_context = self._spark_session._wrapped self._jsql_context = self._spark_session._jwrapped self._jspark_session = self._spark_session._jsparkSession self._jvm = self._spark_session._jvm self.is_initialized = False @staticmethod def getOrCreate(spark, conf=None, verbose=True, **kwargs): """ Get existing or create new H2OContext based on provided H2O configuration. If the conf parameter is set then configuration from it is used. Otherwise the configuration properties passed to Sparkling Water are used. If the values are not found the default values are used in most of the cases. The default cluster mode is internal, ie. spark.ext.h2o.external.cluster.mode=false param - Spark Context or Spark Session returns H2O Context """ spark_session = spark if isinstance(spark, SparkContext): warnings.warn("Method H2OContext.getOrCreate with argument of type SparkContext is deprecated and " + "parameter of type SparkSession is preferred.") spark_session = SparkSession.builder.getOrCreate() h2o_context = H2OContext(spark_session) jvm = h2o_context._jvm # JVM jspark_session = h2o_context._jspark_session # Java Spark Session if conf is not None: selected_conf = conf else: selected_conf = H2OConf(spark_session) # Create backing Java H2OContext jhc = jvm.org.apache.spark.h2o.JavaH2OContext.getOrCreate(jspark_session, selected_conf._jconf) h2o_context._jhc = jhc h2o_context._conf = selected_conf h2o_context._client_ip = jhc.h2oLocalClientIp() h2o_context._client_port = jhc.h2oLocalClientPort() # Create H2O REST API client h2o.connect(ip=h2o_context._client_ip, port=h2o_context._client_port, verbose=verbose, **kwargs) h2o_context.is_initialized = True if verbose: print(h2o_context) # Stop h2o when running standalone pysparkling scripts, only in client deploy mode #, so the user does not need explicitly close h2o. # In driver mode the application would call exit which is handled by Spark AM as failure deploy_mode = spark_session.sparkContext._conf.get("spark.submit.deployMode") if deploy_mode != "cluster": atexit.register(lambda: h2o_context.__stop()) return h2o_context def __stop(self): try: h2o.cluster().shutdown() except: pass def stop(self): warnings.warn("Stopping H2OContext from PySparkling is not fully supported. Please restart your PySpark session and create a new H2OContext.") def __del__(self): self.stop() def __str__(self): if self.is_initialized: return self._jhc.toString() else: return "H2OContext: not initialized, call H2OContext.getOrCreate(spark) or H2OContext.getOrCreate(spark, conf)" def __repr__(self): self.show() return "" def show(self): print(self) def get_conf(self): return self._conf def as_spark_frame(self, h2o_frame, copy_metadata=True): """ Transforms given H2OFrame to Spark DataFrame Parameters ---------- h2o_frame : H2OFrame copy_metadata: Bool = True Returns ------- Spark DataFrame """ if isinstance(h2o_frame, H2OFrame): j_h2o_frame = h2o_frame.get_java_h2o_frame() jdf = self._jhc.asDataFrame(j_h2o_frame, copy_metadata, self._jsql_context) df = DataFrame(jdf, self._sql_context) # Attach h2o_frame to dataframe which forces python not to delete the frame when we leave the scope of this # method. # Without this, after leaving this method python would garbage collect the frame since it's not used # anywhere and spark. when executing any action on this dataframe, will fail since the frame # would be missing. df._h2o_frame = h2o_frame return df def as_h2o_frame(self, dataframe, framename=None): """ Transforms given Spark RDD or DataFrame to H2OFrame. Parameters ---------- dataframe : Spark RDD or DataFrame framename : Optional name for resulting H2OFrame Returns ------- H2OFrame which contains data of original input Spark data structure """ if isinstance(dataframe, DataFrame): return fc._as_h2o_frame_from_dataframe(self, dataframe, framename) elif isinstance(dataframe, RDD): # First check if the type T in RDD[T] is one of the python "primitive" types # String, Boolean, Int and Double (Python Long is converted to java.lang.BigInteger) if _is_of_simple_type(dataframe): first = _get_first(dataframe) # Make this code compatible with python 3.6 and python 2.7 global long if sys.version_info > (3,): long = int if isinstance(first, str): return fc._as_h2o_frame_from_RDD_String(self, dataframe, framename) elif isinstance(first, bool): return fc._as_h2o_frame_from_RDD_Bool(self, dataframe, framename) elif (isinstance(dataframe.min(), int) and isinstance(dataframe.max(), int)) or (isinstance(dataframe.min(), long) and isinstance(dataframe.max(), long)): if dataframe.min() >= self._jvm.Integer.MIN_VALUE and dataframe.max() <= self._jvm.Integer.MAX_VALUE: return fc._as_h2o_frame_from_RDD_Int(self, dataframe, framename) elif dataframe.min() >= self._jvm.Long.MIN_VALUE and dataframe.max() <= self._jvm.Long.MAX_VALUE: return fc._as_h2o_frame_from_RDD_Long(self, dataframe, framename) else: raise ValueError('Numbers in RDD Too Big') elif isinstance(first, float): return fc._as_h2o_frame_from_RDD_Float(self, dataframe, framename) else: return fc._as_h2o_frame_from_complex_type(self, dataframe, framename)
0.596081
0.267242
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import numpy as np import tensorflow as tf from Model import Model class Classifier(object): def __init__(self): self.graph = None self.output_operation = None self.input_operation = None self.label_file = None self.sess = None self.config() def classify(self, image): input_height = 299 input_width = 299 input_mean = 0 input_std = 255 t = self.read_tensor_from_image_file( image, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std) results = self.sess.run(self.output_operation.outputs[0], { self.input_operation.outputs[0]: t }) results = np.squeeze(results) top_k = results.argsort()[-5:][::-1] labels = self.load_labels(self.label_file) resp = [] for i in top_k: resp.append(Model(str(labels[i]), float(results[i]))) return resp def load_graph(self, model_file): graph = tf.Graph() graph_def = tf.GraphDef() with open(model_file, "rb") as f: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def) return graph def read_tensor_from_image_file(self, file_name, input_height=299, input_width=299, input_mean=0, input_std=255): input_name = "file_reader" output_name = "normalized" file_reader = tf.read_file(file_name, input_name) if file_name.endswith(".png"): image_reader = tf.image.decode_png( file_reader, channels=3, name="png_reader") elif file_name.endswith(".gif"): image_reader = tf.squeeze( tf.image.decode_gif(file_reader, name="gif_reader")) elif file_name.endswith(".bmp"): image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader") else: image_reader = tf.image.decode_jpeg( file_reader, channels=3, name="jpeg_reader") float_caster = tf.cast(image_reader, tf.float32) dims_expander = tf.expand_dims(float_caster, 0) resized = tf.image.resize_bilinear( dims_expander, [input_height, input_width]) normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) sess = tf.Session() result = sess.run(normalized) return result def load_labels(self, label_file): label = [] proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() for l in proto_as_ascii_lines: label.append(l.rstrip()) return label def config(self): file_name = "tensorflow/examples/label_image/data/grace_hopper.jpg" input_layer = "Placeholder" output_layer = "final_result" model_file = "classifier/logs/output_graph.pb" self.label_file = "classifier/logs/output_labels.txt" self.graph = self.load_graph(model_file) input_name = "import/" + input_layer output_name = "import/" + output_layer self.input_operation = self.graph.get_operation_by_name(input_name) self.output_operation = self.graph.get_operation_by_name(output_name) self.sess = tf.Session(graph=self.graph)
classifier/Classifier.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import numpy as np import tensorflow as tf from Model import Model class Classifier(object): def __init__(self): self.graph = None self.output_operation = None self.input_operation = None self.label_file = None self.sess = None self.config() def classify(self, image): input_height = 299 input_width = 299 input_mean = 0 input_std = 255 t = self.read_tensor_from_image_file( image, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std) results = self.sess.run(self.output_operation.outputs[0], { self.input_operation.outputs[0]: t }) results = np.squeeze(results) top_k = results.argsort()[-5:][::-1] labels = self.load_labels(self.label_file) resp = [] for i in top_k: resp.append(Model(str(labels[i]), float(results[i]))) return resp def load_graph(self, model_file): graph = tf.Graph() graph_def = tf.GraphDef() with open(model_file, "rb") as f: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def) return graph def read_tensor_from_image_file(self, file_name, input_height=299, input_width=299, input_mean=0, input_std=255): input_name = "file_reader" output_name = "normalized" file_reader = tf.read_file(file_name, input_name) if file_name.endswith(".png"): image_reader = tf.image.decode_png( file_reader, channels=3, name="png_reader") elif file_name.endswith(".gif"): image_reader = tf.squeeze( tf.image.decode_gif(file_reader, name="gif_reader")) elif file_name.endswith(".bmp"): image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader") else: image_reader = tf.image.decode_jpeg( file_reader, channels=3, name="jpeg_reader") float_caster = tf.cast(image_reader, tf.float32) dims_expander = tf.expand_dims(float_caster, 0) resized = tf.image.resize_bilinear( dims_expander, [input_height, input_width]) normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) sess = tf.Session() result = sess.run(normalized) return result def load_labels(self, label_file): label = [] proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() for l in proto_as_ascii_lines: label.append(l.rstrip()) return label def config(self): file_name = "tensorflow/examples/label_image/data/grace_hopper.jpg" input_layer = "Placeholder" output_layer = "final_result" model_file = "classifier/logs/output_graph.pb" self.label_file = "classifier/logs/output_labels.txt" self.graph = self.load_graph(model_file) input_name = "import/" + input_layer output_name = "import/" + output_layer self.input_operation = self.graph.get_operation_by_name(input_name) self.output_operation = self.graph.get_operation_by_name(output_name) self.sess = tf.Session(graph=self.graph)
0.641198
0.105487
from datetime import datetime as _pydatetime, \ tzinfo as _pytzinfo import re class datetime(_pydatetime): """Customized datetime class with ISO format parsing.""" _reiso = re.compile('(?P<year>[0-9]{4})' '-(?P<month>[0-9]{1,2})' '-(?P<day>[0-9]{1,2})' '.' '(?P<hour>[0-9]{2})' ':(?P<min>[0-9]{2})' '(:(?P<sec>[0-9]{2}))?' '(?P<tz>Z|' '(?P<tzdirec>[-+])' '(?P<tzhour>[0-9]{1,2})' '(:)?' '(?P<tzmin>[0-9]{2})?' ')?') class _tzinfo(_pytzinfo): def __init__(self, direc='+', hr=0, min=0): if direc == '-': hr = -1*int(hr) self._offset = timedelta(hours=int(hr), minutes=int(min)) def utcoffset(self, dt): return self._offset def tzname(self, dt): return '' def dst(self, dt): return timedelta(0) @classmethod def fromIso(cls, isotime, sep='T'): match = cls._reiso.match(isotime) if match is None: raise TypeError("time data '%s' does not match ISO 8601 format" % isotime) dt = [int(a) for a in match.groups()[:5]] if match.group('sec') is not None: dt.append(int(match.group('sec'))) else: dt.append(0) if match.group('tz'): if match.group('tz') == 'Z': tz = cls._tzinfo() elif match.group('tzmin'): tz = cls._tzinfo(*match.group('tzdirec', 'tzhour', 'tzmin')) else: tz = cls._tzinfo(*match.group('tzdirec', 'tzhour')) dt.append(0) dt.append(tz) return cls(*dt) from request import Request from tmdb_exceptions import * syssession = None def set_session(sessionid): global syssession syssession = Session(sessionid) def get_session(sessionid=None): global syssession if sessionid: return Session(sessionid) elif syssession is not None: return syssession else: return Session.new() class Session(object): @classmethod def new(cls): return cls(None) def __init__(self, sessionid): self.sessionid = sessionid @property def sessionid(self): if self._sessionid is None: if self._authtoken is None: raise TMDBError("No Auth Token to produce Session for") # TODO: check authtoken expiration against current time req = Request('authentication/session/new', request_token=self._authtoken) req.lifetime = 0 dat = req.readJSON() if not dat['success']: raise TMDBError("Session generation failed") self._sessionid = dat['session_id'] return self._sessionid @sessionid.setter def sessionid(self, value): self._sessionid = value self._authtoken = None self._authtokenexpiration = None if value is None: self.authenticated = False else: self.authenticated = True @property def authtoken(self): if self.authenticated: raise TMDBError("Session is already authenticated") if self._authtoken is None: req = Request('authentication/token/new') req.lifetime = 0 dat = req.readJSON() if not dat['success']: raise TMDBError("Auth Token request failed") self._authtoken = dat['request_token'] self._authtokenexpiration = datetime.fromIso(dat['expires_at']) return self._authtoken @property def callbackurl(self): return "http://www.themoviedb.org/authenticate/"+self._authtoken
tmdb3/tmdb_auth.py
from datetime import datetime as _pydatetime, \ tzinfo as _pytzinfo import re class datetime(_pydatetime): """Customized datetime class with ISO format parsing.""" _reiso = re.compile('(?P<year>[0-9]{4})' '-(?P<month>[0-9]{1,2})' '-(?P<day>[0-9]{1,2})' '.' '(?P<hour>[0-9]{2})' ':(?P<min>[0-9]{2})' '(:(?P<sec>[0-9]{2}))?' '(?P<tz>Z|' '(?P<tzdirec>[-+])' '(?P<tzhour>[0-9]{1,2})' '(:)?' '(?P<tzmin>[0-9]{2})?' ')?') class _tzinfo(_pytzinfo): def __init__(self, direc='+', hr=0, min=0): if direc == '-': hr = -1*int(hr) self._offset = timedelta(hours=int(hr), minutes=int(min)) def utcoffset(self, dt): return self._offset def tzname(self, dt): return '' def dst(self, dt): return timedelta(0) @classmethod def fromIso(cls, isotime, sep='T'): match = cls._reiso.match(isotime) if match is None: raise TypeError("time data '%s' does not match ISO 8601 format" % isotime) dt = [int(a) for a in match.groups()[:5]] if match.group('sec') is not None: dt.append(int(match.group('sec'))) else: dt.append(0) if match.group('tz'): if match.group('tz') == 'Z': tz = cls._tzinfo() elif match.group('tzmin'): tz = cls._tzinfo(*match.group('tzdirec', 'tzhour', 'tzmin')) else: tz = cls._tzinfo(*match.group('tzdirec', 'tzhour')) dt.append(0) dt.append(tz) return cls(*dt) from request import Request from tmdb_exceptions import * syssession = None def set_session(sessionid): global syssession syssession = Session(sessionid) def get_session(sessionid=None): global syssession if sessionid: return Session(sessionid) elif syssession is not None: return syssession else: return Session.new() class Session(object): @classmethod def new(cls): return cls(None) def __init__(self, sessionid): self.sessionid = sessionid @property def sessionid(self): if self._sessionid is None: if self._authtoken is None: raise TMDBError("No Auth Token to produce Session for") # TODO: check authtoken expiration against current time req = Request('authentication/session/new', request_token=self._authtoken) req.lifetime = 0 dat = req.readJSON() if not dat['success']: raise TMDBError("Session generation failed") self._sessionid = dat['session_id'] return self._sessionid @sessionid.setter def sessionid(self, value): self._sessionid = value self._authtoken = None self._authtokenexpiration = None if value is None: self.authenticated = False else: self.authenticated = True @property def authtoken(self): if self.authenticated: raise TMDBError("Session is already authenticated") if self._authtoken is None: req = Request('authentication/token/new') req.lifetime = 0 dat = req.readJSON() if not dat['success']: raise TMDBError("Auth Token request failed") self._authtoken = dat['request_token'] self._authtokenexpiration = datetime.fromIso(dat['expires_at']) return self._authtoken @property def callbackurl(self): return "http://www.themoviedb.org/authenticate/"+self._authtoken
0.511229
0.183064
import random from pathlib import Path import pyglet TILE_SIZE = 64 TILES_DIRECTORY = Path('static/snake-tiles') class State: def __init__(self): self.snake = [(0, 0), (1, 0)] self.snake_direction = 0, 1 self.width = 10 self.height = 10 self.food = [] self.add_food() self.add_food() self.snake_alive = True self.queued_directions = [] def move(self): if self.queued_directions: new_direction = self.queued_directions[0] del self.queued_directions[0] old_x, old_y = self.snake_direction new_x, new_y = new_direction if (old_x, old_y) != (-new_x, -new_y): self.snake_direction = new_direction if not self.snake_alive: return old_x, old_y = self.snake[-1] dir_x, dir_y = self.snake_direction new_x = old_x + dir_x new_y = old_y + dir_y # Kontrola vylezení z hrací plochy if new_x < 0: self.snake_alive = False if new_y < 0: self.snake_alive = False if new_x >= self.width: self.snake_alive = False if new_y >= self.height: self.snake_alive = False new_head = new_x, new_y if new_head in self.snake: self.snake_alive = False self.snake.append(new_head) if new_head in self.food: self.food.remove(new_head) self.add_food() else: del self.snake[0] def add_food(self): for try_number in range(100): x = random.randrange(self.width) y = random.randrange(self.height) position = x, y if (position not in self.snake) and (position not in self.food): self.food.append(position) return def image_name(self, index): return ("tail", "head") image_name = [] x, y = self.snake[index] for index in (index-1, index+1): if index < 0: image_name.append('tail') continue if index > len(self.snake) - 1: image_name.append('head') continue x1, y1 = self.snake[index] if x1 < x: image_name.append('left') elif x1 > x: image_name.append('right') elif y1 < y: image_name.append('bottom') elif y1 > y: image_name.append('top') return image_name red_image = pyglet.image.load('static/apple.png') snake_tiles = {} for path in TILES_DIRECTORY.glob('*.png'): print(f'loading {path}') snake_tiles[path.stem] = pyglet.image.load(path) window = pyglet.window.Window() state = State() state.width = window.width // TILE_SIZE state.height = window.height // TILE_SIZE @window.event def on_draw(): window.clear() pyglet.gl.glEnable(pyglet.gl.GL_BLEND) pyglet.gl.glBlendFunc(pyglet.gl.GL_SRC_ALPHA, pyglet.gl.GL_ONE_MINUS_SRC_ALPHA) for i, (x, y) in enumerate(state.snake): source, dest = state.image_name(i) if dest == 'end' and not state.snake_alive: dest = 'dead' snake_tiles[source + '-' + dest].blit( x * TILE_SIZE, y * TILE_SIZE, width=TILE_SIZE, height=TILE_SIZE) for x, y in state.food: red_image.blit( x * TILE_SIZE, y * TILE_SIZE, width=TILE_SIZE, height=TILE_SIZE) @window.event def on_key_press(key_code, modifier): if key_code == pyglet.window.key.LEFT: new_direction = -1, 0 if key_code == pyglet.window.key.RIGHT: new_direction = 1, 0 if key_code == pyglet.window.key.DOWN: new_direction = 0, -1 if key_code == pyglet.window.key.UP: new_direction = 0, 1 state.queued_directions.append(new_direction) def move(dt): state.move() pyglet.clock.schedule_interval(move, 1/6) pyglet.app.run()
lessons/projects/snake/snake_game.py
import random from pathlib import Path import pyglet TILE_SIZE = 64 TILES_DIRECTORY = Path('static/snake-tiles') class State: def __init__(self): self.snake = [(0, 0), (1, 0)] self.snake_direction = 0, 1 self.width = 10 self.height = 10 self.food = [] self.add_food() self.add_food() self.snake_alive = True self.queued_directions = [] def move(self): if self.queued_directions: new_direction = self.queued_directions[0] del self.queued_directions[0] old_x, old_y = self.snake_direction new_x, new_y = new_direction if (old_x, old_y) != (-new_x, -new_y): self.snake_direction = new_direction if not self.snake_alive: return old_x, old_y = self.snake[-1] dir_x, dir_y = self.snake_direction new_x = old_x + dir_x new_y = old_y + dir_y # Kontrola vylezení z hrací plochy if new_x < 0: self.snake_alive = False if new_y < 0: self.snake_alive = False if new_x >= self.width: self.snake_alive = False if new_y >= self.height: self.snake_alive = False new_head = new_x, new_y if new_head in self.snake: self.snake_alive = False self.snake.append(new_head) if new_head in self.food: self.food.remove(new_head) self.add_food() else: del self.snake[0] def add_food(self): for try_number in range(100): x = random.randrange(self.width) y = random.randrange(self.height) position = x, y if (position not in self.snake) and (position not in self.food): self.food.append(position) return def image_name(self, index): return ("tail", "head") image_name = [] x, y = self.snake[index] for index in (index-1, index+1): if index < 0: image_name.append('tail') continue if index > len(self.snake) - 1: image_name.append('head') continue x1, y1 = self.snake[index] if x1 < x: image_name.append('left') elif x1 > x: image_name.append('right') elif y1 < y: image_name.append('bottom') elif y1 > y: image_name.append('top') return image_name red_image = pyglet.image.load('static/apple.png') snake_tiles = {} for path in TILES_DIRECTORY.glob('*.png'): print(f'loading {path}') snake_tiles[path.stem] = pyglet.image.load(path) window = pyglet.window.Window() state = State() state.width = window.width // TILE_SIZE state.height = window.height // TILE_SIZE @window.event def on_draw(): window.clear() pyglet.gl.glEnable(pyglet.gl.GL_BLEND) pyglet.gl.glBlendFunc(pyglet.gl.GL_SRC_ALPHA, pyglet.gl.GL_ONE_MINUS_SRC_ALPHA) for i, (x, y) in enumerate(state.snake): source, dest = state.image_name(i) if dest == 'end' and not state.snake_alive: dest = 'dead' snake_tiles[source + '-' + dest].blit( x * TILE_SIZE, y * TILE_SIZE, width=TILE_SIZE, height=TILE_SIZE) for x, y in state.food: red_image.blit( x * TILE_SIZE, y * TILE_SIZE, width=TILE_SIZE, height=TILE_SIZE) @window.event def on_key_press(key_code, modifier): if key_code == pyglet.window.key.LEFT: new_direction = -1, 0 if key_code == pyglet.window.key.RIGHT: new_direction = 1, 0 if key_code == pyglet.window.key.DOWN: new_direction = 0, -1 if key_code == pyglet.window.key.UP: new_direction = 0, 1 state.queued_directions.append(new_direction) def move(dt): state.move() pyglet.clock.schedule_interval(move, 1/6) pyglet.app.run()
0.31542
0.192407
import os import glob import re import sys import socket import couchdb import logging import argparse import ConfigParser import yaml import json import distance import operator CONFIG = {} logger = logging.getLogger(__name__) def associete_samples(samples_name, mode): couch = setupServer(CONFIG) projects_db = couch['projects'] for doc_id in projects_db: #perform sanity check on statusDB project database if 'creation_time' not in projects_db[doc_id]: continue if 'details' not in projects_db[doc_id] or 'customer_project_reference' not in projects_db[doc_id]['details'] or \ 'project_id' not in projects_db[doc_id]: continue project = projects_db[doc_id] if 'samples' not in project: continue for sample in project['samples']: if 'customer_name' in project['samples'][sample] and 'details' in project['samples'][sample] and \ 'status_(manual)' in project['samples'][sample]['details']: sample_user_name = project['samples'][sample]['customer_name'] sample_NGI_name = project['samples'][sample]['scilife_name'] status = project['samples'][sample]['details']['status_(manual)'] if mode == 'user2NGI': if sample_user_name in samples_name: print "{},{},{}".format(sample_user_name.encode('ascii', 'ignore'), sample_NGI_name, status) else: if sample_NGI_name in samples_name: print "{},{},{}".format(sample_NGI_name, sample_user_name.encode('ascii', 'ignore'), status) def associate_projects(projects_name, mode): couch = setupServer(CONFIG) projects_db = couch['projects'] user2NGI_samples_names = {} NGI2user_samples_names = {} for doc_id in projects_db: #perform sanity check on statusDB project database if 'creation_time' not in projects_db[doc_id]: continue if 'details' not in projects_db[doc_id] or 'customer_project_reference' not in projects_db[doc_id]['details'] or \ 'project_id' not in projects_db[doc_id]: continue #check the projects project = projects_db[doc_id] user_project_name = projects_db[doc_id]['details']['customer_project_reference'] NGI_project_name = projects_db[doc_id]['project_id'] if project['project_id'] in projects_name: for sample in project['samples']: sample_user_name = project['samples'][sample]['customer_name'] sample_NGI_name = project['samples'][sample]['scilife_name'] status = project['samples'][sample]['details']['status_(manual)'] if sample_user_name not in user2NGI_samples_names: user2NGI_samples_names[sample_user_name] = [] user2NGI_samples_names[sample_user_name].append([sample_NGI_name, status, user_project_name, NGI_project_name]) if sample_NGI_name not in NGI2user_samples_names: NGI2user_samples_names[sample_NGI_name] = [] NGI2user_samples_names[sample_NGI_name].append([sample_user_name, status, user_project_name, NGI_project_name]) if mode == 'user2NGI': for sample in user2NGI_samples_names: print "{}".format(sample.encode('ascii', 'ignore')), # handle unicode in sample names for NGI_id in user2NGI_samples_names[sample]: print " --- {},{},{},{}".format(NGI_id[0].encode('ascii', 'ignore'),NGI_id[1],NGI_id[2],NGI_id[3]), print "" else: for sample in NGI2user_samples_names: sys.stdout.write("{}".format(sample)) for user_id in NGI2user_samples_names[sample]: sys.stdout.write(" --- {},{},{},{}".format(user_id[0].encode('ascii', 'ignore'),user_id[1],user_id[2],user_id[3])) print "" def setupServer(conf): db_conf = conf['statusdb'] url="http://{0}:{1}@{2}:{3}".format(db_conf['username'], db_conf['password'], db_conf['url'], db_conf['port']) return couchdb.Server(url) def load_yaml_config(config_file): """Load YAML config file :param str config_file: The path to the configuration file. :returns: A dict of the parsed config file. :rtype: dict :raises IOError: If the config file cannot be opened. """ if type(config_file) is file: CONFIG.update(yaml.load(config_file) or {}) return CONFIG else: try: with open(config_file, 'r') as f: content = yaml.load(f) CONFIG.update(content) return content except IOError as e: e.message = "Could not open configuration file \"{}\".".format(config_file) raise e def user2NGI(args): if args.project is not None: associate_projects(args.project, args.mode) else: associete_samples(args.sample, args.mode) def main(args): configuration_file = args.config projects_name = args.project load_yaml_config(configuration_file) if args.project != None and args.sample != None: #Mutually exclusive arguments sys.exit("Only one between --project and --sample can be specified") if args.project is not None: associate_projects(args.project, args.mode) else: associete_samples(args.sample, args.mode) #findNGISampleNames("2014-02321") #findNGISampleNames("2153-08D") #findUserSampleNames(projects_name) if __name__ == '__main__': parser = argparse.ArgumentParser("""This scripts connects to project database in statusDB and tries to associate user names to NGI names and vice-versa""") parser.add_argument('--config', help="cauchdb configuration file", type=str, required=True) parser.add_argument('--mode', help="specifies if we want the user2NGI or the NGI2user convertion", required=True, choices=('user2NGI', 'NGI2user') ) parser.add_argument('--project', help="project name. If specified returns all samples associated to this project and the user-NGI convertion outputs also the status of the sample)", type=str, action='append') parser.add_argument('--sample', help="Sample name. If specified returns a list of the samples the associated user/NGI names", type=str, action='append') args = parser.parse_args() main(args)
userName2NGIname_finder.py
import os import glob import re import sys import socket import couchdb import logging import argparse import ConfigParser import yaml import json import distance import operator CONFIG = {} logger = logging.getLogger(__name__) def associete_samples(samples_name, mode): couch = setupServer(CONFIG) projects_db = couch['projects'] for doc_id in projects_db: #perform sanity check on statusDB project database if 'creation_time' not in projects_db[doc_id]: continue if 'details' not in projects_db[doc_id] or 'customer_project_reference' not in projects_db[doc_id]['details'] or \ 'project_id' not in projects_db[doc_id]: continue project = projects_db[doc_id] if 'samples' not in project: continue for sample in project['samples']: if 'customer_name' in project['samples'][sample] and 'details' in project['samples'][sample] and \ 'status_(manual)' in project['samples'][sample]['details']: sample_user_name = project['samples'][sample]['customer_name'] sample_NGI_name = project['samples'][sample]['scilife_name'] status = project['samples'][sample]['details']['status_(manual)'] if mode == 'user2NGI': if sample_user_name in samples_name: print "{},{},{}".format(sample_user_name.encode('ascii', 'ignore'), sample_NGI_name, status) else: if sample_NGI_name in samples_name: print "{},{},{}".format(sample_NGI_name, sample_user_name.encode('ascii', 'ignore'), status) def associate_projects(projects_name, mode): couch = setupServer(CONFIG) projects_db = couch['projects'] user2NGI_samples_names = {} NGI2user_samples_names = {} for doc_id in projects_db: #perform sanity check on statusDB project database if 'creation_time' not in projects_db[doc_id]: continue if 'details' not in projects_db[doc_id] or 'customer_project_reference' not in projects_db[doc_id]['details'] or \ 'project_id' not in projects_db[doc_id]: continue #check the projects project = projects_db[doc_id] user_project_name = projects_db[doc_id]['details']['customer_project_reference'] NGI_project_name = projects_db[doc_id]['project_id'] if project['project_id'] in projects_name: for sample in project['samples']: sample_user_name = project['samples'][sample]['customer_name'] sample_NGI_name = project['samples'][sample]['scilife_name'] status = project['samples'][sample]['details']['status_(manual)'] if sample_user_name not in user2NGI_samples_names: user2NGI_samples_names[sample_user_name] = [] user2NGI_samples_names[sample_user_name].append([sample_NGI_name, status, user_project_name, NGI_project_name]) if sample_NGI_name not in NGI2user_samples_names: NGI2user_samples_names[sample_NGI_name] = [] NGI2user_samples_names[sample_NGI_name].append([sample_user_name, status, user_project_name, NGI_project_name]) if mode == 'user2NGI': for sample in user2NGI_samples_names: print "{}".format(sample.encode('ascii', 'ignore')), # handle unicode in sample names for NGI_id in user2NGI_samples_names[sample]: print " --- {},{},{},{}".format(NGI_id[0].encode('ascii', 'ignore'),NGI_id[1],NGI_id[2],NGI_id[3]), print "" else: for sample in NGI2user_samples_names: sys.stdout.write("{}".format(sample)) for user_id in NGI2user_samples_names[sample]: sys.stdout.write(" --- {},{},{},{}".format(user_id[0].encode('ascii', 'ignore'),user_id[1],user_id[2],user_id[3])) print "" def setupServer(conf): db_conf = conf['statusdb'] url="http://{0}:{1}@{2}:{3}".format(db_conf['username'], db_conf['password'], db_conf['url'], db_conf['port']) return couchdb.Server(url) def load_yaml_config(config_file): """Load YAML config file :param str config_file: The path to the configuration file. :returns: A dict of the parsed config file. :rtype: dict :raises IOError: If the config file cannot be opened. """ if type(config_file) is file: CONFIG.update(yaml.load(config_file) or {}) return CONFIG else: try: with open(config_file, 'r') as f: content = yaml.load(f) CONFIG.update(content) return content except IOError as e: e.message = "Could not open configuration file \"{}\".".format(config_file) raise e def user2NGI(args): if args.project is not None: associate_projects(args.project, args.mode) else: associete_samples(args.sample, args.mode) def main(args): configuration_file = args.config projects_name = args.project load_yaml_config(configuration_file) if args.project != None and args.sample != None: #Mutually exclusive arguments sys.exit("Only one between --project and --sample can be specified") if args.project is not None: associate_projects(args.project, args.mode) else: associete_samples(args.sample, args.mode) #findNGISampleNames("2014-02321") #findNGISampleNames("2153-08D") #findUserSampleNames(projects_name) if __name__ == '__main__': parser = argparse.ArgumentParser("""This scripts connects to project database in statusDB and tries to associate user names to NGI names and vice-versa""") parser.add_argument('--config', help="cauchdb configuration file", type=str, required=True) parser.add_argument('--mode', help="specifies if we want the user2NGI or the NGI2user convertion", required=True, choices=('user2NGI', 'NGI2user') ) parser.add_argument('--project', help="project name. If specified returns all samples associated to this project and the user-NGI convertion outputs also the status of the sample)", type=str, action='append') parser.add_argument('--sample', help="Sample name. If specified returns a list of the samples the associated user/NGI names", type=str, action='append') args = parser.parse_args() main(args)
0.158532
0.061368
import copy import json default_config = """{ "listeners": [ {"iface": "127.0.0.1", "port": 8080} ], "proxy": {"use_proxy": false, "host": "", "port": 0, "is_socks": false} }""" class ProxyConfig: def __init__(self): self._listeners = [('127.0.0.1', 8080, None)] self._proxy = {'use_proxy': False, 'host': '', 'port': 0, 'is_socks': False} def load(self, fname): try: with open(fname, 'r') as f: config_info = json.loads(f.read()) except IOError: config_info = json.loads(default_config) with open(fname, 'w') as f: f.write(default_config) # Listeners if 'listeners' in config_info: self._parse_listeners(config_info['listeners']) if 'proxy' in config_info: self._proxy = config_info['proxy'] def _parse_listeners(self, listeners): self._listeners = [] for info in listeners: if 'port' in info: port = info['port'] else: port = 8080 if 'interface' in info: iface = info['interface'] elif 'iface' in info: iface = info['iface'] else: iface = '127.0.0.1' if "transparent" in info: trans_info = info['transparent'] transparent_dest = (trans_info.get('host', ""), trans_info.get('port', 0), trans_info.get('use_tls', False)) else: transparent_dest = None self._listeners.append((iface, port, transparent_dest)) @property def listeners(self): return copy.deepcopy(self._listeners) @listeners.setter def listeners(self, val): self._parse_listeners(val) @property def proxy(self): # don't use this, use the getters to get the parsed values return self._proxy @proxy.setter def proxy(self, val): self._proxy = val @property def use_proxy(self): if self._proxy is None: return False if 'use_proxy' in self._proxy: if self._proxy['use_proxy']: return True return False @property def proxy_host(self): if self._proxy is None: return '' if 'host' in self._proxy: return self._proxy['host'] return '' @property def proxy_port(self): if self._proxy is None: return '' if 'port' in self._proxy: return self._proxy['port'] return '' @property def proxy_username(self): if self._proxy is None: return '' if 'username' in self._proxy: return self._proxy['username'] return '' @property def proxy_password(self): if self._proxy is None: return '' if 'password' in self._proxy: return self._proxy['password'] return '' @property def use_proxy_creds(self): return ('username' in self._proxy or 'password' in self._proxy) @property def is_socks_proxy(self): if self._proxy is None: return False if 'is_socks' in self._proxy: if self._proxy['is_socks']: return True return False
pappyproxy/config.py
import copy import json default_config = """{ "listeners": [ {"iface": "127.0.0.1", "port": 8080} ], "proxy": {"use_proxy": false, "host": "", "port": 0, "is_socks": false} }""" class ProxyConfig: def __init__(self): self._listeners = [('127.0.0.1', 8080, None)] self._proxy = {'use_proxy': False, 'host': '', 'port': 0, 'is_socks': False} def load(self, fname): try: with open(fname, 'r') as f: config_info = json.loads(f.read()) except IOError: config_info = json.loads(default_config) with open(fname, 'w') as f: f.write(default_config) # Listeners if 'listeners' in config_info: self._parse_listeners(config_info['listeners']) if 'proxy' in config_info: self._proxy = config_info['proxy'] def _parse_listeners(self, listeners): self._listeners = [] for info in listeners: if 'port' in info: port = info['port'] else: port = 8080 if 'interface' in info: iface = info['interface'] elif 'iface' in info: iface = info['iface'] else: iface = '127.0.0.1' if "transparent" in info: trans_info = info['transparent'] transparent_dest = (trans_info.get('host', ""), trans_info.get('port', 0), trans_info.get('use_tls', False)) else: transparent_dest = None self._listeners.append((iface, port, transparent_dest)) @property def listeners(self): return copy.deepcopy(self._listeners) @listeners.setter def listeners(self, val): self._parse_listeners(val) @property def proxy(self): # don't use this, use the getters to get the parsed values return self._proxy @proxy.setter def proxy(self, val): self._proxy = val @property def use_proxy(self): if self._proxy is None: return False if 'use_proxy' in self._proxy: if self._proxy['use_proxy']: return True return False @property def proxy_host(self): if self._proxy is None: return '' if 'host' in self._proxy: return self._proxy['host'] return '' @property def proxy_port(self): if self._proxy is None: return '' if 'port' in self._proxy: return self._proxy['port'] return '' @property def proxy_username(self): if self._proxy is None: return '' if 'username' in self._proxy: return self._proxy['username'] return '' @property def proxy_password(self): if self._proxy is None: return '' if 'password' in self._proxy: return self._proxy['password'] return '' @property def use_proxy_creds(self): return ('username' in self._proxy or 'password' in self._proxy) @property def is_socks_proxy(self): if self._proxy is None: return False if 'is_socks' in self._proxy: if self._proxy['is_socks']: return True return False
0.411584
0.07373
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import numpy as np class Attn(nn.Module): def __init__(self, method, hidden_size): super(Attn, self).__init__() self.use_cuda = torch.cuda.is_available() self.method = method self.hidden_size = hidden_size if self.method == 'general': self.attn = nn.Linear(self.hidden_size, hidden_size) elif self.method == 'concat': self.attn = nn.Linear(self.hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.FloatTensor(1, hidden_size)) def forward(self, hidden, targets, mask=None): this_batch_size = targets.size(0) max_len = targets.size(1) # Create variable to store attention energies attn_energies = Variable(torch.zeros(this_batch_size, max_len)) # B x S if torch.cuda.is_available(): attn_energies = attn_energies.cuda() # For each batch of encoder outputs for b in range(this_batch_size): # Calculate energy for each encoder output for i in range(max_len): attn_energies[b, i] = self.score(hidden[:, b], targets[b, i].unsqueeze(0)) if mask is not None: attn_energies = attn_energies + mask # Normalize energies to weights in range 0 to 1, resize to 1 x B x S return F.softmax(attn_energies, dim=1).unsqueeze(1) def score(self, hidden, target): if self.method == 'dot': energy = torch.dot(hidden.squeeze(0), target.squeeze(0)) return energy elif self.method == 'general': energy = self.attn(target) return torch.dot(hidden.squeeze(0), energy.squeeze(0)) elif self.method == 'concat': energy = self.attn(torch.cat((hidden, target), 1)) energy = self.v.dot(energy) return energy class BasicRNN(nn.Module): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(BasicRNN, self).__init__() self.word_embeds = nn.Embedding(vocab_size, embedding_dim) if pretrained_embeddings is not None: for i in range(vocab_size): word = lang.index2word[i] if word in pretrained_embeddings: self.word_embeds.weight[i] = nn.Parameter(torch.FloatTensor(pretrained_embeddings[word])) self.word_embeds = nn.Embedding.from_pretrained(self.word_embeds.weight) self.hidden_size = hidden_size self.num_layers = num_layers self.num_directions = 1 self.rnn = nn.RNN(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) self.fc1 = nn.Linear(hidden_size * self.num_directions, 64) self.fc2 = nn.Linear(64, num_classes) self.dropout = nn.Dropout(p=dropout) # figure this out self.use_cuda = torch.cuda.is_available() def freeze_layer(self, layer): fc = self.fc1 if layer == "fc2": fc = self.fc2 for param in fc.parameters(): print(param) param.requires_grad = False def forward(self, inputs, seq_lengths): batch_size = inputs.size(0) inputs = self.word_embeds(inputs) # Set initial states h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) if self.use_cuda: h0 = h0.cuda() # Forward propagate RNN outputs, _ = self.rnn(inputs, h0) # Decode hidden state of last time step outputs = F.relu(self.fc1(outputs[:, -1, :])) outputs = self.dropout(outputs) outputs = self.fc2(outputs) return outputs def to_cuda(self, tensor): if torch.cuda.is_available(): return tensor.cuda() else: return tensor class AttentionRNN(BasicRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(AttentionRNN, self).__init__( embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.attn = Attn('general', hidden_size) def forward(self, inputs, lang, seq_lengths): batch_size = inputs.size(0) embedded = self.word_embeds(inputs) total_length = embedded.size(1) # get the max sequence length # Set initial states h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) if torch.cuda.is_available(): h0 = h0.cuda() packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, seq_lengths, batch_first=True) # Forward propagate RNN # rnn_outputs, state = self.rnn(embedded, h0) rnn_outputs, state = self.rnn(packed, h0) rnn_outputs, _ = torch.nn.utils.rnn.pad_packed_sequence( rnn_outputs, batch_first=True, total_length=total_length) # unpack (back to padded) encoder_mask = torch.Tensor(np.array(inputs.cpu().data.numpy() == lang.PAD_token, dtype=float) * (-1e6)) # [b x seq] encoder_mask = Variable(self.to_cuda(encoder_mask)) # use attention to compute soft alignment score corresponding # between each of the hidden_state and the last hidden_state of the RNN attn_weights = self.attn(state, rnn_outputs, mask=encoder_mask) new_state = attn_weights.bmm(rnn_outputs) # B x 1 x N # Decode hidden state of last time step # outputs = F.relu(self.fc1(rnn_outputs[:, -1, :])) outputs = F.relu(self.fc1(new_state.squeeze(1))) outputs = self.dropout(outputs) outputs = self.fc2(outputs) return outputs class LSTM(BasicRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(LSTM, self).__init__(embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.rnn = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) def forward(self, inputs, seq_lengths): batch_size = inputs.size(0) inputs = self.word_embeds(inputs) # Set initial states h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) c0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) if torch.cuda.is_available(): h0 = h0.cuda() c0 = c0.cuda() # Forward propagate RNN outputs, _ = self.rnn(inputs, (h0, c0)) # Decode hidden state of last time step outputs = F.relu(self.fc1(outputs[:, -1, :])) outputs = self.dropout(outputs) outputs = self.fc2(outputs) return outputs class GRURNN(BasicRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(GRURNN, self).__init__(embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.rnn = nn.GRU(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) class AttentionGRURNN(AttentionRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(AttentionGRURNN, self).__init__( embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.rnn = nn.GRU(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) class HighwayNetwork(nn.Module): def __init__(self, input_size): super(HighwayNetwork, self).__init__() self.fc1 = nn.Linear(input_size, input_size, bias=True) self.fc2 = nn.Linear(input_size, input_size, bias=True) def forward(self, x): t = F.sigmoid(self.fc1(x)) return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x) class CNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, lang, pretrained_embeddings, dropout=0.1): super(CNN, self).__init__() self.use_cuda = torch.cuda.is_available() self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.output_size = output_size self.dropout = dropout print('vocab_size:', vocab_size) self.embedding = nn.Embedding(vocab_size, embedding_dim) if pretrained_embeddings is not None: for i in range(vocab_size): word = lang.index2word[i] if word in pretrained_embeddings: self.embedding.weight[i] = nn.Parameter(torch.FloatTensor(pretrained_embeddings[word])) self.embedding = nn.Embedding.from_pretrained(self.embedding.weight) self.conv1 = None self.conv2 = None self.init_conv1_layer() self.maxpool1 = nn.MaxPool2d(kernel_size=(3, 1), stride=(3, 1)) self.init_conv2_layer() self.maxpool2 = nn.MaxPool2d(kernel_size=(3, 1), stride=(3, 1)) self.fc1 = None self.fc2 = None self.init_fc_layers() # Highway Networks self.batch_norm = nn.BatchNorm1d(num_features=128, affine=False) self.highway1 = HighwayNetwork(input_size=128) self.highway2 = HighwayNetwork(input_size=128) def init_conv1_layer(self): self.conv1 = nn.Sequential( nn.Conv2d(1, 10, kernel_size=(5, self.embedding_dim), stride=1, padding=2), nn.ReLU()) def init_conv2_layer(self): self.conv2 = nn.Sequential( nn.Conv2d(5, 20, kernel_size=(5, 3), stride=1), nn.ReLU()) def freeze_conv1_layer(self): for param in self.conv1.parameters(): param.requires_grad = False def freeze_conv2_layer(self): for param in self.conv2.parameters(): param.requires_grad = False def init_fc_layers(self): self.fc1 = nn.Sequential( nn.Linear(4160, 256), nn.ReLU(), nn.Dropout(p=0.5) ) self.fc2 = nn.Linear(256, self.output_size) def forward(self, input_seqs): x1 = self.embedding(input_seqs) x2 = x1.unsqueeze(1) x3 = self.conv1(x2) x4 = x3.transpose(1, 3) x5 = self.maxpool1(x4) x6 = self.conv2(x5) x7 = x6.transpose(1, 3) x8 = self.maxpool2(x7) x9 = x8.view(x8.size(0), -1) x10 = self.fc1(x9) x = self.fc2(x10) # print('x1:', x1.size()) # print('x2:', x2.size()) # print('x3:', x3.size()) # print('x4:', x4.size()) # print('x5:', x5.size()) # print('x6:', x6.size()) # print('x7:', x7.size()) # print('x8:', x8.size()) # print('x9:', x9.size()) # print('x10:', x10.size()) # x = self.batch_norm(x) # x = self.highway1(x) # x = self.highway2(x) return x
models.py
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import numpy as np class Attn(nn.Module): def __init__(self, method, hidden_size): super(Attn, self).__init__() self.use_cuda = torch.cuda.is_available() self.method = method self.hidden_size = hidden_size if self.method == 'general': self.attn = nn.Linear(self.hidden_size, hidden_size) elif self.method == 'concat': self.attn = nn.Linear(self.hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.FloatTensor(1, hidden_size)) def forward(self, hidden, targets, mask=None): this_batch_size = targets.size(0) max_len = targets.size(1) # Create variable to store attention energies attn_energies = Variable(torch.zeros(this_batch_size, max_len)) # B x S if torch.cuda.is_available(): attn_energies = attn_energies.cuda() # For each batch of encoder outputs for b in range(this_batch_size): # Calculate energy for each encoder output for i in range(max_len): attn_energies[b, i] = self.score(hidden[:, b], targets[b, i].unsqueeze(0)) if mask is not None: attn_energies = attn_energies + mask # Normalize energies to weights in range 0 to 1, resize to 1 x B x S return F.softmax(attn_energies, dim=1).unsqueeze(1) def score(self, hidden, target): if self.method == 'dot': energy = torch.dot(hidden.squeeze(0), target.squeeze(0)) return energy elif self.method == 'general': energy = self.attn(target) return torch.dot(hidden.squeeze(0), energy.squeeze(0)) elif self.method == 'concat': energy = self.attn(torch.cat((hidden, target), 1)) energy = self.v.dot(energy) return energy class BasicRNN(nn.Module): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(BasicRNN, self).__init__() self.word_embeds = nn.Embedding(vocab_size, embedding_dim) if pretrained_embeddings is not None: for i in range(vocab_size): word = lang.index2word[i] if word in pretrained_embeddings: self.word_embeds.weight[i] = nn.Parameter(torch.FloatTensor(pretrained_embeddings[word])) self.word_embeds = nn.Embedding.from_pretrained(self.word_embeds.weight) self.hidden_size = hidden_size self.num_layers = num_layers self.num_directions = 1 self.rnn = nn.RNN(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) self.fc1 = nn.Linear(hidden_size * self.num_directions, 64) self.fc2 = nn.Linear(64, num_classes) self.dropout = nn.Dropout(p=dropout) # figure this out self.use_cuda = torch.cuda.is_available() def freeze_layer(self, layer): fc = self.fc1 if layer == "fc2": fc = self.fc2 for param in fc.parameters(): print(param) param.requires_grad = False def forward(self, inputs, seq_lengths): batch_size = inputs.size(0) inputs = self.word_embeds(inputs) # Set initial states h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) if self.use_cuda: h0 = h0.cuda() # Forward propagate RNN outputs, _ = self.rnn(inputs, h0) # Decode hidden state of last time step outputs = F.relu(self.fc1(outputs[:, -1, :])) outputs = self.dropout(outputs) outputs = self.fc2(outputs) return outputs def to_cuda(self, tensor): if torch.cuda.is_available(): return tensor.cuda() else: return tensor class AttentionRNN(BasicRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(AttentionRNN, self).__init__( embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.attn = Attn('general', hidden_size) def forward(self, inputs, lang, seq_lengths): batch_size = inputs.size(0) embedded = self.word_embeds(inputs) total_length = embedded.size(1) # get the max sequence length # Set initial states h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) if torch.cuda.is_available(): h0 = h0.cuda() packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, seq_lengths, batch_first=True) # Forward propagate RNN # rnn_outputs, state = self.rnn(embedded, h0) rnn_outputs, state = self.rnn(packed, h0) rnn_outputs, _ = torch.nn.utils.rnn.pad_packed_sequence( rnn_outputs, batch_first=True, total_length=total_length) # unpack (back to padded) encoder_mask = torch.Tensor(np.array(inputs.cpu().data.numpy() == lang.PAD_token, dtype=float) * (-1e6)) # [b x seq] encoder_mask = Variable(self.to_cuda(encoder_mask)) # use attention to compute soft alignment score corresponding # between each of the hidden_state and the last hidden_state of the RNN attn_weights = self.attn(state, rnn_outputs, mask=encoder_mask) new_state = attn_weights.bmm(rnn_outputs) # B x 1 x N # Decode hidden state of last time step # outputs = F.relu(self.fc1(rnn_outputs[:, -1, :])) outputs = F.relu(self.fc1(new_state.squeeze(1))) outputs = self.dropout(outputs) outputs = self.fc2(outputs) return outputs class LSTM(BasicRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(LSTM, self).__init__(embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.rnn = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) def forward(self, inputs, seq_lengths): batch_size = inputs.size(0) inputs = self.word_embeds(inputs) # Set initial states h0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) c0 = Variable(torch.zeros(self.num_layers * self.num_directions, batch_size, self.hidden_size)) if torch.cuda.is_available(): h0 = h0.cuda() c0 = c0.cuda() # Forward propagate RNN outputs, _ = self.rnn(inputs, (h0, c0)) # Decode hidden state of last time step outputs = F.relu(self.fc1(outputs[:, -1, :])) outputs = self.dropout(outputs) outputs = self.fc2(outputs) return outputs class GRURNN(BasicRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(GRURNN, self).__init__(embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.rnn = nn.GRU(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) class AttentionGRURNN(AttentionRNN): def __init__(self, embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout): super(AttentionGRURNN, self).__init__( embedding_dim, hidden_size, lang, pretrained_embeddings, num_layers, vocab_size, num_classes, dropout) self.rnn = nn.GRU(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, bidirectional=False) class HighwayNetwork(nn.Module): def __init__(self, input_size): super(HighwayNetwork, self).__init__() self.fc1 = nn.Linear(input_size, input_size, bias=True) self.fc2 = nn.Linear(input_size, input_size, bias=True) def forward(self, x): t = F.sigmoid(self.fc1(x)) return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x) class CNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, lang, pretrained_embeddings, dropout=0.1): super(CNN, self).__init__() self.use_cuda = torch.cuda.is_available() self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.output_size = output_size self.dropout = dropout print('vocab_size:', vocab_size) self.embedding = nn.Embedding(vocab_size, embedding_dim) if pretrained_embeddings is not None: for i in range(vocab_size): word = lang.index2word[i] if word in pretrained_embeddings: self.embedding.weight[i] = nn.Parameter(torch.FloatTensor(pretrained_embeddings[word])) self.embedding = nn.Embedding.from_pretrained(self.embedding.weight) self.conv1 = None self.conv2 = None self.init_conv1_layer() self.maxpool1 = nn.MaxPool2d(kernel_size=(3, 1), stride=(3, 1)) self.init_conv2_layer() self.maxpool2 = nn.MaxPool2d(kernel_size=(3, 1), stride=(3, 1)) self.fc1 = None self.fc2 = None self.init_fc_layers() # Highway Networks self.batch_norm = nn.BatchNorm1d(num_features=128, affine=False) self.highway1 = HighwayNetwork(input_size=128) self.highway2 = HighwayNetwork(input_size=128) def init_conv1_layer(self): self.conv1 = nn.Sequential( nn.Conv2d(1, 10, kernel_size=(5, self.embedding_dim), stride=1, padding=2), nn.ReLU()) def init_conv2_layer(self): self.conv2 = nn.Sequential( nn.Conv2d(5, 20, kernel_size=(5, 3), stride=1), nn.ReLU()) def freeze_conv1_layer(self): for param in self.conv1.parameters(): param.requires_grad = False def freeze_conv2_layer(self): for param in self.conv2.parameters(): param.requires_grad = False def init_fc_layers(self): self.fc1 = nn.Sequential( nn.Linear(4160, 256), nn.ReLU(), nn.Dropout(p=0.5) ) self.fc2 = nn.Linear(256, self.output_size) def forward(self, input_seqs): x1 = self.embedding(input_seqs) x2 = x1.unsqueeze(1) x3 = self.conv1(x2) x4 = x3.transpose(1, 3) x5 = self.maxpool1(x4) x6 = self.conv2(x5) x7 = x6.transpose(1, 3) x8 = self.maxpool2(x7) x9 = x8.view(x8.size(0), -1) x10 = self.fc1(x9) x = self.fc2(x10) # print('x1:', x1.size()) # print('x2:', x2.size()) # print('x3:', x3.size()) # print('x4:', x4.size()) # print('x5:', x5.size()) # print('x6:', x6.size()) # print('x7:', x7.size()) # print('x8:', x8.size()) # print('x9:', x9.size()) # print('x10:', x10.size()) # x = self.batch_norm(x) # x = self.highway1(x) # x = self.highway2(x) return x
0.931641
0.461077
from typing import Any, Optional, Sequence from websockets.datastructures import Headers, HeadersLike from websockets.exceptions import ( InvalidHeader, InvalidStatusCode, NegotiationError, RedirectHandshake, ) from websockets.extensions import ClientExtensionFactory from websockets.headers import ( build_authorization_basic, build_extension, build_host, build_subprotocol, ) from websockets.http import USER_AGENT from websockets.legacy.client import WebSocketClientProtocol from websockets.legacy.handshake import build_request, check_response from websockets.typing import LoggerLike, Origin, Subprotocol from websockets.uri import WebSocketURI from .auth import Auth from .http import HTTPInterface from .types import Request, Response class WebsocketAuthProtocol(WebSocketClientProtocol): """ Adds support for HTTPX style auth flows """ def __init__( self, *, auth: Auth = None, follow_redirects: bool = False, max_redirects: int = None, logger: Optional[LoggerLike] = None, origin: Optional[Origin] = None, extensions: Optional[Sequence[ClientExtensionFactory]] = None, subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLike] = None, **kwargs: Any ) -> None: super().__init__( logger=logger, origin=origin, extensions=extensions, subprotocols=subprotocols, extra_headers=extra_headers, **kwargs ) self.auth = auth or Auth() self.follow_redirects = follow_redirects self.max_redirects = max_redirects or 5 async def handshake( self, wsuri: WebSocketURI, origin: Optional[Origin] = None, available_extensions: Optional[Sequence[ClientExtensionFactory]] = None, available_subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLike] = None, ) -> None: """ Unchanged from base client protocol except HTTP req-resp handled by auth flow """ request_headers = Headers() request_headers["Host"] = build_host(wsuri.host, wsuri.port, wsuri.secure) if wsuri.user_info: request_headers["Authorization"] = build_authorization_basic( *wsuri.user_info ) self.auth = Auth() if origin is not None: request_headers["Origin"] = origin key = build_request(request_headers) if available_extensions is not None: extensions_header = build_extension( [ (extension_factory.name, extension_factory.get_request_params()) for extension_factory in available_extensions ] ) request_headers["Sec-WebSocket-Extensions"] = extensions_header if available_subprotocols is not None: protocol_header = build_subprotocol(available_subprotocols) request_headers["Sec-WebSocket-Protocol"] = protocol_header extra_headers = extra_headers or self.extra_headers if extra_headers is not None: request_headers.update(extra_headers) request_headers.setdefault("User-Agent", USER_AGENT) request = (wsuri, request_headers) try: status_code, response_headers = await self.http_handling_auth(request) except BaseException as err: raise NegotiationError("Auth flow failed") from err if status_code in (301, 302, 303, 307, 308): if "Location" not in response_headers: raise InvalidHeader("Location") raise RedirectHandshake(response_headers["Location"]) elif status_code != 101: raise InvalidStatusCode(status_code, response_headers) check_response(response_headers, key) self.extensions = self.process_extensions( response_headers, available_extensions ) self.subprotocol = self.process_subprotocol( response_headers, available_subprotocols ) self.logger.debug("Handshake succeeded") self.connection_open() # Handling is functionally equivalent to httpx.AsyncClient auth handling # though the semantics have changed to fit within websockets framework # https://github.com/encode/httpx/blob/master/httpx/_client.py async def http_handling_auth( self, request: Request ) -> Response: """Create auth flow generator and execute HTTP requests""" requires_response_body = self.auth.requires_response_body auth_flow = self.auth.async_auth_flow(request) interface = HTTPInterface(self) try: request = await auth_flow.__anext__() while True: response = await interface.handle_async_request(request) # We dont want the auth flow to continue in the event of # a redirect status_code = response[0] if status_code in (301, 302, 303, 307, 308): return response[:2] if requires_response_body: content = await interface.receive_body() response = (*response, content) try: try: next_request = await auth_flow.asend(response) except StopAsyncIteration: return response[:2] request = next_request except Exception as err: raise err await interface.start_next_cycle() finally: interface.teardown() await auth_flow.aclose()
ws_auth/protocol.py
from typing import Any, Optional, Sequence from websockets.datastructures import Headers, HeadersLike from websockets.exceptions import ( InvalidHeader, InvalidStatusCode, NegotiationError, RedirectHandshake, ) from websockets.extensions import ClientExtensionFactory from websockets.headers import ( build_authorization_basic, build_extension, build_host, build_subprotocol, ) from websockets.http import USER_AGENT from websockets.legacy.client import WebSocketClientProtocol from websockets.legacy.handshake import build_request, check_response from websockets.typing import LoggerLike, Origin, Subprotocol from websockets.uri import WebSocketURI from .auth import Auth from .http import HTTPInterface from .types import Request, Response class WebsocketAuthProtocol(WebSocketClientProtocol): """ Adds support for HTTPX style auth flows """ def __init__( self, *, auth: Auth = None, follow_redirects: bool = False, max_redirects: int = None, logger: Optional[LoggerLike] = None, origin: Optional[Origin] = None, extensions: Optional[Sequence[ClientExtensionFactory]] = None, subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLike] = None, **kwargs: Any ) -> None: super().__init__( logger=logger, origin=origin, extensions=extensions, subprotocols=subprotocols, extra_headers=extra_headers, **kwargs ) self.auth = auth or Auth() self.follow_redirects = follow_redirects self.max_redirects = max_redirects or 5 async def handshake( self, wsuri: WebSocketURI, origin: Optional[Origin] = None, available_extensions: Optional[Sequence[ClientExtensionFactory]] = None, available_subprotocols: Optional[Sequence[Subprotocol]] = None, extra_headers: Optional[HeadersLike] = None, ) -> None: """ Unchanged from base client protocol except HTTP req-resp handled by auth flow """ request_headers = Headers() request_headers["Host"] = build_host(wsuri.host, wsuri.port, wsuri.secure) if wsuri.user_info: request_headers["Authorization"] = build_authorization_basic( *wsuri.user_info ) self.auth = Auth() if origin is not None: request_headers["Origin"] = origin key = build_request(request_headers) if available_extensions is not None: extensions_header = build_extension( [ (extension_factory.name, extension_factory.get_request_params()) for extension_factory in available_extensions ] ) request_headers["Sec-WebSocket-Extensions"] = extensions_header if available_subprotocols is not None: protocol_header = build_subprotocol(available_subprotocols) request_headers["Sec-WebSocket-Protocol"] = protocol_header extra_headers = extra_headers or self.extra_headers if extra_headers is not None: request_headers.update(extra_headers) request_headers.setdefault("User-Agent", USER_AGENT) request = (wsuri, request_headers) try: status_code, response_headers = await self.http_handling_auth(request) except BaseException as err: raise NegotiationError("Auth flow failed") from err if status_code in (301, 302, 303, 307, 308): if "Location" not in response_headers: raise InvalidHeader("Location") raise RedirectHandshake(response_headers["Location"]) elif status_code != 101: raise InvalidStatusCode(status_code, response_headers) check_response(response_headers, key) self.extensions = self.process_extensions( response_headers, available_extensions ) self.subprotocol = self.process_subprotocol( response_headers, available_subprotocols ) self.logger.debug("Handshake succeeded") self.connection_open() # Handling is functionally equivalent to httpx.AsyncClient auth handling # though the semantics have changed to fit within websockets framework # https://github.com/encode/httpx/blob/master/httpx/_client.py async def http_handling_auth( self, request: Request ) -> Response: """Create auth flow generator and execute HTTP requests""" requires_response_body = self.auth.requires_response_body auth_flow = self.auth.async_auth_flow(request) interface = HTTPInterface(self) try: request = await auth_flow.__anext__() while True: response = await interface.handle_async_request(request) # We dont want the auth flow to continue in the event of # a redirect status_code = response[0] if status_code in (301, 302, 303, 307, 308): return response[:2] if requires_response_body: content = await interface.receive_body() response = (*response, content) try: try: next_request = await auth_flow.asend(response) except StopAsyncIteration: return response[:2] request = next_request except Exception as err: raise err await interface.start_next_cycle() finally: interface.teardown() await auth_flow.aclose()
0.843331
0.053231
# Python modules from threading import Lock import operator # Third-party modules from django.db import models import cachetools # NOC modules from noc.config import config from noc.core.model.base import NOCModel from noc.core.model.decorator import on_init from noc.main.models.notificationgroup import NotificationGroup from noc.core.datastream.decorator import datastream from noc.core.model.decorator import on_delete_check from noc.core.translation import ugettext as _ from .dnsserver import DNSServer id_lock = Lock() @on_init @datastream @on_delete_check(check=[("dns.DNSZone", "profile")]) class DNSZoneProfile(NOCModel): """ DNS Zone profile is a set of common parameters, shared between zones. :param name: :param masters: :param slaves: :param zone_soa: :param zone_contact: :param zone_refresh: :param zone_retry: :param zone_expire: :param zone_ttl: :param notification_group: :param description: """ class Meta(object): verbose_name = _("DNS Zone Profile") verbose_name_plural = _("DNS Zone Profiles") db_table = "dns_dnszoneprofile" app_label = "dns" name = models.CharField(_("Name"), max_length=32, unique=True) masters = models.ManyToManyField( DNSServer, verbose_name=_("Masters"), related_name="masters", blank=True ) slaves = models.ManyToManyField( DNSServer, verbose_name=_("Slaves"), related_name="slaves", blank=True ) zone_soa = models.CharField(_("SOA"), max_length=64) zone_contact = models.CharField(_("Contact"), max_length=64) zone_refresh = models.IntegerField(_("Refresh"), default=3600) zone_retry = models.IntegerField(_("Retry"), default=900) zone_expire = models.IntegerField(_("Expire"), default=86400) zone_ttl = models.IntegerField(_("TTL"), default=3600) notification_group = models.ForeignKey( NotificationGroup, verbose_name=_("Notification Group"), null=True, blank=True, help_text=_("Notification group to use when zone group is not set"), on_delete=models.CASCADE, ) description = models.TextField(_("Description"), blank=True, null=True) _id_cache = cachetools.TTLCache(maxsize=100, ttl=60) _name_cache = cachetools.TTLCache(maxsize=100, ttl=60) def __str__(self): return self.name @classmethod @cachetools.cachedmethod(operator.attrgetter("_id_cache"), lock=lambda _: id_lock) def get_by_id(cls, id): mo = DNSZoneProfile.objects.filter(id=id)[:1] if mo: return mo[0] else: return None @classmethod @cachetools.cachedmethod(operator.attrgetter("_name_cache"), lock=lambda _: id_lock) def get_by_name(cls, name): mo = DNSZoneProfile.objects.filter(name=name)[:1] if mo: return mo[0] else: return None def iter_changed_datastream(self, changed_fields=None): if not config.datastream.enable_dnszone: return for z in self.dnszone_set.all(): for ds, id in z.iter_changed_datastream(changed_fields=changed_fields): yield ds, id @property def authoritative_servers(self): """ Returns a list of DNSServer instances for all zone's master and slave servers """ return list(self.masters.all()) + list(self.slaves.all())
dns/models/dnszoneprofile.py
