max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
PyObjCTest/test_nsimage.py
Khan/pyobjc-framework-Cocoa
132
49671
<reponame>Khan/pyobjc-framework-Cocoa<gh_stars>100-1000 from PyObjCTools.TestSupport import * import AppKit from AppKit import * try: unicode except NameError: unicode = str class TestNSImageHelper (NSObject): def image_didLoadRepresentation_withStatus_(self, i, r, s): pass def image_didLoadPartOfRepresentation_withValidRows_(self, i, r, c): pass class TestNSImage (TestCase): def test_compositePoint(self): # comes straight from ReSTedit. Works on PPC, not on Intel (as of r1791) ws = AppKit.NSWorkspace.sharedWorkspace() txtIcon = ws.iconForFileType_("txt") txtIcon.setSize_( (16,16) ) htmlIcon = ws.iconForFileType_("html") htmlIcon.setSize_( (16,16) ) comboIcon = AppKit.NSImage.alloc().initWithSize_( (100,100) ) comboIcon.lockFocus() txtIcon.compositeToPoint_fromRect_operation_((0,0), ((0,0),(16,16)), AppKit.NSCompositeCopy) htmlIcon.compositeToPoint_fromRect_operation_((8,0), ((8,0),(8,16)), AppKit.NSCompositeCopy) comboIcon.unlockFocus() def testConstants(self): self.assertEqual(NSImageLoadStatusCompleted, 0) self.assertEqual(NSImageLoadStatusCancelled, 1) self.assertEqual(NSImageLoadStatusInvalidData, 2) self.assertEqual(NSImageLoadStatusUnexpectedEOF, 3) self.assertEqual(NSImageLoadStatusReadError, 4) self.assertEqual(NSImageCacheDefault, 0) self.assertEqual(NSImageCacheAlways, 1) self.assertEqual(NSImageCacheBySize, 2) self.assertEqual(NSImageCacheNever, 3) @min_os_level("10.5") def testConstants10_5(self): self.assertIsInstance( NSImageNameQuickLookTemplate, unicode) self.assertIsInstance( NSImageNameBluetoothTemplate, unicode) self.assertIsInstance( NSImageNameIChatTheaterTemplate, unicode) self.assertIsInstance( NSImageNameSlideshowTemplate, unicode) self.assertIsInstance( NSImageNameActionTemplate, unicode) self.assertIsInstance( NSImageNameSmartBadgeTemplate, unicode) self.assertIsInstance( NSImageNameIconViewTemplate, unicode) self.assertIsInstance( NSImageNameListViewTemplate, unicode) self.assertIsInstance( NSImageNameColumnViewTemplate, unicode) self.assertIsInstance( NSImageNameFlowViewTemplate, unicode) self.assertIsInstance( NSImageNamePathTemplate, unicode) self.assertIsInstance( NSImageNameInvalidDataFreestandingTemplate, unicode) self.assertIsInstance( NSImageNameLockLockedTemplate, unicode) self.assertIsInstance( NSImageNameLockUnlockedTemplate, unicode) self.assertIsInstance( NSImageNameGoRightTemplate, unicode) self.assertIsInstance( NSImageNameGoLeftTemplate, unicode) self.assertIsInstance( NSImageNameRightFacingTriangleTemplate, unicode) self.assertIsInstance( NSImageNameLeftFacingTriangleTemplate, unicode) self.assertIsInstance( NSImageNameAddTemplate, unicode) self.assertIsInstance( NSImageNameRemoveTemplate, unicode) self.assertIsInstance( NSImageNameRevealFreestandingTemplate, unicode) self.assertIsInstance( NSImageNameFollowLinkFreestandingTemplate, unicode) self.assertIsInstance( NSImageNameEnterFullScreenTemplate, unicode) self.assertIsInstance( NSImageNameExitFullScreenTemplate, unicode) self.assertIsInstance( NSImageNameStopProgressTemplate, unicode) self.assertIsInstance( NSImageNameStopProgressFreestandingTemplate, unicode) self.assertIsInstance( NSImageNameRefreshTemplate, unicode) self.assertIsInstance( NSImageNameRefreshFreestandingTemplate, unicode) self.assertIsInstance( NSImageNameBonjour, unicode) self.assertIsInstance( NSImageNameDotMac, unicode) self.assertIsInstance( NSImageNameComputer, unicode) self.assertIsInstance( NSImageNameFolderBurnable, unicode) self.assertIsInstance( NSImageNameFolderSmart, unicode) self.assertIsInstance( NSImageNameNetwork, unicode) self.assertIsInstance( NSImageNameMultipleDocuments, unicode) self.assertIsInstance( NSImageNameUserAccounts, unicode) self.assertIsInstance( NSImageNamePreferencesGeneral, unicode) self.assertIsInstance( NSImageNameAdvanced, unicode) self.assertIsInstance( NSImageNameInfo, unicode) self.assertIsInstance( NSImageNameFontPanel, unicode) self.assertIsInstance( NSImageNameColorPanel, unicode) self.assertIsInstance( NSImageNameUser, unicode) self.assertIsInstance( NSImageNameUserGroup, unicode) self.assertIsInstance( NSImageNameEveryone, unicode) def testMethods(self): self.assertResultIsBOOL(NSImage.setName_) self.assertArgIsBOOL(NSImage.setScalesWhenResized_, 0) self.assertResultIsBOOL(NSImage.scalesWhenResized) self.assertArgIsBOOL(NSImage.setDataRetained_, 0) self.assertResultIsBOOL(NSImage.isDataRetained) self.assertArgIsBOOL(NSImage.setCachedSeparately_, 0) self.assertResultIsBOOL(NSImage.isCachedSeparately) self.assertArgIsBOOL(NSImage.setCacheDepthMatchesImageDepth_, 0) self.assertResultIsBOOL(NSImage.cacheDepthMatchesImageDepth) self.assertArgIsBOOL(NSImage.setUsesEPSOnResolutionMismatch_, 0) self.assertResultIsBOOL(NSImage.usesEPSOnResolutionMismatch) self.assertArgIsBOOL(NSImage.setPrefersColorMatch_, 0) self.assertResultIsBOOL(NSImage.prefersColorMatch) self.assertArgIsBOOL(NSImage.setMatchesOnMultipleResolution_, 0) self.assertResultIsBOOL(NSImage.matchesOnMultipleResolution) self.assertResultIsBOOL(NSImage.drawRepresentation_inRect_) self.assertResultIsBOOL(NSImage.isValid) self.assertResultIsBOOL(NSImage.canInitWithPasteboard_) self.assertResultIsBOOL(NSImage.isFlipped) self.assertArgIsBOOL(NSImage.setFlipped_, 0) self.assertResultIsBOOL(NSImage.isTemplate) self.assertArgIsBOOL(NSImage.setTemplate_, 0) def testProtocols(self): self.assertArgHasType(TestNSImageHelper.image_didLoadPartOfRepresentation_withValidRows_, 2, objc._C_NSInteger) self.assertArgHasType(TestNSImageHelper.image_didLoadRepresentation_withStatus_, 2, objc._C_NSUInteger) @min_os_level('10.6') def testMethods10_6(self): self.assertArgHasType(NSImage.drawInRect_fromRect_operation_fraction_respectFlipped_hints_, 0, NSRect.__typestr__) self.assertArgIsBOOL(NSImage.drawInRect_fromRect_operation_fraction_respectFlipped_hints_, 4) self.assertArgIsBOOL(NSImage.lockFocusFlipped_, 0) self.assertArgHasType(NSImage.initWithCGImage_size_, 1, NSSize.__typestr__) self.assertArgHasType(NSImage.CGImageForProposedRect_context_hints_, 0, b'o^' + NSRect.__typestr__) self.assertArgHasType(NSImage.bestRepresentationForRect_context_hints_, 0, NSRect.__typestr__) self.assertResultIsBOOL(NSImage.hitTestRect_withImageDestinationRect_context_hints_flipped_) self.assertArgHasType(NSImage.hitTestRect_withImageDestinationRect_context_hints_flipped_, 0, NSRect.__typestr__) self.assertArgHasType(NSImage.hitTestRect_withImageDestinationRect_context_hints_flipped_, 1, NSRect.__typestr__) @min_os_level('10.7') def testMethods10_7(self): self.assertResultIsBOOL(NSImage.matchesOnlyOnBestFittingAxis) self.assertArgIsBOOL(NSImage.setMatchesOnlyOnBestFittingAxis_, 0) @min_os_level('10.8') def testMethods10_8(self): self.assertArgIsBOOL(NSImage.imageWithSize_flipped_drawingHandler_, 1) self.assertArgIsBlock(NSImage.imageWithSize_flipped_drawingHandler_, 2, objc._C_NSBOOL + NSRect.__typestr__) @min_os_level('10.6') def testConstants10_6(self): self.assertIsInstance(NSImageHintCTM, unicode) self.assertIsInstance(NSImageHintInterpolation, unicode) self.assertIsInstance(NSImageNameFolder, unicode) self.assertIsInstance(NSImageNameMobileMe, unicode) self.assertIsInstance(NSImageNameUserGuest, unicode) self.assertIsInstance(NSImageNameMenuOnStateTemplate, unicode) self.assertIsInstance(NSImageNameMenuMixedStateTemplate, unicode) self.assertIsInstance(NSImageNameApplicationIcon, unicode) self.assertIsInstance(NSImageNameTrashEmpty, unicode) self.assertIsInstance(NSImageNameTrashFull, unicode) self.assertIsInstance(NSImageNameHomeTemplate, unicode) self.assertIsInstance(NSImageNameBookmarksTemplate, unicode) self.assertIsInstance(NSImageNameCaution, unicode) self.assertIsInstance(NSImageNameStatusAvailable, unicode) self.assertIsInstance(NSImageNameStatusPartiallyAvailable, unicode) self.assertIsInstance(NSImageNameStatusUnavailable, unicode) self.assertIsInstance(NSImageNameStatusNone, unicode) @min_os_level('10.8') def testConstants10_8(self): self.assertIsInstance(NSImageNameShareTemplate, unicode) if __name__ == "__main__": main()
19. Backtracking/subsets of an array.py
Ujjawalgupta42/Hacktoberfest2021-DSA
225
49678
#Input: nums = [1,2,3] #Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]] def subsets(self, nums: List[int]) -> List[List[int]]: self.result = [] self.helper(nums, 0, []) return self.result def helper(self, nums, start, subset): self.result.append(subset[::]) for i in range(start, len(nums)): subset.append(nums[i]) self.helper(nums, i + 1, subset) subset.pop()
server/amberalertcn/api/v1/lib/__init__.py
fuzhouch/amberalertcn
151
49689
<filename>server/amberalertcn/api/v1/lib/__init__.py """ lib """
python/app/plugins/port/Mysql/Mysql_Weakpwd.py
taomujian/linbing
351
49704
#!/usr/bin/env python3 import pymysql from urllib.parse import urlparse class Mysql_Weakpwd_BaseVerify: def __init__(self, url): self.info = { 'name': 'Mysql 弱口令漏洞', 'description': 'Mysql 弱口令漏洞', 'date': '', 'exptype': 'check', 'type': 'Weakpwd' } self.url = url url_parse = urlparse(self.url) self.host = url_parse.hostname self.port = url_parse.port if not self.port: self.port = '3306' def check(self): """ 检测是否存在漏洞 :param: :return bool True or False: 是否存在漏洞 """ for pwd in open('app/password.txt', 'r', encoding = 'utf-8').readlines(): if pwd != '': pwd = <PASSWORD>.strip() try: conn = pymysql.connect(host = self.host, port = int(self.port), user = 'root', password = <PASSWORD>, database = 'mysql') print ('存在Mysql弱口令,弱口令为:', pwd) conn.close() return True except Exception as e: print(e) pass finally: pass print('不存在Mysql弱口令') return False if __name__ == "__main__": Mysql_Weakpwd = Mysql_Weakpwd_BaseVerify('http://10.4.33.38:3306') Mysql_Weakpwd.check()
mathematics_dataset/util/probability.py
PhysicsTeacher13/Mathematics_Dataset
1,577
49728
# Copyright 2018 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functionality for working with probability spaces and random variables. Basic recap of probability theory, and thus of classes in this file: * A probability space is a (finite or infinite) set Omega with a probability measure defined on this. * A random variable is a mapping from a probability space to another measure space. * An event is a measurable set in a sample space. For example, suppose a bag contains 3 balls: two red balls, and one white ball. This could be represented by a discrete probability space of size 3 with elements {1, 2, 3}, with equal measure assigned to all 3 elements; and a random variable that maps 1->red, 2->red, and 3->white. Then the probability of drawing a red ball is the measure in the probability space of the inverse under the random variable mapping of {red}, i.e., of {1, 2}, which is 2/3. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import itertools # Dependency imports import six from six.moves import zip import sympy @six.add_metaclass(abc.ABCMeta) class Event(object): """Represents an event in a measure space.""" @six.add_metaclass(abc.ABCMeta) class ProbabilitySpace(object): """Represents a probability space.""" @abc.abstractmethod def probability(self, event): """Returns the probability of an event.""" @six.add_metaclass(abc.ABCMeta) class RandomVariable(object): """Random variable; a mapping from a probability space to a measure space.""" @abc.abstractmethod def __call__(self, event): """Maps an `_Event` in the probability space to one in the sample space.""" @abc.abstractmethod def inverse(self, event): """Maps event in the sample space back to the inverse in the prob. space.""" class DiscreteEvent(Event): """Set of discrete values.""" def __init__(self, values): self._values = values @property def values(self): return self._values class FiniteProductEvent(Event): """Event consisting of cartesian product of events.""" def __init__(self, events): """Initializes a `FiniteProductEvent`. Args: events: Tuple of `Event`s; resulting event will be cartesian product of these. """ self._events = events @property def events(self): return self._events def all_sequences(self): """Returns iterator of sequences by selecting a single event in each coord. This assumes that every component event is an instance of `DiscreteEvent`. Returns: Iterator over tuples of values. Raises: ValueError: If one of the component events is not a `DiscreteEvent`. """ if not all(isinstance(event, DiscreteEvent) for event in self._events): raise ValueError('Not all component events are DiscreteEvents') values_list = [event.values for event in self._events] return itertools.product(*values_list) class CountLevelSetEvent(Event): """Event of all sequences with fixed number of different values occurring.""" def __init__(self, counts): """Initializes `CountLevelSetEvent`. E.g., to construct the event of getting two red balls and one green ball, pass `counts = {red: 2, green: 1}`. (Then `all_sequences()` would return `[(red, red, green), (red, green, red), (green, red, red)]`. Args: counts: Dictionary mapping values to the number of times they occur in a sequence. """ self._counts = counts self._all_sequences = None @property def counts(self): return self._counts def all_sequences(self): """Returns all sequences generated by this level set.""" if self._all_sequences is None: # Generate via dynamic programming. cache = {} # dict mapping tuple -> list of tuples labels = list(self._counts.keys()) def generate(counts): """Returns list of tuples for given `counts` of labels.""" if sum(counts) == 0: return [()] counts = tuple(counts) if counts in cache: return cache[counts] generated = [] for i, count in enumerate(counts): if count == 0: continue counts_minus = list(counts) counts_minus[i] -= 1 counts_minus = tuple(counts_minus) extensions = generate(counts_minus) generated += [tuple([labels[i]] + list(extension)) for extension in extensions] cache[counts] = generated return generated self._all_sequences = generate(list(self._counts.values())) return self._all_sequences class SequenceEvent(Event): """Collection of sequences.""" def __init__(self, sequences): self._sequences = sequences def all_sequences(self): return self._sequences def normalize_weights(weights): """Normalizes the weights (as sympy.Rational) in dictionary of weights.""" weight_sum = sum(six.itervalues(weights)) return { i: sympy.Rational(weight, weight_sum) for i, weight in six.iteritems(weights) } class DiscreteProbabilitySpace(ProbabilitySpace): """Discrete probability space.""" def __init__(self, weights=None): """Initializes an `DiscreteProbabilitySpace`. Args: weights: Dictionary mapping values to relative probability of selecting that value. This will be normalized. """ self._weights = normalize_weights(weights) def probability(self, event): if isinstance(event, DiscreteEvent): return sum(self._weights[value] for value in event.values if value in self._weights) else: raise ValueError('Unhandled event type {}'.format(type(event))) @property def weights(self): """Returns dictionary of probability of each element.""" return self._weights class FiniteProductSpace(ProbabilitySpace): """Finite cartesian product of probability spaces.""" def __init__(self, spaces): """Initializes a `FiniteProductSpace`. Args: spaces: List of `ProbabilitySpace`. """ self._spaces = spaces def all_spaces_equal(self): return all([self._spaces[0] == space for space in self._spaces]) def probability(self, event): # Specializations for optimization. if isinstance(event, FiniteProductEvent): assert len(self._spaces) == len(event.events) return sympy.prod([ space.probability(event_slice) for space, event_slice in zip(self._spaces, event.events)]) if isinstance(event, CountLevelSetEvent) and self.all_spaces_equal(): space = self._spaces[0] counts = event.counts probabilities = { value: space.probability(DiscreteEvent({value})) for value in six.iterkeys(counts) } num_events = sum(six.itervalues(counts)) assert num_events == len(self._spaces) # Multinomial coefficient: coeff = ( sympy.factorial(num_events) / sympy.prod( [sympy.factorial(i) for i in six.itervalues(counts)])) return coeff * sympy.prod([ pow(probabilities[value], counts[value]) for value in six.iterkeys(counts) ]) raise ValueError('Unhandled event type {}'.format(type(event))) @property def spaces(self): """Returns list of spaces.""" return self._spaces class SampleWithoutReplacementSpace(ProbabilitySpace): """Probability space formed by sampling discrete space without replacement.""" def __init__(self, weights, n_samples): """Initializes a `SampleWithoutReplacementSpace`. Args: weights: Dictionary mapping values to relative probability of selecting that value. This will be normalized. n_samples: Number of samples to draw. Raises: ValueError: If `n_samples > len(weights)`. """ if n_samples > len(weights): raise ValueError('n_samples is more than number of discrete elements') self._weights = normalize_weights(weights) self._n_samples = n_samples @property def n_samples(self): """Number of samples to draw.""" return self._n_samples def probability(self, event): try: all_sequences = event.all_sequences() except AttributeError: raise ValueError('Unhandled event type {}'.format(type(event))) probability_sum = 0 for sequence in all_sequences: if len(sequence) != len(set(sequence)): continue # not all unique, so not "without replacement". p_sequence = 1 removed_prob = 0 for i in sequence: p = self._weights[i] if i in self._weights else 0 if p == 0: p_sequence = 0 break p_sequence *= p / (1 - removed_prob) removed_prob += p probability_sum += p_sequence return probability_sum class IdentityRandomVariable(RandomVariable): """Identity map of a probability space.""" def __call__(self, event): return event def inverse(self, event): return event class DiscreteRandomVariable(RandomVariable): """Specialization to discrete random variable. This is simply a mapping from a discrete space to a discrete space (dictionary lookup). """ def __init__(self, mapping): """Initializes `DiscreteRandomVariable` from `mapping` dict.""" self._mapping = mapping self._inverse = {} for key, value in six.iteritems(mapping): if value in self._inverse: self._inverse[value].add(key) else: self._inverse[value] = set([key]) def __call__(self, event): if isinstance(event, DiscreteEvent): return DiscreteEvent({self._mapping[value] for value in event.values}) else: raise ValueError('Unhandled event type {}'.format(type(event))) def inverse(self, event): if isinstance(event, DiscreteEvent): set_ = set() for value in event.values: if value in self._inverse: set_.update(self._inverse[value]) return DiscreteEvent(set_) else: raise ValueError('Unhandled event type {}'.format(type(event))) class FiniteProductRandomVariable(RandomVariable): """Product random variable. This has the following semantics. Let this be X = (X_1, ..., X_n). Then X(w) = (X_1(w_1), ..., X_n(w_n)) (the sample space is assumed to be of sequence type). """ def __init__(self, random_variables): """Initializes a `FiniteProductRandomVariable`. Args: random_variables: Tuple of `RandomVariable`. """ self._random_variables = random_variables def __call__(self, event): if isinstance(event, FiniteProductEvent): assert len(event.events) == len(self._random_variables) zipped = list(zip(self._random_variables, event.events)) return FiniteProductEvent( [random_variable(sub_event) for random_variable, sub_event in zipped]) else: raise ValueError('Unhandled event type {}'.format(type(event))) def inverse(self, event): # Specialization for `FiniteProductEvent`; don't need to take all sequences. if isinstance(event, FiniteProductEvent): assert len(event.events) == len(self._random_variables) zipped = list(zip(self._random_variables, event.events)) return FiniteProductEvent(tuple( random_variable.inverse(sub_event) for random_variable, sub_event in zipped)) # Try fallback of mapping each sequence separately. try: all_sequences = event.all_sequences() except AttributeError: raise ValueError('Unhandled event type {}'.format(type(event))) mapped = set() for sequence in all_sequences: assert len(sequence) == len(self._random_variables) zipped = list(zip(self._random_variables, sequence)) mapped_sequence = FiniteProductEvent(tuple( random_variable.inverse(DiscreteEvent({element})) for random_variable, element in zipped)) mapped.update(mapped_sequence.all_sequences()) return SequenceEvent(mapped)
pygears/lib/rounding.py
bogdanvuk/pygears
120
49732
from pygears import gear, datagear, alternative, module from pygears.typing.qround import get_out_type, get_cut_bits from pygears.typing import Uint, code, Bool, Int, Fixp, Ufixp @datagear def qround(din, *, fract=0, cut_bits=b'get_cut_bits(din, fract)', signed=b'din.signed') -> b'get_out_type(din, fract)': res = code(din, Int if signed else Uint) + (Bool(1) << (cut_bits - 1)) return code(res >> cut_bits, module().tout) # @datagear # def qround_even(din, # *, # fract=0, # cut_bits=b'get_cut_bits(din, fract)', # signed=b'din.signed') -> b'get_out_type(din, fract)': # val_coded = code(din, Int if signed else Uint) # round_bit = val_coded[cut_bits] # res = val_coded + Uint([round_bit] + [~round_bit] * (cut_bits - 1)) # return code(res[cut_bits:]) @gear def truncate(din, *, nbits=2) -> b'din': pass @gear def round_half_up(din, *, nbits=2) -> b'din': pass @gear def round_to_zero(din, *, nbits=2) -> b'din': pass @gear async def round_to_even(din, *, nbits=2) -> b'din': async with din as d: return round(float(d) / (2**nbits)) * (2**nbits)
mne/tests/test_ola.py
rylaw/mne-python
1,953
49761
import numpy as np from numpy.testing import assert_allclose import pytest from mne._ola import _COLA, _Interp2, _Storer def test_interp_2pt(): """Test our two-point interpolator.""" n_pts = 200 assert n_pts % 50 == 0 feeds = [ # test a bunch of feeds to make sure they don't break things [n_pts], [50] * (n_pts // 50), [10] * (n_pts // 10), [5] * (n_pts // 5), [2] * (n_pts // 2), [1] * n_pts, ] # ZOH values = np.array([10, -10]) expected = np.full(n_pts, 10) for feed in feeds: expected[-1] = 10 interp = _Interp2([0, n_pts], values, 'zero') out = np.concatenate([interp.feed(f)[0] for f in feed]) assert_allclose(out, expected) interp = _Interp2([0, n_pts - 1], values, 'zero') expected[-1] = -10 out = np.concatenate([interp.feed(f)[0] for f in feed]) assert_allclose(out, expected) # linear and inputs of different sizes values = [np.arange(2)[:, np.newaxis, np.newaxis], np.array([20, 10])] expected = [ np.linspace(0, 1, n_pts, endpoint=False)[np.newaxis, np.newaxis, :], np.linspace(20, 10, n_pts, endpoint=False)] for feed in feeds: interp = _Interp2([0, n_pts], values, 'linear') outs = [interp.feed(f) for f in feed] outs = [np.concatenate([o[0] for o in outs], axis=-1), np.concatenate([o[1] for o in outs], axis=-1)] assert_allclose(outs[0], expected[0], atol=1e-7) assert_allclose(outs[1], expected[1], atol=1e-7) # cos**2 and more interesting bounds values = np.array([10, -10]) expected = np.full(n_pts, 10.) expected[-5:] = -10 cos = np.cos(np.linspace(0, np.pi / 2., n_pts - 9, endpoint=False)) expected[4:-5] = cos ** 2 * 20 - 10 for feed in feeds: interp = _Interp2([4, n_pts - 5], values, 'cos2') out = np.concatenate([interp.feed(f)[0] for f in feed]) assert_allclose(out, expected, atol=1e-7) out = interp.feed(10)[0] assert_allclose(out, [values[-1]] * 10, atol=1e-7) # hann and broadcasting n_hann = n_pts - 9 expected[4:-5] = np.hanning(2 * n_hann + 1)[n_hann:-1] * 20 - 10 expected = np.array([expected, expected[::-1] * 0.5]) values = np.array([values, values[::-1] * 0.5]).T for feed in feeds: interp = _Interp2([4, n_pts - 5], values, 'hann') out = np.concatenate([interp.feed(f)[0] for f in feed], axis=-1) assert_allclose(out, expected, atol=1e-7) # one control point and None support values = [np.array([10]), None] for start in [0, 50, 99, 100, 1000]: interp = _Interp2([start], values, 'zero') out, none = interp.feed(n_pts) assert none is None expected = np.full(n_pts, 10.) assert_allclose(out, expected) @pytest.mark.parametrize('ndim', (1, 2, 3)) def test_cola(ndim): """Test COLA processing.""" sfreq = 1000. rng = np.random.RandomState(0) def processor(x): return (x / 2.,) # halve the signal for n_total in (999, 1000, 1001): signal = rng.randn(n_total) out = rng.randn(n_total) # shouldn't matter for _ in range(ndim - 1): signal = signal[np.newaxis] out = out[np.newaxis] for n_samples in (99, 100, 101, 102, n_total - n_total // 2 + 1, n_total): for window in ('hann', 'bartlett', 'boxcar', 'triang'): # A few example COLA possibilities n_overlaps = () if window in ('hann', 'bartlett') or n_samples % 2 == 0: n_overlaps += ((n_samples + 1) // 2,) if window == 'boxcar': n_overlaps += (0,) for n_overlap in n_overlaps: # can pass callable or ndarray for storer in (out, _Storer(out)): cola = _COLA(processor, storer, n_total, n_samples, n_overlap, sfreq, window) n_input = 0 # feed data in an annoying way while n_input < n_total: next_len = min(rng.randint(1, 30), n_total - n_input) cola.feed(signal[..., n_input:n_input + next_len]) n_input += next_len assert_allclose(out, signal / 2., atol=1e-7)
tests/test_04_dxf_high_level_structs/test_410_table.py
Gmadges/ezdxf
515
49865
<gh_stars>100-1000 # Copyright (c) 2011-2021, <NAME> # License: MIT License import pytest import ezdxf from ezdxf.tools.test import load_entities from ezdxf.sections.table import Table from ezdxf.lldxf.tagwriter import TagCollector @pytest.fixture(scope="module") def table(): doc = ezdxf.new() return doc.appids def test_table_entry_dxf_type(table): assert table.entry_dxftype == "APPID" def test_ac1009_load_table(): doc = ezdxf.new("R12") entities = list(load_entities(AC1009TABLE, "TABLES")) table = Table(doc, entities[1:-1]) # without SECTION tags and ENDTAB assert len(table) == 10 def test_load_table_with_invalid_table_entry(): """This LAYERS table has an invalid APPID table entry, which should be ignored at the loading stage. """ doc = ezdxf.new("R12") entities = list(load_entities(INVALID_TABLE_ENTRY, "TABLES")) table = Table(doc, entities[1:-1]) # without SECTION tags and ENDTAB assert len(table) == 0 def test_ac1009_write(table): collector = TagCollector(dxfversion="AC1009") table.export_dxf(collector) tags = collector.tags assert tags[0] == (0, "TABLE") assert tags[1] == (2, "APPID") # exporting table entries is tested by associated class tests assert tags[-1] == (0, "ENDTAB") def test_ac1024_load_table(): doc = ezdxf.new("R2010") entities = list(load_entities(AC1024TABLE, "TABLES")) table = Table(doc, entities[1:-1]) # without SECTION tags and ENDTAB assert 10 == len(table) def test_ac1024_write(table): collector = TagCollector(dxfversion="R2004") table.export_dxf(collector) tags = collector.tags assert tags[0] == (0, "TABLE") assert tags[1] == (2, "APPID") # exporting table entries is tested by associated class tests assert tags[-1] == (0, "ENDTAB") def test_get_table_entry(table): entry = table.get("ACAD") assert "ACAD" == entry.dxf.name def test_entry_names_are_case_insensitive(table): entry = table.get("acad") assert "ACAD" == entry.dxf.name def test_duplicate_entry(table): new_entry = table.duplicate_entry("ACAD", "ACAD2018") assert new_entry.dxf.name == "ACAD2018" entry2 = table.get("ACAD2018") assert new_entry.dxf.handle == entry2.dxf.handle new_entry2 = table.duplicate_entry("ACAD2018", "ACAD2019") new_entry.dxf.flags = 71 new_entry2.dxf.flags = 17 # really different entities assert new_entry.dxf.flags == 71 assert new_entry2.dxf.flags == 17 def test_create_vport_table(): doc = ezdxf.new() assert len(doc.viewports) == 1 # standard viewport exists assert "*Active" in doc.viewports # create a multi-viewport configuration # create two entries with same name vp1 = doc.viewports.new("V1") vp2 = doc.viewports.new("V1") assert len(doc.viewports) == 3 # get multi-viewport configuration as list conf = doc.viewports.get_config("V1") assert len(conf) == 2 # check handles vports = [vp1, vp2] assert conf[0] in vports assert conf[1] in vports assert "Test" not in doc.viewports with pytest.raises(ezdxf.DXFTableEntryError): _ = doc.viewports.get_config("test") # delete: ignore not existing configurations with pytest.raises(ezdxf.DXFTableEntryError): doc.viewports.delete_config("test") # delete multi config doc.viewports.delete_config("V1") assert len(doc.viewports) == 1 AC1009TABLE = """0 SECTION 2 TABLES 0 TABLE 2 APPID 70 10 0 APPID 2 ACAD 70 0 0 APPID 2 ACADANNOPO 70 0 0 APPID 2 ACADANNOTATIVE 70 0 0 APPID 2 ACAD_DSTYLE_DIMJAG 70 0 0 APPID 2 ACAD_DSTYLE_DIMTALN 70 0 0 APPID 2 ACAD_MLEADERVER 70 0 0 APPID 2 ACAECLAYERSTANDARD 70 0 0 APPID 2 ACAD_EXEMPT_FROM_CAD_STANDARDS 70 0 0 APPID 2 ACAD_DSTYLE_DIMBREAK 70 0 0 APPID 2 ACAD_PSEXT 70 0 0 ENDTAB 0 ENDSEC """ AC1024TABLE = """ 0 SECTION 2 TABLES 0 TABLE 2 APPID 5 9 330 0 100 AcDbSymbolTable 70 10 0 APPID 5 12 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD 70 0 0 APPID 5 DD 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 AcadAnnoPO 70 0 0 APPID 5 DE 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 AcadAnnotative 70 0 0 APPID 5 DF 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD_DSTYLE_DIMJAG 70 0 0 APPID 5 E0 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD_DSTYLE_DIMTALN 70 0 0 APPID 5 107 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD_MLEADERVER 70 0 0 APPID 5 1B5 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 AcAecLayerStandard 70 0 0 APPID 5 1BA 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD_EXEMPT_FROM_CAD_STANDARDS 70 0 0 APPID 5 237 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD_DSTYLE_DIMBREAK 70 0 0 APPID 5 28E 330 9 100 AcDbSymbolTableRecord 100 AcDbRegAppTableRecord 2 ACAD_PSEXT 70 0 0 ENDTAB 0 ENDSEC """ INVALID_TABLE_ENTRY = """0 SECTION 2 TABLES 0 TABLE 2 LAYERS 70 10 0 APPID 2 ACAD 70 0 0 ENDTAB 0 ENDSEC """
applications/TrilinosApplication/tests/test_trilinos_matrix.py
lkusch/Kratos
778
49873
import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics import KratosMultiphysics.TrilinosApplication as KratosTrilinos class TestTrilinosMatrix(KratosUnittest.TestCase): def test_resize(self): comm = KratosTrilinos.CreateEpetraCommunicator(KratosMultiphysics.DataCommunicator.GetDefault()) space = KratosTrilinos.TrilinosSparseSpace() pb = space.CreateEmptyVectorPointer(comm) space.ResizeVector(pb,2) n = space.Size(pb.GetReference()) self.assertEqual(n,2) if __name__ == '__main__': KratosUnittest.main()
cupy_alias/indexing/__init__.py
fixstars/clpy
142
49890
<filename>cupy_alias/indexing/__init__.py<gh_stars>100-1000 from clpy.indexing import * # NOQA
src/ostorlab/agent/message/proto/v3/asset/ip/v4/geolocation/geolocation_pb2.py
bbhunter/ostorlab
113
49896
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: v3/asset/ip/v4/geolocation/geolocation.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='v3/asset/ip/v4/geolocation/geolocation.proto', package='v3.asset.ip.v4.geolocation', syntax='proto2', serialized_options=None, serialized_pb=_b('\n,v3/asset/ip/v4/geolocation/geolocation.proto\x12\x1av3.asset.ip.v4.geolocation\"\x94\x02\n\x07Message\x12\x0c\n\x04host\x18\x01 \x02(\t\x12\x0c\n\x04mask\x18\x02 \x01(\t\x12\x12\n\x07version\x18\x03 \x02(\x05:\x01\x34\x12\x11\n\tcontinent\x18\x05 \x01(\t\x12\x16\n\x0e\x63ontinent_code\x18\x06 \x01(\t\x12\x0f\n\x07\x63ountry\x18\x07 \x01(\t\x12\x14\n\x0c\x63ountry_code\x18\x08 \x01(\t\x12\x0e\n\x06region\x18\t \x01(\t\x12\x13\n\x0bregion_name\x18\n \x01(\t\x12\x0c\n\x04\x63ity\x18\x0b \x01(\t\x12\x0b\n\x03zip\x18\x0c \x01(\t\x12\x10\n\x08latitude\x18\r \x01(\x02\x12\x11\n\tlongitude\x18\x0e \x01(\x02\x12\x10\n\x08timezone\x18\x0f \x01(\t\x12\x10\n\x08\x64istrict\x18\x10 \x01(\t') ) _MESSAGE = _descriptor.Descriptor( name='Message', full_name='v3.asset.ip.v4.geolocation.Message', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='host', full_name='v3.asset.ip.v4.geolocation.Message.host', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mask', full_name='v3.asset.ip.v4.geolocation.Message.mask', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='v3.asset.ip.v4.geolocation.Message.version', index=2, number=3, type=5, cpp_type=1, label=2, has_default_value=True, default_value=4, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='continent', full_name='v3.asset.ip.v4.geolocation.Message.continent', index=3, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='continent_code', full_name='v3.asset.ip.v4.geolocation.Message.continent_code', index=4, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='country', full_name='v3.asset.ip.v4.geolocation.Message.country', index=5, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='country_code', full_name='v3.asset.ip.v4.geolocation.Message.country_code', index=6, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='region', full_name='v3.asset.ip.v4.geolocation.Message.region', index=7, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='region_name', full_name='v3.asset.ip.v4.geolocation.Message.region_name', index=8, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='city', full_name='v3.asset.ip.v4.geolocation.Message.city', index=9, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='zip', full_name='v3.asset.ip.v4.geolocation.Message.zip', index=10, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='latitude', full_name='v3.asset.ip.v4.geolocation.Message.latitude', index=11, number=13, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='longitude', full_name='v3.asset.ip.v4.geolocation.Message.longitude', index=12, number=14, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='timezone', full_name='v3.asset.ip.v4.geolocation.Message.timezone', index=13, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='district', full_name='v3.asset.ip.v4.geolocation.Message.district', index=14, number=16, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=77, serialized_end=353, ) DESCRIPTOR.message_types_by_name['Message'] = _MESSAGE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Message = _reflection.GeneratedProtocolMessageType('Message', (_message.Message,), dict( DESCRIPTOR = _MESSAGE, __module__ = 'v3.asset.ip.v4.geolocation.geolocation_pb2' # @@protoc_insertion_point(class_scope:v3.asset.ip.v4.geolocation.Message) )) _sym_db.RegisterMessage(Message) # @@protoc_insertion_point(module_scope)
misc/main.py
vishalbelsare/interpolation.py
110
49925
if True: import numpy as np d = 3 K = 50 N = 10 ** 6 a = np.zeros(3) b = np.ones(3) orders = np.array([K for i in range(d)]) coeffs = np.random.random([k + 2 for k in orders]) points = np.random.random((N, d)) # each line is a vector points_c = points.T.copy() # each column is a vector vals = np.zeros(N) print(points.max().max()) print(points.min().min()) import time from alternative_implementations import * from eval_cubic_splines_cython import vec_eval_cubic_spline_3 as rr vec_eval_cubic_spline_3(a, b, orders, coeffs, points, vals) # warmup vec_eval_cubic_spline_3_inlined(a, b, orders, coeffs, points, vals) # warmup vec_eval_cubic_spline_3_inlined_columns( a, b, orders, coeffs, points_c, vals ) # warmup vec_eval_cubic_spline_3_kernel(a, b, orders, coeffs, points, vals) # warmup vec_eval_cubic_spline_3_inlined_lesswork(orders, coeffs, points, vals, Ad, dAd) # rr(a,b,orders,coeffs,points,vals,Ad,dAd) rr(a, b, orders, coeffs, points, vals) t1 = time.time() vec_eval_cubic_spline_3(a, b, orders, coeffs, points, vals) t2 = time.time() vec_eval_cubic_spline_3_inlined(a, b, orders, coeffs, points, vals) t3 = time.time() vec_eval_cubic_spline_3_inlined_columns(a, b, orders, coeffs, points_c, vals) t4 = time.time() vec_eval_cubic_spline_3_kernel(a, b, orders, coeffs, points, vals) t5 = time.time() vec_eval_cubic_spline_3_inlined_lesswork(orders, coeffs, points, vals, Ad, dAd) t6 = time.time() # rr(a,b,orders,coeffs,points,vals,Ad,dAd) rr(a, b, orders, coeffs, points, vals) t7 = time.time() print("one function call per point: {}".format(t2 - t1)) print("inlined (points in rows): {}".format(t3 - t2)) print("inlined (points in columns): {}".format(t4 - t3)) print("kernel: {}".format(t5 - t4)) print("less work: {}".format(t6 - t5)) print("cython: {}".format(t7 - t6)) print(vals[:10, 0])
authentication/admin.py
nicbou/markdown-notes
121
49931
<filename>authentication/admin.py from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User UserAdmin.list_display = ('username', 'email', 'first_name', 'last_name', 'is_active', 'date_joined') admin.site.unregister(User) admin.site.register(User, UserAdmin)
coilutils/__init__.py
rehohoho/coiltraine
204
49942
<reponame>rehohoho/coiltraine<gh_stars>100-1000 from .attribute_dict import AttributeDict #from .experiment_schedule import mount_experiment_heap, get_free_gpus, pop_half_gpu, pop_one_gpu
CalibPPS/ESProducers/python/ctppsRPAlignmentCorrectionsDataESSourceXML_cfi.py
ckamtsikis/cmssw
852
49971
import FWCore.ParameterSet.Config as cms ctppsRPAlignmentCorrectionsDataESSourceXML = cms.ESSource("CTPPSRPAlignmentCorrectionsDataESSourceXML", verbosity = cms.untracked.uint32(0), MeasuredFiles = cms.vstring(), RealFiles = cms.vstring(), MisalignedFiles = cms.vstring() )
PG/5-TNPG/model.py
g6ling/Pytorch-Cartpole
116
49972
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from config import gamma, lr def flat_grad(grads): grad_flatten = [] for grad in grads: grad_flatten.append(grad.view(-1)) grad_flatten = torch.cat(grad_flatten) return grad_flatten def flat_hessian(hessians): hessians_flatten = [] for hessian in hessians: hessians_flatten.append(hessian.contiguous().view(-1)) hessians_flatten = torch.cat(hessians_flatten).data return hessians_flatten def flat_params(model): params = [] for param in model.parameters(): params.append(param.data.view(-1)) params_flatten = torch.cat(params) return params_flatten def update_model(model, new_params): index = 0 for params in model.parameters(): params_length = len(params.view(-1)) new_param = new_params[index: index + params_length] new_param = new_param.view(params.size()) params.data.copy_(new_param) index += params_length def kl_divergence(net, old_net, states): policy = net(states) old_policy = old_net(states).detach() kl = old_policy * torch.log(old_policy / policy) kl = kl.sum(1, keepdim=True) return kl def fisher_vector_product(net, states, p, cg_damp=0.1): kl = kl_divergence(net, net, states) kl = kl.mean() kl_grad = torch.autograd.grad(kl, net.parameters(), create_graph=True) # create_graph is True if we need higher order derivative products kl_grad = flat_grad(kl_grad) kl_grad_p = (kl_grad * p.detach()).sum() kl_hessian_p = torch.autograd.grad(kl_grad_p, net.parameters()) kl_hessian_p = flat_hessian(kl_hessian_p) return kl_hessian_p + cg_damp * p.detach() def conjugate_gradient(net, states, loss_grad, n_step=10, residual_tol=1e-10): x = torch.zeros(loss_grad.size()) r = loss_grad.clone() p = loss_grad.clone() r_dot_r = torch.dot(r, r) for i in range(n_step): A_dot_p = fisher_vector_product(net, states, p) alpha = r_dot_r / torch.dot(p, A_dot_p) x += alpha * p r -= alpha * A_dot_p new_r_dot_r = torch.dot(r,r) betta = new_r_dot_r / r_dot_r p = r + betta * p r_dot_r = new_r_dot_r if r_dot_r < residual_tol: break return x class TNPG(nn.Module): def __init__(self, num_inputs, num_outputs): super(TNPG, self).__init__() self.t = 0 self.num_inputs = num_inputs self.num_outputs = num_outputs self.fc_1 = nn.Linear(num_inputs, 128) self.fc_2 = nn.Linear(128, num_outputs) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform(m.weight) def forward(self, input): x = torch.tanh(self.fc_1(input)) policy = F.softmax(self.fc_2(x)) return policy @classmethod def train_model(cls, net, transitions): states, actions, rewards, masks = transitions.state, transitions.action, transitions.reward, transitions.mask states = torch.stack(states) actions = torch.stack(actions) rewards = torch.Tensor(rewards) masks = torch.Tensor(masks) returns = torch.zeros_like(rewards) running_return = 0 for t in reversed(range(len(rewards))): running_return = rewards[t] + gamma * running_return * masks[t] returns[t] = running_return policies = net(states) policies = policies.view(-1, net.num_outputs) policy_actions = (policies * actions.detach()).sum(dim=1) loss = (policy_actions * returns).mean() loss_grad = torch.autograd.grad(loss, net.parameters()) loss_grad = flat_grad(loss_grad) step_dir = conjugate_gradient(net, states, loss_grad.data) params = flat_params(net) new_params = params + lr * step_dir update_model(net, new_params) return -loss def get_action(self, input): policy = self.forward(input) policy = policy[0].data.numpy() action = np.random.choice(self.num_outputs, 1, p=policy)[0] return action
Competitive_Programming/Stepping_stones_3.py
varshakancham/Data_Structure_n_Algorithms
125
49974
""" Vasu is running up a stone staircase with N stones, and can hop(jump) either 1 step, 2 steps or 3 steps at a time. You have to count, how many possible ways Vasu can run up to the stone stairs. Input Format: Input contains integer N that is number of steps Constraints: 1<= N <=30 Output Format: Output for each integer N the no of possible ways w. """ def hop(N) : if (N == 1 or N == 0) : return 1 elif (N == 2) : return 2 else : return hop(N - 3) + hop(N - 2) + hop(N - 1) N = int(input()) print(hop(N))
cupy_alias/padding/__init__.py
fixstars/clpy
142
49979
<gh_stars>100-1000 from clpy.padding import * # NOQA
lightly/active_learning/scorers/__init__.py
CodeGuy-007/lightly
1,515
49990
""" Collection of Active Learning Scorers """ # Copyright (c) 2020. Lightly AG and its affiliates. # All Rights Reserved from lightly.active_learning.scorers.scorer import Scorer from lightly.active_learning.scorers.classification import ScorerClassification from lightly.active_learning.scorers.detection import ScorerObjectDetection from lightly.active_learning.scorers.semantic_segmentation import ScorerSemanticSegmentation
graph_based_slam/launch/graphbasedslam.launch.py
edhml/lidarslam_ros2
130
50004
import os import launch import launch_ros.actions from ament_index_python.packages import get_package_share_directory def generate_launch_description(): graphbasedslam_param_dir = launch.substitutions.LaunchConfiguration( 'graphbasedslam_param_dir', default=os.path.join( get_package_share_directory('graph_based_slam'), 'param', 'graphbasedslam.yaml')) graphbasedslam = launch_ros.actions.Node( package='graph_based_slam', executable='graph_based_slam_node', parameters=[graphbasedslam_param_dir], output='screen' ) return launch.LaunchDescription([ launch.actions.DeclareLaunchArgument( 'graphbasedslam_param_dir', default_value=graphbasedslam_param_dir, description='Full path to graphbasedslam parameter file to load'), graphbasedslam, ])
tests/nonrealtime/test_nonrealtime_Session_duration.py
butayama/supriya
191
50029
import supriya.nonrealtime def test_01(): session = supriya.nonrealtime.Session() assert session.offsets == [float("-inf"), 0.0] assert session.duration == 0.0 def test_02(): session = supriya.nonrealtime.Session() with session.at(0): session.add_group() assert session.offsets == [float("-inf"), 0.0, float("inf")] assert session.duration == 0.0 def test_03(): session = supriya.nonrealtime.Session() with session.at(23.5): session.add_group() assert session.offsets == [float("-inf"), 0.0, 23.5, float("inf")] assert session.duration == 23.5 def test_04(): session = supriya.nonrealtime.Session() with session.at(23.5): session.add_group(duration=1.0) assert session.offsets == [float("-inf"), 0.0, 23.5, 24.5] assert session.duration == 24.5 def test_05(): session = supriya.nonrealtime.Session() with session.at(0): session.add_group() with session.at(23.5): session.add_group(duration=1.0) assert session.offsets == [float("-inf"), 0.0, 23.5, 24.5, float("inf")] assert session.duration == 24.5 def test_06(): session = supriya.nonrealtime.Session(padding=11.0) assert session.offsets == [float("-inf"), 0.0] assert session.duration == 0.0 def test_07(): session = supriya.nonrealtime.Session(padding=11.0) with session.at(0): session.add_group() assert session.offsets == [float("-inf"), 0.0, float("inf")] assert session.duration == 0.0 def test_08(): session = supriya.nonrealtime.Session(padding=11.0) with session.at(23.5): session.add_group() assert session.offsets == [float("-inf"), 0.0, 23.5, float("inf")] assert session.duration == 34.5 def test_09(): session = supriya.nonrealtime.Session(padding=11.0) with session.at(23.5): session.add_group(duration=1.0) assert session.offsets == [float("-inf"), 0.0, 23.5, 24.5] assert session.duration == 35.5 def test_10(): session = supriya.nonrealtime.Session(padding=11.0) with session.at(0): session.add_group() with session.at(23.5): session.add_group(duration=1.0) assert session.offsets == [float("-inf"), 0.0, 23.5, 24.5, float("inf")] assert session.duration == 35.5
tensorflow_toolkit/action_detection/tools/models/export.py
morkovka1337/openvino_training_extensions
256
50046
#!/usr/bin/env python2 # # Copyright (C) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. from os import makedirs from os.path import exists, basename, join from argparse import ArgumentParser from action_detection.nn.monitors.factory import get_monitor BASE_FILE_NAME = 'converted_model' CKPT_FILE_NAME = '{}.ckpt'.format(BASE_FILE_NAME) PB_FILE_NAME = '{}.pbtxt'.format(BASE_FILE_NAME) FROZEN_FILE_NAME = 'frozen.pb' def main(): """Carry out model preparation for the export. """ parser = ArgumentParser() parser.add_argument('--config', '-c', type=str, required=True, help='Path to config file') parser.add_argument('--snapshot_path', '-s', type=str, required=True, default='', help='Path to model snapshot') parser.add_argument('--output_dir', '-o', type=str, required=True, default='', help='Path to output directory') args = parser.parse_args() assert exists(args.config) assert exists(args.snapshot_path + '.index') if not exists(args.output_dir): makedirs(args.output_dir) task_monitor = get_monitor(args.config, snapshot_path=args.snapshot_path) converted_snapshot_path = join(args.output_dir, CKPT_FILE_NAME) task_monitor.eliminate_train_ops(converted_snapshot_path) converted_model_path = '{}-{}'.format(converted_snapshot_path, int(basename(args.snapshot_path).split('-')[-1])) task_monitor.save_model_graph(converted_model_path, args.output_dir) task_monitor.freeze_model_graph(converted_model_path, join(args.output_dir, PB_FILE_NAME), join(args.output_dir, FROZEN_FILE_NAME)) if __name__ == '__main__': main()
ambari-common/src/main/python/ambari_commons/buffered_queue.py
likenamehaojie/Apache-Ambari-ZH
1,664
50084
<reponame>likenamehaojie/Apache-Ambari-ZH<gh_stars>1000+ """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from collections import deque from threading import Event class BufferedQueue(object): """ Thread safe buffered queue """ def __init__(self): self.__queue = deque() self.__data_ready_event = Event() self.__queue_end = False # sign that buffer is empty self.__queue_feeder_end = False # EOF sign def __notify_ready(self): """ Notify reader that data is ready to be consumed """ self.__queue_end = False self.__data_ready_event.set() def notify_end(self): """ Notify queue about end of producer stream, allow consumer to read buffer to the end """ self.__queue_feeder_end = True self.__notify_ready() def put(self, item): """ Add object to the buffer """ if self.__queue_feeder_end: raise IndexError("'notify_end' was called, queue is locked for writing") self.__queue.append(item) self.__notify_ready() def get(self, timeout=None): """ Read data from buffer at least in `timeout` seconds. If no data ready in `timeout`, would be returned None. :param timeout: amount of time to wait for data availability :return: data or None if no data were read in `timeout` or no more data available (buffer is empty) """ try: if not self.__queue_feeder_end: self.__data_ready_event.wait(timeout) return self.__queue.popleft() except IndexError: if timeout: return None self.__queue_end = True finally: if self.count == 0: self.__data_ready_event.clear() if self.__queue_feeder_end: self.__queue_end = True def reset(self): """ Clear instance state and data """ self.__data_ready_event.clear() self.__queue.clear() self.__queue_feeder_end = False self.__queue_end = False @property def empty(self): if self.__queue_feeder_end and self.count == 0: return True return self.__queue_end @property def count(self): return len(self.__queue)
html_parsing/https_www_stoloto_ru_4x20_archive__parse_all_loto.py
DazEB2/SimplePyScripts
117
50100
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from urllib.parse import urljoin import requests from bs4 import BeautifulSoup import csv def get_number(text: str) -> int: return int(''.join(c for c in text.strip() if c.isdigit())) first = 1 last = 50 step = 50 result = [] while True: url = f'https://www.stoloto.ru/4x20/archive?firstDraw={first}&lastDraw={last}&mode=draw' print(f'first={first}, last={last}: {url}') rs = requests.get(url) root = BeautifulSoup(rs.content, 'html.parser') rows = root.select('.drawings_data .elem > .main') # Если пустое, значит достигли конца if not rows: break # Чтобы был порядок от меньшего к большему rows.reverse() for row in rows: date_time_str = row.select_one('.draw_date').text.strip() a = row.select_one('.draw > a') abs_url = urljoin(url, a['href']) number = get_number(a.text) numbers = ' '.join(x.text.strip() for x in row.select('.numbers .numbers_wrapper b')) prize = get_number(row.select_one('.prize').text) item = [number, date_time_str, numbers, prize, abs_url] result.append(item) print(item) first += step last += step print() print(len(result), result) # Наибольшая сумма приза print(max(result, key=lambda x: x[3])) # Наименьшая сумма приза print(min(result, key=lambda x: x[3])) print() with open('all_lotto.csv', 'w', encoding='utf-8', newline='') as f: file = csv.writer(f) file.writerows(result)
examples/garbage.py
cyberbeast/pympler
862
50103
<filename>examples/garbage.py from pympler.garbagegraph import start_debug_garbage from pympler import web class Leaf(object): pass class Branch(object): def __init__(self, root): self.root = root self.leaf = Leaf() class Root(object): def __init__(self, num_branches): self.branches = [Branch(self) for _ in range(num_branches)] start_debug_garbage() tree = Root(2) del tree web.start_profiler(debug=True)
ner/ner_silver_to_gold.py
svlandeg/prodigy-recipes
312
50117
<gh_stars>100-1000 import prodigy from prodigy.models.ner import EntityRecognizer from prodigy.components.preprocess import add_tokens from prodigy.components.db import connect from prodigy.util import split_string import spacy from typing import List, Optional # Recipe decorator with argument annotations: (description, argument type, # shortcut, type / converter function called on value before it's passed to # the function). Descriptions are also shown when typing --help. @prodigy.recipe( "ner.silver-to-gold", silver_dataset=("Dataset with binary annotations", "positional", None, str), gold_dataset=("Name of dataset to save new annotations", "positional", None, str), spacy_model=("The base model", "positional", None, str), label=("One or more comma-separated labels", "option", "l", split_string), ) def ner_silver_to_gold( silver_dataset: str, gold_dataset: str, spacy_model: str, label: Optional[List[str]] = None, ): """ Take an existing "silver" dataset with binary accept/reject annotations, merge the annotations to find the best possible analysis given the constraints defined in the annotations, and manually edit it to create a perfect and complete "gold" dataset. """ # Connect to the database using the settings from prodigy.json, check # that the silver dataset exists and load it DB = connect() if silver_dataset not in DB: raise ValueError("Can't find dataset '{}'.".format(silver_dataset)) silver_data = DB.get_dataset(silver_dataset) # Load the spaCy model nlp = spacy.load(spacy_model) if label is None: # Get the labels from the model by looking at the available moves, e.g. # B-PERSON, I-PERSON, L-PERSON, U-PERSON ner = nlp.get_pipe("ner") label = sorted(ner.labels) # Initialize Prodigy's entity recognizer model, which uses beam search to # find all possible analyses and outputs (score, example) tuples model = EntityRecognizer(nlp, label=label) # Merge all annotations and find the best possible analyses stream = model.make_best(silver_data) # Tokenize the incoming examples and add a "tokens" property to each # example. Also handles pre-defined selected spans. Tokenization allows # faster highlighting, because the selection can "snap" to token boundaries. stream = add_tokens(nlp, stream) return { "view_id": "ner_manual", # Annotation interface to use "dataset": gold_dataset, # Name of dataset to save annotations "stream": stream, # Incoming stream of examples "config": { # Additional config settings, mostly for app UI "lang": nlp.lang, "labels": label, # Selectable label options }, }
tests/test_ping.py
naujoh/TorMySQL
340
50121
<reponame>naujoh/TorMySQL<filename>tests/test_ping.py #!/usr/bin/env python # encoding: utf-8 import uuid from tornado.testing import gen_test from . import BaseTestCase class TestPing(BaseTestCase): @gen_test def test1(self): with (yield self.pool.Connection()) as connection: yield connection.ping()
effdet/config/train_config.py
phager90/efficientdet-pytorch
1,386
50131
from omegaconf import OmegaConf def default_detection_train_config(): # FIXME currently using args for train config, will revisit, perhaps move to Hydra h = OmegaConf.create() # dataset h.skip_crowd_during_training = True # augmentation h.input_rand_hflip = True h.train_scale_min = 0.1 h.train_scale_max = 2.0 h.autoaugment_policy = None # optimization h.momentum = 0.9 h.learning_rate = 0.08 h.lr_warmup_init = 0.008 h.lr_warmup_epoch = 1.0 h.first_lr_drop_epoch = 200.0 h.second_lr_drop_epoch = 250.0 h.clip_gradients_norm = 10.0 h.num_epochs = 300 # regularization l2 loss. h.weight_decay = 4e-5 h.lr_decay_method = 'cosine' h.moving_average_decay = 0.9998 h.ckpt_var_scope = None return h
scripts/BuildTimes.py
grassofsky/llfio
356
50153
#!/usr/bin/python3 # Calculate boost.afio build times under various configs # (C) 2015 <NAME> # Created: 12th March 2015 #[ [`--link-test --fast-build debug`][][[footnote ASIO has a link error without `link=static`]][fails]] #[ [`--link-test debug`][][][]] #[ [`--link-test --lto debug`][[]][][]] #[ [`--link-test pch=off debug`][][][]] #[[`--link-test --fast-build release`][][[footnote ASIO has a link error without `link=static`]][fails]] #[ [`--link-test release`][][][]] #[ [`--link-test --lto release`][][][]] import os, sys, subprocess, time, shutil, platform if len(sys.argv)<2: print("Usage: "+sys.argv[0]+" <toolset>", file=sys.stderr) sys.exit(1) if not os.path.exists("b2") and not os.path.exists("b2.exe"): print("ERROR: Need to run me from boost root directory please", file=sys.stderr) print(os.getcwd()) shutil.rmtree("bin.v2", True) onWindows="Windows" in platform.system() configs=[ ["--c++14 --link-test --fast-build debug", None], ["--c++14 --link-test debug", None], ["--c++14 --link-test --lto debug", None], ["--c++14 --link-test pch=off debug", None], ["--c++14 --link-test --fast-build release", None], ["--c++14 --link-test release", None], ["--c++14 --link-test --lto release", None], ["standalone_singleabi", None], ["standalone_multiabi", None] ] for config in configs: print("\n\nConfig: "+config[0]) if config[0]=="standalone_singleabi" or config[0]=="standalone_multiabi": if onWindows: test_all="test_all.exe" tocall="alltests_msvc.bat" if "msvc" in sys.argv[1] else "alltests_gcc.bat" else: test_all="test_all" tocall="alltests_gcc.sh" if config[0]=="standalone_singleabi": tocall="standalone_"+tocall else: tocall="multiabi_"+tocall basedir=os.getcwd() env=dict(os.environ) if not onWindows: tocall="./"+tocall env['CXX']=sys.argv[1] env['CXX']=env['CXX'].replace('gcc', 'g++') env['CXX']=env['CXX'].replace('clang', 'clang++') try: os.chdir("libs/afio") shutil.rmtree(test_all, True) if subprocess.call(tocall, env=env, shell=True): config[1]="FAILED" continue shutil.rmtree(test_all, True) print("\n\nStarting benchmark ...") begin=time.perf_counter() subprocess.call(tocall, env=env, shell=True) end=time.perf_counter() finally: os.chdir(basedir) else: shutil.rmtree("bin.v2/libs/afio", True) if subprocess.call([os.path.abspath("b2"), "toolset="+sys.argv[1], "libs/afio/test", "-j", "8"]+config[0].split(" ")): config[1]="FAILED" continue shutil.rmtree("bin.v2/libs/afio", True) print("\n\nStarting benchmark ...") begin=time.perf_counter() subprocess.call([os.path.abspath("b2"), "toolset="+sys.argv[1], "libs/afio/test"]+config[0].split(" ")) end=time.perf_counter() mins=int((end-begin)/60) secs=int((end-begin)%60); config[1]="%dm%ss" % (mins, secs) print("Config %s took %dm%ss" % (config[0], mins, secs)) print("\n\n") for config in configs: print(config)
psiPerGene.py
CDZBIOSTU/SUPPA
176
50183
<filename>psiPerGene.py # -*- coding: utf-8 -*- """ Created on Fri May 23 10:17:33 2014 @author: <NAME> @email: <EMAIL> """ import sys import logging from argparse import ArgumentParser, RawTextHelpFormatter from lib.tools import * from lib.gtf_store import * description = \ "Description:\n\n" + \ "This tool calculates the PSI (Percentatge Splice In) for the different\n" + \ "transcripts of a gene.\n" + \ "It reads a gtf to get transcript-gene relationship and an expression file\n" + \ "of the different transcripts\n" parser = ArgumentParser(description=description, formatter_class=RawTextHelpFormatter, add_help=False) parser.add_argument("-g", "--gtf-file", help="Input gtf file", required=True) parser.add_argument("-e", "--expression-file", required=True, help="Input expression file") parser.add_argument("-o", "--output-file", required=True, help="Path and name of the ouput file") parser.add_argument("-m", "--mode", default="INFO", help="to choose from DEBUG, INFO, WARNING, ERROR and CRITICAL") def expression_reader(exp_file): """ Reads in expression file and returns dict of transcript expressions and first line. """ if not os.path.isfile(exp_file): sys.stderr.write("Expression file does not exist. Quiting\n") exit(1) expressions = {} with open(exp_file, 'r') as handle: first_line = nextel(handle).strip() for line in handle: line = line.strip().split('\t') expressions[line[0]] = [float(xp) for xp in line[1:]] return expressions, first_line def expression_writer(genomeinfo, expressions, firstline, output_file): """ Function to write perIsoform inclusion """ output_file += '_isoform.psi' entriesnumber = len(expressions[nextel(expressions.__iter__())]) with open(output_file, 'w') as handle: handle.write(firstline + '\n') for gene, _, _ in genomeinfo: expr_sum = [0 for _ in range(entriesnumber)] # collect expression for transcript in gene.sortedTranscripts: if transcript not in expressions: logger.info(('Expression for transcript "{}" not found. ' 'Ignoring it in calculation.').format(transcript)) else: expr_sum = list(map(lambda exp_pair: exp_pair[0] + exp_pair[1], zip(expr_sum, expressions[transcript]))) # calculate expression if 0 in expr_sum: logger.debug('Gene "{}" has at least one replicate with 0 expression.'.format(gene.name)) expr_sum = [y if y else float('NaN') for y in expr_sum] for transcript in gene.sortedTranscripts: if transcript not in expressions: continue t_exp = map(lambda exp_pair: exp_pair[1] / exp_pair[0], zip(expr_sum, expressions[transcript])) handle.write('{};{}\t{}\n'.format(gene.name, transcript, '\t'.join([str(exp_val) for exp_val in t_exp]))) def main(): args = parser.parse_args() #Parsing arguments mode = "logging." + args.mode #Setting logging preferences logger = logging.getLogger(__name__) logger.setLevel(eval(mode)) #Setting the level of the loggers in lib setToolsLoggerLevel(mode) #PREPAIRING GTF my_genome = Genome() logger.info("Reading GTF data.") fetched_exons = gtf_reader(args.gtf_file, logger) # Check for empy sequences if len(fetched_exons) == 0: logger.info("No exons found. Check format and content of your GTF file.") exit(1) for exon_meta in fetched_exons: my_genome.add_to_genes(exon_meta) # split non overlapping genes my_genome.sort_transcripts() my_genome.split_genes() logger.info("Reading Expression data.") trans_expres, sample_names = expression_reader(args.expression_file) if not trans_expres: logger.info("No expressions found. Check format and content of your expression file.") exit(1) # Calculate and write output logger.info("Calculating inclusion and generating output.") expression_writer(my_genome, trans_expres, sample_names, args.output_file) if __name__ == '__main__': main()
