max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
barbican/common/policies/quotas.py
stackhpc/barbican
177
72270
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy _READER = "role:reader" _SYSTEM_ADMIN = "role:admin and system_scope:all" _SYSTEM_READER = "role:reader and system_scope:all" rules = [ policy.DocumentedRuleDefault( name='quotas:get', check_str=f'rule:all_users or {_READER}', scope_types=['project'], description='List quotas for the project the user belongs to.', operations=[ { 'path': '/v1/quotas', 'method': 'GET' } ] ), policy.DocumentedRuleDefault( name='project_quotas:get', check_str=f'rule:service_admin or {_SYSTEM_READER}', scope_types=['system'], description='List quotas for the specified project.', operations=[ { 'path': '/v1/project-quotas', 'method': 'GET' }, { 'path': '/v1/project-quotas/{uuid}', 'method': 'GET' } ] ), policy.DocumentedRuleDefault( name='project_quotas:put', check_str=f'rule:service_admin or {_SYSTEM_ADMIN}', scope_types=['system'], description='Create or update the configured project quotas for ' 'the project with the specified UUID.', operations=[ { 'path': '/v1/project-quotas/{uuid}', 'method': 'PUT' } ] ), policy.DocumentedRuleDefault( name='project_quotas:delete', check_str=f'rule:service_admin or {_SYSTEM_ADMIN}', scope_types=['system'], description='Delete the project quotas configuration for the ' 'project with the requested UUID.', operations=[ { 'path': '/v1/quotas}', 'method': 'DELETE' } ] ), ] def list_rules(): return rules
pytorch_lightning/accelerators/cpu.py
krfricke/pytorch-lightning
3,469
72275
<gh_stars>1000+ # Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Union import torch from pytorch_lightning.accelerators.accelerator import Accelerator from pytorch_lightning.utilities import device_parser from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _PSUTIL_AVAILABLE from pytorch_lightning.utilities.types import _DEVICE class CPUAccelerator(Accelerator): """Accelerator for CPU devices.""" def setup_environment(self, root_device: torch.device) -> None: """ Raises: MisconfigurationException: If the selected device is not CPU. """ super().setup_environment(root_device) if root_device.type != "cpu": raise MisconfigurationException(f"Device should be CPU, got {root_device} instead.") def get_device_stats(self, device: _DEVICE) -> Dict[str, Any]: """Get CPU stats from ``psutil`` package.""" return get_cpu_stats() @staticmethod def parse_devices(devices: Union[int, str, List[int]]) -> int: """Accelerator device parsing logic.""" devices = device_parser.parse_cpu_cores(devices) return devices @staticmethod def get_parallel_devices(devices: Union[int, str, List[int]]) -> List[torch.device]: """Gets parallel devices for the Accelerator.""" devices = device_parser.parse_cpu_cores(devices) return [torch.device("cpu")] * devices @staticmethod def auto_device_count() -> int: """Get the devices when set to auto.""" return 1 @staticmethod def is_available() -> bool: """CPU is always available for execution.""" return True @classmethod def register_accelerators(cls, accelerator_registry: Dict) -> None: accelerator_registry.register( "cpu", cls, description=f"{cls.__class__.__name__}", ) # CPU device metrics _CPU_VM_PERCENT = "cpu_vm_percent" _CPU_PERCENT = "cpu_percent" _CPU_SWAP_PERCENT = "cpu_swap_percent" def get_cpu_stats() -> Dict[str, float]: if not _PSUTIL_AVAILABLE: raise ModuleNotFoundError( "Fetching CPU device stats requires `psutil` to be installed." " Install it by running `pip install -U psutil`." ) import psutil return { _CPU_VM_PERCENT: psutil.virtual_memory().percent, _CPU_PERCENT: psutil.cpu_percent(), _CPU_SWAP_PERCENT: psutil.swap_memory().percent, }
tests/test_display.py
antoinedemathelin/ruptures
942
72279
import pytest from ruptures.datasets import pw_constant from ruptures.show import display from ruptures.show.display import MatplotlibMissingError @pytest.fixture(scope="module") def signal_bkps(): signal, bkps = pw_constant() return signal, bkps def test_display_with_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) figsize = (20, 10) # figure size fig, axarr = display( signal, bkps, figsize=figsize, ) fig, axarr = display( signal[:, 0], bkps, figsize=figsize, ) except MatplotlibMissingError: pytest.skip("matplotlib is not installed") def test_display_without_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) figsize = (20, 10) # figure size fig, axarr = display(signal, bkps) fig, axarr = display(signal[:, 0], bkps) except MatplotlibMissingError: pytest.skip("matplotlib is not installed") def test_display_with_new_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) fig, axarr = display(signal, bkps, facecolor="k", edgecolor="b") fig, axarr = display(signal[:, 0], bkps, facecolor="k", edgecolor="b") except MatplotlibMissingError: pytest.skip("matplotlib is not installed") def test_display_with_computed_chg_pts_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) fig, axarr = display(signal, bkps, bkps, computed_chg_pts_color="k") fig, axarr = display( signal, bkps, bkps, computed_chg_pts_color="k", computed_chg_pts_linewidth=3 ) fig, axarr = display( signal, bkps, bkps, computed_chg_pts_color="k", computed_chg_pts_linewidth=3, computed_chg_pts_linestyle="--", ) fig, axarr = display( signal, bkps, bkps, computed_chg_pts_color="k", computed_chg_pts_linewidth=3, computed_chg_pts_linestyle="--", computed_chg_pts_alpha=1.0, ) except MatplotlibMissingError: pytest.skip("matplotlib is not installed")
src/genie/libs/parser/iosxr/tests/ShowPceIPV4PeerPrefix/cli/equal/golden_output_expected.py
balmasea/genieparser
204
72280
<reponame>balmasea/genieparser expected_output = { 'nodes': { 1: { 'te_router_id': '192.168.0.4', 'host_name': 'rtrD', 'isis_system_id': [ '1921.68ff.1004 level-1', '1921.68ff.1004 level-2', '1921.68ff.1004 level-2'], 'asn': [ 65001, 65001, 65001], 'domain_id': [ 1111, 1111, 9999], 'advertised_prefixes': [ '192.168.0.4', '192.168.0.4', '192.168.0.4', '192.168.0.6']}, 2: { 'te_router_id': '192.168.0.1', 'host_name': 'rtrA', 'isis_system_id': ['1921.68ff.1001 level-2'], 'advertised_prefixes': ['192.168.0.1']}}}
DQMOffline/EGamma/test/EgammaAnalyzers_cfg.py
ckamtsikis/cmssw
852
72284
import sys import os import electronDbsDiscovery import FWCore.ParameterSet.Config as cms process = cms.Process("testEgammaAnalyzers") process.DQMStore = cms.Service("DQMStore") process.load("DQMServices.Components.DQMStoreStats_cfi") #from DQMServices.Components.DQMStoreStats_cfi import * #dqmStoreStats.runOnEndJob = cms.untracked.bool(True) process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(-1)) process.source = cms.Source ("PoolSource",fileNames = cms.untracked.vstring(),secondaryFileNames = cms.untracked.vstring()) process.source.fileNames.extend(electronDbsDiscovery.search()) process.load("Configuration.StandardSequences.GeometryRecoDB_cff") process.load("DQMOffline.EGamma.egammaDQMOffline_cff") process.dqmElectronTagProbeAnalysis.OutputFile = cms.string(os.environ['TEST_HISTOS_FILE']) process.p = cms.Path(process.egammaDQMOffline*process.dqmStoreStats)
seahub/share/migrations/0001_initial.py
MJochim/seahub
420
72287
<reponame>MJochim/seahub<gh_stars>100-1000 # -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-03-21 08:43 import datetime from django.db import migrations, models import django.db.models.deletion import seahub.base.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AnonymousShare', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('repo_owner', seahub.base.fields.LowerCaseCharField(max_length=255)), ('repo_id', models.CharField(max_length=36)), ('anonymous_email', seahub.base.fields.LowerCaseCharField(max_length=255)), ('token', models.CharField(max_length=25, unique=True)), ], ), migrations.CreateModel( name='ExtraGroupsSharePermission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('repo_id', models.CharField(db_index=True, max_length=36)), ('group_id', models.IntegerField(db_index=True)), ('permission', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='ExtraSharePermission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('repo_id', models.CharField(db_index=True, max_length=36)), ('share_to', models.CharField(db_index=True, max_length=255)), ('permission', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='FileShare', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', seahub.base.fields.LowerCaseCharField(db_index=True, max_length=255)), ('repo_id', models.CharField(db_index=True, max_length=36)), ('path', models.TextField()), ('token', models.CharField(max_length=100, unique=True)), ('ctime', models.DateTimeField(default=datetime.datetime.now)), ('view_cnt', models.IntegerField(default=0)), ('s_type', models.CharField(db_index=True, default=b'f', max_length=2)), ('password', models.CharField(max_length=128, null=True)), ('expire_date', models.DateTimeField(null=True)), ('permission', models.CharField(choices=[(b'view_download', b'View and download'), (b'view_only', b'Disable download')], db_index=True, default=b'view_download', max_length=50)), ], ), migrations.CreateModel( name='OrgFileShare', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('org_id', models.IntegerField(db_index=True)), ('file_share', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='share.FileShare')), ], ), migrations.CreateModel( name='PrivateFileDirShare', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('from_user', seahub.base.fields.LowerCaseCharField(db_index=True, max_length=255)), ('to_user', seahub.base.fields.LowerCaseCharField(db_index=True, max_length=255)), ('repo_id', models.CharField(db_index=True, max_length=36)), ('path', models.TextField()), ('token', models.CharField(max_length=10, unique=True)), ('permission', models.CharField(max_length=5)), ('s_type', models.CharField(default=b'f', max_length=5)), ], ), migrations.CreateModel( name='UploadLinkShare', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', seahub.base.fields.LowerCaseCharField(db_index=True, max_length=255)), ('repo_id', models.CharField(db_index=True, max_length=36)), ('path', models.TextField()), ('token', models.CharField(max_length=100, unique=True)), ('ctime', models.DateTimeField(default=datetime.datetime.now)), ('view_cnt', models.IntegerField(default=0)), ('password', models.CharField(max_length=128, null=True)), ('expire_date', models.DateTimeField(null=True)), ], ), ]
edb/edgeql/compiler/conflicts.py
aaronbrighton/edgedb
7,302
72290
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Compilation of DML exclusive constraint conflict handling.""" from __future__ import annotations from typing import * from edb import errors from edb.common import context as pctx from edb.ir import ast as irast from edb.ir import typeutils from edb.schema import constraints as s_constr from edb.schema import name as s_name from edb.schema import objtypes as s_objtypes from edb.schema import pointers as s_pointers from edb.schema import utils as s_utils from edb.edgeql import ast as qlast from edb.edgeql import utils as qlutils from . import astutils from . import context from . import dispatch from . import inference from . import setgen from . import typegen def _compile_conflict_select( stmt: irast.MutatingStmt, subject_typ: s_objtypes.ObjectType, *, for_inheritance: bool, fake_dml_set: Optional[irast.Set], obj_constrs: Sequence[s_constr.Constraint], constrs: Dict[str, Tuple[s_pointers.Pointer, List[s_constr.Constraint]]], parser_context: Optional[pctx.ParserContext], ctx: context.ContextLevel, ) -> Optional[qlast.Expr]: """Synthesize a select of conflicting objects ... for a single object type. This gets called once for each ancestor type that provides constraints to the type being inserted. `cnstrs` contains the constraints to consider. """ # Find which pointers we need to grab needed_ptrs = set(constrs) for constr in obj_constrs: subjexpr = constr.get_subjectexpr(ctx.env.schema) assert subjexpr needed_ptrs |= qlutils.find_subject_ptrs(subjexpr.qlast) wl = list(needed_ptrs) ptr_anchors = {} while wl: p = wl.pop() ptr = subject_typ.getptr(ctx.env.schema, s_name.UnqualName(p)) if expr := ptr.get_expr(ctx.env.schema): assert isinstance(expr.qlast, qlast.Expr) ptr_anchors[p] = expr.qlast for ref in qlutils.find_subject_ptrs(expr.qlast): if ref not in needed_ptrs: wl.append(ref) needed_ptrs.add(ref) ctx.anchors = ctx.anchors.copy() # If we are given a fake_dml_set to directly represent the result # of our DML, use that instead of populating the result. if fake_dml_set: for p in needed_ptrs | {'id'}: ptr = subject_typ.getptr(ctx.env.schema, s_name.UnqualName(p)) val = setgen.extend_path(fake_dml_set, ptr, ctx=ctx) ptr_anchors[p] = ctx.create_anchor(val, p) # Find the IR corresponding to the fields we care about and # produce anchors for them ptrs_in_shape = set() for elem, _ in stmt.subject.shape: assert elem.rptr is not None name = elem.rptr.ptrref.shortname.name ptrs_in_shape.add(name) if name in needed_ptrs and name not in ptr_anchors: assert elem.expr if inference.infer_volatility(elem.expr, ctx.env).is_volatile(): if for_inheritance: error = ( 'INSERT does not support volatile properties with ' 'exclusive constraints when another statement in ' 'the same query modifies a related type' ) else: error = ( 'INSERT UNLESS CONFLICT ON does not support volatile ' 'properties' ) raise errors.UnsupportedFeatureError( error, context=parser_context ) # FIXME: The wrong thing will definitely happen if there are # volatile entries here ptr_anchors[name] = ctx.create_anchor( setgen.ensure_set(elem.expr, ctx=ctx), name) if for_inheritance and not ptrs_in_shape: return None # Fill in empty sets for pointers that are needed but not present present_ptrs = set(ptr_anchors) for p in (needed_ptrs - present_ptrs): ptr = subject_typ.getptr(ctx.env.schema, s_name.UnqualName(p)) typ = ptr.get_target(ctx.env.schema) assert typ ptr_anchors[p] = qlast.TypeCast( expr=qlast.Set(elements=[]), type=typegen.type_to_ql_typeref(typ, ctx=ctx)) if not ptr_anchors: raise errors.QueryError( 'INSERT UNLESS CONFLICT property requires matching shape', context=parser_context, ) conds: List[qlast.Expr] = [] for ptrname, (ptr, ptr_cnstrs) in constrs.items(): if ptrname not in present_ptrs: continue anchor = qlutils.subject_paths_substitute( ptr_anchors[ptrname], ptr_anchors) ptr_val = qlast.Path(partial=True, steps=[ qlast.Ptr(ptr=qlast.ObjectRef(name=ptrname)) ]) ptr, ptr_cnstrs = constrs[ptrname] ptr_card = ptr.get_cardinality(ctx.env.schema) for cnstr in ptr_cnstrs: lhs: qlast.Expr = anchor rhs: qlast.Expr = ptr_val # If there is a subjectexpr, substitute our lhs and rhs in # for __subject__ in the subjectexpr and compare *that* if (subjectexpr := cnstr.get_subjectexpr(ctx.env.schema)): assert isinstance(subjectexpr.qlast, qlast.Expr) lhs = qlutils.subject_substitute(subjectexpr.qlast, lhs) rhs = qlutils.subject_substitute(subjectexpr.qlast, rhs) conds.append(qlast.BinOp( op='=' if ptr_card.is_single() else 'IN', left=lhs, right=rhs, )) insert_subject = qlast.Path(steps=[ s_utils.name_to_ast_ref(subject_typ.get_name(ctx.env.schema))]) for constr in obj_constrs: # TODO: learn to skip irrelevant ones for UPDATEs at least? subjectexpr = constr.get_subjectexpr(ctx.env.schema) assert subjectexpr and isinstance(subjectexpr.qlast, qlast.Expr) lhs = qlutils.subject_paths_substitute(subjectexpr.qlast, ptr_anchors) rhs = qlutils.subject_substitute(subjectexpr.qlast, insert_subject) conds.append(qlast.BinOp(op='=', left=lhs, right=rhs)) if not conds: return None # We use `any` to compute the disjunction here because some might # be empty. if len(conds) == 1: cond = conds[0] else: cond = qlast.FunctionCall( func='any', args=[qlast.Set(elements=conds)], ) # For the result filtering we need to *ignore* the same object if fake_dml_set: anchor = qlutils.subject_paths_substitute( ptr_anchors['id'], ptr_anchors) ptr_val = qlast.Path(partial=True, steps=[ qlast.Ptr(ptr=qlast.ObjectRef(name='id')) ]) cond = qlast.BinOp( op='AND', left=cond, right=qlast.BinOp(op='!=', left=anchor, right=ptr_val), ) # Produce a query that finds the conflicting objects select_ast = qlast.DetachedExpr( expr=qlast.SelectQuery(result=insert_subject, where=cond) ) return select_ast def _constr_matters( constr: s_constr.Constraint, ctx: context.ContextLevel, ) -> bool: schema = ctx.env.schema return ( not constr.generic(schema) and not constr.get_delegated(schema) and ( constr.get_owned(schema) or all(anc.get_delegated(schema) or anc.generic(schema) for anc in constr.get_ancestors(schema).objects(schema)) ) ) PointerConstraintMap = Dict[ str, Tuple[s_pointers.Pointer, List[s_constr.Constraint]], ] ConstraintPair = Tuple[PointerConstraintMap, List[s_constr.Constraint]] ConflictTypeMap = Dict[s_objtypes.ObjectType, ConstraintPair] def _split_constraints( obj_constrs: Sequence[s_constr.Constraint], constrs: PointerConstraintMap, ctx: context.ContextLevel, ) -> ConflictTypeMap: schema = ctx.env.schema type_maps: ConflictTypeMap = {} # Split up pointer constraints by what object types they come from for name, (_, p_constrs) in constrs.items(): for p_constr in p_constrs: ancs = (p_constr,) + p_constr.get_ancestors(schema).objects(schema) for anc in ancs: if not _constr_matters(anc, ctx): continue p_ptr = anc.get_subject(schema) assert isinstance(p_ptr, s_pointers.Pointer) obj = p_ptr.get_source(schema) assert isinstance(obj, s_objtypes.ObjectType) map, _ = type_maps.setdefault(obj, ({}, [])) _, entry = map.setdefault(name, (p_ptr, [])) entry.append(anc) # Split up object constraints by what object types they come from for obj_constr in obj_constrs: ancs = (obj_constr,) + obj_constr.get_ancestors(schema).objects(schema) for anc in ancs: if not _constr_matters(anc, ctx): continue obj = anc.get_subject(schema) assert isinstance(obj, s_objtypes.ObjectType) _, o_constr_entry = type_maps.setdefault(obj, ({}, [])) o_constr_entry.append(anc) return type_maps def compile_conflict_select( stmt: irast.MutatingStmt, subject_typ: s_objtypes.ObjectType, *, for_inheritance: bool=False, fake_dml_set: Optional[irast.Set]=None, obj_constrs: Sequence[s_constr.Constraint], constrs: PointerConstraintMap, parser_context: Optional[pctx.ParserContext], ctx: context.ContextLevel, ) -> Tuple[irast.Set, bool, bool]: """Synthesize a select of conflicting objects This teases apart the constraints we care about based on which type they originate from, generates a SELECT for each type, and unions them together. `cnstrs` contains the constraints to consider. """ schema = ctx.env.schema if for_inheritance: type_maps = {subject_typ: (constrs, list(obj_constrs))} else: type_maps = _split_constraints(obj_constrs, constrs, ctx=ctx) # Generate a separate query for each type from_parent = False frags = [] for a_obj, (a_constrs, a_obj_constrs) in type_maps.items(): frag = _compile_conflict_select( stmt, a_obj, obj_constrs=a_obj_constrs, constrs=a_constrs, for_inheritance=for_inheritance, fake_dml_set=fake_dml_set, parser_context=parser_context, ctx=ctx, ) if frag: if a_obj != subject_typ: from_parent = True frags.append(frag) always_check = from_parent or any( not child.is_view(schema) for child in subject_typ.children(schema) ) # Union them all together select_ast = qlast.Set(elements=frags) with ctx.new() as ectx: ectx.implicit_limit = 0 select_ir = dispatch.compile(select_ast, ctx=ectx) select_ir = setgen.scoped_set( select_ir, force_reassign=True, ctx=ectx) assert isinstance(select_ir, irast.Set) return select_ir, always_check, from_parent def _get_exclusive_ptr_constraints( typ: s_objtypes.ObjectType, *, ctx: context.ContextLevel, ) -> Dict[str, Tuple[s_pointers.Pointer, List[s_constr.Constraint]]]: schema = ctx.env.schema pointers = {} exclusive_constr = schema.get('std::exclusive', type=s_constr.Constraint) for ptr in typ.get_pointers(schema).objects(schema): ptr = ptr.get_nearest_non_derived_parent(schema) ex_cnstrs = [c for c in ptr.get_constraints(schema).objects(schema) if c.issubclass(schema, exclusive_constr)] if ex_cnstrs: name = ptr.get_shortname(schema).name if name != 'id': pointers[name] = ptr, ex_cnstrs return pointers def compile_insert_unless_conflict( stmt: irast.InsertStmt, typ: s_objtypes.ObjectType, *, ctx: context.ContextLevel, ) -> irast.OnConflictClause: """Compile an UNLESS CONFLICT clause with no ON This requires synthesizing a conditional based on all the exclusive constraints on the object. """ pointers = _get_exclusive_ptr_constraints(typ, ctx=ctx) obj_constrs = typ.get_constraints(ctx.env.schema).objects(ctx.env.schema) select_ir, always_check, _ = compile_conflict_select( stmt, typ, constrs=pointers, obj_constrs=obj_constrs, parser_context=stmt.context, ctx=ctx) return irast.OnConflictClause( constraint=None, select_ir=select_ir, always_check=always_check, else_ir=None) def compile_insert_unless_conflict_on( stmt: irast.InsertStmt, typ: s_objtypes.ObjectType, constraint_spec: qlast.Expr, else_branch: Optional[qlast.Expr], *, ctx: context.ContextLevel, ) -> irast.OnConflictClause: with ctx.new() as constraint_ctx: constraint_ctx.partial_path_prefix = stmt.subject # We compile the name here so we can analyze it, but we don't do # anything else with it. cspec_res = dispatch.compile(constraint_spec, ctx=constraint_ctx) # We accept a property, link, or a list of them in the form of a # tuple. if cspec_res.rptr is None and isinstance(cspec_res.expr, irast.Tuple): cspec_args = [elem.val for elem in cspec_res.expr.elements] else: cspec_args = [cspec_res] for cspec_arg in cspec_args: if not cspec_arg.rptr: raise errors.QueryError( 'UNLESS CONFLICT argument must be a property, link, ' 'or tuple of properties and links', context=constraint_spec.context, ) if cspec_arg.rptr.source.path_id != stmt.subject.path_id: raise errors.QueryError( 'UNLESS CONFLICT argument must be a property of the ' 'type being inserted', context=constraint_spec.context, ) schema = ctx.env.schema ptrs = [] exclusive_constr = schema.get('std::exclusive', type=s_constr.Constraint) for cspec_arg in cspec_args: assert cspec_arg.rptr is not None schema, ptr = ( typeutils.ptrcls_from_ptrref(cspec_arg.rptr.ptrref, schema=schema)) if not isinstance(ptr, s_pointers.Pointer): raise errors.QueryError( 'UNLESS CONFLICT property must be a property', context=constraint_spec.context, ) ptr = ptr.get_nearest_non_derived_parent(schema) ptr_card = ptr.get_cardinality(schema) if not ptr_card.is_single(): raise errors.QueryError( 'UNLESS CONFLICT property must be a SINGLE property', context=constraint_spec.context, ) ptrs.append(ptr) obj_constrs = inference.cardinality.get_object_exclusive_constraints( typ, set(ptrs), ctx.env) field_constrs = [] if len(ptrs) == 1: field_constrs = [ c for c in ptrs[0].get_constraints(schema).objects(schema) if c.issubclass(schema, exclusive_constr)] all_constrs = list(obj_constrs) + field_constrs if len(all_constrs) != 1: raise errors.QueryError( 'UNLESS CONFLICT property must have a single exclusive constraint', context=constraint_spec.context, ) ds = {ptr.get_shortname(schema).name: (ptr, field_constrs) for ptr in ptrs} select_ir, always_check, from_anc = compile_conflict_select( stmt, typ, constrs=ds, obj_constrs=list(obj_constrs), parser_context=stmt.context, ctx=ctx) # Compile an else branch else_ir = None if else_branch: # TODO: We should support this, but there is some semantic and # implementation trickiness. if from_anc: raise errors.UnsupportedFeatureError( 'UNLESS CONFLICT can not use ELSE when constraint is from a ' 'parent type', context=constraint_spec.context, ) # The ELSE needs to be able to reference the subject in an # UPDATE, even though that would normally be prohibited. ctx.path_scope.factoring_allowlist.add(stmt.subject.path_id) # Compile else else_ir = dispatch.compile( astutils.ensure_qlstmt(else_branch), ctx=ctx) assert isinstance(else_ir, irast.Set) return irast.OnConflictClause( constraint=irast.ConstraintRef(id=all_constrs[0].id), select_ir=select_ir, always_check=always_check, else_ir=else_ir ) def compile_inheritance_conflict_selects( stmt: irast.MutatingStmt, conflict: irast.MutatingStmt, typ: s_objtypes.ObjectType, subject_type: s_objtypes.ObjectType, *, ctx: context.ContextLevel, ) -> List[irast.OnConflictClause]: """Compile the selects needed to resolve multiple DML to related types Generate a SELECT that finds all objects of type `typ` that conflict with the insert `stmt`. The backend will use this to explicitly check that no conflicts exist, and raise an error if they do. This is needed because we mostly use triggers to enforce these cross-type exclusive constraints, and they use a snapshot beginning at the start of the statement. """ pointers = _get_exclusive_ptr_constraints(typ, ctx=ctx) obj_constrs = typ.get_constraints(ctx.env.schema).objects( ctx.env.schema) # This is a little silly, but for *this* we need to do one per # constraint (so that we can properly identify which constraint # failed in the error messages) entries: List[Tuple[s_constr.Constraint, ConstraintPair]] = [] for name, (ptr, ptr_constrs) in pointers.items(): for ptr_constr in ptr_constrs: if _constr_matters(ptr_constr, ctx): entries.append((ptr_constr, ({name: (ptr, [ptr_constr])}, []))) for obj_constr in obj_constrs: if _constr_matters(obj_constr, ctx): entries.append((obj_constr, ({}, [obj_constr]))) # For updates, we need to pull from the actual result overlay, # since the final row can depend on things not in the query. fake_dml_set = None if isinstance(stmt, irast.UpdateStmt): fake_subject = qlast.DetachedExpr(expr=qlast.Path(steps=[ s_utils.name_to_ast_ref(subject_type.get_name(ctx.env.schema))])) fake_dml_set = dispatch.compile(fake_subject, ctx=ctx) clauses = [] for cnstr, (p, o) in entries: select_ir, _, _ = compile_conflict_select( stmt, typ, for_inheritance=True, fake_dml_set=fake_dml_set, constrs=p, obj_constrs=o, parser_context=stmt.context, ctx=ctx) if isinstance(select_ir, irast.EmptySet): continue cnstr_ref = irast.ConstraintRef(id=cnstr.id) clauses.append( irast.OnConflictClause( constraint=cnstr_ref, select_ir=select_ir, always_check=False, else_ir=None, else_fail=conflict, update_query_set=fake_dml_set) ) return clauses def compile_inheritance_conflict_checks( stmt: irast.MutatingStmt, subject_stype: s_objtypes.ObjectType, *, ctx: context.ContextLevel, ) -> Optional[List[irast.OnConflictClause]]: if not ctx.env.dml_stmts: return None assert isinstance(subject_stype, s_objtypes.ObjectType) # TODO: when the conflicting statement is an UPDATE, only # look at things it updated modified_ancestors = set() base_object = ctx.env.schema.get( 'std::BaseObject', type=s_objtypes.ObjectType) subject_stypes = [subject_stype] # For updates, we need to also consider all descendants, because # those could also have interesting constraints of their own. if isinstance(stmt, irast.UpdateStmt): subject_stypes.extend(subject_stype.descendants(ctx.env.schema)) # N.B that for updates, the update itself will be in dml_stmts, # since an update can conflict with itself if there are subtypes. for ir in ctx.env.dml_stmts: typ = setgen.get_set_type(ir.subject, ctx=ctx) assert isinstance(typ, s_objtypes.ObjectType) typ = typ.get_nearest_non_derived_parent(ctx.env.schema) typs = [typ] # As mentioned above, need to consider descendants of updates if isinstance(ir, irast.UpdateStmt): typs.extend(typ.descendants(ctx.env.schema)) for typ in typs: if typ.is_view(ctx.env.schema): continue for subject_stype in subject_stypes: if subject_stype.is_view(ctx.env.schema): continue # If the earlier DML has a shared ancestor that isn't # BaseObject and isn't (if it's an insert) the same type, # then we need to see if we need a conflict select if ( subject_stype == typ and not isinstance(ir, irast.UpdateStmt) and not isinstance(stmt, irast.UpdateStmt) ): continue ancs = s_utils.get_class_nearest_common_ancestors( ctx.env.schema, [subject_stype, typ]) for anc in ancs: if anc != base_object: modified_ancestors.add((subject_stype, anc, ir)) conflicters = [] for subject_stype, anc_type, ir in modified_ancestors: conflicters.extend(compile_inheritance_conflict_selects( stmt, ir, anc_type, subject_stype, ctx=ctx)) return conflicters or None
dojo/db_migrations/0075_import_history.py
mtcolman/django-DefectDojo
1,772
72308
# Generated by Django 2.2.17 on 2021-01-30 08:35 from django.db import migrations, models import django.db.models.deletion import django_extensions.db.fields from django.db.models import JSONField class Migration(migrations.Migration): dependencies = [('dojo', '0074_notifications_close_engagement')] operations = [ migrations.CreateModel( name='Test_Import', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('import_settings', JSONField(null=True)), ('version', models.CharField(blank=True, max_length=100, null=True)), ('type', models.CharField(default='unknown', max_length=64, null=False)), ], options={ 'ordering': ('-id',), }, ), migrations.CreateModel( name='Test_Import_Finding_Action', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('action', models.CharField(blank=True, choices=[('N', 'created'), ('C', 'closed'), ('R', 'reactivated'), ('U', 'updated')], max_length=100, null=True)), ('finding', models.ForeignKey(editable=False, on_delete=django.db.models.deletion.CASCADE, to='dojo.Finding')), ('test_import', models.ForeignKey(editable=False, on_delete=django.db.models.deletion.CASCADE, to='dojo.Test_Import')), ], options={ 'ordering': ('test_import', 'action', 'finding'), 'unique_together': {('test_import', 'finding')}, }, ), migrations.AddField( model_name='test_import', name='findings_affected', field=models.ManyToManyField(through='dojo.Test_Import_Finding_Action', to='dojo.Finding'), ), migrations.AddField( model_name='test_import', name='test', field=models.ForeignKey(editable=False, on_delete=django.db.models.deletion.CASCADE, to='dojo.Test'), ), migrations.AddIndex( model_name='test_import', index=models.Index(fields=['created', 'test', 'type'], name='dojo_test_i_created_951f4e_idx'), ), ]
pajbot/web/routes/api/playsound.py
sirinoks/pajbot
145
72323
