metadata
license: cc-by-4.0
size_categories:
- n<1K
task_categories:
- image-to-text
language:
- en
pretty_name: COCO Detection
Dataset Card for "COCO Detection"
Quick Start
Usage
>>> from datasets.load import load_dataset
>>> dataset = load_dataset('whyen-wang/coco_detection')
>>> example = dataset['train'][500]
>>> print(example)
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x426>,
'bboxes': [
[192.4199981689453, 220.17999267578125,
129.22999572753906, 148.3800048828125],
[76.94000244140625, 146.6300048828125,
104.55000305175781, 109.33000183105469],
[302.8800048828125, 115.2699966430664,
99.11000061035156, 119.2699966430664],
[0.0, 0.800000011920929,
592.5700073242188, 420.25]],
'categories': [46, 46, 46, 55],
'inst.rles': {
'size': [[426, 640], [426, 640], [426, 640], [426, 640]],
'counts': [
'gU`2b0d;...', 'RXP16m<=...', ']Xn34S=4...', 'n:U2o8W2...'
]}}
Visualization
>>> import cv2
>>> import numpy as np
>>> from PIL import Image
>>> def transforms(examples):
inst_rles = examples.pop('inst.rles')
annotation = []
for i in inst_rles:
inst_rles = [
{'size': size, 'counts': counts}
for size, counts in zip(i['size'], i['counts'])
]
annotation.append(maskUtils.decode(inst_rles))
examples['annotation'] = annotation
return examples
>>> def visualize(example, names, colors):
image = np.array(example['image'])
bboxes = np.array(example['bboxes']).round().astype(int)
bboxes[:, 2:] += bboxes[:, :2]
categories = example['categories']
masks = example['annotation']
n = len(bboxes)
for i in range(n):
c = categories[i]
color, name = colors[c], names[c]
cv2.rectangle(image, bboxes[i, :2], bboxes[i, 2:], color.tolist(), 2)
cv2.putText(
image, name, bboxes[i, :2], cv2.FONT_HERSHEY_SIMPLEX,
1, color.tolist(), 2, cv2.LINE_AA, False
)
image[masks[..., i] == 1] = image[masks[..., i] == 1] // 2 + color // 2
return image
>>> dataset.set_transform(transforms)
>>> names = dataset['train'].features['categories'].feature.names
>>> colors = np.ones((80, 3), np.uint8) * 255
>>> colors[:, 0] = np.linspace(0, 255, 80)
>>> colors = cv2.cvtColor(colors[None], cv2.COLOR_HSV2RGB)[0]
>>> example = dataset['train'][500]
>>> Image.fromarray(example)
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://cocodataset.org/
- Repository: None
- Paper: Microsoft COCO: Common Objects in Context
- Leaderboard: Papers with Code
- Point of Contact: None
Dataset Summary
COCO is a large-scale object detection, segmentation, and captioning dataset.
Supported Tasks and Leaderboards
Object Detection Image Segmentation
Languages
en
Dataset Structure
Data Instances
An example looks as follows.
{
"image": PIL.Image(mode="RGB"),
"captions": [
"Closeup of bins of food that include broccoli and bread.",
"A meal is presented in brightly colored plastic trays.",
"there are containers filled with different kinds of foods",
"Colorful dishes holding meat, vegetables, fruit, and bread.",
"A bunch of trays that have different food."
]
}
Data Fields
[More Information Needed]
Data Splits
name | train | validation |
---|---|---|
default | 118,287 | 5,000 |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
Creative Commons Attribution 4.0 License
Citation Information
@article{cocodataset,
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Contributions
Thanks to @github-whyen-wang for adding this dataset.