tests/urls.py
nkantar/django-distill
138
50196
from django.conf import settings from django.http import HttpResponse from django.urls import include, path from django.contrib.flatpages.views import flatpage as flatpage_view from django.apps import apps as django_apps from django_distill import distill_url, distill_path, distill_re_path def test_no_param_view(request): return HttpResponse(b'test', content_type='application/octet-stream') def test_positional_param_view(request, param): return HttpResponse(b'test' + param.encode(), content_type='application/octet-stream') def test_named_param_view(request, param=None): return HttpResponse(b'test' + param.encode(), content_type='application/octet-stream') def test_session_view(request): request.session['test'] = 'test' return HttpResponse(b'test', content_type='application/octet-stream') def test_broken_view(request): # Trigger a normal Python exception when rendering a = 1 / 0 def test_http404_view(request): response = HttpResponse(b'404', content_type='application/octet-stream') response.status_code = 404 return response def test_no_param_func(): return None def test_positional_param_func(): return ('12345',) def test_named_param_func(): return [{'param': 'test'}] def test_flatpages_func(): Site = django_apps.get_model('sites.Site') current_site = Site.objects.get_current() flatpages = current_site.flatpage_set.filter(registration_required=False) for flatpage in flatpages: yield {'url': flatpage.url} urlpatterns = [ distill_url(r'^url/$', test_no_param_view, name='url-no-param', distill_func=test_no_param_func, distill_file='test'), distill_url(r'^url-no-func/$', test_no_param_view, name='url-no-param-no-func', distill_file='test'), distill_url(r'^url/([\d]+)$', test_positional_param_view, name='url-positional-param', distill_func=test_positional_param_func), distill_url(r'^url/(?P<param>[\w]+)$', test_named_param_view, name='url-named-param', distill_func=test_named_param_func), path('path/namespace1/', include('tests.namespaced_urls', namespace='test_namespace')), path('path/no-namespace/', include('tests.no_namespaced_urls')), ] if settings.HAS_RE_PATH: urlpatterns += [ distill_re_path(r'^re_path/$', test_no_param_view, name='re_path-no-param', distill_func=test_no_param_func, distill_file='test'), distill_re_path(r'^re_path-no-func/$', test_no_param_view, name='re_path-no-param-no-func', distill_file='test'), distill_re_path(r'^re_path/([\d]+)$', test_positional_param_view, name='re_path-positional-param', distill_func=test_positional_param_func), distill_re_path(r'^re_path/(?P<param>[\w]+)$', test_named_param_view, name='re_path-named-param', distill_func=test_named_param_func), distill_re_path(r'^re_path/broken$', test_broken_view, name='re_path-broken', distill_func=test_no_param_func), distill_re_path(r'^re_path/ignore-sessions$', test_session_view, name='re_path-ignore-sessions', distill_func=test_no_param_func), distill_re_path(r'^re_path/404$', test_http404_view, name='re_path-404', distill_status_codes=(404,), distill_func=test_no_param_func), distill_re_path(r'^re_path/flatpage(?P<url>.+)$', flatpage_view, name='re_path-flatpage', distill_func=test_flatpages_func), ] if settings.HAS_PATH: urlpatterns += [ distill_path('path/', test_no_param_view, name='path-no-param', distill_func=test_no_param_func, distill_file='test'), distill_path('path-no-func/', test_no_param_view, name='path-no-param-no-func', distill_file='test'), distill_path('path/<int>', test_positional_param_view, name='path-positional-param', distill_func=test_positional_param_func), distill_path('path/<str:param>', test_named_param_view, name='path-named-param', distill_func=test_named_param_func), distill_path('path/broken', test_broken_view, name='path-broken', distill_func=test_no_param_func), distill_path('path/ignore-sessions', test_session_view, name='path-ignore-sessions', distill_func=test_no_param_func), distill_path('path/404', test_http404_view, name='path-404', distill_status_codes=(404,), distill_func=test_no_param_func), distill_path('path/flatpage<path:url>', flatpage_view, name='path-flatpage', distill_func=test_flatpages_func), ]
step32_elastic_file_storage/efs-with-lambda/Python/lambda/msg.py
fullstackwebdev/full-stack-serverless-cdk
192
50231
<filename>step32_elastic_file_storage/efs-with-lambda/Python/lambda/msg.py from __future__ import print_function import logging import os import json msg_file_path = '/mnt/msg/content' def handler(event, context): # request = event['requestContext'] # http = request['http'] method = event['requestContext']['http']['method'] if method == 'GET': return getMessages() elif method == 'POST': message = json.loads(event['body']) return createMessages(message) elif method == 'DELETE': return deleteMessages() else: return {'message': 'method not supported'} def getMessages(): try: file = open(msg_file_path, 'r') file_text = file.read() return {'File_Text': file_text} except: logging.error('unable to read') return {'message': 'unable to load information'} def deleteMessages(): try: os.remove(msg_file_path) return {'message': 'File Deleted'} except: logging.error('unable to delete') return {'message': 'unable to load information'} def createMessages(message): try: file = open(msg_file_path, 'a') file.write(message) return {'appended_text': message} except: logging.error('unable to write to the file') return {'message': 'unable to load information'}
src/skiptracer/plugins/who_call_id/__init__.py
EdwardDantes/skiptracer
912
50278
"""Whocallid.com search module""" from __future__ import print_function from __future__ import absolute_import from ..base import PageGrabber from ...colors.default_colors import DefaultBodyColors as bc import re import logging try: import __builtin__ as bi except BaseException: import builtins as bi class WhoCallIdGrabber(PageGrabber): """ WhoCallID sales scraper for reverse telephone lookups """ def get_name(self): """ Grab the users name """ name = "Unknown" try: name = self.soup.find('h2', attrs={'class': 'name'}) if name: name = name.text.strip() print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "Name: " + bc.CEND + str(name)) except BaseException: pass finally: return name def get_location(self): """ Get the location """ location = "Unknown" try: location = self.soup.find('h3', attrs={'class': 'location'}) if location: location = location.text.strip() print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "Location: " + bc.CEND + str(location)) except BaseException: pass finally: return location def get_phone_type(self): """ Get the phone type """ phone_type = "Unknown" try: phone_type = self.soup.find("img").attrs['alt'] if phone_type: phone_type = phone_type.strip() print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "Phone Type: " + bc.CEND + str(phone_type)) except BaseException: pass finally: return phone_type def get_carrier(self, phone_number): """ Get the phone carrier info """ carrier = "" try: self.url = "https://whocalld.com/+1{}?carrier".format(phone_number) self.source = self.get_source(self.url) self.soup = self.get_dom(self.source) carrier = soup.find('span', attrs={'class': 'carrier'}) except BaseException: pass finally: return carrier def process_carrier(self, carrier): """ Take the carrier info and process it """ try: if carrier: carrier = carrier.text print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "Carrier: " + bc.CEND + str(carrier)) else: carrier = "" except BaseException: carrier = "" finally: return carrier def get_city(self): """ Grab the city info """ city = "" try: city = self.soup.find('span', attrs={'class': 'city'}) if city: city = city.text print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "City: " + bc.CEND + str(city)) except BaseException: pass finally: return city def get_state(self): """ Grab the state info """ state = "" try: state = self.soup.find('span', attrs={'class': 'state'}) if state: state = state.text print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "State: " + bc.CEND + str(state)) except BaseException: pass finally: return state def get_time(self): """ Grab time info """ time = "" try: time = self.soup.find('span', attrs={'class': 'time'}) if time: time = time.text print(" [" + bc.CGRN + "+" + bc.CEND + "] " + bc.CRED + "Time: " + bc.CEND + str(time)) except BaseException: pass finally: return time def get_info(self, phone_number, lookup): """ Request, scrape and return values found """ print("[" + bc.CPRP + "?" + bc.CEND + "] " + bc.CCYN + "WhoCalld" + bc.CEND) # Get phone info self.url = 'https://whocalld.com/+1{}'.format(phone_number) self.source = self.get_source(self.url) self.soup = self.get_dom(self.source) try: if self.soup.body.find_all(string=re.compile( '.*{0}.*'.format('country')), recursive=True): print(" [" + bc.CRED + "X" + bc.CEND + "] " + bc.CYLW + "No WhoCallID data returned\n" + bc.CEND) return except: print(" [" + bc.CRED + "X" + bc.CEND + "] " + bc.CYLW + "Unable to extract data. Is the site online?\n" + bc.CEND) name = self.get_name() location = self.get_location() phone_type = self.get_phone_type() carrier = self.get_carrier(phone_number) carrier = self.process_carrier(carrier) city = self.get_city() state = self.get_state() time = self.get_time() self.info_dict.update({ "carrier": carrier, "city": city, "location": location, "name": name, "phone_type": phone_type, "state": state, "time": time }) print() return self.info_dict
superset/migrations/versions/bb38f40aa3ff_add_force_screenshot_to_alerts_reports.py
m-ajay/superset
18,621
50286
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Add force_screenshot to alerts/reports Revision ID: bb38f40aa3ff Revises: <PASSWORD> Create Date: 2021-12-10 19:25:29.802949 """ # revision identifiers, used by Alembic. revision = "bb38f40aa3ff" down_revision = "3<PASSWORD>" import sqlalchemy as sa from alembic import op from sqlalchemy.ext.declarative import declarative_base from superset import db Base = declarative_base() class ReportSchedule(Base): __tablename__ = "report_schedule" id = sa.Column(sa.Integer, primary_key=True) type = sa.Column(sa.String(50), nullable=False) force_screenshot = sa.Column(sa.Boolean, default=False) def upgrade(): with op.batch_alter_table("report_schedule") as batch_op: batch_op.add_column(sa.Column("force_screenshot", sa.Boolean(), default=False)) bind = op.get_bind() session = db.Session(bind=bind) for report in session.query(ReportSchedule).all(): # Update existing alerts that send chart screenshots so that the cache is # bypassed. We don't turn this one for dashboards because (1) it's currently # not supported but also because (2) it can be very expensive. report.force_screenshot = report.type == "Alert" and report.chart_id is not None session.commit() def downgrade(): with op.batch_alter_table("report_schedule") as batch_op: batch_op.drop_column("force_screenshot")
core/ocr/spaceocr.py
huihui7987/MillionHeroAssistant
672
50292
<filename>core/ocr/spaceocr.py<gh_stars>100-1000 # -*- coding: utf-8 -*- import json import requests """ ocr.space """ def get_text_from_image(image_data, api_key='<KEY>', overlay=False, language='chs'): """ CR.space API request with local file. :param image_data: image's base64 encoding. :param overlay: Is OCR.space overlay required in your response. Defaults to False. :param api_key: OCR.space API key. Defaults to 'helloworld'. :param language: Language code to be used in OCR. List of available language codes can be found on https://ocr.space/OCRAPI Defaults to 'en'. :return: Result in JSON format. """ payload = { 'isOverlayRequired': overlay, 'apikey': api_key, 'language': language, } r = requests.post('https://api.ocr.space/parse/image', files={'image.png': image_data}, data=payload, ) result = json.loads(r.content) if (result['OCRExitCode'] == 1): return result['ParsedResults'][0]['ParsedText'] print(result['ErrorMessage']) return ""
testdata/stamp_info.bzl
mgred/rules_docker
912
50294
<gh_stars>100-1000 # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides the stamp info file containing the Bazel non-volatile keys """ def _impl(ctx): output = ctx.outputs.out ctx.actions.run_shell( outputs = [output], inputs = [ctx.info_file], command = "cp {src} {dst}".format( src = ctx.info_file.path, dst = output.path, ), ) stamp_info = rule( implementation = _impl, outputs = { # The stamp file. "out": "%{name}.txt", }, )
genalog/text/lcs.py
jingjie181/genalog
185
50300
<filename>genalog/text/lcs.py # --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # --------------------------------------------------------- class LCS: """ Compute the Longest Common Subsequence (LCS) of two given string.""" def __init__(self, str_m, str_n): self.str_m_len = len(str_m) self.str_n_len = len(str_n) dp_table = self._construct_dp_table(str_m, str_n) self._lcs_len = dp_table[self.str_m_len][self.str_n_len] self._lcs = self._find_lcs_str(str_m, str_n, dp_table) def _construct_dp_table(self, str_m, str_n): m = self.str_m_len n = self.str_n_len # Initialize DP table dp = [[0 for j in range(n + 1)] for i in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): # Case 1: if char1 == char2 if str_m[i - 1] == str_n[j - 1]: dp[i][j] = 1 + dp[i - 1][j - 1] # Case 2: take the max of the values in the top and left cell else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) return dp def _find_lcs_str(self, str_m, str_n, dp_table): m = self.str_m_len n = self.str_n_len lcs = "" while m > 0 and n > 0: # same char if str_m[m - 1] == str_n[n - 1]: # prepend the character lcs = str_m[m - 1] + lcs m -= 1 n -= 1 # top cell > left cell elif dp_table[m - 1][n] > dp_table[m][n - 1]: m -= 1 else: n -= 1 return lcs def get_len(self): return self._lcs_len def get_str(self): return self._lcs
release/scripts/presets/camera/Samsung_Galaxy_S4.py
rbabari/blender
365
50315
<reponame>rbabari/blender import bpy bpy.context.camera.sensor_width = 4.8 bpy.context.camera.sensor_height = 3.6 bpy.context.camera.lens = 4.20 bpy.context.camera.sensor_fit = 'HORIZONTAL'
examples/datacenters.py
doziya/hpeOneView
107
50337
# -*- coding: utf-8 -*- ### # (C) Copyright (2012-2017) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from pprint import pprint from config_loader import try_load_from_file from hpOneView.oneview_client import OneViewClient config = { "ip": "<oneview_ip>", "credentials": { "userName": "<username>", "password": "<password>" } } # Try load config from a file (if there is a config file) config = try_load_from_file(config) oneview_client = OneViewClient(config) datacenter_information = { "name": "MyDatacenter", "width": 5000, "depth": 5000 } # Add a Datacenter datacenter_added = oneview_client.datacenters.add(datacenter_information) print("\nAdded Datacenter '{name}' successfully\n".format(**datacenter_added)) # Retrieve Datacenter by URI datacenter = oneview_client.datacenters.get(datacenter_added['uri']) print("\nGet Datacenter by URI: retrieved '{name}' successfully\n".format(**datacenter)) # Update the Datacenter datacenter['name'] = "New Datacenter Name" datacenter = oneview_client.datacenters.update(datacenter) print("\nDatacenter '{name}' updated successfully\n".format(**datacenter)) # Get the Datacenter by name datacenter_list = oneview_client.datacenters.get_by('name', "New Datacenter Name") print("\nGet Datacenter device by name: '{name}'\n".format(**datacenter)) # Get the Datacenter visual content print("Getting the Datacenter visual content...") datacenter_visual_content = oneview_client.datacenters.get_visual_content(datacenter['uri']) pprint(datacenter_visual_content) # Remove added Datacenter oneview_client.datacenters.remove(datacenter) print("\nSuccessfully removed the datacenter") # Add a datacenter again and call Remove All datacenter_added = oneview_client.datacenters.add(datacenter_information) oneview_client.datacenters.remove_all(filter="name matches '%'") print("\nSuccessfully removed all datacenters")
medium/images/data_for_fitting.py
yull1860outlook/Data-Analysis
4,358
50362
<reponame>yull1860outlook/Data-Analysis def data_for_fitting(*, building_id, date): """ Retrieves data for fitting from the previous business day taking into account holidays """ lease_start = None while lease_start is None: # Previous business day according to Pandas (might be a holiday) previous_bday = pd.to_datetime(date) - BDay(1) # If a holiday, this will return None lease_start = ( db() .execute( building_daily_stats.select() .where(building_daily_stats.c.building_id == building_id) .where(building_daily_stats.c.date == previous_bday) ) .fetchone() .lease_obligations_start_at ) date = previous_bday # Retrieve 8 hours of data from the lease start return load_sensor_values( building_id=building_id, start_time=lease_start, end_time=lease_start + timedelta(hours=8), )
python/ql/test/query-tests/Security/CWE-079/jinja2_escaping.py
vadi2/codeql
4,036
50412
Environment(loader=templateLoader, autoescape=fake_func()) from flask import Flask, request, make_response, escape from jinja2 import Environment, select_autoescape, FileSystemLoader, Template app = Flask(__name__) loader = FileSystemLoader( searchpath="templates/" ) unsafe_env = Environment(loader=loader) safe1_env = Environment(loader=loader, autoescape=True) safe2_env = Environment(loader=loader, autoescape=select_autoescape()) def render_response_from_env(env): name = request.args.get('name', '') template = env.get_template('template.html') return make_response(template.render(name=name)) @app.route('/unsafe') def unsafe(): return render_response_from_env(unsafe_env) @app.route('/safe1') def safe1(): return render_response_from_env(safe1_env) @app.route('/safe2') def safe2(): return render_response_from_env(safe2_env) # Explicit autoescape e = Environment( loader=loader, autoescape=select_autoescape(['html', 'htm', 'xml']) ) # GOOD # Additional checks with flow. auto = select_autoescape e = Environment(autoescape=auto) # GOOD z = 0 e = Environment(autoescape=z) # BAD E = Environment E() # BAD E(autoescape=z) # BAD E(autoescape=auto) # GOOD E(autoescape=0+1) # GOOD def checked(cond=False): if cond: e = Environment(autoescape=cond) # GOOD unsafe_tmpl = Template('Hello {{ name }}!') safe1_tmpl = Template('Hello {{ name }}!', autoescape=True) safe2_tmpl = Template('Hello {{ name }}!', autoescape=select_autoescape())
moe/tests/bandit/__init__.py
dstoeckel/MOE
966
50446
# -*- coding: utf-8 -*- r"""Testing code for the (Python) bandit library. Testing is done via the Testify package: https://github.com/Yelp/Testify This package includes: * Test cases/test setup files * Tests for bandit/epsilon: :mod:`moe.tests.bandit.epsilon` * Tests for bandit/ucb: :mod:`moe.tests.bandit.ucb` * Tests for bandit/bla: :mod:`moe.tests.bandit.bla` This package includes: * Test cases/test setup files * Tests for classes and utils in :mod:`moe.bandit` **Files in this package** * :mod:`moe.tests.bandit.bandit_interface_test`: tests for :mod:`moe.bandit.interfaces.bandit_interface.BanditInterface` * :mod:`moe.tests.bandit.bandit_test_case`: base test case for bandit tests with a simple integration test case * :mod:`moe.tests.bandit.linkers_test`: tests for :mod:`moe.bandit.linkers` * :mod:`moe.tests.bandit.utils_test`: tests for :mod:`moe.bandit.utils` """
terrascript/resource/drarko/mssql.py
mjuenema/python-terrascript
507
50502
# terrascript/resource/drarko/mssql.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:21:59 UTC) import terrascript class mssql_login(terrascript.Resource): pass __all__ = [ "mssql_login", ]
ouroboros/cmath.py
mewbak/ouroboros
205
50515
<reponame>mewbak/ouroboros<filename>ouroboros/cmath.py """ A pure python implementation of the standard module library cmath. """ import math " These are constants from float.h" _FLT_RADIX = 2 _DBL_MIN = 2.2250738585072014e-308 _DBL_MAX = 1.7976931348623157e+308 _DBL_EPSILON = 2.2204460492503131e-16 _DBL_MANT_DIG = 53 _CM_SCALE_UP = 2*int(_DBL_MANT_DIG/2) + 1 _CM_SCALE_DOWN = int(-(_CM_SCALE_UP+1)/2) _LOG_2 = 0.6931471805599453094 _LOG_10 = 2.302585092994045684 _LARGE_INT = 2305843009213693951 _LOG_LARGE_INT = 18.3628297355029 _LARGE_DOUBLE = 4.49423283715579e+307 _LOG_LARGE_DOUBLE = 307.652655568589 _SQRT_LARGE_DOUBLE = 6.70390396497130e+153 _SQRT_DBL_MIN = 1.49166814624004e-154 e = 2.7182818284590452354 pi = 3.14159265358979323846 tau = 2*pi inf = float("inf") infj = complex(0, inf) nan = float("nan") nanj = complex(0, nan) def _make_complex(x): if isinstance(x, complex): return x try: z = x.__complex__() except AttributeError: try: z = complex(x.__float__()) except AttributeError: raise TypeError if isinstance(z, complex): return z raise TypeError def _special_type(x): ST_NINF, ST_NEG, ST_NZERO, ST_PZERO, ST_POS, ST_PINF, ST_NAN = range(7) if math.isnan(x): return ST_NAN if math.isfinite(x): if x != 0: if math.copysign(1, x) == 1: return ST_POS return ST_NEG if math.copysign(1, x) == 1: return ST_PZERO return ST_NZERO if math.copysign(1, x) == 1: return ST_PINF return ST_NINF def rect(r, phi): _rect_special = [ [inf+nanj, None, -inf, complex(-float("inf"), -0.0), None, inf+nanj, inf+nanj], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [0, None, complex(-0.0, 0.0), complex(-0.0, -0.0), None, 0, 0], [0, None, complex(0.0, -0.0), 0, None, 0, 0], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [inf+nanj, None, complex(float("inf"), -0.0), inf, None, inf+nanj, inf+nanj], [nan+nanj, nan+nanj, nan, nan, nan+nanj, nan+nanj, nan+nanj] ] if not math.isfinite(r) or not math.isfinite(phi): if math.isinf(phi) and not math.isnan(r) and r != 0: raise ValueError if math.isinf(r) and math.isfinite(phi) and phi != 0: if r > 0: return complex(math.copysign(inf, math.cos(phi)), math.copysign(inf, math.sin(phi))) return complex(-math.copysign(inf, math.cos(phi)), -math.copysign(inf, math.sin(phi))) return _rect_special[_special_type(r)][_special_type(phi)] return complex(r*math.cos(phi), r*math.sin(phi)) def phase(x): z = complex(x) return math.atan2(z.imag, z.real) def polar(x): return abs(x), phase(x) def exp(x): z = _make_complex(x) exp_special = [ [0+0j, None, complex(0, -0.0), 0+0j, None, 0+0j, 0+0j], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [nan+nanj, None, 1-0j, 1+0j, None, nan+nanj, nan+nanj], [nan+nanj, None, 1-0j, 1+0j, None, nan+nanj, nan+nanj], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [inf+nanj, None, complex(float("inf"), -0.0), inf, None, inf+nanj, inf+nanj], [nan+nanj, nan+nanj, complex(float("nan"), -0.0), nan, nan+nanj, nan+nanj, nan+nanj] ] if not isfinite(z): if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0: if z.real > 0: ret = complex(math.copysign(inf, math.cos(z.imag)), math.copysign(inf, math.sin(z.imag))) else: ret = complex(math.copysign(0, math.cos(z.imag)), math.copysign(0, math.sin(z.imag))) else: ret = exp_special[_special_type(z.real)][_special_type(z.imag)] if math.isinf(z.imag) and (math.isfinite(z.real) or (math.isinf(z.real) and z.real > 0)): raise ValueError return ret if z.real > _LOG_LARGE_DOUBLE: ret = e * rect(math.exp(z.real - 1), z.imag) else: ret = rect(math.exp(z.real), z.imag) if math.isinf(ret.real) or math.isinf(ret.imag): raise OverflowError return ret def _log(z): abs_x = abs(z.real) abs_y = abs(z.imag) if abs_x > _LARGE_INT or abs_y > _LARGE_INT: return complex(math.log(math.hypot(abs_x/2, abs_y/2)) + _LOG_2, math.atan2(z.imag, z.real)) if abs_x < _DBL_MIN and abs_y < _DBL_MIN: if abs_x > 0 or abs_y > 0: return complex(math.log(math.hypot(math.ldexp(abs_x, _DBL_MANT_DIG), math.ldexp(abs_y, _DBL_MANT_DIG))) - _DBL_MANT_DIG * _LOG_2, math.atan2(z.imag, z.real)) raise ValueError rad, phi = polar(z) return complex(math.log(rad), phi) def log(x, base=e): if base != e: return _log(_make_complex(x))/_log(_make_complex(base)) return _log(_make_complex(x)) def log10(x): z = _log(_make_complex(x)) return complex(z.real/_LOG_10, z.imag/_LOG_10) def sqrt(x): sqrt_special = [ [inf-infj, 0-infj, 0-infj, infj, infj, inf+infj, nan+infj], [inf-infj, None, None, None, None, inf+infj, nan+nanj], [inf-infj, None, 0-0j, 0+0j, None, inf+infj, nan+nanj], [inf-infj, None, 0-0j, 0+0j, None, inf+infj, nan+nanj], [inf-infj, None, None, None, None, inf+infj, nan+nanj], [inf-infj, complex(float("inf"), -0.0), complex(float("inf"), -0.0), inf, inf, inf+infj, inf+nanj], [inf-infj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, inf+infj, nan+nanj] ] z = _make_complex(x) if math.isinf(z.real) or math.isinf(z.imag): return sqrt_special[_special_type(z.real)][_special_type(z.imag)] abs_x, abs_y = abs(z.real), abs(z.imag) if abs_x < _DBL_MIN and abs_y < _DBL_MIN: if abs_x > 0 or abs_y > 0: abs_x = math.ldexp(abs_x, _CM_SCALE_UP) s = math.ldexp(math.sqrt(abs_x + math.hypot(abs_x, math.ldexp(abs_y, _CM_SCALE_UP))), _CM_SCALE_DOWN) else: return complex(0, z.imag) else: abs_x /= 8 s = 2 * math.sqrt(abs_x + math.hypot(abs_x, abs_y/8)) if z.real >= 0: return complex(s, math.copysign(abs_y/(2*s), z.imag)) return complex(abs_y/(2*s), math.copysign(s, z.imag)) def acos(x): _acos_special = [ [3*pi/4+infj, pi+infj, pi+infj, pi-infj, pi-infj, 3*pi/4-infj, nan+infj], [pi/2+infj, None, None, None, None, pi/2-infj, nan+nanj], [pi/2+infj, None, None, None, None, pi/2-infj, pi/2+nanj], [pi/2+infj, None, None, None, None, pi/2-infj, pi/2+nanj], [pi/2+infj, None, None, None, None, pi/2-infj, nan+nanj], [pi/4+infj, infj, infj, 0.0-infj, 0.0-infj, pi/4-infj, nan+infj], [nan+infj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan-infj, nan+nanj] ] z = _make_complex(x) if not isfinite(z): return _acos_special[_special_type(z.real)][_special_type(z.imag)] if abs(z.real) > _LARGE_DOUBLE or abs(z.imag) > _LARGE_DOUBLE: if z.real < 0: imag = -math.copysign(math.log(math.hypot(z.real/2, z.imag/2)) + 2 * _LOG_2, z.imag) else: imag = math.copysign(math.log(math.hypot(z.real/2, z.imag/2)) + 2 * _LOG_2, -z.imag) return complex(math.atan2(abs(z.imag), z.real), imag) s1 = sqrt(complex(1.0 - z.real, -z.imag)) s2 = sqrt(complex(1.0 + z.real, z.imag)) return complex(2 * math.atan2(s1.real, s2.real), math.asinh(s2.real*s1.imag - s2.imag*s1.real)) def asin(x): z = _make_complex(x) z = asinh(complex(-z.imag, z.real)) return complex(z.imag, -z.real) def atan(x): z = _make_complex(x) z = atanh(complex(-z.imag, z.real)) return complex(z.imag, -z.real) def cos(x): z = _make_complex(x) return cosh(complex(-z.imag, z.real)) def sin(x): z = _make_complex(x) z = sinh(complex(-z.imag, z.real)) return complex(z.imag, -z.real) def tan(x): z = _make_complex(x) z = tanh(complex(-z.imag, z.real)) return complex(z.imag, -z.real) def acosh(x): z = _make_complex(x) if abs(z.real) > _LARGE_DOUBLE or abs(z.imag) > _LARGE_DOUBLE: return complex(math.log(math.hypot(z.real/2, z.imag/2)) + 2*_LOG_2, math.atan2(z.imag, z.real)) s1 = sqrt(complex(z.real-1, z.imag)) s2 = sqrt(complex(z.real+1, z.imag)) return complex(math.asinh(s1.real*s2.real + s1.imag*s2.imag), 2*math.atan2(s1.imag, s2.real)) def asinh(x): _asinh_special = [ [-inf-1j*pi/4, complex(-float("inf"), -0.0), complex(-float("inf"), -0.0), complex(-float("inf"), 0.0), complex(-float("inf"), 0.0), -inf+1j*pi/4, -inf+nanj], [-inf-1j*pi/2, None, None, None, None, -inf+1j*pi/2, nan+nanj], [-inf-1j*pi/2, None, None, None, None, -inf+1j*pi/2, nan+nanj], [inf-1j*pi/2, None, None, None, None, inf+1j*pi/2, nan+nanj], [inf-1j*pi/2, None, None, None, None, inf+1j*pi/2, nan+nanj], [inf-1j*pi/4, complex(float("inf"), -0.0), complex(float("inf"), -0.0), inf, inf, inf+1j*pi/4, inf+nanj], [inf+nanj, nan+nanj, complex(float("nan"), -0.0), nan, nan+nanj, inf+nanj, nan+nanj] ] z = _make_complex(x) if not isfinite(z): return _asinh_special[_special_type(z.real)][_special_type(z.imag)] if abs(z.real) > _LARGE_DOUBLE or abs(z.imag) > _LARGE_DOUBLE: if z.imag >= 0: real = math.copysign(math.log(math.hypot(z.imag/2, z.real/2)) + 2 * _LOG_2, z.real) else: real = -math.copysign(math.log(math.hypot(z.imag/2, z.real/2)) + 2 * _LOG_2, -z.real) return complex(real, math.atan2(z.imag, abs(z.real))) s1 = sqrt(complex(1+z.imag, -z.real)) s2 = sqrt(complex(1-z.imag, z.real)) return complex(math.asinh(s1.real*s2.imag-s2.real*s1.imag), math.atan2(z.imag, s1.real*s2.real - s1.imag*s2.imag)) def atanh(x): _atanh_special = [ [complex(-0.0, -pi/2), complex(-0.0, -pi/2), complex(-0.0, -pi/2), complex(-0.0, pi/2), complex(-0.0, pi/2), complex(-0.0, pi/2), complex(-0.0, float("nan"))], [complex(-0.0, -pi/2), None, None, None, None, complex(-0.0, pi/2), nan+nanj], [complex(-0.0, -pi/2), None, None, None, None, complex(-0.0, pi/2), complex(-0.0, float("nan"))], [-1j*pi/2, None, None, None, None, 1j*pi/2, nanj], [-1j*pi/2, None, None, None, None, 1j*pi/2, nan+nanj], [-1j*pi/2, -1j*pi/2, -1j*pi/2, 1j*pi/2, 1j*pi/2, 1j*pi/2, nanj], [-1j*pi/2, nan+nanj, nan+nanj, nan+nanj, nan+nanj, 1j*pi/2, nan+nanj] ] z = _make_complex(x) if not isfinite(z): return _atanh_special[_special_type(z.real)][_special_type(z.imag)] if z.real < 0: return -atanh(-z) ay = abs(z.imag) if z.real > _SQRT_LARGE_DOUBLE or ay > _SQRT_LARGE_DOUBLE: hypot = math.hypot(z.real/2, z.imag/2) return complex(z.real/4/hypot/hypot, -math.copysign(pi/2, -z.imag)) if z.real == 1 and ay < _SQRT_DBL_MIN: if ay == 0: raise ValueError return complex(-math.log(math.sqrt(ay)/math.sqrt(math.hypot(ay, 2))), math.copysign(math.atan2(2, -ay)/2, z.imag)) return complex(math.log1p(4*z.real/((1-z.real)*(1-z.real) + ay*ay))/4, -math.atan2(-2*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2) def cosh(x): _cosh_special = [ [inf+nanj, None, inf, complex(float("inf"), -0.0), None, inf+nanj, inf+nanj], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [nan, None, 1, complex(1, -0.0), None, nan, nan], [nan, None, complex(1, -0.0), 1, None, nan, nan], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [inf+nanj, None, complex(float("inf"), -0.0), inf, None, inf+nanj, inf+nanj], [nan+nanj, nan+nanj, nan, nan, nan+nanj, nan+nanj, nan+nanj] ] z = _make_complex(x) if not isfinite(z): if math.isinf(z.imag) and not math.isnan(z.real): raise ValueError if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0: if z.real > 0: return complex(math.copysign(inf, math.cos(z.imag)), math.copysign(inf, math.sin(z.imag))) return complex(math.copysign(inf, math.cos(z.imag)), -math.copysign(inf, math.sin(z.imag))) return _cosh_special[_special_type(z.real)][_special_type(z.imag)] if abs(z.real) > _LOG_LARGE_DOUBLE: x_minus_one = z.real - math.copysign(1, z.real) ret = complex(e * math.cos(z.imag) * math.cosh(x_minus_one), e * math.sin(z.imag) * math.sinh(x_minus_one)) else: ret = complex(math.cos(z.imag) * math.cosh(z.real), math.sin(z.imag) * math.sinh(z.real)) if math.isinf(ret.real) or math.isinf(ret.imag): raise OverflowError return ret def sinh(x): _sinh_special = [ [inf+nanj, None, complex(-float("inf"), -0.0), -inf, None, inf+nanj, inf+nanj], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [nanj, None, complex(-0.0, -0.0), complex(-0.0, 0.0), None, nanj, nanj], [nanj, None, complex(0.0, -0.0), complex(0.0, 0.0), None, nanj, nanj], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [inf+nanj, None, complex(float("inf"), -0.0), inf, None, inf+nanj, inf+nanj], [nan+nanj, nan+nanj, complex(float("nan"), -0.0), nan, nan+nanj, nan+nanj, nan+nanj] ] z = _make_complex(x) if not isfinite(z): if math.isinf(z.imag) and not math.isnan(z.real): raise ValueError if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0: if z.real > 0: return complex(math.copysign(inf, math.cos(z.imag)), math.copysign(inf, math.sin(z.imag))) return complex(-math.copysign(inf, math.cos(z.imag)), math.copysign(inf, math.sin(z.imag))) return _sinh_special[_special_type(z.real)][_special_type(z.imag)] if abs(z.real) > _LOG_LARGE_DOUBLE: x_minus_one = z.real - math.copysign(1, z.real) return complex(math.cos(z.imag) * math.sinh(x_minus_one) * e, math.sin(z.imag) * math.cosh(x_minus_one) * e) return complex(math.cos(z.imag) * math.sinh(z.real), math.sin(z.imag) * math.cosh(z.real)) def tanh(x): _tanh_special = [ [-1, None, complex(-1, -0.0), -1, None, -1, -1], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [nan+nanj, None, complex(-0.0, -0.0), complex(-0.0, 0.0), None, nan+nanj, nan+nanj], [nan+nanj, None, complex(0.0, -0.0), 0.0, None, nan+nanj, nan+nanj], [nan+nanj, None, None, None, None, nan+nanj, nan+nanj], [1, None, complex(1, -0.0), 1, None, 1, 1], [nan+nanj, nan+nanj, complex(float("nan"), -0.0), nan, nan+nanj, nan+nanj, nan+nanj] ] z = _make_complex(x) if not isfinite(z): if math.isinf(z.imag) and math.isfinite(z.real): raise ValueError if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0: if z.real > 0: return complex(1, math.copysign(0.0, math.sin(z.imag) * math.cos(z.imag))) return complex(-1, math.copysign(0.0, math.sin(z.imag) * math.cos(z.imag))) return _tanh_special[_special_type(z.real)][_special_type(z.imag)] if abs(z.real) > _LOG_LARGE_DOUBLE: return complex( math.copysign(1, z.real), 4*math.sin(z.imag)*math.cos(z.imag)*math.exp(-2*abs(z.real)) ) tanh_x = math.tanh(z.real) tan_y = math.tan(z.imag) cx = 1/math.cosh(z.real) denom = 1 + tanh_x * tanh_x * tan_y * tan_y return complex(tanh_x * (1 + tan_y*tan_y)/denom, ((tan_y / denom) * cx) * cx) def isfinite(x): return math.isfinite(x.real) and math.isfinite(x.imag) def isinf(x): return math.isinf(x.real) or math.isinf(x.imag) def isnan(x): return math.isnan(x.real) or math.isnan(x.imag) def isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0): a = _make_complex(a) b = _make_complex(b) rel_tol = float(rel_tol) abs_tol = float(abs_tol) if rel_tol < 0 or abs_tol < 0: raise ValueError("tolerances must be non-negative") if a.real == b.real and a.imag == b.imag: return True if math.isinf(a.real) or math.isinf(a.imag) or math.isinf(b.real) \ or math.isinf(b.imag): return False # if isnan(a) or isnan(b): # return False diff = abs(a-b) return diff <= rel_tol * abs(a) or diff <= rel_tol * abs(b) or diff <= abs_tol
anchore/cli/common.py
berez23/anchore
401
50541
<reponame>berez23/anchore<gh_stars>100-1000 import os import click import json import yaml import logging import sys from anchore import anchore_utils from anchore.cli import logs from anchore.util import contexts plain_output = False def extended_help_option(extended_help=None, *param_decls, **attrs): """ Based on the click.help_option code. Adds a ``--extended-help`` option which immediately ends the program printing out the extended extended-help page. Defaults to using the callback's doc string, but can be given an explicit value as well. This is intended for use as a decorator on a command to provide a 3rd level of help verbosity suitable for use as a manpage (though not formatted as such explicitly). Like :func:`version_option`, this is implemented as eager option that prints in the callback and exits. All arguments are forwarded to :func:`option`. """ def decorator(f): def callback(ctx, param, value): if value and not ctx.resilient_parsing: if not extended_help: ctx.command.help = ctx.command.callback.__doc__ click.echo(ctx.get_help(), color=ctx.color) else: ctx.command.help = extended_help click.echo(ctx.get_help(), color=ctx.color) ctx.exit() attrs.setdefault('is_flag', True) attrs.setdefault('expose_value', False) attrs.setdefault('help', 'Show extended help content, similar to manpage, and exit.') attrs.setdefault('is_eager', True) attrs['callback'] = callback return click.option(*(param_decls or ('--extended-help',)), **attrs)(f) return decorator def std_formatter(msg): """ Default simple string format. Dumps block-style indented yaml for dicts if found. Otherwise no formatting :param msg: :return: """ if isinstance(msg, dict): return yaml.safe_dump(msg, indent=True, default_flow_style=False) return str(msg) def json_formatter(obj): """ Format the output in JSON :param obj: :return: """ if isinstance(obj, str): # Make a list of size 1 return json.dumps([obj], indent=True) else: return json.dumps(obj, indent=True, sort_keys=True) # Which formatting function to use formatter = std_formatter def init_output_format(use_json=False, use_plain=False, use_debug=False, use_verbose=False, use_quiet=False, log_filepath=None, debug_log_filepath = None): global formatter if use_json: formatter = json_formatter if use_debug: level = 'debug' elif use_verbose: level = 'verbose' elif use_quiet: level = 'quiet' else: level = 'normal' logs.init_output_formatters(output_verbosity=level, logfile=log_filepath, debug_logfile=debug_log_filepath) def anchore_print_err(msg): exc = sys.exc_info() if exc is not None and exc != (None, None, None): logging.getLogger(__name__).exception(msg) else: logging.getLogger(__name__).error(msg) def anchore_print(msg, do_formatting=False): """ Print to stdout using the proper formatting for the command. :param msg: output to be printed, either an object or a string. Objects will be serialized according to config :return: """ if do_formatting: click.echo(formatter(msg)) else: click.echo(msg) def build_image_list(config, image, imagefile, all_local, include_allanchore, dockerfile=None, exclude_file=None): """Given option inputs from the cli, construct a list of image ids. Includes all found with no exclusion logic""" if not image and not (imagefile or all_local): raise click.BadOptionUsage('No input found for image source. One of <image>, <imagefile>, or <all> must be specified') if image and imagefile: raise click.BadOptionUsage('Only one of <image> and <imagefile> can be specified') filter_images = [] if exclude_file: with open(exclude_file) as f: for line in f.readlines(): filter_images.append(line.strip()) imagelist = {} if image: imagelist[image] = {'dockerfile':dockerfile} if imagefile: filelist = anchore_utils.read_kvfile_tolist(imagefile) for i in range(len(filelist)): l = filelist[i] imageId = l[0] try: dfile = l[1] except: dfile = None imagelist[imageId] = {'dockerfile':dfile} if all_local: docker_cli = contexts['docker_cli'] if docker_cli: for f in docker_cli.images(all=True, quiet=True, filters={'dangling': False}): if f not in imagelist and f not in filter_images: imagelist[f] = {'dockerfile':None} else: raise Exception("Could not load any images from local docker host - is docker running?") if include_allanchore: ret = contexts['anchore_db'].load_all_images().keys() if ret and len(ret) > 0: for l in list(set(imagelist.keys()) | set(ret)): imagelist[l] = {'dockerfile':None} # Remove excluded items for excluded in filter_images: docker_cli = contexts['docker_cli'] if not docker_cli: raise Exception("Could not query docker - is docker running?") for img in docker_cli.images(name=excluded, quiet=True): imagelist.pop(img, None) return imagelist
recipes/Python/577826_Yet_Another_Ordered_Dictionary/recipe-577826.py
tdiprima/code
2,023
50551
# ordereddict.py # A dictionary that remembers insertion order # Tested under Python 2.7 and 2.6.6 only # # Copyright (C) 2011 by <NAME> <lukius at gmail dot com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from _abcoll import * try: from thread import get_ident as _get_ident except ImportError: from dummy_thread import get_ident as _get_ident from operator import eq as _eq from itertools import imap as _imap __author__ = '<NAME> <lukius at gmail dot com>' __version__ = '1.1' __all__ = ['OrderedDict'] ########################### Constants ########################### FORWARD = 0 BACKWARDS = 1 KEY = 0 VALUE = 1 NEXT = 3 PREVIOUS = 2 ################################################################# class OrderedDict(dict, MutableMapping): 'A dictionary that remembers insertion order.' # This implementation uses a doubly-linked list of nodes, each # node being a 4-tuple <key, value, previous node, next node>. # Despite this, the interesting thing about it is that the list # is actually embedded in the dictionary. As a consequence, # there is little space penalty, and also every operation # exhibits an efficient implementation (i.e., no need to perform # lookups or deletions multiple times, as it happens with other # versions of this data structure.). # # It is worth noticing that passing an OrderedDict as an argument # to the dict constructor won't behave as expected. This is due # to the fact that the internal dictionary keeps additional information # apart from a key's value. If needed, the instance method dict() # provides a dict copy of an OrderedDict. update = MutableMapping.update setdefault = MutableMapping.setdefault __ne__ = MutableMapping.__ne__ ######################## Class methods ######################### @classmethod def fromkeys(cls, iterable, value = None): '''od.fromkeys(S[, v]) -> New ordered dictionary with keys from S and values equal to v (which defaults to None). ''' d = cls() for key in iterable: d[key] = value return d ################################################################ ######################## Initialization ######################## def __init__(self, *args, **kwds): """Initialize an ordered dictionary. Signature is the same as for regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. """ if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.first_node except AttributeError: self.first_node = None self.last_node = None self.update(*args, **kwds) ################################################################ ################## Data access & manipulation ################## __marker = object() def __getitem__(self, key): 'od.__getitem__(y) <==> od[y]' node = dict.__getitem__(self, key) return node[VALUE] def get(self, key, default = None): 'od.get(k[,d]) -> od[k] if k in od, else d. d defaults to None.' try: value = self.__getitem__(key) except KeyError: value = default return value def __setitem__(self, key, value): 'od.__setitem__(i, y) <==> od[i]=y' try: node = dict.__getitem__(self, key) node[VALUE] = value except KeyError: new_node = [key, value, self.last_node, None] if( self.first_node is None ): self.first_node = new_node if( self.last_node is not None ): self.last_node[NEXT] = new_node self.last_node = new_node dict.__setitem__(self, key, new_node) def __delitem__(self, key): 'od.__delitem__(y) <==> del od[y]' removed_node = dict.pop(self,key) self.__adjust_after_removing(removed_node) def pop(self, key, default = __marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised.''' removed_node = dict.pop(self, key, default) if( removed_node is self.__marker ): raise KeyError, key if( removed_node is default ): return default self.__adjust_after_removing(removed_node) return removed_node[VALUE] def popitem(self, last = True): '''od.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError if od is empty.''' if not self: raise KeyError('dictionary is empty') key = next(reversed(self) if last else iter(self)) value = self.pop(key) return key, value def clear(self): 'od.clear() -> None. Remove all items from od.' dict.clear(self) self.first_node = None self.last_node = None def __adjust_after_removing(self, a_node): 'Adjust a_node previous and next pointers after its removal.' previous = a_node[PREVIOUS] next = a_node[NEXT] if( next ): next[PREVIOUS] = previous else: self.last_node = previous if( previous ): previous[NEXT] = next else: self.first_node = next ################################################################ #################### Iteration & keys/values ################### def __walk(self, direction = FORWARD, action = lambda x: x, *arguments): 'Iterate over action applied to each node, in the appropriate order.' if( direction == FORWARD ): next = NEXT first = self.first_node elif( direction == BACKWARDS ): next = PREVIOUS first = self.last_node current_node = first while( current_node ): yield action(current_node, *arguments) current_node = current_node[next] def __walk_to_list(self, direction = FORWARD, action = lambda x: x, *arguments): '''Obtain a list of objects resulting from applying action to each node, in the appropriate order.''' return_list = list() item_generator = self.__walk(direction = direction, action = action, *arguments) for item in item_generator: return_list.append(item) return return_list def __iter__(self): 'od.__iter__() <==> iter(od)' return self.__walk( action = lambda node: node[KEY] ) def __reversed__(self): 'od.__reversed__() <==> reversed(od)' return self.__walk( direction = BACKWARDS, action = lambda node: node[KEY] ) def keys(self): "od.keys() -> list of od's keys" return self.__walk_to_list( action = lambda node: node[KEY] ) def values(self): "od.values() -> list of od's values" return self.__walk_to_list( action = lambda node: node[VALUE] ) def items(self): "od.items() -> list of od's (key, value) pairs, as 2-tuples" return self.__walk_to_list( action = lambda node: (node[KEY], node[VALUE]) ) def iterkeys(self): 'od.iterkeys() -> an iterator over the keys of od' return iter(self) def itervalues(self): 'od.itervalues() -> an iterator over the values of od' return self.__walk( action = lambda node: node[VALUE] ) def iteritems(self): 'od.iteritems() -> an iterator over the (key, value) items of od' return self.__walk( action = lambda node: (node[KEY], node[VALUE]) ) ################################################################ ############################# Copies ########################### def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) def dict(self): 'od.dict() -> a dict copy of od' d = {} for item in self.iteritems(): d[item[KEY]] = item[VALUE] return d ################################################################ ########################## Miscellaneous ####################### def __repr__(self, _repr_running = {}): 'od.__repr__() <==> repr(od)' call_key = id(self), _get_ident() if call_key in _repr_running: return '...' _repr_running[call_key] = 1 try: if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.items()) finally: del _repr_running[call_key] def __reduce__(self): 'Return state information for pickling' items = self.items() tmp = self.first_node, self.last_node del self.first_node, self.last_node inst_dict = vars(self).copy() self.first_node, self.last_node = tmp if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return len(self) == len(other) and \ all(_imap(_eq, self.iteritems(), other.iteritems())) return dict.__eq__(self.dict(), other) def viewkeys(self): "od.viewkeys() -> a set-like object providing a view on od's keys" return KeysView(self) def viewvalues(self): "od.viewvalues() -> an object providing a view on od's values" return ValuesView(self) def viewitems(self): "od.viewitems() -> a set-like object providing a view on od's items" return ItemsView(self) ################################################################
web/sales_app/apps/home/models.py
iabok/sales-tracker
163
50562
"""Base models"""
metrics/webnlg_challenge_2017/evaluator.py
HKUNLP/UnifiedSKG
191
50593
<gh_stars>100-1000 # encoding=utf8 import os from third_party.dart import extract_score_webnlg def evaluate_webnlg_challenge_2017(references_s, preds): """ The evaluation of the webnlg_challenge_2017, we use the evaluate shell that DART dataset provided. :param references_s: ACTUALLY, references in webnlg are of no use. :param preds: :return: """ tmp_file_name = 'webnlg_challenge_2017_tmp4eval.txt' with open(tmp_file_name, 'w') as tmp_file: for pred in preds: print(pred, file=tmp_file) os.system("bash utils/process/general/dart_lib/run_eval_on_webnlg.sh " "{}".format(tmp_file_name)) summary = extract_score_webnlg() return summary class EvaluateTool(object): def __init__(self, args): self.args = args def evaluate(self, preds, golds, section): references_s = [item["references"] for item in golds] assert len(preds) == len(references_s) summary = evaluate_webnlg_challenge_2017(references_s, preds) return summary
indra/sources/isi/__init__.py
zebulon2/indra
136
50608
<reponame>zebulon2/indra<filename>indra/sources/isi/__init__.py """ This module provides an input interface and processor to the ISI reading system. The reader is set up to run within a Docker container. For the ISI reader to run, set the Docker memory and swap space to the maximum. """ from .api import process_text, process_nxml, process_preprocessed, \ process_output_folder, process_json_file
openbook_auth/apps.py
TamaraAbells/okuna-api
164
50626
from django.apps import AppConfig class OpenbookAuthConfig(AppConfig): name = 'openbook_auth'
lightbus/api.py
gcollard/lightbus
178
50627
from typing import Dict from lightbus.exceptions import ( UnknownApi, InvalidApiRegistryEntry, EventNotFound, MisconfiguredApiOptions, InvalidApiEventConfiguration, ) __all__ = ["Api", "Event"] class ApiRegistry: def __init__(self): self._apis: Dict[str, Api] = dict() def add(self, api: "Api"): if isinstance(api, type): raise InvalidApiRegistryEntry( "An attempt was made to add a type to the API registry. This " "is probably because you are trying to add the API class, rather " "than an instance of the API class.\n" "\n" "Use bus.client.register_api(MyApi()), rather than bus.client.register_api(MyApi)" ) self._apis[api.meta.name] = api def get(self, name) -> "Api": try: return self._apis[name] except KeyError: raise UnknownApi( "An API named '{}' was requested from the registry but the " "registry does not recognise it. Maybe the incorrect API name " "was specified, or maybe the API has not been registered.".format(name) ) def remove(self, name) -> None: try: del self._apis[name] except KeyError: raise UnknownApi( "An attempt was made to remove an API named '{}' from the registry, but the API " "could not be found. Maybe the incorrect API name " "was specified, or maybe the API has not been registered.".format(name) ) def public(self): return [api for api in self._apis.values() if not api.meta.internal] def internal(self): return [api for api in self._apis.values() if api.meta.internal] def all(self): return list(self._apis.values()) def names(self): return list(self._apis.keys()) class ApiOptions: name: str internal: bool = False version: int = 1 def __init__(self, options): for k, v in options.items(): if not k.startswith("_"): setattr(self, k, v) class ApiMetaclass(type): """ API Metaclass Validates options in the API's Meta class and populates the API class' `meta` attribute. """ def __init__(cls, name, bases=None, dict_=None): is_api_base_class = name == "Api" and not bases if is_api_base_class: super(ApiMetaclass, cls).__init__(name, bases, dict_) else: options = dict_.get("Meta", None) if options is None: raise MisconfiguredApiOptions( f"API class {name} does not contain a class named 'Meta'. Each API definition " f"must contain a child class named 'Meta' which can contain configurations options. " f"For example, the 'name' option is required and specifies " f"the name used to access the API on the bus." ) cls.sanity_check_options(name, options) cls.meta = ApiOptions(cls.Meta.__dict__.copy()) super(ApiMetaclass, cls).__init__(name, bases, dict_) if cls.meta.name == "default" or cls.meta.name.startswith("default."): raise MisconfiguredApiOptions( f"API class {name} is named 'default', or starts with 'default.'. " f"This is a reserved name and is not allowed, please change it to something else." ) def sanity_check_options(cls, name, options): if not getattr(options, "name", None): raise MisconfiguredApiOptions( "API class {} does not specify a name option with its " "'Meta' options." "".format(name) ) class Api(metaclass=ApiMetaclass): class Meta: name = None def get_event(self, name) -> "Event": event = getattr(self, name, None) if isinstance(event, Event): return event else: raise EventNotFound("Event named {}.{} could not be found".format(self, name)) def __str__(self): return self.meta.name class Event: def __init__(self, parameters=tuple()): # Ensure you update the __copy__() method if adding other instance variables below if isinstance(parameters, str): raise InvalidApiEventConfiguration( f"You appear to have passed a string value of {repr(parameters)} " f"for your API's event's parameters. This should be a list or a tuple, " f"not a string. You probably missed a comma when defining your " f"tuple of parameter names." ) self.parameters = parameters
cryptol-remote-api/python/tests/cryptol/test_basics.py
GaloisInc/cryptol
773
50657
import unittest from argo_client.interaction import ArgoException from pathlib import Path import unittest import io import os import time import cryptol import cryptol.cryptoltypes from cryptol.single_connection import * from cryptol.bitvector import BV from BitVector import * #type: ignore # Tests of the core server functionality and less # focused on intricate Cryptol specifics per se. class BasicServerTests(unittest.TestCase): @classmethod def setUpClass(self): self.c = cryptol.connect(verify=False) def test_extend_search_path(self): # Test that extending the search path acts as expected w.r.t. loads c = self.c c.extend_search_path(str(Path('tests','cryptol','test-files', 'test-subdir'))) c.load_module('Bar').result() ans1 = c.eval("theAnswer").result() ans2 = c.eval("id theAnswer").result() self.assertEqual(ans1, ans2) def test_logging(self): c = self.c c.extend_search_path(str(Path('tests','cryptol','test-files', 'test-subdir'))) c.load_module('Bar').result() log_buffer = io.StringIO() c.logging(on=True, dest=log_buffer) _ = c.eval("theAnswer").result() contents = log_buffer.getvalue() self.assertEqual(len(contents.strip().splitlines()), 2, msg=f'log contents: {str(contents.strip().splitlines())}') _ = c.eval("theAnswer").result() def test_check_timeout(self): c = self.c c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))).result() t1 = time.time() with self.assertRaises(ArgoException): c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=1.0).result() t2 = time.time() self.assertLess(t2 - t1, 2.0) t1 = time.time() with self.assertRaises(ArgoException): c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=5.0).result() t2 = time.time() self.assertLess(t2 - t1, 7) t1 = time.time() c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests=10, timeout=5.0).result() t2 = time.time() self.assertLess(t2 - t1, 5) def test_interrupt(self): # Check if this test is using a local server, if not we assume it's a remote HTTP server if os.getenv('CRYPTOL_SERVER') is not None: c = self.c c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))) t1 = time.time() c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=30.0) # ^ .result() intentionally omitted so we don't wait on it's result and we can interrupt # it on the next line. We add a timeout just in case to the test fails time.sleep(.5) c.interrupt() self.assertTrue(c.safe("aesEncrypt").result()) t2 = time.time() self.assertLess(t2 - t1, 15.0) # ensure th interrupt ended things and not the timeout elif os.getenv('CRYPTOL_SERVER_URL') is not None: c = self.c other_c = cryptol.connect(verify=False) # Since this is the HTTP server, due to client implementation details # the requests don't return until they get a response, so we fork # to interrupt the server newpid = os.fork() if newpid == 0: time.sleep(5) other_c.interrupt() os._exit(0) c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))) t1 = time.time() c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=60.0) self.assertTrue(c.safe("aesEncrypt").result()) t2 = time.time() self.assertLess(t2 - t1, 20.0) # ensure th interrupt ended things and not the timeout else: # Otherwise fail... since this shouldn't be possible self.assertFalse("Impossible") def test_prove_timeout(self): c = self.c c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))) pt = BV(size=128, value=0x3243f6a8885a308d313198a2e0370734) key = BV(size=128, value=<KEY>) ct = c.call("aesEncrypt", (pt, key)).result() expected_ct = BV(size=128, value=0x3925841d02dc09fbdc118597196a0b32) self.assertEqual(ct, expected_ct) decrypted_ct = c.call("aesDecrypt", (ct, key)).result() self.assertEqual(pt, decrypted_ct) pt = BV(size=128, value=0x00112233445566778899aabbccddeeff) key = BV(size=128, value=0x000102030405060708090a0b0c0d0e0f) ct = c.call("aesEncrypt", (pt, key)).result() expected_ct = BV(size=128, value=0x69c4e0d86a7b0430d8cdb78070b4c55a) self.assertEqual(ct, expected_ct) decrypted_ct = c.call("aesDecrypt", (ct, key)).result() self.assertEqual(pt, decrypted_ct) self.assertTrue(c.safe("aesEncrypt").result()) self.assertTrue(c.safe("aesDecrypt").result()) self.assertTrue(c.check("AESCorrect").result().success) t1 = time.time() with self.assertRaises(ArgoException): c.prove("AESCorrect", timeout=1.0).result() t2 = time.time() # check the timeout worked self.assertGreaterEqual(t2 - t1, 1.0) self.assertLess(t2 - t1, 5.0) # make sure things are still working self.assertTrue(c.safe("aesEncrypt").result()) # set the timeout at the connection level c.timeout = 1.0 t1 = time.time() with self.assertRaises(ArgoException): c.prove("AESCorrect").result() t2 = time.time() # check the timeout worked self.assertGreaterEqual(t2 - t1, 1.0) self.assertLess(t2 - t1, 5.0) # make sure things are still working c.timeout = None self.assertTrue(c.safe("aesEncrypt").result()) c.timeout = 1.0 t1 = time.time() with self.assertRaises(ArgoException): # override timeout with longer time c.prove("AESCorrect", timeout=5.0).result() t2 = time.time() self.assertGreaterEqual(t2 - t1, 5.0) self.assertLess(t2 - t1, 10.0) # make sure things are still working c.timeout = None self.assertTrue(c.safe("aesEncrypt").result()) class BasicLoggingServerTests(unittest.TestCase): # Connection to cryptol log_buffer = None @classmethod def setUpClass(self): self.log_buffer = io.StringIO() connect(verify=False, log_dest = self.log_buffer) def test_logging(self): extend_search_path(str(Path('tests','cryptol','test-files', 'test-subdir'))) load_module('Bar') _ = cry_eval("theAnswer") content_lines = self.log_buffer.getvalue().strip().splitlines() self.assertEqual(len(content_lines), 6, msg=f'log contents: {str(content_lines)}') if __name__ == "__main__": unittest.main()