from flask_restful import Resource from flask_restful.reqparse import RequestParser from pajbot.managers.db import DBManager from pajbot.models.playsound import Playsound from pajbot.models.sock import SocketClientManager from pajbot.modules import PlaysoundModule from pajbot.web.utils import requires_level from pajbot.managers.adminlog import AdminLogManager class PlaysoundAPI(Resource): @requires_level(500) def put(self, playsound_name, **options): playsound_name = PlaysoundModule.massage_name(playsound_name) if not PlaysoundModule.validate_name(playsound_name): return ( { "error": "Invalid Playsound name. The playsound name may only contain lowercase latin letters, 0-9, -, or _. No spaces :rage:" }, 400, ) post_parser = RequestParser() post_parser.add_argument("link", required=True) args = post_parser.parse_args() try: link = args["link"] except (ValueError, KeyError): return {"error": "Invalid `link` parameter."}, 400 with DBManager.create_session_scope() as db_session: count = db_session.query(Playsound).filter(Playsound.name == playsound_name).count() if count >= 1: return "Playsound already exists", 400 # the rest of the parameters are initialized with defaults playsound = Playsound(name=playsound_name, link=link) db_session.add(playsound) log_msg = f"The {playsound_name} playsound has been added" AdminLogManager.add_entry("Playsound added", options["user"], log_msg) return "OK", 200 @requires_level(500) def post(self, playsound_name, **options): # require JSON so the cooldown can be null post_parser = RequestParser() post_parser.add_argument("link", required=True) post_parser.add_argument("volume", type=int, required=True) post_parser.add_argument("cooldown", type=int, required=False) post_parser.add_argument("enabled", type=bool, required=False) args = post_parser.parse_args() link = args["link"] if not PlaysoundModule.validate_link(link): return "Empty or bad link, links must start with https:// and must not contain spaces", 400 volume = args["volume"] if not PlaysoundModule.validate_volume(volume): return "Bad volume argument", 400 # cooldown is allowed to be null/None cooldown = args.get("cooldown", None) if not PlaysoundModule.validate_cooldown(cooldown): return "Bad cooldown argument", 400 enabled = args["enabled"] if enabled is None: return "Bad enabled argument", 400 with DBManager.create_session_scope() as db_session: playsound = db_session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: return "Playsound does not exist", 404 raw_edited_data = { "link": (playsound.link, link), "volume": (playsound.volume, volume), "cooldown": (playsound.cooldown, cooldown), } # make a dictionary with all the changed values (except for enabled, which has a special case below) filtered_edited_data = {k: v for k, v in raw_edited_data.items() if v[0] != v[1]} log_msg = f"The {playsound_name} playsound has been updated: " log_msg_changes = [] if playsound.enabled != enabled: log_msg_changes.append("enabled" if enabled else "disabled") # iterate over changed values and push them to the log msg for edited_key, values in filtered_edited_data.items(): log_msg_changes.append(f"{edited_key} {values[0]} to {values[1]}") log_msg += ", ".join(log_msg_changes) playsound.link = link playsound.volume = volume playsound.cooldown = cooldown playsound.enabled = enabled db_session.add(playsound) if len(log_msg_changes): AdminLogManager.add_entry("Playsound edited", options["user"], log_msg) return "OK", 200 @requires_level(500) def delete(self, playsound_name, **options): with DBManager.create_session_scope() as db_session: playsound = db_session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: return "Playsound does not exist", 404 log_msg = f"The {playsound.name} playsound has been removed" AdminLogManager.add_entry("Playsound removed", options["user"], log_msg) db_session.delete(playsound) return "OK", 200 class PlayPlaysoundAPI(Resource): @requires_level(500) def post(self, playsound_name, **options): with DBManager.create_session_scope() as db_session: count = db_session.query(Playsound).filter(Playsound.name == playsound_name).count() if count <= 0: return "Playsound does not exist", 404 # explicitly don't check for disabled SocketClientManager.send("playsound.play", {"name": playsound_name}) return "OK", 200 def init(api): api.add_resource(PlaysoundAPI, "/playsound/<playsound_name>") api.add_resource(PlayPlaysoundAPI, "/playsound/<playsound_name>/play")
test/test-dehaze.py
opteroncx/MoePhoto
192
72332
<gh_stars>100-1000 import PIL.Image as Image import scipy.misc import sys sys.path.append('./python') from dehaze import load_model, transform, cuda # pylint: disable=E0401 def run_test(): net = load_model() input_image = './download/canyon1.jpg' output_filename = './download/canyon1_dh.jpg' #===== Load input image ===== img = Image.open(input_image).convert('RGB') imgIn = transform(img).unsqueeze_(0) #===== Test procedures ===== if cuda: imgIn = imgIn.cuda() prediction = net(imgIn) prediction = prediction.data.cpu().numpy().squeeze().transpose((1, 2, 0)) scipy.misc.toimage(prediction).save(output_filename) if __name__ == '__main__': print('dehaze') run_test()
examples/erato/training/train_attention.py
sundogrd/tensorflow_end2end_speech_recognition
351
72348
<filename>examples/erato/training/train_attention.py #! /usr/bin/env python # -*- coding: utf-8 -*- """Train the Attention-based model (ERATO corpus).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from os.path import join, isfile, abspath import sys import time import tensorflow as tf from setproctitle import setproctitle import yaml import shutil sys.path.append(abspath('../../../')) from experiments.erato.data.load_dataset_attention import Dataset from experiments.erato.metrics.attention import do_eval_cer, do_eval_fmeasure from utils.io.labels.sparsetensor import list2sparsetensor from utils.training.learning_rate_controller import Controller from utils.training.plot import plot_loss, plot_ler from utils.directory import mkdir_join, mkdir from utils.parameter import count_total_parameters from models.attention.attention_seq2seq import AttentionSeq2Seq def do_train(model, params): """Run training. Args: model: the model to train params (dict): A dictionary of parameters """ map_file_path = '../metrics/mapping_files/' + \ params['label_type'] + '_' + params['ss_type'] + '.txt' # Load dataset train_data = Dataset( data_type='train', label_type=params['label_type'], ss_type=params['ss_type'], batch_size=params['batch_size'], map_file_path=map_file_path, max_epoch=params['num_epoch'], splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=True, sort_stop_epoch=params['sort_stop_epoch']) dev_data = Dataset( data_type='dev', label_type=params['label_type'], ss_type=params['ss_type'], batch_size=params['batch_size'], map_file_path=map_file_path, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=False) test_data = Dataset( data_type='test', label_type=params['label_type'], ss_type=params['ss_type'], batch_size=params['batch_size'], map_file_path=map_file_path, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=False) # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(): # Define placeholders model.create_placeholders() learning_rate_pl = tf.placeholder(tf.float32, name='learning_rate') # Add to the graph each operation (including model definition) loss_op, logits, decoder_outputs_train, decoder_outputs_infer = model.compute_loss( model.inputs_pl_list[0], model.labels_pl_list[0], model.inputs_seq_len_pl_list[0], model.labels_seq_len_pl_list[0], model.keep_prob_encoder_pl_list[0], model.keep_prob_decoder_pl_list[0], model.keep_prob_embedding_pl_list[0]) train_op = model.train(loss_op, optimizer=params['optimizer'], learning_rate=learning_rate_pl) _, decode_op_infer = model.decode( decoder_outputs_train, decoder_outputs_infer) ler_op = model.compute_ler(model.labels_st_true_pl, model.labels_st_pred_pl) # Define learning rate controller lr_controller = Controller( learning_rate_init=params['learning_rate'], decay_start_epoch=params['decay_start_epoch'], decay_rate=params['decay_rate'], decay_patient_epoch=params['decay_patient_epoch'], lower_better=True) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(model.summaries_train) summary_dev = tf.summary.merge(model.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total param parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M param" % (len(parameters_dict.keys()), "{:,}".format(total_parameters / 1000000))) csv_steps, csv_loss_train, csv_loss_dev = [], [], [] csv_ler_train, csv_ler_dev = [], [] # Create a session for running operation on the graph with tf.Session() as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter( model.save_path, sess.graph) # Initialize param sess.run(init_op) # Train model start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() cer_dev_best = 1 not_improved_epoch = 0 learning_rate = float(params['learning_rate']) for step, (data, is_new_epoch) in enumerate(train_data): # Create feed dictionary for next mini batch (train) inputs, labels_train, inputs_seq_len, labels_seq_len, _ = data feed_dict_train = { model.inputs_pl_list[0]: inputs[0], model.labels_pl_list[0]: labels_train[0], model.inputs_seq_len_pl_list[0]: inputs_seq_len[0], model.labels_seq_len_pl_list[0]: labels_seq_len[0], model.keep_prob_encoder_pl_list[0]: 1 - float(params['dropout_encoder']), model.keep_prob_decoder_pl_list[0]: 1 - float(params['dropout_decoder']), model.keep_prob_embedding_pl_list[0]: 1 - float(params['dropout_embedding']), learning_rate_pl: learning_rate } # Update parameters sess.run(train_op, feed_dict=feed_dict_train) if (step + 1) % params['print_step'] == 0: # Create feed dictionary for next mini batch (dev) (inputs, labels_dev, inputs_seq_len, labels_seq_len, _), _ = dev_data.next() feed_dict_dev = { model.inputs_pl_list[0]: inputs[0], model.labels_pl_list[0]: labels_dev[0], model.inputs_seq_len_pl_list[0]: inputs_seq_len[0], model.labels_seq_len_pl_list[0]: labels_seq_len[0], model.keep_prob_encoder_pl_list[0]: 1.0, model.keep_prob_decoder_pl_list[0]: 1.0, model.keep_prob_embedding_pl_list[0]: 1.0 } # Compute loss loss_train = sess.run(loss_op, feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_loss_train.append(loss_train) csv_loss_dev.append(loss_dev) # Change to evaluation mode feed_dict_train[model.keep_prob_encoder_pl_list[0]] = 1.0 feed_dict_train[model.keep_prob_decoder_pl_list[0]] = 1.0 feed_dict_train[model.keep_prob_embedding_pl_list[0]] = 1.0 # Predict class ids & update even files predicted_ids_train, summary_str_train = sess.run( [decode_op_infer, summary_train], feed_dict=feed_dict_train) predicted_ids_dev, summary_str_dev = sess.run( [decode_op_infer, summary_dev], feed_dict=feed_dict_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() # Convert to sparsetensor to compute LER feed_dict_ler_train = { model.labels_st_true_pl: list2sparsetensor( labels_train[0], padded_value=train_data.padded_value), model.labels_st_pred_pl: list2sparsetensor( predicted_ids_train, padded_value=train_data.padded_value) } feed_dict_ler_dev = { model.labels_st_true_pl: list2sparsetensor( labels_dev[0], padded_value=dev_data.padded_value), model.labels_st_pred_pl: list2sparsetensor( predicted_ids_dev, padded_value=dev_data.padded_value) } # Compute accuracy ler_train = sess.run(ler_op, feed_dict=feed_dict_ler_train) ler_dev = sess.run(ler_op, feed_dict=feed_dict_ler_dev) csv_ler_train.append(ler_train) csv_ler_dev.append(ler_dev) duration_step = time.time() - start_time_step print("Step %d (epoch: %.3f): loss = %.3f (%.3f) / ler = %.3f (%.3f) / lr = %.5f (%.3f min)" % (step + 1, train_data.epoch_detail, loss_train, loss_dev, ler_train, ler_dev, learning_rate, duration_step / 60)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if is_new_epoch: duration_epoch = time.time() - start_time_epoch print('-----EPOCH:%d (%.3f min)-----' % (train_data.epoch, duration_epoch / 60)) # Save fugure of loss & ler plot_loss(csv_loss_train, csv_loss_dev, csv_steps, save_path=model.save_path) plot_ler(csv_ler_train, csv_ler_dev, csv_steps, label_type=params['label_type'], save_path=model.save_path) if train_data.epoch >= params['eval_start_epoch']: start_time_eval = time.time() print('=== Dev Data Evaluation ===') cer_dev_epoch = do_eval_cer( session=sess, decode_op=decode_op_infer, model=model, dataset=dev_data, label_type=params['label_type'], ss_type=params['ss_type'], eval_batch_size=1) print(' CER: %f %%' % (cer_dev_epoch * 100)) if cer_dev_epoch < cer_dev_best: cer_dev_best = cer_dev_epoch not_improved_epoch = 0 print('■■■ ↑Best Score (CER)↑ ■■■') # Save model (check point) checkpoint_file = join( model.save_path, 'model.ckpt') save_path = saver.save( sess, checkpoint_file, global_step=train_data.epoch) print("Model saved in file: %s" % save_path) print('=== Test Data Evaluation ===') ler_test = do_eval_cer( session=sess, decode_op=decode_op_infer, model=model, dataset=test_data, label_type=params['label_type'], ss_type=params['ss_type'], is_test=True, eval_batch_size=1) print(' CER: %f %%' % (ler_test * 100)) if params['ss_type'] != 'remove': df_acc = do_eval_fmeasure( session=sess, decode_op=decode_op_infer, model=model, dataset=test_data, label_type=params['label_type'], ss_type=params['ss_type'], is_test=True, eval_batch_size=1) print(df_acc) else: not_improved_epoch += 1 duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) # Early stopping if not_improved_epoch == params['not_improved_patient_epoch']: break # Update learning rate learning_rate = lr_controller.decay_lr( learning_rate=learning_rate, epoch=train_data.epoch, value=cer_dev_epoch) start_time_epoch = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Training was finished correctly with open(join(model.save_path, 'complete.txt'), 'w') as f: f.write('') def main(config_path, model_save_path): # Load a config file (.yml) with open(config_path, "r") as f: config = yaml.load(f) params = config['param'] # Except for a <SOS> and <EOS> class if params['ss_type'] == 'remove': params['num_classes'] = 147 elif params['ss_type'] in ['insert_left', 'insert_right']: params['num_classes'] = 151 elif params['ss_type'] == 'insert_both': params['num_classes'] = 155 else: TypeError # Model setting model = AttentionSeq2Seq( input_size=params['input_size'] * params['num_stack'], encoder_type=params['encoder_type'], encoder_num_units=params['encoder_num_units'], encoder_num_layers=params['encoder_num_layers'], encoder_num_proj=params['encoder_num_proj'], attention_type=params['attention_type'], attention_dim=params['attention_dim'], decoder_type=params['decoder_type'], decoder_num_units=params['decoder_num_units'], decoder_num_layers=params['decoder_num_layers'], embedding_dim=params['embedding_dim'], num_classes=params['num_classes'], sos_index=params['num_classes'], eos_index=params['num_classes'] + 1, max_decode_length=params['max_decode_length'], lstm_impl='LSTMBlockCell', use_peephole=params['use_peephole'], parameter_init=params['weight_init'], clip_grad_norm=params['clip_grad_norm'], clip_activation_encoder=params['clip_activation_encoder'], clip_activation_decoder=params['clip_activation_decoder'], weight_decay=params['weight_decay'], time_major=True, sharpening_factor=params['sharpening_factor'], logits_temperature=params['logits_temperature'], sigmoid_smoothing=params['sigmoid_smoothing']) # Set process name setproctitle('tf_erato_' + model.name + '_' + params['label_type'] + '_' + params['ss_type'] + '_' + params['attention_type']) model.name = 'en' + str(params['encoder_num_units']) model.name += '_' + str(params['encoder_num_layers']) model.name += '_att' + str(params['attention_dim']) model.name += '_de' + str(params['decoder_num_units']) model.name += '_' + str(params['decoder_num_layers']) model.name += '_' + params['optimizer'] model.name += '_lr' + str(params['learning_rate']) model.name += '_' + params['attention_type'] if params['dropout_encoder'] != 0: model.name += '_dropen' + str(params['dropout_encoder']) if params['dropout_decoder'] != 0: model.name += '_dropde' + str(params['dropout_decoder']) if params['dropout_embedding'] != 0: model.name += '_dropem' + str(params['dropout_embedding']) if params['num_stack'] != 1: model.name += '_stack' + str(params['num_stack']) if params['weight_decay'] != 0: model.name += 'wd' + str(params['weight_decay']) if params['sharpening_factor'] != 1: model.name += '_sharp' + str(params['sharpening_factor']) if params['logits_temperature'] != 1: model.name += '_temp' + str(params['logits_temperature']) if bool(params['sigmoid_smoothing']): model.name += '_smoothing' # Set save path model.save_path = mkdir_join( model_save_path, 'attention', params['label_type'], params['ss_type'], model.name) # Reset model directory model_index = 0 new_model_path = model.save_path while True: if isfile(join(new_model_path, 'complete.txt')): # Training of the first model have been finished model_index += 1 new_model_path = model.save_path + '_' + str(model_index) elif isfile(join(new_model_path, 'config.yml')): # Training of the first model have not been finished yet model_index += 1 new_model_path = model.save_path + '_' + str(model_index) else: break model.save_path = mkdir(new_model_path) # Save config file shutil.copyfile(config_path, join(model.save_path, 'config.yml')) sys.stdout = open(join(model.save_path, 'train.log'), 'w') # TODO(hirofumi): change to logger do_train(model=model, params=params) if __name__ == '__main__': args = sys.argv if len(args) != 3: raise ValueError('Length of args should be 3.') main(config_path=args[1], model_save_path=args[2])
Python/count-good-triplets.py
shreyventure/LeetCode-Solutions
388
72369
<gh_stars>100-1000 class Solution: """ The Brute Force Solution Time Complexity: O(N^3) Space Complexity: O(1) """ def countGoodTriplets(self, arr: List[int], a: int, b: int, c: int) -> int: triplet_count = 0 # for each i, for each j, check if the first condition is satisfied for i in range(len(arr) - 2): for j in range(i + 1, len(arr) - 1): if abs(arr[i] - arr[j]) <= a: # for each k, check if the last two conditions are satisfied for k in range(j + 1, len(arr)): if abs(arr[j] - arr[k]) <= b and abs(arr[i] - arr[k]) <= c: # the triplet is Good, increment the count! triplet_count += 1 return triplet_count
tracker/usecasecode/360d/stream_track.py
PowerMagicUniversity/deepstream_360_d_smart_parking_application
294
72387
""" Main file for streaming Multicam tracker for 360 degree usecase """ __version__ = '0.2' import argparse import json import logging import signal import sys from mctrack import mctrackstream logging.basicConfig(filename='mctracker360.log', level=logging.INFO) DEFAULT_CONSUMER_KAFKA_BOOTSTRAP_SERVER_URL = "kafka" DEFAULT_PRODUCER_KAFKA_BOOTSTRAP_SERVER_URL = "kafka" DEFAULT_CONSUMER_KAFKA_TOPIC = "metromind-raw" DEFAULT_PRODUCER_KAFKA_TOPIC = "metromind-start" DEFAULT_MCTRACKER_CONFIG_FILE = "config/config_360d.json" DEFAULT_STREAM_CONFIG_FILE = "config/config_360d_stream.json" mctrack_obj = None def signal_handler(signum, _): """Signal handler. This function will dump all tracker stats and exit Arguments: signum {int} -- The signal number frame {list} -- Stack frame """ logging.error("Multicam tracker got a signal: %d", signum) try: if mctrack_obj is not None: mctrack_obj.dump_stats() except Exception: pass exit() def main(): """Main function. Starts multicam tracker and runs continiously until killed """ global mctrack_obj parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", help="Config file for mctracker", default=DEFAULT_MCTRACKER_CONFIG_FILE) parser.add_argument("-s", "--sconfig", help="Config file for streaming setup", default=DEFAULT_STREAM_CONFIG_FILE) args = parser.parse_args() stream_config = None try: stream_config = json.load(open(args.sconfig)) except IOError as ioe: err_msg = "ERROR: Stream Config I/O Error({}): {}: {}. Quitting".format( ioe.errno, args.sconfig, ioe.strerror) logging.error(err_msg) print(err_msg) exit() except: err_msg = "ERROR: Stream Config Error: {}: {}. Quitting".format( args.sconfig, sys.exc_info()[0]) logging.error(err_msg) print(err_msg) exit() print(stream_config) ckafka = (stream_config .get("msgBrokerConfig", {}) .get("inputKafkaServerUrl", DEFAULT_CONSUMER_KAFKA_BOOTSTRAP_SERVER_URL)) pkafka = (stream_config .get("msgBrokerConfig", {}) .get("outputKafkaServerUrl", DEFAULT_PRODUCER_KAFKA_BOOTSTRAP_SERVER_URL)) itopic = (stream_config .get("msgBrokerConfig", {}) .get("inputKafkaTopic", DEFAULT_CONSUMER_KAFKA_TOPIC)) otopic = (stream_config .get("msgBrokerConfig", {}) .get("outputKafkaTopic", DEFAULT_CONSUMER_KAFKA_TOPIC)) time_it_flag = stream_config.get("profileTime", False) print("Starting MC-Streaming app with following args:\n" "consumer kafka server={}\n" "consumer kafka topic={}\n" "producer kafka server={}\n" "producer kafka topic={}\n" "Time profile={}\n" "MC Tracker Config File={}\n".format(ckafka, itopic, pkafka, otopic, time_it_flag, args.config)) # Set the signal handler for ctrl-c. Since the program runs indefinitely, # we need to dump some stats when sigint is received # (when profiling is enabled) signal.signal(signal.SIGINT, signal_handler) mctrack_obj = mctrackstream.McTrackerStream(ckafka, itopic, pkafka, otopic, args.config, time_it_flag) mctrack_obj.start_mctracker() if __name__ == "__main__": main()
static/paddlex_restful/restful/dataset/datasetbase.py
cheneyveron/PaddleX
3,655
72392
# copytrue (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import os.path as osp import random from .utils import copy_directory class DatasetBase(object): def __init__(self, dataset_id, path): self.id = dataset_id self.path = path self.all_files = list() self.file_info = dict() self.label_info = dict() self.labels = list() self.train_files = list() self.val_files = list() self.test_files = list() self.class_train_file_list = dict() self.class_val_file_list = dict() self.class_test_file_list = dict() def copy_dataset(self, source_path, files): # 将原数据集拷贝至目标路径 copy_directory(source_path, self.path, files) def dump_statis_info(self): # info['fields']指定了需要dump的信息 info = dict() info['fields'] = [ 'file_info', 'label_info', 'labels', 'train_files', 'val_files', 'test_files', 'class_train_file_list', 'class_val_file_list', 'class_test_file_list' ] for field in info['fields']: if hasattr(self, field): info[field] = getattr(self, field) with open(osp.join(self.path, 'statis.pkl'), 'wb') as f: pickle.dump(info, f) def load_statis_info(self): with open(osp.join(self.path, 'statis.pkl'), 'rb') as f: info = pickle.load(f) for field in info['fields']: if field in info: setattr(self, field, info[field]) def split(self, val_split, test_split): all_files = list(self.file_info.keys()) random.shuffle(all_files) val_num = int(len(all_files) * val_split) test_num = int(len(all_files) * test_split) train_num = len(all_files) - val_num - test_num assert train_num > 0, "训练集样本数量需大于0" assert val_num > 0, "验证集样本数量需大于0" self.train_files = all_files[:train_num] self.val_files = all_files[train_num:train_num + val_num] self.test_files = all_files[train_num + val_num:] self.train_set = set(self.train_files) self.val_set = set(self.val_files) self.test_set = set(self.test_files) for label, file_list in self.label_info.items(): self.class_train_file_list[label] = list() self.class_val_file_list[label] = list() self.class_test_file_list[label] = list() for f in file_list: if f in self.test_set: self.class_test_file_list[label].append(f) if f in self.val_set: self.class_val_file_list[label].append(f) if f in self.train_set: self.class_train_file_list[label].append(f)
cgi-bin/paint_x2_unet/unet.py
ohong/pretty-whale
2,990
72418
#!/usr/bin/env python import numpy as np import math import chainer import chainer.functions as F import chainer.links as L from chainer import cuda, optimizers, serializers, Variable from chainer import function from chainer.utils import type_check class UNET(chainer.Chain): def __init__(self): super(UNET, self).__init__( c0=L.Convolution2D(4, 32, 3, 1, 1), c1=L.Convolution2D(32, 64, 4, 2, 1), c2=L.Convolution2D(64, 64, 3, 1, 1), c3=L.Convolution2D(64, 128, 4, 2, 1), c4=L.Convolution2D(128, 128, 3, 1, 1), c5=L.Convolution2D(128, 256, 4, 2, 1), c6=L.Convolution2D(256, 256, 3, 1, 1), c7=L.Convolution2D(256, 512, 4, 2, 1), c8=L.Convolution2D(512, 512, 3, 1, 1), dc8=L.Deconvolution2D(1024, 512, 4, 2, 1), dc7=L.Convolution2D(512, 256, 3, 1, 1), dc6=L.Deconvolution2D(512, 256, 4, 2, 1), dc5=L.Convolution2D(256, 128, 3, 1, 1), dc4=L.Deconvolution2D(256, 128, 4, 2, 1), dc3=L.Convolution2D(128, 64, 3, 1, 1), dc2=L.Deconvolution2D(128, 64, 4, 2, 1), dc1=L.Convolution2D(64, 32, 3, 1, 1), dc0=L.Convolution2D(64, 3, 3, 1, 1), bnc0=L.BatchNormalization(32), bnc1=L.BatchNormalization(64), bnc2=L.BatchNormalization(64), bnc3=L.BatchNormalization(128), bnc4=L.BatchNormalization(128), bnc5=L.BatchNormalization(256), bnc6=L.BatchNormalization(256), bnc7=L.BatchNormalization(512), bnc8=L.BatchNormalization(512), bnd8=L.BatchNormalization(512), bnd7=L.BatchNormalization(256), bnd6=L.BatchNormalization(256), bnd5=L.BatchNormalization(128), bnd4=L.BatchNormalization(128), bnd3=L.BatchNormalization(64), bnd2=L.BatchNormalization(64), bnd1=L.BatchNormalization(32) # l = L.Linear(3*3*256, 2)' ) def calc(self, x): e0 = F.relu(self.bnc0(self.c0(x))) e1 = F.relu(self.bnc1(self.c1(e0))) e2 = F.relu(self.bnc2(self.c2(e1))) del e1 e3 = F.relu(self.bnc3(self.c3(e2))) e4 = F.relu(self.bnc4(self.c4(e3))) del e3 e5 = F.relu(self.bnc5(self.c5(e4))) e6 = F.relu(self.bnc6(self.c6(e5))) del e5 e7 = F.relu(self.bnc7(self.c7(e6))) e8 = F.relu(self.bnc8(self.c8(e7))) d8 = F.relu(self.bnd8(self.dc8(F.concat([e7, e8])))) del e7, e8 d7 = F.relu(self.bnd7(self.dc7(d8))) del d8 d6 = F.relu(self.bnd6(self.dc6(F.concat([e6, d7])))) del d7, e6 d5 = F.relu(self.bnd5(self.dc5(d6))) del d6 d4 = F.relu(self.bnd4(self.dc4(F.concat([e4, d5])))) del d5, e4 d3 = F.relu(self.bnd3(self.dc3(d4))) del d4 d2 = F.relu(self.bnd2(self.dc2(F.concat([e2, d3])))) del d3, e2 d1 = F.relu(self.bnd1(self.dc1(d2))) del d2 d0 = self.dc0(F.concat([e0, d1])) return d0 def __call__(self, x, t): h = self.calc(x) loss = F.mean_absolute_error(h, t) chainer.report({'loss': loss}, self) return loss class DIS(chainer.Chain): def __init__(self): super(DIS, self).__init__( c1=L.Convolution2D(3, 32, 4, 2, 1), c2=L.Convolution2D(32, 32, 3, 1, 1), c3=L.Convolution2D(32, 64, 4, 2, 1), c4=L.Convolution2D(64, 64, 3, 1, 1), c5=L.Convolution2D(64, 128, 4, 2, 1), c6=L.Convolution2D(128, 128, 3, 1, 1), c7=L.Convolution2D(128, 256, 4, 2, 1), l8l=L.Linear(None, 2, initialW=chainer.initializers.HeNormal( math.sqrt(0.02 * math.sqrt(8 * 8 * 256) / 2))), bnc1=L.BatchNormalization(32), bnc2=L.BatchNormalization(32), bnc3=L.BatchNormalization(64), bnc4=L.BatchNormalization(64), bnc5=L.BatchNormalization(128), bnc6=L.BatchNormalization(128), bnc7=L.BatchNormalization(256), ) def calc(self, x): h = F.relu(self.bnc1(self.c1(x))) h = F.relu(self.bnc2(self.c2(h))) h = F.relu(self.bnc3(self.c3(h))) h = F.relu(self.bnc4(self.c4(h))) h = F.relu(self.bnc5(self.c5(h))) h = F.relu(self.bnc6(self.c6(h))) h = F.relu(self.bnc7(self.c7(h))) return self.l8l(h) def __call__(self, x, t): h = self.calc(x) loss = F.softmax_cross_entropy(h, t) #chainer.report({'loss': loss }, self) return loss
ocs_ci/utility/ocs_build.py
annagitel/ocs-ci
130
72456
""" This module is used to return latest OCS internal build for specified OCS version. """ import argparse import os from ocs_ci.framework import config from ocs_ci.framework.main import load_config from ocs_ci.ocs.constants import OCS_VERSION_CONF_DIR from ocs_ci.utility.utils import get_latest_ds_olm_tag def init_arg_parser(): """ Init argument parser. Returns: object: Parsed arguments """ parser = argparse.ArgumentParser(description="OCS Internal build version") parser.add_argument( "--ocs-version", action="store", required=False, default=config.ENV_DATA["ocs_version"], help=f""" OCS version in format X.Y (e.g. 4.7). If not specified, the default value {config.ENV_DATA['ocs_version']} will be used. """, ) parser.add_argument( "--image", action="store_true", required=False, default=False, help="If used the whole image of OCS internal build will be returned", ) return parser.parse_args() def main(): """ Main function """ parser = init_arg_parser() ocs_version = parser.ocs_version image = parser.image config.ENV_DATA["ocs_version"] = ocs_version version_config_file = os.path.join(OCS_VERSION_CONF_DIR, f"ocs-{ocs_version}.yaml") load_config([version_config_file]) latest_ocs_build = get_latest_ds_olm_tag() if image: base_image = config.DEPLOYMENT["default_ocs_registry_image"].split(":")[0] print(f"{base_image}:{latest_ocs_build}") return print(latest_ocs_build) if __name__ == "__main__": main()
nova/notifications/objects/compute_task.py
zjzh/nova
1,874
72477
<reponame>zjzh/nova<filename>nova/notifications/objects/compute_task.py # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.notifications.objects import base from nova.notifications.objects import request_spec as reqspec_payload from nova.objects import base as nova_base from nova.objects import fields @nova_base.NovaObjectRegistry.register_notification class ComputeTaskPayload(base.NotificationPayloadBase): # Version 1.0: Initial version VERSION = '1.0' fields = { 'instance_uuid': fields.UUIDField(), # There are some cases that request_spec is None. # e.g. Old instances can still have no RequestSpec object # attached to them. 'request_spec': fields.ObjectField('RequestSpecPayload', nullable=True), 'state': fields.InstanceStateField(nullable=True), 'reason': fields.ObjectField('ExceptionPayload') } def __init__(self, instance_uuid, request_spec, state, reason): super(ComputeTaskPayload, self).__init__() self.instance_uuid = instance_uuid self.request_spec = reqspec_payload.RequestSpecPayload( request_spec) if request_spec is not None else None self.state = state self.reason = reason @base.notification_sample('compute_task-build_instances-error.json') @base.notification_sample('compute_task-migrate_server-error.json') @base.notification_sample('compute_task-rebuild_server-error.json') @nova_base.NovaObjectRegistry.register_notification class ComputeTaskNotification(base.NotificationBase): # Version 1.0: Initial version VERSION = '1.0' fields = { 'payload': fields.ObjectField('ComputeTaskPayload') }
flatlib/chart.py
D-Vaillant/flatlib
196
72486