# Python modules from threading import Lock import operator # Third-party modules from django.db import models import cachetools # NOC modules from noc.config import config from noc.core.model.base import NOCModel from noc.core.model.decorator import on_init from noc.main.models.notificationgroup import NotificationGroup from noc.core.datastream.decorator import datastream from noc.core.model.decorator import on_delete_check from noc.core.translation import ugettext as _ from .dnsserver import DNSServer id_lock = Lock() @on_init @datastream @on_delete_check(check=[("dns.DNSZone", "profile")]) class DNSZoneProfile(NOCModel): """ DNS Zone profile is a set of common parameters, shared between zones. :param name: :param masters: :param slaves: :param zone_soa: :param zone_contact: :param zone_refresh: :param zone_retry: :param zone_expire: :param zone_ttl: :param notification_group: :param description: """ class Meta(object): verbose_name = _("DNS Zone Profile") verbose_name_plural = _("DNS Zone Profiles") db_table = "dns_dnszoneprofile" app_label = "dns" name = models.CharField(_("Name"), max_length=32, unique=True) masters = models.ManyToManyField( DNSServer, verbose_name=_("Masters"), related_name="masters", blank=True ) slaves = models.ManyToManyField( DNSServer, verbose_name=_("Slaves"), related_name="slaves", blank=True ) zone_soa = models.CharField(_("SOA"), max_length=64) zone_contact = models.CharField(_("Contact"), max_length=64) zone_refresh = models.IntegerField(_("Refresh"), default=3600) zone_retry = models.IntegerField(_("Retry"), default=900) zone_expire = models.IntegerField(_("Expire"), default=86400) zone_ttl = models.IntegerField(_("TTL"), default=3600) notification_group = models.ForeignKey( NotificationGroup, verbose_name=_("Notification Group"), null=True, blank=True, help_text=_("Notification group to use when zone group is not set"), on_delete=models.CASCADE, ) description = models.TextField(_("Description"), blank=True, null=True) _id_cache = cachetools.TTLCache(maxsize=100, ttl=60) _name_cache = cachetools.TTLCache(maxsize=100, ttl=60) def __str__(self): return self.name @classmethod @cachetools.cachedmethod(operator.attrgetter("_id_cache"), lock=lambda _: id_lock) def get_by_id(cls, id): mo = DNSZoneProfile.objects.filter(id=id)[:1] if mo: return mo[0] else: return None @classmethod @cachetools.cachedmethod(operator.attrgetter("_name_cache"), lock=lambda _: id_lock) def get_by_name(cls, name): mo = DNSZoneProfile.objects.filter(name=name)[:1] if mo: return mo[0] else: return None def iter_changed_datastream(self, changed_fields=None): if not config.datastream.enable_dnszone: return for z in self.dnszone_set.all(): for ds, id in z.iter_changed_datastream(changed_fields=changed_fields): yield ds, id @property def authoritative_servers(self): """ Returns a list of DNSServer instances for all zone's master and slave servers """ return list(self.masters.all()) + list(self.slaves.all())
0.749912
0.123709
from django.shortcuts import render, redirect from django.contrib.auth.decorators import permission_required from django.http import JsonResponse from hknweb.coursesemester.models import Course from .models import ( CoursePreference, Slot, Tutor, TutorCourse, TimeSlot, TimeSlotPreference, Room, RoomPreference, ) from .forms import ( TimeSlotPreferenceForm, CoursePreferenceForm, TutoringAlgorithmOutputForm, ) import json def initialize_tutoring(): if Room.objects.all().count() == 0: generate_all_rooms() if Slot.objects.all().count() == 0: generate_all_slots() if TutorCourse.objects.all().count() == 0: generate_all_courses() def index(request): initialize_tutoring() days = [name for _, name in TimeSlot.DAY_CHOICES] hours = TimeSlot.HOUR_CHOICES offices = [] for room in Room.objects.all(): slot = { hour: Slot.objects.filter(room=room, timeslot__hour=hour) .order_by("timeslot__hour") .order_by("timeslot__day") for hour, _ in hours } office = { "room": str(room), "slots": slot, } offices.append(office) context = { "days": days, "hours": hours, "offices": offices, "form": TutoringAlgorithmOutputForm(), } return render(request, "tutoring/index.html", context) @permission_required("tutoring.add_timeslotpreference", login_url="/accounts/login/") def tutor_course_preference(request): if Tutor.objects.filter(user=request.user).exists(): tutor = Tutor.objects.get(user=request.user) else: name = request.user.get_full_name() tutor = Tutor(user=request.user, name=name) tutor.save() if CoursePreference.objects.filter(tutor=tutor).count() == 0: initialize_course_preferences(tutor) form = CoursePreferenceForm(request.POST or None, tutor=tutor) context = {"form": form} if request.method == "POST": if form.is_valid(): form.save_course_preference_data() return render(request, "tutoring/coursepref.html", context) @permission_required("tutoring.add_timeslotpreference", login_url="/accounts/login/") def tutor_slot_preference(request): if Tutor.objects.filter(user=request.user).exists(): tutor = Tutor.objects.get(user=request.user) else: name = request.user.get_full_name() tutor = Tutor(user=request.user, name=name) tutor.save() initialize_slot_preferences(tutor) form = TimeSlotPreferenceForm(request.POST or None, tutor=tutor) day_of_weeks_model = TimeSlot.objects.values_list("day", flat=True).distinct() day_of_weeks = [] for day in day_of_weeks_model: day_of_weeks.append(TimeSlot.DAYS_OF_WEEK[day]) hours = [] for hour in TimeSlot.objects.values_list("hour", flat=True).distinct(): hours.append((hour, TimeSlot.time(hour), TimeSlot.time_nexthour(hour))) context = {"form": form, "days": day_of_weeks, "hours": hours, "message": ""} if request.method == "POST": if form.is_valid(): form.save_slot_preference_data() context[ "message" ] = "Sign up form saved! (Don't forget to screenshot your selections)" else: msg = "An error occured, please screenshot your current entries and contact CompServ." msg += " " + "Also send them the following: " + str(form.errors) context["message"] = msg return render(request, "tutoring/slotpref.html", context) def generate_all_rooms(): for rooms in Room.DEFAULT_ROOM_CHOICES: room_model = Room(id=rooms[0], building=rooms[1], room_num=rooms[2]) room_model.save() def generate_all_courses(): for course in Course.objects.all(): tutor_course = TutorCourse(course=course) tutor_course.save() def generate_all_slots(): id = 0 timeslot_id = 0 room_querySet = Room.objects.all() for hour, _ in TimeSlot.HOUR_CHOICES: for day, _ in TimeSlot.DAY_CHOICES: timeslot = TimeSlot(hour=hour, day=day, timeslot_id=timeslot_id) timeslot_id += 1 timeslot.save() for room in room_querySet: slot = Slot(timeslot=timeslot, room=room, slot_id=id) slot.save() id += 1 def initialize_slot_preferences(tutor): initialize_tutoring() if TimeSlotPreference.objects.filter(tutor=tutor).count() == 0: for timeslot in TimeSlot.objects.all(): timeslot_pref = TimeSlotPreference(tutor=tutor, timeslot=timeslot) timeslot_pref.save() if RoomPreference.objects.filter(tutor=tutor).count() == 0: for timeslot in TimeSlot.objects.all(): for room in Room.objects.all(): room_pref = RoomPreference(tutor=tutor, timeslot=timeslot, room=room) room_pref.save() def initialize_course_preferences(tutor): for course in TutorCourse.objects.all(): pref = CoursePreference(tutor=tutor, course=course) pref.save() def get_office_course_preferences(office): courses = TutorCourse.objects.all() prefs = [] # Cory if office == 0: for course in courses: prefs.append(course.cory_preference) # Soda elif office == 1: for course in courses: prefs.append(course.soda_preference) # TODO: Ability to generalize for good practice, currently assumes neutral return prefs # Generates file that will be fed into algorithm @permission_required("tutoring.add_slot", login_url="/accounts/login/") def prepare_algorithm_input(request): input_data = {} courses = [] for course in TutorCourse.objects.all(): courses.append(str(course.course)) input_data["courseName"] = courses tutors = [] for tutor in Tutor.objects.all(): tutor_dict = {} tutor_dict["tid"] = tutor.id tutor_dict["name"] = tutor.name slot_time_prefs = [] slot_office_prefs = [] for timeslot_pref in tutor.get_timeslot_preferences(): for _ in Slot.objects.filter(timeslot=timeslot_pref.timeslot): slot_time_prefs.append(timeslot_pref.preference) for room_pref in tutor.get_room_preferences(): if Slot.objects.filter(timeslot=room_pref.timeslot, room=room_pref.room).count() > 0: slot_office_prefs.append(room_pref.preference) tutor_dict["timeSlots"] = slot_time_prefs tutor_dict["officePrefs"] = slot_office_prefs course_prefs = [] for pref in tutor.get_course_preferences(): course_prefs.append(pref.preference) tutor_dict["courses"] = course_prefs tutor_dict["adjacentPref"] = tutor.adjacent_pref tutor_dict["numAssignments"] = tutor.num_assignments tutors.append(tutor_dict) input_data["tutors"] = tutors slots = [] cory_course_prefs = get_office_course_preferences(0) soda_office_prefs = get_office_course_preferences(1) for slot in Slot.objects.all().order_by("slot_id"): slot_dict = {} slot_dict["sid"] = slot.slot_id slot_dict["name"] = "Slot {}".format(slot.slot_id) slot_dict["adjacentSlotIDs"] = get_adjacent_slot_ids(slot) if slot.room == 0: slot_dict["courses"] = cory_course_prefs else: slot_dict["courses"] = soda_office_prefs slot_dict["day"] = slot.timeslot.get_day() slot_dict["hour"] = slot.timeslot.hour slot_dict["office"] = slot.get_office() slots.append(slot_dict) input_data["slots"] = slots return JsonResponse(input_data) def get_adjacent_slot_ids(slot): slots_to_check = [ slot.get_previous_hour_slot(), slot.get_after_hour_slot(), ] return [s.slot_id for s in slots_to_check if s] @permission_required("tutoring.add_slot", login_url="/accounts/login/") def generate_schedule(request): if request.method == "POST": form = TutoringAlgorithmOutputForm(request.POST, request.FILES) if form.is_valid(): output = request.FILES["output"] data = json.loads(output.read().decode("utf-8")) for slot_id in data: slot = Slot.objects.get(slot_id=slot_id) tutor_ids = data[slot_id] for id in tutor_ids: tutor = Tutor.objects.get(id=id) slot.tutors.add(tutor) return redirect("/tutoring/")
hknweb/tutoring/views.py
from django.shortcuts import render, redirect from django.contrib.auth.decorators import permission_required from django.http import JsonResponse from hknweb.coursesemester.models import Course from .models import ( CoursePreference, Slot, Tutor, TutorCourse, TimeSlot, TimeSlotPreference, Room, RoomPreference, ) from .forms import ( TimeSlotPreferenceForm, CoursePreferenceForm, TutoringAlgorithmOutputForm, ) import json def initialize_tutoring(): if Room.objects.all().count() == 0: generate_all_rooms() if Slot.objects.all().count() == 0: generate_all_slots() if TutorCourse.objects.all().count() == 0: generate_all_courses() def index(request): initialize_tutoring() days = [name for _, name in TimeSlot.DAY_CHOICES] hours = TimeSlot.HOUR_CHOICES offices = [] for room in Room.objects.all(): slot = { hour: Slot.objects.filter(room=room, timeslot__hour=hour) .order_by("timeslot__hour") .order_by("timeslot__day") for hour, _ in hours } office = { "room": str(room), "slots": slot, } offices.append(office) context = { "days": days, "hours": hours, "offices": offices, "form": TutoringAlgorithmOutputForm(), } return render(request, "tutoring/index.html", context) @permission_required("tutoring.add_timeslotpreference", login_url="/accounts/login/") def tutor_course_preference(request): if Tutor.objects.filter(user=request.user).exists(): tutor = Tutor.objects.get(user=request.user) else: name = request.user.get_full_name() tutor = Tutor(user=request.user, name=name) tutor.save() if CoursePreference.objects.filter(tutor=tutor).count() == 0: initialize_course_preferences(tutor) form = CoursePreferenceForm(request.POST or None, tutor=tutor) context = {"form": form} if request.method == "POST": if form.is_valid(): form.save_course_preference_data() return render(request, "tutoring/coursepref.html", context) @permission_required("tutoring.add_timeslotpreference", login_url="/accounts/login/") def tutor_slot_preference(request): if Tutor.objects.filter(user=request.user).exists(): tutor = Tutor.objects.get(user=request.user) else: name = request.user.get_full_name() tutor = Tutor(user=request.user, name=name) tutor.save() initialize_slot_preferences(tutor) form = TimeSlotPreferenceForm(request.POST or None, tutor=tutor) day_of_weeks_model = TimeSlot.objects.values_list("day", flat=True).distinct() day_of_weeks = [] for day in day_of_weeks_model: day_of_weeks.append(TimeSlot.DAYS_OF_WEEK[day]) hours = [] for hour in TimeSlot.objects.values_list("hour", flat=True).distinct(): hours.append((hour, TimeSlot.time(hour), TimeSlot.time_nexthour(hour))) context = {"form": form, "days": day_of_weeks, "hours": hours, "message": ""} if request.method == "POST": if form.is_valid(): form.save_slot_preference_data() context[ "message" ] = "Sign up form saved! (Don't forget to screenshot your selections)" else: msg = "An error occured, please screenshot your current entries and contact CompServ." msg += " " + "Also send them the following: " + str(form.errors) context["message"] = msg return render(request, "tutoring/slotpref.html", context) def generate_all_rooms(): for rooms in Room.DEFAULT_ROOM_CHOICES: room_model = Room(id=rooms[0], building=rooms[1], room_num=rooms[2]) room_model.save() def generate_all_courses(): for course in Course.objects.all(): tutor_course = TutorCourse(course=course) tutor_course.save() def generate_all_slots(): id = 0 timeslot_id = 0 room_querySet = Room.objects.all() for hour, _ in TimeSlot.HOUR_CHOICES: for day, _ in TimeSlot.DAY_CHOICES: timeslot = TimeSlot(hour=hour, day=day, timeslot_id=timeslot_id) timeslot_id += 1 timeslot.save() for room in room_querySet: slot = Slot(timeslot=timeslot, room=room, slot_id=id) slot.save() id += 1 def initialize_slot_preferences(tutor): initialize_tutoring() if TimeSlotPreference.objects.filter(tutor=tutor).count() == 0: for timeslot in TimeSlot.objects.all(): timeslot_pref = TimeSlotPreference(tutor=tutor, timeslot=timeslot) timeslot_pref.save() if RoomPreference.objects.filter(tutor=tutor).count() == 0: for timeslot in TimeSlot.objects.all(): for room in Room.objects.all(): room_pref = RoomPreference(tutor=tutor, timeslot=timeslot, room=room) room_pref.save() def initialize_course_preferences(tutor): for course in TutorCourse.objects.all(): pref = CoursePreference(tutor=tutor, course=course) pref.save() def get_office_course_preferences(office): courses = TutorCourse.objects.all() prefs = [] # Cory if office == 0: for course in courses: prefs.append(course.cory_preference) # Soda elif office == 1: for course in courses: prefs.append(course.soda_preference) # TODO: Ability to generalize for good practice, currently assumes neutral return prefs # Generates file that will be fed into algorithm @permission_required("tutoring.add_slot", login_url="/accounts/login/") def prepare_algorithm_input(request): input_data = {} courses = [] for course in TutorCourse.objects.all(): courses.append(str(course.course)) input_data["courseName"] = courses tutors = [] for tutor in Tutor.objects.all(): tutor_dict = {} tutor_dict["tid"] = tutor.id tutor_dict["name"] = tutor.name slot_time_prefs = [] slot_office_prefs = [] for timeslot_pref in tutor.get_timeslot_preferences(): for _ in Slot.objects.filter(timeslot=timeslot_pref.timeslot): slot_time_prefs.append(timeslot_pref.preference) for room_pref in tutor.get_room_preferences(): if Slot.objects.filter(timeslot=room_pref.timeslot, room=room_pref.room).count() > 0: slot_office_prefs.append(room_pref.preference) tutor_dict["timeSlots"] = slot_time_prefs tutor_dict["officePrefs"] = slot_office_prefs course_prefs = [] for pref in tutor.get_course_preferences(): course_prefs.append(pref.preference) tutor_dict["courses"] = course_prefs tutor_dict["adjacentPref"] = tutor.adjacent_pref tutor_dict["numAssignments"] = tutor.num_assignments tutors.append(tutor_dict) input_data["tutors"] = tutors slots = [] cory_course_prefs = get_office_course_preferences(0) soda_office_prefs = get_office_course_preferences(1) for slot in Slot.objects.all().order_by("slot_id"): slot_dict = {} slot_dict["sid"] = slot.slot_id slot_dict["name"] = "Slot {}".format(slot.slot_id) slot_dict["adjacentSlotIDs"] = get_adjacent_slot_ids(slot) if slot.room == 0: slot_dict["courses"] = cory_course_prefs else: slot_dict["courses"] = soda_office_prefs slot_dict["day"] = slot.timeslot.get_day() slot_dict["hour"] = slot.timeslot.hour slot_dict["office"] = slot.get_office() slots.append(slot_dict) input_data["slots"] = slots return JsonResponse(input_data) def get_adjacent_slot_ids(slot): slots_to_check = [ slot.get_previous_hour_slot(), slot.get_after_hour_slot(), ] return [s.slot_id for s in slots_to_check if s] @permission_required("tutoring.add_slot", login_url="/accounts/login/") def generate_schedule(request): if request.method == "POST": form = TutoringAlgorithmOutputForm(request.POST, request.FILES) if form.is_valid(): output = request.FILES["output"] data = json.loads(output.read().decode("utf-8")) for slot_id in data: slot = Slot.objects.get(slot_id=slot_id) tutor_ids = data[slot_id] for id in tutor_ids: tutor = Tutor.objects.get(id=id) slot.tutors.add(tutor) return redirect("/tutoring/")
0.262936
0.287318
from __future__ import print_function import datetime import subprocess import sys import os import numpy as np import pytz import pygrib from pyiem.plot import MapPlot import pyiem.reference as ref from pyiem.util import utc HOURS = [ 36, 18, 18, 18, 18, 18, 36, 18, 18, 18, 18, 18, 36, 18, 18, 18, 18, 18, 36, 18, 18, 18, 18, 18 ] def compute_bounds(lons, lats): """figure out a minimum box to extract data from, save CPU""" dist = ((lats - ref.MW_NORTH)**2 + (lons - ref.MW_WEST)**2)**0.5 x2, y1 = np.unravel_index(dist.argmin(), dist.shape) dist = ((lats - ref.MW_SOUTH)**2 + (lons - ref.MW_EAST)**2)**0.5 x1, y2 = np.unravel_index(dist.argmin(), dist.shape) return x1 - 100, x2 + 100, y1 - 100, y2 + 100 def run(valid, routes): ''' Generate the plot for the given UTC time ''' fn = valid.strftime(("/mesonet/ARCHIVE/data/%Y/%m/%d/model/hrrr/%H/" "hrrr.t%Hz.refd.grib2")) if not os.path.isfile(fn): print("hrrr/plot_ref missing %s" % (fn, )) return grbs = pygrib.open(fn) lats = None lons = None i = 0 for minute in range(0, HOURS[valid.hour] * 60 + 1, 15): if minute > (18 * 60) and minute % 60 != 0: continue now = valid + datetime.timedelta(minutes=minute) now = now.astimezone(pytz.timezone("America/Chicago")) grbs.seek(0) try: gs = grbs.select(level=1000, forecastTime=(minute if minute <= (18 * 60) else int(minute / 60))) except ValueError: continue if lats is None: lats, lons = gs[0].latlons() x1, x2, y1, y2 = compute_bounds(lons, lats) lats = lats[x1:x2, y1:y2] lons = lons[x1:x2, y1:y2] # HACK.............. if len(gs) > 1 and minute > (18*60): reflect = gs[-1]['values'][x1:x2, y1:y2] else: reflect = gs[0]['values'][x1:x2, y1:y2] mp = MapPlot(sector='midwest', axisbg='tan', title=('%s UTC NCEP HRRR 1 km AGL Reflectivity' ) % (valid.strftime("%-d %b %Y %H"),), subtitle=('valid: %s' ) % (now.strftime("%-d %b %Y %I:%M %p %Z"),)) mp.pcolormesh(lons, lats, reflect, np.arange(0, 75, 5), units='dBZ', clip_on=False) pngfn = '/tmp/hrrr_ref_%s_%03i.png' % (valid.strftime("%Y%m%d%H"), i) mp.postprocess(filename=pngfn) mp.close() subprocess.call(("convert %s " "%s.gif") % (pngfn, pngfn[:-4]), shell=True) i += 1 # Generate anim GIF subprocess.call(("gifsicle --loopcount=0 --delay=50 " "/tmp/hrrr_ref_%s_???.gif > /tmp/hrrr_ref_%s.gif" ) % (valid.strftime("%Y%m%d%H"), valid.strftime("%Y%m%d%H")), shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) pqstr = ("plot %s %s model/hrrr/hrrr_1km_ref.gif " "model/hrrr/hrrr_1km_ref_%02i.gif gif" ) % (routes, valid.strftime("%Y%m%d%H%M"), valid.hour) subprocess.call(("/home/ldm/bin/pqinsert -p '%s' /tmp/hrrr_ref_%s.gif" ) % (pqstr, valid.strftime("%Y%m%d%H")), shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) subprocess.call("rm -f /tmp/hrrr_ref_%s*" % (valid.strftime("%Y%m%d%H"), ), shell=True) def main(argv): """Go Main""" valid = utc(int(argv[1]), int(argv[2]), int(argv[3]), int(argv[4])) now = utc() routes = 'a' if (now - valid) < datetime.timedelta(hours=2): routes = 'ac' # See if we already have output fn = valid.strftime( "/mesonet/ARCHIVE/data/%Y/%m/%d/model/hrrr/hrrr_1km_ref_%H.gif" ) if not os.path.isfile(fn): run(valid, routes) if __name__ == '__main__': # go go gadget main(sys.argv)
scripts/hrrr/plot_ref.py
from __future__ import print_function import datetime import subprocess import sys import os import numpy as np import pytz import pygrib from pyiem.plot import MapPlot import pyiem.reference as ref from pyiem.util import utc HOURS = [ 36, 18, 18, 18, 18, 18, 36, 18, 18, 18, 18, 18, 36, 18, 18, 18, 18, 18, 36, 18, 18, 18, 18, 18 ] def compute_bounds(lons, lats): """figure out a minimum box to extract data from, save CPU""" dist = ((lats - ref.MW_NORTH)**2 + (lons - ref.MW_WEST)**2)**0.5 x2, y1 = np.unravel_index(dist.argmin(), dist.shape) dist = ((lats - ref.MW_SOUTH)**2 + (lons - ref.MW_EAST)**2)**0.5 x1, y2 = np.unravel_index(dist.argmin(), dist.shape) return x1 - 100, x2 + 100, y1 - 100, y2 + 100 def run(valid, routes): ''' Generate the plot for the given UTC time ''' fn = valid.strftime(("/mesonet/ARCHIVE/data/%Y/%m/%d/model/hrrr/%H/" "hrrr.t%Hz.refd.grib2")) if not os.path.isfile(fn): print("hrrr/plot_ref missing %s" % (fn, )) return grbs = pygrib.open(fn) lats = None lons = None i = 0 for minute in range(0, HOURS[valid.hour] * 60 + 1, 15): if minute > (18 * 60) and minute % 60 != 0: continue now = valid + datetime.timedelta(minutes=minute) now = now.astimezone(pytz.timezone("America/Chicago")) grbs.seek(0) try: gs = grbs.select(level=1000, forecastTime=(minute if minute <= (18 * 60) else int(minute / 60))) except ValueError: continue if lats is None: lats, lons = gs[0].latlons() x1, x2, y1, y2 = compute_bounds(lons, lats) lats = lats[x1:x2, y1:y2] lons = lons[x1:x2, y1:y2] # HACK.............. if len(gs) > 1 and minute > (18*60): reflect = gs[-1]['values'][x1:x2, y1:y2] else: reflect = gs[0]['values'][x1:x2, y1:y2] mp = MapPlot(sector='midwest', axisbg='tan', title=('%s UTC NCEP HRRR 1 km AGL Reflectivity' ) % (valid.strftime("%-d %b %Y %H"),), subtitle=('valid: %s' ) % (now.strftime("%-d %b %Y %I:%M %p %Z"),)) mp.pcolormesh(lons, lats, reflect, np.arange(0, 75, 5), units='dBZ', clip_on=False) pngfn = '/tmp/hrrr_ref_%s_%03i.png' % (valid.strftime("%Y%m%d%H"), i) mp.postprocess(filename=pngfn) mp.close() subprocess.call(("convert %s " "%s.gif") % (pngfn, pngfn[:-4]), shell=True) i += 1 # Generate anim GIF subprocess.call(("gifsicle --loopcount=0 --delay=50 " "/tmp/hrrr_ref_%s_???.gif > /tmp/hrrr_ref_%s.gif" ) % (valid.strftime("%Y%m%d%H"), valid.strftime("%Y%m%d%H")), shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) pqstr = ("plot %s %s model/hrrr/hrrr_1km_ref.gif " "model/hrrr/hrrr_1km_ref_%02i.gif gif" ) % (routes, valid.strftime("%Y%m%d%H%M"), valid.hour) subprocess.call(("/home/ldm/bin/pqinsert -p '%s' /tmp/hrrr_ref_%s.gif" ) % (pqstr, valid.strftime("%Y%m%d%H")), shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) subprocess.call("rm -f /tmp/hrrr_ref_%s*" % (valid.strftime("%Y%m%d%H"), ), shell=True) def main(argv): """Go Main""" valid = utc(int(argv[1]), int(argv[2]), int(argv[3]), int(argv[4])) now = utc() routes = 'a' if (now - valid) < datetime.timedelta(hours=2): routes = 'ac' # See if we already have output fn = valid.strftime( "/mesonet/ARCHIVE/data/%Y/%m/%d/model/hrrr/hrrr_1km_ref_%H.gif" ) if not os.path.isfile(fn): run(valid, routes) if __name__ == '__main__': # go go gadget main(sys.argv)
0.329392
0.237653
from __future__ import print_function import argparse import os import webbrowser from shutil import copyfile from urllib import pathname2url import pdfkit from os.path import join, dirname from rope.base.pyobjectsdef import _AssignVisitor p = argparse.ArgumentParser() p.add_argument('--root', help="The root folder of a dataset, which is " "a folder. Under this folder I expect to find " "a name (e.g. 'congo') and then a mega-facade " "index and an image-index. For example 'congo/1/2'") p.add_argument('--outdir', help="Folder for results, broken up into small pages") args = p.parse_args() counter = 1 def save_html(outpath, root, datasets): global counter f = open(outpath, 'w') print("<html><body>", file=f) print("<!--", "args.root =", root, "-->", file=f) for dataset in datasets: if not os.path.isdir(join(root, dataset)): continue print('<div style="float:top;">', file=f) print('<h1> Dataset ', dataset, '</h1>', file=f) for megafacade in os.listdir(join(root, dataset)): print('<div style="float:top;white-space: nowrap;">', file=f) print('<h2> Megafacade ', megafacade, '</h2>', file=f) for image in os.listdir(join(root, dataset, megafacade)): image_folder = join(root, dataset, megafacade, image) regions_jpg = join(image_folder, 'regions.jpg') if not os.path.isdir(image_folder): continue print('<div style="display:inline-block;">', file=f) localname = "img_{:06}.jpg".format(counter) counter += 1 copyfile(regions_jpg, join(dirname(outpath), localname)) print('<img height="400", src="{}"></img>'.format(localname), file=f) print('</div>', file=f) print('<div style="clear: both"></div>', file=f) print('</div>', file=f) print('</div>', file=f) print("</body></html>", file=f) outdir = args.outdir try: os.makedirs(outdir) except OSError as e: pass datasets = [d for d in os.listdir(args.root) if os.path.isdir(join(args.root, d))] n = 5 pages = [datasets[i:min(len(datasets), i + n)] for i in range(0, len(datasets), n)] idx = open(join(outdir, 'index.html'), 'w') print("<html><body><ol>", file=idx) for i, page in enumerate(pages): print(i+1) outpath = join(outdir, 'report-page-{:04}.html'.format(i + 1)) print("<li><a href={url}>{url}</a>".format(url=pathname2url(os.path.relpath(outpath, outdir))), file=idx) save_html(outpath, args.root, page) print("</ol></body></html>", file=idx) webbrowser.open(join(outdir, 'index.html'))
scripts/i12-eval/report.py
from __future__ import print_function import argparse import os import webbrowser from shutil import copyfile from urllib import pathname2url import pdfkit from os.path import join, dirname from rope.base.pyobjectsdef import _AssignVisitor p = argparse.ArgumentParser() p.add_argument('--root', help="The root folder of a dataset, which is " "a folder. Under this folder I expect to find " "a name (e.g. 'congo') and then a mega-facade " "index and an image-index. For example 'congo/1/2'") p.add_argument('--outdir', help="Folder for results, broken up into small pages") args = p.parse_args() counter = 1 def save_html(outpath, root, datasets): global counter f = open(outpath, 'w') print("<html><body>", file=f) print("<!--", "args.root =", root, "-->", file=f) for dataset in datasets: if not os.path.isdir(join(root, dataset)): continue print('<div style="float:top;">', file=f) print('<h1> Dataset ', dataset, '</h1>', file=f) for megafacade in os.listdir(join(root, dataset)): print('<div style="float:top;white-space: nowrap;">', file=f) print('<h2> Megafacade ', megafacade, '</h2>', file=f) for image in os.listdir(join(root, dataset, megafacade)): image_folder = join(root, dataset, megafacade, image) regions_jpg = join(image_folder, 'regions.jpg') if not os.path.isdir(image_folder): continue print('<div style="display:inline-block;">', file=f) localname = "img_{:06}.jpg".format(counter) counter += 1 copyfile(regions_jpg, join(dirname(outpath), localname)) print('<img height="400", src="{}"></img>'.format(localname), file=f) print('</div>', file=f) print('<div style="clear: both"></div>', file=f) print('</div>', file=f) print('</div>', file=f) print("</body></html>", file=f) outdir = args.outdir try: os.makedirs(outdir) except OSError as e: pass datasets = [d for d in os.listdir(args.root) if os.path.isdir(join(args.root, d))] n = 5 pages = [datasets[i:min(len(datasets), i + n)] for i in range(0, len(datasets), n)] idx = open(join(outdir, 'index.html'), 'w') print("<html><body><ol>", file=idx) for i, page in enumerate(pages): print(i+1) outpath = join(outdir, 'report-page-{:04}.html'.format(i + 1)) print("<li><a href={url}>{url}</a>".format(url=pathname2url(os.path.relpath(outpath, outdir))), file=idx) save_html(outpath, args.root, page) print("</ol></body></html>", file=idx) webbrowser.open(join(outdir, 'index.html'))
0.163646
0.119511
import json, time, zlib from sims4.gsi.schema import GsiSchema, CLIENT_GSI_ARCHIVE_UID_FIX from uid import UniqueIdGenerator import sims4.gsi.dispatcher, sims4.log, sims4.reload, sims4.zone_utils logger = sims4.log.Logger('GSI') with sims4.reload.protected(globals()): archive_data = {} archive_schemas = {} all_archivers = {} archive_id = UniqueIdGenerator() ARCHIVE_DEFAULT_RECORDS = 50 ARCHIVE_MAX_RECORDS = ARCHIVE_DEFAULT_RECORDS def set_max_archive_records(max_records): global ARCHIVE_MAX_RECORDS ARCHIVE_MAX_RECORDS = max_records def set_max_archive_records_default(): set_max_archive_records(ARCHIVE_DEFAULT_RECORDS) def set_archive_enabled(archive_type, enable=True): if archive_type in all_archivers: all_archivers[archive_type].archive_enable_fn(enableLog=enable) else: logger.error('Tried to enable {} which is not a valid archive name'.format(archive_type)) def is_archive_enabled(archive_type): if archive_type in all_archivers: return all_archivers[archive_type].enabled logger.error("Tried to determine if {} is enabled but doesn't exist".format(archive_type)) return False def set_all_archivers_enabled(enable=True): for archiver in all_archivers.values(): if archiver.enabled != enable: if not enable or archiver._enable_on_all_enable: archiver.archive_enable_fn(enableLog=enable) def clear_archive_records(archive_type, sim_id=None): if archive_type in all_archivers: all_archivers[archive_type].clear_archive(sim_id=sim_id) else: logger.error('Trying to clear all archive entries from {} which is not a valid archive type.'.format(archive_type)) class BaseArchiver: __slots__ = ('_type_name', '_custom_enable_fn', '_archive_enabled', '_enable_on_all_enable', '__weakref__') def __init__(self, type_name=None, enable_archive_by_default=False, add_to_archive_enable_functions=False, custom_enable_fn=None): self._type_name = type_name self._custom_enable_fn = custom_enable_fn self._enable_on_all_enable = add_to_archive_enable_functions self._archive_enabled = False all_archivers[type_name] = self @property def enabled(self): return self._archive_enabled def archive_enable_fn(self, *args, enableLog=False, **kwargs): self._archive_enabled = enableLog if self._custom_enable_fn is not None: (self._custom_enable_fn)(args, enableLog=enableLog, **kwargs) return '{{"log_enabled":{}}}'.format('true' if enableLog else 'false') def clear_archive(self, sim_id=None): pass class Archiver(BaseArchiver): __slots__ = ('_sim_specific', '_max_records') def __init__(self, type_name=None, schema=None, max_records=None, enable_archive_by_default=False, add_to_archive_enable_functions=False, custom_enable_fn=None): super().__init__(type_name=type_name, enable_archive_by_default=enable_archive_by_default, add_to_archive_enable_functions=add_to_archive_enable_functions, custom_enable_fn=custom_enable_fn) self._sim_specific = schema.is_sim_specific self._max_records = max_records sims4.gsi.dispatcher.add_handler('{}{}'.format(type_name, sims4.gsi.dispatcher.ARCHIVE_TOGGLE_SUFFIX), None, lambda *args, **kwargs: (self.archive_enable_fn)(*args, **kwargs)) register_archive_type(type_name, schema, partition_by_obj=(self._sim_specific)) def clear_archive(self, sim_id=None): if self._sim_specific: if sim_id is not None: del archive_data[self._type_name][sim_id] archive_data[self._type_name][sim_id] = [] else: logger.error('No Sim Id provided when trying to clear a sim specific archive.') else: del archive_data[self._type_name] archive_data[self._type_name] = [] def archive(self, data=None, object_id=None, game_time=None, zone_override=None): if zone_override is not None: zone_id = zone_override else: zone_id = sims4.zone_utils.zone_id if not zone_id: logger.error('Archiving data to zone 0. This data will be inaccessible to the GSI.') zone_id = 0 else: now = int(time.time()) record = ArchiveRecord(zone_id=zone_id, object_id=object_id, timestamp=now, game_time=game_time, data=data) if self._sim_specific: if object_id is None: logger.error('Archiving data to a sim_specific archive with no object ID. This data will be inaccessible to the GSI.') archive_list = archive_data[self._type_name].get(object_id) if archive_list is None: archive_list = [] archive_data[self._type_name][object_id] = archive_list else: archive_list = archive_data[self._type_name] archive_list.append(record) num_max_records = ARCHIVE_MAX_RECORDS if self._max_records is not None: if num_max_records < self._max_records: num_max_records = self._max_records num_records = len(archive_list) if num_records > num_max_records: diff = num_records - num_max_records while diff > 0: del archive_list[0] diff -= 1 class ArchiveRecord: __slots__ = ('zone_id', 'object_id', 'timestamp', 'uid', 'compressed_json') def __init__(self, zone_id=None, object_id=None, timestamp=None, game_time=None, data=None): self.zone_id = zone_id self.object_id = object_id self.timestamp = timestamp self.uid = archive_id() full_dict = {'zone_id':hex(zone_id), 'object_id':hex(object_id) if object_id is not None else 'None', 'timestamp':timestamp, 'game_time':game_time, 'uid':self.uid} for key, field in data.items(): full_dict[key] = field uncompressed_json = json.dumps(full_dict) self.compressed_json = zlib.compress(uncompressed_json.encode()) def register_archive_type(type_name, schema, partition_by_obj=False): if isinstance(schema, GsiSchema): schema = schema.output if type_name in archive_schemas: logger.error('Replacing archive type for {}.', type_name) del archive_schemas[type_name] path = type_name.strip('/') new_archive = archive_data.get(type_name) if new_archive is None: if partition_by_obj: new_archive = {} else: new_archive = [] archive_data[type_name] = new_archive actual_schema = {'archive':True, 'perf_toggle':True, 'unique_field':'uid', 'definition':[ {'name':'zone_id', 'type':'string', 'label':'Zone', 'hidden':True}, {'name':'object_id', 'type':'string', 'label':'Object ID', 'hidden':True}, {'name':'timestamp', 'type':'int', 'label':'Time', 'is_time':True, 'axis':'xField', 'sort_field':'uid'}, {'name':'game_time', 'type':'string', 'label':'Game Time', 'hidden':True}, {'name':'uid', 'type':'int', 'label':'UId', 'hidden':True}]} for key, entry in schema.items(): if key == 'definition': for definition_entry in entry: actual_schema['definition'].append(definition_entry) else: actual_schema[key] = entry for key, value in schema.items(): if key not in ('definition', 'associations'): actual_schema[key] = value archive_schemas[type_name] = actual_schema def archive_handler(zone_id=None, object_id=None, sim_id=None, timestamp=None, uid=None, uncompress=True): if object_id is None: if sim_id is not None: object_id = sim_id elif partition_by_obj: archive_data_list = archive_data[type_name].get(object_id) if archive_data_list is None: return '[]' else: archive_data_list = archive_data[type_name] else: json_output = '[]' try: record_data = [] for record in archive_data_list: if zone_id is not None: if zone_id != record.zone_id: continue elif object_id is not None and object_id != record.object_id: continue if sims4.gsi.dispatcher.gsi_client_version < CLIENT_GSI_ARCHIVE_UID_FIX: if timestamp is not None and timestamp >= record.timestamp: continue elif uid is not None: if uid >= record.uid: continue record_data.append(record.compressed_json) if uncompress: json_output = '[{}]'.format(','.join((zlib.decompress(record).decode('utf-8') for record in record_data))) else: return record_data except MemoryError: logger.error('Archive Data[{}] has too many entries: {}', type_name, len(archive_data_list)) json_output = '[]' return json_output sims4.gsi.dispatcher.GsiHandler(path, actual_schema, suppress_json=True)(archive_handler)
Scripts/core/sims4/gsi/archive.py
import json, time, zlib from sims4.gsi.schema import GsiSchema, CLIENT_GSI_ARCHIVE_UID_FIX from uid import UniqueIdGenerator import sims4.gsi.dispatcher, sims4.log, sims4.reload, sims4.zone_utils logger = sims4.log.Logger('GSI') with sims4.reload.protected(globals()): archive_data = {} archive_schemas = {} all_archivers = {} archive_id = UniqueIdGenerator() ARCHIVE_DEFAULT_RECORDS = 50 ARCHIVE_MAX_RECORDS = ARCHIVE_DEFAULT_RECORDS def set_max_archive_records(max_records): global ARCHIVE_MAX_RECORDS ARCHIVE_MAX_RECORDS = max_records def set_max_archive_records_default(): set_max_archive_records(ARCHIVE_DEFAULT_RECORDS) def set_archive_enabled(archive_type, enable=True): if archive_type in all_archivers: all_archivers[archive_type].archive_enable_fn(enableLog=enable) else: logger.error('Tried to enable {} which is not a valid archive name'.format(archive_type)) def is_archive_enabled(archive_type): if archive_type in all_archivers: return all_archivers[archive_type].enabled logger.error("Tried to determine if {} is enabled but doesn't exist".format(archive_type)) return False def set_all_archivers_enabled(enable=True): for archiver in all_archivers.values(): if archiver.enabled != enable: if not enable or archiver._enable_on_all_enable: archiver.archive_enable_fn(enableLog=enable) def clear_archive_records(archive_type, sim_id=None): if archive_type in all_archivers: all_archivers[archive_type].clear_archive(sim_id=sim_id) else: logger.error('Trying to clear all archive entries from {} which is not a valid archive type.'.format(archive_type)) class BaseArchiver: __slots__ = ('_type_name', '_custom_enable_fn', '_archive_enabled', '_enable_on_all_enable', '__weakref__') def __init__(self, type_name=None, enable_archive_by_default=False, add_to_archive_enable_functions=False, custom_enable_fn=None): self._type_name = type_name self._custom_enable_fn = custom_enable_fn self._enable_on_all_enable = add_to_archive_enable_functions self._archive_enabled = False all_archivers[type_name] = self @property def enabled(self): return self._archive_enabled def archive_enable_fn(self, *args, enableLog=False, **kwargs): self._archive_enabled = enableLog if self._custom_enable_fn is not None: (self._custom_enable_fn)(args, enableLog=enableLog, **kwargs) return '{{"log_enabled":{}}}'.format('true' if enableLog else 'false') def clear_archive(self, sim_id=None): pass class Archiver(BaseArchiver): __slots__ = ('_sim_specific', '_max_records') def __init__(self, type_name=None, schema=None, max_records=None, enable_archive_by_default=False, add_to_archive_enable_functions=False, custom_enable_fn=None): super().__init__(type_name=type_name, enable_archive_by_default=enable_archive_by_default, add_to_archive_enable_functions=add_to_archive_enable_functions, custom_enable_fn=custom_enable_fn) self._sim_specific = schema.is_sim_specific self._max_records = max_records sims4.gsi.dispatcher.add_handler('{}{}'.format(type_name, sims4.gsi.dispatcher.ARCHIVE_TOGGLE_SUFFIX), None, lambda *args, **kwargs: (self.archive_enable_fn)(*args, **kwargs)) register_archive_type(type_name, schema, partition_by_obj=(self._sim_specific)) def clear_archive(self, sim_id=None): if self._sim_specific: if sim_id is not None: del archive_data[self._type_name][sim_id] archive_data[self._type_name][sim_id] = [] else: logger.error('No Sim Id provided when trying to clear a sim specific archive.') else: del archive_data[self._type_name] archive_data[self._type_name] = [] def archive(self, data=None, object_id=None, game_time=None, zone_override=None): if zone_override is not None: zone_id = zone_override else: zone_id = sims4.zone_utils.zone_id if not zone_id: logger.error('Archiving data to zone 0. This data will be inaccessible to the GSI.') zone_id = 0 else: now = int(time.time()) record = ArchiveRecord(zone_id=zone_id, object_id=object_id, timestamp=now, game_time=game_time, data=data) if self._sim_specific: if object_id is None: logger.error('Archiving data to a sim_specific archive with no object ID. This data will be inaccessible to the GSI.') archive_list = archive_data[self._type_name].get(object_id) if archive_list is None: archive_list = [] archive_data[self._type_name][object_id] = archive_list else: archive_list = archive_data[self._type_name] archive_list.append(record) num_max_records = ARCHIVE_MAX_RECORDS if self._max_records is not None: if num_max_records < self._max_records: num_max_records = self._max_records num_records = len(archive_list) if num_records > num_max_records: diff = num_records - num_max_records while diff > 0: del archive_list[0] diff -= 1 class ArchiveRecord: __slots__ = ('zone_id', 'object_id', 'timestamp', 'uid', 'compressed_json') def __init__(self, zone_id=None, object_id=None, timestamp=None, game_time=None, data=None): self.zone_id = zone_id self.object_id = object_id self.timestamp = timestamp self.uid = archive_id() full_dict = {'zone_id':hex(zone_id), 'object_id':hex(object_id) if object_id is not None else 'None', 'timestamp':timestamp, 'game_time':game_time, 'uid':self.uid} for key, field in data.items(): full_dict[key] = field uncompressed_json = json.dumps(full_dict) self.compressed_json = zlib.compress(uncompressed_json.encode()) def register_archive_type(type_name, schema, partition_by_obj=False): if isinstance(schema, GsiSchema): schema = schema.output if type_name in archive_schemas: logger.error('Replacing archive type for {}.', type_name) del archive_schemas[type_name] path = type_name.strip('/') new_archive = archive_data.get(type_name) if new_archive is None: if partition_by_obj: new_archive = {} else: new_archive = [] archive_data[type_name] = new_archive actual_schema = {'archive':True, 'perf_toggle':True, 'unique_field':'uid', 'definition':[ {'name':'zone_id', 'type':'string', 'label':'Zone', 'hidden':True}, {'name':'object_id', 'type':'string', 'label':'Object ID', 'hidden':True}, {'name':'timestamp', 'type':'int', 'label':'Time', 'is_time':True, 'axis':'xField', 'sort_field':'uid'}, {'name':'game_time', 'type':'string', 'label':'Game Time', 'hidden':True}, {'name':'uid', 'type':'int', 'label':'UId', 'hidden':True}]} for key, entry in schema.items(): if key == 'definition': for definition_entry in entry: actual_schema['definition'].append(definition_entry) else: actual_schema[key] = entry for key, value in schema.items(): if key not in ('definition', 'associations'): actual_schema[key] = value archive_schemas[type_name] = actual_schema def archive_handler(zone_id=None, object_id=None, sim_id=None, timestamp=None, uid=None, uncompress=True): if object_id is None: if sim_id is not None: object_id = sim_id elif partition_by_obj: archive_data_list = archive_data[type_name].get(object_id) if archive_data_list is None: return '[]' else: archive_data_list = archive_data[type_name] else: json_output = '[]' try: record_data = [] for record in archive_data_list: if zone_id is not None: if zone_id != record.zone_id: continue elif object_id is not None and object_id != record.object_id: continue if sims4.gsi.dispatcher.gsi_client_version < CLIENT_GSI_ARCHIVE_UID_FIX: if timestamp is not None and timestamp >= record.timestamp: continue elif uid is not None: if uid >= record.uid: continue record_data.append(record.compressed_json) if uncompress: json_output = '[{}]'.format(','.join((zlib.decompress(record).decode('utf-8') for record in record_data))) else: return record_data except MemoryError: logger.error('Archive Data[{}] has too many entries: {}', type_name, len(archive_data_list)) json_output = '[]' return json_output sims4.gsi.dispatcher.GsiHandler(path, actual_schema, suppress_json=True)(archive_handler)
0.472927
0.112089
from __future__ import absolute_import from cdsl.formats import InstructionFormat from cdsl.operands import VALUE, VARIABLE_ARGS from .immediates import imm64, uimm8, uimm32, ieee32, ieee64, offset32 from .immediates import boolean, intcc, floatcc, memflags, regunit, trapcode from . import entities from .entities import ebb, sig_ref, func_ref, stack_slot, heap, table Unary = InstructionFormat(VALUE) UnaryImm = InstructionFormat(imm64) UnaryIeee32 = InstructionFormat(ieee32) UnaryIeee64 = InstructionFormat(ieee64) UnaryBool = InstructionFormat(boolean) UnaryGlobalValue = InstructionFormat(entities.global_value) Binary = InstructionFormat(VALUE, VALUE) BinaryImm = InstructionFormat(VALUE, imm64) # The select instructions are controlled by the second VALUE operand. # The first VALUE operand is the controlling flag which has a derived type. # The fma instruction has the same constraint on all inputs. Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1) # Catch-all for instructions with many outputs and inputs and no immediate # operands. MultiAry = InstructionFormat(VARIABLE_ARGS) NullAry = InstructionFormat() InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE) ExtractLane = InstructionFormat(VALUE, ('lane', uimm8)) IntCompare = InstructionFormat(intcc, VALUE, VALUE) IntCompareImm = InstructionFormat(intcc, VALUE, imm64) IntCond = InstructionFormat(intcc, VALUE) FloatCompare = InstructionFormat(floatcc, VALUE, VALUE) FloatCond = InstructionFormat(floatcc, VALUE) IntSelect = InstructionFormat(intcc, VALUE, VALUE, VALUE) Jump = InstructionFormat(ebb, VARIABLE_ARGS) Branch = InstructionFormat(VALUE, ebb, VARIABLE_ARGS) BranchInt = InstructionFormat(intcc, VALUE, ebb, VARIABLE_ARGS) BranchFloat = InstructionFormat(floatcc, VALUE, ebb, VARIABLE_ARGS) BranchIcmp = InstructionFormat(intcc, VALUE, VALUE, ebb, VARIABLE_ARGS) BranchTable = InstructionFormat(VALUE, ebb, entities.jump_table) BranchTableEntry = InstructionFormat(VALUE, VALUE, uimm8, entities.jump_table) BranchTableBase = InstructionFormat(entities.jump_table) IndirectJump = InstructionFormat(VALUE, entities.jump_table) Call = InstructionFormat(func_ref, VARIABLE_ARGS) CallIndirect = InstructionFormat(sig_ref, VALUE, VARIABLE_ARGS) FuncAddr = InstructionFormat(func_ref) Load = InstructionFormat(memflags, VALUE, offset32) LoadComplex = InstructionFormat(memflags, VARIABLE_ARGS, offset32) Store = InstructionFormat(memflags, VALUE, VALUE, offset32) StoreComplex = InstructionFormat(memflags, VALUE, VARIABLE_ARGS, offset32) StackLoad = InstructionFormat(stack_slot, offset32) StackStore = InstructionFormat(VALUE, stack_slot, offset32) # Accessing a WebAssembly heap. HeapAddr = InstructionFormat(heap, VALUE, uimm32) # Accessing a WebAssembly table. TableAddr = InstructionFormat(table, VALUE, offset32) RegMove = InstructionFormat(VALUE, ('src', regunit), ('dst', regunit)) CopySpecial = InstructionFormat(('src', regunit), ('dst', regunit)) CopyNop = InstructionFormat( ('src', entities.stack_slot), ('dst', entities.stack_slot)) RegSpill = InstructionFormat( VALUE, ('src', regunit), ('dst', entities.stack_slot)) RegFill = InstructionFormat( VALUE, ('src', entities.stack_slot), ('dst', regunit)) Trap = InstructionFormat(trapcode) CondTrap = InstructionFormat(VALUE, trapcode) IntCondTrap = InstructionFormat(intcc, VALUE, trapcode) FloatCondTrap = InstructionFormat(floatcc, VALUE, trapcode) # Finally extract the names of global values in this module. InstructionFormat.extract_names(globals())
cranelift-codegen/meta-python/base/formats.py
from __future__ import absolute_import from cdsl.formats import InstructionFormat from cdsl.operands import VALUE, VARIABLE_ARGS from .immediates import imm64, uimm8, uimm32, ieee32, ieee64, offset32 from .immediates import boolean, intcc, floatcc, memflags, regunit, trapcode from . import entities from .entities import ebb, sig_ref, func_ref, stack_slot, heap, table Unary = InstructionFormat(VALUE) UnaryImm = InstructionFormat(imm64) UnaryIeee32 = InstructionFormat(ieee32) UnaryIeee64 = InstructionFormat(ieee64) UnaryBool = InstructionFormat(boolean) UnaryGlobalValue = InstructionFormat(entities.global_value) Binary = InstructionFormat(VALUE, VALUE) BinaryImm = InstructionFormat(VALUE, imm64) # The select instructions are controlled by the second VALUE operand. # The first VALUE operand is the controlling flag which has a derived type. # The fma instruction has the same constraint on all inputs. Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1) # Catch-all for instructions with many outputs and inputs and no immediate # operands. MultiAry = InstructionFormat(VARIABLE_ARGS) NullAry = InstructionFormat() InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE) ExtractLane = InstructionFormat(VALUE, ('lane', uimm8)) IntCompare = InstructionFormat(intcc, VALUE, VALUE) IntCompareImm = InstructionFormat(intcc, VALUE, imm64) IntCond = InstructionFormat(intcc, VALUE) FloatCompare = InstructionFormat(floatcc, VALUE, VALUE) FloatCond = InstructionFormat(floatcc, VALUE) IntSelect = InstructionFormat(intcc, VALUE, VALUE, VALUE) Jump = InstructionFormat(ebb, VARIABLE_ARGS) Branch = InstructionFormat(VALUE, ebb, VARIABLE_ARGS) BranchInt = InstructionFormat(intcc, VALUE, ebb, VARIABLE_ARGS) BranchFloat = InstructionFormat(floatcc, VALUE, ebb, VARIABLE_ARGS) BranchIcmp = InstructionFormat(intcc, VALUE, VALUE, ebb, VARIABLE_ARGS) BranchTable = InstructionFormat(VALUE, ebb, entities.jump_table) BranchTableEntry = InstructionFormat(VALUE, VALUE, uimm8, entities.jump_table) BranchTableBase = InstructionFormat(entities.jump_table) IndirectJump = InstructionFormat(VALUE, entities.jump_table) Call = InstructionFormat(func_ref, VARIABLE_ARGS) CallIndirect = InstructionFormat(sig_ref, VALUE, VARIABLE_ARGS) FuncAddr = InstructionFormat(func_ref) Load = InstructionFormat(memflags, VALUE, offset32) LoadComplex = InstructionFormat(memflags, VARIABLE_ARGS, offset32) Store = InstructionFormat(memflags, VALUE, VALUE, offset32) StoreComplex = InstructionFormat(memflags, VALUE, VARIABLE_ARGS, offset32) StackLoad = InstructionFormat(stack_slot, offset32) StackStore = InstructionFormat(VALUE, stack_slot, offset32) # Accessing a WebAssembly heap. HeapAddr = InstructionFormat(heap, VALUE, uimm32) # Accessing a WebAssembly table. TableAddr = InstructionFormat(table, VALUE, offset32) RegMove = InstructionFormat(VALUE, ('src', regunit), ('dst', regunit)) CopySpecial = InstructionFormat(('src', regunit), ('dst', regunit)) CopyNop = InstructionFormat( ('src', entities.stack_slot), ('dst', entities.stack_slot)) RegSpill = InstructionFormat( VALUE, ('src', regunit), ('dst', entities.stack_slot)) RegFill = InstructionFormat( VALUE, ('src', entities.stack_slot), ('dst', regunit)) Trap = InstructionFormat(trapcode) CondTrap = InstructionFormat(VALUE, trapcode) IntCondTrap = InstructionFormat(intcc, VALUE, trapcode) FloatCondTrap = InstructionFormat(floatcc, VALUE, trapcode) # Finally extract the names of global values in this module. InstructionFormat.extract_names(globals())
0.676727
0.141815
from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.keras_layers import dynamic_unroll_layer from tensorflow.python.framework import test_util # TF internal class AddInputAndStateKerasRNNCell(tf.keras.layers.Layer): def __init__(self): super(AddInputAndStateKerasRNNCell, self).__init__() self.output_size = 1 self.state_size = 1 def call(self, input_, state): s = input_ + state return s, s def get_initial_state(self, inputs=None, batch_size=None, dtype=None): if inputs is not None: return tf.zeros_like(inputs) return tf.zeros([batch_size, 1], dtype) class DynamicUnrollTest(parameterized.TestCase, tf.test.TestCase): def testFromConfigLSTM(self): l1 = dynamic_unroll_layer.DynamicUnroll( tf.keras.layers.LSTMCell(units=3), parallel_iterations=10) l2 = dynamic_unroll_layer.DynamicUnroll.from_config(l1.get_config()) self.assertEqual(l1.get_config(), l2.get_config()) @parameterized.named_parameters( ('WithMask', True,), ('NoMask', False)) def testDynamicUnrollMatchesDynamicRNNWhenNoReset(self, with_mask): cell = tf.compat.v1.nn.rnn_cell.LSTMCell(3) batch_size = 4 max_time = 7 inputs = tf.random.uniform((batch_size, max_time, 2), dtype=tf.float32) layer = dynamic_unroll_layer.DynamicUnroll(cell, dtype=tf.float32) if with_mask: reset_mask = tf.zeros((batch_size, max_time), dtype=tf.bool) else: reset_mask = None outputs_dun, final_state_dun = layer(inputs, reset_mask=reset_mask) outputs_drnn, final_state_drnn = tf.compat.v1.nn.dynamic_rnn( cell, inputs, dtype=tf.float32) self.evaluate(tf.compat.v1.global_variables_initializer()) outputs_dun, final_state_dun, outputs_drnn, final_state_drnn = ( self.evaluate( (outputs_dun, final_state_dun, outputs_drnn, final_state_drnn))) self.assertAllClose(outputs_dun, outputs_drnn) self.assertAllClose(final_state_dun, final_state_drnn) @parameterized.named_parameters( ('WithMask', True,), ('NoMask', False)) def testDynamicUnrollMatchesDynamicRNNWhenNoResetSingleTimeStep( self, with_mask): cell = tf.compat.v1.nn.rnn_cell.LSTMCell(3) batch_size = 4 max_time = 1 inputs = tf.random.uniform((batch_size, max_time, 2), dtype=tf.float32) layer = dynamic_unroll_layer.DynamicUnroll(cell, dtype=tf.float32) if with_mask: reset_mask = tf.zeros((batch_size, max_time), dtype=tf.bool) else: reset_mask = None outputs_dun, final_state_dun = layer(inputs, reset_mask=reset_mask) outputs_drnn, final_state_drnn = tf.compat.v1.nn.dynamic_rnn( cell, inputs, dtype=tf.float32) self.evaluate(tf.compat.v1.global_variables_initializer()) outputs_dun, final_state_dun, outputs_drnn, final_state_drnn = ( self.evaluate( (outputs_dun, final_state_dun, outputs_drnn, final_state_drnn))) self.assertAllClose(outputs_dun, outputs_drnn) self.assertAllClose(final_state_dun, final_state_drnn) @test_util.run_in_graph_and_eager_modes() def testDynamicUnrollResetsStateOnReset(self): if hasattr(tf, 'contrib'): class AddInputAndStateRNNCell(tf.contrib.rnn.LayerRNNCell): @property def state_size(self): return tf.TensorShape([1]) @property def output_size(self): return tf.TensorShape([1]) def call(self, input_, state): s = input_ + state return s, s self._testDynamicUnrollResetsStateOnReset( AddInputAndStateRNNCell) self._testDynamicUnrollResetsStateOnReset( AddInputAndStateKerasRNNCell) def _testDynamicUnrollResetsStateOnReset(self, cell_type): cell = cell_type() batch_size = 4 max_time = 7 inputs = tf.random.uniform((batch_size, max_time, 1)) reset_mask = (tf.random.normal((batch_size, max_time)) > 0) layer = dynamic_unroll_layer.DynamicUnroll(cell, dtype=tf.float32) outputs, final_state = layer(inputs, reset_mask=reset_mask) tf.nest.assert_same_structure(outputs, cell.output_size) tf.nest.assert_same_structure(final_state, cell.state_size) reset_mask, inputs, outputs, final_state = self.evaluate( (reset_mask, inputs, outputs, final_state)) self.assertAllClose(outputs[:, -1, :], final_state) # outputs will contain cumulative sums up until a reset expected_outputs = [] state = np.zeros_like(final_state) for i, frame in enumerate(np.transpose(inputs, [1, 0, 2])): state = state * np.reshape(~reset_mask[:, i], state.shape) + frame expected_outputs.append(np.array(state)) expected_outputs = np.transpose(expected_outputs, [1, 0, 2]) self.assertAllClose(outputs, expected_outputs) if __name__ == '__main__': tf.test.main()
tf_agents/keras_layers/dynamic_unroll_layer_test.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.keras_layers import dynamic_unroll_layer from tensorflow.python.framework import test_util # TF internal class AddInputAndStateKerasRNNCell(tf.keras.layers.Layer): def __init__(self): super(AddInputAndStateKerasRNNCell, self).__init__() self.output_size = 1 self.state_size = 1 def call(self, input_, state): s = input_ + state return s, s def get_initial_state(self, inputs=None, batch_size=None, dtype=None): if inputs is not None: return tf.zeros_like(inputs) return tf.zeros([batch_size, 1], dtype) class DynamicUnrollTest(parameterized.TestCase, tf.test.TestCase): def testFromConfigLSTM(self): l1 = dynamic_unroll_layer.DynamicUnroll( tf.keras.layers.LSTMCell(units=3), parallel_iterations=10) l2 = dynamic_unroll_layer.DynamicUnroll.from_config(l1.get_config()) self.assertEqual(l1.get_config(), l2.get_config()) @parameterized.named_parameters( ('WithMask', True,), ('NoMask', False)) def testDynamicUnrollMatchesDynamicRNNWhenNoReset(self, with_mask): cell = tf.compat.v1.nn.rnn_cell.LSTMCell(3) batch_size = 4 max_time = 7 inputs = tf.random.uniform((batch_size, max_time, 2), dtype=tf.float32) layer = dynamic_unroll_layer.DynamicUnroll(cell, dtype=tf.float32) if with_mask: reset_mask = tf.zeros((batch_size, max_time), dtype=tf.bool) else: reset_mask = None outputs_dun, final_state_dun = layer(inputs, reset_mask=reset_mask) outputs_drnn, final_state_drnn = tf.compat.v1.nn.dynamic_rnn( cell, inputs, dtype=tf.float32) self.evaluate(tf.compat.v1.global_variables_initializer()) outputs_dun, final_state_dun, outputs_drnn, final_state_drnn = ( self.evaluate( (outputs_dun, final_state_dun, outputs_drnn, final_state_drnn))) self.assertAllClose(outputs_dun, outputs_drnn) self.assertAllClose(final_state_dun, final_state_drnn) @parameterized.named_parameters( ('WithMask', True,), ('NoMask', False)) def testDynamicUnrollMatchesDynamicRNNWhenNoResetSingleTimeStep( self, with_mask): cell = tf.compat.v1.nn.rnn_cell.LSTMCell(3) batch_size = 4 max_time = 1 inputs = tf.random.uniform((batch_size, max_time, 2), dtype=tf.float32) layer = dynamic_unroll_layer.DynamicUnroll(cell, dtype=tf.float32) if with_mask: reset_mask = tf.zeros((batch_size, max_time), dtype=tf.bool) else: reset_mask = None outputs_dun, final_state_dun = layer(inputs, reset_mask=reset_mask) outputs_drnn, final_state_drnn = tf.compat.v1.nn.dynamic_rnn( cell, inputs, dtype=tf.float32) self.evaluate(tf.compat.v1.global_variables_initializer()) outputs_dun, final_state_dun, outputs_drnn, final_state_drnn = ( self.evaluate( (outputs_dun, final_state_dun, outputs_drnn, final_state_drnn))) self.assertAllClose(outputs_dun, outputs_drnn) self.assertAllClose(final_state_dun, final_state_drnn) @test_util.run_in_graph_and_eager_modes() def testDynamicUnrollResetsStateOnReset(self): if hasattr(tf, 'contrib'): class AddInputAndStateRNNCell(tf.contrib.rnn.LayerRNNCell): @property def state_size(self): return tf.TensorShape([1]) @property def output_size(self): return tf.TensorShape([1]) def call(self, input_, state): s = input_ + state return s, s self._testDynamicUnrollResetsStateOnReset( AddInputAndStateRNNCell) self._testDynamicUnrollResetsStateOnReset( AddInputAndStateKerasRNNCell) def _testDynamicUnrollResetsStateOnReset(self, cell_type): cell = cell_type() batch_size = 4 max_time = 7 inputs = tf.random.uniform((batch_size, max_time, 1)) reset_mask = (tf.random.normal((batch_size, max_time)) > 0) layer = dynamic_unroll_layer.DynamicUnroll(cell, dtype=tf.float32) outputs, final_state = layer(inputs, reset_mask=reset_mask) tf.nest.assert_same_structure(outputs, cell.output_size) tf.nest.assert_same_structure(final_state, cell.state_size) reset_mask, inputs, outputs, final_state = self.evaluate( (reset_mask, inputs, outputs, final_state)) self.assertAllClose(outputs[:, -1, :], final_state) # outputs will contain cumulative sums up until a reset expected_outputs = [] state = np.zeros_like(final_state) for i, frame in enumerate(np.transpose(inputs, [1, 0, 2])): state = state * np.reshape(~reset_mask[:, i], state.shape) + frame expected_outputs.append(np.array(state)) expected_outputs = np.transpose(expected_outputs, [1, 0, 2]) self.assertAllClose(outputs, expected_outputs) if __name__ == '__main__': tf.test.main()
0.857664
0.370539
from __future__ import annotations from abc import abstractmethod, ABC import typing from opentrons import types from opentrons.hardware_control.dev_types import PipetteDict from opentrons.protocols.api_support.util import Clearances, PlungerSpeeds, \ FlowRates from opentrons.protocols.implementations.well import WellImplementation class InstrumentContextInterface(ABC): @abstractmethod def get_default_speed(self) -> float: ... @abstractmethod def set_default_speed(self, speed: float) -> None: ... @abstractmethod def aspirate(self, volume: float, rate: float = 1.0) -> None: ... @abstractmethod def dispense(self, volume: float, rate: float = 1.0) -> None: ... @abstractmethod def blow_out(self) -> None: ... @abstractmethod def touch_tip(self, location: WellImplementation, radius: float = 1.0, v_offset: float = -1.0, speed: float = 60.0) -> None: ... @abstractmethod def pick_up_tip(self, well: WellImplementation, tip_length: float, presses: typing.Optional[int] = None, increment: typing.Optional[float] = None) -> None: ... @abstractmethod def drop_tip(self, home_after: bool = True) -> None: ... @abstractmethod def home(self) -> None: ... @abstractmethod def home_plunger(self) -> None: ... @abstractmethod def delay(self) -> None: ... @abstractmethod def move_to(self, location: types.Location, force_direct: bool = False, minimum_z_height: typing.Optional[float] = None, speed: typing.Optional[float] = None) -> None: ... @abstractmethod def get_mount(self) -> types.Mount: ... @abstractmethod def get_instrument_name(self) -> str: ... @abstractmethod def get_pipette_name(self) -> str: ... @abstractmethod def get_model(self) -> str: ... @abstractmethod def get_min_volume(self) -> float: ... @abstractmethod def get_max_volume(self) -> float: ... @abstractmethod def get_current_volume(self) -> float: ... @abstractmethod def get_available_volume(self) -> float: ... @abstractmethod def get_pipette(self) -> PipetteDict: ... @abstractmethod def get_channels(self) -> int: ... @abstractmethod def has_tip(self) -> bool: ... @abstractmethod def is_ready_to_aspirate(self) -> bool: ... @abstractmethod def prepare_for_aspirate(self) -> None: ... @abstractmethod def get_return_height(self) -> float: ... @abstractmethod def get_well_bottom_clearance(self) -> Clearances: ... @abstractmethod def get_speed(self) -> PlungerSpeeds: ... @abstractmethod def get_flow_rate(self) -> FlowRates: ... @abstractmethod def set_flow_rate( self, aspirate: typing.Optional[float] = None, dispense: typing.Optional[float] = None, blow_out: typing.Optional[float] = None) -> None: ... @abstractmethod def set_pipette_speed( self, aspirate: typing.Optional[float] = None, dispense: typing.Optional[float] = None, blow_out: typing.Optional[float] = None) -> None: ...
api/src/opentrons/protocols/implementations/interfaces/instrument_context.py
from __future__ import annotations from abc import abstractmethod, ABC import typing from opentrons import types from opentrons.hardware_control.dev_types import PipetteDict from opentrons.protocols.api_support.util import Clearances, PlungerSpeeds, \ FlowRates from opentrons.protocols.implementations.well import WellImplementation class InstrumentContextInterface(ABC): @abstractmethod def get_default_speed(self) -> float: ... @abstractmethod def set_default_speed(self, speed: float) -> None: ... @abstractmethod def aspirate(self, volume: float, rate: float = 1.0) -> None: ... @abstractmethod def dispense(self, volume: float, rate: float = 1.0) -> None: ... @abstractmethod def blow_out(self) -> None: ... @abstractmethod def touch_tip(self, location: WellImplementation, radius: float = 1.0, v_offset: float = -1.0, speed: float = 60.0) -> None: ... @abstractmethod def pick_up_tip(self, well: WellImplementation, tip_length: float, presses: typing.Optional[int] = None, increment: typing.Optional[float] = None) -> None: ... @abstractmethod def drop_tip(self, home_after: bool = True) -> None: ... @abstractmethod def home(self) -> None: ... @abstractmethod def home_plunger(self) -> None: ... @abstractmethod def delay(self) -> None: ... @abstractmethod def move_to(self, location: types.Location, force_direct: bool = False, minimum_z_height: typing.Optional[float] = None, speed: typing.Optional[float] = None) -> None: ... @abstractmethod def get_mount(self) -> types.Mount: ... @abstractmethod def get_instrument_name(self) -> str: ... @abstractmethod def get_pipette_name(self) -> str: ... @abstractmethod def get_model(self) -> str: ... @abstractmethod def get_min_volume(self) -> float: ... @abstractmethod def get_max_volume(self) -> float: ... @abstractmethod def get_current_volume(self) -> float: ... @abstractmethod def get_available_volume(self) -> float: ... @abstractmethod def get_pipette(self) -> PipetteDict: ... @abstractmethod def get_channels(self) -> int: ... @abstractmethod def has_tip(self) -> bool: ... @abstractmethod def is_ready_to_aspirate(self) -> bool: ... @abstractmethod def prepare_for_aspirate(self) -> None: ... @abstractmethod def get_return_height(self) -> float: ... @abstractmethod def get_well_bottom_clearance(self) -> Clearances: ... @abstractmethod def get_speed(self) -> PlungerSpeeds: ... @abstractmethod def get_flow_rate(self) -> FlowRates: ... @abstractmethod def set_flow_rate( self, aspirate: typing.Optional[float] = None, dispense: typing.Optional[float] = None, blow_out: typing.Optional[float] = None) -> None: ... @abstractmethod def set_pipette_speed( self, aspirate: typing.Optional[float] = None, dispense: typing.Optional[float] = None, blow_out: typing.Optional[float] = None) -> None: ...