opps/articles/search_indexes.py
jeanmask/opps
159
50661
# -*- coding: utf-8 -*- from datetime import datetime from django.conf import settings from haystack.indexes import Indexable from opps.containers.search_indexes import ContainerIndex from .models import Post, Album, Link migration_date = getattr(settings, 'MIGRATION_DATE', None) if migration_date: m_date = datetime.strptime(migration_date, "%Y-%m-%d").date() Post.is_legacy = lambda self: m_date >= self.date_insert.date() else: Post.is_legacy = lambda self: False class PostIndex(ContainerIndex, Indexable): def get_model(self): return Post class AlbumIndex(ContainerIndex, Indexable): def get_model(self): return Album class LinkIndex(ContainerIndex, Indexable): def get_model(self): return Link
tests/test_cases/test_array_simple/test_array_simple.py
lavanyajagan/cocotb
350
50675
<filename>tests/test_cases/test_array_simple/test_array_simple.py # Copyright cocotb contributors # Licensed under the Revised BSD License, see LICENSE for details. # SPDX-License-Identifier: BSD-3-Clause """Test getting and setting values of arrays""" import contextlib import logging import cocotb from cocotb.clock import Clock from cocotb.triggers import Timer tlog = logging.getLogger("cocotb.test") def _check_value(tlog, hdl, expected): assert hdl.value == expected tlog.info(f" Found {hdl!r} ({hdl._type}) with value={hdl.value}") # GHDL unable to put values on nested array types (gh-2588) @cocotb.test( expect_error=Exception if cocotb.SIM_NAME.lower().startswith("ghdl") else () ) async def test_1dim_array_handles(dut): """Test getting and setting array values using the handle of the full array.""" cocotb.start_soon(Clock(dut.clk, 1000, "ns").start()) dut.array_7_downto_4.value = [0xF0, 0xE0, 0xD0, 0xC0] dut.array_4_to_7.value = [0xB0, 0xA0, 0x90, 0x80] dut.array_3_downto_0.value = [0x70, 0x60, 0x50, 0x40] dut.array_0_to_3.value = [0x30, 0x20, 0x10, 0x00] await Timer(1000, "ns") _check_value(tlog, dut.array_7_downto_4, [0xF0, 0xE0, 0xD0, 0xC0]) _check_value(tlog, dut.array_4_to_7, [0xB0, 0xA0, 0x90, 0x80]) _check_value(tlog, dut.array_3_downto_0, [0x70, 0x60, 0x50, 0x40]) _check_value(tlog, dut.array_0_to_3, [0x30, 0x20, 0x10, 0x00]) # GHDL unable to put values on nested array types (gh-2588) # iverilog flattens multi-dimensional unpacked arrays (gh-2595) @cocotb.test( expect_error=Exception if cocotb.SIM_NAME.lower().startswith(("icarus", "ghdl")) else () ) async def test_ndim_array_handles(dut): """Test getting and setting multi-dimensional array values using the handle of the full array.""" cocotb.start_soon(Clock(dut.clk, 1000, "ns").start()) dut.array_2d.value = [[0xF0, 0xE0, 0xD0, 0xC0], [0xB0, 0xA0, 0x90, 0x80]] await Timer(1000, "ns") _check_value( tlog, dut.array_2d, [[0xF0, 0xE0, 0xD0, 0xC0], [0xB0, 0xA0, 0x90, 0x80]] ) # GHDL unable to put values on nested array types (gh-2588) @cocotb.test( expect_error=Exception if cocotb.SIM_NAME.lower().startswith("ghdl") else () ) async def test_1dim_array_indexes(dut): """Test getting and setting values of array indexes.""" cocotb.start_soon(Clock(dut.clk, 1000, "ns").start()) dut.array_7_downto_4.value = [0xF0, 0xE0, 0xD0, 0xC0] dut.array_4_to_7.value = [0xB0, 0xA0, 0x90, 0x80] dut.array_3_downto_0.value = [0x70, 0x60, 0x50, 0x40] dut.array_0_to_3.value = [0x30, 0x20, 0x10, 0x00] await Timer(1000, "ns") # Check indices _check_value(tlog, dut.array_7_downto_4[7], 0xF0) _check_value(tlog, dut.array_7_downto_4[4], 0xC0) _check_value(tlog, dut.array_4_to_7[4], 0xB0) _check_value(tlog, dut.array_4_to_7[7], 0x80) _check_value(tlog, dut.array_3_downto_0[3], 0x70) _check_value(tlog, dut.array_3_downto_0[0], 0x40) _check_value(tlog, dut.array_0_to_3[0], 0x30) _check_value(tlog, dut.array_0_to_3[3], 0x00) _check_value(tlog, dut.array_0_to_3[1], 0x20) # Get sub-handles through NonHierarchyIndexableObject.__getitem__ dut.array_7_downto_4[7].value = 0xDE dut.array_4_to_7[4].value = 0xFC dut.array_3_downto_0[0].value = 0xAB dut.array_0_to_3[1].value = 0x7A dut.array_0_to_3[3].value = 0x42 await Timer(1000, "ns") _check_value(tlog, dut.array_7_downto_4[7], 0xDE) _check_value(tlog, dut.array_4_to_7[4], 0xFC) _check_value(tlog, dut.array_3_downto_0[0], 0xAB) _check_value(tlog, dut.array_0_to_3[1], 0x7A) _check_value(tlog, dut.array_0_to_3[3], 0x42) # GHDL unable to put values on nested array types (gh-2588) # iverilog flattens multi-dimensional unpacked arrays (gh-2595) @cocotb.test( expect_error=Exception if cocotb.SIM_NAME.lower().startswith(("icarus", "ghdl")) else () ) async def test_ndim_array_indexes(dut): """Test getting and setting values of multi-dimensional array indexes.""" cocotb.start_soon(Clock(dut.clk, 1000, "ns").start()) dut.array_2d.value = [[0xF0, 0xE0, 0xD0, 0xC0], [0xB0, 0xA0, 0x90, 0x80]] await Timer(1000, "ns") # Check indices _check_value(tlog, dut.array_2d[1], [0xB0, 0xA0, 0x90, 0x80]) _check_value(tlog, dut.array_2d[0][31], 0xF0) _check_value(tlog, dut.array_2d[1][29], 0x90) _check_value(tlog, dut.array_2d[1][28], 0x80) # Get sub-handles through NonHierarchyIndexableObject.__getitem__ dut.array_2d[1].value = [0xDE, 0xAD, 0xBE, 0xEF] dut.array_2d[0][31].value = 0x0F await Timer(1000, "ns") _check_value(tlog, dut.array_2d[0][31], 0x0F) _check_value(tlog, dut.array_2d[0][29], 0xD0) _check_value(tlog, dut.array_2d[1][30], 0xAD) _check_value(tlog, dut.array_2d[1][28], 0xEF) # GHDL unable to access record signals (gh-2591) # Icarus doesn't support structs (gh-2592) @cocotb.test( expect_error=AttributeError if cocotb.SIM_NAME.lower().startswith(("icarus", "ghdl")) else () ) async def test_struct(dut): """Test setting and getting values of structs.""" cocotb.start_soon(Clock(dut.clk, 1000, "ns").start()) dut.inout_if.a_in.value = 1 await Timer(1000, "ns") _check_value(tlog, dut.inout_if.a_in, 1) dut.inout_if.a_in.value = 0 await Timer(1000, "ns") _check_value(tlog, dut.inout_if.a_in, 0) @contextlib.contextmanager def assert_raises(exc_type): try: yield except exc_type as exc: tlog.info(f" {exc_type.__name__} raised as expected: {exc}") else: raise AssertionError(f"{exc_type.__name__} was not raised") @cocotb.test() async def test_exceptions(dut): """Test that correct Exceptions are raised.""" with assert_raises(TypeError): dut.array_7_downto_4.value = (0xF0, 0xE0, 0xD0, 0xC0) with assert_raises(TypeError): dut.array_4_to_7.value = Exception("Exception Object") with assert_raises(ValueError): dut.array_3_downto_0.value = [0x70, 0x60, 0x50] with assert_raises(ValueError): dut.array_0_to_3.value = [0x40, 0x30, 0x20, 0x10, 0x00]
recipes/Python/577810_Named_Values/recipe-577810.py
tdiprima/code
2,023
50689
class NamedValue: # defining __slots__ in a mixin doesn't play nicely with builtin types # so a low overhead approach would have to use collections.namedtuple # style templated code generation def __new__(cls, *args, **kwds): name, *args = args self = super().__new__(cls, *args, **kwds) self._name = name return self def __init__(self, *args, **kwds): name, *args = args super().__init__(*args, **kwds) @property def __name__(self): return self._name def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, super().__repr__()) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = super() base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__() return base_str() # Example usage >>> class NamedFloat(NamedValue, float): ... pass ... >>> import math >>> tau = NamedFloat('tau', 2*math.pi) >>> tau NamedFloat(tau, 6.283185307179586) >>> print(tau) 6.283185307179586 >>> class NamedList(NamedValue, list): ... pass ... >>> data = NamedList('data', []) >>> data NamedList('data', []) >>> print(data) []
etc/pending_ugens/PulseDivider.py
butayama/supriya
191
50716
import collections from supriya.enums import CalculationRate from supriya.synthdefs import UGen class PulseDivider(UGen): """ :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider PulseDivider.ar() """ ### CLASS VARIABLES ### _ordered_input_names = collections.OrderedDict( 'trigger', 'div', 'start', ) _valid_calculation_rates = None ### INITIALIZER ### def __init__( self, calculation_rate=None, div=2, start=0, trigger=0, ): UGen.__init__( self, calculation_rate=calculation_rate, div=div, start=start, trigger=trigger, ) ### PUBLIC METHODS ### @classmethod def ar( cls, div=2, start=0, trigger=0, ): """ Constructs an audio-rate PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider PulseDivider.ar() Returns ugen graph. """ import supriya.synthdefs calculation_rate = supriya.CalculationRate.AUDIO ugen = cls._new_expanded( calculation_rate=calculation_rate, div=div, start=start, trigger=trigger, ) return ugen @classmethod def kr( cls, div=2, start=0, trigger=0, ): """ Constructs a control-rate PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.kr( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider PulseDivider.kr() Returns ugen graph. """ import supriya.synthdefs calculation_rate = supriya.CalculationRate.CONTROL ugen = cls._new_expanded( calculation_rate=calculation_rate, div=div, start=start, trigger=trigger, ) return ugen ### PUBLIC PROPERTIES ### @property def div(self): """ Gets `div` input of PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider.div 2.0 Returns ugen input. """ index = self._ordered_input_names.index('div') return self._inputs[index] @property def start(self): """ Gets `start` input of PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider.start 0.0 Returns ugen input. """ index = self._ordered_input_names.index('start') return self._inputs[index] @property def trigger(self): """ Gets `trigger` input of PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider.trigger 0.0 Returns ugen input. """ index = self._ordered_input_names.index('trigger') return self._inputs[index]
concepts/listChunking.py
sixtysecondrevit/dynamoPython
114
50736
""" LIST: CHUNKING """ __author__ = '<NAME> - <EMAIL>' __twitter__ = '@solamour' __version__ = '1.0.0' # Example of Chunking (Grouping an item with its next) def chunks(list, number): # Requires a list and a number for index in range(0, len(list), number): # For every # index inside of a number range starting at '0' # and running to the length of the list, with steps # of a chosen 'number' yield list[index : index + number] # Yield returns # a 'generator' object, so we cast the result to a # 'list' and will return 'list slices' ranging from # the chosen 'index' to the chosen 'index' + chosen # 'number' # Exemplar list itemList = [0, 1, 2, 3, 4, 5] # A simple list of numbers to # parse with our 'chunks' definition count = 2 # A number which we want to chunk to. We choose '2' # which will result in sublists of: [[0, 1], [2, 3], [4,5]] chunksList = chunks(itemList, count) # Here we call our new # 'chunks' definition on our 'itemList' and with our 'count' # then push those results to our variable called 'chunksList' OUT = chunksList # Returning our chunked data
src/badgr/datasets/dataset.py
KaiW-53/badgr
110
50749
<filename>src/badgr/datasets/dataset.py class Dataset(object): def __init__(self, env_spec): self._env_spec = env_spec def get_batch(self, batch_size, horizon): raise NotImplementedError def get_batch_iterator(self, batch_size, horizon, randomize_order=False, is_tf=True): raise NotImplementedError
gulp_version.py
FelixBoers/sublime-gulp
138
50757
<gh_stars>100-1000 import re # Workaround for Windows ST2 not having disutils try: from distutils.version import LooseVersion except: # From distutils/version.py class LooseVersion(): component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE) def __init__ (self, vstring=None): if vstring: self.parse(vstring) def __ge__(self, other): c = self._cmp(other) if c is NotImplemented: return c return c >= 0 def parse (self, vstring): self.vstring = vstring components = [x for x in self.component_re.split(vstring) if x and x != '.'] for i, obj in enumerate(components): try: components[i] = int(obj) except ValueError: pass self.version = components def _cmp (self, other): if isinstance(other, str): other = LooseVersion(other) if self.version == other.version: return 0 if self.version < other.version: return -1 if self.version > other.version: return 1 # # Actual class # class GulpVersion(): def __init__(self, version_string): self.version_string = version_string or "" def supports_tasks_simple(self): # This is a mess. The new gulp-cli started from version 0 and does support tasks-simple, # but there's no reliable way to check which one is installed # So here we are, having to check if the CLI version is _not_ between 3.6.0 and 3.7.0 which works..for now cli_version = LooseVersion(self.cli_version()) return cli_version >= LooseVersion("3.7.0") or cli_version <= LooseVersion("3.6.0") def cli_version(self): return self.get("CLI") def local_version(self): return self.get("Local") def get(self, version_name): re_match = re.search(version_name + " version (\d+\.\d+\.\d+)", self.version_string) return re_match.group(1) if re_match else "3.6.0"
pennylane/debugging.py
therooler/pennylane
539
50766
<filename>pennylane/debugging.py # Copyright 2018-2022 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains functionality for debugging quantum programs on simulator devices. """ from pennylane import DeviceError class _Debugger: """A debugging context manager. Without an active debugging context, devices will not save their internal state when encoutering Snapshot operations. The debugger also serves as storage for the device states. Args: dev (Device): device to attach the debugger to """ def __init__(self, dev): if "Snapshot" not in dev.operations: raise DeviceError("Device does not support snapshots.") self.snapshots = {} self.active = False self.device = dev dev._debugger = self def __enter__(self): self.active = True return self def __exit__(self, exc_type, exc_value, exc_traceback): self.active = False self.device._debugger = None def snapshots(qnode): r"""Create a function that retrieves snapshot results from a QNode. Args: qnode (.QNode): the input QNode to be simulated Returns: A function that has the same argument signature as ``qnode`` and returns a dictionary. When called, the function will execute the QNode on the registered device and retrieve the saved snapshots obtained via the ``qml.Snapshot`` operation. Additionally, the snapshot dictionary always contains the execution results of the QNode, so the use of the tag "execution_results" should be avoided to prevent conflicting key names. **Example** .. code-block:: python3 dev = qml.device("default.qubit", wires=2) @qml.qnode(dev, interface=None) def circuit(): qml.Snapshot() qml.Hadamard(wires=0) qml.Snapshot("very_important_state") qml.CNOT(wires=[0, 1]) qml.Snapshot() return qml.expval(qml.PauliX(0)) >>> qml.snapshots(circuit)() {0: array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]), 'very_important_state': array([0.70710678+0.j, 0.+0.j, 0.70710678+0.j, 0.+0.j]), 2: array([0.70710678+0.j, 0.+0.j, 0.+0.j, 0.70710678+0.j]), 'execution_results': array(0.)} """ def get_snapshots(*args, **kwargs): with _Debugger(qnode.device) as dbg: results = qnode(*args, **kwargs) dbg.snapshots["execution_results"] = results return dbg.snapshots return get_snapshots
Covid India Stats App/app.py
avinashkranjan/PraticalPythonProjects
930
50807
import json from flask import Flask, request import requests # Token that has to be generated from webhook page portal ACCESS_TOKEN = "random <PASSWORD>" # Token that has to be added for verification with developer portal VERIFICATION_TOKEN = "abc" # Identifier payloads for initial button C19INDIA = "C19INDIA" app = Flask(__name__) # This get endpoint is for verification with messenger app @app.route('/webhook', methods=['GET']) def webhook(): verify_token = request.args.get("hub.verify_token") if verify_token == VERIFICATION_TOKEN: return request.args.get("hub.challenge") return 'Unable to authorise.' @app.route("/webhook", methods=['POST']) def webhook_handle(): data = request.get_json() if data["object"] == "page": # To verify that the request is being originated from a page for entry in data["entry"]: for event in entry["messaging"]: if event.get("message"): # somebody typed a message process_message(event) # user clicked/tapped "postback" button in earlier message elif event.get("postback"): process_postback(event) return 'ok' def process_message(event): # the facebook ID of the person sending you the message sender_id = event["sender"]["id"] # could receive text or attachment but not both if "text" in event["message"]: send_initial_menu(sender_id) def send_initial_menu(sender_id): message_data = json.dumps({ "recipient": { "id": sender_id }, "message": { "attachment": { "type": "template", "payload": { "template_type": "generic", "elements": [{ "title": "Covid India Stats", "subtitle": "Get the covid19 stats of Indian states", "buttons": [{ "type": "web_url", "url": "https://www.worldometers.info/coronavirus/country/india/", "title": "Open Worldometer India" }, { "type": "postback", "title": "Get Stats By Indian States", "payload": C19INDIA, }], }] } } } }) call_send_api(message_data) def send_state_list(sender_id): message_data = json.dumps({ "recipient": { "id": sender_id }, "message": { "attachment": { "type": "template", "payload": { "template_type": "generic", "elements": [{ "title": "Select State", "buttons": create_state_list(1) }, { "title": "Select State", "buttons": create_state_list(2) }, { "title": "Select State", "buttons": create_state_list(3) }, { "title": "Select State", "buttons": create_state_list(4) }, { "title": "Select State", "buttons": create_state_list(5) }, { "title": "Select State", "buttons": create_state_list(6) }, { "title": "Select State", "buttons": create_state_list(7) }, { "title": "Select State", "buttons": create_state_list(8) }, { "title": "Select State", "buttons": create_state_list(9) }, { "title": "Select State", "buttons": create_state_list(10) }] } } } }) call_send_api(message_data) def create_state_list(index): state_list = ["Maharashtra", "Kerala", "Karnataka", "Andhra Pradesh", "Tamil Nadu", "Delhi", "Uttar Pradesh", "West Bengal", "Odisha", "Rajasthan", "Chhattisgarh", "Telangana", "Haryana", "Gujarat", "Bihar", "Madhya Pradesh", "Assam", "Punjab", "Jharkhand", "Uttarakhand", "Himachal Pradesh", "Goa", "Tripura", "Manipur", "<NAME>", "Meghalaya", "Nagaland", "Sikkim", "Mizoram"] payload_list = [] start_index = 0 + 3 * (index - 1) end_index = 29 if (start_index + 3) > 29 else (start_index + 3) for i in range(start_index, end_index): postback = {} postback["type"] = "postback" postback["title"] = state_list[i] postback["payload"] = state_list[i] payload_list.append(postback) return payload_list def get_stats_send(sender_id, state): response = json.loads(requests.get( "https://api.covid19india.org/data.json").text) list_state = response['statewise'] for i in list_state: if i['state'] == state: x = i break message_data = json.dumps({ "recipient": { "id": sender_id }, "message": { "text": "ACTIVE CASES: {}\nCONFIRMED CASES: {}\nDEATHS: {}\nRECOVERED: {}".format(x['active'], x['confirmed'], x['deaths'], x['recovered']) } }) call_send_api(message_data) def process_postback(event): sender_id = event["sender"]["id"] payload = event["postback"]["payload"] if payload == C19INDIA: send_state_list(sender_id) else: get_stats_send(sender_id, payload) def call_send_api(message_data): params = { "access_token": ACCESS_TOKEN } headers = { "Content-Type": "application/json" } r = requests.post("https://graph.facebook.com/v5.0/me/messages", params=params, headers=headers, data=message_data) if __name__ == "__main__": app.run()
core_scripts/startup_config.py
Nijta/project-NN-Pytorch-scripts
150
50813
<gh_stars>100-1000 #!/usr/bin/env python """ startup_config Startup configuration utilities """ from __future__ import absolute_import import os import sys import torch import importlib import random import numpy as np __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020, Xin Wang" def set_random_seed(random_seed, args=None): """ set_random_seed(random_seed, args=None) Set the random_seed for numpy, python, and cudnn input ----- random_seed: integer random seed args: argue parser """ # initialization torch.manual_seed(random_seed) random.seed(random_seed) np.random.seed(random_seed) os.environ['PYTHONHASHSEED'] = str(random_seed) #For torch.backends.cudnn.deterministic #Note: this default configuration may result in RuntimeError #see https://pytorch.org/docs/stable/notes/randomness.html if args is None: cudnn_deterministic = True cudnn_benchmark = False else: cudnn_deterministic = args.cudnn_deterministic_toggle cudnn_benchmark = args.cudnn_benchmark_toggle if not cudnn_deterministic: print("cudnn_deterministic set to False") if cudnn_benchmark: print("cudnn_benchmark set to True") if torch.cuda.is_available(): torch.cuda.manual_seed_all(random_seed) torch.backends.cudnn.deterministic = cudnn_deterministic torch.backends.cudnn.benchmark = cudnn_benchmark return
tests/test_auth.py
matrixorz/firefly
247
50818
<filename>tests/test_auth.py # coding=utf-8 from __future__ import absolute_import from flask import url_for from flask_login import current_user import pytest from firefly.models.user import User @pytest.mark.usefixtures('client_class') class TestAuth: def setup(self): self.username = 'foo' self.password = '<PASSWORD>' self.email = '<EMAIL>' User.create_user( username=self.username, password=self.password, email=self.email ) def test_register(self): username = 'foo2' email = '<EMAIL>' password = '<PASSWORD>' form = { 'username': username, 'email': email, 'password': password } self.client.post(url_for('home.register'), data=form) assert current_user.is_authenticated() user = User.objects.get(email=email) assert user.check_password(password) def login(self): form = { 'email': self.email, 'password': <PASSWORD> } rv = self.client.post( url_for('home.login'), data=form, follow_redirects=True ) assert current_user.is_authenticated() assert url_for('security.logout') in rv.data def test_logout(self): self.login() self.client.get(url_for('security.logout')) assert not current_user.is_authenticated()
genomepy/plugins/__init__.py
tilschaef/genomepy
146
50846
<reponame>tilschaef/genomepy """Plugin class, modules & related functions""" import os import re from genomepy.config import config __all__ = ["Plugin", "manage_plugins", "get_active_plugins"] class Plugin: """Plugin base class.""" def __init__(self): self.name = convert(type(self).__name__).replace("_plugin", "") self.active = False def activate(self): self.active = True def deactivate(self): self.active = False def after_genome_download(self, genome, threads, force): raise NotImplementedError("plugin should implement this method") def get_properties(self, genome): raise NotImplementedError("plugin should implement this method") def convert(name: str) -> str: """ Convert CamelCase to underscore. e.g. StarPlugin -> star_plugin Parameters ---------- name : str Camelcase string Returns ------- name : str Converted name """ s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def list_plugins() -> list: plugin_dir = os.path.dirname(os.path.realpath(__file__)) plugin_files = [f for f in os.listdir(plugin_dir) if f.endswith(".py")] plugin_names = [f[:-3] for f in plugin_files if not f.startswith("_")] return plugin_names def init_plugins(): """ create a dictionary of plugin instances Returns ------- plugins : dictionary key is plugin name, value Plugin object """ # import plugins for plugin in list_plugins(): __import__(f"genomepy.plugins.{plugin}") # for each Plugin subclass, save an instance to a dict d = {} active_plugins = config.get("plugin", []) for c in Plugin.__subclasses__(): ins = c() if ins.name in active_plugins: ins.activate() d[ins.name] = ins return d PLUGINS = init_plugins() def get_active_plugins() -> list: """Returns all active plugin instances.""" return [inst for name, inst in PLUGINS.items() if inst.active] def activate(name): """Activate plugin. Parameters ---------- name : str Plugin name. """ if name in PLUGINS: PLUGINS[name].activate() else: raise ValueError(f"plugin {name} not found") def deactivate(name): """Deactivate plugin. Parameters ---------- name : str Plugin name. """ if name in PLUGINS: PLUGINS[name].deactivate() else: raise ValueError(f"plugin {name} not found") def show_plugins(): active_plugins = config.get("plugin", []) print("{:20}{}".format("plugin", "enabled")) for plugin in sorted(PLUGINS): print( "{:20}{}".format(plugin, {False: "", True: "*"}[plugin in active_plugins]) ) def manage_plugins(command: str, plugin_names: list = None): """ Manage genomepy plugins Parameters ---------- command : str command to perform. Options: list show plugins and status enable enable plugins disable disable plugins plugin_names : list plugin names for the enable/disable command """ if command in ["show", "list"]: return show_plugins() active_plugins = config.get("plugin", []) for name in plugin_names if plugin_names else []: if name not in PLUGINS: raise ValueError(f"Unknown plugin: '{name}'.") if command in ["enable", "activate"]: [active_plugins.append(name) for name in plugin_names] elif command in ["disable", "deactivate"]: [active_plugins.remove(name) for name in plugin_names] else: raise ValueError( f"Invalid plugin command: '{command}'. Options: 'list', 'enable' or 'disable'." ) active_plugins = sorted(list(set(active_plugins))) config["plugin"] = active_plugins config.save() print(f"Enabled plugins: {', '.join(active_plugins)}")
scripts/loss.py
headupinclouds/LightNet
737
50865
from torch.autograd import Variable import torch.nn.functional as F import scripts.utils as utils import torch.nn as nn import numpy as np import torch class CrossEntropy2d(nn.Module): def __init__(self, size_average=True, ignore_label=255): super(CrossEntropy2d, self).__init__() self.size_average = size_average self.ignore_label = ignore_label def forward(self, predict, target, weight=None): """ Args: predict:(n, c, h, w) target:(n, h, w) weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size "nclasses" """ assert not target.requires_grad assert predict.dim() == 4 assert target.dim() == 3 assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0)) assert predict.size(2) == target.size(1), "{0} vs {1} ".format(predict.size(2), target.size(1)) assert predict.size(3) == target.size(2), "{0} vs {1} ".format(predict.size(3), target.size(3)) n, c, h, w = predict.size() target_mask = (target >= 0) * (target != self.ignore_label) target = target[target_mask] predict = predict.transpose(1, 2).transpose(2, 3).contiguous() predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c) loss = F.cross_entropy(predict, target, weight=weight, size_average=self.size_average) return loss def cross_entropy2d(input, target, weight=None, size_average=True): # 1. input: (n, c, h, w), target: (n, h, w) n, c, h, w = input.size() # 2. log_p: (n, c, h, w) log_p = F.log_softmax(input, dim=1) # 3. log_p: (n*h*w, c) - contiguous() required if transpose() is used before view(). log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0] log_p = log_p.view(-1, c) # 4. target: (n*h*w,) mask = target >= 0 target = target[mask] loss = F.nll_loss(log_p, target, ignore_index=250, weight=weight, size_average=False) if size_average: loss /= mask.data.sum() # loss /= mask.sum().data[0] return loss def bootstrapped_cross_entropy2d(input, target, K, weight=None, size_average=False): """A categorical cross entropy loss for 4D tensors. We assume the following layout: (batch, classes, height, width) Args: input: The outputs. target: The predictions. K: The number of pixels to select in the bootstrapping process. The total number of pixels is determined as 512 * multiplier. Returns: The pixel-bootstrapped cross entropy loss. """ batch_size = input.size()[0] def _bootstrap_xentropy_single(input, target, K, weight=None, size_average=False): n, c, h, w = input.size() # 1. The log softmax. log_p: (n, c, h, w) log_p = F.log_softmax(input, dim=1) # 2. log_p: (n*h*w, c) - contiguous() required if transpose() is used before view(). log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0] log_p = log_p.view(-1, c) # 3. target: (n*h*w,) mask = target >= 0 target = target[mask] loss = F.nll_loss(log_p, target, weight=weight, ignore_index=250, reduce=False, size_average=size_average) # For each element in the batch, collect the top K worst predictions topk_loss, _ = loss.topk(K) reduced_topk_loss = topk_loss.sum() / K return reduced_topk_loss loss = 0.0 # Bootstrap from each image not entire batch for i in range(batch_size): loss += _bootstrap_xentropy_single(input=torch.unsqueeze(input[i], 0), target=torch.unsqueeze(target[i], 0), K=K, weight=weight, size_average=size_average) return loss / float(batch_size) class FocalLoss2D(nn.Module): """ Focal Loss, which is proposed in: "Focal Loss for Dense Object Detection (https://arxiv.org/abs/1708.02002v2)" """ def __init__(self, num_classes=19, ignore_label=250, alpha=0.25, gamma=2, size_average=True): """ Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class]) :param num_classes: (int) num of the classes :param ignore_label: (int) ignore label :param alpha: (1D Tensor or Variable) the scalar factor :param gamma: (float) gamma > 0; reduces the relative loss for well-classified examples (probabilities > .5), putting more focus on hard, mis-classified examples :param size_average: (bool): By default, the losses are averaged over observations for each mini-batch. If the size_average is set to False, the losses are instead summed for each mini-batch. """ super(FocalLoss2D, self).__init__() self.alpha = alpha self.gamma = gamma self.num_classes = num_classes self.ignore_label = ignore_label self.size_average = size_average self.one_hot = Variable(torch.eye(self.num_classes)) def forward(self, cls_preds, cls_targets): """ :param cls_preds: (n, c, h, w) :param cls_targets: (n, h, w) :return: """ assert not cls_targets.requires_grad assert cls_targets.dim() == 3 assert cls_preds.size(0) == cls_targets.size(0), "{0} vs {1} ".format(cls_preds.size(0), cls_targets.size(0)) assert cls_preds.size(2) == cls_targets.size(1), "{0} vs {1} ".format(cls_preds.size(2), cls_targets.size(1)) assert cls_preds.size(3) == cls_targets.size(2), "{0} vs {1} ".format(cls_preds.size(3), cls_targets.size(3)) if cls_preds.is_cuda: self.one_hot = self.one_hot.cuda() n, c, h, w = cls_preds.size() # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 1. target reshape and one-hot encode # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 1.1. target: (n*h*w,) cls_targets = cls_targets.view(n * h * w, 1) target_mask = (cls_targets >= 0) * (cls_targets != self.ignore_label) cls_targets = cls_targets[target_mask] cls_targets = self.one_hot.index_select(dim=0, index=cls_targets) # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 2. compute focal loss for multi-classification # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 2.1. The softmax. prob: (n, c, h, w) prob = F.softmax(cls_preds, dim=1) # 2.2. prob: (n*h*w, c) - contiguous() required if transpose() is used before view(). prob = prob.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) prob = prob[target_mask.repeat(1, c)] prob = prob.view(-1, c) # (n*h*w, c) probs = torch.clamp((prob * cls_targets).sum(1).view(-1, 1), min=1e-8, max=1.0) batch_loss = -self.alpha * (torch.pow((1 - probs), self.gamma)) * probs.log() if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss class SemanticEncodingLoss(nn.Module): def __init__(self, num_classes=19, ignore_label=250, alpha=0.25): super(SemanticEncodingLoss, self).__init__() self.alpha = alpha self.num_classes = num_classes self.ignore_label = ignore_label def unique_encode(self, cls_targets): batch_size, _, _ = cls_targets.size() target_mask = (cls_targets >= 0) * (cls_targets != self.ignore_label) cls_targets = [cls_targets[idx].masked_select(target_mask[idx]) for idx in np.arange(batch_size)] # unique_cls = [np.unique(label.numpy(), return_counts=True) for label in cls_targets] unique_cls = [np.unique(label.numpy()) for label in cls_targets] encode = np.zeros((batch_size, self.num_classes), dtype=np.uint8) for idx in np.arange(batch_size): np.put(encode[idx], unique_cls[idx], 1) return torch.from_numpy(encode).float() def forward(self, predicts, enc_cls_target, size_average=True): se_loss = F.binary_cross_entropy_with_logits(predicts, enc_cls_target, weight=None, size_average=size_average) return self.alpha * se_loss # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Lovasz-Softmax # <NAME> 2018 ESAT-PSI KU Leuven # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / union ious.append(iou) iou = utils.mean(ious) # mean accross images if per_image return 100 * iou def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes) intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / union) ious.append(iou) ious = map(utils.mean, zip(*ious)) # mean accross images if per_image return 100 * np.array(ious) def lovasz_softmax(probas, labels, only_present=False, per_image=False, ignore=None): """ Multi-class Lovasz-Softmax loss probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1) labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) only_present: average only on classes present in ground truth per_image: compute the loss per image instead of per batch ignore: void class labels """ if per_image: loss = utils.mean(lovasz_softmax_flat(*flatten_probas(prob, lab, ignore), only_present=only_present) for prob, lab in zip(probas, labels)) else: loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), only_present=only_present) return loss def lovasz_softmax_flat(probas, labels, only_present=False): """ Multi-class Lovasz-Softmax loss probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) labels: [P] Tensor, ground truth labels (between 0 and C - 1) only_present: average only on classes present in ground truth """ C = probas.size(1) losses = [] for c in range(C): fg = (labels == c).float() # foreground for class c if only_present and fg.sum() == 0: continue errors = (fg - probas[:, c]).abs() errors_sorted, perm = torch.sort(errors, 0, descending=True) perm = perm.data fg_sorted = fg[perm] losses.append(torch.dot(errors_sorted, lovasz_grad(fg_sorted))) return utils.mean(losses) def flatten_probas(scores, labels, ignore=None): """ Flattens predictions in the batch """ B, C, H, W = scores.size() scores = scores.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C labels = labels.view(-1) if ignore is None: return scores, labels valid = (labels != ignore) vscores = scores[valid.nonzero().squeeze()] vlabels = labels[valid] return vscores, vlabels if __name__ == "__main__": from torch.autograd import Variable while True: dummy_in = Variable(torch.randn(2, 3, 32, 32), requires_grad=True) dummy_gt = Variable(torch.LongTensor(2, 32, 32).random_(0, 3)) dummy_in = F.softmax(dummy_in, dim=1) loss = lovasz_softmax(dummy_in, dummy_gt, ignore=255) print(loss.data[0])
examples/demo_DDPG_TD3_SAC.py
Yonv1943/DL_RL_Zoo
129
50869
<gh_stars>100-1000 <<<<<<< HEAD import sys import gym from elegantrl.train.run import train_and_evaluate, train_and_evaluate_mp from elegantrl.train.config import Arguments from elegantrl.agents.AgentDDPG import AgentDDPG from elegantrl.agents.AgentTD3 import AgentTD3 from elegantrl.agents.AgentSAC import AgentSAC, AgentReliableSAC def demo_ddpg_td3_sac(gpu_id, drl_id, env_id): # 2022.02.02 env_name = ['Pendulum-v0', 'Pendulum-v1', 'LunarLanderContinuous-v2', 'BipedalWalker-v3', 'Hopper-v2', 'Humanoid-v3', ][env_id] agent = [AgentDDPG, AgentTD3, AgentSAC, AgentReliableSAC][drl_id] if env_name in {'Pendulum-v0', 'Pendulum-v1'}: from elegantrl.envs.CustomGymEnv import PendulumEnv env = PendulumEnv(env_name, target_return=-500) """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 1.60e+03-1147.49 |-1147.49 179.2 200 0 | -2.61 0.90 0.55 1.00 2 5.84e+04 -121.61 | -121.61 59.0 200 0 | -0.81 0.33 -40.64 0.79 | UsedTime: 132 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 1.60e+03-1267.96 |-1267.96 329.7 200 0 | -2.67 0.88 0.56 1.00 1 8.48e+04 -171.79 | -182.24 63.3 200 0 | -0.30 0.32 -30.75 0.64 1 1.19e+05 -171.79 | -178.25 116.8 200 0 | -0.31 0.16 -22.52 0.43 1 1.34e+05 -164.56 | -164.56 99.1 200 0 | -0.31 0.15 -18.09 0.35 1 1.47e+05 -135.20 | -135.20 92.1 200 0 | -0.31 0.14 -15.65 0.29 | UsedTime: 783 | """ args = Arguments(agent, env) args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0 args.gamma = 0.97 args.target_step = args.max_step * 2 args.eval_times = 2 ** 3 elif env_name == 'LunarLanderContinuous-v2': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 4.25e+03 -143.93 | -143.93 29.6 69 12 | -2.47 1.06 0.13 0.15 2 1.05e+05 170.35 | 170.35 57.9 645 177 | 0.06 1.59 15.93 0.20 2 1.59e+05 170.35 | 80.46 125.0 775 285 | 0.07 1.14 29.92 0.29 2 1.95e+05 221.39 | 221.39 19.7 449 127 | 0.12 1.09 32.16 0.40 | UsedTime: 421 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.26e+03 -139.77 | -139.77 36.7 67 12 | -2.16 11.20 0.12 0.15 1 1.11e+05 -105.09 | -105.09 84.3 821 244 | -0.14 27.60 1.04 0.21 1 2.03e+05 -15.21 | -15.21 22.7 1000 0 | -0.01 17.96 36.95 0.45 1 3.87e+05 59.39 | 54.09 160.7 756 223 | 0.00 16.57 88.99 0.73 1 4.03e+05 59.39 | 56.16 103.5 908 120 | 0.06 16.47 84.27 0.71 1 5.10e+05 186.59 | 186.59 103.6 547 257 | -0.02 12.72 67.97 0.57 1 5.89e+05 226.93 | 226.93 20.0 486 154 | 0.13 9.27 68.29 0.51 | UsedTime: 3407 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.15e+03 -169.01 | -169.01 87.9 110 59 | -2.18 11.86 0.10 0.15 1 1.09e+05 -84.47 | -84.47 80.1 465 293 | -0.30 30.64 -6.29 0.20 1 4.25e+05 -8.33 | -8.33 48.4 994 26 | 0.07 13.51 76.99 0.62 1 4.39e+05 87.29 | 87.29 86.9 892 141 | 0.04 12.76 70.37 0.61 1 5.57e+05 159.17 | 159.17 65.7 721 159 | 0.10 10.31 59.90 0.51 1 5.87e+05 190.09 | 190.09 71.7 577 175 | 0.09 9.45 61.74 0.48 1 6.20e+05 206.74 | 206.74 29.1 497 108 | 0.09 9.21 62.06 0.47 | UsedTime: 4433 | """ # env = gym.make('LunarLanderContinuous-v2') # get_gym_env_args(env=env, if_print=True) env_func = gym.make env_args = {'env_num': 1, 'env_name': 'LunarLanderContinuous-v2', 'max_step': 1000, 'state_dim': 8, 'action_dim': 2, 'if_discrete': False, 'target_return': 200, 'id': 'LunarLanderContinuous-v2'} args = Arguments(agent, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.99 args.eval_times = 2 ** 5 elif env_name == 'BipedalWalker-v3': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 7.51e+03 -111.59 | -111.59 0.2 97 7 | -0.18 4.23 -0.03 0.02 3 1.48e+05 -110.19 | -110.19 1.6 84 30 | -0.59 2.46 3.18 0.03 3 5.02e+05 -31.84 | -102.27 54.0 1359 335 | -0.06 0.85 2.84 0.04 3 1.00e+06 -7.94 | -7.94 73.2 411 276 | -0.17 0.72 1.96 0.03 3 1.04e+06 131.50 | 131.50 168.3 990 627 | 0.06 0.46 1.69 0.04 3 1.11e+06 214.12 | 214.12 146.6 1029 405 | 0.09 0.50 1.63 0.04 3 1.20e+06 308.34 | 308.34 0.7 1106 20 | 0.29 0.72 4.56 0.05 | UsedTime: 8611 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 6.75e+03 -92.44 | -92.44 0.2 120 3 | -0.18 1.94 -0.00 0.02 3 3.95e+05 -37.16 | -37.16 9.2 1600 0 | -0.06 1.90 4.20 0.07 3 6.79e+05 -23.32 | -42.54 90.0 1197 599 | -0.02 0.91 1.57 0.04 3 6.93e+05 46.92 | 46.92 96.9 808 395 | -0.04 0.57 1.34 0.04 3 8.38e+05 118.86 | 118.86 154.5 999 538 | 0.14 1.44 0.75 0.05 3 1.00e+06 225.56 | 225.56 124.1 1207 382 | 0.13 0.72 4.75 0.06 3 1.02e+06 283.37 | 283.37 86.3 1259 245 | 0.14 0.80 3.96 0.06 3 1.19e+06 313.36 | 313.36 0.9 1097 20 | 0.21 0.78 6.80 0.06 | UsedTime: 9354 | SavedDir: ./BipedalWalker-v3_ModSAC_3 ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 6.55e+03 -109.86 | -109.86 4.5 156 30 | -0.06 0.71 -0.01 0.02 3 1.24e+05 -88.28 | -88.28 26.2 475 650 | -0.15 0.15 0.04 0.02 3 3.01e+05 -47.89 | -56.76 21.7 1341 540 | -0.03 0.19 -2.76 0.05 3 3.82e+05 80.89 | 53.79 140.1 983 596 | -0.01 0.18 0.46 0.05 3 4.35e+05 137.70 | 28.54 104.7 936 581 | -0.01 0.21 0.63 0.06 3 4.80e+05 158.71 | 25.54 114.7 524 338 | 0.18 0.17 6.17 0.06 3 5.31e+05 205.81 | 203.27 143.9 1048 388 | 0.14 0.15 4.00 0.06 3 6.93e+05 254.40 | 252.74 121.1 992 280 | 0.21 0.12 7.34 0.06 3 7.11e+05 304.79 | 304.79 73.4 1015 151 | 0.21 0.12 5.69 0.06 | UsedTime: 3215 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 7.08e+03 -106.48 | -106.48 6.0 170 17 | -0.14 0.70 0.03 0.02 1 2.38e+05 -89.62 | -89.62 29.8 775 728 | -0.30 0.31 -13.44 0.04 1 4.12e+05 -33.40 | -34.50 27.6 1342 516 | -0.01 0.20 1.34 0.06 1 5.05e+05 2.54 | -47.29 20.9 1342 516 | 0.02 0.17 0.24 0.05 1 5.43e+05 52.93 | 52.93 107.6 1084 540 | -0.21 0.15 0.32 0.05 1 5.80e+05 138.30 | 136.60 77.6 1460 176 | 0.10 0.16 2.14 0.05 1 6.16e+05 188.98 | 171.72 99.2 1386 305 | 0.12 0.16 -0.40 0.05 1 7.06e+05 250.72 | 231.97 142.9 1247 448 | 0.12 0.13 2.81 0.05 1 8.06e+05 287.28 | -68.06 5.9 211 19 | -0.08 0.12 7.83 0.06 1 8.56e+05 291.10 | 286.19 56.0 1181 63 | 0.17 0.13 6.37 0.06 1 8.83e+05 314.54 | 314.54 1.0 1252 19 | 0.11 0.12 7.23 0.06 | UsedTime: 5008 | """ env_func = gym.make env_args = {'env_num': 1, 'env_name': 'BipedalWalker-v3', 'max_step': 1600, 'state_dim': 24, 'action_dim': 4, 'if_discrete': False, 'target_return': 300, 'id': 'BipedalWalker-v3', } args = Arguments(agent, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.98 args.eval_times = 2 ** 4 elif env_name == 'Hopper-v2': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 5 1.61e+04 131.99 | 131.99 3.6 81 2 | 0.03 0.09 0.03 -0.54 5 2.20e+05 391.44 | 391.44 0.3 158 0 | 0.08 0.01 -0.06 -0.75 5 4.25e+05 860.96 | 860.96 11.9 280 5 | 0.09 0.11 0.12 -0.84 5 6.27e+05 3001.43 | 3001.43 7.9 1000 0 | 0.10 0.78 -0.01 -0.85 5 1.64e+06 3203.09 | 3103.14 0.0 1000 0 | 0.10 1.82 -0.06 -0.76 5 2.86e+06 3256.43 | 3152.72 0.0 1000 0 | 0.10 0.75 0.01 -0.67 5 3.88e+06 3256.43 | 1549.69 0.0 512 0 | 0.10 0.86 0.00 -0.71 | UsedTime: 2565 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 1.60e+04 328.68 | 328.68 6.2 262 6 | 0.02 0.01 -0.02 -0.54 2 2.16e+05 2460.57 | 2460.57 14.3 1000 0 | 0.09 0.86 0.20 -0.74 2 6.22e+05 2789.97 | 2788.28 30.9 1000 0 | 0.10 0.40 -0.11 -1.04 2 1.23e+06 3263.16 | 3216.96 0.0 1000 0 | 0.10 1.06 0.12 -1.05 2 2.46e+06 3378.50 | 3364.02 0.0 1000 0 | 0.11 0.87 0.02 -0.92 2 3.90e+06 3397.88 | 3302.80 0.0 1000 0 | 0.11 0.46 0.01 -0.93 | UsedTime: 2557 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 4 2.41e+04 222.39 | 222.39 1.5 120 1 | 0.94 8.45 0.05 -0.55 4 5.34e+05 344.58 | 344.58 0.4 142 0 | 2.41 1.91 0.02 -0.94 4 8.74e+05 540.69 | 540.69 20.1 180 4 | 2.96 5.82 0.00 -1.10 4 1.39e+06 989.51 | 989.51 2.2 308 2 | 3.20 16.75 0.07 -1.08 4 1.73e+06 3161.60 | 3149.35 0.0 1000 0 | 3.26 43.84 -0.02 -1.08 4 2.06e+06 3367.27 | 3105.77 0.0 1000 0 | 3.32 44.14 0.00 -1.13 4 3.92e+06 3604.42 | 3565.39 0.0 1000 0 | 3.44 30.54 0.04 -1.04 4 5.76e+06 3717.06 | 3607.94 0.0 1000 0 | 3.40 51.92 0.07 -0.95 4 6.26e+06 3840.95 | 3409.25 0.0 1000 0 | 3.32 66.48 -0.02 -0.94 | UsedTime: 6251 | """ env_func = gym.make env_args = { 'env_num': 1, 'env_name': 'Hopper-v2', 'max_step': 1000, 'state_dim': 11, 'action_dim': 3, 'if_discrete': False, 'target_return': 3800., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -4 args.target_step = args.max_step * 2 args.worker_num = 2 args.net_dim = 2 ** 8 args.layer_num = 3 args.batch_size = int(args.net_dim * 2) args.repeat_times = 2 ** 4 args.gamma = 0.99 args.if_allow_break = False args.break_step = int(8e6) elif env_name == 'Humanoid-v3': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -4 args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.coeff_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 8 args.layer_num = 4 args.batch_size = args.net_dim args.repeat_times = 2 ** 1 args.gamma = 0.99 args.if_act_target = False # todo import numpy as np args.target_entropy = np.log(env_args['action_dim']) # todo args.if_allow_break = False args.break_step = int(2e6) elif env_name == 'Humanoid-v3.backup': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -4 args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.coeff_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 8 args.layer_num = 4 args.batch_size = args.net_dim args.repeat_times = 2 ** 1 args.gamma = 0.99 args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 8.07e+03 76.16 | 2 8.07e+03 76.16 | 76.16 0.1 16 0 | 0.30 0.55 -0.11 0.00 2 8.47e+04 226.51 | 2 8.47e+04 226.51 | 226.51 12.0 45 2 | 0.29 0.03 4.31 0.00 2 1.26e+05 330.59 | 2 1.26e+05 330.59 | 330.59 12.2 70 2 | 0.29 0.07 8.89 0.00 2 1.59e+05 502.37 | 2 1.59e+05 502.37 | 502.37 74.8 102 13 | 0.33 0.08 10.22 0.00 2 1.89e+05 502.37 | 271.74 0.0 51 0 | 0.32 0.13 13.05 0.00 2 2.13e+05 502.37 | 263.78 0.0 58 0 | 0.32 0.16 12.73 0.01 2 2.34e+05 502.37 | 333.15 0.0 65 0 | 0.28 0.15 13.12 0.01 2 2.55e+05 502.37 | 480.34 70.0 105 13 | 0.32 0.13 11.47 0.02 2 2.76e+05 538.58 | 2 2.76e+05 538.58 | 538.58 108.7 108 19 | 0.31 0.11 12.34 0.02 2 2.92e+05 538.58 | 357.07 0.0 68 0 | 0.30 0.12 12.55 0.02 2 3.09e+05 538.58 | 401.06 0.0 79 0 | 0.30 0.12 12.48 0.02 2 3.26e+05 538.58 | 359.38 0.0 78 0 | 0.31 0.13 14.05 0.02 2 3.43e+05 538.58 | 415.86 0.0 98 0 | 0.30 0.14 14.95 0.02 2 3.59e+05 538.58 | 427.16 0.0 80 0 | 0.31 0.15 14.31 0.02 2 3.77e+05 538.58 | 486.99 0.0 93 0 | 0.30 0.16 14.94 0.02 2 3.89e+05 538.58 | 462.94 0.0 101 0 | 0.30 0.17 15.75 0.02 2 4.01e+05 538.58 | 419.89 0.0 99 0 | 0.30 0.18 15.39 0.02 2 4.14e+05 538.58 | 479.96 0.0 90 0 | 0.31 0.19 15.36 0.02 2 4.27e+05 538.58 | 537.61 0.0 119 0 | 0.30 0.20 15.81 0.02 2 4.39e+05 538.58 | 363.96 0.0 75 0 | 0.30 0.21 15.95 0.02 2 4.52e+05 538.58 | 535.53 158.0 110 35 | 0.30 0.21 17.68 0.02 2 4.65e+05 538.58 | 434.56 0.0 90 0 | 0.31 0.22 17.65 0.02 2 4.78e+05 538.58 | 421.31 0.0 88 0 | 0.31 0.22 16.96 0.02 2 4.91e+05 538.58 | 372.28 0.0 74 0 | 0.30 0.23 17.25 0.02 2 5.03e+05 538.58 | 455.47 128.7 96 29 | 0.30 0.23 18.11 0.02 2 5.16e+05 538.58 | 428.26 0.0 86 0 | 0.31 0.24 18.75 0.02 2 5.29e+05 538.58 | 316.51 0.0 62 0 | 0.31 0.24 19.18 0.02 2 5.42e+05 615.80 | 2 5.42e+05 615.80 | 615.80 96.7 123 21 | 0.31 0.25 21.45 0.02 2 5.54e+05 826.89 | 2 5.54e+05 826.89 | 826.89 104.2 168 26 | 0.30 0.27 20.43 0.02 2 5.67e+05 826.89 | 450.51 0.0 92 0 | 0.31 0.27 19.76 0.02 2 5.80e+05 826.89 | 498.25 0.0 92 0 | 0.31 0.27 21.87 0.02 2 5.93e+05 826.89 | 815.60 147.8 166 33 | 0.31 0.27 22.05 0.02 2 6.02e+05 826.89 | 699.31 0.0 147 0 | 0.30 0.28 22.44 0.02 2 6.10e+05 826.89 | 643.56 0.0 126 0 | 0.31 0.28 23.44 0.02 2 6.19e+05 826.89 | 167.29 0.0 33 0 | 0.31 0.28 23.14 0.02 2 6.28e+05 826.89 | 367.48 0.0 74 0 | 0.31 0.29 23.11 0.02 2 6.36e+05 826.89 | 658.05 0.0 127 0 | 0.31 0.29 22.56 0.02 2 6.45e+05 826.89 | 746.85 0.0 147 0 | 0.31 0.29 23.29 0.02 2 6.54e+05 826.89 | 767.08 0.0 168 0 | 0.30 0.29 21.61 0.02 2 6.62e+05 826.89 | 736.44 0.0 139 0 | 0.30 0.30 23.38 0.02 2 6.71e+05 826.89 | 436.42 0.0 94 0 | 0.30 0.30 22.17 0.02 2 6.80e+05 826.89 | 634.87 0.0 120 0 | 0.30 0.29 24.19 0.02 2 6.89e+05 826.89 | 595.90 189.0 123 44 | 0.31 0.29 26.35 0.02 2 6.97e+05 826.89 | 567.10 0.0 107 0 | 0.31 0.31 24.67 0.02 2 7.06e+05 826.89 | 595.54 0.0 114 0 | 0.31 0.31 24.35 0.02 2 7.15e+05 826.89 | 399.45 0.0 77 0 | 0.31 0.30 23.58 0.02 2 7.23e+05 826.89 | 434.58 0.0 85 0 | 0.31 0.31 25.30 0.02 2 7.32e+05 826.89 | 446.36 0.0 83 0 | 0.31 0.31 26.40 0.02 2 7.40e+05 826.89 | 537.46 0.0 97 0 | 0.31 0.31 24.95 0.02 2 7.49e+05 826.89 | 671.12 0.0 137 0 | 0.32 0.30 24.95 0.02 2 7.58e+05 826.89 | 453.14 0.0 87 0 | 0.31 0.31 25.86 0.02 2 7.67e+05 826.89 | 691.16 0.0 130 0 | 0.31 0.30 25.07 0.02 2 7.75e+05 1530.83 | 2 7.75e+05 1530.83 | 1530.83 396.3 297 80 | 0.30 0.31 23.88 0.02 2 7.84e+05 1530.83 | 891.09 0.0 180 0 | 0.31 0.30 25.45 0.02 2 7.93e+05 1530.83 | 360.46 0.0 70 0 | 0.31 0.31 26.00 0.02 2 8.01e+05 1530.83 | 452.85 0.0 90 0 | 0.30 0.30 24.52 0.02 2 8.10e+05 1530.83 | 663.09 0.0 131 0 | 0.32 0.30 26.27 0.02 2 8.19e+05 1530.83 | 1212.53 511.4 247 106 | 0.31 0.30 26.67 0.02 2 8.28e+05 1530.83 | 799.14 0.0 151 0 | 0.31 0.30 23.82 0.02 2 8.37e+05 1530.83 | 779.43 0.0 156 0 | 0.31 0.30 25.61 0.02 2 8.45e+05 1530.83 | 631.44 0.0 118 0 | 0.31 0.30 25.03 0.02 2 8.54e+05 1530.83 | 1248.43 0.0 248 0 | 0.31 0.30 25.75 0.02 2 8.63e+05 1530.83 | 928.86 0.0 182 0 | 0.31 0.30 26.13 0.02 2 8.73e+05 1530.83 | 1125.56 0.0 219 0 | 0.31 0.30 26.08 0.02 2 8.82e+05 1530.83 | 698.18 0.0 145 0 | 0.31 0.30 26.49 0.02 2 8.91e+05 1530.83 | 961.80 0.0 212 0 | 0.30 0.30 26.33 0.02 2 9.00e+05 1530.83 | 1174.05 0.0 230 0 | 0.31 0.30 26.08 0.02 2 9.09e+05 1530.83 | 1100.58 0.0 239 0 | 0.31 0.30 27.55 0.02 2 9.18e+05 1868.20 | 2 9.18e+05 1868.20 | 1868.20 164.8 371 30 | 0.30 0.30 26.45 0.02 2 9.28e+05 1868.20 | 1073.36 0.0 201 0 | 0.31 0.30 26.89 0.02 2 9.37e+05 1868.20 | 1205.66 0.0 230 0 | 0.31 0.30 26.77 0.02 2 9.46e+05 1868.20 | 1372.51 0.0 267 0 | 0.31 0.29 28.57 0.02 2 9.56e+05 1868.20 | 798.34 0.0 154 0 | 0.31 0.30 28.85 0.02 2 9.66e+05 1868.20 | 1428.51 788.3 277 150 | 0.32 0.29 27.15 0.02 2 9.75e+05 1868.20 | 608.42 0.0 116 0 | 0.31 0.28 29.42 0.02 2 9.85e+05 1868.20 | 325.33 0.0 64 0 | 0.31 0.29 28.10 0.02 2 9.95e+05 1928.41 | 2 9.95e+05 1928.41 | 1928.41 822.3 379 159 | 0.32 0.29 29.61 0.02 2 1.00e+06 1928.41 | 1149.56 0.0 226 0 | 0.31 0.29 28.76 0.02 2 1.01e+06 1928.41 | 1721.60 0.0 345 0 | 0.31 0.28 28.38 0.02 2 1.02e+06 1928.41 | 1185.92 0.0 223 0 | 0.32 0.29 27.91 0.02 2 1.03e+06 1928.41 | 1233.72 0.0 244 0 | 0.31 0.28 28.91 0.02 2 1.04e+06 1928.41 | 1551.67 0.0 303 0 | 0.31 0.28 29.68 0.02 2 1.05e+06 1928.41 | 978.83 0.0 192 0 | 0.31 0.28 28.76 0.02 2 1.06e+06 2257.10 | 2 1.06e+06 2257.10 | 2257.10 674.7 421 120 | 0.31 0.28 29.41 0.02 2 1.07e+06 2257.10 | 2150.05 0.0 401 0 | 0.32 0.28 29.53 0.02 2 1.08e+06 2257.10 | 775.42 0.0 149 0 | 0.31 0.28 29.71 0.02 2 1.09e+06 2257.10 | 681.05 0.0 134 0 | 0.31 0.28 29.51 0.02 2 1.10e+06 2257.10 | 1053.45 0.0 209 0 | 0.31 0.28 28.97 0.02 2 1.11e+06 2257.10 | 850.63 0.0 170 0 | 0.31 0.27 29.28 0.02 2 1.12e+06 2257.10 | 1736.51 0.0 344 0 | 0.31 0.28 30.47 0.02 2 1.13e+06 2257.10 | 1936.67 0.0 370 0 | 0.32 0.27 29.64 0.02 2 1.14e+06 2257.10 | 2247.72 1388.4 426 262 | 0.31 0.26 30.76 0.02 2 1.15e+06 2825.53 | 2 1.15e+06 2825.53 | 2825.53 1191.8 556 232 | 0.32 0.26 30.33 0.02 2 1.16e+06 2825.53 | 2546.58 1666.1 498 332 | 0.32 0.27 30.56 0.02 2 1.17e+06 2825.53 | 850.81 0.0 166 0 | 0.32 0.26 29.23 0.01 2 1.18e+06 2825.53 | 1411.25 0.0 280 0 | 0.32 0.26 28.02 0.01 2 1.19e+06 2825.53 | 538.52 0.0 109 0 | 0.32 0.26 31.44 0.01 2 1.19e+06 2825.53 | 2693.81 0.0 508 0 | 0.31 0.26 30.05 0.01 2 1.20e+06 2978.43 | 2 1.20e+06 2978.43 | 2978.43 1663.4 573 317 | 0.32 0.25 30.95 0.01 2 1.20e+06 3575.62 | 2 1.20e+06 3575.62 | 3575.62 1612.5 694 314 | 0.31 0.26 31.57 0.01 2 1.21e+06 3575.62 | 993.93 0.0 186 0 | 0.32 0.25 29.87 0.01 2 1.21e+06 3575.62 | 1999.92 0.0 392 0 | 0.31 0.26 30.52 0.01 2 1.22e+06 3575.62 | 889.42 0.0 171 0 | 0.33 0.25 30.81 0.01 2 1.22e+06 3575.62 | 3405.88 1731.5 668 338 | 0.32 0.25 31.85 0.01 2 1.23e+06 3575.62 | 892.11 0.0 168 0 | 0.32 0.25 31.85 0.01 2 1.23e+06 3575.62 | 778.46 0.0 147 0 | 0.32 0.25 31.28 0.01 2 1.24e+06 3575.62 | 1535.40 0.0 310 0 | 0.32 0.25 31.43 0.01 2 1.24e+06 3575.62 | 2843.25 1210.4 554 243 | 0.32 0.25 29.70 0.01 2 1.25e+06 3575.62 | 3353.49 0.0 631 0 | 0.31 0.25 30.64 0.01 2 1.25e+06 3575.62 | 883.32 0.0 170 0 | 0.32 0.25 31.49 0.01 2 1.26e+06 3575.62 | 3092.77 1210.6 606 226 | 0.32 0.25 31.16 0.01 2 1.26e+06 3575.62 | 569.80 0.0 112 0 | 0.32 0.24 31.06 0.01 2 1.27e+06 3575.62 | 1041.53 0.0 197 0 | 0.31 0.24 31.33 0.01 2 1.28e+06 3575.62 | 3255.92 0.0 638 0 | 0.33 0.24 30.84 0.01 2 1.28e+06 3575.62 | 2279.13 0.0 434 0 | 0.33 0.24 33.50 0.01 2 1.29e+06 3575.62 | 559.01 0.0 107 0 | 0.32 0.24 32.44 0.01 2 1.29e+06 3575.62 | 3277.19 0.0 649 0 | 0.32 0.25 32.05 0.01 2 1.29e+06 3575.62 | 1050.02 0.0 204 0 | 0.33 0.24 31.84 0.01 2 1.30e+06 3575.62 | 715.11 0.0 138 0 | 0.32 0.24 32.69 0.01 2 1.31e+06 3575.62 | 569.46 0.0 111 0 | 0.32 0.24 31.83 0.01 2 1.31e+06 3575.62 | 948.73 0.0 180 0 | 0.33 0.25 32.41 0.01 2 1.31e+06 3575.62 | 1140.72 0.0 224 0 | 0.33 0.24 30.14 0.01 2 1.32e+06 3575.62 | 1303.37 0.0 249 0 | 0.32 0.24 30.97 0.01 2 1.32e+06 3575.62 | 2585.92 0.0 511 0 | 0.33 0.24 30.48 0.01 2 1.33e+06 4376.07 | 2 1.33e+06 4376.07 | 4376.07 1031.6 854 199 | 0.33 0.24 31.88 0.01 2 1.34e+06 4376.07 | 2329.53 0.0 447 0 | 0.32 0.24 31.45 0.01 2 1.34e+06 4376.07 | 2766.31 1240.2 565 254 | 0.32 0.24 32.76 0.01 2 1.35e+06 4376.07 | 3559.24 0.0 672 0 | 0.32 0.24 32.08 0.01 2 1.35e+06 4376.07 | 2982.04 1761.5 557 330 | 0.31 0.24 31.67 0.01 2 1.36e+06 4376.07 | 1431.25 0.0 282 0 | 0.32 0.23 31.13 0.01 2 1.36e+06 4376.07 | 1818.30 0.0 373 0 | 0.32 0.24 30.68 0.01 2 1.37e+06 4376.07 | 911.64 0.0 167 0 | 0.33 0.24 31.94 0.01 2 1.37e+06 4376.07 | 2429.27 0.0 442 0 | 0.32 0.24 31.20 0.01 2 1.38e+06 4376.07 | 1491.57 0.0 294 0 | 0.33 0.23 31.37 0.01 2 1.38e+06 4376.07 | 1535.84 0.0 294 0 | 0.33 0.22 32.09 0.01 2 1.39e+06 4376.07 | 1724.81 0.0 331 0 | 0.33 0.24 31.07 0.01 2 1.39e+06 4376.07 | 1426.36 0.0 273 0 | 0.33 0.23 32.00 0.01 2 1.40e+06 4376.07 | 2066.45 1369.6 401 264 | 0.33 0.23 33.17 0.01 2 1.40e+06 4376.07 | 1078.23 0.0 210 0 | 0.33 0.23 31.05 0.01 2 1.41e+06 4376.07 | 1217.95 0.0 256 0 | 0.33 0.23 32.79 0.01 2 1.41e+06 4376.07 | 1394.94 0.0 270 0 | 0.33 0.23 33.30 0.01 2 1.42e+06 4376.07 | 3662.75 0.0 688 0 | 0.33 0.23 34.01 0.01 2 1.42e+06 4376.07 | 3106.36 0.0 595 0 | 0.32 0.23 32.38 0.01 2 1.43e+06 4376.07 | 3703.49 0.0 705 0 | 0.33 0.23 33.98 0.01 2 1.43e+06 4376.07 | 1284.99 0.0 240 0 | 0.33 0.22 33.41 0.01 2 1.44e+06 4376.07 | 2499.82 0.0 479 0 | 0.33 0.23 31.52 0.01 2 1.44e+06 4376.07 | 4095.95 1608.4 780 308 | 0.33 0.22 31.57 0.01 2 1.45e+06 4376.07 | 1376.74 0.0 268 0 | 0.33 0.22 34.45 0.01 2 1.45e+06 4376.07 | 1529.86 0.0 293 0 | 0.33 0.23 33.78 0.01 2 1.46e+06 4376.07 | 2346.18 0.0 472 0 | 0.33 0.23 33.08 0.01 2 1.46e+06 4376.07 | 1454.02 0.0 278 0 | 0.33 0.22 31.71 0.01 2 1.47e+06 4376.07 | 4071.25 0.0 775 0 | 0.32 0.22 32.64 0.01 2 1.47e+06 4376.07 | 4041.26 1121.8 774 226 | 0.33 0.23 32.98 0.01 2 1.48e+06 4376.07 | 2339.81 0.0 470 0 | 0.33 0.23 34.03 0.01 2 1.48e+06 4376.07 | 3188.20 1323.7 610 249 | 0.33 0.22 31.73 0.01 2 1.49e+06 4376.07 | 1301.07 0.0 270 0 | 0.33 0.22 33.16 0.01 2 1.49e+06 4376.07 | 2600.90 1531.0 535 298 | 0.33 0.22 32.24 0.01 2 1.50e+06 4376.07 | 2169.64 0.0 433 0 | 0.32 0.22 32.96 0.01 2 1.51e+06 4376.07 | 1137.47 0.0 221 0 | 0.33 0.22 34.14 0.01 2 1.51e+06 4376.07 | 3703.59 1616.3 704 305 | 0.33 0.22 32.40 0.01 2 1.52e+06 4376.07 | 2139.60 0.0 406 0 | 0.33 0.21 32.47 0.01 2 1.52e+06 4376.07 | 4352.19 1187.4 811 229 | 0.34 0.22 33.02 0.01 2 1.53e+06 4376.07 | 2650.12 1653.3 486 297 | 0.33 0.22 33.92 0.01 2 1.53e+06 4376.07 | 1533.19 0.0 303 0 | 0.34 0.21 31.45 0.01 2 1.54e+06 4376.07 | 780.99 0.0 146 0 | 0.33 0.21 32.48 0.01 2 1.54e+06 4376.07 | 2626.05 0.0 509 0 | 0.33 0.21 33.91 0.01 2 1.55e+06 4376.07 | 4370.40 0.0 823 0 | 0.33 0.21 31.92 0.01 2 1.55e+06 4376.07 | 1506.31 0.0 297 0 | 0.33 0.22 33.49 0.01 2 1.56e+06 4376.07 | 2899.16 1496.5 554 282 | 0.33 0.21 32.71 0.01 2 1.56e+06 4376.07 | 1198.79 0.0 236 0 | 0.34 0.20 34.19 0.01 2 1.57e+06 4376.07 | 4314.28 1905.6 795 350 | 0.33 0.21 32.53 0.01 2 1.57e+06 4376.07 | 932.14 0.0 185 0 | 0.33 0.20 32.61 0.01 2 1.58e+06 4376.07 | 3710.02 0.0 680 0 | 0.33 0.21 33.56 0.01 2 1.58e+06 4376.07 | 1788.02 0.0 334 0 | 0.33 0.20 32.80 0.01 2 1.59e+06 4376.07 | 2178.98 0.0 405 0 | 0.33 0.20 35.01 0.01 2 1.59e+06 4661.43 | 2 1.59e+06 4661.43 | 4661.43 1205.4 870 225 | 0.33 0.21 34.16 0.01 2 1.60e+06 4661.43 | 4636.75 1363.6 856 249 | 0.34 0.20 32.75 0.01 2 1.60e+06 4661.43 | 3285.64 0.0 641 0 | 0.34 0.20 34.36 0.01 2 1.61e+06 4661.43 | 3996.92 0.0 746 0 | 0.33 0.20 32.96 0.01 2 1.61e+06 4808.85 | 2 1.61e+06 4808.85 | 4808.85 858.2 905 165 | 0.32 0.20 32.36 0.01 2 1.62e+06 4808.85 | 3711.65 1420.6 712 269 | 0.33 0.20 33.59 0.01 2 1.62e+06 4808.85 | 2343.89 0.0 433 0 | 0.32 0.20 33.83 0.01 2 1.63e+06 4808.85 | 3650.32 1767.0 675 326 | 0.33 0.19 33.05 0.01 2 1.64e+06 4808.85 | 1539.43 0.0 279 0 | 0.33 0.19 34.10 0.01 2 1.64e+06 4808.85 | 3677.19 1948.3 664 352 | 0.34 0.19 34.59 0.01 2 1.65e+06 4808.85 | 2687.31 0.0 496 0 | 0.33 0.20 33.47 0.01 2 1.65e+06 4808.85 | 1542.33 0.0 290 0 | 0.33 0.19 33.24 0.01 2 1.66e+06 4808.85 | 867.88 0.0 173 0 | 0.34 0.19 34.27 0.01 2 1.66e+06 4808.85 | 3085.34 1711.3 579 322 | 0.34 0.20 33.70 0.01 2 1.67e+06 4808.85 | 1687.58 0.0 323 0 | 0.33 0.20 34.93 0.01 2 1.67e+06 4808.85 | 4066.38 1268.1 742 228 | 0.34 0.19 32.41 0.01 2 1.68e+06 4808.85 | 452.65 0.0 91 0 | 0.33 0.20 33.70 0.01 2 1.68e+06 4808.85 | 3018.52 0.0 558 0 | 0.34 0.21 34.58 0.01 2 1.69e+06 4808.85 | 430.01 0.0 102 0 | 0.33 0.35 38.89 0.02 2 1.69e+06 4808.85 | 472.74 0.0 109 0 | 0.33 0.40 44.93 0.03 2 1.70e+06 4808.85 | 628.25 0.0 136 0 | 0.31 0.32 44.62 0.02 2 1.70e+06 4808.85 | 812.73 0.0 167 0 | 0.28 0.27 42.12 0.01 2 1.70e+06 4808.85 | 1707.97 0.0 327 0 | 0.31 0.24 39.53 0.01 2 1.71e+06 4808.85 | 1819.14 0.0 339 0 | 0.32 0.23 36.88 0.01 2 1.72e+06 4808.85 | 2053.70 0.0 388 0 | 0.33 0.21 35.72 0.01 2 1.72e+06 4808.85 | 2262.07 0.0 419 0 | 0.33 0.21 33.69 0.01 2 1.72e+06 4808.85 | 787.00 0.0 153 0 | 0.33 0.20 35.14 0.01 2 1.73e+06 4808.85 | 1620.02 0.0 309 0 | 0.34 0.20 33.92 0.01 2 1.74e+06 4808.85 | 2368.23 0.0 447 0 | 0.33 0.20 34.85 0.01 2 1.74e+06 4846.42 | 2 1.74e+06 4846.42 | 4846.42 581.3 906 110 | 0.33 0.19 34.40 0.01 2 1.75e+06 4846.42 | 752.17 0.0 150 0 | 0.34 0.19 33.20 0.01 2 1.75e+06 4846.42 | 3085.69 2158.1 576 395 | 0.34 0.19 34.28 0.01 2 1.76e+06 4846.42 | 381.14 0.0 71 0 | 0.34 0.20 33.92 0.01 2 1.76e+06 4846.42 | 3684.18 0.0 693 0 | 0.34 0.19 34.47 0.01 2 1.77e+06 5436.18 | 2 1.77e+06 5436.18 | 5436.18 35.3 1000 0 | 0.33 0.19 34.15 0.01 2 1.77e+06 5436.18 | 5327.19 0.0 1000 0 | 0.34 0.19 33.98 0.01 2 1.78e+06 5436.18 | 4729.78 0.0 857 0 | 0.34 0.20 34.32 0.01 2 1.78e+06 5578.46 | 2 1.78e+06 5578.46 | 5578.46 86.6 1000 0 | 0.34 0.19 34.41 0.01 2 1.79e+06 5578.46 | 2561.99 0.0 473 0 | 0.34 0.19 34.08 0.01 2 1.79e+06 5578.46 | 5432.93 0.0 1000 0 | 0.35 0.19 34.19 0.01 2 1.80e+06 5578.46 | 1247.43 0.0 232 0 | 0.34 0.19 34.27 0.01 2 1.80e+06 5578.46 | 3227.15 0.0 598 0 | 0.35 0.18 35.06 0.01 2 1.81e+06 5578.46 | 3294.27 0.0 610 0 | 0.35 0.18 34.52 0.01 2 1.81e+06 5578.46 | 5424.16 0.0 1000 0 | 0.33 0.18 34.81 0.01 2 1.82e+06 5578.46 | 5410.13 0.0 1000 0 | 0.34 0.18 34.04 0.01 2 1.82e+06 5578.46 | 2406.91 0.0 454 0 | 0.34 0.18 35.67 0.01 2 1.83e+06 5578.46 | 5494.68 0.0 1000 0 | 0.34 0.18 35.15 0.01 2 1.83e+06 5578.46 | 2468.08 0.0 535 0 | 0.34 0.19 34.65 0.01 2 1.84e+06 5578.46 | 3286.31 0.0 633 0 | 0.34 0.19 34.83 0.01 2 1.84e+06 5578.46 | 5295.30 0.0 1000 0 | 0.33 0.19 33.75 0.01 2 1.85e+06 5578.46 | 1098.72 0.0 216 0 | 0.34 0.18 35.00 0.01 2 1.85e+06 5578.46 | 2036.09 0.0 381 0 | 0.34 0.18 34.08 0.01 2 1.86e+06 5578.46 | 704.63 0.0 135 0 | 0.34 0.18 32.72 0.01 2 1.86e+06 5578.46 | 5437.36 0.0 1000 0 | 0.33 0.18 35.17 0.01 2 1.87e+06 5578.46 | 1882.41 0.0 352 0 | 0.34 0.18 33.29 0.01 2 1.87e+06 5578.46 | 2585.14 0.0 453 0 | 0.34 0.18 34.44 0.01 2 1.88e+06 5578.46 | 3676.13 0.0 674 0 | 0.34 0.18 33.99 0.01 2 1.88e+06 5578.46 | 2395.74 0.0 438 0 | 0.34 0.18 34.04 0.01 2 1.89e+06 5578.46 | 1226.04 0.0 241 0 | 0.34 0.17 34.84 0.01 2 1.89e+06 5578.46 | 5255.36 0.0 1000 0 | 0.34 0.18 33.56 0.01 2 1.90e+06 5578.46 | 5571.49 0.0 1000 0 | 0.35 0.17 34.05 0.01 2 1.90e+06 5578.46 | 3593.36 0.0 716 0 | 0.34 0.18 33.59 0.01 2 1.91e+06 5578.46 | 5293.41 0.0 1000 0 | 0.35 0.18 34.38 0.01 2 1.91e+06 5578.46 | 4169.86 0.0 795 0 | 0.33 0.18 34.22 0.01 2 1.92e+06 5578.46 | 3631.33 0.0 647 0 | 0.34 0.17 34.96 0.01 2 1.92e+06 5578.46 | 5460.01 0.0 1000 0 | 0.35 0.17 34.32 0.01 2 1.93e+06 5578.46 | 5410.56 0.0 1000 0 | 0.35 0.17 33.34 0.01 2 1.93e+06 5578.46 | 5460.13 0.0 1000 0 | 0.34 0.17 33.90 0.01 2 1.94e+06 5578.46 | 2817.41 0.0 537 0 | 0.34 0.18 34.36 0.01 2 1.94e+06 5578.46 | 1858.92 0.0 339 0 | 0.35 0.17 34.96 0.01 2 1.95e+06 5578.46 | 2207.20 0.0 418 0 | 0.34 0.17 35.02 0.01 2 1.95e+06 5578.46 | 2759.04 0.0 523 0 | 0.35 0.17 35.04 0.01 2 1.96e+06 5578.46 | 5266.78 0.0 940 0 | 0.35 0.17 33.96 0.01 2 1.96e+06 5578.46 | 1092.09 0.0 203 0 | 0.34 0.18 33.64 0.01 2 1.97e+06 5578.46 | 2487.55 0.0 446 0 | 0.34 0.26 37.81 0.02 2 1.97e+06 5578.46 | 2313.96 0.0 420 0 | 0.34 0.23 40.44 0.01 2 1.98e+06 5606.16 | 2 1.98e+06 5606.16 | 5606.16 51.8 1000 0 | 0.32 0.21 38.85 0.01 2 1.98e+06 5606.16 | 3925.41 0.0 696 0 | 0.34 0.19 37.93 0.01 2 1.99e+06 5606.16 | 5475.95 0.0 1000 0 | 0.35 0.18 35.79 0.01 2 1.99e+06 5606.16 | 2794.34 0.0 516 0 | 0.36 0.19 34.80 0.01 2 2.00e+06 5606.16 | 5602.57 0.0 1000 0 | 0.35 0.17 34.41 0.01 2 2.00e+06 5606.16 | 5382.77 326.0 968 56 | 0.35 0.18 35.26 0.01 | UsedTime: 45183 | SavedDir: ./Humanoid-v3_ReliableSAC_2 | Learner: Save in ./Humanoid-v3_ReliableSAC_2 """ else: raise ValueError('env_name:', env_name) args.learner_gpus = gpu_id args.random_seed += gpu_id if_check = 0 if if_check: train_and_evaluate(args) else: train_and_evaluate_mp(args) if __name__ == '__main__': GPU_ID = int(sys.argv[1]) if len(sys.argv) > 1 else 0 # >=0 means GPU ID, -1 means CPU DRL_ID = int(sys.argv[2]) if len(sys.argv) > 2 else 3 ENV_ID = int(sys.argv[3]) if len(sys.argv) > 3 else 1 demo_ddpg_td3_sac(GPU_ID, DRL_ID, ENV_ID) ======= import sys import gym from elegantrl.train.run import train_and_evaluate, train_and_evaluate_mp from elegantrl.train.config import Arguments from elegantrl.agents.AgentDDPG import AgentDDPG, AgentDDPGHterm from elegantrl.agents.AgentTD3 import AgentTD3 from elegantrl.agents.AgentSAC import AgentSAC, AgentReSAC, AgentReSACHterm, AgentReSACHtermK def demo_ddpg_td3_sac(gpu_id, drl_id, env_id): # 2022.02.02 env_name = ['Pendulum-v0', 'Pendulum-v1', 'LunarLanderContinuous-v2', 'BipedalWalker-v3', 'Hopper-v2', 'HalfCheetah-v2' 'Humanoid-v3', ][env_id] agent = [AgentDDPG, AgentTD3, AgentSAC, AgentReSAC][drl_id] if env_name in {'Pendulum-v0', 'Pendulum-v1'}: from elegantrl.envs.CustomGymEnv import PendulumEnv env = PendulumEnv(env_name, target_return=-500) """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 1.60e+03-1147.49 |-1147.49 179.2 200 0 | -2.61 0.90 0.55 1.00 2 5.84e+04 -121.61 | -121.61 59.0 200 0 | -0.81 0.33 -40.64 0.79 | UsedTime: 132 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 1.60e+03-1267.96 |-1267.96 329.7 200 0 | -2.67 0.88 0.56 1.00 1 8.48e+04 -171.79 | -182.24 63.3 200 0 | -0.30 0.32 -30.75 0.64 1 1.19e+05 -171.79 | -178.25 116.8 200 0 | -0.31 0.16 -22.52 0.43 1 1.34e+05 -164.56 | -164.56 99.1 200 0 | -0.31 0.15 -18.09 0.35 1 1.47e+05 -135.20 | -135.20 92.1 200 0 | -0.31 0.14 -15.65 0.29 | UsedTime: 783 | """ args = Arguments(agent, env) args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0 args.gamma = 0.97 args.target_step = args.max_step * 2 args.eval_times = 2 ** 3 elif env_name == 'LunarLanderContinuous-v2': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 4.25e+03 -143.93 | -143.93 29.6 69 12 | -2.47 1.06 0.13 0.15 2 1.05e+05 170.35 | 170.35 57.9 645 177 | 0.06 1.59 15.93 0.20 2 1.59e+05 170.35 | 80.46 125.0 775 285 | 0.07 1.14 29.92 0.29 2 1.95e+05 221.39 | 221.39 19.7 449 127 | 0.12 1.09 32.16 0.40 | UsedTime: 421 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.26e+03 -139.77 | -139.77 36.7 67 12 | -2.16 11.20 0.12 0.15 1 1.11e+05 -105.09 | -105.09 84.3 821 244 | -0.14 27.60 1.04 0.21 1 2.03e+05 -15.21 | -15.21 22.7 1000 0 | -0.01 17.96 36.95 0.45 1 3.87e+05 59.39 | 54.09 160.7 756 223 | 0.00 16.57 88.99 0.73 1 4.03e+05 59.39 | 56.16 103.5 908 120 | 0.06 16.47 84.27 0.71 1 5.10e+05 186.59 | 186.59 103.6 547 257 | -0.02 12.72 67.97 0.57 1 5.89e+05 226.93 | 226.93 20.0 486 154 | 0.13 9.27 68.29 0.51 | UsedTime: 3407 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.15e+03 -169.01 | -169.01 87.9 110 59 | -2.18 11.86 0.10 0.15 1 1.09e+05 -84.47 | -84.47 80.1 465 293 | -0.30 30.64 -6.29 0.20 1 4.25e+05 -8.33 | -8.33 48.4 994 26 | 0.07 13.51 76.99 0.62 1 4.39e+05 87.29 | 87.29 86.9 892 141 | 0.04 12.76 70.37 0.61 1 5.57e+05 159.17 | 159.17 65.7 721 159 | 0.10 10.31 59.90 0.51 1 5.87e+05 190.09 | 190.09 71.7 577 175 | 0.09 9.45 61.74 0.48 1 6.20e+05 206.74 | 206.74 29.1 497 108 | 0.09 9.21 62.06 0.47 | UsedTime: 4433 | """ env_func = gym.make env_args = {'env_num': 1, 'env_name': 'LunarLanderContinuous-v2', 'max_step': 1000, 'state_dim': 8, 'action_dim': 2, 'if_discrete': False, 'target_return': 200, 'id': 'LunarLanderContinuous-v2'} args = Arguments(agent, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.99 args.eval_times = 2 ** 5 elif env_name == 'BipedalWalker-v3': env_func = gym.make env_args = {'env_num': 1, 'env_name': 'BipedalWalker-v3', 'max_step': 1600, 'state_dim': 24, 'action_dim': 4, 'if_discrete': False, 'target_return': 300, 'id': 'BipedalWalker-v3', } args = Arguments(agent, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.98 args.eval_times = 2 ** 4 """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 7.51e+03 -111.59 | -111.59 0.2 97 7 | -0.18 4.23 -0.03 0.02 3 1.48e+05 -110.19 | -110.19 1.6 84 30 | -0.59 2.46 3.18 0.03 3 5.02e+05 -31.84 | -102.27 54.0 1359 335 | -0.06 0.85 2.84 0.04 3 1.00e+06 -7.94 | -7.94 73.2 411 276 | -0.17 0.72 1.96 0.03 3 1.04e+06 131.50 | 131.50 168.3 990 627 | 0.06 0.46 1.69 0.04 3 1.11e+06 214.12 | 214.12 146.6 1029 405 | 0.09 0.50 1.63 0.04 3 1.20e+06 308.34 | 308.34 0.7 1106 20 | 0.29 0.72 4.56 0.05 | UsedTime: 8611 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 6.75e+03 -92.44 | -92.44 0.2 120 3 | -0.18 1.94 -0.00 0.02 3 3.95e+05 -37.16 | -37.16 9.2 1600 0 | -0.06 1.90 4.20 0.07 3 6.79e+05 -23.32 | -42.54 90.0 1197 599 | -0.02 0.91 1.57 0.04 3 6.93e+05 46.92 | 46.92 96.9 808 395 | -0.04 0.57 1.34 0.04 3 8.38e+05 118.86 | 118.86 154.5 999 538 | 0.14 1.44 0.75 0.05 3 1.00e+06 225.56 | 225.56 124.1 1207 382 | 0.13 0.72 4.75 0.06 3 1.02e+06 283.37 | 283.37 86.3 1259 245 | 0.14 0.80 3.96 0.06 3 1.19e+06 313.36 | 313.36 0.9 1097 20 | 0.21 0.78 6.80 0.06 | UsedTime: 9354 | SavedDir: ./BipedalWalker-v3_ModSAC_3 ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 6.55e+03 -109.86 | -109.86 4.5 156 30 | -0.06 0.71 -0.01 0.02 3 1.24e+05 -88.28 | -88.28 26.2 475 650 | -0.15 0.15 0.04 0.02 3 3.01e+05 -47.89 | -56.76 21.7 1341 540 | -0.03 0.19 -2.76 0.05 3 3.82e+05 80.89 | 53.79 140.1 983 596 | -0.01 0.18 0.46 0.05 3 4.35e+05 137.70 | 28.54 104.7 936 581 | -0.01 0.21 0.63 0.06 3 4.80e+05 158.71 | 25.54 114.7 524 338 | 0.18 0.17 6.17 0.06 3 5.31e+05 205.81 | 203.27 143.9 1048 388 | 0.14 0.15 4.00 0.06 3 6.93e+05 254.40 | 252.74 121.1 992 280 | 0.21 0.12 7.34 0.06 3 7.11e+05 304.79 | 304.79 73.4 1015 151 | 0.21 0.12 5.69 0.06 | UsedTime: 3215 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 7.08e+03 -106.48 | -106.48 6.0 170 17 | -0.14 0.70 0.03 0.02 1 2.38e+05 -89.62 | -89.62 29.8 775 728 | -0.30 0.31 -13.44 0.04 1 4.12e+05 -33.40 | -34.50 27.6 1342 516 | -0.01 0.20 1.34 0.06 1 5.05e+05 2.54 | -47.29 20.9 1342 516 | 0.02 0.17 0.24 0.05 1 5.43e+05 52.93 | 52.93 107.6 1084 540 | -0.21 0.15 0.32 0.05 1 5.80e+05 138.30 | 136.60 77.6 1460 176 | 0.10 0.16 2.14 0.05 1 6.16e+05 188.98 | 171.72 99.2 1386 305 | 0.12 0.16 -0.40 0.05 1 7.06e+05 250.72 | 231.97 142.9 1247 448 | 0.12 0.13 2.81 0.05 1 8.06e+05 287.28 | -68.06 5.9 211 19 | -0.08 0.12 7.83 0.06 1 8.56e+05 291.10 | 286.19 56.0 1181 63 | 0.17 0.13 6.37 0.06 1 8.83e+05 314.54 | 314.54 1.0 1252 19 | 0.11 0.12 7.23 0.06 | UsedTime: 5008 | """ """ | Arguments Remove cwd: ./BipedalWalker-v3_ReliableSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 7.27e+03 -117.98 | 2 7.27e+03 -117.98 | -117.98 2.5 43 6 | -0.09 0.62 0.03 0.02 2 1.03e+05 -102.54 | 2 1.03e+05 -102.54 | -102.54 2.3 71 6 | -0.97 0.11 -1.68 0.02 2 1.51e+05 -46.60 | 2 1.51e+05 -46.60 | -46.60 8.4 1600 0 | -0.05 0.62 -8.64 0.07 2 1.89e+05 -41.07 | 2 1.89e+05 -41.07 | -41.07 0.0 1600 0 | -0.08 0.36 0.74 0.05 2 2.20e+05 -30.91 | 2 2.20e+05 -30.91 | -30.91 1.7 1600 0 | -0.11 0.23 0.60 0.04 2 2.48e+05 -30.91 | -59.86 16.5 1600 0 | -0.04 0.17 0.45 0.03 2 2.73e+05 -30.91 | -66.04 29.2 713 724 | -0.03 0.12 -0.53 0.03 2 2.97e+05 -30.91 | -90.05 35.6 783 485 | -0.10 0.16 -1.07 0.03 2 3.22e+05 -30.91 | -38.24 41.4 507 251 | -0.18 0.15 -3.86 0.04 2 3.48e+05 235.88 | 2 3.48e+05 235.88 | 235.88 124.6 1210 376 | -0.06 0.17 -2.53 0.04 2 3.70e+05 235.88 | -79.56 3.8 138 12 | 0.08 0.19 0.85 0.05 2 3.88e+05 235.88 | 171.11 174.6 933 517 | -0.14 0.21 2.51 0.05 2 4.08e+05 322.22 | 2 4.08e+05 322.22 | 322.22 0.6 1291 12 | -0.39 0.20 0.15 0.06 | UsedTime: 1686 | SavedDir: ./BipedalWalker-v3_ReliableSAC_2 | Learner: Save in ./BipedalWalker-v3_ReliableSAC_2 | LearnerPipe.run: ReplayBuffer saving in ./BipedalWalker-v3_ReliableSAC_2 """ elif env_name == 'Hopper-v2': env_func = gym.make env_args = { 'env_num': 1, 'env_name': 'Hopper-v2', 'max_step': 1000, 'state_dim': 11, 'action_dim': 3, 'if_discrete': False, 'target_return': 3800., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -4 args.target_step = args.max_step * 2 args.worker_num = 2 args.net_dim = 2 ** 8 args.num_layer = 3 args.batch_size = int(args.net_dim * 2) args.repeat_times = 2 ** 4 args.gamma = 0.993 # todo args.if_allow_break = False args.break_step = int(8e6) """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 5 1.61e+04 131.99 | 131.99 3.6 81 2 | 0.03 0.09 0.03 -0.54 5 2.20e+05 391.44 | 391.44 0.3 158 0 | 0.08 0.01 -0.06 -0.75 5 4.25e+05 860.96 | 860.96 11.9 280 5 | 0.09 0.11 0.12 -0.84 5 6.27e+05 3001.43 | 3001.43 7.9 1000 0 | 0.10 0.78 -0.01 -0.85 5 1.64e+06 3203.09 | 3103.14 0.0 1000 0 | 0.10 1.82 -0.06 -0.76 5 2.86e+06 3256.43 | 3152.72 0.0 1000 0 | 0.10 0.75 0.01 -0.67 5 3.88e+06 3256.43 | 1549.69 0.0 512 0 | 0.10 0.86 0.00 -0.71 | UsedTime: 2565 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 1.60e+04 328.68 | 328.68 6.2 262 6 | 0.02 0.01 -0.02 -0.54 2 2.16e+05 2460.57 | 2460.57 14.3 1000 0 | 0.09 0.86 0.20 -0.74 2 6.22e+05 2789.97 | 2788.28 30.9 1000 0 | 0.10 0.40 -0.11 -1.04 2 1.23e+06 3263.16 | 3216.96 0.0 1000 0 | 0.10 1.06 0.12 -1.05 2 2.46e+06 3378.50 | 3364.02 0.0 1000 0 | 0.11 0.87 0.02 -0.92 2 3.90e+06 3397.88 | 3302.80 0.0 1000 0 | 0.11 0.46 0.01 -0.93 | UsedTime: 2557 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 4 2.41e+04 222.39 | 222.39 1.5 120 1 | 0.94 8.45 0.05 -0.55 4 5.34e+05 344.58 | 344.58 0.4 142 0 | 2.41 1.91 0.02 -0.94 4 8.74e+05 540.69 | 540.69 20.1 180 4 | 2.96 5.82 0.00 -1.10 4 1.39e+06 989.51 | 989.51 2.2 308 2 | 3.20 16.75 0.07 -1.08 4 1.73e+06 3161.60 | 3149.35 0.0 1000 0 | 3.26 43.84 -0.02 -1.08 4 2.06e+06 3367.27 | 3105.77 0.0 1000 0 | 3.32 44.14 0.00 -1.13 4 3.92e+06 3604.42 | 3565.39 0.0 1000 0 | 3.44 30.54 0.04 -1.04 4 5.76e+06 3717.06 | 3607.94 0.0 1000 0 | 3.40 51.92 0.07 -0.95 4 6.26e+06 3840.95 | 3409.25 0.0 1000 0 | 3.32 66.48 -0.02 -0.94 | UsedTime: 6251 | | Arguments Remove cwd: ./Hopper-v2_PPO_4 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 4 4.00e+03 80.27 | 4 4.00e+03 80.27 | 80.27 0.7 50 0 | 0.07 0.92 0.07 0.00 4 1.46e+05 408.17 | 4 1.46e+05 408.17 | 408.17 1.5 145 1 | 0.17 0.03 0.13 0.00 4 2.90e+05 1856.89 | 4 2.90e+05 1856.89 | 1856.89 589.7 692 219 | 0.19 1.01 -0.05 0.00 4 4.34e+05 1856.89 | 1768.29 0.0 544 0 | 0.20 0.19 0.08 0.00 4 5.81e+05 2750.76 | 4 5.81e+05 2750.76 | 2750.76 15.5 1000 0 | 0.18 2.98 0.10 0.00 4 7.24e+05 3036.12 | 4 7.24e+05 3036.12 | 3036.12 2.2 1000 0 | 0.19 2.75 0.05 0.00 4 8.70e+05 3036.12 | 2790.94 0.0 1000 0 | 0.19 2.01 0.05 0.00 4 1.01e+06 3220.42 | 4 1.01e+06 3220.42 | 3220.42 2.7 1000 0 | 0.20 1.70 0.05 0.00 4 1.15e+06 3220.42 | 3059.18 312.9 939 105 | 0.20 1.30 0.05 0.00 4 1.30e+06 3220.42 | 2892.04 0.0 1000 0 | 0.19 2.23 -0.06 0.00 4 1.44e+06 3220.42 | 3153.15 0.0 1000 0 | 0.20 1.04 0.05 0.00 4 1.59e+06 3220.42 | 3083.19 0.0 1000 0 | 0.20 1.40 0.05 0.00 4 1.73e+06 3220.42 | 2999.16 0.0 1000 0 | 0.19 2.53 0.03 0.00 4 1.88e+06 3220.42 | 3219.83 31.4 1000 0 | 0.20 1.11 0.04 0.00 4 2.01e+06 3220.42 | 1465.88 0.0 499 0 | 0.19 2.71 0.22 0.00 4 2.16e+06 3220.42 | 3157.03 0.0 1000 0 | 0.21 0.62 0.08 0.00 4 2.30e+06 3220.42 | 1256.07 0.0 379 0 | 0.20 2.89 0.07 0.00 4 2.45e+06 3265.09 | 4 2.45e+06 3265.09 | 3265.09 14.0 1000 0 | 0.19 3.52 0.01 0.00 4 2.59e+06 3265.09 | 1562.53 0.0 498 0 | 0.18 2.96 0.08 0.00 4 2.73e+06 3265.09 | 3238.68 0.0 1000 0 | 0.20 1.73 0.07 0.00 4 2.87e+06 3265.09 | 3240.99 0.0 1000 0 | 0.20 3.32 -0.16 0.00 4 3.02e+06 3265.09 | 3141.53 0.0 1000 0 | 0.19 3.55 -0.04 0.00 4 3.16e+06 3265.09 | 3252.13 0.0 1000 0 | 0.21 1.44 -0.03 0.00 4 3.30e+06 3265.09 | 3164.95 0.0 1000 0 | 0.20 2.48 0.10 0.00 | UsedTime: 3049 | SavedDir: ./Hopper-v2_PPO_4 | Arguments Remove cwd: ./Hopper-v2_ReliableSAC_3 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 8.09e+03 32.31 | 3 8.09e+03 32.31 | 32.31 0.6 29 0 | 0.05 0.12 0.44 0.05 3 4.86e+04 282.45 | 3 4.86e+04 282.45 | 282.45 2.6 112 1 | 0.14 0.03 6.95 0.07 3 6.93e+04 282.45 | 82.75 0.0 56 0 | 0.16 0.54 31.61 0.28 3 9.00e+04 282.45 | 247.28 0.0 124 0 | 0.12 0.53 54.26 0.26 3 1.06e+05 306.45 | 3 1.06e+05 306.45 | 306.45 1.4 120 0 | 0.15 0.50 55.85 0.38 3 1.18e+05 406.01 | 3 1.18e+05 406.01 | 406.01 2.9 177 1 | 0.14 0.59 61.50 0.51 3 1.31e+05 450.03 | 3 1.31e+05 450.03 | 450.03 5.5 170 2 | 0.12 0.72 66.32 0.43 3 1.47e+05 450.03 | 155.34 0.0 88 0 | 0.13 0.90 87.74 0.47 3 1.64e+05 450.03 | 154.29 0.0 85 0 | 0.15 0.84 83.98 0.59 3 1.76e+05 450.03 | 276.25 0.0 132 0 | 0.13 0.91 91.40 0.46 3 1.89e+05 1351.93 | 3 1.89e+05 1351.93 | 1351.93 360.9 686 202 | 0.14 0.81 87.22 0.47 3 2.01e+05 1351.93 | 278.82 0.0 117 0 | 0.07 1.26 105.55 0.74 3 2.14e+05 1351.93 | 891.33 0.0 659 0 | 0.14 1.23 124.07 0.52 3 2.27e+05 1351.93 | 645.46 0.0 252 0 | 0.10 1.24 103.56 0.56 3 2.39e+05 1351.93 | 231.23 0.0 109 0 | 0.11 2.02 151.70 0.45 3 2.52e+05 1351.93 | 603.45 0.0 239 0 | 0.15 1.75 134.23 0.75 3 2.64e+05 1351.93 | 1030.42 0.0 1000 0 | 0.12 1.13 107.67 0.67 3 2.73e+05 1351.93 | 1047.41 0.0 1000 0 | 0.07 0.74 93.73 0.50 3 2.82e+05 1351.93 | 1111.93 0.0 1000 0 | 0.08 0.62 81.83 0.38 3 2.91e+05 1351.93 | 1039.49 0.0 1000 0 | 0.09 0.52 66.07 0.34 3 3.00e+05 1490.20 | 3 3.00e+05 1490.20 | 1490.20 0.7 1000 0 | 0.08 0.34 55.97 0.23 3 3.09e+05 1526.75 | 3 3.09e+05 1526.75 | 1526.75 36.5 1000 0 | 0.10 0.21 41.72 0.17 3 3.18e+05 1526.75 | 240.00 0.0 107 0 | 0.13 1.18 83.82 0.59 3 3.27e+05 1526.75 | 670.09 0.0 268 0 | 0.12 0.81 107.00 0.44 3 3.35e+05 1526.75 | 712.00 0.0 442 0 | 0.16 0.71 81.89 0.33 3 3.43e+05 1526.75 | 544.57 0.0 276 0 | 0.13 0.43 60.21 0.18 3 3.52e+05 1526.75 | 379.76 0.0 136 0 | 0.16 0.59 66.49 0.25 3 3.61e+05 1526.75 | 1025.86 0.0 1000 0 | 0.17 0.77 98.66 0.46 3 3.69e+05 1526.75 | 1039.17 0.0 1000 0 | 0.06 0.66 88.29 0.39 3 3.77e+05 1782.66 | 3 3.77e+05 1782.66 | 1782.66 2.0 1000 0 | 0.10 0.40 65.66 0.25 3 3.86e+05 1782.66 | 1031.96 0.0 1000 0 | 0.13 0.23 45.79 0.16 3 3.94e+05 2410.15 | 3 3.94e+05 2410.15 | 2410.15 4.9 1000 0 | 0.12 0.14 32.34 0.09 3 4.04e+05 2556.36 | 3 4.04e+05 2556.36 | 2556.36 3.4 1000 0 | 0.15 0.09 24.99 0.08 3 4.13e+05 2575.00 | 3 4.13e+05 2575.00 | 2575.00 6.8 1000 0 | 0.17 0.07 22.31 0.07 3 4.21e+05 2575.00 | 1018.50 0.0 1000 0 | 0.16 0.09 29.45 0.11 3 4.27e+05 2575.00 | 1001.91 0.0 1000 0 | 0.12 0.08 27.80 0.11 3 4.31e+05 2575.00 | 863.46 0.0 1000 0 | 0.07 0.08 27.16 0.10 3 4.35e+05 2575.00 | 1058.56 0.0 1000 0 | 0.06 0.10 32.01 0.12 3 4.39e+05 2575.00 | 1038.11 0.0 1000 0 | 0.06 0.09 28.62 0.10 3 4.44e+05 2575.00 | 2124.24 0.0 1000 0 | 0.09 0.07 26.10 0.07 3 4.48e+05 2761.82 | 3 4.48e+05 2761.82 | 2761.82 0.8 1000 0 | 0.07 0.06 24.11 0.07 3 4.52e+05 2761.82 | 2732.77 0.0 1000 0 | 0.14 0.05 23.25 0.06 3 4.56e+05 2822.69 | 3 4.56e+05 2822.69 | 2822.69 0.5 1000 0 | 0.17 0.05 22.39 0.06 3 4.60e+05 2994.40 | 3 4.60e+05 2994.40 | 2994.40 1.9 1000 0 | 0.17 0.04 22.00 0.06 3 4.64e+05 2994.40 | 2824.77 0.0 1000 0 | 0.18 0.05 21.46 0.06 3 4.68e+05 2994.40 | 2826.93 0.0 1000 0 | 0.19 0.04 21.57 0.07 3 4.73e+05 2994.40 | 2963.28 0.0 1000 0 | 0.19 0.04 21.16 0.06 3 4.77e+05 2994.40 | 2928.26 0.0 1000 0 | 0.18 0.04 21.61 0.06 3 4.82e+05 3005.36 | 3 4.82e+05 3005.36 | 3005.36 1.0 1000 0 | 0.19 0.04 21.32 0.06 3 4.86e+05 3141.08 | 3 4.86e+05 3141.08 | 3141.08 1.9 1000 0 | 0.18 0.04 21.49 0.05 3 4.90e+05 3141.08 | 3004.14 0.0 1000 0 | 0.19 0.04 21.65 0.06 3 4.94e+05 3141.08 | 3052.78 0.0 1000 0 | 0.19 0.04 21.54 0.06 3 4.98e+05 3141.08 | 3045.90 0.0 1000 0 | 0.19 0.04 22.11 0.06 3 5.02e+05 3228.76 | 3 5.02e+05 3228.76 | 3228.76 2.8 1000 0 | 0.19 0.04 21.98 0.06 3 5.06e+05 3228.76 | 3173.43 0.0 1000 0 | 0.19 0.04 21.85 0.06 3 5.10e+05 3228.76 | 3154.30 0.0 1000 0 | 0.19 0.04 22.53 0.06 3 5.14e+05 3228.76 | 3207.25 0.0 1000 0 | 0.19 0.04 22.33 0.06 3 5.18e+05 3228.76 | 3131.76 0.0 1000 0 | 0.20 0.04 22.29 0.06 3 5.22e+05 3278.78 | 3 5.22e+05 3278.78 | 3278.78 3.8 1000 0 | 0.20 0.03 22.38 0.06 3 5.27e+05 3278.78 | 3236.48 0.0 1000 0 | 0.19 0.04 22.67 0.05 3 5.31e+05 3278.78 | 3152.81 0.0 1000 0 | 0.20 0.03 22.13 0.05 3 5.35e+05 3278.78 | 3140.72 0.0 1000 0 | 0.20 0.04 21.65 0.05 3 5.39e+05 3278.78 | 3270.06 0.0 1000 0 | 0.20 0.03 22.16 0.05 3 5.43e+05 3278.78 | 3189.89 0.0 1000 0 | 0.20 0.03 22.27 0.05 3 5.48e+05 3278.78 | 3178.73 0.0 1000 0 | 0.20 0.03 22.80 0.05 3 5.52e+05 3278.78 | 3269.01 0.0 1000 0 | 0.20 0.03 22.18 0.05 3 5.56e+05 3318.49 | 3 5.56e+05 3318.49 | 3318.49 1.9 1000 0 | 0.20 0.03 22.41 0.05 3 5.61e+05 3346.12 | 3 5.61e+05 3346.12 | 3346.12 2.3 1000 0 | 0.20 0.03 21.79 0.05 3 5.65e+05 3346.12 | 3285.40 0.0 1000 0 | 0.20 0.03 22.62 0.05 3 5.69e+05 3346.12 | 3253.44 0.0 1000 0 | 0.21 0.03 22.43 0.05 3 5.73e+05 3346.12 | 3235.30 0.0 1000 0 | 0.20 0.03 22.33 0.05 3 5.78e+05 3346.12 | 3119.58 0.0 1000 0 | 0.21 0.04 22.57 0.05 3 5.83e+05 3346.12 | 3171.89 0.0 1000 0 | 0.20 0.04 22.48 0.05 3 5.87e+05 3346.12 | 3185.86 0.0 1000 0 | 0.19 0.03 23.00 0.05 3 5.91e+05 3346.12 | 3240.08 0.0 1000 0 | 0.20 0.03 23.02 0.05 3 5.95e+05 3346.12 | 3204.16 0.0 1000 0 | 0.20 0.03 22.30 0.05 3 5.99e+05 3346.12 | 3270.83 0.0 1000 0 | 0.20 0.03 22.61 0.05 3 6.04e+05 3346.12 | 3241.98 0.0 1000 0 | 0.20 0.03 22.94 0.05 3 6.08e+05 3346.12 | 3179.65 0.0 1000 0 | 0.20 0.03 22.36 0.05 3 6.13e+05 3346.12 | 3216.45 0.0 1000 0 | 0.21 0.03 22.43 0.05 3 6.17e+05 3346.12 | 3282.53 0.0 1000 0 | 0.20 0.03 22.51 0.05 3 6.21e+05 3346.12 | 3301.64 0.0 1000 0 | 0.20 0.03 22.65 0.05 3 6.26e+05 3346.12 | 3233.07 0.0 1000 0 | 0.21 0.03 22.66 0.05 3 6.31e+05 3346.12 | 3285.32 0.0 1000 0 | 0.21 0.03 22.35 0.05 3 6.35e+05 3346.12 | 3244.01 0.0 1000 0 | 0.20 0.03 22.82 0.05 3 6.39e+05 3346.12 | 3210.21 0.0 1000 0 | 0.21 0.03 22.64 0.05 3 6.45e+05 3346.12 | 3209.60 0.0 1000 0 | 0.21 0.03 22.88 0.05 3 6.50e+05 3346.12 | 3259.00 0.0 1000 0 | 0.21 0.03 22.76 0.05 3 6.54e+05 3346.12 | 3245.06 0.0 1000 0 | 0.20 0.04 23.39 0.05 3 6.59e+05 3346.12 | 598.90 0.0 212 0 | 0.20 0.05 25.07 0.07 3 6.64e+05 3346.12 | 730.34 0.0 221 0 | 0.21 0.05 26.25 0.07 3 6.68e+05 3346.12 | 3193.28 0.0 1000 0 | 0.20 0.06 26.30 0.07 3 6.73e+05 3346.12 | 3196.86 0.0 1000 0 | 0.21 0.04 25.20 0.05 3 6.77e+05 3346.12 | 3244.45 0.0 1000 0 | 0.20 0.04 23.90 0.05 3 6.83e+05 3346.12 | 3233.50 0.0 1000 0 | 0.21 0.04 23.41 0.05 3 6.88e+05 3346.12 | 3186.67 0.0 1000 0 | 0.21 0.04 23.17 0.05 3 6.92e+05 3346.12 | 3246.38 0.0 1000 0 | 0.22 0.04 23.16 0.05 3 6.97e+05 3346.12 | 3242.70 0.0 1000 0 | 0.21 0.03 22.85 0.05 3 7.02e+05 3346.12 | 3264.54 0.0 1000 0 | 0.21 0.03 22.97 0.05 3 7.07e+05 3346.12 | 3248.13 0.0 1000 0 | 0.22 0.03 23.05 0.05 3 7.11e+05 3346.12 | 3257.00 0.0 1000 0 | 0.20 0.03 22.99 0.04 3 7.16e+05 3346.12 | 3250.57 0.0 1000 0 | 0.19 0.03 23.07 0.05 3 7.21e+05 3346.12 | 3286.31 0.0 1000 0 | 0.21 0.03 22.99 0.05 3 7.25e+05 3346.12 | 3226.14 0.0 1000 0 | 0.21 0.03 23.28 0.05 3 7.30e+05 3346.12 | 3222.68 0.0 1000 0 | 0.22 0.03 23.10 0.05 3 7.34e+05 3346.12 | 3275.78 0.0 1000 0 | 0.22 0.03 22.91 0.04 3 7.39e+05 3346.12 | 3254.49 0.0 1000 0 | 0.21 0.03 22.53 0.04 3 7.44e+05 3346.12 | 3292.13 0.0 1000 0 | 0.22 0.03 22.92 0.05 3 7.49e+05 3346.12 | 3274.65 0.0 1000 0 | 0.22 0.03 22.91 0.05 3 7.53e+05 3346.12 | 3308.70 0.0 1000 0 | 0.22 0.03 23.01 0.04 3 7.59e+05 3346.12 | 3274.37 0.0 1000 0 | 0.22 0.03 23.36 0.04 3 7.63e+05 3346.12 | 3320.37 0.0 1000 0 | 0.22 0.03 23.14 0.05 3 7.68e+05 3346.12 | 3324.92 0.0 1000 0 | 0.23 0.03 23.02 0.05 3 7.73e+05 3346.12 | 3259.66 0.0 1000 0 | 0.21 0.03 23.23 0.05 3 7.77e+05 3346.12 | 3260.96 0.0 1000 0 | 0.22 0.03 22.98 0.05 3 7.81e+05 3346.12 | 3302.02 0.0 1000 0 | 0.22 0.03 23.00 0.05 3 7.86e+05 3346.12 | 28.78 0.0 27 0 | 0.20 0.03 23.68 0.06 3 7.91e+05 3346.12 | 3297.69 0.0 1000 0 | 0.22 0.03 24.46 0.05 3 7.96e+05 3346.12 | 3323.15 0.0 1000 0 | 0.20 0.03 23.52 0.05 3 8.00e+05 3346.12 | 3314.14 0.0 1000 0 | 0.21 0.03 23.75 0.05 3 8.05e+05 3346.12 | 471.67 0.0 181 0 | 0.22 0.04 24.19 0.06 3 8.10e+05 3346.12 | 3219.53 0.0 1000 0 | 0.22 0.04 23.87 0.05 3 8.14e+05 3346.12 | 3254.78 0.0 1000 0 | 0.17 0.03 23.57 0.05 3 8.18e+05 3346.12 | 3174.39 0.0 1000 0 | 0.21 0.04 24.03 0.05 3 8.22e+05 3346.12 | 1044.23 0.0 1000 0 | 0.21 0.04 26.59 0.06 3 8.27e+05 3346.12 | 3258.03 0.0 1000 0 | 0.21 0.04 24.35 0.05 3 8.31e+05 3346.12 | 854.32 0.0 258 0 | 0.07 0.11 25.23 0.07 3 8.36e+05 3346.12 | 964.44 0.0 430 0 | 0.21 0.22 62.71 0.18 3 8.41e+05 3346.12 | 2235.00 0.0 1000 0 | 0.19 0.14 47.49 0.13 3 8.45e+05 3346.12 | 2899.15 0.0 1000 0 | 0.16 4.11 43.89 2.50 3 8.50e+05 3346.12 | 2099.78 0.0 1000 0 | 0.14 0.64 95.06 0.41 3 8.54e+05 3346.12 | 1020.43 0.0 1000 0 | 0.16 0.35 66.75 0.24 3 8.59e+05 3346.12 | 2483.12 0.0 1000 0 | 0.13 0.23 45.98 0.14 3 8.64e+05 3346.12 | 289.95 0.0 115 0 | 0.06 0.37 41.44 0.20 3 8.69e+05 3346.12 | 1026.99 0.0 1000 0 | 0.16 0.13 35.91 0.08 3 8.73e+05 3346.12 | 1426.79 0.0 475 0 | 0.14 0.08 28.36 0.06 3 8.78e+05 3422.72 | 3 8.78e+05 3422.72 | 3422.72 5.7 1000 0 | 0.07 0.06 25.28 0.05 3 8.82e+05 3422.72 | 3372.57 0.0 1000 0 | 0.17 0.04 23.51 0.05 3 8.87e+05 3422.72 | 3331.27 0.0 1000 0 | 0.20 0.04 22.86 0.05 3 8.91e+05 3422.72 | 3309.30 0.0 1000 0 | 0.21 0.04 22.95 0.05 3 8.96e+05 3422.72 | 3277.77 0.0 1000 0 | 0.22 0.04 22.96 0.05 3 9.00e+05 3422.72 | 3320.82 0.0 1000 0 | 0.21 0.04 23.49 0.05 3 9.05e+05 3422.72 | 3326.58 0.0 1000 0 | 0.20 0.04 23.32 0.05 3 9.09e+05 3422.72 | 975.64 0.0 1000 0 | 0.23 0.11 27.91 0.13 3 9.14e+05 3422.72 | 1042.28 0.0 1000 0 | 0.22 0.09 33.67 0.13 3 9.18e+05 3422.72 | 1658.80 0.0 1000 0 | 0.06 0.06 29.10 0.07 3 9.23e+05 3422.72 | 3276.92 0.0 1000 0 | 0.08 0.04 25.73 0.05 3 9.27e+05 3422.72 | 1156.36 0.0 1000 0 | 0.15 0.05 27.06 0.07 3 9.32e+05 3422.72 | 3223.98 0.0 1000 0 | 0.21 0.05 24.56 0.05 3 9.36e+05 3422.72 | 3224.42 0.0 1000 0 | 0.08 0.04 23.76 0.05 3 9.41e+05 3422.72 | 3346.42 0.0 1000 0 | 0.20 0.03 23.10 0.04 3 9.45e+05 3422.72 | 3321.12 0.0 1000 0 | 0.21 0.04 22.89 0.05 3 9.50e+05 3422.72 | 3307.79 0.0 1000 0 | 0.22 0.03 23.41 0.04 3 9.55e+05 3422.72 | 3388.66 0.0 1000 0 | 0.23 0.03 23.29 0.04 3 9.60e+05 3571.28 | 3 9.60e+05 3571.28 | 3571.28 153.4 994 11 | 0.22 0.03 22.61 0.04 3 9.64e+05 3571.28 | 2208.20 0.0 604 0 | 0.22 0.03 22.94 0.04 3 9.69e+05 3571.28 | 3360.15 0.0 1000 0 | 0.22 0.03 23.31 0.04 3 9.73e+05 3571.28 | 3333.36 0.0 1000 0 | 0.23 0.03 22.83 0.04 3 9.78e+05 3571.28 | 3310.99 0.0 1000 0 | 0.23 0.03 23.30 0.05 3 9.82e+05 3571.28 | 3490.81 0.0 1000 0 | 0.23 0.03 23.15 0.05 3 9.87e+05 3571.28 | 3320.36 0.0 1000 0 | 0.23 0.03 22.84 0.04 3 9.91e+05 3571.28 | 3332.88 0.0 1000 0 | 0.23 0.03 22.66 0.04 3 9.96e+05 3571.28 | 3379.00 0.0 1000 0 | 0.23 0.03 23.04 0.04 3 1.00e+06 3571.28 | 3400.09 0.0 1000 0 | 0.22 0.03 22.75 0.04 3 1.01e+06 3571.28 | 3336.84 0.0 1000 0 | 0.23 0.03 23.23 0.04 3 1.01e+06 3571.28 | 3343.45 0.0 1000 0 | 0.22 0.03 22.86 0.05 3 1.02e+06 3571.28 | 3386.21 0.0 1000 0 | 0.22 0.03 23.12 0.04 3 1.02e+06 3571.28 | 3526.69 0.0 1000 0 | 0.22 0.03 23.02 0.04 3 1.03e+06 3571.28 | 3117.71 0.0 827 0 | 0.23 0.03 23.20 0.04 3 1.03e+06 3571.28 | 3156.30 0.0 853 0 | 0.23 0.03 23.28 0.04 3 1.03e+06 3571.28 | 294.54 0.0 113 0 | 0.23 0.17 43.11 0.16 3 1.04e+06 3571.28 | 3199.89 0.0 1000 0 | 0.23 0.09 33.76 0.08 3 1.04e+06 3571.28 | 3196.45 0.0 1000 0 | 0.16 0.05 26.77 0.06 3 1.05e+06 3571.28 | 3350.85 0.0 1000 0 | 0.20 0.04 24.78 0.05 3 1.05e+06 3571.28 | 3282.41 0.0 1000 0 | 0.21 0.04 23.54 0.05 3 1.06e+06 3571.28 | 1015.27 0.0 1000 0 | 0.22 0.11 39.46 0.20 3 1.06e+06 3571.28 | 1011.59 0.0 1000 0 | 0.21 0.09 37.02 0.11 3 1.06e+06 3571.28 | 3270.80 0.0 1000 0 | 0.06 0.05 28.34 0.06 3 1.07e+06 3571.28 | 3296.79 0.0 1000 0 | 0.06 0.04 24.83 0.05 3 1.07e+06 3571.28 | 1010.46 0.0 1000 0 | 0.20 0.16 42.20 0.20 3 1.08e+06 3571.28 | 1031.59 0.0 1000 0 | 0.21 0.17 49.98 0.19 3 1.08e+06 3571.28 | 3305.42 0.0 1000 0 | 0.06 0.09 34.40 0.08 3 1.09e+06 3571.28 | 3317.12 0.0 1000 0 | 0.06 0.05 27.39 0.06 3 1.09e+06 3571.28 | 3300.44 0.0 1000 0 | 0.20 0.04 24.40 0.05 3 1.10e+06 3571.28 | 3374.11 0.0 1000 0 | 0.20 0.04 23.73 0.05 3 1.10e+06 3571.28 | 3356.14 0.0 1000 0 | 0.20 0.03 22.98 0.04 3 1.11e+06 3571.28 | 3429.12 0.0 1000 0 | 0.21 0.03 23.23 0.04 3 1.11e+06 3571.28 | 3546.16 0.0 1000 0 | 0.22 0.03 23.31 0.04 3 1.12e+06 3571.28 | 3353.44 0.0 1000 0 | 0.23 0.03 22.94 0.04 3 1.12e+06 3571.28 | 3330.81 0.0 1000 0 | 0.23 0.03 22.57 0.04 3 1.13e+06 3571.28 | 3539.38 0.0 1000 0 | 0.23 0.03 22.59 0.04 3 1.13e+06 3571.28 | 3367.10 0.0 1000 0 | 0.23 0.03 22.98 0.04 3 1.14e+06 3571.28 | 3400.75 0.0 1000 0 | 0.23 0.03 22.64 0.04 3 1.14e+06 3571.28 | 3353.39 0.0 1000 0 | 0.23 0.03 22.98 0.04 3 1.15e+06 3571.28 | 3350.79 0.0 1000 0 | 0.23 0.03 23.00 0.04 3 1.15e+06 3571.28 | 3409.38 0.0 1000 0 | 0.23 0.03 23.08 0.04 3 1.15e+06 3571.28 | 3322.69 0.0 1000 0 | 0.22 0.03 23.28 0.05 3 1.16e+06 3571.28 | 3480.63 0.0 1000 0 | 0.22 0.03 23.43 0.04 3 1.16e+06 3571.28 | 3471.95 0.0 1000 0 | 0.23 0.03 22.56 0.04 3 1.17e+06 3571.28 | 3420.43 0.0 1000 0 | 0.23 0.03 23.00 0.04 3 1.17e+06 3571.28 | 3451.60 0.0 1000 0 | 0.23 0.03 22.84 0.04 3 1.18e+06 3571.28 | 3480.65 0.0 1000 0 | 0.23 0.03 23.21 0.04 3 1.18e+06 3571.28 | 3299.38 0.0 1000 0 | 0.23 0.03 23.08 0.04 3 1.19e+06 3571.28 | 3424.38 0.0 1000 0 | 0.23 0.03 22.86 0.04 3 1.19e+06 3571.28 | 3479.01 0.0 1000 0 | 0.23 0.03 23.10 0.04 3 1.20e+06 3571.28 | 3445.37 0.0 1000 0 | 0.23 0.03 22.98 0.04 3 1.20e+06 3571.28 | 3379.36 0.0 1000 0 | 0.24 0.03 22.98 0.04 3 1.21e+06 3571.28 | 3406.81 0.0 1000 0 | 0.23 0.03 23.53 0.04 3 1.21e+06 3571.28 | 3393.73 0.0 1000 0 | 0.23 0.03 23.01 0.04 3 1.21e+06 3571.28 | 3484.27 0.0 1000 0 | 0.23 0.02 23.16 0.04 3 1.22e+06 3571.28 | 1042.91 0.0 1000 0 | 0.23 0.03 25.02 0.05 3 1.22e+06 3571.28 | 3328.04 0.0 1000 0 | 0.23 0.03 23.60 0.04 3 1.23e+06 3571.28 | 431.63 0.0 161 0 | 0.07 0.03 23.69 0.04 3 1.23e+06 3571.28 | 3322.50 0.0 1000 0 | 0.23 0.03 22.57 0.04 3 1.24e+06 3571.28 | 3283.49 0.0 1000 0 | 0.22 0.03 23.31 0.04 3 1.24e+06 3571.28 | 1090.55 0.0 1000 0 | 0.22 0.05 27.79 0.10 3 1.25e+06 3571.28 | 3300.28 0.0 1000 0 | 0.23 0.03 25.05 0.05 3 1.25e+06 3571.28 | 1051.65 0.0 1000 0 | 0.07 0.04 25.91 0.06 3 1.25e+06 3571.28 | 3308.98 0.0 1000 0 | 0.21 0.03 24.53 0.05 3 1.26e+06 3571.28 | 3304.30 0.0 1000 0 | 0.13 0.03 24.05 0.04 3 1.26e+06 3571.28 | 3509.68 0.0 1000 0 | 0.22 0.03 23.51 0.04 3 1.27e+06 3571.28 | 1866.43 0.0 528 0 | 0.21 0.03 23.08 0.04 3 1.27e+06 3571.28 | 3329.80 0.0 1000 0 | 0.23 0.03 23.43 0.05 3 1.28e+06 3571.28 | 3422.68 326.1 944 98 | 0.23 0.03 23.62 0.04 3 1.28e+06 3571.28 | 1058.56 0.0 450 0 | 0.22 0.06 28.74 0.10 3 1.29e+06 3571.28 | 3205.49 0.0 1000 0 | 0.23 0.04 25.44 0.05 3 1.29e+06 3571.28 | 3327.98 0.0 1000 0 | 0.17 0.03 23.57 0.05 3 1.29e+06 3571.28 | 3366.74 0.0 1000 0 | 0.21 0.03 23.18 0.05 3 1.30e+06 3571.28 | 3394.69 0.0 1000 0 | 0.23 0.03 23.19 0.04 3 1.30e+06 3571.28 | 3355.44 0.0 1000 0 | 0.22 0.03 22.85 0.04 3 1.31e+06 3571.28 | 3503.05 0.0 1000 0 | 0.22 0.03 23.22 0.04 3 1.31e+06 3571.28 | 3368.96 0.0 1000 0 | 0.23 0.03 23.36 0.05 3 1.32e+06 3571.28 | 3515.65 0.0 959 0 | 0.23 0.03 23.59 0.04 | UsedTime: 56106 | SavedDir: ./Hopper-v2_ReliableSAC_3 """ elif env_name == 'Hopper-v2': env_func = gym.make env_args = { 'env_num': 1, 'env_name': 'Hopper-v2', 'max_step': 1000, 'state_dim': 11, 'action_dim': 3, 'if_discrete': False, 'target_return': 3800., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -4 args.target_step = args.max_step * 2 args.worker_num = 2 args.net_dim = 2 ** 8 args.num_layer = 3 args.batch_size = int(args.net_dim * 2) args.repeat_times = 2 ** 4 args.gamma = 0.993 # todo args.if_allow_break = False args.break_step = int(8e6) """ ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 6 4.05e+03 34.11 | 6 4.05e+03 34.11 | 34.11 0.4 38 0 | 0.05 0.80 0.84 0.33 6 1.17e+05 62.90 | 6 1.17e+05 62.90 | 62.90 0.7 38 0 | 0.11 0.33 14.94 0.28 6 1.96e+05 313.13 | 6 1.96e+05 313.13 | 313.13 0.8 140 0 | 0.13 0.59 30.46 0.20 6 2.56e+05 313.13 | 288.39 0.0 125 0 | 0.14 0.59 36.48 0.15 6 3.04e+05 313.13 | 268.59 0.0 117 0 | 0.14 0.49 32.35 0.14 6 3.44e+05 313.13 | 7.47 0.0 33 0 | 0.12 0.36 25.97 0.13 6 3.83e+05 1038.82 | 6 3.83e+05 1038.82 | 1038.82 0.2 1000 0 | 0.07 0.32 29.84 0.17 6 4.22e+05 1038.82 | 1028.53 0.0 1000 0 | 0.08 0.32 31.94 0.18 6 4.57e+05 1038.82 | 1024.58 0.0 1000 0 | 0.09 0.31 29.22 0.14 6 4.89e+05 1054.37 | 6 4.89e+05 1054.37 | 1054.37 6.0 1000 0 | 0.07 0.30 32.58 0.15 6 5.18e+05 1054.37 | 345.63 0.0 152 0 | 0.14 0.32 33.13 0.14 6 5.44e+05 1054.37 | 181.06 0.0 110 0 | 0.10 0.28 34.14 0.14 6 5.71e+05 1054.37 | 602.82 0.0 215 0 | 0.15 0.39 31.36 0.12 6 5.95e+05 1054.37 | 1035.55 0.0 1000 0 | 0.10 0.40 33.95 0.15 6 6.19e+05 1054.37 | 295.51 0.0 126 0 | 0.15 0.51 31.59 0.14 6 6.44e+05 1054.37 | 64.50 0.0 43 0 | 0.07 0.46 33.29 0.17 6 6.66e+05 1054.37 | 643.23 0.0 284 0 | 0.14 0.37 34.44 0.15 6 6.89e+05 1054.37 | 501.73 0.0 173 0 | 0.11 0.32 35.48 0.16 6 7.08e+05 1054.37 | 388.54 0.0 214 0 | 0.13 0.27 34.18 0.13 6 7.29e+05 1054.37 | 458.66 0.0 304 0 | 0.08 0.26 31.83 0.14 6 7.48e+05 1054.37 | 254.32 0.0 146 0 | 0.12 0.22 29.52 0.11 6 7.68e+05 1054.37 | 1028.87 0.0 1000 0 | 0.08 0.19 26.58 0.10 6 7.86e+05 1054.37 | 240.32 0.0 196 0 | 0.08 0.16 25.03 0.10 6 8.03e+05 1054.37 | 108.17 0.0 73 0 | 0.08 0.15 23.71 0.10 6 8.22e+05 1054.37 | 1029.23 0.0 1000 0 | 0.08 0.15 22.94 0.08 6 8.43e+05 1054.37 | 1039.32 0.0 1000 0 | 0.07 0.13 22.86 0.08 6 8.64e+05 1054.37 | 1036.23 0.0 1000 0 | 0.07 0.12 21.10 0.07 6 8.83e+05 2471.51 | 6 8.83e+05 2471.51 | 2471.51 2.0 1000 0 | 0.14 0.11 20.02 0.07 6 8.99e+05 2471.51 | 271.53 0.0 136 0 | 0.14 0.10 19.55 0.06 6 9.16e+05 2471.51 | 788.17 0.0 328 0 | 0.15 0.11 19.51 0.07 6 9.32e+05 2471.51 | 305.98 0.0 143 0 | 0.14 0.10 19.81 0.07 6 9.49e+05 2471.51 | 213.25 0.0 115 0 | 0.16 0.11 19.30 0.06 6 9.65e+05 2471.51 | 212.62 0.0 116 0 | 0.17 0.09 18.55 0.06 6 9.80e+05 2471.51 | 231.38 0.0 121 0 | 0.16 0.09 18.55 0.06 6 9.96e+05 2816.96 | 6 9.96e+05 2816.96 | 2816.96 1.5 1000 0 | 0.18 0.09 18.83 0.06 6 1.01e+06 2816.96 | 2526.01 0.0 1000 0 | 0.19 0.08 19.41 0.06 6 1.03e+06 2816.96 | 2502.35 0.0 1000 0 | 0.19 0.09 19.39 0.06 6 1.04e+06 2816.96 | 2792.51 0.0 1000 0 | 0.19 0.09 19.62 0.06 6 1.06e+06 2816.96 | 2807.12 18.1 1000 0 | 0.18 0.09 19.92 0.06 6 1.07e+06 2816.96 | 1274.49 0.0 452 0 | 0.20 0.08 19.97 0.06 6 1.08e+06 2827.08 | 6 1.08e+06 2827.08 | 2827.08 8.4 1000 0 | 0.19 0.08 20.43 0.06 6 1.10e+06 2827.08 | 1578.28 0.0 569 0 | 0.19 0.08 20.81 0.06 6 1.11e+06 2871.91 | 6 1.11e+06 2871.91 | 2871.91 0.9 1000 0 | 0.20 0.08 20.87 0.06 6 1.13e+06 2871.91 | 2688.35 0.0 1000 0 | 0.19 0.08 21.17 0.06 6 1.14e+06 2871.91 | 2681.34 0.0 1000 0 | 0.18 0.08 21.20 0.06 6 1.16e+06 2871.91 | 2810.03 0.0 1000 0 | 0.18 0.08 22.26 0.06 6 1.18e+06 2871.91 | 1660.03 0.0 584 0 | 0.18 0.08 21.62 0.06 6 1.19e+06 2871.91 | 2639.25 0.0 1000 0 | 0.18 0.07 21.81 0.06 6 1.21e+06 2871.91 | 939.60 0.0 312 0 | 0.18 0.07 21.66 0.06 6 1.22e+06 2871.91 | 2716.22 0.0 1000 0 | 0.18 0.08 21.85 0.06 6 1.24e+06 2871.91 | 2697.94 0.0 1000 0 | 0.19 0.07 21.58 0.06 6 1.25e+06 2871.91 | 2739.97 0.0 1000 0 | 0.19 0.07 22.32 0.06 6 1.26e+06 2871.91 | 2726.54 0.0 1000 0 | 0.19 0.07 22.24 0.06 6 1.27e+06 2871.91 | 2596.29 0.0 1000 0 | 0.20 0.07 22.64 0.06 6 1.29e+06 2871.91 | 2695.79 0.0 1000 0 | 0.19 0.07 22.49 0.06 6 1.30e+06 2871.91 | 2513.97 0.0 1000 0 | 0.18 0.07 22.17 0.06 6 1.31e+06 2871.91 | 2653.65 0.0 1000 0 | 0.20 0.06 21.88 0.06 6 1.32e+06 2871.91 | 2545.89 0.0 1000 0 | 0.19 0.06 22.11 0.06 6 1.34e+06 2871.91 | 2627.76 0.0 1000 0 | 0.17 0.06 22.41 0.06 6 1.35e+06 2871.91 | 2512.66 0.0 1000 0 | 0.18 0.06 21.69 0.06 6 1.36e+06 2871.91 | 2614.05 0.0 1000 0 | 0.19 0.06 22.41 0.06 6 1.37e+06 2871.91 | 2511.88 0.0 1000 0 | 0.18 0.06 22.86 0.06 6 1.38e+06 2871.91 | 2511.73 0.0 1000 0 | 0.18 0.06 22.40 0.06 6 1.39e+06 2871.91 | 2576.39 0.0 1000 0 | 0.18 0.06 22.36 0.06 6 1.40e+06 2871.91 | 2593.05 0.0 1000 0 | 0.18 0.06 22.56 0.06 6 1.42e+06 2871.91 | 2612.13 0.0 1000 0 | 0.19 0.06 22.38 0.06 6 1.43e+06 2871.91 | 2709.74 0.0 1000 0 | 0.18 0.06 22.08 0.06 6 1.44e+06 2871.91 | 2762.59 0.0 1000 0 | 0.18 0.06 22.09 0.06 6 1.45e+06 2871.91 | 2746.69 0.0 1000 0 | 0.18 0.06 21.86 0.06 6 1.46e+06 2871.91 | 2637.90 0.0 1000 0 | 0.18 0.06 22.09 0.06 6 1.48e+06 2871.91 | 2712.50 0.0 1000 0 | 0.18 0.05 22.10 0.06 6 1.49e+06 2871.91 | 2703.42 0.0 1000 0 | 0.18 0.06 22.62 0.06 6 1.50e+06 2871.91 | 2767.33 0.0 1000 0 | 0.17 0.05 21.92 0.06 6 1.51e+06 2919.71 | 6 1.51e+06 2919.71 | 2919.71 4.6 1000 0 | 0.18 0.06 22.39 0.06 6 1.52e+06 2919.71 | 2878.41 0.0 1000 0 | 0.18 0.06 22.34 0.06 6 1.54e+06 2919.71 | 2706.40 0.0 1000 0 | 0.19 0.06 22.33 0.05 6 1.55e+06 2919.71 | 2766.00 0.0 1000 0 | 0.19 0.05 22.25 0.05 6 1.56e+06 2919.71 | 2686.77 0.0 1000 0 | 0.19 0.05 22.11 0.05 6 1.57e+06 2919.71 | 2806.31 0.0 1000 0 | 0.19 0.05 22.06 0.05 6 1.58e+06 2919.71 | 2806.25 0.0 1000 0 | 0.18 0.05 21.52 0.05 6 1.59e+06 2919.71 | 2851.65 0.0 1000 0 | 0.19 0.05 21.15 0.05 6 1.60e+06 2919.71 | 2799.51 0.0 1000 0 | 0.18 0.05 21.29 0.05 6 1.61e+06 2919.71 | 2853.32 0.0 1000 0 | 0.18 0.05 21.43 0.05 6 1.62e+06 2919.71 | 2776.67 0.0 1000 0 | 0.18 0.05 21.82 0.05 6 1.63e+06 2919.71 | 2846.76 0.0 1000 0 | 0.18 0.05 21.45 0.05 6 1.64e+06 2919.71 | 2792.80 0.0 1000 0 | 0.19 0.05 21.70 0.05 6 1.65e+06 2919.71 | 2827.58 0.0 1000 0 | 0.19 0.05 21.97 0.05 6 1.66e+06 2919.71 | 2784.43 0.0 1000 0 | 0.19 0.05 21.33 0.05 6 1.67e+06 2919.71 | 2737.03 0.0 1000 0 | 0.19 0.04 21.52 0.05 6 1.68e+06 2919.71 | 2812.33 0.0 1000 0 | 0.18 0.04 21.24 0.05 6 1.69e+06 2919.71 | 2788.36 0.0 1000 0 | 0.18 0.05 21.54 0.05 6 1.70e+06 2919.71 | 2786.58 0.0 1000 0 | 0.19 0.04 21.31 0.05 6 1.71e+06 2919.71 | 2742.50 0.0 1000 0 | 0.18 0.04 21.51 0.05 6 1.72e+06 2919.71 | 2720.79 0.0 1000 0 | 0.19 0.05 21.70 0.05 6 1.73e+06 2919.71 | 2786.67 0.0 1000 0 | 0.18 0.04 21.73 0.05 6 1.74e+06 2919.71 | 2843.51 0.0 1000 0 | 0.19 0.05 21.66 0.05 6 1.75e+06 2919.71 | 2808.91 0.0 1000 0 | 0.19 0.05 21.34 0.05 6 1.76e+06 2919.71 | 2796.23 0.0 1000 0 | 0.19 0.04 21.98 0.05 6 1.78e+06 2919.71 | 2887.21 0.0 1000 0 | 0.19 0.05 21.69 0.05 6 1.79e+06 2919.71 | 2779.83 0.0 1000 0 | 0.18 0.05 21.79 0.05 6 1.80e+06 2919.71 | 2910.02 0.0 1000 0 | 0.19 0.05 21.81 0.05 6 1.81e+06 2978.96 | 6 1.81e+06 2978.96 | 2978.96 0.6 1000 0 | 0.19 0.04 22.15 0.05 6 1.82e+06 2990.69 | 6 1.82e+06 2990.69 | 2990.69 4.2 1000 0 | 0.20 0.04 21.37 0.05 6 1.83e+06 2990.69 | 2946.43 0.0 1000 0 | 0.19 0.05 22.07 0.05 6 1.84e+06 2990.69 | 2840.06 0.0 1000 0 | 0.19 0.04 22.10 0.05 6 1.85e+06 2990.69 | 2939.27 0.0 1000 0 | 0.19 0.05 21.63 0.05 6 1.86e+06 2990.69 | 2851.73 0.0 1000 0 | 0.19 0.05 22.16 0.05 6 1.87e+06 2990.69 | 2902.68 0.0 1000 0 | 0.19 0.05 22.01 0.05 6 1.88e+06 2990.69 | 2891.08 0.0 1000 0 | 0.19 0.05 22.01 0.05 6 1.89e+06 2990.69 | 2874.25 0.0 1000 0 | 0.19 0.04 21.42 0.05 6 1.90e+06 2990.69 | 2858.17 0.0 1000 0 | 0.19 0.04 22.03 0.05 6 1.91e+06 2990.69 | 2885.14 0.0 1000 0 | 0.19 0.04 21.90 0.05 6 1.92e+06 2990.69 | 2835.17 0.0 1000 0 | 0.19 0.04 21.43 0.05 6 1.93e+06 2990.69 | 2842.48 0.0 1000 0 | 0.18 0.04 21.61 0.05 6 1.94e+06 2990.69 | 2881.02 0.0 1000 0 | 0.19 0.04 21.86 0.05 6 1.95e+06 2990.69 | 2960.67 0.0 1000 0 | 0.18 0.04 22.14 0.05 6 1.96e+06 2990.69 | 2947.27 0.0 1000 0 | 0.19 0.04 22.05 0.05 6 1.97e+06 2990.69 | 2901.40 0.0 1000 0 | 0.20 0.04 21.81 0.05 6 1.98e+06 2990.69 | 2927.26 0.0 1000 0 | 0.19 0.04 22.16 0.05 6 1.99e+06 2990.69 | 2960.03 0.0 1000 0 | 0.20 0.04 21.71 0.04 6 2.00e+06 2993.62 | 6 2.00e+06 2993.62 | 2993.62 2.0 1000 0 | 0.19 0.04 21.76 0.04 6 2.01e+06 2993.62 | 2903.15 0.0 1000 0 | 0.20 0.04 21.60 0.04 6 2.02e+06 2993.62 | 2811.17 0.0 1000 0 | 0.19 0.04 21.50 0.04 6 2.03e+06 2993.62 | 2878.24 0.0 1000 0 | 0.19 0.04 21.86 0.04 6 2.04e+06 2993.62 | 2916.72 0.0 1000 0 | 0.19 0.04 21.96 0.04 6 2.05e+06 2993.62 | 2891.63 0.0 1000 0 | 0.19 0.04 21.99 0.04 6 2.06e+06 2993.62 | 2965.31 0.0 1000 0 | 0.19 0.04 21.86 0.04 6 2.07e+06 2993.62 | 2910.02 0.0 1000 0 | 0.19 0.04 21.89 0.04 6 2.08e+06 2993.62 | 2942.60 0.0 1000 0 | 0.19 0.04 21.88 0.04 6 2.09e+06 2999.49 | 6 2.09e+06 2999.49 | 2999.49 1.1 1000 0 | 0.19 0.04 21.68 0.04 6 2.09e+06 2999.49 | 2967.17 0.0 1000 0 | 0.19 0.04 22.16 0.04 6 2.10e+06 2999.49 | 2937.72 0.0 1000 0 | 0.19 0.04 21.36 0.04 6 2.10e+06 2999.49 | 2937.72 0.0 1000 0 | 0.19 0.04 21.36 0.04 6 2.11e+06 2999.49 | 2947.81 0.0 1000 0 | 0.20 0.04 20.62 0.04 6 2.12e+06 2999.49 | 2928.85 0.0 1000 0 | 0.20 0.04 21.45 0.04 6 2.12e+06 3005.13 | 6 2.12e+06 3005.13 | 3005.13 0.9 1000 0 | 0.19 0.04 21.66 0.04 6 2.13e+06 3005.13 | 2968.58 0.0 1000 0 | 0.19 0.04 21.54 0.04 6 2.14e+06 3007.51 | 6 2.14e+06 3007.51 | 3007.51 0.5 1000 0 | 0.20 0.04 21.40 0.04 6 2.15e+06 3007.51 | 2958.19 0.0 1000 0 | 0.20 0.04 21.94 0.04 6 2.16e+06 3059.47 | 6 2.16e+06 3059.47 | 3059.47 1.8 1000 0 | 0.19 0.04 21.89 0.04 6 2.17e+06 3059.47 | 3039.30 0.0 1000 0 | 0.19 0.04 22.13 0.04 6 2.18e+06 3079.37 | 6 2.18e+06 3079.37 | 3079.37 0.4 1000 0 | 0.20 0.04 22.02 0.04 6 2.18e+06 3079.37 | 3036.29 0.0 1000 0 | 0.20 0.03 21.91 0.04 6 2.20e+06 3079.37 | 3045.43 0.0 1000 0 | 0.20 0.04 21.75 0.04 6 2.21e+06 3079.37 | 3078.21 0.0 1000 0 | 0.20 0.04 21.72 0.04 6 2.21e+06 3079.37 | 3030.94 0.0 1000 0 | 0.19 0.03 21.58 0.04 6 2.22e+06 3079.37 | 3034.21 0.0 1000 0 | 0.19 0.03 21.51 0.04 6 2.23e+06 3079.37 | 3065.70 0.0 1000 0 | 0.19 0.03 21.91 0.04 6 2.23e+06 3079.37 | 3027.77 0.0 1000 0 | 0.19 0.03 21.56 0.04 6 2.24e+06 3079.37 | 3050.05 0.0 1000 0 | 0.19 0.03 21.51 0.04 6 2.25e+06 3079.37 | 3055.75 0.0 1000 0 | 0.19 0.03 21.59 0.04 6 2.26e+06 3079.37 | 3029.73 0.0 1000 0 | 0.20 0.03 21.99 0.04 6 2.26e+06 3079.37 | 3075.19 0.0 1000 0 | 0.20 0.03 21.55 0.04 6 2.27e+06 3079.37 | 3020.89 0.0 1000 0 | 0.19 0.03 21.20 0.04 6 2.28e+06 3079.37 | 3069.39 0.0 1000 0 | 0.19 0.03 21.37 0.04 6 2.28e+06 3079.37 | 3065.39 0.0 1000 0 | 0.19 0.03 21.35 0.04 6 2.29e+06 3079.37 | 3073.13 0.0 1000 0 | 0.19 0.03 22.03 0.04 6 2.30e+06 3079.37 | 3050.63 0.0 1000 0 | 0.19 0.03 21.24 0.04 6 2.30e+06 3079.37 | 3078.68 0.0 1000 0 | 0.20 0.03 21.41 0.04 6 2.31e+06 3079.37 | 3036.35 0.0 1000 0 | 0.19 0.03 21.59 0.04 6 2.32e+06 3079.37 | 414.22 0.0 278 0 | 0.01 0.30 49.33 0.06 6 2.33e+06 3079.37 | 1001.89 0.0 1000 0 | 0.06 0.17 42.27 0.08 6 2.33e+06 3079.37 | 1015.33 0.0 1000 0 | 0.06 0.13 37.14 0.11 6 2.34e+06 3079.37 | 1011.02 0.0 1000 0 | 0.06 0.10 34.35 0.10 6 2.35e+06 3079.37 | 2813.60 0.0 1000 0 | 0.07 0.12 30.99 0.08 6 2.35e+06 3079.37 | 505.06 0.0 195 0 | 0.18 0.10 29.30 0.08 6 2.36e+06 3079.37 | 333.13 0.0 125 0 | 0.17 0.10 29.47 0.08 6 2.37e+06 3079.37 | 628.32 0.0 262 0 | 0.15 0.08 29.50 0.08 6 2.37e+06 3079.37 | 1799.29 0.0 623 0 | 0.15 0.08 27.85 0.07 6 2.38e+06 3079.37 | 3069.86 10.1 1000 0 | 0.16 0.08 26.93 0.07 6 2.39e+06 3079.37 | 939.58 0.0 278 0 | 0.18 0.07 25.53 0.06 6 2.39e+06 3079.37 | 3046.63 0.0 1000 0 | 0.20 0.08 25.15 0.06 6 2.40e+06 3187.65 | 6 2.40e+06 3187.65 | 3187.65 3.1 1000 0 | 0.19 0.07 24.49 0.05 """ elif env_name == 'Humanoid-v3.9400.best': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -2 args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.lambda_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 9 args.batch_size = args.net_dim // 2 args.num_layer = 3 args.repeat_times = 2 ** 0 args.gamma = 0.96 args.if_act_target = False import numpy as np args.target_entropy = np.log(env_args['action_dim']) args.if_allow_break = False args.break_step = int(4e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_3 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 8.09e+03 176.45 | 3 8.09e+03 176.45 | 176.45 29.6 34 6 | 1.19 0.69 2.81 0.06 3 1.47e+05 216.06 | 3 1.47e+05 216.06 | 216.06 12.1 41 2 | 1.27 0.79 32.29 0.03 3 2.25e+05 289.98 | 3 2.25e+05 289.98 | 289.98 13.7 56 2 | 1.34 0.68 31.95 0.01 3 2.83e+05 316.69 | 3 2.83e+05 316.69 | 316.69 17.4 58 3 | 1.34 0.45 27.33 0.01 3 3.28e+05 316.69 | 287.80 0.0 57 0 | 1.28 0.33 24.88 0.01 3 3.70e+05 379.81 | 3 3.70e+05 379.81 | 379.81 36.3 71 7 | 1.31 0.29 24.75 0.01 3 4.07e+05 379.81 | 209.17 0.0 41 0 | 1.35 0.26 25.31 0.01 3 4.40e+05 379.81 | 356.76 0.0 67 0 | 1.36 0.24 25.37 0.01 3 4.74e+05 379.81 | 374.84 36.5 67 6 | 1.34 0.22 25.21 0.01 3 5.03e+05 525.94 | 3 5.03e+05 525.94 | 525.94 41.6 100 11 | 1.36 0.21 25.63 0.01 3 5.32e+05 525.94 | 497.22 0.0 89 0 | 1.36 0.20 25.51 0.01 3 5.62e+05 525.94 | 334.79 0.0 59 0 | 1.37 0.20 26.24 0.01 3 5.87e+05 525.94 | 428.25 0.0 76 0 | 1.39 0.19 25.51 0.01 3 6.12e+05 525.94 | 423.34 0.0 74 0 | 1.37 0.18 26.50 0.01 3 6.37e+05 525.94 | 479.20 0.0 84 0 | 1.40 0.18 26.26 0.01 3 6.62e+05 551.04 | 3 6.62e+05 551.04 | 551.04 83.8 98 16 | 1.39 0.18 26.49 0.01 3 6.83e+05 551.04 | 397.43 0.0 70 0 | 1.36 0.18 27.22 0.01 3 7.04e+05 745.68 | 3 7.04e+05 745.68 | 745.68 106.0 134 15 | 1.35 0.17 26.33 0.01 3 7.25e+05 745.68 | 509.76 0.0 89 0 | 1.42 0.17 26.93 0.01 3 7.47e+05 745.68 | 376.85 0.0 70 0 | 1.41 0.18 28.16 0.01 3 7.69e+05 745.68 | 580.24 127.2 104 23 | 1.38 0.18 27.97 0.01 3 7.91e+05 745.68 | 491.18 0.0 85 0 | 1.40 0.18 27.98 0.01 3 8.12e+05 745.68 | 492.97 0.0 87 0 | 1.41 0.18 29.00 0.01 3 8.34e+05 801.10 | 3 8.34e+05 801.10 | 801.10 244.9 146 39 | 1.43 0.18 28.95 0.01 3 8.51e+05 801.10 | 522.10 0.0 93 0 | 1.42 0.18 28.90 0.01 3 8.69e+05 801.10 | 620.43 0.0 105 0 | 1.44 0.18 29.90 0.01 3 8.85e+05 829.16 | 3 8.85e+05 829.16 | 829.16 109.8 152 30 | 1.42 0.17 29.57 0.01 3 9.03e+05 829.16 | 733.06 127.1 135 32 | 1.47 0.17 30.11 0.01 3 9.20e+05 1018.17 | 3 9.20e+05 1018.17 | 1018.17 329.5 174 53 | 1.43 0.17 30.46 0.01 3 9.37e+05 1018.17 | 739.87 0.0 135 0 | 1.45 0.18 28.93 0.01 3 9.55e+05 1018.17 | 744.00 0.0 129 0 | 1.46 0.18 31.50 0.01 3 9.73e+05 1208.41 | 3 9.73e+05 1208.41 | 1208.41 378.3 204 57 | 1.48 0.17 29.71 0.01 3 9.90e+05 1208.41 | 647.54 0.0 117 0 | 1.45 0.18 30.89 0.01 3 1.01e+06 1208.41 | 929.52 0.0 163 0 | 1.47 0.18 30.55 0.01 3 1.02e+06 2111.40 | 3 1.02e+06 2111.40 | 2111.40 513.4 344 77 | 1.50 0.18 30.26 0.01 3 1.04e+06 2961.21 | 3 1.04e+06 2961.21 | 2961.21 1907.8 467 300 | 1.49 0.17 31.73 0.01 3 1.06e+06 2961.21 | 1923.17 0.0 307 0 | 1.51 0.18 31.26 0.01 3 1.08e+06 2961.21 | 665.96 0.0 115 0 | 1.51 0.17 32.32 0.01 3 1.10e+06 2961.21 | 2009.69 0.0 308 0 | 1.56 0.17 32.11 0.01 3 1.11e+06 2961.21 | 1253.18 0.0 193 0 | 1.54 0.17 31.96 0.02 3 1.13e+06 2961.21 | 822.65 0.0 125 0 | 1.56 0.17 32.47 0.02 3 1.15e+06 2961.21 | 808.09 0.0 126 0 | 1.58 0.18 32.09 0.02 3 1.16e+06 2961.21 | 1995.99 0.0 317 0 | 1.58 0.17 32.54 0.02 3 1.17e+06 2961.21 | 804.38 0.0 128 0 | 1.59 0.18 33.59 0.02 3 1.19e+06 2961.21 | 1058.70 0.0 169 0 | 1.58 0.18 32.22 0.02 3 1.20e+06 2961.21 | 954.06 0.0 155 0 | 1.61 0.18 33.44 0.02 3 1.21e+06 2961.21 | 1245.58 0.0 195 0 | 1.62 0.18 32.46 0.02 3 1.23e+06 2961.21 | 2780.23 0.0 415 0 | 1.62 0.18 33.10 0.02 3 1.24e+06 4273.43 | 3 1.24e+06 4273.43 | 4273.43 1977.1 643 289 | 1.63 0.17 33.10 0.02 3 1.26e+06 4273.43 | 304.42 0.0 53 0 | 1.63 0.18 33.53 0.02 3 1.27e+06 4273.43 | 4017.09 2192.0 596 319 | 1.65 0.18 33.96 0.02 3 1.29e+06 4273.43 | 4190.22 2639.0 604 374 | 1.65 0.18 34.71 0.02 3 1.30e+06 4273.43 | 1137.88 0.0 185 0 | 1.68 0.18 33.78 0.02 3 1.31e+06 4273.43 | 977.47 0.0 143 0 | 1.65 0.18 34.35 0.02 3 1.33e+06 4969.29 | 3 1.33e+06 4969.29 | 4969.29 2784.2 712 393 | 1.72 0.18 34.51 0.02 3 1.34e+06 4969.29 | 4573.45 0.0 634 0 | 1.71 0.18 35.18 0.02 3 1.36e+06 4969.29 | 4896.34 0.0 663 0 | 1.76 0.18 35.41 0.02 3 1.37e+06 4969.29 | 1326.51 0.0 194 0 | 1.67 0.18 34.70 0.02 3 1.39e+06 4969.29 | 1680.32 0.0 238 0 | 1.80 0.18 35.17 0.02 3 1.40e+06 4969.29 | 3260.77 0.0 451 0 | 1.74 0.18 34.56 0.02 3 1.42e+06 4969.29 | 1140.55 0.0 162 0 | 1.80 0.18 34.71 0.02 3 1.43e+06 4969.29 | 2484.06 2403.7 340 320 | 1.79 0.18 35.37 0.02 3 1.45e+06 4969.29 | 2997.63 0.0 422 0 | 1.81 0.19 35.35 0.02 3 1.46e+06 4969.29 | 4737.24 1827.3 641 242 | 1.85 0.18 35.85 0.02 3 1.48e+06 4969.29 | 1047.71 0.0 148 0 | 1.83 0.19 35.50 0.02 3 1.49e+06 4969.29 | 173.17 0.0 33 0 | 1.84 0.19 36.82 0.02 3 1.51e+06 4969.29 | 3679.41 0.0 497 0 | 1.86 0.19 36.89 0.02 3 1.52e+06 4969.29 | 4962.11 2734.9 652 348 | 1.88 0.19 37.78 0.02 3 1.53e+06 4969.29 | 2338.43 0.0 305 0 | 1.86 0.19 36.17 0.02 3 1.55e+06 4969.29 | 2442.01 0.0 309 0 | 1.81 0.19 36.69 0.02 3 1.56e+06 4969.29 | 4154.86 2039.7 522 250 | 1.85 0.19 37.91 0.02 3 1.58e+06 4969.29 | 4003.55 0.0 502 0 | 1.84 0.18 37.31 0.02 3 1.59e+06 4969.29 | 3509.02 0.0 445 0 | 1.88 0.19 37.35 0.02 3 1.61e+06 4969.29 | 3969.27 2935.2 520 379 | 1.86 0.19 36.67 0.02 3 1.62e+06 4969.29 | 2483.33 0.0 323 0 | 1.86 0.19 37.52 0.02 3 1.64e+06 4969.29 | 2687.55 0.0 354 0 | 1.93 0.19 38.44 0.02 3 1.65e+06 4969.29 | 4662.24 0.0 574 0 | 1.90 0.18 38.91 0.02 3 1.66e+06 4969.29 | 2818.31 0.0 363 0 | 1.98 0.19 38.51 0.02 3 1.68e+06 4969.29 | 1649.55 0.0 219 0 | 1.84 0.20 37.76 0.02 3 1.69e+06 4969.29 | 4783.08 0.0 580 0 | 1.92 0.19 39.04 0.02 3 1.70e+06 4969.29 | 406.79 0.0 65 0 | 1.89 0.19 37.27 0.02 3 1.71e+06 4969.29 | 2765.69 0.0 338 0 | 1.92 0.20 38.05 0.02 3 1.72e+06 4969.29 | 1396.78 0.0 179 0 | 1.92 0.19 37.59 0.02 3 1.73e+06 4969.29 | 1609.04 0.0 209 0 | 1.92 0.20 37.77 0.02 3 1.74e+06 4969.29 | 4467.71 0.0 560 0 | 1.96 0.19 38.12 0.02 3 1.75e+06 5073.69 | 3 1.75e+06 5073.69 | 5073.69 3289.1 624 396 | 1.97 0.19 38.57 0.02 3 1.76e+06 5073.69 | 2309.20 0.0 281 0 | 1.96 0.19 39.72 0.02 3 1.77e+06 7728.06 | 3 1.77e+06 7728.06 | 7728.06 851.9 914 95 | 1.93 0.19 38.74 0.02 3 1.78e+06 7728.06 | 1083.30 0.0 144 0 | 2.01 0.19 39.00 0.02 3 1.79e+06 7728.06 | 4592.06 0.0 551 0 | 1.94 0.19 39.21 0.02 3 1.80e+06 7728.06 | 1914.95 0.0 254 0 | 2.03 0.19 39.01 0.02 3 1.81e+06 7728.06 | 708.27 0.0 99 0 | 1.99 0.19 38.98 0.02 3 1.82e+06 7728.06 | 7678.90 1510.8 896 179 | 2.00 0.19 38.46 0.02 3 1.83e+06 7728.06 | 4612.89 0.0 554 0 | 2.05 0.20 40.58 0.02 3 1.84e+06 7728.06 | 5765.75 3283.5 670 370 | 2.01 0.19 39.72 0.02 3 1.85e+06 7728.06 | 5138.14 0.0 609 0 | 2.03 0.20 41.17 0.02 3 1.86e+06 7728.06 | 2317.73 0.0 282 0 | 2.04 0.19 39.38 0.02 3 1.87e+06 7728.06 | 4502.98 0.0 518 0 | 1.92 0.20 39.25 0.02 3 1.88e+06 7728.06 | 434.40 0.0 66 0 | 2.05 0.19 39.97 0.02 3 1.89e+06 7728.06 | 2278.33 0.0 304 0 | 1.99 0.19 40.53 0.02 3 1.90e+06 7728.06 | 1075.64 0.0 139 0 | 1.99 0.21 40.48 0.02 3 1.91e+06 7728.06 | 5303.26 1961.5 643 238 | 2.03 0.19 40.77 0.02 3 1.92e+06 7728.06 | 7610.01 1916.9 876 215 | 1.96 0.19 39.49 0.02 3 1.93e+06 7728.06 | 7504.85 1400.1 897 159 | 1.94 0.19 41.41 0.02 3 1.94e+06 7728.06 | 7434.55 1282.9 860 141 | 2.00 0.19 40.33 0.02 3 1.95e+06 7728.06 | 1779.93 0.0 215 0 | 2.07 0.19 40.77 0.02 3 1.96e+06 7728.06 | 525.02 0.0 76 0 | 2.04 0.20 41.53 0.02 3 1.97e+06 7728.06 | 459.73 0.0 71 0 | 2.06 0.19 39.72 0.02 3 1.98e+06 7728.06 | 4457.85 4074.2 524 466 | 2.05 0.19 42.10 0.02 3 1.99e+06 7728.06 | 6060.01 2013.8 717 224 | 2.02 0.19 41.74 0.02 3 2.00e+06 7728.06 | 3763.48 0.0 434 0 | 1.99 0.19 42.00 0.02 3 2.01e+06 7728.06 | 2920.24 3370.0 346 379 | 2.00 0.20 40.89 0.02 3 2.03e+06 7728.06 | 5806.59 0.0 662 0 | 2.05 0.19 42.19 0.02 3 2.03e+06 7728.06 | 6983.07 3317.2 789 365 | 2.07 0.20 41.56 0.02 3 2.05e+06 7728.06 | 2810.41 0.0 331 0 | 2.06 0.20 41.36 0.02 3 2.06e+06 7728.06 | 7325.62 1785.0 814 193 | 2.04 0.19 42.16 0.02 3 2.07e+06 7728.06 | 5472.22 0.0 624 0 | 2.08 0.19 41.91 0.02 3 2.08e+06 7728.06 | 5224.22 2573.9 596 285 | 2.06 0.20 42.81 0.02 3 2.08e+06 7728.06 | 3663.78 0.0 424 0 | 2.04 0.20 41.13 0.02 3 2.09e+06 7788.26 | 3 2.09e+06 7788.26 | 7788.26 1759.1 876 189 | 2.00 0.19 41.34 0.02 3 2.10e+06 7830.41 | 3 2.10e+06 7830.41 | 7830.41 1640.3 890 190 | 2.11 0.19 43.17 0.02 3 2.11e+06 7830.41 | 2744.79 0.0 334 0 | 2.07 0.20 41.95 0.02 3 2.12e+06 7830.41 | 338.01 0.0 52 0 | 2.08 0.19 43.14 0.02 3 2.13e+06 7830.41 | 378.62 0.0 57 0 | 1.95 0.19 41.59 0.02 3 2.14e+06 7830.41 | 193.63 0.0 34 0 | 1.88 0.19 42.16 0.02 3 2.15e+06 8726.12 | 3 2.15e+06 8726.12 | 8726.12 592.7 966 58 | 2.12 0.19 43.00 0.02 3 2.16e+06 8726.12 | 180.76 0.0 31 0 | 2.09 0.18 41.18 0.02 3 2.17e+06 8726.12 | 5604.62 3839.7 616 407 | 2.10 0.19 43.04 0.02 3 2.18e+06 8726.12 | 8339.71 0.0 932 0 | 2.09 0.19 42.43 0.02 3 2.20e+06 8726.12 | 2646.60 0.0 300 0 | 2.11 0.18 44.49 0.02 3 2.20e+06 8726.12 | 5454.00 2853.0 618 313 | 1.92 0.19 43.55 0.02 3 2.21e+06 8726.12 | 4760.50 0.0 523 0 | 1.93 0.19 42.93 0.02 3 2.22e+06 9094.07 | 3 2.22e+06 9094.07 | 9094.07 80.9 1000 0 | 2.10 0.18 43.27 0.02 3 2.23e+06 9094.07 | 6217.18 0.0 674 0 | 2.03 0.19 44.04 0.02 3 2.24e+06 9094.07 | 8890.46 0.0 1000 0 | 2.19 0.18 44.23 0.02 3 2.25e+06 9400.97 | 3 2.25e+06 9400.97 | 9400.97 79.1 1000 0 | 2.12 0.18 44.17 0.02 3 2.26e+06 9400.97 | 9185.07 0.0 1000 0 | 2.20 0.18 43.76 0.02 3 2.27e+06 9400.97 | 9208.88 0.0 1000 0 | 2.01 0.18 44.20 0.02 3 2.28e+06 9400.97 | 8215.99 1686.5 900 173 | 2.21 0.18 43.55 0.02 3 2.29e+06 9400.97 | 7827.44 0.0 840 0 | 2.21 0.19 43.74 0.02 3 2.30e+06 9400.97 | 567.31 0.0 78 0 | 2.18 0.18 44.26 0.02 3 2.31e+06 9400.97 | 4230.70 0.0 468 0 | 2.07 0.18 44.48 0.02 3 2.32e+06 9400.97 | 336.20 0.0 52 0 | 2.03 0.19 44.77 0.02 3 2.33e+06 9400.97 | 9327.56 0.0 1000 0 | 1.94 0.19 44.30 0.02 3 2.34e+06 9400.97 | 2688.67 3918.1 296 409 | 2.09 0.18 45.14 0.02 3 2.35e+06 9400.97 | 270.88 0.0 43 0 | 2.09 0.18 44.38 0.02 3 2.36e+06 9400.97 | 4219.46 0.0 457 0 | 2.10 0.18 46.13 0.02 3 2.37e+06 9400.97 | 934.99 0.0 118 0 | 2.09 0.19 45.69 0.02 3 2.38e+06 9400.97 | 9338.99 0.0 1000 0 | 2.06 0.18 45.48 0.02 3 2.39e+06 9400.97 | 5507.83 0.0 584 0 | 1.92 0.18 46.07 0.02 3 2.40e+06 9400.97 | 3810.83 0.0 412 0 | 1.90 0.19 44.47 0.02 3 2.41e+06 9400.97 | 4665.77 0.0 506 0 | 1.99 0.18 45.91 0.02 3 2.42e+06 9400.97 | 1511.40 0.0 174 0 | 1.95 0.18 46.20 0.02 3 2.42e+06 9400.97 | 2301.35 0.0 255 0 | 1.97 0.18 46.06 0.02 3 2.43e+06 9400.97 | 1289.04 0.0 157 0 | 2.14 0.18 46.75 0.02 3 2.44e+06 9400.97 | 3766.25 0.0 425 0 | 2.09 0.18 46.02 0.02 3 2.45e+06 9400.97 | 1576.04 0.0 188 0 | 2.18 0.18 46.27 0.02 3 2.46e+06 9400.97 | 338.50 0.0 51 0 | 2.21 0.19 46.15 0.02 3 2.47e+06 9400.97 | 1363.64 0.0 162 0 | 2.02 0.19 46.61 0.02 3 2.48e+06 9400.97 | 2311.31 0.0 260 0 | 2.12 0.20 47.16 0.02 3 2.49e+06 9400.97 | 1103.78 0.0 138 0 | 2.30 0.19 46.52 0.02 3 2.50e+06 9400.97 | 1327.52 0.0 156 0 | 2.16 0.19 45.45 0.02 3 2.51e+06 9400.97 | 6124.39 2098.5 640 210 | 2.23 0.19 47.28 0.02 3 2.52e+06 9400.97 | 3947.05 0.0 427 0 | 2.23 0.20 47.51 0.02 3 2.53e+06 9400.97 | 365.90 0.0 55 0 | 2.26 0.18 47.74 0.02 3 2.54e+06 9400.97 | 3208.60 0.0 341 0 | 1.93 0.19 48.40 0.02 3 2.55e+06 9400.97 | 7360.38 2959.7 748 289 | 2.12 0.18 47.52 0.02 3 2.56e+06 9400.97 | 6598.35 2526.5 693 255 | 2.25 0.20 47.14 0.02 3 2.57e+06 9400.97 | 4869.49 4685.1 516 484 | 2.32 0.20 47.71 0.02 3 2.58e+06 9400.97 | 8345.87 2688.1 847 265 | 2.25 0.20 48.28 0.02 3 2.59e+06 9400.97 | 2920.38 0.0 314 0 | 2.28 0.19 47.91 0.02 3 2.60e+06 9400.97 | 5261.52 0.0 550 0 | 2.27 0.19 48.32 0.02 3 2.60e+06 9400.97 | 2043.06 0.0 223 0 | 2.21 0.20 48.21 0.02 3 2.61e+06 9400.97 | 4010.91 0.0 433 0 | 2.10 0.20 48.61 0.02 3 2.62e+06 9400.97 | 3848.38 0.0 408 0 | 2.30 0.20 48.81 0.02 3 2.63e+06 9400.97 | 389.13 0.0 58 0 | 2.29 0.19 47.63 0.02 3 2.64e+06 9400.97 | 365.81 0.0 54 0 | 2.16 0.20 48.71 0.02 3 2.65e+06 9400.97 | 3056.22 0.0 328 0 | 2.31 0.20 48.48 0.02 3 2.66e+06 9400.97 | 889.49 0.0 111 0 | 2.08 0.19 48.70 0.02 3 2.67e+06 9400.97 | 165.39 0.0 29 0 | 2.20 0.19 48.89 0.02 3 2.68e+06 9400.97 | 3100.69 0.0 360 0 | 2.08 0.21 49.12 0.02 3 2.68e+06 9400.97 | 498.45 0.0 69 0 | 2.28 0.20 49.01 0.02 3 2.69e+06 9400.97 | 1110.05 0.0 131 0 | 1.95 0.20 48.85 0.02 3 2.70e+06 9400.97 | 3564.61 0.0 367 0 | 2.09 0.20 49.62 0.02 3 2.71e+06 9400.97 | 3891.63 0.0 418 0 | 2.23 0.20 49.66 0.02 3 2.72e+06 9400.97 | 3446.70 0.0 368 0 | 2.19 0.20 50.11 0.02 3 2.73e+06 9400.97 | 2262.99 0.0 240 0 | 2.12 0.21 50.37 0.02 3 2.74e+06 9400.97 | 316.87 0.0 48 0 | 2.09 0.21 49.94 0.02 3 2.75e+06 9400.97 | 8746.19 0.0 877 0 | 2.02 0.21 49.60 0.02 3 2.76e+06 9400.97 | 2905.47 0.0 312 0 | 2.29 0.22 49.86 0.02 3 2.76e+06 9400.97 | 3270.80 0.0 336 0 | 2.07 0.20 50.74 0.02 3 2.77e+06 9400.97 | 2539.63 0.0 265 0 | 2.19 0.22 48.64 0.02 3 2.78e+06 9400.97 | 5086.21 0.0 524 0 | 2.23 0.21 50.41 0.02 3 2.79e+06 9400.97 | 6139.51 0.0 612 0 | 2.38 0.22 51.37 0.02 3 2.80e+06 9400.97 | 1076.67 0.0 128 0 | 2.20 0.22 49.96 0.02 3 2.81e+06 9400.97 | 7106.03 0.0 682 0 | 2.12 0.20 50.93 0.02 3 2.82e+06 9400.97 | 828.86 0.0 103 0 | 2.27 0.21 50.35 0.02 3 2.83e+06 9400.97 | 2867.47 0.0 300 0 | 2.06 0.21 50.02 0.02 3 2.84e+06 9400.97 | 439.11 0.0 62 0 | 2.29 0.21 51.19 0.02 3 2.85e+06 9400.97 | 4167.51 0.0 421 0 | 2.19 0.20 50.30 0.02 3 2.85e+06 9400.97 | 2720.88 0.0 279 0 | 2.19 0.21 51.17 0.02 3 2.86e+06 9400.97 | 3175.01 0.0 323 0 | 2.24 0.22 50.80 0.02 3 2.87e+06 9400.97 | 1955.77 0.0 211 0 | 2.06 0.22 50.54 0.02 3 2.88e+06 9400.97 | 3316.37 0.0 341 0 | 2.13 0.21 50.84 0.02 3 2.89e+06 9400.97 | 722.73 0.0 108 0 | 2.22 0.26 52.52 0.02 3 2.90e+06 9400.97 | 189.10 0.0 37 0 | 1.33 0.23 51.74 0.02 3 2.91e+06 9400.97 | 2395.07 0.0 252 0 | 1.88 0.22 51.33 0.02 3 2.92e+06 9400.97 | 2206.58 0.0 238 0 | 2.04 0.21 52.45 0.02 3 2.93e+06 9400.97 | 260.01 0.0 42 0 | 2.14 0.21 50.83 0.02 3 2.93e+06 9400.97 | 9167.51 0.0 892 0 | 2.11 0.22 52.46 0.02 3 2.94e+06 9400.97 | 2142.60 0.0 235 0 | 2.14 0.21 51.50 0.02 3 2.95e+06 9400.97 | 663.20 0.0 85 0 | 2.32 0.22 51.99 0.02 3 2.96e+06 9400.97 | 6153.73 0.0 614 0 | 2.20 0.21 52.28 0.02 3 2.97e+06 9400.97 | 1746.93 0.0 184 0 | 2.33 0.22 52.50 0.02 3 2.98e+06 9400.97 | 4008.55 0.0 411 0 | 2.14 0.22 51.22 0.02 3 2.99e+06 9400.97 | 323.49 0.0 49 0 | 2.23 0.23 52.69 0.02 3 3.00e+06 9400.97 | 6496.10 0.0 629 0 | 2.28 0.24 52.76 0.02 3 3.01e+06 9400.97 | 839.82 0.0 103 0 | 2.35 0.23 52.15 0.02 3 3.02e+06 9400.97 | 6746.13 3928.6 648 359 | 2.22 0.23 52.27 0.02 3 3.02e+06 9400.97 | 2614.53 0.0 273 0 | 2.40 0.21 51.97 0.02 3 3.03e+06 9400.97 | 6482.44 2960.4 632 274 | 2.29 0.22 52.42 0.02 3 3.04e+06 9400.97 | 2710.71 0.0 272 0 | 2.38 0.23 53.30 0.02 3 3.05e+06 9400.97 | 2630.47 0.0 279 0 | 2.26 0.22 52.33 0.02 3 3.06e+06 9400.97 | 6490.97 0.0 627 0 | 2.41 0.22 53.16 0.02 3 3.07e+06 9400.97 | 5756.57 3020.6 558 278 | 2.20 0.21 53.43 0.02 3 3.08e+06 9400.97 | 2955.34 0.0 301 0 | 2.42 0.22 53.79 0.02 3 3.09e+06 9400.97 | 545.33 0.0 74 0 | 2.27 0.23 52.33 0.02 3 3.10e+06 9400.97 | 2198.62 0.0 229 0 | 2.35 0.22 53.38 0.02 3 3.11e+06 9400.97 | 3655.70 0.0 362 0 | 2.25 0.22 53.73 0.02 3 3.12e+06 9400.97 | 7572.88 0.0 688 0 | 2.40 0.23 53.36 0.02 3 3.13e+06 9400.97 | 686.92 0.0 88 0 | 2.31 0.25 53.30 0.02 3 3.14e+06 9400.97 | 4784.15 0.0 470 0 | 2.34 0.22 53.50 0.02 3 3.15e+06 9400.97 | 6257.92 0.0 597 0 | 2.40 0.23 54.19 0.02 3 3.16e+06 9400.97 | 381.11 0.0 56 0 | 2.55 0.22 54.06 0.02 3 3.17e+06 9400.97 | 4226.98 0.0 408 0 | 2.36 0.23 53.91 0.02 3 3.18e+06 9400.97 | 4583.93 0.0 446 0 | 2.33 0.23 54.37 0.02 3 3.19e+06 9400.97 | 6077.15 3476.0 576 311 | 2.27 0.24 54.81 0.02 3 3.20e+06 9400.97 | 5583.01 3175.2 534 278 | 2.34 0.22 54.06 0.02 3 3.21e+06 9400.97 | 6684.09 2633.0 644 234 | 2.33 0.25 54.21 0.02 3 3.22e+06 9400.97 | 2594.13 0.0 277 0 | 2.45 0.24 54.45 0.02 3 3.23e+06 9400.97 | 3951.93 0.0 381 0 | 2.39 0.23 54.81 0.02 3 3.24e+06 9400.97 | 6620.14 0.0 618 0 | 2.37 0.23 54.77 0.02 3 3.24e+06 9400.97 | 3264.37 0.0 323 0 | 2.38 0.25 55.88 0.02 3 3.25e+06 9400.97 | 3717.48 0.0 369 0 | 2.28 0.23 54.36 0.02 3 3.26e+06 9400.97 | 6228.22 3159.0 590 283 | 2.39 0.24 55.27 0.02 3 3.27e+06 9400.97 | 3191.35 0.0 313 0 | 2.42 0.25 53.25 0.02 3 3.28e+06 9400.97 | 6677.04 0.0 652 0 | 2.38 0.24 56.30 0.02 3 3.29e+06 9400.97 | 1202.97 0.0 135 0 | 2.34 0.23 55.98 0.02 3 3.30e+06 9400.97 | 3834.14 0.0 378 0 | 2.26 0.23 55.60 0.02 3 3.31e+06 9400.97 | 7547.63 0.0 715 0 | 2.28 0.25 56.10 0.02 3 3.32e+06 9400.97 | 3160.17 0.0 305 0 | 2.39 0.25 55.70 0.02 3 3.33e+06 9400.97 | 3366.77 0.0 330 0 | 2.20 0.26 56.55 0.02 3 3.34e+06 9400.97 | 2180.08 0.0 226 0 | 2.51 0.25 55.42 0.02 3 3.35e+06 9400.97 | 4012.17 3974.3 392 356 | 2.43 0.26 55.38 0.02 3 3.35e+06 9400.97 | 2136.97 0.0 221 0 | 2.27 0.25 56.35 0.02 3 3.36e+06 9400.97 | 2565.83 0.0 254 0 | 2.27 0.24 56.11 0.02 3 3.38e+06 9400.97 | 1909.27 0.0 205 0 | 2.47 0.25 56.66 0.02 3 3.38e+06 9400.97 | 4336.54 0.0 418 0 | 2.46 0.26 56.28 0.02 3 3.39e+06 9400.97 | 5321.48 3593.4 494 307 | 2.40 0.25 56.29 0.02 3 3.40e+06 9400.97 | 2623.19 0.0 280 0 | 2.33 0.24 56.03 0.02 3 3.41e+06 9400.97 | 4583.58 0.0 446 0 | 2.37 0.26 56.75 0.02 3 3.42e+06 9400.97 | 2202.31 0.0 234 0 | 2.39 0.25 56.72 0.02 3 3.43e+06 9400.97 | 4711.35 0.0 450 0 | 2.34 0.25 57.02 0.02 3 3.44e+06 9400.97 | 222.00 0.0 36 0 | 2.40 0.26 57.51 0.02 3 3.45e+06 9400.97 | 583.82 0.0 95 0 | 2.51 0.32 60.83 0.03 3 3.46e+06 9400.97 | 1659.08 0.0 180 0 | 1.55 0.24 57.01 0.02 3 3.47e+06 9400.97 | 4795.89 0.0 475 0 | 2.46 0.25 56.82 0.02 3 3.48e+06 9400.97 | 3277.17 0.0 314 0 | 2.45 0.26 56.12 0.02 3 3.49e+06 9400.97 | 6135.82 2896.6 584 257 | 2.48 0.26 57.23 0.02 3 3.50e+06 9400.97 | 2316.13 0.0 239 0 | 2.48 0.24 56.64 0.02 3 3.51e+06 9400.97 | 2459.48 0.0 243 0 | 2.46 0.26 57.63 0.02 3 3.52e+06 9400.97 | 545.49 0.0 72 0 | 2.42 0.27 57.16 0.02 3 3.53e+06 9400.97 | 3056.77 0.0 315 0 | 2.49 0.26 56.49 0.02 3 3.54e+06 9400.97 | 3525.36 0.0 334 0 | 2.51 0.26 56.60 0.02 3 3.55e+06 9400.97 | 448.69 0.0 62 0 | 2.40 0.25 57.04 0.02 3 3.56e+06 9400.97 | 4425.29 0.0 417 0 | 2.46 0.25 58.06 0.02 3 3.57e+06 9400.97 | 7055.81 0.0 647 0 | 2.42 0.25 56.89 0.02 3 3.58e+06 9400.97 | 3547.77 0.0 343 0 | 2.40 0.24 57.90 0.02 3 3.59e+06 9400.97 | 1214.78 0.0 140 0 | 2.51 0.27 57.81 0.02 3 3.60e+06 9400.97 | 1943.99 0.0 203 0 | 2.43 0.26 57.63 0.02 3 3.60e+06 9400.97 | 2539.23 0.0 255 0 | 2.46 0.24 57.93 0.02 3 3.61e+06 9400.97 | 5755.68 0.0 533 0 | 2.44 0.27 57.88 0.02 3 3.62e+06 9400.97 | 521.56 0.0 69 0 | 2.38 0.25 57.91 0.02 3 3.63e+06 9400.97 | 2260.82 0.0 224 0 | 2.49 0.26 57.59 0.02 3 3.64e+06 9400.97 | 8032.42 3036.8 733 268 | 2.35 0.26 57.60 0.02 3 3.65e+06 9400.97 | 5434.70 0.0 494 0 | 2.45 0.27 58.28 0.02 3 3.66e+06 9400.97 | 3497.88 0.0 334 0 | 2.29 0.26 57.95 0.02 3 3.67e+06 9400.97 | 5385.06 0.0 530 0 | 2.36 0.27 58.82 0.02 3 3.68e+06 9400.97 | 7716.17 0.0 712 0 | 2.38 0.24 58.36 0.02 3 3.69e+06 9400.97 | 7525.99 0.0 678 0 | 2.33 0.27 57.81 0.02 3 3.70e+06 9400.97 | 970.74 0.0 115 0 | 2.51 0.26 58.44 0.02 3 3.71e+06 9400.97 | 3055.52 0.0 303 0 | 2.47 0.27 59.08 0.02 3 3.72e+06 9400.97 | 6156.14 0.0 593 0 | 2.51 0.27 58.46 0.02 3 3.73e+06 9400.97 | 757.89 0.0 93 0 | 2.50 0.25 58.00 0.02 3 3.74e+06 9400.97 | 2969.20 0.0 291 0 | 2.45 0.26 59.13 0.02 3 3.75e+06 9400.97 | 6579.89 3733.9 612 332 | 2.49 0.26 59.74 0.02 3 3.76e+06 9400.97 | 4382.62 4036.6 412 359 | 2.47 0.27 58.02 0.02 3 3.77e+06 9400.97 | 6604.70 0.0 627 0 | 2.61 0.25 58.69 0.02 3 3.78e+06 9400.97 | 4470.17 3493.4 428 324 | 2.51 0.25 58.66 0.02 3 3.79e+06 9400.97 | 873.06 0.0 108 0 | 2.45 0.26 58.98 0.02 3 3.80e+06 9400.97 | 3919.33 0.0 369 0 | 2.54 0.28 58.55 0.02 3 3.81e+06 9400.97 | 8246.80 4263.3 739 365 | 2.47 0.28 59.17 0.02 3 3.82e+06 9400.97 | 5343.21 0.0 497 0 | 2.50 0.27 59.11 0.02 3 3.83e+06 9400.97 | 3814.69 0.0 364 0 | 2.57 0.27 59.73 0.02 3 3.84e+06 9400.97 | 206.73 0.0 41 0 | 2.46 0.28 59.52 0.02 3 3.85e+06 9400.97 | 1580.95 0.0 165 0 | 1.89 0.26 58.67 0.02 3 3.86e+06 9400.97 | 8301.75 0.0 744 0 | 2.23 0.27 58.73 0.02 3 3.87e+06 9400.97 | 5613.82 4133.1 514 350 | 2.58 0.26 59.09 0.02 3 3.88e+06 9400.97 | 2753.20 0.0 268 0 | 2.60 0.27 59.82 0.02 3 3.89e+06 9400.97 | 3457.35 0.0 327 0 | 2.55 0.28 59.33 0.02 3 3.90e+06 9400.97 | 174.46 0.0 30 0 | 2.48 0.27 59.32 0.02 3 3.91e+06 9400.97 | 428.61 0.0 60 0 | 2.57 0.28 58.55 0.02 3 3.92e+06 9400.97 | 6091.70 0.0 554 0 | 2.56 0.26 60.11 0.02 3 3.93e+06 9400.97 | 7670.87 0.0 710 0 | 2.66 0.28 60.68 0.02 3 3.94e+06 9400.97 | 2778.81 0.0 276 0 | 2.15 0.27 60.50 0.02 3 3.95e+06 9400.97 | 6145.78 0.0 570 0 | 2.58 0.27 59.34 0.02 3 3.96e+06 9400.97 | 6133.93 0.0 551 0 | 2.53 0.27 59.78 0.02 3 3.97e+06 9400.97 | 4161.56 0.0 388 0 | 2.58 0.27 60.53 0.02 3 3.98e+06 9400.97 | 3202.24 0.0 306 0 | 2.47 0.28 59.90 0.02 3 3.99e+06 9400.97 | 5751.28 3699.0 526 318 | 2.62 0.28 60.64 0.02 3 4.00e+06 9400.97 | 9008.62 0.0 876 0 | 2.64 0.27 60.58 0.02 | UsedTime: 49475 | SavedDir: ./Humanoid-v3_ReliableSAC_3 | Learner: Save in ./Humanoid-v3_ReliableSAC_3 """ elif env_name == 'Humanoid-v3.8140': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -2 args.max_memo = int(2 ** 21 * 1.5) args.learning_rate = 2 ** -14 args.lambda_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 9 args.batch_size = args.net_dim // 2 args.gamma = 0.985 args.num_layer = 3 args.repeat_times = 2 ** 0 args.if_act_target = False import numpy as np args.target_entropy = np.log(env_args['action_dim']) # todo args.if_allow_break = False args.break_step = int(4e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 8.10e+03 90.78 | 2 8.10e+03 90.78 | 90.78 9.5 18 2 | 1.20 0.69 2.78 0.06 2 1.14e+05 227.95 | 2 1.14e+05 227.95 | 227.95 8.4 44 2 | 1.27 0.79 26.12 0.04 2 1.76e+05 240.13 | 2 1.76e+05 240.13 | 240.13 10.1 45 2 | 1.32 0.77 33.01 0.02 2 2.26e+05 264.62 | 2 2.26e+05 264.62 | 264.62 20.5 49 3 | 1.34 0.63 32.48 0.02 2 2.67e+05 264.62 | 219.66 0.0 42 0 | 1.34 0.53 28.57 0.02 2 3.04e+05 341.61 | 2 3.04e+05 341.61 | 341.61 25.4 64 4 | 1.33 0.39 25.56 0.02 2 3.37e+05 341.61 | 260.65 0.0 55 0 | 1.32 0.32 25.71 0.01 2 3.66e+05 413.34 | 2 3.66e+05 413.34 | 413.34 40.6 78 8 | 1.30 0.30 26.26 0.01 2 3.91e+05 413.34 | 278.77 0.0 53 0 | 1.34 0.27 26.03 0.01 2 4.16e+05 413.34 | 274.65 0.0 54 0 | 1.35 0.25 26.42 0.01 2 4.41e+05 557.19 | 2 4.41e+05 557.19 | 557.19 107.9 108 16 | 1.35 0.24 25.52 0.01 2 4.66e+05 557.19 | 392.51 0.0 73 0 | 1.32 0.22 25.35 0.01 2 4.87e+05 557.19 | 385.15 0.0 70 0 | 1.36 0.21 24.85 0.01 2 5.08e+05 557.19 | 426.10 0.0 79 0 | 1.32 0.21 25.51 0.01 2 5.29e+05 557.19 | 399.47 0.0 71 0 | 1.34 0.20 25.57 0.01 2 5.50e+05 557.19 | 385.00 0.0 71 0 | 1.36 0.19 25.35 0.01 2 5.71e+05 557.19 | 435.28 0.0 76 0 | 1.36 0.19 25.96 0.01 2 5.87e+05 557.19 | 466.93 0.0 84 0 | 1.34 0.19 25.93 0.01 2 6.04e+05 557.19 | 470.94 0.0 84 0 | 1.39 0.18 26.30 0.01 2 6.21e+05 557.19 | 402.99 0.0 72 0 | 1.37 0.19 25.32 0.01 2 6.37e+05 557.19 | 385.18 0.0 67 0 | 1.39 0.18 26.13 0.01 2 6.54e+05 557.19 | 524.94 0.0 95 0 | 1.41 0.18 26.40 0.01 2 6.70e+05 557.19 | 540.23 0.0 95 0 | 1.38 0.17 27.68 0.01 2 6.87e+05 557.19 | 422.21 0.0 75 0 | 1.40 0.18 28.46 0.01 2 7.04e+05 557.19 | 291.22 0.0 55 0 | 1.40 0.17 27.04 0.01 2 7.21e+05 557.19 | 373.98 0.0 66 0 | 1.38 0.17 27.55 0.01 2 7.38e+05 557.19 | 531.67 83.8 95 15 | 1.36 0.17 27.87 0.01 2 7.54e+05 557.19 | 411.16 0.0 73 0 | 1.38 0.17 27.85 0.01 2 7.72e+05 663.21 | 2 7.72e+05 663.21 | 663.21 186.4 119 30 | 1.40 0.17 28.84 0.01 2 7.84e+05 663.21 | 530.18 0.0 94 0 | 1.39 0.17 27.86 0.01 2 7.97e+05 663.21 | 537.98 0.0 96 0 | 1.41 0.17 29.90 0.01 2 8.10e+05 765.51 | 2 8.10e+05 765.51 | 765.51 74.8 133 16 | 1.38 0.18 28.83 0.02 2 8.23e+05 765.51 | 746.94 0.0 132 0 | 1.38 0.16 28.68 0.02 2 8.36e+05 765.51 | 644.94 0.0 116 0 | 1.38 0.17 29.29 0.02 2 8.49e+05 765.51 | 754.08 0.0 126 0 | 1.39 0.17 28.72 0.02 2 8.62e+05 765.51 | 503.48 0.0 94 0 | 1.41 0.18 29.79 0.02 2 8.75e+05 765.51 | 537.22 0.0 99 0 | 1.44 0.18 30.48 0.02 2 8.87e+05 765.51 | 659.88 0.0 111 0 | 1.43 0.18 29.34 0.02 2 9.00e+05 765.51 | 761.09 177.9 129 28 | 1.46 0.18 30.42 0.02 2 9.13e+05 765.51 | 613.23 0.0 106 0 | 1.46 0.17 31.09 0.02 2 9.26e+05 1038.18 | 2 9.26e+05 1038.18 | 1038.18 227.4 177 34 | 1.45 0.17 29.79 0.02 2 9.39e+05 1038.18 | 915.45 311.8 154 51 | 1.44 0.17 30.75 0.02 2 9.52e+05 1038.18 | 695.13 0.0 119 0 | 1.49 0.18 30.36 0.02 2 9.65e+05 1038.18 | 646.47 0.0 118 0 | 1.50 0.18 30.80 0.02 2 9.78e+05 1038.18 | 974.30 299.1 163 49 | 1.48 0.18 30.86 0.02 2 9.91e+05 1038.18 | 604.55 0.0 103 0 | 1.49 0.18 31.58 0.02 2 1.00e+06 1038.18 | 922.67 0.0 152 0 | 1.48 0.18 30.21 0.02 2 1.02e+06 1038.18 | 673.91 0.0 106 0 | 1.50 0.18 31.29 0.02 2 1.03e+06 1038.18 | 982.81 297.8 160 49 | 1.52 0.18 31.76 0.02 2 1.04e+06 1038.18 | 855.41 0.0 136 0 | 1.53 0.18 32.46 0.02 2 1.06e+06 1824.70 | 2 1.06e+06 1824.70 | 1824.70 704.9 285 105 | 1.53 0.19 32.25 0.02 2 1.07e+06 1824.70 | 1319.13 0.0 207 0 | 1.53 0.18 32.58 0.02 2 1.08e+06 1824.70 | 1672.06 0.0 267 0 | 1.52 0.19 32.78 0.02 2 1.10e+06 1824.70 | 1325.30 0.0 207 0 | 1.58 0.19 33.83 0.02 2 1.11e+06 1824.70 | 1457.98 470.0 224 71 | 1.59 0.19 32.09 0.02 2 1.13e+06 1881.31 | 2 1.13e+06 1881.31 | 1881.31 714.1 289 100 | 1.58 0.19 34.07 0.02 2 1.14e+06 1881.31 | 1377.06 0.0 215 0 | 1.59 0.19 32.81 0.02 2 1.15e+06 1881.31 | 1335.53 0.0 205 0 | 1.63 0.19 32.02 0.02 2 1.17e+06 2130.46 | 2 1.17e+06 2130.46 | 2130.46 873.7 320 127 | 1.57 0.20 32.94 0.02 2 1.18e+06 2130.46 | 2002.78 0.0 292 0 | 1.59 0.20 34.26 0.02 2 1.19e+06 2130.46 | 1118.43 0.0 172 0 | 1.61 0.19 33.04 0.02 2 1.20e+06 2130.46 | 1210.14 0.0 187 0 | 1.62 0.19 34.59 0.02 2 1.21e+06 2130.46 | 889.89 0.0 139 0 | 1.66 0.19 34.45 0.02 2 1.22e+06 2211.02 | 2 1.22e+06 2211.02 | 2211.02 1027.2 336 144 | 1.62 0.19 33.81 0.02 2 1.23e+06 2211.02 | 955.95 0.0 149 0 | 1.67 0.19 34.10 0.02 2 1.24e+06 2211.02 | 1470.51 0.0 240 0 | 1.63 0.19 34.39 0.02 2 1.24e+06 2211.02 | 783.39 0.0 130 0 | 1.64 0.20 34.20 0.02 2 1.25e+06 2211.02 | 952.79 0.0 152 0 | 1.64 0.20 34.21 0.02 2 1.26e+06 2211.02 | 1436.46 0.0 230 0 | 1.63 0.20 34.65 0.02 2 1.27e+06 2211.02 | 1801.60 0.0 267 0 | 1.68 0.19 35.56 0.02 2 1.28e+06 4286.17 | 2 1.28e+06 4286.17 | 4286.17 2104.8 626 297 | 1.65 0.19 33.72 0.02 2 1.29e+06 4286.17 | 716.03 0.0 114 0 | 1.66 0.20 35.65 0.02 2 1.30e+06 4286.17 | 1972.81 0.0 300 0 | 1.66 0.19 35.24 0.02 2 1.31e+06 4286.17 | 1881.28 0.0 277 0 | 1.66 0.20 34.50 0.02 2 1.32e+06 4286.17 | 1420.99 0.0 213 0 | 1.67 0.19 35.51 0.02 2 1.33e+06 4286.17 | 2819.84 0.0 420 0 | 1.66 0.19 33.99 0.02 2 1.34e+06 4286.17 | 3262.76 0.0 466 0 | 1.66 0.19 35.15 0.02 2 1.35e+06 4286.17 | 4233.49 2461.5 600 332 | 1.71 0.19 34.08 0.02 2 1.36e+06 5612.00 | 2 1.36e+06 5612.00 | 5612.00 2030.8 778 275 | 1.69 0.19 35.28 0.02 2 1.37e+06 5612.00 | 1923.94 0.0 275 0 | 1.73 0.20 36.38 0.02 2 1.38e+06 5612.00 | 3570.13 2566.5 492 342 | 1.74 0.19 35.00 0.02 2 1.39e+06 5612.00 | 1569.53 0.0 219 0 | 1.67 0.20 35.52 0.02 2 1.40e+06 5612.00 | 2526.54 0.0 346 0 | 1.74 0.20 35.73 0.02 2 1.41e+06 7126.32 | 2 1.41e+06 7126.32 | 7126.32 249.9 980 35 | 1.70 0.20 36.92 0.02 2 1.42e+06 7126.32 | 463.55 0.0 74 0 | 1.74 0.19 36.85 0.02 2 1.43e+06 7126.32 | 5973.39 0.0 790 0 | 1.71 0.20 36.26 0.02 2 1.44e+06 7126.32 | 1466.78 0.0 207 0 | 1.74 0.20 37.44 0.02 2 1.45e+06 7126.32 | 5876.85 2582.9 800 346 | 1.78 0.19 37.04 0.02 2 1.46e+06 7331.79 | 2 1.46e+06 7331.79 | 7331.79 229.3 976 28 | 1.73 0.20 36.50 0.02 2 1.47e+06 7331.79 | 2664.43 0.0 366 0 | 1.76 0.19 37.18 0.02 2 1.48e+06 7331.79 | 1321.12 0.0 206 0 | 1.74 0.20 37.00 0.02 2 1.49e+06 7331.79 | 6368.94 2081.2 843 272 | 1.69 0.19 36.71 0.02 2 1.50e+06 7331.79 | 6667.05 876.8 887 118 | 1.79 0.20 37.61 0.02 2 1.51e+06 7331.79 | 5866.35 0.0 779 0 | 1.81 0.20 36.49 0.02 2 1.52e+06 7331.79 | 576.01 0.0 89 0 | 1.80 0.20 37.81 0.02 2 1.53e+06 7331.79 | 1688.60 0.0 233 0 | 1.77 0.20 37.29 0.02 2 1.54e+06 7331.79 | 5261.23 2435.0 700 319 | 1.77 0.20 37.64 0.02 2 1.55e+06 7331.79 | 5399.00 0.0 698 0 | 1.83 0.19 37.14 0.02 2 1.56e+06 7331.79 | 6157.42 1511.7 813 202 | 1.81 0.19 37.53 0.02 2 1.57e+06 7331.79 | 3162.86 0.0 410 0 | 1.82 0.19 37.39 0.02 2 1.58e+06 7331.79 | 3419.41 0.0 445 0 | 1.81 0.19 37.44 0.02 2 1.59e+06 7331.79 | 5282.29 0.0 709 0 | 1.83 0.20 37.65 0.02 2 1.59e+06 7331.79 | 445.82 0.0 73 0 | 1.75 0.19 37.69 0.02 2 1.60e+06 7331.79 | 5166.45 2919.7 662 364 | 1.75 0.20 37.73 0.02 2 1.61e+06 7331.79 | 1160.98 0.0 168 0 | 1.81 0.19 38.19 0.02 2 1.62e+06 7331.79 | 385.14 0.0 63 0 | 1.86 0.20 38.97 0.02 2 1.63e+06 7331.79 | 1296.00 0.0 177 0 | 1.76 0.20 38.75 0.02 2 1.64e+06 7331.79 | 3073.65 0.0 410 0 | 1.78 0.20 38.31 0.02 2 1.65e+06 7331.79 | 4470.72 0.0 591 0 | 1.81 0.20 39.00 0.02 2 1.66e+06 7331.79 | 333.14 0.0 56 0 | 1.79 0.20 39.33 0.02 2 1.67e+06 7331.79 | 5807.64 2430.3 741 302 | 1.85 0.19 37.65 0.02 2 1.68e+06 7331.79 | 4275.79 2694.9 561 335 | 1.89 0.19 39.04 0.02 2 1.69e+06 7331.79 | 1016.73 0.0 141 0 | 1.84 0.20 37.86 0.02 2 1.70e+06 7331.79 | 3605.95 0.0 471 0 | 1.77 0.20 38.81 0.02 2 1.71e+06 7331.79 | 736.54 0.0 107 0 | 1.83 0.20 39.10 0.02 2 1.72e+06 7331.79 | 996.17 0.0 141 0 | 1.74 0.20 38.28 0.02 2 1.73e+06 7331.79 | 4694.49 2852.3 600 358 | 1.85 0.20 38.42 0.02 2 1.74e+06 7331.79 | 2549.88 0.0 339 0 | 1.84 0.20 39.03 0.02 2 1.75e+06 7331.79 | 3115.12 0.0 396 0 | 1.76 0.20 40.11 0.02 2 1.76e+06 7331.79 | 1279.52 0.0 175 0 | 1.92 0.20 38.60 0.02 2 1.77e+06 7331.79 | 2957.39 0.0 386 0 | 1.84 0.20 40.33 0.02 2 1.78e+06 7331.79 | 1165.82 0.0 159 0 | 1.88 0.20 40.23 0.02 2 1.79e+06 7331.79 | 4275.53 0.0 520 0 | 1.86 0.20 39.45 0.02 2 1.80e+06 7331.79 | 5397.93 0.0 660 0 | 1.89 0.21 39.82 0.02 2 1.81e+06 7331.79 | 6072.07 0.0 738 0 | 1.91 0.21 37.96 0.02 2 1.82e+06 7331.79 | 2585.03 0.0 334 0 | 1.79 0.21 40.70 0.02 2 1.82e+06 7331.79 | 4416.40 2765.4 543 326 | 1.80 0.21 39.63 0.02 2 1.83e+06 7331.79 | 3399.75 0.0 432 0 | 1.88 0.21 40.33 0.02 2 1.84e+06 7331.79 | 6230.92 0.0 788 0 | 1.89 0.20 39.00 0.02 2 1.85e+06 7331.79 | 3259.26 0.0 410 0 | 1.87 0.21 40.84 0.02 2 1.86e+06 7331.79 | 1597.32 0.0 212 0 | 1.90 0.21 40.31 0.02 2 1.87e+06 7331.79 | 6815.74 1800.9 840 215 | 1.88 0.20 40.42 0.02 2 1.88e+06 7331.79 | 3414.72 0.0 436 0 | 1.93 0.20 40.98 0.02 2 1.89e+06 7331.79 | 571.97 0.0 87 0 | 1.84 0.21 41.38 0.02 2 1.90e+06 7331.79 | 3184.91 0.0 403 0 | 1.96 0.21 40.56 0.02 2 1.91e+06 8140.26 | 2 1.91e+06 8140.26 | 8140.26 84.2 1000 0 | 1.94 0.20 40.25 0.02 2 1.92e+06 8140.26 | 6630.22 0.0 803 0 | 1.91 0.21 42.25 0.02 2 1.93e+06 8140.26 | 5937.82 0.0 709 0 | 1.89 0.21 41.15 0.02 2 1.94e+06 8140.26 | 615.71 0.0 91 0 | 1.89 0.21 40.50 0.02 2 1.95e+06 8140.26 | 2642.54 0.0 355 0 | 2.01 0.22 40.92 0.02 2 1.96e+06 8140.26 | 1880.52 0.0 238 0 | 1.96 0.21 41.70 0.02 2 1.97e+06 8140.26 | 5411.17 0.0 644 0 | 1.91 0.21 40.88 0.02 2 1.98e+06 8140.26 | 3981.29 0.0 483 0 | 1.80 0.21 42.47 0.02 2 1.99e+06 8140.26 | 6557.22 3281.2 780 382 | 1.95 0.22 41.85 0.02 2 2.00e+06 8140.26 | 3041.03 0.0 371 0 | 1.91 0.21 41.13 0.02 """ elif env_name == 'Humanoid-v3.8605.best': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -2 args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.lambda_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 9 args.batch_size = args.net_dim // 2 args.gamma = 0.985 # todo args.num_layer = 3 args.repeat_times = 2 ** 0 args.if_act_target = False import numpy as np args.target_entropy = np.log(env_args['action_dim']) * 1.5 # todo args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_1 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 8.10e+03 110.28 | 1 8.10e+03 110.28 | 110.28 21.3 22 4 | 1.18 0.68 1.68 0.06 1 1.43e+05 316.51 | 1 1.43e+05 316.51 | 316.51 56.3 69 10 | 1.30 0.78 29.82 0.03 1 2.17e+05 316.51 | 255.03 0.0 48 0 | 1.33 0.67 33.83 0.02 1 2.71e+05 337.53 | 1 2.71e+05 337.53 | 337.53 16.6 61 3 | 1.32 0.50 28.05 0.02 1 3.16e+05 337.53 | 275.44 0.0 51 0 | 1.32 0.36 26.29 0.01 1 3.57e+05 337.53 | 265.05 0.0 49 0 | 1.30 0.31 24.74 0.01 1 3.94e+05 414.59 | 1 3.94e+05 414.59 | 414.59 53.0 80 9 | 1.31 0.27 25.89 0.01 1 4.27e+05 414.59 | 278.19 0.0 51 0 | 1.32 0.25 24.99 0.01 1 4.60e+05 542.04 | 1 4.60e+05 542.04 | 542.04 136.9 104 28 | 1.34 0.23 26.24 0.01 1 4.89e+05 542.04 | 519.01 0.0 95 0 | 1.32 0.22 25.69 0.01 1 5.18e+05 542.04 | 309.69 0.0 68 0 | 1.35 0.21 25.27 0.01 1 5.43e+05 542.04 | 305.88 0.0 58 0 | 1.30 0.20 25.49 0.01 1 5.68e+05 542.04 | 266.79 0.0 56 0 | 1.37 0.19 25.52 0.01 1 5.93e+05 542.04 | 378.07 0.0 71 0 | 1.35 0.19 26.46 0.01 1 6.18e+05 542.04 | 524.26 0.0 110 0 | 1.38 0.19 25.63 0.01 1 6.43e+05 542.04 | 488.47 0.0 86 0 | 1.37 0.18 25.97 0.01 1 6.64e+05 542.04 | 437.22 71.1 89 7 | 1.35 0.18 27.04 0.01 1 6.84e+05 542.04 | 530.90 0.0 97 0 | 1.37 0.18 27.17 0.01 1 7.05e+05 542.04 | 349.59 0.0 64 0 | 1.38 0.17 27.22 0.01 1 7.26e+05 542.04 | 388.24 0.0 70 0 | 1.35 0.18 27.55 0.01 1 7.47e+05 542.04 | 514.88 112.4 90 19 | 1.38 0.17 27.94 0.01 1 7.68e+05 608.88 | 1 7.68e+05 608.88 | 608.88 72.7 109 12 | 1.37 0.17 27.06 0.01 1 7.89e+05 608.88 | 524.12 0.0 96 0 | 1.37 0.17 27.96 0.01 1 8.10e+05 648.58 | 1 8.10e+05 648.58 | 648.58 84.8 118 19 | 1.35 0.17 28.42 0.01 1 8.27e+05 648.58 | 584.14 0.0 98 0 | 1.37 0.17 27.81 0.01 1 8.44e+05 648.58 | 616.88 0.0 103 0 | 1.35 0.16 29.21 0.01 1 8.61e+05 782.15 | 1 8.61e+05 782.15 | 782.15 41.1 136 12 | 1.40 0.17 27.39 0.02 1 8.78e+05 782.15 | 769.69 0.0 134 0 | 1.35 0.17 29.88 0.02 1 8.95e+05 782.15 | 773.94 0.0 137 0 | 1.40 0.17 28.86 0.02 1 9.12e+05 782.15 | 579.52 159.8 95 23 | 1.37 0.17 29.90 0.02 1 9.29e+05 782.15 | 368.24 0.0 64 0 | 1.38 0.17 29.71 0.02 1 9.46e+05 782.15 | 471.58 0.0 82 0 | 1.43 0.17 29.84 0.02 1 9.63e+05 977.21 | 1 9.63e+05 977.21 | 977.21 270.7 162 42 | 1.42 0.18 30.33 0.02 1 9.81e+05 977.21 | 856.29 0.0 162 0 | 1.45 0.18 30.16 0.02 1 9.98e+05 977.21 | 594.79 0.0 99 0 | 1.42 0.17 30.40 0.02 1 1.02e+06 977.21 | 729.72 0.0 130 0 | 1.46 0.17 30.52 0.02 1 1.03e+06 977.21 | 798.60 0.0 151 0 | 1.46 0.18 30.56 0.02 1 1.05e+06 1243.32 | 1 1.05e+06 1243.32 | 1243.32 129.2 213 27 | 1.43 0.18 31.40 0.02 1 1.07e+06 1243.32 | 1213.14 0.0 199 0 | 1.49 0.18 32.20 0.02 1 1.09e+06 1243.32 | 752.98 0.0 139 0 | 1.47 0.18 31.79 0.02 1 1.10e+06 1243.32 | 788.21 0.0 148 0 | 1.49 0.18 30.92 0.02 1 1.11e+06 1243.32 | 806.23 0.0 133 0 | 1.49 0.18 31.74 0.02 1 1.12e+06 1284.78 | 1 1.12e+06 1284.78 | 1284.78 212.0 207 38 | 1.48 0.18 31.87 0.02 1 1.14e+06 1284.78 | 682.50 0.0 113 0 | 1.50 0.18 32.15 0.02 1 1.15e+06 1284.78 | 468.61 0.0 81 0 | 1.51 0.18 32.10 0.02 1 1.16e+06 1284.78 | 986.22 0.0 174 0 | 1.51 0.18 32.51 0.02 1 1.18e+06 1284.78 | 933.67 0.0 172 0 | 1.54 0.18 31.68 0.02 1 1.19e+06 1284.78 | 1189.34 202.8 195 24 | 1.58 0.18 32.28 0.02 1 1.20e+06 1284.78 | 1183.09 0.0 197 0 | 1.54 0.18 33.36 0.02 1 1.22e+06 1284.78 | 1135.20 0.0 188 0 | 1.53 0.18 31.78 0.02 1 1.23e+06 1284.78 | 1147.86 0.0 183 0 | 1.61 0.19 34.01 0.02 1 1.25e+06 1284.78 | 1251.78 0.0 225 0 | 1.56 0.18 34.35 0.02 1 1.26e+06 2821.26 | 1 1.26e+06 2821.26 | 2821.26 412.2 429 55 | 1.55 0.18 33.30 0.02 1 1.27e+06 2821.26 | 1078.30 0.0 171 0 | 1.59 0.18 33.66 0.02 1 1.29e+06 2821.26 | 2256.06 1179.8 350 166 | 1.61 0.18 33.90 0.02 1 1.30e+06 2821.26 | 1868.22 0.0 305 0 | 1.62 0.18 34.38 0.02 1 1.32e+06 2821.26 | 2667.33 1740.0 396 247 | 1.59 0.18 34.13 0.02 1 1.33e+06 2821.26 | 1578.01 0.0 244 0 | 1.60 0.18 34.10 0.02 1 1.34e+06 2821.26 | 2315.74 907.4 361 142 | 1.64 0.19 34.61 0.02 1 1.36e+06 2821.26 | 1068.61 0.0 185 0 | 1.65 0.18 34.59 0.02 1 1.37e+06 2821.26 | 780.38 0.0 119 0 | 1.68 0.19 35.22 0.02 1 1.38e+06 2821.26 | 2128.08 909.8 340 138 | 1.68 0.19 34.24 0.02 1 1.40e+06 5116.59 | 1 1.40e+06 5116.59 | 5116.59 2166.1 734 297 | 1.77 0.19 32.93 0.02 1 1.41e+06 5116.59 | 2901.13 2543.3 403 345 | 1.71 0.19 35.32 0.02 1 1.43e+06 5116.59 | 1638.18 0.0 244 0 | 1.73 0.19 34.84 0.02 1 1.44e+06 5116.59 | 1007.29 0.0 169 0 | 1.72 0.18 34.59 0.02 1 1.46e+06 5116.59 | 3304.17 2510.8 469 341 | 1.76 0.19 35.45 0.02 1 1.47e+06 5116.59 | 3501.58 0.0 483 0 | 1.74 0.19 35.97 0.02 1 1.49e+06 5305.27 | 1 1.49e+06 5305.27 | 5305.27 2807.9 730 378 | 1.77 0.19 35.58 0.02 1 1.50e+06 5305.27 | 5014.42 2359.4 688 315 | 1.72 0.19 35.65 0.02 1 1.52e+06 5305.27 | 4736.14 0.0 639 0 | 1.72 0.19 36.84 0.02 1 1.53e+06 5305.27 | 4393.27 2047.5 598 265 | 1.76 0.19 37.57 0.02 1 1.55e+06 5305.27 | 1213.84 0.0 175 0 | 1.84 0.19 37.64 0.02 1 1.56e+06 5305.27 | 3804.35 2176.2 529 286 | 1.82 0.18 36.11 0.02 1 1.58e+06 5305.27 | 4753.45 0.0 649 0 | 1.82 0.19 35.78 0.02 1 1.59e+06 5305.27 | 3659.95 0.0 478 0 | 1.81 0.20 36.94 0.02 1 1.61e+06 5305.27 | 4564.50 0.0 606 0 | 1.85 0.19 36.93 0.02 1 1.62e+06 6495.10 | 1 1.62e+06 6495.10 | 6495.10 2253.1 837 283 | 1.83 0.19 37.61 0.02 1 1.63e+06 6495.10 | 6440.03 2628.1 819 314 | 1.85 0.19 37.76 0.02 1 1.64e+06 6495.10 | 5980.08 2214.3 784 282 | 1.91 0.19 37.79 0.02 1 1.66e+06 6495.10 | 1143.72 0.0 158 0 | 1.87 0.19 38.26 0.02 1 1.67e+06 6495.10 | 3229.25 0.0 447 0 | 1.87 0.19 38.75 0.02 1 1.68e+06 7820.89 | 1 1.68e+06 7820.89 | 7820.89 49.0 1000 0 | 1.86 0.19 38.04 0.02 1 1.69e+06 7820.89 | 6616.72 2186.4 843 272 | 1.89 0.19 38.41 0.02 1 1.70e+06 7820.89 | 2205.00 0.0 297 0 | 1.85 0.19 38.45 0.02 1 1.71e+06 8201.97 | 1 1.71e+06 8201.97 | 8201.97 60.7 1000 0 | 1.89 0.19 38.49 0.02 1 1.72e+06 8201.97 | 8053.00 0.0 1000 0 | 1.93 0.19 37.79 0.02 1 1.73e+06 8201.97 | 7974.46 0.0 1000 0 | 1.92 0.19 38.88 0.02 1 1.74e+06 8201.97 | 1736.69 0.0 237 0 | 1.88 0.19 38.00 0.02 1 1.75e+06 8201.97 | 7027.53 1871.2 873 220 | 1.94 0.19 37.89 0.02 1 1.76e+06 8201.97 | 4689.30 0.0 579 0 | 1.92 0.19 38.55 0.02 1 1.77e+06 8201.97 | 7855.02 0.0 1000 0 | 1.91 0.19 38.86 0.02 1 1.78e+06 8201.97 | 5215.32 0.0 673 0 | 1.92 0.19 38.98 0.02 1 1.79e+06 8201.97 | 8026.47 0.0 1000 0 | 1.92 0.19 39.59 0.02 1 1.80e+06 8201.97 | 2568.57 0.0 322 0 | 1.89 0.19 39.10 0.02 1 1.81e+06 8201.97 | 3905.44 0.0 516 0 | 1.91 0.20 39.09 0.02 1 1.82e+06 8201.97 | 6868.42 0.0 841 0 | 1.89 0.19 38.71 0.02 1 1.83e+06 8201.97 | 2328.69 0.0 302 0 | 1.93 0.19 39.10 0.02 1 1.84e+06 8201.97 | 7570.05 1112.7 922 135 | 1.97 0.19 39.31 0.02 1 1.85e+06 8201.97 | 5452.10 3047.4 648 353 | 1.81 0.19 39.20 0.02 1 1.85e+06 8201.97 | 5185.33 3187.5 621 365 | 1.95 0.19 39.28 0.02 1 1.87e+06 8201.97 | 3431.44 0.0 414 0 | 2.01 0.19 39.72 0.02 1 1.88e+06 8201.97 | 7174.34 2007.4 852 236 | 1.92 0.20 40.53 0.02 1 1.88e+06 8201.97 | 7000.72 2664.7 823 307 | 1.98 0.19 39.93 0.02 1 1.89e+06 8201.97 | 7756.40 1533.1 900 172 | 1.95 0.20 40.53 0.02 1 1.90e+06 8201.97 | 1015.23 0.0 138 0 | 1.97 0.20 40.52 0.02 1 1.91e+06 8201.97 | 7223.27 0.0 829 0 | 1.96 0.20 39.91 0.02 1 1.92e+06 8201.97 | 2276.04 0.0 271 0 | 1.93 0.20 41.08 0.02 1 1.93e+06 8201.97 | 4279.54 2531.4 512 290 | 1.92 0.20 41.14 0.02 1 1.94e+06 8601.43 | 1 1.94e+06 8601.43 | 8601.43 36.4 1000 0 | 2.01 0.19 41.16 0.02 1 1.95e+06 8605.06 | 1 1.95e+06 8605.06 | 8605.06 53.1 999 2 | 2.01 0.19 39.77 0.02 1 1.96e+06 8605.06 | 8604.10 0.0 1000 0 | 2.02 0.19 41.39 0.02 1 1.97e+06 8605.06 | 4942.93 2670.4 565 286 | 1.99 0.19 40.93 0.02 1 1.98e+06 8605.06 | 8122.71 1366.2 914 148 | 1.93 0.20 41.49 0.02 1 1.99e+06 8605.06 | 1545.50 0.0 194 0 | 1.96 0.19 40.50 0.02 1 2.00e+06 8605.06 | 8586.34 0.0 1000 0 | 1.98 0.20 40.69 0.02 | UsedTime: 17168 | SavedDir: ./Humanoid-v3_ReliableSAC_1 | Learner: Save in ./Humanoid-v3_ReliableSAC_1 """ elif env_name == 'Humanoid-v3.backup.best.5684': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -5 # todo args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.lambda_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 8 args.num_layer = 4 args.batch_size = args.net_dim args.repeat_times = 2 ** 1 args.gamma = 0.99 args.if_act_target = False # todo # import numpy as np # args.target_entropy = np.log(env_args['action_dim']) * 1.5 # ??? args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 8.07e+03 61.53 | 2 8.07e+03 61.53 | 61.53 0.2 13 0 | 0.30 0.54 0.06 0.00 2 8.94e+04 280.97 | 2 8.94e+04 280.97 | 280.97 31.6 65 7 | 0.27 0.07 7.21 0.00 2 1.30e+05 482.54 | 2 1.30e+05 482.54 | 482.54 81.2 104 18 | 0.29 0.14 12.59 0.00 2 1.63e+05 482.54 | 214.11 0.0 45 0 | 0.33 0.19 14.43 0.00 2 1.92e+05 482.54 | 316.52 0.0 68 0 | 0.28 0.21 14.28 0.00 2 2.17e+05 482.54 | 420.99 62.4 85 13 | 0.32 0.21 14.13 0.01 2 2.37e+05 482.54 | 431.52 86.9 93 20 | 0.31 0.17 12.33 0.01 2 2.58e+05 482.54 | 327.86 0.0 66 0 | 0.31 0.16 11.73 0.02 2 2.79e+05 482.54 | 242.40 0.0 52 0 | 0.29 0.15 11.19 0.02 2 2.96e+05 482.54 | 320.37 0.0 69 0 | 0.30 0.14 11.86 0.02 2 3.13e+05 482.54 | 322.18 0.0 63 0 | 0.31 0.13 11.78 0.02 2 3.30e+05 482.54 | 329.25 0.0 65 0 | 0.30 0.13 12.85 0.02 2 3.46e+05 482.54 | 325.96 0.0 64 0 | 0.31 0.13 13.95 0.02 2 3.63e+05 482.54 | 404.71 0.0 86 0 | 0.30 0.13 13.56 0.02 2 3.76e+05 482.54 | 470.03 0.0 90 0 | 0.31 0.14 13.65 0.02 2 3.88e+05 482.54 | 476.55 0.0 105 0 | 0.31 0.14 14.21 0.02 2 4.01e+05 482.54 | 442.83 129.8 88 23 | 0.31 0.14 14.80 0.02 2 4.13e+05 634.66 | 2 4.13e+05 634.66 | 634.66 120.2 129 21 | 0.30 0.15 13.76 0.02 2 4.26e+05 634.66 | 559.63 50.0 121 16 | 0.30 0.15 15.50 0.02 2 4.39e+05 634.66 | 523.28 170.8 112 31 | 0.29 0.15 15.04 0.02 2 4.51e+05 634.66 | 357.70 0.0 77 0 | 0.30 0.16 15.47 0.02 2 4.64e+05 634.66 | 324.52 0.0 73 0 | 0.30 0.17 15.74 0.02 2 4.77e+05 634.66 | 605.87 211.2 128 35 | 0.31 0.18 15.78 0.02 2 4.90e+05 634.66 | 525.32 0.0 102 0 | 0.30 0.18 16.98 0.02 2 5.03e+05 634.66 | 606.06 0.0 119 0 | 0.30 0.20 17.79 0.02 2 5.16e+05 754.18 | 2 5.16e+05 754.18 | 754.18 187.2 152 40 | 0.30 0.20 18.10 0.02 2 5.28e+05 754.18 | 588.85 0.0 121 0 | 0.30 0.20 18.44 0.02 2 5.41e+05 754.18 | 645.80 0.0 137 0 | 0.29 0.21 18.65 0.02 2 5.54e+05 754.18 | 599.06 180.4 127 37 | 0.29 0.21 17.64 0.02 2 5.68e+05 754.18 | 598.60 125.8 116 27 | 0.30 0.22 18.42 0.02 2 5.80e+05 754.18 | 648.31 153.8 139 28 | 0.29 0.22 21.32 0.02 2 5.93e+05 754.18 | 687.98 0.0 154 0 | 0.30 0.23 19.56 0.02 2 6.02e+05 754.18 | 433.99 0.0 95 0 | 0.30 0.23 20.28 0.02 2 6.11e+05 754.18 | 592.46 233.4 127 41 | 0.30 0.23 21.65 0.02 2 6.19e+05 754.18 | 443.31 0.0 89 0 | 0.30 0.23 20.45 0.02 2 6.28e+05 754.18 | 630.86 127.6 124 24 | 0.30 0.23 21.10 0.02 2 6.37e+05 844.03 | 2 6.37e+05 844.03 | 844.03 237.1 164 45 | 0.31 0.24 21.83 0.02 2 6.46e+05 995.82 | 2 6.46e+05 995.82 | 995.82 296.4 204 53 | 0.31 0.24 21.79 0.02 2 6.55e+05 995.82 | 704.54 0.0 146 0 | 0.31 0.25 22.99 0.02 2 6.64e+05 995.82 | 597.17 0.0 120 0 | 0.31 0.25 23.18 0.02 2 6.73e+05 995.82 | 578.13 0.0 127 0 | 0.31 0.26 23.02 0.02 2 6.82e+05 995.82 | 985.69 0.0 188 0 | 0.30 0.26 22.20 0.02 2 6.90e+05 1329.88 | 2 6.90e+05 1329.88 | 1329.88 453.5 271 86 | 0.30 0.26 21.81 0.02 2 6.99e+05 1329.88 | 984.74 242.2 202 52 | 0.30 0.26 24.70 0.02 2 7.08e+05 1329.88 | 1282.09 424.1 252 80 | 0.31 0.26 24.36 0.02 2 7.17e+05 1609.77 | 2 7.17e+05 1609.77 | 1609.77 986.8 321 199 | 0.30 0.26 25.79 0.02 2 7.26e+05 1835.22 | 2 7.26e+05 1835.22 | 1835.22 846.6 361 168 | 0.31 0.26 22.76 0.02 2 7.35e+05 1835.22 | 1455.07 0.0 301 0 | 0.31 0.27 24.73 0.02 2 7.45e+05 1835.22 | 1424.00 0.0 284 0 | 0.31 0.26 25.26 0.02 2 7.54e+05 1835.22 | 1585.16 471.9 319 96 | 0.31 0.26 24.13 0.02 2 7.63e+05 1835.22 | 502.12 0.0 99 0 | 0.30 0.27 24.48 0.02 2 7.72e+05 1957.16 | 2 7.72e+05 1957.16 | 1957.16 1026.3 374 191 | 0.31 0.27 25.86 0.02 2 7.81e+05 1957.16 | 518.58 0.0 106 0 | 0.31 0.27 25.86 0.02 2 7.91e+05 1957.16 | 1099.69 0.0 223 0 | 0.31 0.27 25.92 0.02 2 8.01e+05 1957.16 | 1239.12 0.0 246 0 | 0.31 0.27 26.76 0.02 2 8.10e+05 1957.16 | 1706.44 0.0 318 0 | 0.31 0.27 25.48 0.02 2 8.20e+05 1957.16 | 1875.97 612.2 369 110 | 0.31 0.27 26.70 0.02 2 8.30e+05 1957.16 | 797.77 0.0 158 0 | 0.31 0.28 26.81 0.02 2 8.39e+05 1957.16 | 1699.40 0.0 339 0 | 0.31 0.27 26.47 0.02 2 8.48e+05 1957.16 | 854.85 0.0 166 0 | 0.32 0.28 28.31 0.02 2 8.58e+05 1957.16 | 1492.19 0.0 290 0 | 0.32 0.28 25.77 0.02 2 8.67e+05 1957.16 | 1687.29 0.0 332 0 | 0.31 0.28 26.35 0.02 2 8.76e+05 2319.36 | 2 8.76e+05 2319.36 | 2319.36 1121.7 436 208 | 0.31 0.28 27.42 0.02 2 8.86e+05 2319.36 | 1523.18 0.0 287 0 | 0.32 0.28 27.89 0.02 2 8.95e+05 3929.77 | 2 8.95e+05 3929.77 | 3929.77 1606.8 757 308 | 0.31 0.28 28.16 0.02 2 9.05e+05 3929.77 | 1623.65 0.0 312 0 | 0.31 0.28 27.18 0.02 2 9.15e+05 3929.77 | 3908.78 0.0 752 0 | 0.32 0.28 28.58 0.02 2 9.25e+05 3929.77 | 1302.67 0.0 258 0 | 0.32 0.27 29.20 0.02 2 9.35e+05 3929.77 | 1261.39 0.0 245 0 | 0.32 0.27 27.75 0.02 2 9.45e+05 3929.77 | 759.79 0.0 169 0 | 0.31 0.27 28.00 0.02 2 9.55e+05 3929.77 | 2116.41 0.0 402 0 | 0.31 0.26 28.82 0.02 2 9.65e+05 3929.77 | 1699.71 0.0 315 0 | 0.32 0.27 30.17 0.02 2 9.74e+05 3929.77 | 726.84 0.0 160 0 | 0.32 0.27 28.64 0.02 2 9.84e+05 4231.71 | 2 9.84e+05 4231.71 | 4231.71 1425.9 799 257 | 0.32 0.27 28.88 0.02 2 9.94e+05 4231.71 | 2501.40 1341.9 474 253 | 0.31 0.27 30.48 0.02 2 1.00e+06 4231.71 | 3515.81 1836.7 660 333 | 0.32 0.27 30.17 0.02 2 1.01e+06 4231.71 | 828.37 0.0 171 0 | 0.33 0.27 30.49 0.02 2 1.02e+06 4231.71 | 1462.77 0.0 270 0 | 0.32 0.27 31.05 0.02 2 1.03e+06 4231.71 | 1928.92 0.0 356 0 | 0.33 0.26 31.43 0.02 2 1.04e+06 4231.71 | 609.80 0.0 128 0 | 0.32 0.26 30.16 0.02 2 1.05e+06 4231.71 | 3092.45 1241.4 596 244 | 0.32 0.27 31.47 0.02 2 1.06e+06 4231.71 | 1380.05 0.0 261 0 | 0.32 0.25 32.00 0.02 2 1.07e+06 4231.71 | 2293.69 0.0 423 0 | 0.32 0.26 32.25 0.02 2 1.08e+06 4231.71 | 904.86 0.0 180 0 | 0.32 0.25 32.23 0.02 2 1.10e+06 4231.71 | 1727.42 0.0 351 0 | 0.32 0.25 31.05 0.02 2 1.11e+06 4231.71 | 2375.34 0.0 441 0 | 0.33 0.25 30.80 0.02 2 1.12e+06 4231.71 | 3723.47 0.0 684 0 | 0.33 0.25 32.45 0.02 2 1.13e+06 4231.71 | 4135.63 1886.7 768 342 | 0.32 0.25 31.90 0.02 2 1.14e+06 4231.71 | 765.19 0.0 142 0 | 0.33 0.24 32.01 0.02 2 1.15e+06 4231.71 | 1945.57 0.0 366 0 | 0.33 0.24 34.65 0.02 2 1.16e+06 4231.71 | 2542.68 1734.2 465 311 | 0.32 0.24 32.80 0.02 2 1.17e+06 4231.71 | 2590.14 0.0 471 0 | 0.32 0.24 31.36 0.02 2 1.18e+06 4231.71 | 2468.01 0.0 447 0 | 0.33 0.25 33.19 0.02 2 1.19e+06 4231.71 | 1560.16 0.0 285 0 | 0.33 0.24 31.76 0.02 2 1.19e+06 4231.71 | 223.32 0.0 43 0 | 0.33 0.24 34.08 0.02 2 1.20e+06 4231.71 | 123.22 0.0 25 0 | 0.33 0.25 32.51 0.02 2 1.21e+06 4231.71 | 1063.34 0.0 205 0 | 0.32 0.24 33.16 0.02 2 1.21e+06 4231.71 | 2342.22 2161.3 434 392 | 0.32 0.24 32.86 0.02 2 1.22e+06 4231.71 | 1376.66 0.0 254 0 | 0.33 0.24 33.61 0.02 2 1.22e+06 4231.71 | 1939.27 0.0 345 0 | 0.33 0.24 32.21 0.02 2 1.23e+06 4231.71 | 1450.92 0.0 282 0 | 0.33 0.23 34.04 0.02 2 1.23e+06 4231.71 | 3652.45 0.0 657 0 | 0.34 0.24 34.21 0.02 2 1.24e+06 4231.71 | 1252.34 0.0 240 0 | 0.33 0.24 33.65 0.02 2 1.24e+06 4231.71 | 1768.35 0.0 326 0 | 0.34 0.24 33.81 0.02 2 1.25e+06 4231.71 | 1952.18 0.0 350 0 | 0.33 0.24 34.21 0.02 2 1.25e+06 4231.71 | 1479.76 0.0 278 0 | 0.33 0.23 34.37 0.02 2 1.26e+06 4231.71 | 4231.34 0.0 757 0 | 0.34 0.24 33.61 0.02 2 1.26e+06 4231.71 | 4202.22 0.0 755 0 | 0.33 0.23 32.39 0.02 2 1.27e+06 4231.71 | 3597.61 2100.9 658 379 | 0.33 0.24 32.62 0.02 2 1.27e+06 4231.71 | 430.31 0.0 92 0 | 0.33 0.23 34.13 0.02 2 1.28e+06 4231.71 | 2833.13 1841.9 511 320 | 0.33 0.23 34.23 0.01 2 1.28e+06 4351.07 | 2 1.28e+06 4351.07 | 4351.07 1734.1 778 304 | 0.33 0.23 32.08 0.01 2 1.29e+06 4351.07 | 2608.48 0.0 470 0 | 0.33 0.24 34.04 0.01 2 1.29e+06 4351.07 | 2364.01 1791.9 428 311 | 0.33 0.23 34.24 0.01 2 1.30e+06 4351.07 | 3731.13 1500.9 686 270 | 0.33 0.23 35.38 0.01 2 1.30e+06 4351.07 | 805.48 0.0 158 0 | 0.33 0.23 31.95 0.01 2 1.31e+06 4351.07 | 491.94 0.0 109 0 | 0.33 0.23 33.86 0.01 2 1.31e+06 4351.07 | 1352.71 0.0 244 0 | 0.33 0.22 33.14 0.01 2 1.32e+06 4351.07 | 1908.86 0.0 352 0 | 0.33 0.23 32.84 0.01 2 1.32e+06 4351.07 | 950.31 0.0 171 0 | 0.33 0.22 34.09 0.01 2 1.33e+06 4351.07 | 639.88 0.0 124 0 | 0.33 0.22 32.27 0.01 2 1.34e+06 4351.07 | 2889.20 0.0 515 0 | 0.33 0.22 34.52 0.01 2 1.34e+06 4351.07 | 3991.38 0.0 768 0 | 0.33 0.22 33.87 0.01 2 1.35e+06 4351.07 | 3834.92 0.0 699 0 | 0.34 0.23 35.08 0.01 2 1.35e+06 4351.07 | 1375.02 0.0 253 0 | 0.33 0.23 33.69 0.01 2 1.35e+06 4351.07 | 3717.74 0.0 671 0 | 0.33 0.23 31.91 0.01 2 1.36e+06 4351.07 | 3654.43 1926.9 668 345 | 0.32 0.22 33.76 0.01 2 1.36e+06 4351.07 | 4149.08 1117.4 737 191 | 0.33 0.22 33.57 0.01 2 1.37e+06 4584.25 | 2 1.37e+06 4584.25 | 4584.25 1056.6 819 187 | 0.33 0.22 33.02 0.01 2 1.38e+06 4584.25 | 745.19 0.0 149 0 | 0.34 0.23 34.83 0.01 2 1.38e+06 4584.25 | 764.75 0.0 143 0 | 0.33 0.22 33.36 0.01 2 1.38e+06 4584.25 | 1127.75 0.0 221 0 | 0.33 0.22 34.09 0.01 2 1.39e+06 4584.25 | 1979.66 0.0 355 0 | 0.34 0.21 34.31 0.01 2 1.39e+06 4584.25 | 1755.43 0.0 343 0 | 0.34 0.22 34.75 0.01 2 1.40e+06 4584.25 | 332.25 0.0 63 0 | 0.34 0.22 35.14 0.01 2 1.40e+06 4584.25 | 1491.16 0.0 266 0 | 0.33 0.22 34.39 0.01 2 1.41e+06 4980.79 | 2 1.41e+06 4980.79 | 4980.79 558.8 895 105 | 0.34 0.21 34.81 0.01 2 1.41e+06 4980.79 | 1351.99 0.0 245 0 | 0.34 0.21 34.57 0.01 2 1.42e+06 5684.42 | 2 1.42e+06 5684.42 | 5684.42 131.2 1000 0 | 0.33 0.21 33.68 0.01 2 1.42e+06 5684.42 | 4778.06 0.0 879 0 | 0.33 0.21 33.75 0.01 2 1.43e+06 5684.42 | 3606.03 2215.2 640 386 | 0.34 0.20 33.83 0.01 2 1.43e+06 5684.42 | 1853.79 0.0 332 0 | 0.33 0.21 34.58 0.01 2 1.44e+06 5684.42 | 1923.59 0.0 357 0 | 0.34 0.21 33.56 0.01 2 1.45e+06 5684.42 | 3439.89 0.0 628 0 | 0.35 0.21 35.52 0.01 2 1.45e+06 5684.42 | 1380.56 0.0 271 0 | 0.33 0.21 34.46 0.01 2 1.46e+06 5684.42 | 4449.71 1530.1 798 258 | 0.33 0.21 36.05 0.01 2 1.46e+06 5684.42 | 1432.35 0.0 283 0 | 0.34 0.21 34.44 0.01 2 1.47e+06 5684.42 | 1907.75 0.0 343 0 | 0.34 0.21 34.38 0.01 2 1.47e+06 5684.42 | 1346.14 0.0 251 0 | 0.32 0.21 34.43 0.01 2 1.48e+06 5684.42 | 4292.50 0.0 802 0 | 0.34 0.21 35.61 0.01 2 1.48e+06 5684.42 | 4377.58 0.0 768 0 | 0.34 0.21 35.64 0.01 2 1.49e+06 5684.42 | 814.67 0.0 147 0 | 0.34 0.21 34.39 0.01 2 1.49e+06 5684.42 | 3326.43 0.0 585 0 | 0.33 0.21 35.33 0.01 2 1.50e+06 5684.42 | 1169.90 0.0 221 0 | 0.32 0.22 34.27 0.01 2 1.50e+06 5684.42 | 352.07 0.0 74 0 | 0.33 0.25 35.59 0.02 2 1.51e+06 5684.42 | 432.39 0.0 84 0 | 0.32 0.26 37.55 0.02 2 1.51e+06 5684.42 | 3580.22 0.0 677 0 | 0.31 0.25 38.36 0.01 2 1.52e+06 5684.42 | 3384.96 0.0 586 0 | 0.31 0.24 36.76 0.01 2 1.52e+06 5684.42 | 1773.22 0.0 361 0 | 0.32 0.23 36.11 0.01 2 1.53e+06 5684.42 | 2135.71 0.0 398 0 | 0.35 0.22 35.34 0.01 2 1.53e+06 5684.42 | 860.46 0.0 156 0 | 0.34 0.22 35.35 0.01 2 1.54e+06 5684.42 | 5422.32 0.0 1000 0 | 0.34 0.22 36.33 0.01 2 1.54e+06 5684.42 | 675.59 0.0 127 0 | 0.34 0.21 35.75 0.01 2 1.55e+06 5684.42 | 1234.09 0.0 222 0 | 0.33 0.21 34.51 0.01 2 1.55e+06 5684.42 | 4229.33 0.0 753 0 | 0.34 0.20 35.09 0.01 2 1.56e+06 5684.42 | 1366.60 0.0 244 0 | 0.33 0.20 33.57 0.01 2 1.56e+06 5684.42 | 5525.51 0.0 1000 0 | 0.33 0.21 35.46 0.01 2 1.57e+06 5684.42 | 1769.33 0.0 339 0 | 0.34 0.20 34.62 0.01 2 1.57e+06 5684.42 | 2902.24 0.0 546 0 | 0.34 0.20 34.76 0.01 2 1.58e+06 5684.42 | 4058.17 0.0 721 0 | 0.34 0.21 34.88 0.01 2 1.58e+06 5684.42 | 5075.46 1003.3 900 173 | 0.34 0.21 34.74 0.01 2 1.59e+06 5684.42 | 3907.85 0.0 694 0 | 0.34 0.21 36.51 0.01 2 1.59e+06 5684.42 | 5449.51 0.0 1000 0 | 0.34 0.20 34.68 0.01 2 1.60e+06 5684.42 | 4781.07 0.0 863 0 | 0.34 0.21 35.13 0.01 2 1.61e+06 5684.42 | 797.45 0.0 151 0 | 0.34 0.20 35.76 0.01 2 1.61e+06 5684.42 | 1150.24 0.0 217 0 | 0.33 0.20 35.66 0.01 2 1.62e+06 5684.42 | 5660.03 0.0 1000 0 | 0.34 0.20 35.80 0.01 2 1.62e+06 5684.42 | 3585.73 1437.3 617 237 | 0.35 0.20 34.86 0.01 2 1.63e+06 5684.42 | 4281.01 1572.7 744 258 | 0.33 0.19 35.23 0.01 2 1.63e+06 5684.42 | 2157.23 0.0 399 0 | 0.34 0.20 34.19 0.01 2 1.64e+06 5684.42 | 5280.96 0.0 1000 0 | 0.35 0.19 33.86 0.01 2 1.64e+06 5684.42 | 5135.08 0.0 871 0 | 0.34 0.20 34.85 0.01 2 1.65e+06 5684.42 | 1028.12 0.0 187 0 | 0.34 0.19 35.61 0.01 2 1.65e+06 5684.42 | 1541.23 0.0 272 0 | 0.35 0.19 35.61 0.01 2 1.66e+06 5684.42 | 2266.63 0.0 416 0 | 0.34 0.19 33.94 0.01 2 1.66e+06 5684.42 | 1899.89 0.0 342 0 | 0.35 0.19 34.28 0.01 2 1.67e+06 5684.42 | 4176.02 1000.3 717 164 | 0.34 0.19 33.48 0.01 2 1.67e+06 5684.42 | 5189.92 1227.2 882 205 | 0.34 0.19 35.69 0.01 2 1.68e+06 5684.42 | 195.31 0.0 38 0 | 0.35 0.19 34.47 0.01 2 1.68e+06 5684.42 | 5663.44 0.0 1000 0 | 0.35 0.19 36.95 0.01 2 1.69e+06 5684.42 | 823.29 0.0 153 0 | 0.34 0.19 35.86 0.01 2 1.69e+06 5684.42 | 3310.77 0.0 587 0 | 0.34 0.19 35.26 0.01 2 1.70e+06 5684.42 | 5610.64 0.0 1000 0 | 0.34 0.19 36.32 0.01 2 1.70e+06 5684.42 | 2492.52 0.0 441 0 | 0.35 0.20 35.55 0.01 2 1.71e+06 5684.42 | 1382.81 0.0 251 0 | 0.34 0.19 35.50 0.01 2 1.71e+06 5684.42 | 5502.84 0.0 965 0 | 0.34 0.19 35.44 0.01 2 1.72e+06 5684.42 | 2653.70 0.0 464 0 | 0.34 0.19 35.49 0.01 2 1.72e+06 5684.42 | 2569.08 0.0 446 0 | 0.34 0.20 34.85 0.01 2 1.73e+06 5684.42 | 1960.59 0.0 356 0 | 0.35 0.20 35.89 0.01 2 1.73e+06 5684.42 | 569.35 0.0 122 0 | 0.35 0.20 35.76 0.01 2 1.74e+06 5684.42 | 1555.08 0.0 302 0 | 0.33 0.19 34.31 0.01 2 1.74e+06 5684.42 | 825.29 0.0 181 0 | 0.33 0.20 35.71 0.01 2 1.75e+06 5684.42 | 884.30 0.0 182 0 | 0.33 0.20 35.93 0.01 2 1.75e+06 5684.42 | 754.74 0.0 154 0 | 0.33 0.20 35.86 0.01 2 1.76e+06 5684.42 | 840.29 0.0 166 0 | 0.32 0.19 35.76 0.01 2 1.76e+06 5684.42 | 5375.29 0.0 927 0 | 0.32 0.18 35.98 0.01 2 1.76e+06 5684.42 | 2216.25 0.0 376 0 | 0.34 0.19 35.01 0.01 2 1.77e+06 5684.42 | 5582.28 0.0 1000 0 | 0.34 0.19 36.68 0.01 2 1.77e+06 5684.42 | 3306.34 0.0 592 0 | 0.35 0.18 36.32 0.01 2 1.78e+06 5684.42 | 5509.94 0.0 957 0 | 0.34 0.19 35.58 0.01 2 1.78e+06 5684.42 | 1581.59 0.0 275 0 | 0.34 0.19 34.64 0.01 2 1.79e+06 5684.42 | 4884.17 1757.6 831 292 | 0.34 0.19 34.52 0.01 2 1.79e+06 5684.42 | 520.76 0.0 102 0 | 0.34 0.19 36.42 0.01 2 1.80e+06 5684.42 | 2075.62 0.0 360 0 | 0.36 0.19 34.56 0.01 2 1.80e+06 5684.42 | 2849.00 0.0 504 0 | 0.35 0.19 36.11 0.01 """ elif env_name == 'Humanoid-v3.backup.5606': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -4 args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.lambda_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 8 args.num_layer = 4 args.batch_size = args.net_dim args.repeat_times = 2 ** 1 args.gamma = 0.99 args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 8.07e+03 76.16 | 2 8.07e+03 76.16 | 76.16 0.1 16 0 | 0.30 0.55 -0.11 0.00 2 8.47e+04 226.51 | 2 8.47e+04 226.51 | 226.51 12.0 45 2 | 0.29 0.03 4.31 0.00 2 1.26e+05 330.59 | 2 1.26e+05 330.59 | 330.59 12.2 70 2 | 0.29 0.07 8.89 0.00 2 1.59e+05 502.37 | 2 1.59e+05 502.37 | 502.37 74.8 102 13 | 0.33 0.08 10.22 0.00 2 1.89e+05 502.37 | 271.74 0.0 51 0 | 0.32 0.13 13.05 0.00 2 2.13e+05 502.37 | 263.78 0.0 58 0 | 0.32 0.16 12.73 0.01 2 2.34e+05 502.37 | 333.15 0.0 65 0 | 0.28 0.15 13.12 0.01 2 2.55e+05 502.37 | 480.34 70.0 105 13 | 0.32 0.13 11.47 0.02 2 2.76e+05 538.58 | 2 2.76e+05 538.58 | 538.58 108.7 108 19 | 0.31 0.11 12.34 0.02 2 2.92e+05 538.58 | 357.07 0.0 68 0 | 0.30 0.12 12.55 0.02 2 3.09e+05 538.58 | 401.06 0.0 79 0 | 0.30 0.12 12.48 0.02 2 3.26e+05 538.58 | 359.38 0.0 78 0 | 0.31 0.13 14.05 0.02 2 3.43e+05 538.58 | 415.86 0.0 98 0 | 0.30 0.14 14.95 0.02 2 3.59e+05 538.58 | 427.16 0.0 80 0 | 0.31 0.15 14.31 0.02 2 3.77e+05 538.58 | 486.99 0.0 93 0 | 0.30 0.16 14.94 0.02 2 3.89e+05 538.58 | 462.94 0.0 101 0 | 0.30 0.17 15.75 0.02 2 4.01e+05 538.58 | 419.89 0.0 99 0 | 0.30 0.18 15.39 0.02 2 4.14e+05 538.58 | 479.96 0.0 90 0 | 0.31 0.19 15.36 0.02 2 4.27e+05 538.58 | 537.61 0.0 119 0 | 0.30 0.20 15.81 0.02 2 4.39e+05 538.58 | 363.96 0.0 75 0 | 0.30 0.21 15.95 0.02 2 4.52e+05 538.58 | 535.53 158.0 110 35 | 0.30 0.21 17.68 0.02 2 4.65e+05 538.58 | 434.56 0.0 90 0 | 0.31 0.22 17.65 0.02 2 4.78e+05 538.58 | 421.31 0.0 88 0 | 0.31 0.22 16.96 0.02 2 4.91e+05 538.58 | 372.28 0.0 74 0 | 0.30 0.23 17.25 0.02 2 5.03e+05 538.58 | 455.47 128.7 96 29 | 0.30 0.23 18.11 0.02 2 5.16e+05 538.58 | 428.26 0.0 86 0 | 0.31 0.24 18.75 0.02 2 5.29e+05 538.58 | 316.51 0.0 62 0 | 0.31 0.24 19.18 0.02 2 5.42e+05 615.80 | 2 5.42e+05 615.80 | 615.80 96.7 123 21 | 0.31 0.25 21.45 0.02 2 5.54e+05 826.89 | 2 5.54e+05 826.89 | 826.89 104.2 168 26 | 0.30 0.27 20.43 0.02 2 5.67e+05 826.89 | 450.51 0.0 92 0 | 0.31 0.27 19.76 0.02 2 5.80e+05 826.89 | 498.25 0.0 92 0 | 0.31 0.27 21.87 0.02 2 5.93e+05 826.89 | 815.60 147.8 166 33 | 0.31 0.27 22.05 0.02 2 6.02e+05 826.89 | 699.31 0.0 147 0 | 0.30 0.28 22.44 0.02 2 6.10e+05 826.89 | 643.56 0.0 126 0 | 0.31 0.28 23.44 0.02 2 6.19e+05 826.89 | 167.29 0.0 33 0 | 0.31 0.28 23.14 0.02 2 6.28e+05 826.89 | 367.48 0.0 74 0 | 0.31 0.29 23.11 0.02 2 6.36e+05 826.89 | 658.05 0.0 127 0 | 0.31 0.29 22.56 0.02 2 6.45e+05 826.89 | 746.85 0.0 147 0 | 0.31 0.29 23.29 0.02 2 6.54e+05 826.89 | 767.08 0.0 168 0 | 0.30 0.29 21.61 0.02 2 6.62e+05 826.89 | 736.44 0.0 139 0 | 0.30 0.30 23.38 0.02 2 6.71e+05 826.89 | 436.42 0.0 94 0 | 0.30 0.30 22.17 0.02 2 6.80e+05 826.89 | 634.87 0.0 120 0 | 0.30 0.29 24.19 0.02 2 6.89e+05 826.89 | 595.90 189.0 123 44 | 0.31 0.29 26.35 0.02 2 6.97e+05 826.89 | 567.10 0.0 107 0 | 0.31 0.31 24.67 0.02 2 7.06e+05 826.89 | 595.54 0.0 114 0 | 0.31 0.31 24.35 0.02 2 7.15e+05 826.89 | 399.45 0.0 77 0 | 0.31 0.30 23.58 0.02 2 7.23e+05 826.89 | 434.58 0.0 85 0 | 0.31 0.31 25.30 0.02 2 7.32e+05 826.89 | 446.36 0.0 83 0 | 0.31 0.31 26.40 0.02 2 7.40e+05 826.89 | 537.46 0.0 97 0 | 0.31 0.31 24.95 0.02 2 7.49e+05 826.89 | 671.12 0.0 137 0 | 0.32 0.30 24.95 0.02 2 7.58e+05 826.89 | 453.14 0.0 87 0 | 0.31 0.31 25.86 0.02 2 7.67e+05 826.89 | 691.16 0.0 130 0 | 0.31 0.30 25.07 0.02 2 7.75e+05 1530.83 | 2 7.75e+05 1530.83 | 1530.83 396.3 297 80 | 0.30 0.31 23.88 0.02 2 7.84e+05 1530.83 | 891.09 0.0 180 0 | 0.31 0.30 25.45 0.02 2 7.93e+05 1530.83 | 360.46 0.0 70 0 | 0.31 0.31 26.00 0.02 2 8.01e+05 1530.83 | 452.85 0.0 90 0 | 0.30 0.30 24.52 0.02 2 8.10e+05 1530.83 | 663.09 0.0 131 0 | 0.32 0.30 26.27 0.02 2 8.19e+05 1530.83 | 1212.53 511.4 247 106 | 0.31 0.30 26.67 0.02 2 8.28e+05 1530.83 | 799.14 0.0 151 0 | 0.31 0.30 23.82 0.02 2 8.37e+05 1530.83 | 779.43 0.0 156 0 | 0.31 0.30 25.61 0.02 2 8.45e+05 1530.83 | 631.44 0.0 118 0 | 0.31 0.30 25.03 0.02 2 8.54e+05 1530.83 | 1248.43 0.0 248 0 | 0.31 0.30 25.75 0.02 2 8.63e+05 1530.83 | 928.86 0.0 182 0 | 0.31 0.30 26.13 0.02 2 8.73e+05 1530.83 | 1125.56 0.0 219 0 | 0.31 0.30 26.08 0.02 2 8.82e+05 1530.83 | 698.18 0.0 145 0 | 0.31 0.30 26.49 0.02 2 8.91e+05 1530.83 | 961.80 0.0 212 0 | 0.30 0.30 26.33 0.02 2 9.00e+05 1530.83 | 1174.05 0.0 230 0 | 0.31 0.30 26.08 0.02 2 9.09e+05 1530.83 | 1100.58 0.0 239 0 | 0.31 0.30 27.55 0.02 2 9.18e+05 1868.20 | 2 9.18e+05 1868.20 | 1868.20 164.8 371 30 | 0.30 0.30 26.45 0.02 2 9.28e+05 1868.20 | 1073.36 0.0 201 0 | 0.31 0.30 26.89 0.02 2 9.37e+05 1868.20 | 1205.66 0.0 230 0 | 0.31 0.30 26.77 0.02 2 9.46e+05 1868.20 | 1372.51 0.0 267 0 | 0.31 0.29 28.57 0.02 2 9.56e+05 1868.20 | 798.34 0.0 154 0 | 0.31 0.30 28.85 0.02 2 9.66e+05 1868.20 | 1428.51 788.3 277 150 | 0.32 0.29 27.15 0.02 2 9.75e+05 1868.20 | 608.42 0.0 116 0 | 0.31 0.28 29.42 0.02 2 9.85e+05 1868.20 | 325.33 0.0 64 0 | 0.31 0.29 28.10 0.02 2 9.95e+05 1928.41 | 2 9.95e+05 1928.41 | 1928.41 822.3 379 159 | 0.32 0.29 29.61 0.02 2 1.00e+06 1928.41 | 1149.56 0.0 226 0 | 0.31 0.29 28.76 0.02 2 1.01e+06 1928.41 | 1721.60 0.0 345 0 | 0.31 0.28 28.38 0.02 2 1.02e+06 1928.41 | 1185.92 0.0 223 0 | 0.32 0.29 27.91 0.02 2 1.03e+06 1928.41 | 1233.72 0.0 244 0 | 0.31 0.28 28.91 0.02 2 1.04e+06 1928.41 | 1551.67 0.0 303 0 | 0.31 0.28 29.68 0.02 2 1.05e+06 1928.41 | 978.83 0.0 192 0 | 0.31 0.28 28.76 0.02 2 1.06e+06 2257.10 | 2 1.06e+06 2257.10 | 2257.10 674.7 421 120 | 0.31 0.28 29.41 0.02 2 1.07e+06 2257.10 | 2150.05 0.0 401 0 | 0.32 0.28 29.53 0.02 2 1.08e+06 2257.10 | 775.42 0.0 149 0 | 0.31 0.28 29.71 0.02 2 1.09e+06 2257.10 | 681.05 0.0 134 0 | 0.31 0.28 29.51 0.02 2 1.10e+06 2257.10 | 1053.45 0.0 209 0 | 0.31 0.28 28.97 0.02 2 1.11e+06 2257.10 | 850.63 0.0 170 0 | 0.31 0.27 29.28 0.02 2 1.12e+06 2257.10 | 1736.51 0.0 344 0 | 0.31 0.28 30.47 0.02 2 1.13e+06 2257.10 | 1936.67 0.0 370 0 | 0.32 0.27 29.64 0.02 2 1.14e+06 2257.10 | 2247.72 1388.4 426 262 | 0.31 0.26 30.76 0.02 2 1.15e+06 2825.53 | 2 1.15e+06 2825.53 | 2825.53 1191.8 556 232 | 0.32 0.26 30.33 0.02 2 1.16e+06 2825.53 | 2546.58 1666.1 498 332 | 0.32 0.27 30.56 0.02 2 1.17e+06 2825.53 | 850.81 0.0 166 0 | 0.32 0.26 29.23 0.01 2 1.18e+06 2825.53 | 1411.25 0.0 280 0 | 0.32 0.26 28.02 0.01 2 1.19e+06 2825.53 | 538.52 0.0 109 0 | 0.32 0.26 31.44 0.01 2 1.19e+06 2825.53 | 2693.81 0.0 508 0 | 0.31 0.26 30.05 0.01 2 1.20e+06 2978.43 | 2 1.20e+06 2978.43 | 2978.43 1663.4 573 317 | 0.32 0.25 30.95 0.01 2 1.20e+06 3575.62 | 2 1.20e+06 3575.62 | 3575.62 1612.5 694 314 | 0.31 0.26 31.57 0.01 2 1.21e+06 3575.62 | 993.93 0.0 186 0 | 0.32 0.25 29.87 0.01 2 1.21e+06 3575.62 | 1999.92 0.0 392 0 | 0.31 0.26 30.52 0.01 2 1.22e+06 3575.62 | 889.42 0.0 171 0 | 0.33 0.25 30.81 0.01 2 1.22e+06 3575.62 | 3405.88 1731.5 668 338 | 0.32 0.25 31.85 0.01 2 1.23e+06 3575.62 | 892.11 0.0 168 0 | 0.32 0.25 31.85 0.01 2 1.23e+06 3575.62 | 778.46 0.0 147 0 | 0.32 0.25 31.28 0.01 2 1.24e+06 3575.62 | 1535.40 0.0 310 0 | 0.32 0.25 31.43 0.01 2 1.24e+06 3575.62 | 2843.25 1210.4 554 243 | 0.32 0.25 29.70 0.01 2 1.25e+06 3575.62 | 3353.49 0.0 631 0 | 0.31 0.25 30.64 0.01 2 1.25e+06 3575.62 | 883.32 0.0 170 0 | 0.32 0.25 31.49 0.01 2 1.26e+06 3575.62 | 3092.77 1210.6 606 226 | 0.32 0.25 31.16 0.01 2 1.26e+06 3575.62 | 569.80 0.0 112 0 | 0.32 0.24 31.06 0.01 2 1.27e+06 3575.62 | 1041.53 0.0 197 0 | 0.31 0.24 31.33 0.01 2 1.28e+06 3575.62 | 3255.92 0.0 638 0 | 0.33 0.24 30.84 0.01 2 1.28e+06 3575.62 | 2279.13 0.0 434 0 | 0.33 0.24 33.50 0.01 2 1.29e+06 3575.62 | 559.01 0.0 107 0 | 0.32 0.24 32.44 0.01 2 1.29e+06 3575.62 | 3277.19 0.0 649 0 | 0.32 0.25 32.05 0.01 2 1.29e+06 3575.62 | 1050.02 0.0 204 0 | 0.33 0.24 31.84 0.01 2 1.30e+06 3575.62 | 715.11 0.0 138 0 | 0.32 0.24 32.69 0.01 2 1.31e+06 3575.62 | 569.46 0.0 111 0 | 0.32 0.24 31.83 0.01 2 1.31e+06 3575.62 | 948.73 0.0 180 0 | 0.33 0.25 32.41 0.01 2 1.31e+06 3575.62 | 1140.72 0.0 224 0 | 0.33 0.24 30.14 0.01 2 1.32e+06 3575.62 | 1303.37 0.0 249 0 | 0.32 0.24 30.97 0.01 2 1.32e+06 3575.62 | 2585.92 0.0 511 0 | 0.33 0.24 30.48 0.01 2 1.33e+06 4376.07 | 2 1.33e+06 4376.07 | 4376.07 1031.6 854 199 | 0.33 0.24 31.88 0.01 2 1.34e+06 4376.07 | 2329.53 0.0 447 0 | 0.32 0.24 31.45 0.01 2 1.34e+06 4376.07 | 2766.31 1240.2 565 254 | 0.32 0.24 32.76 0.01 2 1.35e+06 4376.07 | 3559.24 0.0 672 0 | 0.32 0.24 32.08 0.01 2 1.35e+06 4376.07 | 2982.04 1761.5 557 330 | 0.31 0.24 31.67 0.01 2 1.36e+06 4376.07 | 1431.25 0.0 282 0 | 0.32 0.23 31.13 0.01 2 1.36e+06 4376.07 | 1818.30 0.0 373 0 | 0.32 0.24 30.68 0.01 2 1.37e+06 4376.07 | 911.64 0.0 167 0 | 0.33 0.24 31.94 0.01 2 1.37e+06 4376.07 | 2429.27 0.0 442 0 | 0.32 0.24 31.20 0.01 2 1.38e+06 4376.07 | 1491.57 0.0 294 0 | 0.33 0.23 31.37 0.01 2 1.38e+06 4376.07 | 1535.84 0.0 294 0 | 0.33 0.22 32.09 0.01 2 1.39e+06 4376.07 | 1724.81 0.0 331 0 | 0.33 0.24 31.07 0.01 2 1.39e+06 4376.07 | 1426.36 0.0 273 0 | 0.33 0.23 32.00 0.01 2 1.40e+06 4376.07 | 2066.45 1369.6 401 264 | 0.33 0.23 33.17 0.01 2 1.40e+06 4376.07 | 1078.23 0.0 210 0 | 0.33 0.23 31.05 0.01 2 1.41e+06 4376.07 | 1217.95 0.0 256 0 | 0.33 0.23 32.79 0.01 2 1.41e+06 4376.07 | 1394.94 0.0 270 0 | 0.33 0.23 33.30 0.01 2 1.42e+06 4376.07 | 3662.75 0.0 688 0 | 0.33 0.23 34.01 0.01 2 1.42e+06 4376.07 | 3106.36 0.0 595 0 | 0.32 0.23 32.38 0.01 2 1.43e+06 4376.07 | 3703.49 0.0 705 0 | 0.33 0.23 33.98 0.01 2 1.43e+06 4376.07 | 1284.99 0.0 240 0 | 0.33 0.22 33.41 0.01 2 1.44e+06 4376.07 | 2499.82 0.0 479 0 | 0.33 0.23 31.52 0.01 2 1.44e+06 4376.07 | 4095.95 1608.4 780 308 | 0.33 0.22 31.57 0.01 2 1.45e+06 4376.07 | 1376.74 0.0 268 0 | 0.33 0.22 34.45 0.01 2 1.45e+06 4376.07 | 1529.86 0.0 293 0 | 0.33 0.23 33.78 0.01 2 1.46e+06 4376.07 | 2346.18 0.0 472 0 | 0.33 0.23 33.08 0.01 2 1.46e+06 4376.07 | 1454.02 0.0 278 0 | 0.33 0.22 31.71 0.01 2 1.47e+06 4376.07 | 4071.25 0.0 775 0 | 0.32 0.22 32.64 0.01 2 1.47e+06 4376.07 | 4041.26 1121.8 774 226 | 0.33 0.23 32.98 0.01 2 1.48e+06 4376.07 | 2339.81 0.0 470 0 | 0.33 0.23 34.03 0.01 2 1.48e+06 4376.07 | 3188.20 1323.7 610 249 | 0.33 0.22 31.73 0.01 2 1.49e+06 4376.07 | 1301.07 0.0 270 0 | 0.33 0.22 33.16 0.01 2 1.49e+06 4376.07 | 2600.90 1531.0 535 298 | 0.33 0.22 32.24 0.01 2 1.50e+06 4376.07 | 2169.64 0.0 433 0 | 0.32 0.22 32.96 0.01 2 1.51e+06 4376.07 | 1137.47 0.0 221 0 | 0.33 0.22 34.14 0.01 2 1.51e+06 4376.07 | 3703.59 1616.3 704 305 | 0.33 0.22 32.40 0.01 2 1.52e+06 4376.07 | 2139.60 0.0 406 0 | 0.33 0.21 32.47 0.01 2 1.52e+06 4376.07 | 4352.19 1187.4 811 229 | 0.34 0.22 33.02 0.01 2 1.53e+06 4376.07 | 2650.12 1653.3 486 297 | 0.33 0.22 33.92 0.01 2 1.53e+06 4376.07 | 1533.19 0.0 303 0 | 0.34 0.21 31.45 0.01 2 1.54e+06 4376.07 | 780.99 0.0 146 0 | 0.33 0.21 32.48 0.01 2 1.54e+06 4376.07 | 2626.05 0.0 509 0 | 0.33 0.21 33.91 0.01 2 1.55e+06 4376.07 | 4370.40 0.0 823 0 | 0.33 0.21 31.92 0.01 2 1.55e+06 4376.07 | 1506.31 0.0 297 0 | 0.33 0.22 33.49 0.01 2 1.56e+06 4376.07 | 2899.16 1496.5 554 282 | 0.33 0.21 32.71 0.01 2 1.56e+06 4376.07 | 1198.79 0.0 236 0 | 0.34 0.20 34.19 0.01 2 1.57e+06 4376.07 | 4314.28 1905.6 795 350 | 0.33 0.21 32.53 0.01 2 1.57e+06 4376.07 | 932.14 0.0 185 0 | 0.33 0.20 32.61 0.01 2 1.58e+06 4376.07 | 3710.02 0.0 680 0 | 0.33 0.21 33.56 0.01 2 1.58e+06 4376.07 | 1788.02 0.0 334 0 | 0.33 0.20 32.80 0.01 2 1.59e+06 4376.07 | 2178.98 0.0 405 0 | 0.33 0.20 35.01 0.01 2 1.59e+06 4661.43 | 2 1.59e+06 4661.43 | 4661.43 1205.4 870 225 | 0.33 0.21 34.16 0.01 2 1.60e+06 4661.43 | 4636.75 1363.6 856 249 | 0.34 0.20 32.75 0.01 2 1.60e+06 4661.43 | 3285.64 0.0 641 0 | 0.34 0.20 34.36 0.01 2 1.61e+06 4661.43 | 3996.92 0.0 746 0 | 0.33 0.20 32.96 0.01 2 1.61e+06 4808.85 | 2 1.61e+06 4808.85 | 4808.85 858.2 905 165 | 0.32 0.20 32.36 0.01 2 1.62e+06 4808.85 | 3711.65 1420.6 712 269 | 0.33 0.20 33.59 0.01 2 1.62e+06 4808.85 | 2343.89 0.0 433 0 | 0.32 0.20 33.83 0.01 2 1.63e+06 4808.85 | 3650.32 1767.0 675 326 | 0.33 0.19 33.05 0.01 2 1.64e+06 4808.85 | 1539.43 0.0 279 0 | 0.33 0.19 34.10 0.01 2 1.64e+06 4808.85 | 3677.19 1948.3 664 352 | 0.34 0.19 34.59 0.01 2 1.65e+06 4808.85 | 2687.31 0.0 496 0 | 0.33 0.20 33.47 0.01 2 1.65e+06 4808.85 | 1542.33 0.0 290 0 | 0.33 0.19 33.24 0.01 2 1.66e+06 4808.85 | 867.88 0.0 173 0 | 0.34 0.19 34.27 0.01 2 1.66e+06 4808.85 | 3085.34 1711.3 579 322 | 0.34 0.20 33.70 0.01 2 1.67e+06 4808.85 | 1687.58 0.0 323 0 | 0.33 0.20 34.93 0.01 2 1.67e+06 4808.85 | 4066.38 1268.1 742 228 | 0.34 0.19 32.41 0.01 2 1.68e+06 4808.85 | 452.65 0.0 91 0 | 0.33 0.20 33.70 0.01 2 1.68e+06 4808.85 | 3018.52 0.0 558 0 | 0.34 0.21 34.58 0.01 2 1.69e+06 4808.85 | 430.01 0.0 102 0 | 0.33 0.35 38.89 0.02 2 1.69e+06 4808.85 | 472.74 0.0 109 0 | 0.33 0.40 44.93 0.03 2 1.70e+06 4808.85 | 628.25 0.0 136 0 | 0.31 0.32 44.62 0.02 2 1.70e+06 4808.85 | 812.73 0.0 167 0 | 0.28 0.27 42.12 0.01 2 1.70e+06 4808.85 | 1707.97 0.0 327 0 | 0.31 0.24 39.53 0.01 2 1.71e+06 4808.85 | 1819.14 0.0 339 0 | 0.32 0.23 36.88 0.01 2 1.72e+06 4808.85 | 2053.70 0.0 388 0 | 0.33 0.21 35.72 0.01 2 1.72e+06 4808.85 | 2262.07 0.0 419 0 | 0.33 0.21 33.69 0.01 2 1.72e+06 4808.85 | 787.00 0.0 153 0 | 0.33 0.20 35.14 0.01 2 1.73e+06 4808.85 | 1620.02 0.0 309 0 | 0.34 0.20 33.92 0.01 2 1.74e+06 4808.85 | 2368.23 0.0 447 0 | 0.33 0.20 34.85 0.01 2 1.74e+06 4846.42 | 2 1.74e+06 4846.42 | 4846.42 581.3 906 110 | 0.33 0.19 34.40 0.01 2 1.75e+06 4846.42 | 752.17 0.0 150 0 | 0.34 0.19 33.20 0.01 2 1.75e+06 4846.42 | 3085.69 2158.1 576 395 | 0.34 0.19 34.28 0.01 2 1.76e+06 4846.42 | 381.14 0.0 71 0 | 0.34 0.20 33.92 0.01 2 1.76e+06 4846.42 | 3684.18 0.0 693 0 | 0.34 0.19 34.47 0.01 2 1.77e+06 5436.18 | 2 1.77e+06 5436.18 | 5436.18 35.3 1000 0 | 0.33 0.19 34.15 0.01 2 1.77e+06 5436.18 | 5327.19 0.0 1000 0 | 0.34 0.19 33.98 0.01 2 1.78e+06 5436.18 | 4729.78 0.0 857 0 | 0.34 0.20 34.32 0.01 2 1.78e+06 5578.46 | 2 1.78e+06 5578.46 | 5578.46 86.6 1000 0 | 0.34 0.19 34.41 0.01 2 1.79e+06 5578.46 | 2561.99 0.0 473 0 | 0.34 0.19 34.08 0.01 2 1.79e+06 5578.46 | 5432.93 0.0 1000 0 | 0.35 0.19 34.19 0.01 2 1.80e+06 5578.46 | 1247.43 0.0 232 0 | 0.34 0.19 34.27 0.01 2 1.80e+06 5578.46 | 3227.15 0.0 598 0 | 0.35 0.18 35.06 0.01 2 1.81e+06 5578.46 | 3294.27 0.0 610 0 | 0.35 0.18 34.52 0.01 2 1.81e+06 5578.46 | 5424.16 0.0 1000 0 | 0.33 0.18 34.81 0.01 2 1.82e+06 5578.46 | 5410.13 0.0 1000 0 | 0.34 0.18 34.04 0.01 2 1.82e+06 5578.46 | 2406.91 0.0 454 0 | 0.34 0.18 35.67 0.01 2 1.83e+06 5578.46 | 5494.68 0.0 1000 0 | 0.34 0.18 35.15 0.01 2 1.83e+06 5578.46 | 2468.08 0.0 535 0 | 0.34 0.19 34.65 0.01 2 1.84e+06 5578.46 | 3286.31 0.0 633 0 | 0.34 0.19 34.83 0.01 2 1.84e+06 5578.46 | 5295.30 0.0 1000 0 | 0.33 0.19 33.75 0.01 2 1.85e+06 5578.46 | 1098.72 0.0 216 0 | 0.34 0.18 35.00 0.01 2 1.85e+06 5578.46 | 2036.09 0.0 381 0 | 0.34 0.18 34.08 0.01 2 1.86e+06 5578.46 | 704.63 0.0 135 0 | 0.34 0.18 32.72 0.01 2 1.86e+06 5578.46 | 5437.36 0.0 1000 0 | 0.33 0.18 35.17 0.01 2 1.87e+06 5578.46 | 1882.41 0.0 352 0 | 0.34 0.18 33.29 0.01 2 1.87e+06 5578.46 | 2585.14 0.0 453 0 | 0.34 0.18 34.44 0.01 2 1.88e+06 5578.46 | 3676.13 0.0 674 0 | 0.34 0.18 33.99 0.01 2 1.88e+06 5578.46 | 2395.74 0.0 438 0 | 0.34 0.18 34.04 0.01 2 1.89e+06 5578.46 | 1226.04 0.0 241 0 | 0.34 0.17 34.84 0.01 2 1.89e+06 5578.46 | 5255.36 0.0 1000 0 | 0.34 0.18 33.56 0.01 2 1.90e+06 5578.46 | 5571.49 0.0 1000 0 | 0.35 0.17 34.05 0.01 2 1.90e+06 5578.46 | 3593.36 0.0 716 0 | 0.34 0.18 33.59 0.01 2 1.91e+06 5578.46 | 5293.41 0.0 1000 0 | 0.35 0.18 34.38 0.01 2 1.91e+06 5578.46 | 4169.86 0.0 795 0 | 0.33 0.18 34.22 0.01 2 1.92e+06 5578.46 | 3631.33 0.0 647 0 | 0.34 0.17 34.96 0.01 2 1.92e+06 5578.46 | 5460.01 0.0 1000 0 | 0.35 0.17 34.32 0.01 2 1.93e+06 5578.46 | 5410.56 0.0 1000 0 | 0.35 0.17 33.34 0.01 2 1.93e+06 5578.46 | 5460.13 0.0 1000 0 | 0.34 0.17 33.90 0.01 2 1.94e+06 5578.46 | 2817.41 0.0 537 0 | 0.34 0.18 34.36 0.01 2 1.94e+06 5578.46 | 1858.92 0.0 339 0 | 0.35 0.17 34.96 0.01 2 1.95e+06 5578.46 | 2207.20 0.0 418 0 | 0.34 0.17 35.02 0.01 2 1.95e+06 5578.46 | 2759.04 0.0 523 0 | 0.35 0.17 35.04 0.01 2 1.96e+06 5578.46 | 5266.78 0.0 940 0 | 0.35 0.17 33.96 0.01 2 1.96e+06 5578.46 | 1092.09 0.0 203 0 | 0.34 0.18 33.64 0.01 2 1.97e+06 5578.46 | 2487.55 0.0 446 0 | 0.34 0.26 37.81 0.02 2 1.97e+06 5578.46 | 2313.96 0.0 420 0 | 0.34 0.23 40.44 0.01 2 1.98e+06 5606.16 | 2 1.98e+06 5606.16 | 5606.16 51.8 1000 0 | 0.32 0.21 38.85 0.01 2 1.98e+06 5606.16 | 3925.41 0.0 696 0 | 0.34 0.19 37.93 0.01 2 1.99e+06 5606.16 | 5475.95 0.0 1000 0 | 0.35 0.18 35.79 0.01 2 1.99e+06 5606.16 | 2794.34 0.0 516 0 | 0.36 0.19 34.80 0.01 2 2.00e+06 5606.16 | 5602.57 0.0 1000 0 | 0.35 0.17 34.41 0.01 2 2.00e+06 5606.16 | 5382.77 326.0 968 56 | 0.35 0.18 35.26 0.01 | UsedTime: 45183 | SavedDir: ./Humanoid-v3_ReliableSAC_2 | Learner: Save in ./Humanoid-v3_ReliableSAC_2 """ else: raise ValueError('env_name:', env_name) args.learner_gpus = gpu_id args.random_seed += gpu_id if_check = 0 if if_check: train_and_evaluate(args) else: train_and_evaluate_mp(args) def demo_ddpg_h_term(gpu_id, drl_id, env_id): # 2022.04.04 env_name = ['Pendulum-v1', 'BipedalWalker-v3', 'Hopper-v2', 'Swimmer-v3', 'HalfCheetah-v3', 'Walker2d-v3', 'Humanoid-v3', ][env_id] agent_class = [AgentDDPG, AgentDDPGHterm, AgentTD3, AgentSAC, AgentReSAC, AgentReSACHterm, AgentReSACHtermK][drl_id] # from elegantrl.train.config import get_gym_env_args # env = gym.make(env_name) # get_gym_env_args(env=env, if_print=True) # exit() if env_name in {'Pendulum-v0', 'Pendulum-v1'}: from elegantrl.envs.CustomGymEnv import PendulumEnv env = PendulumEnv(env_name, target_return=-500) args = Arguments(agent_class, env) args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0 args.gamma = 0.95 args.target_step = args.max_step * 4 args.eval_times = 2 ** 5 """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 1.60e+03-1147.49 |-1147.49 179.2 200 0 | -2.61 0.90 0.55 1.00 2 5.84e+04 -121.61 | -121.61 59.0 200 0 | -0.81 0.33 -40.64 0.79 | UsedTime: 132 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 1.60e+03-1267.96 |-1267.96 329.7 200 0 | -2.67 0.88 0.56 1.00 1 8.48e+04 -171.79 | -182.24 63.3 200 0 | -0.30 0.32 -30.75 0.64 1 1.19e+05 -171.79 | -178.25 116.8 200 0 | -0.31 0.16 -22.52 0.43 1 1.34e+05 -164.56 | -164.56 99.1 200 0 | -0.31 0.15 -18.09 0.35 1 1.47e+05 -135.20 | -135.20 92.1 200 0 | -0.31 0.14 -15.65 0.29 | UsedTime: 783 | """ elif env_name == 'BipedalWalker-v3': env_func = gym.make env_args = {'env_num': 1, 'env_name': 'BipedalWalker-v3', 'max_step': 1600, 'state_dim': 24, 'action_dim': 4, 'if_discrete': False, 'target_return': 300, 'id': 'BipedalWalker-v3', } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.num_layer = 3 args.net_dim = 2 ** 8 args.batch_size = int(args.net_dim * 2) args.worker_num = 2 args.target_step = args.max_step args.repeat_times = 2 ** 0 args.reward_scale = 2 ** -1 args.learning_rate = 2 ** -15 args.clip_grad_norm = 1.0 args.gamma = 0.98 args.if_act_target = False args.explore_noise_std = 0.06 # for Deterministic Policy Gradient Algorithms args.lambda_action = 2 ** -4 args.h_term_drop_rate = 2 ** -2 args.h_term_lambda = 0 # todo args.h_term_k_step = 8 args.h_term_update_gap = 2 args.eval_times = 2 ** 2 args.eval_gap = 2 ** 8 args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./BipedalWalker-v3_ReliableSAC_5 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 5 1.78e+03 -111.40 | 5 1.78e+03 -111.40 | -111.40 0.2 102 4 | -0.18 0.75 1.25 0.25 5 6.72e+04 -102.81 | 5 6.72e+04 -102.81 | -102.81 0.6 56 2 | -0.40 0.13 4.46 0.03 5 1.02e+05 -57.47 | 5 1.02e+05 -57.47 | -57.47 9.6 1600 0 | -0.15 0.41 -4.42 0.03 5 1.24e+05 -45.19 | 5 1.24e+05 -45.19 | -45.19 8.3 1600 0 | -0.04 0.46 -4.50 0.04 5 1.44e+05 -33.45 | 5 1.44e+05 -33.45 | -33.45 3.0 1600 0 | -0.40 0.26 -3.91 0.03 5 1.61e+05 -33.45 | -40.02 11.3 1600 0 | -0.03 0.13 -2.09 0.02 5 1.78e+05 -33.45 | -47.55 10.9 1600 0 | -0.37 0.14 0.28 0.02 5 1.96e+05 -33.45 | -94.23 0.5 147 5 | -0.11 0.11 -2.00 0.03 5 2.13e+05 108.48 | 5 2.13e+05 108.48 | 108.48 118.5 1248 566 | 0.05 0.12 -2.35 0.03 5 2.28e+05 108.48 | 54.40 123.4 1057 553 | -0.45 0.14 0.47 0.03 5 2.41e+05 258.69 | 5 2.41e+05 258.69 | 258.69 91.5 1371 283 | 0.06 0.13 1.60 0.04 5 2.58e+05 299.87 | 5 2.58e+05 299.87 | 299.87 0.9 1443 19 | 0.09 0.15 0.31 0.04 5 2.74e+05 299.87 | 243.41 113.8 1119 295 | 0.16 0.13 3.68 0.04 5 2.86e+05 299.87 | 80.06 125.7 635 294 | -0.22 0.11 4.27 0.04 5 2.98e+05 312.25 | 5 2.98e+05 312.25 | 312.25 1.0 1186 16 | 0.22 0.13 5.49 0.04 | UsedTime: 1885 | SavedDir: ./BipedalWalker-v3_ReliableSAC_5 | Arguments Remove cwd: ./BipedalWalker-v3_ReliableSACHterm_6 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 6 1.60e+03 -92.22 | 6 1.60e+03 -92.22 | -92.22 0.1 110 1 | -0.06 0.74 1.15 0.25 6 6.50e+04 -31.14 | 6 6.50e+04 -31.14 | -31.14 1.7 1600 0 | -0.04 0.08 4.60 0.02 6 9.71e+04 -31.14 | -103.20 0.1 98 1 | -0.44 0.09 -0.19 0.02 6 1.24e+05 -31.14 | -62.62 29.0 1304 593 | -0.05 0.19 -3.96 0.03 6 1.45e+05 -31.14 | -39.96 12.3 1600 0 | -0.19 0.24 -6.13 0.02 6 1.65e+05 -31.14 | -45.63 15.5 1600 0 | -0.11 0.20 0.42 0.02 6 1.82e+05 -31.14 | -55.53 7.1 1600 0 | -0.04 0.12 -1.60 0.02 6 1.98e+05 -31.14 | -88.54 33.1 686 746 | 0.04 0.08 -1.20 0.02 6 2.14e+05 -31.14 | -45.76 29.0 759 267 | -0.11 0.11 0.02 0.03 6 2.29e+05 249.59 | 6 2.29e+05 249.59 | 249.59 105.0 1436 375 | -0.18 0.16 1.73 0.04 6 2.42e+05 249.59 | 12.51 82.6 559 379 | 0.13 0.20 1.16 0.04 6 2.60e+05 309.47 | 6 2.60e+05 309.47 | 309.47 1.6 1455 33 | 0.07 0.18 1.84 0.04 | UsedTime: 1476 | SavedDir: ./BipedalWalker-v3_ReliableSACHterm_6 | Arguments Remove cwd: ./BipedalWalker-v3_ReSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 7.12e+03 -102.89 | 2 7.12e+03 -102.89 | -102.89 5.3 147 18 | -0.06 0.77 0.78 0.25 2 2.73e+05 -21.80 | 2 2.73e+05 -21.80 | -21.80 0.4 1600 0 | -0.02 0.06 17.16 0.13 2 3.98e+05 -7.83 | 2 3.98e+05 -7.83 | -7.83 2.1 1600 0 | -0.02 0.04 9.75 0.06 2 4.96e+05 -7.83 | -44.20 0.0 1600 0 | -0.04 0.04 3.87 0.03 2 5.86e+05 -7.83 | -74.46 0.0 1600 0 | -0.05 0.03 0.71 0.01 2 6.61e+05 -7.83 | -27.95 12.7 1600 0 | -0.02 0.04 0.06 0.01 2 7.25e+05 -7.83 | -34.49 0.0 1600 0 | -0.01 0.03 -0.59 0.01 2 7.87e+05 -7.83 | -42.36 0.0 1600 0 | -0.02 0.01 -0.45 0.01 2 8.47e+05 -7.83 | -26.66 0.0 1600 0 | -0.01 0.01 -0.37 0.01 2 9.00e+05 -7.83 | -36.84 0.0 1600 0 | -0.01 0.01 -0.08 0.01 2 9.51e+05 -7.83 | -48.88 0.0 1600 0 | -0.01 0.01 -0.18 0.01 2 9.99e+05 -7.83 | -52.01 0.0 1600 0 | -0.01 0.01 -0.29 0.01 2 1.04e+06 -7.83 | -54.41 0.0 1600 0 | -0.01 0.01 -0.31 0.01 2 1.09e+06 -7.83 | -32.74 0.0 1600 0 | -0.01 0.01 -0.24 0.01 2 1.14e+06 48.00 | 2 1.14e+06 48.00 | 48.00 76.8 1256 595 | -0.01 0.01 0.12 0.01 2 1.19e+06 48.00 | -16.25 0.0 912 0 | -0.04 0.01 0.12 0.01 2 1.24e+06 48.00 | -43.57 0.0 380 0 | 0.05 0.01 0.69 0.01 2 1.29e+06 280.92 | 2 1.29e+06 280.92 | 280.92 2.5 1506 49 | 0.08 0.01 1.06 0.01 2 1.34e+06 280.92 | -59.15 0.0 231 0 | 0.11 0.01 1.33 0.01 2 1.40e+06 299.49 | 2 1.40e+06 299.49 | 299.49 1.8 1156 25 | 0.12 0.01 1.91 0.02 2 1.44e+06 299.49 | 298.65 0.0 1325 0 | 0.12 0.01 2.28 0.02 2 1.49e+06 309.70 | 2 1.49e+06 309.70 | 309.70 1.6 1267 65 | 0.11 0.01 2.61 0.02 2 1.54e+06 309.70 | 270.84 72.9 1021 95 | 0.13 0.01 3.02 0.02 2 1.58e+06 309.70 | 245.03 124.4 878 242 | 0.11 0.02 3.45 0.02 2 1.62e+06 318.15 | 2 