<reponame>D-Vaillant/flatlib """ This file is part of flatlib - (C) FlatAngle Author: <NAME> (<EMAIL>) This module implements a class to represent an astrology Chart. It provides methods to handle the chart, as well as three relevant properties: - objects: a list with the chart's objects - houses: a list with the chart's houses - angles: a list with the chart's angles Since houses 1 and 10 may not match the Asc and MC in some house systems, the Chart class includes the list of angles. The angles should be used when you want to deal with angle's longitudes. There are also methods to access fixed stars. """ from . import angle from . import const from . import utils from .ephem import ephem from .datetime import Datetime # ------------------ # # Chart Class # # ------------------ # class Chart: """ This class represents an astrology chart. """ def __init__(self, date, pos, **kwargs): """ Creates an astrology chart for a given date and location. Optional arguments are: - hsys: house system - IDs: list of objects to include """ # Handle optional arguments hsys = kwargs.get('hsys', const.HOUSES_DEFAULT) IDs = kwargs.get('IDs', const.LIST_OBJECTS_TRADITIONAL) self.date = date self.pos = pos self.hsys = hsys self.objects = ephem.getObjectList(IDs, date, pos) self.houses, self.angles = ephem.getHouses(date, pos, hsys) def copy(self): """ Returns a deep copy of this chart. """ chart = Chart.__new__(Chart) chart.date = self.date chart.pos = self.pos chart.hsys = self.hsys chart.objects = self.objects.copy() chart.houses = self.houses.copy() chart.angles = self.angles.copy() return chart # === Properties === # def getObject(self, ID): """ Returns an object from the chart. """ return self.objects.get(ID) def getHouse(self, ID): """ Returns an house from the chart. """ return self.houses.get(ID) def getAngle(self, ID): """ Returns an angle from the chart. """ return self.angles.get(ID) def get(self, ID): """ Returns an object, house or angle from the chart. """ if ID.startswith('House'): return self.getHouse(ID) elif ID in const.LIST_ANGLES: return self.getAngle(ID) else: return self.getObject(ID) # === Fixed stars === # # The computation of fixed stars is inefficient, # so the access must be made directly to the # ephemeris only when needed. def getFixedStar(self, ID): """ Returns a fixed star from the ephemeris. """ return ephem.getFixedStar(ID, self.date) def getFixedStars(self): """ Returns a list with all fixed stars. """ IDs = const.LIST_FIXED_STARS return ephem.getFixedStarList(IDs, self.date) # === Houses and angles === # def isHouse1Asc(self): """ Returns true if House1 is the same as the Asc. """ house1 = self.getHouse(const.HOUSE1) asc = self.getAngle(const.ASC) dist = angle.closestdistance(house1.lon, asc.lon) return abs(dist) < 0.0003 # 1 arc-second def isHouse10MC(self): """ Returns true if House10 is the same as the MC. """ house10 = self.getHouse(const.HOUSE10) mc = self.getAngle(const.MC) dist = angle.closestdistance(house10.lon, mc.lon) return abs(dist) < 0.0003 # 1 arc-second # === Other properties === # def isDiurnal(self): """ Returns true if this chart is diurnal. """ sun = self.getObject(const.SUN) mc = self.getAngle(const.MC) # Get ecliptical positions and check if the # sun is above the horizon. lat = self.pos.lat sunRA, sunDecl = utils.eqCoords(sun.lon, sun.lat) mcRA, mcDecl = utils.eqCoords(mc.lon, 0) return utils.isAboveHorizon(sunRA, sunDecl, mcRA, lat) def getMoonPhase(self): """ Returns the phase of the moon. """ sun = self.getObject(const.SUN) moon = self.getObject(const.MOON) dist = angle.distance(sun.lon, moon.lon) if dist < 90: return const.MOON_FIRST_QUARTER elif dist < 180: return const.MOON_SECOND_QUARTER elif dist < 270: return const.MOON_THIRD_QUARTER else: return const.MOON_LAST_QUARTER # === Solar returns === # def solarReturn(self, year): """ Returns this chart's solar return for a given year. """ sun = self.getObject(const.SUN) date = Datetime('{0}/01/01'.format(year), '00:00', self.date.utcoffset) srDate = ephem.nextSolarReturn(date, sun.lon) return Chart(srDate, self.pos, hsys=self.hsys)
tensorflow_toolkit/action_detection/action_detection/postprocessing/detection_output.py
morkovka1337/openvino_training_extensions
256
72503
<reponame>morkovka1337/openvino_training_extensions<filename>tensorflow_toolkit/action_detection/action_detection/postprocessing/detection_output.py<gh_stars>100-1000 # Copyright (C) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. from collections import namedtuple import numpy as np from action_detection.postprocessing.metrics import matrix_iou Detections = namedtuple('Detections', 'loc, scores') Actions = namedtuple('Detections', 'loc, scores, action_labels, action_scores, id') def nms(input_bboxes, input_scores, threshold, keep_top_k, min_score=0.01): """Carry out default NMS algorithm over the input boxes. :param input_bboxes: Input boxes :param input_scores: Detection scores of boxes :param threshold: Min IoU value to merge boxes :param keep_top_k: Max number of boxes to output :param min_score: Min score value to output box :return: Filtered box IDs """ if len(input_bboxes) == 0: return [] if len(input_bboxes) > keep_top_k: indices = np.argsort(-input_scores)[:keep_top_k] scores = input_scores[indices] bboxes = input_bboxes[indices] else: scores = np.copy(input_scores) indices = np.arange(len(scores)) bboxes = input_bboxes similarity_matrix = matrix_iou(bboxes, bboxes) out_ids = [] for _ in xrange(len(bboxes)): bbox_id = np.argmax(scores) bbox_score = scores[bbox_id] if bbox_score < min_score: break out_ids.append(indices[bbox_id]) scores[bbox_id] = 0.0 iou_values = similarity_matrix[bbox_id] scores[iou_values > threshold] = 0.0 return np.array(out_ids, dtype=np.int32) def soft_nms(input_bboxes, input_scores, keep_top_k, sigma, min_score): """Carry out Soft-NMS algorithm over the input boxes. :param input_bboxes: Input boxes :param input_scores: Detection scores of boxes :param keep_top_k: Max number of boxes to output :param sigma: Algorithm parameter :param min_score: Min score value to output box :return: Filtered box IDs """ if len(input_bboxes) == 0: return [], [] if len(input_bboxes) > keep_top_k: indices = np.argsort(-input_scores)[:keep_top_k] scores = input_scores[indices] bboxes = input_bboxes[indices] else: scores = np.copy(input_scores) indices = np.arange(len(scores)) bboxes = input_bboxes similarity_matrix = matrix_iou(bboxes, bboxes) out_ids = [] out_scores = [] for _ in xrange(len(bboxes)): bbox_id = np.argmax(scores) bbox_score = scores[bbox_id] if bbox_score < min_score: break out_ids.append(indices[bbox_id]) out_scores.append(bbox_score) scores[bbox_id] = 0.0 iou_values = similarity_matrix[bbox_id] scores *= np.exp(np.negative(np.square(iou_values) / sigma)) return np.array(out_ids, dtype=np.int32), np.array(out_scores, dtype=np.float32) def ssd_detection_output(batch_bboxes, batch_conf, bg_class, min_conf=0.01, out_top_k=200, nms_overlap=0.45, nms_top_k=400): """Process network output to translate it into the bboxes with labels. :param batch_bboxes: All bboxes :param batch_conf: All detection scores :param bg_class: ID of background class :param min_conf: Min score value to output box :param out_top_k: Max number of boxes per image to output :param nms_overlap: NMS parameter :param nms_top_k: NMS parameter :return: List of detections """ assert batch_bboxes.shape[:2] == batch_conf.shape[:2] assert batch_bboxes.shape[2] == 4 num_classes = batch_conf.shape[-1] assert num_classes > 1 all_detections = [] for sample_id in xrange(batch_bboxes.shape[0]): sample_bboxes = batch_bboxes[sample_id] sample_conf = batch_conf[sample_id] all_sample_detections = [] for label in xrange(num_classes): if label == bg_class: continue sample_scores = sample_conf[:, label] valid_mask = sample_scores > min_conf # noinspection PyTypeChecker if np.sum(valid_mask) == 0: continue valid_bboxes = sample_bboxes[valid_mask] valid_scores = sample_scores[valid_mask] merged_ids = nms(valid_bboxes, valid_scores, nms_overlap, nms_top_k) if len(merged_ids) > 0: out_bboxes = valid_bboxes[merged_ids].reshape([-1, 4]) out_scores = valid_scores[merged_ids].reshape([-1]) for i in xrange(len(out_scores)): all_sample_detections.append((out_bboxes[i], label, out_scores[i])) if len(all_sample_detections) > out_top_k: all_sample_detections.sort(key=lambda tup: tup[2], reverse=True) all_sample_detections = all_sample_detections[:out_top_k] sample_detections = {} for bbox, label, score in all_sample_detections: if label not in sample_detections: sample_detections[label] = {'loc': [bbox], 'scores': [score]} else: last_data = sample_detections[label] last_data['loc'].append(bbox) last_data['scores'].append(score) out_sample_detections = {label: Detections(loc=np.stack(sample_detections[label]['loc']), scores=np.stack(sample_detections[label]['scores'])) for label in sample_detections} all_detections.append(out_sample_detections) return all_detections def ssd_warp_gt(batch_bboxes, batch_labels, bg_class): """Translates Ground truth boxes and labels into the internal format. :param batch_bboxes: Bbox coordinates :param batch_labels: Bbox labels :param bg_class: ID of background label :return: List of boxes """ assert batch_bboxes.shape[0] == batch_labels.shape[0] all_gt = [] for sample_id in xrange(batch_bboxes.shape[0]): sample_bboxes = batch_bboxes[sample_id] sample_labels = batch_labels[sample_id] valid_mask = np.logical_and(sample_labels >= 0, sample_labels != bg_class) if np.sum(valid_mask) == 0: all_gt.append([]) continue valid_bboxes = sample_bboxes[valid_mask] valid_labels = sample_labels[valid_mask] unique_labels = np.unique(valid_labels) sample_detections = {} for label in unique_labels: label_mask = valid_labels == label class_bboxes = valid_bboxes[label_mask] sample_detections[label] = Detections(loc=class_bboxes, scores=None) all_gt.append(sample_detections) return all_gt def action_detection_output(batch_bboxes, batch_det_conf, batch_action_conf, bg_class, min_det_conf=0.01, min_action_conf=0.01, out_top_k=400, nms_top_k=400, nms_sigma=0.6, do_nms=True): """Process network output to translate it into the bboxes with detection scores and action labels. :param batch_bboxes: All bboxes :param batch_det_conf: All detection scores :param batch_action_conf: All action scores :param bg_class: ID of background class :param min_det_conf: Min score value to output box :param min_action_conf: Min score value for action confidence :param out_top_k: Max number of boxes per image to output :param nms_top_k: NMS parameter :param nms_sigma: NMS parameter :param do_nms: Whether to run NMS algorithm :return: List of detections """ assert batch_bboxes.shape[:2] == batch_det_conf.shape[:2] assert batch_bboxes.shape[:2] == batch_action_conf.shape[:2] assert batch_bboxes.shape[2] == 4 num_det_classes = batch_det_conf.shape[-1] assert num_det_classes == 2 num_action_classes = batch_action_conf.shape[-1] assert num_action_classes > 1 det_class = (bg_class + 1) % 2 all_detections = [] for sample_id in xrange(batch_bboxes.shape[0]): sample_bboxes = batch_bboxes[sample_id] sample_det_scores = batch_det_conf[sample_id, :, det_class] sample_action_conf = batch_action_conf[sample_id] valid_mask = sample_det_scores > min_det_conf # noinspection PyTypeChecker if np.sum(valid_mask) == 0: all_detections.append({det_class: []}) continue valid_bboxes = sample_bboxes[valid_mask] valid_det_scores = sample_det_scores[valid_mask] valid_det_conf = sample_action_conf[valid_mask] if do_nms: filtered_ids, filtered_scores = soft_nms(valid_bboxes, valid_det_scores, nms_top_k, nms_sigma, min_det_conf) else: filtered_scores = np.copy(valid_det_scores) filtered_ids = np.argsort(-filtered_scores) if len(filtered_ids) > 0: out_bboxes = valid_bboxes[filtered_ids].reshape([-1, 4]) out_det_scores = filtered_scores.reshape([-1]) out_action_conf = valid_det_conf[filtered_ids].reshape([-1, num_action_classes]) if 0 < out_top_k < len(out_det_scores): out_bboxes = out_bboxes[:out_top_k] out_det_scores = out_det_scores[:out_top_k] out_action_conf = out_action_conf[:out_top_k] out_action_label = np.argmax(out_action_conf, axis=-1) out_action_score = np.max(out_action_conf, axis=-1) if min_action_conf is not None and min_action_conf > 0.0: out_action_label[out_action_score < min_action_conf] = 0 sample_detections = Actions(loc=out_bboxes, scores=out_det_scores, action_labels=out_action_label, action_scores=out_action_score, id=None) all_detections.append({det_class: sample_detections}) else: all_detections.append({det_class: []}) continue return all_detections def action_warp_gt(batch_bboxes, batch_labels, bg_class, batch_track_ids=None): """Translates Ground truth boxes and actions into the internal format. :param batch_bboxes: Bbox coordinates :param batch_labels: Bbox labels :param bg_class: ID of background label :param batch_track_ids: ID of track in a batch :return: List of boxes """ assert batch_bboxes.shape[0] == batch_labels.shape[0] det_class = (bg_class + 1) % 2 all_gt = [] for sample_id in xrange(batch_bboxes.shape[0]): sample_bboxes = batch_bboxes[sample_id] sample_labels = batch_labels[sample_id] sample_track_ids = batch_track_ids[sample_id] if batch_track_ids is not None else None valid_mask = sample_labels >= 0 # noinspection PyTypeChecker if np.sum(valid_mask) == 0: all_gt.append([]) continue valid_bboxes = sample_bboxes[valid_mask] valid_labels = sample_labels[valid_mask] valid_track_ids = sample_track_ids[valid_mask] if sample_track_ids is not None else None sample_detections = {det_class: Actions(loc=valid_bboxes, scores=None, action_labels=valid_labels, action_scores=None, id=valid_track_ids)} all_gt.append(sample_detections) return all_gt
convlab/human_eval/bot_server.py
ngduyanhece/ConvLab
405
72553
<reponame>ngduyanhece/ConvLab # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import sys sys.path.append('../../') from convlab.agent import Body from convlab.agent import DialogAgent from convlab.spec import spec_util from convlab.env import make_env import numpy as np import copy from flask import Flask, request, jsonify from queue import PriorityQueue from threading import Thread import time rgi_queue = PriorityQueue(maxsize=0) rgo_queue = PriorityQueue(maxsize=0) app = Flask(__name__) os.environ['lab_mode'] = 'eval' spec_file = sys.argv[1] spec_name = sys.argv[2] lab_mode = sys.argv[3] if '@' in lab_mode: lab_mode, prename = lab_mode.split('@') spec = spec_util.get_eval_spec(spec_file, spec_name, prename) else: spec = spec_util.get(spec_file, spec_name) # # lab_mode, prename = sys.argv[3].split('@') # spec = spec_util.get_eval_spec(spec_file, prename) spec = spec_util.override_eval_spec(spec) agent_spec = spec['agent'][0] env = make_env(spec) body = Body(env, spec['agent']) agent = DialogAgent(spec, body) # last_obs = 'hi' # agent.reset(last_obs) # obs = 'hi can you find me a hotel in the west?' # action = agent.act(obs) # next_obs = 'we have six people' # agent.update(obs, action, 0, next_obs, 0) # action = agent.act(next_obs) @app.route('/', methods=['GET', 'POST']) def process(): try: in_request = request.json print(in_request) except: return "invalid input: {}".format(in_request) rgi_queue.put((time.time(), in_request)) rgi_queue.join() output = rgo_queue.get() print(output['response']) rgo_queue.task_done() # return jsonify({'response': response}) return jsonify(output) def generate_response(in_queue, out_queue): while True: # pop input last_action = 'null' in_request = in_queue.get() obs = in_request['input'] if in_request['agent_state'] == {}: agent.reset(obs) else: encoded_state, dst_state, last_action = in_request['agent_state'] agent.body.encoded_state = np.asarray(encoded_state) if isinstance(encoded_state, list) else encoded_state agent.dst.state = copy.deepcopy(dst_state) agent.update(obs, last_action, 0, obs, 0) try: action = agent.act(obs) encoded_state = agent.body.encoded_state.tolist() if isinstance(agent.body.encoded_state, np.ndarray) else agent.body.encoded_state dst_state = copy.deepcopy(agent.dst.state) except Exception as e: print('agent error', e) try: if action == '': response = 'Sorry I do not understand, can you paraphrase?' else: response = action except Exception as e: print('Response generation error', e) response = 'What did you say?' last_action = action out_queue.put({'response': response, 'agent_state': (encoded_state, dst_state, last_action)}) in_queue.task_done() out_queue.join() if __name__ == '__main__': worker = Thread(target=generate_response, args=(rgi_queue, rgo_queue,)) worker.setDaemon(True) worker.start() app.run(host='0.0.0.0', port=10004)
jaxrl/agents/__init__.py
HassamSheikh/jaxrl
157
72574
from jaxrl.agents.awac.awac_learner import AWACLearner from jaxrl.agents.bc.bc_learner import BCLearner from jaxrl.agents.ddpg.ddpg_learner import DDPGLearner from jaxrl.agents.drq.drq_learner import DrQLearner from jaxrl.agents.sac.sac_learner import SACLearner from jaxrl.agents.sac_v1.sac_v1_learner import SACV1Learner
tensorflow_graphics/geometry/transformation/rotation_matrix_2d.py
sarvex/graphics
2,759
72576
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""This module implements 2d rotation matrix functionalities. Given an angle of rotation $$\theta$$ a 2d rotation matrix can be expressed as $$ \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}. $$ More details rotation matrices can be found on [this page.] (https://en.wikipedia.org/wiki/Rotation_matrix) Note: This matrix rotates points in the $$xy$$-plane counterclockwise. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Optional from six.moves import range import tensorflow as tf from tensorflow_graphics.geometry.transformation import rotation_matrix_common from tensorflow_graphics.util import export_api from tensorflow_graphics.util import shape from tensorflow_graphics.util import type_alias def from_euler(angle: type_alias.TensorLike, name: str = "rotation_matrix_2d_from_euler_angle") -> tf.Tensor: r"""Converts an angle to a 2d rotation matrix. Converts an angle $$\theta$$ to a 2d rotation matrix following the equation $$ \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}. $$ Note: The resulting matrix rotates points in the $$xy$$-plane counterclockwise. Note: In the following, A1 to An are optional batch dimensions. Args: angle: A tensor of shape `[A1, ..., An, 1]`, where the last dimension represents an angle in radians. name: A name for this op that defaults to "rotation_matrix_2d_from_euler_angle". Returns: A tensor of shape `[A1, ..., An, 2, 2]`, where the last dimension represents a 2d rotation matrix. Raises: ValueError: If the shape of `angle` is not supported. """ with tf.name_scope(name): angle = tf.convert_to_tensor(value=angle) shape.check_static( tensor=angle, tensor_name="angle", has_dim_equals=(-1, 1)) cos_angle = tf.cos(angle) sin_angle = tf.sin(angle) matrix = tf.stack((cos_angle, -sin_angle, sin_angle, cos_angle), axis=-1) # pyformat: disable output_shape = tf.concat((tf.shape(input=angle)[:-1], (2, 2)), axis=-1) return tf.reshape(matrix, shape=output_shape) def from_euler_with_small_angles_approximation( angles: type_alias.TensorLike, name: str = "rotation_matrix_2d_from_euler_with_small_angles_approximation" ) -> tf.Tensor: r"""Converts an angle to a 2d rotation matrix under the small angle assumption. Under the small angle assumption, $$\sin(x)$$ and $$\cos(x)$$ can be approximated by their second order Taylor expansions, where $$\sin(x) \approx x$$ and $$\cos(x) \approx 1 - \frac{x^2}{2}$$. The 2d rotation matrix will then be approximated as $$ \mathbf{R} = \begin{bmatrix} 1.0 - 0.5\theta^2 & -\theta \\ \theta & 1.0 - 0.5\theta^2 \end{bmatrix}. $$ In the current implementation, the smallness of the angles is not verified. Note: The resulting matrix rotates points in the $$xy$$-plane counterclockwise. Note: In the following, A1 to An are optional batch dimensions. Args: angles: A tensor of shape `[A1, ..., An, 1]`, where the last dimension represents a small angle in radians. name: A name for this op that defaults to "rotation_matrix_2d_from_euler_with_small_angles_approximation". Returns: A tensor of shape `[A1, ..., An, 2, 2]`, where the last dimension represents a 2d rotation matrix. Raises: ValueError: If the shape of `angle` is not supported. """ with tf.name_scope(name): angles = tf.convert_to_tensor(value=angles) shape.check_static( tensor=angles, tensor_name="angles", has_dim_equals=(-1, 1)) cos_angle = 1.0 - 0.5 * angles * angles sin_angle = angles matrix = tf.stack((cos_angle, -sin_angle, sin_angle, cos_angle), axis=-1) # pyformat: disable output_shape = tf.concat((tf.shape(input=angles)[:-1], (2, 2)), axis=-1) return tf.reshape(matrix, shape=output_shape) def inverse(matrix: type_alias.TensorLike, name: str = "rotation_matrix_2d_inverse") -> tf.Tensor: """Computes the inverse of a 2D rotation matrix. Note: In the following, A1 to An are optional batch dimensions. Args: matrix: A tensor of shape `[A1, ..., An, 2, 2]`, where the last two dimensions represent a 2d rotation matrix. name: A name for this op that defaults to "rotation_matrix_2d_inverse". Returns: A tensor of shape `[A1, ..., An, 2, 2]`, where the last dimension represents a 2d rotation matrix. Raises: ValueError: If the shape of `matrix` is not supported. """ with tf.name_scope(name): matrix = tf.convert_to_tensor(value=matrix) shape.check_static( tensor=matrix, tensor_name="matrix", has_rank_greater_than=1, has_dim_equals=((-2, 2), (-1, 2))) ndims = matrix.shape.ndims perm = list(range(ndims - 2)) + [ndims - 1, ndims - 2] return tf.transpose(a=matrix, perm=perm) def is_valid(matrix: type_alias.TensorLike, atol: type_alias.Float = 1e-3, name: str = "rotation_matrix_2d_is_valid") -> tf.Tensor: r"""Determines if a matrix is a valid rotation matrix. Determines if a matrix $$\mathbf{R}$$ is a valid rotation matrix by checking that $$\mathbf{R}^T\mathbf{R} = \mathbf{I}$$ and $$\det(\mathbf{R}) = 1$$. Note: In the following, A1 to An are optional batch dimensions. Args: matrix: A tensor of shape `[A1, ..., An, 2, 2]`, where the last two dimensions represent a 2d rotation matrix. atol: The absolute tolerance parameter. name: A name for this op that defaults to "rotation_matrix_2d_is_valid". Returns: A tensor of type `bool` and shape `[A1, ..., An, 1]` where False indicates that the input is not a valid rotation matrix. """ with tf.name_scope(name): matrix = tf.convert_to_tensor(value=matrix) shape.check_static( tensor=matrix, tensor_name="matrix", has_rank_greater_than=1, has_dim_equals=((-2, 2), (-1, 2))) return rotation_matrix_common.is_valid(matrix, atol) def rotate(point: type_alias.TensorLike, matrix: type_alias.TensorLike, name: str = "rotation_matrix_2d_rotate") -> tf.Tensor: """Rotates a 2d point using a 2d rotation matrix. Note: In the following, A1 to An are optional batch dimensions, which must be identical. Args: point: A tensor of shape `[A1, ..., An, 2]`, where the last dimension represents a 2d point. matrix: A tensor of shape `[A1, ..., An, 2, 2]`, where the last two dimensions represent a 2d rotation matrix. name: A name for this op that defaults to "rotation_matrix_2d_rotate". Returns: A tensor of shape `[A1, ..., An, 2]`, where the last dimension represents a 2d point. Raises: ValueError: If the shape of `point` or `matrix` is not supported. """ with tf.name_scope(name): point = tf.convert_to_tensor(value=point) matrix = tf.convert_to_tensor(value=matrix) shape.check_static( tensor=point, tensor_name="point", has_dim_equals=(-1, 2)) shape.check_static( tensor=matrix, tensor_name="matrix", has_rank_greater_than=1, has_dim_equals=((-2, 2), (-1, 2))) shape.compare_batch_dimensions( tensors=(point, matrix), tensor_names=("point", "matrix"), last_axes=(-2, -3), broadcast_compatible=True) point = tf.expand_dims(point, axis=-1) common_batch_shape = shape.get_broadcasted_shape(point.shape[:-2], matrix.shape[:-2]) def dim_value(dim: Optional[int] = None) -> int: return 1 if dim is None else tf.compat.dimension_value(dim) common_batch_shape = [dim_value(dim) for dim in common_batch_shape] point = tf.broadcast_to(point, common_batch_shape + [2, 1]) matrix = tf.broadcast_to(matrix, common_batch_shape + [2, 2]) rotated_point = tf.matmul(matrix, point) return tf.squeeze(rotated_point, axis=-1) # API contains all public functions and classes. __all__ = export_api.get_functions_and_classes()
zerver/lib/scim_filter.py
fatihCinarKrtg/zulip
17,004
72592
from typing import List, Optional, Tuple from django.http import HttpRequest from django_scim.filters import UserFilterQuery from zerver.lib.request import RequestNotes # This is in a separate file due to circular import issues django-scim2 runs into # when this is placed in zerver.lib.scim. class ZulipUserFilterQuery(UserFilterQuery): """This class implements the filter functionality of SCIM2. E.g. requests such as /scim/v2/Users?filter=userName eq "<EMAIL>" can be made to refer to resources via their properties. This gets fairly complicated in its full scope (https://datatracker.ietf.org/doc/html/rfc7644#section-3.4.2.2) and django-scim2 implements an entire mechanism of converting this SCIM2 filter syntax into SQL queries. What we have to do in this class is to customize django-scim2 so that it knows which SCIM attributes map to which UserProfile fields. We can assume that get_extra_model_filter_kwargs_getter has already ensured that we will only interact with non-bot user accounts in the realm associated with this SCIM configuration. """ # attr_map describes which table.column the given SCIM2 User # attributes refer to. attr_map = { # attr, sub attr, uri ("userName", None, None): "zerver_userprofile.delivery_email", # We can only reasonably support filtering by name.formatted # as UserProfile.full_name is its equivalent. We don't store # first/last name information for UserProfile, so we can't # support filtering based on name.givenName or name.familyName. ("name", "formatted", None): "zerver_userprofile.full_name", ("active", None, None): "zerver_userprofile.is_active", } # joins tells django-scim2 to always add the specified JOINS # to the formed SQL queries. We need to JOIN the Realm table # because we need to limit the results to the realm (subdomain) # of the request. joins = ("INNER JOIN zerver_realm ON zerver_realm.id = realm_id",) @classmethod def get_extras(cls, q: str, request: Optional[HttpRequest] = None) -> Tuple[str, List[object]]: """ Return extra SQL and params to be attached to end of current Query's SQL and params. The return format matches the format that should be used for providing raw SQL with params to Django's .raw(): https://docs.djangoproject.com/en/3.2/topics/db/sql/#passing-parameters-into-raw Here we ensure that results are limited to the subdomain of the request and also exclude bots, as we currently don't want them to be managed by SCIM2. """ assert request is not None realm = RequestNotes.get_notes(request).realm assert realm is not None return "AND zerver_realm.id = %s AND zerver_userprofile.is_bot = False", [realm.id]
contrib/automation_tests/orbit_capture_loading.py
ioperations/orbit
1,847
72597
<gh_stars>1000+ """ Copyright (c) 2021 The Orbit Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. """ from absl import app from datetime import date, timedelta from core.orbit_e2e import E2ETestSuite from test_cases.capture_window import Capture, CheckTimers, CheckThreadStates, FilterTracks, \ ToggleCollapsedStateOfAllTracks, VerifyTracksExist from test_cases.connection_window import ConnectToStadiaInstance, FilterAndSelectFirstProcess, LoadCapture, \ LoadLatestCapture from test_cases.live_tab import AddIterator, VerifyFunctionCallCount from test_cases.main_window import EndSession """Verify loading a capture in Orbit using pywinauto. Before this script is run there needs to be a gamelet reserved and "hello_ggp_standalone" has to be started. Further, Orbit needs to be started. Also, the captures directory should be cleared. The script requires absl and pywinauto. Since pywinauto requires the bitness of the python installation to match the bitness of the program under test, it needs to be run from 64 bit python. This automation script covers a basic workflow: - load an old, unsupported capture and verify this fails with a message - load a supported capture - verify that the scheduler track is present and contains timers - verify that the frame track is present and contains timers - verify that the tracks from manual instrumentation are present - verify that the memory tracks are present - verify that an iterator can be added to "TestFunc2" - verify that "TestFunc2" was called exactly 1257 times - take a capture and verify there is a corresponding capture in the latest captures list which contains the tracks """ def main(argv): # During the tests, we want to verify that captures get automatically saved. We will do so by filtering the recent # captures list with the current date (in addition to also deleting old captures before this script runs). However, # if it is around midnight when this code gets executed and we store the date string, it can be that the capture # actually gets taken on the next day. Therefore, we will also check for the next day. today = date.today() tomorrow = today + timedelta(days=1) today_string = today.strftime("%Y_%m_%d") tomorrow_string = tomorrow.strftime("%Y_%m_%d") test_cases = [ LoadCapture(capture_file_path="testdata\\OrbitTest_1-64.orbit", expect_fail=True), LoadCapture(capture_file_path="testdata\\OrbitTest_1-72.orbit"), FilterTracks(filter_string="Scheduler", expected_track_count=1), CheckTimers(track_name_filter='Scheduler*'), FilterTracks(filter_string="Frame", expected_track_count=1), CheckTimers(track_name_filter='Frame track*'), # Verify the frame track has timers FilterTracks(filter_string="DynamicName_", expected_track_count=5), FilterTracks(filter_string="_var", expected_track_count=6), FilterTracks(filter_string="OrbitThread_", expected_track_count=1), ToggleCollapsedStateOfAllTracks(), CheckTimers(track_name_filter="OrbitThread_*"), CheckThreadStates(track_name_filter='OrbitThread_*'), FilterTracks(filter_string="ORBIT_ASYNC_TASKS", expected_track_count=1), CheckTimers(track_name_filter="ORBIT_ASYNC_TASKS"), FilterTracks(filter_string="ORBIT_START_ASYNC_TEST", expected_track_count=1), CheckTimers(track_name_filter="ORBIT_START_ASYNC_TEST"), FilterTracks(filter_string=""), VerifyTracksExist(track_names=["Page*", "*System*", "*CGroup*"], allow_duplicates=True), AddIterator(function_name="TestFunc2"), VerifyFunctionCallCount(function_name="TestFunc2", min_calls=1257, max_calls=1257), # Let's take a capture with the current version and verify this can be loaded EndSession(), ConnectToStadiaInstance(), FilterAndSelectFirstProcess(process_filter="hello_ggp"), Capture(), VerifyTracksExist(track_names="hello_ggp_stand*", allow_duplicates=True), EndSession(), # If we took the capture around midnight, we need to ensure to also look for the next day. Remember, the strings # get created before the tests run. Thus the `today_string` might be actually from the day before the capture # gets auto-saved. LoadLatestCapture(filter_strings=[f"hello_ggp_stand_{today_string}", f"hello_ggp_stand_{tomorrow_string}"]), VerifyTracksExist(track_names="hello_ggp_stand*", allow_duplicates=True) ] suite = E2ETestSuite(test_name="Capture Loading", test_cases=test_cases) suite.execute() if __name__ == '__main__': app.run(main)