0.871939
0.439266
from pathlib import Path from astrality.actions import ImportContextAction from astrality.context import Context def test_null_object_pattern(): """Test initializing action with no behaviour.""" import_context_action = ImportContextAction( options={}, directory=Path('/'), replacer=lambda x: x, context_store=Context(), ) import_context_action.execute() def test_importing_entire_file(context_directory): """ Test importing all sections from context file. All context sections should be imported in the absence of `from_section`. """ context_import_dict = { 'from_path': 'several_sections.yml', } context_store = Context() import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=lambda x: x, context_store=context_store, ) import_context_action.execute() expected_context = { 'section1': { 'k1_1': 'v1_1', 'k1_2': 'v1_2', }, 'section2': { 'k2_1': 'v2_1', 'k2_2': 'v2_2', }, } assert context_store == expected_context def test_importing_specific_section(context_directory): """Test importing specific sections from context file.""" context_import_dict = { 'from_path': 'several_sections.yml', 'from_section': 'section1', } context_store = Context({'original': 'value'}) import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=lambda x: x, context_store=context_store, ) import_context_action.execute() expected_context = Context({ 'original': 'value', 'section1': { 'k1_1': 'v1_1', 'k1_2': 'v1_2', }, }) assert context_store == expected_context def test_replacer_function_being_used(context_directory): """ Test use of replacement function in option retrieval. The function should be used when querying values from `options`. """ context_import_dict = { 'from_path': 'path', 'from_section': 'from', 'to_section': 'to', } context_store = Context() def replacer(option: str) -> str: if option == 'path': return 'several_sections.yml' elif option == 'from': return 'section1' elif option == 'to': return 'new_section' else: raise AssertionError import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=replacer, context_store=context_store, ) import_context_action.execute() assert context_store == { 'new_section': { 'k1_1': 'v1_1', 'k1_2': 'v1_2', }, } def test_that_replacer_is_run_every_time(context_directory): """ The replacer should be run a new every time self.execute() is invoked. """ context_import_dict = { 'from_path': 'several_sections.yml', 'from_section': 'section1', 'to_section': 'whatever', } context_store = Context() class Replacer: def __init__(self) -> None: self.invoke_number = 0 def __call__(self, option: str) -> str: self.invoke_number += 1 return option replacer = Replacer() import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=replacer, context_store=context_store, ) import_context_action.execute() assert replacer.invoke_number == 3 import_context_action.execute() assert replacer.invoke_number == 6
astrality/tests/actions/test_import_context_action.py
from pathlib import Path from astrality.actions import ImportContextAction from astrality.context import Context def test_null_object_pattern(): """Test initializing action with no behaviour.""" import_context_action = ImportContextAction( options={}, directory=Path('/'), replacer=lambda x: x, context_store=Context(), ) import_context_action.execute() def test_importing_entire_file(context_directory): """ Test importing all sections from context file. All context sections should be imported in the absence of `from_section`. """ context_import_dict = { 'from_path': 'several_sections.yml', } context_store = Context() import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=lambda x: x, context_store=context_store, ) import_context_action.execute() expected_context = { 'section1': { 'k1_1': 'v1_1', 'k1_2': 'v1_2', }, 'section2': { 'k2_1': 'v2_1', 'k2_2': 'v2_2', }, } assert context_store == expected_context def test_importing_specific_section(context_directory): """Test importing specific sections from context file.""" context_import_dict = { 'from_path': 'several_sections.yml', 'from_section': 'section1', } context_store = Context({'original': 'value'}) import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=lambda x: x, context_store=context_store, ) import_context_action.execute() expected_context = Context({ 'original': 'value', 'section1': { 'k1_1': 'v1_1', 'k1_2': 'v1_2', }, }) assert context_store == expected_context def test_replacer_function_being_used(context_directory): """ Test use of replacement function in option retrieval. The function should be used when querying values from `options`. """ context_import_dict = { 'from_path': 'path', 'from_section': 'from', 'to_section': 'to', } context_store = Context() def replacer(option: str) -> str: if option == 'path': return 'several_sections.yml' elif option == 'from': return 'section1' elif option == 'to': return 'new_section' else: raise AssertionError import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=replacer, context_store=context_store, ) import_context_action.execute() assert context_store == { 'new_section': { 'k1_1': 'v1_1', 'k1_2': 'v1_2', }, } def test_that_replacer_is_run_every_time(context_directory): """ The replacer should be run a new every time self.execute() is invoked. """ context_import_dict = { 'from_path': 'several_sections.yml', 'from_section': 'section1', 'to_section': 'whatever', } context_store = Context() class Replacer: def __init__(self) -> None: self.invoke_number = 0 def __call__(self, option: str) -> str: self.invoke_number += 1 return option replacer = Replacer() import_context_action = ImportContextAction( options=context_import_dict, directory=context_directory, replacer=replacer, context_store=context_store, ) import_context_action.execute() assert replacer.invoke_number == 3 import_context_action.execute() assert replacer.invoke_number == 6
0.8709
0.345436
from knack.arguments import ArgumentsContext from knack.commands import CLICommandsLoader, CommandGroup class SuperBenchCommandsLoader(CLICommandsLoader): """SuperBench CLI commands loader.""" def load_command_table(self, args): """Load commands into the command table. Args: args (list): List of arguments from the command line. Returns: collections.OrderedDict: Load commands into the command table. """ with CommandGroup(self, '', 'superbench.cli._handler#{}') as g: g.command('version', 'version_command_handler') g.command('deploy', 'deploy_command_handler') g.command('exec', 'exec_command_handler') g.command('run', 'run_command_handler') with CommandGroup(self, 'node', 'superbench.cli._node_handler#{}') as g: g.command('info', 'info_command_handler') return super().load_command_table(args) def load_arguments(self, command): """Load arguments for commands. Args: command: The command to load arguments for. """ with ArgumentsContext(self, '') as ac: ac.argument('docker_image', options_list=('--docker-image', '-i'), type=str, help='Docker image URI.') ac.argument('docker_username', type=str, help='Docker registry username if authentication is needed.') ac.argument('docker_password', type=str, help='Docker registry password if authentication is needed.') ac.argument( 'host_file', options_list=('--host-file', '-f'), type=str, help='Path to Ansible inventory host file.' ) ac.argument('host_list', options_list=('--host-list', '-l'), type=str, help='Comma separated host list.') ac.argument('host_username', type=str, help='Host username if needed.') ac.argument('host_password', type=str, help='Host password or key passphase if needed.') ac.argument( 'output_dir', type=str, help='Path to output directory, outputs/{datetime} will be used if not specified.' ) ac.argument('private_key', type=str, help='Path to private key if needed.') ac.argument( 'config_file', options_list=('--config-file', '-c'), type=str, help='Path to SuperBench config file.' ) ac.argument( 'config_override', options_list=('--config-override', '-C'), type=str, nargs='+', help='Extra arguments to override config_file.' ) super().load_arguments(command)
superbench/cli/_commands.py
from knack.arguments import ArgumentsContext from knack.commands import CLICommandsLoader, CommandGroup class SuperBenchCommandsLoader(CLICommandsLoader): """SuperBench CLI commands loader.""" def load_command_table(self, args): """Load commands into the command table. Args: args (list): List of arguments from the command line. Returns: collections.OrderedDict: Load commands into the command table. """ with CommandGroup(self, '', 'superbench.cli._handler#{}') as g: g.command('version', 'version_command_handler') g.command('deploy', 'deploy_command_handler') g.command('exec', 'exec_command_handler') g.command('run', 'run_command_handler') with CommandGroup(self, 'node', 'superbench.cli._node_handler#{}') as g: g.command('info', 'info_command_handler') return super().load_command_table(args) def load_arguments(self, command): """Load arguments for commands. Args: command: The command to load arguments for. """ with ArgumentsContext(self, '') as ac: ac.argument('docker_image', options_list=('--docker-image', '-i'), type=str, help='Docker image URI.') ac.argument('docker_username', type=str, help='Docker registry username if authentication is needed.') ac.argument('docker_password', type=str, help='Docker registry password if authentication is needed.') ac.argument( 'host_file', options_list=('--host-file', '-f'), type=str, help='Path to Ansible inventory host file.' ) ac.argument('host_list', options_list=('--host-list', '-l'), type=str, help='Comma separated host list.') ac.argument('host_username', type=str, help='Host username if needed.') ac.argument('host_password', type=str, help='Host password or key passphase if needed.') ac.argument( 'output_dir', type=str, help='Path to output directory, outputs/{datetime} will be used if not specified.' ) ac.argument('private_key', type=str, help='Path to private key if needed.') ac.argument( 'config_file', options_list=('--config-file', '-c'), type=str, help='Path to SuperBench config file.' ) ac.argument( 'config_override', options_list=('--config-override', '-C'), type=str, nargs='+', help='Extra arguments to override config_file.' ) super().load_arguments(command)
0.873134
0.095856
point = { "type": "Point", "coordinates": [100.0, 0.0] } linestring = { "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] } polygon = { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ] ] } polygon_with_hole = { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ], [ [100.8, 0.8], [100.8, 0.2], [100.2, 0.2], [100.2, 0.8], [100.8, 0.8] ] ] } multipoint = { "type": "MultiPoint", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] } multilinestring = { "type": "MultiLineString", "coordinates": [ [ [100.0, 0.0], [101.0, 1.0] ], [ [102.0, 2.0], [103.0, 3.0] ] ] } multipolygon = { "type": "MultiPolygon", "coordinates": [ [ [ [102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0] ] ], [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ], [ [100.2, 0.2], [100.2, 0.8], [100.8, 0.8], [100.8, 0.2], [100.2, 0.2] ] ] ] } geometry_collection = { "type": "GeometryCollection", "geometries": [{ "type": "Point", "coordinates": [100.0, 0.0] }, { "type": "LineString", "coordinates": [ [101.0, 0.0], [102.0, 1.0] ] }] }
stac_api_validator/geometries.py
point = { "type": "Point", "coordinates": [100.0, 0.0] } linestring = { "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] } polygon = { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ] ] } polygon_with_hole = { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ], [ [100.8, 0.8], [100.8, 0.2], [100.2, 0.2], [100.2, 0.8], [100.8, 0.8] ] ] } multipoint = { "type": "MultiPoint", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] } multilinestring = { "type": "MultiLineString", "coordinates": [ [ [100.0, 0.0], [101.0, 1.0] ], [ [102.0, 2.0], [103.0, 3.0] ] ] } multipolygon = { "type": "MultiPolygon", "coordinates": [ [ [ [102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0] ] ], [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ], [ [100.2, 0.2], [100.2, 0.8], [100.8, 0.8], [100.8, 0.2], [100.2, 0.2] ] ] ] } geometry_collection = { "type": "GeometryCollection", "geometries": [{ "type": "Point", "coordinates": [100.0, 0.0] }, { "type": "LineString", "coordinates": [ [101.0, 0.0], [102.0, 1.0] ] }] }
0.553264
0.698728
import logging import os import subprocess import sys import impersonate import proc_util import uac class UpdaterTestRPCHandler(): def echo(self, message): """Test method to check if server is reachable.""" return message def RunAsSystem(self, command, env=None, cwd=None, timeout=30): """Runs the command as SYSTEM user. Args: command: The command to run. This argument will be forwarded to subprocess.Popen(). env: Environment variables to pass to command. cwd: Working directory for the command. timeout: How long the child process should wait before timeout. Returns: (pid, exit_code, sdtout, stderr) tuple. """ try: process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, cwd=cwd) # TODO(crbug.com/1233612): `communicate()` in Python 2.7 does not support # timeout value, pass the value here once we migrate to Python 3. Also # don't forget to handle subprocess.TimeoutExpired exception. stdout, stderr = process.communicate() logging.info('Command %s stdout:\n %s', command, stdout) if stderr: logging.error('Command %s stderr:\n %s', command, stderr) return (process.pid, process.returncode, stdout, stderr) except OSError as err: logging.exception(err) return (None, None, None, None) def RunAsStandardUser(self, command_line, env=None, cwd=None, timeout=30): """Runs the command as the non-elevated logon user on default desktop. Args: command_line: The command line string, includes all arguments. env: Environment variables to pass to command. cwd: Working directory for the command. timeout: How long the child process should wait before timeout. Returns: (pid, exit_code, sdtout, stderr) tuple. """ return impersonate.RunAsStandardUser(command_line, env, cwd, timeout) def AnswerUpcomingUACPrompt(self, actions, timeout=10, wait_child=False, source=''): """Answers upcoming UAC prompt that does not require username/password. Args: actions: Actions to take in string, such as 'AADDA', 'A' to accept, 'D' to deny. timeout: How long the child process should wait for each UAC click. wait_child: Whether this thread should wait the completion of child proc. source: Optional name of the source that triggers this action (for logging and debugging purpose). Returns: (pid, exit_code) of the created UAC-answering process. If the sub-process is not created, or did not finish in wait time, returns (None, None). """ uac_tool = os.path.join(os.path.dirname(__file__), 'answer_uac.py') command = ('python %s --actions=%s --timeout=%d --source=%s' % (uac_tool, actions, timeout, source)) logging.info('Running command: %s', command) if wait_child: if timeout > 0: # Each button click could take `timeout` seconds, and add 1 second # extra for child process to finish. timeout = timeout * len(actions) + 1 else: # Negative timeout has special meanings, such as win32event.INFINITE. # Don't touch it. pass else: timeout = 0 # no wait # There could be multiple winlogon.exe instances when there are multiple # login sessions. For example, when there's remote desktop session. In this # case, find the active session where the UAC prompt is supposed to display. winlogon_pids = proc_util.GetPIDsWithName('winlogon.exe', proc_util.GetActiveSessionID()) if not winlogon_pids: logging.error('Unexpected: no active session or no winlogon.exe in it.') return (None, None) elif len(winlogon_pids) > 1: logging.warning('Unexpected multiple winlogon.exe instances within ' 'active session, the first instance will be used.') # Must spawn child process on the same desktop as the one that UAC prompts, # otherwise the child process will not be able to find the UAC dialog. # Please note that there is a slight race condition here as user could # change UAC desktop at any time. But we can tolerate this for the testing # purpose. desktop = 'winlogon' if uac.IsPromptingOnSecureDesktop() else 'default' logging.info('Spawn process [%s] for UAC on desktop [%s].', command, desktop) pid, exit_code, stdout, stderr = impersonate.RunAsPidOnDeskstop( command, winlogon_pids[0], desktop=desktop, timeout=timeout) logging.info('Process [%s] is created to answer UAC, exit_code: %s', pid, exit_code) if stdout and stdout.strip(): logging.info('STDOUT: [%s]', stdout) if stderr and stderr.strip(): logging.error('STDERR: [%s]', stderr) return (pid, exit_code)
chrome/updater/test/service/win/rpc_handler.py
import logging import os import subprocess import sys import impersonate import proc_util import uac class UpdaterTestRPCHandler(): def echo(self, message): """Test method to check if server is reachable.""" return message def RunAsSystem(self, command, env=None, cwd=None, timeout=30): """Runs the command as SYSTEM user. Args: command: The command to run. This argument will be forwarded to subprocess.Popen(). env: Environment variables to pass to command. cwd: Working directory for the command. timeout: How long the child process should wait before timeout. Returns: (pid, exit_code, sdtout, stderr) tuple. """ try: process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, cwd=cwd) # TODO(crbug.com/1233612): `communicate()` in Python 2.7 does not support # timeout value, pass the value here once we migrate to Python 3. Also # don't forget to handle subprocess.TimeoutExpired exception. stdout, stderr = process.communicate() logging.info('Command %s stdout:\n %s', command, stdout) if stderr: logging.error('Command %s stderr:\n %s', command, stderr) return (process.pid, process.returncode, stdout, stderr) except OSError as err: logging.exception(err) return (None, None, None, None) def RunAsStandardUser(self, command_line, env=None, cwd=None, timeout=30): """Runs the command as the non-elevated logon user on default desktop. Args: command_line: The command line string, includes all arguments. env: Environment variables to pass to command. cwd: Working directory for the command. timeout: How long the child process should wait before timeout. Returns: (pid, exit_code, sdtout, stderr) tuple. """ return impersonate.RunAsStandardUser(command_line, env, cwd, timeout) def AnswerUpcomingUACPrompt(self, actions, timeout=10, wait_child=False, source=''): """Answers upcoming UAC prompt that does not require username/password. Args: actions: Actions to take in string, such as 'AADDA', 'A' to accept, 'D' to deny. timeout: How long the child process should wait for each UAC click. wait_child: Whether this thread should wait the completion of child proc. source: Optional name of the source that triggers this action (for logging and debugging purpose). Returns: (pid, exit_code) of the created UAC-answering process. If the sub-process is not created, or did not finish in wait time, returns (None, None). """ uac_tool = os.path.join(os.path.dirname(__file__), 'answer_uac.py') command = ('python %s --actions=%s --timeout=%d --source=%s' % (uac_tool, actions, timeout, source)) logging.info('Running command: %s', command) if wait_child: if timeout > 0: # Each button click could take `timeout` seconds, and add 1 second # extra for child process to finish. timeout = timeout * len(actions) + 1 else: # Negative timeout has special meanings, such as win32event.INFINITE. # Don't touch it. pass else: timeout = 0 # no wait # There could be multiple winlogon.exe instances when there are multiple # login sessions. For example, when there's remote desktop session. In this # case, find the active session where the UAC prompt is supposed to display. winlogon_pids = proc_util.GetPIDsWithName('winlogon.exe', proc_util.GetActiveSessionID()) if not winlogon_pids: logging.error('Unexpected: no active session or no winlogon.exe in it.') return (None, None) elif len(winlogon_pids) > 1: logging.warning('Unexpected multiple winlogon.exe instances within ' 'active session, the first instance will be used.') # Must spawn child process on the same desktop as the one that UAC prompts, # otherwise the child process will not be able to find the UAC dialog. # Please note that there is a slight race condition here as user could # change UAC desktop at any time. But we can tolerate this for the testing # purpose. desktop = 'winlogon' if uac.IsPromptingOnSecureDesktop() else 'default' logging.info('Spawn process [%s] for UAC on desktop [%s].', command, desktop) pid, exit_code, stdout, stderr = impersonate.RunAsPidOnDeskstop( command, winlogon_pids[0], desktop=desktop, timeout=timeout) logging.info('Process [%s] is created to answer UAC, exit_code: %s', pid, exit_code) if stdout and stdout.strip(): logging.info('STDOUT: [%s]', stdout) if stderr and stderr.strip(): logging.error('STDERR: [%s]', stderr) return (pid, exit_code)
0.52902
0.110279
from pprint import pformat from six import iteritems import re class WorkflowTaskMeta(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'account_moid': 'str', 'ancestors': 'list[MoBaseMoRef]', 'create_time': 'datetime', 'mod_time': 'datetime', 'moid': 'str', 'object_type': 'str', 'owners': 'list[str]', 'parent': 'MoBaseMoRef', 'tags': 'list[MoTag]', 'version_context': 'MoVersionContext', 'action_type': 'str', 'description': 'str', 'input_keys': 'list[str]', 'internal': 'bool', 'name': 'str', 'output_keys': 'list[str]', 'response_timeout_sec': 'int', 'retry_count': 'int', 'retry_delay_sec': 'int', 'retry_logic': 'str', 'src': 'str', 'timeout_policy': 'str', 'timeout_sec': 'int' } attribute_map = { 'account_moid': 'AccountMoid', 'ancestors': 'Ancestors', 'create_time': 'CreateTime', 'mod_time': 'ModTime', 'moid': 'Moid', 'object_type': 'ObjectType', 'owners': 'Owners', 'parent': 'Parent', 'tags': 'Tags', 'version_context': 'VersionContext', 'action_type': 'ActionType', 'description': 'Description', 'input_keys': 'InputKeys', 'internal': 'Internal', 'name': 'Name', 'output_keys': 'OutputKeys', 'response_timeout_sec': 'ResponseTimeoutSec', 'retry_count': 'RetryCount', 'retry_delay_sec': 'RetryDelaySec', 'retry_logic': 'RetryLogic', 'src': 'Src', 'timeout_policy': 'TimeoutPolicy', 'timeout_sec': 'TimeoutSec' } def __init__(self, account_moid=None, ancestors=None, create_time=None, mod_time=None, moid=None, object_type=None, owners=None, parent=None, tags=None, version_context=None, action_type=None, description=None, input_keys=None, internal=None, name=None, output_keys=None, response_timeout_sec=None, retry_count=None, retry_delay_sec=None, retry_logic=None, src=None, timeout_policy=None, timeout_sec=None): """ WorkflowTaskMeta - a model defined in Swagger """ self._account_moid = None self._ancestors = None self._create_time = None self._mod_time = None self._moid = None self._object_type = None self._owners = None self._parent = None self._tags = None self._version_context = None self._action_type = None self._description = None self._input_keys = None self._internal = None self._name = None self._output_keys = None self._response_timeout_sec = None self._retry_count = None self._retry_delay_sec = None self._retry_logic = None self._src = None self._timeout_policy = None self._timeout_sec = None if account_moid is not None: self.account_moid = account_moid if ancestors is not None: self.ancestors = ancestors if create_time is not None: self.create_time = create_time if mod_time is not None: self.mod_time = mod_time if moid is not None: self.moid = moid if object_type is not None: self.object_type = object_type if owners is not None: self.owners = owners if parent is not None: self.parent = parent if tags is not None: self.tags = tags if version_context is not None: self.version_context = version_context if action_type is not None: self.action_type = action_type if description is not None: self.description = description if input_keys is not None: self.input_keys = input_keys if internal is not None: self.internal = internal if name is not None: self.name = name if output_keys is not None: self.output_keys = output_keys if response_timeout_sec is not None: self.response_timeout_sec = response_timeout_sec if retry_count is not None: self.retry_count = retry_count if retry_delay_sec is not None: self.retry_delay_sec = retry_delay_sec if retry_logic is not None: self.retry_logic = retry_logic if src is not None: self.src = src if timeout_policy is not None: self.timeout_policy = timeout_policy if timeout_sec is not None: self.timeout_sec = timeout_sec @property def account_moid(self): """ Gets the account_moid of this WorkflowTaskMeta. The Account ID for this managed object. :return: The account_moid of this WorkflowTaskMeta. :rtype: str """ return self._account_moid @account_moid.setter def account_moid(self, account_moid): """ Sets the account_moid of this WorkflowTaskMeta. The Account ID for this managed object. :param account_moid: The account_moid of this WorkflowTaskMeta. :type: str """ self._account_moid = account_moid @property def ancestors(self): """ Gets the ancestors of this WorkflowTaskMeta. Ancestors is an array containing the MO references of the ancestors in the object containment hierarchy. :return: The ancestors of this WorkflowTaskMeta. :rtype: list[MoBaseMoRef] """ return self._ancestors @ancestors.setter def ancestors(self, ancestors): """ Sets the ancestors of this WorkflowTaskMeta. Ancestors is an array containing the MO references of the ancestors in the object containment hierarchy. :param ancestors: The ancestors of this WorkflowTaskMeta. :type: list[MoBaseMoRef] """ self._ancestors = ancestors @property def create_time(self): """ Gets the create_time of this WorkflowTaskMeta. The time when this managed object was created. :return: The create_time of this WorkflowTaskMeta. :rtype: datetime """ return self._create_time @create_time.setter def create_time(self, create_time): """ Sets the create_time of this WorkflowTaskMeta. The time when this managed object was created. :param create_time: The create_time of this WorkflowTaskMeta. :type: datetime """ self._create_time = create_time @property def mod_time(self): """ Gets the mod_time of this WorkflowTaskMeta. The time when this managed object was last modified. :return: The mod_time of this WorkflowTaskMeta. :rtype: datetime """ return self._mod_time @mod_time.setter def mod_time(self, mod_time): """ Sets the mod_time of this WorkflowTaskMeta. The time when this managed object was last modified. :param mod_time: The mod_time of this WorkflowTaskMeta. :type: datetime """ self._mod_time = mod_time @property def moid(self): """ Gets the moid of this WorkflowTaskMeta. A unique identifier of this Managed Object instance. :return: The moid of this WorkflowTaskMeta. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this WorkflowTaskMeta. A unique identifier of this Managed Object instance. :param moid: The moid of this WorkflowTaskMeta. :type: str """ self._moid = moid @property def object_type(self): """ Gets the object_type of this WorkflowTaskMeta. The fully-qualified type of this managed object, e.g. the class name. :return: The object_type of this WorkflowTaskMeta. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this WorkflowTaskMeta. The fully-qualified type of this managed object, e.g. the class name. :param object_type: The object_type of this WorkflowTaskMeta. :type: str """ self._object_type = object_type @property def owners(self): """ Gets the owners of this WorkflowTaskMeta. An array of owners which represent effective ownership of this object. :return: The owners of this WorkflowTaskMeta. :rtype: list[str] """ return self._owners @owners.setter def owners(self, owners): """ Sets the owners of this WorkflowTaskMeta. An array of owners which represent effective ownership of this object. :param owners: The owners of this WorkflowTaskMeta. :type: list[str] """ self._owners = owners @property def parent(self): """ Gets the parent of this WorkflowTaskMeta. The direct ancestor of this managed object in the containment hierarchy. :return: The parent of this WorkflowTaskMeta. :rtype: MoBaseMoRef """ return self._parent @parent.setter def parent(self, parent): """ Sets the parent of this WorkflowTaskMeta. The direct ancestor of this managed object in the containment hierarchy. :param parent: The parent of this WorkflowTaskMeta. :type: MoBaseMoRef """ self._parent = parent @property def tags(self): """ Gets the tags of this WorkflowTaskMeta. An array of tags, which allow to add key, value meta-data to managed objects. :return: The tags of this WorkflowTaskMeta. :rtype: list[MoTag] """ return self._tags @tags.setter def tags(self, tags): """ Sets the tags of this WorkflowTaskMeta. An array of tags, which allow to add key, value meta-data to managed objects. :param tags: The tags of this WorkflowTaskMeta. :type: list[MoTag] """ self._tags = tags @property def version_context(self): """ Gets the version_context of this WorkflowTaskMeta. The versioning info for this managed object :return: The version_context of this WorkflowTaskMeta. :rtype: MoVersionContext """ return self._version_context @version_context.setter def version_context(self, version_context): """ Sets the version_context of this WorkflowTaskMeta. The versioning info for this managed object :param version_context: The version_context of this WorkflowTaskMeta. :type: MoVersionContext """ self._version_context = version_context @property def action_type(self): """ Gets the action_type of this WorkflowTaskMeta. A task execution type to indicate if it is a system task :return: The action_type of this WorkflowTaskMeta. :rtype: str """ return self._action_type @action_type.setter def action_type(self, action_type): """ Sets the action_type of this WorkflowTaskMeta. A task execution type to indicate if it is a system task :param action_type: The action_type of this WorkflowTaskMeta. :type: str """ self._action_type = action_type @property def description(self): """ Gets the description of this WorkflowTaskMeta. A description of the task :return: The description of this WorkflowTaskMeta. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this WorkflowTaskMeta. A description of the task :param description: The description of this WorkflowTaskMeta. :type: str """ self._description = description @property def input_keys(self): """ Gets the input_keys of this WorkflowTaskMeta. An input key for the task :return: The input_keys of this WorkflowTaskMeta. :rtype: list[str] """ return self._input_keys @input_keys.setter def input_keys(self, input_keys): """ Sets the input_keys of this WorkflowTaskMeta. An input key for the task :param input_keys: The input_keys of this WorkflowTaskMeta. :type: list[str] """ self._input_keys = input_keys @property def internal(self): """ Gets the internal of this WorkflowTaskMeta. Denotes whether or not this is an internal task. Internal tasks will be hidden from the UI within a workflow. :return: The internal of this WorkflowTaskMeta. :rtype: bool """ return self._internal @internal.setter def internal(self, internal): """ Sets the internal of this WorkflowTaskMeta. Denotes whether or not this is an internal task. Internal tasks will be hidden from the UI within a workflow. :param internal: The internal of this WorkflowTaskMeta. :type: bool """ self._internal = internal @property def name(self): """ Gets the name of this WorkflowTaskMeta. A task name that should be unique in Conductor DB :return: The name of this WorkflowTaskMeta. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this WorkflowTaskMeta. A task name that should be unique in Conductor DB :param name: The name of this WorkflowTaskMeta. :type: str """ self._name = name @property def output_keys(self): """ Gets the output_keys of this WorkflowTaskMeta. An output key for the task :return: The output_keys of this WorkflowTaskMeta. :rtype: list[str] """ return self._output_keys @output_keys.setter def output_keys(self, output_keys): """ Sets the output_keys of this WorkflowTaskMeta. An output key for the task :param output_keys: The output_keys of this WorkflowTaskMeta. :type: list[str] """ self._output_keys = output_keys @property def response_timeout_sec(self): """ Gets the response_timeout_sec of this WorkflowTaskMeta. The worker respnose timeout value :return: The response_timeout_sec of this WorkflowTaskMeta. :rtype: int """ return self._response_timeout_sec @response_timeout_sec.setter def response_timeout_sec(self, response_timeout_sec): """ Sets the response_timeout_sec of this WorkflowTaskMeta. The worker respnose timeout value :param response_timeout_sec: The response_timeout_sec of this WorkflowTaskMeta. :type: int """ self._response_timeout_sec = response_timeout_sec @property def retry_count(self): """ Gets the retry_count of this WorkflowTaskMeta. A number of reties for this task :return: The retry_count of this WorkflowTaskMeta. :rtype: int """ return self._retry_count @retry_count.setter def retry_count(self, retry_count): """ Sets the retry_count of this WorkflowTaskMeta. A number of reties for this task :param retry_count: The retry_count of this WorkflowTaskMeta. :type: int """ self._retry_count = retry_count @property def retry_delay_sec(self): """ Gets the retry_delay_sec of this WorkflowTaskMeta. The time on which the retry will be delayed :return: The retry_delay_sec of this WorkflowTaskMeta. :rtype: int """ return self._retry_delay_sec @retry_delay_sec.setter def retry_delay_sec(self, retry_delay_sec): """ Sets the retry_delay_sec of this WorkflowTaskMeta. The time on which the retry will be delayed :param retry_delay_sec: The retry_delay_sec of this WorkflowTaskMeta. :type: int """ self._retry_delay_sec = retry_delay_sec @property def retry_logic(self): """ Gets the retry_logic of this WorkflowTaskMeta. A logic which defines the way to handle retry (FIXED, EXPONENTIAL_BACKOFF) :return: The retry_logic of this WorkflowTaskMeta. :rtype: str """ return self._retry_logic @retry_logic.setter def retry_logic(self, retry_logic): """ Sets the retry_logic of this WorkflowTaskMeta. A logic which defines the way to handle retry (FIXED, EXPONENTIAL_BACKOFF) :param retry_logic: The retry_logic of this WorkflowTaskMeta. :type: str """ self._retry_logic = retry_logic @property def src(self): """ Gets the src of this WorkflowTaskMeta. A service owns the task metadata :return: The src of this WorkflowTaskMeta. :rtype: str """ return self._src @src.setter def src(self, src): """ Sets the src of this WorkflowTaskMeta. A service owns the task metadata :param src: The src of this WorkflowTaskMeta. :type: str """ self._src = src @property def timeout_policy(self): """ Gets the timeout_policy of this WorkflowTaskMeta. A policy which defines the way to handle timeout (RETRY, TIME_OUT_WF, ALERT_ONLY) :return: The timeout_policy of this WorkflowTaskMeta. :rtype: str """ return self._timeout_policy @timeout_policy.setter def timeout_policy(self, timeout_policy): """ Sets the timeout_policy of this WorkflowTaskMeta. A policy which defines the way to handle timeout (RETRY, TIME_OUT_WF, ALERT_ONLY) :param timeout_policy: The timeout_policy of this WorkflowTaskMeta. :type: str """ self._timeout_policy = timeout_policy @property def timeout_sec(self): """ Gets the timeout_sec of this WorkflowTaskMeta. A timeout value for the task ( in second ) :return: The timeout_sec of this WorkflowTaskMeta. :rtype: int """ return self._timeout_sec @timeout_sec.setter def timeout_sec(self, timeout_sec): """ Sets the timeout_sec of this WorkflowTaskMeta. A timeout value for the task ( in second ) :param timeout_sec: The timeout_sec of this WorkflowTaskMeta. :type: int """ self._timeout_sec = timeout_sec def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, WorkflowTaskMeta): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
intersight/models/workflow_task_meta.py
from pprint import pformat from six import iteritems import re class WorkflowTaskMeta(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'account_moid': 'str', 'ancestors': 'list[MoBaseMoRef]', 'create_time': 'datetime', 'mod_time': 'datetime', 'moid': 'str', 'object_type': 'str', 'owners': 'list[str]', 'parent': 'MoBaseMoRef', 'tags': 'list[MoTag]', 'version_context': 'MoVersionContext', 'action_type': 'str', 'description': 'str', 'input_keys': 'list[str]', 'internal': 'bool', 'name': 'str', 'output_keys': 'list[str]', 'response_timeout_sec': 'int', 'retry_count': 'int', 'retry_delay_sec': 'int', 'retry_logic': 'str', 'src': 'str', 'timeout_policy': 'str', 'timeout_sec': 'int' } attribute_map = { 'account_moid': 'AccountMoid', 'ancestors': 'Ancestors', 'create_time': 'CreateTime', 'mod_time': 'ModTime', 'moid': 'Moid', 'object_type': 'ObjectType', 'owners': 'Owners', 'parent': 'Parent', 'tags': 'Tags', 'version_context': 'VersionContext', 'action_type': 'ActionType', 'description': 'Description', 'input_keys': 'InputKeys', 'internal': 'Internal', 'name': 'Name', 'output_keys': 'OutputKeys', 'response_timeout_sec': 'ResponseTimeoutSec', 'retry_count': 'RetryCount', 'retry_delay_sec': 'RetryDelaySec', 'retry_logic': 'RetryLogic', 'src': 'Src', 'timeout_policy': 'TimeoutPolicy', 'timeout_sec': 'TimeoutSec' } def __init__(self, account_moid=None, ancestors=None, create_time=None, mod_time=None, moid=None, object_type=None, owners=None, parent=None, tags=None, version_context=None, action_type=None, description=None, input_keys=None, internal=None, name=None, output_keys=None, response_timeout_sec=None, retry_count=None, retry_delay_sec=None, retry_logic=None, src=None, timeout_policy=None, timeout_sec=None): """ WorkflowTaskMeta - a model defined in Swagger """ self._account_moid = None self._ancestors = None self._create_time = None self._mod_time = None self._moid = None self._object_type = None self._owners = None self._parent = None self._tags = None self._version_context = None self._action_type = None self._description = None self._input_keys = None self._internal = None self._name = None self._output_keys = None self._response_timeout_sec = None self._retry_count = None self._retry_delay_sec = None self._retry_logic = None self._src = None self._timeout_policy = None self._timeout_sec = None if account_moid is not None: self.account_moid = account_moid if ancestors is not None: self.ancestors = ancestors if create_time is not None: self.create_time = create_time if mod_time is not None: self.mod_time = mod_time if moid is not None: self.moid = moid if object_type is not None: self.object_type = object_type if owners is not None: self.owners = owners if parent is not None: self.parent = parent if tags is not None: self.tags = tags if version_context is not None: self.version_context = version_context if action_type is not None: self.action_type = action_type if description is not None: self.description = description if input_keys is not None: self.input_keys = input_keys if internal is not None: self.internal = internal if name is not None: self.name = name if output_keys is not None: self.output_keys = output_keys if response_timeout_sec is not None: self.response_timeout_sec = response_timeout_sec if retry_count is not None: self.retry_count = retry_count if retry_delay_sec is not None: self.retry_delay_sec = retry_delay_sec if retry_logic is not None: self.retry_logic = retry_logic if src is not None: self.src = src if timeout_policy is not None: self.timeout_policy = timeout_policy if timeout_sec is not None: self.timeout_sec = timeout_sec @property def account_moid(self): """ Gets the account_moid of this WorkflowTaskMeta. The Account ID for this managed object. :return: The account_moid of this WorkflowTaskMeta. :rtype: str """ return self._account_moid @account_moid.setter def account_moid(self, account_moid): """ Sets the account_moid of this WorkflowTaskMeta. The Account ID for this managed object. :param account_moid: The account_moid of this WorkflowTaskMeta. :type: str """ self._account_moid = account_moid @property def ancestors(self): """ Gets the ancestors of this WorkflowTaskMeta. Ancestors is an array containing the MO references of the ancestors in the object containment hierarchy. :return: The ancestors of this WorkflowTaskMeta. :rtype: list[MoBaseMoRef] """ return self._ancestors @ancestors.setter def ancestors(self, ancestors): """ Sets the ancestors of this WorkflowTaskMeta. Ancestors is an array containing the MO references of the ancestors in the object containment hierarchy. :param ancestors: The ancestors of this WorkflowTaskMeta. :type: list[MoBaseMoRef] """ self._ancestors = ancestors @property def create_time(self): """ Gets the create_time of this WorkflowTaskMeta. The time when this managed object was created. :return: The create_time of this WorkflowTaskMeta. :rtype: datetime """ return self._create_time @create_time.setter def create_time(self, create_time): """ Sets the create_time of this WorkflowTaskMeta. The time when this managed object was created. :param create_time: The create_time of this WorkflowTaskMeta. :type: datetime """ self._create_time = create_time @property def mod_time(self): """ Gets the mod_time of this WorkflowTaskMeta. The time when this managed object was last modified. :return: The mod_time of this WorkflowTaskMeta. :rtype: datetime """ return self._mod_time @mod_time.setter def mod_time(self, mod_time): """ Sets the mod_time of this WorkflowTaskMeta. The time when this managed object was last modified. :param mod_time: The mod_time of this WorkflowTaskMeta. :type: datetime """ self._mod_time = mod_time @property def moid(self): """ Gets the moid of this WorkflowTaskMeta. A unique identifier of this Managed Object instance. :return: The moid of this WorkflowTaskMeta. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this WorkflowTaskMeta. A unique identifier of this Managed Object instance. :param moid: The moid of this WorkflowTaskMeta. :type: str """ self._moid = moid @property def object_type(self): """ Gets the object_type of this WorkflowTaskMeta. The fully-qualified type of this managed object, e.g. the class name. :return: The object_type of this WorkflowTaskMeta. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this WorkflowTaskMeta. The fully-qualified type of this managed object, e.g. the class name. :param object_type: The object_type of this WorkflowTaskMeta. :type: str """ self._object_type = object_type @property def owners(self): """ Gets the owners of this WorkflowTaskMeta. An array of owners which represent effective ownership of this object. :return: The owners of this WorkflowTaskMeta. :rtype: list[str] """ return self._owners @owners.setter def owners(self, owners): """ Sets the owners of this WorkflowTaskMeta. An array of owners which represent effective ownership of this object. :param owners: The owners of this WorkflowTaskMeta. :type: list[str] """ self._owners = owners @property def parent(self): """ Gets the parent of this WorkflowTaskMeta. The direct ancestor of this managed object in the containment hierarchy. :return: The parent of this WorkflowTaskMeta. :rtype: MoBaseMoRef """ return self._parent @parent.setter def parent(self, parent): """ Sets the parent of this WorkflowTaskMeta. The direct ancestor of this managed object in the containment hierarchy. :param parent: The parent of this WorkflowTaskMeta. :type: MoBaseMoRef """ self._parent = parent @property def tags(self): """ Gets the tags of this WorkflowTaskMeta. An array of tags, which allow to add key, value meta-data to managed objects. :return: The tags of this WorkflowTaskMeta. :rtype: list[MoTag] """ return self._tags @tags.setter def tags(self, tags): """ Sets the tags of this WorkflowTaskMeta. An array of tags, which allow to add key, value meta-data to managed objects. :param tags: The tags of this WorkflowTaskMeta. :type: list[MoTag] """ self._tags = tags @property def version_context(self): """ Gets the version_context of this WorkflowTaskMeta. The versioning info for this managed object :return: The version_context of this WorkflowTaskMeta. :rtype: MoVersionContext """ return self._version_context @version_context.setter def version_context(self, version_context): """ Sets the version_context of this WorkflowTaskMeta. The versioning info for this managed object :param version_context: The version_context of this WorkflowTaskMeta. :type: MoVersionContext """ self._version_context = version_context @property def action_type(self): """ Gets the action_type of this WorkflowTaskMeta. A task execution type to indicate if it is a system task :return: The action_type of this WorkflowTaskMeta. :rtype: str """ return self._action_type @action_type.setter def action_type(self, action_type): """ Sets the action_type of this WorkflowTaskMeta. A task execution type to indicate if it is a system task :param action_type: The action_type of this WorkflowTaskMeta. :type: str """ self._action_type = action_type @property def description(self): """ Gets the description of this WorkflowTaskMeta. A description of the task :return: The description of this WorkflowTaskMeta. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this WorkflowTaskMeta. A description of the task :param description: The description of this WorkflowTaskMeta. :type: str """ self._description = description @property def input_keys(self): """ Gets the input_keys of this WorkflowTaskMeta. An input key for the task :return: The input_keys of this WorkflowTaskMeta. :rtype: list[str] """ return self._input_keys @input_keys.setter def input_keys(self, input_keys): """ Sets the input_keys of this WorkflowTaskMeta. An input key for the task :param input_keys: The input_keys of this WorkflowTaskMeta. :type: list[str] """ self._input_keys = input_keys @property def internal(self): """ Gets the internal of this WorkflowTaskMeta. Denotes whether or not this is an internal task. Internal tasks will be hidden from the UI within a workflow. :return: The internal of this WorkflowTaskMeta. :rtype: bool """ return self._internal @internal.setter def internal(self, internal): """ Sets the internal of this WorkflowTaskMeta. Denotes whether or not this is an internal task. Internal tasks will be hidden from the UI within a workflow. :param internal: The internal of this WorkflowTaskMeta. :type: bool """ self._internal = internal @property def name(self): """ Gets the name of this WorkflowTaskMeta. A task name that should be unique in Conductor DB :return: The name of this WorkflowTaskMeta. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this WorkflowTaskMeta. A task name that should be unique in Conductor DB :param name: The name of this WorkflowTaskMeta. :type: str """ self._name = name @property def output_keys(self): """ Gets the output_keys of this WorkflowTaskMeta. An output key for the task :return: The output_keys of this WorkflowTaskMeta. :rtype: list[str] """ return self._output_keys @output_keys.setter def output_keys(self, output_keys): """ Sets the output_keys of this WorkflowTaskMeta. An output key for the task :param output_keys: The output_keys of this WorkflowTaskMeta. :type: list[str] """ self._output_keys = output_keys @property def response_timeout_sec(self): """ Gets the response_timeout_sec of this WorkflowTaskMeta. The worker respnose timeout value :return: The response_timeout_sec of this WorkflowTaskMeta. :rtype: int """ return self._response_timeout_sec @response_timeout_sec.setter def response_timeout_sec(self, response_timeout_sec): """ Sets the response_timeout_sec of this WorkflowTaskMeta. The worker respnose timeout value :param response_timeout_sec: The response_timeout_sec of this WorkflowTaskMeta. :type: int """ self._response_timeout_sec = response_timeout_sec @property def retry_count(self): """ Gets the retry_count of this WorkflowTaskMeta. A number of reties for this task :return: The retry_count of this WorkflowTaskMeta. :rtype: int """ return self._retry_count @retry_count.setter def retry_count(self, retry_count): """ Sets the retry_count of this WorkflowTaskMeta. A number of reties for this task :param retry_count: The retry_count of this WorkflowTaskMeta. :type: int """ self._retry_count = retry_count @property def retry_delay_sec(self): """ Gets the retry_delay_sec of this WorkflowTaskMeta. The time on which the retry will be delayed :return: The retry_delay_sec of this WorkflowTaskMeta. :rtype: int """ return self._retry_delay_sec @retry_delay_sec.setter def retry_delay_sec(self, retry_delay_sec): """ Sets the retry_delay_sec of this WorkflowTaskMeta. The time on which the retry will be delayed :param retry_delay_sec: The retry_delay_sec of this WorkflowTaskMeta. :type: int """ self._retry_delay_sec = retry_delay_sec @property def retry_logic(self): """ Gets the retry_logic of this WorkflowTaskMeta. A logic which defines the way to handle retry (FIXED, EXPONENTIAL_BACKOFF) :return: The retry_logic of this WorkflowTaskMeta. :rtype: str """ return self._retry_logic @retry_logic.setter def retry_logic(self, retry_logic): """ Sets the retry_logic of this WorkflowTaskMeta. A logic which defines the way to handle retry (FIXED, EXPONENTIAL_BACKOFF) :param retry_logic: The retry_logic of this WorkflowTaskMeta. :type: str """ self._retry_logic = retry_logic @property def src(self): """ Gets the src of this WorkflowTaskMeta. A service owns the task metadata :return: The src of this WorkflowTaskMeta. :rtype: str """ return self._src @src.setter def src(self, src): """ Sets the src of this WorkflowTaskMeta. A service owns the task metadata :param src: The src of this WorkflowTaskMeta. :type: str """ self._src = src @property def timeout_policy(self): """ Gets the timeout_policy of this WorkflowTaskMeta. A policy which defines the way to handle timeout (RETRY, TIME_OUT_WF, ALERT_ONLY) :return: The timeout_policy of this WorkflowTaskMeta. :rtype: str """ return self._timeout_policy @timeout_policy.setter def timeout_policy(self, timeout_policy): """ Sets the timeout_policy of this WorkflowTaskMeta. A policy which defines the way to handle timeout (RETRY, TIME_OUT_WF, ALERT_ONLY) :param timeout_policy: The timeout_policy of this WorkflowTaskMeta. :type: str """ self._timeout_policy = timeout_policy @property def timeout_sec(self): """ Gets the timeout_sec of this WorkflowTaskMeta. A timeout value for the task ( in second ) :return: The timeout_sec of this WorkflowTaskMeta. :rtype: int """ return self._timeout_sec @timeout_sec.setter def timeout_sec(self, timeout_sec): """ Sets the timeout_sec of this WorkflowTaskMeta. A timeout value for the task ( in second ) :param timeout_sec: The timeout_sec of this WorkflowTaskMeta. :type: int """ self._timeout_sec = timeout_sec def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, WorkflowTaskMeta): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
0.489015
0.099121
import matplotlib.pyplot as plt import numpy as np from scipy.integrate import solve_ivp import csv def red_blue_ode(t, p): r, b, rt, bt = p dp = [0, 0, 0, 0] lambda_a = 1.0 lambda_t = 1.0 p_t = 0.5 p_c = 0.5 k = 10.0 flag_r_0 = 1.0 if r > 0 else 0.0 flag_b_0 = 1.0 if b > 0 else 0.0 flag_bt_0 = 1.0 if bt > 0 else 0.0 flag_rt_0 = 1.0 if rt > 0 else 0.0 flag_r_rt_0 = 1.0 if r+rt > 0 else 0.0 flag_b_bt_0 = 1.0 if b+bt > 0 else 0.0 # R_INDEX = 0; dp[0] = -flag_r_0 * lambda_a * k * r / (r + bt) * p_t * r - flag_r_0 * lambda_a * k * r / (r + bt) * p_t * rt \ + flag_r_rt_0 * lambda_t * rt - flag_r_0 * lambda_t * r / (r + rt) * rt \ + flag_b_0 * lambda_t * (b / (b + bt)) * bt \ + flag_bt_0 * lambda_t * (bt / (b + bt)) * bt \ + flag_rt_0 * lambda_a * p_c * k * rt / (rt + b) * (b + bt) # B_INDEX = 1; dp[1] = -flag_b_0 * lambda_a * k * b / (b + rt) * p_t * b \ - flag_b_0 * lambda_a * k * b / ((b + rt)) * p_t * bt \ + flag_b_bt_0 * lambda_t * bt \ + flag_r_0 * lambda_t * r / (r + rt) * rt \ - flag_b_0 * lambda_t * b / (b + bt) * bt \ + flag_rt_0 * lambda_t * (rt / (r + rt)) * rt \ + flag_bt_0 * lambda_a * p_c * k * (bt / (r + bt)) * (r + rt) # RT_INEDX = 2; dp[2] = -flag_rt_0 * lambda_a * p_c * k * rt / (rt + b) * (b + bt) \ - flag_r_rt_0 * lambda_t * rt \ - flag_rt_0 * lambda_t * (rt / (r + rt)) * rt \ + flag_r_0 * lambda_a * k * (r / (r + bt)) * p_t * r \ + flag_r_0 * lambda_a * k * (r / (r + bt)) * p_t * rt # BT_INDEX = 3; dp[3] = -flag_bt_0 * lambda_a * k * (bt / (r + bt)) * p_c * (r + rt) \ - flag_b_bt_0 * lambda_t * bt \ - flag_bt_0 * lambda_t * (bt / (b + bt)) * bt \ + flag_b_0 * lambda_a * k * b / (b + rt) * p_t * b \ + flag_b_0 * lambda_a * k * b / (b + rt) * p_t * bt return dp def solve_ode( ): return solve_ivp(red_blue_ode, [0, 10], [0.97, 0.01, 0.01, 0.01], dense_output=True) def load_data_file(file, scale=1): t = [] data = [] with open(file, 'r') as csvfile: plots = csv.reader(csvfile, delimiter='\t') for row in plots: t.append(float(row[0])) data.append(float(row[1])/(100*scale)) return t, data def load_simulation_data(source_dir, scale): t, r_data = load_data_file(source_dir+'rb_'+str(scale)+'__r_.data',scale=scale) _, b_data = load_data_file(source_dir+'rb_'+str(scale)+'__b_.data',scale=scale) _, rt_data = load_data_file(source_dir+'rb_'+str(scale)+'__rt_.data',scale=scale) _, bt_data = load_data_file(source_dir+'rb_'+str(scale)+'__bt_.data',scale=scale) return t, r_data, b_data, rt_data, bt_data def setup_legend_and_fonts(title,file): plt.legend(fontsize=15,loc='best') plt.title(title,fontsize=20) plt.ylim(-0.05, 1.1) plt.rc('xtick', labelsize=15) plt.rc('ytick', labelsize=15) plt.xlabel('Time units',fontsize=15) plt.ylabel('% Population',fontsize=15) plt.savefig(file) plt.show() def plot_all_simulation_data(source_dir, scale): time, r_data, b_data, rt_data, bt_data = load_simulation_data(source_dir, scale) plt.plot(time, r_data,label='R') plt.plot(time, b_data,label='B') plt.plot(time, rt_data,label='RT') plt.plot(time, bt_data,label='BT') setup_legend_and_fonts('Simulation (N='+str(scale)+")",'ac_sim_'+str(scale)+'.png') def plot_red_blue_simulation_data(source_dir, scale): time, r_data, b_data, rt_data, bt_data = load_simulation_data(source_dir, scale) red = [ r_data[i]+rt_data[i] for i in range(0,len(time))] blue = [ b_data[i]+bt_data[i] for i in range(0,len(time))] plt.plot(time, red, label='R+RT') plt.plot(time, blue, label='B+BT') setup_legend_and_fonts('Simulation (N='+str(scale)+')', 'ac_sim_rb_'+str(scale)+'.png') def plot_red_simulation_data_with_ode(source_dir, scale): time, r_data, _, rt_data, _ = load_simulation_data(source_dir, scale) sol = solve_ode(); t = np.linspace(0, 10, 100) z = sol.sol(t) plt.plot(time, r_data,label='R') plt.plot(time, rt_data,label='RT') plt.plot(t, z[0],label='R ODE') plt.plot(t, z[2],label='RT ODE') setup_legend_and_fonts('Fluid approximation and Simulation (N='+str(scale)+')', 'ac_sim_ode_r_rt_'+str(scale)+'.png') def plot_blue_simulation_data_with_ode(source_dir, scale): time, _, b_data, _, bt_data = load_simulation_data(source_dir, scale) sol = solve_ode(); t = np.linspace(0, 10, 100) z = sol.sol(t) plt.plot(time, b_data,label='B') plt.plot(time, bt_data,label='BT') plt.plot(t, z[1],label='B ODE') plt.plot(t, z[3],label='BT ODE') setup_legend_and_fonts('Fluid approximation and Simulation (N='+str(scale)+')', 'ac_sim_ode_b_bt_'+str(scale)+'.png') def plot_red_blue_simulation_data_with_ode(source_dir, scale): time, r_data, b_data, rt_data, bt_data = load_simulation_data(source_dir, scale) sol = solve_ode(); t = np.linspace(0, 10, 100) z = sol.sol(t) red = [ r_data[i]+rt_data[i] for i in range(0,len(time))] blue = [ b_data[i]+bt_data[i] for i in range(0,len(time))] red_ode = [ z[0][i]+z[2][i] for i in range(0,len(t)) ] blue_ode = [ z[1][i]+z[3][i] for i in range(0,len(t)) ] plt.plot(time, red, label='R+RT') plt.plot(time, blue, label='B+BT') plt.plot(t, red_ode, label='R+RT ODE') plt.plot(t, blue_ode, label='B+BT ODE') setup_legend_and_fonts('Fluid approximation and Simulation (N='+str(scale)+')', 'ac_sim_ode_rb_'+str(scale)+'.png') if __name__=='__main__': dir = '../data/' #dir = '/Users/loreti/Desktop/DATA/' plot_all_simulation_data(dir,10) plot_red_blue_simulation_data(dir,10) for scale in [1, 10, 100, 1000]: plot_blue_simulation_data_with_ode(dir, scale) plot_red_simulation_data_with_ode(dir, scale) plot_red_blue_simulation_data_with_ode(dir, scale)
plotscript/plot_rb_files.py
import matplotlib.pyplot as plt import numpy as np from scipy.integrate import solve_ivp import csv def red_blue_ode(t, p): r, b, rt, bt = p dp = [0, 0, 0, 0] lambda_a = 1.0 lambda_t = 1.0 p_t = 0.5 p_c = 0.5 k = 10.0 flag_r_0 = 1.0 if r > 0 else 0.0 flag_b_0 = 1.0 if b > 0 else 0.0 flag_bt_0 = 1.0 if bt > 0 else 0.0 flag_rt_0 = 1.0 if rt > 0 else 0.0 flag_r_rt_0 = 1.0 if r+rt > 0 else 0.0 flag_b_bt_0 = 1.0 if b+bt > 0 else 0.0 # R_INDEX = 0; dp[0] = -flag_r_0 * lambda_a * k * r / (r + bt) * p_t * r - flag_r_0 * lambda_a * k * r / (r + bt) * p_t * rt \ + flag_r_rt_0 * lambda_t * rt - flag_r_0 * lambda_t * r / (r + rt) * rt \ + flag_b_0 * lambda_t * (b / (b + bt)) * bt \ + flag_bt_0 * lambda_t * (bt / (b + bt)) * bt \ + flag_rt_0 * lambda_a * p_c * k * rt / (rt + b) * (b + bt) # B_INDEX = 1; dp[1] = -flag_b_0 * lambda_a * k * b / (b + rt) * p_t * b \ - flag_b_0 * lambda_a * k * b / ((b + rt)) * p_t * bt \ + flag_b_bt_0 * lambda_t * bt \ + flag_r_0 * lambda_t * r / (r + rt) * rt \ - flag_b_0 * lambda_t * b / (b + bt) * bt \ + flag_rt_0 * lambda_t * (rt / (r + rt)) * rt \ + flag_bt_0 * lambda_a * p_c * k * (bt / (r + bt)) * (r + rt) # RT_INEDX = 2; dp[2] = -flag_rt_0 * lambda_a * p_c * k * rt / (rt + b) * (b + bt) \ - flag_r_rt_0 * lambda_t * rt \ - flag_rt_0 * lambda_t * (rt / (r + rt)) * rt \ + flag_r_0 * lambda_a * k * (r / (r + bt)) * p_t * r \ + flag_r_0 * lambda_a * k * (r / (r + bt)) * p_t * rt # BT_INDEX = 3; dp[3] = -flag_bt_0 * lambda_a * k * (bt / (r + bt)) * p_c * (r + rt) \ - flag_b_bt_0 * lambda_t * bt \ - flag_bt_0 * lambda_t * (bt / (b + bt)) * bt \ + flag_b_0 * lambda_a * k * b / (b + rt) * p_t * b \ + flag_b_0 * lambda_a * k * b / (b + rt) * p_t * bt return dp def solve_ode( ): return solve_ivp(red_blue_ode, [0, 10], [0.97, 0.01, 0.01, 0.01], dense_output=True) def load_data_file(file, scale=1): t = [] data = [] with open(file, 'r') as csvfile: plots = csv.reader(csvfile, delimiter='\t') for row in plots: t.append(float(row[0])) data.append(float(row[1])/(100*scale)) return t, data def load_simulation_data(source_dir, scale): t, r_data = load_data_file(source_dir+'rb_'+str(scale)+'__r_.data',scale=scale) _, b_data = load_data_file(source_dir+'rb_'+str(scale)+'__b_.data',scale=scale) _, rt_data = load_data_file(source_dir+'rb_'+str(scale)+'__rt_.data',scale=scale) _, bt_data = load_data_file(source_dir+'rb_'+str(scale)+'__bt_.data',scale=scale) return t, r_data, b_data, rt_data, bt_data def setup_legend_and_fonts(title,file): plt.legend(fontsize=15,loc='best') plt.title(title,fontsize=20) plt.ylim(-0.05, 1.1) plt.rc('xtick', labelsize=15) plt.rc('ytick', labelsize=15) plt.xlabel('Time units',fontsize=15) plt.ylabel('% Population',fontsize=15) plt.savefig(file) plt.show() def plot_all_simulation_data(source_dir, scale): time, r_data, b_data, rt_data, bt_data = load_simulation_data(source_dir, scale) plt.plot(time, r_data,label='R') plt.plot(time, b_data,label='B') plt.plot(time, rt_data,label='RT') plt.plot(time, bt_data,label='BT') setup_legend_and_fonts('Simulation (N='+str(scale)+")",'ac_sim_'+str(scale)+'.png') def plot_red_blue_simulation_data(source_dir, scale): time, r_data, b_data, rt_data, bt_data = load_simulation_data(source_dir, scale) red = [ r_data[i]+rt_data[i] for i in range(0,len(time))] blue = [ b_data[i]+bt_data[i] for i in range(0,len(time))] plt.plot(time, red, label='R+RT') plt.plot(time, blue, label='B+BT') setup_legend_and_fonts('Simulation (N='+str(scale)+')', 'ac_sim_rb_'+str(scale)+'.png') def plot_red_simulation_data_with_ode(source_dir, scale): time, r_data, _, rt_data, _ = load_simulation_data(source_dir, scale) sol = solve_ode(); t = np.linspace(0, 10, 100) z = sol.sol(t) plt.plot(time, r_data,label='R') plt.plot(time, rt_data,label='RT') plt.plot(t, z[0],label='R ODE') plt.plot(t, z[2],label='RT ODE') setup_legend_and_fonts('Fluid approximation and Simulation (N='+str(scale)+')', 'ac_sim_ode_r_rt_'+str(scale)+'.png') def plot_blue_simulation_data_with_ode(source_dir, scale): time, _, b_data, _, bt_data = load_simulation_data(source_dir, scale) sol = solve_ode(); t = np.linspace(0, 10, 100) z = sol.sol(t) plt.plot(time, b_data,label='B') plt.plot(time, bt_data,label='BT') plt.plot(t, z[1],label='B ODE') plt.plot(t, z[3],label='BT ODE') setup_legend_and_fonts('Fluid approximation and Simulation (N='+str(scale)+')', 'ac_sim_ode_b_bt_'+str(scale)+'.png') def plot_red_blue_simulation_data_with_ode(source_dir, scale): time, r_data, b_data, rt_data, bt_data = load_simulation_data(source_dir, scale) sol = solve_ode(); t = np.linspace(0, 10, 100) z = sol.sol(t) red = [ r_data[i]+rt_data[i] for i in range(0,len(time))] blue = [ b_data[i]+bt_data[i] for i in range(0,len(time))] red_ode = [ z[0][i]+z[2][i] for i in range(0,len(t)) ] blue_ode = [ z[1][i]+z[3][i] for i in range(0,len(t)) ] plt.plot(time, red, label='R+RT') plt.plot(time, blue, label='B+BT') plt.plot(t, red_ode, label='R+RT ODE') plt.plot(t, blue_ode, label='B+BT ODE') setup_legend_and_fonts('Fluid approximation and Simulation (N='+str(scale)+')', 'ac_sim_ode_rb_'+str(scale)+'.png') if __name__=='__main__': dir = '../data/' #dir = '/Users/loreti/Desktop/DATA/' plot_all_simulation_data(dir,10) plot_red_blue_simulation_data(dir,10) for scale in [1, 10, 100, 1000]: plot_blue_simulation_data_with_ode(dir, scale) plot_red_simulation_data_with_ode(dir, scale) plot_red_blue_simulation_data_with_ode(dir, scale)
0.314156
0.477371
import keras from keras.models import Sequential, Model from keras.layers import Activation, Merge, Reshape from keras.layers import Input, Embedding, Dense, dot from keras.layers.core import Lambda from keras import optimizers from keras import backend as K import numpy as np import random import utils.process as process from utils.log_tool import data_process_logger as logger def skipgram_model(vocab_size, embedding_dim=100, paradigm='Functional'): # Sequential paradigm if paradigm == 'Sequential': target = Sequential() target.add(Embedding(vocab_size, embedding_dim, input_length=1)) context = Sequential() context.add(Embedding(vocab_size, embedding_dim, input_length=1)) # merge the pivot and context models model = Sequential() model.add(Merge([target, context], mode='dot')) model.add(Reshape((1,), input_shape=(1,1))) model.add(Activation('sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy') return model # Functional paradigm elif paradigm == 'Functional': target = Input(shape=(1,), name='target') context = Input(shape=(1,), name='context') #print target.shape, context.shape shared_embedding = Embedding(vocab_size, embedding_dim, input_length=1, name='shared_embedding') embedding_target = shared_embedding(target) embedding_context = shared_embedding(context) #print embedding_target.shape, embedding_context.shape merged_vector = dot([embedding_target, embedding_context], axes=-1) reshaped_vector = Reshape((1,), input_shape=(1,1))(merged_vector) #print merged_vector.shape prediction = Dense(1, input_shape=(1,), activation='sigmoid')(reshaped_vector) #print prediction.shape model = Model(inputs=[target, context], outputs=prediction) model.compile(optimizer='adam', loss='binary_crossentropy') return model else: print('paradigm error') return None def skipgram_reader_generator(movie_dict, file_name=process.DoulistCorpusNameFile, context_window=2): def reader(): vocabulary_size = len(movie_dict) with open(file_name) as fopen: for line in fopen: line_list = line.strip().split('\t') movie_ids = [movie_dict.get(_, movie_dict['<unk>']) for _ in line_list] for i in range(len(movie_ids)): target = movie_ids[i] # generate positive sample context_list = [] j = i - context_window while j <= i + context_window and j < len(movie_ids): if j >= 0 and j != i: context_list.append(movie_ids[j]) yield ((target, movie_ids[j]), 1) j += 1 # generate negative sample for _ in range(len(context_list)): ne_idx = random.randrange(0, vocabulary_size) while ne_idx in context_list: ne_idx = random.randrange(0, vocabulary_size) yield ((target, ne_idx), 0) return reader def cbow_base_model(dict_size, emb_size=100, context_window_size=4): model = keras.models.Sequential() model.add(Embedding(dict_size, emb_size, input_length=context_window_size, embeddings_initializer=keras.initializers.TruncatedNormal(mean=0.0, stddev=0.2), )) model.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(emb_size,))) model.add(Dense(dict_size)) model.add(Activation('softmax')) # TODO: use nce sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy',) return model def train_cbow_base_model(): min_word_freq = 5 word_dict = process.get_movie_name_id_dict(min_word_freq=min_word_freq) dict_size = len(word_dict) emb_size = 100 context_window_size = 4 epochs = 20 batch_size = 128 model = cbow_base_model(dict_size, emb_size, context_window_size) for epoch_id in xrange(epochs): # train by batch batch_id = 0 x_batch = [] y_batch = [] for movie_ids in process.shuffle(process.reader_creator(word_dict, ngram=context_window_size+1), 10000)(): batch_id += 1 if batch_id % (batch_size*50) == 0: # Print evaluate log score = model.evaluate(np.array(x_batch), keras.utils.to_categorical(y_batch, num_classes=dict_size)) logger.info('[epoch #%d] batch #%d, train loss:%s' % (epoch_id, batch_id, score)) if batch_id % batch_size == 0: # Convert labels to categorical one-hot encoding model.train_on_batch(np.array(x_batch), keras.utils.to_categorical(y_batch, num_classes=dict_size)) x_batch = [] y_batch = [] x = np.array(movie_ids[:context_window_size]) y = movie_ids[-1] x_batch.append(x) y_batch.append(y) logger.info('model train done') # store word embedding with open('./models/keras_0804_09_cbow', 'w') as fwrite: for idx, vec in enumerate(model.layers[0].get_weights()[0].tolist()): fwrite.write('%d %s\n' % (idx, ' '.join([str(_) for _ in vec]))) if __name__ == '__main__': # network conf paradigm = 'Functional' min_word_freq = 10 word_dict = process.get_movie_name_id_dict(min_word_freq=min_word_freq) dict_size = len(word_dict) emb_size = 100 context_window_size = 2 epochs = 50 batch_size = 256 model = skipgram_model(dict_size, emb_size, paradigm) #print model.layers for epoch_id in xrange(epochs): # train by batch batch_id = 0 x_batch = [[],[]] y_batch = [] loss_list = [] for movie_ids, label in process.shuffle(skipgram_reader_generator(word_dict, context_window=context_window_size), 10000)(): batch_id += 1 x_batch[0].append(movie_ids[0]) x_batch[1].append(movie_ids[1]) y_batch.append(label) if batch_id % (batch_size*1000) == 0: # Print evaluate log logger.info('[epoch #%d] batch #%d, train loss:%s' % (epoch_id, batch_id, np.mean(loss_list))) loss_list = [] if batch_id % batch_size == 0: X = [np.array(x_batch[0]), np.array(x_batch[1])] loss = model.train_on_batch(X, np.array(y_batch)) loss_list.append(loss) x_batch = [[],[]] y_batch = [] logger.info('model train done') # store word embedding with open('./models/keras_0804_09_skipgram', 'w') as fwrite: for idx, vec in enumerate(model.layers[2].get_weights()[0].tolist()): fwrite.write('%d %s\n' % (idx, ' '.join([str(_) for _ in vec])))
keras_item2vec.py
import keras from keras.models import Sequential, Model from keras.layers import Activation, Merge, Reshape from keras.layers import Input, Embedding, Dense, dot from keras.layers.core import Lambda from keras import optimizers from keras import backend as K import numpy as np import random import utils.process as process from utils.log_tool import data_process_logger as logger def skipgram_model(vocab_size, embedding_dim=100, paradigm='Functional'): # Sequential paradigm if paradigm == 'Sequential': target = Sequential() target.add(Embedding(vocab_size, embedding_dim, input_length=1)) context = Sequential() context.add(Embedding(vocab_size, embedding_dim, input_length=1)) # merge the pivot and context models model = Sequential() model.add(Merge([target, context], mode='dot')) model.add(Reshape((1,), input_shape=(1,1))) model.add(Activation('sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy') return model # Functional paradigm elif paradigm == 'Functional': target = Input(shape=(1,), name='target') context = Input(shape=(1,), name='context') #print target.shape, context.shape shared_embedding = Embedding(vocab_size, embedding_dim, input_length=1, name='shared_embedding') embedding_target = shared_embedding(target) embedding_context = shared_embedding(context) #print embedding_target.shape, embedding_context.shape merged_vector = dot([embedding_target, embedding_context], axes=-1) reshaped_vector = Reshape((1,), input_shape=(1,1))(merged_vector) #print merged_vector.shape prediction = Dense(1, input_shape=(1,), activation='sigmoid')(reshaped_vector) #print prediction.shape model = Model(inputs=[target, context], outputs=prediction) model.compile(optimizer='adam', loss='binary_crossentropy') return model else: print('paradigm error') return None def skipgram_reader_generator(movie_dict, file_name=process.DoulistCorpusNameFile, context_window=2): def reader(): vocabulary_size = len(movie_dict) with open(file_name) as fopen: for line in fopen: line_list = line.strip().split('\t') movie_ids = [movie_dict.get(_, movie_dict['<unk>']) for _ in line_list] for i in range(len(movie_ids)): target = movie_ids[i] # generate positive sample context_list = [] j = i - context_window while j <= i + context_window and j < len(movie_ids): if j >= 0 and j != i: context_list.append(movie_ids[j]) yield ((target, movie_ids[j]), 1) j += 1 # generate negative sample for _ in range(len(context_list)): ne_idx = random.randrange(0, vocabulary_size) while ne_idx in context_list: ne_idx = random.randrange(0, vocabulary_size) yield ((target, ne_idx), 0) return reader def cbow_base_model(dict_size, emb_size=100, context_window_size=4): model = keras.models.Sequential() model.add(Embedding(dict_size, emb_size, input_length=context_window_size, embeddings_initializer=keras.initializers.TruncatedNormal(mean=0.0, stddev=0.2), )) model.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(emb_size,))) model.add(Dense(dict_size)) model.add(Activation('softmax')) # TODO: use nce sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy',) return model def train_cbow_base_model(): min_word_freq = 5 word_dict = process.get_movie_name_id_dict(min_word_freq=min_word_freq) dict_size = len(word_dict) emb_size = 100 context_window_size = 4 epochs = 20 batch_size = 128 model = cbow_base_model(dict_size, emb_size, context_window_size) for epoch_id in xrange(epochs): # train by batch batch_id = 0 x_batch = [] y_batch = [] for movie_ids in process.shuffle(process.reader_creator(word_dict, ngram=context_window_size+1), 10000)(): batch_id += 1 if batch_id % (batch_size*50) == 0: # Print evaluate log score = model.evaluate(np.array(x_batch), keras.utils.to_categorical(y_batch, num_classes=dict_size)) logger.info('[epoch #%d] batch #%d, train loss:%s' % (epoch_id, batch_id, score)) if batch_id % batch_size == 0: # Convert labels to categorical one-hot encoding model.train_on_batch(np.array(x_batch), keras.utils.to_categorical(y_batch, num_classes=dict_size)) x_batch = [] y_batch = [] x = np.array(movie_ids[:context_window_size]) y = movie_ids[-1] x_batch.append(x) y_batch.append(y) logger.info('model train done') # store word embedding with open('./models/keras_0804_09_cbow', 'w') as fwrite: for idx, vec in enumerate(model.layers[0].get_weights()[0].tolist()): fwrite.write('%d %s\n' % (idx, ' '.join([str(_) for _ in vec]))) if __name__ == '__main__': # network conf paradigm = 'Functional' min_word_freq = 10 word_dict = process.get_movie_name_id_dict(min_word_freq=min_word_freq) dict_size = len(word_dict) emb_size = 100 context_window_size = 2 epochs = 50 batch_size = 256 model = skipgram_model(dict_size, emb_size, paradigm) #print model.layers for epoch_id in xrange(epochs): # train by batch batch_id = 0 x_batch = [[],[]] y_batch = [] loss_list = [] for movie_ids, label in process.shuffle(skipgram_reader_generator(word_dict, context_window=context_window_size), 10000)(): batch_id += 1 x_batch[0].append(movie_ids[0]) x_batch[1].append(movie_ids[1]) y_batch.append(label) if batch_id % (batch_size*1000) == 0: # Print evaluate log logger.info('[epoch #%d] batch #%d, train loss:%s' % (epoch_id, batch_id, np.mean(loss_list))) loss_list = [] if batch_id % batch_size == 0: X = [np.array(x_batch[0]), np.array(x_batch[1])] loss = model.train_on_batch(X, np.array(y_batch)) loss_list.append(loss) x_batch = [[],[]] y_batch = [] logger.info('model train done') # store word embedding with open('./models/keras_0804_09_skipgram', 'w') as fwrite: for idx, vec in enumerate(model.layers[2].get_weights()[0].tolist()): fwrite.write('%d %s\n' % (idx, ' '.join([str(_) for _ in vec])))
0.425247
0.271336
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import functools import json import logging from datetime import datetime import parsedatetime from dateutil.parser import parse from flask import flash, Markup from flask_appbuilder.security.sqla import models as ab_models from markdown import markdown as md from sqlalchemy.types import TypeDecorator, TEXT def flasher(msg, severity=None): """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == 'danger': logging.error(msg) else: logging.info(msg) class memoized(object): # noqa """Decorator that caches a function's return value each time it is called If called later with the same arguments, the cached value is returned, and not re-evaluated. """ def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): try: return self.cache[args] except KeyError: value = self.func(*args) self.cache[args] = value return value except TypeError: # uncachable -- for instance, passing a list as an argument. # Better to not cache than to blow up entirely. return self.func(*args) def __repr__(self): """Return the function's docstring.""" return self.func.__doc__ def __get__(self, obj, objtype): """Support instance methods.""" return functools.partial(self.__call__, obj) def list_minus(l, minus): """Returns l without what is in minus >>> list_minus([1, 2, 3], [2]) [1, 3] """ return [o for o in l if o not in minus] def parse_human_datetime(s): """ Returns ``datetime.datetime`` from human readable strings >>> from datetime import date, timedelta >>> from dateutil.relativedelta import relativedelta >>> parse_human_datetime('2015-04-03') datetime.datetime(2015, 4, 3, 0, 0) >>> parse_human_datetime('2/3/1969') datetime.datetime(1969, 2, 3, 0, 0) >>> parse_human_datetime("now") <= datetime.now() True >>> parse_human_datetime("yesterday") <= datetime.now() True >>> date.today() - timedelta(1) == parse_human_datetime('yesterday').date() True >>> year_ago_1 = parse_human_datetime('one year ago').date() >>> year_ago_2 = (datetime.now() - relativedelta(years=1) ).date() >>> year_ago_1 == year_ago_2 True """ try: dttm = parse(s) except Exception: try: cal = parsedatetime.Calendar() dttm = dttm_from_timtuple(cal.parse(s)[0]) except Exception as e: logging.exception(e) raise ValueError("Couldn't parse date string [{}]".format(s)) return dttm def dttm_from_timtuple(d): return datetime( d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec) def merge_perm(sm, permission_name, view_menu_name): pv = sm.find_permission_view_menu(permission_name, view_menu_name) if not pv: sm.add_permission_view_menu(permission_name, view_menu_name) def parse_human_timedelta(s): """ Returns ``datetime.datetime`` from natural language time deltas >>> parse_human_datetime("now") <= datetime.now() True """ cal = parsedatetime.Calendar() dttm = dttm_from_timtuple(datetime.now().timetuple()) d = cal.parse(s, dttm)[0] d = datetime( d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec) return d - dttm class JSONEncodedDict(TypeDecorator): """Represents an immutable structure as a json-encoded string.""" impl = TEXT def process_bind_param(self, value, dialect): if value is not None: value = json.dumps(value) return value def process_result_value(self, value, dialect): if value is not None: value = json.loads(value) return value def init(caravel): """Inits the Caravel application with security roles and such""" db = caravel.db models = caravel.models sm = caravel.appbuilder.sm alpha = sm.add_role("Alpha") admin = sm.add_role("Admin") merge_perm(sm, 'all_datasource_access', 'all_datasource_access') perms = db.session.query(ab_models.PermissionView).all() for perm in perms: if perm.permission.name == 'datasource_access': continue if perm.view_menu and perm.view_menu.name not in ( 'UserDBModelView', 'RoleModelView', 'ResetPasswordView', 'Security'): sm.add_permission_role(alpha, perm) sm.add_permission_role(admin, perm) gamma = sm.add_role("Gamma") for perm in perms: if( perm.view_menu and perm.view_menu.name not in ( 'ResetPasswordView', 'RoleModelView', 'UserDBModelView', 'Security') and perm.permission.name not in ( 'all_datasource_access', 'can_add', 'can_download', 'can_delete', 'can_edit', 'can_save', 'datasource_access', 'muldelete', )): sm.add_permission_role(gamma, perm) session = db.session() table_perms = [ table.perm for table in session.query(models.SqlaTable).all()] table_perms += [ table.perm for table in session.query(models.DruidDatasource).all()] for table_perm in table_perms: merge_perm(sm, 'datasource_access', table_perm) def datetime_f(dttm): """Formats datetime to take less room when it is recent""" if dttm: dttm = dttm.isoformat() now_iso = datetime.now().isoformat() if now_iso[:10] == dttm[:10]: dttm = dttm[11:] elif now_iso[:4] == dttm[:4]: dttm = dttm[5:] return "<nobr>{}</nobr>".format(dttm) def json_iso_dttm_ser(obj): """ json serializer that deals with dates >>> dttm = datetime(1970, 1, 1) >>> json.dumps({'dttm': dttm}, default=json_iso_dttm_ser) '{"dttm": "1970-01-01T00:00:00"}' """ if isinstance(obj, datetime): obj = obj.isoformat() return obj def markdown(s, markup_wrap=False): s = s or '' s = md(s, [ 'markdown.extensions.tables', 'markdown.extensions.fenced_code', 'markdown.extensions.codehilite', ]) if markup_wrap: s = Markup(s) return s def readfile(filepath): with open(filepath) as f: content = f.read() return content