1.62e+06 318.15 | 318.15 0.5 1039 9 | 0.09 0.02 3.68 0.02 2 1.66e+06 320.87 | 2 1.66e+06 320.87 | 320.87 0.5 1003 12 | 0.15 0.02 3.89 0.02 2 1.69e+06 320.87 | 21.56 0.0 638 0 | -0.02 0.02 5.68 0.02 2 1.73e+06 322.08 | 2 1.73e+06 322.08 | 322.08 0.6 994 4 | 0.13 0.02 4.14 0.02 2 1.77e+06 322.80 | 2 1.77e+06 322.80 | 322.80 0.6 960 17 | 0.16 0.02 4.35 0.02 2 1.80e+06 322.80 | 321.69 0.0 924 0 | 0.15 0.02 4.35 0.02 2 1.83e+06 322.80 | 263.38 110.4 830 175 | 0.14 0.02 4.70 0.02 2 1.86e+06 325.13 | 2 1.86e+06 325.13 | 325.13 0.5 899 7 | 0.17 0.02 4.91 0.02 2 1.89e+06 325.13 | 317.20 0.0 1415 0 | -0.03 0.04 12.38 0.03 2 1.92e+06 325.13 | -129.30 0.0 109 0 | 0.04 0.06 8.54 0.03 2 1.95e+06 325.13 | 322.35 0.0 912 0 | 0.11 0.03 6.01 0.03 2 1.99e+06 325.13 | 321.18 0.0 928 0 | 0.16 0.03 4.87 0.03 | UsedTime: 9499 | SavedDir: ./BipedalWalker-v3_ReSAC_2 """ elif env_name == 'Hopper-v2': env_func = gym.make env_args = { 'env_num': 1, 'env_name': 'Hopper-v2', 'max_step': 1000, 'state_dim': 11, 'action_dim': 3, 'if_discrete': False, 'target_return': 3800., } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.num_layer = 3 args.net_dim = 2 ** 8 args.batch_size = int(args.net_dim * 1) args.worker_num = 2 args.target_step = args.max_step args.repeat_times = 2 ** -1 args.reward_scale = 2 ** -4 args.learning_rate = 2 ** -15 args.clip_grad_norm = 1.0 args.gamma = 0.99 args.if_act_target = False args.explore_noise_std = 0.1 # for DPG args.lambda_action = 2 ** -4 args.h_term_drop_rate = 2 ** -2 args.h_term_lambda = 2 ** -16 args.act_update_gap = 1 args.h_term_k_step = 8 args.h_term_update_gap = 2 args.eval_times = 2 ** 1 args.eval_gap = 2 ** 8 args.if_allow_break = False args.break_step = int(2e6) """ ;;; repeat_times 0.5 ;;; explore_noise_std 0.06 | Arguments Remove cwd: ./Hopper-v2_DDPG_5 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 5 4.05e+03 31.31 | 5 4.05e+03 31.31 | 31.31 0.6 33 0 | 0.06 0.00 -0.15 5 2.60e+05 125.04 | 5 2.60e+05 125.04 | 125.04 36.8 72 19 | 0.11 0.05 -4.96 5 4.52e+05 287.91 | 5 4.52e+05 287.91 | 287.91 9.1 150 7 | 0.10 0.10 -15.62 5 6.04e+05 287.91 | 33.76 0.0 23 0 | 0.11 0.33 -29.86 5 7.28e+05 943.68 | 5 7.28e+05 943.68 | 943.68 2.5 1000 0 | 0.05 0.20 -36.74 5 8.39e+05 943.68 | 223.96 0.0 276 0 | 0.10 0.39 -32.80 5 9.36e+05 943.68 | 18.41 0.0 17 0 | 0.11 0.28 -47.11 5 1.02e+06 943.68 | 112.46 0.0 79 0 | 0.10 0.43 -44.61 5 1.11e+06 943.68 | 271.21 0.0 139 0 | 0.11 0.15 -43.29 5 1.19e+06 943.68 | 339.68 0.0 173 0 | 0.12 0.26 -44.58 5 1.26e+06 943.68 | 344.69 0.0 151 0 | 0.12 0.80 -68.53 5 1.33e+06 943.68 | 246.59 0.0 150 0 | 0.18 0.47 -63.54 5 1.39e+06 943.68 | 520.48 0.0 379 0 | 0.09 1.04 -69.88 5 1.46e+06 1515.81 | 5 1.46e+06 1515.81 | 1515.81 561.6 538 271 | 0.14 0.54 -59.63 5 1.53e+06 1515.81 | 287.81 0.0 119 0 | 0.17 0.54 -55.94 5 1.59e+06 1515.81 | 317.89 0.0 124 0 | 0.18 0.48 -54.38 5 1.65e+06 1515.81 | 777.02 0.0 255 0 | 0.18 0.52 -53.06 5 1.70e+06 1515.81 | 260.43 0.0 135 0 | 0.13 0.37 -48.36 5 1.76e+06 1515.81 | 856.31 0.0 252 0 | 0.19 0.63 -47.88 5 1.82e+06 1515.81 | 1049.09 0.0 360 0 | 0.17 0.41 -48.26 5 1.87e+06 1515.81 | 1248.30 0.0 357 0 | 0.20 0.58 -53.84 5 1.92e+06 3040.54 | 5 1.92e+06 3040.54 | 3040.54 60.8 1000 0 | 0.19 0.25 -51.93 5 1.97e+06 3040.54 | 384.53 0.0 149 0 | 0.13 0.24 -47.11 | UsedTime: 2952 | SavedDir: ./Hopper-v2_DDPG_5 | Learner: Save in ./Hopper-v2_DDPG_5 ;;; repeat_times 0.5 | Arguments Remove cwd: ./Hopper-v2_ReliableSAC_5 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 5 4.02e+03 22.57 | 5 4.02e+03 22.57 | 22.57 0.5 28 0 | 0.05 0.81 1.37 0.33 5 1.93e+05 264.67 | 5 1.93e+05 264.67 | 264.67 2.3 111 1 | 0.15 0.10 12.14 0.09 5 3.04e+05 419.28 | 5 3.04e+05 419.28 | 419.28 1.3 142 0 | 0.16 0.12 19.81 0.11 5 3.91e+05 679.15 | 5 3.91e+05 679.15 | 679.15 3.2 246 2 | 0.18 0.16 28.57 0.14 5 4.68e+05 2296.08 | 5 4.68e+05 2296.08 | 2296.08 23.0 1000 0 | 0.14 0.18 33.53 0.15 5 5.38e+05 2296.08 | 1975.77 0.0 1000 0 | 0.13 0.19 35.84 0.14 5 6.00e+05 2513.52 | 5 6.00e+05 2513.52 | 2513.52 2.8 1000 0 | 0.17 0.18 39.30 0.13 5 6.51e+05 2627.30 | 5 6.51e+05 2627.30 | 2627.30 0.6 1000 0 | 0.16 0.17 40.20 0.12 5 7.00e+05 2627.30 | 2565.19 0.0 1000 0 | 0.16 0.15 40.18 0.11 5 7.44e+05 2820.52 | 5 7.44e+05 2820.52 | 2820.52 1.8 1000 0 | 0.17 0.15 40.12 0.09 5 7.88e+05 2820.52 | 2597.41 0.0 1000 0 | 0.17 0.13 39.35 0.08 5 8.28e+05 2820.52 | 2795.26 0.0 1000 0 | 0.18 0.11 38.10 0.07 5 8.69e+05 2936.57 | 5 8.69e+05 2936.57 | 2936.57 2.1 1000 0 | 0.18 0.11 37.18 0.07 5 9.05e+05 3017.49 | 5 9.05e+05 3017.49 | 3017.49 1.2 1000 0 | 0.19 0.10 36.89 0.06 5 9.41e+05 3017.49 | 2869.90 0.0 1000 0 | 0.19 0.09 35.58 0.06 5 9.80e+05 3079.65 | 5 9.80e+05 3079.65 | 3079.65 2.1 1000 0 | 0.19 0.09 35.00 0.06 5 1.01e+06 3111.62 | 5 1.01e+06 3111.62 | 3111.62 1.2 1000 0 | 0.20 0.09 35.51 0.06 5 1.04e+06 3111.62 | 3102.43 0.0 1000 0 | 0.19 0.09 35.28 0.06 5 1.08e+06 3195.77 | 5 1.08e+06 3195.77 | 3195.77 0.8 1000 0 | 0.20 0.08 35.27 0.06 5 1.10e+06 3204.82 | 5 1.10e+06 3204.82 | 3204.82 1.3 1000 0 | 0.20 0.08 35.29 0.05 5 1.13e+06 3227.59 | 5 1.13e+06 3227.59 | 3227.59 0.3 1000 0 | 0.20 0.08 34.81 0.05 5 1.17e+06 3236.78 | 5 1.17e+06 3236.78 | 3236.78 1.1 1000 0 | 0.20 0.07 34.90 0.05 5 1.19e+06 3251.62 | 5 1.19e+06 3251.62 | 3251.62 0.6 1000 0 | 0.20 0.07 34.88 0.05 5 1.22e+06 3310.67 | 5 1.22e+06 3310.67 | 3310.67 1.2 1000 0 | 0.21 0.07 34.24 0.05 5 1.25e+06 3310.67 | 3303.20 0.0 1000 0 | 0.21 0.07 34.15 0.05 5 1.28e+06 3312.09 | 5 1.28e+06 3312.09 | 3312.09 1.3 1000 0 | 0.20 0.07 33.99 0.05 5 1.31e+06 3361.26 | 5 1.31e+06 3361.26 | 3361.26 1.3 1000 0 | 0.20 0.07 34.49 0.05 5 1.34e+06 3361.26 | 3264.82 0.0 1000 0 | 0.21 0.07 34.20 0.05 5 1.36e+06 3361.26 | 3218.51 0.0 1000 0 | 0.22 0.07 34.42 0.05 5 1.39e+06 3361.26 | 3308.47 0.0 1000 0 | 0.22 0.06 33.95 0.05 5 1.41e+06 3361.26 | 3347.62 0.0 1000 0 | 0.22 0.06 34.16 0.05 5 1.44e+06 3361.26 | 3285.74 0.0 1000 0 | 0.21 0.07 34.00 0.05 5 1.46e+06 3361.26 | 3280.85 0.0 1000 0 | 0.22 0.06 33.90 0.04 5 1.49e+06 3361.26 | 3311.28 0.0 1000 0 | 0.21 0.06 34.01 0.04 5 1.51e+06 3407.79 | 5 1.51e+06 3407.79 | 3407.79 1.7 1000 0 | 0.22 0.06 33.94 0.05 5 1.54e+06 3407.79 | 3381.80 0.0 1000 0 | 0.20 0.06 34.44 0.05 5 1.56e+06 3407.79 | 3356.46 0.0 1000 0 | 0.22 0.06 34.72 0.05 5 1.59e+06 3407.79 | 3395.07 0.0 1000 0 | 0.20 0.06 34.86 0.05 5 1.61e+06 3407.79 | 3313.27 0.0 1000 0 | 0.22 0.06 34.64 0.05 5 1.63e+06 3407.79 | 3401.76 0.0 1000 0 | 0.22 0.06 34.94 0.05 5 1.66e+06 3489.30 | 5 1.66e+06 3489.30 | 3489.30 4.1 1000 0 | 0.23 0.06 34.42 0.05 5 1.68e+06 3489.30 | 3393.20 0.0 1000 0 | 0.23 0.06 34.14 0.05 5 1.70e+06 3489.30 | 3458.37 0.0 1000 0 | 0.22 0.05 34.41 0.05 5 1.73e+06 3489.30 | 3352.92 0.0 1000 0 | 0.22 0.06 34.62 0.05 5 1.75e+06 3489.30 | 3333.69 0.0 1000 0 | 0.22 0.06 35.26 0.05 5 1.77e+06 3489.30 | 3456.53 0.0 1000 0 | 0.21 0.05 35.47 0.05 | UsedTime: 5997 | SavedDir: ./Hopper-v2_ReliableSAC_5 | Learner: Save in ./Hopper-v2_ReliableSAC_5 | Arguments Remove cwd: ./Hopper-v2_ReliableSACHterm_6 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 6 4.04e+03 78.95 | 6 4.04e+03 78.95 | 78.95 3.6 108 4 | 0.09 0.76 0.85 0.33 6 1.15e+05 198.10 | 6 1.15e+05 198.10 | 198.10 1.9 90 1 | 0.28 0.63 29.79 0.23 6 1.72e+05 889.93 | 6 1.72e+05 889.93 | 889.93 4.0 314 1 | 0.28 0.82 45.62 0.17 6 2.17e+05 889.93 | 274.09 0.0 110 0 | 0.31 0.94 58.49 0.21 6 2.55e+05 889.93 | 491.19 0.0 167 0 | 0.34 1.29 58.00 0.28 6 2.91e+05 889.93 | 261.90 0.0 119 0 | 0.30 2.26 58.54 0.49 6 3.25e+05 1031.75 | 6 3.25e+05 1031.75 | 1031.75 0.5 1000 0 | 0.15 1.82 85.02 0.71 6 3.54e+05 1031.75 | 1014.32 0.0 1000 0 | 0.13 1.47 101.81 0.50 6 3.81e+05 1034.31 | 6 3.81e+05 1034.31 | 1034.31 0.6 1000 0 | 0.14 1.17 95.27 0.42 6 4.06e+05 1034.31 | 122.12 0.0 151 0 | 0.14 0.91 81.74 0.36 6 4.29e+05 1034.31 | 277.10 0.0 221 0 | 0.14 0.78 73.37 0.34 6 4.51e+05 1034.31 | 565.33 0.0 384 0 | 0.16 0.75 68.32 0.31 6 4.71e+05 1378.52 | 6 4.71e+05 1378.52 | 1378.52 0.1 1000 0 | 0.22 0.60 66.21 0.26 6 4.89e+05 1378.52 | 448.34 0.0 315 0 | 0.21 0.49 60.09 0.20 6 5.06e+05 1378.52 | 419.95 0.0 168 0 | 0.29 0.44 53.30 0.17 6 5.24e+05 1378.52 | 1104.66 0.0 420 0 | 0.32 0.35 47.74 0.17 6 5.41e+05 1649.15 | 6 5.41e+05 1649.15 | 1649.15 879.9 704 300 | 0.29 0.31 45.29 0.15 6 5.60e+05 2190.47 | 6 5.60e+05 2190.47 | 2190.47 4.3 1000 0 | 0.25 0.33 44.60 0.14 6 5.77e+05 2190.47 | 2120.56 0.0 1000 0 | 0.33 0.32 42.70 0.12 6 5.95e+05 2686.57 | 6 5.95e+05 2686.57 | 2686.57 5.8 1000 0 | 0.38 0.27 41.22 0.11 6 6.08e+05 2686.57 | 956.68 0.0 292 0 | 0.39 0.25 40.32 0.11 6 6.21e+05 2686.57 | 273.05 0.0 132 0 | 0.34 0.23 39.83 0.11 6 6.34e+05 2686.57 | 308.15 0.0 137 0 | 0.30 0.24 40.72 0.11 6 6.47e+05 2686.57 | 458.55 0.0 200 0 | 0.29 0.27 40.67 0.11 6 6.60e+05 2686.57 | 760.84 0.0 286 0 | 0.34 0.27 41.64 0.11 6 6.75e+05 2686.57 | 1253.21 0.0 412 0 | 0.35 0.23 41.98 0.11 6 6.88e+05 2686.57 | 544.23 0.0 205 0 | 0.33 0.24 41.93 0.11 6 7.01e+05 2686.57 | 2637.08 0.0 1000 0 | 0.37 0.23 42.04 0.11 6 7.16e+05 2686.57 | 1063.86 0.0 369 0 | 0.35 0.23 42.23 0.12 6 7.27e+05 3082.43 | 6 7.27e+05 3082.43 | 3082.43 94.6 967 30 | 0.38 0.23 44.18 0.12 6 7.38e+05 3082.43 | 2714.58 0.0 1000 0 | 0.36 0.23 43.15 0.11 6 7.50e+05 3082.43 | 1576.83 0.0 530 0 | 0.36 0.22 42.79 0.11 6 7.62e+05 3082.43 | 2904.31 0.0 1000 0 | 0.37 0.22 42.24 0.12 6 7.74e+05 3082.43 | 2907.68 0.0 1000 0 | 0.39 0.22 43.42 0.12 6 7.87e+05 3082.43 | 3047.61 0.0 1000 0 | 0.38 0.23 43.15 0.12 6 8.01e+05 3082.43 | 2884.98 0.0 1000 0 | 0.39 0.23 44.60 0.12 6 8.15e+05 3082.43 | 3010.91 0.0 1000 0 | 0.40 0.23 45.58 0.12 6 8.27e+05 3082.43 | 2904.95 0.0 1000 0 | 0.36 0.23 43.33 0.13 6 8.39e+05 3082.43 | 2962.38 0.0 1000 0 | 0.38 0.20 45.61 0.13 6 8.53e+05 3082.43 | 2986.82 0.0 1000 0 | 0.37 0.22 46.55 0.13 6 8.65e+05 3082.43 | 3012.73 0.0 1000 0 | 0.39 0.22 46.56 0.12 6 8.77e+05 3082.43 | 3006.50 0.0 1000 0 | 0.38 0.20 45.55 0.12 6 8.89e+05 3082.43 | 2963.94 0.0 1000 0 | 0.39 0.20 46.11 0.12 6 9.00e+05 3082.43 | 2965.68 0.0 1000 0 | 0.38 0.20 45.67 0.12 6 9.10e+05 3082.43 | 2978.31 0.0 1000 0 | 0.39 0.19 47.14 0.12 6 9.20e+05 3082.43 | 3036.60 0.0 1000 0 | 0.39 0.18 46.73 0.12 6 9.32e+05 3082.43 | 3030.23 0.0 1000 0 | 0.37 0.20 46.14 0.12 6 9.41e+05 3082.43 | 2977.58 0.0 1000 0 | 0.38 0.19 46.32 0.12 6 9.53e+05 3082.43 | 2947.05 0.0 1000 0 | 0.39 0.19 45.68 0.12 6 9.62e+05 3082.43 | 3048.31 0.0 1000 0 | 0.38 0.18 46.31 0.12 6 9.71e+05 3082.43 | 3021.77 0.0 1000 0 | 0.39 0.18 45.73 0.12 | UsedTime: 6967 | SavedDir: ./Hopper-v2_ReliableSACHterm_6 """ if env_name == 'Swimmer-v3': from elegantrl.envs.CustomGymEnv import GymNormaEnv env_func = GymNormaEnv # gym.make # env_func = gym.make env_args = { 'action_dim': 2, 'env_name': 'Swimmer-v3', 'env_num': 1, 'if_discrete': False, 'max_step': 1000, 'state_dim': 8, 'target_return': 360.0 } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.num_layer = 3 args.net_dim = 2 ** 8 args.batch_size = int(args.net_dim * 1) args.worker_num = 4 args.target_step = args.max_step * 1 args.repeat_times = 2 ** -1 args.learning_rate = 2 ** -14 args.clip_grad_norm = 0.7 args.reward_scale = 2 ** -1.5 args.gamma = 0.9991 args.if_act_target = False args.explore_noise_std = 0.1 # for DPG '''H-term''' args.h_term_drop_rate = 2 ** -2 args.h_term_lambda = 2 ** -3 args.h_term_k_step = 16 args.save_gap = 2 ** 6 args.eval_gap = 2 ** 8 args.eval_times = 2 ** 1 # args.break_step = int(2e6) args.if_allow_break = False """ ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.00e+03 -15.39 | 1 4.00e+03 -15.39 | -15.39 5.5 1000 0 | -0.00 0.09 0.88 0.50 1 1.86e+05 17.22 | 1 1.86e+05 17.22 | 17.22 14.5 1000 0 | 0.01 0.02 28.14 0.18 1 2.82e+05 17.22 | 2.89 0.0 1000 0 | 0.00 0.18 42.16 0.08 1 3.56e+05 35.75 | 1 3.56e+05 35.75 | 35.75 0.7 1000 0 | 0.01 0.22 49.82 0.06 1 4.18e+05 63.38 | 1 4.18e+05 63.38 | 63.38 0.3 1000 0 | 0.01 0.02 55.92 0.05 1 4.72e+05 63.38 | 34.66 0.0 1000 0 | 0.01 0.02 62.52 0.05 1 5.20e+05 63.38 | 30.08 0.0 1000 0 | 0.01 0.27 67.09 0.06 1 5.64e+05 63.38 | 20.98 0.0 1000 0 | 0.00 0.01 71.31 0.06 1 6.06e+05 63.38 | 42.71 0.0 1000 0 | 0.00 0.02 75.71 0.05 1 6.44e+05 63.38 | 50.71 0.0 1000 0 | 0.01 0.02 78.97 0.05 1 6.80e+05 63.38 | 23.84 0.0 1000 0 | 0.01 0.01 82.27 0.05 1 7.16e+05 63.38 | -3.54 0.0 1000 0 | 0.01 0.01 83.98 0.05 1 7.50e+05 63.38 | -3.58 0.0 1000 0 | -0.00 0.01 85.43 0.05 1 7.82e+05 63.38 | -10.58 0.0 1000 0 | 0.00 0.02 83.80 0.03 1 8.12e+05 63.38 | 17.53 0.0 1000 0 | -0.00 0.02 84.25 0.03 1 8.42e+05 63.38 | 44.41 0.0 1000 0 | 0.01 0.31 81.29 0.02 1 8.70e+05 63.38 | 14.47 0.0 1000 0 | 0.01 0.01 78.31 0.03 1 8.98e+05 63.38 | 10.96 0.0 1000 0 | 0.01 0.00 76.99 0.03 1 9.26e+05 63.38 | -5.34 0.0 1000 0 | 0.03 0.01 74.78 0.03 1 9.52e+05 63.38 | 47.65 0.0 1000 0 | 0.02 0.01 73.08 0.02 1 9.78e+05 226.58 | 1 9.78e+05 226.58 | 226.58 1.0 1000 0 | 0.04 0.01 70.76 0.03 1 1.00e+06 226.58 | 190.70 0.0 1000 0 | 0.04 0.28 70.07 0.03 1 1.03e+06 226.58 | 196.80 0.0 1000 0 | 0.04 0.29 70.04 0.03 1 1.05e+06 242.39 | 1 1.05e+06 242.39 | 242.39 1.3 1000 0 | 0.05 0.00 68.71 0.03 1 1.07e+06 242.39 | 240.50 0.0 1000 0 | 0.05 0.25 68.40 0.03 1 1.10e+06 242.39 | 235.77 0.0 1000 0 | 0.04 0.01 67.44 0.03 1 1.12e+06 242.39 | 222.76 0.0 1000 0 | 0.05 0.01 66.61 0.03 1 1.14e+06 242.39 | 217.65 0.0 1000 0 | 0.04 0.00 66.57 0.03 1 1.16e+06 242.39 | 231.89 0.0 1000 0 | 0.05 0.00 66.53 0.03 1 1.18e+06 242.39 | 227.81 0.0 1000 0 | 0.05 0.00 67.16 0.03 1 1.21e+06 242.39 | 231.86 0.0 1000 0 | 0.05 0.00 66.92 0.03 1 1.23e+06 242.39 | 231.35 0.0 1000 0 | 0.05 0.00 66.66 0.03 1 1.25e+06 242.39 | 227.46 0.0 1000 0 | 0.05 0.00 66.08 0.03 1 1.27e+06 242.39 | 234.13 0.0 1000 0 | 0.05 0.50 66.24 0.03 1 1.29e+06 242.39 | 229.63 0.0 1000 0 | 0.05 0.00 67.11 0.03 1 1.31e+06 242.39 | 219.31 0.0 1000 0 | 0.05 0.00 68.27 0.03 1 1.33e+06 242.39 | 228.09 0.0 1000 0 | 0.05 0.00 68.09 0.03 1 1.35e+06 242.39 | 239.31 0.0 1000 0 | 0.05 0.28 68.57 0.03 1 1.37e+06 242.39 | 234.14 0.0 1000 0 | 0.04 0.00 69.25 0.03 1 1.39e+06 250.70 | 1 1.39e+06 250.70 | 250.70 3.5 1000 0 | 0.05 0.00 70.63 0.04 1 1.41e+06 250.70 | -18.32 0.0 1000 0 | 0.02 0.25 73.42 0.04 1 1.42e+06 250.70 | 13.04 0.0 1000 0 | 0.00 0.01 78.04 0.07 1 1.44e+06 250.70 | 35.75 0.0 1000 0 | -0.00 0.00 83.02 0.05 1 1.46e+06 250.70 | 32.76 0.0 1000 0 | -0.00 0.00 83.72 0.04 1 1.48e+06 250.70 | -8.30 0.0 1000 0 | 0.00 0.01 85.77 0.05 1 1.50e+06 250.70 | 11.51 0.0 1000 0 | 0.00 0.01 87.79 0.04 1 1.51e+06 250.70 | 61.50 0.0 1000 0 | 0.01 0.01 87.46 0.03 1 1.53e+06 250.70 | 230.86 0.0 1000 0 | 0.02 0.00 86.47 0.03 1 1.55e+06 250.70 | 226.20 0.0 1000 0 | 0.05 0.01 85.31 0.03 1 1.56e+06 250.70 | 201.67 0.0 1000 0 | 0.05 0.00 84.28 0.03 1 1.58e+06 250.70 | 225.26 0.0 1000 0 | 0.05 0.00 83.63 0.03 1 1.60e+06 250.70 | 223.65 0.0 1000 0 | 0.05 0.00 82.61 0.03 1 1.61e+06 250.70 | 241.43 0.0 1000 0 | 0.05 0.00 81.17 0.03 1 1.63e+06 252.85 | 1 1.63e+06 252.85 | 252.85 2.8 1000 0 | 0.05 0.34 80.03 0.03 1 1.64e+06 252.85 | 244.46 0.0 1000 0 | 0.05 0.00 78.56 0.03 1 1.66e+06 252.85 | 240.58 0.0 1000 0 | 0.05 0.00 77.74 0.03 1 1.68e+06 252.85 | 244.16 0.0 1000 0 | 0.05 0.27 76.52 0.03 1 1.69e+06 252.85 | 250.06 0.0 1000 0 | 0.05 0.00 75.40 0.03 1 1.71e+06 252.85 | 244.16 0.0 1000 0 | 0.05 0.00 75.30 0.03 1 1.72e+06 252.85 | 248.74 0.0 1000 0 | 0.05 0.00 74.14 0.03 1 1.74e+06 252.85 | 246.38 0.0 1000 0 | 0.05 0.00 73.63 0.03 1 1.76e+06 252.85 | 234.41 0.0 1000 0 | 0.05 0.00 73.70 0.04 1 1.77e+06 252.85 | 241.64 0.0 1000 0 | 0.05 0.00 74.10 0.03 1 1.79e+06 252.85 | 244.59 0.0 1000 0 | 0.05 0.31 73.19 0.03 1 1.80e+06 252.85 | 240.60 0.0 1000 0 | 0.05 0.00 73.57 0.03 1 1.82e+06 252.85 | 251.79 0.0 1000 0 | 0.05 0.00 74.11 0.03 1 1.83e+06 252.85 | 251.90 0.0 1000 0 | 0.05 0.00 75.44 0.04 1 1.84e+06 252.85 | 242.48 0.0 1000 0 | 0.05 0.00 77.73 0.04 1 1.86e+06 252.85 | -2.39 0.0 1000 0 | 0.00 0.00 83.06 0.06 1 1.87e+06 252.85 | 13.67 0.0 1000 0 | 0.01 0.00 88.56 0.06 1 1.89e+06 252.85 | 22.90 0.0 1000 0 | 0.01 0.01 92.18 0.06 1 1.90e+06 252.85 | 17.74 0.0 1000 0 | 0.00 0.01 97.56 0.06 1 1.91e+06 252.85 | 1.23 0.0 1000 0 | 0.01 0.00 99.37 0.04 1 1.93e+06 252.85 | 22.84 0.0 1000 0 | 0.01 0.38 98.27 0.03 1 1.94e+06 252.85 | 24.15 0.0 1000 0 | 0.01 0.33 97.48 0.04 1 1.96e+06 252.85 | 36.10 0.0 1000 0 | 0.01 0.01 99.23 0.05 1 1.97e+06 252.85 | 11.95 0.0 1000 0 | 0.01 0.00 99.93 0.04 1 1.98e+06 252.85 | 78.70 0.0 1000 0 | 0.01 0.01 98.30 0.03 1 2.00e+06 252.85 | 26.42 0.0 1000 0 | 0.01 0.38 96.47 0.03 1 2.01e+06 252.85 | 244.36 0.0 1000 0 | 0.01 0.37 94.50 0.03 1 2.03e+06 252.85 | 59.06 0.0 1000 0 | 0.01 0.39 93.26 0.04 1 2.04e+06 252.85 | 252.84 0.0 1000 0 | 0.04 0.00 91.76 0.03 1 2.05e+06 273.50 | 1 2.05e+06 273.50 | 273.50 0.1 1000 0 | 0.05 0.00 89.40 0.03 1 2.06e+06 273.50 | 272.89 0.0 1000 0 | 0.05 0.00 86.87 0.03 1 2.08e+06 273.50 | 240.81 0.0 1000 0 | 0.05 0.35 85.54 0.04 1 2.09e+06 273.50 | 256.95 0.0 1000 0 | 0.05 0.00 84.85 0.03 1 2.10e+06 273.50 | 244.67 0.0 1000 0 | 0.05 0.00 83.98 0.03 1 2.11e+06 273.50 | 253.63 0.0 1000 0 | 0.05 0.34 82.46 0.03 1 2.12e+06 273.50 | 263.31 0.0 1000 0 | 0.05 0.01 81.16 0.03 1 2.14e+06 273.50 | 252.39 0.0 1000 0 | 0.05 0.34 79.95 0.03 1 2.15e+06 273.50 | 244.45 0.0 1000 0 | 0.05 0.30 79.09 0.03 1 2.16e+06 273.50 | 255.90 0.0 1000 0 | 0.05 0.00 78.00 0.03 1 2.17e+06 273.50 | 255.95 0.0 1000 0 | 0.05 0.00 78.21 0.03 1 2.18e+06 273.50 | 249.94 0.0 1000 0 | 0.05 0.00 78.31 0.03 1 2.20e+06 273.50 | 253.91 0.0 1000 0 | 0.05 0.00 78.00 0.03 1 2.21e+06 274.55 | 1 2.21e+06 274.55 | 274.55 0.3 1000 0 | 0.05 0.00 77.51 0.03 1 2.22e+06 274.55 | 267.84 0.0 1000 0 | 0.05 0.57 76.41 0.03 1 2.23e+06 279.16 | 1 2.23e+06 279.16 | 279.16 2.5 1000 0 | 0.06 0.00 75.55 0.03 1 2.24e+06 279.16 | 273.00 0.0 1000 0 | 0.05 0.26 74.95 0.03 1 2.26e+06 279.16 | 264.01 0.0 1000 0 | 0.05 0.30 73.58 0.03 1 2.27e+06 279.16 | 267.32 0.0 1000 0 | 0.05 0.00 73.75 0.03 1 2.28e+06 279.16 | 269.79 0.0 1000 0 | 0.05 0.00 72.23 0.03 1 2.29e+06 279.16 | 268.52 0.0 1000 0 | 0.05 0.00 72.87 0.03 1 2.30e+06 279.16 | 265.92 0.0 1000 0 | 0.05 0.25 72.11 0.03 1 2.32e+06 279.16 | 276.36 0.0 1000 0 | 0.05 0.00 71.94 0.03 1 2.33e+06 279.16 | 270.18 0.0 1000 0 | 0.05 0.00 71.86 0.03 1 2.34e+06 279.16 | 268.08 0.0 1000 0 | 0.05 0.00 72.68 0.03 1 2.35e+06 279.16 | 254.55 0.0 1000 0 | 0.05 0.00 71.80 0.03 1 2.36e+06 279.16 | 271.47 0.0 1000 0 | 0.05 0.30 71.55 0.03 1 2.38e+06 279.16 | 263.83 0.0 1000 0 | 0.05 0.00 72.41 0.03 1 2.39e+06 279.16 | 265.38 0.0 1000 0 | 0.05 0.00 72.12 0.03 1 2.40e+06 279.16 | 267.98 0.0 1000 0 | 0.05 0.00 71.99 0.03 1 2.41e+06 279.16 | 268.60 0.0 1000 0 | 0.05 0.00 71.62 0.03 1 2.43e+06 279.16 | 264.70 0.0 1000 0 | 0.05 0.00 72.49 0.03 1 2.44e+06 279.16 | 262.57 0.0 1000 0 | 0.05 0.00 72.16 0.03 1 2.46e+06 279.16 | 256.97 0.0 1000 0 | 0.05 0.00 72.79 0.03 1 2.47e+06 279.16 | 263.02 0.0 1000 0 | 0.05 0.00 72.96 0.03 1 2.48e+06 279.16 | 271.66 0.0 1000 0 | 0.05 0.00 73.30 0.03 1 2.50e+06 279.16 | 275.71 0.0 1000 0 | 0.05 0.00 72.58 0.03 1 3.00e+06 282.71 | 272.30 0.0 1000 0 | 0.06 0.00 75.52 0.03 1 3.01e+06 282.71 | 277.51 0.0 1000 0 | 0.05 0.00 75.08 0.03 1 3.03e+06 282.71 | 277.76 0.0 1000 0 | 0.06 0.00 75.68 0.03 1 3.04e+06 282.71 | 279.86 0.0 1000 0 | 0.06 0.00 74.71 0.03 1 3.05e+06 282.71 | 270.92 0.0 1000 0 | 0.06 0.00 75.04 0.03 1 3.07e+06 282.71 | 271.82 0.0 1000 0 | 0.06 0.00 75.17 0.03 1 3.08e+06 282.71 | 272.38 0.0 1000 0 | 0.06 0.00 74.64 0.03 1 3.09e+06 282.71 | 278.07 0.0 1000 0 | 0.06 0.00 74.59 0.03 1 3.11e+06 282.71 | 278.19 0.0 1000 0 | 0.06 0.00 74.55 0.03 1 3.12e+06 282.71 | 274.46 0.0 1000 0 | 0.06 0.00 74.46 0.03 1 3.13e+06 282.71 | 277.75 0.0 1000 0 | 0.06 0.00 74.46 0.03 1 3.15e+06 282.71 | 273.52 0.0 1000 0 | 0.06 0.30 74.14 0.03 1 3.16e+06 282.71 | 277.32 0.0 1000 0 | 0.06 0.00 73.91 0.03 1 3.17e+06 284.77 | 1 3.17e+06 284.77 | 284.77 0.6 1000 0 | 0.06 0.00 74.40 0.03 1 3.19e+06 284.77 | 282.03 0.0 1000 0 | 0.06 0.25 74.23 0.03 1 3.20e+06 284.77 | 34.92 0.0 1000 0 | 0.01 0.31 82.79 0.07 1 3.21e+06 284.77 | 189.63 0.0 1000 0 | 0.02 0.00 83.09 0.03 1 3.23e+06 284.77 | 265.40 0.0 1000 0 | 0.05 0.00 82.80 0.03 1 3.24e+06 284.77 | 280.59 0.0 1000 0 | 0.06 0.00 81.42 0.03 1 3.25e+06 286.19 | 1 3.25e+06 286.19 | 286.19 0.8 1000 0 | 0.06 0.00 81.49 0.03 1 3.26e+06 286.19 | 279.21 0.0 1000 0 | 0.06 0.27 79.98 0.03 1 3.28e+06 286.19 | 277.80 0.0 1000 0 | 0.06 0.00 80.00 0.03 1 3.29e+06 286.19 | 281.87 0.0 1000 0 | 0.05 0.00 79.75 0.03 1 3.30e+06 286.19 | 284.48 0.0 1000 0 | 0.06 0.32 79.12 0.03 1 3.31e+06 286.19 | 277.54 0.0 1000 0 | 0.06 0.63 78.93 0.03 1 3.33e+06 286.19 | 274.09 0.0 1000 0 | 0.05 0.00 78.19 0.03 1 3.34e+06 286.19 | 277.04 0.0 1000 0 | 0.01 0.00 77.78 0.03 1 3.35e+06 286.19 | 283.19 0.0 1000 0 | 0.06 0.00 77.21 0.03 1 3.36e+06 286.19 | 280.71 0.0 1000 0 | 0.06 0.00 77.49 0.03 1 3.38e+06 286.19 | 277.38 0.0 1000 0 | 0.06 0.00 76.72 0.03 1 3.39e+06 286.19 | 283.72 0.0 1000 0 | 0.06 0.00 76.55 0.03 1 3.40e+06 286.19 | 278.91 0.0 1000 0 | 0.06 0.00 76.37 0.03 1 3.41e+06 286.19 | 273.63 0.0 1000 0 | 0.06 0.00 75.69 0.03 1 3.43e+06 286.19 | 283.73 0.0 1000 0 | 0.06 0.00 76.27 0.03 1 3.44e+06 286.19 | 266.33 0.0 1000 0 | 0.05 0.00 76.06 0.03 1 3.45e+06 288.79 | 1 3.45e+06 288.79 | 288.79 1.5 1000 0 | 0.06 0.00 76.05 0.03 1 3.46e+06 288.79 | 279.64 0.0 1000 0 | 0.06 0.00 76.04 0.03 1 3.48e+06 288.79 | 288.71 1.8 1000 0 | 0.06 0.00 75.77 0.03 1 3.49e+06 288.79 | 282.01 0.0 1000 0 | 0.06 0.00 75.53 0.03 1 3.50e+06 288.79 | 277.28 0.0 1000 0 | 0.06 0.00 75.07 0.03 1 4.00e+06 288.79 | 273.84 0.0 1000 0 | 0.05 0.00 80.36 0.03 1 4.01e+06 288.79 | 279.71 0.0 1000 0 | 0.06 0.00 79.80 0.03 1 4.03e+06 288.79 | 279.59 0.0 1000 0 | 0.06 0.00 78.89 0.03 | UsedTime: 64403 | SavedDir: ./Swimmer-v3_SAC_1 | Learner: Save in ./Swimmer-v3_SAC_1 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 4.00e+03 -6.28 | 2 4.00e+03 -6.28 | -6.28 2.6 1000 0 | -0.00 0.79 0.93 0.50 2 2.10e+05 -6.28 | -11.70 0.0 1000 0 | -0.00 0.06 33.38 0.14 2 3.02e+05 23.82 | 2 3.02e+05 23.82 | 23.82 9.6 1000 0 | 0.00 0.09 53.78 0.11 2 3.74e+05 23.82 | 14.50 0.0 1000 0 | 0.00 0.10 68.90 0.09 2 4.34e+05 23.82 | -58.80 0.0 1000 0 | -0.00 0.09 75.72 0.07 2 4.88e+05 47.66 | 2 4.88e+05 47.66 | 47.66 5.9 1000 0 | 0.01 0.09 80.90 0.06 2 5.36e+05 47.66 | 33.35 0.0 1000 0 | 0.01 0.11 84.02 0.05 2 5.82e+05 47.66 | 30.58 0.0 1000 0 | 0.01 0.09 86.48 0.05 2 6.24e+05 47.66 | -7.63 0.0 1000 0 | -0.00 0.10 88.60 0.04 2 6.64e+05 47.66 | 18.22 0.0 1000 0 | 0.00 0.10 89.48 0.04 2 7.02e+05 47.66 | 34.68 0.0 1000 0 | 0.01 0.11 87.96 0.04 2 7.38e+05 59.89 | 2 7.38e+05 59.89 | 59.89 0.5 1000 0 | 0.01 0.08 87.32 0.04 2 7.72e+05 59.89 | 30.50 0.0 1000 0 | 0.01 0.09 84.90 0.03 2 8.04e+05 59.89 | 51.30 0.0 1000 0 | 0.01 0.08 81.95 0.03 2 8.36e+05 59.89 | 42.13 0.0 1000 0 | 0.01 0.10 78.65 0.02 2 8.66e+05 59.89 | 41.95 0.0 1000 0 | 0.01 0.10 76.30 0.03 2 8.96e+05 59.89 | 48.86 0.0 1000 0 | 0.01 0.08 74.73 0.03 2 9.24e+05 59.89 | 12.75 0.0 1000 0 | 0.01 0.08 71.93 0.02 2 9.52e+05 59.89 | 43.57 0.0 1000 0 | 0.01 0.08 69.69 0.02 2 9.78e+05 59.89 | 52.49 0.0 1000 0 | 0.01 0.08 67.37 0.02 2 1.00e+06 59.89 | 57.30 0.0 1000 0 | 0.01 0.06 65.46 0.02 2 1.03e+06 59.89 | 36.17 0.0 1000 0 | 0.01 0.07 63.51 0.02 2 1.05e+06 62.24 | 2 1.05e+06 62.24 | 62.24 4.4 1000 0 | 0.02 0.07 61.56 0.02 2 1.08e+06 99.75 | 2 1.08e+06 99.75 | 99.75 0.5 1000 0 | 0.02 0.07 59.61 0.02 2 1.10e+06 99.75 | 36.13 0.0 1000 0 | 0.03 0.06 57.29 0.02 2 1.12e+06 179.45 | 2 1.12e+06 179.45 | 179.45 1.3 1000 0 | 0.03 0.05 56.03 0.02 2 1.15e+06 179.45 | 58.21 0.0 1000 0 | 0.03 0.06 55.73 0.02 2 1.17e+06 179.45 | 110.22 0.0 1000 0 | 0.04 0.06 55.51 0.03 2 1.19e+06 207.64 | 2 1.19e+06 207.64 | 207.64 2.1 1000 0 | 0.04 0.06 55.21 0.03 2 1.21e+06 216.00 | 2 1.21e+06 216.00 | 216.00 0.4 1000 0 | 0.05 0.05 55.78 0.03 2 1.23e+06 216.00 | 215.36 0.0 1000 0 | 0.04 0.06 55.62 0.03 2 1.25e+06 220.60 | 2 1.25e+06 220.60 | 220.60 1.8 1000 0 | 0.05 0.06 55.78 0.03 2 1.27e+06 244.95 | 2 1.27e+06 244.95 | 244.95 2.8 1000 0 | 0.05 0.05 55.95 0.03 2 1.30e+06 257.70 | 2 1.30e+06 257.70 | 257.70 0.4 1000 0 | 0.05 0.06 56.90 0.03 2 1.32e+06 257.70 | 242.88 0.0 1000 0 | 0.05 0.05 57.62 0.03 2 1.34e+06 259.86 | 2 1.34e+06 259.86 | 259.86 0.6 1000 0 | 0.05 0.06 57.92 0.03 2 1.36e+06 259.86 | 230.05 0.0 1000 0 | 0.05 0.07 58.70 0.03 2 1.38e+06 259.86 | 256.39 0.0 1000 0 | 0.05 0.06 59.14 0.03 2 1.40e+06 261.23 | 2 1.40e+06 261.23 | 261.23 2.4 1000 0 | 0.05 0.05 60.07 0.03 2 1.42e+06 261.23 | 251.52 0.0 1000 0 | 0.05 0.06 60.80 0.03 2 1.44e+06 271.11 | 2 1.44e+06 271.11 | 271.11 1.7 1000 0 | 0.05 0.07 62.13 0.03 2 1.46e+06 271.11 | 247.82 0.0 1000 0 | 0.05 0.08 62.74 0.03 2 1.48e+06 271.11 | 233.00 0.0 1000 0 | 0.05 0.07 64.83 0.04 2 1.50e+06 271.11 | 252.08 0.0 1000 0 | 0.04 0.07 66.22 0.04 2 1.51e+06 271.11 | 3.42 0.0 1000 0 | 0.04 0.08 69.69 0.04 2 1.53e+06 271.11 | 17.14 0.0 1000 0 | 0.01 0.07 73.58 0.05 2 1.55e+06 271.11 | 12.62 0.0 1000 0 | 0.01 0.08 75.60 0.04 2 1.57e+06 271.11 | 46.57 0.0 1000 0 | 0.01 0.09 75.32 0.03 2 1.59e+06 271.11 | 238.78 0.0 1000 0 | 0.03 0.09 74.76 0.03 2 1.60e+06 271.11 | 267.25 0.0 1000 0 | 0.06 0.08 72.93 0.03 2 1.62e+06 271.11 | 266.43 0.0 1000 0 | 0.05 0.07 72.23 0.03 2 1.64e+06 278.36 | 2 1.64e+06 278.36 | 278.36 0.5 1000 0 | 0.05 0.07 71.94 0.03 2 1.66e+06 278.36 | 266.06 0.0 1000 0 | 0.05 0.08 72.14 0.03 2 1.67e+06 279.56 | 2 1.67e+06 279.56 | 279.56 0.4 1000 0 | 0.05 0.07 71.28 0.03 2 1.69e+06 279.56 | 270.07 0.0 1000 0 | 0.05 0.07 71.56 0.03 2 1.71e+06 279.56 | 264.37 0.0 1000 0 | 0.05 0.07 71.32 0.03 2 1.72e+06 279.56 | 273.81 0.0 1000 0 | 0.05 0.08 71.46 0.03 2 1.74e+06 279.56 | 262.90 0.0 1000 0 | 0.05 0.07 71.01 0.03 2 1.75e+06 279.56 | 275.06 0.0 1000 0 | 0.05 0.08 70.64 0.03 2 1.77e+06 279.56 | 273.48 0.0 1000 0 | 0.05 0.06 71.13 0.03 2 1.79e+06 279.56 | 264.31 0.0 1000 0 | 0.05 0.06 71.08 0.03 2 1.80e+06 279.56 | 257.98 0.0 1000 0 | 0.05 0.08 70.57 0.03 2 1.82e+06 279.56 | 263.28 0.0 1000 0 | 0.05 0.07 71.35 0.03 2 1.83e+06 279.56 | 260.41 0.0 1000 0 | 0.05 0.06 70.98 0.03 2 1.85e+06 279.56 | 265.36 0.0 1000 0 | 0.05 0.07 70.71 0.03 2 1.87e+06 279.56 | 270.74 0.0 1000 0 | 0.06 0.07 70.96 0.03 2 1.88e+06 279.56 | 268.11 0.0 1000 0 | 0.05 0.08 70.78 0.03 2 1.90e+06 279.56 | 275.53 0.0 1000 0 | 0.06 0.07 71.73 0.03 2 1.91e+06 281.30 | 2 1.91e+06 281.30 | 281.30 0.9 1000 0 | 0.06 0.07 71.17 0.03 2 1.93e+06 283.31 | 2 1.93e+06 283.31 | 283.31 1.1 1000 0 | 0.06 0.09 72.06 0.03 2 1.94e+06 283.31 | 276.43 0.0 1000 0 | 0.05 0.07 72.16 0.03 2 1.96e+06 283.31 | 275.59 0.0 1000 0 | 0.06 0.07 72.94 0.03 2 1.97e+06 283.31 | 271.83 0.0 1000 0 | 0.05 0.07 72.90 0.03 2 1.98e+06 283.31 | 272.16 0.0 1000 0 | 0.06 0.06 72.23 0.03 2 2.00e+06 283.31 | 268.55 0.0 1000 0 | 0.06 0.06 72.76 0.03 2 4.00e+06 287.57 | 286.08 0.0 1000 0 | 0.06 0.07 86.54 0.03 2 4.01e+06 287.57 | 27.04 0.0 1000 0 | 0.01 0.09 86.45 0.03 2 4.02e+06 287.57 | 276.14 0.0 1000 0 | 0.05 0.09 86.05 0.03 2 4.04e+06 289.87 | 2 4.04e+06 289.87 | 289.87 3.1 1000 0 | 0.06 0.10 84.75 0.03 2 4.05e+06 289.87 | 283.59 0.0 1000 0 | 0.06 0.08 83.82 0.03 2 4.07e+06 289.87 | 284.69 0.0 1000 0 | 0.06 0.08 83.22 0.03 2 4.08e+06 289.87 | 279.18 0.0 1000 0 | 0.06 0.08 82.78 0.03 2 4.09e+06 289.87 | 281.33 0.0 1000 0 | 0.06 0.07 82.22 0.03 2 4.11e+06 289.87 | 246.89 0.0 1000 0 | 0.01 0.08 81.90 0.03 2 4.12e+06 289.87 | 287.04 0.0 1000 0 | 0.06 0.08 81.40 0.03 2 4.14e+06 289.87 | 286.29 0.0 1000 0 | 0.06 0.07 81.13 0.03 2 4.15e+06 289.87 | 280.49 0.0 1000 0 | 0.06 0.08 80.96 0.03 2 4.16e+06 289.87 | 288.86 0.0 1000 0 | 0.05 0.09 80.75 0.03 2 4.18e+06 289.87 | 287.55 0.0 1000 0 | 0.06 0.09 80.62 0.03 2 4.19e+06 289.87 | 281.04 0.0 1000 0 | 0.06 0.08 79.82 0.03 2 4.21e+06 289.87 | 280.87 0.0 1000 0 | 0.06 0.09 80.20 0.03 | UsedTime: 64429 | SavedDir: ./Swimmer-v3_ReSAC_2 | Learner: Save in ./Swimmer-v3_ReSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 4.00e+03 -8.57 | 3 4.00e+03 -8.57 | -8.57 1.5 1000 0 | 0.00 0.79 0.89 0.50 3 2.16e+05 31.39 | 3 2.16e+05 31.39 | 31.39 1.8 1000 0 | 0.02 0.10 38.48 0.14 3 3.12e+05 37.02 | 3 3.12e+05 37.02 | 37.02 3.1 1000 0 | 0.02 0.11 58.60 0.11 3 3.86e+05 37.02 | 14.92 0.0 1000 0 | 0.01 0.11 74.82 0.10 3 4.48e+05 37.02 | 18.02 0.0 1000 0 | 0.01 0.13 89.95 0.09 3 5.02e+05 37.02 | 7.93 0.0 1000 0 | 0.00 0.13 98.66 0.09 3 5.52e+05 37.02 | 7.09 0.0 1000 0 | 0.01 0.14 108.21 0.08 3 5.98e+05 37.02 | 27.86 0.0 1000 0 | 0.01 0.15 113.27 0.09 3 6.40e+05 37.02 | 20.95 0.0 1000 0 | 0.02 0.15 116.43 0.08 3 6.80e+05 37.02 | 24.06 0.0 1000 0 | 0.01 0.15 117.68 0.06 3 7.18e+05 37.02 | 7.78 0.0 1000 0 | -0.01 0.12 123.53 0.07 3 7.54e+05 40.66 | 3 7.54e+05 40.66 | 40.66 0.1 1000 0 | 0.01 0.17 126.84 0.08 3 7.88e+05 40.66 | 21.68 0.0 1000 0 | 0.01 0.16 134.54 0.09 3 8.22e+05 40.66 | 22.85 0.0 1000 0 | 0.01 0.17 135.28 0.07 3 8.54e+05 45.03 | 3 8.54e+05 45.03 | 45.03 0.5 1000 0 | 0.03 0.16 134.01 0.07 3 8.86e+05 45.03 | 43.95 0.0 1000 0 | 0.05 0.14 133.89 0.07 3 9.16e+05 45.03 | 34.65 0.0 1000 0 | 0.07 0.16 132.55 0.05 3 9.46e+05 112.01 | 3 9.46e+05 112.01 | 112.01 0.9 1000 0 | 0.05 0.16 129.19 0.06 3 9.74e+05 112.01 | 84.85 0.0 1000 0 | 0.04 0.13 130.59 0.06 3 1.00e+06 112.01 | 16.83 0.0 1000 0 | 0.01 0.13 133.01 0.07 3 1.03e+06 112.01 | 43.08 0.0 1000 0 | 0.00 0.14 135.57 0.08 3 1.05e+06 112.01 | 55.34 0.0 1000 0 | 0.02 0.17 139.34 0.07 3 1.08e+06 112.01 | 12.76 0.0 1000 0 | 0.01 0.17 138.87 0.06 3 1.11e+06 199.25 | 3 1.11e+06 199.25 | 199.25 3.7 1000 0 | 0.07 0.16 136.65 0.06 3 1.13e+06 215.78 | 3 1.13e+06 215.78 | 215.78 5.7 1000 0 | 0.07 0.14 138.30 0.06 3 1.15e+06 231.73 | 3 1.15e+06 231.73 | 231.73 0.1 1000 0 | 0.08 0.14 135.88 0.06 3 1.18e+06 231.73 | 96.06 0.0 1000 0 | 0.10 0.15 133.84 0.05 3 1.20e+06 252.84 | 3 1.20e+06 252.84 | 252.84 1.9 1000 0 | 0.10 0.13 130.86 0.05 3 1.22e+06 252.84 | 238.23 0.0 1000 0 | 0.10 0.14 128.67 0.06 3 1.25e+06 252.84 | 245.16 0.0 1000 0 | 0.10 0.13 128.37 0.05 3 1.27e+06 252.84 | 243.16 0.0 1000 0 | 0.10 0.14 127.71 0.06 3 1.29e+06 252.84 | 249.43 0.0 1000 0 | 0.10 0.13 127.30 0.06 3 1.31e+06 252.84 | 236.17 0.0 1000 0 | 0.10 0.13 128.10 0.07 3 1.33e+06 252.84 | 250.43 0.0 1000 0 | 0.10 0.13 127.73 0.06 3 1.35e+06 252.84 | 238.49 0.0 1000 0 | 0.10 0.11 126.85 0.06 3 1.37e+06 255.28 | 3 1.37e+06 255.28 | 255.28 0.4 1000 0 | 0.10 0.16 127.16 0.06 3 1.39e+06 255.28 | 233.57 0.0 1000 0 | 0.10 0.14 128.99 0.06 3 1.41e+06 255.28 | 244.09 0.0 1000 0 | 0.11 0.12 130.26 0.06 3 1.43e+06 255.28 | 235.71 0.0 1000 0 | 0.09 0.14 129.95 0.07 3 1.45e+06 255.28 | 246.59 0.0 1000 0 | 0.10 0.13 129.46 0.06 3 1.47e+06 255.28 | 247.30 0.0 1000 0 | 0.10 0.15 131.86 0.07 3 1.49e+06 255.28 | 246.46 0.0 1000 0 | 0.10 0.13 132.77 0.06 3 1.50e+06 255.28 | 235.29 0.0 1000 0 | 0.10 0.13 133.17 0.08 3 1.52e+06 255.28 | 92.90 0.0 1000 0 | 0.08 0.15 140.81 0.08 3 1.54e+06 255.28 | -8.49 0.0 1000 0 | 0.02 0.17 144.82 0.10 3 1.56e+06 255.28 | 18.62 0.0 1000 0 | 0.01 0.18 159.15 0.10 3 1.58e+06 255.28 | 12.88 0.0 1000 0 | 0.00 0.20 161.08 0.08 3 1.59e+06 255.28 | 249.60 0.0 1000 0 | 0.02 0.19 160.45 0.07 3 1.61e+06 255.28 | 245.90 0.0 1000 0 | 0.09 0.16 158.35 0.06 3 1.63e+06 255.28 | 253.69 0.0 1000 0 | 0.10 0.15 157.53 0.06 3 1.65e+06 256.24 | 3 1.65e+06 256.24 | 256.24 1.8 1000 0 | 0.10 0.17 154.70 0.06 3 1.66e+06 257.26 | 3 1.66e+06 257.26 | 257.26 1.0 1000 0 | 0.10 0.17 152.74 0.06 3 1.68e+06 261.95 | 3 1.68e+06 261.95 | 261.95 2.2 1000 0 | 0.10 0.16 149.32 0.06 3 1.70e+06 261.95 | 259.62 2.4 1000 0 | 0.10 0.17 150.72 0.06 3 1.71e+06 261.95 | 248.64 0.0 1000 0 | 0.10 0.15 148.57 0.06 3 1.73e+06 261.95 | 249.29 0.0 1000 0 | 0.10 0.13 146.17 0.07 3 1.74e+06 261.95 | 249.37 0.0 1000 0 | 0.09 0.15 147.29 0.06 3 1.76e+06 261.95 | 245.88 0.0 1000 0 | 0.10 0.16 145.84 0.07 3 1.78e+06 261.95 | 261.27 0.0 1000 0 | 0.10 0.16 146.70 0.07 3 1.79e+06 261.95 | 259.66 0.0 1000 0 | 0.05 0.16 150.79 0.06 3 1.81e+06 261.95 | 260.88 0.0 1000 0 | 0.10 0.15 146.73 0.06 3 1.82e+06 261.95 | 242.13 0.0 1000 0 | 0.11 0.17 145.80 0.07 3 1.84e+06 261.95 | 257.71 0.0 1000 0 | 0.10 0.18 147.04 0.06 3 1.86e+06 261.95 | 260.06 0.0 1000 0 | 0.10 0.14 146.52 0.07 3 1.87e+06 261.95 | 245.67 0.0 1000 0 | 0.11 0.14 146.18 0.07 3 1.89e+06 261.95 | 237.52 0.0 1000 0 | 0.10 0.14 148.21 0.08 3 1.90e+06 261.95 | 259.79 0.0 1000 0 | 0.10 0.14 149.33 0.06 3 1.92e+06 261.95 | 258.17 0.0 1000 0 | 0.11 0.14 148.37 0.06 3 1.93e+06 261.95 | 253.84 0.0 1000 0 | 0.11 0.14 146.93 0.06 3 1.94e+06 261.95 | 254.08 0.0 1000 0 | 0.10 0.18 146.73 0.06 3 1.96e+06 261.95 | 251.79 0.0 1000 0 | 0.11 0.15 143.88 0.06 3 1.97e+06 261.95 | 253.61 0.0 1000 0 | 0.11 0.15 144.74 0.06 3 1.99e+06 261.95 | 261.72 0.0 1000 0 | 0.11 0.14 143.76 0.07 3 2.00e+06 263.24 | 3 2.00e+06 263.24 | 263.24 0.5 1000 0 | 0.09 0.16 147.80 0.07 3 2.01e+06 263.24 | 249.24 0.0 1000 0 | 0.10 0.17 150.97 0.07 3 2.03e+06 270.97 | 3 2.03e+06 270.97 | 270.97 0.4 1000 0 | 0.11 0.14 149.13 0.06 3 2.04e+06 272.27 | 3 2.04e+06 272.27 | 272.27 0.4 1000 0 | 0.11 0.15 147.54 0.06 3 2.06e+06 279.06 | 3 2.06e+06 279.06 | 279.06 1.4 1000 0 | 0.11 0.15 146.70 0.06 3 2.07e+06 279.06 | 262.20 0.0 1000 0 | 0.11 0.15 146.47 0.06 3 2.08e+06 279.06 | 92.01 0.0 1000 0 | 0.10 0.16 145.97 0.08 3 2.10e+06 279.06 | 45.48 0.0 1000 0 | 0.04 0.16 150.03 0.08 3 2.11e+06 279.06 | 266.86 0.0 1000 0 | 0.05 0.15 149.27 0.06 3 2.12e+06 279.06 | 259.74 0.0 1000 0 | 0.10 0.17 148.94 0.06 3 2.14e+06 279.06 | 277.93 0.0 1000 0 | 0.11 0.17 148.45 0.06 3 2.15e+06 279.06 | 274.22 0.0 1000 0 | 0.11 0.17 147.41 0.06 3 2.17e+06 279.06 | 229.47 0.0 1000 0 | 0.11 0.13 149.58 0.08 3 2.18e+06 279.06 | 268.43 0.0 1000 0 | 0.11 0.15 148.77 0.06 3 2.19e+06 279.06 | 270.04 0.0 1000 0 | 0.11 0.15 147.16 0.06 3 2.21e+06 279.06 | 258.05 0.0 1000 0 | 0.10 0.14 147.61 0.07 3 2.22e+06 279.06 | 261.98 0.0 1000 0 | 0.11 0.17 150.39 0.07 3 2.24e+06 279.06 | 268.90 0.0 1000 0 | 0.11 0.19 149.27 0.07 3 2.25e+06 279.06 | 277.89 0.0 1000 0 | 0.11 0.17 150.75 0.06 3 2.26e+06 279.06 | 277.51 0.0 1000 0 | 0.11 0.15 149.34 0.06 3 2.28e+06 279.06 | 276.45 0.0 1000 0 | 0.11 0.16 148.45 0.06 3 2.29e+06 279.06 | 276.91 0.0 1000 0 | 0.11 0.16 146.36 0.06 3 2.31e+06 279.06 | 273.43 0.0 1000 0 | 0.11 0.15 147.01 0.06 3 2.32e+06 279.06 | 264.30 0.0 1000 0 | 0.10 0.17 147.23 0.06 3 2.33e+06 279.06 | 272.07 0.0 1000 0 | 0.10 0.15 148.60 0.06 3 2.35e+06 279.06 | 267.41 0.0 1000 0 | 0.11 0.15 148.22 0.06 3 2.36e+06 279.06 | 273.78 0.0 1000 0 | 0.11 0.19 148.15 0.06 3 2.38e+06 279.06 | 274.00 0.0 1000 0 | 0.10 0.15 148.18 0.06 3 2.39e+06 279.06 | 264.71 0.0 1000 0 | 0.11 0.16 149.14 0.07 3 2.40e+06 279.06 | 266.69 0.0 1000 0 | 0.06 0.16 151.73 0.07 3 2.42e+06 279.51 | 3 2.42e+06 279.51 | 279.51 1.6 1000 0 | 0.09 0.16 154.09 0.06 3 2.43e+06 280.29 | 3 2.43e+06 280.29 | 280.29 0.8 1000 0 | 0.11 0.17 153.12 0.06 3 2.45e+06 280.29 | 262.86 0.0 1000 0 | 0.11 0.17 153.20 0.06 3 2.46e+06 280.29 | 273.96 0.0 1000 0 | 0.10 0.18 152.18 0.06 3 2.47e+06 281.82 | 3 2.47e+06 281.82 | 281.82 0.2 1000 0 | 0.11 0.17 153.48 0.06 3 2.49e+06 281.82 | 263.43 0.0 1000 0 | 0.12 0.16 151.74 0.06 3 2.50e+06 281.82 | 260.68 0.0 1000 0 | 0.10 0.15 154.54 0.07 3 2.52e+06 281.82 | 268.88 0.0 1000 0 | 0.10 0.16 154.29 0.06 3 2.53e+06 281.82 | 267.59 0.0 1000 0 | 0.11 0.15 153.52 0.06 3 2.54e+06 281.82 | 278.41 0.0 1000 0 | 0.11 0.13 153.54 0.06 3 2.56e+06 281.82 | 272.29 0.0 1000 0 | 0.11 0.16 152.92 0.06 3 2.57e+06 281.82 | 267.83 0.0 1000 0 | 0.11 0.17 152.42 0.06 3 2.59e+06 281.82 | 263.96 0.0 1000 0 | 0.11 0.17 154.01 0.06 3 2.60e+06 281.82 | 280.84 0.0 1000 0 | 0.11 0.16 153.49 0.06 3 2.61e+06 287.28 | 3 2.61e+06 287.28 | 287.28 0.2 1000 0 | 0.11 0.15 152.73 0.06 3 3.50e+06 287.28 | 38.06 0.0 1000 0 | -0.01 0.27 230.10 0.10 3 3.51e+06 287.28 | 13.15 0.0 1000 0 | -0.00 0.23 230.06 0.08 3 3.52e+06 287.28 | 43.99 0.0 1000 0 | 0.02 0.23 231.44 0.10 3 3.54e+06 287.28 | -0.56 0.0 1000 0 | 0.01 0.25 238.56 0.13 3 3.55e+06 287.28 | 46.62 0.0 1000 0 | 0.04 0.22 234.65 0.07 3 3.57e+06 287.28 | 31.43 0.0 1000 0 | 0.01 0.26 236.88 0.10 3 3.58e+06 287.28 | 105.30 0.0 1000 0 | 0.04 0.23 231.16 0.06 3 3.59e+06 287.28 | 258.81 0.0 1000 0 | 0.00 0.23 224.03 0.06 3 3.61e+06 287.28 | 256.95 0.0 1000 0 | 0.10 0.25 215.33 0.06 3 3.62e+06 287.28 | 253.97 0.0 1000 0 | 0.10 0.21 209.44 0.06 3 3.64e+06 287.28 | 265.32 0.0 1000 0 | 0.11 0.22 204.07 0.06 3 3.65e+06 287.28 | 269.82 0.0 1000 0 | 0.10 0.20 197.73 0.06 3 3.66e+06 287.28 | 265.63 0.0 1000 0 | 0.11 0.22 192.48 0.06 3 3.68e+06 287.28 | 270.77 0.0 1000 0 | 0.11 0.25 189.75 0.06 3 3.69e+06 287.28 | 256.46 0.0 1000 0 | 0.10 0.19 187.02 0.06 3 3.71e+06 287.28 | 273.00 0.0 1000 0 | 0.10 0.19 182.82 0.06 | UsedTime: 52955 | SavedDir: ./Swimmer-v3_ReSAC_3 | Learner: Save in ./Swimmer-v3_ReSAC_3 """ elif env_name == 'Ant-v3': from elegantrl.envs.CustomGymEnv import AntEnv env_func = AntEnv env_args = { 'env_num': 1, 'env_name': 'Ant-v3', 'max_step': 1000, 'state_dim': 27, # original MuJoCo Ant state_dim is 111 'action_dim': 8, 'if_discrete': False, 'target_return': 6000.0, } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.reward_scale = 2 ** -4 args.num_layer = 3 args.net_dim = 2 ** 8 args.batch_size = int(args.net_dim * 2) args.worker_num = 2 args.target_step = args.max_step if gpu_id == 1: args.repeat_times = 2 ** -1 if gpu_id == 2: args.repeat_times = 2 ** -0 args.reward_scale = 2 ** -4 args.learning_rate = 2 ** -15 args.clip_grad_norm = 1.0 args.gamma = 0.985 args.if_act_target = False args.explore_noise_std = 0.1 # for DPG '''H-term''' args.h_term_drop_rate = 2 ** -2 args.h_term_lambda = 2 ** -3 args.h_term_update_gap = 1 args.h_term_k_step = 8 args.eval_gap = 2 ** 8 args.eval_times = 2 ** 1 args.break_step = int(4e6) args.if_allow_break = False elif env_name == 'HalfCheetah-v3': env_func = gym.make env_args = { 'env_num': 1, 'env_name': 'HalfCheetah-v3', 'max_step': 1000, 'state_dim': 17, 'action_dim': 6, 'if_discrete': False, 'target_return': 4800.0, } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.num_layer = 3 args.net_dim = 2 ** 8 args.batch_size = int(args.net_dim * 2) args.worker_num = 2 args.target_step = args.max_step args.repeat_times = 2 ** 0 args.reward_scale = 2 ** -2 args.learning_rate = 2 ** -15 args.clip_grad_norm = 1.0 args.gamma = 0.99 args.if_act_target = False args.explore_noise_std = 0.06 # for Deterministic Policy Gradient Algorithms args.h_term_sample_rate = 2 ** -2 args.h_term_drop_rate = 2 ** -4 args.h_term_lambda = 2 ** -3 args.h_term_k_step = 8 args.h_term_update_gap = 1 args.eval_times = 2 ** 2 args.eval_gap = 2 ** 8 args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./HalfCheetah-v3_ReSACHtermK_3 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 4.00e+03 -1.39 | 3 4.00e+03 -1.39 | -1.39 0.5 1000 0 | -0.10 0.79 0.90 0.17 3 2.18e+05 -1.39 | -76.11 0.0 1000 0 | -0.05 0.08 22.69 0.08 3 3.18e+05 43.30 | 3 3.18e+05 43.30 | 43.30 1.2 1000 0 | -0.05 0.07 18.25 0.04 3 3.94e+05 125.56 | 3 3.94e+05 125.56 | 125.56 7.4 1000 0 | 0.02 0.06 10.85 0.02 3 4.58e+05 125.56 | 92.03 0.0 1000 0 | 0.03 0.07 8.03 0.02 3 5.14e+05 1987.69 | 3 5.14e+05 1987.69 | 1987.69 127.4 1000 0 | 0.37 0.09 11.54 0.03 3 5.66e+05 3067.60 | 3 5.66e+05 3067.60 | 3067.60 111.1 1000 0 | 0.56 0.12 20.94 0.05 3 6.14e+05 3067.60 | 3047.10 0.0 1000 0 | 0.63 0.14 31.82 0.06 3 6.58e+05 3419.64 | 3 6.58e+05 3419.64 | 3419.64 196.4 1000 0 | 0.63 0.16 38.22 0.07 3 7.00e+05 4479.39 | 3 7.00e+05 4479.39 | 4479.39 128.4 1000 0 | 0.73 0.19 44.35 0.08 3 7.40e+05 4479.39 | 4374.80 0.0 1000 0 | 0.42 0.20 52.62 0.09 3 7.78e+05 4735.05 | 3 7.78e+05 4735.05 | 4735.05 52.2 1000 0 | 0.47 0.22 58.21 0.10 3 8.14e+05 4982.37 | 3 8.14e+05 4982.37 | 4982.37 95.9 1000 0 | 0.57 0.25 64.77 0.11 3 8.48e+05 4982.37 | 4972.69 78.8 1000 0 | 1.04 0.26 71.71 0.12 3 8.82e+05 5138.24 | 3 8.82e+05 5138.24 | 5138.24 59.6 1000 0 | 1.05 0.27 76.37 0.13 3 9.14e+05 5358.65 | 3 9.14e+05 5358.65 | 5358.65 39.9 1000 0 | 0.90 0.28 79.15 0.14 3 9.44e+05 5513.26 | 3 9.44e+05 5513.26 | 5513.26 49.8 1000 0 | 1.12 0.30 86.21 0.14 3 9.74e+05 5792.31 | 3 9.74e+05 5792.31 | 5792.31 14.8 1000 0 | 1.13 0.30 88.94 0.15 3 1.00e+06 6201.82 | 3 1.00e+06 6201.82 | 6201.82 99.0 1000 0 | 1.14 0.29 91.15 0.15 3 1.03e+06 6231.47 | 3 1.03e+06 6231.47 | 6231.47 18.0 1000 0 | 1.15 0.29 94.13 0.15 3 1.06e+06 6351.26 | 3 1.06e+06 6351.26 | 6351.26 18.0 1000 0 | 1.18 0.31 98.83 0.16 3 1.09e+06 6351.26 | 6310.33 0.0 1000 0 | 1.19 0.30 99.90 0.16 3 1.11e+06 6448.37 | 3 1.11e+06 6448.37 | 6448.37 40.0 1000 0 | 1.28 0.31 104.14 0.17 3 1.14e+06 6503.69 | 3 1.14e+06 6503.69 | 6503.69 55.2 1000 0 | 1.20 0.31 106.30 0.17 3 1.16e+06 6634.65 | 3 1.16e+06 6634.65 | 6634.65 32.4 1000 0 | 1.26 0.33 110.47 0.18 3 1.19e+06 6806.41 | 3 1.19e+06 6806.41 | 6806.41 28.9 1000 0 | 0.76 0.33 112.88 0.18 3 1.21e+06 6806.41 | 6636.09 0.0 1000 0 | 1.33 0.33 113.24 0.19 3 1.23e+06 6806.41 | 6796.92 0.0 1000 0 | 1.31 0.34 117.10 0.19 3 1.26e+06 7397.30 | 3 1.26e+06 7397.30 | 7397.30 20.6 1000 0 | 1.37 0.33 119.25 0.19 3 1.28e+06 7397.30 | 6963.20 0.0 1000 0 | 1.37 0.34 122.57 0.20 3 1.30e+06 7397.30 | 6780.81 0.0 1000 0 | 1.37 0.34 123.37 0.20 3 1.32e+06 7397.30 | 7288.38 104.9 1000 0 | 1.33 0.37 126.17 0.20 3 1.35e+06 7397.30 | 7395.82 73.6 1000 0 | 0.98 0.37 129.24 0.21 3 1.37e+06 7397.30 | 7259.02 0.0 1000 0 | 1.01 0.35 130.45 0.21 3 1.39e+06 7473.38 | 3 1.39e+06 7473.38 | 7473.38 23.7 1000 0 | 1.34 0.35 133.29 0.21 3 1.41e+06 7473.38 | 7296.84 0.0 1000 0 | 0.74 0.34 132.32 0.21 3 1.43e+06 7690.11 | 3 1.43e+06 7690.11 | 7690.11 49.4 1000 0 | 1.39 0.35 135.86 0.22 3 1.45e+06 7690.11 | 7085.11 0.0 1000 0 | 1.42 0.34 134.77 0.22 3 1.47e+06 7836.31 | 3 1.47e+06 7836.31 | 7836.31 30.4 1000 0 | 1.40 0.37 135.36 0.22 3 1.49e+06 7836.31 | 7811.68 0.0 1000 0 | 1.44 0.36 136.65 0.22 3 1.51e+06 7852.93 | 3 1.51e+06 7852.93 | 7852.93 64.6 1000 0 | 1.42 0.38 139.22 0.23 3 1.53e+06 8111.26 | 3 1.53e+06 8111.26 | 8111.26 67.1 1000 0 | 1.44 0.35 141.00 0.23 3 1.55e+06 8111.26 | 7783.44 0.0 1000 0 | 1.41 0.37 143.12 0.23 3 1.57e+06 8111.26 | 7912.26 0.0 1000 0 | 1.39 0.37 143.35 0.23 3 1.59e+06 8186.29 | 3 1.59e+06 8186.29 | 8186.29 52.2 1000 0 | 1.44 0.36 143.15 0.23 3 1.60e+06 8186.29 | 7831.40 0.0 1000 0 | 1.47 0.37 143.97 0.24 3 1.62e+06 8186.29 | 7956.68 0.0 1000 0 | 1.41 0.37 145.58 0.24 3 1.64e+06 8186.29 | 7874.28 0.0 1000 0 | 1.43 0.39 144.94 0.24 3 1.66e+06 8186.29 | 7865.58 0.0 1000 0 | 1.42 0.37 147.75 0.24 3 1.68e+06 8186.29 | 8087.30 0.0 1000 0 | 1.49 0.37 148.83 0.24 3 1.69e+06 8186.29 | 7859.09 0.0 1000 0 | 1.15 0.39 149.60 0.24 3 1.71e+06 8186.29 | 7835.63 0.0 1000 0 | 1.44 0.38 148.29 0.25 3 1.73e+06 8186.29 | 7835.96 0.0 1000 0 | 1.16 0.36 151.08 0.25 3 1.75e+06 8186.29 | 7943.81 0.0 1000 0 | 1.46 0.37 150.49 0.25 3 1.77e+06 8186.29 | 8072.43 0.0 1000 0 | 1.49 0.39 148.46 0.25 3 1.78e+06 8186.29 | 8047.15 0.0 1000 0 | 1.49 0.40 151.46 0.25 3 1.80e+06 8186.29 | 7942.05 0.0 1000 0 | 1.53 0.39 154.80 0.25 3 1.81e+06 8186.29 | 7713.88 0.0 1000 0 | 1.53 0.39 157.22 0.25 3 1.83e+06 8269.92 | 3 1.83e+06 8269.92 | 8269.92 59.8 1000 0 | 1.48 0.38 154.06 0.25 3 1.85e+06 8269.92 | 7970.17 0.0 1000 0 | 1.49 0.38 154.84 0.26 3 1.86e+06 8269.92 | 8086.07 0.0 1000 0 | 1.57 0.39 155.70 0.26 3 1.88e+06 8269.92 | 7939.10 0.0 1000 0 | 1.49 0.39 157.72 0.26 3 1.89e+06 8269.92 | 8066.95 0.0 1000 0 | 1.55 0.39 157.19 0.26 3 1.91e+06 8269.92 | 7880.30 0.0 1000 0 | 1.54 0.38 153.95 0.26 3 1.93e+06 8269.92 | 8089.08 0.0 1000 0 | 1.52 0.38 156.71 0.26 3 1.94e+06 8269.92 | 8005.33 0.0 1000 0 | 1.43 0.40 157.78 0.26 3 1.96e+06 8269.92 | 7754.25 0.0 1000 0 | 1.47 0.39 159.52 0.26 3 1.97e+06 8269.92 | 7965.01 0.0 1000 0 | 1.54 0.37 159.52 0.26 3 1.99e+06 8269.92 | 8036.11 0.0 1000 0 | 1.52 0.38 158.75 0.26 | UsedTime: 18404 | SavedDir: ./HalfCheetah-v3_ReSACHtermK_3 | Learner: Save in ./HalfCheetah-v3_ReSACHtermK_3 | Arguments Remove cwd: ./HalfCheetah-v3_ReSACHtermK_3 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 4.00e+03 -1.59 | 3 4.00e+03 -1.59 | -1.59 0.8 1000 0 | -0.05 0.81 0.60 0.17 3 3.00e+05 -1.59 | -22.48 0.0 1000 0 | -0.04 0.04 24.31 0.08 3 4.44e+05 -1.59 | -53.33 0.0 1000 0 | -0.02 0.03 19.95 0.04 3 5.52e+05 -1.59 | -54.09 0.0 1000 0 | -0.02 0.03 11.66 0.02 3 6.44e+05 458.66 | 3 6.44e+05 458.66 | 458.66 454.0 1000 0 | 0.09 0.02 6.50 0.01 3 7.26e+05 2062.43 | 3 7.26e+05 2062.43 | 2062.43 55.8 1000 0 | 0.16 0.02 7.72 0.02 3 7.98e+05 2894.43 | 3 7.98e+05 2894.43 | 2894.43 14.3 1000 0 | 0.26 0.03 11.53 0.03 3 8.66e+05 3239.60 | 3 8.66e+05 3239.60 | 3239.60 30.8 1000 0 | 0.30 0.04 16.22 0.03 3 9.28e+05 3697.25 | 3 9.28e+05 3697.25 | 3697.25 18.6 1000 0 | 0.34 0.05 20.30 0.04 3 9.86e+05 3886.51 | 3 9.86e+05 3886.51 | 3886.51 36.6 1000 0 | 0.39 0.05 24.11 0.04 3 1.04e+06 3886.51 | 3705.75 0.0 1000 0 | 0.40 0.06 27.60 0.05 3 1.09e+06 4110.12 | 3 1.09e+06 4110.12 | 4110.12 43.2 1000 0 | 0.41 0.06 30.00 0.05 3 1.14e+06 4318.32 | 3 1.14e+06 4318.32 | 4318.32 88.1 1000 0 | 0.41 0.06 31.86 0.05 3 1.19e+06 4583.49 | 3 1.19e+06 4583.49 | 4583.49 84.5 1000 0 | 0.46 0.07 34.75 0.06 3 1.24e+06 4726.18 | 3 1.24e+06 4726.18 | 4726.18 76.1 1000 0 | 0.43 0.07 36.14 0.06 3 1.28e+06 4835.77 | 3 1.28e+06 4835.77 | 4835.77 33.8 1000 0 | 0.47 0.08 37.57 0.06 3 1.33e+06 4835.77 | 4825.60 0.0 1000 0 | 0.48 0.08 38.79 0.06 3 1.37e+06 4886.98 | 3 1.37e+06 4886.98 | 4886.98 43.7 1000 0 | 0.50 0.08 40.97 0.07 3 1.41e+06 4976.26 | 3 1.41e+06 4976.26 | 4976.26 50.9 1000 0 | 0.52 0.08 42.97 0.07 3 1.45e+06 5183.43 | 3 1.45e+06 5183.43 | 5183.43 78.2 1000 0 | 0.51 0.08 44.10 0.07 3 1.49e+06 5183.43 | 5126.47 0.0 1000 0 | 0.54 0.08 45.80 0.07 3 1.52e+06 5392.37 | 3 1.52e+06 5392.37 | 5392.37 31.7 1000 0 | 0.54 0.08 46.50 0.07 3 1.56e+06 5410.05 | 3 1.56e+06 5410.05 | 5410.05 74.0 1000 0 | 0.53 0.09 48.12 0.07 3 1.60e+06 5433.43 | 3 1.60e+06 5433.43 | 5433.43 70.3 1000 0 | 0.55 0.09 49.46 0.07 3 1.63e+06 5482.66 | 3 1.63e+06 5482.66 | 5482.66 37.9 1000 0 | 0.55 0.09 50.44 0.08 3 1.67e+06 5809.18 | 3 1.67e+06 5809.18 | 5809.18 88.6 1000 0 | 0.56 0.09 50.76 0.08 3 1.70e+06 5885.33 | 3 1.70e+06 5885.33 | 5885.33 83.3 1000 0 | 0.57 0.09 53.28 0.08 3 1.73e+06 6121.30 | 3 1.73e+06 6121.30 | 6121.30 92.0 1000 0 | 0.56 0.09 53.72 0.08 3 1.77e+06 6148.32 | 3 1.77e+06 6148.32 | 6148.32 79.8 1000 0 | 0.57 0.09 54.65 0.08 3 1.80e+06 6286.05 | 3 1.80e+06 6286.05 | 6286.05 43.6 1000 0 | 0.56 0.09 54.01 0.08 3 1.83e+06 6286.05 | 6168.53 0.0 1000 0 | 0.58 0.10 55.48 0.08 3 1.86e+06 6391.52 | 3 1.86e+06 6391.52 | 6391.52 143.5 1000 0 | 0.58 0.10 55.64 0.09 3 1.89e+06 6391.52 | 6011.79 0.0 1000 0 | 0.62 0.10 56.33 0.09 3 1.92e+06 6391.52 | 6380.08 0.0 1000 0 | 0.61 0.10 58.13 0.09 3 1.95e+06 6391.52 | 6293.05 0.0 1000 0 | 0.63 0.10 58.87 0.09 3 1.98e+06 6649.40 | 3 1.98e+06 6649.40 | 6649.40 51.1 1000 0 | 0.64 0.10 58.47 0.09 3 2.01e+06 6673.04 | 3 2.01e+06 6673.04 | 6673.04 162.5 1000 0 | 0.62 0.11 59.82 0.09 3 2.04e+06 6673.04 | 6567.13 130.6 1000 0 | 0.62 0.10 60.65 0.09 3 2.07e+06 6771.23 | 3 2.07e+06 6771.23 | 6771.23 57.5 1000 0 | 0.61 0.11 61.43 0.09 3 2.09e+06 6771.23 | 6630.75 0.0 1000 0 | 0.65 0.11 61.60 0.10 3 2.12e+06 7089.85 | 3 2.12e+06 7089.85 | 7089.85 153.4 1000 0 | 0.62 0.11 62.43 0.10 3 2.15e+06 7089.85 | 7023.48 0.0 1000 0 | 0.65 0.11 62.73 0.10 3 2.18e+06 7262.38 | 3 2.18e+06 7262.38 | 7262.38 50.8 1000 0 | 0.65 0.10 64.29 0.10 3 2.21e+06 7262.38 | 6621.28 0.0 1000 0 | 0.66 0.12 64.88 0.10 3 2.23e+06 7262.38 | 6963.32 0.0 1000 0 | 0.66 0.12 65.58 0.10 3 2.26e+06 7262.38 | 6949.54 0.0 1000 0 | 0.63 0.12 66.40 0.11 3 2.29e+06 7415.90 | 3 2.29e+06 7415.90 | 7415.90 105.5 1000 0 | 0.62 0.13 68.20 0.11 3 2.32e+06 7415.90 | 7153.06 0.0 1000 0 | 0.66 0.12 68.73 0.11 3 2.35e+06 7415.90 | 6740.54 0.0 1000 0 | 0.65 0.12 68.12 0.11 3 2.37e+06 7504.40 | 3 2.37e+06 7504.40 | 7504.40 93.0 1000 0 | 0.67 0.12 69.94 0.11 3 2.40e+06 7908.85 | 3 2.40e+06 7908.85 | 7908.85 50.4 1000 0 | 0.67 0.12 72.17 0.11 3 2.43e+06 7908.85 | 6768.78 0.0 1000 0 | 0.70 0.12 72.29 0.12 3 2.46e+06 7908.85 | 7135.70 0.0 1000 0 | 0.67 0.12 74.01 0.12 3 2.48e+06 7908.85 | 7432.72 0.0 1000 0 | 0.65 0.12 74.60 0.12 3 2.51e+06 7908.85 | 7701.17 0.0 1000 0 | 0.67 0.13 74.62 0.12 3 2.54e+06 7908.85 | 6711.08 0.0 1000 0 | 0.68 0.12 75.56 0.12 3 2.56e+06 7908.85 | 7167.67 0.0 1000 0 | 0.63 0.14 77.24 0.13 3 2.59e+06 7908.85 | 7480.21 0.0 1000 0 | 0.65 0.13 77.33 0.13 3 2.62e+06 7908.85 | 7905.37 0.0 1000 0 | 0.65 0.14 78.92 0.13 3 2.65e+06 7908.85 | 7560.49 0.0 1000 0 | 0.69 0.14 79.79 0.13 3 2.67e+06 7908.85 | 7702.42 0.0 1000 0 | 0.66 0.14 80.53 0.13 3 2.70e+06 7908.85 | 7087.36 0.0 1000 0 | 0.66 0.15 81.42 0.14 3 2.73e+06 7908.85 | 7073.33 0.0 1000 0 | 0.65 0.14 81.94 0.14 3 2.75e+06 7908.85 | 7699.47 0.0 1000 0 | 0.67 0.14 82.77 0.14 3 2.78e+06 7908.85 | 7136.34 0.0 1000 0 | 0.69 0.15 83.29 0.14 3 2.81e+06 7908.85 | 7903.92 0.0 1000 0 | 0.67 0.15 84.25 0.14 3 2.84e+06 7946.62 | 3 2.84e+06 7946.62 | 7946.62 40.0 1000 0 | 0.68 0.15 84.60 0.14 3 2.86e+06 7946.62 | 7626.92 0.0 1000 0 | 0.65 0.14 85.36 0.14 3 2.89e+06 7946.62 | 7656.19 0.0 1000 0 | 0.67 0.15 85.57 0.14 3 2.92e+06 7946.62 | 7612.22 0.0 1000 0 | 0.70 0.14 85.91 0.15 3 2.94e+06 7946.62 | 7401.85 0.0 1000 0 | 0.69 0.15 86.82 0.15 3 2.97e+06 7946.62 | 7897.47 46.2 1000 0 | 0.67 0.14 87.28 0.15 3 3.00e+06 7946.62 | 7569.65 0.0 1000 0 | 0.71 0.15 87.75 0.15 3 3.03e+06 7946.62 | 7644.16 0.0 1000 0 | 0.73 0.16 87.99 0.15 3 3.05e+06 7946.62 | 7899.59 0.0 1000 0 | 0.71 0.15 88.75 0.15 3 3.08e+06 7946.62 | 7681.38 0.0 1000 0 | 0.68 0.15 88.90 0.15 3 3.11e+06 8214.06 | 3 3.11e+06 8214.06 | 8214.06 44.2 1000 0 | 0.72 0.16 89.58 0.15 3 3.13e+06 8214.06 | 7998.91 0.0 1000 0 | 0.70 0.17 90.12 0.15 3 3.16e+06 8214.06 | 7925.53 0.0 1000 0 | 0.71 0.15 90.31 0.15 3 3.19e+06 8214.06 | 7330.83 0.0 1000 0 | 0.72 0.15 90.85 0.15 3 3.21e+06 8214.06 | 7831.95 0.0 1000 0 | 0.69 0.16 91.06 0.16 3 3.24e+06 8214.06 | 7984.59 0.0 1000 0 | 0.71 0.16 91.57 0.16 3 3.27e+06 8214.06 | 7877.17 0.0 1000 0 | 0.71 0.15 92.16 0.16 3 3.30e+06 8214.06 | 7979.83 0.0 1000 0 | 0.74 0.15 91.92 0.16 3 3.33e+06 8214.06 | 7833.25 0.0 1000 0 | 0.72 0.16 93.06 0.16 3 3.35e+06 8214.06 | 7989.30 0.0 1000 0 | 0.71 0.15 93.22 0.16 3 3.38e+06 8214.06 | 8147.75 0.0 1000 0 | 0.71 0.17 93.71 0.16 3 3.41e+06 8214.06 | 7597.72 0.0 1000 0 | 0.69 0.16 94.09 0.16 3 3.44e+06 8214.06 | 7799.73 0.0 1000 0 | 0.72 0.16 94.25 0.16 3 3.47e+06 8214.06 | 7686.12 0.0 1000 0 | 0.75 0.16 94.54 0.16 3 3.49e+06 8214.06 | 8207.71 0.0 1000 0 | 0.69 0.16 94.91 0.16 3 3.52e+06 8214.06 | 7572.98 0.0 1000 0 | 0.72 0.16 95.43 0.16 3 3.55e+06 8214.06 | 7490.13 0.0 1000 0 | 0.74 0.15 95.67 0.17 3 3.58e+06 8214.06 | 7857.88 0.0 1000 0 | 0.72 0.17 95.86 0.17 3 3.61e+06 8401.02 | 3 3.61e+06 8401.02 | 8401.02 59.7 1000 0 | 0.72 0.16 96.31 0.17 3 3.63e+06 8401.02 | 7848.02 0.0 1000 0 | 0.73 0.16 96.76 0.17 3 3.66e+06 8525.91 | 3 3.66e+06 8525.91 | 8525.91 52.7 1000 0 | 0.70 0.17 96.96 0.17 3 3.69e+06 8525.91 | 8151.91 0.0 1000 0 | 0.73 0.15 97.27 0.17 3 3.72e+06 8651.93 | 3 3.72e+06 8651.93 | 8651.93 36.3 1000 0 | 0.74 0.16 97.55 0.17 3 3.75e+06 8651.93 | 8316.41 0.0 1000 0 | 0.71 0.17 97.94 0.17 3 3.77e+06 8651.93 | 8189.64 0.0 1000 0 | 0.71 0.17 97.83 0.17 3 3.80e+06 8651.93 | 8245.38 0.0 1000 0 | 0.75 0.17 97.98 0.17 3 3.83e+06 8651.93 | 8312.11 0.0 1000 0 | 0.78 0.16 98.74 0.17 3 3.86e+06 8651.93 | 8534.29 0.0 1000 0 | 0.71 0.16 98.82 0.17 3 3.89e+06 8651.93 | 8051.65 0.0 1000 0 | 0.75 0.17 99.06 0.17 3 3.91e+06 8651.93 | 8338.40 0.0 1000 0 | 0.76 0.17 99.46 0.17 3 3.94e+06 8651.93 | 8099.43 0.0 1000 0 | 0.72 0.17 99.91 0.17 3 3.97e+06 8651.93 | 8496.03 0.0 1000 0 | 0.70 0.17 100.25 0.17 3 4.00e+06 8651.93 | 8291.02 0.0 1000 0 | 0.76 0.17 100.17 0.18 | UsedTime: 28659 | SavedDir: ./HalfCheetah-v3_ReSACHtermK_3 """ elif env_name == 'Walker2d-v3': env_func = gym.make env_args = { 'env_num': 1, 'env_name': 'Walker2d-v3', 'if_discrete': False, 'max_step': 1000, 'state_dim': 17, 'action_dim': 6, 'target_return': 65536 } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.num_layer = 3 args.net_dim = 2 ** 7 args.batch_size = int(args.net_dim * 2) args.worker_num = 2 args.target_step = args.max_step args.repeat_times = 2 ** -1 args.reward_scale = 2 ** -4 args.learning_rate = 2 ** -15 args.clip_grad_norm = 1.0 args.gamma = 0.99 args.if_act_target = False args.explore_noise_std = 0.1 # for DPG args.h_term_sample_rate = 2 ** -2 args.h_term_drop_rate = 2 ** -3 args.h_term_lambda = 2 ** -6 args.h_term_k_step = 4 args.h_term_update_gap = 2 args.eval_times = 2 ** 1 args.eval_gap = 2 ** 8 args.if_allow_break = False args.break_step = int(2e6) """ | Arguments Remove cwd: ./Walker2d-v3_ReSAC_2 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 4.02e+03 -18.04 | 2 4.02e+03 -18.04 | -18.04 0.1 86 0 | -0.01 0.79 0.82 0.17 2 2.41e+05 88.29 | 2 2.41e+05 88.29 | 88.29 12.8 164 22 | 0.08 0.71 22.65 0.08 2 3.54e+05 228.02 | 2 3.54e+05 228.02 | 228.02 112.3 340 126 | 0.07 0.59 21.77 0.06 2 4.43e+05 228.02 | 109.31 0.0 160 0 | 0.07 0.67 24.23 0.06 2 5.19e+05 228.02 | 178.04 0.0 104 0 | 0.08 1.18 43.40 0.11 2 5.87e+05 228.02 | 71.07 0.0 207 0 | 0.07 1.56 61.99 0.15 2 6.51e+05 321.31 | 2 6.51e+05 321.31 | 321.31 29.7 226 7 | 0.08 1.08 57.19 0.11 2 7.05e+05 388.19 | 2 7.05e+05 388.19 | 388.19 20.8 244 16 | 0.05 0.53 33.81 0.07 2 7.54e+05 512.89 | 2 7.54e+05 512.89 | 512.89 24.3 486 20 | 0.10 0.32 20.92 0.04 2 8.02e+05 512.89 | 469.10 0.0 373 0 | 0.08 0.20 16.18 0.03 2 8.46e+05 512.89 | 411.87 0.0 256 0 | 0.10 0.14 13.30 0.03 2 8.85e+05 512.89 | 452.51 0.0 188 0 | 0.11 0.10 11.45 0.02 2 9.21e+05 1381.34 | 2 9.21e+05 1381.34 | 1381.34 530.7 608 226 | 0.13 0.08 11.06 0.02 2 9.58e+05 1381.34 | 475.98 0.0 226 0 | 0.12 0.07 11.06 0.02 2 9.92e+05 1381.34 | 1270.17 680.6 570 330 | 0.13 0.07 11.37 0.02 2 1.03e+06 1908.40 | 2 1.03e+06 1908.40 | 1908.40 8.6 1000 0 | 0.13 0.07 11.50 0.02 2 1.06e+06 1908.40 | 1761.35 254.2 908 92 | 0.14 0.07 12.03 0.02 2 1.10e+06 1908.40 | 938.58 0.0 449 0 | 0.13 0.07 12.54 0.02 2 1.13e+06 1908.40 | 716.68 0.0 359 0 | 0.14 0.07 12.93 0.02 2 1.16e+06 1908.40 | 1674.89 0.0 584 0 | 0.14 0.08 13.18 0.02 2 1.19e+06 2332.65 | 2 1.19e+06 2332.65 | 2332.65 66.9 887 113 | 0.16 0.08 13.55 0.02 2 1.22e+06 2332.65 | 1775.35 0.0 644 0 | 0.15 0.08 13.35 0.02 2 1.25e+06 2534.59 | 2 1.25e+06 2534.59 | 2534.59 10.1 1000 0 | 0.19 0.08 13.48 0.02 2 1.28e+06 3074.55 | 2 1.28e+06 3074.55 | 3074.55 276.9 902 98 | 0.18 0.08 14.28 0.03 2 1.31e+06 3134.52 | 2 1.31e+06 3134.52 | 3134.52 110.4 1000 0 | 0.16 0.09 14.33 0.03 2 1.33e+06 3134.52 | 1103.63 0.0 422 0 | 0.18 0.09 15.92 0.03 2 1.36e+06 3134.52 | 3106.59 58.3 1000 0 | 0.17 0.10 17.18 0.03 2 1.39e+06 3218.23 | 2 1.39e+06 3218.23 | 3218.23 148.1 1000 0 | 0.19 0.10 17.36 0.03 2 1.42e+06 3218.23 | 1566.81 0.0 491 0 | 0.18 0.10 17.50 0.03 2 1.45e+06 3218.23 | 2916.22 552.7 884 116 | 0.17 0.10 18.53 0.03 2 1.47e+06 3218.23 | 1098.57 0.0 371 0 | 0.19 0.10 18.71 0.03 2 1.50e+06 3218.23 | 3145.03 144.2 1000 0 | 0.19 0.10 18.69 0.03 2 1.52e+06 3278.94 | 2 1.52e+06 3278.94 | 3278.94 39.9 1000 0 | 0.20 0.10 19.04 0.03 2 1.55e+06 3278.94 | 3230.16 0.0 1000 0 | 0.20 0.11 19.33 0.03 2 1.57e+06 3278.94 | 3173.60 0.0 1000 0 | 0.19 0.10 19.20 0.03 2 1.59e+06 3278.94 | 3014.22 0.0 1000 0 | 0.19 0.10 20.24 0.03 2 1.61e+06 3278.94 | 3029.58 0.0 1000 0 | 0.20 0.10 19.66 0.03 2 1.64e+06 3278.94 | 3097.23 0.0 1000 0 | 0.21 0.10 20.53 0.03 2 1.66e+06 3339.45 | 2 1.66e+06 3339.45 | 3339.45 150.7 1000 0 | 0.19 0.11 20.27 0.03 2 1.68e+06 3602.28 | 2 1.68e+06 3602.28 | 3602.28 74.2 1000 0 | 0.20 0.11 20.61 0.03 2 1.70e+06 3921.36 | 2 1.70e+06 3921.36 | 3921.36 14.4 1000 0 | 0.20 0.11 20.76 0.03 2 1.72e+06 3921.36 | 3685.55 0.0 1000 0 | 0.20 0.11 20.81 0.03 2 1.74e+06 3921.36 | 3656.15 0.0 1000 0 | 0.20 0.11 20.80 0.03 2 1.76e+06 3921.36 | 1968.12 0.0 558 0 | 0.20 0.11 22.02 0.03 2 1.78e+06 3921.36 | 3768.89 0.0 1000 0 | 0.22 0.11 21.58 0.03 2 1.80e+06 3921.36 | 3855.74 0.0 1000 0 | 0.20 0.11 21.79 0.03 2 1.82e+06 3921.36 | 3623.61 0.0 1000 0 | 0.20 0.11 22.17 0.03 2 1.83e+06 3921.36 | 3441.80 810.2 819 169 | 0.21 0.11 22.05 0.03 2 1.85e+06 3921.36 | 173.80 0.0 99 0 | 0.21 0.11 22.30 0.03 2 1.87e+06 3921.36 | 185.29 0.0 105 0 | 0.21 0.11 22.83 0.03 2 1.89e+06 3921.36 | 3368.81 0.0 866 0 | 0.21 0.11 21.37 0.03 2 1.91e+06 3921.36 | 3681.30 0.0 1000 0 | 0.21 0.11 22.37 0.03 2 1.93e+06 3921.36 | 1009.22 0.0 312 0 | 0.21 0.11 22.56 0.03 2 1.95e+06 3921.36 | 3765.83 0.0 1000 0 | 0.21 0.12 22.10 0.03 2 1.97e+06 3921.36 | 260.32 0.0 118 0 | 0.23 0.11 22.96 0.03 2 1.99e+06 4099.22 | 2 1.99e+06 4099.22 | 4099.22 93.3 1000 0 | 0.22 0.12 22.81 0.03 | UsedTime: 14981 | SavedDir: ./Walker2d-v3_ReSAC_2 | Learner: Save in ./Walker2d-v3_ReSAC_2 | Arguments Remove cwd: ./Walker2d-v3_ReSACHtermK_5 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 5 4.11e+03 322.61 | 5 4.11e+03 322.61 | 322.61 0.2 210 0 | 0.01 0.78 0.68 0.17 5 2.38e+05 322.61 | 160.26 0.0 274 0 | 0.10 0.72 24.15 0.08 5 3.54e+05 322.61 | 236.19 149.1 218 40 | 0.09 0.77 25.16 0.06 5 4.43e+05 322.61 | 246.58 0.0 136 0 | 0.10 0.85 27.90 0.06 5 5.18e+05 322.61 | 277.61 0.0 152 0 | 0.08 0.69 29.26 0.06 5 5.81e+05 322.61 | 11.49 0.0 30 0 | 0.07 0.61 30.52 0.06 5 6.36e+05 322.61 | 166.38 0.0 88 0 | 0.09 0.66 36.18 0.06 5 6.88e+05 322.61 | 218.94 0.0 111 0 | 0.11 0.59 36.22 0.06 5 7.36e+05 322.61 | 9.33 0.0 26 0 | 0.09 0.38 31.12 0.05 5 7.81e+05 401.07 | 5 7.81e+05 401.07 | 401.07 54.4 177 15 | 0.10 0.25 22.31 0.04 5 8.24e+05 1200.05 | 5 8.24e+05 1200.05 | 1200.05 126.0 496 84 | 0.10 0.18 16.64 0.04 5 8.64e+05 1200.05 | 798.68 479.4 444 276 | 0.11 0.15 15.25 0.03 5 9.01e+05 1200.05 | 211.15 0.0 143 0 | 0.13 0.11 14.54 0.03 5 9.38e+05 1200.05 | 1178.97 629.1 533 241 | 0.13 0.08 12.28 0.02 5 9.75e+05 1200.05 | 518.32 0.0 209 0 | 0.15 0.07 12.11 0.02 5 1.01e+06 1973.11 | 5 1.01e+06 1973.11 | 1973.11 50.9 910 90 | 0.14 0.07 11.95 0.02 5 1.05e+06 1973.11 | 966.91 0.0 400 0 | 0.15 0.07 12.90 0.02 5 1.08e+06 1973.11 | 496.69 0.0 219 0 | 0.12 0.08 13.90 0.02 5 1.11e+06 2382.95 | 5 1.11e+06 2382.95 | 2382.95 21.7 1000 0 | 0.14 0.08 14.13 0.02 5 1.15e+06 2694.36 | 5 1.15e+06 2694.36 | 2694.36 31.9 1000 0 | 0.16 0.08 14.56 0.02 5 1.17e+06 2694.36 | 2109.05 774.1 736 264 | 0.17 0.09 15.10 0.03 5 1.20e+06 2694.36 | 2630.14 0.0 1000 0 | 0.16 0.09 16.15 0.03 5 1.22e+06 2823.11 | 5 1.22e+06 2823.11 | 2823.11 59.1 1000 0 | 0.17 0.09 16.54 0.03 5 1.24e+06 2823.11 | 2646.45 0.0 1000 0 | 0.16 0.09 17.18 0.03 5 1.26e+06 2823.11 | 2574.78 0.0 1000 0 | 0.16 0.09 17.60 0.03 5 1.29e+06 2880.16 | 5 1.29e+06 2880.16 | 2880.16 29.0 1000 0 | 0.16 0.09 17.81 0.03 5 1.31e+06 2880.16 | 2799.66 0.0 1000 0 | 0.16 0.09 17.94 0.03 5 1.34e+06 2880.16 | 2812.48 96.3 1000 0 | 0.17 0.09 18.53 0.03 5 1.37e+06 2923.55 | 5 1.37e+06 2923.55 | 2923.55 143.8 1000 0 | 0.18 0.09 18.45 0.03 5 1.39e+06 3720.88 | 5 1.39e+06 3720.88 | 3720.88 107.5 1000 0 | 0.19 0.09 18.90 0.03 5 1.42e+06 3720.88 | 3571.06 0.0 1000 0 | 0.21 0.09 19.19 0.03 5 1.44e+06 3720.88 | 3650.66 0.0 1000 0 | 0.20 0.09 19.57 0.03 5 1.47e+06 3720.88 | 3354.98 0.0 1000 0 | 0.19 0.09 20.57 0.03 5 1.49e+06 3720.88 | 3122.89 0.0 1000 0 | 0.18 0.10 20.51 0.03 5 1.52e+06 3720.88 | 2972.32 0.0 1000 0 | 0.19 0.10 21.11 0.03 5 1.55e+06 3720.88 | 3216.23 0.0 1000 0 | 0.20 0.10 20.71 0.03 5 1.57e+06 3720.88 | 3007.49 0.0 1000 0 | 0.18 0.10 20.97 0.03 5 1.59e+06 3720.88 | 3021.76 0.0 1000 0 | 0.19 0.09 21.37 0.03 5 1.61e+06 3720.88 | 3088.03 0.0 1000 0 | 0.19 0.10 20.91 0.03 5 1.63e+06 3720.88 | 3284.19 0.0 1000 0 | 0.19 0.10 21.03 0.03 5 1.65e+06 3720.88 | 2888.49 0.0 1000 0 | 0.19 0.10 21.61 0.03 5 1.67e+06 3720.88 | 3465.00 0.0 1000 0 | 0.19 0.10 21.17 0.03 5 1.69e+06 3720.88 | 3375.66 0.0 1000 0 | 0.20 0.10 21.43 0.03 5 1.71e+06 3720.88 | 3549.70 0.0 1000 0 | 0.21 0.10 21.91 0.03 5 1.73e+06 3720.88 | 3500.22 0.0 1000 0 | 0.22 0.09 21.50 0.03 5 1.75e+06 3720.88 | 3378.39 0.0 1000 0 | 0.21 0.09 21.49 0.03 5 1.77e+06 3720.88 | 3428.88 0.0 1000 0 | 0.20 0.09 22.21 0.03 5 1.79e+06 3720.88 | 1256.50 0.0 402 0 | 0.23 0.09 21.81 0.03 5 1.82e+06 3773.58 | 5 1.82e+06 3773.58 | 3773.58 17.7 1000 0 | 0.21 0.09 22.29 0.03 5 1.84e+06 3773.58 | 3366.69 0.0 1000 0 | 0.22 0.09 22.02 0.03 5 1.86e+06 3773.58 | 3703.04 0.0 1000 0 | 0.20 0.09 22.12 0.03 5 1.88e+06 3840.59 | 5 1.88e+06 3840.59 | 3840.59 64.2 1000 0 | 0.22 0.09 22.86 0.03 5 1.90e+06 3840.59 | 490.55 0.0 211 0 | 0.21 0.09 22.91 0.03 5 1.92e+06 3840.59 | 3621.07 0.0 1000 0 | 0.22 0.09 22.91 0.03 5 1.94e+06 3911.90 | 5 1.94e+06 3911.90 | 3911.90 5.3 1000 0 | 0.23 0.10 23.03 0.03 5 1.95e+06 3911.90 | 3776.58 0.0 1000 0 | 0.22 0.09 23.12 0.03 5 1.97e+06 3911.90 | 3771.44 0.0 1000 0 | 0.21 0.09 23.78 0.03 5 1.99e+06 3911.90 | 303.73 0.0 131 0 | 0.21 0.09 23.11 0.03 | UsedTime: 15361 | SavedDir: ./Walker2d-v3_ReSACHtermK_5 | Learner: Save in ./Walker2d-v3_ReSACHtermK_5 """ elif env_name == 'Humanoid-v3': from elegantrl.envs.CustomGymEnv import HumanoidEnv env_func = HumanoidEnv env_args = { 'env_num': 1, 'env_name': 'Humanoid-v3', 'max_step': 1000, 'state_dim': 376, 'action_dim': 17, 'if_discrete': False, 'target_return': 3000., } args = Arguments(agent_class, env_func=env_func, env_args=env_args) args.eval_times = 2 ** 2 args.reward_scale = 2 ** -2 args.max_memo = 2 ** 21 args.learning_rate = 2 ** -14 args.lambda_a_log_std = 2 ** -6 args.target_step = args.max_step args.worker_num = 4 args.net_dim = 2 ** 9 args.batch_size = args.net_dim // 2 args.num_layer = 3 args.repeat_times = 2 ** 0 args.gamma = 0.96 args.if_act_target = False import numpy as np args.target_entropy = np.log(env_args['action_dim']) args.if_allow_break = False args.break_step = int(4e6) """ | Arguments Remove cwd: ./Humanoid-v3_ReliableSAC_3 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 8.09e+03 176.45 | 3 8.09e+03 176.45 | 176.45 29.6 34 6 | 1.19 0.69 2.81 0.06 3 1.47e+05 216.06 | 3 1.47e+05 216.06 | 216.06 12.1 41 2 | 1.27 0.79 32.29 0.03 3 2.25e+05 289.98 | 3 2.25e+05 289.98 | 289.98 13.7 56 2 | 1.34 0.68 31.95 0.01 3 2.83e+05 316.69 | 3 2.83e+05 316.69 | 316.69 17.4 58 3 | 1.34 0.45 27.33 0.01 3 3.28e+05 316.69 | 287.80 0.0 57 0 | 1.28 0.33 24.88 0.01 3 3.70e+05 379.81 | 3 3.70e+05 379.81 | 379.81 36.3 71 7 | 1.31 0.29 24.75 0.01 3 4.07e+05 379.81 | 209.17 0.0 41 0 | 1.35 0.26 25.31 0.01 3 4.40e+05 379.81 | 356.76 0.0 67 0 | 1.36 0.24 25.37 0.01 3 4.74e+05 379.81 | 374.84 36.5 67 6 | 1.34 0.22 25.21 0.01 3 5.03e+05 525.94 | 3 5.03e+05 525.94 | 525.94 41.6 100 11 | 1.36 0.21 25.63 0.01 3 5.32e+05 525.94 | 497.22 0.0 89 0 | 1.36 0.20 25.51 0.01 3 5.62e+05 525.94 | 334.79 0.0 59 0 | 1.37 0.20 26.24 0.01 3 5.87e+05 525.94 | 428.25 0.0 76 0 | 1.39 0.19 25.51 0.01 3 6.12e+05 525.94 | 423.34 0.0 74 0 | 1.37 0.18 26.50 0.01 3 6.37e+05 525.94 | 479.20 0.0 84 0 | 1.40 0.18 26.26 0.01 3 6.62e+05 551.04 | 3 6.62e+05 551.04 | 551.04 83.8 98 16 | 1.39 0.18 26.49 0.01 3 6.83e+05 551.04 | 397.43 0.0 70 0 | 1.36 0.18 27.22 0.01 3 7.04e+05 745.68 | 3 7.04e+05 745.68 | 745.68 106.0 134 15 | 1.35 0.17 26.33 0.01 3 7.25e+05 745.68 | 509.76 0.0 89 0 | 1.42 0.17 26.93 0.01 3 7.47e+05 745.68 | 376.85 0.0 70 0 | 1.41 0.18 28.16 0.01 3 7.69e+05 745.68 | 580.24 127.2 104 23 | 1.38 0.18 27.97 0.01 3 7.91e+05 745.68 | 491.18 0.0 85 0 | 1.40 0.18 27.98 0.01 3 8.12e+05 745.68 | 492.97 0.0 87 0 | 1.41 0.18 29.00 0.01 3 8.34e+05 801.10 | 3 8.34e+05 801.10 | 801.10 244.9 146 39 | 1.43 0.18 28.95 0.01 3 8.51e+05 801.10 | 522.10 0.0 93 0 | 1.42 0.18 28.90 0.01 3 8.69e+05 801.10 | 620.43 0.0 105 0 | 1.44 0.18 29.90 0.01 3 8.85e+05 829.16 | 3 8.85e+05 829.16 | 829.16 109.8 152 30 | 1.42 0.17 29.57 0.01 3 9.03e+05 829.16 | 733.06 127.1 135 32 | 1.47 0.17 30.11 0.01 3 9.20e+05 1018.17 | 3 9.20e+05 1018.17 | 1018.17 329.5 174 53 | 1.43 0.17 30.46 0.01 3 9.37e+05 1018.17 | 739.87 0.0 135 0 | 1.45 0.18 28.93 0.01 3 9.55e+05 1018.17 | 744.00 0.0 129 0 | 1.46 0.18 31.50 0.01 3 9.73e+05 1208.41 | 3 9.73e+05 1208.41 | 1208.41 378.3 204 57 | 1.48 0.17 29.71 0.01 3 9.90e+05 1208.41 | 647.54 0.0 117 0 | 1.45 0.18 30.89 0.01 3 1.01e+06 1208.41 | 929.52 0.0 163 0 | 1.47 0.18 30.55 0.01 3 1.02e+06 2111.40 | 3 1.02e+06 2111.40 | 2111.40 513.4 344 77 | 1.50 0.18 30.26 0.01 3 1.04e+06 2961.21 | 3 1.04e+06 2961.21 | 2961.21 1907.8 467 300 | 1.49 0.17 31.73 0.01 3 1.06e+06 2961.21 | 1923.17 0.0 307 0 | 1.51 0.18 31.26 0.01 3 1.08e+06 2961.21 | 665.96 0.0 115 0 | 1.51 0.17 32.32 0.01 3 1.10e+06 2961.21 | 2009.69 0.0 308 0 | 1.56 0.17 32.11 0.01 3 1.11e+06 2961.21 | 1253.18 0.0 193 0 | 1.54 0.17 31.96 0.02 3 1.13e+06 2961.21 | 822.65 0.0 125 0 | 1.56 0.17 32.47 0.02 3 1.15e+06 2961.21 | 808.09 0.0 126 0 | 1.58 0.18 32.09 0.02 3 1.16e+06 2961.21 | 1995.99 0.0 317 0 | 1.58 0.17 32.54 0.02 3 1.17e+06 2961.21 | 804.38 0.0 128 0 | 1.59 0.18 33.59 0.02 3 1.19e+06 2961.21 | 1058.70 0.0 169 0 | 1.58 0.18 32.22 0.02 3 1.20e+06 2961.21 | 954.06 0.0 155 0 | 1.61 0.18 33.44 0.02 3 1.21e+06 2961.21 | 1245.58 0.0 195 0 | 1.62 0.18 32.46 0.02 3 1.23e+06 2961.21 | 2780.23 0.0 415 0 | 1.62 0.18 33.10 0.02 3 1.24e+06 4273.43 | 3 1.24e+06 4273.43 | 4273.43 1977.1 643 289 | 1.63 0.17 33.10 0.02 3 1.26e+06 4273.43 | 304.42 0.0 53 0 | 1.63 0.18 33.53 0.02 3 1.27e+06 4273.43 | 4017.09 2192.0 596 319 | 1.65 0.18 33.96 0.02 3 1.29e+06 4273.43 | 4190.22 2639.0 604 374 | 1.65 0.18 34.71 0.02 3 1.30e+06 4273.43 | 1137.88 0.0 185 0 | 1.68 0.18 33.78 0.02 3 1.31e+06 4273.43 | 977.47 0.0 143 0 | 1.65 0.18 34.35 0.02 3 1.33e+06 4969.29 | 3 1.33e+06 4969.29 | 4969.29 2784.2 712 393 | 1.72 0.18 34.51 0.02 3 1.34e+06 4969.29 | 4573.45 0.0 634 0 | 1.71 0.18 35.18 0.02 3 1.36e+06 4969.29 | 4896.34 0.0 663 0 | 1.76 0.18 35.41 0.02 3 1.37e+06 4969.29 | 1326.51 0.0 194 0 | 1.67 0.18 34.70 0.02 3 1.39e+06 4969.29 | 1680.32 0.0 238 0 | 1.80 0.18 35.17 0.02 3 1.40e+06 4969.29 | 3260.77 0.0 451 0 | 1.74 0.18 34.56 0.02 3 1.42e+06 4969.29 | 1140.55 0.0 162 0 | 1.80 0.18 34.71 0.02 3 1.43e+06 4969.29 | 2484.06 2403.7 340 320 | 1.79 0.18 35.37 0.02 3 1.45e+06 4969.29 | 2997.63 0.0 422 0 | 1.81 0.19 35.35 0.02 3 1.46e+06 4969.29 | 4737.24 1827.3 641 242 | 1.85 0.18 35.85 0.02 3 1.48e+06 4969.29 | 1047.71 0.0 148 0 | 1.83 0.19 35.50 0.02 3 1.49e+06 4969.29 | 173.17 0.0 33 0 | 1.84 0.19 36.82 0.02 3 1.51e+06 4969.29 | 3679.41 0.0 497 0 | 1.86 0.19 36.89 0.02 3 1.52e+06 4969.29 | 4962.11 2734.9 652 348 | 1.88 0.19 37.78 0.02 3 1.53e+06 4969.29 | 2338.43 0.0 305 0 | 1.86 0.19 36.17 0.02 3 1.55e+06 4969.29 | 2442.01 0.0 309 0 | 1.81 0.19 36.69 0.02 3 1.56e+06 4969.29 | 4154.86 2039.7 522 250 | 1.85 0.19 37.91 0.02 3 1.58e+06 4969.29 | 4003.55 0.0 502 0 | 1.84 0.18 37.31 0.02 3 1.59e+06 4969.29 | 3509.02 0.0 445 0 | 1.88 0.19 37.35 0.02 3 1.61e+06 4969.29 | 3969.27 2935.2 520 379 | 1.86 0.19 36.67 0.02 3 1.62e+06 4969.29 | 2483.33 0.0 323 0 | 1.86 0.19 37.52 0.02 3 1.64e+06 4969.29 | 2687.55 0.0 354 0 | 1.93 0.19 38.44 0.02 3 1.65e+06 4969.29 | 4662.24 0.0 574 0 | 1.90 0.18 38.91 0.02 3 1.66e+06 4969.29 | 2818.31 0.0 363 0 | 1.98 0.19 38.51 0.02 3 1.68e+06 4969.29 | 1649.55 0.0 219 0 | 1.84 0.20 37.76 0.02 3 1.69e+06 4969.29 | 4783.08 0.0 580 0 | 1.92 0.19 39.04 0.02 3 1.70e+06 4969.29 | 406.79 0.0 65 0 | 1.89 0.19 37.27 0.02 3 1.71e+06 4969.29 | 2765.69 0.0 338 0 | 1.92 0.20 38.05 0.02 3 1.72e+06 4969.29 | 1396.78 0.0 179 0 | 1.92 0.19 37.59 0.02 3 1.73e+06 4969.29 | 1609.04 0.0 209 0 | 1.92 0.20 37.77 0.02 3 1.74e+06 4969.29 | 4467.71 0.0 560 0 | 1.96 0.19 38.12 0.02 3 1.75e+06 5073.69 | 3 1.75e+06 5073.69 | 5073.69 3289.1 624 396 | 1.97 0.19 38.57 0.02 3 1.76e+06 5073.69 | 2309.20 0.0 281 0 | 1.96 0.19 39.72 0.02 3 1.77e+06 7728.06 | 3 1.77e+06 7728.06 | 7728.06 851.9 914 95 | 1.93 0.19 38.74 0.02 3 1.78e+06 7728.06 | 1083.30 0.0 144 0 | 2.01 0.19 39.00 0.02 3 1.79e+06 7728.06 | 4592.06 0.0 551 0 | 1.94 0.19 39.21 0.02 3 1.80e+06 7728.06 | 1914.95 0.0 254 0 | 2.03 0.19 39.01 0.02 3 1.81e+06 7728.06 | 708.27 0.0 99 0 | 1.99 0.19 38.98 0.02 3 1.82e+06 7728.06 | 7678.90 1510.8 896 179 | 2.00 0.19 38.46 0.02 3 1.83e+06 7728.06 | 4612.89 0.0 554 0 | 2.05 0.20 40.58 0.02 3 1.84e+06 7728.06 | 5765.75 3283.5 670 370 | 2.01 0.19 39.72 0.02 3 1.85e+06 7728.06 | 5138.14 0.0 609 0 | 2.03 0.20 41.17 0.02 3 1.86e+06 7728.06 | 2317.73 0.0 282 0 | 2.04 0.19 39.38 0.02 3 1.87e+06 7728.06 | 4502.98 0.0 518 0 | 1.92 0.20 39.25 0.02 3 1.88e+06 7728.06 | 434.40 0.0 66 0 | 2.05 0.19 39.97 0.02 3 1.89e+06 7728.06 | 2278.33 0.0 304 0 | 1.99 0.19 40.53 0.02 3 1.90e+06 7728.06 | 1075.64 0.0 139 0 | 1.99 0.21 40.48 0.02 3 1.91e+06 7728.06 | 5303.26 1961.5 643 238 | 2.03 0.19 40.77 0.02 3 1.92e+06 7728.06 | 7610.01 1916.9 876 215 | 1.96 0.19 39.49 0.02 3 1.93e+06 7728.06 | 7504.85 1400.1 897 159 | 1.94 0.19 41.41 0.02 3 1.94e+06 7728.06 | 7434.55 1282.9 860 141 | 2.00 0.19 40.33 0.02 3 1.95e+06 7728.06 | 1779.93 0.0 215 0 | 2.07 0.19 40.77 0.02 3 1.96e+06 7728.06 | 525.02 0.0 76 0 | 2.04 0.20 41.53 0.02 3 1.97e+06 7728.06 | 459.73 0.0 71 0 | 2.06 0.19 39.72 0.02 3 1.98e+06 7728.06 | 4457.85 4074.2 524 466 | 2.05 0.19 42.10 0.02 3 1.99e+06 7728.06 | 6060.01 2013.8 717 224 | 2.02 0.19 41.74 0.02 3 2.00e+06 7728.06 | 3763.48 0.0 434 0 | 1.99 0.19 42.00 0.02 3 2.01e+06 7728.06 | 2920.24 3370.0 346 379 | 2.00 0.20 40.89 0.02 3 2.03e+06 7728.06 | 5806.59 0.0 662 0 | 2.05 0.19 42.19 0.02 3 2.03e+06 7728.06 | 6983.07 3317.2 789 365 | 2.07 0.20 41.56 0.02 3 2.05e+06 7728.06 | 2810.41 0.0 331 0 | 2.06 0.20 41.36 0.02 3 2.06e+06 7728.06 | 7325.62 1785.0 814 193 | 2.04 0.19 42.16 0.02 3 2.07e+06 7728.06 | 5472.22 0.0 624 0 | 2.08 0.19 41.91 0.02 3 2.08e+06 7728.06 | 5224.22 2573.9 596 285 | 2.06 0.20 42.81 0.02 3 2.08e+06 7728.06 | 3663.78 0.0 424 0 | 2.04 0.20 41.13 0.02 3 2.09e+06 7788.26 | 3 2.09e+06 7788.26 | 7788.26 1759.1 876 189 | 2.00 0.19 41.34 0.02 3 2.10e+06 7830.41 | 3 2.10e+06 7830.41 | 7830.41 1640.3 890 190 | 2.11 0.19 43.17 0.02 3 2.11e+06 7830.41 | 2744.79 0.0 334 0 | 2.07 0.20 41.95 0.02 3 2.12e+06 7830.41 | 338.01 0.0 52 0 | 2.08 0.19 43.14 0.02 3 2.13e+06 7830.41 | 378.62 0.0 57 0 | 1.95 0.19 41.59 0.02 3 2.14e+06 7830.41 | 193.63 0.0 34 0 | 1.88 0.19 42.16 0.02 3 2.15e+06 8726.12 | 3 2.15e+06 8726.12 | 8726.12 592.7 966 58 | 2.12 0.19 43.00 0.02 3 2.16e+06 8726.12 | 180.76 0.0 31 0 | 2.09 0.18 41.18 0.02 3 2.17e+06 8726.12 | 5604.62 3839.7 616 407 | 2.10 0.19 43.04 0.02 3 2.18e+06 8726.12 | 8339.71 0.0 932 0 | 2.09 0.19 42.43 0.02 3 2.20e+06 8726.12 | 2646.60 0.0 300 0 | 2.11 0.18 44.49 0.02 3 2.20e+06 8726.12 | 5454.00 2853.0 618 313 | 1.92 0.19 43.55 0.02 3 2.21e+06 8726.12 | 4760.50 0.0 523 0 | 1.93 0.19 42.93 0.02 3 2.22e+06 9094.07 | 3 2.22e+06 9094.07 | 9094.07 80.9 1000 0 | 2.10 0.18 43.27 0.02 3 2.23e+06 9094.07 | 6217.18 0.0 674 0 | 2.03 0.19 44.04 0.02 3 2.24e+06 9094.07 | 8890.46 0.0 1000 0 | 2.19 0.18 44.23 0.02 3 2.25e+06 9400.97 | 3 2.25e+06 9400.97 | 9400.97 79.1 1000 0 | 2.12 0.18 44.17 0.02 3 2.26e+06 9400.97 | 9185.07 0.0 1000 0 | 2.20 0.18 43.76 0.02 3 2.27e+06 9400.97 | 9208.88 0.0 1000 0 | 2.01 0.18 44.20 0.02 3 2.28e+06 9400.97 | 8215.99 1686.5 900 173 | 2.21 0.18 43.55 0.02 3 2.29e+06 9400.97 | 7827.44 0.0 840 0 | 2.21 0.19 43.74 0.02 3 2.30e+06 9400.97 | 567.31 0.0 78 0 | 2.18 0.18 44.26 0.02 3 2.31e+06 9400.97 | 4230.70 0.0 468 0 | 2.07 0.18 44.48 0.02 3 2.32e+06 9400.97 | 336.20 0.0 52 0 | 2.03 0.19 44.77 0.02 3 2.33e+06 9400.97 | 9327.56 0.0 1000 0 | 1.94 0.19 44.30 0.02 3 2.34e+06 9400.97 | 2688.67 3918.1 296 409 | 2.09 0.18 45.14 0.02 3 2.35e+06 9400.97 | 270.88 0.0 43 0 | 2.09 0.18 44.38 0.02 3 2.36e+06 9400.97 | 4219.46 0.0 457 0 | 2.10 0.18 46.13 0.02 3 2.37e+06 9400.97 | 934.99 0.0 118 0 | 2.09 0.19 45.69 0.02 3 2.38e+06 9400.97 | 9338.99 0.0 1000 0 | 2.06 0.18 45.48 0.02 3 2.39e+06 9400.97 | 5507.83 0.0 584 0 | 1.92 0.18 46.07 0.02 3 2.40e+06 9400.97 | 3810.83 0.0 412 0 | 1.90 0.19 44.47 0.02 3 2.41e+06 9400.97 | 4665.77 0.0 506 0 | 1.99 0.18 45.91 0.02 3 2.42e+06 9400.97 | 1511.40 0.0 174 0 | 1.95 0.18 46.20 0.02 3 2.42e+06 9400.97 | 2301.35 0.0 255 0 | 1.97 0.18 46.06 0.02 3 2.43e+06 9400.97 | 1289.04 0.0 157 0 | 2.14 0.18 46.75 0.02 3 2.44e+06 9400.97 | 3766.25 0.0 425 0 | 2.09 0.18 46.02 0.02 3 2.45e+06 9400.97 | 1576.04 0.0 188 0 | 2.18 0.18 46.27 0.02 3 2.46e+06 9400.97 | 338.50 0.0 51 0 | 2.21 0.19 46.15 0.02 3 2.47e+06 9400.97 | 1363.64 0.0 162 0 | 2.02 0.19 46.61 0.02 3 2.48e+06 9400.97 | 2311.31 0.0 260 0 | 2.12 0.20 47.16 0.02 3 2.49e+06 9400.97 | 1103.78 0.0 138 0 | 2.30 0.19 46.52 0.02 3 2.50e+06 9400.97 | 1327.52 0.0 156 0 | 2.16 0.19 45.45 0.02 3 2.51e+06 9400.97 | 6124.39 2098.5 640 210 | 2.23 0.19 47.28 0.02 3 2.52e+06 9400.97 | 3947.05 0.0 427 0 | 2.23 0.20 47.51 0.02 3 2.53e+06 9400.97 | 365.90 0.0 55 0 | 2.26 0.18 47.74 0.02 3 2.54e+06 9400.97 | 3208.60 0.0 341 0 | 1.93 0.19 48.40 0.02 3 2.55e+06 9400.97 | 7360.38 2959.7 748 289 | 2.12 0.18 47.52 0.02 3 2.56e+06 9400.97 | 6598.35 2526.5 693 255 | 2.25 0.20 47.14 0.02 3 2.57e+06 9400.97 | 4869.49 4685.1 516 484 | 2.32 0.20 47.71 0.02 3 2.58e+06 9400.97 | 8345.87 2688.1 847 265 | 2.25 0.20 48.28 0.02 3 2.59e+06 9400.97 | 2920.38 0.0 314 0 | 2.28 0.19 47.91 0.02 3 2.60e+06 9400.97 | 5261.52 0.0 550 0 | 2.27 0.19 48.32 0.02 3 2.60e+06 9400.97 | 2043.06 0.0 223 0 | 2.21 0.20 48.21 0.02 3 2.61e+06 9400.97 | 4010.91 0.0 433 0 | 2.10 0.20 48.61 0.02 3 2.62e+06 9400.97 | 3848.38 0.0 408 0 | 2.30 0.20 48.81 0.02 3 2.63e+06 9400.97 | 389.13 0.0 58 0 | 2.29 0.19 47.63 0.02 3 2.64e+06 9400.97 | 365.81 0.0 54 0 | 2.16 0.20 48.71 0.02 3 2.65e+06 9400.97 | 3056.22 0.0 328 0 | 2.31 0.20 48.48 0.02 3 2.66e+06 9400.97 | 889.49 0.0 111 0 | 2.08 0.19 48.70 0.02 3 2.67e+06 9400.97 | 165.39 0.0 29 0 | 2.20 0.19 48.89 0.02 3 2.68e+06 9400.97 | 3100.69 0.0 360 0 | 2.08 0.21 49.12 0.02 3 2.68e+06 9400.97 | 498.45 0.0 69 0 | 2.28 0.20 49.01 0.02 3 2.69e+06 9400.97 | 1110.05 0.0 131 0 | 1.95 0.20 48.85 0.02 3 2.70e+06 9400.97 | 3564.61 0.0 367 0 | 2.09 0.20 49.62 0.02 3 2.71e+06 9400.97 | 3891.63 0.0 418 0 | 2.23 0.20 49.66 0.02 3 2.72e+06 9400.97 | 3446.70 0.0 368 0 | 2.19 0.20 50.11 0.02 3 2.73e+06 9400.97 | 2262.99 0.0 240 0 | 2.12 0.21 50.37 0.02 3 2.74e+06 9400.97 | 316.87 0.0 48 0 | 2.09 0.21 49.94 0.02 3 2.75e+06 9400.97 | 8746.19 0.0 877 0 | 2.02 0.21 49.60 0.02 3 2.76e+06 9400.97 | 2905.47 0.0 312 0 | 2.29 0.22 49.86 0.02 3 2.76e+06 9400.97 | 3270.80 0.0 336 0 | 2.07 0.20 50.74 0.02 3 2.77e+06 9400.97 | 2539.63 0.0 265 0 | 2.19 0.22 48.64 0.02 3 2.78e+06 9400.97 | 5086.21 0.0 524 0 | 2.23 0.21 50.41 0.02 3 2.79e+06 9400.97 | 6139.51 0.0 612 0 | 2.38 0.22 51.37 0.02 3 2.80e+06 9400.97 | 1076.67 0.0 128 0 | 2.20 0.22 49.96 0.02 3 2.81e+06 9400.97 | 7106.03 0.0 682 0 | 2.12 0.20 50.93 0.02 3 2.82e+06 9400.97 | 828.86 0.0 103 0 | 2.27 0.21 50.35 0.02 3 2.83e+06 9400.97 | 2867.47 0.0 300 0 | 2.06 0.21 50.02 0.02 3 2.84e+06 9400.97 | 439.11 0.0 62 0 | 2.29 0.21 51.19 0.02 3 2.85e+06 9400.97 | 4167.51 0.0 421 0 | 2.19 0.20 50.30 0.02 3 2.85e+06 9400.97 | 2720.88 0.0 279 0 | 2.19 0.21 51.17 0.02 3 2.86e+06 9400.97 | 3175.01 0.0 323 0 | 2.24 0.22 50.80 0.02 3 2.87e+06 9400.97 | 1955.77 0.0 211 0 | 2.06 0.22 50.54 0.02 3 2.88e+06 9400.97 | 3316.37 0.0 341 0 | 2.13 0.21 50.84 0.02 3 2.89e+06 9400.97 | 722.73 0.0 108 0 | 2.22 0.26 52.52 0.02 3 2.90e+06 9400.97 | 189.10 0.0 37 0 | 1.33 0.23 51.74 0.02 3 2.91e+06 9400.97 | 2395.07 0.0 252 0 | 1.88 0.22 51.33 0.02 3 2.92e+06 9400.97 | 2206.58 0.0 238 0 | 2.04 0.21 52.45 0.02 3 2.93e+06 9400.97 | 260.01 0.0 42 0 | 2.14 0.21 50.83 0.02 3 2.93e+06 9400.97 | 9167.51 0.0 892 0 | 2.11 0.22 52.46 0.02 3 2.94e+06 9400.97 | 2142.60 0.0 235 0 | 2.14 0.21 51.50 0.02 3 2.95e+06 9400.97 | 663.20 0.0 85 0 | 2.32 0.22 51.99 0.02 3 2.96e+06 9400.97 | 6153.73 0.0 614 0 | 2.20 0.21 52.28 0.02 3 2.97e+06 9400.97 | 1746.93 0.0 184 0 | 2.33 0.22 52.50 0.02 3 2.98e+06 9400.97 | 4008.55 0.0 411 0 | 2.14 0.22 51.22 0.02 3 2.99e+06 9400.97 | 323.49 0.0 49 0 | 2.23 0.23 52.69 0.02 3 3.00e+06 9400.97 | 6496.10 0.0 629 0 | 2.28 0.24 52.76 0.02 3 3.01e+06 9400.97 | 839.82 0.0 103 0 | 2.35 0.23 52.15 0.02 3 3.02e+06 9400.97 | 6746.13 3928.6 648 359 | 2.22 0.23 52.27 0.02 3 3.02e+06 9400.97 | 2614.53 0.0 273 0 | 2.40 0.21 51.97 0.02 3 3.03e+06 9400.97 | 6482.44 2960.4 632 274 | 2.29 0.22 52.42 0.02 3 3.04e+06 9400.97 | 2710.71 0.0 272 0 | 2.38 0.23 53.30 0.02 3 3.05e+06 9400.97 | 2630.47 0.0 279 0 | 2.26 0.22 52.33 0.02 3 3.06e+06 9400.97 | 6490.97 0.0 627 0 | 2.41 0.22 53.16 0.02 3 3.07e+06 9400.97 | 5756.57 3020.6 558 278 | 2.20 0.21 53.43 0.02 3 3.08e+06 9400.97 | 2955.34 0.0 301 0 | 2.42 0.22 53.79 0.02 3 3.09e+06 9400.97 | 545.33 0.0 74 0 | 2.27 0.23 52.33 0.02 3 3.10e+06 9400.97 | 2198.62 0.0 229 0 | 2.35 0.22 53.38 0.02 3 3.11e+06 9400.97 | 3655.70 0.0 362 0 | 2.25 0.22 53.73 0.02 3 3.12e+06 9400.97 | 7572.88 0.0 688 0 | 2.40 0.23 53.36 0.02 3 3.13e+06 9400.97 | 686.92 0.0 88 0 | 2.31 0.25 53.30 0.02 3 3.14e+06 9400.97 | 4784.15 0.0 470 0 | 2.34 0.22 53.50 0.02 3 3.15e+06 9400.97 | 6257.92 0.0 597 0 | 2.40 0.23 54.19 0.02 3 3.16e+06 9400.97 | 381.11 0.0 56 0 | 2.55 0.22 54.06 0.02 3 3.17e+06 9400.97 | 4226.98 0.0 408 0 | 2.36 0.23 53.91 0.02 3 3.18e+06 9400.97 | 4583.93 0.0 446 0 | 2.33 0.23 54.37 0.02 3 3.19e+06 9400.97 | 6077.15 3476.0 576 311 | 2.27 0.24 54.81 0.02 3 3.20e+06 9400.97 | 5583.01 3175.2 534 278 | 2.34 0.22 54.06 0.02 3 3.21e+06 9400.97 | 6684.09 2633.0 644 234 | 2.33 0.25 54.21 0.02 3 3.22e+06 9400.97 | 2594.13 0.0 277 0 | 2.45 0.24 54.45 0.02 3 3.23e+06 9400.97 | 3951.93 0.0 381 0 | 2.39 0.23 54.81 0.02 3 3.24e+06 9400.97 | 6620.14 0.0 618 0 | 2.37 0.23 54.77 0.02 3 3.24e+06 9400.97 | 3264.37 0.0 323 0 | 2.38 0.25 55.88 0.02 3 3.25e+06 9400.97 | 3717.48 0.0 369 0 | 2.28 0.23 54.36 0.02 3 3.26e+06 9400.97 | 6228.22 3159.0 590 283 | 2.39 0.24 55.27 0.02 3 3.27e+06 9400.97 | 3191.35 0.0 313 0 | 2.42 0.25 53.25 0.02 3 3.28e+06 9400.97 | 6677.04 0.0 652 0 | 2.38 0.24 56.30 0.02 3 3.29e+06 9400.97 | 1202.97 0.0 135 0 | 2.34 0.23 55.98 0.02 3 3.30e+06 9400.97 | 3834.14 0.0 378 0 | 2.26 0.23 55.60 0.02 3 3.31e+06 9400.97 | 7547.63 0.0 715 0 | 2.28 0.25 56.10 0.02 3 3.32e+06 9400.97 | 3160.17 0.0 305 0 | 2.39 0.25 55.70 0.02 3 3.33e+06 9400.97 | 3366.77 0.0 330 0 | 2.20 0.26 56.55 0.02 3 3.34e+06 9400.97 | 2180.08 0.0 226 0 | 2.51 0.25 55.42 0.02 3 3.35e+06 9400.97 | 4012.17 3974.3 392 356 | 2.43 0.26 55.38 0.02 3 3.35e+06 9400.97 | 2136.97 0.0 221 0 | 2.27 0.25 56.35 0.02 3 3.36e+06 9400.97 | 2565.83 0.0 254 0 | 2.27 0.24 56.11 0.02 3 3.38e+06 9400.97 | 1909.27 0.0 205 0 | 2.47 0.25 56.66 0.02 3 3.38e+06 9400.97 | 4336.54 0.0 418 0 | 2.46 0.26 56.28 0.02 3 3.39e+06 9400.97 | 5321.48 3593.4 494 307 | 2.40 0.25 56.29 0.02 3 3.40e+06 9400.97 | 2623.19 0.0 280 0 | 2.33 0.24 56.03 0.02 3 3.41e+06 9400.97 | 4583.58 0.0 446 0 | 2.37 0.26 56.75 0.02 3 3.42e+06 9400.97 | 2202.31 0.0 234 0 | 2.39 0.25 56.72 0.02 3 3.43e+06 9400.97 | 4711.35 0.0 450 0 | 2.34 0.25 57.02 0.02 3 3.44e+06 9400.97 | 222.00 0.0 36 0 | 2.40 0.26 57.51 0.02 3 3.45e+06 9400.97 | 583.82 0.0 95 0 | 2.51 0.32 60.83 0.03 3 3.46e+06 9400.97 | 1659.08 0.0 180 0 | 1.55 0.24 57.01 0.02 3 3.47e+06 9400.97 | 4795.89 0.0 475 0 | 2.46 0.25 56.82 0.02 3 3.48e+06 9400.97 | 3277.17 0.0 314 0 | 2.45 0.26 56.12 0.02 3 3.49e+06 9400.97 | 6135.82 2896.6 584 257 | 2.48 0.26 57.23 0.02 3 3.50e+06 9400.97 | 2316.13 0.0 239 0 | 2.48 0.24 56.64 0.02 3 3.51e+06 9400.97 | 2459.48 0.0 243 0 | 2.46 0.26 57.63 0.02 3 3.52e+06 9400.97 | 545.49 0.0 72 0 | 2.42 0.27 57.16 0.02 3 3.53e+06 9400.97 | 3056.77 0.0 315 0 | 2.49 0.26 56.49 0.02 3 3.54e+06 9400.97 | 3525.36 0.0 334 0 | 2.51 0.26 56.60 0.02 3 3.55e+06 9400.97 | 448.69 0.0 62 0 | 2.40 0.25 57.04 0.02 3 3.56e+06 9400.97 | 4425.29 0.0 417 0 | 2.46 0.25 58.06 0.02 3 3.57e+06 9400.97 | 7055.81 0.0 647 0 | 2.42 0.25 56.89 0.02 3 3.58e+06 9400.97 | 3547.77 0.0 343 0 | 2.40 0.24 57.90 0.02 3 3.59e+06 9400.97 | 1214.78 0.0 140 0 | 2.51 0.27 57.81 0.02 3 3.60e+06 9400.97 | 1943.99 0.0 203 0 | 2.43 0.26 57.63 0.02 3 3.60e+06 9400.97 | 2539.23 0.0 255 0 | 2.46 0.24 57.93 0.02 3 3.61e+06 9400.97 | 5755.68 0.0 533 0 | 2.44 0.27 57.88 0.02 3 3.62e+06 9400.97 | 521.56 0.0 69 0 | 2.38 0.25 57.91 0.02 3 3.63e+06 9400.97 | 2260.82 0.0 224 0 | 2.49 0.26 57.59 0.02 3 3.64e+06 9400.97 | 8032.42 3036.8 733 268 | 2.35 0.26 57.60 0.02 3 3.65e+06 9400.97 | 5434.70 0.0 494 0 | 2.45 0.27 58.28 0.02 3 3.66e+06 9400.97 | 3497.88 0.0 334 0 | 2.29 0.26 57.95 0.02 3 3.67e+06 9400.97 | 5385.06 0.0 530 0 | 2.36 0.27 58.82 0.02 3 3.68e+06 9400.97 | 7716.17 0.0 712 0 | 2.38 0.24 58.36 0.02 3 3.69e+06 9400.97 | 7525.99 0.0 678 0 | 2.33 0.27 57.81 0.02 3 3.70e+06 9400.97 | 970.74 0.0 115 0 | 2.51 0.26 58.44 0.02 3 3.71e+06 9400.97 | 3055.52 0.0 303 0 | 2.47 0.27 59.08 0.02 3 3.72e+06 9400.97 | 6156.14 0.0 593 0 | 2.51 0.27 58.46 0.02 3 3.73e+06 9400.97 | 757.89 0.0 93 0 | 2.50 0.25 58.00 0.02 3 3.74e+06 9400.97 | 2969.20 0.0 291 0 | 2.45 0.26 59.13 0.02 3 3.75e+06 9400.97 | 6579.89 3733.9 612 332 | 2.49 0.26 59.74 0.02 3 3.76e+06 9400.97 | 4382.62 4036.6 412 359 | 2.47 0.27 58.02 0.02 3 3.77e+06 9400.97 | 6604.70 0.0 627 0 | 2.61 0.25 58.69 0.02 3 3.78e+06 9400.97 | 4470.17 3493.4 428 324 | 2.51 0.25 58.66 0.02 3 3.79e+06 9400.97 | 873.06 0.0 108 0 | 2.45 0.26 58.98 0.02 3 3.80e+06 9400.97 | 3919.33 0.0 369 0 | 2.54 0.28 58.55 0.02 3 3.81e+06 9400.97 | 8246.80 4263.3 739 365 | 2.47 0.28 59.17 0.02 3 3.82e+06 9400.97 | 5343.21 0.0 497 0 | 2.50 0.27 59.11 0.02 3 3.83e+06 9400.97 | 3814.69 0.0 364 0 | 2.57 0.27 59.73 0.02 3 3.84e+06 9400.97 | 206.73 0.0 41 0 | 2.46 0.28 59.52 0.02 3 3.85e+06 9400.97 | 1580.95 0.0 165 0 | 1.89 0.26 58.67 0.02 3 3.86e+06 9400.97 | 8301.75 0.0 744 0 | 2.23 0.27 58.73 0.02 3 3.87e+06 9400.97 | 5613.82 4133.1 514 350 | 2.58 0.26 59.09 0.02 3 3.88e+06 9400.97 | 2753.20 0.0 268 0 | 2.60 0.27 59.82 0.02 3 3.89e+06 9400.97 | 3457.35 0.0 327 0 | 2.55 0.28 59.33 0.02 3 3.90e+06 9400.97 | 174.46 0.0 30 0 | 2.48 0.27 59.32 0.02 3 3.91e+06 9400.97 | 428.61 0.0 60 0 | 2.57 0.28 58.55 0.02 3 3.92e+06 9400.97 | 6091.70 0.0 554 0 | 2.56 0.26 60.11 0.02 3 3.93e+06 9400.97 | 7670.87 0.0 710 0 | 2.66 0.28 60.68 0.02 3 3.94e+06 9400.97 | 2778.81 0.0 276 0 | 2.15 0.27 60.50 0.02 3 3.95e+06 9400.97 | 6145.78 0.0 570 0 | 2.58 0.27 59.34 0.02 3 3.96e+06 9400.97 | 6133.93 0.0 551 0 | 2.53 0.27 59.78 0.02 3 3.97e+06 9400.97 | 4161.56 0.0 388 0 | 2.58 0.27 60.53 0.02 3 3.98e+06 9400.97 | 3202.24 0.0 306 0 | 2.47 0.28 59.90 0.02 3 3.99e+06 9400.97 | 5751.28 3699.0 526 318 | 2.62 0.28 60.64 0.02 3 4.00e+06 9400.97 | 9008.62 0.0 876 0 | 2.64 0.27 60.58 0.02 | UsedTime: 49475 | SavedDir: ./Humanoid-v3_ReliableSAC_3 | Learner: Save in ./Humanoid-v3_ReliableSAC_3 """ else: raise ValueError('env_name:', env_name) args.learner_gpus = gpu_id args.random_seed += gpu_id + 194355 if_check = 0 if if_check: train_and_evaluate(args) else: train_and_evaluate_mp(args) if __name__ == '__main__': GPU_ID = int(sys.argv[1]) if len(sys.argv) > 1 else 0 # >=0 means GPU ID, -1 means CPU DRL_ID = int(sys.argv[2]) if len(sys.argv) > 2 else 1 ENV_ID = int(sys.argv[3]) if len(sys.argv) > 3 else 0 demo_ddpg_h_term(GPU_ID, DRL_ID, ENV_ID) >>>>>>> dev2
alipay/aop/api/domain/AlipayEcoTextDetectModel.py
antopen/alipay-sdk-python-all
213
50897
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.SpiDetectionTask import SpiDetectionTask class AlipayEcoTextDetectModel(object): def __init__(self): self._task = None @property def task(self): return self._task @task.setter def task(self, value): if isinstance(value, list): self._task = list() for i in value: if isinstance(i, SpiDetectionTask): self._task.append(i) else: self._task.append(SpiDetectionTask.from_alipay_dict(i)) def to_alipay_dict(self): params = dict() if self.task: if isinstance(self.task, list): for i in range(0, len(self.task)): element = self.task[i] if hasattr(element, 'to_alipay_dict'): self.task[i] = element.to_alipay_dict() if hasattr(self.task, 'to_alipay_dict'): params['task'] = self.task.to_alipay_dict() else: params['task'] = self.task return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayEcoTextDetectModel() if 'task' in d: o.task = d['task'] return o
src/python/fsqio/pants/wiki/subsystems/confluence_subsystem.py
jglesner/fsqio
252
50907
<gh_stars>100-1000 # coding=utf-8 # Copyright 2019 Foursquare Labs Inc. All Rights Reserved. from __future__ import absolute_import, division, print_function, unicode_literals import urllib from pants.subsystem.subsystem import Subsystem from pants.util.memo import memoized_property class ConfluenceSubsystem(Subsystem): options_scope = 'confluence-wiki' @staticmethod def confluence_url_builder(page): config = page.provides[0].config title = config['title'] full_url = '{}/wiki/spaces/{}/{}'.format( ConfluenceSubsystem.wiki_url, config['space'], urllib.quote_plus(title), ) return title, full_url @classmethod def register_options(cls, register): super(ConfluenceSubsystem, cls).register_options(register) # TODO(mateo): This only supports a single wiki url, should a map of wiki_name:url. # This is not trivial to unwind, the base plugin assumed self-hosted wiki and url builders. register( '--wiki-url', default=None, advanced=True, help='Wiki hostname.', ) register( '--email-domain', advanced=True, help='Options default domain. For <EMAIL>, use @foo.com. Note: Overrides the email-domain option.', ) @memoized_property def wiki_url(self): wiki_url = self.get_options().wiki_url if wiki_url is None: raise ValueError("No wiki URL set! Please set option --{}-wiki-url.".format(self.options_scope)) return wiki_url @memoized_property def email_domain(self): email_domain = self.get_options().email_domain if email_domain is None: raise ValueError("No email domain is set! Please set option --{}-email-domain.".format(self.options_scope)) return email_domain
lightnion/http/ntor.py
pthevenet/lightnion
120
50915
import lightnion as lnn import nacl.public import base64 def hand(guard, encode=True): identity = base64.b64decode(guard['router']['identity'] + '====') onion_key = base64.b64decode(guard['ntor-onion-key'] + '====') ephemeral_key, payload = lnn.crypto.ntor.hand(identity, onion_key) if encode: payload = str(base64.b64encode(payload), 'utf8') return payload, (onion_key, ephemeral_key, identity) def shake(payload, material): payload = base64.b64decode(payload) onion_key, ephemeral_key, identity = material material = lnn.crypto.ntor.shake(ephemeral_key, payload, identity, onion_key, length=92) return lnn.crypto.ntor.kdf(material)
core/wsgi.py
vlafranca/stream_framework_example
102
50928
""" WSGI config for pinterest_example project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "core.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application() try: from dj_static import Cling except ImportError: pass else: application = Cling(application)
train.py
thinkreed/ECBSR
162
50941
import torch import torch.nn as nn import torch.nn.functional as F from datas.benchmark import Benchmark from datas.div2k import DIV2K from models.ecbsr import ECBSR from torch.utils.data import DataLoader import math import argparse, yaml import utils import os from tqdm import tqdm import logging import sys import time parser = argparse.ArgumentParser(description='ECBSR') ## yaml configuration files parser.add_argument('--config', type=str, default=None, help = 'pre-config file for training') ## paramters for ecbsr parser.add_argument('--scale', type=int, default=2, help = 'scale for sr network') parser.add_argument('--colors', type=int, default=1, help = '1(Y channls of YCbCr)') parser.add_argument('--m_ecbsr', type=int, default=4, help = 'number of ecb') parser.add_argument('--c_ecbsr', type=int, default=8, help = 'channels of ecb') parser.add_argument('--idt_ecbsr', type=int, default=0, help = 'incorporate identity mapping in ecb or not') parser.add_argument('--act_type', type=str, default='prelu', help = 'prelu, relu, splus, rrelu') parser.add_argument('--pretrain', type=str, default=None, help = 'path of pretrained model') ## parameters for model training parser.add_argument('--patch_size', type=int, default=64, help = 'patch size of HR image') parser.add_argument('--batch_size', type=int, default=32, help = 'batch size of training data') parser.add_argument('--data_repeat', type=int, default=1, help = 'times of repetition for training data') parser.add_argument('--data_augment', type=int, default=1, help = 'data augmentation for training') parser.add_argument('--epochs', type=int, default=600, help = 'number of epochs') parser.add_argument('--test_every', type=int, default=1, help = 'test the model every N epochs') parser.add_argument('--log_every', type=int, default=1, help = 'print log of loss, every N steps') parser.add_argument('--log_path', type=str, default="./experiments/") parser.add_argument('--lr', type=float, default=5e-4, help = 'learning rate of optimizer') parser.add_argument('--store_in_ram', type=int, default=0, help = 'store the whole training data in RAM or not') ## hardware specification parser.add_argument('--gpu_id', type=int, default=0, help = 'gpu id for training') parser.add_argument('--threads', type=int, default=1, help = 'number of threads for training') ## dataset specification parser.add_argument('--div2k_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/DIV2K/DIV2K_train_HR', help = '') parser.add_argument('--div2k_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/DIV2K/DIV2K_train_LR_bicubic', help = '') parser.add_argument('--set5_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set5/HR', help = '') parser.add_argument('--set5_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set5/LR_bicubic', help = '') parser.add_argument('--set14_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set14/HR', help = '') parser.add_argument('--set14_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set14/LR_bicubic', help = '') parser.add_argument('--b100_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/B100/HR', help = '') parser.add_argument('--b100_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/B100/LR_bicubic', help = '') parser.add_argument('--u100_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Urban100/HR', help = '') parser.add_argument('--u100_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Urban100/LR_bicubic', help = '') if __name__ == '__main__': args = parser.parse_args() if args.config: opt = vars(args) yaml_args = yaml.load(open(args.config), Loader=yaml.FullLoader) opt.update(yaml_args) if args.colors == 3: raise ValueError("ECBSR is trained and tested with colors=1.") device = None if args.gpu_id >= 0 and torch.cuda.is_available(): print("use cuda & cudnn for acceleration!") print("the gpu id is: {}".format(args.gpu_id)) device = torch.device('cuda:{}'.format(args.gpu_id)) torch.backends.cudnn.benchmark = True else: print("use cpu for training!") device = torch.device('cpu') torch.set_num_threads(args.threads) div2k = DIV2K( args.div2k_hr_path, args.div2k_lr_path, train=True, augment=args.data_augment, scale=args.scale, colors=args.colors, patch_size=args.patch_size, repeat=args.data_repeat, store_in_ram=args.store_in_ram ) set5 = Benchmark(args.set5_hr_path, args.set5_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) set14 = Benchmark(args.set14_hr_path, args.set14_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) b100 = Benchmark(args.b100_hr_path, args.b100_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) u100 = Benchmark(args.u100_hr_path, args.u100_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) train_dataloader = DataLoader(dataset=div2k, num_workers=args.threads, batch_size=args.batch_size, shuffle=True, pin_memory=True, drop_last=True) valid_dataloaders = [] valid_dataloaders += [{'name': 'set5', 'dataloader': DataLoader(dataset=set5, batch_size=1, shuffle=False)}] valid_dataloaders += [{'name': 'set14', 'dataloader': DataLoader(dataset=set14, batch_size=1, shuffle=False)}] valid_dataloaders += [{'name': 'b100', 'dataloader': DataLoader(dataset=b100, batch_size=1, shuffle=False)}] valid_dataloaders += [{'name': 'u100', 'dataloader': DataLoader(dataset=u100, batch_size=1, shuffle=False)}] ## definitions of model, loss, and optimizer model = ECBSR(module_nums=args.m_ecbsr, channel_nums=args.c_ecbsr, with_idt=args.idt_ecbsr, act_type=args.act_type, scale=args.scale, colors=args.colors).to(device) loss_func = nn.L1Loss() optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) if args.pretrain is not None: print("load pretrained model: {}!".format(args.pretrain)) model.load_state_dict(torch.load(args.pretrain)) else: print("train the model from scratch!") ## auto-generate the output logname timestamp = utils.cur_timestamp_str() experiment_name = "ecbsr-x{}-m{}c{}-{}-{}".format(args.scale, args.m_ecbsr, args.c_ecbsr, args.act_type, timestamp) experiment_path = os.path.join(args.log_path, experiment_name) if not os.path.exists(experiment_path): os.makedirs(experiment_path) experiment_model_path = os.path.join(experiment_path, 'models') if not os.path.exists(experiment_model_path): os.makedirs(experiment_model_path) log_name = os.path.join(experiment_path, "log.txt") sys.stdout = utils.ExperimentLogger(log_name, sys.stdout) stat_dict = utils.get_stat_dict() ## save training paramters exp_params = vars(args) exp_params_name = os.path.join(experiment_path, 'config.yml') with open(exp_params_name, 'w') as exp_params_file: yaml.dump(exp_params, exp_params_file, default_flow_style=False) timer_start = time.time() for epoch in range(args.epochs): epoch_loss = 0.0 stat_dict['epochs'] = epoch model = model.train() print("##===========Epoch: {}=============##".format(epoch)) for iter, batch in enumerate(train_dataloader): optimizer.zero_grad() lr, hr = batch lr, hr = lr.to(device), hr.to(device) sr = model(lr) loss = loss_func(sr, hr) loss.backward() optimizer.step() epoch_loss += float(loss) if (iter + 1) % args.log_every == 0: cur_steps = (iter+1)*args.batch_size total_steps = len(train_dataloader.dataset) fill_width = math.ceil(math.log10(total_steps)) cur_steps = str(cur_steps).zfill(fill_width) epoch_width = math.ceil(math.log10(args.epochs)) cur_epoch = str(epoch).zfill(epoch_width) avg_loss = epoch_loss / (iter + 1) stat_dict['losses'].append(avg_loss) timer_end = time.time() duration = timer_end - timer_start timer_start = timer_end print("Epoch:{}, {}/{}, loss: {:.4f}, time: {:.3f}".format(cur_epoch, cur_steps, total_steps, avg_loss, duration)) if (epoch + 1) % args.test_every == 0: torch.set_grad_enabled(False) test_log = "" model = model.eval() for valid_dataloader in valid_dataloaders: avg_psnr = 0.0 avg_ssim = 0.0 name = valid_dataloader['name'] loader = valid_dataloader['dataloader'] for lr, hr in tqdm(loader, ncols=80): lr, hr = lr.to(device), hr.to(device) sr = model(lr) # crop hr = hr[:, :, args.scale:-args.scale, args.scale:-args.scale] sr = sr[:, :, args.scale:-args.scale, args.scale:-args.scale] # quantize hr = hr.clamp(0, 255) sr = sr.clamp(0, 255) # calculate psnr psnr = utils.calc_psnr(sr, hr) ssim = utils.calc_ssim(sr, hr) avg_psnr += psnr avg_ssim += ssim avg_psnr = round(avg_psnr/len(loader), 2) avg_ssim = round(avg_ssim/len(loader), 4) stat_dict[name]['psnrs'].append(avg_psnr) stat_dict[name]['ssims'].append(avg_ssim) if stat_dict[name]['best_psnr']['value'] < avg_psnr: stat_dict[name]['best_psnr']['value'] = avg_psnr stat_dict[name]['best_psnr']['epoch'] = epoch if stat_dict[name]['best_ssim']['value'] < avg_ssim: stat_dict[name]['best_ssim']['value'] = avg_ssim stat_dict[name]['best_ssim']['epoch'] = epoch test_log += "[{}-X{}], PSNR/SSIM: {:.2f}/{:.4f} (Best: {:.2f}/{:.4f}, Epoch: {}/{})\n".format( name, args.scale, float(avg_psnr), float(avg_ssim), stat_dict[name]['best_psnr']['value'], stat_dict[name]['best_ssim']['value'], stat_dict[name]['best_psnr']['epoch'], stat_dict[name]['best_ssim']['epoch']) # print log & flush out print(test_log) sys.stdout.flush() # save model saved_model_path = os.path.join(experiment_model_path, 'model_x{}_{}.pt'.format(args.scale, epoch)) torch.save(model.state_dict(), saved_model_path) torch.set_grad_enabled(True) # save stat dict ## save training paramters stat_dict_name = os.path.join(experiment_path, 'stat_dict.yml') with open(stat_dict_name, 'w') as stat_dict_file: yaml.dump(stat_dict, stat_dict_file, default_flow_style=False)
research/cgroups.py
chuongmep/rhino.inside-revit
166
50953
"""Group Revit built-in categories logically and output the data in json The built-in categories are provided in text files under DATA_DIR Usage: python3 ./cgroups.py group and output categories python3 ./cgroups.py <catname> group and output <catname> category only """ # pylint: disable=bad-continuation import sys import os import os.path as op from typing import Set, List, TypeVar import json import re DATA_DIR = "./bic_data" CGROUP_T = TypeVar("CGROUP") # pylint: disable=invalid-name class CGROUP: """Represents a category grouping""" def __init__( self, name: str, exclusives: List[str], includes: List[str], excludes: List[str], cgroups: List[CGROUP_T], hidden: bool = False, ): self.name: str = name self.exclusives: List[str] = exclusives self.includes: List[str] = includes self.excludes: List[str] = excludes self.cgroups: List[CGROUP_T] = cgroups self.hidden: bool = hidden class CategoryComp: """Represents data for a category selector component""" def __init__(self, name: str, categories: List[str]): self.name = name self.categories = categories class CategoryCompCollection: """Represents data for a collection of category selector components""" def __init__( self, version: str, bics: List[str], components: List[CategoryComp], used_bics: Set[str], ): self.meta = { "version": version, "total": len(bics), "included": len(used_bics), "excluded": list(bics.difference(used_bics)), } self.components = components # ============================================================================= # this is a hand-crafted tree of CGroups that represents the grouping logic # ----------------------------------------------------------------------------- CGROUPS = [ CGROUP( name="Skip", exclusives=[ r".+Obsolete.*", r".+OBSOLETE.*", r".+Deprecated.*", r"OST_GbXML.*", r"OST_gbXML.*", r"OST_DSR_.*", ], includes=[], excludes=[], cgroups=[], hidden=True, ), CGROUP( name="Site", exclusives=[], includes=[ r"OST_Site.*", r"OST_Sewer.*", r"OST_Road.*", r"OST_Building.*", r"OST_Contour.*", r"OST_Parking.*", ], excludes=[], cgroups=[ CGROUP( name="Topography", exclusives=[], includes=[r"OST_.*Topo.*"], excludes=[], cgroups=[], ), ], ), CGROUP( name="References", exclusives=[], includes=[ r"OST_Grid.*", r"OST_Level.*", r"OST_Level.*", r"OST_Constraint.*", r"OST_Reference.*", ], excludes=[ r"OST_GridChains.*", r"OST_ReferencePoints.*", r"OST_ReferenceViewer.*", ], cgroups=[], ), CGROUP( name="Modeling", exclusives=[], includes=[r"OST_Generic.*",], excludes=["OST_GenericLines",], cgroups=[ CGROUP( name="Mass", exclusives=[], includes=[r"OST_Mass.*"], excludes=[ r"OST_.+Cutter", r"OST_.+Splitter", r"OST_.+All", r"OST_.+Outlines", ], cgroups=[], ), CGROUP( name="Ceilings", exclusives=[], includes=[r"OST_Ceiling.*"], excludes=[ r"OST_.+Cut.*", r"OST_.+Projection.*", r"OST_.+Default.*", ], cgroups=[], ), CGROUP( name="Columns", exclusives=[], includes=[r"OST_Column.*"], excludes=[r"OST_.+LocalCoordSys"], cgroups=[], ), CGROUP( name="Curtain Systems", exclusives=[], includes=[r"OST_Curta.*"], excludes=[ r"OST_.+FaceManager.*", r"OST_CurtainGrids.+", r"OST_Curtain.+Cut", ], cgroups=[], ), CGROUP( name="Floors", exclusives=[], includes=[r"OST_Floor.*"], excludes=[ r"OST_.+LocalCoordSys", r"OST_.+Cut.*", r"OST_.+Projection.*", r"OST_.+Default.*", ], cgroups=[], ), CGROUP( name="Doors", exclusives=[], includes=[r"OST_Door.*"], excludes=[r"OST_.+Cut.*", r"OST_.+Projection.*",], cgroups=[], ), CGROUP( name="Casework", exclusives=[], includes=[r"OST_Casework.*"], excludes=[], cgroups=[], ), CGROUP( name="Windows", exclusives=[], includes=[r"OST_Window.*"], excludes=[r"OST_.+Cut.*", r"OST_.+Projection.*",], cgroups=[], ), CGROUP( name="Furniture", exclusives=[], includes=[r"OST_Furniture.*"], excludes=[], cgroups=[], ), CGROUP( name="Adaptive", exclusives=[], includes=[r"OST_Adaptive.*"], excludes=[], cgroups=[], ), CGROUP( name="Speciality", exclusives=[], includes=[r"OST_Speciality.*"], excludes=[], cgroups=[], ), CGROUP( name="Openings", exclusives=[r"OST_.+Opening", r"OST_Arc.*", r"OST_Shaft.*",], includes=[], excludes=[r"OST_.+Cut.*", r"OST_.+Projection.*",], cgroups=[], ), CGROUP( name="Railing", exclusives=[], includes=[r"OST_Railing.*"], excludes=[r"OST_.+Cut.*", r"OST_.+Projection.*",], cgroups=[], ), CGROUP( name="Stairs", exclusives=[], includes=[r"OST_Stair.*", r"OST_.+Stairs"], excludes=[r"OST_.+Cut.*", r"OST_.+Projection.*",], cgroups=[], ), CGROUP( name="Ramps", exclusives=[], includes=[r"OST_Ramp.*"], excludes=[r"OST_.+Cut.*", r"OST_.+Projection.*",], cgroups=[], ), CGROUP( name="Walls", exclusives=[], includes=[r"OST_Wall.*", r"OST_Reveals", r"OST_Stacked.*"], excludes=[ r"OST_.+LocalCoordSys", r"OST_.+RefPlanes", r"OST_.+Default", r"OST_.+Cut.*", r"OST_.+Projection.*", ], cgroups=[], ), CGROUP( name="Roofs", exclusives=[], includes=[ r"OST_Roof.*", r"OST_Fascia.*", r"OST_Purlin.*", r"OST_Gutter.*", r"OST_Cornices.*", r"OST_Dormer.*", ], excludes=[ r"OST_.+Opening.*", r"OST_.+Cut.*", r"OST_.+Projection.*", ], cgroups=[], ), CGROUP( name="Spatial", exclusives=[], includes=[ r"OST_Area.*", r"OST_Zone.*", r"OST_MEPSpace.*", r"OST_Zoning.*", r"OST_Room.*", ], excludes=[ r"OST_.+Fill", r"OST_.+Visibility", r"OST_AreaRein.*", r"OST_AreaReport.*", ], cgroups=[], ), CGROUP( name="Structural", exclusives=[], includes=[ r"OST_Struct.+", r"OST_.+Bracing", r"OST_Truss.*", r"OST_Joist.*", r"OST_FabricArea.*", r"OST_Rebar.*", r"OST_Girder.*", r"OST_Edge.*", r"OST_Load.*", r"OST_Internal.*Load.*", r"OST_Isolated.*", r"OST_Framing.*", r"OST_Footing.*", r"OST_Foundation.*", r"OST_Fnd.*", r"OST_Span.*", r"OST_Steel.*", r"OST_SWall.*", r"OST_Brace.*", r"OST_Bridge.*", r"OST_.*PointLoad.*", r"OST_Beam.*", ], excludes=[ r"OST_.+LocalCoordSys", r"OST_.+Other", r"OST_.+LocationLine", r"OST_.+PlanReps", r"OST_.+NobleWarning", r"OST_.+Failed", ], cgroups=[], ), CGROUP( name="Mechanical", exclusives=[], includes=[ r"OST_Mechanical.*", r"OST_.+Ducts", r"OST_Duct.*", r"OST_MEPAnalytical.*", r"OST_Flex.*", r"OST_MEPSystem.*", r"OST_HVAC.*", r"OST_Fabrication.+", ], excludes=[ r"OST_.+Reference.*", r"OST_.+TmpGraphic.*", r"OST_.+Visibility", ], cgroups=[], ), CGROUP( name="Electrical", exclusives=[], includes=[ r"OST_.+Pipes", r"OST_Conduit.*", r"OST_Cable.*", r"OST_Wire.*", r"OST_Light.*", r"OST_Device.*", r"OST_Panel.*", r"OST_Elec.*", r"OST_Routing.*", r"OST_Switch.*", r"OST_Connector.*", r"OST_Route.*", r"OST_.+Devices|OST_.+Device(Tags)|OST_.+Templates?", ], excludes=[ r"OST_.+Axis", r"OST_.+Template.*", r"OST_.+Definition.*", r"OST_.+Material", ], cgroups=[], ), CGROUP( name="Plumbing", exclusives=[], includes=[ r"OST_Pipe.*", r"OST_Fluid.*", r"OST_Fixture.*", r"OST_PlumbingFixture.*", r"OST_Piping.*", r"OST_Sprinkler.*", ], excludes=[r"OST_.+Reference.*", r"OST_.+Material",], cgroups=[], ), ], ), CGROUP( name="Drafting", exclusives=[], includes=[], excludes=[], cgroups=[ CGROUP( name="Views", exclusives=[], includes=[ r"OST_.*Annotation.*", "OST_Views", "OST_PlanRegion", r"OST_Schedule.*", r"OST_Camera.*", r"OST_Crop.*", r"OST_Compass.*", r"OST_Section.*", r"OST_Sun.*", r"OST_RenderRegions", ], excludes=[r"OST_.+ViewParamGroup",], cgroups=[], ), CGROUP( name="Sheets", exclusives=[], includes=[ r"OST_Sheet.*", r"OST_Viewport.*", r"OST_Title.*", r"OST_Guide.*", r"OST_Revisions.*", ], excludes=[], cgroups=[], ), CGROUP( name="Tags", exclusives=[r"OST_Tag.*", r"OST_.+Tags", r"OST_.+Labels"], includes=[], excludes=[], cgroups=[], ), CGROUP( name="Annotation", exclusives=[ r"OST_.+DownArrow.*", r"OST_.+DownText.*", r"OST_.+UpArrow.*", r"OST_.+UpText.*", r"OST_.+Annotation.*", r"OST_Callout.*", r"OST_Spot.*", r"OST_Cloud.*", r"OST_Elev.*", r"OST_Repeating.*", "OST_BrokenSectionLine", r"OST_Legend.*", r"OST_Detail.*", "OST_InvisibleLines", "OST_DemolishedLines", "OST_InsulationLines", "OST_FillPatterns", "OST_FilledRegion", "OST_HiddenLines", r"OST_Center.*", r"OST_Keynote.*", r"OST_Matchline.*", r"OST_Model.*", r"OST_.+Text.*", r"OST_.+Overhead.*", r"OST_Curve.*", r"OST_Dim.*", r"OST_Dimension.*", r"OST_Masking.*", r"OST_.+Tag.*", r"OST_.+Label.*", r"OST_.+Symbol.*", r"OST_.+TickMark.*", "OST_RevisionClouds", ], includes=[], excludes=[r"OST_DimLock.+", r"OST_IOS.+", r"OST_.+Symbology",], cgroups=[], ), ], ), CGROUP( name="Containers", exclusives=[], includes=[ r"OST_Part.*", r"OST_Assemblies.*", r"OST_Group.*", r"OST_.+Groups", ], excludes=[], cgroups=[], ), CGROUP( name="Links", exclusives=[ "OST_RvtLinks", "OST_TopographyLink", r"OST_Coordination.*", r"OST_PointCloud.*", r"OST_Raster.*", ], includes=[], excludes=[], cgroups=[], ), CGROUP( name="Analysis", exclusives=[r"OST_.*Analy.*"], includes=[], excludes=[r"OST_AnalysisResults"], cgroups=[ CGROUP( name="Paths", exclusives=[r"OST_Path.*"], includes=[], excludes=[], cgroups=[], ), ], ), CGROUP( name="Rendering", exclusives=[], includes=[r"OST_Entourage.*",], excludes=[], cgroups=[ CGROUP( name="Materials", exclusives=[ r"OST_Material.*", r"OST_Appearance.*", r"OST_Decal.*", r"OST_Planting.*", ], includes=[], excludes=[], cgroups=[], ) ], ), ] # ============================================================================= def expand_exclusives( cgroup: CGROUP, used_bics: Set[str], remaining_bics: Set[str] ): """Apply the exclusive filters and expand to builtin category names""" exclusives = set() excludes = set() local_bics = remaining_bics.copy() for bic in local_bics: for excluspat in cgroup.exclusives: if re.match(excluspat, bic): if bic in used_bics: raise Exception( f'Exclusive conflict in "{cgroup.name}" @ "{excluspat}"' ) exclusives.add(bic) filtered_exclusives = exclusives.copy() for exclusitem in exclusives: for excpat in cgroup.excludes: if re.match(excpat, exclusitem): excludes.add(exclusitem) filtered_exclusives.difference_update(excludes) used_bics.update(filtered_exclusives) remaining_bics.difference_update(used_bics) sub_components = [] for sub_cgroup in cgroup.cgroups: sub_components.append( expand_exclusives(sub_cgroup, used_bics, remaining_bics) ) cgroup.exclusives = filtered_exclusives def expand_includes( cgroup: CGROUP, used_bics: Set[str], remaining_bics: Set[str] ): """Apply the include filters and expand to builtin category names""" includes = set() excludes = set() local_bics = remaining_bics.copy() for bic in local_bics: for incpat in cgroup.includes: if re.match(incpat, bic): includes.add(bic) filtered_includes = includes.copy() for incitem in includes: for excpat in cgroup.excludes: if re.match(excpat, incitem): excludes.add(incitem) filtered_includes.difference_update(excludes) used_bics.update(filtered_includes) sub_components = [] for sub_cgroup in cgroup.cgroups: sub_components.append( expand_includes(sub_cgroup, used_bics, remaining_bics) ) cgroup.includes = filtered_includes def filter_cgroup(cgroup: CGROUP, name: str): """Find a cgroup in tree by name""" if cgroup.name == name: return cgroup for scgroup in cgroup.cgroups: if mcg := filter_cgroup(scgroup, name): return mcg def create_ccomp(cgroup: CGROUP) -> CategoryComp: """Create component data from expanded cgroup""" root_categories = cgroup.exclusives root_categories.update(cgroup.includes) sub_components = [] for sub_cgroup in cgroup.cgroups: sub_components.append(create_ccomp(sub_cgroup)) sub_categories = {} for sub_comp in sub_components: sub_categories[sub_comp.name] = sub_comp.categories all_sub_bips = [] for sub_bips in sub_comp.categories.values(): all_sub_bips.extend(sub_bips) root_categories = root_categories.difference(all_sub_bips) categories = {"_": sorted(list(root_categories))} categories.update(sub_categories) return CategoryComp(name=cgroup.name, categories=categories) def create_ccomp_collection( version: str, builtin_category_names: List[str] ) -> CategoryCompCollection: """Create component collection from list of builtin category names""" remaining_bics = builtin_category_names.copy() used_bics: Set[str] = set() for cgroup in CGROUPS: expand_exclusives(cgroup, used_bics, remaining_bics) for cgroup in CGROUPS: expand_includes(cgroup, used_bics, remaining_bics) all_comps: List[CategoryComp] = [] if len(sys.argv) > 1: matching_cgroup = None for cgroup in CGROUPS: matching_cgroup = filter_cgroup(cgroup, name=sys.argv[1]) if matching_cgroup: all_comps.append(create_ccomp(matching_cgroup)) else: for cgroup in CGROUPS: if not cgroup.hidden: all_comps.append(create_ccomp(cgroup)) return CategoryCompCollection( version=version, bics=builtin_category_names, components=all_comps, used_bics=used_bics, ) def load_bics(data_file: str): """Load builtin category names from file""" bics_data: Set[str] = set() with open(data_file, "r") as bicfile: bics_data.update([x.strip() for x in bicfile.readlines()]) return bics_data def dump_bics(data_file: str, ccomps_col: CategoryCompCollection): """Dump component collection data into file""" with open(data_file, "w") as datafile: json.dump( ccomps_col, datafile, indent=2, default=lambda x: x.__dict__, ) for entry in os.listdir(DATA_DIR): if entry.endswith(".txt"): bic_file = op.join(DATA_DIR, entry) dafa_filename = op.splitext(op.basename(bic_file))[0] bic_file_version = dafa_filename.split("_")[1] bic_names = load_bics(bic_file) ccomp_collection = create_ccomp_collection(bic_file_version, bic_names) json_file = op.join(DATA_DIR, dafa_filename + ".json") dump_bics(json_file, ccomp_collection)
scripts/undistort_h36m.py
yihui-he2020/epipolar-transformers
360
50970
if __name__ == '__main__' and __package__ is None: import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) )) import os import torch from utils.model_serialization import strip_prefix_if_present from utils import zipreader import argparse from tqdm import tqdm import pickle import cv2 import numpy as np parser = argparse.ArgumentParser(description="PyTorch Keypoints Training") parser.add_argument( "--src", default="~/datasets", help="source model", type=str, ) parser.add_argument( "--dst", default="~/local/datasets/h36m/undistortedimages", help="dst model", type=str, ) parser.add_argument( "--anno", default="~/datasets/h36m/annot/h36m_validation.pkl", type=str, ) args = parser.parse_args() src = os.path.expanduser(args.src) dst = os.path.expanduser(args.dst) with open(os.path.expanduser(args.anno), 'rb') as f: data = pickle.load(f) for db_rec in tqdm(data): path = db_rec['image'] image_dir = 'images.zip@' image_file = os.path.join(src, db_rec['source'], image_dir, 'images', db_rec['image']) output_path = os.path.join(dst, path) if os.path.exists(output_path): continue output_dir = os.path.dirname(output_path) os.makedirs(output_dir, exist_ok=True) data_numpy = zipreader.imread( image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) camera = db_rec['camera'] K = np.array([ [float(camera['fx']), 0, float(camera['cx'])], [0, float(camera['fy']), float(camera['cy'])], [0, 0, 1.], ]) distCoeffs = np.array([float(i) for i in [camera['k'][0], camera['k'][1], camera['p'][0], camera['p'][1], camera['k'][2]]]) data_numpy = cv2.undistort(data_numpy, K, distCoeffs) #cv2.imwrite(output_path, data_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) #cv2.imwrite(output_path, data_numpy) cv2.imwrite(output_path, data_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
bigquery_schema_generator/anonymize.py
ZiggerZZ/bigquery-schema-generator
170
50990
#!/usr/bin/env python3 # # Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Anonymize a newline-delimited JSON data file. By default, both the keys and values are anonymized to prevent any chance of extracting the original source of the data file. To preserve the keys, use the --preserve_keys flag. The purpose of this script is to anonymize large JSON data files for benchmarking purposes, while preserving the structure of the JSON data file so that the BigQuery schema of the anonymized data file is structurally identical to the original data file (modulo the names of the keys). If the --preserve_keys flag is used, then the BigQuery schema file from the anonymized data should be identical to the schema file from the original dataset. Usage: anonymize.py [-h] [flags ...] < file.data.json > file.anon.data.json """ import argparse import json import logging import sys from collections import OrderedDict from bigquery_schema_generator.generate_schema import SchemaGenerator class Anonymizer: """Anonymize both the key and value of a newline-delimited JSON file. The anon_map is used to keep track of the (key -> anon_key) mapping. anon_map := { key: anon_entry, ... } anon_entry := { 'anon_key': anonymous_key, 'anon_map': anon_map, 'next_anon_key': next_key } """ def __init__(self, debugging_interval=1000, preserve_keys=False): self.debugging_interval = debugging_interval self.preserve_keys = preserve_keys self.line_number = 0 def log_error(self, msg): logging.error('line: %s; msg: %s', self.line_number, msg) def anonymize_file(self, file): """Anonymous the JSON data record one line at a time from the given file-like object. """ anon_entry = {} for line in file: self.line_number += 1 if self.line_number % self.debugging_interval == 0: logging.info("Processing line %s", self.line_number) json_object = json.loads(line) if not isinstance(json_object, dict): self.log_error( 'Top level record must be an Object but was a %s' % type(json_object)) continue try: anon_dict = self.anonymize_dict(json_object, anon_entry) except Exception as e: self.log_error(str(e)) json.dump(anon_dict, sys.stdout) print() logging.info("Processed %s lines", self.line_number) def anonymize_dict(self, json_dict, anon_entry): """Recursively anonymize the JSON dictionary object, replacing the key and the value with their anonymized versions. Returns the 'anon_dict' with the 'anon_entry' updated. """ # Add some bookkeeping variables to 'anon_entry' for a dict. anon_map = anon_entry.get('anon_map') if not anon_map: anon_map = {} anon_entry['anon_map'] = anon_map next_anon_key = anon_entry.get('next_anon_key') if not next_anon_key: next_anon_key = 'a' anon_dict = OrderedDict() for key, value in json_dict.items(): child_anon_entry = anon_map.get(key) if not child_anon_entry: child_anon_entry = {} if self.preserve_keys: child_anon_entry['anon_key'] = key else: # Pad the anonymous key to preserve length padding = max(0, len(key) - len(next_anon_key)) child_anon_entry['anon_key'] = \ next_anon_key + ('.' * padding) next_anon_key = increment_anon_key(next_anon_key) anon_map[key] = child_anon_entry if isinstance(value, dict): value = self.anonymize_dict(value, child_anon_entry) elif isinstance(value, list): value = self.anonymize_list(value, child_anon_entry) else: value = self.anonymize_value(value) child_anon_key = child_anon_entry['anon_key'] anon_dict[child_anon_key] = value # Update the next_anon_key so that anon_entry can be reused # for multiple dicts, e.g. in a list or lines in a file. anon_entry['next_anon_key'] = next_anon_key return anon_dict def anonymize_list(self, json_list, anon_entry): """Anonymize the given list, calling anonymize_dict() recursively if necessary. """ anon_list = [] for item in json_list: if isinstance(item, list): item = self.anonymize_list(item, anon_entry) elif isinstance(item, dict): item = self.anonymize_dict(item, anon_entry) else: item = self.anonymize_value(item) anon_list.append(item) return anon_list def anonymize_value(self, value): """Anonymize the value. A string is replaced with a string of an equal number of '*' characters. DATE, TIME and TIMESTAMP values are replaced with a fixed versions of those. An integer is replaced with just a '1'. A float is replaced with just a '2.0'. A boolean is replaced with just a 'True'. """ if isinstance(value, str): if SchemaGenerator.TIMESTAMP_MATCHER.match(value): return '2018-07-17T09:05:00-07:00' elif SchemaGenerator.DATE_MATCHER.match(value): return '2018-07-17' elif SchemaGenerator.TIME_MATCHER.match(value): return '09:05:00' else: # Pad the anonymous string to the same length as the original return '*' * len(value) elif isinstance(value, bool): return True elif isinstance(value, int): return 1 elif isinstance(value, float): return 2.0 elif value is None: return None else: raise Exception('Unsupported node type: %s' % type(value)) def run(self): self.anonymize_file(sys.stdin) def increment_anon_key(key): """Increment the key in base-26 to the next key. The sequence looks like this: [a, ..., z, ba, bb, ..., bz, ..., baa, ...]. Note that this is not the the Excel column label sequence. Base-26 is easier to generate and it's good enough for this use-case. Also note that this method performs NO validation, it assumes that all the digits are in the [a-z] range. """ reversed_key = key[::-1] new_key = '' carry = 1 for c in reversed_key: if carry == 0: new_key += c continue new_ord = ord(c) + carry if new_ord == ord('z') + 1: newc = 'a' carry = 1 else: newc = chr(new_ord) carry = 0 new_key += newc if carry == 1: new_key += 'b' return new_key[::-1] def main(): # Configure command line flags. parser = argparse.ArgumentParser( description='Anonymize newline-delimited JSON data file.') parser.add_argument( '--preserve_keys', help='Preserve the keys, do not anonymize them', action="store_true") parser.add_argument( '--debugging_interval', help='Number of lines between heartbeat debugging messages.', type=int, default=1000) args = parser.parse_args() # Configure logging. logging.basicConfig(level=logging.INFO) anonymizer = Anonymizer(args.debugging_interval, args.preserve_keys) anonymizer.run() if __name__ == '__main__': main()
src/utils.py
teddykoker/image-gpt
196
50993
<filename>src/utils.py import torch def squared_euclidean_distance(a, b): b = torch.transpose(b, 0, 1) a2 = torch.sum(torch.square(a), dim=1, keepdims=True) b2 = torch.sum(torch.square(b), dim=0, keepdims=True) ab = torch.matmul(a, b) d = a2 - 2 * ab + b2 return d def quantize(x, centroids): b, c, h, w = x.shape # [B, C, H, W] => [B, H, W, C] x = x.permute(0, 2, 3, 1).contiguous() x = x.view(-1, c) # flatten to pixels d = squared_euclidean_distance(x, centroids) x = torch.argmin(d, 1) x = x.view(b, h, w) return x def unquantize(x, centroids): return centroids[x]
python-packages/middlewares/test/__init__.py
bryan-liu-nova/ZRXFork
1,075
51025
"""Tests of zero_x.middlewares."""