vega/algorithms/nas/modnas/backend/__init__.py
This-50m/vega
724
72599
<filename>vega/algorithms/nas/modnas/backend/__init__.py # -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. import importlib import traceback from modnas.registry.backend import build from . import predefined from typing import Optional _backend = None _backend_keys = [] def use(backend: Optional[str], *args, imported=False, **kwargs) -> None: """Switch to backend by name.""" global _backend, _backend_keys if backend == _backend or backend == 'none' or backend is None: return try: if imported: bk_mod = importlib.import_module(backend) else: bk_mod = build(backend, *args, **kwargs) except ImportError: traceback.print_exc() return bk_vars = vars(bk_mod) bk_keys = bk_vars.keys() ns = globals() for k in _backend_keys: ns.pop(k, None) for k in bk_keys: if k.startswith('__'): continue ns[k] = bk_vars[k] _backend_keys = list(bk_keys) _backend = backend def backend(): """Return name of current backend.""" return _backend def is_backend(backend: str) -> bool: """Return if the current backend is the given one.""" return _backend == backend
pycon/settings/base.py
Prakhyat-Srivastava/pycon
154
72601
<filename>pycon/settings/base.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # base settings - imported by other settings files, then overridden import copy from datetime import timedelta import os.path import posixpath import bleach from django.core.urlresolvers import reverse_lazy def env_or_default(NAME, default): return os.environ.get(NAME, default) CONFERENCE_YEAR = "2019" # Top level of our source / repository PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir)) # Symposion package PACKAGE_ROOT = os.path.join(PROJECT_ROOT, "symposion") DEBUG = False TEMPLATE_DEBUG = DEBUG # tells Pinax to serve media through the staticfiles app. SERVE_MEDIA = DEBUG # django-compressor is turned off by default due to deployment overhead for # most users. See <URL> for more information COMPRESS = False DATABASES = { "default": { "ENGINE": "django.db.backends.postgresql_psycopg2", "NAME": env_or_default("DB_NAME", "pycon"), "USER": env_or_default("DB_USER", ""), "PASSWORD": env_or_default("DB_PASSWORD", ""), "HOST": env_or_default("DB_HOST", ""), "PORT": env_or_default("DB_PORT", ""), # https://docs.djangoproject.com/en/1.8/ref/databases/#persistent-connections "CONN_MAX_AGE": int(env_or_default("CONN_MAX_AGE", 300)), } } INTERNAL_IPS = [ "127.0.0.1", ] ADMINS = [ # ("<NAME>", "<EMAIL>"), ] MANAGERS = ADMINS # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = "US/Eastern" # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = "en-us" SITE_ID = 1 # Conference ID and any URL prefixes CONFERENCE_ID = 1 CONFERENCE_URL_PREFIXES = { 1: CONFERENCE_YEAR, } # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = False gettext = lambda s: s LANGUAGES = ( ('en', gettext('English')), # ('fr', gettext('French')), ) LOCALE_PATHS = [os.path.join(PROJECT_ROOT, "locale")] # Absolute path to the directory that holds media - this is files uploaded # by users, such as attachments. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = env_or_default("MEDIA_ROOT", os.path.join(PROJECT_ROOT, "site_media", "media")) # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = "/%s/site_media/media/" % CONFERENCE_URL_PREFIXES[CONFERENCE_ID] # Absolute path to the directory where static files will be gathered # at deploy time and served from in production. Should NOT be # in version control, or contain anything before deploying. STATIC_ROOT = os.path.join(PROJECT_ROOT, "site_media", "static") # URL that handles the static files like app media. # Example: "http://media.lawrence.com" STATIC_URL = "/%s/site_media/static/" % CONFERENCE_URL_PREFIXES[CONFERENCE_ID] # Additional directories which hold static files STATICFILES_DIRS = [ os.path.join(PACKAGE_ROOT, "static"), ] STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", "compressor.finders.CompressorFinder", ] # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = posixpath.join(STATIC_URL, "admin/") # Subdirectory of COMPRESS_ROOT to store the cached media files in COMPRESS_OUTPUT_DIR = "cache" # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ] MIDDLEWARE_CLASSES = [ "djangosecure.middleware.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", # LocaleMiddleware must follow session middleware and cache middleware, # and precede commonmiddleware "django.middleware.locale.LocaleMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "reversion.middleware.RevisionMiddleware", # "debug_toolbar.middleware.DebugToolbarMiddleware", ] if os.getenv('NOINDEX') == '1': MIDDLEWARE_CLASSES.append('pycon.noindexmiddleware.NoIndexMiddleware') ROOT_URLCONF = "symposion.urls" TEMPLATE_DIRS = [ os.path.join(PROJECT_ROOT, "pycon/templates"), os.path.join(PACKAGE_ROOT, "templates"), ] TEMPLATE_CONTEXT_PROCESSORS = [ "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.tz", "django.core.context_processors.request", "django.contrib.messages.context_processors.messages", "pycon.context_processors.global_settings", "pinax_utils.context_processors.settings", "account.context_processors.account", "symposion.reviews.context_processors.reviews", "constance.context_processors.config", "pinax_theme_bootstrap.context_processors.theme", ] INSTALLED_APPS = [ # Django "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.humanize", # theme "pinax_theme_bootstrap", "django_forms_bootstrap", # external "compressor", "mailer", "timezones", "metron", "easy_thumbnails", "account", "sitetree", "taggit", "reversion", "biblion", "djangosecure", "raven.contrib.django.raven_compat", "constance.backends.database", "constance", "uni_form", "gunicorn", "multi_email_field", "email_log", "djcelery_email", "multiselectfield", "markdownify", "storages", # symposion "symposion.conference", "symposion.cms", "symposion.boxes", "symposion.speakers", "symposion.proposals", "symposion.reviews", "symposion.teams", "symposion.schedule", # custom "markedit", "pycon", "pycon.bulkemail", "pycon.sponsorship", "pycon.registration", "pycon.schedule", "pycon.profile", "pycon.finaid", "pycon.pycon_api", "pycon.tutorials", "pycon.mentorship", ] FIXTURE_DIRS = [ os.path.join(PROJECT_ROOT, "fixtures"), ] MESSAGE_STORAGE = "django.contrib.messages.storage.session.SessionStorage" EMAIL_BACKEND = 'djcelery_email.backends.CeleryEmailBackend' CELERY_EMAIL_BACKEND = 'email_log.backends.EmailBackend' EMAIL_LOG_BACKEND = "django.core.mail.backends.console.EmailBackend" ACCOUNT_OPEN_SIGNUP = True ACCOUNT_USE_OPENID = False ACCOUNT_REQUIRED_EMAIL = False ACCOUNT_EMAIL_VERIFICATION = False ACCOUNT_EMAIL_AUTHENTICATION = False ACCOUNT_UNIQUE_EMAIL = EMAIL_CONFIRMATION_UNIQUE_EMAIL = False ACCOUNT_CREATE_ON_SAVE = True AUTHENTICATION_BACKENDS = [ # Permissions backends "symposion.teams.backends.TeamPermissionsBackend", # Django User Accounts "account.auth_backends.EmailAuthenticationBackend", 'django.contrib.auth.backends.ModelBackend', ] LOGIN_URL = reverse_lazy("account_login") ACCOUNT_SIGNUP_REDIRECT_URL = "dashboard" ACCOUNT_LOGIN_REDIRECT_URL = "dashboard" ACCOUNT_LOGOUT_REDIRECT_URL = "home" ACCOUNT_USER_DISPLAY = lambda user: user.get_full_name() LOGIN_ERROR_URL = reverse_lazy("account_login") EMAIL_CONFIRMATION_DAYS = 2 EMAIL_DEBUG = DEBUG DEBUG_TOOLBAR_CONFIG = { "INTERCEPT_REDIRECTS": False, } CONSTANCE_BACKEND = "constance.backends.database.DatabaseBackend" CONSTANCE_CONFIG = { # "SETTING_NAME": (default_value, "help text") "CDN_PURGE_BASE_URL": ("", "Base URL for CDN 'PURGE' requests" " when pages are edited through the web."), "CTE_SECRET": ("", "Shared secret for CTE integration"), "CTE_BASICAUTH_USER": ("", "Shared User for accessing CTE Registration data"), "CTE_BASICAUTH_PASS": ("", "Shared User password for accessing CTE Registration data"), "CTE_TUTORIAL_DATA_URL": ("", "URL for the CSV of CTE Tutorial Registration Data"), "REGISTRATION_INTRODUCTION_URL": ("", "URL for introduction to registration domain"), "REGISTRATION_URL": ("", "URL for registration"), "SPONSOR_FROM_EMAIL": ("", "From address for emails to sponsors"), "REGISTRATION_STATUS": ("", "Used in the home page template. Valid values are 'soon', 'open' and 'closed'"), } # Instead of expecting blog posts to be typed as markup, simply expect # raw HTML to be typed into the "Teaser:" and "Content:" fields of each # Biblion Post in the Django admin interface. By using the identity # function unicode() as the filter, the HTML winds up being saved to the # database intact and unchanged. BIBLION_PARSER = ["__builtin__.unicode", {}] BIBLION_SECTIONS = [ ("general", "General"), ] SYMPOSION_PAGE_REGEX = r"(([\w-]{1,})(/[\w-]{1,})*)/$" USE_X_ACCEL_REDIRECT = False MARKEDIT_DEFAULT_SETTINGS = { 'preview': 'below', 'toolbar': { 'backgroundMode': 'dark', } } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } } # Is somebody clobbering this? We shouldn't have to set it ourselves, # but if we don't, gunicorn's django_wsgi blows up trying to configure # logging with an empty dictionary. from django.utils.log import DEFAULT_LOGGING LOGGING = copy.deepcopy(DEFAULT_LOGGING) LOGGING.setdefault('root', { # Default root logger, just so everything has a handler and we don't see warnings 'handlers': ['null'], # null handler is defined in the default logging config }) BLEACH_ALLOWED_TAGS = bleach.ALLOWED_TAGS + ['p'] # Django issues a nasty warning in 1.7 if you don't # declare a runner explicitly, even though it works... # This can be removed in 1.8, the warning has been # removed. TEST_RUNNER = 'django.test.runner.DiscoverRunner' # Need to switch from the now-default JSON serializer, or OAuth2 breaks trying # to serialize a datetime to JSON SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer' # Celery REDIS_HOST = os.environ.get('REDIS_HOST', 'localhost') BROKER_URL = 'redis://{}:6379/0'.format(REDIS_HOST) # Redis DB 0 for Celery. (Cache will use DB 1) # We deliberately do not set CELERY_RESULT_BACKEND because we are discarding results. # Pickle is fine, our redis is only accessible on localhost CELERY_ACCEPT_CONTENT = ['pickle'] # Some other options Celery docs say we should set when using Redis: BROKER_TRANSPORT_OPTIONS = { 'fanout_prefix': True, 'fanout_patterns': True } # NOTE: to start the worker, activate the venv and run "celery -A pycon worker [options]" # Send bulk emails every 5 minutes CELERYBEAT_SCHEDULE = { 'send_bulk_emails': { 'task': 'pycon.bulkemail.tasks.send_bulk_emails', 'schedule': timedelta(minutes=5), } } # EMAIL ADDRESSES # Override in more specific settings files, please. DEFAULT_FROM_EMAIL = '<EMAIL>' FINANCIAL_AID_EMAIL = '<EMAIL>' ORGANIZERS_EMAIL = '<EMAIL>' REGISTRATION_EMAIL = '<EMAIL>' SPONSORSHIP_EMAIL = '<EMAIL>' THEME_CONTACT_EMAIL = '<EMAIL>' FINANCIAL_AID_WEEKLY_REPORT_EMAIL = ['<EMAIL>'] # django easy_thumbnails THUMBNAIL_ALIASES = { "": { 'sponsor_homepage': {'size': (300, 300)}, 'sponsor_jobs': {'size': (150, 80)}, 'sponsor_list': {'size': (260, 240)}, 'sponsor_link': {'size': (150, 150)}, 'speaker_profile': {'size': (128, 128)}, } } # fixer.io, currency conversion FIXER_ACCESS_KEY = os.environ.get('FIXER_ACCESS_KEY')
torchdrug/layers/conv.py
wconnell/torchdrug
772
72635
<reponame>wconnell/torchdrug<filename>torchdrug/layers/conv.py import functools import torch from torch import nn from torch.nn import functional as F from torch.utils import checkpoint from torch_scatter import scatter_mean, scatter_add, scatter_max from torchdrug import data, layers, utils from torchdrug.layers import functional class MessagePassingBase(nn.Module): """ Base module for message passing. Any custom message passing module should be derived from this class. """ gradient_checkpoint = False def message(self, graph, input): """ Compute edge messages for the graph. Parameters: graph (Graph): graph(s) input (Tensor): node representations of shape :math:`(|V|, ...)` Returns: Tensor: edge messages of shape :math:`(|E|, ...)` """ raise NotImplementedError def aggregate(self, graph, message): """ Aggregate edge messages to nodes. Parameters: graph (Graph): graph(s) message (Tensor): edge messages of shape :math:`(|E|, ...)` Returns: Tensor: node updates of shape :math:`(|V|, ...)` """ raise NotImplementedError def message_and_aggregate(self, graph, input): """ Fused computation of message and aggregation over the graph. This may provide better time or memory complexity than separate calls of :meth:`message <MessagePassingBase.message>` and :meth:`aggregate <MessagePassingBase.aggregate>`. Parameters: graph (Graph): graph(s) input (Tensor): node representations of shape :math:`(|V|, ...)` Returns: Tensor: node updates of shape :math:`(|V|, ...)` """ message = self.message(graph, input) update = self.aggregate(graph, message) return update def _message_and_aggregate(self, *tensors): graph = data.Graph.from_tensors(tensors[:-1]) input = tensors[-1] update = self.message_and_aggregate(graph, input) return update def combine(self, input, update): """ Combine node input and node update. Parameters: input (Tensor): node representations of shape :math:`(|V|, ...)` update (Tensor): node updates of shape :math:`(|V|, ...)` """ raise NotImplementedError def forward(self, graph, input): """ Perform message passing over the graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node representations of shape :math:`(|V|, ...)` """ if self.gradient_checkpoint: update = checkpoint.checkpoint(self._message_and_aggregate, *graph.to_tensors(), input) else: update = self.message_and_aggregate(graph, input) output = self.combine(input, update) return output class GraphConv(MessagePassingBase): """ Graph convolution operator from `Semi-Supervised Classification with Graph Convolutional Networks`_. .. _Semi-Supervised Classification with Graph Convolutional Networks: https://arxiv.org/pdf/1609.02907.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension edge_input_dim (int, optional): dimension of edge features batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ def __init__(self, input_dim, output_dim, edge_input_dim=None, batch_norm=False, activation="relu"): super(GraphConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.edge_input_dim = edge_input_dim if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation self.linear = nn.Linear(input_dim, output_dim) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, input_dim) else: self.edge_linear = None def message(self, graph, input): # add self loop node_in = torch.cat([graph.edge_list[:, 0], torch.arange(graph.num_node, device=graph.device)]) degree_in = graph.degree_in.unsqueeze(-1) + 1 message = input[node_in] if self.edge_linear: edge_input = self.edge_linear(graph.edge_feature.float()) edge_input = torch.cat([edge_input, torch.zeros(graph.num_node, self.input_dim, device=graph.device)]) message += edge_input message /= degree_in[node_in].sqrt() return message def aggregate(self, graph, message): # add self loop node_out = torch.cat([graph.edge_list[:, 1], torch.arange(graph.num_node, device=graph.device)]) edge_weight = torch.cat([graph.edge_weight, torch.ones(graph.num_node, device=graph.device)]) edge_weight = edge_weight.unsqueeze(-1) degree_out = graph.degree_out.unsqueeze(-1) + 1 update = scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node) update = update / degree_out.sqrt() return update def message_and_aggregate(self, graph, input): node_in, node_out = graph.edge_list.t()[:2] node_in = torch.cat([node_in, torch.arange(graph.num_node, device=graph.device)]) node_out = torch.cat([node_out, torch.arange(graph.num_node, device=graph.device)]) edge_weight = torch.cat([graph.edge_weight, torch.ones(graph.num_node, device=graph.device)]) degree_in = graph.degree_in + 1 degree_out = graph.degree_out + 1 edge_weight = edge_weight / (degree_in[node_in] * degree_out[node_out]).sqrt() adjacency = utils.sparse_coo_tensor(torch.stack([node_in, node_out]), edge_weight, (graph.num_node, graph.num_node)) update = torch.sparse.mm(adjacency.t(), input) if self.edge_linear: edge_input = graph.edge_feature.float() if self.edge_linear.in_features > self.edge_linear.out_features: edge_input = self.edge_linear(edge_input) edge_weight = edge_weight.unsqueeze(-1) edge_update = scatter_add(edge_input * edge_weight, graph.edge_list[:, 1], dim=0, dim_size=graph.num_node) if self.edge_linear.in_features <= self.edge_linear.out_features: edge_update = self.edge_linear(edge_update) update += edge_update return update def combine(self, input, update): output = self.linear(update) if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class GraphAttentionConv(MessagePassingBase): """ Graph attentional convolution operator from `Graph Attention Networks`_. .. _Graph Attention Networks: https://arxiv.org/pdf/1710.10903.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension edge_input_dim (int, optional): dimension of edge features num_head (int, optional): number of attention heads negative_slope (float, optional): negative slope of leaky relu activation batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ eps = 1e-10 def __init__(self, input_dim, output_dim, edge_input_dim=None, num_head=1, negative_slope=0.2, concat=True, batch_norm=False, activation="relu"): super(GraphAttentionConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.edge_input_dim = edge_input_dim self.num_head = num_head self.concat = concat self.leaky_relu = functools.partial(F.leaky_relu, negative_slope=negative_slope) if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation if output_dim % num_head != 0: raise ValueError("Expect output_dim to be a multiplier of num_head, but found `%d` and `%d`" % (output_dim, num_head)) self.linear = nn.Linear(input_dim, output_dim) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, output_dim) else: self.edge_linear = None self.query = nn.Parameter(torch.zeros(num_head, output_dim * 2 // num_head)) nn.init.kaiming_uniform_(self.query, negative_slope, mode="fan_in") def message(self, graph, input): # add self loop node_in = torch.cat([graph.edge_list[:, 0], torch.arange(graph.num_node, device=graph.device)]) node_out = torch.cat([graph.edge_list[:, 1], torch.arange(graph.num_node, device=graph.device)]) edge_weight = torch.cat([graph.edge_weight, torch.ones(graph.num_node, device=graph.device)]) edge_weight = edge_weight.unsqueeze(-1) hidden = self.linear(input) key = torch.stack([hidden[node_in], hidden[node_out]], dim=-1) if self.edge_linear: edge_input = self.edge_linear(graph.edge_feature.float()) edge_input = torch.cat([edge_input, torch.zeros(graph.num_node, self.output_dim, device=graph.device)]) key += edge_input.unsqueeze(-1) key = key.view(-1, *self.query.shape) weight = torch.einsum("hd, nhd -> nh", self.query, key) weight = self.leaky_relu(weight) weight = weight - scatter_max(weight, node_out, dim=0, dim_size=graph.num_node)[0][node_out] attention = weight.exp() * edge_weight # why mean? because with mean we have normalized message scale across different node degrees normalizer = scatter_mean(attention, node_out, dim=0, dim_size=graph.num_node)[node_out] attention = attention / (normalizer + self.eps) value = hidden[node_in].view(-1, self.num_head, self.query.shape[-1] // 2) attention = attention.unsqueeze(-1).expand_as(value) message = (attention * value).flatten(1) return message def aggregate(self, graph, message): # add self loop node_out = torch.cat([graph.edge_list[:, 1], torch.arange(graph.num_node, device=graph.device)]) update = scatter_mean(message, node_out, dim=0, dim_size=graph.num_node) return update def combine(self, input, update): output = update if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class GraphIsomorphismConv(MessagePassingBase): """ Graph isomorphism convolution operator from `How Powerful are Graph Neural Networks?`_ .. _How Powerful are Graph Neural Networks?: https://arxiv.org/pdf/1810.00826.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension edge_input_dim (int, optional): dimension of edge features hidden_dims (list of int, optional): hidden dimensions eps (float, optional): initial epsilon learn_eps (bool, optional): learn epsilon or not batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ def __init__(self, input_dim, output_dim, edge_input_dim=None, hidden_dims=None, eps=0, learn_eps=False, batch_norm=False, activation="relu"): super(GraphIsomorphismConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.edge_input_dim = edge_input_dim eps = torch.tensor([eps], dtype=torch.float32) if learn_eps: self.eps = nn.Parameter(eps) else: self.register_buffer("eps", eps) if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation if hidden_dims is None: hidden_dims = [] self.mlp = layers.MLP(input_dim, list(hidden_dims) + [output_dim], activation) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, input_dim) else: self.edge_linear = None def message(self, graph, input): node_in = graph.edge_list[:, 0] message = input[node_in] if self.edge_linear: message += self.edge_linear(graph.edge_feature.float()) return message def aggregate(self, graph, message): node_out = graph.edge_list[:, 1] edge_weight = graph.edge_weight.unsqueeze(-1) update = scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node) return update def message_and_aggregate(self, graph, input): adjacency = utils.sparse_coo_tensor(graph.edge_list.t()[:2], graph.edge_weight, (graph.num_node, graph.num_node)) update = torch.sparse.mm(adjacency.t(), input) if self.edge_linear: edge_input = graph.edge_feature.float() edge_weight = graph.edge_weight.unsqueeze(-1) if self.edge_linear.in_features > self.edge_linear.out_features: edge_input = self.edge_linear(edge_input) edge_update = scatter_add(edge_input * edge_weight, graph.edge_list[:, 1], dim=0, dim_size=graph.num_node) if self.edge_linear.in_features <= self.edge_linear.out_features: edge_update = self.edge_linear(edge_update) update += edge_update return update def combine(self, input, update): output = self.mlp((1 + self.eps) * input + update) if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class RelationalGraphConv(MessagePassingBase): """ Relational graph convolution operator from `Modeling Relational Data with Graph Convolutional Networks`_. .. _Modeling Relational Data with Graph Convolutional Networks: https://arxiv.org/pdf/1703.06103.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension num_relation (int): number of relations edge_input_dim (int, optional): dimension of edge features batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ eps = 1e-10 def __init__(self, input_dim, output_dim, num_relation, edge_input_dim=None, batch_norm=False, activation="relu"): super(RelationalGraphConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_relation = num_relation self.edge_input_dim = edge_input_dim if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation self.self_loop = nn.Linear(input_dim, output_dim) self.linear = nn.Linear(num_relation * input_dim, output_dim) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, input_dim) else: self.edge_linear = None def message(self, graph, input): node_in = graph.edge_list[:, 0] message = input[node_in] if self.edge_linear: message += self.edge_linear(graph.edge_feature.float()) return message def aggregate(self, graph, message): assert graph.num_relation == self.num_relation node_out = graph.edge_list[:, 1] * self.num_relation + graph.edge_list[:, 2] edge_weight = graph.edge_weight.unsqueeze(-1) update = scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node * self.num_relation) / \ (scatter_add(edge_weight, node_out, dim=0, dim_size=graph.num_node * self.num_relation) + self.eps) return update.view(graph.num_node, self.num_relation * self.input_dim) def message_and_aggregate(self, graph, input): assert graph.num_relation == self.num_relation node_in, node_out, relation = graph.edge_list.t() node_out = node_out * self.num_relation + relation degree_out = scatter_add(graph.edge_weight, node_out, dim_size=graph.num_node * graph.num_relation) edge_weight = graph.edge_weight / degree_out[node_out] adjacency = utils.sparse_coo_tensor(torch.stack([node_in, node_out]), edge_weight, (graph.num_node, graph.num_node * graph.num_relation)) update = torch.sparse.mm(adjacency.t(), input) if self.edge_linear: edge_input = graph.edge_feature.float() if self.edge_linear.in_features > self.edge_linear.out_features: edge_input = self.edge_linear(edge_input) edge_weight = edge_weight.unsqueeze(-1) edge_update = scatter_add(edge_input * edge_weight, node_out, dim=0, dim_size=graph.num_node * graph.num_relation) if self.edge_linear.in_features <= self.edge_linear.out_features: edge_update = self.edge_linear(edge_update) update += edge_update return update.view(graph.num_node, self.num_relation * self.input_dim) def combine(self, input, update): output = self.linear(update) + self.self_loop(input) if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class NeuralFingerprintConv(MessagePassingBase): """ Graph neural network operator from `Convolutional Networks on Graphs for Learning Molecular Fingerprints`_. Note this operator doesn't include the sparsifying step of the original paper. .. _Convolutional Networks on Graphs for Learning Molecular Fingerprints: https://arxiv.org/pdf/1509.09292.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension edge_input_dim (int, optional): dimension of edge features batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ def __init__(self, input_dim, output_dim, edge_input_dim=None, batch_norm=False, activation="relu"): super(NeuralFingerprintConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.edge_input_dim = edge_input_dim if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation self.linear = nn.Linear(input_dim, output_dim) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, input_dim) else: self.edge_linear = None def message(self, graph, input): node_in = graph.edge_list[:, 0] message = input[node_in] if self.edge_linear: message += self.edge_linear(graph.edge_feature.float()) return message def aggregate(self, graph, message): node_out = graph.edge_list[:, 1] edge_weight = graph.edge_weight.unsqueeze(-1) update = scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node) return update def message_and_aggregate(self, graph, input): adjacency = utils.sparse_coo_tensor(graph.edge_list.t()[:2], graph.edge_weight, (graph.num_node, graph.num_node)) update = torch.sparse.mm(adjacency.t(), input) if self.edge_linear: edge_input = graph.edge_feature.float() edge_weight = graph.edge_weight.unsqueeze(-1) if self.edge_linear.in_features > self.edge_linear.out_features: edge_input = self.edge_linear(edge_input) edge_update = scatter_add(edge_input * edge_weight, graph.edge_list[:, 1], dim=0, dim_size=graph.num_node) if self.edge_linear.in_features <= self.edge_linear.out_features: edge_update = self.edge_linear(edge_update) update += edge_update return update def combine(self, input, update): output = self.linear(input + update) if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class ContinuousFilterConv(MessagePassingBase): """ Continuous filter operator from `SchNet: A continuous-filter convolutional neural network for modeling quantum interactions`_. .. _SchNet\: A continuous-filter convolutional neural network for modeling quantum interactions: https://arxiv.org/pdf/1706.08566.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension edge_input_dim (int, optional): dimension of edge features hidden_dim (int, optional): hidden dimension. By default, same as :attr:`output_dim` cutoff (float, optional): maximal scale for RBF kernels num_gaussian (int, optional): number of RBF kernels batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ def __init__(self, input_dim, output_dim, edge_input_dim=None, hidden_dim=None, cutoff=5, num_gaussian=100, batch_norm=False, activation="shifted_softplus"): super(ContinuousFilterConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.edge_input_dim = edge_input_dim if hidden_dim is None: hidden_dim = output_dim self.hidden_dim = hidden_dim self.rbf = layers.RBF(stop=cutoff, num_kernel=num_gaussian) if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if activation == "shifted_softplus": self.activation = functional.shifted_softplus elif isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation self.input_layer = nn.Linear(input_dim, hidden_dim) self.rbf_layer = nn.Linear(num_gaussian, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, input_dim) else: self.edge_linear = None def message(self, graph, input): node_in, node_out = graph.edge_list.t()[:2] position = graph.node_position message = self.input_layer(input)[node_in] if self.edge_linear: message += self.edge_linear(graph.edge_feature.float()) weight = self.rbf_layer(self.rbf(position[node_in], position[node_out])) message *= weight return message def aggregate(self, graph, message): node_out = graph.edge_list[:, 1] edge_weight = graph.edge_weight.unsqueeze(-1) update = scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node) return update def message_and_aggregate(self, graph, input): node_in, node_out = graph.edge_list.t()[:2] position = graph.node_position rbf_weight = self.rbf_layer(self.rbf(position[node_in], position[node_out])) indices = torch.stack([node_out, node_in, torch.arange(graph.num_edge, device=graph.device)]) adjacency = utils.sparse_coo_tensor(indices, graph.edge_weight, (graph.num_node, graph.num_node, graph.num_edge)) update = functional.generalized_rspmm(adjacency, rbf_weight, self.input_layer(input)) if self.edge_linear: edge_input = graph.edge_feature.float() if self.edge_linear.in_features > self.edge_linear.out_features: edge_input = self.edge_linear(edge_input) edge_weight = graph.edge_weight.unsqueeze(-1) * rbf_weight edge_update = scatter_add(edge_input * edge_weight, graph.edge_list[:, 1], dim=0, dim_size=graph.num_node) if self.edge_linear.in_features <= self.edge_linear.out_features: edge_update = self.edge_linear(edge_update) update += edge_update return update def combine(self, input, update): output = self.output_layer(update) if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class MessagePassing(MessagePassingBase): """ Message passing operator from `Neural Message Passing for Quantum Chemistry`_. This implements the edge network variant in the original paper. .. _Neural Message Passing for Quantum Chemistry: https://arxiv.org/pdf/1704.01212.pdf Parameters: input_dim (int): input dimension edge_input_dim (int): dimension of edge features hidden_dims (list of int, optional): hidden dims of edge network batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ def __init__(self, input_dim, edge_input_dim, hidden_dims=None, batch_norm=False, activation="relu"): super(MessagePassing, self).