caravel/utils.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import functools import json import logging from datetime import datetime import parsedatetime from dateutil.parser import parse from flask import flash, Markup from flask_appbuilder.security.sqla import models as ab_models from markdown import markdown as md from sqlalchemy.types import TypeDecorator, TEXT def flasher(msg, severity=None): """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == 'danger': logging.error(msg) else: logging.info(msg) class memoized(object): # noqa """Decorator that caches a function's return value each time it is called If called later with the same arguments, the cached value is returned, and not re-evaluated. """ def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): try: return self.cache[args] except KeyError: value = self.func(*args) self.cache[args] = value return value except TypeError: # uncachable -- for instance, passing a list as an argument. # Better to not cache than to blow up entirely. return self.func(*args) def __repr__(self): """Return the function's docstring.""" return self.func.__doc__ def __get__(self, obj, objtype): """Support instance methods.""" return functools.partial(self.__call__, obj) def list_minus(l, minus): """Returns l without what is in minus >>> list_minus([1, 2, 3], [2]) [1, 3] """ return [o for o in l if o not in minus] def parse_human_datetime(s): """ Returns ``datetime.datetime`` from human readable strings >>> from datetime import date, timedelta >>> from dateutil.relativedelta import relativedelta >>> parse_human_datetime('2015-04-03') datetime.datetime(2015, 4, 3, 0, 0) >>> parse_human_datetime('2/3/1969') datetime.datetime(1969, 2, 3, 0, 0) >>> parse_human_datetime("now") <= datetime.now() True >>> parse_human_datetime("yesterday") <= datetime.now() True >>> date.today() - timedelta(1) == parse_human_datetime('yesterday').date() True >>> year_ago_1 = parse_human_datetime('one year ago').date() >>> year_ago_2 = (datetime.now() - relativedelta(years=1) ).date() >>> year_ago_1 == year_ago_2 True """ try: dttm = parse(s) except Exception: try: cal = parsedatetime.Calendar() dttm = dttm_from_timtuple(cal.parse(s)[0]) except Exception as e: logging.exception(e) raise ValueError("Couldn't parse date string [{}]".format(s)) return dttm def dttm_from_timtuple(d): return datetime( d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec) def merge_perm(sm, permission_name, view_menu_name): pv = sm.find_permission_view_menu(permission_name, view_menu_name) if not pv: sm.add_permission_view_menu(permission_name, view_menu_name) def parse_human_timedelta(s): """ Returns ``datetime.datetime`` from natural language time deltas >>> parse_human_datetime("now") <= datetime.now() True """ cal = parsedatetime.Calendar() dttm = dttm_from_timtuple(datetime.now().timetuple()) d = cal.parse(s, dttm)[0] d = datetime( d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec) return d - dttm class JSONEncodedDict(TypeDecorator): """Represents an immutable structure as a json-encoded string.""" impl = TEXT def process_bind_param(self, value, dialect): if value is not None: value = json.dumps(value) return value def process_result_value(self, value, dialect): if value is not None: value = json.loads(value) return value def init(caravel): """Inits the Caravel application with security roles and such""" db = caravel.db models = caravel.models sm = caravel.appbuilder.sm alpha = sm.add_role("Alpha") admin = sm.add_role("Admin") merge_perm(sm, 'all_datasource_access', 'all_datasource_access') perms = db.session.query(ab_models.PermissionView).all() for perm in perms: if perm.permission.name == 'datasource_access': continue if perm.view_menu and perm.view_menu.name not in ( 'UserDBModelView', 'RoleModelView', 'ResetPasswordView', 'Security'): sm.add_permission_role(alpha, perm) sm.add_permission_role(admin, perm) gamma = sm.add_role("Gamma") for perm in perms: if( perm.view_menu and perm.view_menu.name not in ( 'ResetPasswordView', 'RoleModelView', 'UserDBModelView', 'Security') and perm.permission.name not in ( 'all_datasource_access', 'can_add', 'can_download', 'can_delete', 'can_edit', 'can_save', 'datasource_access', 'muldelete', )): sm.add_permission_role(gamma, perm) session = db.session() table_perms = [ table.perm for table in session.query(models.SqlaTable).all()] table_perms += [ table.perm for table in session.query(models.DruidDatasource).all()] for table_perm in table_perms: merge_perm(sm, 'datasource_access', table_perm) def datetime_f(dttm): """Formats datetime to take less room when it is recent""" if dttm: dttm = dttm.isoformat() now_iso = datetime.now().isoformat() if now_iso[:10] == dttm[:10]: dttm = dttm[11:] elif now_iso[:4] == dttm[:4]: dttm = dttm[5:] return "<nobr>{}</nobr>".format(dttm) def json_iso_dttm_ser(obj): """ json serializer that deals with dates >>> dttm = datetime(1970, 1, 1) >>> json.dumps({'dttm': dttm}, default=json_iso_dttm_ser) '{"dttm": "1970-01-01T00:00:00"}' """ if isinstance(obj, datetime): obj = obj.isoformat() return obj def markdown(s, markup_wrap=False): s = s or '' s = md(s, [ 'markdown.extensions.tables', 'markdown.extensions.fenced_code', 'markdown.extensions.codehilite', ]) if markup_wrap: s = Markup(s) return s def readfile(filepath): with open(filepath) as f: content = f.read() return content
0.728169
0.157752
from sklearn import metrics import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.colors as colors import itertools import pandas as pd from imblearn.metrics import sensitivity_specificity_support import os def multiclass_predict_1d_to_nd(y_, unique_labels): if(len(np.unique(y_)) != len(unique_labels)): y_ = y_.argmax(axis=1) y_new = [] for y in y_: values = [] for u in unique_labels: if(u == y): values.append(1) else: values.append(0) y_new.append(values) return np.array(y_new) def multiclass_predict_nd_to_1d(y_): return y_.argmax(axis=1) def prc_auc(y_true, y_pred, class_names): if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_pred)) y_true = multiclass_predict_1d_to_nd(y_true, np.unique(y_true)) n_classes = len(class_names) precision = dict() recall = dict() average_precision = [] for i in range(n_classes): precision[i], recall[i], _ = metrics.precision_recall_curve(y_true[:, i], y_pred[:, i]) average_precision.append( metrics.average_precision_score(y_true[:, i], y_pred[:, i])) return average_precision def roc_auc(y_true, y_pred, class_names): if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_pred)) y_true = multiclass_predict_1d_to_nd(y_true, np.unique(y_true)) n_classes = len(class_names) fpr = dict() tpr = dict() roc_auc = [] for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(y_true[:, i], y_pred[:, i]) roc_auc.append(metrics.auc(fpr[i], tpr[i])) return roc_auc def recall(tp, p): return tp/p def specificity(tn, n): return tn/n def accuracy(tn, tp, p, n): return (tn + tp) / (p + n) def precision(tp, fp): return tp/(fp + tp) def f1_score(y_true, y_pred): if(len(np.unique(y_pred)) != len(np.unique(y_true))): y_pred = multiclass_predict_nd_to_1d(y_pred) y_true = multiclass_predict_nd_to_1d(y_true) return metrics.f1_score(y_true, y_pred, average=None) def get_metrics(y_test, y_pred, class_names=None, save_path=None): y_test = np.array(y_test) y_pred = np.array(y_pred) uniques = np.unique(y_test) if(class_names is None): class_names = list(uniques) if(len(y_test.shape) == 1): matrix = metrics.confusion_matrix(y_test, y_pred, labels=uniques) #y_pred = multiclass_predict_1d_to_nd(y_pred, columns) #y_true = multiclass_predict_1d_to_nd(y_true, columns) else: #y_pred = multiclass_predict_nd_to_1d(y_pred) #y_true = multiclass_predict_nd_to_1d(y_true) matrix = metrics.confusion_matrix(multiclass_predict_nd_to_1d( y_test), multiclass_predict_nd_to_1d(y_pred)) TP = np.diag(matrix) FP = matrix.sum(axis=0) - TP FN = matrix.sum(axis=1) - TP TN = matrix.sum() - (FP + FN + TP) P = TP+FN N = TN+FP metrics_ = pd.DataFrame() rows = class_names.copy() rows.append('Média') metrics_['Classes'] = rows _f1 = np.around(f1_score(y_test, y_pred), decimals=2) _f1 = np.append(_f1, np.around(np.mean(_f1), decimals=2)) _roc_auc = np.around(roc_auc(y_test, y_pred, class_names), decimals=2) _roc_auc = np.append(_roc_auc, np.around(np.mean(_roc_auc), decimals=2)) _prc_auc = np.around(prc_auc(y_test, y_pred, class_names), decimals=2) _prc_auc = np.append(_prc_auc, np.around(np.mean(_prc_auc), decimals=2)) _precision = np.around(precision(TP, FP), decimals=2) _precision = np.append(_precision, np.around( np.mean(_precision), decimals=2)) _recall = np.around(recall(TP, P), decimals=2) _recall = np.append(_recall, np.around(np.mean(_recall), decimals=2)) _specificity = np.around(specificity(TN, N), decimals=2) _specificity = np.append(_specificity, np.around( np.mean(_specificity), decimals=2)) _accuracy = np.around(accuracy(TN, TP, P, N), decimals=2) _accuracy = np.append(_accuracy, np.around(np.mean(_accuracy), decimals=2)) metrics_["F1"] = _f1 metrics_["ROC AUC"] = _roc_auc metrics_["PRC AUC"] = _prc_auc metrics_["Precision"] = _precision metrics_["Recall"] = _recall metrics_["Specificity"] = _specificity metrics_["Accuracy"] = _accuracy if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) metrics_.to_csv(os.path.join(save_path, 'metrics.csv'), index=False, header=True) return metrics_ def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap def plot_confusion_matrix(y_test, y_pred, class_names=None, save_path=None, visualize=False, cmap=None, normalize=True, labels=True, title='Matriz de confusão'): y_test = np.array(y_test) y_pred = np.array(y_pred) uniques = np.unique(y_pred) if(len(y_pred.shape) == 1): cm = metrics.confusion_matrix(y_test, y_pred, labels=uniques) else: y_test = multiclass_predict_nd_to_1d(y_test) y_pred = multiclass_predict_nd_to_1d(y_pred) cm = metrics.confusion_matrix(y_test, y_pred) rotulos = [] for index, value in enumerate(uniques): for i, v in enumerate(uniques): rotulos.append('') if cmap is None: cmap = plt.get_cmap('Blues') cmap = truncate_colormap(cmap, 0.35, 0.85) perc_cm = None if normalize: perc_cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # modificação wenisten para poder elevar para percetual o resultado. perc_cm = perc_cm*100 fig = plt.figure(figsize=(6, 6), edgecolor='k') # (8, 6)) plt.imshow(cm, interpolation='nearest', cmap=cmap) #plt.clim(-5, 2.0) plt.xlim(-0.5, len(np.unique(y_test))-0.5) plt.ylim(len(np.unique(y_test))-0.5, -0.5) plt.title(title, fontsize=16) plt.colorbar() #plt.ylim(-0.5, len(class_names) - 0.5) thresh = cm.max() / 1.5 if normalize else cm.max() / 2 if class_names is not None: tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names, fontsize=16, rotation=45, ha='right', rotation_mode="anchor") plt.yticks(tick_marks, class_names, fontsize=16) contador = 0 if labels: for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if normalize: plt.text(j, i, f"{'{:0.2f}%'.format(perc_cm[i, j])}\n({cm[i, j]})", fontsize=16, horizontalalignment='center', verticalalignment='center', color='white' if cm[i, j] > thresh else 'white') contador = contador+1 else: plt.text(j, i, '{:,}'.format(cm[i, j]), fontsize=16, horizontalalignment='center', verticalalignment='center', color='white' if cm[i, j] > thresh else 'white') plt.tight_layout() plt.ylabel('True label', fontsize=16) plt.xlabel('Predicted label', fontsize=16) if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) fig.savefig(os.path.join(save_path, 'confusion_matriz.png'), dpi=180, bbox_inches='tight') if(visualize): plt.show() plt.close() def plot_auc_roc_multi_class(y_test, y_pred, class_names, save_path=None): y_test = np.array(y_test) y_pred = np.array(y_pred) if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_test)) y_test = multiclass_predict_1d_to_nd(y_test, np.unique(y_test)) # else: #y_pred = multiclass_predict_nd_to_1d(y_pred) #y_test = multiclass_predict_nd_to_1d(y_test) #y_pred = multiclass_predict_1d_to_nd(y_pred, class_names) #y_test = multiclass_predict_1d_to_nd(y_test, class_names) n_classes = len(class_names) fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = metrics.auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = metrics.roc_curve( y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = metrics.auc(fpr["micro"], tpr["micro"]) lw = 2 # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure(figsize=(15, 10)) plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = itertools.cycle(['aqua', 'darkorange', 'cornflowerblue']) roc_auc_of_classes = [] for i, color in zip(range(n_classes), colors): roc_auc_of_classes.append(roc_auc[i]) plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(class_names[i], roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('AUC - ROC Curve') plt.legend(loc="lower right") if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) plt.savefig(os.path.join(save_path, 'AUC_ROC.png')) plt.show() def plot_prc_auc_multiclass(y_test, y_pred, class_names, save_path=None): y_test = np.array(y_test) y_pred = np.array(y_pred) if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_test)) y_test = multiclass_predict_1d_to_nd(y_test, np.unique(y_test)) # else: #y_pred = multiclass_predict_nd_to_1d(y_pred) #y_test = multiclass_predict_nd_to_1d(y_test) #y_pred = multiclass_predict_1d_to_nd(y_pred, class_names) #y_test = multiclass_predict_1d_to_nd(y_test, class_names) n_classes = len(class_names) precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = metrics.precision_recall_curve(y_test[:, i], y_pred[:, i]) average_precision[i] = metrics.average_precision_score( y_test[:, i], y_pred[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = metrics.precision_recall_curve(y_test.ravel(), y_pred.ravel()) average_precision["micro"] = metrics.average_precision_score(y_test, y_pred, average="micro") # print('Average precision score, micro-averaged over all classes: {0:0.2f}' # .format(average_precision["micro"])) colors = itertools.cycle( ['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(15, 10)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(class_names[i], average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14)) if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) plt.savefig(os.path.join(save_path, 'AUC_PRC.png')) plt.show() def plot_graphics(y_true, y_pred, class_names=None, save_path=None): if(class_names is None): class_names = np.unique(np.array(y_pred)) display(plot_confusion_matrix(y_true, y_pred, visualize=True, normalize=True, class_names=class_names, save_path=save_path)) display(plot_auc_roc_multi_class(y_true, y_pred, class_names=class_names, save_path=save_path)) display(plot_prc_auc_multiclass(y_true, y_pred, class_names=class_names, save_path=save_path))
pyaiutils/__init__.py
from sklearn import metrics import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.colors as colors import itertools import pandas as pd from imblearn.metrics import sensitivity_specificity_support import os def multiclass_predict_1d_to_nd(y_, unique_labels): if(len(np.unique(y_)) != len(unique_labels)): y_ = y_.argmax(axis=1) y_new = [] for y in y_: values = [] for u in unique_labels: if(u == y): values.append(1) else: values.append(0) y_new.append(values) return np.array(y_new) def multiclass_predict_nd_to_1d(y_): return y_.argmax(axis=1) def prc_auc(y_true, y_pred, class_names): if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_pred)) y_true = multiclass_predict_1d_to_nd(y_true, np.unique(y_true)) n_classes = len(class_names) precision = dict() recall = dict() average_precision = [] for i in range(n_classes): precision[i], recall[i], _ = metrics.precision_recall_curve(y_true[:, i], y_pred[:, i]) average_precision.append( metrics.average_precision_score(y_true[:, i], y_pred[:, i])) return average_precision def roc_auc(y_true, y_pred, class_names): if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_pred)) y_true = multiclass_predict_1d_to_nd(y_true, np.unique(y_true)) n_classes = len(class_names) fpr = dict() tpr = dict() roc_auc = [] for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(y_true[:, i], y_pred[:, i]) roc_auc.append(metrics.auc(fpr[i], tpr[i])) return roc_auc def recall(tp, p): return tp/p def specificity(tn, n): return tn/n def accuracy(tn, tp, p, n): return (tn + tp) / (p + n) def precision(tp, fp): return tp/(fp + tp) def f1_score(y_true, y_pred): if(len(np.unique(y_pred)) != len(np.unique(y_true))): y_pred = multiclass_predict_nd_to_1d(y_pred) y_true = multiclass_predict_nd_to_1d(y_true) return metrics.f1_score(y_true, y_pred, average=None) def get_metrics(y_test, y_pred, class_names=None, save_path=None): y_test = np.array(y_test) y_pred = np.array(y_pred) uniques = np.unique(y_test) if(class_names is None): class_names = list(uniques) if(len(y_test.shape) == 1): matrix = metrics.confusion_matrix(y_test, y_pred, labels=uniques) #y_pred = multiclass_predict_1d_to_nd(y_pred, columns) #y_true = multiclass_predict_1d_to_nd(y_true, columns) else: #y_pred = multiclass_predict_nd_to_1d(y_pred) #y_true = multiclass_predict_nd_to_1d(y_true) matrix = metrics.confusion_matrix(multiclass_predict_nd_to_1d( y_test), multiclass_predict_nd_to_1d(y_pred)) TP = np.diag(matrix) FP = matrix.sum(axis=0) - TP FN = matrix.sum(axis=1) - TP TN = matrix.sum() - (FP + FN + TP) P = TP+FN N = TN+FP metrics_ = pd.DataFrame() rows = class_names.copy() rows.append('Média') metrics_['Classes'] = rows _f1 = np.around(f1_score(y_test, y_pred), decimals=2) _f1 = np.append(_f1, np.around(np.mean(_f1), decimals=2)) _roc_auc = np.around(roc_auc(y_test, y_pred, class_names), decimals=2) _roc_auc = np.append(_roc_auc, np.around(np.mean(_roc_auc), decimals=2)) _prc_auc = np.around(prc_auc(y_test, y_pred, class_names), decimals=2) _prc_auc = np.append(_prc_auc, np.around(np.mean(_prc_auc), decimals=2)) _precision = np.around(precision(TP, FP), decimals=2) _precision = np.append(_precision, np.around( np.mean(_precision), decimals=2)) _recall = np.around(recall(TP, P), decimals=2) _recall = np.append(_recall, np.around(np.mean(_recall), decimals=2)) _specificity = np.around(specificity(TN, N), decimals=2) _specificity = np.append(_specificity, np.around( np.mean(_specificity), decimals=2)) _accuracy = np.around(accuracy(TN, TP, P, N), decimals=2) _accuracy = np.append(_accuracy, np.around(np.mean(_accuracy), decimals=2)) metrics_["F1"] = _f1 metrics_["ROC AUC"] = _roc_auc metrics_["PRC AUC"] = _prc_auc metrics_["Precision"] = _precision metrics_["Recall"] = _recall metrics_["Specificity"] = _specificity metrics_["Accuracy"] = _accuracy if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) metrics_.to_csv(os.path.join(save_path, 'metrics.csv'), index=False, header=True) return metrics_ def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap def plot_confusion_matrix(y_test, y_pred, class_names=None, save_path=None, visualize=False, cmap=None, normalize=True, labels=True, title='Matriz de confusão'): y_test = np.array(y_test) y_pred = np.array(y_pred) uniques = np.unique(y_pred) if(len(y_pred.shape) == 1): cm = metrics.confusion_matrix(y_test, y_pred, labels=uniques) else: y_test = multiclass_predict_nd_to_1d(y_test) y_pred = multiclass_predict_nd_to_1d(y_pred) cm = metrics.confusion_matrix(y_test, y_pred) rotulos = [] for index, value in enumerate(uniques): for i, v in enumerate(uniques): rotulos.append('') if cmap is None: cmap = plt.get_cmap('Blues') cmap = truncate_colormap(cmap, 0.35, 0.85) perc_cm = None if normalize: perc_cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # modificação wenisten para poder elevar para percetual o resultado. perc_cm = perc_cm*100 fig = plt.figure(figsize=(6, 6), edgecolor='k') # (8, 6)) plt.imshow(cm, interpolation='nearest', cmap=cmap) #plt.clim(-5, 2.0) plt.xlim(-0.5, len(np.unique(y_test))-0.5) plt.ylim(len(np.unique(y_test))-0.5, -0.5) plt.title(title, fontsize=16) plt.colorbar() #plt.ylim(-0.5, len(class_names) - 0.5) thresh = cm.max() / 1.5 if normalize else cm.max() / 2 if class_names is not None: tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names, fontsize=16, rotation=45, ha='right', rotation_mode="anchor") plt.yticks(tick_marks, class_names, fontsize=16) contador = 0 if labels: for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if normalize: plt.text(j, i, f"{'{:0.2f}%'.format(perc_cm[i, j])}\n({cm[i, j]})", fontsize=16, horizontalalignment='center', verticalalignment='center', color='white' if cm[i, j] > thresh else 'white') contador = contador+1 else: plt.text(j, i, '{:,}'.format(cm[i, j]), fontsize=16, horizontalalignment='center', verticalalignment='center', color='white' if cm[i, j] > thresh else 'white') plt.tight_layout() plt.ylabel('True label', fontsize=16) plt.xlabel('Predicted label', fontsize=16) if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) fig.savefig(os.path.join(save_path, 'confusion_matriz.png'), dpi=180, bbox_inches='tight') if(visualize): plt.show() plt.close() def plot_auc_roc_multi_class(y_test, y_pred, class_names, save_path=None): y_test = np.array(y_test) y_pred = np.array(y_pred) if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_test)) y_test = multiclass_predict_1d_to_nd(y_test, np.unique(y_test)) # else: #y_pred = multiclass_predict_nd_to_1d(y_pred) #y_test = multiclass_predict_nd_to_1d(y_test) #y_pred = multiclass_predict_1d_to_nd(y_pred, class_names) #y_test = multiclass_predict_1d_to_nd(y_test, class_names) n_classes = len(class_names) fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = metrics.auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = metrics.roc_curve( y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = metrics.auc(fpr["micro"], tpr["micro"]) lw = 2 # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure(figsize=(15, 10)) plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = itertools.cycle(['aqua', 'darkorange', 'cornflowerblue']) roc_auc_of_classes = [] for i, color in zip(range(n_classes), colors): roc_auc_of_classes.append(roc_auc[i]) plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(class_names[i], roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('AUC - ROC Curve') plt.legend(loc="lower right") if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) plt.savefig(os.path.join(save_path, 'AUC_ROC.png')) plt.show() def plot_prc_auc_multiclass(y_test, y_pred, class_names, save_path=None): y_test = np.array(y_test) y_pred = np.array(y_pred) if(len(y_pred.shape) == 1): y_pred = multiclass_predict_1d_to_nd(y_pred, np.unique(y_test)) y_test = multiclass_predict_1d_to_nd(y_test, np.unique(y_test)) # else: #y_pred = multiclass_predict_nd_to_1d(y_pred) #y_test = multiclass_predict_nd_to_1d(y_test) #y_pred = multiclass_predict_1d_to_nd(y_pred, class_names) #y_test = multiclass_predict_1d_to_nd(y_test, class_names) n_classes = len(class_names) precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = metrics.precision_recall_curve(y_test[:, i], y_pred[:, i]) average_precision[i] = metrics.average_precision_score( y_test[:, i], y_pred[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = metrics.precision_recall_curve(y_test.ravel(), y_pred.ravel()) average_precision["micro"] = metrics.average_precision_score(y_test, y_pred, average="micro") # print('Average precision score, micro-averaged over all classes: {0:0.2f}' # .format(average_precision["micro"])) colors = itertools.cycle( ['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(15, 10)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(class_names[i], average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14)) if(save_path is not None): if(not os.path.isdir(save_path)): os.makedirs(save_path, exist_ok=True) plt.savefig(os.path.join(save_path, 'AUC_PRC.png')) plt.show() def plot_graphics(y_true, y_pred, class_names=None, save_path=None): if(class_names is None): class_names = np.unique(np.array(y_pred)) display(plot_confusion_matrix(y_true, y_pred, visualize=True, normalize=True, class_names=class_names, save_path=save_path)) display(plot_auc_roc_multi_class(y_true, y_pred, class_names=class_names, save_path=save_path)) display(plot_prc_auc_multiclass(y_true, y_pred, class_names=class_names, save_path=save_path))
0.518546
0.368264
from aliyunsdkcore.request import RpcRequest from aliyunsdkmse.endpoint import endpoint_data class UpdateConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'mse', '2019-05-31', 'UpdateConfig') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_OpenSuperAcl(self): # String return self.get_body_params().get('OpenSuperAcl') def set_OpenSuperAcl(self, OpenSuperAcl): # String self.add_body_params('OpenSuperAcl', OpenSuperAcl) def get_ConfigAuthEnabled(self): # Boolean return self.get_query_params().get('ConfigAuthEnabled') def set_ConfigAuthEnabled(self, ConfigAuthEnabled): # Boolean self.add_query_param('ConfigAuthEnabled', ConfigAuthEnabled) def get_PassWord(self): # String return self.get_query_params().get('PassWord') def set_PassWord(self, PassWord): # String self.add_query_param('PassWord', <PASSWORD>Word) def get_MaxClientCnxns(self): # String return self.get_query_params().get('MaxClientCnxns') def set_MaxClientCnxns(self, MaxClientCnxns): # String self.add_query_param('MaxClientCnxns', MaxClientCnxns) def get_RequestPars(self): # String return self.get_query_params().get('RequestPars') def set_RequestPars(self, RequestPars): # String self.add_query_param('RequestPars', RequestPars) def get_JuteMaxbuffer(self): # String return self.get_query_params().get('JuteMaxbuffer') def set_JuteMaxbuffer(self, JuteMaxbuffer): # String self.add_query_param('JuteMaxbuffer', JuteMaxbuffer) def get_ConfigType(self): # String return self.get_query_params().get('ConfigType') def set_ConfigType(self, ConfigType): # String self.add_query_param('ConfigType', ConfigType) def get_AutopurgeSnapRetainCount(self): # String return self.get_query_params().get('AutopurgeSnapRetainCount') def set_AutopurgeSnapRetainCount(self, AutopurgeSnapRetainCount): # String self.add_query_param('AutopurgeSnapRetainCount', AutopurgeSnapRetainCount) def get_ConfigSecretEnabled(self): # Boolean return self.get_query_params().get('ConfigSecretEnabled') def set_ConfigSecretEnabled(self, ConfigSecretEnabled): # Boolean self.add_query_param('ConfigSecretEnabled', ConfigSecretEnabled) def get_MCPEnabled(self): # Boolean return self.get_query_params().get('MCPEnabled') def set_MCPEnabled(self, MCPEnabled): # Boolean self.add_query_param('MCPEnabled', MCPEnabled) def get_TickTime(self): # String return self.get_query_params().get('TickTime') def set_TickTime(self, TickTime): # String self.add_query_param('TickTime', TickTime) def get_ClusterId(self): # String return self.get_query_params().get('ClusterId') def set_ClusterId(self, ClusterId): # String self.add_query_param('ClusterId', ClusterId) def get_SyncLimit(self): # String return self.get_query_params().get('SyncLimit') def set_SyncLimit(self, SyncLimit): # String self.add_query_param('SyncLimit', SyncLimit) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_AutopurgePurgeInterval(self): # String return self.get_query_params().get('AutopurgePurgeInterval') def set_AutopurgePurgeInterval(self, AutopurgePurgeInterval): # String self.add_query_param('AutopurgePurgeInterval', AutopurgePurgeInterval) def get_InitLimit(self): # String return self.get_query_params().get('InitLimit') def set_InitLimit(self, InitLimit): # String self.add_query_param('InitLimit', InitLimit) def get_UserName(self): # String return self.get_query_params().get('UserName') def set_UserName(self, UserName): # String self.add_query_param('UserName', UserName)
aliyun-python-sdk-mse/aliyunsdkmse/request/v20190531/UpdateConfigRequest.py
from aliyunsdkcore.request import RpcRequest from aliyunsdkmse.endpoint import endpoint_data class UpdateConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'mse', '2019-05-31', 'UpdateConfig') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_OpenSuperAcl(self): # String return self.get_body_params().get('OpenSuperAcl') def set_OpenSuperAcl(self, OpenSuperAcl): # String self.add_body_params('OpenSuperAcl', OpenSuperAcl) def get_ConfigAuthEnabled(self): # Boolean return self.get_query_params().get('ConfigAuthEnabled') def set_ConfigAuthEnabled(self, ConfigAuthEnabled): # Boolean self.add_query_param('ConfigAuthEnabled', ConfigAuthEnabled) def get_PassWord(self): # String return self.get_query_params().get('PassWord') def set_PassWord(self, PassWord): # String self.add_query_param('PassWord', <PASSWORD>Word) def get_MaxClientCnxns(self): # String return self.get_query_params().get('MaxClientCnxns') def set_MaxClientCnxns(self, MaxClientCnxns): # String self.add_query_param('MaxClientCnxns', MaxClientCnxns) def get_RequestPars(self): # String return self.get_query_params().get('RequestPars') def set_RequestPars(self, RequestPars): # String self.add_query_param('RequestPars', RequestPars) def get_JuteMaxbuffer(self): # String return self.get_query_params().get('JuteMaxbuffer') def set_JuteMaxbuffer(self, JuteMaxbuffer): # String self.add_query_param('JuteMaxbuffer', JuteMaxbuffer) def get_ConfigType(self): # String return self.get_query_params().get('ConfigType') def set_ConfigType(self, ConfigType): # String self.add_query_param('ConfigType', ConfigType) def get_AutopurgeSnapRetainCount(self): # String return self.get_query_params().get('AutopurgeSnapRetainCount') def set_AutopurgeSnapRetainCount(self, AutopurgeSnapRetainCount): # String self.add_query_param('AutopurgeSnapRetainCount', AutopurgeSnapRetainCount) def get_ConfigSecretEnabled(self): # Boolean return self.get_query_params().get('ConfigSecretEnabled') def set_ConfigSecretEnabled(self, ConfigSecretEnabled): # Boolean self.add_query_param('ConfigSecretEnabled', ConfigSecretEnabled) def get_MCPEnabled(self): # Boolean return self.get_query_params().get('MCPEnabled') def set_MCPEnabled(self, MCPEnabled): # Boolean self.add_query_param('MCPEnabled', MCPEnabled) def get_TickTime(self): # String return self.get_query_params().get('TickTime') def set_TickTime(self, TickTime): # String self.add_query_param('TickTime', TickTime) def get_ClusterId(self): # String return self.get_query_params().get('ClusterId') def set_ClusterId(self, ClusterId): # String self.add_query_param('ClusterId', ClusterId) def get_SyncLimit(self): # String return self.get_query_params().get('SyncLimit') def set_SyncLimit(self, SyncLimit): # String self.add_query_param('SyncLimit', SyncLimit) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_AutopurgePurgeInterval(self): # String return self.get_query_params().get('AutopurgePurgeInterval') def set_AutopurgePurgeInterval(self, AutopurgePurgeInterval): # String self.add_query_param('AutopurgePurgeInterval', AutopurgePurgeInterval) def get_InitLimit(self): # String return self.get_query_params().get('InitLimit') def set_InitLimit(self, InitLimit): # String self.add_query_param('InitLimit', InitLimit) def get_UserName(self): # String return self.get_query_params().get('UserName') def set_UserName(self, UserName): # String self.add_query_param('UserName', UserName)
0.490724
0.050588
from pathlib import Path from pymongo import MongoClient import os import csv client = MongoClient("localhost", 27017) cursor = client["dvdrental"]["customer"].aggregate( [ { u"$project": { u"_id": 0, u"customer": u"$$ROOT" } }, { u"$lookup": { u"localField": u"customer.customer_id", u"from": u"rental", u"foreignField": u"customer_id", u"as": u"rental" } }, { u"$unwind": { u"path": u"$rental", u"preserveNullAndEmptyArrays": False } }, { u"$lookup": { u"localField": u"rental.inventory_id", u"from": u"inventory", u"foreignField": u"inventory_id", u"as": u"inventory" } }, { u"$unwind": { u"path": u"$inventory", u"preserveNullAndEmptyArrays": False } }, { u"$lookup": { u"localField": u"inventory.film_id", u"from": u"film", u"foreignField": u"film_id", u"as": u"film" } }, { u"$unwind": { u"path": u"$film", u"preserveNullAndEmptyArrays": False } }, { u"$group": { u"_id": { u"film\u1390film_id": u"$film.film_id", u"film\u1390title": u"$film.title", u"customer\u1390customer_id": u"$customer.customer_id", u"customer\u1390last_name": u"$customer.last_name", u"customer\u1390first_name": u"$customer.first_name" } } }, { u"$project": { u"customer_id": u"$_id.customer\u1390customer_id", u"first_name": u"$_id.customer\u1390first_name", u"last_name": u"$_id.customer\u1390last_name", u"film_id": u"$_id.film\u1390film_id", u"film": u"$_id.film\u1390title", u"_id": 0 } }, { u"$sort": { "customer_id": 1 } } ], allowDiskUse=True ) rentals = [] for rental in cursor: rentals.append(rental) client.close() curdir = os.path.dirname(os.path.dirname( os.path.abspath(__file__))) + "\\results" Path(curdir).mkdir(exist_ok=True) target = int(input("Target customer's id: ")) customers = {} for rental in rentals: id = rental["customer_id"] if id not in customers: customers[id] = { "name": rental["first_name"] + " " + rental["last_name"], "films": {} } customers[id]["films"][rental["film_id"]] = rental["film"] target_films = customers[target]["films"].keys() result_films = {} CD = 1 / len(customers) KD = 1 / len(target_films) for _, customer in customers.items(): K = KD * sum(f in target_films for f in customer["films"]) for film in [f for f in customer["films"] if f not in target_films]: if film not in result_films: result_films[film] = { "title": customer["films"][film], "C": 0 } result_films[film]["C"] += CD * K with open(curdir + "\\4.csv", "w") as file: sheet = csv.writer(file, lineterminator='\n') sheet.writerow(["Recommendations for", customers[target]['name']]) for id in sorted(result_films, key=lambda f: result_films[f]["C"], reverse=True): film = result_films[id] sheet.writerow([film["title"], film["C"]])
1/queries/4.py
from pathlib import Path from pymongo import MongoClient import os import csv client = MongoClient("localhost", 27017) cursor = client["dvdrental"]["customer"].aggregate( [ { u"$project": { u"_id": 0, u"customer": u"$$ROOT" } }, { u"$lookup": { u"localField": u"customer.customer_id", u"from": u"rental", u"foreignField": u"customer_id", u"as": u"rental" } }, { u"$unwind": { u"path": u"$rental", u"preserveNullAndEmptyArrays": False } }, { u"$lookup": { u"localField": u"rental.inventory_id", u"from": u"inventory", u"foreignField": u"inventory_id", u"as": u"inventory" } }, { u"$unwind": { u"path": u"$inventory", u"preserveNullAndEmptyArrays": False } }, { u"$lookup": { u"localField": u"inventory.film_id", u"from": u"film", u"foreignField": u"film_id", u"as": u"film" } }, { u"$unwind": { u"path": u"$film", u"preserveNullAndEmptyArrays": False } }, { u"$group": { u"_id": { u"film\u1390film_id": u"$film.film_id", u"film\u1390title": u"$film.title", u"customer\u1390customer_id": u"$customer.customer_id", u"customer\u1390last_name": u"$customer.last_name", u"customer\u1390first_name": u"$customer.first_name" } } }, { u"$project": { u"customer_id": u"$_id.customer\u1390customer_id", u"first_name": u"$_id.customer\u1390first_name", u"last_name": u"$_id.customer\u1390last_name", u"film_id": u"$_id.film\u1390film_id", u"film": u"$_id.film\u1390title", u"_id": 0 } }, { u"$sort": { "customer_id": 1 } } ], allowDiskUse=True ) rentals = [] for rental in cursor: rentals.append(rental) client.close() curdir = os.path.dirname(os.path.dirname( os.path.abspath(__file__))) + "\\results" Path(curdir).mkdir(exist_ok=True) target = int(input("Target customer's id: ")) customers = {} for rental in rentals: id = rental["customer_id"] if id not in customers: customers[id] = { "name": rental["first_name"] + " " + rental["last_name"], "films": {} } customers[id]["films"][rental["film_id"]] = rental["film"] target_films = customers[target]["films"].keys() result_films = {} CD = 1 / len(customers) KD = 1 / len(target_films) for _, customer in customers.items(): K = KD * sum(f in target_films for f in customer["films"]) for film in [f for f in customer["films"] if f not in target_films]: if film not in result_films: result_films[film] = { "title": customer["films"][film], "C": 0 } result_films[film]["C"] += CD * K with open(curdir + "\\4.csv", "w") as file: sheet = csv.writer(file, lineterminator='\n') sheet.writerow(["Recommendations for", customers[target]['name']]) for id in sorted(result_films, key=lambda f: result_films[f]["C"], reverse=True): film = result_films[id] sheet.writerow([film["title"], film["C"]])
0.282394
0.251429
import json import os import pickle import warnings from operator import itemgetter from pathlib import Path from timeit import default_timer as timer import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import seaborn as sns from joblib import Parallel, delayed from joblib.parallel import Parallel, delayed from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.cluster.hierarchy import dendrogram from sklearn.metrics import adjusted_rand_score, silhouette_score from spherecluster import SphericalKMeans from graspy.cluster import AutoGMMCluster, GaussianCluster from graspy.embed import AdjacencySpectralEmbed, OmnibusEmbed from graspy.models import DCSBMEstimator, SBMEstimator from graspy.plot import heatmap, pairplot from graspy.utils import binarize, cartprod, get_lcc, pass_to_ranks from src.cluster import DivisiveCluster from src.data import load_everything from src.embed import lse from src.hierarchy import signal_flow from src.io import savefig from src.utils import export_skeleton_json from src.visualization import clustergram, palplot, sankey, stacked_barplot warnings.simplefilter("ignore", category=FutureWarning) FNAME = os.path.basename(__file__)[:-3] print(FNAME) # %% [markdown] # # Parameters BRAIN_VERSION = "2019-12-18" SAVEFIGS = True SAVESKELS = True SAVEOBJS = True PTR = True if PTR: ptr_type = "PTR" else: ptr_type = "Raw" ONLY_RIGHT = False if ONLY_RIGHT: brain_type = "Right Hemisphere" else: brain_type = "Full Brain" GRAPH_TYPE = "Gad" if GRAPH_TYPE == "Gad": graph_type = r"A $\to$ D" N_INIT = 200 CLUSTER_METHOD = "graspy-gmm" if CLUSTER_METHOD == "graspy-gmm": cluster_type = "GraspyGMM" elif CLUSTER_METHOD == "auto-gmm": cluster_type = "AutoGMM" EMBED = "LSE" if EMBED == "LSE": embed_type = "LSE" N_COMPONENTS = None def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=SAVEFIGS, **kws) def stashskel(name, ids, colors, palette=None, **kws): if SAVESKELS: return export_skeleton_json( name, ids, colors, palette=palette, foldername=FNAME, **kws ) def stashobj(obj, name, **kws): foldername = FNAME subfoldername = "objs" pathname = "./maggot_models/notebooks/outs" if SAVEOBJS: path = Path(pathname) if foldername is not None: path = path / foldername if not os.path.isdir(path): os.mkdir(path) if subfoldername is not None: path = path / subfoldername if not os.path.isdir(path): os.mkdir(path) with open(path / str(name + ".pickle"), "wb") as f: pickle.dump(obj, f) def preprocess_graph(adj, class_labels, skeleton_labels): # sort by number of synapses degrees = adj.sum(axis=0) + adj.sum(axis=1) sort_inds = np.argsort(degrees)[::-1] adj = adj[np.ix_(sort_inds, sort_inds)] class_labels = class_labels[sort_inds] skeleton_labels = skeleton_labels[sort_inds] # remove disconnected nodes adj, lcc_inds = get_lcc(adj, return_inds=True) class_labels = class_labels[lcc_inds] skeleton_labels = skeleton_labels[lcc_inds] # remove pendants degrees = np.count_nonzero(adj, axis=0) + np.count_nonzero(adj, axis=1) not_pendant_mask = degrees != 1 not_pendant_inds = np.array(range(len(degrees)))[not_pendant_mask] adj = adj[np.ix_(not_pendant_inds, not_pendant_inds)] class_labels = class_labels[not_pendant_inds] skeleton_labels = skeleton_labels[not_pendant_inds] return adj, class_labels, skeleton_labels def bartreeplot( dc, class_labels, show_props=True, text_pad=0.01, inverse_memberships=True, figsize=(24, 23), title=None, ): # gather necessary info from model linkage, labels = dc.build_linkage(bic_distance=False) # hackily built like scipy's pred_labels = dc.predict(latent) uni_class_labels, uni_class_counts = np.unique(class_labels, return_counts=True) uni_pred_labels, uni_pred_counts = np.unique(pred_labels, return_counts=True) # set up the figure fig = plt.figure(figsize=figsize) r = fig.canvas.get_renderer() gs0 = plt.GridSpec(1, 2, figure=fig, width_ratios=[0.2, 0.8], wspace=0) gs1 = plt.GridSpec(1, 1, figure=fig, width_ratios=[0.2], wspace=0.1) # title the plot plt.suptitle(title, y=0.92, fontsize=30, x=0.5) # plot the dendrogram ax0 = fig.add_subplot(gs0[0]) dendr_data = dendrogram( linkage, orientation="left", labels=labels, color_threshold=0, above_threshold_color="k", ax=ax0, ) ax0.axis("off") ax0.set_title("Dendrogram", loc="left") # get the ticks from the dendrogram to apply to the bar plot ticks = ax0.get_yticks() # plot the barplot (and ticks to the right of them) leaf_names = np.array(dendr_data["ivl"])[::-1] ax1 = fig.add_subplot(gs0[1], sharey=ax0) ax1, prop_data, uni_class, subcategory_colors = stacked_barplot( pred_labels, class_labels, label_pos=ticks, category_order=leaf_names, ax=ax1, bar_height=5, horizontal_pad=0, palette="tab20", norm_bar_width=show_props, return_data=True, ) ax1.set_frame_on(False) ax1.yaxis.tick_right() if show_props: ax1_title = "Cluster proportion of known cell types" else: ax1_title = "Cluster counts by known cell types" ax1_title = ax1.set_title(ax1_title, loc="left") transformer = ax1.transData.inverted() bbox = ax1_title.get_window_extent(renderer=r) bbox_points = bbox.get_points() out_points = transformer.transform(bbox_points) xlim = ax1.get_xlim() ax1.text( xlim[1], out_points[0][1], "Cluster name (size)", verticalalignment="bottom" ) # plot the cluster compositions as text to the right of the bars gs0.update(right=0.4) ax2 = fig.add_subplot(gs1[0], sharey=ax0) ax2.axis("off") gs1.update(left=0.48) text_kws = { "verticalalignment": "center", "horizontalalignment": "left", "fontsize": 12, "alpha": 1, "weight": "bold", } ax2.set_xlim((0, 1)) transformer = ax2.transData.inverted() for i, y in enumerate(ticks): x = 0 for j, (colname, color) in enumerate(zip(uni_class, subcategory_colors)): prop = prop_data[i, j] if prop > 0: if inverse_memberships: if show_props: # find the size of the cluster, multiply by prop to get count # get size of known cluster, divide to get proportion cluster_name = leaf_names[i] ind = np.where(uni_pred_labels == cluster_name)[0][0] cluster_size = uni_pred_counts[ind] prop = cluster_size * prop prop = prop / uni_class_counts[j] name = f"{colname} ({prop:3.0%})" else: if show_props: name = f"{colname} ({prop:3.0%})" else: name = f"{colname} ({prop})" text = ax2.text(x, y, name, color=color, **text_kws) bbox = text.get_window_extent(renderer=r) bbox_points = bbox.get_points() out_points = transformer.transform(bbox_points) width = out_points[1][0] - out_points[0][0] x += width + text_pad # deal with title for the last plot column based on options if inverse_memberships: ax2_title = "Known cell type (percentage of cell type in cluster)" else: if show_props: ax2_title = "Known cell type (percentage of cluster)" else: ax2_title = "Known cell type (count in cluster)" ax2.set_title(ax2_title, loc="left") # Set up plotting constants plt.style.use("seaborn-white") sns.set_palette("deep") sns.set_context("talk", font_scale=0.8) # %% [markdown] # # Load the data from graspy.simulations import er_np, sbm def n_to_labels(n): """Converts n vector (sbm input) to an array of labels Parameters ---------- n : list or array length K vector indicating num vertices in each block Returns ------- np.array shape (n_verts), indicator of what block each vertex is in """ n = np.array(n) n_cumsum = n.cumsum() labels = np.zeros(n.sum(), dtype=np.int64) for i in range(1, len(n)): labels[n_cumsum[i - 1] : n_cumsum[i]] = i return labels B1 = np.array([[0.3, 0.25, 0.25], [0.25, 0.3, 0.25], [0.25, 0.25, 0.7]]) B2 = np.array([[0.4, 0.25, 0.25], [0.25, 0.4, 0.25], [0.25, 0.25, 0.4]]) B3 = np.array([[0.25, 0.2, 0.2], [0.2, 0.8, 0.2], [0.2, 0.2, 0.25]]) n = np.array([300, 600, 600, 600, 700, 600, 300, 400]).astype(float) n = n.astype(int) block_labels = n_to_labels(n) n_verts = np.sum(n) global_p = 0.01 prop = np.array( [ [0.4, 0.2, 0.4], [0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [0.4, 0.2, 0.4], [0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [0.4, 0.2, 0.4], ] ) n_blocks = len(prop) subblock_labels = block_labels.copy() for i, (n_in_block, block_prop) in enumerate(zip(n, prop)): block_n = [] for p in block_prop: num = int(p * n_in_block) block_n.append(num) temp_labels = n_to_labels(block_n) + n_blocks + i * 3 subblock_labels[block_labels == i] = temp_labels B_list = [B1, B2, B3, B1, B3, B3, B2, B1] # B_list = [B1, B2, B1, B1, B3, B3, B1, B2] graph = er_np(n_verts, global_p) for i, n_sub_verts in enumerate(n): p = prop[i, :] n_vec = n_sub_verts * p n_vec = n_vec.astype(int) B = B_list[i] subgraph = sbm(n_vec, B) inds = block_labels == i graph[np.ix_(inds, inds)] = subgraph heatmap( graph, figsize=(15, 15), cbar=False, inner_hier_labels=subblock_labels, outer_hier_labels=block_labels, ) from graspy.embed import AdjacencySpectralEmbed, LaplacianSpectralEmbed from graspy.plot import pairplot ase = LaplacianSpectralEmbed(form="R-DAD") latent = ase.fit_transform(graph) pairplot(latent) norm_latent = latent.copy() norm_latent /= np.linalg.norm(latent, axis=1)[:, np.newaxis] pairplot(norm_latent, labels=block_labels) # %% [markdown] # # Embedding adj = graph n_verts = adj.shape[0] class_labels = block_labels # %% [markdown] # # Fitting divisive cluster model start = timer() dc = DivisiveCluster(n_init=N_INIT, cluster_method=CLUSTER_METHOD) dc.fit(latent) end = end = timer() print() print(f"DivisiveCluster took {(end - start)/60.0} minutes to fit") print() dc.print_tree(print_val="bic_ratio") # %% [markdown] # # Plotting divisive cluster hierarchy results title = ( f"Divisive hierarchical clustering, {cluster_type}, {embed_type}, {ptr_type}," + f" {brain_type}, {graph_type}" ) class_labels = subblock_labels name_base = f"-{cluster_type}-{embed_type}-{ptr_type}-{brain_type}-{graph_type}" bartreeplot(dc, class_labels, show_props=True, inverse_memberships=False, title=title) stashfig("bartree-props" + name_base) bartreeplot(dc, class_labels, show_props=False, inverse_memberships=False, title=title) stashfig("bartree-counts" + name_base) bartreeplot(dc, class_labels, show_props=True, inverse_memberships=True, title=title) stashfig("bartree-props-inv" + name_base) # %% [markdown] # # Fitting divisive cluster model CLUSTER_METHOD = "auto-gmm" cluster_type = "AutoGMM" start = timer() dc = DivisiveCluster(n_init=N_INIT, cluster_method=CLUSTER_METHOD) dc.fit(latent) end = end = timer() print() print(f"DivisiveCluster took {(end - start)/60.0} minutes to fit") print() dc.print_tree(print_val="bic_ratio") # %% [markdown] # # Plotting divisive cluster hierarchy results title = ( f"Divisive hierarchical clustering, {cluster_type}, {embed_type}, {ptr_type}," + f" {brain_type}, {graph_type}" ) name_base = f"-{cluster_type}-{embed_type}-{GRAPH_TYPE}" bartreeplot(dc, class_labels, show_props=True, inverse_memberships=False, title=title) stashfig("bartree-props" + name_base) bartreeplot(dc, class_labels, show_props=False, inverse_memberships=False, title=title) stashfig("bartree-counts" + name_base) bartreeplot(dc, class_labels, show_props=True, inverse_memberships=True, title=title) stashfig("bartree-props-inv" + name_base)
notebooks/49.0-BDP-divisive-clust-hsbm.py
import json import os import pickle import warnings from operator import itemgetter from pathlib import Path from timeit import default_timer as timer import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import seaborn as sns from joblib import Parallel, delayed from joblib.parallel import Parallel, delayed from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.cluster.hierarchy import dendrogram from sklearn.metrics import adjusted_rand_score, silhouette_score from spherecluster import SphericalKMeans from graspy.cluster import AutoGMMCluster, GaussianCluster from graspy.embed import AdjacencySpectralEmbed, OmnibusEmbed from graspy.models import DCSBMEstimator, SBMEstimator from graspy.plot import heatmap, pairplot from graspy.utils import binarize, cartprod, get_lcc, pass_to_ranks from src.cluster import DivisiveCluster from src.data import load_everything from src.embed import lse from src.hierarchy import signal_flow from src.io import savefig from src.utils import export_skeleton_json from src.visualization import clustergram, palplot, sankey, stacked_barplot warnings.simplefilter("ignore", category=FutureWarning) FNAME = os.path.basename(__file__)[:-3] print(FNAME) # %% [markdown] # # Parameters BRAIN_VERSION = "2019-12-18" SAVEFIGS = True SAVESKELS = True SAVEOBJS = True PTR = True if PTR: ptr_type = "PTR" else: ptr_type = "Raw" ONLY_RIGHT = False if ONLY_RIGHT: brain_type = "Right Hemisphere" else: brain_type = "Full Brain" GRAPH_TYPE = "Gad" if GRAPH_TYPE == "Gad": graph_type = r"A $\to$ D" N_INIT = 200 CLUSTER_METHOD = "graspy-gmm" if CLUSTER_METHOD == "graspy-gmm": cluster_type = "GraspyGMM" elif CLUSTER_METHOD == "auto-gmm": cluster_type = "AutoGMM" EMBED = "LSE" if EMBED == "LSE": embed_type = "LSE" N_COMPONENTS = None def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=SAVEFIGS, **kws) def stashskel(name, ids, colors, palette=None, **kws): if SAVESKELS: return export_skeleton_json( name, ids, colors, palette=palette, foldername=FNAME, **kws ) def stashobj(obj, name, **kws): foldername = FNAME subfoldername = "objs" pathname = "./maggot_models/notebooks/outs" if SAVEOBJS: path = Path(pathname) if foldername is not None: path = path / foldername if not os.path.isdir(path): os.mkdir(path) if subfoldername is not None: path = path / subfoldername if not os.path.isdir(path): os.mkdir(path) with open(path / str(name + ".pickle"), "wb") as f: pickle.dump(obj, f) def preprocess_graph(adj, class_labels, skeleton_labels): # sort by number of synapses degrees = adj.sum(axis=0) + adj.sum(axis=1) sort_inds = np.argsort(degrees)[::-1] adj = adj[np.ix_(sort_inds, sort_inds)] class_labels = class_labels[sort_inds] skeleton_labels = skeleton_labels[sort_inds] # remove disconnected nodes adj, lcc_inds = get_lcc(adj, return_inds=True) class_labels = class_labels[lcc_inds] skeleton_labels = skeleton_labels[lcc_inds] # remove pendants degrees = np.count_nonzero(adj, axis=0) + np.count_nonzero(adj, axis=1) not_pendant_mask = degrees != 1 not_pendant_inds = np.array(range(len(degrees)))[not_pendant_mask] adj = adj[np.ix_(not_pendant_inds, not_pendant_inds)] class_labels = class_labels[not_pendant_inds] skeleton_labels = skeleton_labels[not_pendant_inds] return adj, class_labels, skeleton_labels def bartreeplot( dc, class_labels, show_props=True, text_pad=0.01, inverse_memberships=True, figsize=(24, 23), title=None, ): # gather necessary info from model linkage, labels = dc.build_linkage(bic_distance=False) # hackily built like scipy's pred_labels = dc.predict(latent) uni_class_labels, uni_class_counts = np.unique(class_labels, return_counts=True) uni_pred_labels, uni_pred_counts = np.unique(pred_labels, return_counts=True) # set up the figure fig = plt.figure(figsize=figsize) r = fig.canvas.get_renderer() gs0 = plt.GridSpec(1, 2, figure=fig, width_ratios=[0.2, 0.8], wspace=0) gs1 = plt.GridSpec(1, 1, figure=fig, width_ratios=[0.2], wspace=0.1) # title the plot plt.suptitle(title, y=0.92, fontsize=30, x=0.5) # plot the dendrogram ax0 = fig.add_subplot(gs0[0]) dendr_data = dendrogram( linkage, orientation="left", labels=labels, color_threshold=0, above_threshold_color="k", ax=ax0, ) ax0.axis("off") ax0.set_title("Dendrogram", loc="left") # get the ticks from the dendrogram to apply to the bar plot ticks = ax0.get_yticks() # plot the barplot (and ticks to the right of them) leaf_names = np.array(dendr_data["ivl"])[::-1] ax1 = fig.add_subplot(gs0[1], sharey=ax0) ax1, prop_data, uni_class, subcategory_colors = stacked_barplot( pred_labels, class_labels, label_pos=ticks, category_order=leaf_names, ax=ax1, bar_height=5, horizontal_pad=0, palette="tab20", norm_bar_width=show_props, return_data=True, ) ax1.set_frame_on(False) ax1.yaxis.tick_right() if show_props: ax1_title = "Cluster proportion of known cell types" else: ax1_title = "Cluster counts by known cell types" ax1_title = ax1.set_title(ax1_title, loc="left") transformer = ax1.transData.inverted() bbox = ax1_title.get_window_extent(renderer=r) bbox_points = bbox.get_points() out_points = transformer.transform(bbox_points) xlim = ax1.get_xlim() ax1.text( xlim[1], out_points[0][1], "Cluster name (size)", verticalalignment="bottom" ) # plot the cluster compositions as text to the right of the bars gs0.update(right=0.4) ax2 = fig.add_subplot(gs1[0], sharey=ax0) ax2.axis("off") gs1.update(left=0.48) text_kws = { "verticalalignment": "center", "horizontalalignment": "left", "fontsize": 12, "alpha": 1, "weight": "bold", } ax2.set_xlim((0, 1)) transformer = ax2.transData.inverted() for i, y in enumerate(ticks): x = 0 for j, (colname, color) in enumerate(zip(uni_class, subcategory_colors)): prop = prop_data[i, j] if prop > 0: if inverse_memberships: if show_props: # find the size of the cluster, multiply by prop to get count # get size of known cluster, divide to get proportion cluster_name = leaf_names[i] ind = np.where(uni_pred_labels == cluster_name)[0][0] cluster_size = uni_pred_counts[ind] prop = cluster_size * prop prop = prop / uni_class_counts[j] name = f"{colname} ({prop:3.0%})" else: if show_props: name = f"{colname} ({prop:3.0%})" else: name = f"{colname} ({prop})" text = ax2.text(x, y, name, color=color, **text_kws) bbox = text.get_window_extent(renderer=r) bbox_points = bbox.get_points() out_points = transformer.transform(bbox_points) width = out_points[1][0] - out_points[0][0] x += width + text_pad # deal with title for the last plot column based on options if inverse_memberships: ax2_title = "Known cell type (percentage of cell type in cluster)" else: if show_props: ax2_title = "Known cell type (percentage of cluster)" else: ax2_title = "Known cell type (count in cluster)" ax2.set_title(ax2_title, loc="left") # Set up plotting constants plt.style.use("seaborn-white") sns.set_palette("deep") sns.set_context("talk", font_scale=0.8) # %% [markdown] # # Load the data from graspy.simulations import er_np, sbm def n_to_labels(n): """Converts n vector (sbm input) to an array of labels Parameters ---------- n : list or array length K vector indicating num vertices in each block Returns ------- np.array shape (n_verts), indicator of what block each vertex is in """ n = np.array(n) n_cumsum = n.cumsum() labels = np.zeros(n.sum(), dtype=np.int64) for i in range(1, len(n)): labels[n_cumsum[i - 1] : n_cumsum[i]] = i return labels B1 = np.array([[0.3, 0.25, 0.25], [0.25, 0.3, 0.25], [0.25, 0.25, 0.7]]) B2 = np.array([[0.4, 0.25, 0.25], [0.25, 0.4, 0.25], [0.25, 0.25, 0.4]]) B3 = np.array([[0.25, 0.2, 0.2], [0.2, 0.8, 0.2], [0.2, 0.2, 0.25]]) n = np.array([300, 600, 600, 600, 700, 600, 300, 400]).astype(float) n = n.astype(int) block_labels = n_to_labels(n) n_verts = np.sum(n) global_p = 0.01 prop = np.array( [ [0.4, 0.2, 0.4], [0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [0.4, 0.2, 0.4], [0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [0.4, 0.2, 0.4], ] ) n_blocks = len(prop) subblock_labels = block_labels.copy() for i, (n_in_block, block_prop) in enumerate(zip(n, prop)): block_n = [] for p in block_prop: num = int(p * n_in_block) block_n.append(num) temp_labels = n_to_labels(block_n) + n_blocks + i * 3 subblock_labels[block_labels == i] = temp_labels B_list = [B1, B2, B3, B1, B3, B3, B2, B1] # B_list = [B1, B2, B1, B1, B3, B3, B1, B2] graph = er_np(n_verts, global_p) for i, n_sub_verts in enumerate(n): p = prop[i, :] n_vec = n_sub_verts * p n_vec = n_vec.astype(int) B = B_list[i] subgraph = sbm(n_vec, B) inds = block_labels == i graph[np.ix_(inds, inds)] = subgraph heatmap( graph, figsize=(15, 15), cbar=False, inner_hier_labels=subblock_labels, outer_hier_labels=block_labels, ) from graspy.embed import AdjacencySpectralEmbed, LaplacianSpectralEmbed from graspy.plot import pairplot ase = LaplacianSpectralEmbed(form="R-DAD") latent = ase.fit_transform(graph) pairplot(latent) norm_latent = latent.copy() norm_latent /= np.linalg.norm(latent, axis=1)[:, np.newaxis] pairplot(norm_latent, labels=block_labels) # %% [markdown] # # Embedding adj = graph n_verts = adj.shape[0] class_labels = block_labels # %% [markdown] # # Fitting divisive cluster model start = timer() dc = DivisiveCluster(n_init=N_INIT, cluster_method=CLUSTER_METHOD) dc.fit(latent) end = end = timer() print() print(f"DivisiveCluster took {(end - start)/60.0} minutes to fit") print() dc.print_tree(print_val="bic_ratio") # %% [markdown] # # Plotting divisive cluster hierarchy results title = ( f"Divisive hierarchical clustering, {cluster_type}, {embed_type}, {ptr_type}," + f" {brain_type}, {graph_type}" ) class_labels = subblock_labels name_base = f"-{cluster_type}-{embed_type}-{ptr_type}-{brain_type}-{graph_type}" bartreeplot(dc, class_labels, show_props=True, inverse_memberships=False, title=title) stashfig("bartree-props" + name_base) bartreeplot(dc, class_labels, show_props=False, inverse_memberships=False, title=title) stashfig("bartree-counts" + name_base) bartreeplot(dc, class_labels, show_props=True, inverse_memberships=True, title=title) stashfig("bartree-props-inv" + name_base) # %% [markdown] # # Fitting divisive cluster model CLUSTER_METHOD = "auto-gmm" cluster_type = "AutoGMM" start = timer() dc = DivisiveCluster(n_init=N_INIT, cluster_method=CLUSTER_METHOD) dc.fit(latent) end = end = timer() print() print(f"DivisiveCluster took {(end - start)/60.0} minutes to fit") print() dc.print_tree(print_val="bic_ratio") # %% [markdown] # # Plotting divisive cluster hierarchy results title = ( f"Divisive hierarchical clustering, {cluster_type}, {embed_type}, {ptr_type}," + f" {brain_type}, {graph_type}" ) name_base = f"-{cluster_type}-{embed_type}-{GRAPH_TYPE}" bartreeplot(dc, class_labels, show_props=True, inverse_memberships=False, title=title) stashfig("bartree-props" + name_base) bartreeplot(dc, class_labels, show_props=False, inverse_memberships=False, title=title) stashfig("bartree-counts" + name_base) bartreeplot(dc, class_labels, show_props=True, inverse_memberships=True, title=title) stashfig("bartree-props-inv" + name_base)
0.532182
0.26944
import clr import clr # Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons # to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE # FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from System import * from System.Collections.Generic import * from System.Collections.ObjectModel import * from System.Collections.Specialized import * from System.ComponentModel import * from System.Linq import * from System.Text.RegularExpressions import * from System.Threading import * from System.Windows import * from System.Windows.Controls import * from System.Windows.Input import * from System.Windows.Media import * from System.Windows.Threading import * from ICSharpCode.ILSpy.TreeNodes import * from ICSharpCode.NRefactory.CSharp import * from ICSharpCode.NRefactory.Utils import * from Mono.Cecil import * from Mono.Cecil.Cil import * class SearchPane(UserControl, IPane): """ <summary> Search pane </summary> """ def get_Instance(self): if self._instance == None: App.Current.VerifyAccess() self._instance = SearchPane() return self._instance Instance = property(fget=get_Instance) def __init__(self): self._SearchTermProperty = DependencyProperty.Register("SearchTerm", clr.GetClrType(str), clr.GetClrType(SearchPane), FrameworkPropertyMetadata(str.Empty, OnSearchTermChanged)) self.InitializeComponent() searchModeComboBox.Items.Add((Image = Images.Library, Name = "Types and Members")) searchModeComboBox.Items.Add((Image = Images.Class, Name = "Type")) searchModeComboBox.Items.Add((Image = Images.Property, Name = "Member")) searchModeComboBox.Items.Add((Image = Images.Method, Name = "Method")) searchModeComboBox.Items.Add((Image = Images.Field, Name = "Field")) searchModeComboBox.Items.Add((Image = Images.Property, Name = "Property")) searchModeComboBox.Items.Add((Image = Images.Event, Name = "Event")) searchModeComboBox.Items.Add((Image = Images.Literal, Name = "Constant")) searchModeComboBox.SelectedIndex = SearchMode.TypeAndMember ContextMenuProvider.Add(listBox) MainWindow.Instance.CurrentAssemblyListChanged += self.MainWindow_Instance_CurrentAssemblyListChanged def MainWindow_Instance_CurrentAssemblyListChanged(self, sender, e): if IsVisible: self.StartSearch(self._SearchTerm) else: self.StartSearch(None) self._runSearchOnNextShow = True def Show(self): if not IsVisible: MainWindow.Instance.ShowInTopPane("Search", self) if self._runSearchOnNextShow: self._runSearchOnNextShow = False self.StartSearch(self._SearchTerm) Dispatcher.BeginInvoke(DispatcherPriority.Background, Action()) def get_SearchTerm(self): return self.GetValue(self._SearchTermProperty) def set_SearchTerm(self, value): self.SetValue(self._SearchTermProperty, value) SearchTerm = property(fget=get_SearchTerm, fset=set_SearchTerm) def OnSearchTermChanged(o, e): (o).StartSearch(e.NewValue) OnSearchTermChanged = staticmethod(OnSearchTermChanged) def SearchModeComboBox_SelectionChanged(self, sender, e): self.StartSearch(self.SearchTerm) def StartSearch(self, searchTerm): if self._currentSearch != None: self._currentSearch.Cancel() if str.IsNullOrEmpty(searchTerm): self._currentSearch = None listBox.ItemsSource = None else: mainWindow = MainWindow.Instance self._currentSearch = RunningSearch(mainWindow.CurrentAssemblyList.GetAssemblies(), searchTerm, searchModeComboBox.SelectedIndex, mainWindow.CurrentLanguage) listBox.ItemsSource = self._currentSearch.Results Thread(self._currentSearch.Run).Start() def Closed(self): self.SearchTerm = str.Empty def ListBox_MouseDoubleClick(self, sender, e): self.JumpToSelectedItem() e.Handled = True def ListBox_KeyDown(self, sender, e): if e.Key == Key.Return: e.Handled = True self.JumpToSelectedItem() def JumpToSelectedItem(self): result = listBox.SelectedItem if result != None: MainWindow.Instance.JumpToReference(result.Member) def OnKeyDown(self, e): self.OnKeyDown(e) if e.Key == Key.T and e.KeyboardDevice.Modifiers == ModifierKeys.Control: searchModeComboBox.SelectedIndex = SearchMode.Type e.Handled = True elif e.Key == Key.M and e.KeyboardDevice.Modifiers == ModifierKeys.Control: searchModeComboBox.SelectedIndex = SearchMode.Member e.Handled = True elif e.Key == Key.S and e.KeyboardDevice.Modifiers == ModifierKeys.Control: searchModeComboBox.SelectedIndex = SearchMode.Literal e.Handled = True def SearchBox_PreviewKeyDown(self, sender, e): if e.Key == Key.Down and listBox.HasItems: e.Handled = True listBox.MoveFocus(TraversalRequest(FocusNavigationDirection.First)) listBox.SelectedIndex = 0 class RunningSearch(object): def __init__(self, assemblies, searchTerm, searchMode, language): self._cts = CancellationTokenSource() self._Results = ObservableCollection[SearchResult]() self._dispatcher = Dispatcher.CurrentDispatcher self._assemblies = assemblies self._searchTerm = searchTerm.Split(Array[Char]((' ')), StringSplitOptions.RemoveEmptyEntries) self._language = language self._searchMode = searchMode self._Results.Add(SearchResult(Name = "Searching...")) def Cancel(self): self._cts.Cancel() def Run(self): try: searcher = self.GetSearchStrategy(self._searchMode, self._searchTerm) enumerator = assemblies.GetEnumerator() while enumerator.MoveNext(): loadedAssembly = enumerator.Current module = loadedAssembly.ModuleDefinition if module == None: continue cancellationToken = self._cts.Token enumerator = module.Types.GetEnumerator() while enumerator.MoveNext(): type = enumerator.Current cancellationToken.ThrowIfCancellationRequested() searcher.Search(type, self._language, AddResult) except OperationCanceledException, : finally: # ignore cancellation # remove the 'Searching...' entry self._dispatcher.BeginInvoke(DispatcherPriority.Normal, Action()) def AddResult(self, result): if self._resultCount += 1 == 1000: result = SearchResult(Name = "Search aborted, more than 1000 results found.") self._cts.Cancel() self._dispatcher.BeginInvoke(DispatcherPriority.Normal, Action()) self._cts.Token.ThrowIfCancellationRequested() def GetSearchStrategy(self, mode, terms): if terms.Length == 1: if terms[0].StartsWith("tm:", StringComparison.Ordinal): return TypeAndMemberSearchStrategy(terms[0].Substring(3)) if terms[0].StartsWith("t:", StringComparison.Ordinal): return TypeSearchStrategy(terms[0].Substring(2)) if terms[0].StartsWith("m:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2)) if terms[0].StartsWith("md:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(3), MemberSearchKind.Method) if terms[0].StartsWith("f:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2), MemberSearchKind.Field) if terms[0].StartsWith("p:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2), MemberSearchKind.Property) if terms[0].StartsWith("e:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2), MemberSearchKind.Event) if terms[0].StartsWith("c:", StringComparison.Ordinal): return LiteralSearchStrategy(terms[0].Substring(2)) if mode == SearchMode.TypeAndMember: return TypeAndMemberSearchStrategy(terms) elif mode == SearchMode.Type: return TypeSearchStrategy(terms) elif mode == SearchMode.Member: return MemberSearchStrategy(terms) elif mode == SearchMode.Literal: return LiteralSearchStrategy(terms) elif mode == SearchMode.Method: return MemberSearchStrategy(terms, MemberSearchKind.Method) elif mode == SearchMode.Field: return MemberSearchStrategy(terms, MemberSearchKind.Field) elif mode == SearchMode.Property: return MemberSearchStrategy(terms, MemberSearchKind.Property) elif mode == SearchMode.Event: return MemberSearchStrategy(terms, MemberSearchKind.Event) return None class SearchResult(INotifyPropertyChanged, IMemberTreeNode): def get_Member(self): def set_Member(self, value): Member = property(fget=get_Member, fset=set_Member) def get_Location(self): def set_Location(self, value): Location = property(fget=get_Location, fset=set_Location) def get_Name(self): def set_Name(self, value): Name = property(fget=get_Name, fset=set_Name) def get_Image(self): def set_Image(self, value): Image = property(fget=get_Image, fset=set_Image) def get_LocationImage(self): def set_LocationImage(self, value): LocationImage = property(fget=get_LocationImage, fset=set_LocationImage) def ToString(self): return self.Name class ShowSearchCommand(CommandWrapper): def __init__(self): NavigationCommands.Search.InputGestures.Clear() NavigationCommands.Search.InputGestures.Add(KeyGesture(Key.F, ModifierKeys.Control | ModifierKeys.Shift)) NavigationCommands.Search.InputGestures.Add(KeyGesture(Key.E, ModifierKeys.Control)) class SearchMode(object): def __init__(self):
ILSpy.ConvertedToPython/SearchPane.py
import clr import clr # Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons # to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE # FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from System import * from System.Collections.Generic import * from System.Collections.ObjectModel import * from System.Collections.Specialized import * from System.ComponentModel import * from System.Linq import * from System.Text.RegularExpressions import * from System.Threading import * from System.Windows import * from System.Windows.Controls import * from System.Windows.Input import * from System.Windows.Media import * from System.Windows.Threading import * from ICSharpCode.ILSpy.TreeNodes import * from ICSharpCode.NRefactory.CSharp import * from ICSharpCode.NRefactory.Utils import * from Mono.Cecil import * from Mono.Cecil.Cil import * class SearchPane(UserControl, IPane): """ <summary> Search pane </summary> """ def get_Instance(self): if self._instance == None: App.Current.VerifyAccess() self._instance = SearchPane() return self._instance Instance = property(fget=get_Instance) def __init__(self): self._SearchTermProperty = DependencyProperty.Register("SearchTerm", clr.GetClrType(str), clr.GetClrType(SearchPane), FrameworkPropertyMetadata(str.Empty, OnSearchTermChanged)) self.InitializeComponent() searchModeComboBox.Items.Add((Image = Images.Library, Name = "Types and Members")) searchModeComboBox.Items.Add((Image = Images.Class, Name = "Type")) searchModeComboBox.Items.Add((Image = Images.Property, Name = "Member")) searchModeComboBox.Items.Add((Image = Images.Method, Name = "Method")) searchModeComboBox.Items.Add((Image = Images.Field, Name = "Field")) searchModeComboBox.Items.Add((Image = Images.Property, Name = "Property")) searchModeComboBox.Items.Add((Image = Images.Event, Name = "Event")) searchModeComboBox.Items.Add((Image = Images.Literal, Name = "Constant")) searchModeComboBox.SelectedIndex = SearchMode.TypeAndMember ContextMenuProvider.Add(listBox) MainWindow.Instance.CurrentAssemblyListChanged += self.MainWindow_Instance_CurrentAssemblyListChanged def MainWindow_Instance_CurrentAssemblyListChanged(self, sender, e): if IsVisible: self.StartSearch(self._SearchTerm) else: self.StartSearch(None) self._runSearchOnNextShow = True def Show(self): if not IsVisible: MainWindow.Instance.ShowInTopPane("Search", self) if self._runSearchOnNextShow: self._runSearchOnNextShow = False self.StartSearch(self._SearchTerm) Dispatcher.BeginInvoke(DispatcherPriority.Background, Action()) def get_SearchTerm(self): return self.GetValue(self._SearchTermProperty) def set_SearchTerm(self, value): self.SetValue(self._SearchTermProperty, value) SearchTerm = property(fget=get_SearchTerm, fset=set_SearchTerm) def OnSearchTermChanged(o, e): (o).StartSearch(e.NewValue) OnSearchTermChanged = staticmethod(OnSearchTermChanged) def SearchModeComboBox_SelectionChanged(self, sender, e): self.StartSearch(self.SearchTerm) def StartSearch(self, searchTerm): if self._currentSearch != None: self._currentSearch.Cancel() if str.IsNullOrEmpty(searchTerm): self._currentSearch = None listBox.ItemsSource = None else: mainWindow = MainWindow.Instance self._currentSearch = RunningSearch(mainWindow.CurrentAssemblyList.GetAssemblies(), searchTerm, searchModeComboBox.SelectedIndex, mainWindow.CurrentLanguage) listBox.ItemsSource = self._currentSearch.Results Thread(self._currentSearch.Run).Start() def Closed(self): self.SearchTerm = str.Empty def ListBox_MouseDoubleClick(self, sender, e): self.JumpToSelectedItem() e.Handled = True def ListBox_KeyDown(self, sender, e): if e.Key == Key.Return: e.Handled = True self.JumpToSelectedItem() def JumpToSelectedItem(self): result = listBox.SelectedItem if result != None: MainWindow.Instance.JumpToReference(result.Member) def OnKeyDown(self, e): self.OnKeyDown(e) if e.Key == Key.T and e.KeyboardDevice.Modifiers == ModifierKeys.Control: searchModeComboBox.SelectedIndex = SearchMode.Type e.Handled = True elif e.Key == Key.M and e.KeyboardDevice.Modifiers == ModifierKeys.Control: searchModeComboBox.SelectedIndex = SearchMode.Member e.Handled = True elif e.Key == Key.S and e.KeyboardDevice.Modifiers == ModifierKeys.Control: searchModeComboBox.SelectedIndex = SearchMode.Literal e.Handled = True def SearchBox_PreviewKeyDown(self, sender, e): if e.Key == Key.Down and listBox.HasItems: e.Handled = True listBox.MoveFocus(TraversalRequest(FocusNavigationDirection.First)) listBox.SelectedIndex = 0 class RunningSearch(object): def __init__(self, assemblies, searchTerm, searchMode, language): self._cts = CancellationTokenSource() self._Results = ObservableCollection[SearchResult]() self._dispatcher = Dispatcher.CurrentDispatcher self._assemblies = assemblies self._searchTerm = searchTerm.Split(Array[Char]((' ')), StringSplitOptions.RemoveEmptyEntries) self._language = language self._searchMode = searchMode self._Results.Add(SearchResult(Name = "Searching...")) def Cancel(self): self._cts.Cancel() def Run(self): try: searcher = self.GetSearchStrategy(self._searchMode, self._searchTerm) enumerator = assemblies.GetEnumerator() while enumerator.MoveNext(): loadedAssembly = enumerator.Current module = loadedAssembly.ModuleDefinition if module == None: continue cancellationToken = self._cts.Token enumerator = module.Types.GetEnumerator() while enumerator.MoveNext(): type = enumerator.Current cancellationToken.ThrowIfCancellationRequested() searcher.Search(type, self._language, AddResult) except OperationCanceledException, : finally: # ignore cancellation # remove the 'Searching...' entry self._dispatcher.BeginInvoke(DispatcherPriority.Normal, Action()) def AddResult(self, result): if self._resultCount += 1 == 1000: result = SearchResult(Name = "Search aborted, more than 1000 results found.") self._cts.Cancel() self._dispatcher.BeginInvoke(DispatcherPriority.Normal, Action()) self._cts.Token.ThrowIfCancellationRequested() def GetSearchStrategy(self, mode, terms): if terms.Length == 1: if terms[0].StartsWith("tm:", StringComparison.Ordinal): return TypeAndMemberSearchStrategy(terms[0].Substring(3)) if terms[0].StartsWith("t:", StringComparison.Ordinal): return TypeSearchStrategy(terms[0].Substring(2)) if terms[0].StartsWith("m:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2)) if terms[0].StartsWith("md:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(3), MemberSearchKind.Method) if terms[0].StartsWith("f:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2), MemberSearchKind.Field) if terms[0].StartsWith("p:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2), MemberSearchKind.Property) if terms[0].StartsWith("e:", StringComparison.Ordinal): return MemberSearchStrategy(terms[0].Substring(2), MemberSearchKind.Event) if terms[0].StartsWith("c:", StringComparison.Ordinal): return LiteralSearchStrategy(terms[0].Substring(2)) if mode == SearchMode.TypeAndMember: return TypeAndMemberSearchStrategy(terms) elif mode == SearchMode.Type: return TypeSearchStrategy(terms) elif mode == SearchMode.Member: return MemberSearchStrategy(terms) elif mode == SearchMode.Literal: return LiteralSearchStrategy(terms) elif mode == SearchMode.Method: return MemberSearchStrategy(terms, MemberSearchKind.Method) elif mode == SearchMode.Field: return MemberSearchStrategy(terms, MemberSearchKind.Field) elif mode == SearchMode.Property: return MemberSearchStrategy(terms, MemberSearchKind.Property) elif mode == SearchMode.Event: return MemberSearchStrategy(terms, MemberSearchKind.Event) return None class SearchResult(INotifyPropertyChanged, IMemberTreeNode): def get_Member(self): def set_Member(self, value): Member = property(fget=get_Member, fset=set_Member) def get_Location(self): def set_Location(self, value): Location = property(fget=get_Location, fset=set_Location) def get_Name(self): def set_Name(self, value): Name = property(fget=get_Name, fset=set_Name) def get_Image(self): def set_Image(self, value): Image = property(fget=get_Image, fset=set_Image) def get_LocationImage(self): def set_LocationImage(self, value): LocationImage = property(fget=get_LocationImage, fset=set_LocationImage) def ToString(self): return self.Name class ShowSearchCommand(CommandWrapper): def __init__(self): NavigationCommands.Search.InputGestures.Clear() NavigationCommands.Search.InputGestures.Add(KeyGesture(Key.F, ModifierKeys.Control | ModifierKeys.Shift)) NavigationCommands.Search.InputGestures.Add(KeyGesture(Key.E, ModifierKeys.Control)) class SearchMode(object): def __init__(self):