plans/migrations/0005_recurring_payments.py
feedgurus/django-plans
240
51054
<gh_stars>100-1000 # Generated by Django 3.0.5 on 2020-04-15 07:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('plans', '0004_create_user_plans'), ] operations = [ migrations.AddField( model_name='planpricing', name='has_automatic_renewal', field=models.BooleanField(default=False, help_text='Use automatic renewal if possible?', verbose_name='has automatic renewal'), ), migrations.AlterField( model_name='plan', name='order', field=models.PositiveIntegerField(db_index=True, editable=False, verbose_name='order'), ), migrations.AlterField( model_name='quota', name='order', field=models.PositiveIntegerField(db_index=True, editable=False, verbose_name='order'), ), migrations.CreateModel( name='RecurringUserPlan', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('token', models.CharField(blank=True, default=None, help_text='Token, that will be used for payment renewal. Depends on used payment provider', max_length=255, null=True, verbose_name='recurring token')), ('payment_provider', models.CharField(blank=True, default=None, help_text='Provider, that will be used for payment renewal', max_length=255, null=True, verbose_name='payment provider')), ('amount', models.DecimalField(blank=True, db_index=True, decimal_places=2, max_digits=7, null=True, verbose_name='amount')), ('tax', models.DecimalField(blank=True, db_index=True, decimal_places=2, max_digits=4, null=True, verbose_name='tax')), ('currency', models.CharField(max_length=3, verbose_name='currency')), ('has_automatic_renewal', models.BooleanField(default=False, help_text='Automatic renewal is enabled for associated plan. If False, the plan renewal can be still initiated by user.', verbose_name='has automatic plan renewal')), ('card_expire_year', models.IntegerField(blank=True, null=True)), ('card_expire_month', models.IntegerField(blank=True, null=True)), ('pricing', models.ForeignKey(blank=True, default=None, help_text='Recurring pricing', null=True, on_delete=django.db.models.deletion.CASCADE, to='plans.Pricing')), ('user_plan', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='recurring', to='plans.UserPlan')), ], ), ]
terrascript/resource/terraform_provider_graylog/graylog.py
mjuenema/python-terrascript
507
51077
# terrascript/resource/terraform-provider-graylog/graylog.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:17:31 UTC) import terrascript class graylog_alarm_callback(terrascript.Resource): pass class graylog_alert_condition(terrascript.Resource): pass class graylog_dashboard(terrascript.Resource): pass class graylog_dashboard_widget(terrascript.Resource): pass class graylog_dashboard_widget_positions(terrascript.Resource): pass class graylog_event_definition(terrascript.Resource): pass class graylog_event_notification(terrascript.Resource): pass class graylog_extractor(terrascript.Resource): pass class graylog_grok_pattern(terrascript.Resource): pass class graylog_index_set(terrascript.Resource): pass class graylog_input(terrascript.Resource): pass class graylog_input_static_fields(terrascript.Resource): pass class graylog_ldap_setting(terrascript.Resource): pass class graylog_output(terrascript.Resource): pass class graylog_pipeline(terrascript.Resource): pass class graylog_pipeline_connection(terrascript.Resource): pass class graylog_pipeline_rule(terrascript.Resource): pass class graylog_role(terrascript.Resource): pass class graylog_sidecar_collector(terrascript.Resource): pass class graylog_sidecar_configuration(terrascript.Resource): pass class graylog_sidecars(terrascript.Resource): pass class graylog_stream(terrascript.Resource): pass class graylog_stream_output(terrascript.Resource): pass class graylog_stream_rule(terrascript.Resource): pass class graylog_user(terrascript.Resource): pass __all__ = [ "graylog_alarm_callback", "graylog_alert_condition", "graylog_dashboard", "graylog_dashboard_widget", "graylog_dashboard_widget_positions", "graylog_event_definition", "graylog_event_notification", "graylog_extractor", "graylog_grok_pattern", "graylog_index_set", "graylog_input", "graylog_input_static_fields", "graylog_ldap_setting", "graylog_output", "graylog_pipeline", "graylog_pipeline_connection", "graylog_pipeline_rule", "graylog_role", "graylog_sidecar_collector", "graylog_sidecar_configuration", "graylog_sidecars", "graylog_stream", "graylog_stream_output", "graylog_stream_rule", "graylog_user", ]
projects/ABDNet/eval_acc.py
Danish-VSL/deep-person-reid
244
51142
from __future__ import print_function from __future__ import division import os import sys import time import datetime import os.path as osp import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn from torch.optim import lr_scheduler from args import argument_parser, image_dataset_kwargs, optimizer_kwargs from torchreid.data_manager import ImageDataManager from torchreid import models from torchreid.losses import CrossEntropyLoss, DeepSupervision from torchreid.utils.iotools import save_checkpoint, check_isfile from torchreid.utils.avgmeter import AverageMeter from torchreid.utils.loggers import Logger, RankLogger from torchreid.utils.torchtools import count_num_param, open_all_layers, open_specified_layers from torchreid.utils.reidtools import visualize_ranked_results from torchreid.eval_metrics import evaluate from torchreid.optimizers import init_optimizer from torchreid.regularizers import get_regularizer from torchreid.losses.wrapped_cross_entropy_loss import WrappedCrossEntropyLoss from torchreid.models.tricks.dropout import DropoutOptimizer import logging logging.basicConfig(level=os.environ.get('LOGLEVEL', 'CRITICAL')) # global variables parser = argument_parser() args = parser.parse_args() dropout_optimizer = DropoutOptimizer(args) os.environ['TORCH_HOME'] = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '.torch')) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k. Args: output (torch.Tensor): prediction matrix with shape (batch_size, num_classes). target (torch.LongTensor): ground truth labels with shape (batch_size). topk (tuple, optional): accuracy at top-k will be computed. For example, topk=(1, 5) means accuracy at top-1 and top-5 will be computed. Returns: list: accuracy at top-k. Examples:: >>> from torchreid import metrics >>> metrics.accuracy(output, target) """ maxk = max(topk) batch_size = target.size(0) if isinstance(output, (tuple, list)): output = output[0] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) acc = correct_k.mul_(100.0 / batch_size) res.append(acc) return res def get_criterions(num_classes: int, use_gpu: bool, args) -> ('criterion', 'fix_criterion', 'switch_criterion'): from torchreid.losses.wrapped_triplet_loss import WrappedTripletLoss from torchreid.regularizers.param_controller import HtriParamController htri_param_controller = HtriParamController() if 'htri' in args.criterion: fix_criterion = WrappedTripletLoss(num_classes, use_gpu, args, htri_param_controller) switch_criterion = WrappedTripletLoss(num_classes, use_gpu, args, htri_param_controller) else: fix_criterion = WrappedCrossEntropyLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) switch_criterion = WrappedCrossEntropyLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) if args.criterion == 'xent': criterion = WrappedCrossEntropyLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) elif args.criterion == 'spectral': from torchreid.losses.spectral_loss import SpectralLoss criterion = SpectralLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth, penalty_position=args.penalty_position) elif args.criterion == 'batch_spectral': from torchreid.losses.batch_spectral_loss import BatchSpectralLoss criterion = BatchSpectralLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) elif args.criterion == 'lowrank': from torchreid.losses.lowrank_loss import LowRankLoss criterion = LowRankLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) elif args.criterion == 'singular': from torchreid.losses.singular_loss import SingularLoss criterion = SingularLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth, penalty_position=args.penalty_position) elif args.criterion == 'htri': criterion = WrappedTripletLoss(num_classes=num_classes, use_gpu=use_gpu, args=args, param_controller=htri_param_controller) elif args.criterion == 'singular_htri': from torchreid.losses.singular_triplet_loss import SingularTripletLoss criterion = SingularTripletLoss(num_classes, use_gpu, args, htri_param_controller) elif args.criterion == 'incidence': from torchreid.losses.incidence_loss import IncidenceLoss criterion = IncidenceLoss() elif args.criterion == 'incidence_xent': from torchreid.losses.incidence_xent_loss import IncidenceXentLoss criterion = IncidenceXentLoss(num_classes, use_gpu, args.label_smooth) else: raise RuntimeError('Unknown criterion {!r}'.format(criterion)) if args.fix_custom_loss: fix_criterion = criterion if args.switch_loss < 0: criterion, switch_criterion = switch_criterion, criterion return criterion, fix_criterion, switch_criterion, htri_param_controller def main(): global args, dropout_optimizer torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' if args.evaluate else 'log_train.txt' sys.stderr = sys.stdout = Logger(osp.join(args.save_dir, log_name)) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU, however, GPU is highly recommended") print("Initializing image data manager") dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, testloader_dict = dm.return_dataloaders() print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent'}, use_gpu=use_gpu, dropout_optimizer=dropout_optimizer) print(model) print("Model size: {:.3f} M".format(count_num_param(model))) # criterion = WrappedCrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth) criterion, fix_criterion, switch_criterion, htri_param_controller = get_criterions(dm.num_train_pids, use_gpu, args) regularizer, reg_param_controller = get_regularizer(args.regularizer) optimizer = init_optimizer(model.parameters(), **optimizer_kwargs(args)) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) if args.load_weights and check_isfile(args.load_weights): # load pretrained weights but ignore layers that don't match in size try: checkpoint = torch.load(args.load_weights) except Exception as e: print(e) checkpoint = torch.load(args.load_weights, map_location={'cuda:0': 'cpu'}) # dropout_optimizer.set_p(checkpoint.get('dropout_p', 0)) # print(list(checkpoint.keys()), checkpoint['dropout_p']) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.resume and check_isfile(args.resume): checkpoint = torch.load(args.resume) state = model.state_dict() state.update(checkpoint['state_dict']) model.load_state_dict(state) # args.start_epoch = checkpoint['epoch'] + 1 print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1'])) if use_gpu: model = nn.DataParallel(model, device_ids=list(range(len(args.gpu_devices.split(','))))).cuda() extract_train_info(model, trainloader) def extract_train_info(model, trainloader): model.eval() os.environ['fake'] = '1' accs = [AverageMeter() for _ in range(3)] with torch.no_grad(): for imgs, pids, _, paths in trainloader: xent_features = model(imgs.cuda())[1] for i, xent_feature in enumerate(xent_features): accs[i].update( accuracy(xent_feature, pids.cuda())[0].item(), pids.size(0), ) with open(args.load_weights + '.acc', 'w') as f: print(*(acc.avg for acc in accs), file=f) if __name__ == '__main__': main()
traceback_with_variables/global_hooks.py
cclauss/traceback_with_variables
550
51147
import sys from typing import NoReturn, Optional, Type from traceback_with_variables.print import print_exc, Format def global_print_exc(fmt: Optional[Format] = None) -> NoReturn: sys.excepthook = lambda e_cls, e, tb: print_exc(e=e, fmt=fmt) def global_print_exc_in_ipython(fmt: Optional[Format] = None) -> NoReturn: try: import IPython except ModuleNotFoundError: raise ValueError("IPython not found") IPython.core.interactiveshell.InteractiveShell.showtraceback = \ lambda self, *args, **kwargs: print_exc(num_skipped_frames=1, fmt=fmt) def is_ipython_global(name: str, type_: Type, filename: str, is_global: bool) -> bool: return is_global and ( name in ['In', 'Out', 'get_ipython', 'exit', 'quit'] or name.startswith('_') )
v2/backend/admin/__init__.py
jonfairbanks/rtsp-nvr
558
51159
<gh_stars>100-1000 from backend.magic import Bundle from .macro import macro from .model_admin import ModelAdmin admin_bundle = Bundle(__name__)
umqtt.robust/example_sub_robust.py
Carglglz/micropython-lib
1,556
51197
import time from umqtt.robust import MQTTClient def sub_cb(topic, msg): print((topic, msg)) c = MQTTClient("umqtt_client", "localhost") # Print diagnostic messages when retries/reconnects happens c.DEBUG = True c.set_callback(sub_cb) # Connect to server, requesting not to clean session for this # client. If there was no existing session (False return value # from connect() method), we perform the initial setup of client # session - subscribe to needed topics. Afterwards, these # subscriptions will be stored server-side, and will be persistent, # (as we use clean_session=False). # # There can be a problem when a session for a given client exists, # but doesn't have subscriptions a particular application expects. # In this case, a session needs to be cleaned first. See # example_reset_session.py for an obvious way how to do that. # # In an actual application, it's up to its developer how to # manage these issues. One extreme is to have external "provisioning" # phase, where initial session setup, and any further management of # a session, is done by external tools. This allows to save resources # on a small embedded device. Another extreme is to have an application # to perform auto-setup (e.g., clean session, then re-create session # on each restart). This example shows mid-line between these 2 # approaches, where initial setup of session is done by application, # but if anything goes wrong, there's an external tool to clean session. if not c.connect(clean_session=False): print("New session being set up") c.subscribe(b"foo_topic") while 1: c.wait_msg() c.disconnect()
utils/ProcessorsScheduler.py
Leo-xxx/NeuronBlocks
1,257
51213
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. import multiprocessing from multiprocessing import cpu_count import math class ProcessorsScheduler(object): process_num = cpu_count() def __init__(self, cpu_num_workers=None): if cpu_num_workers != None and cpu_num_workers > 0: self.process_num = cpu_num_workers def run_data_parallel(self, func, func_args): data, rest_args = func_args[0], func_args[1:] res = [] # logging.info("multiprocess enabled, process num: %d" % (self.process_num)) process_p = multiprocessing.Pool(self.process_num) data_length = len(data) size = math.ceil(data_length/ self.process_num) for i in range(self.process_num): start = size * i end = (i + 1) * size if (i + 1) * size < data_length else data_length args = (data[start:end], ) + rest_args res.append((i, process_p.apply_async(func, args=args))) process_p.close() process_p.join() res = sorted(res, key=lambda x:x[0]) return res
stp_zmq/authenticator.py
andkononykhin/plenum
148
51224
import sys import asyncio import zmq import zmq.asyncio from zmq.auth import Authenticator from zmq.auth.thread import _inherit_docstrings, ThreadAuthenticator, \ AuthenticationThread # Copying code from zqm classes since no way to inject these dependencies class MultiZapAuthenticator(Authenticator): """ `Authenticator` supports only one ZAP socket in a single process, this lets you have multiple ZAP sockets """ count = 0 def __init__(self, context=None, encoding='utf-8', log=None): MultiZapAuthenticator.count += 1 super().__init__(context=context, encoding=encoding, log=log) def start(self): """Create and bind the ZAP socket""" self.zap_socket = self.context.socket(zmq.REP) self.zap_socket.linger = 1 zapLoc = 'inproc://zeromq.zap.{}'.format(MultiZapAuthenticator.count) self.zap_socket.bind(zapLoc) self.log.debug('Starting ZAP at {}'.format(zapLoc)) def stop(self): """Close the ZAP socket""" if self.zap_socket: self.log.debug( 'Stopping ZAP at {}'.format(self.zap_socket.LAST_ENDPOINT)) super().stop() @_inherit_docstrings class ThreadMultiZapAuthenticator(ThreadAuthenticator): def start(self): """Start the authentication thread""" # create a socket to communicate with auth thread. self.pipe = self.context.socket(zmq.PAIR) self.pipe.linger = 1 self.pipe.bind(self.pipe_endpoint) authenticator = MultiZapAuthenticator(self.context, encoding=self.encoding, log=self.log) self.thread = AuthenticationThread(self.context, self.pipe_endpoint, encoding=self.encoding, log=self.log, authenticator=authenticator) self.thread.start() # Event.wait:Changed in version 2.7: Previously, the method always returned None. if sys.version_info < (2, 7): self.thread.started.wait(timeout=10) else: if not self.thread.started.wait(timeout=10): raise RuntimeError("Authenticator thread failed to start") class AsyncioAuthenticator(MultiZapAuthenticator): """ZAP authentication for use in the asyncio IO loop""" def __init__(self, context=None, loop=None): super().__init__(context) self.loop = loop or asyncio.get_event_loop() self.__poller = None self.__task = None # TODO: Remove this commented method later # @asyncio.coroutine # def __handle_zap(self): # while True: # events = yield from self.__poller.poll() # if self.zap_socket in dict(events): # msg = yield from self.zap_socket.recv_multipart() # self.handle_zap_message(msg) async def __handle_zap(self): while True: events = await self.__poller.poll() if self.zap_socket in dict(events): msg = await self.zap_socket.recv_multipart() self.handle_zap_message(msg) def start(self): """Start ZAP authentication""" super().start() self.__poller = zmq.asyncio.Poller() self.__poller.register(self.zap_socket, zmq.POLLIN) self.__task = asyncio.ensure_future(self.__handle_zap()) def stop(self): """Stop ZAP authentication""" if self.__task: self.__task.cancel() if self.__poller: self.__poller.unregister(self.zap_socket) self.__poller = None super().stop()
pysph/tools/tests/test_mesh_tools.py
nauaneed/pysph
293
51227
import numpy as np import unittest import pytest from pysph.base.particle_array import ParticleArray import pysph.tools.mesh_tools as G from pysph.base.utils import get_particle_array # Data of a unit length cube def cube_data(): points = np.array([[0., 0., 0.], [0., 1., 0.], [1., 1., 0.], [1., 0., 0.], [0., 0., 1.], [0., 1., 1.], [1., 0., 1.], [1., 1., 1.]]) x_cube, y_cube, z_cube = points.T cells = np.array([[0, 1, 2], [0, 2, 3], [0, 4, 5], [0, 5, 1], [0, 3, 6], [0, 6, 4], [4, 6, 7], [4, 7, 5], [3, 2, 7], [3, 7, 6], [1, 5, 7], [1, 7, 2]]) normals = np.array([[0., 0., -1.], [0., 0., -1.], [-1., 0., 0.], [-1., 0., 0.], [0., -1., 0.], [0., -1., 0.], [0., 0., 1.], [0., 0., 1.], [1., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 1., 0.]]) vectors = np.zeros((len(cells), 3, 3)) for i, cell in enumerate(cells): idx1, idx2, idx3 = cell vector = np.array([[x_cube[idx1], y_cube[idx1], z_cube[idx1]], [x_cube[idx2], y_cube[idx2], z_cube[idx2]], [x_cube[idx3], y_cube[idx3], z_cube[idx3]]]) vectors[i] = vector return x_cube, y_cube, z_cube, cells, normals, vectors class TestGeometry(unittest.TestCase): def test_in_triangle(self): assert(G._in_triangle(0.5, 0.5, 0.0, 0.0, 1.5, 0.0, 0.0, 1.5) is True) assert(G._in_triangle(1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0) is False) def test_interp_2d(self): # Check interpolation between two points on line y=x dx = 0.1 r = G._interp_2d(np.array([0., 0.]), np.array([1., 1.]), dx) # Check if all points satisfy y=x np.testing.assert_array_almost_equal( r[:, 0] - r[:, 1], np.zeros(r.shape[0])) # Check if distance between consecutive points is lesser than dx np.testing.assert_array_less(np.linalg.norm(r[1:] - r[0:-1], axis=1), np.ones(r.shape[0] - 1) * dx) def test_fill_triangle(self): triangle = np.array([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.]]) dx_triangle = 0.1 x, y, z = G._fill_triangle(triangle, dx_triangle) EPS = np.finfo(float).eps np.testing.assert_array_less(-x, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-y, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-(x + y), np.ones(x.shape[0]) + EPS) np.testing.assert_almost_equal(z, np.zeros(x.shape[0])) def test_fill_triangle_throws_zero_area_triangle_exception(self): self.assertRaises(G.ZeroAreaTriangleException, G._fill_triangle, np.zeros((3, 3)), 0.5) def test_fill_triangle_throws_polygon_mesh_error(self): self.assertRaises(G.PolygonMeshError, G._fill_triangle, np.zeros((4, 3)), 0.5) def test_get_points_from_mgrid(self): """Find neighbouring particles around a unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z, x_list, y_list, z_list, vectors = \ G._get_surface_mesh(x_cube, y_cube, z_cube, cells, h, uniform=True) pa_mesh = ParticleArray(name='mesh', x=x, y=y, z=z, h=h) offset = h x_grid, y_grid, z_grid = np.meshgrid( np.arange(x.min() - offset, x.max() + offset, h), np.arange(y.min() - offset, y.max() + offset, h), np.arange(z.min() - offset, z.max() + offset, h)) pa_grid = ParticleArray(name='grid', x=x_grid, y=y_grid, z=z_grid, h=h) x_grid, y_grid, z_grid = G.get_points_from_mgrid( pa_grid, pa_mesh, x_list, y_list, z_list, 1, h, vectors, normals ) for i in range(x.shape[0]): assert((x[i] ** 2 + y[i] ** 2 + z[i] ** 2) <= 4) def _cube_assert(self, x, y, z, h): """Check if x,y,z lie within surface of thickness `h` of a unit cube""" def surface1(x, y, z): return min(abs(x), abs(1 - x)) < h and \ y > -h and y < 1 + h and z > -h and z < 1 + h def on_surface(x, y, z): return surface1(x, y, z) or \ surface1(y, x, z) or surface1(z, x, y) for i in range(x.shape[0]): assert on_surface(x[i], y[i], z[i]) def test_get_surface_mesh(self): """Check if mesh is generated correctly for unit cube""" x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G._get_surface_mesh(x_cube, y_cube, z_cube, cells, 0.1) h = np.finfo(float).eps self._cube_assert(x, y, z, h) def test_get_surface_points(self): """Check if surface is generated correctly for unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G.surface_points(x_cube, y_cube, z_cube, cells, h) self._cube_assert(x, y, z, h) def test_get_surface_points_uniform(self): """Check if uniform surface is generated correctly for unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G.surf_points_uniform(x_cube, y_cube, z_cube, cells, normals, 1.0, 1.0) self._cube_assert(x, y, z, h) def test_prism(self): tri_normal = np.array([0, -1, 0]) tri_points = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 1]]) h = 1/1.5 prism_normals, prism_points, prism_face_centres = \ G.prism(tri_normal, tri_points, h) assert np.array([-1, 0, 0]) in prism_normals assert np.array([0, 1, 0]) in prism_points assert np.array([0.5, 0.5, 0]) in prism_face_centres if __name__ == "__main__": unittest.main()
mode/examples/Topics/AdvancedData/LoadSaveTable/Bubble.py
timgates42/processing.py
1,224
51277
<filename>mode/examples/Topics/AdvancedData/LoadSaveTable/Bubble.py<gh_stars>1000+ # A Bubble class class Bubble(object): # Create the Bubble def __init__(self, x, y, diameter, name): self.x = x self.y = y self.diameter = diameter self.name = name self.over = False # Checking if mouse is over the Bubble def rollover(self, px, py): d = dist(px, py, self.x, self.y) self.over = d < self.diameter / 2 # Display the Bubble def display(self): stroke(0) strokeWeight(2) noFill() ellipse(self.x, self.y, self.diameter, self.diameter) if self.over: fill(0) textAlign(CENTER) text(self.name, self.x, self.y + self.diameter / 2 + 20)
etw/evntprov.py
tyh2333/pywintrace
247
51307
<filename>etw/evntprov.py ######################################################################## # Copyright 2017 FireEye Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ######################################################################## import ctypes as ct import ctypes.wintypes as wt EVENT_FILTER_TYPE_NONE = 0x00000000 EVENT_FILTER_TYPE_SCHEMATIZED = 0x80000000 EVENT_FILTER_TYPE_SYSTEM_FLAGS = 0x80000001 VENT_FILTER_TYPE_TRACEHANDLE = 0x80000002 EVENT_FILTER_TYPE_PID = 0x80000004 EVENT_FILTER_TYPE_EXECUTABLE_NAME = 0x80000008 EVENT_FILTER_TYPE_PACKAGE_ID = 0x80000010 EVENT_FILTER_TYPE_PACKAGE_APP_ID = 0x80000020 EVENT_FILTER_TYPE_PAYLOAD = 0x80000100 EVENT_FILTER_TYPE_EVENT_ID = 0x80000200 EVENT_FILTER_TYPE_STACKWALK = 0x80001000 MAX_EVENT_FILTER_EVENT_ID_COUNT = 64 MAX_EVENT_FILTER_DATA_SIZE = 1024 class EVENT_FILTER_DESCRIPTOR(ct.Structure): _fields_ = [('Ptr', ct.c_ulonglong), ('Size', ct.c_ulong), ('Type', ct.c_ulong)] class EVENT_FILTER_HEADER(ct.Structure): _fields_ = [('Id', wt.USHORT), ('Version', wt.CHAR), ('Reserved', wt.CHAR * 5), ('InstanceId', ct.c_ulonglong), ('Size', wt.ULONG), ('NextOffset', wt.ULONG)] class EVENT_FILTER_EVENT_ID(ct.Structure): _fields_ = [('FilterIn', wt.BOOLEAN), ('Reserved', wt.CHAR), ('Count', wt.USHORT), ('Events', wt.USHORT * 0)] def __init__(self, filter_in, events): struct_size = len(events) * ct.sizeof(wt.USHORT) + ct.sizeof(EVENT_FILTER_EVENT_ID) self._buf = (ct.c_char * struct_size)() self._props = ct.cast(ct.pointer(self._buf), ct.POINTER(EVENT_FILTER_EVENT_ID)) self._props.contents.FilterIn = filter_in self._props.contents.Reserved = 0 self._props.contents.Count = len(events) for i in range(len(events)): ct.memmove(ct.cast(ct.addressof(self._buf) + ct.sizeof(EVENT_FILTER_EVENT_ID) + (ct.sizeof(wt.WCHAR) * i), ct.c_void_p), ct.byref(wt.USHORT(events[i])), ct.sizeof(wt.WCHAR)) def get(self): return self._props class EVENT_FILTER_LEVEL_KW(ct.Structure): _fields_ = [('MatchAnyKeyword', ct.c_ulonglong), ('MatchAllKeyword', ct.c_ulonglong), ('Level', wt.CHAR), ('FilterIn', wt.BOOLEAN)] class EVENT_FILTER_EVENT_NAME(ct.Structure): _fields_ = [('MatchAnyKeyword', ct.c_ulonglong), ('MatchAllKeyword', ct.c_ulonglong), ('Level', wt.CHAR), ('FilterIn', wt.BOOLEAN), ('NameCount', wt.USHORT), ('Names', wt.CHAR * 0)] def __init__(self, match_any, match_all, level, filter_in, names): struct_size = ((sum([len(name) for name in names]) * ct.sizeof(wt.CHAR)) + (ct.sizeof(wt.CHAR) * len(names))) +\ ct.sizeof(EVENT_FILTER_EVENT_NAME) self._buf = (ct.c_char * struct_size)() self._props = ct.cast(ct.pointer(self._buf), ct.POINTER(EVENT_FILTER_EVENT_NAME)) self._props.contents.MatchAnyKeyword = match_any self._props.contents.MatchAllKeyword = match_all self._props.contents.Level = level self._props.contents.FilterIn = filter_in self._props.contents.NameCount = len(names) str_off = 0 for i in range(len(names)): ct.memmove(ct.cast(ct.addressof(self._buf) + ct.sizeof(EVENT_FILTER_EVENT_NAME) + str_off, ct.c_void_p), names[i], len(names[i])) str_off += len(names[i]) + ct.sizeof(wt.CHAR) def get(self): return self._props class EVENT_DESCRIPTOR(ct.Structure): _fields_ = [('Id', ct.c_ushort), ('Version', ct.c_ubyte), ('Channel', ct.c_ubyte), ('Level', ct.c_ubyte), ('Opcode', ct.c_ubyte), ('Task', ct.c_ushort), ('Keyword', ct.c_ulonglong)]
bindings/python/py_src/tokenizers/tools/visualizer.py
AnubhabB/tokenizers
5,620
51357
import os import itertools import re from typing import List, Optional, Tuple, Dict, Callable, Any, NamedTuple from string import Template from typing import List from tokenizers import Tokenizer, Encoding dirname = os.path.dirname(__file__) css_filename = os.path.join(dirname, "visualizer-styles.css") with open(css_filename) as f: css = f.read() class Annotation: start: int end: int label: int def __init__(self, start: int, end: int, label: str): self.start = start self.end = end self.label = label AnnotationList = List[Annotation] PartialIntList = List[Optional[int]] class CharStateKey(NamedTuple): token_ix: Optional[int] anno_ix: Optional[int] class CharState: char_ix: Optional[int] def __init__(self, char_ix): self.char_ix = char_ix self.anno_ix: Optional[int] = None self.tokens: List[int] = [] @property def token_ix(self): return self.tokens[0] if len(self.tokens) > 0 else None @property def is_multitoken(self): """ BPE tokenizers can output more than one token for a char """ return len(self.tokens) > 1 def partition_key(self) -> CharStateKey: return CharStateKey( token_ix=self.token_ix, anno_ix=self.anno_ix, ) class Aligned: pass class EncodingVisualizer: """ Build an EncodingVisualizer Args: tokenizer (:class:`~tokenizers.Tokenizer`): A tokenizer instance default_to_notebook (:obj:`bool`): Whether to render html output in a notebook by default annotation_converter (:obj:`Callable`, `optional`): An optional (lambda) function that takes an annotation in any format and returns an Annotation object """ unk_token_regex = re.compile("(.{1}\b)?(unk|oov)(\b.{1})?", flags=re.IGNORECASE) def __init__( self, tokenizer: Tokenizer, default_to_notebook: bool = True, annotation_converter: Optional[Callable[[Any], Annotation]] = None, ): if default_to_notebook: try: from IPython.core.display import display, HTML except ImportError as e: raise Exception( """We couldn't import IPython utils for html display. Are you running in a notebook? You can also pass `default_to_notebook=False` to get back raw HTML """ ) self.tokenizer = tokenizer self.default_to_notebook = default_to_notebook self.annotation_coverter = annotation_converter pass def __call__( self, text: str, annotations: AnnotationList = [], default_to_notebook: Optional[bool] = None, ) -> Optional[str]: """ Build a visualization of the given text Args: text (:obj:`str`): The text to tokenize annotations (:obj:`List[Annotation]`, `optional`): An optional list of annotations of the text. The can either be an annotation class or anything else if you instantiated the visualizer with a converter function default_to_notebook (:obj:`bool`, `optional`, defaults to `False`): If True, will render the html in a notebook. Otherwise returns an html string. Returns: The HTML string if default_to_notebook is False, otherwise (default) returns None and renders the HTML in the notebook """ final_default_to_notebook = self.default_to_notebook if default_to_notebook is not None: final_default_to_notebook = default_to_notebook if final_default_to_notebook: try: from IPython.core.display import display, HTML except ImportError as e: raise Exception( """We couldn't import IPython utils for html display. Are you running in a notebook?""" ) if self.annotation_coverter is not None: annotations = list(map(self.annotation_coverter, annotations)) encoding = self.tokenizer.encode(text) html = EncodingVisualizer.__make_html(text, encoding, annotations) if final_default_to_notebook: display(HTML(html)) else: return html @staticmethod def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]: """ Generates a color palette for all the labels in a given set of annotations Args: annotations (:obj:`Annotation`): A list of annotations Returns: :obj:`dict`: A dictionary mapping labels to colors in HSL format """ if len(annotations) == 0: return {} labels = set(map(lambda x: x.label, annotations)) num_labels = len(labels) h_step = int(255 / num_labels) if h_step < 20: h_step = 20 s = 32 l = 64 h = 10 colors = {} for label in sorted( labels ): # sort so we always get the same colors for a given set of labels colors[label] = f"hsl({h},{s}%,{l}%" h += h_step return colors @staticmethod def consecutive_chars_to_html( consecutive_chars_list: List[CharState], text: str, encoding: Encoding, ): """ Converts a list of "consecutive chars" into a single HTML element. Chars are consecutive if they fall under the same word, token and annotation. The CharState class is a named tuple with a "partition_key" method that makes it easy to compare if two chars are consecutive. Args: consecutive_chars_list (:obj:`List[CharState]`): A list of CharStates that have been grouped together text (:obj:`str`): The original text being processed encoding (:class:`~tokenizers.Encoding`): The encoding returned from the tokenizer Returns: :obj:`str`: The HTML span for a set of consecutive chars """ first = consecutive_chars_list[0] if first.char_ix is None: # its a special token stoken = encoding.tokens[first.token_ix] # special tokens are represented as empty spans. We use the data attribute and css # magic to display it return f'<span class="special-token" data-stoken={stoken}></span>' # We're not in a special token so this group has a start and end. last = consecutive_chars_list[-1] start = first.char_ix end = last.char_ix + 1 span_text = text[start:end] css_classes = [] # What css classes will we apply on the resulting span data_items = {} # What data attributes will we apply on the result span if first.token_ix is not None: # We can either be in a token or not (e.g. in white space) css_classes.append("token") if first.is_multitoken: css_classes.append("multi-token") if first.token_ix % 2: # We use this to color alternating tokens. # A token might be split by an annotation that ends in the middle of it, so this # lets us visually indicate a consecutive token despite its possible splitting in # the html markup css_classes.append("odd-token") else: # Like above, but a different color so we can see the tokens alternate css_classes.append("even-token") if ( EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None ): # This is a special token that is in the text. probably UNK css_classes.append("special-token") # TODO is this the right name for the data attribute ? data_items["stok"] = encoding.tokens[first.token_ix] else: # In this case we are looking at a group/single char that is not tokenized. # e.g. white space css_classes.append("non-token") css = f'''class="{' '.join(css_classes)}"''' data = "" for key, val in data_items.items(): data += f' data-{key}="{val}"' return f"<span {css} {data} >{span_text}</span>" @staticmethod def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str: char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations) current_consecutive_chars = [char_states[0]] prev_anno_ix = char_states[0].anno_ix spans = [] label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations) cur_anno_ix = char_states[0].anno_ix if cur_anno_ix is not None: # If we started in an annotation make a span for it anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">') for cs in char_states[1:]: cur_anno_ix = cs.anno_ix if cur_anno_ix != prev_anno_ix: # If we've transitioned in or out of an annotation spans.append( # Create a span from the current consecutive characters EncodingVisualizer.consecutive_chars_to_html( current_consecutive_chars, text=text, encoding=encoding, ) ) current_consecutive_chars = [cs] if prev_anno_ix is not None: # if we transitioned out of an annotation close it's span spans.append("</span>") if cur_anno_ix is not None: # If we entered a new annotation make a span for it anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append( f'<span class="annotation" style="color:{color}" data-label="{label}">' ) prev_anno_ix = cur_anno_ix if cs.partition_key() == current_consecutive_chars[0].partition_key(): # If the current charchter is in the same "group" as the previous one current_consecutive_chars.append(cs) else: # Otherwise we make a span for the previous group spans.append( EncodingVisualizer.consecutive_chars_to_html( current_consecutive_chars, text=text, encoding=encoding, ) ) # An reset the consecutive_char_list to form a new group current_consecutive_chars = [cs] # All that's left is to fill out the final span # TODO I think there is an edge case here where an annotation's span might not close spans.append( EncodingVisualizer.consecutive_chars_to_html( current_consecutive_chars, text=text, encoding=encoding, ) ) res = HTMLBody(spans) # Send the list of spans to the body of our html return res @staticmethod def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList: """ Args: text (:obj:`str`): The raw text we want to align to annotations (:obj:`AnnotationList`): A (possibly empty) list of annotations Returns: A list of length len(text) whose entry at index i is None if there is no annotation on charachter i or k, the index of the annotation that covers index i where k is with respect to the list of annotations """ annotation_map = [None] * len(text) for anno_ix, a in enumerate(annotations): for i in range(a.start, a.end): annotation_map[i] = anno_ix return annotation_map @staticmethod def __make_char_states( text: str, encoding: Encoding, annotations: AnnotationList ) -> List[CharState]: """ For each character in the original text, we emit a tuple representing it's "state": * which token_ix it corresponds to * which word_ix it corresponds to * which annotation_ix it corresponds to Args: text (:obj:`str`): The raw text we want to align to annotations (:obj:`List[Annotation]`): A (possibly empty) list of annotations encoding: (:class:`~tokenizers.Encoding`): The encoding returned from the tokenizer Returns: :obj:`List[CharState]`: A list of CharStates, indicating for each char in the text what it's state is """ annotation_map = EncodingVisualizer.__make_anno_map(text, annotations) # Todo make this a dataclass or named tuple char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))] for token_ix, token in enumerate(encoding.tokens): offsets = encoding.token_to_chars(token_ix) if offsets is not None: start, end = offsets for i in range(start, end): char_states[i].tokens.append(token_ix) for char_ix, anno_ix in enumerate(annotation_map): char_states[char_ix].anno_ix = anno_ix return char_states def HTMLBody(children: List[str], css_styles=css) -> str: """ Generates the full html with css from a list of html spans Args: children (:obj:`List[str]`): A list of strings, assumed to be html elements css_styles (:obj:`str`, `optional`): Optional alternative implementation of the css Returns: :obj:`str`: An HTML string with style markup """ children_text = "".join(children) return f""" <html> <head> <style> {css_styles} </style> </head> <body> <div class="tokenized-text" dir=auto> {children_text} </div> </body> </html> """
core/argo/core/network/s-vae/hyperspherical_vae/ops/ive.py
szokejokepu/natural-rws
164
51366
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The exponentially scaled modified Bessel function of the first kind.""" import numpy as np import scipy.special from tensorflow.python.ops import script_ops from tensorflow.python.ops import array_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops.custom_gradient import custom_gradient @custom_gradient def ive(v, z): """Exponentially scaled modified Bessel function of the first kind.""" output = array_ops.reshape(script_ops.py_func( lambda v, z: np.select(condlist=[v == 0, v == 1], choicelist=[scipy.special.i0e(z, dtype=z.dtype), scipy.special.i1e(z, dtype=z.dtype)], default=scipy.special.ive(v, z, dtype=z.dtype)), [v, z], z.dtype), ops.convert_to_tensor(array_ops.shape(z), dtype=dtypes.int32)) def grad(dy): return None, dy * (ive(v - 1, z) - ive(v, z) * (v + z) / z) return output, grad
py/mistql/cli.py
evinism/millieql
263
51373
<reponame>evinism/millieql #!/usr/bin/env python3 from typing import Union import argparse from mistql import __version__ from mistql import query import sys import json import logging log = logging.getLogger(__name__) parser = argparse.ArgumentParser( description="CLI for the python MistQL query language implementation" ) parser.add_argument("--version", "-v", action="version", version=__version__) parser.add_argument("query", type=str, help="The query to run") inputgroup = parser.add_mutually_exclusive_group() inputgroup.add_argument("--data", "-d", type=str, help="The data to run the query on.") inputgroup.add_argument( "--file", "-f", type=str, help="The file to read the data from. Defaults to stdin" ) parser.add_argument( "--output", "-o", type=str, help="The output file. Defaults to stdout" ) parser.add_argument( "--pretty", "-p", action="store_true", help="Pretty print the output" ) def main(supplied_args=None): if supplied_args is None: args = parser.parse_args() else: args = parser.parse_args(supplied_args) raw_data: Union[str, bytes] if args.data: raw_data = args.data elif args.file: with open(args.file, 'rb') as f: raw_data = f.read() else: raw_data = sys.stdin.buffer.read() data = json.loads(raw_data) out = query(args.query, data) if args.output: # TODO: Allow alternate output encodings other than utf-8 out_bytes = json.dumps( out, indent=2 if args.pretty else None, ensure_ascii=False ).encode("utf-8") with open(args.output, "wb") as f: f.write(out_bytes) else: print(json.dumps(out, indent=2 if args.pretty else None, ensure_ascii=False)) if __name__ == "__main__": main()
malib/algorithm/common/__init__.py
ReinholdM/play_football_with_human
258
51411
<filename>malib/algorithm/common/__init__.py """ __init__.py @Organization: @Author: <NAME> @Time: 4/22/21 5:28 PM @Function: """
python/pyspark_hbase/sql/context.py
CrazyZero1/astro
365
51413
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark.sql import SQLContext from py4j.java_gateway import java_import def register(sc): java_import(sc._gateway.jvm, "org.apache.spark.sql.hbase.HBaseSQLContext") __all__ = ["HBaseSQLContext"] class HBaseSQLContext(SQLContext): """A variant of Spark SQL that integrates with data stored in HBase. """ def __init__(self, sparkContext): """Create a new HbaseContext. @param sparkContext: The SparkContext to wrap. """ SQLContext.__init__(self, sparkContext) self._scala_HBaseSQLContext = self._get_hbase_ctx() @property def _ssql_ctx(self): if self._scala_HBaseSQLContext is None: print ("loading hbase context ..") self._scala_HBaseSQLContext = self._get_hbase_ctx() if self._scala_SQLContext is None: self._scala_SQLContext = self._scala_HBaseSQLContext return self._scala_HBaseSQLContext def _get_hbase_ctx(self): return self._jvm.HBaseSQLContext(self._jsc.sc()) #TODO: add tests if for main
art/estimators/poison_mitigation/strip/__init__.py
monshri/adversarial-robustness-toolbox
1,350
51414
""" STRIP estimators. """ from art.estimators.poison_mitigation.strip.strip import STRIPMixin
backend/db/friend.py
sleepingAnt/viewfinder
645
51428
# Copyright 2012 Viewfinder Inc. All Rights Reserved. """Friend relation. Viewfinder friends define a relationship between two users predicated on confirmation of photo sharing permission. Each friend has an associated 'status', which can be: - 'friend': user has been marked as a friend; however, that user may not have the reverse friendship object. - 'muted': a friend who has attained special status as an unwanted irritant. Content shared from these friends is not shown, though still received and can be retrieved. - 'blocked': a friend who has attained special status as an unwanted irritant. These users will not show up in suggestions lists and cannot be contacted for sharing. Friends are different than contacts. Contacts are the full spectrum of social connections. A contact doesn't become a viewfinder friend until a share has been completed. NOTE: Next comment is outdated, but we may re-enable something similar in future. The 'colocated_shares', 'total_shares', 'last_colocated' and 'last_share' values are used to quantify the strength of the sharing relationship. Each time the users in a friend relationship are co-located, 'colocated_shares' is decayed based on 'last_colocated' and the current time and updated either with a +1 if the sharing occurs or a -1 if not. 'total_shares' is similarly updated, though not just when the users are co-located, but on every share that a user initiates. Friend: viewfinder friend information """ __authors__ = ['<EMAIL> (<NAME>)', '<EMAIL> (<NAME>)'] import logging import math from functools import partial from tornado import gen from viewfinder.backend.base import util from viewfinder.backend.base.exceptions import NotFoundError from viewfinder.backend.db import db_client, vf_schema from viewfinder.backend.db.base import DBObject from viewfinder.backend.db.range_base import DBRangeObject from viewfinder.backend.op.notification_manager import NotificationManager @DBObject.map_table_attributes class Friend(DBRangeObject): """Viewfinder friend data object.""" __slots__ = [] _table = DBObject._schema.GetTable(vf_schema.FRIEND) FRIEND = 'friend' MUTED = 'muted' BLOCKED = 'blocked' FRIEND_ATTRIBUTES = set(['nickname']) """Subset of friend attributes that should be projected to the user.""" _SHARE_HALF_LIFE = 60 * 60 * 24 * 30 # 1 month def __init__(self, user_id=None, friend_id=None): super(Friend, self).__init__() self.user_id = user_id self.friend_id = friend_id self.status = Friend.FRIEND def IsBlocked(self): """Returns true if the "friend" identified by self.friend_id is blocked.""" return self.status == Friend.BLOCKED def DecayShares(self, timestamp): """Decays 'total_shares' and 'colocated_shares' based on 'timestamp'. Updates 'last_share' and 'last_colocated' to 'timestamp'. """ def _ComputeDecay(shares, last_time): if last_time is None: assert shares is None, shares return 0 decay = math.exp(-math.log(2) * (timestamp - last_time) / Friend._SHARE_HALF_LIFE) return shares * decay self.total_shares = _ComputeDecay(self.total_shares, self.last_share) self.last_share = timestamp self.colocated_shares = _ComputeDecay(self.colocated_shares, self.last_colocated) self.last_colocated = timestamp def IncrementShares(self, timestamp, shared, colocated): """Decays and updates 'total_shares' and 'last_share' based on whether sharing occurred ('shared'==True). If 'colocated', the 'colocated_shares' and 'last_colocated' are updated similarly. """ self.DecayShares(timestamp) self.total_shares += (1.0 if shared else -1.0) if colocated: self.colocated_shares += (1.0 if shared else -1.0) @classmethod @gen.engine def MakeFriends(cls, client, user_id, friend_id, callback): """Creates a bi-directional friendship between user_id and friend_id if it does not already exist. Invokes the callback with the pair of friendship objects: [(user_id=>friend_id), (friend_id=>user_id)] """ from viewfinder.backend.db.user import User # Determine whether one or both sides of the friendship are missing. forward_friend, reverse_friend = \ yield [gen.Task(Friend.Query, client, user_id, friend_id, None, must_exist=False), gen.Task(Friend.Query, client, friend_id, user_id, None, must_exist=False)] # Make sure that both sides of the friendship have been created. if forward_friend is None: forward_friend = Friend.CreateFromKeywords(user_id=user_id, friend_id=friend_id, status=Friend.FRIEND) yield gen.Task(forward_friend.Update, client) if reverse_friend is None: reverse_friend = Friend.CreateFromKeywords(user_id=friend_id, friend_id=user_id, status=Friend.FRIEND) yield gen.Task(reverse_friend.Update, client) callback((forward_friend, reverse_friend)) @classmethod @gen.engine def MakeFriendsWithGroup(cls, client, user_ids, callback): """Creates bi-directional friendships between all the specified users. Each user will be friends with every other user. """ yield [gen.Task(Friend.MakeFriends, client, user_id, friend_id) for index, user_id in enumerate(user_ids) for friend_id in user_ids[index + 1:] if user_id != friend_id] callback() @classmethod @gen.engine def MakeFriendAndUpdate(cls, client, user_id, friend_dict, callback): """Ensures that the given user has at least a one-way friend relationship with the given friend. Updates the friend relationship attributes with those given in "friend_dict". """ from viewfinder.backend.db.user import User friend = yield gen.Task(Friend.Query, client, user_id, friend_dict['user_id'], None, must_exist=False) if friend is None: # Ensure that the friend exists as user in the system. friend_user = yield gen.Task(User.Query, client, friend_dict['user_id'], None, must_exist=False) if friend_user is None: raise NotFoundError('User %d does not exist.' % friend_dict['user_id']) # Create a one-way friend relationship from the calling user to the friend user. friend = Friend.CreateFromKeywords(user_id=user_id, friend_id=friend_dict['user_id'], status=Friend.FRIEND) # Update all given attributes. assert friend_dict['user_id'] == friend.friend_id, (friend_dict, friend) for key, value in friend_dict.iteritems(): if key != 'user_id': assert key in Friend.FRIEND_ATTRIBUTES, friend_dict setattr(friend, key, value) yield gen.Task(friend.Update, client) callback() @classmethod @gen.engine def UpdateOperation(cls, client, callback, user_id, friend): """Updates friend metadata for the relationship between the given user and friend.""" # Update the metadata. yield gen.Task(Friend.MakeFriendAndUpdate, client, user_id, friend) # Send notifications to all the calling user's devices. yield NotificationManager.NotifyUpdateFriend(client, friend) callback()
samples/vsphere/contentlibrary/vmtemplate/create_vm_template.py
restapicoding/VMware-SDK
589
51445
<reponame>restapicoding/VMware-SDK #!/usr/bin/env python """ * ******************************************************* * Copyright VMware, Inc. 2017-2018. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ __author__ = 'VMware, Inc.' __vcenter_version__ = '6.6.2+' from com.vmware.vcenter.vm_template_client import ( LibraryItems as VmtxLibraryItem) from vmware.vapi.vsphere.client import create_vsphere_client from samples.vsphere.common.id_generator import rand from samples.vsphere.common.sample_base import SampleBase from samples.vsphere.common.ssl_helper import get_unverified_session from samples.vsphere.contentlibrary.lib.cls_api_client import ClsApiClient from samples.vsphere.contentlibrary.lib.cls_api_helper import ClsApiHelper from samples.vsphere.vcenter.helper.resource_pool_helper import ( get_resource_pool) from samples.vsphere.vcenter.helper.vm_helper import get_vm class CreateVmTemplate(SampleBase): """ Demonstrates how to create a library item containing a virtual machine template from a virtual machine. Prerequisites: - A virtual machine - A datacenter - A resource pool - A datastore """ def __init__(self): SampleBase.__init__(self, self.__doc__) self.servicemanager = None self.client = None self.helper = None self.vm_name = None self.datastore_name = None self.library_name = 'demo-vmtx-lib' self.item_name = None self.item_id = None def _options(self): self.argparser.add_argument('-vmname', '--vmname', required=True, help='The name of the source VM from ' 'which to create a library item') self.argparser.add_argument('-datacentername', '--datacentername', required=True, help='The name of the datacenter in which ' 'to place the VM template') self.argparser.add_argument('-resourcepoolname', '--resourcepoolname', required=True, help='The name of the resource pool in ' 'the datacenter in which to place ' 'the VM template') self.argparser.add_argument('-datastorename', '--datastorename', required=True, help='The name of the datastore in which ' 'to create a library and VM template') self.argparser.add_argument('-itemname', '--itemname', help='The name of the library item to ' 'create. The item will contain a ' 'VM template.') def _setup(self): # Required arguments self.vm_name = self.args.vmname self.datacenter_name = self.args.datacentername self.resource_pool_name = self.args.resourcepoolname self.datastore_name = self.args.datastorename # Optional arguments self.item_name = (self.args.itemname if self.args.itemname else rand('vmtx-item-')) self.servicemanager = self.get_service_manager() self.client = ClsApiClient(self.servicemanager) self.helper = ClsApiHelper(self.client, self.skip_verification) session = get_unverified_session() if self.skip_verification else None self.vsphere_client = create_vsphere_client(server=self.server, username=self.username, password=self.password, session=session) def _execute(self): # Get the identifiers vm_id = get_vm(self.vsphere_client, self.vm_name) assert vm_id resource_pool_id = get_resource_pool(self.vsphere_client, self.datacenter_name, self.resource_pool_name) assert resource_pool_id # Create a library storage_backings = self.helper.create_storage_backings( self.servicemanager, self.datastore_name) self.library_id = self.helper.create_local_library(storage_backings, self.library_name) # Build the create specification create_spec = VmtxLibraryItem.CreateSpec() create_spec.source_vm = vm_id create_spec.library = self.library_id create_spec.name = self.item_name create_spec.placement = VmtxLibraryItem.CreatePlacementSpec( resource_pool=resource_pool_id) # Create a new library item from the source VM self.item_id = self.client.vmtx_service.create(create_spec) print("Created VM template item '{0}' with ID: {1}".format( self.item_name, self.item_id)) # Retrieve the library item info info = self.client.vmtx_service.get(self.item_id) print('VM template guest OS: {0}'.format(info.guest_os)) def _cleanup(self): if self.library_id: self.client.local_library_service.delete(self.library_id) print('Deleted library ID: {0}'.format(self.library_id)) def main(): sample = CreateVmTemplate() sample.main() if __name__ == '__main__': main()
test/jpypetest/test_sql_generic.py
pitmanst/jpype
531
51460
# This file is Public Domain and may be used without restrictions. import _jpype import jpype from jpype.types import * from jpype import java import jpype.dbapi2 as dbapi2 import common import time try: import zlib except ImportError: zlib = None class SQLModuleTestCase(common.JPypeTestCase): def setUp(self): common.JPypeTestCase.setUp(self) def assertIsSubclass(self, a, b): self.assertTrue(issubclass(a, b), "`%s` is not a subclass of `%s`" % (a.__name__, b.__name__)) def testConstants(self): self.assertEqual(dbapi2.apilevel, "2.0") self.assertEqual(dbapi2.threadsafety, 2) self.assertEqual(dbapi2.paramstyle, "qmark") def testExceptions(self): self.assertIsSubclass(dbapi2.Warning, Exception) self.assertIsSubclass(dbapi2.Error, Exception) self.assertIsSubclass(dbapi2.InterfaceError, dbapi2.Error) self.assertIsSubclass(dbapi2.DatabaseError, dbapi2.Error) self.assertIsSubclass(dbapi2._SQLException, dbapi2.Error) self.assertIsSubclass(dbapi2.DataError, dbapi2.DatabaseError) self.assertIsSubclass(dbapi2.OperationalError, dbapi2.DatabaseError) self.assertIsSubclass(dbapi2.IntegrityError, dbapi2.DatabaseError) self.assertIsSubclass(dbapi2.InternalError, dbapi2.DatabaseError) self.assertIsSubclass(dbapi2.InternalError, dbapi2.DatabaseError) self.assertIsSubclass(dbapi2.ProgrammingError, dbapi2.DatabaseError) self.assertIsSubclass(dbapi2.NotSupportedError, dbapi2.DatabaseError) def testConnectionExceptions(self): cx = dbapi2.Connection self.assertEqual(cx.Warning, dbapi2.Warning) self.assertEqual(cx.Error, dbapi2.Error) self.assertEqual(cx.InterfaceError, dbapi2.InterfaceError) self.assertEqual(cx.DatabaseError, dbapi2.DatabaseError) self.assertEqual(cx.DataError, dbapi2.DataError) self.assertEqual(cx.OperationalError, dbapi2.OperationalError) self.assertEqual(cx.IntegrityError, dbapi2.IntegrityError) self.assertEqual(cx.InternalError, dbapi2.InternalError) self.assertEqual(cx.InternalError, dbapi2.InternalError) self.assertEqual(cx.ProgrammingError, dbapi2.ProgrammingError) self.assertEqual(cx.NotSupportedError, dbapi2.NotSupportedError) def test_Date(self): d1 = dbapi2.Date(2002, 12, 25) # noqa F841 d2 = dbapi2.DateFromTicks( # noqa F841 time.mktime((2002, 12, 25, 0, 0, 0, 0, 0, 0)) ) # Can we assume this? API doesn't specify, but it seems implied # self.assertEqual(str(d1),str(d2)) def test_Time(self): t1 = dbapi2.Time(13, 45, 30) # noqa F841 t2 = dbapi2.TimeFromTicks( # noqa F841 time.mktime((2001, 1, 1, 13, 45, 30, 0, 0, 0)) ) # Can we assume this? API doesn't specify, but it seems implied # self.assertEqual(str(t1),str(t2)) def test_Timestamp(self): t1 = dbapi2.Timestamp(2002, 12, 25, 13, 45, 30) # noqa F841 t2 = dbapi2.TimestampFromTicks( # noqa F841 time.mktime((2002, 12, 25, 13, 45, 30, 0, 0, 0)) ) # Can we assume this? API doesn't specify, but it seems implied # self.assertEqual(str(t1),str(t2)) def test_Binary(self): b = dbapi2.Binary(b"Something") b = dbapi2.Binary(b"") # noqa F841 def test_STRING(self): self.assertTrue(hasattr(dbapi2, "STRING"), "module.STRING must be defined") def test_BINARY(self): self.assertTrue( hasattr(dbapi2, "BINARY"), "module.BINARY must be defined." ) def test_NUMBER(self): self.assertTrue( hasattr(dbapi2, "NUMBER"), "module.NUMBER must be defined." ) def test_DATETIME(self): self.assertTrue( hasattr(dbapi2, "DATETIME"), "module.DATETIME must be defined." ) def test_ROWID(self): self.assertTrue(hasattr(dbapi2, "ROWID"), "module.ROWID must be defined.") class SQLTablesTestCase(common.JPypeTestCase): def setUp(self): common.JPypeTestCase.setUp(self) def testStr(self): for i in dbapi2._types: self.assertIsInstance(str(i), str) def testRepr(self): for i in dbapi2._types: self.assertIsInstance(repr(i), str)
demo/evaluation/SP_GoogLeNet.py
ntoussaint/SPN.pytorch
228
51497
<reponame>ntoussaint/SPN.pytorch<filename>demo/evaluation/SP_GoogLeNet.py<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function, Variable from torch.utils.serialization import load_lua from spn import SoftProposal, SpatialSumOverMap, hook_spn, unhook_spn class CallLegacyModel(Function): @staticmethod def forward(ctx, model, x): if x.is_cuda: return model.cuda().forward(x) else: return model.float().forward(x) @staticmethod def backward(ctx, *args, **kwargs): raise NotImplementedError('The backward call of LegacyModel is not implemented') class LegacyModel(nn.Module): def __init__(self, model): super(LegacyModel, self).__init__() self.model = model def forward(self, x): return CallLegacyModel.apply(self.model, x) def __repr__(self): return '{}({})'.format(self.__class__.__name__, repr(self.model)) class SP_GoogLeNet(nn.Module): def __init__(self, state_dict='SP_GoogleNet_ImageNet.pt'): super(SP_GoogLeNet, self).__init__() state_dict = load_lua(state_dict) pretrained_model = state_dict[0] pretrained_model.evaluate() self.features = LegacyModel(pretrained_model) self.pooling = nn.Sequential() self.pooling.add_module('adconv', nn.Conv2d(832, 1024, kernel_size=3, stride=1, padding=1, groups=2, bias=True)) self.pooling.add_module('maps', nn.ReLU()) self.pooling.add_module('sp', SoftProposal(factor=2.1)) self.pooling.add_module('sum', SpatialSumOverMap()) self.pooling.adconv.weight.data.copy_(state_dict[1][0]) self.pooling.adconv.bias.data.copy_(state_dict[1][1]) # classification layer self.classifier = nn.Linear(1024, 1000) self.classifier.weight.data.copy_(state_dict[2][0]) self.classifier.bias.data.copy_(state_dict[2][1]) # image normalization self.image_normalization_mean = [0.485, 0.456, 0.406] self.image_normalization_std = [0.229, 0.224, 0.225] def forward(self, x): x = self.features(x) x = self.pooling(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def inference(self, mode=True): hook_spn(self) if mode else unhook_spn(self) return self
test/core/derivatives/implementation/backpack.py
jabader97/backpack
395
51527
"""Contains derivative calculation with BackPACK.""" from test.core.derivatives.implementation.base import DerivativesImplementation from test.utils import chunk_sizes from typing import List from torch import Tensor, einsum, zeros from backpack.utils.subsampling import subsample class BackpackDerivatives(DerivativesImplementation): """Derivative implementations with BackPACK.""" def __init__(self, problem): """Initialization. Args: problem: test problem """ problem.extend() super().__init__(problem) def store_forward_io(self): """Do one forward pass. This implicitly saves relevant quantities for backward pass. """ self.problem.forward_pass() def jac_mat_prod(self, mat): # noqa: D102 self.store_forward_io() return self.problem.derivative.jac_mat_prod( self.problem.module, None, None, mat ) def jac_t_mat_prod( self, mat: Tensor, subsampling: List[int] ) -> Tensor: # noqa: D102 self.store_forward_io() return self.problem.derivative.jac_t_mat_prod( self.problem.module, None, None, mat, subsampling=subsampling ) def param_mjp( self, param_str: str, mat: Tensor, sum_batch: bool, subsampling: List[int] = None, ) -> Tensor: # noqa: D102 self.store_forward_io() return self.problem.derivative.param_mjp( param_str, self.problem.module, None, None, mat, sum_batch=sum_batch, subsampling=subsampling, ) def weight_jac_mat_prod(self, mat): # noqa: D102 self.store_forward_io() return self.problem.derivative.weight_jac_mat_prod( self.problem.module, None, None, mat ) def bias_jac_mat_prod(self, mat): # noqa: D102 self.store_forward_io() return self.problem.derivative.bias_jac_mat_prod( self.problem.module, None, None, mat ) def ea_jac_t_mat_jac_prod(self, mat): # noqa: D102 self.store_forward_io() return self.problem.derivative.ea_jac_t_mat_jac_prod( self.problem.module, None, None, mat ) def sum_hessian(self): # noqa: D102 self.store_forward_io() return self.problem.derivative.sum_hessian(self.problem.module, None, None) def input_hessian_via_sqrt_hessian( self, mc_samples: int = None, chunks: int = 1, subsampling: List[int] = None ) -> Tensor: """Computes the Hessian w.r.t. to the input from its matrix square root. Args: mc_samples: If int, uses an MC approximation with the specified number of samples. If None, uses the exact hessian. Defaults to None. chunks: Maximum sequential split of the computation. Default: ``1``. Only used if mc_samples is specified. subsampling: Indices of active samples. ``None`` uses all samples. Returns: Hessian with respect to the input. Has shape ``[N, A, B, ..., N, A, B, ...]`` where ``N`` is the batch size or number of active samples when sub-sampling is used, and ``[A, B, ...]`` are the input's feature dimensions. """ self.store_forward_io() if mc_samples is not None: chunk_samples = chunk_sizes(mc_samples, chunks) chunk_weights = [samples / mc_samples for samples in chunk_samples] individual_hessians: Tensor = sum( weight * self._sample_hessians_from_sqrt( self.problem.derivative.sqrt_hessian_sampled( self.problem.module, None, None, mc_samples=samples, subsampling=subsampling, ) ) for weight, samples in zip(chunk_weights, chunk_samples) ) else: sqrt_hessian = self.problem.derivative.sqrt_hessian( self.problem.module, None, None, subsampling=subsampling ) individual_hessians = self._sample_hessians_from_sqrt(sqrt_hessian) input0 = subsample(self.problem.module.input0, subsampling=subsampling) return self._embed_sample_hessians(individual_hessians, input0) def hessian_is_zero(self) -> bool: # noqa: D102 return self.problem.derivative.hessian_is_zero(self.problem.module) def _sample_hessians_from_sqrt(self, sqrt: Tensor) -> Tensor: """Convert individual matrix square root into individual full matrix. Args: sqrt: individual square root of hessian Returns: Individual Hessians of shape ``[N, A, B, ..., A, B, ...]`` where ``input.shape[1:] = [A, B, ...]`` are the input feature dimensions and ``N`` is the batch size. """ N, input_dims = sqrt.shape[1], sqrt.shape[2:] sqrt_flat = sqrt.flatten(start_dim=2) sample_hessians = einsum("vni,vnj->nij", sqrt_flat, sqrt_flat) return sample_hessians.reshape(N, *input_dims, *input_dims) def _embed_sample_hessians( self, individual_hessians: Tensor, input: Tensor ) -> Tensor: """Embed Hessians w.r.t. individual samples into Hessian w.r.t. all samples. Args: individual_hessians: Hessians w.r.t. individual samples in the input. input: Inputs for the for samples whose individual Hessians are passed. Has shape ``[N, A, B, ..., A, B, ...]`` where ``N`` is the number of active samples and ``[A, B, ...]`` are the feature dimensions. Returns: Hessian that contains the individual Hessians as diagonal blocks. Has shape ``[N, A, B, ..., N, A, B, ...]``. """ N, D = input.shape[0], input.shape[1:].numel() hessian = zeros(N, D, N, D, device=input.device, dtype=input.dtype) for n in range(N): hessian[n, :, n, :] = individual_hessians[n].reshape(D, D) return hessian.reshape(*input.shape, *input.shape) def hessian_mat_prod(self, mat: Tensor) -> Tensor: # noqa: D102 self.store_forward_io() hmp = self.problem.derivative.make_hessian_mat_prod( self.problem.module, None, None ) return hmp(mat)
src/genie/libs/parser/iosxe/tests/ShowIsisHostname/cli/equal/golden_output_expected.py
balmasea/genieparser
204
51601
expected_output = { "tag": { "VRF1": { "hostname_db": { "hostname": { "7777.77ff.eeee": {"hostname": "R7", "level": 2}, "2222.22ff.4444": {"hostname": "R2", "local_router": True}, } } }, "test": { "hostname_db": { "hostname": { "9999.99ff.3333": {"hostname": "R9", "level": 2}, "8888.88ff.1111": {"hostname": "R8", "level": 2}, "7777.77ff.eeee": {"hostname": "R7", "level": 2}, "5555.55ff.aaaa": {"hostname": "R5", "level": 2}, "3333.33ff.6666": {"hostname": "R3", "level": 2}, "1111.11ff.2222": {"hostname": "R1", "level": 1}, "2222.22ff.4444": {"hostname": "R2", "local_router": True}, } } }, } }
Sources/Workflows/ONE「一个」/one.py
hzlzh/AlfredWorkflow.com
2,177
51618
<gh_stars>1000+ #!/usr/bin/python #coding=utf-8 # # # Copyright (c) 2016 fusijie <<EMAIL>> # # MIT Licence. See http://opensource.org/licenses/MIT # # Created on 2016-04-22 # import sys import os from workflow import Workflow, web reading_url = 'http://v3.wufazhuce.com:8000/api/reading/index' essay_url_prefix = 'http://wufazhuce.com/article/' serial_url_prefix = 'http://m.wufazhuce.com/serial/' question_url_prefix = 'http://wufazhuce.com/question/' default_thumsnail = 'icon.png' def _get_reading_url(): return reading_url def _parse_reading(): data = web.get(_get_reading_url()).json() return data def _get_thumbnail(): return default_thumsnail def _get_reading(wf): data = wf.cached_data('one_reading', _parse_reading, max_age = 30) reading_data = data['data'] if sys.argv[1] == 'essay': essays = reading_data['essay'] for essay in essays: essay_title = essay['hp_title'] essay_subtitle = essay['guide_word'] essay_thumbnail = essay['author'][0]['web_url'] essay_url = essay_url_prefix + essay['content_id'] wf.add_item(title = essay_title, subtitle = essay_subtitle, icon = _get_thumbnail(), arg = essay_url, valid = True) wf.send_feedback() elif sys.argv[1] == 'serial': serials = reading_data['serial'] for serial in serials: serial_title = serial['title'] serial_subtitle = serial['excerpt'] serial_thumbnail = serial['author']['web_url'] serial_url = serial_url_prefix + serial['id'] wf.add_item(title = serial_title, subtitle = serial_subtitle, icon = _get_thumbnail(), arg = serial_url, valid = True) wf.send_feedback() elif sys.argv[1] == 'question': questions = reading_data['question'] for question in questions: question_title = question['question_title'] question_subtitle = question['answer_content'] question_url = question_url_prefix + question['question_id'] wf.add_item(title = question_title, subtitle = question_subtitle, icon = _get_thumbnail(), arg = question_url, valid = True) wf.send_feedback() def main(wf): try: _get_reading(wf) except: pass if __name__ == '__main__': wf = Workflow() sys.exit(wf.run(main))