__init__() self.input_dim = input_dim self.output_dim = input_dim self.edge_input_dim = edge_input_dim if hidden_dims is None: hidden_dims = [] if batch_norm: self.batch_norm = nn.BatchNorm1d(input_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation self.edge_mlp = layers.MLP(edge_input_dim, list(hidden_dims) + [input_dim * input_dim], activation) def message(self, graph, input): node_in = graph.edge_list[:, 0] transform = self.edge_mlp(graph.edge_feature.float()).view(-1, self.input_dim, self.input_dim) if graph.num_edge: message = torch.einsum("bed, bd -> be", transform, input[node_in]) else: message = torch.zeros(0, self.input_dim, device=graph.device) return message def aggregate(self, graph, message): node_out = graph.edge_list[:, 1] edge_weight = graph.edge_weight.unsqueeze(-1) update = scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node) return update def combine(self, input, update): output = update if self.batch_norm: output = self.batch_norm(output) if self.activation: output = self.activation(output) return output class ChebyshevConv(MessagePassingBase): """ Chebyshev spectral graph convolution operator from `Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering`_. .. _Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering: https://arxiv.org/pdf/1606.09375.pdf Parameters: input_dim (int): input dimension output_dim (int): output dimension edge_input_dim (int, optional): dimension of edge features k (int, optional): number of Chebyshev polynomials. This also corresponds to the radius of the receptive field. hidden_dims (list of int, optional): hidden dims of edge network batch_norm (bool, optional): apply batch normalization on nodes or not activation (str or function, optional): activation function """ def __init__(self, input_dim, output_dim, edge_input_dim=None, k=1, batch_norm=False, activation="relu"): super(ChebyshevConv, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.k = k self.edge_input_dim = edge_input_dim if batch_norm: self.batch_norm = nn.BatchNorm1d(output_dim) else: self.batch_norm = None if isinstance(activation, str): self.activation = getattr(F, activation) else: self.activation = activation self.linear = nn.Linear((k + 1) * input_dim, output_dim) if edge_input_dim: self.edge_linear = nn.Linear(edge_input_dim, input_dim) else: self.edge_linear = None def message(self, graph, input): node_in = graph.edge_list[:, 0] degree_in = graph.degree_in.unsqueeze(-1) # because self-loop messages have a different scale, they are processed in combine() message = input[node_in] if self.edge_linear: message += self.edge_linear(graph.edge_feature.float()) message /= degree_in[node_in].sqrt() return message def aggregate(self, graph, message): node_out = graph.edge_list[:, 1] edge_weight = graph.edge_weight.unsqueeze(-1) degree_out = graph.degree_out.unsqueeze(-1) # because self-loop messages have a different scale, they are processed in combine() update = -scatter_add(message * edge_weight, node_out, dim=0, dim_size=graph.num_node) update = update / degree_out.sqrt() return update def message_and_aggregate(self, graph, input): node_in, node_out = graph.edge_list.t()[:2] edge_weight = -graph.edge_weight / (graph.degree_in[node_in] * graph.degree_out[node_out]).sqrt() adjacency = utils.sparse_coo_tensor(graph.edge_list.t()[:2], edge_weight, (graph.num_node, graph.num_node)) update = torch.sparse.mm(adjacency.t(), input) if self.edge_linear: edge_input = graph.edge_feature.float() if self.edge_linear.in_features > self.edge_linear.out_features: edge_input = self.edge_linear(edge_input) edge_weight = edge_weight.unsqueeze(-1) edge_update = scatter_add(edge_input * edge_weight, graph.edge_list[:, 1], dim=0, dim_size=graph.num_node) if self.edge_linear.in_features <= self.edge_linear.out_features: edge_update = self.edge_linear(edge_update) update += edge_update return update def forward(self, graph, input): # Chebyshev polynomial bases bases = [input] for i in range(self.k): x = super(ChebyshevConv, self).forward(graph, bases[-1]) if i > 0: x = 2 * x - bases[-2] bases.append(x) bases = torch.cat(bases, dim=-1) output = self.linear(bases) if self.batch_norm: x = self.batch_norm(output) if self.activation: output = self.activation(output) return output def combine(self, input, update): output = input + update return output
quokka/core/db.py
songshansitulv/quokka
1,141
72655
import itertools from contextlib import suppress from copy import deepcopy from pymongo import MongoClient from tinydb_serialization import SerializationMiddleware from tinymongo import TinyMongoClient from tinymongo.serializers import DateTimeSerializer from tinymongo.tinymongo import generate_id from quokka.utils.text import split_all_category_roots class QuokkaTinyMongoClient(TinyMongoClient): @property def _storage(self): serialization = SerializationMiddleware() serialization.register_serializer(DateTimeSerializer(), 'TinyDate') # TODO: Read custom serializers from settings and extensions return serialization class QuokkaDB(object): config = {} system = 'tinydb' folder = 'databases' host = 'localhost' port = 27017 name = 'quokka_db' collections = { 'index': 'index', 'contents': 'contents', 'uploads': 'uploads', 'users': 'users', } def __init__(self, app=None): self.app = None if app is not None: self.init_app(app) def init_app(self, app): self.config = app.config.get('DATABASE', {}) # update atributes with config counterparts for key, value in self.config.items(): if key.lower() != 'collections': setattr(self, key.lower(), value) else: self.collections.update(value) self._register(app) def _register(self, app): if not hasattr(app, 'extensions'): app.extensions = {} if 'db' in app.extensions: raise RuntimeError("Flask extension already initialized") app.extensions['db'] = self self.app = app def get_db_name(self, collection): """return db_name for collection""" if self.system == "mongo": return self.name return collection def get_collection(self, collection): """Get the corresponding database collection/table""" col_name = self.collections.get(collection, collection) db_name = self.get_db_name(col_name) return self.connection[db_name][col_name] def get_content_collection(self, content_id): return self.connection[content_id]['contents'] def get_content_collection_mongo(self, content_id): return self.connection[self.name]['contents'] @property def connection(self): if getattr(self, '_connection', None) is None: if self.system == 'tinydb': self._connection = QuokkaTinyMongoClient(self.folder) elif self.system == 'mongo': self._connection = MongoClient( host=self.host, port=self.port ) return self._connection def __dir__(self): """Return existing attributes + collection names""" attrs = [] for attr in super().__dir__(): if attr.endswith(('_mongo', '_tinydb')): attrs.append(attr.rpartition('_')[0]) else: attrs.append(attr) return sorted(list(set(attrs)) + list(self.collections.keys())) def __getattribute__(self, name): collections = super().__getattribute__('collections') get_collection = super().__getattribute__('get_collection') if name in collections: return get_collection(name) # Try to get system specific method e.g: self.categories_mongo try: system = super().__getattribute__('system') return super().__getattribute__(f'{name}_{system}') except AttributeError: return super().__getattribute__(name) # [ <-- DB query helpers --> ] def generate_id(self): return generate_id() def value_set(self, colname, key, filter=None, sort=True, flat=False, **kwargs): """Return a set of all values in a key""" if filter is not None: data = self.get_collection(colname).find(filter, **kwargs) else: data = self.get_collection(colname).find(**kwargs) values = [item.get(key) for item in data if item.get(key) is not None] if flat is True: values = list(itertools.chain(*values)) with suppress(TypeError): values = list(set(values)) return sorted(values) if sort is True else values def author_set(self, sort=True, **kwargs): users = [ item.get('fullname', item.get('username')) for item in self.users.find() ] authors = self.value_set('index', 'authors', flat=True, **kwargs) values = list(set(users + authors)) return sorted(values) if sort is True else values def tag_set(self, sort=True, **kwargs): return self.value_set('index', 'tags', flat=True, sort=sort, **kwargs) def category_set(self, sort=True, **kwargs): results = self.value_set('index', 'category', sort=sort, **kwargs) cats = [] for result in results: cats.extend(split_all_category_roots(result)) return sorted(set(cats)) if sort is True else set(cats) def content_set(self, *args, **kwargs): return self.index.find(*args, **kwargs) def article_set(self, *args, **kwargs): kwargs.setdefault( 'sort', self.app.theme_context.get('ARTICLE_ORDER_BY', [('date', -1)]) ) if not args: args = [{'content_type': 'article'}] elif isinstance(args[0], dict): args[0]['content_type'] = 'article' return self.content_set(*args, **kwargs) def page_set(self, *args, **kwargs): kwargs.setdefault( 'sort', self.app.theme_context.get('PAGE_ORDER_BY', [('title', -1)]) ) if not args: args = [{'content_type': 'page'}] elif isinstance(args[0], dict): args[0]['content_type'] = 'page' return self.content_set(*args, **kwargs) def block_set(self, *args, **kwargs): kwargs.setdefault( 'sort', self.app.theme_context.get( 'BLOCK_ORDER_BY', [('title', -1)] ) ) if not args: args = [{'content_type': 'block'}] elif isinstance(args[0], dict): args[0]['content_type'] = 'block' return self.content_set(*args, **kwargs) def select(self, colname, *args, **kwargs): return self.get_collection(colname).find(*args, **kwargs) def count(self, colname, *args, **kwargs): return self.get_collection(colname).find(*args, **kwargs).count() def get(self, colname, *args, **kwargs): return self.get_collection(colname).find_one(*args, **kwargs) def insert(self, colname, *args, **kwargs): return self.get_collection(colname).insert(*args, **kwargs) def update(self, colname, query, doc): return self.get_collection(colname).update_one(query, doc) def push_content(self, model): """Insert or Update content related to model""" collection = self.get_content_collection(model['_id']) current_saved = collection.find_one({ 'content_id': model['_id'], 'version': model.get('version', 0) }) if is_equal(model, current_saved): model.pop('content', None) return model_to_save = deepcopy(model) if not current_saved: version = 0 else: version = model.get('version', 0) + 1 model['version'] = model_to_save['version'] = version model_to_save['content_id'] = model_to_save.pop('_id') collection.insert(model_to_save) model.pop('content', None) def pull_content(self, model): if not isinstance(model, dict): model = self.get('index', {'_id': model}) if not model or ( model.get('version') == 0 and not model.get('_isclone')): return collection = self.get_content_collection(model['_id']) record = collection.find_one({ 'content_id': model['_id'], 'version': model['version'] }) return record['content'] if record else None def get_with_content(self, **kwargs): model = self.get('index', kwargs) if model: model['content'] = self.pull_content(model) return model def is_equal(model, other): if not other: return False versioned_keys = [ 'title', 'summary', 'tags', 'category', 'date', 'content', 'authors', 'slug', 'status', 'published', 'comments', 'block_items' ] for key in versioned_keys: if model.get(key) != other.get(key): return False return True
gltbx/generate_functions_bpl.py
dperl-sol/cctbx_project
155
72677
<gh_stars>100-1000 from __future__ import absolute_import, division, print_function from libtbx.utils import write_this_is_auto_generated from libtbx.str_utils import line_breaker import libtbx.load_env import libtbx.path import os import sys from six.moves import range this = "gltbx.generate_functions_bpl" return_types = { "GLenum": 0, "GLboolean": 0, "GLint": 0, "GLuint": 0, "const GLubyte*": 0, "GLUnurbs*": 0, "GLUquadric*": 0, "GLUtesselator*": 0, } arg_types = { "const void*": 0, "GLbitfield": 0, "GLboolean": 0, "GLboolean*": 0, "GLbyte": 0, "GLclampd": 0, "GLclampf": 0, "GLdouble": 0, "GLdouble*": 0, "GLenum": 0, "GLfloat": 0, "GLfloat*": 0, "GLint": 0, "GLint*": 0, "GLshort": 0, "GLsizei": 0, "GLubyte": 0, "GLubyte*": 0, "GLuint": 0, "GLuint*": 0, "GLushort": 0, "GLushort*": 0, "GLvoid*": 0, "GLvoid**": 0, "const GLboolean*": 0, "const GLbyte*": 0, "const GLclampf*": 0, "const GLdouble*": 0, "const GLfloat*": 0, "const GLint*": 0, "const GLshort*": 0, "const GLubyte*": 0, "const GLuint*": 0, "const GLushort*": 0, "const GLvoid*": 0, "GLUnurbs*": 0, "GLUquadric*": 0, "GLUtesselator*": 0, "glu_function_pointer": 0, } opaque_pointers = [ "GLUnurbs*", "GLUquadric*", "GLUtesselator*", ] pointee_sizes = { "glAreTexturesResident textures": 0, "glAreTexturesResident residences": 0, "glBitmap bitmap": 0, "glCallLists lists": "?n*sizeof(type)", "glClipPlane equation": 4, "glColor3bv v": 3, "glColor3dv v": 3, "glColor3fv v": 3, "glColor3iv v": 3, "glColor3sv v": 3, "glColor3ubv v": 3, "glColor3uiv v": 3, "glColor3usv v": 3, "glColor4bv v": 4, "glColor4dv v": 4, "glColor4fv v": 4, "glColor4iv v": 4, "glColor4sv v": 4, "glColor4ubv v": 4, "glColor4uiv v": 4, "glColor4usv v": 4, "glColorPointer pointer": 0, "glDeleteTextures textures": 0, "glDrawElements indices": 0, "glDrawPixels pixels": 0, "glEdgeFlagv flag": 1, "glEdgeFlagPointer pointer": 0, "glEvalCoord1dv u": 1, "glEvalCoord1fv u": 1, "glEvalCoord2dv u": 2, "glEvalCoord2fv u": 2, "glFeedbackBuffer buffer": "size", "glFogfv params": "?pname=GL_FOG_COLOR: 4, default: 1", "glFogiv params": "?pname=GL_FOG_COLOR: 4, default: 1", "glGenTextures textures": "n", "glGetClipPlane equation": 4, "glGetBooleanv params": "?1..16 depending on pname", "glGetDoublev params": "?1..16 depending on pname", "glGetFloatv params": "?1..16 depending on pname", "glGetIntegerv params": "?1..16 depending on pname", "glGetLightfv params": "?1..4 depending on pname", "glGetLightiv params": "?1..4 depending on pname", "glGetMapdv v": 0, "glGetMapfv v": 0, "glGetMapiv v": 0, "glGetMaterialfv params": "?1..4 depending on pname", "glGetMaterialiv params": 0, "glGetPixelMapfv values": "?glGet(map)", "glGetPixelMapuiv values": 0, "glGetPixelMapusv values": 0, "glGetPointerv params": 0, "glGetPolygonStipple mask": 0, "glGetTexEnvfv params": 0, "glGetTexEnviv params": 0, "glGetTexGendv params": 0, "glGetTexGenfv params": 0, "glGetTexGeniv params": 0, "glGetTexImage pixels": 0, "glGetTexLevelParameterfv params": 0, "glGetTexLevelParameteriv params": 0, "glGetTexParameterfv params": 0, "glGetTexParameteriv params": 0, "glIndexdv c": 0, "glIndexfv c": 0, "glIndexiv c": 0, "glIndexsv c": 0, "glIndexubv c": 0, "glIndexPointer pointer": 0, "glInterleavedArrays pointer": 0, "glLightfv params": 0, "glLightiv params": 0, "glLightModelfv params": 0, "glLightModeliv params": 0, "glLoadMatrixd m": 0, "glLoadMatrixf m": 0, "glMap1d points": 0, "glMap1f points": 0, "glMap2d points": 0, "glMap2f points": 0, "glMaterialfv params": 0, "glMaterialiv params": 0, "glMultMatrixd m": 0, "glMultMatrixf m": 0, "glNormal3bv v": 3, "glNormal3dv v": 3, "glNormal3fv v": 3, "glNormal3iv v": 3, "glNormal3sv v": 3, "glNormalPointer pointer": 0, "glPixelMapfv values": 0, "glPixelMapuiv values": 0, "glPixelMapusv values": 0, "glPolygonStipple mask": 0, "glPrioritizeTextures textures": 0, "glPrioritizeTextures priorities": 0, "glRasterPos2dv v": 2, "glRasterPos2fv v": 2, "glRasterPos2iv v": 2, "glRasterPos2sv v": 2, "glRasterPos3dv v": 3, "glRasterPos3fv v": 3, "glRasterPos3iv v": 3, "glRasterPos3sv v": 3, "glRasterPos4dv v": 4, "glRasterPos4fv v": 4, "glRasterPos4iv v": 4, "glRasterPos4sv v": 4, "glReadPixels pixels": 0, "glRectdv v1": 2, "glRectdv v2": 2, "glRectfv v1": 2, "glRectfv v2": 2, "glRectiv v1": 2, "glRectiv v2": 2, "glRectsv v1": 2, "glRectsv v2": 2, "glSelectBuffer buffer": 0, "glTexCoord1dv v": 1, "glTexCoord1fv v": 1, "glTexCoord1iv v": 1, "glTexCoord1sv v": 1, "glTexCoord2dv v": 2, "glTexCoord2fv v": 2, "glTexCoord2iv v": 2, "glTexCoord2sv v": 2, "glTexCoord3dv v": 3, "glTexCoord3fv v": 3, "glTexCoord3iv v": 3, "glTexCoord3sv v": 3, "glTexCoord4dv v": 4, "glTexCoord4fv v": 4, "glTexCoord4iv v": 4, "glTexCoord4sv v": 4, "glTexCoordPointer pointer": 0, "glTexEnvfv params": 0, "glTexEnviv params": 0, "glTexGendv params": 0, "glTexGenfv params": 0, "glTexGeniv params": 0, "glTexImage1D pixels": 0, "glTexImage2D pixels": 0, "glTexParameterfv params": 0, "glTexParameteriv params": 0, "glTexSubImage1D pixels": 0, "glTexSubImage2D pixels": 0, "gluBeginCurve nurb": 0, "gluEndCurve nurb": 0, "gluBeginPolygon tess": 0, "gluEndPolygon tess": 0, "gluBeginSurface nurb": 0, "gluEndSurface nurb": 0, "gluBeginTrim nurb": 0, "gluEndTrim nurb": 0, "gluBuild1DMipmaps data": 0, "gluBuild2DMipmaps data": 0, "gluCylinder quad": 0, "gluDeleteNurbsRenderer nurb": 0, "gluDeleteQuadric quad": 0, "gluDeleteTess tess": 0, "gluDisk quad": 0, "gluGetNurbsProperty nurb": 0, "gluGetNurbsProperty data": 0, "gluGetTessProperty tess": 0, "gluGetTessProperty data": 0, "gluLoadSamplingMatrices nurb": 0, "gluLoadSamplingMatrices model": 16, "gluLoadSamplingMatrices perspective": 16, "gluLoadSamplingMatrices view": 4, "gluNextContour tess": 0, "gluNurbsCallbackDataEXT nurb": 0, "gluNurbsCallbackDataEXT userData": 0, "gluNurbsCallback nurb": 0, "gluNurbsCurve nurb": 0, "gluNurbsCurve knots": 0, "gluNurbsCurve control": 0, "gluNurbsProperty nurb": 0, "gluNurbsSurface nurb": 0, "gluNurbsSurface sKnots": 0, "gluNurbsSurface tKnots": 0, "gluNurbsSurface control": 0, "gluPartialDisk quad": 0, "gluPickMatrix viewport": 4, "gluProject model": 16, "gluProject proj": 16, "gluProject view": 4, "gluProject winX": 1, "gluProject winY": 1, "gluProject winZ": 1, "gluPwlCurve nurb": 0, "gluPwlCurve data": 0, "gluQuadricCallback quad": 0, "gluQuadricDrawStyle quad": 0, "gluQuadricNormals quad": 0, "gluQuadricOrientation quad": 0, "gluQuadricTexture quad": 0, "gluScaleImage dataIn": 0, "gluScaleImage dataOut": 0, "gluSphere quad": 0, "gluTessBeginContour tess": 0, "gluTessEndContour tess": 0, "gluTessBeginPolygon tess": 0, "gluTessBeginPolygon data": 0, "gluTessCallback tess": 0, "gluTessEndPolygon tess": 0, "gluTessNormal tess": 0, "gluTessProperty tess": 0, "gluTessVertex tess": 0, "gluTessVertex location": 0, "gluTessVertex data": 0, "gluUnProject model": 16, "gluUnProject proj": 16, "gluUnProject view": 4, "gluUnProject objX": 1, "gluUnProject objY": 1, "gluUnProject objZ": 1, "glVertex2dv v": 2, "glVertex2fv v": 2, "glVertex2iv v": 2, "glVertex2sv v": 2, "glVertex3dv v": 3, "glVertex3fv v": 3, "glVertex3iv v": 3, "glVertex3sv v": 3, "glVertex4dv v": 4, "glVertex4fv v": 4, "glVertex4iv v": 4, "glVertex4sv v": 4, "glVertexPointer pointer": 0, } version_guards = { "glBlendColorEXT": "GL_XXX", "glEdgeFlagPointer": "GLTBX_XXX", "gluNurbsCallbackDataEXT": "GL_XXX", } special_wrappers = { "glGetString": [ """\ boost::python::str gl_GetString(boost::python::object const& py_name) { boost::python::extract<GLenum> name_proxy(py_name); GLenum name = name_proxy(); boost::python::str result( reinterpret_cast<const char*>(glGetString(name))); return result; } """, None ], "gluGetString": [ """\ boost::python::str glu_GetString(boost::python::object const& py_name) { boost::python::extract<GLenum> name_proxy(py_name); GLenum name = name_proxy(); boost::python::str result( reinterpret_cast<const char*>(gluGetString(name))); return result; } """, None ], "gluErrorString": [ """\ boost::python::str glu_ErrorString(boost::python::object const& py_error) { boost::python::extract<GLenum> error_proxy(py_error); GLenum error = error_proxy(); return boost::python::str( reinterpret_cast<const char*>(gluErrorString(error))); } """, None ], } def bytes_converters(signature, expected_size="0", post_extract=""): assert signature.return_type == "void" function_name = signature.function_name arg_type = signature.args[-1].type arg_name = signature.args[-1].name arg_type_name = arg_type+" "+arg_name is_const = arg_type.startswith("const ") call = "\n".join(signature.format_call( return_directly=is_const, prefix=" ")) if (not is_const): call += "\n %s_proxy.write_back();" % arg_name is_const = "false" else: is_const = "true" extracts = [""] for arg in signature.args[:-1]: assert not arg.type.startswith("const ") extracts.append("boost::python::extract<%s> %s_proxy(py_%s);" % ( arg.type, arg.name, arg.name)) extracts.append("%s %s = %s_proxy();" % ( arg.type, arg.name, arg.name)) extracts = "\n ".join(extracts) return """\ %(extracts)s%(post_extract)s if (type == GL_BYTE) { boost_python::converter_str<GLubyte> %(arg_name)s_proxy( "%(arg_name)s", py_%(arg_name)s, %(expected_size)s, %(is_const)s); %(arg_type_name)s = reinterpret_cast<%(arg_type)s>( %(arg_name)s_proxy.get()); %(call)s } else if (type == GL_UNSIGNED_BYTE) { boost_python::converter_str<GLbyte> %(arg_name)s_proxy( "%(arg_name)s", py_%(arg_name)s, %(expected_size)s, %(is_const)s); %(arg_type_name)s = reinterpret_cast<%(arg_type)s>( %(arg_name)s_proxy.get()); %(call)s } else { throw std::runtime_error( "Conversion not implemented for given GLenum type:" " %(function_name)s(): %(arg_type_name)s"); }""" % vars() def glReadPixels_wrapper_body(signature): return bytes_converters( signature=signature, expected_size="expected_size", post_extract=""" boost::python::ssize_t expected_size = glReadPixels_pixels_expected_size( width, height, format, type);""") special_wrapper_bodies = { "glCallLists": bytes_converters, "glDrawPixels": bytes_converters, "glGetTexImage": bytes_converters, "glReadPixels": glReadPixels_wrapper_body, "glTexImage1D": bytes_converters, "glTexImage2D": bytes_converters, "glTexSubImage1D": bytes_converters, "glTexSubImage2D": bytes_converters, } class argument: def __init__(self, function_name, string): fields = string.split() self.type = " ".join(fields[:-1]) self.name = fields[-1] assert self.type in arg_types arg_types[self.type] += 1 if (self.type[-1] != "*"): self.pointee_size = None else: self.pointee_size = pointee_sizes[function_name + " " + self.name] class signature: def __init__(self, string): assert string.endswith(" )") fields = string[:-2].split("(") assert len(fields) == 2 arg_strings = [] for arg in fields[1].split(","): arg_strings.append( " ".join(arg.replace("*", " * ").split()).replace(" *", "*")) fields = fields[0].split() self.return_type = " ".join(" ".join(fields[:-1]) .replace("*", " * ").split()).replace(" *", "*") self.function_name = fields[-1] if (self.return_type != "void"): assert self.return_type in return_types return_types[self.return_type] += 1 self.args = [] if (arg_strings != ["void"]): for arg in arg_strings: self.args.append(argument(self.function_name, arg)) self.version_guard = version_guards.get(self.function_name, None) self.have_opaque_pointer = self.return_type in opaque_pointers if (not self.have_opaque_pointer): for arg in self.args: if (arg.type in opaque_pointers): self.have_opaque_pointer = True def show(self, f=None): if (f is None): f = sys.stdout print("function name:", self.function_name, file=f) print(" return type:", self.return_type, file=f) for arg in self.args: print(" arg type:", arg.type, "name:", arg.name, file=f) def wrapper_function_name(self): i = 2 if (self.function_name.startswith("glu")): i = 3 return self.function_name[:i]+"_"+self.function_name[i:] def write_no_opaque_pointers_guard_if(self, f): if (self.have_opaque_pointer): print("#if !defined(GLTBX_NO_OPAQUE_POINTERS)", file=f) def write_no_opaque_pointers_guard_endif(self, f): if (self.have_opaque_pointer): print("#endif", file=f) def write_version_guard_if(self, f): if (self.version_guard is not None): print("#if defined(%s)" % self.version_guard, file=f) def write_version_guard_endif(self, f): if (self.version_guard is not None): print("#endif", file=f) def format_call(self, return_directly, prefix): s = "" if (self.return_type != "void"): if (return_directly): s += "return " else: s += self.return_type + " result = " s += self.function_name+"(" s += ", ".join([arg.name for arg in self.args]) s += ");" result = [] indent = "" for line in line_breaker(s, 70): result.append(prefix+indent+line) indent = " " return result def write_wrapper(self, f): special = special_wrappers.get(self.function_name, None) if (special is not None and special[0] is not None): print(special[0], file=f) return lines = [ self.return_type, self.wrapper_function_name()+"(" ] for arg in self.args: lines.append(" %s %s," % ( "boost::python::object const&", "py_"+arg.name)) if (lines[-1][-1] == ","): lines[-1] = lines[-1][:-1] lines[-1] += ")" lines.append("{") special_body = special_wrapper_bodies.get(self.function_name, None) if (special_body is not None): lines.extend(special_body(self).splitlines()) else: not_implemented = [ "const void*", "GLvoid*", "GLvoid**", "const GLvoid*", "glu_function_pointer"] to_write_back = [] ss = "" for arg in self.args: if ((arg.pointee_size is not None and arg.type not in opaque_pointers) or arg.type == "glu_function_pointer"): if (arg.type in not_implemented): lines.append(ss+" throw std::runtime_error(") lines.append(ss+' "Conversion not implemented:"') lines.append(ss+' " %s(): %s %s");' % ( self.function_name, arg.type, arg.name)) ss = "//" lines.append(ss+" %s %s = 0;" % (arg.type, arg.name)) else: expected_size = arg.pointee_size if (isinstance(expected_size, str)): if (expected_size[0] == "?"): expected_size = "0" else: assert isinstance(expected_size, int) expected_size = str(expected_size) if (arg.type.startswith("const ")): is_const = "true" converter_t = arg.type[6:-1] else: is_const = "false" converter_t = arg.type[:-1] if ( arg.type.endswith("GLbyte*") or arg.type.endswith("GLubyte*")): converter = "boost_python::converter_str" else: converter = "boost_python::converter" lines.append(ss+' %s<%s> %s_proxy(' % ( converter, converter_t, arg.name)) lines.append(ss+' "%s", py_%s, %s, %s);' % ( arg.name, arg.name, expected_size, is_const)) lines.append(ss+" %s %s = %s_proxy.get();" % ( arg.type, arg.name, arg.name)) if (is_const == "false"): to_write_back.append(arg) else: assert not arg.type.startswith("const ") lines.append(ss+' boost::python::extract<%s> %s_proxy(py_%s);' % ( arg.type, arg.name, arg.name)) lines.append(ss+" %s %s = %s_proxy();" % ( arg.type, arg.name, arg.name)) return_directly = len(to_write_back) == 0 lines.extend([ss+line for line in self.format_call(return_directly=return_directly, prefix=" ")]) for arg in to_write_back: lines.append(ss+" %s_proxy.write_back();" % arg.name) if (self.return_type != "void" and not return_directly): lines.append(ss+" return result;") lines.append("}") self.write_no_opaque_pointers_guard_if(f=f) self.write_version_guard_if(f=f) for line in lines: print(" ", line, file=f) self.write_version_guard_endif(f=f) self.write_no_opaque_pointers_guard_endif(f=f) print(file=f) def write_def(self, f): special = special_wrappers.get(self.function_name, None) if (special is not None and special[1] is not None): print(special[1], file=f) return return_opaque = self.return_type in opaque_pointers def_args = (self.function_name, self.wrapper_function_name()) self.write_no_opaque_pointers_guard_if(f=f) self.write_version_guard_if(f=f) if (len(self.args) == 0): if (not return_opaque): print(' def("%s", %s);' % def_args, file=f) else: print(' def("%s", %s,' % def_args, file=f) print(" return_value_policy<return_opaque_pointer>());", file=f) else: assert not return_opaque print(' def("%s", %s, (' % def_args, file=f) s = "" for arg in self.args: s += ', arg("%s")' % arg.name s = s[2:] + "));" for line in line_breaker(s, 73): print(" "+line, file=f) self.write_version_guard_endif(f=f) self.write_no_opaque_pointers_guard_endif(f=f) def get_signatures(): result = [] specs_file = libtbx.env.under_dist("gltbx", "opengl_specs.txt") for line in open(specs_file).read().splitlines(): if (not (line.startswith("GL_") or line.startswith("GLU_"))): result.append(signature(line)) return result def write_function_wrappers(f, namespace, signatures, i_fragment): write_this_is_auto_generated(f, this) print("""\ #include <gltbx/special_wrapper_support.h> #include <gltbx/pointer_args_bpl.h> #include <gltbx/error.h> """, file=f) if (namespace == "glu"): print("#if defined(__GNUC__) && __GNUC__ == 2 \\", file=f) print(" && __GNUC_MINOR__ == 96 && __GNUC_PATCHLEVEL__ == 0", file=f) print("#define GLTBX_NO_OPAQUE_POINTERS", file=f) print("#else", file=f) print("#include <boost/python/return_value_policy.hpp>", file=f) print("#include <boost/python/return_opaque_pointer.hpp>", file=f) for opaque_pointer in opaque_pointers: print("BOOST_PYTHON_OPAQUE_SPECIALIZED_TYPE_ID(%s)" % ( opaque_pointer[:-1]), file=f) print("#endif", file=f) print(file=f) print("""\ namespace gltbx { namespace %s { namespace { """ % namespace, file=f) for signature in signatures: signature.write_wrapper(f=f) print("""\ } // namespace <anonymous> namespace boost_python { void wrap_functions_%02d() { using namespace boost::python;""" % i_fragment, file=f) for signature in signatures: signature.write_def(f=f) print("""\ } }}} // namespace gltbx::%s::boost_python""" % namespace, file=f) def run(target_dir): if (not os.path.isdir(target_dir)): os.makedirs(target_dir) gl_signatures = [] glu_signatures = [] for signature in get_signatures(): if (signature.function_name.startswith("glu")): glu_signatures.append(signature) else: gl_signatures.append(signature) for namespace,signatures,n_fragments in [("gl", gl_signatures, 16), ("glu", glu_signatures, 4)]: block_size = len(signatures) // n_fragments if (block_size * n_fragments < len(signatures)): block_size += 1 for i_fragment in range(n_fragments): file_name = libtbx.path.norm_join( target_dir, namespace+"_functions_%02d_bpl.cpp" % i_fragment) with open(file_name, "w") as f: write_function_wrappers( f=f, namespace=namespace, signatures=signatures[i_fragment*block_size:(i_fragment+1)*block_size], i_fragment=i_fragment) if __name__ == "__main__": run(".")