0.41052
0.058831
import pandas as pd # Carga del dataset completo. Elimino clasificador y otros atributos que no # son necesarios spy_full = pd.read_csv("SPYV3.csv", sep=',') spy_full = spy_full.drop(['FECHA','OPEN', 'MAX', 'MIN', 'CLOSE','CLASIFICADOR', 'FECHA.year', 'FECHA.day-of-month', 'FECHA.day-of-week'], 1) # Las variables categóricas que no son numéricas son factorizadas spy_full['39'], unique = pd.factorize(spy_full['39']) spy_full['41'], unique = pd.factorize(spy_full['41']) spy_full['43'], unique = pd.factorize(spy_full['43']) spy_full['168'], unique = pd.factorize(spy_full['168']) spy_full['172'], unique = pd.factorize(spy_full['172']) # Escalado de variables con MinMax() from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() spy_full_m = min_max_scaler.fit_transform(spy_full) # Normalización de variables con StandardScaler() from sklearn.preprocessing import StandardScaler spy_full_s = StandardScaler().fit_transform(spy_full) # Análisis de componentes principales (PCA) usando MinMax() # Para usar StandardSacler() cambiar "spy_full_m" por spy_full_s" from sklearn.decomposition import PCA import numpy n_comp = 4 estimator = PCA (n_components = n_comp) X_pca = estimator.fit_transform(spy_full_m) print(estimator.explained_variance_ratio_) i=0 suma=0 while i < n_comp: suma= suma + estimator.explained_variance_ratio_[i] i = i + 1 print("Varianza total: ", suma) pc1=pd.DataFrame(numpy.matrix.transpose(estimator.components_), columns=['PC-1', 'PC-2', 'PC-3', 'PC-4'], index=spy_full.columns) print(pc1) # Filtrado para obtener los mayores PC. Los valores deben ser adaptados # a cada caso data_filter = pc1[pc1['PC-1'] >= 0.10] print(data_filter) data_filter = pc1[pc1['PC-2'] >= 0.15] print(data_filter) data_filter = pc1[pc1['PC-3'] >= 0.25] print(data_filter) data_filter2 = pc1[pc1['PC-4'] >= 0.30] print(data_filter) # --------------------------------------------------------------------------------
PCA_2.py
import pandas as pd # Carga del dataset completo. Elimino clasificador y otros atributos que no # son necesarios spy_full = pd.read_csv("SPYV3.csv", sep=',') spy_full = spy_full.drop(['FECHA','OPEN', 'MAX', 'MIN', 'CLOSE','CLASIFICADOR', 'FECHA.year', 'FECHA.day-of-month', 'FECHA.day-of-week'], 1) # Las variables categóricas que no son numéricas son factorizadas spy_full['39'], unique = pd.factorize(spy_full['39']) spy_full['41'], unique = pd.factorize(spy_full['41']) spy_full['43'], unique = pd.factorize(spy_full['43']) spy_full['168'], unique = pd.factorize(spy_full['168']) spy_full['172'], unique = pd.factorize(spy_full['172']) # Escalado de variables con MinMax() from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() spy_full_m = min_max_scaler.fit_transform(spy_full) # Normalización de variables con StandardScaler() from sklearn.preprocessing import StandardScaler spy_full_s = StandardScaler().fit_transform(spy_full) # Análisis de componentes principales (PCA) usando MinMax() # Para usar StandardSacler() cambiar "spy_full_m" por spy_full_s" from sklearn.decomposition import PCA import numpy n_comp = 4 estimator = PCA (n_components = n_comp) X_pca = estimator.fit_transform(spy_full_m) print(estimator.explained_variance_ratio_) i=0 suma=0 while i < n_comp: suma= suma + estimator.explained_variance_ratio_[i] i = i + 1 print("Varianza total: ", suma) pc1=pd.DataFrame(numpy.matrix.transpose(estimator.components_), columns=['PC-1', 'PC-2', 'PC-3', 'PC-4'], index=spy_full.columns) print(pc1) # Filtrado para obtener los mayores PC. Los valores deben ser adaptados # a cada caso data_filter = pc1[pc1['PC-1'] >= 0.10] print(data_filter) data_filter = pc1[pc1['PC-2'] >= 0.15] print(data_filter) data_filter = pc1[pc1['PC-3'] >= 0.25] print(data_filter) data_filter2 = pc1[pc1['PC-4'] >= 0.30] print(data_filter) # --------------------------------------------------------------------------------
0.325842
0.26917
import mox import testtools from oslo.config import cfg from rack import exception from rack import service from rack import test from rack.tests import utils from rack import wsgi test_service_opts = [ cfg.StrOpt("fake_manager", default="rack.tests.test_service.FakeManager", help="Manager for testing"), cfg.StrOpt("test_service_listen", default='127.0.0.1', help="Host to bind test service to"), cfg.IntOpt("test_service_listen_port", default=0, help="Port number to bind test service to"), ] CONF = cfg.CONF CONF.register_opts(test_service_opts) class TestWSGIService(test.TestCase): def setUp(self): super(TestWSGIService, self).setUp() self.stubs.Set(wsgi.Loader, "load_app", mox.MockAnything()) def test_service_random_port(self): test_service = service.WSGIService("test_service") test_service.start() self.assertNotEqual(0, test_service.port) test_service.stop() def test_service_start_with_illegal_workers(self): CONF.set_override("rackapi_workers", -1) self.assertRaises(exception.InvalidInput, service.WSGIService, "rackapi") @testtools.skipIf(not utils.is_ipv6_supported(), "no ipv6 support") def test_service_random_port_with_ipv6(self): CONF.set_default("test_service_listen", "::1") test_service = service.WSGIService("test_service") test_service.start() self.assertEqual("::1", test_service.host) self.assertNotEqual(0, test_service.port) test_service.stop() class TestLauncher(test.TestCase): def setUp(self): super(TestLauncher, self).setUp() self.stubs.Set(wsgi.Loader, "load_app", mox.MockAnything()) self.service = service.WSGIService("test_service") def test_launch_app(self): service.serve(self.service) self.assertNotEqual(0, self.service.port) service._launcher.stop()
rack/tests/test_service.py
import mox import testtools from oslo.config import cfg from rack import exception from rack import service from rack import test from rack.tests import utils from rack import wsgi test_service_opts = [ cfg.StrOpt("fake_manager", default="rack.tests.test_service.FakeManager", help="Manager for testing"), cfg.StrOpt("test_service_listen", default='127.0.0.1', help="Host to bind test service to"), cfg.IntOpt("test_service_listen_port", default=0, help="Port number to bind test service to"), ] CONF = cfg.CONF CONF.register_opts(test_service_opts) class TestWSGIService(test.TestCase): def setUp(self): super(TestWSGIService, self).setUp() self.stubs.Set(wsgi.Loader, "load_app", mox.MockAnything()) def test_service_random_port(self): test_service = service.WSGIService("test_service") test_service.start() self.assertNotEqual(0, test_service.port) test_service.stop() def test_service_start_with_illegal_workers(self): CONF.set_override("rackapi_workers", -1) self.assertRaises(exception.InvalidInput, service.WSGIService, "rackapi") @testtools.skipIf(not utils.is_ipv6_supported(), "no ipv6 support") def test_service_random_port_with_ipv6(self): CONF.set_default("test_service_listen", "::1") test_service = service.WSGIService("test_service") test_service.start() self.assertEqual("::1", test_service.host) self.assertNotEqual(0, test_service.port) test_service.stop() class TestLauncher(test.TestCase): def setUp(self): super(TestLauncher, self).setUp() self.stubs.Set(wsgi.Loader, "load_app", mox.MockAnything()) self.service = service.WSGIService("test_service") def test_launch_app(self): service.serve(self.service) self.assertNotEqual(0, self.service.port) service._launcher.stop()
0.47098
0.332554
import email import os import shutil from digestparser.objects import Digest, Image from provider.article import article def create_folder(folder): if not os.path.exists(folder): os.makedirs(folder) def delete_folder(folder, recursively=False): if recursively: shutil.rmtree(folder) else: os.rmdir(folder) def delete_files_in_folder(folder, filter_out=[]): file_list = os.listdir(folder) for file_name in file_list: if file_name in filter_out: continue if os.path.isfile(folder + "/" + file_name): os.remove(folder + "/" + file_name) def delete_directories_in_folder(folder): folder_list = os.listdir(folder) for dir in folder_list: dir_path = os.path.join(folder, dir) if os.path.isdir(dir_path): delete_folder(dir_path, True) def delete_everything_in_folder(self, folder): self.delete_files_in_folder(folder) def instantiate_article(article_type, doi, is_poa=None, was_ever_poa=None): "for testing purposes, generate an article object" article_object = article() article_object.article_type = article_type article_object.doi = doi article_object.doi_id = article_object.get_doi_id(doi) article_object.is_poa = is_poa article_object.was_ever_poa = was_ever_poa return article_object def create_digest(author=None, doi=None, text=None, title=None, image=None): "for testing generate a Digest object an populate it" digest_content = Digest() digest_content.author = author digest_content.doi = doi if text: digest_content.text = text if title: digest_content.title = title if image: digest_content.image = image return digest_content def create_digest_image(caption=None, file_name=None): "for testing generate a Digest Image object an populate it" digest_image = Image() if caption: digest_image.caption = caption if file_name: digest_image.file = file_name return digest_image def body_from_multipart_email_string(email_string): """Given a multipart email string, convert to Message and return decoded body""" body = None email_message = email.message_from_string(email_string) if email_message.is_multipart(): for payload in email_message.get_payload(): body = payload.get_payload(decode=True) return body
tests/activity/helpers.py
import email import os import shutil from digestparser.objects import Digest, Image from provider.article import article def create_folder(folder): if not os.path.exists(folder): os.makedirs(folder) def delete_folder(folder, recursively=False): if recursively: shutil.rmtree(folder) else: os.rmdir(folder) def delete_files_in_folder(folder, filter_out=[]): file_list = os.listdir(folder) for file_name in file_list: if file_name in filter_out: continue if os.path.isfile(folder + "/" + file_name): os.remove(folder + "/" + file_name) def delete_directories_in_folder(folder): folder_list = os.listdir(folder) for dir in folder_list: dir_path = os.path.join(folder, dir) if os.path.isdir(dir_path): delete_folder(dir_path, True) def delete_everything_in_folder(self, folder): self.delete_files_in_folder(folder) def instantiate_article(article_type, doi, is_poa=None, was_ever_poa=None): "for testing purposes, generate an article object" article_object = article() article_object.article_type = article_type article_object.doi = doi article_object.doi_id = article_object.get_doi_id(doi) article_object.is_poa = is_poa article_object.was_ever_poa = was_ever_poa return article_object def create_digest(author=None, doi=None, text=None, title=None, image=None): "for testing generate a Digest object an populate it" digest_content = Digest() digest_content.author = author digest_content.doi = doi if text: digest_content.text = text if title: digest_content.title = title if image: digest_content.image = image return digest_content def create_digest_image(caption=None, file_name=None): "for testing generate a Digest Image object an populate it" digest_image = Image() if caption: digest_image.caption = caption if file_name: digest_image.file = file_name return digest_image def body_from_multipart_email_string(email_string): """Given a multipart email string, convert to Message and return decoded body""" body = None email_message = email.message_from_string(email_string) if email_message.is_multipart(): for payload in email_message.get_payload(): body = payload.get_payload(decode=True) return body
0.240329
0.099514
from torch.nn.modules.loss import _Loss from package_core.losses import VariationLoss, L1Loss, PerceptualLoss from package_core.image_proc import * # L2 loss def MSE(para): return nn.MSELoss() # L1 loss def L1(para): return nn.L1Loss() def MaskedL1(para): return L1Loss() # Variance loss def Variation(para): return VariationLoss(nc=2) # gradient loss class L1GradientLoss(_Loss): def __init__(self, para): super(L1GradientLoss, self).__init__() self.get_grad = Gradient() self.L1 = nn.L1Loss() def forward(self, x, y): grad_x = self.get_grad(x) grad_y = self.get_grad(y) loss = self.L1(grad_x, grad_y) return loss class Gradient(nn.Module): def __init__(self): super(Gradient, self).__init__() kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False).cuda() self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False).cuda() def forward(self, x): x0 = x[:, 0] x1 = x[:, 1] x2 = x[:, 2] x0_v = F.conv2d(x0.unsqueeze(1), self.weight_v, padding=2) x0_h = F.conv2d(x0.unsqueeze(1), self.weight_h, padding=2) x1_v = F.conv2d(x1.unsqueeze(1), self.weight_v, padding=2) x1_h = F.conv2d(x1.unsqueeze(1), self.weight_h, padding=2) x2_v = F.conv2d(x2.unsqueeze(1), self.weight_v, padding=2) x2_h = F.conv2d(x2.unsqueeze(1), self.weight_h, padding=2) x0 = torch.sqrt(torch.pow(x0_v, 2) + torch.pow(x0_h, 2) + 1e-6) x1 = torch.sqrt(torch.pow(x1_v, 2) + torch.pow(x1_h, 2) + 1e-6) x2 = torch.sqrt(torch.pow(x2_v, 2) + torch.pow(x2_h, 2) + 1e-6) x = torch.cat([x0, x1, x2], dim=1) return x # Charbonnier loss class L1_Charbonnier_loss(_Loss): """L1 Charbonnierloss.""" def __init__(self, para): super(L1_Charbonnier_loss, self).__init__() self.eps = 1e-3 def forward(self, X, Y): diff = torch.add(X, -Y) error = torch.sqrt(diff * diff + self.eps * self.eps) loss = torch.mean(error) return loss class L1_Charbonnier_loss_color(_Loss): """L1 Charbonnierloss.""" def __init__(self, para): super(L1_Charbonnier_loss_color, self).__init__() self.eps = 1e-3 def forward(self, X, Y): diff = torch.add(X, -Y) diff_sq = diff * diff # print(diff_sq.shape) diff_sq_color = torch.mean(diff_sq, 1, True) # print(diff_sq_color.shape) error = torch.sqrt(diff_sq_color + self.eps * self.eps) loss = torch.mean(error) return loss def Perceptual(para): return PerceptualLoss(loss=nn.L1Loss()) # parse loss parameters def loss_parse(loss_str): ratios = [] losses = [] str_temp = loss_str.split('|') for item in str_temp: substr_temp = item.split('*') ratios.append(float(substr_temp[0])) losses.append(substr_temp[1]) return ratios, losses # Training loss class Loss(nn.Module): def __init__(self, para): super(Loss, self).__init__() ratios, losses = loss_parse(para.loss) self.losses_name = losses self.ratios = ratios self.losses = [] self.downsample2 = nn.AvgPool2d(2, stride=2) for loss in losses: # module = import_module('train.loss') # self.losses.append(getattr(module, loss)(para).cuda()) loss_fn = eval('{}(para)'.format(loss)) self.losses.append(loss_fn) def forward(self, x, y, flow=None, valid_flag=False): if len(x.shape) == 5: b, n, c, h, w = x.shape x = x.reshape(b * n, c, h, w) y = y.reshape(b * n, c, h, w) losses = {} loss_all = None for i in range(len(self.losses)): if valid_flag == True and self.losses_name[i] == 'GAN': loss_sub = self.ratios[i] * self.losses[i](x, y, valid_flag) elif self.losses_name[i] == 'Variation': loss_sub = self.ratios[i] * self.losses[i](flow) else: loss_sub = self.ratios[i] * self.losses[i](x, y) losses[self.losses_name[i]] = loss_sub if loss_all == None: loss_all = loss_sub else: loss_all += loss_sub losses['all'] = loss_all return losses def rscd_forward(self, imgs, labels, masks, flows): losses = {} # reshape tensors if len(labels.shape) == 5: b, n, c, h, w = labels.shape labels = labels.reshape(b * n, c, h, w) gts = [labels, ] # create multilevel groundtruth for i in range(1, len(imgs)): labels = self.downsample2(labels.clone()) gts.append(labels) # calculate each loss loss_all = None for i in range(len(self.losses)): sub_loss = None for level in range(len(imgs)): if self.losses_name[i] == 'Variation': loss_temp = self.ratios[i] * self.losses[i](flows[0][level], mean=True) if len(flows) == 2: loss_temp += self.ratios[i] * self.losses[i](flows[1][level], mean=True) elif self.losses_name[i] == 'Perceptual': loss_temp = self.ratios[i] * self.losses[i].get_loss(imgs[level], gts[level]) else: loss_temp = self.ratios[i] * self.losses[i](imgs[level], gts[level]) if sub_loss == None: sub_loss = loss_temp else: sub_loss += loss_temp losses[self.losses_name[i]] = sub_loss if loss_all == None: loss_all = sub_loss else: loss_all += sub_loss losses['all'] = loss_all return losses
train/loss.py
from torch.nn.modules.loss import _Loss from package_core.losses import VariationLoss, L1Loss, PerceptualLoss from package_core.image_proc import * # L2 loss def MSE(para): return nn.MSELoss() # L1 loss def L1(para): return nn.L1Loss() def MaskedL1(para): return L1Loss() # Variance loss def Variation(para): return VariationLoss(nc=2) # gradient loss class L1GradientLoss(_Loss): def __init__(self, para): super(L1GradientLoss, self).__init__() self.get_grad = Gradient() self.L1 = nn.L1Loss() def forward(self, x, y): grad_x = self.get_grad(x) grad_y = self.get_grad(y) loss = self.L1(grad_x, grad_y) return loss class Gradient(nn.Module): def __init__(self): super(Gradient, self).__init__() kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False).cuda() self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False).cuda() def forward(self, x): x0 = x[:, 0] x1 = x[:, 1] x2 = x[:, 2] x0_v = F.conv2d(x0.unsqueeze(1), self.weight_v, padding=2) x0_h = F.conv2d(x0.unsqueeze(1), self.weight_h, padding=2) x1_v = F.conv2d(x1.unsqueeze(1), self.weight_v, padding=2) x1_h = F.conv2d(x1.unsqueeze(1), self.weight_h, padding=2) x2_v = F.conv2d(x2.unsqueeze(1), self.weight_v, padding=2) x2_h = F.conv2d(x2.unsqueeze(1), self.weight_h, padding=2) x0 = torch.sqrt(torch.pow(x0_v, 2) + torch.pow(x0_h, 2) + 1e-6) x1 = torch.sqrt(torch.pow(x1_v, 2) + torch.pow(x1_h, 2) + 1e-6) x2 = torch.sqrt(torch.pow(x2_v, 2) + torch.pow(x2_h, 2) + 1e-6) x = torch.cat([x0, x1, x2], dim=1) return x # Charbonnier loss class L1_Charbonnier_loss(_Loss): """L1 Charbonnierloss.""" def __init__(self, para): super(L1_Charbonnier_loss, self).__init__() self.eps = 1e-3 def forward(self, X, Y): diff = torch.add(X, -Y) error = torch.sqrt(diff * diff + self.eps * self.eps) loss = torch.mean(error) return loss class L1_Charbonnier_loss_color(_Loss): """L1 Charbonnierloss.""" def __init__(self, para): super(L1_Charbonnier_loss_color, self).__init__() self.eps = 1e-3 def forward(self, X, Y): diff = torch.add(X, -Y) diff_sq = diff * diff # print(diff_sq.shape) diff_sq_color = torch.mean(diff_sq, 1, True) # print(diff_sq_color.shape) error = torch.sqrt(diff_sq_color + self.eps * self.eps) loss = torch.mean(error) return loss def Perceptual(para): return PerceptualLoss(loss=nn.L1Loss()) # parse loss parameters def loss_parse(loss_str): ratios = [] losses = [] str_temp = loss_str.split('|') for item in str_temp: substr_temp = item.split('*') ratios.append(float(substr_temp[0])) losses.append(substr_temp[1]) return ratios, losses # Training loss class Loss(nn.Module): def __init__(self, para): super(Loss, self).__init__() ratios, losses = loss_parse(para.loss) self.losses_name = losses self.ratios = ratios self.losses = [] self.downsample2 = nn.AvgPool2d(2, stride=2) for loss in losses: # module = import_module('train.loss') # self.losses.append(getattr(module, loss)(para).cuda()) loss_fn = eval('{}(para)'.format(loss)) self.losses.append(loss_fn) def forward(self, x, y, flow=None, valid_flag=False): if len(x.shape) == 5: b, n, c, h, w = x.shape x = x.reshape(b * n, c, h, w) y = y.reshape(b * n, c, h, w) losses = {} loss_all = None for i in range(len(self.losses)): if valid_flag == True and self.losses_name[i] == 'GAN': loss_sub = self.ratios[i] * self.losses[i](x, y, valid_flag) elif self.losses_name[i] == 'Variation': loss_sub = self.ratios[i] * self.losses[i](flow) else: loss_sub = self.ratios[i] * self.losses[i](x, y) losses[self.losses_name[i]] = loss_sub if loss_all == None: loss_all = loss_sub else: loss_all += loss_sub losses['all'] = loss_all return losses def rscd_forward(self, imgs, labels, masks, flows): losses = {} # reshape tensors if len(labels.shape) == 5: b, n, c, h, w = labels.shape labels = labels.reshape(b * n, c, h, w) gts = [labels, ] # create multilevel groundtruth for i in range(1, len(imgs)): labels = self.downsample2(labels.clone()) gts.append(labels) # calculate each loss loss_all = None for i in range(len(self.losses)): sub_loss = None for level in range(len(imgs)): if self.losses_name[i] == 'Variation': loss_temp = self.ratios[i] * self.losses[i](flows[0][level], mean=True) if len(flows) == 2: loss_temp += self.ratios[i] * self.losses[i](flows[1][level], mean=True) elif self.losses_name[i] == 'Perceptual': loss_temp = self.ratios[i] * self.losses[i].get_loss(imgs[level], gts[level]) else: loss_temp = self.ratios[i] * self.losses[i](imgs[level], gts[level]) if sub_loss == None: sub_loss = loss_temp else: sub_loss += loss_temp losses[self.losses_name[i]] = sub_loss if loss_all == None: loss_all = sub_loss else: loss_all += sub_loss losses['all'] = loss_all return losses
0.873701
0.492127
from ui.pfdview import * from data.parameter import * import math class AltitudeCalibrationView(Dialog): newSLP = None surfaceWidth = 300 surfaceHeight = 200 def __init__(self): Dialog.__init__(self,self.surfaceWidth,self.surfaceHeight) size = 40 up = '\u2191' # Unicode up arrow down = '\u2193' # Unicode down arrow xstart = 95 xtop = 20 xbottom = 110 xinc = 30 self.button100Up = Button(xstart, xtop, up, "monospace", size) self.button100Down = Button(xstart, xbottom, down, "monospace", size) self.button10Up = Button(xstart + xinc, xtop, up, "monospace", size) self.button10Down = Button(xstart + xinc, xbottom, down, "monospace", size) self.button1Up = Button(xstart + xinc*2, xtop, up, "monospace", size) self.button1Down = Button(xstart + xinc*2, xbottom, down, "monospace", size) self.buttonP1Up = Button(xstart + xinc*4, xtop, up, "monospace", size) self.buttonP1Down = Button(xstart + xinc*4, xbottom, down, "monospace", size) self.registerWidget(Widget(self.button100Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button100Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button10Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button10Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button1Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button1Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.buttonP1Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.buttonP1Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.slpTextField = TextField(60, 60, "", "monospace", 45) self.altitudeTextField = TextField(139, 169, "", "monospace", 25) self.registerWidget(Widget(self.slpTextField,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.altitudeTextField,self.getPhysicalXYOffsetOfSurface()),self.objectID) def register100UpButtonRelease(self,method): self.button100Up.registerButtonRelease(method) def register100DownButtonRelease(self,method): self.button100Down.registerButtonRelease(method) def register10UpButtonRelease(self,method): self.button10Up.registerButtonRelease(method) def register10DownButtonRelease(self,method): self.button10Down.registerButtonRelease(method) def register1UpButtonRelease(self,method): self.button1Up.registerButtonRelease(method) def register1DownButtonRelease(self,method): self.button1Down.registerButtonRelease(method) def registerP1UpButtonRelease(self,method): self.buttonP1Up.registerButtonRelease(method) def registerP1DownButtonRelease(self,method): self.buttonP1Down.registerButtonRelease(method) def draw(self): super().draw() class AltitudeCalibrationController: model = None view = None def __init__(self,model,view): self.model = model self.view = view def button100UpCallback(self): self.model.updateSLP(100) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button100DownCallback(self): self.model.updateSLP(-100) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button10UpCallback(self): self.model.updateSLP(10) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button10DownCallback(self): self.model.updateSLP(-10) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button1UpCallback(self): self.model.updateSLP(1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button1DownCallback(self): self.model.updateSLP(-1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def buttonP1UpCallback(self): self.model.updateSLP(0.1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def buttonP1DownCallback(self): self.model.updateSLP(-0.1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def registerBarosetClosedCallback(self,method): self.barosetClosedCallback = method def okButtonCallback(self): self.model.oap1.slp = self.model.baroset.slp self.model.oap2.slp = self.model.baroset.slp self.view.unregisterDialog(self.view.objectID) self.barosetClosedCallback() def cancelButtonCallback(self): self.view.unregisterDialog(self.view.objectID) self.barosetClosedCallback() def launch(self): self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) self.view.register100UpButtonRelease(self.button100UpCallback) self.view.register100DownButtonRelease(self.button100DownCallback) self.view.register10UpButtonRelease(self.button10UpCallback) self.view.register10DownButtonRelease(self.button10DownCallback) self.view.register1UpButtonRelease(self.button1UpCallback) self.view.register1DownButtonRelease(self.button1DownCallback) self.view.registerP1UpButtonRelease(self.buttonP1UpCallback) self.view.registerP1DownButtonRelease(self.buttonP1DownCallback) self.view.registerOKButton(self.okButtonCallback) self.view.registerCancelButton(self.cancelButtonCallback) self.view.draw() def update(self): values = np.array([self.model.oap1.value,self.model.oap2.value]) self.model.addPressure(values.mean()) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) self.view.draw() class AltitudeCalibrationModel: baroset = None # For baroset dialog oap1 = None oap2 = None def __init__(self,oap1,oap2): self.baroset = Pressure(10,4.7) values = np.array([oap1.value,oap2.value]) altitudes = np.array([oap1.elevation,oap2.elevation]) self.baroset.appendAsHPa(values.mean()) self.baroset.calibrateElevation(altitudes.mean()) self.oap1 = oap1 self.oap2 = oap2 def addPressure(self,value): self.baroset.appendAsHPa(value) def updateSLP(self,amount): """ Adjust the current SLP by this amount """ self.baroset.slp = self.baroset.slp + amount def currentSLP(self): return self.baroset.slp def currentAltitude(self): return self.baroset.elevation
ui/dialogs/baroset.py
from ui.pfdview import * from data.parameter import * import math class AltitudeCalibrationView(Dialog): newSLP = None surfaceWidth = 300 surfaceHeight = 200 def __init__(self): Dialog.__init__(self,self.surfaceWidth,self.surfaceHeight) size = 40 up = '\u2191' # Unicode up arrow down = '\u2193' # Unicode down arrow xstart = 95 xtop = 20 xbottom = 110 xinc = 30 self.button100Up = Button(xstart, xtop, up, "monospace", size) self.button100Down = Button(xstart, xbottom, down, "monospace", size) self.button10Up = Button(xstart + xinc, xtop, up, "monospace", size) self.button10Down = Button(xstart + xinc, xbottom, down, "monospace", size) self.button1Up = Button(xstart + xinc*2, xtop, up, "monospace", size) self.button1Down = Button(xstart + xinc*2, xbottom, down, "monospace", size) self.buttonP1Up = Button(xstart + xinc*4, xtop, up, "monospace", size) self.buttonP1Down = Button(xstart + xinc*4, xbottom, down, "monospace", size) self.registerWidget(Widget(self.button100Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button100Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button10Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button10Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button1Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.button1Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.buttonP1Up,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.buttonP1Down,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.slpTextField = TextField(60, 60, "", "monospace", 45) self.altitudeTextField = TextField(139, 169, "", "monospace", 25) self.registerWidget(Widget(self.slpTextField,self.getPhysicalXYOffsetOfSurface()),self.objectID) self.registerWidget(Widget(self.altitudeTextField,self.getPhysicalXYOffsetOfSurface()),self.objectID) def register100UpButtonRelease(self,method): self.button100Up.registerButtonRelease(method) def register100DownButtonRelease(self,method): self.button100Down.registerButtonRelease(method) def register10UpButtonRelease(self,method): self.button10Up.registerButtonRelease(method) def register10DownButtonRelease(self,method): self.button10Down.registerButtonRelease(method) def register1UpButtonRelease(self,method): self.button1Up.registerButtonRelease(method) def register1DownButtonRelease(self,method): self.button1Down.registerButtonRelease(method) def registerP1UpButtonRelease(self,method): self.buttonP1Up.registerButtonRelease(method) def registerP1DownButtonRelease(self,method): self.buttonP1Down.registerButtonRelease(method) def draw(self): super().draw() class AltitudeCalibrationController: model = None view = None def __init__(self,model,view): self.model = model self.view = view def button100UpCallback(self): self.model.updateSLP(100) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button100DownCallback(self): self.model.updateSLP(-100) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button10UpCallback(self): self.model.updateSLP(10) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button10DownCallback(self): self.model.updateSLP(-10) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button1UpCallback(self): self.model.updateSLP(1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def button1DownCallback(self): self.model.updateSLP(-1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def buttonP1UpCallback(self): self.model.updateSLP(0.1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def buttonP1DownCallback(self): self.model.updateSLP(-0.1) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) def registerBarosetClosedCallback(self,method): self.barosetClosedCallback = method def okButtonCallback(self): self.model.oap1.slp = self.model.baroset.slp self.model.oap2.slp = self.model.baroset.slp self.view.unregisterDialog(self.view.objectID) self.barosetClosedCallback() def cancelButtonCallback(self): self.view.unregisterDialog(self.view.objectID) self.barosetClosedCallback() def launch(self): self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) self.view.register100UpButtonRelease(self.button100UpCallback) self.view.register100DownButtonRelease(self.button100DownCallback) self.view.register10UpButtonRelease(self.button10UpCallback) self.view.register10DownButtonRelease(self.button10DownCallback) self.view.register1UpButtonRelease(self.button1UpCallback) self.view.register1DownButtonRelease(self.button1DownCallback) self.view.registerP1UpButtonRelease(self.buttonP1UpCallback) self.view.registerP1DownButtonRelease(self.buttonP1DownCallback) self.view.registerOKButton(self.okButtonCallback) self.view.registerCancelButton(self.cancelButtonCallback) self.view.draw() def update(self): values = np.array([self.model.oap1.value,self.model.oap2.value]) self.model.addPressure(values.mean()) self.view.slpTextField.updateText(str(round(self.model.currentSLP(),1))) self.view.altitudeTextField.updateText(str(round(self.model.currentAltitude(),1))) self.view.draw() class AltitudeCalibrationModel: baroset = None # For baroset dialog oap1 = None oap2 = None def __init__(self,oap1,oap2): self.baroset = Pressure(10,4.7) values = np.array([oap1.value,oap2.value]) altitudes = np.array([oap1.elevation,oap2.elevation]) self.baroset.appendAsHPa(values.mean()) self.baroset.calibrateElevation(altitudes.mean()) self.oap1 = oap1 self.oap2 = oap2 def addPressure(self,value): self.baroset.appendAsHPa(value) def updateSLP(self,amount): """ Adjust the current SLP by this amount """ self.baroset.slp = self.baroset.slp + amount def currentSLP(self): return self.baroset.slp def currentAltitude(self): return self.baroset.elevation
0.410756
0.119152
import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # pylint: disable=E1101 # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) # pylint: disable=E1101 for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
_unittests/ut_testing/data/plot_anomaly_comparison.py
import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # pylint: disable=E1101 # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) # pylint: disable=E1101 for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
0.78695
0.623033
# Lint as: python3 """LintReport implementation that outputs to the terminal.""" import logging import os import sys import textwrap from typing import Optional import blessings from gcp_doctor import config, lint, models OUTPUT_WIDTH = 68 def _emoji_wrap(char): if os.getenv('CLOUD_SHELL'): # emoji not displayed as double width in Cloud Shell (bug?) return char + ' ' else: return char class _LintReportTerminalLoggingHandler(logging.Handler): """logging.Handler implementation used when producing a lint report.""" def __init__(self, report): super().__init__() self.report = report def format(self, record: logging.LogRecord): return record.getMessage() def emit(self, record): if record.levelno == logging.INFO and self.report.log_info_for_progress_only: msg = ' ... ' + self.format(record) # make sure we don't go beyond the terminal width if self.report.term.width: term_overflow = len(msg) - self.report.term.width if term_overflow > 0: msg = msg[:-term_overflow] self.report.terminal_update_line(msg) else: msg = f'[{record.levelname}] ' + self.format(record) + ' ' # workaround for bug: # https://github.com/googleapis/google-api-python-client/issues/1116 if 'Invalid JSON content from response' in msg: return self.report.terminal_print_line(msg) class LintReportTerminal(lint.LintReport): """LintReport implementation that outputs to the terminal.""" def __init__(self, file=sys.stdout, log_info_for_progress_only=True, show_ok=True, show_skipped=False): super().__init__() self.file = file self.line_unfinished = False self.rule_has_results = False self.log_info_for_progress_only = log_info_for_progress_only self.show_ok = show_ok self.show_skipped = show_skipped self.per_rule_data = {} if file == sys.stdout: self.term = blessings.Terminal() else: self.term = blessings.Terminal() def _wrap_indent(self, text, prefix): width = self.term.width or 80 if width > 80: width = 80 return textwrap.indent(textwrap.fill(text, width - len(prefix)), prefix) def banner(self): if self.term.does_styling: print( self.term.bold('gcp-doctor ' + _emoji_wrap('🩺') + ' ' + config.VERSION) + '\n') else: print('gcp-doctor ' + config.VERSION + '\n') def lint_start(self, context): print(f'Starting lint inspection ({context})...\n') def terminal_update_line(self, text: str): """Update the current line on the terminal.""" if self.term.width: print(self.term.move_x(0) + self.term.clear_eol() + text, end='', flush=True, file=self.file) self.line_unfinished = True else: # If it's a stream, do not output anything, assuming that the # interesting output will be passed via terminal_print_line pass def terminal_erase_line(self): """Remove the current content on the line.""" if self.line_unfinished and self.term.width: print(self.term.move_x(0) + self.term.clear_eol(), flush=True, end='', file=self.file) self.line_unfinished = False def terminal_print_line(self, text: str = ''): """Write a line to the terminal, replacing any current line content, and add a line feed.""" if self.line_unfinished and self.term.width: self.terminal_update_line(text) print(file=self.file) else: print(text, file=self.file) # flush the output, so that we can more easily grep, tee, etc. sys.stdout.flush() self.line_unfinished = False def get_logging_handler(self): return _LintReportTerminalLoggingHandler(self) def rule_start(self, rule: lint.LintRule, context: models.Context): rule_interface = super().rule_start(rule, context) bullet = '' if self.term.does_styling: bullet = _emoji_wrap('🔎') + ' ' else: bullet = '* ' self.terminal_print_line( bullet + self.term.yellow(f'{rule.product}/{rule.rule_class}/{rule.rule_id}') + ': ' + f'{rule.short_desc}') self.rule_has_results = False return rule_interface def rule_end(self, rule: lint.LintRule, context: models.Context): super().rule_end(rule, context) self.terminal_erase_line() if self.rule_has_results: self.terminal_print_line() # If the rule failed, add more information about the rule. if rule in self.per_rule_data and self.per_rule_data[rule]['failed_count']: width = self.term.width or 80 if width > 80: width = 80 self.terminal_print_line( self.term.italic(self._wrap_indent(rule.long_desc, ' '))) self.terminal_print_line() def add_skipped(self, rule: lint.LintRule, context: models.Context, resource: Optional[models.Resource], reason: str, short_info: Optional[str]): super().add_skipped(rule, context, resource, reason, short_info) if not self.show_skipped: return self.rule_has_results = True if short_info: short_info = ' ' + short_info else: short_info = '' if resource: self.terminal_print_line(' - ' + resource.short_path.ljust(OUTPUT_WIDTH) + ' [SKIP]' + short_info) self.terminal_print_line(textwrap.indent(reason, ' ')) else: self.terminal_print_line(' ' + ('(' + reason + ')').ljust(OUTPUT_WIDTH + 2) + ' [SKIP]' + short_info) def add_ok(self, rule: lint.LintRule, context: models.Context, resource: models.Resource, short_info: Optional[str]): super().add_ok(rule, context, resource, short_info) if not self.show_ok: return self.rule_has_results = True if short_info: short_info = ' ' + short_info else: short_info = '' self.terminal_print_line(' - ' + resource.short_path.ljust(OUTPUT_WIDTH) + ' [' + self.term.green(' OK ') + ']' + short_info) def add_failed(self, rule: lint.LintRule, context: models.Context, resource: models.Resource, reason: Optional[str], short_info: Optional[str]): super().add_failed(rule, context, resource, reason, short_info) self.rule_has_results = True rule_data = self.per_rule_data.setdefault(rule, {'failed_count': 0}) rule_data['failed_count'] += 1 if short_info: short_info = ' ' + short_info else: short_info = '' self.terminal_print_line(' - ' + resource.short_path.ljust(OUTPUT_WIDTH) + ' [' + self.term.red('FAIL') + ']' + short_info) if reason: self.terminal_print_line(textwrap.indent(reason, ' ')) def finish(self, context: models.Context): exit_code = super().finish(context) totals = { 'skipped': 0, 'ok': 0, 'failed': 0, } for rule in self.rules_report.values(): totals[rule['overall_status']] += 1 if not self.rule_has_results: self.terminal_print_line() print( f"Rules summary: {totals['skipped']} skipped, {totals['ok']} ok, {totals['failed']} failed" ) return exit_code
gcp_doctor/lint/report_terminal.py
# Lint as: python3 """LintReport implementation that outputs to the terminal.""" import logging import os import sys import textwrap from typing import Optional import blessings from gcp_doctor import config, lint, models OUTPUT_WIDTH = 68 def _emoji_wrap(char): if os.getenv('CLOUD_SHELL'): # emoji not displayed as double width in Cloud Shell (bug?) return char + ' ' else: return char class _LintReportTerminalLoggingHandler(logging.Handler): """logging.Handler implementation used when producing a lint report.""" def __init__(self, report): super().__init__() self.report = report def format(self, record: logging.LogRecord): return record.getMessage() def emit(self, record): if record.levelno == logging.INFO and self.report.log_info_for_progress_only: msg = ' ... ' + self.format(record) # make sure we don't go beyond the terminal width if self.report.term.width: term_overflow = len(msg) - self.report.term.width if term_overflow > 0: msg = msg[:-term_overflow] self.report.terminal_update_line(msg) else: msg = f'[{record.levelname}] ' + self.format(record) + ' ' # workaround for bug: # https://github.com/googleapis/google-api-python-client/issues/1116 if 'Invalid JSON content from response' in msg: return self.report.terminal_print_line(msg) class LintReportTerminal(lint.LintReport): """LintReport implementation that outputs to the terminal.""" def __init__(self, file=sys.stdout, log_info_for_progress_only=True, show_ok=True, show_skipped=False): super().__init__() self.file = file self.line_unfinished = False self.rule_has_results = False self.log_info_for_progress_only = log_info_for_progress_only self.show_ok = show_ok self.show_skipped = show_skipped self.per_rule_data = {} if file == sys.stdout: self.term = blessings.Terminal() else: self.term = blessings.Terminal() def _wrap_indent(self, text, prefix): width = self.term.width or 80 if width > 80: width = 80 return textwrap.indent(textwrap.fill(text, width - len(prefix)), prefix) def banner(self): if self.term.does_styling: print( self.term.bold('gcp-doctor ' + _emoji_wrap('🩺') + ' ' + config.VERSION) + '\n') else: print('gcp-doctor ' + config.VERSION + '\n') def lint_start(self, context): print(f'Starting lint inspection ({context})...\n') def terminal_update_line(self, text: str): """Update the current line on the terminal.""" if self.term.width: print(self.term.move_x(0) + self.term.clear_eol() + text, end='', flush=True, file=self.file) self.line_unfinished = True else: # If it's a stream, do not output anything, assuming that the # interesting output will be passed via terminal_print_line pass def terminal_erase_line(self): """Remove the current content on the line.""" if self.line_unfinished and self.term.width: print(self.term.move_x(0) + self.term.clear_eol(), flush=True, end='', file=self.file) self.line_unfinished = False def terminal_print_line(self, text: str = ''): """Write a line to the terminal, replacing any current line content, and add a line feed.""" if self.line_unfinished and self.term.width: self.terminal_update_line(text) print(file=self.file) else: print(text, file=self.file) # flush the output, so that we can more easily grep, tee, etc. sys.stdout.flush() self.line_unfinished = False def get_logging_handler(self): return _LintReportTerminalLoggingHandler(self) def rule_start(self, rule: lint.LintRule, context: models.Context): rule_interface = super().rule_start(rule, context) bullet = '' if self.term.does_styling: bullet = _emoji_wrap('🔎') + ' ' else: bullet = '* ' self.terminal_print_line( bullet + self.term.yellow(f'{rule.product}/{rule.rule_class}/{rule.rule_id}') + ': ' + f'{rule.short_desc}') self.rule_has_results = False return rule_interface def rule_end(self, rule: lint.LintRule, context: models.Context): super().rule_end(rule, context) self.terminal_erase_line() if self.rule_has_results: self.terminal_print_line() # If the rule failed, add more information about the rule. if rule in self.per_rule_data and self.per_rule_data[rule]['failed_count']: width = self.term.width or 80 if width > 80: width = 80 self.terminal_print_line( self.term.italic(self._wrap_indent(rule.long_desc, ' '))) self.terminal_print_line() def add_skipped(self, rule: lint.LintRule, context: models.Context, resource: Optional[models.Resource], reason: str, short_info: Optional[str]): super().add_skipped(rule, context, resource, reason, short_info) if not self.show_skipped: return self.rule_has_results = True if short_info: short_info = ' ' + short_info else: short_info = '' if resource: self.terminal_print_line(' - ' + resource.short_path.ljust(OUTPUT_WIDTH) + ' [SKIP]' + short_info) self.terminal_print_line(textwrap.indent(reason, ' ')) else: self.terminal_print_line(' ' + ('(' + reason + ')').ljust(OUTPUT_WIDTH + 2) + ' [SKIP]' + short_info) def add_ok(self, rule: lint.LintRule, context: models.Context, resource: models.Resource, short_info: Optional[str]): super().add_ok(rule, context, resource, short_info) if not self.show_ok: return self.rule_has_results = True if short_info: short_info = ' ' + short_info else: short_info = '' self.terminal_print_line(' - ' + resource.short_path.ljust(OUTPUT_WIDTH) + ' [' + self.term.green(' OK ') + ']' + short_info) def add_failed(self, rule: lint.LintRule, context: models.Context, resource: models.Resource, reason: Optional[str], short_info: Optional[str]): super().add_failed(rule, context, resource, reason, short_info) self.rule_has_results = True rule_data = self.per_rule_data.setdefault(rule, {'failed_count': 0}) rule_data['failed_count'] += 1 if short_info: short_info = ' ' + short_info else: short_info = '' self.terminal_print_line(' - ' + resource.short_path.ljust(OUTPUT_WIDTH) + ' [' + self.term.red('FAIL') + ']' + short_info) if reason: self.terminal_print_line(textwrap.indent(reason, ' ')) def finish(self, context: models.Context): exit_code = super().finish(context) totals = { 'skipped': 0, 'ok': 0, 'failed': 0, } for rule in self.rules_report.values(): totals[rule['overall_status']] += 1 if not self.rule_has_results: self.terminal_print_line() print( f"Rules summary: {totals['skipped']} skipped, {totals['ok']} ok, {totals['failed']} failed" ) return exit_code
0.67104
0.099689
import sys import argparse def reduce(txt_char, key_char, charset, binop): letter = binop(charset.index(txt_char), charset.index(key_char)) letter %= len(charset) return charset[letter] def opcrypt(txt, key, charset, binop): return "".join(reduce(txt_char=i, key_char=j, charset=charset, binop=binop) for (i, j) in zip(txt, key)) def encrypt(txt, key, charset): return opcrypt(txt=txt, key=key, charset=charset, binop=int.__add__) def decrypt(txt, key, charset): return opcrypt(txt=txt, key=key, charset=charset, binop=int.__sub__) def validate(txt, key, charset): txt_set_diff = set(txt).difference(charset) key_set_diff = set(key).difference(charset) if len(txt_set_diff) > 0: raise Exception("txt contains illegal characters %s" % txt_set_diff) if len(key_set_diff) > 0: raise Exception("key contains illegal characters %s" % key_set_diff) len_txt = len(txt) len_key = len(key) if len_key < len_txt: raise Exception("key too short (%d) for given txt (%d)" % (len_key, len_txt)) return True def get_charset(file): with open(file, "r") as charset_file: return "".join(charset_file.read().splitlines()) def get_txt(file): if file == "-": txt = sys.stdin.read() sys.stderr.write("\n") return txt else: with open(file, "r") as txt_file: return "".join(txt_file.read().splitlines()) def get_key(file): with open(file, "r") as key_file: return "".join(key_file.read().splitlines()) def new_parser(): parser = argparse.ArgumentParser(description="One-time pad") parser.add_argument("-v", "--verbose", action="store_true") parser.add_argument("-c", "--charsetfile", required=True, help="path to charset file; pick required minimum") parser.add_argument("-k", "--keyfile", required=True, help="path to the key file") parser.add_argument("-o", "--offset", type=int, default=0, help="key offset; defaults to 0") mode_group = parser.add_mutually_exclusive_group(required=True) mode_group.add_argument("-e", action="store_true", help="encrypt") mode_group.add_argument("-d", action="store_true", help="decrypt") parser.add_argument("txtfile", metavar="TXTFILE", action="store", help="file with text to en/decrypt. use single dash '-' to read from stdin") return parser def main(): parser = new_parser() args = parser.parse_args() charset = get_charset(args.charsetfile) txt = get_txt(args.txtfile) key = get_key(args.keyfile) key = key[args.offset:args.offset + len(txt)] if validate(txt=txt, key=key, charset=charset): if args.e: if args.verbose: print("Encrypting '%s' with key '%s'" % (txt, key), file=sys.stderr) print(encrypt(txt=txt, key=key, charset=charset), file=sys.stdout) elif args.d: if args.verbose: print("Decrypting '%s' with key '%s'" % (txt, key), file=sys.stderr) print(decrypt(txt=txt, key=key, charset=charset), file=sys.stdout) else: parser.print_help() if __name__ == "__main__": main()
otp.py
import sys import argparse def reduce(txt_char, key_char, charset, binop): letter = binop(charset.index(txt_char), charset.index(key_char)) letter %= len(charset) return charset[letter] def opcrypt(txt, key, charset, binop): return "".join(reduce(txt_char=i, key_char=j, charset=charset, binop=binop) for (i, j) in zip(txt, key)) def encrypt(txt, key, charset): return opcrypt(txt=txt, key=key, charset=charset, binop=int.__add__) def decrypt(txt, key, charset): return opcrypt(txt=txt, key=key, charset=charset, binop=int.__sub__) def validate(txt, key, charset): txt_set_diff = set(txt).difference(charset) key_set_diff = set(key).difference(charset) if len(txt_set_diff) > 0: raise Exception("txt contains illegal characters %s" % txt_set_diff) if len(key_set_diff) > 0: raise Exception("key contains illegal characters %s" % key_set_diff) len_txt = len(txt) len_key = len(key) if len_key < len_txt: raise Exception("key too short (%d) for given txt (%d)" % (len_key, len_txt)) return True def get_charset(file): with open(file, "r") as charset_file: return "".join(charset_file.read().splitlines()) def get_txt(file): if file == "-": txt = sys.stdin.read() sys.stderr.write("\n") return txt else: with open(file, "r") as txt_file: return "".join(txt_file.read().splitlines()) def get_key(file): with open(file, "r") as key_file: return "".join(key_file.read().splitlines()) def new_parser(): parser = argparse.ArgumentParser(description="One-time pad") parser.add_argument("-v", "--verbose", action="store_true") parser.add_argument("-c", "--charsetfile", required=True, help="path to charset file; pick required minimum") parser.add_argument("-k", "--keyfile", required=True, help="path to the key file") parser.add_argument("-o", "--offset", type=int, default=0, help="key offset; defaults to 0") mode_group = parser.add_mutually_exclusive_group(required=True) mode_group.add_argument("-e", action="store_true", help="encrypt") mode_group.add_argument("-d", action="store_true", help="decrypt") parser.add_argument("txtfile", metavar="TXTFILE", action="store", help="file with text to en/decrypt. use single dash '-' to read from stdin") return parser def main(): parser = new_parser() args = parser.parse_args() charset = get_charset(args.charsetfile) txt = get_txt(args.txtfile) key = get_key(args.keyfile) key = key[args.offset:args.offset + len(txt)] if validate(txt=txt, key=key, charset=charset): if args.e: if args.verbose: print("Encrypting '%s' with key '%s'" % (txt, key), file=sys.stderr) print(encrypt(txt=txt, key=key, charset=charset), file=sys.stdout) elif args.d: if args.verbose: print("Decrypting '%s' with key '%s'" % (txt, key), file=sys.stderr) print(decrypt(txt=txt, key=key, charset=charset), file=sys.stdout) else: parser.print_help() if __name__ == "__main__": main()
0.305386
0.115187
import rospy import rospkg import cv2 import tf import io import os import numpy as np import json from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError class PushestDatasetJsonWriter: def __init__(self): self.tf_listener = tf.TransformListener() self.bridge = CvBridge() self.image_sub = rospy.Subscriber( "/digit/digit_alpha/image_raw/", Image, self.callback_digit_image) # contact episodes related vars self.contact_episode_idx = 0 self.counter = 0 self.num_incontact = 0 self.min_num_incontact = 5 # to be logged data self.ee_pose2d_list = [] self.obj_pose2d_list = [] self.contact_episode_list = [] self.contact_flag_list = [] self.init_dataset_params() self.dstdir = rospy.get_param("dstdir_dataset") self.bag_name = rospy.get_param("bag_name") rospy.loginfo( "[PushestDatasetJsonWriter] Using bag {0}.bag".format(self.bag_name)) rospack = rospkg.RosPack() self.path_pkg = rospack.get_path("digit_pushing") self.mean_img = cv2.imread( "{0}/local/resources/digit/{1}/mean_img.png".format(self.path_pkg, self.bag_name)).astype(np.float32) self.std_img = cv2.imread( "{0}/local/resources/digit/{1}/std_img.png".format(self.path_pkg, self.bag_name)).astype(np.float32) def make_dir(self, dir): cmd = "mkdir -p {0}".format(dir) os.popen(cmd, 'r') def in_contact(self, img): # Compute per-image sum of stddev squared diff = np.linalg.norm((img - self.mean_img)/self.std_img)**2 diff = diff / self.mean_img.size # Count the percent of pixels that are significantly different from their mean values diff_cnt = np.sum(((img - self.mean_img)/self.std_img)**2 > 4**2) diff_cnt = float(diff_cnt) / float(self.mean_img.size) # contact_flag = diff_cnt > 0.05 contact_flag = diff_cnt > 0.01 return contact_flag def rosimg_to_numpy(self, imgmsg): if hasattr(imgmsg, 'format') and 'compressed' in imgmsg.format: return np.asarray(Image.open(io.BytesIO(imgmsg.data))) return np.frombuffer(imgmsg.data, dtype=np.uint8).reshape(imgmsg.height, imgmsg.width, 3)[:, :, ::-1] def remove_contact_episode(self, episode_idx): indices = [idx for idx, elem in enumerate( self.contact_episode_list) if elem == 4] for i in sorted(indices, reverse=True): del self.contact_episode_list[i] del self.obj_pose2d_list[i] del self.ee_pose2d_list[i] def init_dataset_params(self): self.params = {} self.params['obj_radius'] = 0.088 def save_data2d_json(self): data = {'params': self.params, 'ee_poses_2d': self.ee_pose2d_list, 'obj_poses_2d': self.obj_pose2d_list, 'contact_flag': self.contact_flag_list, 'contact_episode': self.contact_episode_list} dstfile = "{0}/{1}_{2}.json".format(self.dstdir, self.bag_name, self.contact_episode_idx) with open(dstfile, 'w') as outfile: json.dump(data, outfile, indent=4) rospy.loginfo("Wrote json dataset for episodes 0 to {0} at:\n {1} ".format( self.contact_episode_idx, dstfile)) def callback_digit_image(self, msg): try: # img = self.bridge.imgmsg_to_cv2(msg, "bgr8") img = self.rosimg_to_numpy(msg) except CvBridgeError as e: rospy.logwarn( "[PushestDatasetJsonWriter::callback_digit_image] {0}".format(e)) return try: # looks up arg2 frame transform in arg1 frame (trans_obj, rot_obj) = self.tf_listener.lookupTransform( "world", "/object/center/", rospy.Time(0)) (trans_ee, rot_ee) = self.tf_listener.lookupTransform( "world", "/digit/center/", rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logwarn( "[PushestDatasetJsonWriter::callback_digit_image] TF lookup failed") return if (self.in_contact(img)): rot_obj_euler = tf.transformations.euler_from_quaternion(rot_obj) obj_pose2d = [trans_obj[0], trans_obj[1], rot_obj_euler[2]] # (x, y, yaw) rot_ee_euler = tf.transformations.euler_from_quaternion(rot_ee) ee_pose2d = [trans_ee[0], trans_ee[1], rot_ee_euler[2]] # (x, y, yaw) # add to data list being logged self.obj_pose2d_list.append(obj_pose2d) self.ee_pose2d_list.append(ee_pose2d) self.contact_flag_list.append([1]) self.contact_episode_list.append([self.contact_episode_idx]) self.num_incontact = self.num_incontact + 1 else: self.counter = self.counter + 1 # start new contact episode if ((self.counter > 10) & (self.num_incontact > 1)): if (self.num_incontact > self.min_num_incontact): self.save_data2d_json() self.contact_episode_idx = self.contact_episode_idx + 1 else: self.remove_contact_episode(self.contact_episode_idx) self.counter = 0 self.num_incontact = 0 def main(): img_tf_writer = PushestDatasetJsonWriter() rospy.init_node('pushest_dataset_json_writer', anonymous=True) rospy.loginfo("Initialized pushest_dataset_json_writer node.") try: rospy.spin() except KeyboardInterrupt: print("Shutting down") if __name__ == '__main__': main()
data_collection/digit_pushing/src/PushestDatasetJsonWriter.py
import rospy import rospkg import cv2 import tf import io import os import numpy as np import json from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError class PushestDatasetJsonWriter: def __init__(self): self.tf_listener = tf.TransformListener() self.bridge = CvBridge() self.image_sub = rospy.Subscriber( "/digit/digit_alpha/image_raw/", Image, self.callback_digit_image) # contact episodes related vars self.contact_episode_idx = 0 self.counter = 0 self.num_incontact = 0 self.min_num_incontact = 5 # to be logged data self.ee_pose2d_list = [] self.obj_pose2d_list = [] self.contact_episode_list = [] self.contact_flag_list = [] self.init_dataset_params() self.dstdir = rospy.get_param("dstdir_dataset") self.bag_name = rospy.get_param("bag_name") rospy.loginfo( "[PushestDatasetJsonWriter] Using bag {0}.bag".format(self.bag_name)) rospack = rospkg.RosPack() self.path_pkg = rospack.get_path("digit_pushing") self.mean_img = cv2.imread( "{0}/local/resources/digit/{1}/mean_img.png".format(self.path_pkg, self.bag_name)).astype(np.float32) self.std_img = cv2.imread( "{0}/local/resources/digit/{1}/std_img.png".format(self.path_pkg, self.bag_name)).astype(np.float32) def make_dir(self, dir): cmd = "mkdir -p {0}".format(dir) os.popen(cmd, 'r') def in_contact(self, img): # Compute per-image sum of stddev squared diff = np.linalg.norm((img - self.mean_img)/self.std_img)**2 diff = diff / self.mean_img.size # Count the percent of pixels that are significantly different from their mean values diff_cnt = np.sum(((img - self.mean_img)/self.std_img)**2 > 4**2) diff_cnt = float(diff_cnt) / float(self.mean_img.size) # contact_flag = diff_cnt > 0.05 contact_flag = diff_cnt > 0.01 return contact_flag def rosimg_to_numpy(self, imgmsg): if hasattr(imgmsg, 'format') and 'compressed' in imgmsg.format: return np.asarray(Image.open(io.BytesIO(imgmsg.data))) return np.frombuffer(imgmsg.data, dtype=np.uint8).reshape(imgmsg.height, imgmsg.width, 3)[:, :, ::-1] def remove_contact_episode(self, episode_idx): indices = [idx for idx, elem in enumerate( self.contact_episode_list) if elem == 4] for i in sorted(indices, reverse=True): del self.contact_episode_list[i] del self.obj_pose2d_list[i] del self.ee_pose2d_list[i] def init_dataset_params(self): self.params = {} self.params['obj_radius'] = 0.088 def save_data2d_json(self): data = {'params': self.params, 'ee_poses_2d': self.ee_pose2d_list, 'obj_poses_2d': self.obj_pose2d_list, 'contact_flag': self.contact_flag_list, 'contact_episode': self.contact_episode_list} dstfile = "{0}/{1}_{2}.json".format(self.dstdir, self.bag_name, self.contact_episode_idx) with open(dstfile, 'w') as outfile: json.dump(data, outfile, indent=4) rospy.loginfo("Wrote json dataset for episodes 0 to {0} at:\n {1} ".format( self.contact_episode_idx, dstfile)) def callback_digit_image(self, msg): try: # img = self.bridge.imgmsg_to_cv2(msg, "bgr8") img = self.rosimg_to_numpy(msg) except CvBridgeError as e: rospy.logwarn( "[PushestDatasetJsonWriter::callback_digit_image] {0}".format(e)) return try: # looks up arg2 frame transform in arg1 frame (trans_obj, rot_obj) = self.tf_listener.lookupTransform( "world", "/object/center/", rospy.Time(0)) (trans_ee, rot_ee) = self.tf_listener.lookupTransform( "world", "/digit/center/", rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logwarn( "[PushestDatasetJsonWriter::callback_digit_image] TF lookup failed") return if (self.in_contact(img)): rot_obj_euler = tf.transformations.euler_from_quaternion(rot_obj) obj_pose2d = [trans_obj[0], trans_obj[1], rot_obj_euler[2]] # (x, y, yaw) rot_ee_euler = tf.transformations.euler_from_quaternion(rot_ee) ee_pose2d = [trans_ee[0], trans_ee[1], rot_ee_euler[2]] # (x, y, yaw) # add to data list being logged self.obj_pose2d_list.append(obj_pose2d) self.ee_pose2d_list.append(ee_pose2d) self.contact_flag_list.append([1]) self.contact_episode_list.append([self.contact_episode_idx]) self.num_incontact = self.num_incontact + 1 else: self.counter = self.counter + 1 # start new contact episode if ((self.counter > 10) & (self.num_incontact > 1)): if (self.num_incontact > self.min_num_incontact): self.save_data2d_json() self.contact_episode_idx = self.contact_episode_idx + 1 else: self.remove_contact_episode(self.contact_episode_idx) self.counter = 0 self.num_incontact = 0 def main(): img_tf_writer = PushestDatasetJsonWriter() rospy.init_node('pushest_dataset_json_writer', anonymous=True) rospy.loginfo("Initialized pushest_dataset_json_writer node.") try: rospy.spin() except KeyboardInterrupt: print("Shutting down") if __name__ == '__main__': main()
0.491944
0.176405
import sys, getopt import glob, os import numpy as np from fastq_reader import Fastq_Reader help_message = 'usage example: python intermediate_read_clusters.py -r 1 -i /project/home/hashed_reads/ -o /project/home/cluster_vectors/' if __name__ == "__main__": try: opts, args = getopt.getopt(sys.argv[1:],'hr:i:o:',["--filerank=","inputdir=","outputdir="]) except: print help_message sys.exit(2) for opt, arg in opts: if opt in ('-h','--help'): print help_message sys.exit() elif opt in ('-r',"--filerank"): fr = int(arg)-1 elif opt in ('-i','--inputdir'): inputdir = arg if inputdir[-1] != '/': inputdir += '/' elif opt in ('-o','--outputdir'): outputdir = arg if outputdir[-1] != '/': outputdir += '/' hashobject = Fastq_Reader(inputdir,outputdir) Hashq_Files = glob.glob(os.path.join(hashobject.input_path,'*.hashq.*')) hashobject.infile = Hashq_Files[fr] hashobject.outfile = hashobject.output_path + 'intermediate_clusters/' + str(fr) hashobject.global_weights = np.load(hashobject.output_path + 'global_weights.npy') global_weight_sum = hashobject.global_weights.sum(dtype=np.float64) Cluster_Files = glob.glob(os.path.join(hashobject.output_path,'*.cluster.npy')) Cluster_Files = [(int(cf[cf.rfind('/')+1:cf.index('.')]),cf) for cf in Cluster_Files] cluster_sizes = np.load(hashobject.output_path+'kmer_cluster_sizes.npy') total_set_size = 0 cluster_weights = [] cluster_keys = [] outpart = 0 for ci,cf in Cluster_Files: # ignore super clusters and super small clusters if cluster_sizes[ci] < 0.2*2**hashobject.hash_size: cw = np.load(cf) cw_sum_prob = hashobject.global_weights[cw].sum(dtype=np.float64)/global_weight_sum if cw_sum_prob > 0.00002: cluster_weights.append((set(cw),cw_sum_prob)) cluster_keys.append(cf[cf.rfind('/')+1:cf.rfind('.')]) total_set_size += len(cw) if total_set_size > 50*10**6: hashobject.membership_generator(cluster_weights,cluster_keys,outpart) cluster_weights = [] cluster_keys = [] total_set_size = 0 outpart += 1 if len(cluster_weights) > 0: hashobject.membership_generator(cluster_weights,cluster_keys,outpart)
misc/intermediate_read_clusters.py
import sys, getopt import glob, os import numpy as np from fastq_reader import Fastq_Reader help_message = 'usage example: python intermediate_read_clusters.py -r 1 -i /project/home/hashed_reads/ -o /project/home/cluster_vectors/' if __name__ == "__main__": try: opts, args = getopt.getopt(sys.argv[1:],'hr:i:o:',["--filerank=","inputdir=","outputdir="]) except: print help_message sys.exit(2) for opt, arg in opts: if opt in ('-h','--help'): print help_message sys.exit() elif opt in ('-r',"--filerank"): fr = int(arg)-1 elif opt in ('-i','--inputdir'): inputdir = arg if inputdir[-1] != '/': inputdir += '/' elif opt in ('-o','--outputdir'): outputdir = arg if outputdir[-1] != '/': outputdir += '/' hashobject = Fastq_Reader(inputdir,outputdir) Hashq_Files = glob.glob(os.path.join(hashobject.input_path,'*.hashq.*')) hashobject.infile = Hashq_Files[fr] hashobject.outfile = hashobject.output_path + 'intermediate_clusters/' + str(fr) hashobject.global_weights = np.load(hashobject.output_path + 'global_weights.npy') global_weight_sum = hashobject.global_weights.sum(dtype=np.float64) Cluster_Files = glob.glob(os.path.join(hashobject.output_path,'*.cluster.npy')) Cluster_Files = [(int(cf[cf.rfind('/')+1:cf.index('.')]),cf) for cf in Cluster_Files] cluster_sizes = np.load(hashobject.output_path+'kmer_cluster_sizes.npy') total_set_size = 0 cluster_weights = [] cluster_keys = [] outpart = 0 for ci,cf in Cluster_Files: # ignore super clusters and super small clusters if cluster_sizes[ci] < 0.2*2**hashobject.hash_size: cw = np.load(cf) cw_sum_prob = hashobject.global_weights[cw].sum(dtype=np.float64)/global_weight_sum if cw_sum_prob > 0.00002: cluster_weights.append((set(cw),cw_sum_prob)) cluster_keys.append(cf[cf.rfind('/')+1:cf.rfind('.')]) total_set_size += len(cw) if total_set_size > 50*10**6: hashobject.membership_generator(cluster_weights,cluster_keys,outpart) cluster_weights = [] cluster_keys = [] total_set_size = 0 outpart += 1 if len(cluster_weights) > 0: hashobject.membership_generator(cluster_weights,cluster_keys,outpart)
0.096219
0.07521
from enum import Enum import logging from ..services import game_service, game_message_service, rcon_service, status_service from ..exceptions import InvalidOperationException from ..services.status_service import Status IDLE_TRACKERS = {} PREVIOUS_IDLE_STATUSES = {} async def auto_shutdown_loop(bot): logging.info('Running auto-shutdown loop') games = await status_service.list_game_statuses() for game in games: status = games[game] if status != Status.RUNNING: logging.info( '%s is not running so will not be monitored for inactivity', game) _deregister_game(game) elif game not in IDLE_TRACKERS: logging.info('%s is now being monitored for inactivity', game) await _register_game(game) else: logging.info('Checking idle status for %s', game) idle_status = IDLE_TRACKERS[game].check_idle_status() previous_idle_status = PREVIOUS_IDLE_STATUSES.get(game) if idle_status == previous_idle_status: logging.info( 'No change in idle status for %s - still %s', game, idle_status) return # Only react when the status changes - not on every iteration logging.info('Idle status for %s has changed - was %s, now %s', game, previous_idle_status, idle_status) PREVIOUS_IDLE_STATUSES[game] = idle_status if idle_status == IdleStatus.SHUTDOWN or idle_status == IdleStatus.UNKNOWN_SHUTDOWN: logging.info('Stopping %s due to inactivity', game) await game_message_service.send_shutdown_notification(bot, game) try: force = previous_idle_status == IdleStatus.SHUTDOWN_FAILED logging.info('Stopping %s with force=%s', game, force) await game_service.stop(game, force) await game_message_service.send_shutdown_finished(bot, game) except InvalidOperationException: await game_message_service.send_shutdown_failed(bot, game) logging.error( 'Failed to stop %s, will use force next time', game) PREVIOUS_IDLE_STATUSES[game] = IdleStatus.SHUTDOWN_FAILED if idle_status == IdleStatus.UNKNOWN_WARNING: await game_message_service.send_unknown_idle_status_message(bot, game) if idle_status == IdleStatus.WARNING: await game_message_service.send_shutdown_warning(bot, game) if idle_status == IdleStatus.IDLE: await game_message_service.send_idle_message(bot, game) def reset_idle_counter(game): if game in IDLE_TRACKERS: IDLE_TRACKERS[game].reset_count() PREVIOUS_IDLE_STATUSES[game] = None async def _register_game(game): rcon_client = await rcon_service.get_rcon_client(game) IDLE_TRACKERS[game] = IdleTracker(rcon_client) def _deregister_game(game): IDLE_TRACKERS.pop(game, None) PREVIOUS_IDLE_STATUSES.pop(game, None) class IdleStatus(Enum): IN_USE = 1 IDLE = 2 WARNING = 3 SHUTDOWN = 4 UNKNOWN = 5 UNKNOWN_WARNING = 6 UNKNOWN_SHUTDOWN = 7 SHUTDOWN_FAILED = 8 WARNING_COUNT = 2 SHUTDOWN_COUNT = 3 # Only send an unknown warning if we see this twice in a row - it can happen # naturally if the stutdown loop runs while the server is starting up UNKNOWN_WARNING_COUNT = 2 # Give the user enough time to respond and cancel the shutdown UNKNOWN_SHUTDOWN_COUNT = 5 class IdleTracker(): def __init__(self, rcon_client): self.rcon_client = rcon_client self.game_time = None self.idle_count = 0 self.unknown_count = 0 def check_idle_status(self): try: latest_game_time = self.rcon_client.game_time() self.unknown_count = 0 if self.game_time is not None and latest_game_time == self.game_time: self.idle_count += 1 if self.idle_count >= SHUTDOWN_COUNT: return IdleStatus.SHUTDOWN if self.idle_count >= WARNING_COUNT: return IdleStatus.WARNING return IdleStatus.IDLE self.game_time = latest_game_time self.idle_count = 0 return IdleStatus.IN_USE except Exception: # pylint: disable=broad-except self.unknown_count += 1 if self.unknown_count >= UNKNOWN_SHUTDOWN_COUNT: return IdleStatus.UNKNOWN_SHUTDOWN if self.unknown_count >= UNKNOWN_WARNING_COUNT: return IdleStatus.UNKNOWN_WARNING return IdleStatus.UNKNOWN def reset_count(self): self.idle_count = 0 self.unknown_count = 0
bot/services/inactivity_service.py
from enum import Enum import logging from ..services import game_service, game_message_service, rcon_service, status_service from ..exceptions import InvalidOperationException from ..services.status_service import Status IDLE_TRACKERS = {} PREVIOUS_IDLE_STATUSES = {} async def auto_shutdown_loop(bot): logging.info('Running auto-shutdown loop') games = await status_service.list_game_statuses() for game in games: status = games[game] if status != Status.RUNNING: logging.info( '%s is not running so will not be monitored for inactivity', game) _deregister_game(game) elif game not in IDLE_TRACKERS: logging.info('%s is now being monitored for inactivity', game) await _register_game(game) else: logging.info('Checking idle status for %s', game) idle_status = IDLE_TRACKERS[game].check_idle_status() previous_idle_status = PREVIOUS_IDLE_STATUSES.get(game) if idle_status == previous_idle_status: logging.info( 'No change in idle status for %s - still %s', game, idle_status) return # Only react when the status changes - not on every iteration logging.info('Idle status for %s has changed - was %s, now %s', game, previous_idle_status, idle_status) PREVIOUS_IDLE_STATUSES[game] = idle_status if idle_status == IdleStatus.SHUTDOWN or idle_status == IdleStatus.UNKNOWN_SHUTDOWN: logging.info('Stopping %s due to inactivity', game) await game_message_service.send_shutdown_notification(bot, game) try: force = previous_idle_status == IdleStatus.SHUTDOWN_FAILED logging.info('Stopping %s with force=%s', game, force) await game_service.stop(game, force) await game_message_service.send_shutdown_finished(bot, game) except InvalidOperationException: await game_message_service.send_shutdown_failed(bot, game) logging.error( 'Failed to stop %s, will use force next time', game) PREVIOUS_IDLE_STATUSES[game] = IdleStatus.SHUTDOWN_FAILED if idle_status == IdleStatus.UNKNOWN_WARNING: await game_message_service.send_unknown_idle_status_message(bot, game) if idle_status == IdleStatus.WARNING: await game_message_service.send_shutdown_warning(bot, game) if idle_status == IdleStatus.IDLE: await game_message_service.send_idle_message(bot, game) def reset_idle_counter(game): if game in IDLE_TRACKERS: IDLE_TRACKERS[game].reset_count() PREVIOUS_IDLE_STATUSES[game] = None async def _register_game(game): rcon_client = await rcon_service.get_rcon_client(game) IDLE_TRACKERS[game] = IdleTracker(rcon_client) def _deregister_game(game): IDLE_TRACKERS.pop(game, None) PREVIOUS_IDLE_STATUSES.pop(game, None) class IdleStatus(Enum): IN_USE = 1 IDLE = 2 WARNING = 3 SHUTDOWN = 4 UNKNOWN = 5 UNKNOWN_WARNING = 6 UNKNOWN_SHUTDOWN = 7 SHUTDOWN_FAILED = 8 WARNING_COUNT = 2 SHUTDOWN_COUNT = 3 # Only send an unknown warning if we see this twice in a row - it can happen # naturally if the stutdown loop runs while the server is starting up UNKNOWN_WARNING_COUNT = 2 # Give the user enough time to respond and cancel the shutdown UNKNOWN_SHUTDOWN_COUNT = 5 class IdleTracker(): def __init__(self, rcon_client): self.rcon_client = rcon_client self.game_time = None self.idle_count = 0 self.unknown_count = 0 def check_idle_status(self): try: latest_game_time = self.rcon_client.game_time() self.unknown_count = 0 if self.game_time is not None and latest_game_time == self.game_time: self.idle_count += 1 if self.idle_count >= SHUTDOWN_COUNT: return IdleStatus.SHUTDOWN if self.idle_count >= WARNING_COUNT: return IdleStatus.WARNING return IdleStatus.IDLE self.game_time = latest_game_time self.idle_count = 0 return IdleStatus.IN_USE except Exception: # pylint: disable=broad-except self.unknown_count += 1 if self.unknown_count >= UNKNOWN_SHUTDOWN_COUNT: return IdleStatus.UNKNOWN_SHUTDOWN if self.unknown_count >= UNKNOWN_WARNING_COUNT: return IdleStatus.UNKNOWN_WARNING return IdleStatus.UNKNOWN def reset_count(self): self.idle_count = 0 self.unknown_count = 0
0.387574
0.070816
from headers.static_values import * from worker import * from utils import * import requests class Forwarded(): def __init__(self, destination): self.destination = destination self.mime_types = MimeTypes.get_mime_list() self.payloads = Payloads.get_payload_list(Config.revshell_ip, Config.revshell_port) self.test_array = [] def revshell_tests(self): for payload in self.payloads: self.test_array.append( PreRequest( req_type = "GET", destination = self.destination, payload = payload, headers = { "User-Agent" : "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0", "Forwarded" : payload }, body = None, expected_status_code = Config.initial_response.status_code ) ) def forwarded_fuzz_tests(self): forwarded_fuzz = [ 'for="_mdn"', 'For="[::1]:80"', 'for=0.0.0.0;proto=http;by=0.0.0.0', 'for=0.0.0.0, for=127.0.0.1, for=localhost' ] for forwarded in forwarded_fuzz: self.test_array.append( PreRequest( req_type = "GET", destination = self.destination, payload = forwarded, headers = { "User-Agent" : "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0", "Forwarded" : forwarded }, body = None, expected_status_code = Config.initial_response.status_code ) ) def generate_tests(self): if Config.test_level >= Config.TEST_LEVEL_OPTIMAL: self.revshell_tests() self.forwarded_fuzz_tests() def get_tests(self): self.generate_tests() return self.test_array
headers/forwarded.py
