metadata
license: mit
task_categories:
- visual-question-answering
- image-classification
language:
- en
tags:
- visual reason
- transformation
- benchmark
- computer vision
size_categories:
- 1K<n<10K
VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning
Dataset Description
VisualTrans is the first comprehensive benchmark specifically designed for Visual Transformation Reasoning (VTR) in real-world human-object interaction scenarios. The benchmark encompasses 12 semantically diverse manipulation tasks and systematically evaluates three essential reasoning dimensions through 6 well-defined subtask types.
Dataset Statistics
- Total samples: 497
- Number of manipulation scenarios: 12
- Task types: 6
Task Type Distribution
- count: 63 samples (12.7%)
- procedural_causal: 86 samples (17.3%)
- procedural_interm: 88 samples (17.7%)
- procedural_plan: 42 samples (8.5%)
- spatial_fine_grained: 168 samples (33.8%)
- spatial_global: 50 samples (10.1%)
Manipulation Scenarios
The benchmark covers 12 diverse manipulation scenarios:
- Add Remove Lid
- Assemble Disassemble Legos
- Build Unstack Lego
- Insert Remove Bookshelf
- Insert Remove Cups From Rack
- Make Sandwich
- Pick Place Food
- Play Reset Connect Four
- Screw Unscrew Fingers Fixture
- Setup Cleanup Table
- Sort Beads
- Stack Unstack Bowls
Dataset Structure
Files
VisualTrans.json
: Main benchmark file containing questions, answers, and image pathsimages.zip
: Compressed archive containing all images used in the benchmark
Data Format
Each sample in the benchmark contains:
{
"task_type": "what",
"images": [
"scene_name/image1.jpg",
"scene_name/image2.jpg"
],
"scene": "scene_name",
"question": "Question about the transformation",
"label": "Ground truth answer"
}
Reasoning Dimensions
The framework evaluates three essential reasoning dimensions:
- Quantitative Reasoning - Counting and numerical reasoning tasks
- Procedural Reasoning
- Intermediate State - Understanding process states during transformation
- Causal Reasoning - Analyzing cause-effect relationships
- Transformation Planning - Multi-step planning and sequence reasoning
- Spatial Reasoning
- Fine-grained - Precise spatial relationships and object positioning
- Global - Overall spatial configuration and scene understanding
Usage
import json
import zipfile
# Load the benchmark data
with open('VisualTrans.json', 'r') as f:
benchmark_data = json.load(f)
# Extract images
with zipfile.ZipFile('images.zip', 'r') as zip_ref:
zip_ref.extractall('images/')
# Access a sample
sample = benchmark_data[0]
print(f"Question: {sample['question']}")
print(f"Answer: {sample['label']}")
print(f"Images: {sample['images']}")
Citation
If you use this benchmark, please cite our work:
@misc{ji2025visualtransbenchmarkrealworldvisual,
title={VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning},
author={Yuheng Ji and Yipu Wang and Yuyang Liu and Xiaoshuai Hao and Yue Liu and Yuting Zhao and Huaihai Lyu and Xiaolong Zheng},
year={2025},
eprint={2508.04043},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.04043},
}
License
This dataset is released under the MIT License.
Contact
For questions or issues, please open an issue on our GitHub repository or contact the authors.