Data Structure/Array Or Vector/Convert Array into Zig-Zag Fashion/solutionByVaishnavi.py
Mdanish777/Programmers-Community
261
72696
<filename>Data Structure/Array Or Vector/Convert Array into Zig-Zag Fashion/solutionByVaishnavi.py def zigZag_Fashion(array, length): flag = True for i in range(length - 1): if flag is True: if array[i] > array[i+1]: array[i],array[i+1] = array[i+1],array[i] else: if array[i] < array[i+1]: array[i],array[i+1] = array[i+1],array[i] flag = bool( 1 - flag ) print(array) arraySize = int(input("Enter Array Size:- " )) array=[] print("Enter Array Elements") for i in range(arraySize): array.append(int(input())) length = len(array) zigZag_Fashion(array, length)
server/workers/tests/generate_testdata.py
chreman/Headstart
111
72697
<filename>server/workers/tests/generate_testdata.py import json import pandas as pd import numpy as np import requests from tqdm import tqdm api_url = "http://127.0.0.1/api" df = pd.read_csv("Backend regression test cases.csv") def extract_params(case): search = {} search["service"] = case.get("data integration", "").lower() search["q"] = case.get("search query", "") search["from"] = case.get("from", "") search["to"] = case.get("to", "") search["sorting"] = case.get("sorting", "") search["article_types"] = case.get("article types", "[]") return search def get_input_data(search, raw=False): params = search service = params.pop('service') if service not in ["base", "pubmed"]: return None if service == "pubmed": params.pop("article_types") params["limit"] = 100 if service == "base": params["limit"] = 120 doctypes = eval(params["article_types"]) if isinstance(doctypes, list): params["document_types"] = [a for a in doctypes] else: params["document_types"] = [121] params.pop("article_types", []) if raw: params["raw"] = True url = "/".join([api_url, service, "search"]) res = requests.post(url, json=params) return res for r in tqdm(df.iterrows()): case = dict(r[1]) if np.isnan(case["case id"]): continue s = extract_params(case) res = get_input_data(s, raw=True) if res is None: continue res_json = res.json() res_json.pop("id") input_data = res_json["input_data"] params = res_json["params"] with open("knowncases/testcase%d.json" % case["case id"], "w") as outfile: json.dump(res_json, outfile, indent=4, separators=(',', ': '), sort_keys=True)
calamari_ocr/scripts/cross_fold_train.py
jacektl/calamari
922
72722
from paiargparse import PAIArgumentParser from tfaip.util.logging import logger from calamari_ocr.ocr.training.cross_fold_trainer import ( CrossFoldTrainer, CrossFoldTrainerParams, ) logger = logger(__name__) def run(): return main(parse_args()) def parse_args(args=None): parser = PAIArgumentParser() parser.add_root_argument("root", CrossFoldTrainerParams, CrossFoldTrainerParams()) params: CrossFoldTrainerParams = parser.parse_args(args).root # TODO: add the training args (omit those params, that are set by the cross fold training) # setup_train_args(parser, omit=["files", "validation", "weights", # "early_stopping_best_model_output_dir", "early_stopping_best_model_prefix", # "output_dir"]) return params def main(params): trainer = CrossFoldTrainer(params) logger.info("Running cross fold train with params") logger.info(params.to_json(indent=2)) trainer.run() if __name__ == "__main__": run()
tutorials/stock-wallet/microservices/stocks/tests/test_commands/test_services.py
bhardwajRahul/minos-python
247
72726
import sys import unittest import pendulum from src import ( Stocks, StocksCommandService, ) from minos.networks import ( InMemoryRequest, Response, ) from tests.utils import ( build_dependency_injector, ) class TestStocksCommandService(unittest.IsolatedAsyncioTestCase): def setUp(self) -> None: self.injector = build_dependency_injector() async def asyncSetUp(self) -> None: await self.injector.wire(modules=[sys.modules[__name__]]) async def asyncTearDown(self) -> None: await self.injector.unwire() def test_constructor(self): service = StocksCommandService() self.assertIsInstance(service, StocksCommandService) async def test_get_remote_quotes(self): service = StocksCommandService() now = pendulum.now() now_minus_one_month = now.subtract(months=1) response = service.call_remote("AAPL", now_minus_one_month.to_date_string(), now.to_date_string()) self.assertIsInstance(response, list) if __name__ == "__main__": unittest.main()
docs_src/settings/app01/main.py
shashankrnr32/fastapi
53,007
72733
<reponame>shashankrnr32/fastapi from fastapi import FastAPI from .config import settings app = FastAPI() @app.get("/info") async def info(): return { "app_name": settings.app_name, "admin_email": settings.admin_email, "items_per_user": settings.items_per_user, }
tests/peer/test_peerstore.py
g-r-a-n-t/py-libp2p
315
72747
<gh_stars>100-1000 import pytest from libp2p.peer.peerstore import PeerStore, PeerStoreError # Testing methods from IPeerStore base class. def test_peer_info_empty(): store = PeerStore() with pytest.raises(PeerStoreError): store.peer_info("peer") def test_peer_info_basic(): store = PeerStore() store.add_addr("peer", "/foo", 10) info = store.peer_info("peer") assert info.peer_id == "peer" assert info.addrs == ["/foo"] def test_add_get_protocols_basic(): store = PeerStore() store.add_protocols("peer1", ["p1", "p2"]) store.add_protocols("peer2", ["p3"]) assert set(store.get_protocols("peer1")) == set(["p1", "p2"]) assert set(store.get_protocols("peer2")) == set(["p3"]) def test_add_get_protocols_extend(): store = PeerStore() store.add_protocols("peer1", ["p1", "p2"]) store.add_protocols("peer1", ["p3"]) assert set(store.get_protocols("peer1")) == set(["p1", "p2", "p3"]) def test_set_protocols(): store = PeerStore() store.add_protocols("peer1", ["p1", "p2"]) store.add_protocols("peer2", ["p3"]) store.set_protocols("peer1", ["p4"]) store.set_protocols("peer2", []) assert set(store.get_protocols("peer1")) == set(["p4"]) assert set(store.get_protocols("peer2")) == set([]) # Test with methods from other Peer interfaces. def test_peers(): store = PeerStore() store.add_protocols("peer1", []) store.put("peer2", "key", "val") store.add_addr("peer3", "/foo", 10) assert set(store.peer_ids()) == set(["peer1", "peer2", "peer3"])
sdk/python/pulumi_aws/servicediscovery/_inputs.py
alexbowers/pulumi-aws
260
72776
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'ServiceDnsConfigArgs', 'ServiceDnsConfigDnsRecordArgs', 'ServiceHealthCheckConfigArgs', 'ServiceHealthCheckCustomConfigArgs', ] @pulumi.input_type class ServiceDnsConfigArgs: def __init__(__self__, *, dns_records: pulumi.Input[Sequence[pulumi.Input['ServiceDnsConfigDnsRecordArgs']]], namespace_id: pulumi.Input[str], routing_policy: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[Sequence[pulumi.Input['ServiceDnsConfigDnsRecordArgs']]] dns_records: An array that contains one DnsRecord object for each resource record set. :param pulumi.Input[str] namespace_id: The ID of the namespace to use for DNS configuration. :param pulumi.Input[str] routing_policy: The routing policy that you want to apply to all records that Route 53 creates when you register an instance and specify the service. Valid Values: MULTIVALUE, WEIGHTED """ pulumi.set(__self__, "dns_records", dns_records) pulumi.set(__self__, "namespace_id", namespace_id) if routing_policy is not None: pulumi.set(__self__, "routing_policy", routing_policy) @property @pulumi.getter(name="dnsRecords") def dns_records(self) -> pulumi.Input[Sequence[pulumi.Input['ServiceDnsConfigDnsRecordArgs']]]: """ An array that contains one DnsRecord object for each resource record set. """ return pulumi.get(self, "dns_records") @dns_records.setter def dns_records(self, value: pulumi.Input[Sequence[pulumi.Input['ServiceDnsConfigDnsRecordArgs']]]): pulumi.set(self, "dns_records", value) @property @pulumi.getter(name="namespaceId") def namespace_id(self) -> pulumi.Input[str]: """ The ID of the namespace to use for DNS configuration. """ return pulumi.get(self, "namespace_id") @namespace_id.setter def namespace_id(self, value: pulumi.Input[str]): pulumi.set(self, "namespace_id", value) @property @pulumi.getter(name="routingPolicy") def routing_policy(self) -> Optional[pulumi.Input[str]]: """ The routing policy that you want to apply to all records that Route 53 creates when you register an instance and specify the service. Valid Values: MULTIVALUE, WEIGHTED """ return pulumi.get(self, "routing_policy") @routing_policy.setter def routing_policy(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "routing_policy", value) @pulumi.input_type class ServiceDnsConfigDnsRecordArgs: def __init__(__self__, *, ttl: pulumi.Input[int], type: pulumi.Input[str]): """ :param pulumi.Input[int] ttl: The amount of time, in seconds, that you want DNS resolvers to cache the settings for this resource record set. :param pulumi.Input[str] type: The type of health check that you want to create, which indicates how Route 53 determines whether an endpoint is healthy. Valid Values: HTTP, HTTPS, TCP """ pulumi.set(__self__, "ttl", ttl) pulumi.set(__self__, "type", type) @property @pulumi.getter def ttl(self) -> pulumi.Input[int]: """ The amount of time, in seconds, that you want DNS resolvers to cache the settings for this resource record set. """ return pulumi.get(self, "ttl") @ttl.setter def ttl(self, value: pulumi.Input[int]): pulumi.set(self, "ttl", value) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ The type of health check that you want to create, which indicates how Route 53 determines whether an endpoint is healthy. Valid Values: HTTP, HTTPS, TCP """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @pulumi.input_type class ServiceHealthCheckConfigArgs: def __init__(__self__, *, failure_threshold: Optional[pulumi.Input[int]] = None, resource_path: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[int] failure_threshold: The number of 30-second intervals that you want service discovery to wait before it changes the health status of a service instance. Maximum value of 10. :param pulumi.Input[str] resource_path: The path that you want Route 53 to request when performing health checks. Route 53 automatically adds the DNS name for the service. If you don't specify a value, the default value is /. :param pulumi.Input[str] type: The type of health check that you want to create, which indicates how Route 53 determines whether an endpoint is healthy. Valid Values: HTTP, HTTPS, TCP """ if failure_threshold is not None: pulumi.set(__self__, "failure_threshold", failure_threshold) if resource_path is not None: pulumi.set(__self__, "resource_path", resource_path) if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter(name="failureThreshold") def failure_threshold(self) -> Optional[pulumi.Input[int]]: """ The number of 30-second intervals that you want service discovery to wait before it changes the health status of a service instance. Maximum value of 10. """ return pulumi.get(self, "failure_threshold") @failure_threshold.setter def failure_threshold(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "failure_threshold", value) @property @pulumi.getter(name="resourcePath") def resource_path(self) -> Optional[pulumi.Input[str]]: """ The path that you want Route 53 to request when performing health checks. Route 53 automatically adds the DNS name for the service. If you don't specify a value, the default value is /. """ return pulumi.get(self, "resource_path") @resource_path.setter def resource_path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_path", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[str]]: """ The type of health check that you want to create, which indicates how Route 53 determines whether an endpoint is healthy. Valid Values: HTTP, HTTPS, TCP """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "type", value) @pulumi.input_type class ServiceHealthCheckCustomConfigArgs: def __init__(__self__, *, failure_threshold: Optional[pulumi.Input[int]] = None): """ :param pulumi.Input[int] failure_threshold: The number of 30-second intervals that you want service discovery to wait before it changes the health status of a service instance. Maximum value of 10. """ if failure_threshold is not None: pulumi.set(__self__, "failure_threshold", failure_threshold) @property @pulumi.getter(name="failureThreshold") def failure_threshold(self) -> Optional[pulumi.Input[int]]: """ The number of 30-second intervals that you want service discovery to wait before it changes the health status of a service instance. Maximum value of 10. """ return pulumi.get(self, "failure_threshold") @failure_threshold.setter def failure_threshold(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "failure_threshold", value)
lightautoml/image/utils.py
kobylkinks/LightAutoML
766
72784
<gh_stars>100-1000 """Image utils.""" from PIL import Image def pil_loader(path: str) -> Image: """Load image from pathes. Args: path: Image path. Returns: Loaded PIL Image in rgb. """ with open(path, "rb") as f: img = Image.open(f) return img.convert("RGB")
Python/Matplotlib/01-Introduction/finished_code.py
sagarsaliya/code_snippets
9,588
72792
from matplotlib import pyplot as plt plt.xkcd() ages_x = [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55] py_dev_y = [20046, 17100, 20000, 24744, 30500, 37732, 41247, 45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, 75370, 83640, 84666, 84392, 78254, 85000, 87038, 91991, 100000, 94796, 97962, 93302, 99240, 102736, 112285, 100771, 104708, 108423, 101407, 112542, 122870, 120000] plt.plot(ages_x, py_dev_y, label='Python') js_dev_y = [16446, 16791, 18942, 21780, 25704, 29000, 34372, 37810, 43515, 46823, 49293, 53437, 56373, 62375, 66674, 68745, 68746, 74583, 79000, 78508, 79996, 80403, 83820, 88833, 91660, 87892, 96243, 90000, 99313, 91660, 102264, 100000, 100000, 91660, 99240, 108000, 105000, 104000] plt.plot(ages_x, js_dev_y, label='JavaScript') dev_y = [17784, 16500, 18012, 20628, 25206, 30252, 34368, 38496, 42000, 46752, 49320, 53200, 56000, 62316, 64928, 67317, 68748, 73752, 77232, 78000, 78508, 79536, 82488, 88935, 90000, 90056, 95000, 90000, 91633, 91660, 98150, 98964, 100000, 98988, 100000, 108923, 105000, 103117] plt.plot(ages_x, dev_y, color='#444444', linestyle='--', label='All Devs') plt.xlabel('Ages') plt.ylabel('Median Salary (USD)') plt.title('Median Salary (USD) by Age') plt.legend() plt.tight_layout() plt.savefig('plot.png') plt.show()
neuspell/commons.py
TheMortalCoil92/neuspell_access
422
72820
<gh_stars>100-1000 import os from string import punctuation from .util import is_module_available, get_module_or_attr """ default paths """ DEFAULT_DATA_PATH = os.path.join(os.path.split(__file__)[0], "../data") print(f"data folder is set to `{DEFAULT_DATA_PATH}` script") if not os.path.exists(DEFAULT_DATA_PATH): os.makedirs(DEFAULT_DATA_PATH) DEFAULT_TRAINTEST_DATA_PATH = os.path.join(DEFAULT_DATA_PATH, "traintest") ALLENNLP_ELMO_PRETRAINED_FOLDER = os.path.join(DEFAULT_DATA_PATH, "allennlp_elmo_pretrained") """ special tokenizers """ _SPACY_TOKENIZER, _SPACY_TAGGER = None, None def _load_spacy_tokenizer(): global _SPACY_TOKENIZER, _SPACY_TAGGER if not _SPACY_TOKENIZER: if is_module_available("spacy"): if not is_module_available("en_core_web_sm"): raise ImportError("run `python -m spacy download en_core_web_sm`") print("creating spacy models ...") spacy_nlp = get_module_or_attr("en_core_web_sm").load(disable=["tagger", "ner", "lemmatizer"]) _SPACY_TOKENIZER = lambda inp: [token.text for token in spacy_nlp(inp)] # spacy_nlp = get_module_or_attr("en_core_web_sm").load(disable=["ner", "lemmatizer"]) # _SPACY_TAGGER = lambda inp: [token.tag for token in spacy_nlp(inp)] print("spacy models initialized") else: raise ImportError("`pip install spacy` to use spacy retokenizer") return _SPACY_TOKENIZER def _custom_tokenizer(inp: str): try: _spacy_tokenizer = _load_spacy_tokenizer() get_tokens = lambda inp: _spacy_tokenizer(inp) except ImportError as e: print(e) get_tokens = lambda inp: inp.split() def _is_punct(inp): return all([i in punctuation for i in inp]) tokens = get_tokens(inp) new_tokens = [] str_ = "" for token in tokens: if _is_punct(token): str_ += token else: new_tokens.append(str_) str_ = "" new_tokens.append(token) if str_: new_tokens.append(str_) return " ".join(new_tokens) spacy_tokenizer = _custom_tokenizer
src/oci/compute_instance_agent/models/instance_agent_command_execution_output_via_text_details.py
Manny27nyc/oci-python-sdk
249
72829
<gh_stars>100-1000 # coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from .instance_agent_command_execution_output_content import InstanceAgentCommandExecutionOutputContent from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class InstanceAgentCommandExecutionOutputViaTextDetails(InstanceAgentCommandExecutionOutputContent): """ The execution output from a command when returned in plain text. """ def __init__(self, **kwargs): """ Initializes a new InstanceAgentCommandExecutionOutputViaTextDetails object with values from keyword arguments. The default value of the :py:attr:`~oci.compute_instance_agent.models.InstanceAgentCommandExecutionOutputViaTextDetails.output_type` attribute of this class is ``TEXT`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param output_type: The value to assign to the output_type property of this InstanceAgentCommandExecutionOutputViaTextDetails. Allowed values for this property are: "TEXT", "OBJECT_STORAGE_URI", "OBJECT_STORAGE_TUPLE" :type output_type: str :param exit_code: The value to assign to the exit_code property of this InstanceAgentCommandExecutionOutputViaTextDetails. :type exit_code: int :param message: The value to assign to the message property of this InstanceAgentCommandExecutionOutputViaTextDetails. :type message: str :param text: The value to assign to the text property of this InstanceAgentCommandExecutionOutputViaTextDetails. :type text: str :param text_sha256: The value to assign to the text_sha256 property of this InstanceAgentCommandExecutionOutputViaTextDetails. :type text_sha256: str """ self.swagger_types = { 'output_type': 'str', 'exit_code': 'int', 'message': 'str', 'text': 'str', 'text_sha256': 'str' } self.attribute_map = { 'output_type': 'outputType', 'exit_code': 'exitCode', 'message': 'message', 'text': 'text', 'text_sha256': 'textSha256' } self._output_type = None self._exit_code = None self._message = None self._text = None self._text_sha256 = None self._output_type = 'TEXT' @property def text(self): """ Gets the text of this InstanceAgentCommandExecutionOutputViaTextDetails. The command output. :return: The text of this InstanceAgentCommandExecutionOutputViaTextDetails. :rtype: str """ return self._text @text.setter def text(self, text): """ Sets the text of this InstanceAgentCommandExecutionOutputViaTextDetails. The command output. :param text: The text of this InstanceAgentCommandExecutionOutputViaTextDetails. :type: str """ self._text = text @property def text_sha256(self): """ Gets the text_sha256 of this InstanceAgentCommandExecutionOutputViaTextDetails. SHA-256 checksum value of the text content. :return: The text_sha256 of this InstanceAgentCommandExecutionOutputViaTextDetails. :rtype: str """ return self._text_sha256 @text_sha256.setter def text_sha256(self, text_sha256): """ Sets the text_sha256 of this InstanceAgentCommandExecutionOutputViaTextDetails. SHA-256 checksum value of the text content. :param text_sha256: The text_sha256 of this InstanceAgentCommandExecutionOutputViaTextDetails. :type: str """ self._text_sha256 = text_sha256 def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
sending_orders/order_management.py
g-make-it/IG_Trading_Algo_Scripts_Python
186
72832
from trading_ig import IGService from trading_ig.config import config import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # if you need to cache to DB your requests from datetime import timedelta import requests_cache from predefined_functions.initialisation import Initialisation class Order_Management(): def __init__(self): logging.basicConfig(level=logging.INFO) self.log = logging.getLogger(__name__) # set object and then set connection self.initial = Initialisation() self.initialise_connection() def initialise_connection(self): self.ig_service = self.initial.initialise_connection() self.ig_service.create_session() # limit orders def create_working_order(self, direction, epic, size, price, stop_distance,limit_distance,force_open=False): currency_code = "GBP" direction = direction epic = epic expiry = "DFB" if force_open == True: guaranteed_stop = False else: guaranteed_stop = True # entering price level = price # Pound per point size size = size time_in_force = "GOOD_TILL_CANCELLED" # LIMIT orders are now STOP order_type = "STOP" limit_distance = limit_distance stop_distance = stop_distance # currency_code = "GBP" # direction = "SELL" # epic = "CS.D.BITCOIN.TODAY.IP" # expiry = "DFB" # guaranteed_stop = False # # entering price # level = 13109 # # Pound per point size # size = 0.50 # time_in_force = "GOOD_TILL_CANCELLED" # order_type = "LIMIT" # limit_distance = 4000.0 # stop_distance = 160.0 # """Creates an OTC working order""" try: response = self.ig_service.create_working_order( currency_code=currency_code, direction=direction, epic=epic, expiry=expiry, guaranteed_stop=guaranteed_stop, level=level, size=size, time_in_force=time_in_force, order_type=order_type, limit_distance=limit_distance, stop_distance=stop_distance, force_open=force_open ) return response except Exception as e: self.log.info(str(e) + " error occurred when creating a working order") return None # market orders def create_open_position(self, direction, epic, size, limit_distance, stop_distance, force_open): currency_code = "GBP" direction = direction epic = epic expiry = "DFB" # no matter what you are doing force open always has to be True other wise stop losses do not work force_open = force_open if force_open: guaranteed_stop = False else: guaranteed_stop = True stop_distance = stop_distance size = size trailing_stop = False trailing_stop_increment = None trailing_stop_distance = None time_in_force = "FILL_OR_KILL" order_type = "MARKET" limit_distance = limit_distance try: response = self.ig_service.create_open_position( currency_code=currency_code, direction=direction, epic=epic, expiry=expiry, # no matter what you are doing force open always has to be True other wise stop losses do not work force_open=True, guaranteed_stop=guaranteed_stop, stop_distance=stop_distance, size=size, trailing_stop=trailing_stop, trailing_stop_increment=trailing_stop_increment, # trailing_stop_distance = trailing_stop_distance, # time_in_force=time_in_force, order_type=order_type, limit_distance=limit_distance) return response except Exception as e: self.log.info(str(e) + " error occurred when opening a position") return None # market orders to close positions def close_open_position(self, position, size): # set randomly try: direction = "BUY" position_direction = position["direction"] if position_direction == "BUY": direction = "SELL" deal_id = position["dealId"] order_type = "MARKET" size = size response = self.ig_service.close_open_position( deal_id=deal_id, direction=direction, order_type=order_type, size=size) return response except Exception as e: self.log.info(str(e) + " error occurred when closing position") return None def delete_working_order(self, deal_id): try: deal_id = deal_id response = self.ig_service.delete_working_order(deal_id) return response except Exception as e: self.log.info(str(e) + " error occurred when deleting working order") return None def update_position(self, limit_level, stop_level, deal_id, guaranteed_stop): limit_level = limit_level guaranteed_stop = guaranteed_stop stop_level=stop_level deal_id=deal_id trailing_stop = False trailing_stop_distance = None trailing_stop_increment = None try: response = self.ig_service.update_open_position( limit_level=limit_level, stop_level=stop_level, # guaranteed_stop=guaranteed_stop, deal_id =deal_id, # trailing_stop=trailing_stop, # trailing_stop_distance=trailing_stop_distance, # trailing_stop_increment=trailing_stop_increment ) return response except Exception as e: self.log.info(str(e) + " error occurred when updating position or maybe the order is no longer open") return None def get_open_positions(self): while(True): try: return self.ig_service.fetch_open_positions() except Exception as e: self.log.info(str(e) + " error occurred when getting open positions") # resets the connection self.initialise_connection() def get_working_orders(self): while(True): try: return self.ig_service.fetch_working_orders() except Exception as e: self.log.info(str(e) + " error occurred when getting working orders") self.initialise_connection()
tests-deprecating/milvus_benchmark/milvus_benchmark/runners/get.py
CyberFlameGO/milvus
10,504
72855
<filename>tests-deprecating/milvus_benchmark/milvus_benchmark/runners/get.py import time import copy import logging from milvus_benchmark import parser from milvus_benchmark.runners import utils from milvus_benchmark.runners.base import BaseRunner logger = logging.getLogger("milvus_benchmark.runners.get") def get_ids(length, size): ids_list = [] step = size // length for i in range(length): ids_list.append(step * i) return ids_list class GetRunner(BaseRunner): """run get""" name = "get_performance" def __init__(self, env, metric): super(GetRunner, self).__init__(env, metric) def extract_cases(self, collection): collection_name = collection["collection_name"] if "collection_name" in collection else None (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] vector_type = utils.get_vector_type(data_type) other_fields = collection["other_fields"] if "other_fields" in collection else None ids_length_list = collection["ids_length_list"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name, "collection_size": collection_size, "other_fields": other_fields, "ni_per": ni_per } index_field_name = utils.get_default_field_name(vector_type) index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } flush = True if "flush" in collection and collection["flush"] == "no": flush = False self.init_metric(self.name, collection_info, index_info, search_info=None) case_metrics = list() for ids_length in ids_length_list: ids = get_ids(ids_length, collection_size) case_metric = copy.deepcopy(self.metric) case_metric.set_case_metric_type() case_params = list() case_metric.run_params = {"ids_length": ids_length} case_metrics.append(case_metric) case_param = { "collection_name": collection_name, "data_type": data_type, "dimension": dimension, "collection_size": collection_size, "ni_per": ni_per, "metric_type": metric_type, "vector_type": vector_type, "other_fields": other_fields, "flush_after_insert": flush, "index_field_name": index_field_name, "index_type": index_type, "index_param": index_param, "ids": ids } case_params.append(case_param) return case_params, case_metrics def prepare(self, **case_param): collection_name = case_param["collection_name"] self.milvus.set_collection(collection_name) if not self.milvus.exists_collection(): logger.info("collection not exist") logger.debug({"collection count": self.milvus.count()}) def run_case(self, case_metric, **case_param): ids = case_param["ids"] start_time = time.time() self.milvus.get(ids) get_time = round(time.time() - start_time, 2) tmp_result = {"get_time": get_time} return tmp_result class InsertGetRunner(GetRunner): """run insert and get""" name = "insert_get_performance" def __init__(self, env, metric): super(InsertGetRunner, self).__init__(env, metric) def prepare(self, **case_param): collection_name = case_param["collection_name"] dimension = case_param["dimension"] vector_type = case_param["vector_type"] other_fields = case_param["other_fields"] self.milvus.set_collection(collection_name) if self.milvus.exists_collection(): logger.debug("Start drop collection") self.milvus.drop() time.sleep(utils.DELETE_INTERVAL_TIME) self.milvus.create_collection(dimension, data_type=vector_type, other_fields=other_fields) self.insert(self.milvus, collection_name, case_param["data_type"], dimension, case_param["collection_size"], case_param["ni_per"]) start_time = time.time() self.milvus.flush() flush_time = round(time.time() - start_time, 2) logger.debug({"collection count": self.milvus.count()}) logger.debug({"flush_time": flush_time}) logger.debug("Start load collection") self.milvus.load_collection(timeout=1200) logger.debug("Load collection end")
configs/loftr/indoor/scannet/loftr_ds_eval_new.py
AK391/LoFTR
907
72861
""" A config only for reproducing the ScanNet evaluation results. We remove border matches by default, but the originally implemented `remove_border()` has a bug, leading to only two sides of all borders are actually removed. However, the [bug fix](https://github.com/zju3dv/LoFTR/commit/e9146c8144dea5f3cbdd98b225f3e147a171c216) makes the scannet evaluation results worse (auc@10=40.8 => 39.5), which should be caused by tiny result fluctuation of few image pairs. This config set `BORDER_RM` to 0 to be consistent with the results in our paper. Update: This config is for testing the re-trained model with the pos-enc bug fixed. """ from src.config.default import _CN as cfg cfg.LOFTR.COARSE.TEMP_BUG_FIX = True cfg.LOFTR.MATCH_COARSE.MATCH_TYPE = 'dual_softmax' cfg.LOFTR.MATCH_COARSE.BORDER_RM = 0
textbox/data/dataloader/__init__.py
StevenTang1998/TextBox
347
72882
from textbox.data.dataloader.abstract_dataloader import AbstractDataLoader from textbox.data.dataloader.single_sent_dataloader import SingleSentenceDataLoader from textbox.data.dataloader.paired_sent_dataloader import PairedSentenceDataLoader from textbox.data.dataloader.attr_sent_dataloader import AttributedSentenceDataLoader from textbox.data.dataloader.kg_sent_dataloader import KGSentenceDataLoader from textbox.data.dataloader.wikibio_sent_dataloader import WikiBioSentenceDataLoader from textbox.data.dataloader.rotowire_sent_dataloader import RotoWireSentenceDataLoader
samples/migrateADCGen1/mappers/__init__.py
daniel-dqsdatalabs/pyapacheatlas
104
72895
from .assetmapper import AssetMapper from .assetfactory import AssetFactory from .sqlserver import SqlServerTableMapper
src/benchmarks/gc/src/commonlib/host_info.py
BruceForstall/performance
547
72896
# Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the MIT license. # See the LICENSE file in the project root for more information. from dataclasses import dataclass from operator import floordiv from pathlib import Path from re import search from textwrap import indent from typing import Iterable, List, Mapping, Optional, Sequence, Tuple from .bench_file import ( change_path_machine, get_this_machine, Machine, MACHINE_DOC, parse_machines_arg, ) from .get_built import get_built, Built from .collection_util import empty_mapping, is_empty from .command import Command, CommandKind, CommandsMapping from .config import HOST_INFO_PATH from .option import map_option, map_option_2 from .parse_and_serialize import load_yaml, parse_yaml, to_yaml, write_yaml_file from .type_utils import argument, check_cast, with_slots from .util import ( ensure_dir, ExecArgs, exec_and_get_output, gb_to_kb, get_hostname, get_os, kb_to_bytes, kb_to_mb, mb_to_kb, mhz_to_ghz, OS, remove_str_end, try_remove_str_start, ) @with_slots @dataclass(frozen=True) class CacheInfoForLevel: # Values are None if unknown n_caches: Optional[int] = None total_bytes: Optional[int] = None @property def average_bytes(self) -> Optional[int]: return map_option_2(self.total_bytes, self.n_caches, floordiv) @with_slots @dataclass(frozen=True) class CacheInfo: l1: CacheInfoForLevel l2: CacheInfoForLevel l3: CacheInfoForLevel @with_slots @dataclass(frozen=True) class Range: # Both inclusive lo: int hi: int def with_hi(self, new_hi: int) -> "Range": return Range(self.lo, new_hi) @with_slots @dataclass(frozen=True) class NumaNodeInfo: numa_node_number: int ranges: Sequence[Range] # None on non-Windows cpu_group_number: Optional[int] = None @with_slots @dataclass(frozen=True) class HostInfo: # All values are None if unknown hostname: str n_physical_processors: int n_logical_processors: int numa_nodes: Sequence[NumaNodeInfo] cache_info: CacheInfo clock_ghz: Optional[float] = None total_physical_memory_mb: Optional[int] = None @with_slots @dataclass(frozen=True) class _NumaNodesAndCacheInfo: numa_nodes: Sequence[NumaNodeInfo] n_physical_processors: int n_logical_processors: int caches: CacheInfo def _get_total_physical_memory_mb_windows() -> int: output = exec_and_get_output(ExecArgs(("systeminfo",), quiet_print=True)) for line in output.splitlines(): tot = try_remove_str_start(line, "Total Physical Memory:") if tot is not None: mem = remove_str_end(tot, "MB") return int(mem.replace(",", "")) raise Exception("Didn't find total physical memory") def _get_host_info(built: Built) -> HostInfo: return {OS.posix: lambda _: _get_host_info_posix(), OS.windows: _get_host_info_windows}[ get_os() ](built) _UNKNOWN_MSG: str = "unknown" def _get_host_info_posix() -> HostInfo: # lscpu output is a bunch of lines all of the form key: value. Make a dict from that. dct = _parse_keys_values_lines(exec_and_get_output(ExecArgs(("lscpu",), quiet_print=True))) def get_opt(name: str) -> Optional[str]: return dct.get(name, None) def get_int(name: str) -> int: return int(dct[name]) def get_opt_float(name: str) -> Optional[float]: return map_option(get_opt(name), float) def get_opt_kb(name: str) -> Optional[int]: opt = get_opt(name) if opt is not None and _UNKNOWN_MSG in opt.lower(): return None # Retrieve the size of the given memory option string, and return it # in KB. Nowadays, it is not uncommon for machines to have MB, or in # more powerful cases, GB of cache, so we need to do the conversion # as necessary since the infra expects to receive KB. # # First we extract the size units name to determine how to convert them # if necessary. Since we don't know about every single machine's rules # for capitalization, we'll convert to lowercase just to be safe. assert opt is not None size_units = opt.rsplit(" ", 1)[-1].lower() converted_kb = 0.0 if size_units in ["k", "kib"]: converted_kb = int(remove_str_end(opt.lower(), size_units)) return map_option(converted_kb, lambda n: n) elif size_units in ["m", "mib"]: converted_kb = mb_to_kb(float(remove_str_end(opt.lower(), size_units))) return map_option(converted_kb, lambda n: int(n)) # pylint: disable=W0108 elif size_units in ["g", "gib"]: converted_kb = gb_to_kb(float(remove_str_end(opt.lower(), size_units))) return map_option(converted_kb, lambda n: int(n)) # pylint: disable=W0108 else: raise Exception(f"Unrecognized size units '{size_units}'") # Note: "CPU MHz" is the *current* cpu rate which varies. Going with max here. # TODO: Max is probably wrong, we want a typical value. clock_ghz = map_option(get_opt_float("CPU max MHz"), mhz_to_ghz) sockets = get_int("Socket(s)") cores = get_int("Core(s) per socket") threads = get_int("Thread(s) per core") n_physical_processors = sockets * cores n_logical_processors = n_physical_processors * threads l1d_cache_kb = get_opt_kb("L1d cache") l1i_cache_kb = get_opt_kb("L1i cache") l2_cache_kb = get_opt_kb("L2 cache") l3_cache_kb = get_opt_kb("L3 cache") x = _parse_keys_values_lines((Path("/proc") / "meminfo").read_text()) total_physical_memory_mb = round(kb_to_mb(float(remove_str_end(x["MemTotal"], " kB")))) numa_nodes = _get_numa_nodes_posix() return HostInfo( hostname=get_hostname(), n_physical_processors=n_physical_processors, n_logical_processors=n_logical_processors, numa_nodes=numa_nodes, cache_info=CacheInfo( # TODO: figure out how to determine number of caches on posix l1=CacheInfoForLevel( n_caches=None, total_bytes=map_option_2( l1d_cache_kb, l1i_cache_kb, lambda a, b: kb_to_bytes(a + b) ), ), l2=CacheInfoForLevel(n_caches=None, total_bytes=map_option(l2_cache_kb, kb_to_bytes)), l3=CacheInfoForLevel(n_caches=None, total_bytes=map_option(l3_cache_kb, kb_to_bytes)), ), clock_ghz=clock_ghz, total_physical_memory_mb=total_physical_memory_mb, ) def _get_numa_nodes_posix() -> Sequence[NumaNodeInfo]: return tuple( _parse_numa_nodes_posix( exec_and_get_output(ExecArgs(("numactl", "--hardware"), quiet_print=True)) ) ) def _parse_numa_nodes_posix(s: str) -> Iterable[NumaNodeInfo]: for line in s.splitlines(): res = search(r"^node (\d+) cpus: ", line) if res is not None: node_number = int(res.group(1)) yield NumaNodeInfo( numa_node_number=node_number, cpu_group_number=None, ranges=_ranges_from_numbers([int(x) for x in line[res.span()[1] :].split()]), ) def _ranges_from_numbers(ns: Iterable[int]) -> Sequence[Range]: ranges: List[Range] = [] for n in ns: if is_empty(ranges) or n != ranges[-1].hi + 1: ranges.append(Range(n, n)) else: ranges.append(ranges.pop().with_hi(n)) return ranges def _parse_keys_values_lines(s: str) -> Mapping[str, str]: return {k: v for line in s.split("\n") if line != "" for k, v in (_split_line(line),)} def _split_line(line: str) -> Tuple[str, str]: parts = line.split(":") assert len(parts) == 2 l, r = parts return l.strip(), r.strip() def _get_host_info_windows(built: Built) -> HostInfo: total_physical_memory_mb = _get_total_physical_memory_mb_windows() info_from_c = parse_yaml( _NumaNodesAndCacheInfo, exec_and_get_output(ExecArgs((str(built.win.get_host_info_exe),), quiet_print=True)), ) return HostInfo( hostname=get_hostname(), clock_ghz=_get_clock_ghz_windows(), total_physical_memory_mb=total_physical_memory_mb, n_physical_processors=info_from_c.n_physical_processors, n_logical_processors=info_from_c.n_logical_processors, numa_nodes=info_from_c.numa_nodes, cache_info=info_from_c.caches, ) def _get_clock_ghz_windows() -> float: # Import lazily as this is only available on Windows # pylint:disable=import-outside-toplevel from winreg import ConnectRegistry, HKEY_LOCAL_MACHINE, OpenKey, QueryValueEx registry = ConnectRegistry(None, HKEY_LOCAL_MACHINE) key = OpenKey(registry, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0") mhz, _ = QueryValueEx(key, "~MHz") ghz = mhz_to_ghz(check_cast(float, mhz)) assert 0 < ghz < 10 return ghz def read_host_info_for_machine(machine: Machine) -> HostInfo: return _read_host_info_at_path(change_path_machine(HOST_INFO_PATH, machine)) def _read_host_info_at_path(path: Path) -> HostInfo: try: return load_yaml(HostInfo, path) except FileNotFoundError: raise Exception( f"Host info not found at {path}. Did you forget to run 'write-host-info'?" ) from None def read_this_machines_host_info() -> HostInfo: return read_host_info_for_machine(get_this_machine()) def write_host_info() -> None: built = get_built(coreclrs=empty_mapping()) ensure_dir(HOST_INFO_PATH.parent) write_yaml_file(HOST_INFO_PATH, _get_host_info(built), overwrite=True) print(f"Wrote to {HOST_INFO_PATH}") def print_host_info() -> None: print(to_yaml(read_this_machines_host_info())) @with_slots @dataclass(frozen=True) class PrintAllHostInfosArgs: machines: Sequence[str] = argument(doc=MACHINE_DOC) def print_all_host_infos(args: PrintAllHostInfosArgs) -> None: for machine in parse_machines_arg(args.machines): print(machine) hi = read_host_info_for_machine(machine) print(indent(to_yaml(hi), " ")) HOST_INFO_COMMANDS: CommandsMapping = { "print-host-info": Command( hidden=True, kind=CommandKind.infra, fn=print_host_info, doc="""Print info about this machine generated from write-host-info""", ), # Hidden because 'setup' does this already. # Though it's useful to run again if the code for getting host-info is modified. "write-host-info": Command( hidden=True, kind=CommandKind.infra, fn=write_host_info, doc=f"Write host info to {HOST_INFO_PATH}.", ), "print-all-host-infos": Command( kind=CommandKind.infra, fn=print_all_host_infos, doc="Fetch and print host info for all machines.", priority=1, ), }