from headers.static_values import * from worker import * from utils import * import requests class Forwarded(): def __init__(self, destination): self.destination = destination self.mime_types = MimeTypes.get_mime_list() self.payloads = Payloads.get_payload_list(Config.revshell_ip, Config.revshell_port) self.test_array = [] def revshell_tests(self): for payload in self.payloads: self.test_array.append( PreRequest( req_type = "GET", destination = self.destination, payload = payload, headers = { "User-Agent" : "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0", "Forwarded" : payload }, body = None, expected_status_code = Config.initial_response.status_code ) ) def forwarded_fuzz_tests(self): forwarded_fuzz = [ 'for="_mdn"', 'For="[::1]:80"', 'for=0.0.0.0;proto=http;by=0.0.0.0', 'for=0.0.0.0, for=127.0.0.1, for=localhost' ] for forwarded in forwarded_fuzz: self.test_array.append( PreRequest( req_type = "GET", destination = self.destination, payload = forwarded, headers = { "User-Agent" : "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0", "Forwarded" : forwarded }, body = None, expected_status_code = Config.initial_response.status_code ) ) def generate_tests(self): if Config.test_level >= Config.TEST_LEVEL_OPTIMAL: self.revshell_tests() self.forwarded_fuzz_tests() def get_tests(self): self.generate_tests() return self.test_array
0.427516
0.133049
from corpus.event import EventManager, EventSeriesManager, EventStorage from corpus.config import EventDataSourceConfig from corpus.quality.rating import RatingManager from corpus.datasources.download import Download class EventDataSource(object): ''' a data source for events ''' def __init__(self,eventManager:EventManager,eventSeriesManager:EventSeriesManager,sourceConfig=EventDataSourceConfig): ''' constructor Args: sourceConfig(EventDataSourceConfig): the configuration for the EventDataSource eventManager(EventManager): manager for the events eventSeriesManager(EventSeriesManager): manager for the eventSeries ''' self.sourceConfig=sourceConfig self.name=self.sourceConfig.name self.eventManager=eventManager self.eventManager.dataSource=self self.eventSeriesManager=eventSeriesManager self.eventSeriesManager.dataSource=self pass def load(self,forceUpdate=False): ''' load this data source ''' self.eventSeriesManager.configure() self.eventManager.configure() # first events self.eventManager.fromCache(force=forceUpdate) # then series self.eventSeriesManager.fromCache(force=forceUpdate) # TODO use same foreign key in all dataSources self.eventManager.linkSeriesAndEvent(self.eventSeriesManager,"inEventSeries") def rateAll(self,ratingManager:RatingManager): ''' rate all events and series based on the given rating Manager ''' self.eventManager.rateAll(ratingManager) self.eventSeriesManager.rateAll(ratingManager) class EventCorpus(object): ''' Towards a gold standard event corpus and observatory ... ''' def __init__(self,debug=False,verbose=False): ''' Constructor Args: debug(bool): set debugging if True verbose(bool): set verbose output if True ''' self.debug=debug self.verbose=verbose self.eventDataSources={} def addDataSource(self, eventDataSource:EventDataSource): ''' adds the given eventDataSource Args: eventDataSource: EventDataSource ''' self.eventDataSources[eventDataSource.sourceConfig.lookupId]=eventDataSource pass def loadAll(self,forceUpdate:bool=False): ''' load all eventDataSources Args: forceUpdate(bool): True if the data should be fetched from the source instead of the cache ''' for eventDataSource in self.eventDataSources.values(): eventDataSource.load(forceUpdate=forceUpdate) @staticmethod def download(): ''' download the EventCorpus.db if needed ''' fileName="EventCorpus.db" url = f"https://github.com/WolfgangFahl/ConferenceCorpus/wiki/data/{fileName}.gz" targetDirectory=EventStorage.getStorageConfig().getCachePath() Download.downloadBackupFile(url, fileName, targetDirectory)
corpus/eventcorpus.py
from corpus.event import EventManager, EventSeriesManager, EventStorage from corpus.config import EventDataSourceConfig from corpus.quality.rating import RatingManager from corpus.datasources.download import Download class EventDataSource(object): ''' a data source for events ''' def __init__(self,eventManager:EventManager,eventSeriesManager:EventSeriesManager,sourceConfig=EventDataSourceConfig): ''' constructor Args: sourceConfig(EventDataSourceConfig): the configuration for the EventDataSource eventManager(EventManager): manager for the events eventSeriesManager(EventSeriesManager): manager for the eventSeries ''' self.sourceConfig=sourceConfig self.name=self.sourceConfig.name self.eventManager=eventManager self.eventManager.dataSource=self self.eventSeriesManager=eventSeriesManager self.eventSeriesManager.dataSource=self pass def load(self,forceUpdate=False): ''' load this data source ''' self.eventSeriesManager.configure() self.eventManager.configure() # first events self.eventManager.fromCache(force=forceUpdate) # then series self.eventSeriesManager.fromCache(force=forceUpdate) # TODO use same foreign key in all dataSources self.eventManager.linkSeriesAndEvent(self.eventSeriesManager,"inEventSeries") def rateAll(self,ratingManager:RatingManager): ''' rate all events and series based on the given rating Manager ''' self.eventManager.rateAll(ratingManager) self.eventSeriesManager.rateAll(ratingManager) class EventCorpus(object): ''' Towards a gold standard event corpus and observatory ... ''' def __init__(self,debug=False,verbose=False): ''' Constructor Args: debug(bool): set debugging if True verbose(bool): set verbose output if True ''' self.debug=debug self.verbose=verbose self.eventDataSources={} def addDataSource(self, eventDataSource:EventDataSource): ''' adds the given eventDataSource Args: eventDataSource: EventDataSource ''' self.eventDataSources[eventDataSource.sourceConfig.lookupId]=eventDataSource pass def loadAll(self,forceUpdate:bool=False): ''' load all eventDataSources Args: forceUpdate(bool): True if the data should be fetched from the source instead of the cache ''' for eventDataSource in self.eventDataSources.values(): eventDataSource.load(forceUpdate=forceUpdate) @staticmethod def download(): ''' download the EventCorpus.db if needed ''' fileName="EventCorpus.db" url = f"https://github.com/WolfgangFahl/ConferenceCorpus/wiki/data/{fileName}.gz" targetDirectory=EventStorage.getStorageConfig().getCachePath() Download.downloadBackupFile(url, fileName, targetDirectory)
0.374562
0.128908
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import altair as alt import pandas as pd import pandas as pd import altair as alt from vega_datasets import data import dash_bootstrap_components as dbc app = dash.Dash(__name__, assets_folder='assets') server = app.server df = pd.read_csv("data/merged_data_clean.csv") def create_map(alcohol_type = 'beer', region = "World"): """ Create choropleth heatmap based on alcoholic consumption and region. Cloropleth colour scheme will change depending on alcohol type selected. The zoom of map will adjust depending on region selected. Parameters ---------- alcohol_type : str {‘wine’, ‘beer’, 'spirit'} Type of alcohol to show on choropleth. region: str {'World', 'Asia', 'Europe', 'Africa', 'Americas', 'Oceania'} Returns ------- altair Chart object Choropleth of chosen alcohol type Examples -------- >>> create_map('spirit', 'Europe') """ # dictionary to store zoom scales and text for bar chart title region_dict = {"World":[140, 450, 400, 'the World'], "Asia":[400, -190, 520, 'Asia'], "Europe":[800, 300, 1100, 'Europe'], "Africa":[400, 300, 310, 'Africa'], "Americas":[200, 900, 360, 'the Americas'], "Oceania":[500, -800, 50, 'Oceania']} # set colour scheme of map depending on alcohol type if alcohol_type == 'wine': map_color = ['#f9f9f9', '#720b18'] elif alcohol_type == 'beer': map_color = ['#f9f9f9', '#DAA520'] else: map_color = ['#f9f9f9', '#67b2e5', '#1f78b5'] # get columns for specific to the alcohol type selected cols = [x for x in df.columns if alcohol_type in x] cols.append('country') # this is to select the rank column to sort if region == 'World': col_to_filter = cols[2] else: col_to_filter = cols[3] # Create map plot map_plot = alt.Chart(alt.topo_feature(data.world_110m.url, 'countries')).mark_geoshape( stroke='white', strokeWidth=0.5 ).encode( alt.Color(field = cols[1], #proportion of alcohol type type = 'quantitative', scale=alt.Scale(domain=[0, 1], range=map_color), legend=alt.Legend(orient='top', title = f'Proportion of total servings per person from {alcohol_type}') ), tooltip = [ {"field": cols[4], "type": "nominal", 'title': "Country"}, {"field": cols[1], "type": "quantitative", 'title': f'Proportion of total servings from {alcohol_type}', 'format':'.2f'}, {"field": cols[0], "type": "quantitative", 'title': f'Total {alcohol_type} servings'}, {"field": cols[3], "type": "quantitative", 'title': 'Continent rank'}, {"field": cols[2], "type": "quantitative", 'title': 'Global rank'}, ] ).transform_lookup( lookup='id', from_=alt.LookupData(df, 'id', fields = cols) ).project( type='mercator', scale = region_dict[region][0], translate = [region_dict[region][1], region_dict[region][2]] ).properties( width=900, height=600, ) bar = alt.Chart(df).mark_bar().encode( alt.X( field=cols[1], #proportion of alcohol type type='quantitative', title = "Proportion Consumed", scale=alt.Scale(domain=[0, 1]), ), alt.Y( field='country', type='nominal', sort=alt.EncodingSortField(field=cols[1], op='max', order='descending'), title='' ), alt.Fill( field = cols[1], type = 'quantitative', scale=alt.Scale(domain=[0, 1], range=map_color), legend=None), tooltip = [ {"field": cols[4], "type": "nominal", 'title': "Country"}, {"field": cols[1], "type": "quantitative", 'title': f'Proportion of total servings per person from {alcohol_type}', 'format':'.2f'}, {"field": cols[0], "type": "quantitative", 'title': f'Total {alcohol_type} servings'}, {"field": cols[3], "type": "quantitative", 'title': 'Continent rank'}, {"field": cols[2], "type": "quantitative", 'title': 'Global rank'}, ] ).transform_filter(alt.datum.region == region if region != 'World' else alt.datum.total_servings >= 0 ).transform_window( sort=[alt.SortField(cols[1], order="descending")], rank="rank(col_to_filter)" ).transform_filter( alt.datum.rank <= 20 ).properties( title=f"Top 20 Countries that love {alcohol_type.title()} in {region_dict[region][3]}", width = 400, height = 600 ) # concatenate map and bar chart plots return alt.hconcat(map_plot, bar).configure_legend( gradientLength=300, gradientThickness=20, titleLimit= 0, labelFontSize=15, titleFontSize=20 ).configure_axis( labelFontSize=15, titleFontSize=20 ).configure_title( fontSize=20 ) header = dbc.Jumbotron( [ dbc.Container( [ html.H1("Which Countries are Beer-lovers, Wine-lovers, or Spirit-lovers?", className="display-3", style={'color': 'blue', 'font-family':'Book Antiqua'}), html.H1( "The following dashboard provides a visual overview on the proportion of \ global alcohol consumption across beer, wine and spirits in 2010. \ Users can simultaneously adjust the geographic location and specific \ alcohol type of their choice. The horizontal bar chart on the right of the \ map dynamically updates as different geographies and alcohol types are selected.", className="lead", style={'color': 'black', 'font-weight':'lighter', 'font-family':'Book Antiqua', 'font-size':20}), html.H1("______", style={'color': 'white', 'font-size':10}), html.H1( "Note: Proportions are calculated as a ratio of total servings for a specific type of drink \ divided by the total servings of all drinks in the country. As a result, countries with low total servings \ of alchohol may have unusually high ratios as shown in the case of Saudi Arabia.", className="lead", style={'color': 'black', 'font-weight':'lighter', 'font-family':'Book Antiqua', 'font-size':20}), # html.H1("______", style={'color': 'white', 'font-size':10}), html.A('Data Source: ',style={'color': 'black', 'font-family':'Book Antiqua'}), html.A("FiveThirtyEight", href='https://github.com/fivethirtyeight/data/tree/master/alcohol-consumption'), html.H1("______", style={'color': 'white', 'font-size':10}), html.H1('Adjust the cells below:' , style={'color': 'black', 'font-size': 20,'font-family':'Book Antiqua'}), ], fluid=True, ) ], fluid=True, ) # Drop-down and Map Plot content = dbc.Container([ dbc.Row( [dbc.Col( # Drink type dropdown dcc.Dropdown( id='dd-chart', options=[ {'label': 'Beer', 'value': 'beer'}, {'label': 'Wine', 'value': 'wine'}, {'label': 'Spirits', 'value': 'spirit'}, ], value='beer', style=dict(width='30%', verticalAlign="middle") )), dbc.Col( # Region dropdown dcc.Dropdown( id='dd-chart2', options=[ {'label': 'World', 'value': 'World'}, {'label': 'Asia', 'value': 'Asia'}, {'label': 'Europe', 'value': 'Europe'}, {'label': 'Africa', 'value': 'Africa'}, {'label': 'Americas', 'value': 'Americas'}, {'label': 'Oceania', 'value': 'Oceania'} ], value='World', style=dict(width='30%', verticalAlign="middle") )), dbc.Col( html.Iframe( sandbox='allow-scripts', id='plot', height='1000', width='1500', style={'border-width': '0'}, # need to change the category here under the create_map function srcDoc= create_map().to_html() )), ] ) ] ) app.layout = html.Div([header, content]) # call back to update visualizations based on dropdown selections @app.callback( dash.dependencies.Output('plot', 'srcDoc'), [dash.dependencies.Input('dd-chart', 'value'), dash.dependencies.Input('dd-chart2', 'value')]) def update_plot(alcohol_type, region): """ #Function takes in an alcohol_type and region and calls create_map to update Altair figure Parameters ---------- alcohol_type : str {‘wine’, ‘beer’, 'spirit'} Type of alcohol to show on choropleth. region: str {'World', 'Asia', 'Europe', 'Africa', 'Americas', 'Oceania'} Returns ------- altair Chart object Choropleth of chosen alcohol type Examples -------- >>> update_plot('spirit', 'Europe') """ updated_plot = create_map(alcohol_type, region).to_html() return updated_plot if __name__ == '__main__': app.run_server(debug=True)# Create your app here
app.py
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import altair as alt import pandas as pd import pandas as pd import altair as alt from vega_datasets import data import dash_bootstrap_components as dbc app = dash.Dash(__name__, assets_folder='assets') server = app.server df = pd.read_csv("data/merged_data_clean.csv") def create_map(alcohol_type = 'beer', region = "World"): """ Create choropleth heatmap based on alcoholic consumption and region. Cloropleth colour scheme will change depending on alcohol type selected. The zoom of map will adjust depending on region selected. Parameters ---------- alcohol_type : str {‘wine’, ‘beer’, 'spirit'} Type of alcohol to show on choropleth. region: str {'World', 'Asia', 'Europe', 'Africa', 'Americas', 'Oceania'} Returns ------- altair Chart object Choropleth of chosen alcohol type Examples -------- >>> create_map('spirit', 'Europe') """ # dictionary to store zoom scales and text for bar chart title region_dict = {"World":[140, 450, 400, 'the World'], "Asia":[400, -190, 520, 'Asia'], "Europe":[800, 300, 1100, 'Europe'], "Africa":[400, 300, 310, 'Africa'], "Americas":[200, 900, 360, 'the Americas'], "Oceania":[500, -800, 50, 'Oceania']} # set colour scheme of map depending on alcohol type if alcohol_type == 'wine': map_color = ['#f9f9f9', '#720b18'] elif alcohol_type == 'beer': map_color = ['#f9f9f9', '#DAA520'] else: map_color = ['#f9f9f9', '#67b2e5', '#1f78b5'] # get columns for specific to the alcohol type selected cols = [x for x in df.columns if alcohol_type in x] cols.append('country') # this is to select the rank column to sort if region == 'World': col_to_filter = cols[2] else: col_to_filter = cols[3] # Create map plot map_plot = alt.Chart(alt.topo_feature(data.world_110m.url, 'countries')).mark_geoshape( stroke='white', strokeWidth=0.5 ).encode( alt.Color(field = cols[1], #proportion of alcohol type type = 'quantitative', scale=alt.Scale(domain=[0, 1], range=map_color), legend=alt.Legend(orient='top', title = f'Proportion of total servings per person from {alcohol_type}') ), tooltip = [ {"field": cols[4], "type": "nominal", 'title': "Country"}, {"field": cols[1], "type": "quantitative", 'title': f'Proportion of total servings from {alcohol_type}', 'format':'.2f'}, {"field": cols[0], "type": "quantitative", 'title': f'Total {alcohol_type} servings'}, {"field": cols[3], "type": "quantitative", 'title': 'Continent rank'}, {"field": cols[2], "type": "quantitative", 'title': 'Global rank'}, ] ).transform_lookup( lookup='id', from_=alt.LookupData(df, 'id', fields = cols) ).project( type='mercator', scale = region_dict[region][0], translate = [region_dict[region][1], region_dict[region][2]] ).properties( width=900, height=600, ) bar = alt.Chart(df).mark_bar().encode( alt.X( field=cols[1], #proportion of alcohol type type='quantitative', title = "Proportion Consumed", scale=alt.Scale(domain=[0, 1]), ), alt.Y( field='country', type='nominal', sort=alt.EncodingSortField(field=cols[1], op='max', order='descending'), title='' ), alt.Fill( field = cols[1], type = 'quantitative', scale=alt.Scale(domain=[0, 1], range=map_color), legend=None), tooltip = [ {"field": cols[4], "type": "nominal", 'title': "Country"}, {"field": cols[1], "type": "quantitative", 'title': f'Proportion of total servings per person from {alcohol_type}', 'format':'.2f'}, {"field": cols[0], "type": "quantitative", 'title': f'Total {alcohol_type} servings'}, {"field": cols[3], "type": "quantitative", 'title': 'Continent rank'}, {"field": cols[2], "type": "quantitative", 'title': 'Global rank'}, ] ).transform_filter(alt.datum.region == region if region != 'World' else alt.datum.total_servings >= 0 ).transform_window( sort=[alt.SortField(cols[1], order="descending")], rank="rank(col_to_filter)" ).transform_filter( alt.datum.rank <= 20 ).properties( title=f"Top 20 Countries that love {alcohol_type.title()} in {region_dict[region][3]}", width = 400, height = 600 ) # concatenate map and bar chart plots return alt.hconcat(map_plot, bar).configure_legend( gradientLength=300, gradientThickness=20, titleLimit= 0, labelFontSize=15, titleFontSize=20 ).configure_axis( labelFontSize=15, titleFontSize=20 ).configure_title( fontSize=20 ) header = dbc.Jumbotron( [ dbc.Container( [ html.H1("Which Countries are Beer-lovers, Wine-lovers, or Spirit-lovers?", className="display-3", style={'color': 'blue', 'font-family':'Book Antiqua'}), html.H1( "The following dashboard provides a visual overview on the proportion of \ global alcohol consumption across beer, wine and spirits in 2010. \ Users can simultaneously adjust the geographic location and specific \ alcohol type of their choice. The horizontal bar chart on the right of the \ map dynamically updates as different geographies and alcohol types are selected.", className="lead", style={'color': 'black', 'font-weight':'lighter', 'font-family':'Book Antiqua', 'font-size':20}), html.H1("______", style={'color': 'white', 'font-size':10}), html.H1( "Note: Proportions are calculated as a ratio of total servings for a specific type of drink \ divided by the total servings of all drinks in the country. As a result, countries with low total servings \ of alchohol may have unusually high ratios as shown in the case of Saudi Arabia.", className="lead", style={'color': 'black', 'font-weight':'lighter', 'font-family':'Book Antiqua', 'font-size':20}), # html.H1("______", style={'color': 'white', 'font-size':10}), html.A('Data Source: ',style={'color': 'black', 'font-family':'Book Antiqua'}), html.A("FiveThirtyEight", href='https://github.com/fivethirtyeight/data/tree/master/alcohol-consumption'), html.H1("______", style={'color': 'white', 'font-size':10}), html.H1('Adjust the cells below:' , style={'color': 'black', 'font-size': 20,'font-family':'Book Antiqua'}), ], fluid=True, ) ], fluid=True, ) # Drop-down and Map Plot content = dbc.Container([ dbc.Row( [dbc.Col( # Drink type dropdown dcc.Dropdown( id='dd-chart', options=[ {'label': 'Beer', 'value': 'beer'}, {'label': 'Wine', 'value': 'wine'}, {'label': 'Spirits', 'value': 'spirit'}, ], value='beer', style=dict(width='30%', verticalAlign="middle") )), dbc.Col( # Region dropdown dcc.Dropdown( id='dd-chart2', options=[ {'label': 'World', 'value': 'World'}, {'label': 'Asia', 'value': 'Asia'}, {'label': 'Europe', 'value': 'Europe'}, {'label': 'Africa', 'value': 'Africa'}, {'label': 'Americas', 'value': 'Americas'}, {'label': 'Oceania', 'value': 'Oceania'} ], value='World', style=dict(width='30%', verticalAlign="middle") )), dbc.Col( html.Iframe( sandbox='allow-scripts', id='plot', height='1000', width='1500', style={'border-width': '0'}, # need to change the category here under the create_map function srcDoc= create_map().to_html() )), ] ) ] ) app.layout = html.Div([header, content]) # call back to update visualizations based on dropdown selections @app.callback( dash.dependencies.Output('plot', 'srcDoc'), [dash.dependencies.Input('dd-chart', 'value'), dash.dependencies.Input('dd-chart2', 'value')]) def update_plot(alcohol_type, region): """ #Function takes in an alcohol_type and region and calls create_map to update Altair figure Parameters ---------- alcohol_type : str {‘wine’, ‘beer’, 'spirit'} Type of alcohol to show on choropleth. region: str {'World', 'Asia', 'Europe', 'Africa', 'Americas', 'Oceania'} Returns ------- altair Chart object Choropleth of chosen alcohol type Examples -------- >>> update_plot('spirit', 'Europe') """ updated_plot = create_map(alcohol_type, region).to_html() return updated_plot if __name__ == '__main__': app.run_server(debug=True)# Create your app here
0.6705
0.361362
import random import numpy as np import cv2 import scipy.ndimage as ndimage from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter class RandomChoice(object): """ choose a random tranform from list an apply transforms: tranforms to apply p: probability """ def __init__(self, transforms=[], p=0.5): self.transforms = transforms self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample t = random.choice(self.transforms) return t(sample) class ComposeTransforms(object): """ Composes several transforms together. """ def __init__(self, transforms=[], p=0.9): self.transforms = transforms self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample for t in self.transforms: sample = t(sample) return sample from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter def stack_seg_2_image(sample): image = sample['image'] seg = sample['segmentation'] channels = [chan for chan in image] channels.append(seg) return np.stack(channels, axis=3) def elastic_transform_3d(sample, alpha=1, sigma=20, c_val=0.0, method="linear"): """ :param sample: dict of image and seg :param alpha: scaling factor of gaussian filter :param sigma: standard deviation of random gaussian filter :param c_val: fill value :param method: interpolation method. supported methods : ("linear", "nearest") :return: deformed image and/or label """ img_numpy = sample['image'].copy() label = sample['segmentation'] if 'segmentation' in sample else None shape = img_numpy.shape # Define 3D coordinate system coords = np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]) # Interpolated images chan_intrps = [RegularGridInterpolator(coords, img_numpy[:,:,:,chan], method=method, bounds_error=False, fill_value=c_val) for chan in range(shape[3])] #Get random elastic deformations dx = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dy = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dz = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha # Define sample points x, y, z = np.mgrid[0:shape[0], 0:shape[1], 0:shape[2]] indices = np.reshape(x + dx, (-1, 1)), \ np.reshape(y + dy, (-1, 1)), \ np.reshape(z + dz, (-1, 1)) # Interpolate 3D image image img_numpy = np.stack([chan_intrp(indices).reshape((shape[0],shape[1],shape[2])) for chan_intrp in chan_intrps], axis=3).astype(np.float32) # Interpolate labels if label is not None: lab_intrp = RegularGridInterpolator(coords, label, method="nearest", bounds_error=False, fill_value=0) label = lab_intrp(indices).reshape(shape[0],shape[1],shape[2]).astype(label.dtype) sample['segmentation'] = label sample['image'] = img_numpy return sample class ElasticTransform(object): def __init__(self, p=0.5, alpha=1, sigma=20, c_val=0.0, method="linear"): self.p = p self.alpha = alpha self.sigma = sigma self.c_val = c_val self.method = method def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return elastic_transform_3d(sample, self.alpha, self.sigma, self.c_val, self.method) def random_noise(sample, mean=0, std=0.001, eps=1e-6): im = sample['image'].copy() noise = np.random.normal(mean, std, im.shape) sample['image'] = np.where(im > eps, im + noise, im) return sample class GaussianNoise(object): def __init__(self, p=0.5, mean=0, std=0.001): self.mean = mean self.std = std self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_noise(sample, self.mean, self.std) def random_crop_to_size(sample, crop_sz): im = sample['image'].copy() shape = im.shape if 'segmentation' in sample: seg = sample['segmentation'].copy() else: seg = None # choose randomly but check that at least one tumor pixel is included width, height, depth = crop_sz sum_tumor = 0 n_round = 0 d,x,y = 0,0,0 while sum_tumor == 0 and n_round < 1000: n_round += 1 d = np.random.randint(0, shape[0] - depth - 1) x = np.random.randint(0, shape[1] - width - 1) y = np.random.randint(0, shape[2] - height - 1) if seg is not None: check = seg[d:d+depth, x:x+width, y:y+height] sum_tumor = np.sum(check) else: sum_tumor = 1 assert n_round < 1000, f'no segmentation found in {sample["BraTSID"]}' im = im[d:d+depth, x:x+width, y:y+height,:] sample['image'] = im if seg is not None: seg = check sample['segmentation'] = seg return sample class RandomCropToSize(object): def __init__(self, crop_sz=(200,200,95)): self.crop_sz = crop_sz def __call__(self, sample): return random_crop_to_size(sample, self.crop_sz) def random_flip_lr(sample): im = sample['image'].copy() seg = sample['segmentation'].copy() im = im[:,:,::-1,:] seg = seg[:,:,::-1] sample['image'] = im sample['segmentation'] = seg return sample class RandomFlipLR(object): def __init__(self, p=0.5): self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_flip_lr(sample) def random_channel_drop(sample): im = sample['image'].copy() c = im.shape[3] drop_ch = random.randint(0, c-1) im[:,:,:,drop_ch] = 0. if random.random() > 0.5 else 1.0 sample['image'] = im return sample class RandomChannelDrop(object): def __init__(self, p=0.05): self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_channel_drop(sample) def random_rotate3D(sample, min_angle, max_angle): """ Returns a random rotated image and seg map in sample dict :param sample: ds sample dict :param min_angle: in degrees :param max_angle: in degrees :return: sample """ im = sample['image'].copy() seg = sample['segmentation'].copy() assert min_angle < max_angle, "min should be less than max val" assert min_angle > -360 or max_angle < 360 all_axes = [(1, 0), (1, 2), (0, 2)] angle = np.random.randint(low=min_angle, high=max_angle + 1) axes_random_id = np.random.randint(low=0, high=len(all_axes)) axes = all_axes[axes_random_id] im = ndimage.interpolation.rotate(im , angle, axes=axes, reshape=False) seg = ndimage.rotate(seg.astype(np.float32), angle, axes=axes, reshape=False) # seg back to binary float values seg = np.where(seg < 0.5, 0, 1.) sample['image'] = im sample['segmentation'] = seg return sample class RandomRotation(object): def __init__(self, min_angle=-10, max_angle=10, p=0.5): self.min_angle = min_angle self.max_angle = max_angle self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_rotate3D(sample, self.min_angle, self.max_angle) class DownSampleSegmentation(object): def __init__(self, ds=4): self.ds = ds def __call__(self, sample): if 'segmentation' in sample: seg = sample['segmentation'] seg = seg[::self.ds, ::self.ds, ::self.ds] sample['segmentation'] = seg return sample
src/seg_model_utils/augmentations3d.py
import random import numpy as np import cv2 import scipy.ndimage as ndimage from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter class RandomChoice(object): """ choose a random tranform from list an apply transforms: tranforms to apply p: probability """ def __init__(self, transforms=[], p=0.5): self.transforms = transforms self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample t = random.choice(self.transforms) return t(sample) class ComposeTransforms(object): """ Composes several transforms together. """ def __init__(self, transforms=[], p=0.9): self.transforms = transforms self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample for t in self.transforms: sample = t(sample) return sample from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter def stack_seg_2_image(sample): image = sample['image'] seg = sample['segmentation'] channels = [chan for chan in image] channels.append(seg) return np.stack(channels, axis=3) def elastic_transform_3d(sample, alpha=1, sigma=20, c_val=0.0, method="linear"): """ :param sample: dict of image and seg :param alpha: scaling factor of gaussian filter :param sigma: standard deviation of random gaussian filter :param c_val: fill value :param method: interpolation method. supported methods : ("linear", "nearest") :return: deformed image and/or label """ img_numpy = sample['image'].copy() label = sample['segmentation'] if 'segmentation' in sample else None shape = img_numpy.shape # Define 3D coordinate system coords = np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]) # Interpolated images chan_intrps = [RegularGridInterpolator(coords, img_numpy[:,:,:,chan], method=method, bounds_error=False, fill_value=c_val) for chan in range(shape[3])] #Get random elastic deformations dx = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dy = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dz = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha # Define sample points x, y, z = np.mgrid[0:shape[0], 0:shape[1], 0:shape[2]] indices = np.reshape(x + dx, (-1, 1)), \ np.reshape(y + dy, (-1, 1)), \ np.reshape(z + dz, (-1, 1)) # Interpolate 3D image image img_numpy = np.stack([chan_intrp(indices).reshape((shape[0],shape[1],shape[2])) for chan_intrp in chan_intrps], axis=3).astype(np.float32) # Interpolate labels if label is not None: lab_intrp = RegularGridInterpolator(coords, label, method="nearest", bounds_error=False, fill_value=0) label = lab_intrp(indices).reshape(shape[0],shape[1],shape[2]).astype(label.dtype) sample['segmentation'] = label sample['image'] = img_numpy return sample class ElasticTransform(object): def __init__(self, p=0.5, alpha=1, sigma=20, c_val=0.0, method="linear"): self.p = p self.alpha = alpha self.sigma = sigma self.c_val = c_val self.method = method def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return elastic_transform_3d(sample, self.alpha, self.sigma, self.c_val, self.method) def random_noise(sample, mean=0, std=0.001, eps=1e-6): im = sample['image'].copy() noise = np.random.normal(mean, std, im.shape) sample['image'] = np.where(im > eps, im + noise, im) return sample class GaussianNoise(object): def __init__(self, p=0.5, mean=0, std=0.001): self.mean = mean self.std = std self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_noise(sample, self.mean, self.std) def random_crop_to_size(sample, crop_sz): im = sample['image'].copy() shape = im.shape if 'segmentation' in sample: seg = sample['segmentation'].copy() else: seg = None # choose randomly but check that at least one tumor pixel is included width, height, depth = crop_sz sum_tumor = 0 n_round = 0 d,x,y = 0,0,0 while sum_tumor == 0 and n_round < 1000: n_round += 1 d = np.random.randint(0, shape[0] - depth - 1) x = np.random.randint(0, shape[1] - width - 1) y = np.random.randint(0, shape[2] - height - 1) if seg is not None: check = seg[d:d+depth, x:x+width, y:y+height] sum_tumor = np.sum(check) else: sum_tumor = 1 assert n_round < 1000, f'no segmentation found in {sample["BraTSID"]}' im = im[d:d+depth, x:x+width, y:y+height,:] sample['image'] = im if seg is not None: seg = check sample['segmentation'] = seg return sample class RandomCropToSize(object): def __init__(self, crop_sz=(200,200,95)): self.crop_sz = crop_sz def __call__(self, sample): return random_crop_to_size(sample, self.crop_sz) def random_flip_lr(sample): im = sample['image'].copy() seg = sample['segmentation'].copy() im = im[:,:,::-1,:] seg = seg[:,:,::-1] sample['image'] = im sample['segmentation'] = seg return sample class RandomFlipLR(object): def __init__(self, p=0.5): self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_flip_lr(sample) def random_channel_drop(sample): im = sample['image'].copy() c = im.shape[3] drop_ch = random.randint(0, c-1) im[:,:,:,drop_ch] = 0. if random.random() > 0.5 else 1.0 sample['image'] = im return sample class RandomChannelDrop(object): def __init__(self, p=0.05): self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_channel_drop(sample) def random_rotate3D(sample, min_angle, max_angle): """ Returns a random rotated image and seg map in sample dict :param sample: ds sample dict :param min_angle: in degrees :param max_angle: in degrees :return: sample """ im = sample['image'].copy() seg = sample['segmentation'].copy() assert min_angle < max_angle, "min should be less than max val" assert min_angle > -360 or max_angle < 360 all_axes = [(1, 0), (1, 2), (0, 2)] angle = np.random.randint(low=min_angle, high=max_angle + 1) axes_random_id = np.random.randint(low=0, high=len(all_axes)) axes = all_axes[axes_random_id] im = ndimage.interpolation.rotate(im , angle, axes=axes, reshape=False) seg = ndimage.rotate(seg.astype(np.float32), angle, axes=axes, reshape=False) # seg back to binary float values seg = np.where(seg < 0.5, 0, 1.) sample['image'] = im sample['segmentation'] = seg return sample class RandomRotation(object): def __init__(self, min_angle=-10, max_angle=10, p=0.5): self.min_angle = min_angle self.max_angle = max_angle self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return random_rotate3D(sample, self.min_angle, self.max_angle) class DownSampleSegmentation(object): def __init__(self, ds=4): self.ds = ds def __call__(self, sample): if 'segmentation' in sample: seg = sample['segmentation'] seg = seg[::self.ds, ::self.ds, ::self.ds] sample['segmentation'] = seg return sample
0.763219
0.46794
import time from oslo_log import log as logging from tempest import clients from oswin_tempest_plugin import config from oswin_tempest_plugin.tests import test_base CONF = config.CONF LOG = logging.getLogger(__name__) class ClientManager(clients.Manager): def __init__(self, *args, **kwargs): super(ClientManager, self).__init__(*args, **kwargs) self.set_gnocchi_client() def set_gnocchi_client(self): self.gnocchi_client = self.metric_v1.GnocchiClient() class MetricsCollectionTestCase(test_base.TestBase): """Adds metrics collection scenario tests. This test suite verifies that the instance metrics are properly published and collected and have non-zero values. The verification is done via the ceilometer API. setup: 1. spins a new instance. 2. waits until the instance was created succesfully (ACTIVE status). 3. wait an interval of time which represents the polling period of the ceilometer-polling agent. Waiting for the ceilometer-polling agent to poll the resources is crucial, otherwise the test suite will fail due to the fact that no samples would be found published before checking the samples. The test suite's polled_metrics_delay must have a greater value than the ceilometer agent's polling interval. This can be done in two ways: a. Configure tempest's polled_metric_delay, by adding the following line in tempest.conf, in the hyperv section: polled_metrics_delay = <desired value> b. Set the interval value in polling.yaml on the compute node to the desired value and restart the ceilometer polling agent. The interval value is set either for the 'meter_source' or for each of the following: 'cpu_source', 'disk_source', 'network_source'. Note: If the polled_metrics_delay value is too low, the tests might not find any samples and fail because of this. As a recommandation, polled_metrics_delay's value should be: polled_metric_delay = <polling.yaml interval value> + <15-20 seconds> tests: 1. test_metrics - tests values for the following metrics: - cpu - network.outgoing.bytes - disk.read.bytes assumptions: 1. Ceilometer agent on the compute node is running. 2. Ceilometer agent on the compute node has the polling interval defined in polling.yaml lower than the polled_metrics_delay defined in this test suite. 3. The compute nodes' nova-compute and neutron-hyperv-agent services have been configured to enable metrics collection. """ client_manager = ClientManager @classmethod def skip_checks(cls): super(MetricsCollectionTestCase, cls).skip_checks() for service in ['ceilometer', 'gnocchi']: if not getattr(CONF.service_available, service): raise cls.skipException("%s service is required." % service) if not CONF.hyperv.collected_metrics: raise cls.skipException("Collected metrics not configured.") @classmethod def setup_clients(cls): super(MetricsCollectionTestCase, cls).setup_clients() # Telemetry client cls.telemetry_client = cls.os_primary.gnocchi_client def _check_samples(self, resource_id, meter_name): LOG.info("Checking %(meter_name)s for resource %(resource_id)s" % { 'meter_name': meter_name, 'resource_id': resource_id}) samples = self.telemetry_client.list_samples(resource_id, meter_name) self.assertNotEmpty( samples, 'Client returned no samples for the given resource ' '"%(resource_id)s" and meter "%(meter_name)s".' % { 'resource_id': resource_id, 'meter_name': meter_name}) non_zero_valued_samples = [s for s in samples if s[2] > 0] self.assertNotEmpty( non_zero_valued_samples, 'All meter %(meter_name)s samples for resource ' '%(resource_id)s are 0.' % {'meter_name': meter_name, 'resource_id': resource_id}) def _get_instance_cpu_resource_id(self, server): return server['id'] def _get_instance_disk_resource_id(self, server): return server['id'] def _get_instance_port_resource_id(self, server): # Note(claudiub): the format for the instance_port_resource_id is: # %(OS-EXT-SRV-ATTR:instance_name)s-%(instance_id)s-%(port_id)s # the instance returned by self.servers_client does not contain the # OS-EXT-SRV-ATTR:instance_name field. Which means that the resource_id # must be found in gnocchi's resources. start_res_id = server['id'] resources = self.telemetry_client.list_resources() res_ids = [r['id'] for r in resources if r['original_resource_id'].startswith('instance-') and start_res_id in r['original_resource_id']] self.assertEqual(1, len(res_ids)) return res_ids[0] def _check_scenario(self, server_tuple): server = server_tuple.server LOG.info("Waiting %s seconds for the ceilometer compute agents to " "publish the samples.", CONF.hyperv.polled_metrics_delay) time.sleep(CONF.hyperv.polled_metrics_delay) # TODO(claudiub): Add more metrics. if 'cpu' in CONF.hyperv.collected_metrics: cpu_res_id = self._get_instance_cpu_resource_id(server) self._check_samples(cpu_res_id, 'cpu') if 'network.outgoing.bytes' in CONF.hyperv.collected_metrics: port_res_id = self._get_instance_port_resource_id(server) self._check_samples(port_res_id, 'network.outgoing.bytes') if 'disk.read.bytes' in CONF.hyperv.collected_metrics: disk_resource_id = self._get_instance_disk_resource_id(server) self._check_samples(disk_resource_id, 'disk.read.bytes') def test_metrics(self): server_tuple = self._create_server() self._check_scenario(server_tuple)
oswin_tempest_plugin/tests/scenario/test_metrics_collection.py
import time from oslo_log import log as logging from tempest import clients from oswin_tempest_plugin import config from oswin_tempest_plugin.tests import test_base CONF = config.CONF LOG = logging.getLogger(__name__) class ClientManager(clients.Manager): def __init__(self, *args, **kwargs): super(ClientManager, self).__init__(*args, **kwargs) self.set_gnocchi_client() def set_gnocchi_client(self): self.gnocchi_client = self.metric_v1.GnocchiClient() class MetricsCollectionTestCase(test_base.TestBase): """Adds metrics collection scenario tests. This test suite verifies that the instance metrics are properly published and collected and have non-zero values. The verification is done via the ceilometer API. setup: 1. spins a new instance. 2. waits until the instance was created succesfully (ACTIVE status). 3. wait an interval of time which represents the polling period of the ceilometer-polling agent. Waiting for the ceilometer-polling agent to poll the resources is crucial, otherwise the test suite will fail due to the fact that no samples would be found published before checking the samples. The test suite's polled_metrics_delay must have a greater value than the ceilometer agent's polling interval. This can be done in two ways: a. Configure tempest's polled_metric_delay, by adding the following line in tempest.conf, in the hyperv section: polled_metrics_delay = <desired value> b. Set the interval value in polling.yaml on the compute node to the desired value and restart the ceilometer polling agent. The interval value is set either for the 'meter_source' or for each of the following: 'cpu_source', 'disk_source', 'network_source'. Note: If the polled_metrics_delay value is too low, the tests might not find any samples and fail because of this. As a recommandation, polled_metrics_delay's value should be: polled_metric_delay = <polling.yaml interval value> + <15-20 seconds> tests: 1. test_metrics - tests values for the following metrics: - cpu - network.outgoing.bytes - disk.read.bytes assumptions: 1. Ceilometer agent on the compute node is running. 2. Ceilometer agent on the compute node has the polling interval defined in polling.yaml lower than the polled_metrics_delay defined in this test suite. 3. The compute nodes' nova-compute and neutron-hyperv-agent services have been configured to enable metrics collection. """ client_manager = ClientManager @classmethod def skip_checks(cls): super(MetricsCollectionTestCase, cls).skip_checks() for service in ['ceilometer', 'gnocchi']: if not getattr(CONF.service_available, service): raise cls.skipException("%s service is required." % service) if not CONF.hyperv.collected_metrics: raise cls.skipException("Collected metrics not configured.") @classmethod def setup_clients(cls): super(MetricsCollectionTestCase, cls).setup_clients() # Telemetry client cls.telemetry_client = cls.os_primary.gnocchi_client def _check_samples(self, resource_id, meter_name): LOG.info("Checking %(meter_name)s for resource %(resource_id)s" % { 'meter_name': meter_name, 'resource_id': resource_id}) samples = self.telemetry_client.list_samples(resource_id, meter_name) self.assertNotEmpty( samples, 'Client returned no samples for the given resource ' '"%(resource_id)s" and meter "%(meter_name)s".' % { 'resource_id': resource_id, 'meter_name': meter_name}) non_zero_valued_samples = [s for s in samples if s[2] > 0] self.assertNotEmpty( non_zero_valued_samples, 'All meter %(meter_name)s samples for resource ' '%(resource_id)s are 0.' % {'meter_name': meter_name, 'resource_id': resource_id}) def _get_instance_cpu_resource_id(self, server): return server['id'] def _get_instance_disk_resource_id(self, server): return server['id'] def _get_instance_port_resource_id(self, server): # Note(claudiub): the format for the instance_port_resource_id is: # %(OS-EXT-SRV-ATTR:instance_name)s-%(instance_id)s-%(port_id)s # the instance returned by self.servers_client does not contain the # OS-EXT-SRV-ATTR:instance_name field. Which means that the resource_id # must be found in gnocchi's resources. start_res_id = server['id'] resources = self.telemetry_client.list_resources() res_ids = [r['id'] for r in resources if r['original_resource_id'].startswith('instance-') and start_res_id in r['original_resource_id']] self.assertEqual(1, len(res_ids)) return res_ids[0] def _check_scenario(self, server_tuple): server = server_tuple.server LOG.info("Waiting %s seconds for the ceilometer compute agents to " "publish the samples.", CONF.hyperv.polled_metrics_delay) time.sleep(CONF.hyperv.polled_metrics_delay) # TODO(claudiub): Add more metrics. if 'cpu' in CONF.hyperv.collected_metrics: cpu_res_id = self._get_instance_cpu_resource_id(server) self._check_samples(cpu_res_id, 'cpu') if 'network.outgoing.bytes' in CONF.hyperv.collected_metrics: port_res_id = self._get_instance_port_resource_id(server) self._check_samples(port_res_id, 'network.outgoing.bytes') if 'disk.read.bytes' in CONF.hyperv.collected_metrics: disk_resource_id = self._get_instance_disk_resource_id(server) self._check_samples(disk_resource_id, 'disk.read.bytes') def test_metrics(self): server_tuple = self._create_server() self._check_scenario(server_tuple)
0.634883
0.285476
import sys import tempfile from antlir.compiler.requires_provides import ( ProvidesSymlink, RequireDirectory, RequireFile, ) from antlir.fs_utils import Path from antlir.subvol_utils import TempSubvolumes from ..install_file import InstallFileItem from ..symlink import SymlinkToDirItem, SymlinkToFileItem from .common import ( DUMMY_LAYER_OPTS, BaseItemTestCase, get_dummy_layer_opts_ba, render_subvol, ) DUMMY_LAYER_OPTS_BA = get_dummy_layer_opts_ba() class SymlinkItemsTestCase(BaseItemTestCase): def test_symlink(self): self._check_item( SymlinkToDirItem(from_target="t", source="x", dest="y"), {ProvidesSymlink(path=Path("y"), target=Path("x"))}, { RequireDirectory(path=Path("/")), RequireDirectory(path=Path("/x")), }, ) self._check_item( SymlinkToFileItem( from_target="t", source="source_file", dest="dest_symlink" ), { ProvidesSymlink( path=Path("dest_symlink"), target=Path("source_file") ) }, { RequireDirectory(path=Path("/")), RequireFile(path=Path("/source_file")), }, ) def test_symlink_idempotent(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) sv.run_as_root(["mkdir", sv.path("x")]) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) SymlinkToDirItem(from_target="t", source="x", dest="y").build( sv, DUMMY_LAYER_OPTS ) sv.set_readonly(True) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) SymlinkToDirItem(from_target="t", source="x", dest="y").build( sv, DUMMY_LAYER_OPTS ) def test_symlink_already_exists(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) sv.run_as_root(["touch", sv.path("b")]) sv.set_readonly(True) with self.assertRaises( RuntimeError, msg="dest='b' source='c': dest already exists" ): SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) def test_symlink_already_matches(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) sv.run_as_root(["ln", "-ns", "a", sv.path("b")]) sv.set_readonly(True) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) def test_symlink_already_exists_different_source(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) sv.set_readonly(True) with self.assertRaises( RuntimeError, msg="dest='b' source='c': b -> a exists to b'a'" ): SymlinkToFileItem(from_target="t", source="c", dest="b").build( sv, DUMMY_LAYER_OPTS ) def _test_symlink_command(self, layer_opts): with TempSubvolumes(Path(sys.argv[0])) as temp_subvolumes: subvol = temp_subvolumes.create("tar-sv") subvol.run_as_root(["mkdir", subvol.path("dir")]) # We need a source file to validate a SymlinkToFileItem with tempfile.NamedTemporaryFile() as tf: InstallFileItem( from_target="t", source=tf.name, dest="/file" ).build(subvol, layer_opts) SymlinkToDirItem( from_target="t", source="/dir", dest="/dir_symlink" ).build(subvol, layer_opts) SymlinkToFileItem( from_target="t", source="file", dest="/file_symlink" ).build(subvol, layer_opts) # Make a couple of absolute symlinks to test our behavior on # linking to paths that contain those. subvol.run_as_root( [ "bash", "-c", f"""\ ln -s /file {subvol.path('abs_link_to_file').shell_quote()} mkdir {subvol.path('my_dir').shell_quote()} touch {subvol.path('my_dir/inner').shell_quote()} ln -s /my_dir {subvol.path('my_dir_link').shell_quote()} """, ] ) # A simple case: we link to an absolute link. SymlinkToFileItem( from_target="t", source="/abs_link_to_file", dest="/link_to_abs_link", ).build(subvol, layer_opts) # This link traverses a directory that is an absolute link. The # resulting relative symlink is not traversible from outside the # container. SymlinkToFileItem( from_target="t", source="my_dir_link/inner", dest="/dir/inner_link", ).build(subvol, layer_opts) self.assertEqual( [ "(Dir)", { "dir": [ "(Dir)", {"inner_link": ["(Symlink ../my_dir_link/inner)"]}, ], "dir_symlink": ["(Symlink dir)"], "file": ["(File m444)"], "file_symlink": ["(Symlink file)"], "abs_link_to_file": ["(Symlink /file)"], "my_dir": ["(Dir)", {"inner": ["(File)"]}], "my_dir_link": ["(Symlink /my_dir)"], "link_to_abs_link": ["(Symlink abs_link_to_file)"], }, ], render_subvol(subvol), ) def test_symlink_command_non_ba(self): self._test_symlink_command(DUMMY_LAYER_OPTS) def test_symlink_command_ba(self): self._test_symlink_command(DUMMY_LAYER_OPTS_BA)
antlir/compiler/items/tests/test_symlink.py
import sys import tempfile from antlir.compiler.requires_provides import ( ProvidesSymlink, RequireDirectory, RequireFile, ) from antlir.fs_utils import Path from antlir.subvol_utils import TempSubvolumes from ..install_file import InstallFileItem from ..symlink import SymlinkToDirItem, SymlinkToFileItem from .common import ( DUMMY_LAYER_OPTS, BaseItemTestCase, get_dummy_layer_opts_ba, render_subvol, ) DUMMY_LAYER_OPTS_BA = get_dummy_layer_opts_ba() class SymlinkItemsTestCase(BaseItemTestCase): def test_symlink(self): self._check_item( SymlinkToDirItem(from_target="t", source="x", dest="y"), {ProvidesSymlink(path=Path("y"), target=Path("x"))}, { RequireDirectory(path=Path("/")), RequireDirectory(path=Path("/x")), }, ) self._check_item( SymlinkToFileItem( from_target="t", source="source_file", dest="dest_symlink" ), { ProvidesSymlink( path=Path("dest_symlink"), target=Path("source_file") ) }, { RequireDirectory(path=Path("/")), RequireFile(path=Path("/source_file")), }, ) def test_symlink_idempotent(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) sv.run_as_root(["mkdir", sv.path("x")]) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) SymlinkToDirItem(from_target="t", source="x", dest="y").build( sv, DUMMY_LAYER_OPTS ) sv.set_readonly(True) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) SymlinkToDirItem(from_target="t", source="x", dest="y").build( sv, DUMMY_LAYER_OPTS ) def test_symlink_already_exists(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) sv.run_as_root(["touch", sv.path("b")]) sv.set_readonly(True) with self.assertRaises( RuntimeError, msg="dest='b' source='c': dest already exists" ): SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) def test_symlink_already_matches(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) sv.run_as_root(["ln", "-ns", "a", sv.path("b")]) sv.set_readonly(True) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) def test_symlink_already_exists_different_source(self): with TempSubvolumes() as ts: sv = ts.create("test") sv.run_as_root(["touch", sv.path("a")]) SymlinkToFileItem(from_target="t", source="a", dest="b").build( sv, DUMMY_LAYER_OPTS ) sv.set_readonly(True) with self.assertRaises( RuntimeError, msg="dest='b' source='c': b -> a exists to b'a'" ): SymlinkToFileItem(from_target="t", source="c", dest="b").build( sv, DUMMY_LAYER_OPTS ) def _test_symlink_command(self, layer_opts): with TempSubvolumes(Path(sys.argv[0])) as temp_subvolumes: subvol = temp_subvolumes.create("tar-sv") subvol.run_as_root(["mkdir", subvol.path("dir")]) # We need a source file to validate a SymlinkToFileItem with tempfile.NamedTemporaryFile() as tf: InstallFileItem( from_target="t", source=tf.name, dest="/file" ).build(subvol, layer_opts) SymlinkToDirItem( from_target="t", source="/dir", dest="/dir_symlink" ).build(subvol, layer_opts) SymlinkToFileItem( from_target="t", source="file", dest="/file_symlink" ).build(subvol, layer_opts) # Make a couple of absolute symlinks to test our behavior on # linking to paths that contain those. subvol.run_as_root( [ "bash", "-c", f"""\ ln -s /file {subvol.path('abs_link_to_file').shell_quote()} mkdir {subvol.path('my_dir').shell_quote()} touch {subvol.path('my_dir/inner').shell_quote()} ln -s /my_dir {subvol.path('my_dir_link').shell_quote()} """, ] ) # A simple case: we link to an absolute link. SymlinkToFileItem( from_target="t", source="/abs_link_to_file", dest="/link_to_abs_link", ).build(subvol, layer_opts) # This link traverses a directory that is an absolute link. The # resulting relative symlink is not traversible from outside the # container. SymlinkToFileItem( from_target="t", source="my_dir_link/inner", dest="/dir/inner_link", ).build(subvol, layer_opts) self.assertEqual( [ "(Dir)", { "dir": [ "(Dir)", {"inner_link": ["(Symlink ../my_dir_link/inner)"]}, ], "dir_symlink": ["(Symlink dir)"], "file": ["(File m444)"], "file_symlink": ["(Symlink file)"], "abs_link_to_file": ["(Symlink /file)"], "my_dir": ["(Dir)", {"inner": ["(File)"]}], "my_dir_link": ["(Symlink /my_dir)"], "link_to_abs_link": ["(Symlink abs_link_to_file)"], }, ], render_subvol(subvol), ) def test_symlink_command_non_ba(self): self._test_symlink_command(DUMMY_LAYER_OPTS) def test_symlink_command_ba(self): self._test_symlink_command(DUMMY_LAYER_OPTS_BA)
0.379263
0.215846
import numpy as np import pytest from pyrado.environment_wrappers.observation_velfilter import ObsVelFiltWrapper from pyrado.environments.pysim.quanser_qube import QQubeSwingUpSim from pyrado.policies.feed_forward.dummy import IdlePolicy from pyrado.sampling.rollout import rollout from pyrado.spaces.singular import SingularStateSpace from pyrado.utils.math import rmse @pytest.mark.wrapper @pytest.mark.parametrize("plot", [False, pytest.param(True, marks=pytest.mark.visual)]) def test_velocity_filter(plot: bool): # Set up environment env_gt = QQubeSwingUpSim(dt=1 / 500.0, max_steps=350) env_gt.init_space = SingularStateSpace(np.array([0.1, np.pi / 2, 3.0, 0])) env_filt = ObsVelFiltWrapper(env_gt, idcs_pos=["theta", "alpha"], idcs_vel=["theta_dot", "alpha_dot"]) # Set up policy policy = IdlePolicy(env_gt.spec) # Simulate ro_gt = rollout(env_gt, policy) ro_filt = rollout(env_filt, policy) # Filter the observations of the last rollout theta_dot_gt = ro_gt.observations[:, 4] alpha_dot_gt = ro_gt.observations[:, 5] theta_dot_filt = ro_filt.observations[:, 4] alpha_dot_filt = ro_filt.observations[:, 5] assert theta_dot_filt[0] != pytest.approx(theta_dot_gt[0]) # can't be equal since we set an init vel of 3 rad/s assert alpha_dot_filt[0] == pytest.approx(alpha_dot_gt[0], abs=1e-4) # Compute the error rmse_theta = rmse(theta_dot_gt, theta_dot_filt) rmse_alpha = rmse(alpha_dot_gt, alpha_dot_filt) if plot: from matplotlib import pyplot as plt # Plot the filtered signals versus the orignal observations plt.rc("text", usetex=True) fix, axs = plt.subplots(2, figsize=(16, 9)) axs[0].plot(theta_dot_gt, label=r"$\dot{\theta}_{true}$") axs[0].plot(theta_dot_filt, label=r"$\dot{\theta}_{filt}$") axs[1].plot(alpha_dot_gt, label=r"$\dot{\alpha}_{true}$") axs[1].plot(alpha_dot_filt, label=r"$\dot{\alpha}_{filt}$") axs[0].set_title(rf"RMSE($\theta$): {rmse_theta}") axs[0].set_ylabel(r"$\dot{\theta}$ [rad/s]") axs[0].legend() axs[1].set_title(rf"RMSE($\alpha$): {rmse_alpha}") axs[1].set_xlabel("time steps") axs[1].set_ylabel(r"$\dot{\alpha}$ [rad/s]") axs[1].legend() plt.show()
Pyrado/tests/environment_wrappers/test_observation_velfilt.py
import numpy as np import pytest from pyrado.environment_wrappers.observation_velfilter import ObsVelFiltWrapper from pyrado.environments.pysim.quanser_qube import QQubeSwingUpSim from pyrado.policies.feed_forward.dummy import IdlePolicy from pyrado.sampling.rollout import rollout from pyrado.spaces.singular import SingularStateSpace from pyrado.utils.math import rmse @pytest.mark.wrapper @pytest.mark.parametrize("plot", [False, pytest.param(True, marks=pytest.mark.visual)]) def test_velocity_filter(plot: bool): # Set up environment env_gt = QQubeSwingUpSim(dt=1 / 500.0, max_steps=350) env_gt.init_space = SingularStateSpace(np.array([0.1, np.pi / 2, 3.0, 0])) env_filt = ObsVelFiltWrapper(env_gt, idcs_pos=["theta", "alpha"], idcs_vel=["theta_dot", "alpha_dot"]) # Set up policy policy = IdlePolicy(env_gt.spec) # Simulate ro_gt = rollout(env_gt, policy) ro_filt = rollout(env_filt, policy) # Filter the observations of the last rollout theta_dot_gt = ro_gt.observations[:, 4] alpha_dot_gt = ro_gt.observations[:, 5] theta_dot_filt = ro_filt.observations[:, 4] alpha_dot_filt = ro_filt.observations[:, 5] assert theta_dot_filt[0] != pytest.approx(theta_dot_gt[0]) # can't be equal since we set an init vel of 3 rad/s assert alpha_dot_filt[0] == pytest.approx(alpha_dot_gt[0], abs=1e-4) # Compute the error rmse_theta = rmse(theta_dot_gt, theta_dot_filt) rmse_alpha = rmse(alpha_dot_gt, alpha_dot_filt) if plot: from matplotlib import pyplot as plt # Plot the filtered signals versus the orignal observations plt.rc("text", usetex=True) fix, axs = plt.subplots(2, figsize=(16, 9)) axs[0].plot(theta_dot_gt, label=r"$\dot{\theta}_{true}$") axs[0].plot(theta_dot_filt, label=r"$\dot{\theta}_{filt}$") axs[1].plot(alpha_dot_gt, label=r"$\dot{\alpha}_{true}$") axs[1].plot(alpha_dot_filt, label=r"$\dot{\alpha}_{filt}$") axs[0].set_title(rf"RMSE($\theta$): {rmse_theta}") axs[0].set_ylabel(r"$\dot{\theta}$ [rad/s]") axs[0].legend() axs[1].set_title(rf"RMSE($\alpha$): {rmse_alpha}") axs[1].set_xlabel("time steps") axs[1].set_ylabel(r"$\dot{\alpha}$ [rad/s]") axs[1].legend() plt.show()
0.791015
0.636805
import json import copy import pandas as pd import spacy from sklearn.model_selection import train_test_split class DataSet: '''Representation of a data set for text classification pipeline Attributes: input_: Input dataset if not pre-split in train and test set. This can be a pandas.DataFrame or a string pointing to a csv/tsv file or a json file containing the input data. train_input: str or pandas.DataFrame, if splitting in training and test set should not be done (in case a specific split is pre-defined or training and test data come in separate files) input for training data. If provided `input_' must be None and `test_input' must be provided as well. test_input: str or pandas.DataFrame, see `train_input'. name: str, name for the dataset for identification in experiments. field_mapping: dict, Dictionary containing two fields: `text' and `label' that identify the column (for tabular data) or field (for json data) that contain the respective information. test_size: float, proportion of documents to reserve as held-out test set. ''' def __init__(self, input_=None, train_input=None, test_input=None, name='', field_mapping={'text': 'text', 'label': 'label'}, file_subset=None, test_size=0.25): # Store inputs self.name = name self.field_mapping = field_mapping self.test_size = test_size self.file_subset = file_subset self.input_ = input_ self.train_input, self.test_input = train_input, test_input if input_ is not None: self.df = self.read_transform(input_) self.df.dropna(inplace=True) self.df.reset_index(inplace=True, drop=True) self.train_idxs, self.test_idxs = train_test_split( range(len(self)), test_size=test_size ) elif train_input is not None: if input_ is not None: raise ValueError('Pleas only specify either `input_` or ' '`train_input`') if test_input is None: raise ValueError('Please pass data as `input_` if not ' 'specifying both `train_input` and ' '`test_input`') train_df = self.read_transform(train_input) test_df = self.read_transform(test_input) self.df = train_df.append(test_df) self.df.reset_index(inplace=True, drop=True) self.df.dropna(inplace=True) self.train_idxs = list(range(train_df.shape[0])) self.test_idxs = list( range( train_df.shape[0], train_df.shape[0] + test_df.shape[0] ) ) else: raise ValueError('Either `input_` or (`train_input`, `test_input`)' ' have to be specified.') def __len__(self): return self.df.shape[0] @property def df_train(self): return self.df.iloc[self.train_idxs] @property def df_test(self): return self.df.iloc[self.test_idxs] def get_texts(self, set_): if set_ == "train": return self.df_train['text'] elif set_ == 'test': return self.df_test['text'] def get_labels(self, set_): if set_ == 'train': return self.df['label'].iloc[self.train_idxs].astype(str) elif set_ == 'test': return self.df['label'].iloc[self.test_idxs].astype(str) else: raise ValueError("set_ must be one of ['train', 'test']") def read_transform(self, input_): '''Read input data and transform to common format Selects the right method depending on the data type or file type and dispatches apropriate method ''' if isinstance(input_, str): inpath = input_ if inpath.endswith('.csv'): df = self.read_from_delim(inpath, delim=',') elif inpath.endswith('.tsv'): df = self.read_from_delim(inpath, delim='\t') elif inpath.endswith('.json'): df = self.read_from_json(inpath) else: raise ValueError('Unsupported file format') elif isinstance(input_, pd.core.frame.DataFrame): df = self.read_from_df(input_) else: raise ValueError('input_ has to be str or' 'pd.core.frame.DataFrame') return df def read_from_df(self, input_df): out = copy.copy(input_df[[self.field_mapping['label'], self.field_mapping['text']]]) out.columns = ['label', 'text'] out.reset_index(inplace=True, drop=True) return out def read_from_delim(self, inpath, delim): df = pd.read_csv(inpath, delimiter=delim) if self.file_subset is not None: df = df[df[self.file_subset[0]] == self.file_subset[1]] out = df[[self.field_mapping['label'], self.field_mapping['text']]] out.columns = ['label', 'text'] return out def read_from_json(self, inpath): with open(inpath) as infile: out = {'label': [], 'text': []} for line in infile: doc = json.loads(line) if self.file_subset is not None: if doc[self.file_subset[0]] == self.file_subset[1]: out['label'].append(doc[self.field_mapping['label']]) out['text'].append(doc[self.field_mapping['text']]) else: out['label'].append(doc[self.field_mapping['label']]) out['text'].append(doc[self.field_mapping['text']]) return pd.DataFrame(out) class SpacyTokenizer: def __init__(self): self.nlp = spacy.load('en', disable=['ner', 'parser', 'tagger']) @staticmethod def rescue_hashtags(token_list): tokens = iter(token_list) return([t + next(tokens, '') if t == '#' else t for t in tokens]) def tokenize(self, text): return self.rescue_hashtags([x.orth_ for x in self.nlp(text)])
smapp_text_classifier/data.py
import json import copy import pandas as pd import spacy from sklearn.model_selection import train_test_split class DataSet: '''Representation of a data set for text classification pipeline Attributes: input_: Input dataset if not pre-split in train and test set. This can be a pandas.DataFrame or a string pointing to a csv/tsv file or a json file containing the input data. train_input: str or pandas.DataFrame, if splitting in training and test set should not be done (in case a specific split is pre-defined or training and test data come in separate files) input for training data. If provided `input_' must be None and `test_input' must be provided as well. test_input: str or pandas.DataFrame, see `train_input'. name: str, name for the dataset for identification in experiments. field_mapping: dict, Dictionary containing two fields: `text' and `label' that identify the column (for tabular data) or field (for json data) that contain the respective information. test_size: float, proportion of documents to reserve as held-out test set. ''' def __init__(self, input_=None, train_input=None, test_input=None, name='', field_mapping={'text': 'text', 'label': 'label'}, file_subset=None, test_size=0.25): # Store inputs self.name = name self.field_mapping = field_mapping self.test_size = test_size self.file_subset = file_subset self.input_ = input_ self.train_input, self.test_input = train_input, test_input if input_ is not None: self.df = self.read_transform(input_) self.df.dropna(inplace=True) self.df.reset_index(inplace=True, drop=True) self.train_idxs, self.test_idxs = train_test_split( range(len(self)), test_size=test_size ) elif train_input is not None: if input_ is not None: raise ValueError('Pleas only specify either `input_` or ' '`train_input`') if test_input is None: raise ValueError('Please pass data as `input_` if not ' 'specifying both `train_input` and ' '`test_input`') train_df = self.read_transform(train_input) test_df = self.read_transform(test_input) self.df = train_df.append(test_df) self.df.reset_index(inplace=True, drop=True) self.df.dropna(inplace=True) self.train_idxs = list(range(train_df.shape[0])) self.test_idxs = list( range( train_df.shape[0], train_df.shape[0] + test_df.shape[0] ) ) else: raise ValueError('Either `input_` or (`train_input`, `test_input`)' ' have to be specified.') def __len__(self): return self.df.shape[0] @property def df_train(self): return self.df.iloc[self.train_idxs] @property def df_test(self): return self.df.iloc[self.test_idxs] def get_texts(self, set_): if set_ == "train": return self.df_train['text'] elif set_ == 'test': return self.df_test['text'] def get_labels(self, set_): if set_ == 'train': return self.df['label'].iloc[self.train_idxs].astype(str) elif set_ == 'test': return self.df['label'].iloc[self.test_idxs].astype(str) else: raise ValueError("set_ must be one of ['train', 'test']") def read_transform(self, input_): '''Read input data and transform to common format Selects the right method depending on the data type or file type and dispatches apropriate method ''' if isinstance(input_, str): inpath = input_ if inpath.endswith('.csv'): df = self.read_from_delim(inpath, delim=',') elif inpath.endswith('.tsv'): df = self.read_from_delim(inpath, delim='\t') elif inpath.endswith('.json'): df = self.read_from_json(inpath) else: raise ValueError('Unsupported file format') elif isinstance(input_, pd.core.frame.DataFrame): df = self.read_from_df(input_) else: raise ValueError('input_ has to be str or' 'pd.core.frame.DataFrame') return df def read_from_df(self, input_df): out = copy.copy(input_df[[self.field_mapping['label'], self.field_mapping['text']]]) out.columns = ['label', 'text'] out.reset_index(inplace=True, drop=True) return out def read_from_delim(self, inpath, delim): df = pd.read_csv(inpath, delimiter=delim) if self.file_subset is not None: df = df[df[self.file_subset[0]] == self.file_subset[1]] out = df[[self.field_mapping['label'], self.field_mapping['text']]] out.columns = ['label', 'text'] return out def read_from_json(self, inpath): with open(inpath) as infile: out = {'label': [], 'text': []} for line in infile: doc = json.loads(line) if self.file_subset is not None: if doc[self.file_subset[0]] == self.file_subset[1]: out['label'].append(doc[self.field_mapping['label']]) out['text'].append(doc[self.field_mapping['text']]) else: out['label'].append(doc[self.field_mapping['label']]) out['text'].append(doc[self.field_mapping['text']]) return pd.DataFrame(out) class SpacyTokenizer: def __init__(self): self.nlp = spacy.load('en', disable=['ner', 'parser', 'tagger']) @staticmethod def rescue_hashtags(token_list): tokens = iter(token_list) return([t + next(tokens, '') if t == '#' else t for t in tokens]) def tokenize(self, text): return self.rescue_hashtags([x.orth_ for x in self.nlp(text)])
0.698535
0.522994
import re from functools import lru_cache from io import StringIO from pathlib import Path from typing import Any, Set, Tuple import geopandas as gpd import pandas as pd from shapely.geometry import MultiPoint from shapely.ops import unary_union from ....data import nm_navaids from .airspaces import NMAirspaceParser def parse_coordinates(elt: str) -> Tuple[float, float]: pattern = r"([N,S])(\d{4}|\d{6})(.\d*)?([E,W])(\d{5}|\d{7})(.\d*)?$" x = re.match(pattern, elt) assert x is not None, elt lat_, lat_sign = x.group(2), 1 if x.group(1) == "N" else -1 lon_, lon_sign = x.group(5), 1 if x.group(4) == "E" else -1 lat_ = lat_.ljust(6, "0") lon_ = lon_.ljust(7, "0") lat = lat_sign * ( int(lat_[:2]) + int(lat_[2:4]) / 60 + int(lat_[4:]) / 3600 ) lon = lon_sign * ( int(lon_[:3]) + int(lon_[3:5]) / 60 + int(lon_[5:]) / 3600 ) return (lat, lon) class NMFreeRouteParser(NMAirspaceParser): def init_cache(self) -> None: msg = f"Edit file {self.config_file} with NM directory" if self.nm_path is None: raise RuntimeError(msg) are_file = next(self.nm_path.glob("Free_Route_*.are"), None) if are_file is None: raise RuntimeError( f"No Free_Route_*.are file found in {self.nm_path}" ) self.read_are(are_file) sls_file = next(self.nm_path.glob("Free_Route_*.sls"), None) if sls_file is None: raise RuntimeError( f"No Free_Route_*.sls file found in {self.nm_path}" ) self.read_sls(sls_file) self.initialized = True self.fra = gpd.GeoDataFrame.from_records( [ {"FRA": k, "geometry": self[k].shape} # type: ignore for k in self.elements.keys() ] ) frp_file = next(self.nm_path.glob("Free_Route_*.frp"), None) if frp_file is None: raise RuntimeError( f"No Free_Route_*.frp file found in {self.nm_path}" ) self.read_frp(frp_file) def read_frp(self, filename: Path) -> None: area = unary_union(self.fra.geometry) west, south, east, north = area.bounds subset = nm_navaids.extent((west, east, south, north)) assert subset is not None coords = subset.data[["longitude", "latitude"]].values europoints = subset.data.merge( pd.DataFrame( [ list(x.coords[0]) for x in area.intersection(MultiPoint(coords)).geoms ], columns=["longitude", "latitude"], ) ) df = pd.read_csv(StringIO(filename.read_text()), header=None) df_ = ( df[0] .str.replace(r"\s+", " ", regex=True) .str.split(" ", expand=True) .rename(columns={0: "FRA", 1: "type", 2: "name"}) ) a = ( df_.query('type in ["AD", "A", "D"]') .dropna(axis=1, how="all") .iloc[:, 3:] .fillna("") .sum(axis=1) .str.replace(r"(\w{4})", r"\1,", regex=True) .str[:-1] .str.split(",") ) tab = ( df_.query('type not in ["AD", "A", "D"]') .dropna(axis=1, how="all") .rename(columns={3: "latitude", 4: "longitude"}) ) # Part 1: When coordinates are in the file, decode them coords = ( tab.query("latitude.notnull()")[["latitude", "longitude"]] .sum(axis=1) .apply(parse_coordinates) ) decode_coords = tab.query("latitude.notnull()").assign( latitude=coords.str[0], longitude=coords.str[1] ) # Part 2: Propagate decoded coordinates (avoid slight inconsistencies) propagate_coords = ( tab.query("latitude.isnull() and name in @decode_coords.name") .drop(columns=["latitude", "longitude"]) .merge( decode_coords[ ["name", "latitude", "longitude"] ].drop_duplicates(), on="name", ) ) # Part 3: Unknown coordinates unknown_coords = ( tab.query("latitude.isnull() and name not in @decode_coords.name") .drop(columns=["latitude", "longitude"]) .merge(europoints.drop(columns=["type", "description"]), on="name") ) # Part 4: Airport connections airport_coords = pd.concat( [ df_.query('type in ["AD", "A", "D"]').iloc[:, :3], a.rename("airport"), ], axis=1, ) propagate_airports = airport_coords.merge( decode_coords[["name", "latitude", "longitude"]].drop_duplicates(), on=["name"], ).explode("airport") unknown_airports = ( airport_coords.query("name not in @propagate_airports.name").merge( europoints.drop(columns=["type", "description"]), on="name" ) ).explode("airport") self.frp = pd.concat( [ decode_coords, propagate_coords, unknown_coords, propagate_airports, unknown_airports, ] ) def __getattr__(self, attr: str) -> Any: if attr in ["fra", "frp"]: self.init_cache() return getattr(self, attr) raise AttributeError(attr) @lru_cache() def _ipython_key_completions_(self) -> Set[str]: return {*self.elements.keys()}
traffic/data/eurocontrol/ddr/freeroute.py
import re from functools import lru_cache from io import StringIO from pathlib import Path from typing import Any, Set, Tuple import geopandas as gpd import pandas as pd from shapely.geometry import MultiPoint from shapely.ops import unary_union from ....data import nm_navaids from .airspaces import NMAirspaceParser def parse_coordinates(elt: str) -> Tuple[float, float]: pattern = r"([N,S])(\d{4}|\d{6})(.\d*)?([E,W])(\d{5}|\d{7})(.\d*)?$" x = re.match(pattern, elt) assert x is not None, elt lat_, lat_sign = x.group(2), 1 if x.group(1) == "N" else -1 lon_, lon_sign = x.group(5), 1 if x.group(4) == "E" else -1 lat_ = lat_.ljust(6, "0") lon_ = lon_.ljust(7, "0") lat = lat_sign * ( int(lat_[:2]) + int(lat_[2:4]) / 60 + int(lat_[4:]) / 3600 ) lon = lon_sign * ( int(lon_[:3]) + int(lon_[3:5]) / 60 + int(lon_[5:]) / 3600 ) return (lat, lon) class NMFreeRouteParser(NMAirspaceParser): def init_cache(self) -> None: msg = f"Edit file {self.config_file} with NM directory" if self.nm_path is None: raise RuntimeError(msg) are_file = next(self.nm_path.glob("Free_Route_*.are"), None) if are_file is None: raise RuntimeError( f"No Free_Route_*.are file found in {self.nm_path}" ) self.read_are(are_file) sls_file = next(self.nm_path.glob("Free_Route_*.sls"), None) if sls_file is None: raise RuntimeError( f"No Free_Route_*.sls file found in {self.nm_path}" ) self.read_sls(sls_file) self.initialized = True self.fra = gpd.GeoDataFrame.from_records( [ {"FRA": k, "geometry": self[k].shape} # type: ignore for k in self.elements.keys() ] ) frp_file = next(self.nm_path.glob("Free_Route_*.frp"), None) if frp_file is None: raise RuntimeError( f"No Free_Route_*.frp file found in {self.nm_path}" ) self.read_frp(frp_file) def read_frp(self, filename: Path) -> None: area = unary_union(self.fra.geometry) west, south, east, north = area.bounds subset = nm_navaids.extent((west, east, south, north)) assert subset is not None coords = subset.data[["longitude", "latitude"]].values europoints = subset.data.merge( pd.DataFrame( [ list(x.coords[0]) for x in area.intersection(MultiPoint(coords)).geoms ], columns=["longitude", "latitude"], ) ) df = pd.read_csv(StringIO(filename.read_text()), header=None) df_ = ( df[0] .str.replace(r"\s+", " ", regex=True) .str.split(" ", expand=True) .rename(columns={0: "FRA", 1: "type", 2: "name"}) ) a = ( df_.query('type in ["AD", "A", "D"]') .dropna(axis=1, how="all") .iloc[:, 3:] .fillna("") .sum(axis=1) .str.replace(r"(\w{4})", r"\1,", regex=True) .str[:-1] .str.split(",") ) tab = ( df_.query('type not in ["AD", "A", "D"]') .dropna(axis=1, how="all") .rename(columns={3: "latitude", 4: "longitude"}) ) # Part 1: When coordinates are in the file, decode them coords = ( tab.query("latitude.notnull()")[["latitude", "longitude"]] .sum(axis=1) .apply(parse_coordinates) ) decode_coords = tab.query("latitude.notnull()").assign( latitude=coords.str[0], longitude=coords.str[1] ) # Part 2: Propagate decoded coordinates (avoid slight inconsistencies) propagate_coords = ( tab.query("latitude.isnull() and name in @decode_coords.name") .drop(columns=["latitude", "longitude"]) .merge( decode_coords[ ["name", "latitude", "longitude"] ].drop_duplicates(), on="name", ) ) # Part 3: Unknown coordinates unknown_coords = ( tab.query("latitude.isnull() and name not in @decode_coords.name") .drop(columns=["latitude", "longitude"]) .merge(europoints.drop(columns=["type", "description"]), on="name") ) # Part 4: Airport connections airport_coords = pd.concat( [ df_.query('type in ["AD", "A", "D"]').iloc[:, :3], a.rename("airport"), ], axis=1, ) propagate_airports = airport_coords.merge( decode_coords[["name", "latitude", "longitude"]].drop_duplicates(), on=["name"], ).explode("airport") unknown_airports = ( airport_coords.query("name not in @propagate_airports.name").merge( europoints.drop(columns=["type", "description"]), on="name" ) ).explode("airport") self.frp = pd.concat( [ decode_coords, propagate_coords, unknown_coords, propagate_airports, unknown_airports, ] ) def __getattr__(self, attr: str) -> Any: if attr in ["fra", "frp"]: self.init_cache() return getattr(self, attr) raise AttributeError(attr) @lru_cache() def _ipython_key_completions_(self) -> Set[str]: return {*self.elements.keys()}
0.762114
0.413004