litex/gen/fhdl/verilog.py
enjoy-digital/litex
1,501
72958
# # This file is part of LiteX (Adapted from Migen for LiteX usage). # # This file is Copyright (c) 2013-2014 <NAME> <<EMAIL>> # This file is Copyright (c) 2013-2021 <NAME> <<EMAIL>> # This file is Copyright (c) 2013-2017 <NAME> <<EMAIL>> # This file is Copyright (c) 2016-2018 whitequark <<EMAIL>> # This file is Copyright (c) 2017 <NAME> <<EMAIL>> # This file is Copyright (c) 2016 <NAME> <<EMAIL>> # This file is Copyright (c) 2018 <NAME> <<EMAIL>> # This file is Copyright (c) 2015 <NAME> <<EMAIL>> # This file is Copyright (c) 2013 <NAME> <<EMAIL>> # This file is Copyright (c) 2018 <NAME> <<EMAIL>> # SPDX-License-Identifier: BSD-2-Clause from functools import partial from operator import itemgetter import collections from migen.fhdl.structure import * from migen.fhdl.structure import _Operator, _Slice, _Assign, _Fragment from migen.fhdl.tools import * from migen.fhdl.namer import build_namespace from migen.fhdl.conv_output import ConvOutput from migen.fhdl.specials import Memory from litex.gen.fhdl.memory import memory_emit_verilog from litex.build.tools import generated_banner # ------------------------------------------------------------------------------------------------ # # RESERVED KEYWORDS # # ------------------------------------------------------------------------------------------------ # _ieee_1800_2017_verilog_reserved_keywords = { "accept_on", "alias", "always", "always_comb", "always_ff", "always_latch", "and", "assert", "assign", "assume", "automatic", "before", "begin", "bind", "bins", "binsof", "bit", "break", "buf", "bufif0", "bufif1", "byte", "case", "casex", "casez", "cell", "chandle", "checker", "class", "clocking", "cmos", "config", "const", "constraint", "context", "continue", "cover", "covergroup", "coverpoint", "cross", "deassign", "default", "defparam", "design", "disable", "dist", "do", "edge", "else", "end", "endcase", "endchecker", "endclass", "endclocking", "endconfig", "endfunction", "endgenerate", "endgroup", "endinterface", "endmodule", "endpackage", "endprimitive", "endprogram", "endproperty", "endsequence", "endspecify", "endtable", "endtask", "enum", "event", "eventually", "expect", "export", "extends", "extern", "final", "first_match", "for", "force", "foreach", "forever", "fork", "forkjoin", "function", "generate", "genvar", "global", "highz0", "highz1", "if", "iff", "ifnone", "ignore_bins", "illegal_bins", "implements", "implies", "import", "incdir", "include", "initial", "inout", "input", "inside", "instance", "int", "integer", "interconnect", "interface", "intersect", "join", "join_any", "join_none", "large", "let", "liblist", "library", "local", "localparam", "logic", "longint", "macromodule", "matches", "medium", "modport", "module", "nand", "negedge", "nettype", "new", "nexttime", "nmos", "nor", "noshowcancelled", "not", "notif0", "notif1", "null", "or", "output", "package", "packed", "parameter", "pmos", "posedge", "primitive", "priority", "program", "property", "protected", "pull0", "pull1", "pulldown", "pullup", "pulsestyle_ondetect", "pulsestyle_onevent", "pure", "rand", "randc", "randcase", "randsequence", "rcmos", "real", "realtime", "ref", "reg", "reject_on", "release", " repeat", "restrict", "return", "rnmos", "rpmos", "rtran", "rtranif0", "rtranif1", "s_always", "s_eventually", "s_nexttime", "s_until", "s_until_with", "scalared", "sequence", "shortint", "shortreal", "showcancelled", "signed", "small", "soft", "solve", "specify", "specparam", "static", "string", "strong", "strong0", "strong1", "struct", "super", "supply0", "supply1", "sync_accept_on", "sync_reject_on", "table", "tagged", "task", "this", "throughout", "time", "timeprecision", "timeunit", "tran", "tranif0", "tranif1", "tri", "tri0", "tri1", "triand", "trior", "trireg", "type", "typedef", " union", "unique", "unique0", "unsigned", "until", "until_with", "untyped", "use", " uwire", "var", "vectored", "virtual", "void", "wait", "wait_order", "wand", "weak", "weak0", "weak1", "while", "wildcard", "wire", "with", "within", "wor", "xnor", "xor", } # ------------------------------------------------------------------------------------------------ # # EXPRESSIONS # # ------------------------------------------------------------------------------------------------ # # Print Constant ----------------------------------------------------------------------------------- def _print_constant(node): return "{sign}{bits}'d{value}".format( sign = "" if node.value >= 0 else "-", bits = str(node.nbits), value = abs(node.value), ), node.signed # Print Signal ------------------------------------------------------------------------------------- def _print_signal(ns, s): return "{signed}{vector}{name}".format( signed = "" if (not s.signed) else "signed ", vector = "" if ( len(s) <= 1) else f"[{str(len(s)-1) }:0] ", name = ns.get_name(s) ) # Print Operator ----------------------------------------------------------------------------------- (UNARY, BINARY, TERNARY) = (1, 2, 3) def _print_operator(ns, node): operator = node.op operands = node.operands arity = len(operands) assert arity in [UNARY, BINARY, TERNARY] def to_signed(r): return f"$signed({{1'd0, {r}}})" # Unary Operator. if arity == UNARY: r1, s1 = _print_expression(ns, operands[0]) # Negation Operator. if operator == "-": # Negate and convert to signed if not already. r = "-" + (r1 if s1 else to_signed(r1)) s = True # Other Operators. else: r = operator + r1 s = s1 # Binary Operator. if arity == BINARY: r1, s1 = _print_expression(ns, operands[0]) r2, s2 = _print_expression(ns, operands[1]) # Convert all expressions to signed when at least one is signed. if operator not in ["<<<", ">>>"]: if s2 and not s1: r1 = to_signed(r1) if s1 and not s2: r2 = to_signed(r2) r = f"{r1} {operator} {r2}" s = s1 or s2 # Ternary Operator. if arity == TERNARY: assert operator == "m" r1, s1 = _print_expression(ns, operands[0]) r2, s2 = _print_expression(ns, operands[1]) r3, s3 = _print_expression(ns, operands[2]) # Convert all expressions to signed when at least one is signed. if s2 and not s3: r3 = to_signed(r3) if s3 and not s2: r2 = to_signed(r2) r = f"{r1} ? {r2} : {r3}" s = s2 or s3 return f"({r})", s # Print Slice -------------------------------------------------------------------------------------- def _print_slice(ns, node): assert (node.stop - node.start) >= 1 if (isinstance(node.value, Signal) and len(node.value) == 1): assert node.start == 0 sr = "" # Avoid slicing 1-bit Signals. else: sr = f"[{node.stop-1}:{node.start}]" if (node.stop - node.start) > 1 else f"[{node.start}]" r, s = _print_expression(ns, node.value) return r + sr, s # Print Cat ---------------------------------------------------------------------------------------- def _print_cat(ns, node): l = [_print_expression(ns, v)[0] for v in reversed(node.l)] return "{" + ", ".join(l) + "}", False # Print Replicate ---------------------------------------------------------------------------------- def _print_replicate(ns, node): return "{" + str(node.n) + "{" + _print_expression(ns, node.v)[0] + "}}", False # Print Expression --------------------------------------------------------------------------------- def _print_expression(ns, node): # Constant. if isinstance(node, Constant): return _print_constant(node) # Signal. elif isinstance(node, Signal): return ns.get_name(node), node.signed # Operator. elif isinstance(node, _Operator): return _print_operator(ns, node) # Slice. elif isinstance(node, _Slice): return _print_slice(ns, node) # Cat. elif isinstance(node, Cat): return _print_cat(ns, node) # Replicate. elif isinstance(node, Replicate): return _print_replicate(ns, node) # Unknown. else: raise TypeError(f"Expression of unrecognized type: '{type(node).__name__}'") # ------------------------------------------------------------------------------------------------ # # NODES # # ------------------------------------------------------------------------------------------------ # (_AT_BLOCKING, _AT_NONBLOCKING, _AT_SIGNAL) = range(3) def _print_node(ns, at, level, node, target_filter=None): if target_filter is not None and target_filter not in list_targets(node): return "" # Assignment. elif isinstance(node, _Assign): if at == _AT_BLOCKING: assignment = " = " elif at == _AT_NONBLOCKING: assignment = " <= " elif is_variable(node.l): assignment = " = " else: assignment = " <= " return "\t"*level + _print_expression(ns, node.l)[0] + assignment + _print_expression(ns, node.r)[0] + ";\n" # Iterable. elif isinstance(node, collections.abc.Iterable): return "".join(_print_node(ns, at, level, n, target_filter) for n in node) # If. elif isinstance(node, If): r = "\t"*level + "if (" + _print_expression(ns, node.cond)[0] + ") begin\n" r += _print_node(ns, at, level + 1, node.t, target_filter) if node.f: r += "\t"*level + "end else begin\n" r += _print_node(ns, at, level + 1, node.f, target_filter) r += "\t"*level + "end\n" return r # Case. elif isinstance(node, Case): if node.cases: r = "\t"*level + "case (" + _print_expression(ns, node.test)[0] + ")\n" css = [(k, v) for k, v in node.cases.items() if isinstance(k, Constant)] css = sorted(css, key=lambda x: x[0].value) for choice, statements in css: r += "\t"*(level + 1) + _print_expression(ns, choice)[0] + ": begin\n" r += _print_node(ns, at, level + 2, statements, target_filter) r += "\t"*(level + 1) + "end\n" if "default" in node.cases: r += "\t"*(level + 1) + "default: begin\n" r += _print_node(ns, at, level + 2, node.cases["default"], target_filter) r += "\t"*(level + 1) + "end\n" r += "\t"*level + "endcase\n" return r else: return "" # Display. elif isinstance(node, Display): s = "\"" + node.s + "\"" for arg in node.args: s += ", " if isinstance(arg, Signal): s += ns.get_name(arg) else: s += str(arg) return "\t"*level + "$display(" + s + ");\n" # Finish. elif isinstance(node, Finish): return "\t"*level + "$finish;\n" # Unknown. else: raise TypeError(f"Node of unrecognized type: {str(type(node))}") # ------------------------------------------------------------------------------------------------ # # ATTRIBUTES # # ------------------------------------------------------------------------------------------------ # def _print_attribute(attr, attr_translate): r = "" firsta = True for attr in sorted(attr, key=lambda x: ("", x) if isinstance(x, str) else x): if isinstance(attr, tuple): # platform-dependent attribute attr_name, attr_value = attr else: # translated attribute at = attr_translate.get(attr, None) if at is None: continue attr_name, attr_value = at if not firsta: r += ", " firsta = False const_expr = "\"" + attr_value + "\"" if not isinstance(attr_value, int) else str(attr_value) r += attr_name + " = " + const_expr if r: r = "(* " + r + " *)" return r # ------------------------------------------------------------------------------------------------ # # MODULE # # ------------------------------------------------------------------------------------------------ # def _list_comb_wires(f): r = set() groups = group_by_targets(f.comb) for g in groups: if len(g[1]) == 1 and isinstance(g[1][0], _Assign): r |= g[0] return r def _print_module(f, ios, name, ns, attr_translate): sigs = list_signals(f) | list_special_ios(f, ins=True, outs=True, inouts=True) special_outs = list_special_ios(f, ins=False, outs=True, inouts=True) inouts = list_special_ios(f, ins=False, outs=False, inouts=True) targets = list_targets(f) | special_outs wires = _list_comb_wires(f) | special_outs r = "module " + name + "(\n" firstp = True for sig in sorted(ios, key=lambda x: x.duid): if not firstp: r += ",\n" firstp = False attr = _print_attribute(sig.attr, attr_translate) if attr: r += "\t" + attr sig.type = "wire" sig.name = ns.get_name(sig) if sig in inouts: sig.direction = "inout" r += "\tinout wire " + _print_signal(ns, sig) elif sig in targets: sig.direction = "output" if sig in wires: r += "\toutput wire " + _print_signal(ns, sig) else: sig.type = "reg" r += "\toutput reg " + _print_signal(ns, sig) else: sig.direction = "input" r += "\tinput wire " + _print_signal(ns, sig) r += "\n);\n\n" for sig in sorted(sigs - ios, key=lambda x: x.duid): attr = _print_attribute(sig.attr, attr_translate) if attr: r += attr + " " if sig in wires: r += "wire " + _print_signal(ns, sig) + ";\n" else: r += "reg " + _print_signal(ns, sig) + " = " + _print_expression(ns, sig.reset)[0] + ";\n" r += "\n" return r # ------------------------------------------------------------------------------------------------ # # COMBINATORIAL LOGIC # # ------------------------------------------------------------------------------------------------ # def _print_combinatorial_logic_sim(f, ns): r = "" if f.comb: from collections import defaultdict target_stmt_map = defaultdict(list) for statement in flat_iteration(f.comb): targets = list_targets(statement) for t in targets: target_stmt_map[t].append(statement) groups = group_by_targets(f.comb) for n, (t, stmts) in enumerate(target_stmt_map.items()): assert isinstance(t, Signal) if len(stmts) == 1 and isinstance(stmts[0], _Assign): r += "assign " + _print_node(ns, _AT_BLOCKING, 0, stmts[0]) else: r += "always @(*) begin\n" r += "\t" + ns.get_name(t) + " <= " + _print_expression(ns, t.reset)[0] + ";\n" r += _print_node(ns, _AT_NONBLOCKING, 1, stmts, t) r += "end\n" r += "\n" return r def _print_combinatorial_logic_synth(f, ns): r = "" if f.comb: groups = group_by_targets(f.comb) for n, g in enumerate(groups): if len(g[1]) == 1 and isinstance(g[1][0], _Assign): r += "assign " + _print_node(ns, _AT_BLOCKING, 0, g[1][0]) else: r += "always @(*) begin\n" for t in g[0]: r += "\t" + ns.get_name(t) + " <= " + _print_expression(ns, t.reset)[0] + ";\n" r += _print_node(ns, _AT_NONBLOCKING, 1, g[1]) r += "end\n" r += "\n" return r # ------------------------------------------------------------------------------------------------ # # SYNCHRONOUS LOGIC # # ------------------------------------------------------------------------------------------------ # def _print_synchronous_logic(f, ns): r = "" for k, v in sorted(f.sync.items(), key=itemgetter(0)): r += "always @(posedge " + ns.get_name(f.clock_domains[k].clk) + ") begin\n" r += _print_node(ns, _AT_SIGNAL, 1, v) r += "end\n\n" return r # ------------------------------------------------------------------------------------------------ # # SPECIALS # # ------------------------------------------------------------------------------------------------ # def _print_specials(overrides, specials, ns, add_data_file, attr_translate): r = "" for special in sorted(specials, key=lambda x: x.duid): if hasattr(special, "attr"): attr = _print_attribute(special.attr, attr_translate) if attr: r += attr + " " # Replace Migen Memory's emit_verilog with our implementation. if isinstance(special, Memory): pr = memory_emit_verilog(special, ns, add_data_file) else: pr = call_special_classmethod(overrides, special, "emit_verilog", ns, add_data_file) if pr is None: raise NotImplementedError("Special " + str(special) + " failed to implement emit_verilog") r += pr return r # ------------------------------------------------------------------------------------------------ # # FHDL --> VERILOG # # ------------------------------------------------------------------------------------------------ # class DummyAttrTranslate(dict): def __getitem__(self, k): return (k, "true") def convert(f, ios=set(), name="top", special_overrides = dict(), attr_translate = DummyAttrTranslate(), regular_comb = True): # Create ConvOutput. r = ConvOutput() # Convert to FHDL's fragments is not already done. if not isinstance(f, _Fragment): f = f.get_fragment() # Verify/Create Clock Domains. for cd_name in sorted(list_clock_domains(f)): # Try to get Clock Domain. try: f.clock_domains[cd_name] # If not found, raise Error. except: msg = f"""Unresolved clock domain {cd_name}, availables:\n""" for f in f.clock_domains: msg += f"- {f.name}\n" raise Exception(msg) # Lower complex slices. f = lower_complex_slices(f) # Insert resets. insert_resets(f) # Lower basics. f = lower_basics(f) # Lower specials. f, lowered_specials = lower_specials(special_overrides, f) # Lower basics (for basics included in specials). f = lower_basics(f) # IOs backtrace/naming. for io in sorted(ios, key=lambda x: x.duid): if io.name_override is None: io_name = io.backtrace[-1][0] if io_name: io.name_override = io_name # Build NameSpace. # ---------------- ns = build_namespace( signals = ( list_signals(f) | list_special_ios(f, ins=True, outs=True, inouts=True) | ios), reserved_keywords = _ieee_1800_2017_verilog_reserved_keywords ) ns.clock_domains = f.clock_domains # Build Verilog. # -------------- verilog = generated_banner("//") # Module Top. verilog += _print_module(f, ios, name, ns, attr_translate) # Combinatorial Logic. if regular_comb: verilog += _print_combinatorial_logic_synth(f, ns) else: verilog += _print_combinatorial_logic_sim(f, ns) # Synchronous Logic. verilog += _print_synchronous_logic(f, ns) # Specials verilog += _print_specials(special_overrides, f.specials - lowered_specials, ns, r.add_data_file, attr_translate) # Module End. verilog += "endmodule\n" r.set_main_source(verilog) r.ns = ns return r
scripts/prepare_data_multi_process.py
a631381602/DianJing
232
72960
<filename>scripts/prepare_data_multi_process.py import redis import json import h5py import pickle import numpy as np import random import jieba import multiprocessing word2idx, idx2word ,allwords, corpus = None, None,{},[] DUMP_FILE = 'data/basic_data_700k_v2.pkl' check_sample_size = 10 TF_THRES = 5 DF_THRES = 2 r0 = redis.StrictRedis(host='localhost', port=6379, db=0) r1 = redis.StrictRedis(host='localhost', port=6379, db=1) id_beg = 0 id_eos = 1 id_emp = 2 id_unk = 3 r = None class Word: def __init__(self,val,tf,df): self.val = val self.tf = tf self.df = df def __repr__(self): pass def parse_all_crawled_data(keys, idx): res = [] if idx == 0: conn = r0 else: conn = r1 for data in conn.mget(keys): data = json.loads(data) key = data.get("group_id") title = data.get("title","").replace('\t',' ') abstract = data.get("abstract","").replace('\t',' ') if abstract == "": abstract = title res.append((key,title,abstract)) return res def cal_word_tf_df(corpus): words = {} title_abstract_pairs = [] for doc in corpus: title, abstract = doc[1].lower(),doc[2].lower() ts_ = list(jieba.cut(title,cut_all = False)) as_ = list(jieba.cut(abstract,cut_all = False)) title_abstract_pairs.append((ts_, as_)) # acumulate the term frequency for word in ts_ + as_: if not words.get(word): words[word] = Word(val = word,tf = 1,df = 0) else: words[word].tf += 1 # acummulate the doc frequency for word in set(ts_ + as_): words[word].df += 1 return words,title_abstract_pairs def build_idx_for_words_tf_df(chars,tf_thres = TF_THRES, df_thres = DF_THRES): start_idx = id_unk + 1 char2idx = {} idx2char = {} char2idx['<eos>'] = id_eos char2idx['<unk>'] = id_unk char2idx['<emp>'] = id_emp char2idx['<beg>'] = id_beg #filter out tf>20 and df > 10 terms chars = filter(lambda char:char.tf > tf_thres or char.df > df_thres,chars) char2idx.update(dict([(char.val,start_idx + idx) for idx,char in enumerate(chars)])) idx2char = dict([(idx,char) for char,idx in char2idx.items()]) return char2idx, idx2char def prt(label, x): print label+':', for w in x: if w == id_emp: continue print idx2word[w], print def worker(i,keys,idx): print "worker [%2d] started with keys:[%d]!"%(i,len(keys)) corpus = parse_all_crawled_data(keys, idx) print "worker [%2d] get docs :[%d]!"%(i,len(corpus)) words,sub_corpus = cal_word_tf_df(corpus) return words,sub_corpus def combine_results(res): global copurs,word2idx,idx2word words,sub_corpus = res[0], res[1] corpus.extend(sub_corpus) for word in words: if word not in allwords: allwords[word] = Word(val = word,tf = 0,df = 0) allwords[word].tf += words[word].tf allwords[word].df += words[word].df word2idx, idx2word = build_idx_for_words_tf_df(allwords.values()) def dump_all_results(): datafile = open(DUMP_FILE,'wb') titles, abstracts = [],[] for ts_,as_ in corpus: titles.append([word2idx.get(word,id_unk) for word in ts_]) abstracts.append([word2idx.get(word,id_unk) for word in as_]) pickle.dump((allwords, word2idx, idx2word, titles, abstracts),datafile,-1) def check_dump(): allwords, word2idx, idx2word, titles, abstracts = pickle.load(open(DUMP_FILE)) print "allwords size is:",len(allwords) print "word2idx size is:",len(word2idx) print "titles size is:",len(titles) for k in range(check_sample_size): k = random.randint(0,len(titles) - 1) print "[%s]th Example"%(k) prt('title',titles[k]) prt('abstract',abstracts[k]) worker_size = 10 pool = multiprocessing.Pool() for idx,conn in enumerate([r0,r1]): keys = conn.keys() batch = len(keys) / worker_size for i in range(worker_size): if i == worker_size - 1: sub_keys = keys[i * batch : ] else: sub_keys = keys[i * batch : i * batch + batch] pool.apply_async(worker,(idx * 10 + i,sub_keys,idx,),callback=combine_results) pool.close() pool.join() dump_all_results() check_dump() print "all job finished!"
pygame__examples/circle_collision.py
DazEB2/SimplePyScripts
117
72967
<reponame>DazEB2/SimplePyScripts #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import sys import random import pygame BLACK = ( 0, 0, 0) WHITE = (255, 255, 255) class Ball(pygame.sprite.Sprite): def __init__(self, size, pos=(0, 0), color=WHITE): super().__init__() self.image = pygame.Surface([size, size], pygame.SRCALPHA) pygame.draw.ellipse(self.image, color, [0, 0, size, size]) # Для правильной работы функции pygame.sprite.Group.draw self.rect = self.image.get_rect() self.rect.center = pos # Для правильной работы функции pygame.sprite.collide_circle self.radius = size // 2 pygame.init() color = BLACK screen = pygame.display.set_mode((600, 600)) clock = pygame.time.Clock() x, y = random.randrange(0, 500), random.randrange(0, 500) fnt = pygame.font.Font(None, 40) ball_1 = Ball(size=100, pos=(x, y), color=BLACK) ball_2 = Ball(size=50, color=BLACK) balls = pygame.sprite.Group() balls.add(ball_1) balls.add(ball_2) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.MOUSEMOTION: ball_2.rect.center = event.pos break screen.fill(WHITE) balls.draw(screen) if pygame.sprite.collide_circle(ball_1, ball_2): color = BLACK else: color = WHITE text = fnt.render("Collision!", True, color) screen.blit(text, (260, 20)) pygame.display.update() clock.tick(60)
clai/server/agent_executor.py
emishulovin/clai
391
72968
<reponame>emishulovin/clai # # Copyright (C) 2020 IBM. All Rights Reserved. # # See LICENSE.txt file in the root directory # of this source tree for licensing information. # from abc import ABC, abstractmethod from concurrent import futures from functools import partial from operator import is_not from typing import List, Union from clai.server.agent import Agent from clai.server.command_message import Action, State # pylint: disable=too-few-public-methods class AgentExecutor(ABC): @abstractmethod def execute_agents(self, command: State, agents: List[Agent]) -> List[Action]: """execute all agents in parallel and return the actions""" class ThreadExecutor(AgentExecutor): MAX_TIME_PLUGIN_EXECUTION = 4 NUM_WORKERS = 4 def execute_agents(self, command: State, agents: List[Agent]) -> List[Union[Action, List[Action]]]: with futures.ThreadPoolExecutor(max_workers=self.NUM_WORKERS) as executor: done, _ = futures.wait( [executor.submit(plugin_instance.execute, command) for plugin_instance in agents], timeout=self.MAX_TIME_PLUGIN_EXECUTION) if not done: return [] results = map(lambda future: future.result(), done) candidate_actions = list(filter(partial(is_not, None), results)) return candidate_actions # pylint: disable= invalid-name thread_executor = ThreadExecutor()
www/tests/test_urllib.py
raspberrypieman/brython
5,926
72984
import urllib.parse assert urllib.parse.unquote("foo%20bar") == "foo bar" import urllib.request with urllib.request.urlopen('https://httpbin.org/headers') as f: f.read() # issue 1424 text = """Hello World""" assert urllib.parse.urlencode({"text": text}) == "text=Hello%0AWorld" print('passed all tests')
tests/block/test_block_1.py
vaartis/python-lz4
193
73010
<reponame>vaartis/python-lz4 import lz4.block import pytest import sys import os def test_decompress_ui32_overflow(): data = lz4.block.compress(b'A' * 64) with pytest.raises(OverflowError): lz4.block.decompress(data[4:], uncompressed_size=((1 << 32) + 64)) def test_decompress_without_leak(): # Verify that hand-crafted packet does not leak uninitialized(?) memory. data = lz4.block.compress(b'A' * 64) message = r'^Decompressor wrote 64 bytes, but 79 bytes expected from header$' with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(b'\x4f' + data[1:]) def test_decompress_with_small_buffer(): data = lz4.block.compress(b'A' * 64, store_size=False) message = r'^Decompression failed: corrupt input or insufficient space in destination buffer. Error code: \d+$' with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(data[4:], uncompressed_size=64) with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(data, uncompressed_size=60) def test_decompress_truncated(): input_data = b"2099023098234882923049823094823094898239230982349081231290381209380981203981209381238901283098908123109238098123" * 24 compressed = lz4.block.compress(input_data) # for i in range(len(compressed)): # try: # lz4.block.decompress(compressed[:i]) # except: # print(i, sys.exc_info()[0], sys.exc_info()[1]) with pytest.raises(ValueError, match='Input source data size too small'): lz4.block.decompress(compressed[:0]) for n in [0, 1]: with pytest.raises(ValueError, match='Input source data size too small'): lz4.block.decompress(compressed[:n]) for n in [24, 25, -2, 27, 67, 85]: with pytest.raises(lz4.block.LZ4BlockError): lz4.block.decompress(compressed[:n]) def test_decompress_with_trailer(): data = b'A' * 64 comp = lz4.block.compress(data) message = r'^Decompression failed: corrupt input or insufficient space in destination buffer. Error code: \d+$' with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(comp + b'A') with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(comp + comp) with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(comp + comp[4:]) def test_unicode(): if sys.version_info < (3,): return # skip DATA = b'x' with pytest.raises(TypeError): lz4.block.compress(DATA.decode('latin1')) lz4.block.decompress(lz4.block.compress(DATA).decode('latin1')) # These next two are probably redundant given test_1 above but we'll keep them # for now def test_return_bytearray(): if sys.version_info < (3,): return # skip data = os.urandom(128 * 1024) # Read 128kb compressed = lz4.block.compress(data) b = lz4.block.compress(data, return_bytearray=True) assert isinstance(b, bytearray) assert bytes(b) == compressed b = lz4.block.decompress(compressed, return_bytearray=True) assert isinstance(b, bytearray) assert bytes(b) == data def test_memoryview(): if sys.version_info < (2, 7): return # skip data = os.urandom(128 * 1024) # Read 128kb compressed = lz4.block.compress(data) assert lz4.block.compress(memoryview(data)) == compressed assert lz4.block.decompress(memoryview(compressed)) == data def test_with_dict_none(): input_data = b"2099023098234882923049823094823094898239230982349081231290381209380981203981209381238901283098908123109238098123" * 24 for mode in ['default', 'high_compression']: assert lz4.block.decompress(lz4.block.compress( input_data, mode=mode, dict=None)) == input_data assert lz4.block.decompress(lz4.block.compress( input_data, mode=mode), dict=None) == input_data assert lz4.block.decompress(lz4.block.compress( input_data, mode=mode, dict=b'')) == input_data assert lz4.block.decompress(lz4.block.compress( input_data, mode=mode), dict=b'') == input_data assert lz4.block.decompress(lz4.block.compress( input_data, mode=mode, dict='')) == input_data assert lz4.block.decompress(lz4.block.compress( input_data, mode=mode), dict='') == input_data def test_with_dict(): input_data = b"2099023098234882923049823094823094898239230982349081231290381209380981203981209381238901283098908123109238098123" * 24 dict1 = input_data[10:30] dict2 = input_data[20:40] message = r'^Decompression failed: corrupt input or insufficient space in destination buffer. Error code: \d+$' for mode in ['default', 'high_compression']: compressed = lz4.block.compress(input_data, mode=mode, dict=dict1) with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(compressed) with pytest.raises(lz4.block.LZ4BlockError, match=message): lz4.block.decompress(compressed, dict=dict1[:2]) assert lz4.block.decompress(compressed, dict=dict2) != input_data assert lz4.block.decompress(compressed, dict=dict1) == input_data assert lz4.block.decompress(lz4.block.compress( input_data), dict=dict1) == input_data def test_known_decompress_1(): input = b'\x00\x00\x00\x00\x00' output = b'' assert lz4.block.decompress(input) == output def test_known_decompress_2(): input = b'\x01\x00\x00\x00\x10 ' output = b' ' assert lz4.block.decompress(input) == output def test_known_decompress_3(): input = b'h\x00\x00\x00\xff\x0bLorem ipsum dolor sit amet\x1a\x006P amet' output = b'Lorem ipsum dolor sit amet' * 4 assert lz4.block.decompress(input) == output def test_known_decompress_4(): input = b'\xb0\xb3\x00\x00\xff\x1fExcepteur sint occaecat cupidatat non proident.\x00' + (b'\xff' * 180) + b'\x1ePident' output = b'Excepteur sint occaecat cupidatat non proident' * 1000 assert lz4.block.decompress(input) == output
SoftLayer/fixtures/SoftLayer_Virtual_DedicatedHost.py
dvzrv/softlayer-python
126
73043