from flask_socketio import SocketIO from flask import Flask, render_template, request from random import random import threading from threading import Thread, Event app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' app.config['DEBUG'] = True # Turn the flask app into a SocketIO app socket_io = SocketIO(app, async_mode='eventlet', logger=False, engineio_logger=False) # Random number Generator Thread thread = Thread() thread_stop_event = Event() client_counter = 0 def random_number_generator(): """ Generate a random number every 1 second and emit to a socketio instance (broadcast) Ideally to be run in a separate thread? """ while not thread_stop_event.isSet(): number = round(random() * 10, 3) print(f'{number}, thread_ident={threading.get_native_id()}') socket_io.emit('new_number', {'number': number}, namespace='/test') socket_io.sleep(5) print('Thread is done') @app.route('/') def index(): # Only by sending this page first the client will be connected to the socket_io instance return render_template('index.html') @socket_io.on('connect', namespace='/test') def client_connect(): # need visibility of the global thread object global thread global client_counter client_counter += 1 print(f'Clients connected: {client_counter}, sid = {request.sid}, thread_ident={threading.get_native_id()}') if thread_stop_event.is_set(): thread_stop_event.clear() # Start the random number generator thread only if the thread has not been started before. if not thread.is_alive(): print(f"Starting Thread, thread_ident={threading.get_ident()}") thread = socket_io.start_background_task(random_number_generator) elif client_counter == 1: print('Continue use existing thread that is still alive') @socket_io.on('disconnect', namespace='/test') def client_disconnect(): global client_counter client_counter -= 1 print(f'Client disconnected, left: {client_counter}, sid = {request.sid}, thread_ident={threading.get_ident()}') if thread.is_alive() and client_counter == 0: global thread_stop_event thread_stop_event.set() print('Set event to stop thread') if __name__ == '__main__': socket_io.run(app)
application.py
from flask_socketio import SocketIO from flask import Flask, render_template, request from random import random import threading from threading import Thread, Event app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' app.config['DEBUG'] = True # Turn the flask app into a SocketIO app socket_io = SocketIO(app, async_mode='eventlet', logger=False, engineio_logger=False) # Random number Generator Thread thread = Thread() thread_stop_event = Event() client_counter = 0 def random_number_generator(): """ Generate a random number every 1 second and emit to a socketio instance (broadcast) Ideally to be run in a separate thread? """ while not thread_stop_event.isSet(): number = round(random() * 10, 3) print(f'{number}, thread_ident={threading.get_native_id()}') socket_io.emit('new_number', {'number': number}, namespace='/test') socket_io.sleep(5) print('Thread is done') @app.route('/') def index(): # Only by sending this page first the client will be connected to the socket_io instance return render_template('index.html') @socket_io.on('connect', namespace='/test') def client_connect(): # need visibility of the global thread object global thread global client_counter client_counter += 1 print(f'Clients connected: {client_counter}, sid = {request.sid}, thread_ident={threading.get_native_id()}') if thread_stop_event.is_set(): thread_stop_event.clear() # Start the random number generator thread only if the thread has not been started before. if not thread.is_alive(): print(f"Starting Thread, thread_ident={threading.get_ident()}") thread = socket_io.start_background_task(random_number_generator) elif client_counter == 1: print('Continue use existing thread that is still alive') @socket_io.on('disconnect', namespace='/test') def client_disconnect(): global client_counter client_counter -= 1 print(f'Client disconnected, left: {client_counter}, sid = {request.sid}, thread_ident={threading.get_ident()}') if thread.is_alive() and client_counter == 0: global thread_stop_event thread_stop_event.set() print('Set event to stop thread') if __name__ == '__main__': socket_io.run(app)
0.499268
0.06389
import math from django import template from django.utils.safestring import mark_safe from django.contrib.humanize.templatetags.humanize import intcomma from django.contrib.staticfiles.storage import staticfiles_storage from django.utils import timezone register = template.Library() @register.simple_tag(takes_context=True) def conditional_js(context, script_name): suffix = "" if context.get("DEBUG", True) else ".min" filename = "js/{}{}.js".format(script_name, suffix) url = staticfiles_storage.url(filename) tag = '<script src="{}"></script>'.format(url) return mark_safe(tag) @register.filter def wholenum(num): return int(round(num)) @register.filter def deltawords(num, arg): """An adverb to come after the word 'improved' or 'slipped'""" delta = abs(num - arg) # We only pick out changes over 10%; over 30% in 9 months is unheard of. if delta == 0: word = "not at all" elif delta < 10: word = "slightly" elif delta < 20: word = "moderately" elif delta < 30: word = "considerably" else: word = "massively" return word @register.filter def roundpound(num): order = 10 ** math.floor(math.log10(num)) if order > 0: return intcomma(int(round(num / order) * order)) else: return str(int(round(num))) @register.filter def sigfigs(value, figures=3): """ Round value to supplied significant figures """ if not value: # This might happen when testing. value = 0 if value == 0: order = 0 else: order = int(math.floor(math.log10(math.fabs(value)))) places = figures - order - 1 format_string = "{:.%df}" % max(0, places) return format_string.format(round(value, places)) @register.simple_tag def url_toggle(request, field): dict_ = request.GET.copy() if field in dict_: del dict_[field] else: dict_[field] = 1 return dict_.urlencode() @register.simple_tag def current_time(format_string): return timezone.now().strftime(format_string) @register.filter def fancy_join(lst, sep=", ", final_sep=" and "): """ Join a list using a different separator for the final element """ if len(lst) > 2: head, tail = lst[:-1], lst[-1] lst = [sep.join(head), tail] return final_sep.join(lst) @register.filter def username_from_email(email): return email.split("@")[0]
openprescribing/frontend/templatetags/template_extras.py
import math from django import template from django.utils.safestring import mark_safe from django.contrib.humanize.templatetags.humanize import intcomma from django.contrib.staticfiles.storage import staticfiles_storage from django.utils import timezone register = template.Library() @register.simple_tag(takes_context=True) def conditional_js(context, script_name): suffix = "" if context.get("DEBUG", True) else ".min" filename = "js/{}{}.js".format(script_name, suffix) url = staticfiles_storage.url(filename) tag = '<script src="{}"></script>'.format(url) return mark_safe(tag) @register.filter def wholenum(num): return int(round(num)) @register.filter def deltawords(num, arg): """An adverb to come after the word 'improved' or 'slipped'""" delta = abs(num - arg) # We only pick out changes over 10%; over 30% in 9 months is unheard of. if delta == 0: word = "not at all" elif delta < 10: word = "slightly" elif delta < 20: word = "moderately" elif delta < 30: word = "considerably" else: word = "massively" return word @register.filter def roundpound(num): order = 10 ** math.floor(math.log10(num)) if order > 0: return intcomma(int(round(num / order) * order)) else: return str(int(round(num))) @register.filter def sigfigs(value, figures=3): """ Round value to supplied significant figures """ if not value: # This might happen when testing. value = 0 if value == 0: order = 0 else: order = int(math.floor(math.log10(math.fabs(value)))) places = figures - order - 1 format_string = "{:.%df}" % max(0, places) return format_string.format(round(value, places)) @register.simple_tag def url_toggle(request, field): dict_ = request.GET.copy() if field in dict_: del dict_[field] else: dict_[field] = 1 return dict_.urlencode() @register.simple_tag def current_time(format_string): return timezone.now().strftime(format_string) @register.filter def fancy_join(lst, sep=", ", final_sep=" and "): """ Join a list using a different separator for the final element """ if len(lst) > 2: head, tail = lst[:-1], lst[-1] lst = [sep.join(head), tail] return final_sep.join(lst) @register.filter def username_from_email(email): return email.split("@")[0]
0.414306
0.239572
# # QCM Analysis # ## Imports import logging import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from bric_analysis_libraries import standard_functions as std # # Analysis def sauerbrey( freq, f0, density = 2.648, shear = 2.947e11 ): """ The Sauerbrey equation, solved for mass change per unit area. The realtive change in frequency should be less than 5%, otherwise use Z-matching. :param freq: Measured frequency in Hertz. :param f0: Fundamental frequency in Hertz. :param density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] """ # check if larger than 5% change delta = np.abs( ( freq - f0 )/ f0 ) if delta.max() > 0.05: logging.warning( 'Frequency change is large than 5%. Consider using Z-match method instead.' ) coeff = np.sqrt( density* shear )/ ( 2* np.square( f0 ) ) m_delta = -coeff* ( freq - f0 ) return m_delta def z_match( freq, f0, film_density, film_shear, freq_constant = 1.668e13, sub_density = 2.648, sub_shear = 2.974e11 ): """ The Z-match equation. Used when relative frequency change is larger than 5%. :param freq: Frequency of the loaded sensor in Hertz. :param f0: Frequency of the unloaded sensor in hertz. :param film_density: Density of the film in g/cm^3. :param film_shear: Shear modulus of the film in g/( cm* s ). :param freq_constant: Frequency constant of the sensor in Hz* Angstrom. [Default: Quartz (1.66 e13)] :param sub_density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param sub_shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] """ z = np.sqrt( sub_density* sub_shear/( film_density* film_shear ) ) coeff = freq_constant* sub_density/( np.pi* z* freq ) tan_arg = np.pi*( f0 - freq )/ f0 m = coeff* np.arctan( z* np.tan( tan_arg ) ) return m def sauerbrey_mass_change( df, f0 = 5e6, density = 2.648, shear = 2.947e11 ): """ Creates a DataFrame of mass changes calculated with the Sauerbrey equation. :param df: DataFrame containing frequencies in Hertz. :param f0: The undamental freqeuncy of the sensor. [Default: 5 MHz] :param density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] :returns: DataFrame of mass changes in grams. """ return df.apply( lambda x: sauerbrey( x, f0, density, shear ) ) def z_match_mass_change( df, f0, film_density, film_shear, freq_constant = 1.668e13, sub_density = 2.648, sub_shear = 2.974e11 ): """ The Z-match equation. Used when relative frequency change is larger than 5%. :param freq: Frequency of the loaded sensor in Hertz. :param f0: Frequency of the unloaded sensor in hertz. :param film_density: Density of the film in g/cm^3. :param film_shear: Shear modulus of the film in g/( cm* s ). :param freq_constant: Frequency constant of the sensor in Hz* Angstrom. [Default: Quartz (1.66 e13)] :param sub_density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param sub_shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] """ return df.apply( lambda x: z_match( x, f0, film_density, film_shear, freq_constant = freq_constant, sub_density = sub_density, sub_shear = sub_shear ) ) # # Work
bric_analysis_libraries/misc/qcm_analysis.py
# # QCM Analysis # ## Imports import logging import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from bric_analysis_libraries import standard_functions as std # # Analysis def sauerbrey( freq, f0, density = 2.648, shear = 2.947e11 ): """ The Sauerbrey equation, solved for mass change per unit area. The realtive change in frequency should be less than 5%, otherwise use Z-matching. :param freq: Measured frequency in Hertz. :param f0: Fundamental frequency in Hertz. :param density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] """ # check if larger than 5% change delta = np.abs( ( freq - f0 )/ f0 ) if delta.max() > 0.05: logging.warning( 'Frequency change is large than 5%. Consider using Z-match method instead.' ) coeff = np.sqrt( density* shear )/ ( 2* np.square( f0 ) ) m_delta = -coeff* ( freq - f0 ) return m_delta def z_match( freq, f0, film_density, film_shear, freq_constant = 1.668e13, sub_density = 2.648, sub_shear = 2.974e11 ): """ The Z-match equation. Used when relative frequency change is larger than 5%. :param freq: Frequency of the loaded sensor in Hertz. :param f0: Frequency of the unloaded sensor in hertz. :param film_density: Density of the film in g/cm^3. :param film_shear: Shear modulus of the film in g/( cm* s ). :param freq_constant: Frequency constant of the sensor in Hz* Angstrom. [Default: Quartz (1.66 e13)] :param sub_density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param sub_shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] """ z = np.sqrt( sub_density* sub_shear/( film_density* film_shear ) ) coeff = freq_constant* sub_density/( np.pi* z* freq ) tan_arg = np.pi*( f0 - freq )/ f0 m = coeff* np.arctan( z* np.tan( tan_arg ) ) return m def sauerbrey_mass_change( df, f0 = 5e6, density = 2.648, shear = 2.947e11 ): """ Creates a DataFrame of mass changes calculated with the Sauerbrey equation. :param df: DataFrame containing frequencies in Hertz. :param f0: The undamental freqeuncy of the sensor. [Default: 5 MHz] :param density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] :returns: DataFrame of mass changes in grams. """ return df.apply( lambda x: sauerbrey( x, f0, density, shear ) ) def z_match_mass_change( df, f0, film_density, film_shear, freq_constant = 1.668e13, sub_density = 2.648, sub_shear = 2.974e11 ): """ The Z-match equation. Used when relative frequency change is larger than 5%. :param freq: Frequency of the loaded sensor in Hertz. :param f0: Frequency of the unloaded sensor in hertz. :param film_density: Density of the film in g/cm^3. :param film_shear: Shear modulus of the film in g/( cm* s ). :param freq_constant: Frequency constant of the sensor in Hz* Angstrom. [Default: Quartz (1.66 e13)] :param sub_density: Density of sensor substrate in g/cm^3. [Default: Quartz (2.648)] :param sub_shear: Shear modulus of sensor substrate in g/( cm* s ). [Default: Quartz (2.947 e11) ] """ return df.apply( lambda x: z_match( x, f0, film_density, film_shear, freq_constant = freq_constant, sub_density = sub_density, sub_shear = sub_shear ) ) # # Work
0.785966
0.723236
from torchvision.datasets import CIFAR100 from torch.utils.data import DataLoader import torchvision.transforms as transforms import os.path as pt import torch import numpy as np def ceil(x: float): return int(np.ceil(x)) class MYCIFAR100(CIFAR100): """ Reimplements get_item to transform tensor input to pil image before applying transformation. """ def __getitem__(self, index): img, target = self.data[index], self.targets[index] img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target class OECifar100(MYCIFAR100): cifar10_classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def __init__(self, size: torch.Size, root: str = None, train: bool = True, limit_var: int = 20): """ Outlier Exposure dataset for Cifar-100. :param size: size of the samples in n x c x h x w, samples will be resized to h x w. If n is larger than the number of samples available in Cifar-100, dataset will be enlarged by repetitions to fit n. This is important as exactly n images are extracted per iteration of the data_loader. For online supervision n should be set to 1 because only one sample is extracted at a time. :param root: root directory where data is found or is to be downloaded to. :param train: whether to use training or test samples. :param limit_var: limits the number of different samples, i.e. randomly chooses limit_var many samples from all available ones to be the training data. """ assert len(size) == 4 and size[2] == size[3] assert size[1] in [1, 3] root = pt.join(root, 'cifar100', ) transform = transforms.Compose([ transforms.Resize((size[2], size[3])), transforms.Grayscale() if size[1] == 1 else transforms.Lambda(lambda x: x), transforms.ToTensor() ]) super().__init__(root, train, transform=transform, download=True) self.size = size self.targets = torch.from_numpy(np.asarray(self.targets)) self.data = torch.from_numpy(self.data).transpose(1, 3).transpose(2, 3) self.idx_to_class = {v: k for k, v in self.class_to_idx.items()} if limit_var is not None and limit_var < len(self): picks = np.random.choice(np.arange(self.data.size(0)), size=limit_var, replace=False) self.data = self.data[picks] self.targets = self.targets[picks] if limit_var is not None and limit_var > len(self): print( 'OECifar100 shall be limited to {} samples, but Cifar100 contains only {} samples, thus using all.' .format(limit_var, len(self)) ) if len(self) < size[0]: rep = ceil(size[0] / len(self)) old = len(self) self.data = self.data.repeat(rep, 1, 1, 1) self.targets = self.targets.repeat(rep) if rep != size[0] / old: import warnings warnings.warn( 'OECifar100 has been limited to {} samples. ' 'Due to the requested size of {}, the dataset will be enlarged. ' 'But {} repetitions will make some samples appear more often than others in the dataset, ' 'because the final size after repetitions is {}, which is cut to {}' .format(limit_var, size[0], rep, len(self), size[0]) ) def data_loader(self) -> DataLoader: return DataLoader(dataset=self, batch_size=self.size[0], shuffle=True, num_workers=0) def __getitem__(self, index: int) -> torch.Tensor: sample, target = super().__getitem__(index) sample = sample.mul(255).byte() return sample
python/fcdd/datasets/outlier_exposure/cifar100.py
from torchvision.datasets import CIFAR100 from torch.utils.data import DataLoader import torchvision.transforms as transforms import os.path as pt import torch import numpy as np def ceil(x: float): return int(np.ceil(x)) class MYCIFAR100(CIFAR100): """ Reimplements get_item to transform tensor input to pil image before applying transformation. """ def __getitem__(self, index): img, target = self.data[index], self.targets[index] img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target class OECifar100(MYCIFAR100): cifar10_classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def __init__(self, size: torch.Size, root: str = None, train: bool = True, limit_var: int = 20): """ Outlier Exposure dataset for Cifar-100. :param size: size of the samples in n x c x h x w, samples will be resized to h x w. If n is larger than the number of samples available in Cifar-100, dataset will be enlarged by repetitions to fit n. This is important as exactly n images are extracted per iteration of the data_loader. For online supervision n should be set to 1 because only one sample is extracted at a time. :param root: root directory where data is found or is to be downloaded to. :param train: whether to use training or test samples. :param limit_var: limits the number of different samples, i.e. randomly chooses limit_var many samples from all available ones to be the training data. """ assert len(size) == 4 and size[2] == size[3] assert size[1] in [1, 3] root = pt.join(root, 'cifar100', ) transform = transforms.Compose([ transforms.Resize((size[2], size[3])), transforms.Grayscale() if size[1] == 1 else transforms.Lambda(lambda x: x), transforms.ToTensor() ]) super().__init__(root, train, transform=transform, download=True) self.size = size self.targets = torch.from_numpy(np.asarray(self.targets)) self.data = torch.from_numpy(self.data).transpose(1, 3).transpose(2, 3) self.idx_to_class = {v: k for k, v in self.class_to_idx.items()} if limit_var is not None and limit_var < len(self): picks = np.random.choice(np.arange(self.data.size(0)), size=limit_var, replace=False) self.data = self.data[picks] self.targets = self.targets[picks] if limit_var is not None and limit_var > len(self): print( 'OECifar100 shall be limited to {} samples, but Cifar100 contains only {} samples, thus using all.' .format(limit_var, len(self)) ) if len(self) < size[0]: rep = ceil(size[0] / len(self)) old = len(self) self.data = self.data.repeat(rep, 1, 1, 1) self.targets = self.targets.repeat(rep) if rep != size[0] / old: import warnings warnings.warn( 'OECifar100 has been limited to {} samples. ' 'Due to the requested size of {}, the dataset will be enlarged. ' 'But {} repetitions will make some samples appear more often than others in the dataset, ' 'because the final size after repetitions is {}, which is cut to {}' .format(limit_var, size[0], rep, len(self), size[0]) ) def data_loader(self) -> DataLoader: return DataLoader(dataset=self, batch_size=self.size[0], shuffle=True, num_workers=0) def __getitem__(self, index: int) -> torch.Tensor: sample, target = super().__getitem__(index) sample = sample.mul(255).byte() return sample
0.903882
0.725089
import sys import math import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib import numpy as np from random import randint from matplotlib.backends.backend_pdf import PdfPages from matplotlib.backends.backend_pdf import PdfPages from palettable.colorbrewer.sequential import YlGnBu_5 # Reading data df = pd.read_csv('../plot_data/pdp_pipeline.csv') # Plot type plt.style.use('ggplot') fig, ax = plt.subplots(figsize=(32, 8)) # plt.xticks(rotation=90) # Set limits for X and Y axises # plt.xlim(-0.5, 10.5) plt.ylim(0, 1) N = len(df['layer']) ind = np.arange(N) width = 0.6 c = -1 for x in np.arange(N): if(x%10 == 0): c = c + 1 ind[x] = c c = c + 1 # print(ind) # bar.hatch -> puting patterns on the colors # opbars = ax.bar(ind, df['ref'].values.tolist(), width, ecolor='k', # color=YlGnBu_5.hex_colors[0], edgecolor='k', hatch='//'); colour = ['#ffeda0','#feb24c','#f03b20'] opbars = ax.bar(ind, df['avg_cycles'].values.tolist(), width, ecolor='k', color=colour[0], edgecolor='k'); opbars = ax.bar(ind, df['middle'].values.tolist(), width, ecolor='k', color=colour[1], edgecolor='k'); opbars = ax.bar(ind, df['late'].values.tolist(), width, ecolor='k', color=colour[2], edgecolor='k'); opbars = ax.bar(ind, df['total_cycles'].values.tolist(), width, ecolor='k', color=YlGnBu_5.hex_colors[4], edgecolor='k', hatch='//'); ax.set_ylabel('Latency',fontsize=32) ax.yaxis.label.set_color('black') ax.set_xticks(ind); # Adding extra name to the x labels # rotation='degree' for rotating the text ax.set_xticklabels(df['layer'], fontsize=16, rotation=90) t = 10 ax.text(0, -0.25, 'Early', fontsize=32) ax.text(3, -0.25, 'Middle', fontsize=32) ax.text(6.5, -0.25, 'Late', fontsize=32) ax.text(10, -0.05, '|', fontsize=20) ax.text(10, -0.08, '|', fontsize=20) ax.text(10, -0.11, '|', fontsize=20) ax.text(10, -0.14, '|', fontsize=20) ax.text(11, -0.25, 'Early', fontsize=32) ax.text(14, -0.25, 'Middle', fontsize=32) ax.text(17.5, -0.25, 'Late', fontsize=32) ax.text(21, -0.05, '|', fontsize=20) ax.text(21, -0.08, '|', fontsize=20) ax.text(21, -0.11, '|', fontsize=20) ax.text(21, -0.14, '|', fontsize=20) ax.text(22, -0.25, 'Early', fontsize=32) ax.text(25, -0.25, 'Middle', fontsize=32) ax.text(28.5, -0.25, 'Late', fontsize=32) # ax.text(0, -2, 'Early Layers', fontsize=22) # ax.text(4, -2, 'Middle Layers', fontsize=22) # ax.text(8, -2, 'Late Layers', fontsize=22) ax.text(3, 1.05, 'pdp-0', fontsize=32) ax.text(14, 1.05, 'pdp-1', fontsize=32) ax.text(24, 1.05, 'pdp-2', fontsize=32) ### Style # Set the background color ax.set_facecolor('whitesmoke') plt.gca().xaxis.grid(False) plt.gca().yaxis.grid(True, color='black') plt.tick_params( axis='x', which='both', bottom=False, top=False, colors='black', labelsize=26) plt.tick_params( axis='y', which='both', right=False, colors='black', labelsize=30 ) plt.tick_params(axis='both', which='major', direction='in', length=6, width=3,color='black') plt.grid(linestyle='--') ax.spines['bottom'].set_color('gray') ax.spines['top'].set_color('gray') ax.spines['right'].set_color('gray') ax.spines['left'].set_color('gray') # Adding legend and the position # ax.legend((pbars[0], opbars[0], cbars[0], prec[0]), ('A', 'B', 'C', 'D'), bbox_to_anchor=(1, 0.92), fontsize=22) fig.savefig('test.pdf',facecolor=fig.get_facecolor(), bbox_inches='tight')
TB-scheduler/deprecated/pdp_pipeline.py
import sys import math import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib import numpy as np from random import randint from matplotlib.backends.backend_pdf import PdfPages from matplotlib.backends.backend_pdf import PdfPages from palettable.colorbrewer.sequential import YlGnBu_5 # Reading data df = pd.read_csv('../plot_data/pdp_pipeline.csv') # Plot type plt.style.use('ggplot') fig, ax = plt.subplots(figsize=(32, 8)) # plt.xticks(rotation=90) # Set limits for X and Y axises # plt.xlim(-0.5, 10.5) plt.ylim(0, 1) N = len(df['layer']) ind = np.arange(N) width = 0.6 c = -1 for x in np.arange(N): if(x%10 == 0): c = c + 1 ind[x] = c c = c + 1 # print(ind) # bar.hatch -> puting patterns on the colors # opbars = ax.bar(ind, df['ref'].values.tolist(), width, ecolor='k', # color=YlGnBu_5.hex_colors[0], edgecolor='k', hatch='//'); colour = ['#ffeda0','#feb24c','#f03b20'] opbars = ax.bar(ind, df['avg_cycles'].values.tolist(), width, ecolor='k', color=colour[0], edgecolor='k'); opbars = ax.bar(ind, df['middle'].values.tolist(), width, ecolor='k', color=colour[1], edgecolor='k'); opbars = ax.bar(ind, df['late'].values.tolist(), width, ecolor='k', color=colour[2], edgecolor='k'); opbars = ax.bar(ind, df['total_cycles'].values.tolist(), width, ecolor='k', color=YlGnBu_5.hex_colors[4], edgecolor='k', hatch='//'); ax.set_ylabel('Latency',fontsize=32) ax.yaxis.label.set_color('black') ax.set_xticks(ind); # Adding extra name to the x labels # rotation='degree' for rotating the text ax.set_xticklabels(df['layer'], fontsize=16, rotation=90) t = 10 ax.text(0, -0.25, 'Early', fontsize=32) ax.text(3, -0.25, 'Middle', fontsize=32) ax.text(6.5, -0.25, 'Late', fontsize=32) ax.text(10, -0.05, '|', fontsize=20) ax.text(10, -0.08, '|', fontsize=20) ax.text(10, -0.11, '|', fontsize=20) ax.text(10, -0.14, '|', fontsize=20) ax.text(11, -0.25, 'Early', fontsize=32) ax.text(14, -0.25, 'Middle', fontsize=32) ax.text(17.5, -0.25, 'Late', fontsize=32) ax.text(21, -0.05, '|', fontsize=20) ax.text(21, -0.08, '|', fontsize=20) ax.text(21, -0.11, '|', fontsize=20) ax.text(21, -0.14, '|', fontsize=20) ax.text(22, -0.25, 'Early', fontsize=32) ax.text(25, -0.25, 'Middle', fontsize=32) ax.text(28.5, -0.25, 'Late', fontsize=32) # ax.text(0, -2, 'Early Layers', fontsize=22) # ax.text(4, -2, 'Middle Layers', fontsize=22) # ax.text(8, -2, 'Late Layers', fontsize=22) ax.text(3, 1.05, 'pdp-0', fontsize=32) ax.text(14, 1.05, 'pdp-1', fontsize=32) ax.text(24, 1.05, 'pdp-2', fontsize=32) ### Style # Set the background color ax.set_facecolor('whitesmoke') plt.gca().xaxis.grid(False) plt.gca().yaxis.grid(True, color='black') plt.tick_params( axis='x', which='both', bottom=False, top=False, colors='black', labelsize=26) plt.tick_params( axis='y', which='both', right=False, colors='black', labelsize=30 ) plt.tick_params(axis='both', which='major', direction='in', length=6, width=3,color='black') plt.grid(linestyle='--') ax.spines['bottom'].set_color('gray') ax.spines['top'].set_color('gray') ax.spines['right'].set_color('gray') ax.spines['left'].set_color('gray') # Adding legend and the position # ax.legend((pbars[0], opbars[0], cbars[0], prec[0]), ('A', 'B', 'C', 'D'), bbox_to_anchor=(1, 0.92), fontsize=22) fig.savefig('test.pdf',facecolor=fig.get_facecolor(), bbox_inches='tight')
0.400984
0.422266
# C major scale song1_tempo = 220 song1 = [ ["Cn", 2, 1], ["Dn", 2, 1], ["En", 2, 1], ["Fn", 2, 1], ["Gn", 2, 1], ["An", 2, 1], ["Bn", 2, 1], ["Cn", 3, 1], ["Bn", 2, 1], ["An", 2, 1], ["Gn", 2, 1], ["Fn", 2, 1], ["En", 2, 1], ["Dn", 2, 1], ["Cn", 2, 1] ] # Imperial March song2_tempo = 104 * 8 song2 = [ ["Gn", 1, 8 ], ["Gn", 1, 8 ], ["Gn", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 16 ], ["Dn", 2, 8 ], ["Dn", 2, 8 ], ["Dn", 2, 8 ], ["Ef", 2, 6 ], ["Bf", 1, 2 ], ["Gf", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 16 ], ["Gn", 2, 8 ], ["Gn", 1, 6 ], ["Gn", 1, 2 ], ["Gn", 2, 8 ], ["Gf", 2, 6 ], ["Fn", 2, 2 ], ["En", 2, 2 ], ["Ds", 2, 2 ], ["En", 2, 4 ], ["Zz", 0, 4 ], ["Gs", 1, 4 ], ["Cs", 2, 8 ], ["Bs", 2, 6 ], ["Bn", 1, 2 ], ["Bf", 1, 2 ], ["An", 1, 2 ], ["Bf", 1, 4 ], ["Zz", 0, 4 ], ["Ef", 1, 4 ], ["Gf", 1, 8 ], ["Ef", 1, 6 ], ["Gf", 1, 2 ], ["Bf", 1, 8 ], ["Gn", 1, 6 ], ["Bf", 1, 2 ], ["Dn", 2, 16 ], ["Gn", 2, 8 ], ["Gn", 1, 6 ], ["Gn", 1, 2 ], ["Gn", 2, 8 ], ["Gf", 2, 6 ], ["Fn", 2, 2 ], ["En", 2, 2 ], ["Ds", 2, 2 ], ["En", 2, 4 ], ["Zz", 0, 4 ], ["Gs", 1, 4 ], ["Cs", 2, 8 ], ["Bs", 2, 6 ], ["Bn", 1, 2 ], ["Bf", 1, 2 ], ["An", 1, 2 ], ["Bf", 1, 4 ], ["Zz", 0, 4 ], ["Ef", 1, 4 ], ["Gf", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 16 ] ] # Metal Crusher song3_tempo = 115 * 4 song3 = [ ["Ef", 3, 3 ], # Bar 1 ["Ef", 3, 1 ], ["Ef", 3, 2 ], ["Ef", 3, 2 ], ["Bn", 2, 3 ], ["Bn", 2, 1 ], ["Ef", 1, 4 ], ["Ef", 1, 3 ], ["Ef", 1, 1 ], ["Ef", 1, 2 ], ["Ef", 1, 2 ], ["Af", 2, 8 ], # End of intro ["Ef", 2, 1 ], ["En", 2, 1 ], ["Ef", 2, 1 ], ["Dn", 2, 1 ], ["Ef", 2, 2 ], ["Dn", 2, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Gn", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Bn", 2, 1 ], ["Df", 2, 2 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Af", 2, 1 ], ["Ef", 1, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 3, 2 ], ["Ef", 2, 1 ], # Repeat ["En", 2, 1 ], ["Ef", 2, 1 ], ["Dn", 2, 1 ], ["Ef", 2, 2 ], ["Dn", 2, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Gn", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Bn", 2, 1 ], ["Df", 2, 2 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Af", 2, 1 ], ["Ef", 1, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 3, 2 ] ] song4_tempo = 135*2 song4 = [ ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["Gf", 1, 1], ["An", 1, 2], ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["An", 1, 1], ["Af", 1, 1], ["Gf", 1, 1], ["Fn", 1, 2], ["Zz", 0, 1], ["Fn", 1, 2], ["Fn", 1, 1], ["Fn", 1, 2], ["Dn", 1, 2], ["Zz", 0, 1], ["Dn", 1, 2], ["Dn", 1, 1], ["En", 1, 1], ["Fn", 1, 1], ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["Gf", 1, 1], ["An", 1, 2], ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["An", 1, 1], ["Af", 1, 1], ["Gf", 1, 1], ["Fn", 1, 2], ["Zz", 0, 1], ["Fn", 1, 2], ["Fn", 1, 1], ["Fn", 1, 2], ["Dn", 1, 2], ["Zz", 0, 1], ["Dn", 1, 2], ["Dn", 1, 1], ["En", 1, 1], ["Fn", 1, 1], # Part 2 ["Gf", 2, 2], ["An", 2, 2], ["Gf", 2, 2], ["Df", 2, 2], ["Df", 2, 2], ["Df", 2, 1], ["Gf", 1, 3], ["Df", 2, 1], ["Df", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 1], ["Cn", 2, 1], ["An", 1, 2], ["An", 1, 2], ["Dn", 2, 2], ["En", 2, 1], ["Fn", 2, 1], ["Gf", 2, 2], ["An", 2, 2], ["Gf", 2, 2], ["Df", 2, 2], ["Df", 2, 2], ["Df", 2, 1], ["Gf", 1, 3], ["Df", 2, 1], ["Df", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 1], ["Cn", 2, 1], ["An", 1, 1], ["An", 1, 1], ["An", 1, 1], ["An", 1, 1], ["Gf", 1, 4], ] song5_tempo = 135*2 song5 = [ ["Gf", 1, 2], ["An", 1, 1], ["An", 1, 2], ["Gf", 1, 1], ["An", 1, 2], ["Gf", 1, 2], ["An", 1, 1], ["An", 1, 2], ["Gf", 1, 1], ["An", 1, 1], ["Bn", 1, 1], ["Fn", 1, 2], ["Af", 1, 1], ["Af", 1, 2], ["Fn", 1, 1], ["Af", 1, 2], ["Dn", 1, 2], ["Gf", 1, 1], ["Gf", 1, 2], ["Dn", 1, 1], ["An", 1, 1], ["Af", 1, 1], ] # song5a_tempo = 160*2 # song5a = [ # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ] cantina_tempo = 132*4 cantina = [ # Part 1 ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 1], ["Bn", 1, 2], ["Fs", 1, 1], ["Zz", 1, 1], ["Fn", 1, 1], ["Fs", 1, 2], # Part 2 ["Fs", 1, 1], ["Fn", 1, 1], ["Fs", 1, 1], ["En", 1, 1], ["Zz", 1, 1], ["Ef", 1, 1], ["En", 1, 1], ["Ef", 1, 1], ["Dn", 1, 3], ["Bn", 0, 5], # Part 3 ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 1], ["Bn", 1, 2], ["Fs", 1, 1], ["Zz", 1, 1], ["Fn", 1, 1], ["Fs", 1, 2], ["En", 1, 2], ["En", 1, 3], ["Ef", 1, 1], ["En", 1, 2], ["An", 1, 1], ["Gn", 1, 2], ["Fs", 1, 2], ["En", 1, 3], # Part 4 ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 1], ["Bn", 1, 2], ["Fs", 1, 1], ["Zz", 1, 1], ["Fn", 1, 1], ["Fs", 1, 2], ["An", 1, 2], ["An", 1, 3], ["Fs", 1, 1], ["En", 1, 2], ["Dn", 1, 3], ["Bn", 0, 5], # Leadup ["Bn", 0, 4], ["Dn", 1, 4], ["Fs", 1, 4], ["An", 1, 4], ["Cn", 2, 2], ["Bn", 1, 2], ["Fn", 1, 1], ["Fs", 1, 2], ["Dn", 1, 6], ["Zz", 1, 4] ]
player/python/songs.py
# C major scale song1_tempo = 220 song1 = [ ["Cn", 2, 1], ["Dn", 2, 1], ["En", 2, 1], ["Fn", 2, 1], ["Gn", 2, 1], ["An", 2, 1], ["Bn", 2, 1], ["Cn", 3, 1], ["Bn", 2, 1], ["An", 2, 1], ["Gn", 2, 1], ["Fn", 2, 1], ["En", 2, 1], ["Dn", 2, 1], ["Cn", 2, 1] ] # Imperial March song2_tempo = 104 * 8 song2 = [ ["Gn", 1, 8 ], ["Gn", 1, 8 ], ["Gn", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 16 ], ["Dn", 2, 8 ], ["Dn", 2, 8 ], ["Dn", 2, 8 ], ["Ef", 2, 6 ], ["Bf", 1, 2 ], ["Gf", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 16 ], ["Gn", 2, 8 ], ["Gn", 1, 6 ], ["Gn", 1, 2 ], ["Gn", 2, 8 ], ["Gf", 2, 6 ], ["Fn", 2, 2 ], ["En", 2, 2 ], ["Ds", 2, 2 ], ["En", 2, 4 ], ["Zz", 0, 4 ], ["Gs", 1, 4 ], ["Cs", 2, 8 ], ["Bs", 2, 6 ], ["Bn", 1, 2 ], ["Bf", 1, 2 ], ["An", 1, 2 ], ["Bf", 1, 4 ], ["Zz", 0, 4 ], ["Ef", 1, 4 ], ["Gf", 1, 8 ], ["Ef", 1, 6 ], ["Gf", 1, 2 ], ["Bf", 1, 8 ], ["Gn", 1, 6 ], ["Bf", 1, 2 ], ["Dn", 2, 16 ], ["Gn", 2, 8 ], ["Gn", 1, 6 ], ["Gn", 1, 2 ], ["Gn", 2, 8 ], ["Gf", 2, 6 ], ["Fn", 2, 2 ], ["En", 2, 2 ], ["Ds", 2, 2 ], ["En", 2, 4 ], ["Zz", 0, 4 ], ["Gs", 1, 4 ], ["Cs", 2, 8 ], ["Bs", 2, 6 ], ["Bn", 1, 2 ], ["Bf", 1, 2 ], ["An", 1, 2 ], ["Bf", 1, 4 ], ["Zz", 0, 4 ], ["Ef", 1, 4 ], ["Gf", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 8 ], ["Ef", 1, 6 ], ["Bf", 1, 2 ], ["Gn", 1, 16 ] ] # Metal Crusher song3_tempo = 115 * 4 song3 = [ ["Ef", 3, 3 ], # Bar 1 ["Ef", 3, 1 ], ["Ef", 3, 2 ], ["Ef", 3, 2 ], ["Bn", 2, 3 ], ["Bn", 2, 1 ], ["Ef", 1, 4 ], ["Ef", 1, 3 ], ["Ef", 1, 1 ], ["Ef", 1, 2 ], ["Ef", 1, 2 ], ["Af", 2, 8 ], # End of intro ["Ef", 2, 1 ], ["En", 2, 1 ], ["Ef", 2, 1 ], ["Dn", 2, 1 ], ["Ef", 2, 2 ], ["Dn", 2, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Gn", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Bn", 2, 1 ], ["Df", 2, 2 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Af", 2, 1 ], ["Ef", 1, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 3, 2 ], ["Ef", 2, 1 ], # Repeat ["En", 2, 1 ], ["Ef", 2, 1 ], ["Dn", 2, 1 ], ["Ef", 2, 2 ], ["Dn", 2, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Gn", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Bn", 2, 1 ], ["Df", 2, 2 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 2 ], ["Af", 2, 1 ], ["Bf", 2, 1 ], ["Bn", 2, 2 ], ["Bf", 2, 1 ], ["Af", 2, 1 ], ["Ef", 1, 2 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["En", 1, 1 ], ["Ef", 1, 1 ], ["Bn", 2, 1 ], ["Bf", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 2, 1 ], ["Gn", 1, 1 ], ["Af", 2, 2 ], ["Af", 3, 2 ] ] song4_tempo = 135*2 song4 = [ ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["Gf", 1, 1], ["An", 1, 2], ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["An", 1, 1], ["Af", 1, 1], ["Gf", 1, 1], ["Fn", 1, 2], ["Zz", 0, 1], ["Fn", 1, 2], ["Fn", 1, 1], ["Fn", 1, 2], ["Dn", 1, 2], ["Zz", 0, 1], ["Dn", 1, 2], ["Dn", 1, 1], ["En", 1, 1], ["Fn", 1, 1], ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["Gf", 1, 1], ["An", 1, 2], ["Gf", 1, 2], ["Zz", 0, 1], ["Gf", 1, 2], ["An", 1, 1], ["Af", 1, 1], ["Gf", 1, 1], ["Fn", 1, 2], ["Zz", 0, 1], ["Fn", 1, 2], ["Fn", 1, 1], ["Fn", 1, 2], ["Dn", 1, 2], ["Zz", 0, 1], ["Dn", 1, 2], ["Dn", 1, 1], ["En", 1, 1], ["Fn", 1, 1], # Part 2 ["Gf", 2, 2], ["An", 2, 2], ["Gf", 2, 2], ["Df", 2, 2], ["Df", 2, 2], ["Df", 2, 1], ["Gf", 1, 3], ["Df", 2, 1], ["Df", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 1], ["Cn", 2, 1], ["An", 1, 2], ["An", 1, 2], ["Dn", 2, 2], ["En", 2, 1], ["Fn", 2, 1], ["Gf", 2, 2], ["An", 2, 2], ["Gf", 2, 2], ["Df", 2, 2], ["Df", 2, 2], ["Df", 2, 1], ["Gf", 1, 3], ["Df", 2, 1], ["Df", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 2], ["Cn", 2, 1], ["Cn", 2, 1], ["Cn", 2, 1], ["An", 1, 1], ["An", 1, 1], ["An", 1, 1], ["An", 1, 1], ["Gf", 1, 4], ] song5_tempo = 135*2 song5 = [ ["Gf", 1, 2], ["An", 1, 1], ["An", 1, 2], ["Gf", 1, 1], ["An", 1, 2], ["Gf", 1, 2], ["An", 1, 1], ["An", 1, 2], ["Gf", 1, 1], ["An", 1, 1], ["Bn", 1, 1], ["Fn", 1, 2], ["Af", 1, 1], ["Af", 1, 2], ["Fn", 1, 1], ["Af", 1, 2], ["Dn", 1, 2], ["Gf", 1, 1], ["Gf", 1, 2], ["Dn", 1, 1], ["An", 1, 1], ["Af", 1, 1], ] # song5a_tempo = 160*2 # song5a = [ # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ["Cn", 1, 2], # ["Bn", 1, 1], # ["Cn", 1, 1], # ["An", 1, 2], # ] cantina_tempo = 132*4 cantina = [ # Part 1 ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 1], ["Bn", 1, 2], ["Fs", 1, 1], ["Zz", 1, 1], ["Fn", 1, 1], ["Fs", 1, 2], # Part 2 ["Fs", 1, 1], ["Fn", 1, 1], ["Fs", 1, 1], ["En", 1, 1], ["Zz", 1, 1], ["Ef", 1, 1], ["En", 1, 1], ["Ef", 1, 1], ["Dn", 1, 3], ["Bn", 0, 5], # Part 3 ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 1], ["Bn", 1, 2], ["Fs", 1, 1], ["Zz", 1, 1], ["Fn", 1, 1], ["Fs", 1, 2], ["En", 1, 2], ["En", 1, 3], ["Ef", 1, 1], ["En", 1, 2], ["An", 1, 1], ["Gn", 1, 2], ["Fs", 1, 2], ["En", 1, 3], # Part 4 ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 2], ["Bn", 1, 2], ["Fs", 1, 1], ["Bn", 1, 2], ["Fs", 1, 1], ["Zz", 1, 1], ["Fn", 1, 1], ["Fs", 1, 2], ["An", 1, 2], ["An", 1, 3], ["Fs", 1, 1], ["En", 1, 2], ["Dn", 1, 3], ["Bn", 0, 5], # Leadup ["Bn", 0, 4], ["Dn", 1, 4], ["Fs", 1, 4], ["An", 1, 4], ["Cn", 2, 2], ["Bn", 1, 2], ["Fn", 1, 1], ["Fs", 1, 2], ["Dn", 1, 6], ["Zz", 1, 4] ]
0.205296
0.511534
import ipaddress from django.conf import settings from django.test import TestCase from peering.constants import ( BGP_RELATIONSHIP_PRIVATE_PEERING, COMMUNITY_TYPE_INGRESS, COMMUNITY_TYPE_EGRESS, PLATFORM_IOSXR, PLATFORM_JUNOS, PLATFORM_NONE, ROUTING_POLICY_TYPE_EXPORT, ROUTING_POLICY_TYPE_IMPORT, ROUTING_POLICY_TYPE_IMPORT_EXPORT, ) from peering.models import ( AutonomousSystem, BGPGroup, Community, DirectPeeringSession, InternetExchange, InternetExchangePeeringSession, Router, RoutingPolicy, Template, ) class AutonomousSystemTest(TestCase): def test_does_exist(self): asn = 201281 # AS should not exist autonomous_system = AutonomousSystem.does_exist(asn) self.assertEqual(None, autonomous_system) # Create the AS new_as = AutonomousSystem.objects.create(asn=asn, name="<NAME>") # AS must exist autonomous_system = AutonomousSystem.does_exist(asn) self.assertEqual(asn, new_as.asn) def test_create_from_peeringdb(self): asn = 201281 # Illegal ASN self.assertIsNone(AutonomousSystem.create_from_peeringdb(64500)) # Must not exist at first self.assertIsNone(AutonomousSystem.does_exist(asn)) # Create the AS autonomous_system1 = AutonomousSystem.create_from_peeringdb(asn) self.assertEqual(asn, autonomous_system1.asn) # Must exist now self.assertEqual(asn, AutonomousSystem.does_exist(asn).asn) # Must not rise error, just return the AS autonomous_system2 = AutonomousSystem.create_from_peeringdb(asn) self.assertEqual(asn, autonomous_system2.asn) # Must exist now also self.assertEqual(asn, AutonomousSystem.does_exist(asn).asn) def test_synchronize_with_peeringdb(self): # Create legal AS to sync with PeeringDB asn = 201281 autonomous_system = AutonomousSystem.create_from_peeringdb(asn) self.assertEqual(asn, autonomous_system.asn) self.assertTrue(autonomous_system.synchronize_with_peeringdb()) # Create illegal AS to fail sync with PeeringDB asn = 64500 autonomous_system = AutonomousSystem.objects.create(asn=asn, name="Test") self.assertEqual(asn, autonomous_system.asn) self.assertFalse(autonomous_system.synchronize_with_peeringdb()) def test_get_irr_as_set_prefixes(self): autonomous_system = AutonomousSystem.create_from_peeringdb(201281) prefixes = autonomous_system.get_irr_as_set_prefixes() self.assertEqual(autonomous_system.ipv6_max_prefixes, len(prefixes["ipv6"])) self.assertEqual(autonomous_system.ipv4_max_prefixes, len(prefixes["ipv4"])) def test__str__(self): asn = 64500 name = "Test" expected = "AS{} - {}".format(asn, name) autonomous_system = AutonomousSystem.objects.create(asn=asn, name=name) self.assertEqual(expected, str(autonomous_system)) class CommunityTest(TestCase): def test_create(self): community_list = [ {"name": "Test", "value": "64500:1", "type": None, "str": "Test"}, { "name": "Test", "value": "64500:1", "type": COMMUNITY_TYPE_EGRESS, "str": "Test", }, ] for details in community_list: if details["type"]: community = Community.objects.create( name=details["name"], value=details["value"], type=details["type"] ) else: community = Community.objects.create( name=details["name"], value=details["value"] ) self.assertIsNotNone(community) self.assertEqual(details["name"], community.name) self.assertEqual(details["value"], community.value) self.assertEqual(details["type"] or COMMUNITY_TYPE_INGRESS, community.type) self.assertEqual(details["str"], str(community)) def test_get_type_html(self): expected = [ '<span class="badge badge-primary">Egress</span>', '<span class="badge badge-info">Ingress</span>', '<span class="badge badge-secondary">Unknown</span>', ] community_types = [COMMUNITY_TYPE_EGRESS, COMMUNITY_TYPE_INGRESS, "unknown"] for i in range(len(community_types)): self.assertEqual( expected[i], Community.objects.create( name="test{}".format(i), value="64500:{}".format(i), type=community_types[i], ).get_type_html(), ) class InternetExchangeTest(TestCase): def test_is_peeringdb_valid(self): ix = InternetExchange.objects.create(name="Test", slug="test") # Not linked with PeeringDB but considered as valid self.assertTrue(ix.is_peeringdb_valid()) # Set invalid ID, must result in false ix.peeringdb_id = 14658 ix.save() self.assertFalse(ix.is_peeringdb_valid()) # Set valid ID, must result in true ix.peeringdb_id = 29146 ix.save() self.assertTrue(ix.is_peeringdb_valid()) def test_get_peeringdb_id(self): # Expected results expected = [0, 0, 0, 0, 29146, 29146, 29146] # Test data data = [ { # No IP addresses }, {"ipv6_address": "2001:db8::1"}, {"ipv4_address": "192.168.168.1"}, {"ipv6_address": "2001:db8::1", "ipv4_address": "192.168.168.1"}, {"ipv6_address": "fc00:e968:6179::de52:7100:9467:1"}, {"ipv4_address": "192.168.127.12"}, { "ipv6_address": "fc00:e968:6179::de52:7100", "ipv4_address": "192.168.127.12", }, ] # Run test cases for i in range(len(expected)): ixp = InternetExchange.objects.create( name="Test {}".format(i), slug="test_{}".format(i), **data[i] ) self.assertEqual(expected[i], ixp.get_peeringdb_id()) def test_import_peering_sessions(self): # Expected results expected = [ # First case (1, 1, []), # Second case (0, 1, []), # Third case (0, 1, []), # Fourth case (0, 0, []), ] session_lists = [ # First case, one new session with one new AS [{"ip_address": ipaddress.ip_address("2001:db8::1"), "remote_asn": 29467}], # Second case, one new session with one known AS [{"ip_address": ipaddress.ip_address("192.168.0.1"), "remote_asn": 29467}], # Third case, new IPv4 session on another IX but with an IP that # has already been used [{"ip_address": ipaddress.ip_address("192.168.0.1"), "remote_asn": 29467}], # Fourth case, new IPv4 session with IPv6 prefix [{"ip_address": ipaddress.ip_address("192.168.2.1"), "remote_asn": 29467}], ] prefix_lists = [ # First case [ipaddress.ip_network("2001:db8::/64")], # Second case [ipaddress.ip_network("192.168.0.0/24")], # Third case [ipaddress.ip_network("192.168.0.0/24")], # Fourth case [ipaddress.ip_network("2001:db8::/64")], ] # Run test cases for i in range(len(expected)): ixp = InternetExchange.objects.create( name="Test {}".format(i), slug="test_{}".format(i) ) self.assertEqual( expected[i], ixp._import_peering_sessions(session_lists[i], prefix_lists[i]), ) self.assertEqual(expected[i][1], len(ixp.get_peering_sessions())) class InternetExchangePeeringSessionTest(TestCase): def test_does_exist(self): # No session, must expect None self.assertIsNone(InternetExchangePeeringSession.does_exist()) # Prepare objects and create a peering session autonomous_system0 = AutonomousSystem.objects.create(asn=64500, name="Test") internet_exchange0 = InternetExchange.objects.create(name="Test0", slug="test0") peering_session0 = InternetExchangePeeringSession.objects.create( autonomous_system=autonomous_system0, internet_exchange=internet_exchange0, ip_address="2001:db8::1", ) # Make sure that the session has been created self.assertIsNotNone(peering_session0) # Make sure that the session is returned by calling does_exist() # without arguments (only one session in the database) self.assertIsNotNone(InternetExchangePeeringSession.does_exist()) # Make sure we can retrieve the session with its IP self.assertEqual( peering_session0, InternetExchangePeeringSession.does_exist(ip_address="2001:db8::1"), ) # Make sure we can retrieve the session with its IX self.assertEqual( peering_session0, InternetExchangePeeringSession.does_exist( internet_exchange=internet_exchange0 ), ) # Make sure we can retrieve the session with AS self.assertEqual( peering_session0, InternetExchangePeeringSession.does_exist( autonomous_system=autonomous_system0 ), ) # Create another peering session peering_session1 = InternetExchangePeeringSession.objects.create( autonomous_system=autonomous_system0, internet_exchange=internet_exchange0, ip_address="192.168.1.1", ) # Make sure that the session has been created self.assertIsNotNone(peering_session1) # More than one session, must expect None self.assertIsNone(InternetExchangePeeringSession.does_exist()) # Make sure we can retrieve the session with its IP self.assertEqual( peering_session1, InternetExchangePeeringSession.does_exist(ip_address="192.168.1.1"), ) # Make sure it returns None when using a field that the two sessions # have in common self.assertIsNone( InternetExchangePeeringSession.does_exist( internet_exchange=internet_exchange0 ) ) # Create a new IX internet_exchange1 = InternetExchange.objects.create(name="Test1", slug="test1") # Make sure it returns None when there is no session self.assertIsNone( InternetExchangePeeringSession.does_exist( internet_exchange=internet_exchange1 ) ) # Create a new session with a already used IP in another OX peering_session2 = InternetExchangePeeringSession.objects.create( autonomous_system=autonomous_system0, internet_exchange=internet_exchange1, ip_address="2001:db8::1", ) # Make sure that the session has been created self.assertIsNotNone(peering_session2) # Make sure we have None, because two sessions will be found self.assertIsNone( InternetExchangePeeringSession.does_exist(ip_address="2001:db8::1") ) # But if we narrow the search with the IX we must have the proper # session self.assertEqual( peering_session2, InternetExchangePeeringSession.does_exist( ip_address="2001:db8::1", internet_exchange=internet_exchange1 ), ) class RouterTest(TestCase): def setUp(self): super().setUp() self.router = Router.objects.create( name="Test", hostname="test.example.com", platform=PLATFORM_JUNOS ) def test_get_configuration_context(self): for i in range(1, 6): AutonomousSystem.objects.create(asn=i, name="Test {}".format(i)) bgp_group = BGPGroup.objects.create(name="Test Group", slug="testgroup") for i in range(1, 6): DirectPeeringSession.objects.create( local_ip_address="192.0.2.1", autonomous_system=AutonomousSystem.objects.get(asn=i), bgp_group=bgp_group, relationship=BGP_RELATIONSHIP_PRIVATE_PEERING, ip_address="10.0.0.{}".format(i), router=self.router, ) internet_exchange = InternetExchange.objects.create( name="Test IX", slug="testix", router=self.router ) for i in range(1, 6): InternetExchangePeeringSession.objects.create( autonomous_system=AutonomousSystem.objects.get(asn=i), internet_exchange=internet_exchange, ip_address="2001:db8::{}".format(i), ) InternetExchangePeeringSession.objects.create( autonomous_system=AutonomousSystem.objects.get(asn=i), internet_exchange=internet_exchange, ip_address="192.168.0.{}".format(i), ) # Convert to dict and merge values bgp_group_dict = bgp_group.to_dict() bgp_group_dict.update( { "sessions": { 6: [ session.to_dict() for session in DirectPeeringSession.objects.filter( ip_address__family=6 ) ], 4: [ session.to_dict() for session in DirectPeeringSession.objects.filter( ip_address__family=4 ) ], } } ) internet_exchange_dict = internet_exchange.to_dict() internet_exchange_dict.update( { "sessions": { 6: [ session.to_dict() for session in InternetExchangePeeringSession.objects.filter( ip_address__family=6 ) ], 4: [ session.to_dict() for session in InternetExchangePeeringSession.objects.filter( ip_address__family=4 ) ], } } ) # Generate expected result expected = { "autonomous_systems": [ autonomous_system.to_dict() for autonomous_system in AutonomousSystem.objects.all() ], "my_asn": settings.MY_ASN, "bgp_groups": [bgp_group_dict], "internet_exchanges": [internet_exchange_dict], "routing_policies": [], "communities": [], } result = self.router.get_configuration_context() self.assertEqual(result, expected) def test_decrypt_encrypt_string(self): string = "<PASSWORD>" # Generic router (crypto not implemented) router = Router.objects.create( name="test", hostname="test.example.com", platform=PLATFORM_NONE ) self.assertEqual(string, router.decrypt_string(router.encrypt_string(string))) for platform in [PLATFORM_JUNOS, PLATFORM_IOSXR]: router = Router.objects.create( name="test", hostname="test.example.com", platform=platform ) self.assertEqual( string, router.decrypt_string(router.encrypt_string(string)) ) # Should detect that it is already encrypted self.assertEqual( string, router.decrypt_string( router.encrypt_string(router.encrypt_string(string)) ), ) # Should detect that it is not encrypted self.assertEqual( string, router.decrypt_string(router.decrypt_string(string)) ) def test_napalm_bgp_neighbors_to_peer_list(self): # Expected results expected = [0, 0, 1, 2, 3, 2, 2] napalm_dicts_list = [ # If None or empty dict passed, returned value must be empty list None, {}, # List size must match peers number including VRFs {"global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}}, { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, }, { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf0": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, "vrf1": {"peers": {"192.168.2.1": {"remote_as": 64502}}}, }, # If peer does not have remote_as field, it must be ignored { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf0": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, "vrf1": {"peers": {"192.168.2.1": {"not_valid": 64502}}}, }, # If an IP address appears more than one time, only the first # occurence must be retained { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf0": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, "vrf1": {"peers": {"192.168.1.1": {"remote_as": 64502}}}, }, ] # Create a router router = Router.objects.create( name="test", hostname="test.example.com", platform=PLATFORM_JUNOS ) # Run test cases for i in range(len(expected)): self.assertEqual( expected[i], len(router._napalm_bgp_neighbors_to_peer_list(napalm_dicts_list[i])), ) def test_bgp_neighbors_detail_as_list(self): expected = [ { "up": True, "local_as": 201281, "remote_as": 29467, "local_address": "192.168.1.1", } ] bgp_neighbors_detail = { "global": { 29467: [ { "up": True, "local_as": 201281, "remote_as": 29467, "local_address": "192.168.1.1", } ] } } router = Router.objects.create( name="test", hostname="test.example.com", platform=PLATFORM_JUNOS ) self.assertEqual( expected, router.bgp_neighbors_detail_as_list(bgp_neighbors_detail) ) class RoutingPolicyTest(TestCase): def test_create(self): routing_policy_list = [ {"name": "Test1", "slug": "test1", "type": None, "weight": 0}, { "name": "Test2", "slug": "test2", "type": ROUTING_POLICY_TYPE_EXPORT, "weight": 0, }, ] for details in routing_policy_list: if details["type"]: routing_policy = RoutingPolicy.objects.create( name=details["name"], slug=details["slug"], type=details["type"] ) else: routing_policy = RoutingPolicy.objects.create( name=details["name"], slug=details["slug"] ) self.assertIsNotNone(routing_policy) self.assertEqual(details["name"], routing_policy.name) self.assertEqual(details["slug"], routing_policy.slug) self.assertEqual( details["type"] or ROUTING_POLICY_TYPE_IMPORT, routing_policy.type ) def test_get_type_html(self): expected = [ '<span class="badge badge-primary">Export</span>', '<span class="badge badge-info">Import</span>', '<span class="badge badge-dark">Import+Export</span>', '<span class="badge badge-secondary">Unknown</span>', ] routing_policy_types = [ ROUTING_POLICY_TYPE_EXPORT, ROUTING_POLICY_TYPE_IMPORT, ROUTING_POLICY_TYPE_IMPORT_EXPORT, "unknown", ] for i in range(len(routing_policy_types)): self.assertEqual( expected[i], RoutingPolicy.objects.create( name="test{}".format(i), slug="test{}".format(i), type=routing_policy_types[i], ).get_type_html(), ) class TemplateTest(TestCase): def setUp(self): super().setUp() self.template = Template(name="Test", template="{{ test }}") def test_render(self): self.assertEqual(self.template.render({"test": "test"}), "test")
peering/tests/test_models.py
import ipaddress from django.conf import settings from django.test import TestCase from peering.constants import ( BGP_RELATIONSHIP_PRIVATE_PEERING, COMMUNITY_TYPE_INGRESS, COMMUNITY_TYPE_EGRESS, PLATFORM_IOSXR, PLATFORM_JUNOS, PLATFORM_NONE, ROUTING_POLICY_TYPE_EXPORT, ROUTING_POLICY_TYPE_IMPORT, ROUTING_POLICY_TYPE_IMPORT_EXPORT, ) from peering.models import ( AutonomousSystem, BGPGroup, Community, DirectPeeringSession, InternetExchange, InternetExchangePeeringSession, Router, RoutingPolicy, Template, ) class AutonomousSystemTest(TestCase): def test_does_exist(self): asn = 201281 # AS should not exist autonomous_system = AutonomousSystem.does_exist(asn) self.assertEqual(None, autonomous_system) # Create the AS new_as = AutonomousSystem.objects.create(asn=asn, name="<NAME>") # AS must exist autonomous_system = AutonomousSystem.does_exist(asn) self.assertEqual(asn, new_as.asn) def test_create_from_peeringdb(self): asn = 201281 # Illegal ASN self.assertIsNone(AutonomousSystem.create_from_peeringdb(64500)) # Must not exist at first self.assertIsNone(AutonomousSystem.does_exist(asn)) # Create the AS autonomous_system1 = AutonomousSystem.create_from_peeringdb(asn) self.assertEqual(asn, autonomous_system1.asn) # Must exist now self.assertEqual(asn, AutonomousSystem.does_exist(asn).asn) # Must not rise error, just return the AS autonomous_system2 = AutonomousSystem.create_from_peeringdb(asn) self.assertEqual(asn, autonomous_system2.asn) # Must exist now also self.assertEqual(asn, AutonomousSystem.does_exist(asn).asn) def test_synchronize_with_peeringdb(self): # Create legal AS to sync with PeeringDB asn = 201281 autonomous_system = AutonomousSystem.create_from_peeringdb(asn) self.assertEqual(asn, autonomous_system.asn) self.assertTrue(autonomous_system.synchronize_with_peeringdb()) # Create illegal AS to fail sync with PeeringDB asn = 64500 autonomous_system = AutonomousSystem.objects.create(asn=asn, name="Test") self.assertEqual(asn, autonomous_system.asn) self.assertFalse(autonomous_system.synchronize_with_peeringdb()) def test_get_irr_as_set_prefixes(self): autonomous_system = AutonomousSystem.create_from_peeringdb(201281) prefixes = autonomous_system.get_irr_as_set_prefixes() self.assertEqual(autonomous_system.ipv6_max_prefixes, len(prefixes["ipv6"])) self.assertEqual(autonomous_system.ipv4_max_prefixes, len(prefixes["ipv4"])) def test__str__(self): asn = 64500 name = "Test" expected = "AS{} - {}".format(asn, name) autonomous_system = AutonomousSystem.objects.create(asn=asn, name=name) self.assertEqual(expected, str(autonomous_system)) class CommunityTest(TestCase): def test_create(self): community_list = [ {"name": "Test", "value": "64500:1", "type": None, "str": "Test"}, { "name": "Test", "value": "64500:1", "type": COMMUNITY_TYPE_EGRESS, "str": "Test", }, ] for details in community_list: if details["type"]: community = Community.objects.create( name=details["name"], value=details["value"], type=details["type"] ) else: community = Community.objects.create( name=details["name"], value=details["value"] ) self.assertIsNotNone(community) self.assertEqual(details["name"], community.name) self.assertEqual(details["value"], community.value) self.assertEqual(details["type"] or COMMUNITY_TYPE_INGRESS, community.type) self.assertEqual(details["str"], str(community)) def test_get_type_html(self): expected = [ '<span class="badge badge-primary">Egress</span>', '<span class="badge badge-info">Ingress</span>', '<span class="badge badge-secondary">Unknown</span>', ] community_types = [COMMUNITY_TYPE_EGRESS, COMMUNITY_TYPE_INGRESS, "unknown"] for i in range(len(community_types)): self.assertEqual( expected[i], Community.objects.create( name="test{}".format(i), value="64500:{}".format(i), type=community_types[i], ).get_type_html(), ) class InternetExchangeTest(TestCase): def test_is_peeringdb_valid(self): ix = InternetExchange.objects.create(name="Test", slug="test") # Not linked with PeeringDB but considered as valid self.assertTrue(ix.is_peeringdb_valid()) # Set invalid ID, must result in false ix.peeringdb_id = 14658 ix.save() self.assertFalse(ix.is_peeringdb_valid()) # Set valid ID, must result in true ix.peeringdb_id = 29146 ix.save() self.assertTrue(ix.is_peeringdb_valid()) def test_get_peeringdb_id(self): # Expected results expected = [0, 0, 0, 0, 29146, 29146, 29146] # Test data data = [ { # No IP addresses }, {"ipv6_address": "2001:db8::1"}, {"ipv4_address": "192.168.168.1"}, {"ipv6_address": "2001:db8::1", "ipv4_address": "192.168.168.1"}, {"ipv6_address": "fc00:e968:6179::de52:7100:9467:1"}, {"ipv4_address": "192.168.127.12"}, { "ipv6_address": "fc00:e968:6179::de52:7100", "ipv4_address": "192.168.127.12", }, ] # Run test cases for i in range(len(expected)): ixp = InternetExchange.objects.create( name="Test {}".format(i), slug="test_{}".format(i), **data[i] ) self.assertEqual(expected[i], ixp.get_peeringdb_id()) def test_import_peering_sessions(self): # Expected results expected = [ # First case (1, 1, []), # Second case (0, 1, []), # Third case (0, 1, []), # Fourth case (0, 0, []), ] session_lists = [ # First case, one new session with one new AS [{"ip_address": ipaddress.ip_address("2001:db8::1"), "remote_asn": 29467}], # Second case, one new session with one known AS [{"ip_address": ipaddress.ip_address("192.168.0.1"), "remote_asn": 29467}], # Third case, new IPv4 session on another IX but with an IP that # has already been used [{"ip_address": ipaddress.ip_address("192.168.0.1"), "remote_asn": 29467}], # Fourth case, new IPv4 session with IPv6 prefix [{"ip_address": ipaddress.ip_address("192.168.2.1"), "remote_asn": 29467}], ] prefix_lists = [ # First case [ipaddress.ip_network("2001:db8::/64")], # Second case [ipaddress.ip_network("192.168.0.0/24")], # Third case [ipaddress.ip_network("192.168.0.0/24")], # Fourth case [ipaddress.ip_network("2001:db8::/64")], ] # Run test cases for i in range(len(expected)): ixp = InternetExchange.objects.create( name="Test {}".format(i), slug="test_{}".format(i) ) self.assertEqual( expected[i], ixp._import_peering_sessions(session_lists[i], prefix_lists[i]), ) self.assertEqual(expected[i][1], len(ixp.get_peering_sessions())) class InternetExchangePeeringSessionTest(TestCase): def test_does_exist(self): # No session, must expect None self.assertIsNone(InternetExchangePeeringSession.does_exist()) # Prepare objects and create a peering session autonomous_system0 = AutonomousSystem.objects.create(asn=64500, name="Test") internet_exchange0 = InternetExchange.objects.create(name="Test0", slug="test0") peering_session0 = InternetExchangePeeringSession.objects.create( autonomous_system=autonomous_system0, internet_exchange=internet_exchange0, ip_address="2001:db8::1", ) # Make sure that the session has been created self.assertIsNotNone(peering_session0) # Make sure that the session is returned by calling does_exist() # without arguments (only one session in the database) self.assertIsNotNone(InternetExchangePeeringSession.does_exist()) # Make sure we can retrieve the session with its IP self.assertEqual( peering_session0, InternetExchangePeeringSession.does_exist(ip_address="2001:db8::1"), ) # Make sure we can retrieve the session with its IX self.assertEqual( peering_session0, InternetExchangePeeringSession.does_exist( internet_exchange=internet_exchange0 ), ) # Make sure we can retrieve the session with AS self.assertEqual( peering_session0, InternetExchangePeeringSession.does_exist( autonomous_system=autonomous_system0 ), ) # Create another peering session peering_session1 = InternetExchangePeeringSession.objects.create( autonomous_system=autonomous_system0, internet_exchange=internet_exchange0, ip_address="192.168.1.1", ) # Make sure that the session has been created self.assertIsNotNone(peering_session1) # More than one session, must expect None self.assertIsNone(InternetExchangePeeringSession.does_exist()) # Make sure we can retrieve the session with its IP self.assertEqual( peering_session1, InternetExchangePeeringSession.does_exist(ip_address="192.168.1.1"), ) # Make sure it returns None when using a field that the two sessions # have in common self.assertIsNone( InternetExchangePeeringSession.does_exist( internet_exchange=internet_exchange0 ) ) # Create a new IX internet_exchange1 = InternetExchange.objects.create(name="Test1", slug="test1") # Make sure it returns None when there is no session self.assertIsNone( InternetExchangePeeringSession.does_exist( internet_exchange=internet_exchange1 ) ) # Create a new session with a already used IP in another OX peering_session2 = InternetExchangePeeringSession.objects.create( autonomous_system=autonomous_system0, internet_exchange=internet_exchange1, ip_address="2001:db8::1", ) # Make sure that the session has been created self.assertIsNotNone(peering_session2) # Make sure we have None, because two sessions will be found self.assertIsNone( InternetExchangePeeringSession.does_exist(ip_address="2001:db8::1") ) # But if we narrow the search with the IX we must have the proper # session self.assertEqual( peering_session2, InternetExchangePeeringSession.does_exist( ip_address="2001:db8::1", internet_exchange=internet_exchange1 ), ) class RouterTest(TestCase): def setUp(self): super().setUp() self.router = Router.objects.create( name="Test", hostname="test.example.com", platform=PLATFORM_JUNOS ) def test_get_configuration_context(self): for i in range(1, 6): AutonomousSystem.objects.create(asn=i, name="Test {}".format(i)) bgp_group = BGPGroup.objects.create(name="Test Group", slug="testgroup") for i in range(1, 6): DirectPeeringSession.objects.create( local_ip_address="192.0.2.1", autonomous_system=AutonomousSystem.objects.get(asn=i), bgp_group=bgp_group, relationship=BGP_RELATIONSHIP_PRIVATE_PEERING, ip_address="10.0.0.{}".format(i), router=self.router, ) internet_exchange = InternetExchange.objects.create( name="Test IX", slug="testix", router=self.router ) for i in range(1, 6): InternetExchangePeeringSession.objects.create( autonomous_system=AutonomousSystem.objects.get(asn=i), internet_exchange=internet_exchange, ip_address="2001:db8::{}".format(i), ) InternetExchangePeeringSession.objects.create( autonomous_system=AutonomousSystem.objects.get(asn=i), internet_exchange=internet_exchange, ip_address="192.168.0.{}".format(i), ) # Convert to dict and merge values bgp_group_dict = bgp_group.to_dict() bgp_group_dict.update( { "sessions": { 6: [ session.to_dict() for session in DirectPeeringSession.objects.filter( ip_address__family=6 ) ], 4: [ session.to_dict() for session in DirectPeeringSession.objects.filter( ip_address__family=4 ) ], } } ) internet_exchange_dict = internet_exchange.to_dict() internet_exchange_dict.update( { "sessions": { 6: [ session.to_dict() for session in InternetExchangePeeringSession.objects.filter( ip_address__family=6 ) ], 4: [ session.to_dict() for session in InternetExchangePeeringSession.objects.filter( ip_address__family=4 ) ], } } ) # Generate expected result expected = { "autonomous_systems": [ autonomous_system.to_dict() for autonomous_system in AutonomousSystem.objects.all() ], "my_asn": settings.MY_ASN, "bgp_groups": [bgp_group_dict], "internet_exchanges": [internet_exchange_dict], "routing_policies": [], "communities": [], } result = self.router.get_configuration_context() self.assertEqual(result, expected) def test_decrypt_encrypt_string(self): string = "<PASSWORD>" # Generic router (crypto not implemented) router = Router.objects.create( name="test", hostname="test.example.com", platform=PLATFORM_NONE ) self.assertEqual(string, router.decrypt_string(router.encrypt_string(string))) for platform in [PLATFORM_JUNOS, PLATFORM_IOSXR]: router = Router.objects.create( name="test", hostname="test.example.com", platform=platform ) self.assertEqual( string, router.decrypt_string(router.encrypt_string(string)) ) # Should detect that it is already encrypted self.assertEqual( string, router.decrypt_string( router.encrypt_string(router.encrypt_string(string)) ), ) # Should detect that it is not encrypted self.assertEqual( string, router.decrypt_string(router.decrypt_string(string)) ) def test_napalm_bgp_neighbors_to_peer_list(self): # Expected results expected = [0, 0, 1, 2, 3, 2, 2] napalm_dicts_list = [ # If None or empty dict passed, returned value must be empty list None, {}, # List size must match peers number including VRFs {"global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}}, { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, }, { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf0": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, "vrf1": {"peers": {"192.168.2.1": {"remote_as": 64502}}}, }, # If peer does not have remote_as field, it must be ignored { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf0": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, "vrf1": {"peers": {"192.168.2.1": {"not_valid": 64502}}}, }, # If an IP address appears more than one time, only the first # occurence must be retained { "global": {"peers": {"192.168.0.1": {"remote_as": 64500}}}, "vrf0": {"peers": {"192.168.1.1": {"remote_as": 64501}}}, "vrf1": {"peers": {"192.168.1.1": {"remote_as": 64502}}}, }, ] # Create a router router = Router.objects.create( name="test", hostname="test.example.com", platform=PLATFORM_JUNOS ) # Run test cases for i in range(len(expected)): self.assertEqual( expected[i], len(router._napalm_bgp_neighbors_to_peer_list(napalm_dicts_list[i])), ) def test_bgp_neighbors_detail_as_list(self): expected = [ { "up": True, "local_as": 201281, "remote_as": 29467, "local_address": "192.168.1.1", } ] bgp_neighbors_detail = { "global": { 29467: [ { "up": True, "local_as": 201281, "remote_as": 29467, "local_address": "192.168.1.1", } ] } } router = Router.objects.create( name="test", hostname="test.example.com", platform=PLATFORM_JUNOS ) self.assertEqual( expected, router.bgp_neighbors_detail_as_list(bgp_neighbors_detail) ) class RoutingPolicyTest(TestCase): def test_create(self): routing_policy_list = [ {"name": "Test1", "slug": "test1", "type": None, "weight": 0}, { "name": "Test2", "slug": "test2", "type": ROUTING_POLICY_TYPE_EXPORT, "weight": 0, }, ] for details in routing_policy_list: if details["type"]: routing_policy = RoutingPolicy.objects.create( name=details["name"], slug=details["slug"], type=details["type"] ) else: routing_policy = RoutingPolicy.objects.create( name=details["name"], slug=details["slug"] ) self.assertIsNotNone(routing_policy) self.assertEqual(details["name"], routing_policy.name) self.assertEqual(details["slug"], routing_policy.slug) self.assertEqual( details["type"] or ROUTING_POLICY_TYPE_IMPORT, routing_policy.type ) def test_get_type_html(self): expected = [ '<span class="badge badge-primary">Export</span>', '<span class="badge badge-info">Import</span>', '<span class="badge badge-dark">Import+Export</span>', '<span class="badge badge-secondary">Unknown</span>', ] routing_policy_types = [ ROUTING_POLICY_TYPE_EXPORT, ROUTING_POLICY_TYPE_IMPORT, ROUTING_POLICY_TYPE_IMPORT_EXPORT, "unknown", ] for i in range(len(routing_policy_types)): self.assertEqual( expected[i], RoutingPolicy.objects.create( name="test{}".format(i), slug="test{}".format(i), type=routing_policy_types[i], ).get_type_html(), ) class TemplateTest(TestCase): def setUp(self): super().setUp() self.template = Template(name="Test", template="{{ test }}") def test_render(self): self.assertEqual(self.template.render({"test": "test"}), "test")
0.602296
0.297508
import logging from collections import defaultdict import matplotlib.pyplot as plt from tqdm import tqdm from social_media_buzz.src.constants import ACCURACY, R2, RANK_SIZE from social_media_buzz.src.data import ( get_candidate_features, prepare_dataset, show_rank, write_results, ) from social_media_buzz.src.linear_regression import LinearRegressionModel logger = logging.getLogger(__name__) def rank_features(metric_result, name, top=RANK_SIZE) -> list: """Get the top most significative features by averaging out their results. """ analysis = defaultdict(lambda: 0) amount = len(metric_result) for fold_result in tqdm(metric_result, desc=f"Processing {name} results."): for attr_result in fold_result: attr_name = attr_result[0] analysis[attr_name] += attr_result[1] averages = map(lambda x: (x[0], x[1] / amount), list(analysis.items())) ranking = sorted(list(averages), key=lambda x: x[1] * -1) return ranking[:top] def get_ranks(fold_results=None) -> list: """Print ranks to terminal and write csv files.""" ranks = [] for name in (R2, ACCURACY): metric_result = fold_results.get(name) rank = rank_features(metric_result.values(), name) logger.info(f"{name} ranking:") show_rank(rank, metric_result, name) ranks.append(rank) return ranks def generate_charts(ranks): """Use rankings to generate chart for each fold.""" for name, rank in zip([R2, ACCURACY], ranks): best_attr = rank[0][0] for idx, dataset in enumerate(prepare_dataset()): training_data, testing_data = dataset model = LinearRegressionModel(training_data) model.train(best_attr) model.test(testing_data) fig, ax = plt.subplots() ax.set_title(f"Fold {idx:02}") filename = f"{name.lower()}_{best_attr}_{idx:02}" model.plot_chart(filename=filename) def main(): """Run main logics for comparing features. For each fold, for each attribute, train model using that attribute and the target feature. Then, calculate R-squared, accuracy and store them. Write results in CSV files and rank the best attributes for each metric. """ features = get_candidate_features() results = defaultdict(lambda: defaultdict(list)) fold_results = defaultdict(lambda: defaultdict(list)) for idx, dataset in enumerate(prepare_dataset()): training_data, testing_data = dataset model = LinearRegressionModel(training_data) progress = tqdm(features, position=1) for attr_name in progress: progress.set_description(f"Trying feature {attr_name}") model.train(attr_name) model.test(testing_data) results[R2][attr_name].append(model.r_squared) results[ACCURACY][attr_name].append(model.testing_acc) fold_results[R2][idx].append((attr_name, model.r_squared)) fold_results[ACCURACY][idx].append((attr_name, model.testing_acc)) write_results(results) ranks = get_ranks(fold_results) generate_charts(ranks)
social_media_buzz/src/analysis.py
import logging from collections import defaultdict import matplotlib.pyplot as plt from tqdm import tqdm from social_media_buzz.src.constants import ACCURACY, R2, RANK_SIZE from social_media_buzz.src.data import ( get_candidate_features, prepare_dataset, show_rank, write_results, ) from social_media_buzz.src.linear_regression import LinearRegressionModel logger = logging.getLogger(__name__) def rank_features(metric_result, name, top=RANK_SIZE) -> list: """Get the top most significative features by averaging out their results. """ analysis = defaultdict(lambda: 0) amount = len(metric_result) for fold_result in tqdm(metric_result, desc=f"Processing {name} results."): for attr_result in fold_result: attr_name = attr_result[0] analysis[attr_name] += attr_result[1] averages = map(lambda x: (x[0], x[1] / amount), list(analysis.items())) ranking = sorted(list(averages), key=lambda x: x[1] * -1) return ranking[:top] def get_ranks(fold_results=None) -> list: """Print ranks to terminal and write csv files.""" ranks = [] for name in (R2, ACCURACY): metric_result = fold_results.get(name) rank = rank_features(metric_result.values(), name) logger.info(f"{name} ranking:") show_rank(rank, metric_result, name) ranks.append(rank) return ranks def generate_charts(ranks): """Use rankings to generate chart for each fold.""" for name, rank in zip([R2, ACCURACY], ranks): best_attr = rank[0][0] for idx, dataset in enumerate(prepare_dataset()): training_data, testing_data = dataset model = LinearRegressionModel(training_data) model.train(best_attr) model.test(testing_data) fig, ax = plt.subplots() ax.set_title(f"Fold {idx:02}") filename = f"{name.lower()}_{best_attr}_{idx:02}" model.plot_chart(filename=filename) def main(): """Run main logics for comparing features. For each fold, for each attribute, train model using that attribute and the target feature. Then, calculate R-squared, accuracy and store them. Write results in CSV files and rank the best attributes for each metric. """ features = get_candidate_features() results = defaultdict(lambda: defaultdict(list)) fold_results = defaultdict(lambda: defaultdict(list)) for idx, dataset in enumerate(prepare_dataset()): training_data, testing_data = dataset model = LinearRegressionModel(training_data) progress = tqdm(features, position=1) for attr_name in progress: progress.set_description(f"Trying feature {attr_name}") model.train(attr_name) model.test(testing_data) results[R2][attr_name].append(model.r_squared) results[ACCURACY][attr_name].append(model.testing_acc) fold_results[R2][idx].append((attr_name, model.r_squared)) fold_results[ACCURACY][idx].append((attr_name, model.testing_acc)) write_results(results) ranks = get_ranks(fold_results) generate_charts(ranks)
0.738009
0.266462
from __future__ import annotations import logging from datetime import timedelta from functools import cached_property from typing import Any from homeassistant.components.climate.const import PRESET_BOOST, PRESET_NONE from homeassistant.components.fan import FanEntityDescription, FanEntity, SUPPORT_SET_SPEED, SUPPORT_PRESET_MODE, \ DIRECTION_FORWARD from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import EntityCategory from homeassistant.helpers.update_coordinator import CoordinatorEntity from . import TionInstance from .climate import TionClimateEntity from .const import DOMAIN _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(seconds=30) config = FanEntityDescription( key="fan_speed", entity_category=EntityCategory.CONFIG, name="fan speed", entity_registry_enabled_default=True, icon="mdi:fan", ) async def async_setup_entry(hass: HomeAssistant, _config: ConfigEntry, async_add_entities): """Set up the sensor entry""" async_add_entities([TionFan(config, hass.data[DOMAIN][_config.unique_id])]) return True class TionFan(FanEntity, CoordinatorEntity): _attr_supported_features = SUPPORT_PRESET_MODE | SUPPORT_SET_SPEED _attr_oscillating = False _attr_preset_modes = [PRESET_NONE, PRESET_BOOST] _attr_speed_count = len(TionClimateEntity.attr_fan_modes()) _attr_current_direction = DIRECTION_FORWARD _mode_percent_mapping = { 0: 0, 1: 17, 2: 33, 3: 50, 4: 67, 5: 83, 6: 100, } _percent_mode_mapping = { 0: 0, 16: 1, 33: 2, 50: 3, 66: 4, 83: 5, 100: 6, } # Home Assistant is using float speed step and ceil to determinate supported speed percents. def set_preset_mode(self, preset_mode: str) -> None: pass def set_direction(self, direction: str) -> None: raise NotImplemented def turn_on(self, percentage: int | None = None, preset_mode: str | None = None, **kwargs) -> None: raise NotImplemented def oscillate(self, oscillating: bool) -> None: raise NotImplemented def turn_off(self, **kwargs: Any) -> None: pass def set_percentage(self, percentage: int) -> None: raise NotImplemented def __init__(self, description: FanEntityDescription, instance: TionInstance): """Initialize the fan.""" CoordinatorEntity.__init__(self=self, coordinator=instance, ) self.entity_description = description self._attr_name = f"{instance.name} {description.name}" self._attr_device_info = instance.device_info self._attr_unique_id = f"{instance.unique_id}-{description.key}" self._saved_fan_mode = None _LOGGER.debug(f"Init of fan {self.name} ({instance.unique_id})") _LOGGER.debug(f"Speed step is {self.percentage_step}") def percent2mode(self, percentage: int) -> int: result = 0 try: return self._percent_mode_mapping[percentage] except KeyError: _LOGGER.warning(f"Could not to convert {percentage} to mode with {self._percent_mode_mapping}. " f"Will use fall back method.") for i in range(len(TionClimateEntity.attr_fan_modes())): if percentage < self.percentage_step * i: break else: result = i else: result = 6 return result def mode2percent(self) -> int | None: return self._mode_percent_mapping[self.fan_mode] if self.fan_mode is not None else None async def async_set_percentage(self, percentage: int) -> None: """Set the speed of the fan, as a percentage.""" await self.coordinator.set(fan_speed=self.percent2mode(percentage), is_on=percentage > 0) @cached_property def boost_fan_mode(self) -> int: return max(TionClimateEntity.attr_fan_modes()) @property def fan_mode(self): return self.coordinator.data.get(self.entity_description.key) async def async_set_preset_mode(self, preset_mode: str) -> None: if preset_mode == PRESET_BOOST and self.preset_mode != PRESET_BOOST: if self._saved_fan_mode is None: self._saved_fan_mode = int(self.fan_mode) await self.coordinator.set(fan_speed=self.boost_fan_mode) if preset_mode == PRESET_NONE and self.preset_mode == PRESET_BOOST: if self._saved_fan_mode is not None: await self.coordinator.set(fan_speed=self._saved_fan_mode) self._saved_fan_mode = None self._attr_preset_mode = preset_mode async def async_turn_on(self, percentage: int | None = None, preset_mode: str | None = None, **kwargs, ) -> None: target_speed = 2 if self._saved_fan_mode is None else self._saved_fan_mode self._saved_fan_mode = None await self.coordinator.set(fan_speed=target_speed, is_on=True) async def async_turn_off(self, **kwargs: Any) -> None: if self._saved_fan_mode is None and self.fan_mode > 0: self._saved_fan_mode = self.fan_mode await self.coordinator.set(is_on=False) def _handle_coordinator_update(self) -> None: self._attr_assumed_state = False if self.coordinator.last_update_success else True self._attr_is_on = self.coordinator.data.get("is_on") self._attr_percentage = self.mode2percent() if self._attr_is_on else 0 # should check attr to avoid deadlock self.async_write_ha_state()
custom_components/tion/fan.py
from __future__ import annotations import logging from datetime import timedelta from functools import cached_property from typing import Any from homeassistant.components.climate.const import PRESET_BOOST, PRESET_NONE from homeassistant.components.fan import FanEntityDescription, FanEntity, SUPPORT_SET_SPEED, SUPPORT_PRESET_MODE, \ DIRECTION_FORWARD from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import EntityCategory from homeassistant.helpers.update_coordinator import CoordinatorEntity from . import TionInstance from .climate import TionClimateEntity from .const import DOMAIN _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(seconds=30) config = FanEntityDescription( key="fan_speed", entity_category=EntityCategory.CONFIG, name="fan speed", entity_registry_enabled_default=True, icon="mdi:fan", ) async def async_setup_entry(hass: HomeAssistant, _config: ConfigEntry, async_add_entities): """Set up the sensor entry""" async_add_entities([TionFan(config, hass.data[DOMAIN][_config.unique_id])]) return True class TionFan(FanEntity, CoordinatorEntity): _attr_supported_features = SUPPORT_PRESET_MODE | SUPPORT_SET_SPEED _attr_oscillating = False _attr_preset_modes = [PRESET_NONE, PRESET_BOOST] _attr_speed_count = len(TionClimateEntity.attr_fan_modes()) _attr_current_direction = DIRECTION_FORWARD _mode_percent_mapping = { 0: 0, 1: 17, 2: 33, 3: 50, 4: 67, 5: 83, 6: 100, } _percent_mode_mapping = { 0: 0, 16: 1, 33: 2, 50: 3, 66: 4, 83: 5, 100: 6, } # Home Assistant is using float speed step and ceil to determinate supported speed percents. def set_preset_mode(self, preset_mode: str) -> None: pass def set_direction(self, direction: str) -> None: raise NotImplemented def turn_on(self, percentage: int | None = None, preset_mode: str | None = None, **kwargs) -> None: raise NotImplemented def oscillate(self, oscillating: bool) -> None: raise NotImplemented def turn_off(self, **kwargs: Any) -> None: pass def set_percentage(self, percentage: int) -> None: raise NotImplemented def __init__(self, description: FanEntityDescription, instance: TionInstance): """Initialize the fan.""" CoordinatorEntity.__init__(self=self, coordinator=instance, ) self.entity_description = description self._attr_name = f"{instance.name} {description.name}" self._attr_device_info = instance.device_info self._attr_unique_id = f"{instance.unique_id}-{description.key}" self._saved_fan_mode = None _LOGGER.debug(f"Init of fan {self.name} ({instance.unique_id})") _LOGGER.debug(f"Speed step is {self.percentage_step}") def percent2mode(self, percentage: int) -> int: result = 0 try: return self._percent_mode_mapping[percentage] except KeyError: _LOGGER.warning(f"Could not to convert {percentage} to mode with {self._percent_mode_mapping}. " f"Will use fall back method.") for i in range(len(TionClimateEntity.attr_fan_modes())): if percentage < self.percentage_step * i: break else: result = i else: result = 6 return result def mode2percent(self) -> int | None: return self._mode_percent_mapping[self.fan_mode] if self.fan_mode is not None else None async def async_set_percentage(self, percentage: int) -> None: """Set the speed of the fan, as a percentage.""" await self.coordinator.set(fan_speed=self.percent2mode(percentage), is_on=percentage > 0) @cached_property def boost_fan_mode(self) -> int: return max(TionClimateEntity.attr_fan_modes()) @property def fan_mode(self): return self.coordinator.data.get(self.entity_description.key) async def async_set_preset_mode(self, preset_mode: str) -> None: if preset_mode == PRESET_BOOST and self.preset_mode != PRESET_BOOST: if self._saved_fan_mode is None: self._saved_fan_mode = int(self.fan_mode) await self.coordinator.set(fan_speed=self.boost_fan_mode) if preset_mode == PRESET_NONE and self.preset_mode == PRESET_BOOST: if self._saved_fan_mode is not None: await self.coordinator.set(fan_speed=self._saved_fan_mode) self._saved_fan_mode = None self._attr_preset_mode = preset_mode async def async_turn_on(self, percentage: int | None = None, preset_mode: str | None = None, **kwargs, ) -> None: target_speed = 2 if self._saved_fan_mode is None else self._saved_fan_mode self._saved_fan_mode = None await self.coordinator.set(fan_speed=target_speed, is_on=True) async def async_turn_off(self, **kwargs: Any) -> None: if self._saved_fan_mode is None and self.fan_mode > 0: self._saved_fan_mode = self.fan_mode await self.coordinator.set(is_on=False) def _handle_coordinator_update(self) -> None: self._attr_assumed_state = False if self.coordinator.last_update_success else True self._attr_is_on = self.coordinator.data.get("is_on") self._attr_percentage = self.mode2percent() if self._attr_is_on else 0 # should check attr to avoid deadlock self.async_write_ha_state()
0.821975
0.115736
import init_file as variables import cj_function_lib as cj from datetime import datetime bsn_table = cj.extract_table_from_mdb(variables.ProjMDB, "bsn", variables.path + "\\bsn.tmp~") bsn_params = bsn_table[0].split(",") now = datetime.now() DateAndTime = str(now.month) + "/" + str(now.day) + "/" + \ str(now.year) + " " + str(now.time()).split(".")[0] SWAT_Vers = "QSWAT Workflow v1.5.2" # Parameters SFTMP = bsn_params[1].strip('"') SMTMP = bsn_params[2].strip('"') SMFMX = bsn_params[3].strip('"') SMFMN = bsn_params[4].strip('"') TIMP = bsn_params[5].strip('"') SNOCOVMX = bsn_params[6].strip('"') SNO50COV = bsn_params[7].strip('"') IPET = bsn_params[8].strip('"') ESCO = bsn_params[9].strip('"') EPCO = bsn_params[10].strip('"') EVLAI = bsn_params[11].strip('"') FFCB = bsn_params[12].strip('"') IEVENT = bsn_params[13].strip('"') ICRK = bsn_params[14].strip('"') SURLAG = bsn_params[15].strip('"') ADJ_PKR = bsn_params[16].strip('"') PRF_BSN = bsn_params[17].strip('"') SPCON = bsn_params[18].strip('"') SPEXP = bsn_params[19].strip('"') RCN = bsn_params[20].strip('"') CMN = bsn_params[21].strip('"') N_UPDIS = bsn_params[22].strip('"') P_UPDIS = bsn_params[23].strip('"') NPERCO = bsn_params[24].strip('"') PPERCO = bsn_params[25].strip('"') PHOSKD = bsn_params[26].strip('"') PSP = bsn_params[27].strip('"') RSDCO = bsn_params[28].strip('"') PERCOP = bsn_params[29].strip('"') ISUBWQ = bsn_params[30].strip('"') WDPQ = bsn_params[31].strip('"') WGPQ = bsn_params[32].strip('"') WDLPQ = bsn_params[33].strip('"') WGLPQ = bsn_params[34].strip('"') WDPS = bsn_params[35].strip('"') WGPS = bsn_params[36].strip('"') WDLPS = bsn_params[37].strip('"') WGLPS = bsn_params[38].strip('"') BACTKDQ = bsn_params[39].strip('"') THBACT = bsn_params[40].strip('"') WOF_P = bsn_params[41].strip('"') WOF_LP = bsn_params[42].strip('"') WDPF = bsn_params[43].strip('"') WGPF = bsn_params[44].strip('"') WDLPF = bsn_params[45].strip('"') WGLPF = bsn_params[46].strip('"') IRTE = bsn_params[47].strip('"') MSK_CO1 = bsn_params[48].strip('"') MSK_CO2 = bsn_params[49].strip('"') MSK_X = bsn_params[50].strip('"') IDEG = bsn_params[51].strip('"') IWQ = bsn_params[52].strip('"') TRNSRCH = bsn_params[53].strip('"') EVRCH = bsn_params[54].strip('"') IRTPEST = bsn_params[55].strip('"') ICN = bsn_params[56].strip('"') CNCOEF = bsn_params[57].strip('"') CDN = bsn_params[58].strip('"') SDNCO = bsn_params[59].strip('"') BACT_SWF = bsn_params[60].strip('"') BACTMX = bsn_params[61].strip('"') BACTMINLP = bsn_params[62].strip('"') BACTMINP = bsn_params[63].strip('"') WDLPRCH = bsn_params[64].strip('"') WDPRCH = bsn_params[65].strip('"') WDLPRES = bsn_params[66].strip('"') WDPRES = bsn_params[67].strip('"') TB_ADJ = bsn_params[68].strip('"') DEP_IMP = bsn_params[69].strip('"') DDRAIN_BSN = bsn_params[70].strip('"') TDRAIN_BSN = bsn_params[71].strip('"') GDRAIN_BSN = bsn_params[72].strip('"') CN_FROZ = bsn_params[73].strip('"') ISED_DET = bsn_params[74].strip('"') ETFILE = bsn_params[75].strip('"') DORM_HR = bsn_params[76].strip('"') SMXCO = bsn_params[77].strip('"') FIXCO = bsn_params[78].strip('"') NFIXMX = bsn_params[79].strip('"') ANION_EXCL_BSN = bsn_params[80].strip('"') CH_ONCO_BSN = bsn_params[81].strip('"') CH_OPCO_BSN = bsn_params[82].strip('"') HLIFE_NGW_BSN = bsn_params[83].strip('"') RCN_SUB_BSN = bsn_params[84].strip('"') BC1_BSN = bsn_params[85].strip('"') BC2_BSN = bsn_params[86].strip('"') BC3_BSN = bsn_params[87].strip('"') BC4_BSN = bsn_params[88].strip('"') DECR_MIN = bsn_params[89].strip('"') ICFAC = bsn_params[90].strip('"') RSD_COVCO = bsn_params[91].strip('"') VCRIT = bsn_params[92].strip('"') CSWAT = bsn_params[93].strip('"') RES_STLR_CO = bsn_params[94].strip('"') BFLO_DIST = bsn_params[95].strip('"') IUH = bsn_params[96].strip('"') UHALPHA = bsn_params[97].strip('"') LU_NODRAIN = bsn_params[98].strip('"') EROS_SPL = bsn_params[99].strip('"') RILL_MULT = bsn_params[100].strip('"') EROS_EXPO = bsn_params[101].strip('"') SUBD_CHSED = bsn_params[102].strip('"') C_FACTOR = bsn_params[103].strip('"') CH_D50 = bsn_params[104].strip('"') SIG_G = bsn_params[105].strip('"') RE_BSN = bsn_params[106].strip('"') SDRAIN_BSN = bsn_params[107].strip('"') DRAIN_CO_BSN = bsn_params[108].strip('"') PC_BSN = bsn_params[109].strip('"') LATKSATF_BSN = bsn_params[110].strip('"') ITDRN = bsn_params[111].strip('"') IWTDN = bsn_params[112].strip('"') SOL_P_MODEL = bsn_params[113].strip('"') IABSTR = bsn_params[114].strip('"') IATMODEP = bsn_params[115].strip('"') RAMMO_SUB = bsn_params[116].strip('"') RCN_SUB = bsn_params[117].strip('"') DRYDEP_NH4 = bsn_params[118].strip('"') DRYDEP_NO3 = bsn_params[119].strip('"') R2ADJ_BSN = bsn_params[120].strip('"') SSTMAXD_BSN = bsn_params[121].strip('"') ISMAX = bsn_params[122].strip('"') IROUTUNIT = bsn_params[123].strip('"') # Building String bsn_file = "Basin data .bsn file " + DateAndTime + " " + SWAT_Vers + \ "\n" + "Modeling Options: Land Area" + \ "\n" + "Water Balance:" + \ "\n" + cj.trailing_spaces(16, SFTMP, 3) + " | SFTMP : Snowfall temperature [deg C]" + \ "\n" + cj.trailing_spaces(16, SMTMP, 3) + " | SMTMP : Snow melt base temperature [deg C]" + \ "\n" + cj.trailing_spaces(16, SMFMX, 3) + " | SMFMX : Melt factor for snow on June 21 [mm H2O/deg C-day]" + \ "\n" + cj.trailing_spaces(16, SMFMN, 3) + " | SMFMN : Melt factor for snow on December 21 [mm H2O/deg C-day]" + \ "\n" + cj.trailing_spaces(16, TIMP, 3) + " | TIMP : Snow pack temperature lag factor" + \ "\n" + cj.trailing_spaces(16, SNOCOVMX, 3) + " | SNOCOVMX : Minimum snow water content that corresponds to 100% snow cover [mm]" + \ "\n" + cj.trailing_spaces(16, SNO50COV, 3) + " | SNO50COV : Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover" + \ "\n" + cj.trailing_spaces(16, IPET, 0) + " | IPET: PET method: 0=priest-t, 1=pen-m, 2=har, 3=read into model" + \ "\n" + " " + " | PETFILE: name of potential ET input file" + \ "\n" + cj.trailing_spaces(16, ESCO, 3) + " | ESCO: soil evaporation compensation factor" + \ "\n" + cj.trailing_spaces(16, EPCO, 3) + " | EPCO: plant water uptake compensation factor" + \ "\n" + cj.trailing_spaces(16, EVLAI, 3) + " | EVLAI : Leaf area index at which no evaporation occurs from water surface [m2/m2]" + \ "\n" + cj.trailing_spaces(16, FFCB, 3) + " | FFCB : Initial soil water storage expressed as a fraction of field capacity water content" + \ "\n" + "Surface Runoff:" + \ "\n" + cj.trailing_spaces(16, IEVENT, 0) + " | IEVENT: rainfall/runoff code: 0=daily rainfall/CN" + \ "\n" + cj.trailing_spaces(16, ICRK, 0) + " | ICRK: crack flow code: 1=model crack flow in soil" + \ "\n" + cj.trailing_spaces(16, SURLAG, 3) + " | SURLAG : Surface runoff lag time [days]" + \ "\n" + cj.trailing_spaces(16, ADJ_PKR, 3) + " | ADJ_PKR : Peak rate adjustment factor for sediment routing in the subbasin (tributary channels)" + \ "\n" + cj.trailing_spaces(16, PRF_BSN, 3) + " | PRF_BSN : Peak rate adjustment factor for sediment routing in the main channel" + \ "\n" + cj.trailing_spaces(16, SPCON, 4) + " | SPCON : Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing" + \ "\n" + cj.trailing_spaces(16, SPEXP, 3) + " | SPEXP : Exponent parameter for calculating sediment reentrained in channel sediment routing" + \ "\n" + "Nutrient Cycling:" + \ "\n" + cj.trailing_spaces(16, RCN, 3) + " | RCN : Concentration of nitrogen in rainfall [mg N/l]" + \ "\n" + cj.trailing_spaces(16, CMN, 5) + " | CMN : Rate factor for humus mineralization of active organic nitrogen" + \ "\n" + cj.trailing_spaces(16, N_UPDIS, 3) + " | N_UPDIS : Nitrogen uptake distribution parameter" + \ "\n" + cj.trailing_spaces(16, P_UPDIS, 3) + " | P_UPDIS : Phosphorus uptake distribution parameter" + \ "\n" + cj.trailing_spaces(16, NPERCO, 3) + " | NPERCO : Nitrogen percolation coefficient" + \ "\n" + cj.trailing_spaces(16, PPERCO, 3) + " | PPERCO : Phosphorus percolation coefficient" + \ "\n" + cj.trailing_spaces(16, PHOSKD, 3) + " | PHOSKD : Phosphorus soil partitioning coefficient" + \ "\n" + cj.trailing_spaces(16, PSP, 3) + " | PSP : Phosphorus sorption coefficient" + \ "\n" + cj.trailing_spaces(16, RSDCO, 3) + " | RSDCO : Residue decomposition coefficient" + \ "\n" + "Pesticide Cycling:" + \ "\n" + cj.trailing_spaces(16, PERCOP, 3) + " | PERCOP : Pesticide percolation coefficient" + \ "\n" + "Algae/CBOD/Dissolved Oxygen:" + \ "\n" + cj.trailing_spaces(16, ISUBWQ, 0) + " | ISUBWQ: subbasin water quality parameter" + \ "\n" + "Bacteria:" + \ "\n" + cj.trailing_spaces(16, WDPQ, 3) + " | WDPQ : Die-off factor for persistent bacteria in soil solution. [1/day]" + \ "\n" + cj.trailing_spaces(16, WGPQ, 3) + " | WGPQ : Growth factor for persistent bacteria in soil solution [1/day]" + \ "\n" + cj.trailing_spaces(16, WDLPQ, 3) + " | WDLPQ : Die-off factor for less persistent bacteria in soil solution [1/day]" + \ "\n" + cj.trailing_spaces(16, WGLPQ, 3) + " | WGLPQ : Growth factor for less persistent bacteria in soil solution. [1/day]" + \ "\n" + cj.trailing_spaces(16, WDPS, 3) + " | WDPS : Die-off factor for persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, WGPS, 3) + " | WGPS : Growth factor for persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, WDLPS, 3) + " | WDLPS : Die-off factor for less persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, WGLPS, 3) + " | WGLPS : Growth factor for less persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, BACTKDQ, 3) + " | BACTKDQ : Bacteria partition coefficient" + \ "\n" + cj.trailing_spaces(16, THBACT, 3) + " | THBACT : Temperature adjustment factor for bacteria die-off/growth" + \ "\n" + cj.trailing_spaces(16, WOF_P, 3) + " | WOF_P: wash-off fraction for persistent bacteria on foliage" + \ "\n" + cj.trailing_spaces(16, WOF_LP, 3) + " | WOF_LP: wash-off fraction for less persistent bacteria on foliage" + \ "\n" + cj.trailing_spaces(16, WDPF, 3) + " | WDPF: persistent bacteria die-off factor on foliage" + \ "\n" + cj.trailing_spaces(16, WGPF, 3) + " | WGPF: persistent bacteria growth factor on foliage" + \ "\n" + cj.trailing_spaces(16, WDLPF, 3) + " | WDLPF: less persistent bacteria die-off factor on foliage" + \ "\n" + cj.trailing_spaces(16, WGLPF, 3) + " | WGLPF: less persistent bacteria growth factor on foliage" + \ "\n" + cj.trailing_spaces(16, ISED_DET, 0) + " | ISED_DET:" + \ "\n" + "Modeling Options: Reaches" + \ "\n" + cj.trailing_spaces(16, IRTE, 0) + " | IRTE: water routing method 0=variable travel-time 1=Muskingum" + \ "\n" + cj.trailing_spaces(16, MSK_CO1, 3) + " | MSK_CO1 : Calibration coefficient used to control impact of the storage time constant (Km) for normal flow" + \ "\n" + cj.trailing_spaces(16, MSK_CO2, 3) + " | MSK_CO2 : Calibration coefficient used to control impact of the storage time constant (Km) for low flow " + \ "\n" + cj.trailing_spaces(16, MSK_X, 3) + " | MSK_X : Weighting factor controlling relative importance of inflow rate and outflow rate in determining water storage in reach segment" + \ "\n" + cj.trailing_spaces(16, IDEG, 0) + " | IDEG: channel degradation code" + \ "\n" + cj.trailing_spaces(16, IWQ, 0) + " | IWQ: in-stream water quality: 1=model in-stream water quality" + \ "\n" + " basins.wwq | WWQFILE: name of watershed water quality file" + \ "\n" + cj.trailing_spaces(16, TRNSRCH, 3) + " | TRNSRCH: reach transmission loss partitioning to deep aquifer" + \ "\n" + cj.trailing_spaces(16, EVRCH, 3) + " | EVRCH : Reach evaporation adjustment factor" + \ "\n" + cj.trailing_spaces(16, IRTPEST, 0) + " | IRTPEST : Number of pesticide to be routed through the watershed channel network" + \ "\n" + cj.trailing_spaces(16, ICN, 0) + " | ICN : Daily curve number calculation method" + \ "\n" + cj.trailing_spaces(16, CNCOEF, 3) + " | CNCOEF : Plant ET curve number coefficient" + \ "\n" + cj.trailing_spaces(16, CDN, 3) + " | CDN : Denitrification exponential rate coefficient" + \ "\n" + cj.trailing_spaces(16, SDNCO, 3) + " | SDNCO : Denitrification threshold water content" + \ "\n" + cj.trailing_spaces(16, BACT_SWF, 3) + " | BACT_SWF : Fraction of manure applied to land areas that has active colony forming units" + \ "\n" + cj.trailing_spaces(16, BACTMX, 3) + " | BACTMX : Bacteria percolation coefficient [10 m3/Mg]." + \ "\n" + cj.trailing_spaces(16, BACTMINLP, 3) + " | BACTMINLP : Minimum daily bacteria loss for less persistent bacteria [# cfu/m2]" + \ "\n" + cj.trailing_spaces(16, BACTMINP, 3) + " | BACTMINP : Minimum daily bacteria loss for persistent bacteria [# cfu/m2]" + \ "\n" + cj.trailing_spaces(16, WDLPRCH, 3) + " | WDLPRCH: Die-off factor for less persistent bacteria in streams (moving water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, WDPRCH, 3) + " | WDPRCH : Die-off factor for persistent bacteria in streams (moving water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, WDLPRES, 3) + " | WDLPRES : Die-off factor for less persistent bacteria in water bodies (still water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, WDPRES, 3) + " | WDPRES : Die-off factor for persistent bacteria in water bodies (still water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, TB_ADJ, 3) + " | TB_ADJ : New variable in testing ...Adjustment factor for subdaily unit hydrograph basetime" + \ "\n" + cj.trailing_spaces(16, DEP_IMP, 3) + " | DEPIMP_BSN : Depth to impervious layer for modeling perched water tables [mm]" + \ "\n" + cj.trailing_spaces(16, DDRAIN_BSN, 3) + " | DDRAIN_BSN : Depth to the sub-surface drain [mm]" + \ "\n" + cj.trailing_spaces(16, TDRAIN_BSN, 3) + " | TDRAIN_BSN : Time to drain soil to field capacity [hours]" + \ "\n" + cj.trailing_spaces(16, GDRAIN_BSN, 3) + " | GDRAIN_BSN : Drain tile lag time [hours]" + \ "\n" + cj.trailing_spaces(16, CN_FROZ, 6) + " | CN_FROZ : Parameter for frozen soil adjustment on infiltration/runoff" + \ "\n" + cj.trailing_spaces(16, DORM_HR, 3) + " | DORM_HR : Time threshold used to define dormancy [hours]" + \ "\n" + cj.trailing_spaces(16, SMXCO, 3) + " | SMXCO : Adjustment factor for maximum curve number S factor" + \ "\n" + cj.trailing_spaces(16, FIXCO, 3) + " | FIXCO : Nitrogen fixation coefficient" + \ "\n" + cj.trailing_spaces(16, NFIXMX, 3) + " | NFIXMX : Maximum daily-n fixation [kg/ha]" + \ "\n" + cj.trailing_spaces(16, ANION_EXCL_BSN, 3) + " | ANION_EXCL_BSN : Fraction of porosity from which anions are excluded" + \ "\n" + cj.trailing_spaces(16, CH_ONCO_BSN, 3) + " | CH_ONCO_BSN : Channel organic nitrogen concentration in basin [ppm]" + \ "\n" + cj.trailing_spaces(16, CH_OPCO_BSN, 3) + " | CH_OPCO_BSN : Channel organic phosphorus concentration in basin [ppm]" + \ "\n" + cj.trailing_spaces(16, HLIFE_NGW_BSN, 3) + " | HLIFE_NGW_BSN : Half-life of nitrogen in groundwater [days]" + \ "\n" + cj.trailing_spaces(16, RCN_SUB_BSN, 3) + " | RCN_SUB_BSN : Concentration of nitrate in precipitation [ppm]" + \ "\n" + cj.trailing_spaces(16, BC1_BSN, 3) + " | BC1_BSN : Rate constant for biological oxidation of NH3 [1/day]" + \ "\n" + cj.trailing_spaces(16, BC2_BSN, 3) + " | BC2_BSN : Rate constant for biological oxidation NO2 to NO3 [1/day]" + \ "\n" + cj.trailing_spaces(16, BC3_BSN, 3) + " | BC3_BSN : Rate constant for hydrolosis of organic nitrogen to ammonia [1/day]" + \ "\n" + cj.trailing_spaces(16, BC4_BSN, 3) + " | BC4_BSN : Rate constant for decay of organic phosphorus to dissolved phosphorus [1/day]" + \ "\n" + cj.trailing_spaces(16, DECR_MIN, 3) + " | DECR_MIN: Minimum daily residue decay" + \ "\n" + cj.trailing_spaces(16, ICFAC, 3) + " | ICFAC : C-factor calculation method" + \ "\n" + cj.trailing_spaces(16, RSD_COVCO, 3) + " | RSD_COVCO : Residue cover factor for computing fraction of cover" + \ "\n" + cj.trailing_spaces(16, VCRIT, 3) + " | VCRIT : Critical velocity" + \ "\n" + cj.trailing_spaces(16, CSWAT, 0) + " | CSWAT : Code for new carbon routines" + \ "\n" + cj.trailing_spaces(16, RES_STLR_CO, 3) + " | RES_STLR_CO : Reservoir sediment settling coefficient" + \ "\n" + cj.trailing_spaces(16, BFLO_DIST, 3) + " | BFLO_DIST 0-1 (1:profile of baseflow in a day follows rainfall pattern, 0:baseflow evenly distributed to each time step during a day" + \ "\n" + cj.trailing_spaces(16, IUH, 0) + " | IUH : Unit hydrograph method: 1=triangular UH, 2=gamma function UH" + \ "\n" + cj.trailing_spaces(16, UHALPHA, 3) + " | UHALPHA : alpha coefficient for gamma function unit hydrograph. Required if iuh=2 is selected" + \ "\n" + "Land Use types in urban.dat that do not make runoff to urban BMPs:" + \ "\n" + \ "\n" + "Subdaily Erosion:" + \ "\n" + cj.trailing_spaces(16, EROS_SPL, 3) + " | EROS_SPL: The splash erosion coefficient ranges 0.9 - 3.1" + \ "\n" + cj.trailing_spaces(16, RILL_MULT, 3) + " | RILL_MULT: Multiplier to USLE_K for soil susceptible to rill erosion, ranges 0.5 - 2.0" + \ "\n" + cj.trailing_spaces(16, EROS_EXPO, 3) + " | EROS_EXPO: an exponent in the overland flow erosion equation, ranges 1.5 - 3.0" + \ "\n" + cj.trailing_spaces(16, SUBD_CHSED, 3) + " | SUBD_CHSED: 1=Brownlie(1981) model, 2=Yang(1973,1984) model" + \ "\n" + cj.trailing_spaces(16, C_FACTOR, 3) + " | C_FACTOR: Scaling parameter for Cover and management factor in ANSWERS erosion model" + \ "\n" + cj.trailing_spaces(16, CH_D50, 1) + " | CH_D50 : median particle diameter of channel bed [mm]" + \ "\n" + cj.trailing_spaces(16, SIG_G, 3) + " | SIG_G : geometric standard deviation of particle sizes" + \ "\n" + cj.trailing_spaces(16, RE_BSN, 2) + " | RE_BSN: Effective radius of drains" + \ "\n" + cj.trailing_spaces(16, SDRAIN_BSN, 2) + " | SDRAIN_BSN: Distance between two drain or tile tubes" + \ "\n" + cj.trailing_spaces(16, DRAIN_CO_BSN, 2) + " | DRAIN_CO_BSN: Drainage coefficient" + \ "\n" + cj.trailing_spaces(16, PC_BSN, 3) + " | PC_BSN: Pump capacity" + \ "\n" + cj.trailing_spaces(16, LATKSATF_BSN, 2) + " | LATKSATF_BSN: Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU" + \ "\n" + cj.trailing_spaces(16, ITDRN, 0) + " | ITDRN: Tile drainage equations flag" + \ "\n" + cj.trailing_spaces(16, IWTDN, 0) + " | IWTDN: Water table depth algorithms flag" + \ "\n" + cj.trailing_spaces(16, SOL_P_MODEL, 0) + " | SOL_P_MODEL: if = 1, use new soil P model" + \ "\n" + cj.trailing_spaces(16, IABSTR, 2) + " | IABSTR: Initial abstraction on impervious cover (mm)" + \ "\n" + cj.trailing_spaces(16, IATMODEP, 0) + " | IATMODEP: 0 = average annual inputs 1 = monthly inputs" + \ "\n" + cj.trailing_spaces(16, R2ADJ_BSN, 0) + " | R2ADJ_BSN: basinwide retention parm adjustment factor" + \ "\n" + cj.trailing_spaces(16, SSTMAXD_BSN, 0) + " | SSTMAXD_BSN: basinwide retention parm adjustment factor" + \ "\n" + cj.trailing_spaces(16, ISMAX, 0) + " | ISMAX: max depressional storage code" + \ "\n" + cj.trailing_spaces(16, IROUTUNIT, 0) + " | IROUTUNIT:" + \ "\n" fileName = "basins.bsn" cj.write_to(variables.DefaultSimDir + "TxtInOut\\" + fileName, bsn_file) #print fileName
workflow_lib/bsn.py
import init_file as variables import cj_function_lib as cj from datetime import datetime bsn_table = cj.extract_table_from_mdb(variables.ProjMDB, "bsn", variables.path + "\\bsn.tmp~") bsn_params = bsn_table[0].split(",") now = datetime.now() DateAndTime = str(now.month) + "/" + str(now.day) + "/" + \ str(now.year) + " " + str(now.time()).split(".")[0] SWAT_Vers = "QSWAT Workflow v1.5.2" # Parameters SFTMP = bsn_params[1].strip('"') SMTMP = bsn_params[2].strip('"') SMFMX = bsn_params[3].strip('"') SMFMN = bsn_params[4].strip('"') TIMP = bsn_params[5].strip('"') SNOCOVMX = bsn_params[6].strip('"') SNO50COV = bsn_params[7].strip('"') IPET = bsn_params[8].strip('"') ESCO = bsn_params[9].strip('"') EPCO = bsn_params[10].strip('"') EVLAI = bsn_params[11].strip('"') FFCB = bsn_params[12].strip('"') IEVENT = bsn_params[13].strip('"') ICRK = bsn_params[14].strip('"') SURLAG = bsn_params[15].strip('"') ADJ_PKR = bsn_params[16].strip('"') PRF_BSN = bsn_params[17].strip('"') SPCON = bsn_params[18].strip('"') SPEXP = bsn_params[19].strip('"') RCN = bsn_params[20].strip('"') CMN = bsn_params[21].strip('"') N_UPDIS = bsn_params[22].strip('"') P_UPDIS = bsn_params[23].strip('"') NPERCO = bsn_params[24].strip('"') PPERCO = bsn_params[25].strip('"') PHOSKD = bsn_params[26].strip('"') PSP = bsn_params[27].strip('"') RSDCO = bsn_params[28].strip('"') PERCOP = bsn_params[29].strip('"') ISUBWQ = bsn_params[30].strip('"') WDPQ = bsn_params[31].strip('"') WGPQ = bsn_params[32].strip('"') WDLPQ = bsn_params[33].strip('"') WGLPQ = bsn_params[34].strip('"') WDPS = bsn_params[35].strip('"') WGPS = bsn_params[36].strip('"') WDLPS = bsn_params[37].strip('"') WGLPS = bsn_params[38].strip('"') BACTKDQ = bsn_params[39].strip('"') THBACT = bsn_params[40].strip('"') WOF_P = bsn_params[41].strip('"') WOF_LP = bsn_params[42].strip('"') WDPF = bsn_params[43].strip('"') WGPF = bsn_params[44].strip('"') WDLPF = bsn_params[45].strip('"') WGLPF = bsn_params[46].strip('"') IRTE = bsn_params[47].strip('"') MSK_CO1 = bsn_params[48].strip('"') MSK_CO2 = bsn_params[49].strip('"') MSK_X = bsn_params[50].strip('"') IDEG = bsn_params[51].strip('"') IWQ = bsn_params[52].strip('"') TRNSRCH = bsn_params[53].strip('"') EVRCH = bsn_params[54].strip('"') IRTPEST = bsn_params[55].strip('"') ICN = bsn_params[56].strip('"') CNCOEF = bsn_params[57].strip('"') CDN = bsn_params[58].strip('"') SDNCO = bsn_params[59].strip('"') BACT_SWF = bsn_params[60].strip('"') BACTMX = bsn_params[61].strip('"') BACTMINLP = bsn_params[62].strip('"') BACTMINP = bsn_params[63].strip('"') WDLPRCH = bsn_params[64].strip('"') WDPRCH = bsn_params[65].strip('"') WDLPRES = bsn_params[66].strip('"') WDPRES = bsn_params[67].strip('"') TB_ADJ = bsn_params[68].strip('"') DEP_IMP = bsn_params[69].strip('"') DDRAIN_BSN = bsn_params[70].strip('"') TDRAIN_BSN = bsn_params[71].strip('"') GDRAIN_BSN = bsn_params[72].strip('"') CN_FROZ = bsn_params[73].strip('"') ISED_DET = bsn_params[74].strip('"') ETFILE = bsn_params[75].strip('"') DORM_HR = bsn_params[76].strip('"') SMXCO = bsn_params[77].strip('"') FIXCO = bsn_params[78].strip('"') NFIXMX = bsn_params[79].strip('"') ANION_EXCL_BSN = bsn_params[80].strip('"') CH_ONCO_BSN = bsn_params[81].strip('"') CH_OPCO_BSN = bsn_params[82].strip('"') HLIFE_NGW_BSN = bsn_params[83].strip('"') RCN_SUB_BSN = bsn_params[84].strip('"') BC1_BSN = bsn_params[85].strip('"') BC2_BSN = bsn_params[86].strip('"') BC3_BSN = bsn_params[87].strip('"') BC4_BSN = bsn_params[88].strip('"') DECR_MIN = bsn_params[89].strip('"') ICFAC = bsn_params[90].strip('"') RSD_COVCO = bsn_params[91].strip('"') VCRIT = bsn_params[92].strip('"') CSWAT = bsn_params[93].strip('"') RES_STLR_CO = bsn_params[94].strip('"') BFLO_DIST = bsn_params[95].strip('"') IUH = bsn_params[96].strip('"') UHALPHA = bsn_params[97].strip('"') LU_NODRAIN = bsn_params[98].strip('"') EROS_SPL = bsn_params[99].strip('"') RILL_MULT = bsn_params[100].strip('"') EROS_EXPO = bsn_params[101].strip('"') SUBD_CHSED = bsn_params[102].strip('"') C_FACTOR = bsn_params[103].strip('"') CH_D50 = bsn_params[104].strip('"') SIG_G = bsn_params[105].strip('"') RE_BSN = bsn_params[106].strip('"') SDRAIN_BSN = bsn_params[107].strip('"') DRAIN_CO_BSN = bsn_params[108].strip('"') PC_BSN = bsn_params[109].strip('"') LATKSATF_BSN = bsn_params[110].strip('"') ITDRN = bsn_params[111].strip('"') IWTDN = bsn_params[112].strip('"') SOL_P_MODEL = bsn_params[113].strip('"') IABSTR = bsn_params[114].strip('"') IATMODEP = bsn_params[115].strip('"') RAMMO_SUB = bsn_params[116].strip('"') RCN_SUB = bsn_params[117].strip('"') DRYDEP_NH4 = bsn_params[118].strip('"') DRYDEP_NO3 = bsn_params[119].strip('"') R2ADJ_BSN = bsn_params[120].strip('"') SSTMAXD_BSN = bsn_params[121].strip('"') ISMAX = bsn_params[122].strip('"') IROUTUNIT = bsn_params[123].strip('"') # Building String bsn_file = "Basin data .bsn file " + DateAndTime + " " + SWAT_Vers + \ "\n" + "Modeling Options: Land Area" + \ "\n" + "Water Balance:" + \ "\n" + cj.trailing_spaces(16, SFTMP, 3) + " | SFTMP : Snowfall temperature [deg C]" + \ "\n" + cj.trailing_spaces(16, SMTMP, 3) + " | SMTMP : Snow melt base temperature [deg C]" + \ "\n" + cj.trailing_spaces(16, SMFMX, 3) + " | SMFMX : Melt factor for snow on June 21 [mm H2O/deg C-day]" + \ "\n" + cj.trailing_spaces(16, SMFMN, 3) + " | SMFMN : Melt factor for snow on December 21 [mm H2O/deg C-day]" + \ "\n" + cj.trailing_spaces(16, TIMP, 3) + " | TIMP : Snow pack temperature lag factor" + \ "\n" + cj.trailing_spaces(16, SNOCOVMX, 3) + " | SNOCOVMX : Minimum snow water content that corresponds to 100% snow cover [mm]" + \ "\n" + cj.trailing_spaces(16, SNO50COV, 3) + " | SNO50COV : Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover" + \ "\n" + cj.trailing_spaces(16, IPET, 0) + " | IPET: PET method: 0=priest-t, 1=pen-m, 2=har, 3=read into model" + \ "\n" + " " + " | PETFILE: name of potential ET input file" + \ "\n" + cj.trailing_spaces(16, ESCO, 3) + " | ESCO: soil evaporation compensation factor" + \ "\n" + cj.trailing_spaces(16, EPCO, 3) + " | EPCO: plant water uptake compensation factor" + \ "\n" + cj.trailing_spaces(16, EVLAI, 3) + " | EVLAI : Leaf area index at which no evaporation occurs from water surface [m2/m2]" + \ "\n" + cj.trailing_spaces(16, FFCB, 3) + " | FFCB : Initial soil water storage expressed as a fraction of field capacity water content" + \ "\n" + "Surface Runoff:" + \ "\n" + cj.trailing_spaces(16, IEVENT, 0) + " | IEVENT: rainfall/runoff code: 0=daily rainfall/CN" + \ "\n" + cj.trailing_spaces(16, ICRK, 0) + " | ICRK: crack flow code: 1=model crack flow in soil" + \ "\n" + cj.trailing_spaces(16, SURLAG, 3) + " | SURLAG : Surface runoff lag time [days]" + \ "\n" + cj.trailing_spaces(16, ADJ_PKR, 3) + " | ADJ_PKR : Peak rate adjustment factor for sediment routing in the subbasin (tributary channels)" + \ "\n" + cj.trailing_spaces(16, PRF_BSN, 3) + " | PRF_BSN : Peak rate adjustment factor for sediment routing in the main channel" + \ "\n" + cj.trailing_spaces(16, SPCON, 4) + " | SPCON : Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing" + \ "\n" + cj.trailing_spaces(16, SPEXP, 3) + " | SPEXP : Exponent parameter for calculating sediment reentrained in channel sediment routing" + \ "\n" + "Nutrient Cycling:" + \ "\n" + cj.trailing_spaces(16, RCN, 3) + " | RCN : Concentration of nitrogen in rainfall [mg N/l]" + \ "\n" + cj.trailing_spaces(16, CMN, 5) + " | CMN : Rate factor for humus mineralization of active organic nitrogen" + \ "\n" + cj.trailing_spaces(16, N_UPDIS, 3) + " | N_UPDIS : Nitrogen uptake distribution parameter" + \ "\n" + cj.trailing_spaces(16, P_UPDIS, 3) + " | P_UPDIS : Phosphorus uptake distribution parameter" + \ "\n" + cj.trailing_spaces(16, NPERCO, 3) + " | NPERCO : Nitrogen percolation coefficient" + \ "\n" + cj.trailing_spaces(16, PPERCO, 3) + " | PPERCO : Phosphorus percolation coefficient" + \ "\n" + cj.trailing_spaces(16, PHOSKD, 3) + " | PHOSKD : Phosphorus soil partitioning coefficient" + \ "\n" + cj.trailing_spaces(16, PSP, 3) + " | PSP : Phosphorus sorption coefficient" + \ "\n" + cj.trailing_spaces(16, RSDCO, 3) + " | RSDCO : Residue decomposition coefficient" + \ "\n" + "Pesticide Cycling:" + \ "\n" + cj.trailing_spaces(16, PERCOP, 3) + " | PERCOP : Pesticide percolation coefficient" + \ "\n" + "Algae/CBOD/Dissolved Oxygen:" + \ "\n" + cj.trailing_spaces(16, ISUBWQ, 0) + " | ISUBWQ: subbasin water quality parameter" + \ "\n" + "Bacteria:" + \ "\n" + cj.trailing_spaces(16, WDPQ, 3) + " | WDPQ : Die-off factor for persistent bacteria in soil solution. [1/day]" + \ "\n" + cj.trailing_spaces(16, WGPQ, 3) + " | WGPQ : Growth factor for persistent bacteria in soil solution [1/day]" + \ "\n" + cj.trailing_spaces(16, WDLPQ, 3) + " | WDLPQ : Die-off factor for less persistent bacteria in soil solution [1/day]" + \ "\n" + cj.trailing_spaces(16, WGLPQ, 3) + " | WGLPQ : Growth factor for less persistent bacteria in soil solution. [1/day]" + \ "\n" + cj.trailing_spaces(16, WDPS, 3) + " | WDPS : Die-off factor for persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, WGPS, 3) + " | WGPS : Growth factor for persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, WDLPS, 3) + " | WDLPS : Die-off factor for less persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, WGLPS, 3) + " | WGLPS : Growth factor for less persistent bacteria adsorbed to soil particles. [1/day]" + \ "\n" + cj.trailing_spaces(16, BACTKDQ, 3) + " | BACTKDQ : Bacteria partition coefficient" + \ "\n" + cj.trailing_spaces(16, THBACT, 3) + " | THBACT : Temperature adjustment factor for bacteria die-off/growth" + \ "\n" + cj.trailing_spaces(16, WOF_P, 3) + " | WOF_P: wash-off fraction for persistent bacteria on foliage" + \ "\n" + cj.trailing_spaces(16, WOF_LP, 3) + " | WOF_LP: wash-off fraction for less persistent bacteria on foliage" + \ "\n" + cj.trailing_spaces(16, WDPF, 3) + " | WDPF: persistent bacteria die-off factor on foliage" + \ "\n" + cj.trailing_spaces(16, WGPF, 3) + " | WGPF: persistent bacteria growth factor on foliage" + \ "\n" + cj.trailing_spaces(16, WDLPF, 3) + " | WDLPF: less persistent bacteria die-off factor on foliage" + \ "\n" + cj.trailing_spaces(16, WGLPF, 3) + " | WGLPF: less persistent bacteria growth factor on foliage" + \ "\n" + cj.trailing_spaces(16, ISED_DET, 0) + " | ISED_DET:" + \ "\n" + "Modeling Options: Reaches" + \ "\n" + cj.trailing_spaces(16, IRTE, 0) + " | IRTE: water routing method 0=variable travel-time 1=Muskingum" + \ "\n" + cj.trailing_spaces(16, MSK_CO1, 3) + " | MSK_CO1 : Calibration coefficient used to control impact of the storage time constant (Km) for normal flow" + \ "\n" + cj.trailing_spaces(16, MSK_CO2, 3) + " | MSK_CO2 : Calibration coefficient used to control impact of the storage time constant (Km) for low flow " + \ "\n" + cj.trailing_spaces(16, MSK_X, 3) + " | MSK_X : Weighting factor controlling relative importance of inflow rate and outflow rate in determining water storage in reach segment" + \ "\n" + cj.trailing_spaces(16, IDEG, 0) + " | IDEG: channel degradation code" + \ "\n" + cj.trailing_spaces(16, IWQ, 0) + " | IWQ: in-stream water quality: 1=model in-stream water quality" + \ "\n" + " basins.wwq | WWQFILE: name of watershed water quality file" + \ "\n" + cj.trailing_spaces(16, TRNSRCH, 3) + " | TRNSRCH: reach transmission loss partitioning to deep aquifer" + \ "\n" + cj.trailing_spaces(16, EVRCH, 3) + " | EVRCH : Reach evaporation adjustment factor" + \ "\n" + cj.trailing_spaces(16, IRTPEST, 0) + " | IRTPEST : Number of pesticide to be routed through the watershed channel network" + \ "\n" + cj.trailing_spaces(16, ICN, 0) + " | ICN : Daily curve number calculation method" + \ "\n" + cj.trailing_spaces(16, CNCOEF, 3) + " | CNCOEF : Plant ET curve number coefficient" + \ "\n" + cj.trailing_spaces(16, CDN, 3) + " | CDN : Denitrification exponential rate coefficient" + \ "\n" + cj.trailing_spaces(16, SDNCO, 3) + " | SDNCO : Denitrification threshold water content" + \ "\n" + cj.trailing_spaces(16, BACT_SWF, 3) + " | BACT_SWF : Fraction of manure applied to land areas that has active colony forming units" + \ "\n" + cj.trailing_spaces(16, BACTMX, 3) + " | BACTMX : Bacteria percolation coefficient [10 m3/Mg]." + \ "\n" + cj.trailing_spaces(16, BACTMINLP, 3) + " | BACTMINLP : Minimum daily bacteria loss for less persistent bacteria [# cfu/m2]" + \ "\n" + cj.trailing_spaces(16, BACTMINP, 3) + " | BACTMINP : Minimum daily bacteria loss for persistent bacteria [# cfu/m2]" + \ "\n" + cj.trailing_spaces(16, WDLPRCH, 3) + " | WDLPRCH: Die-off factor for less persistent bacteria in streams (moving water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, WDPRCH, 3) + " | WDPRCH : Die-off factor for persistent bacteria in streams (moving water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, WDLPRES, 3) + " | WDLPRES : Die-off factor for less persistent bacteria in water bodies (still water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, WDPRES, 3) + " | WDPRES : Die-off factor for persistent bacteria in water bodies (still water) at 20 C [1/day]" + \ "\n" + cj.trailing_spaces(16, TB_ADJ, 3) + " | TB_ADJ : New variable in testing ...Adjustment factor for subdaily unit hydrograph basetime" + \ "\n" + cj.trailing_spaces(16, DEP_IMP, 3) + " | DEPIMP_BSN : Depth to impervious layer for modeling perched water tables [mm]" + \ "\n" + cj.trailing_spaces(16, DDRAIN_BSN, 3) + " | DDRAIN_BSN : Depth to the sub-surface drain [mm]" + \ "\n" + cj.trailing_spaces(16, TDRAIN_BSN, 3) + " | TDRAIN_BSN : Time to drain soil to field capacity [hours]" + \ "\n" + cj.trailing_spaces(16, GDRAIN_BSN, 3) + " | GDRAIN_BSN : Drain tile lag time [hours]" + \ "\n" + cj.trailing_spaces(16, CN_FROZ, 6) + " | CN_FROZ : Parameter for frozen soil adjustment on infiltration/runoff" + \ "\n" + cj.trailing_spaces(16, DORM_HR, 3) + " | DORM_HR : Time threshold used to define dormancy [hours]" + \ "\n" + cj.trailing_spaces(16, SMXCO, 3) + " | SMXCO : Adjustment factor for maximum curve number S factor" + \ "\n" + cj.trailing_spaces(16, FIXCO, 3) + " | FIXCO : Nitrogen fixation coefficient" + \ "\n" + cj.trailing_spaces(16, NFIXMX, 3) + " | NFIXMX : Maximum daily-n fixation [kg/ha]" + \ "\n" + cj.trailing_spaces(16, ANION_EXCL_BSN, 3) + " | ANION_EXCL_BSN : Fraction of porosity from which anions are excluded" + \ "\n" + cj.trailing_spaces(16, CH_ONCO_BSN, 3) + " | CH_ONCO_BSN : Channel organic nitrogen concentration in basin [ppm]" + \ "\n" + cj.trailing_spaces(16, CH_OPCO_BSN, 3) + " | CH_OPCO_BSN : Channel organic phosphorus concentration in basin [ppm]" + \ "\n" + cj.trailing_spaces(16, HLIFE_NGW_BSN, 3) + " | HLIFE_NGW_BSN : Half-life of nitrogen in groundwater [days]" + \ "\n" + cj.trailing_spaces(16, RCN_SUB_BSN, 3) + " | RCN_SUB_BSN : Concentration of nitrate in precipitation [ppm]" + \ "\n" + cj.trailing_spaces(16, BC1_BSN, 3) + " | BC1_BSN : Rate constant for biological oxidation of NH3 [1/day]" + \ "\n" + cj.trailing_spaces(16, BC2_BSN, 3) + " | BC2_BSN : Rate constant for biological oxidation NO2 to NO3 [1/day]" + \ "\n" + cj.trailing_spaces(16, BC3_BSN, 3) + " | BC3_BSN : Rate constant for hydrolosis of organic nitrogen to ammonia [1/day]" + \ "\n" + cj.trailing_spaces(16, BC4_BSN, 3) + " | BC4_BSN : Rate constant for decay of organic phosphorus to dissolved phosphorus [1/day]" + \ "\n" + cj.trailing_spaces(16, DECR_MIN, 3) + " | DECR_MIN: Minimum daily residue decay" + \ "\n" + cj.trailing_spaces(16, ICFAC, 3) + " | ICFAC : C-factor calculation method" + \ "\n" + cj.trailing_spaces(16, RSD_COVCO, 3) + " | RSD_COVCO : Residue cover factor for computing fraction of cover" + \ "\n" + cj.trailing_spaces(16, VCRIT, 3) + " | VCRIT : Critical velocity" + \ "\n" + cj.trailing_spaces(16, CSWAT, 0) + " | CSWAT : Code for new carbon routines" + \ "\n" + cj.trailing_spaces(16, RES_STLR_CO, 3) + " | RES_STLR_CO : Reservoir sediment settling coefficient" + \ "\n" + cj.trailing_spaces(16, BFLO_DIST, 3) + " | BFLO_DIST 0-1 (1:profile of baseflow in a day follows rainfall pattern, 0:baseflow evenly distributed to each time step during a day" + \ "\n" + cj.trailing_spaces(16, IUH, 0) + " | IUH : Unit hydrograph method: 1=triangular UH, 2=gamma function UH" + \ "\n" + cj.trailing_spaces(16, UHALPHA, 3) + " | UHALPHA : alpha coefficient for gamma function unit hydrograph. Required if iuh=2 is selected" + \ "\n" + "Land Use types in urban.dat that do not make runoff to urban BMPs:" + \ "\n" + \ "\n" + "Subdaily Erosion:" + \ "\n" + cj.trailing_spaces(16, EROS_SPL, 3) + " | EROS_SPL: The splash erosion coefficient ranges 0.9 - 3.1" + \ "\n" + cj.trailing_spaces(16, RILL_MULT, 3) + " | RILL_MULT: Multiplier to USLE_K for soil susceptible to rill erosion, ranges 0.5 - 2.0" + \ "\n" + cj.trailing_spaces(16, EROS_EXPO, 3) + " | EROS_EXPO: an exponent in the overland flow erosion equation, ranges 1.5 - 3.0" + \ "\n" + cj.trailing_spaces(16, SUBD_CHSED, 3) + " | SUBD_CHSED: 1=Brownlie(1981) model, 2=Yang(1973,1984) model" + \ "\n" + cj.trailing_spaces(16, C_FACTOR, 3) + " | C_FACTOR: Scaling parameter for Cover and management factor in ANSWERS erosion model" + \ "\n" + cj.trailing_spaces(16, CH_D50, 1) + " | CH_D50 : median particle diameter of channel bed [mm]" + \ "\n" + cj.trailing_spaces(16, SIG_G, 3) + " | SIG_G : geometric standard deviation of particle sizes" + \ "\n" + cj.trailing_spaces(16, RE_BSN, 2) + " | RE_BSN: Effective radius of drains" + \ "\n" + cj.trailing_spaces(16, SDRAIN_BSN, 2) + " | SDRAIN_BSN: Distance between two drain or tile tubes" + \ "\n" + cj.trailing_spaces(16, DRAIN_CO_BSN, 2) + " | DRAIN_CO_BSN: Drainage coefficient" + \ "\n" + cj.trailing_spaces(16, PC_BSN, 3) + " | PC_BSN: Pump capacity" + \ "\n" + cj.trailing_spaces(16, LATKSATF_BSN, 2) + " | LATKSATF_BSN: Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU" + \ "\n" + cj.trailing_spaces(16, ITDRN, 0) + " | ITDRN: Tile drainage equations flag" + \ "\n" + cj.trailing_spaces(16, IWTDN, 0) + " | IWTDN: Water table depth algorithms flag" + \ "\n" + cj.trailing_spaces(16, SOL_P_MODEL, 0) + " | SOL_P_MODEL: if = 1, use new soil P model" + \ "\n" + cj.trailing_spaces(16, IABSTR, 2) + " | IABSTR: Initial abstraction on impervious cover (mm)" + \ "\n" + cj.trailing_spaces(16, IATMODEP, 0) + " | IATMODEP: 0 = average annual inputs 1 = monthly inputs" + \ "\n" + cj.trailing_spaces(16, R2ADJ_BSN, 0) + " | R2ADJ_BSN: basinwide retention parm adjustment factor" + \ "\n" + cj.trailing_spaces(16, SSTMAXD_BSN, 0) + " | SSTMAXD_BSN: basinwide retention parm adjustment factor" + \ "\n" + cj.trailing_spaces(16, ISMAX, 0) + " | ISMAX: max depressional storage code" + \ "\n" + cj.trailing_spaces(16, IROUTUNIT, 0) + " | IROUTUNIT:" + \ "\n" fileName = "basins.bsn" cj.write_to(variables.DefaultSimDir + "TxtInOut\\" + fileName, bsn_file) #print fileName
0.147371
0.062075
from _pytest.pytester import Testdir as TD, LineMatcher from contextlib import contextmanager from textwrap import dedent import subprocess import tempfile import asyncio import socket import signal import pytest import shutil import sys import py import os this_dir = os.path.dirname(__file__) @contextmanager def listening(): filename = None try: with tempfile.NamedTemporaryFile(delete=False) as fle: filename = fle.name fle.close() os.remove(fle.name) s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.settimeout(2) s.bind(fle.name) s.listen(1) yield s, fle.name s.close() finally: if os.path.exists(fle.name): os.remove(fle.name) def example_dir_factory(tmpdir_factory, name): path = os.path.join(this_dir, name) assert os.path.isdir(path) expected_file = os.path.join(this_dir, name, "expected") assert os.path.isfile(expected_file) with open(expected_file, "r") as fle: expected = fle.read().strip() directory = tmpdir_factory.mktemp(name) shutil.rmtree(directory) shutil.copytree(path, directory) class Factory: @property def expected(s): return expected def mktemp(s, p, **kwargs): if p.startswith("tmp-"): return tmpdir_factory.mktemp(p) else: return directory return Factory() @pytest.mark.parametrize( "name", [name for name in os.listdir(this_dir) if name.startswith("example_")] ) async it "shows correctly for failing fixtures", name, request, tmpdir_factory: factory = example_dir_factory(tmpdir_factory, name) testdir = TD(request, factory) expected = factory.expected result = testdir.runpytest("--tb", "short") assert not result.errlines lines = 0 for line in result.outlines: if line.startswith("=") and isinstance(lines, int): if lines < 1: lines += 1 else: lines = [] if isinstance(lines, list): lines.append(line) matcher = LineMatcher(lines) matcher.fnmatch_lines(expected.split("\n")) @pytest.mark.async_timeout(4) async it "cleans up tests properly on interrupt": directory = os.path.join(this_dir, "interrupt_test") expected_file = os.path.join(directory, "expected") assert os.path.isfile(expected_file) with open(expected_file, "r") as fle: expected = fle.read().strip() p = await asyncio.create_subprocess_exec( shutil.which("pytest"), cwd=directory, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) await asyncio.sleep(2) p.send_signal(signal.SIGINT) await p.wait() got = (await p.stdout.read()).decode().strip().split("\n") while got and not got[0].startswith("collected"): got.pop(0) want = expected.strip().split("\n") if len(got) != len(want): print("\n".join(got)) assert False, "expected different number of lines in output" matcher = LineMatcher(got) matcher.fnmatch_lines(want)
tests/test_examples.py
from _pytest.pytester import Testdir as TD, LineMatcher from contextlib import contextmanager from textwrap import dedent import subprocess import tempfile import asyncio import socket import signal import pytest import shutil import sys import py import os this_dir = os.path.dirname(__file__) @contextmanager def listening(): filename = None try: with tempfile.NamedTemporaryFile(delete=False) as fle: filename = fle.name fle.close() os.remove(fle.name) s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.settimeout(2) s.bind(fle.name) s.listen(1) yield s, fle.name s.close() finally: if os.path.exists(fle.name): os.remove(fle.name) def example_dir_factory(tmpdir_factory, name): path = os.path.join(this_dir, name) assert os.path.isdir(path) expected_file = os.path.join(this_dir, name, "expected") assert os.path.isfile(expected_file) with open(expected_file, "r") as fle: expected = fle.read().strip() directory = tmpdir_factory.mktemp(name) shutil.rmtree(directory) shutil.copytree(path, directory) class Factory: @property def expected(s): return expected def mktemp(s, p, **kwargs): if p.startswith("tmp-"): return tmpdir_factory.mktemp(p) else: return directory return Factory() @pytest.mark.parametrize( "name", [name for name in os.listdir(this_dir) if name.startswith("example_")] ) async it "shows correctly for failing fixtures", name, request, tmpdir_factory: factory = example_dir_factory(tmpdir_factory, name) testdir = TD(request, factory) expected = factory.expected result = testdir.runpytest("--tb", "short") assert not result.errlines lines = 0 for line in result.outlines: if line.startswith("=") and isinstance(lines, int): if lines < 1: lines += 1 else: lines = [] if isinstance(lines, list): lines.append(line) matcher = LineMatcher(lines) matcher.fnmatch_lines(expected.split("\n")) @pytest.mark.async_timeout(4) async it "cleans up tests properly on interrupt": directory = os.path.join(this_dir, "interrupt_test") expected_file = os.path.join(directory, "expected") assert os.path.isfile(expected_file) with open(expected_file, "r") as fle: expected = fle.read().strip() p = await asyncio.create_subprocess_exec( shutil.which("pytest"), cwd=directory, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) await asyncio.sleep(2) p.send_signal(signal.SIGINT) await p.wait() got = (await p.stdout.read()).decode().strip().split("\n") while got and not got[0].startswith("collected"): got.pop(0) want = expected.strip().split("\n") if len(got) != len(want): print("\n".join(got)) assert False, "expected different number of lines in output" matcher = LineMatcher(got) matcher.fnmatch_lines(want)
0.440469
0.316581
from coecms.regrid import esmf_generate_weights, regrid import argparse import xarray import iris from dask.diagnostics import ProgressBar def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--start-date', help='ISO-formatted start date') parser.add_argument('--end-date', help='ISO-formatted end date') parser.add_argument('--output', '-o', help='Output file name', required=True) parser.add_argument('--target-mask', help='Target UM land mask', required=True) parser.add_argument('--frequency', choices=[6, 12, 24], type=int, help='Update frequency (hours)', default=24) args = parser.parse_args() # Read in the source mask tos = xarray.open_mfdataset('/g/data1a/ub4/erai/netcdf/6hr/ocean/' 'oper_an_sfc/v01/tos/' 'tos_6hrs_ERAI_historical_an-sfc_2001*.nc', coords='all') src_mask = tos.tos.isel(time=0) # Read in the target mask mask_iris = iris.load_cube(args.target_mask, iris.AttributeConstraint(STASH='m01s00i030')) mask_iris.coord('latitude').var_name = 'lat' mask_iris.coord('longitude').var_name = 'lon' tgt_mask = xarray.DataArray.from_iris(mask_iris).load() tgt_mask = tgt_mask.where(tgt_mask == 0) tgt_mask.lon.attrs['standard_name'] = 'longitude' tgt_mask.lat.attrs['standard_name'] = 'latitude' tgt_mask.lon.attrs['units'] = 'degrees_east' tgt_mask.lat.attrs['units'] = 'degrees_north' print(tgt_mask) weights = esmf_generate_weights(src_mask, tgt_mask, method='patch') with ProgressBar(): # Read and slice the source data tos = xarray.open_mfdataset('/g/data1a/ub4/erai/netcdf/6hr/ocean/' 'oper_an_sfc/v01/tos/' 'tos_6hrs_ERAI_historical_an-sfc_2001*.nc', coords='all') sic = xarray.open_mfdataset('/g/data1a/ub4/erai/netcdf/6hr/seaIce/' 'oper_an_sfc/v01/sic/' 'sic_6hrs_ERAI_historical_an-sfc_2001*.nc', coords='all') ds = xarray.Dataset({'tos': tos.tos, 'sic': sic.sic}) ds = ds.sel(time=slice(args.start_date, args.end_date)) print(ds) newds = regrid(ds, weights=weights) newds['time'] = newds['time'].astype('i4') newds.to_netcdf(args.output) if __name__ == '__main__': main()
scripts/um/era_sst.py
from coecms.regrid import esmf_generate_weights, regrid import argparse import xarray import iris from dask.diagnostics import ProgressBar def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--start-date', help='ISO-formatted start date') parser.add_argument('--end-date', help='ISO-formatted end date') parser.add_argument('--output', '-o', help='Output file name', required=True) parser.add_argument('--target-mask', help='Target UM land mask', required=True) parser.add_argument('--frequency', choices=[6, 12, 24], type=int, help='Update frequency (hours)', default=24) args = parser.parse_args() # Read in the source mask tos = xarray.open_mfdataset('/g/data1a/ub4/erai/netcdf/6hr/ocean/' 'oper_an_sfc/v01/tos/' 'tos_6hrs_ERAI_historical_an-sfc_2001*.nc', coords='all') src_mask = tos.tos.isel(time=0) # Read in the target mask mask_iris = iris.load_cube(args.target_mask, iris.AttributeConstraint(STASH='m01s00i030')) mask_iris.coord('latitude').var_name = 'lat' mask_iris.coord('longitude').var_name = 'lon' tgt_mask = xarray.DataArray.from_iris(mask_iris).load() tgt_mask = tgt_mask.where(tgt_mask == 0) tgt_mask.lon.attrs['standard_name'] = 'longitude' tgt_mask.lat.attrs['standard_name'] = 'latitude' tgt_mask.lon.attrs['units'] = 'degrees_east' tgt_mask.lat.attrs['units'] = 'degrees_north' print(tgt_mask) weights = esmf_generate_weights(src_mask, tgt_mask, method='patch') with ProgressBar(): # Read and slice the source data tos = xarray.open_mfdataset('/g/data1a/ub4/erai/netcdf/6hr/ocean/' 'oper_an_sfc/v01/tos/' 'tos_6hrs_ERAI_historical_an-sfc_2001*.nc', coords='all') sic = xarray.open_mfdataset('/g/data1a/ub4/erai/netcdf/6hr/seaIce/' 'oper_an_sfc/v01/sic/' 'sic_6hrs_ERAI_historical_an-sfc_2001*.nc', coords='all') ds = xarray.Dataset({'tos': tos.tos, 'sic': sic.sic}) ds = ds.sel(time=slice(args.start_date, args.end_date)) print(ds) newds = regrid(ds, weights=weights) newds['time'] = newds['time'].astype('i4') newds.to_netcdf(args.output) if __name__ == '__main__': main()
0.569972
0.16944
import io import unittest from contextlib import redirect_stdout import solution class TestQ(unittest.TestCase): def test_case_0(self): text_trap = io.StringIO() with redirect_stdout(text_trap): lns = [5, 3, 5] inputs = [ [16, 12, 4, 2, 5], [7, 3, 9], [5, 1, 18, 3, 13], ] for i, ln in enumerate(lns): linked_list = solution.SinglyLinkedList() for j in range(ln): linked_list.insert_node(inputs[i][j]) solution.reversePrint(linked_list.head) self.assertEqual(text_trap.getvalue(), '5\n' + '2\n' + '4\n' + '12\n' + '16\n' + '9\n' + '3\n' + '7\n' + '13\n' + '3\n' + '18\n' + '1\n' + '5\n') def test_case_1(self): text_trap = io.StringIO() with redirect_stdout(text_trap): lns = [3, 3, 4] inputs = [ [11, 1, 17], [12, 11, 15], [5, 7, 15, 14], ] for i, ln in enumerate(lns): linked_list = solution.SinglyLinkedList() for j in range(ln): linked_list.insert_node(inputs[i][j]) solution.reversePrint(linked_list.head) self.assertEqual(text_trap.getvalue(), '17\n' + '1\n' + '11\n' + '15\n' + '11\n' + '12\n' + '14\n' + '15\n' + '7\n' + '5\n') if __name__ == '__main__': unittest.main()
hackerrank/Data Structures/Print in Reverse/test.py
import io import unittest from contextlib import redirect_stdout import solution class TestQ(unittest.TestCase): def test_case_0(self): text_trap = io.StringIO() with redirect_stdout(text_trap): lns = [5, 3, 5] inputs = [ [16, 12, 4, 2, 5], [7, 3, 9], [5, 1, 18, 3, 13], ] for i, ln in enumerate(lns): linked_list = solution.SinglyLinkedList() for j in range(ln): linked_list.insert_node(inputs[i][j]) solution.reversePrint(linked_list.head) self.assertEqual(text_trap.getvalue(), '5\n' + '2\n' + '4\n' + '12\n' + '16\n' + '9\n' + '3\n' + '7\n' + '13\n' + '3\n' + '18\n' + '1\n' + '5\n') def test_case_1(self): text_trap = io.StringIO() with redirect_stdout(text_trap): lns = [3, 3, 4] inputs = [ [11, 1, 17], [12, 11, 15], [5, 7, 15, 14], ] for i, ln in enumerate(lns): linked_list = solution.SinglyLinkedList() for j in range(ln): linked_list.insert_node(inputs[i][j]) solution.reversePrint(linked_list.head) self.assertEqual(text_trap.getvalue(), '17\n' + '1\n' + '11\n' + '15\n' + '11\n' + '12\n' + '14\n' + '15\n' + '7\n' + '5\n') if __name__ == '__main__': unittest.main()
0.327453
0.263991
import classad import htcondor import logging import os import shutil import subprocess import time from ornithology import * from pathlib import Path logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) @standup def config_dir(test_dir): config_dir = test_dir / "condor" / "config.d" Path(config_dir).mkdir(parents=True, exist_ok=True) return config_dir @standup def user_tokens_dir(test_dir): user_tokens_dir = test_dir / "condor" / "user-tokens.d" Path(user_tokens_dir).mkdir(parents=True, exist_ok=True) return user_tokens_dir @standup def system_tokens_dir(test_dir): system_tokens_dir = test_dir / "condor" / "system-tokens.d" Path(system_tokens_dir).mkdir(parents=True, exist_ok=True) return system_tokens_dir @standup def passwords_dir(test_dir): passwords_dir = test_dir / "condor" / "password.d" Path(passwords_dir).mkdir(parents=True, exist_ok=True) return passwords_dir @standup def pool_signing_key(passwords_dir): return passwords_dir / "POOL" @standup def password_file(test_dir): return test_dir / "condor" / "password" @standup def offline_password_file(test_dir): return test_dir / "condor" / "password-offline" @standup def wrong_password_file(test_dir): wrong_password_file = open(test_dir / "condor" / "wrong-password", "w") wrong_password_file.write("wrong password file\n") wrong_password_file.close() os.chmod(test_dir / "condor" / "wrong-password", 0o600) yield test_dir / "condor" / "wrong-password" @standup def condor(test_dir, passwords_dir, system_tokens_dir, pool_signing_key, password_file, user_tokens_dir): with Condor( local_dir=test_dir / "condor", clean_local_dir_before=False, config={ "DAEMON_LIST" : "MASTER COLLECTOR", "MASTER_DEBUG" : "D_SECURITY", "TOOL_DEBUG" : "D_SECURITY", "SHARED_PORT_PORT" : "0", "LOCAL_CONFIG_DIR" : "$(LOCAL_DIR)/config.d", "SEC_DEFAULT_AUTHENTICATION" : "REQUIRED", "SEC_CLIENT_AUTHENTICATION" : "REQUIRED", # we will enable this config statement *after* condor starts up #"SEC_DEFAULT_AUTHENTICATION_METHODS" : "TOKEN", "SEC_PASSWORD_DIRECTORY" : passwords_dir, "SEC_TOKEN_SYSTEM_DIRECTORY" : system_tokens_dir, "SEC_TOKEN_POOL_SIGNING_KEY_FILE" : pool_signing_key, "TOOL.SEC_TOKEN_POOL_SIGNING_KEY_FILE" : password_file, "SEC_TOKEN_DIRECTORY" : user_tokens_dir, # FIXME: I want there to be no permissions in the security system # other than condor_pool@*/* and administrator@domain/*. Get ZKM # to review/test these settings for that purpose. "ALLOW_ADMINISTRATOR" : "condor_pool@*/*, administrator@domain/*", "ALLOW_OWNER" : "condor_pool@*/*, administrator@domain/*", "ALLOW_CONFIG" : "condor_pool@*/*, administrator@domain/*", "ALLOW_DAEMON" : "condor_pool@*/*, administrator@domain/*", "ALLOW_NEGOTIATOR" : "condor_pool@*/*, administrator@domain/*", "DENY_ALL" : "*", } ) as condor: yield condor # create a local config file that disables all auth methods other than TOKEN @action def token_config_file(condor, config_dir): token_config_file = open(config_dir / "00token-config", "w") token_config_file.write("SEC_DEFAULT_AUTHENTICATION_METHODS = TOKEN\n") token_config_file.close() os.chmod(config_dir / "00token-config", 0o600) yield config_dir / "00token-config" # reconfig the daemons so they pick up the changed config and the generated POOL key # reconfig is a bit async, so we sleep 5 to give it time to take effect @action def reconfigure_daemons(condor, token_config_file): condor.run_command(["condor_reconfig", "-all"], timeout=20) time.sleep(5) @action def token_list(condor): cmd = condor.run_command(["condor_token_list"], timeout=20) assert cmd.returncode == 0 return cmd.stdout # copy the POOL key to the filename that tools use @action def copy_pool_key(condor, reconfigure_daemons, pool_signing_key, password_file): shutil.copyfile(pool_signing_key, password_file) os.chmod(password_file, 0o600) class TestAuthProtocolToken: def test_if_pool_signing_key_generated(self, condor, pool_signing_key): assert os.path.isfile(pool_signing_key) def test_generated_token_signing_key(self, condor, copy_pool_key): cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 0 def test_move_password_removes_access(self, condor, password_file, offline_password_file): os.rename(password_file, offline_password_file) cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 1 def test_wrong_master_password_fails(self, condor, password_file, wrong_password_file): os.rename(wrong_password_file, password_file) cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 1 def test_correct_master_password_succeeds(self, condor, password_file, wrong_password_file, offline_password_file): # Switch back to the correct password os.rename(password_file, wrong_password_file) os.rename(offline_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 0 def test_create_valid_token_authorized_user(self, condor): cmd = condor.run_command(["condor_token_create", "-identity", "administrator@domain", "-token", "tokenfile"], timeout=20) assert cmd.returncode == 0 def test_command_succeeds_with_token_but_no_common_pool_key(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to wrong POOL signing key os.rename(password_file, offline_password_file) os.rename(wrong_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 0 def test_list_tokens(self, token_list): assert token_list def test_ping_fails_after_deleting_authorized_token(self, condor, token_list): token_file = token_list.split(' ')[-1] os.unlink(token_file) cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 1 def test_create_valid_token_unauthorized_user(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to correct POOL signing key os.rename(password_file, wrong_password_file) os.rename(offline_password_file, password_file) # Verify condor_token_create cmd = condor.run_command(["condor_token_create", "-identity", "test@trust-domain", "-token", "tokenfile"], timeout=20) assert cmd.returncode == 0 def test_ping_fails_with_unauthorized_identity(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to wrong POOL signing key os.rename(password_file, offline_password_file) os.rename(wrong_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 1 def test_condor_fetch(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to correct POOL signing key os.rename(password_file, wrong_password_file) os.rename(offline_password_file, password_file) # Verify condor_token_fetch cmd = condor.run_command(["condor_token_fetch", "-type", "master", "-token", "tokenfile"], timeout=20) assert cmd.returncode == 0 def test_ping_with_fetched_token(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to wrong POOL signing key os.rename(password_file, offline_password_file) os.rename(wrong_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 1
src/condor_tests/test_auth_protocol_token.py
import classad import htcondor import logging import os import shutil import subprocess import time from ornithology import * from pathlib import Path logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) @standup def config_dir(test_dir): config_dir = test_dir / "condor" / "config.d" Path(config_dir).mkdir(parents=True, exist_ok=True) return config_dir @standup def user_tokens_dir(test_dir): user_tokens_dir = test_dir / "condor" / "user-tokens.d" Path(user_tokens_dir).mkdir(parents=True, exist_ok=True) return user_tokens_dir @standup def system_tokens_dir(test_dir): system_tokens_dir = test_dir / "condor" / "system-tokens.d" Path(system_tokens_dir).mkdir(parents=True, exist_ok=True) return system_tokens_dir @standup def passwords_dir(test_dir): passwords_dir = test_dir / "condor" / "password.d" Path(passwords_dir).mkdir(parents=True, exist_ok=True) return passwords_dir @standup def pool_signing_key(passwords_dir): return passwords_dir / "POOL" @standup def password_file(test_dir): return test_dir / "condor" / "password" @standup def offline_password_file(test_dir): return test_dir / "condor" / "password-offline" @standup def wrong_password_file(test_dir): wrong_password_file = open(test_dir / "condor" / "wrong-password", "w") wrong_password_file.write("wrong password file\n") wrong_password_file.close() os.chmod(test_dir / "condor" / "wrong-password", 0o600) yield test_dir / "condor" / "wrong-password" @standup def condor(test_dir, passwords_dir, system_tokens_dir, pool_signing_key, password_file, user_tokens_dir): with Condor( local_dir=test_dir / "condor", clean_local_dir_before=False, config={ "DAEMON_LIST" : "MASTER COLLECTOR", "MASTER_DEBUG" : "D_SECURITY", "TOOL_DEBUG" : "D_SECURITY", "SHARED_PORT_PORT" : "0", "LOCAL_CONFIG_DIR" : "$(LOCAL_DIR)/config.d", "SEC_DEFAULT_AUTHENTICATION" : "REQUIRED", "SEC_CLIENT_AUTHENTICATION" : "REQUIRED", # we will enable this config statement *after* condor starts up #"SEC_DEFAULT_AUTHENTICATION_METHODS" : "TOKEN", "SEC_PASSWORD_DIRECTORY" : passwords_dir, "SEC_TOKEN_SYSTEM_DIRECTORY" : system_tokens_dir, "SEC_TOKEN_POOL_SIGNING_KEY_FILE" : pool_signing_key, "TOOL.SEC_TOKEN_POOL_SIGNING_KEY_FILE" : password_file, "SEC_TOKEN_DIRECTORY" : user_tokens_dir, # FIXME: I want there to be no permissions in the security system # other than condor_pool@*/* and administrator@domain/*. Get ZKM # to review/test these settings for that purpose. "ALLOW_ADMINISTRATOR" : "condor_pool@*/*, administrator@domain/*", "ALLOW_OWNER" : "condor_pool@*/*, administrator@domain/*", "ALLOW_CONFIG" : "condor_pool@*/*, administrator@domain/*", "ALLOW_DAEMON" : "condor_pool@*/*, administrator@domain/*", "ALLOW_NEGOTIATOR" : "condor_pool@*/*, administrator@domain/*", "DENY_ALL" : "*", } ) as condor: yield condor # create a local config file that disables all auth methods other than TOKEN @action def token_config_file(condor, config_dir): token_config_file = open(config_dir / "00token-config", "w") token_config_file.write("SEC_DEFAULT_AUTHENTICATION_METHODS = TOKEN\n") token_config_file.close() os.chmod(config_dir / "00token-config", 0o600) yield config_dir / "00token-config" # reconfig the daemons so they pick up the changed config and the generated POOL key # reconfig is a bit async, so we sleep 5 to give it time to take effect @action def reconfigure_daemons(condor, token_config_file): condor.run_command(["condor_reconfig", "-all"], timeout=20) time.sleep(5) @action def token_list(condor): cmd = condor.run_command(["condor_token_list"], timeout=20) assert cmd.returncode == 0 return cmd.stdout # copy the POOL key to the filename that tools use @action def copy_pool_key(condor, reconfigure_daemons, pool_signing_key, password_file): shutil.copyfile(pool_signing_key, password_file) os.chmod(password_file, 0o600) class TestAuthProtocolToken: def test_if_pool_signing_key_generated(self, condor, pool_signing_key): assert os.path.isfile(pool_signing_key) def test_generated_token_signing_key(self, condor, copy_pool_key): cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 0 def test_move_password_removes_access(self, condor, password_file, offline_password_file): os.rename(password_file, offline_password_file) cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 1 def test_wrong_master_password_fails(self, condor, password_file, wrong_password_file): os.rename(wrong_password_file, password_file) cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 1 def test_correct_master_password_succeeds(self, condor, password_file, wrong_password_file, offline_password_file): # Switch back to the correct password os.rename(password_file, wrong_password_file) os.rename(offline_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "collector", "-table", "ALL", "-debug"], timeout=20) assert cmd.returncode == 0 def test_create_valid_token_authorized_user(self, condor): cmd = condor.run_command(["condor_token_create", "-identity", "administrator@domain", "-token", "tokenfile"], timeout=20) assert cmd.returncode == 0 def test_command_succeeds_with_token_but_no_common_pool_key(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to wrong POOL signing key os.rename(password_file, offline_password_file) os.rename(wrong_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 0 def test_list_tokens(self, token_list): assert token_list def test_ping_fails_after_deleting_authorized_token(self, condor, token_list): token_file = token_list.split(' ')[-1] os.unlink(token_file) cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 1 def test_create_valid_token_unauthorized_user(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to correct POOL signing key os.rename(password_file, wrong_password_file) os.rename(offline_password_file, password_file) # Verify condor_token_create cmd = condor.run_command(["condor_token_create", "-identity", "test@trust-domain", "-token", "tokenfile"], timeout=20) assert cmd.returncode == 0 def test_ping_fails_with_unauthorized_identity(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to wrong POOL signing key os.rename(password_file, offline_password_file) os.rename(wrong_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 1 def test_condor_fetch(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to correct POOL signing key os.rename(password_file, wrong_password_file) os.rename(offline_password_file, password_file) # Verify condor_token_fetch cmd = condor.run_command(["condor_token_fetch", "-type", "master", "-token", "tokenfile"], timeout=20) assert cmd.returncode == 0 def test_ping_with_fetched_token(self, condor, password_file, offline_password_file, wrong_password_file): # Switch back to wrong POOL signing key os.rename(password_file, offline_password_file) os.rename(wrong_password_file, password_file) # Verify condor_ping cmd = condor.run_command(["condor_ping", "-type", "master", "-table", "ALL"], timeout=20) assert cmd.returncode == 1
0.282097
0.218878
import os import glob import sys import functools import jsonpickle from collections import OrderedDict from Orange.widgets import widget, gui, settings import Orange.data from Orange.data.io import FileFormat from DockerClient import DockerClient from BwBase import OWBwBWidget, ConnectionDict, BwbGuiElements, getIconName, getJsonName from PyQt5 import QtWidgets, QtGui class OWjupyter_sleuth(OWBwBWidget): name = "jupyter_sleuth" description = "Base installation of Jupyter" priority = 103 icon = getIconName(__file__, "jupyter-sleuth.png") want_main_area = False docker_image_name = "biodepot/sleuth" docker_image_tag = ( "0.30.0__ubuntu-16.04__r-3.4.4__jupyter-5.6.0__firefox-61.0.1__082318" ) inputs = [ ("InputDir", str, "handleInputsInputDir"), ("Trigger", str, "handleInputsTrigger"), ("startingNotebook", str, "handleInputsstartingNotebook"), ] outputs = [("OutputDir", str), ("outputNotebook", str)] pset = functools.partial(settings.Setting, schema_only=True) runMode = pset(0) exportGraphics = pset(False) runTriggers = pset([]) triggerReady = pset({}) inputConnectionsStore = pset({}) optionsChecked = pset({}) subcommand = pset("notebook") execute = pset(False) startingNotebook = pset(None) type = pset("notebook") outputNotebook = pset(None) debug = pset(False) generateConfig = pset(False) autoyes = pset(True) allowRoot = pset(True) loglevel = pset("30") ip = pset("0.0.0.0") port = pset(8888) config = pset(None) transport = pset(None) keyfile = pset(None) certfile = pset(None) clientca = pset(None) nomathjax = pset(False) browser = pset(None) def __init__(self): super().__init__(self.docker_image_name, self.docker_image_tag) with open(getJsonName(__file__, "jupyter_sleuth")) as f: self.data = jsonpickle.decode(f.read()) f.close() self.initVolumes() self.inputConnections = ConnectionDict(self.inputConnectionsStore) self.drawGUI() def handleInputsInputDir(self, value, *args): if args and len(args) > 0: self.handleInputs("InputDir", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleInputsTrigger(self, value, *args): if args and len(args) > 0: self.handleInputs("Trigger", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleInputsstartingNotebook(self, value, *args): if args and len(args) > 0: self.handleInputs("startingNotebook", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleOutputs(self): outputValue = None if hasattr(self, "OutputDir"): outputValue = getattr(self, "OutputDir") self.send("OutputDir", outputValue) outputValue = None if hasattr(self, "outputNotebook"): outputValue = getattr(self, "outputNotebook") self.send("outputNotebook", outputValue)
biodepot/Jupyter/OWjupyter_sleuth.py
import os import glob import sys import functools import jsonpickle from collections import OrderedDict from Orange.widgets import widget, gui, settings import Orange.data from Orange.data.io import FileFormat from DockerClient import DockerClient from BwBase import OWBwBWidget, ConnectionDict, BwbGuiElements, getIconName, getJsonName from PyQt5 import QtWidgets, QtGui class OWjupyter_sleuth(OWBwBWidget): name = "jupyter_sleuth" description = "Base installation of Jupyter" priority = 103 icon = getIconName(__file__, "jupyter-sleuth.png") want_main_area = False docker_image_name = "biodepot/sleuth" docker_image_tag = ( "0.30.0__ubuntu-16.04__r-3.4.4__jupyter-5.6.0__firefox-61.0.1__082318" ) inputs = [ ("InputDir", str, "handleInputsInputDir"), ("Trigger", str, "handleInputsTrigger"), ("startingNotebook", str, "handleInputsstartingNotebook"), ] outputs = [("OutputDir", str), ("outputNotebook", str)] pset = functools.partial(settings.Setting, schema_only=True) runMode = pset(0) exportGraphics = pset(False) runTriggers = pset([]) triggerReady = pset({}) inputConnectionsStore = pset({}) optionsChecked = pset({}) subcommand = pset("notebook") execute = pset(False) startingNotebook = pset(None) type = pset("notebook") outputNotebook = pset(None) debug = pset(False) generateConfig = pset(False) autoyes = pset(True) allowRoot = pset(True) loglevel = pset("30") ip = pset("0.0.0.0") port = pset(8888) config = pset(None) transport = pset(None) keyfile = pset(None) certfile = pset(None) clientca = pset(None) nomathjax = pset(False) browser = pset(None) def __init__(self): super().__init__(self.docker_image_name, self.docker_image_tag) with open(getJsonName(__file__, "jupyter_sleuth")) as f: self.data = jsonpickle.decode(f.read()) f.close() self.initVolumes() self.inputConnections = ConnectionDict(self.inputConnectionsStore) self.drawGUI() def handleInputsInputDir(self, value, *args): if args and len(args) > 0: self.handleInputs("InputDir", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleInputsTrigger(self, value, *args): if args and len(args) > 0: self.handleInputs("Trigger", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleInputsstartingNotebook(self, value, *args): if args and len(args) > 0: self.handleInputs("startingNotebook", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleOutputs(self): outputValue = None if hasattr(self, "OutputDir"): outputValue = getattr(self, "OutputDir") self.send("OutputDir", outputValue) outputValue = None if hasattr(self, "outputNotebook"): outputValue = getattr(self, "outputNotebook") self.send("outputNotebook", outputValue)
0.158956
0.099426