getObject = { 'id': 37401, 'memoryCapacity': 242, 'modifyDate': '', 'name': 'test-dedicated', 'diskCapacity': 1200, 'createDate': '2017-10-16T12:50:23-05:00', 'cpuCount': 56, 'accountId': 1199911 } getAvailableRouters = [ {'hostname': 'bcr01a.dal05', 'id': 12345}, {'hostname': 'bcr02a.dal05', 'id': 12346}, {'hostname': 'bcr03a.dal05', 'id': 12347}, {'hostname': 'bcr04a.dal05', 'id': 12348} ] getObjectById = { 'datacenter': { 'id': 12345, 'name': 'dal05', 'longName': 'Dallas 5' }, 'memoryCapacity': 242, 'modifyDate': '2017-11-06T11:38:20-06:00', 'name': 'test-dedicated', 'diskCapacity': 1200, 'backendRouter': { 'domain': 'test.com', 'hostname': 'bcr01a.dal05', 'id': 12345 }, 'guestCount': 1, 'cpuCount': 56, 'guests': [{ 'domain': 'test.com', 'hostname': 'test-dedicated', 'id': 12345, 'uuid': 'F9329795-4220-4B0A-B970-C86B950667FA' }], 'billingItem': { 'nextInvoiceTotalRecurringAmount': 1515.556, 'orderItem': { 'id': 12345, 'order': { 'status': 'APPROVED', 'privateCloudOrderFlag': False, 'modifyDate': '2017-11-02T11:42:50-07:00', 'orderQuoteId': '', 'userRecordId': 12345, 'createDate': '2017-11-02T11:40:56-07:00', 'impersonatingUserRecordId': '', 'orderTypeId': 7, 'presaleEventId': '', 'userRecord': { 'username': 'test-dedicated' }, 'id': 12345, 'accountId': 12345 } }, 'id': 12345, 'children': [ { 'nextInvoiceTotalRecurringAmount': 0.0, 'categoryCode': 'dedicated_host_ram' }, { 'nextInvoiceTotalRecurringAmount': 0.0, 'categoryCode': 'dedicated_host_disk' } ] }, 'id': 12345, 'createDate': '2017-11-02T11:40:56-07:00' } deleteObject = True getGuests = [{ 'id': 200, 'hostname': 'vs-test1', 'domain': 'test.sftlyr.ws', 'fullyQualifiedDomainName': 'vs-test1.test.sftlyr.ws', 'status': {'keyName': 'ACTIVE', 'name': 'Active'}, 'datacenter': {'id': 50, 'name': 'TEST00', 'description': 'Test Data Center'}, 'powerState': {'keyName': 'RUNNING', 'name': 'Running'}, 'maxCpu': 2, 'maxMemory': 1024, 'primaryIpAddress': '172.16.240.2', 'globalIdentifier': '1a2b3c-1701', 'primaryBackendIpAddress': '10.45.19.37', 'hourlyBillingFlag': False, 'billingItem': { 'id': 6327, 'recurringFee': 1.54, 'orderItem': { 'order': { 'userRecord': { 'username': 'chechu', } } } }, }, { 'id': 202, 'hostname': 'vs-test2', 'domain': 'test.sftlyr.ws', 'fullyQualifiedDomainName': 'vs-test2.test.sftlyr.ws', 'status': {'keyName': 'ACTIVE', 'name': 'Active'}, 'datacenter': {'id': 50, 'name': 'TEST00', 'description': 'Test Data Center'}, 'powerState': {'keyName': 'RUNNING', 'name': 'Running'}, 'maxCpu': 4, 'maxMemory': 4096, 'primaryIpAddress': '172.16.240.7', 'globalIdentifier': '05a8ac-6abf0', 'primaryBackendIpAddress': '10.45.19.35', 'hourlyBillingFlag': True, 'billingItem': { 'id': 6327, 'recurringFee': 1.54, 'orderItem': { 'order': { 'userRecord': { 'username': 'chechu', } } } } }]
release/stubs.min/System/Security/AccessControl_parts/FileSystemAuditRule.py
htlcnn/ironpython-stubs
182
73065
class FileSystemAuditRule(AuditRule): """ Represents an abstraction of an access control entry (ACE) that defines an audit rule for a file or directory. This class cannot be inherited. FileSystemAuditRule(identity: IdentityReference,fileSystemRights: FileSystemRights,flags: AuditFlags) FileSystemAuditRule(identity: IdentityReference,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) FileSystemAuditRule(identity: str,fileSystemRights: FileSystemRights,flags: AuditFlags) FileSystemAuditRule(identity: str,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) """ @staticmethod def __new__(self,identity,fileSystemRights,*__args): """ __new__(cls: type,identity: IdentityReference,fileSystemRights: FileSystemRights,flags: AuditFlags) __new__(cls: type,identity: IdentityReference,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) __new__(cls: type,identity: str,fileSystemRights: FileSystemRights,flags: AuditFlags) __new__(cls: type,identity: str,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) """ pass AccessMask=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the access mask for this rule. """ FileSystemRights=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the System.Security.AccessControl.FileSystemRights flags associated with the current System.Security.AccessControl.FileSystemAuditRule object. Get: FileSystemRights(self: FileSystemAuditRule) -> FileSystemRights """
core/apiv2.py
dmoney/djangopackages
383
73154
<reponame>dmoney/djangopackages from django.conf.urls import patterns from package import apiv2 as package_api from grid import views as grid_views from searchv2 import views as search_views from django.urls import path urlpatterns = patterns( "", # {% url "apiv2:category" %} path( "categories/", view=package_api.CategoryListAPIView.as_view(), name="categories" ), # {% url "apiv2:packages" %} path("packages/", view=package_api.PackageListAPIView.as_view(), name="packages"), # {% url "apiv2:packages" slug %} path( "packages/<slug:slug>/", view=package_api.PackageDetailAPIView.as_view(), name="packages", ), # {% url "apiv2:grids" %} path("grids/", view=grid_views.GridListAPIView.as_view(), name="grids"), # {% url "apiv2:grids" slug %} path( "grids/<slug:slug>/", view=grid_views.GridDetailAPIView.as_view(), name="grids" ), # {% url "apiv2:search" %} path("search/", view=search_views.SearchListAPIView.as_view(), name="search"), # {% url "apiv2:search" slug %} path( "search/<slug:slug>/", view=search_views.SearchDetailAPIView.as_view(), name="search", ), # {% url "apiv2:python3" slug %} path("python3/", view=package_api.Python3ListAPIView.as_view(), name="python3"), )
examples/python/mic.py
moredu/upm
619
73192
<gh_stars>100-1000 #!/usr/bin/env python from __future__ import print_function # Author: <NAME> <<EMAIL>> # Copyright (c) 2015 Intel Corporation. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import time from upm import pyupm_mic as upmMicrophone def main(): # Attach microphone to analog port A0 myMic = upmMicrophone.Microphone(0) threshContext = upmMicrophone.thresholdContext() threshContext.averageReading = 0 threshContext.runningAverage = 0 threshContext.averagedOver = 2 # Infinite loop, ends when script is cancelled # Repeatedly, take a sample every 2 microseconds; # find the average of 128 samples; and # print a running graph of dots as averages while(1): buffer = upmMicrophone.uint16Array(128) len = myMic.getSampledWindow(2, 128, buffer); if len: thresh = myMic.findThreshold(threshContext, 30, buffer, len) myMic.printGraph(threshContext) if(thresh): print("Threshold is ", thresh) # Delete the upmMicrophone object del myMic if __name__ == '__main__': main()
contracts/utils/sign.py
andrevmatos/microraiden
417
73206
<filename>contracts/utils/sign.py import binascii import bitcoin from ethereum import utils from secp256k1 import PrivateKey from eth_utils import encode_hex from utils.utils import sol_sha3 eth_prefix = "\x19Ethereum Signed Message:\n" def eth_privtoaddr(priv) -> str: pub = bitcoin.encode_pubkey(bitcoin.privtopub(priv), 'bin_electrum') return "0x" + binascii.hexlify(sol_sha3(pub)[12:]).decode("ascii") def eth_message_prefixed(msg: str) -> bytes: return eth_prefix + str(len(msg)) + msg def eth_message_hex(msg: str) -> bytes: msg = eth_message_prefixed(msg) msg_hex = encode_hex(msg) return sol_sha3(msg_hex) def eth_signed_typed_data_message(types, names, data) -> bytes: """ types e.g. ('address', 'uint', ('uint', 32)) names e.g. ('receiver', 'block_created', 'balance') data e.g. ('0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb', 3000, 1000) """ assert len(types) == len(data) == len(names), 'Argument length mismatch.' sign_types = [] sign_values = [] for i, type in enumerate(types): if isinstance(type, tuple): sign_types.append(type[0] + str(type[1])) sign_values.append((data[i], type[1])) else: sign_types.append(type) sign_values.append(data[i]) sign_types[i] += ' ' + names[i] return sol_sha3(sol_sha3(*sign_types), sol_sha3(*sign_values)) def sign(data: bytes, private_key_seed_ascii: str): priv = private_key_seed_ascii pk = PrivateKey(priv, raw=True) signature = pk.ecdsa_recoverable_serialize(pk.ecdsa_sign_recoverable(data, raw=True)) signature = signature[0] + utils.bytearray_to_bytestr([signature[1]]) return signature, eth_privtoaddr(priv) def check(data: bytes, pk: bytes): return sign(data, pk)
docs/examples/tools/render.py
bkvalexey/aiogram_dialog
198
73207
from aiogram.dispatcher.filters.state import StatesGroup, State from aiogram.types import Message from aiogram_dialog import Dialog, Window, DialogManager from aiogram_dialog.tools import render_transitions from aiogram_dialog.widgets.input import MessageInput from aiogram_dialog.widgets.kbd import Next, Back from aiogram_dialog.widgets.text import Const class RenderSG(StatesGroup): first = State() second = State() last = State() async def on_input(m: Message, dialog: Dialog, manager: DialogManager): manager.current_context().dialog_data["name"] = m.text await dialog.next() dialog = Dialog( Window( Const("1. First"), Next(), state=RenderSG.first, ), Window( Const("2. Second"), Back(), MessageInput(on_input), state=RenderSG.second, ), Window( Const("3. Last"), Back(), state=RenderSG.last, ), ) # this is diagram rendering render_transitions([dialog])
wafw00f/plugins/sitelock.py
84KaliPleXon3/EnableSecurity-wafw00f
3,069
73210
<filename>wafw00f/plugins/sitelock.py #!/usr/bin/env python ''' Copyright (C) 2020, WAFW00F Developers. See the LICENSE file for copying permission. ''' NAME = 'Sitelock (TrueShield)' # Well this is confusing, Sitelock itself uses Incapsula from Imperva # So the fingerprints obtained on blockpage are similar to those of Incapsula. def is_waf(self): schemes = [ self.matchContent(r"SiteLock will remember you"), self.matchContent(r"Sitelock is leader in Business Website Security Services"), self.matchContent(r"sitelock[_\-]shield([_\-]logo|[\-_]badge)?"), self.matchContent(r'SiteLock incident ID') ] if any(i for i in schemes): return True return False
bin/print_attributes.py
wolverine-radar-company/python-sgp4
237
73243
<gh_stars>100-1000 #!/usr/bin/env python from __future__ import print_function from fileinput import input from sgp4.vallado_cpp import Satrec def main(): lines = iter(input()) for line in lines: name = line line1 = next(lines) line2 = next(lines) sat = Satrec.twoline2rv(line1, line2) for name in dir(sat): if name.startswith('_') or name in ('sgp4', 'twoline2rv'): continue value = getattr(sat, name) print(name, value) print() if __name__ == '__main__': try: main() except BrokenPipeError: pass
fairmotion/tasks/motion_prediction/metrics.py
CristianNajeraL/fairmotion
419
73249
<reponame>CristianNajeraL/fairmotion<filename>fairmotion/tasks/motion_prediction/metrics.py # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np from fairmotion.ops import conversions def euler_diff(predictions, targets): """ Computes the Euler angle error as in previous work, following https://github.com/una-dinosauria/human-motion-prediction/blob/master/src/translate.py#L207 Args: predictions: np array of predicted joint angles represented as rotation matrices, i.e. in shape (..., n_joints, 3, 3) targets: np array of same shape as `predictions` Returns: The Euler angle error an np array of shape (..., ) """ assert predictions.shape[-1] == 3 and predictions.shape[-2] == 3 assert targets.shape[-1] == 3 and targets.shape[-2] == 3 n_joints = predictions.shape[-3] ori_shape = predictions.shape[:-3] preds = np.reshape(predictions, [-1, 3, 3]) targs = np.reshape(targets, [-1, 3, 3]) euler_preds = conversions.R2E(preds) # (N, 3) euler_targs = conversions.R2E(targs) # (N, 3) # reshape to (-1, n_joints*3) to be consistent with previous work euler_preds = np.reshape(euler_preds, [-1, n_joints * 3]) euler_targs = np.reshape(euler_targs, [-1, n_joints * 3]) # l2 error on euler angles idx_to_use = np.where(np.std(euler_targs, 0) > 1e-4)[0] euc_error = np.power( euler_targs[:, idx_to_use] - euler_preds[:, idx_to_use], 2, ) euc_error = np.sqrt(np.sum(euc_error, axis=1)) # (-1, ...) # reshape to original return np.reshape(euc_error, ori_shape)
tests/test_acceptance.py
schlitzered/aiotask-context
161
73264
import asyncio import random import pytest import uuid from collections import defaultdict import aiotask_context as context @asyncio.coroutine def dummy3(): yield from asyncio.sleep(random.uniform(0, 2)) return context.get("key") @asyncio.coroutine def dummy2(a, b): yield from asyncio.sleep(random.uniform(0, 2)) res = context.get("key") yield from asyncio.sleep(random.uniform(0, 2)) res1 = yield from dummy3() assert res == res1 return a, b, res @asyncio.coroutine def dummy1(n_tasks): context.set("key", str(uuid.uuid4())) tasks = [ asyncio.ensure_future( dummy2(id(context.asyncio_current_task()), n)) for n in range(n_tasks)] results = yield from asyncio.gather(*tasks) info = defaultdict(list) for taskid, n, key in results: info[key].append([taskid, n]) return info @pytest.mark.asyncio @asyncio.coroutine def test_ensure_future_concurrent(): n_tasks = 10 results = yield from asyncio.gather(*[dummy1(n_tasks=n_tasks) for x in range(1000)]) for r in results: assert len(r) == 1 for key, value in r.items(): assert len(value) == n_tasks @pytest.mark.asyncio @asyncio.coroutine def test_ensurefuture_context_propagation(): context.set("key", "value") @asyncio.coroutine def change_context(): assert context.get("key") == "value" context.set("key", "what") context.set("other", "data") yield from asyncio.ensure_future(change_context()) assert context.get("key") == "what" assert context.get("other") == "data" @pytest.mark.asyncio @asyncio.coroutine def test_waitfor_context_propagation(): context.set("key", "value") @asyncio.coroutine def change_context(): assert context.get("key") == "value" context.set("key", "what") context.set("other", "data") yield from asyncio.wait_for(change_context(), 1) assert context.get("key") == "what" assert context.get("other") == "data" @pytest.mark.asyncio @asyncio.coroutine def test_gather_context_propagation(): context.set("key", "value") @asyncio.coroutine def change_context(): assert context.get("key") == "value" context.set("key", "what") context.set("other", "data") yield from asyncio.gather(change_context()) assert context.get("key") == "what" assert context.get("other") == "data"
examples/validator_post_init.py
klauer/apischema
118
73288
<filename>examples/validator_post_init.py from dataclasses import InitVar, dataclass, field from pytest import raises from apischema import ValidationError, deserialize, validator from apischema.metadata import init_var @dataclass class Foo: bar: InitVar[int] = field(metadata=init_var(int)) @validator(bar) def validate(self, bar: int): if bar < 0: yield "negative" with raises(ValidationError) as err: deserialize(Foo, {"bar": -1}) assert err.value.errors == [{"loc": ["bar"], "msg": "negative"}]
specs/matchers/built_in/be_spec.py
danibaena/expects
189
73292
# -*- coding: utf-8 -* from expects import * from expects.testing import failure with describe('be'): with it('should pass if object is expected'): value = 1 expect(value).to(be(value)) with it('should fail if object is not expected'): with failure('expected: 1 to be 2'): expect(1).to(be(2)) with context('#negated'): with it('should pass if object is not expected'): expect(1).not_to(be(2)) with it('should fail if object is expected'): value = 1 with failure('expected: 1 not to be 1'): expect(value).not_to(be(value))
misc/dev_blog/SOTA/dataset_tools/xml_to_kitti.py
NVIDIA-AI-IOT/deepstream_tlt_apps
146
73301
<reponame>NVIDIA-AI-IOT/deepstream_tlt_apps ################################################################################ # The MIT License (MIT) # # Copyright (c) 2019-2021 NVIDIA CORPORATION # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ################################################################################ import argparse import os import xml.etree.ElementTree as ET def parse_args(args=None): parser = argparse.ArgumentParser('Converting xml labels to KITTI format.') parser.add_argument('-i', '--input_label_dir', type=str, required=True, help='directory of the input xml labels') parser.add_argument('-o', '--output_label_dir', type=str, required=True, help='directory of the output KITTI labels') parser.add_argument('-d', '--encode_difficult', action="store_true", required=False, help='Whether or not to encode the difficult object into KITTI labels') args, _ = parser.parse_known_args(args) return args def xml_to_kitti(input_dir, output_dir, encode_difficult, classes): if not os.path.exists(input_dir): raise ValueError('input_dir not found.') if not os.path.exists(output_dir): raise ValueError('output_dir not found.') for annot in os.listdir(input_dir): et = ET.parse(os.path.join(input_dir, annot)) element = et.getroot() element_objs = element.findall('object') element_width = int(element.find('size').find('width').text) element_height = int(element.find('size').find('height').text) element_depth = int(element.find('size').find('depth').text) assert element_depth == 3 assert len(element_objs) > 0, 'No objects in {}.'.format(os.path.join(input_dir, annot)) lines = [] for element_obj in element_objs: difficulty = int(element_obj.find('difficult').text) == 1 if difficulty and encode_difficult: dif = '1' else: dif = '0' line = '' class_name = element_obj.find('name').text assert class_name in classes line += class_name line += ' ' line += '0 {} 0 '.format(dif) obj_bbox = element_obj.find('bndbox') x1 = int(round(float(obj_bbox.find('xmin').text))) y1 = int(round(float(obj_bbox.find('ymin').text))) x2 = int(round(float(obj_bbox.find('xmax').text))) y2 = int(round(float(obj_bbox.find('ymax').text))) line += str(x1) line += ' ' line += str(y1) line += ' ' line += str(x2) line += ' ' line += str(y2) line += ' ' line += '0 0 0 0 0 0 0\n' lines.append(line) with open(os.path.join(output_dir, os.path.basename(annot).split('.')[0]+'.txt'), 'w') as f: f.writelines(lines) if __name__ =='__main__': classes = ['horse', "pottedplant", "train", "person", "bird", "car", "chair", "tvmonitor", "bus", "sofa", "dog", "motorbike", "bicycle", "sheep", "boat", "cat", "bottle", "diningtable", "cow", "aeroplane", "background", ] args = parse_args() xml_to_kitti(args.input_label_dir, args.output_label_dir, args.encode_difficult, classes)
tests/test_middleware/test_pure_asgi_middleware.py
adamantike/starlette-context
242
73327
<reponame>adamantike/starlette-context from starlette import status from starlette.applications import Starlette from starlette.middleware import Middleware from starlette.requests import Request from starlette.responses import JSONResponse from starlette.testclient import TestClient from starlette_context import context, plugins from starlette_context.header_keys import HeaderKeys from starlette_context.middleware import RawContextMiddleware plugins_to_use = ( plugins.CorrelationIdPlugin(), plugins.RequestIdPlugin(), plugins.UserAgentPlugin(), plugins.ForwardedForPlugin(), plugins.DateHeaderPlugin(), ) middleware = [ Middleware( RawContextMiddleware, plugins=plugins_to_use, ) ] app = Starlette(middleware=middleware) client = TestClient(app) @app.route("/") async def index(request: Request) -> JSONResponse: return JSONResponse(content=context.data) def test_valid_request(): resp = client.get("/") assert resp.status_code == status.HTTP_200_OK for plugin in plugins_to_use: assert plugin.key in resp.text assert HeaderKeys.correlation_id in resp.headers assert HeaderKeys.request_id in resp.headers
experiments/2013-10-01-pure-lin.py
jaesikchoi/gpss-research
151
73334
Experiment(description='Testing the pure linear kernel', data_dir='../data/tsdlr/', max_depth=10, random_order=False, k=1, debug=False, local_computation=False, n_rand=9, sd=2, jitter_sd=0.1, max_jobs=500, verbose=False, make_predictions=False, skip_complete=True, results_dir='../results/2013-10-01-pure-lin/', iters=250, base_kernels='SE,PureLin,Const,Exp,Fourier,Noise', zero_mean=True, random_seed=1, period_heuristic=5, subset=True, subset_size=250, full_iters=10, bundle_size=5, additive_form=True, model_noise=True, no_noise=True)
vespene/common/logger.py
Conan-Kudo/vespene
680
73360
# Copyright 2018, <NAME> LLC # License: Apache License Version 2.0 # ------------------------------------------------------------------------- # logger.py - basic wrapper around Python standard logging just so in # case we need to change this behavior it is all in one place # -------------------------------------------------------------------------- import logging class Logger(object): __instance = None def __init__(self): pass def debug(self, msg): self.logger.debug(msg) def info(self, msg): self.logger.info(msg) def warn(self, msg): self.logger.warn(msg) def error(self, msg): self.logger.error(msg) def __new__(cls): if Logger.__instance is None: Logger.__instance = object.__new__(cls) logger = logging.getLogger('vespene') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) Logger.__instance.logger = logger return Logger.__instance
hamiltorch/__init__.py
kakodkar/hamiltorch
237
73366
<reponame>kakodkar/hamiltorch<gh_stars>100-1000 __version__ = '0.4.0.dev1' from .samplers import sample, sample_model, predict_model, sample_split_model, Sampler, Integrator, Metric from .util import set_random_seed
Visualization/random_color_visualizer.py
monocilindro/qgis-earthengine-examples
646
73373
# GitHub URL: https://github.com/giswqs/qgis-earthengine-examples/tree/master/Visualization/random_color_visualizer.py import ee from ee_plugin import Map dataset = ee.Image('USGS/NLCD/NLCD2016') landcover = ee.Image(dataset.select('landcover')) Map.setCenter(-95, 38, 5) Map.addLayer(landcover.randomVisualizer(), {}, 'Landcover')
recipes/libmikmod/all/conanfile.py
rockandsalt/conan-center-index
562
73397
from conans import ConanFile, CMake, tools import os class LibmikmodConan(ConanFile): name = "libmikmod" description = "Module player and library supporting many formats, including mod, s3m, it, and xm." topics = ("libmikmod", "audio") url = "https://github.com/conan-io/conan-center-index" homepage = "http://mikmod.sourceforge.net" license = "LGPL-2.1-or-later" exports_sources = ["patches/*", "CMakeLists.txt"] generators = "cmake" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "with_dsound": [True, False], "with_mmsound": [True, False], "with_alsa": [True, False], "with_oss": [True, False], "with_pulse": [True, False], "with_coreaudio": [True, False] } default_options = { "shared": False, "fPIC": True, "with_dsound": True, "with_mmsound": True, "with_alsa": True, "with_oss": True, "with_pulse": True, "with_coreaudio": True } _source_subfolder = "source_subfolder" _build_subfolder = "build_subfolder" _cmake = None def config_options(self): if self.settings.os == "Windows": del self.options.fPIC else: del self.options.with_dsound del self.options.with_mmsound if self.settings.os != "Linux": del self.options.with_alsa # Non-Apple Unices if self.settings.os not in ["Linux", "FreeBSD"]: del self.options.with_oss del self.options.with_pulse # Apple if tools.is_apple_os(self.settings.os): del self.options.with_coreaudio def configure(self): if self.options.shared: del self.options.fPIC del self.settings.compiler.libcxx del self.settings.compiler.cppstd def requirements(self): if self.settings.os == "Linux": if self.options.with_alsa: self.requires("libalsa/1.2.4") if self.options.with_pulse: self.requires("pulseaudio/13.0") def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = self.name + "-" + self.version os.rename(extracted_dir, self._source_subfolder) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self, set_cmake_flags=True) self._cmake.definitions["ENABLE_STATIC"] = not self.options.shared self._cmake.definitions["ENABLE_DOC"] = False self._cmake.definitions["ENABLE_DSOUND"] = self.options.get_safe("with_dsound", False) self._cmake.definitions["ENABLE_MMSOUND"] = self.options.get_safe("with_mmsound", False) self._cmake.definitions["ENABLE_ALSA"] = self.options.get_safe("with_alsa", False) self._cmake.definitions["ENABLE_OSS"] = self.options.get_safe("with_oss", False) self._cmake.definitions["ENABLE_PULSE"] = self.options.get_safe("with_pulse", False) self._cmake.definitions["ENABLE_COREAUDIO"] = self.options.get_safe("with_coreaudio", False) self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) tools.replace_in_file(os.path.join(self._source_subfolder, "CMakeLists.txt"), "CMAKE_SOURCE_DIR", "PROJECT_SOURCE_DIR") # Ensure missing dependencies yields errors tools.replace_in_file(os.path.join(self._source_subfolder, "CMakeLists.txt"), "MESSAGE(WARNING", "MESSAGE(FATAL_ERROR") tools.replace_in_file(os.path.join(self._source_subfolder, "drivers", "drv_alsa.c"), "alsa_pcm_close(pcm_h);", "if (pcm_h) alsa_pcm_close(pcm_h);") cmake = self._configure_cmake() cmake.build() def package(self): self.copy(pattern="COPYING.LESSER", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() os.remove(os.path.join(self.package_folder, "bin", "libmikmod-config")) if not self.options.shared: tools.rmdir(os.path.join(self.package_folder, "bin")) tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) def package_info(self): self.cpp_info.libs = tools.collect_libs(self) if not self.options.shared: self.cpp_info.defines = ["MIKMOD_STATIC"] self.cpp_info.filenames["pkg_config"] = "libmikmod" if self.options.get_safe("with_dsound"): self.cpp_info.system_libs.append("dsound") if self.options.get_safe("with_mmsound"): self.cpp_info.system_libs.append("winmm") if self.options.get_safe("with_coreaudio"): self.cpp_info.frameworks.append("CoreAudio")
lib/python2.7/site-packages/stevedore/tests/test_sphinxext.py
nishaero/wifi-userseg-ryu
1,553
73398
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for the sphinx extension """ from __future__ import unicode_literals from stevedore import extension from stevedore import sphinxext from stevedore.tests import utils import mock import pkg_resources def _make_ext(name, docstring): def inner(): pass inner.__doc__ = docstring m1 = mock.Mock(spec=pkg_resources.EntryPoint) m1.module_name = '%s_module' % name s = mock.Mock(return_value='ENTRY_POINT(%s)' % name) m1.__str__ = s return extension.Extension(name, m1, inner, None) class TestSphinxExt(utils.TestCase): def setUp(self): super(TestSphinxExt, self).setUp() self.exts = [ _make_ext('test1', 'One-line docstring'), _make_ext('test2', 'Multi-line docstring\n\nAnother para'), ] self.em = extension.ExtensionManager.make_test_instance(self.exts) def test_simple_list(self): results = list(sphinxext._simple_list(self.em)) self.assertEqual( [ ('* test1 -- One-line docstring', 'test1_module'), ('* test2 -- Multi-line docstring', 'test2_module'), ], results, ) def test_simple_list_no_docstring(self): ext = [_make_ext('nodoc', None)] em = extension.ExtensionManager.make_test_instance(ext) results = list(sphinxext._simple_list(em)) self.assertEqual( [ ('* nodoc -- ', 'nodoc_module'), ], results, ) def test_detailed_list(self): results = list(sphinxext._detailed_list(self.em)) self.assertEqual( [ ('test1', 'test1_module'), ('-----', 'test1_module'), ('\n', 'test1_module'), ('One-line docstring', 'test1_module'), ('\n', 'test1_module'), ('test2', 'test2_module'), ('-----', 'test2_module'), ('\n', 'test2_module'), ('Multi-line docstring\n\nAnother para', 'test2_module'), ('\n', 'test2_module'), ], results, ) def test_detailed_list_format(self): results = list(sphinxext._detailed_list(self.em, over='+', under='+')) self.assertEqual( [ ('+++++', 'test1_module'), ('test1', 'test1_module'), ('+++++', 'test1_module'), ('\n', 'test1_module'), ('One-line docstring', 'test1_module'), ('\n', 'test1_module'), ('+++++', 'test2_module'), ('test2', 'test2_module'), ('+++++', 'test2_module'), ('\n', 'test2_module'), ('Multi-line docstring\n\nAnother para', 'test2_module'), ('\n', 'test2_module'), ], results, ) def test_detailed_list_no_docstring(self): ext = [_make_ext('nodoc', None)] em = extension.ExtensionManager.make_test_instance(ext) results = list(sphinxext._detailed_list(em)) self.assertEqual( [ ('nodoc', 'nodoc_module'), ('-----', 'nodoc_module'), ('\n', 'nodoc_module'), ('.. warning:: No documentation found in ENTRY_POINT(nodoc)', 'nodoc_module'), ('\n', 'nodoc_module'), ], results, )
slack_sdk/socket_mode/async_client.py
ggml1/python-slack-sdk
160
73430
<filename>slack_sdk/socket_mode/async_client.py import asyncio import json import logging from asyncio import Queue from asyncio.futures import Future from logging import Logger from typing import Dict, Union, Any, Optional, List, Callable, Awaitable from slack_sdk.errors import SlackApiError from slack_sdk.socket_mode.async_listeners import ( AsyncWebSocketMessageListener, AsyncSocketModeRequestListener, ) from slack_sdk.socket_mode.request import SocketModeRequest from slack_sdk.socket_mode.response import SocketModeResponse from slack_sdk.web.async_client import AsyncWebClient class AsyncBaseSocketModeClient: logger: Logger web_client: AsyncWebClient app_token: str wss_uri: str auto_reconnect_enabled: bool closed: bool message_queue: Queue message_listeners: List[ Union[ AsyncWebSocketMessageListener, Callable[ ["AsyncBaseSocketModeClient", dict, Optional[str]], Awaitable[None] ], ] ] socket_mode_request_listeners: List[ Union[ AsyncSocketModeRequestListener, Callable[["AsyncBaseSocketModeClient", SocketModeRequest], Awaitable[None]], ] ] async def issue_new_wss_url(self) -> str: try: response = await self.web_client.apps_connections_open( app_token=self.app_token ) return response["url"] except SlackApiError as e: if e.response["error"] == "ratelimited": # NOTE: ratelimited errors rarely occur with this endpoint delay = int(e.response.headers.get("Retry-After", "30")) # Tier1 self.logger.info(f"Rate limited. Retrying in {delay} seconds...") await asyncio.sleep(delay) # Retry to issue a new WSS URL return await self.issue_new_wss_url() else: # other errors self.logger.error(f"Failed to retrieve WSS URL: {e}") raise e async def connect(self): raise NotImplementedError() async def disconnect(self): raise NotImplementedError() async def connect_to_new_endpoint(self): self.wss_uri = await self.issue_new_wss_url() await self.connect() async def close(self): self.closed = True await self.disconnect() async def send_message(self, message: str): raise NotImplementedError() async def send_socket_mode_response( self, response: Union[Dict[str, Any], SocketModeResponse] ): if isinstance(response, SocketModeResponse): await self.send_message(json.dumps(response.to_dict())) else: await self.send_message(json.dumps(response)) async def enqueue_message(self, message: str): await self.message_queue.put(message) if self.logger.level <= logging.DEBUG: queue_size = self.message_queue.qsize() self.logger.debug( f"A new message enqueued (current queue size: {queue_size})" ) async def process_messages(self): while not self.closed: try: await self.process_message() except Exception as e: self.logger.exception(f"Failed to process a message: {e}") async def process_message(self): raw_message = await self.message_queue.get() if raw_message is not None: message: dict = {} if raw_message.startswith("{"): message = json.loads(raw_message) _: Future[None] = asyncio.ensure_future( self.run_message_listeners(message, raw_message) ) async def run_message_listeners(self, message: dict, raw_message: str) -> None: type, envelope_id = message.get("type"), message.get("envelope_id") if self.logger.level <= logging.DEBUG: self.logger.debug( f"Message processing started (type: {type}, envelope_id: {envelope_id})" ) try: if message.get("type") == "disconnect": await self.connect_to_new_endpoint() return for listener in self.message_listeners: try: await listener(self, message, raw_message) except Exception as e: self.logger.exception(f"Failed to run a message listener: {e}") if len(self.socket_mode_request_listeners) > 0: request = SocketModeRequest.from_dict(message) if request is not None: for listener in self.socket_mode_request_listeners: try: await listener(self, request) except Exception as e: self.logger.exception( f"Failed to run a request listener: {e}" ) except Exception as e: self.logger.exception(f"Failed to run message listeners: {e}") finally: if self.logger.level <= logging.DEBUG: self.logger.debug( f"Message processing completed (type: {type}, envelope_id: {envelope_id})" )
conans/test/unittests/model/editable_layout/load_data_test.py
matthiasng/conan
6,205
73431
<reponame>matthiasng/conan<filename>conans/test/unittests/model/editable_layout/load_data_test.py<gh_stars>1000+ # coding=utf-8 import os import shutil import textwrap import unittest import six from conans.errors import ConanException from conans.model.editable_layout import EditableLayout from conans.test.utils.test_files import temp_folder from conans.util.files import save class ParseTest(unittest.TestCase): def setUp(self): self.test_folder = temp_folder() self.layout_filepath = os.path.join(self.test_folder, "layout") self.editable_cpp_info = EditableLayout(self.layout_filepath) def tearDown(self): shutil.rmtree(self.test_folder) def test_field_error(self): content = textwrap.dedent(""" [includedrs] something """) save(self.layout_filepath, content) with six.assertRaisesRegex(self, ConanException, "Wrong cpp_info field 'includedrs' in layout"): _ = self.editable_cpp_info._load_data(ref=None, settings=None, options=None) content = textwrap.dedent(""" [*:includedrs] something """) save(self.layout_filepath, content) with six.assertRaisesRegex(self, ConanException, "Wrong cpp_info field 'includedrs' in layout"): _ = self.editable_cpp_info._load_data(ref=None, settings=None, options=None) content = textwrap.dedent(""" [*:includedirs] something """) save(self.layout_filepath, content) with six.assertRaisesRegex(self, ConanException, "Wrong package reference '\*' in layout file"): _ = self.editable_cpp_info._load_data(ref=None, settings=None, options=None) content = textwrap.dedent(""" [pkg/version@user/channel:revision:includedirs] something """) save(self.layout_filepath, content) with six.assertRaisesRegex(self, ConanException, "Wrong package reference " "'pkg/version@user/channel:revision' in layout file"): _ = self.editable_cpp_info._load_data(ref=None, settings=None, options=None)
h5Nastran/h5Nastran/post_process/result_readers/op2/odict_keys.py
ACea15/pyNastran
293
73437
from collections import OrderedDict class MyObj(object): b = 1 a = 2 def __init__(self): object.__setattr__(self, '_attrs', OrderedDict()) self.c = 1 self.d = 2 def __setattr__(self, key, value): assert key != '_attrs' self._attrs[key] = value def __getattr__(self, item): try: return self._attrs[item] except KeyError: return self.__class__.__dict__[item] @property def __dict__(self): return self._attrs a = MyObj() a.e = 3 print(a.__dict__) print(MyObj.__dict__) print(a.a)
c4_troubleshooting-debugging-techniques/4_managing-resources/graded-assessment/start_date_report.py
chaiyeow/google-it-automation
220
73449
#!/usr/bin/env python3 import csv import datetime import requests # def get_file_lines(url): def download_file(url): """Returns the lines contained in the file at the given URL""" # Download the file over the internet response = requests.get(url, stream=True) lines = [] for line in response.iter_lines(): lines.append(line.decode("UTF-8")) return lines def get_start_date(): """Interactively get the start date to query for.""" print() print('Getting the first start date to query for.') print() print('The date must be greater than Jan 1st, 2018') year = int(input('Enter a value for the year: ')) month = int(input('Enter a value for the month: ')) day = int(input('Enter a value for the day: ')) print() return datetime.datetime(year, month, day) def get_same_or_newer(data, start_date): """Returns the employees that started on the given date, or the closest one.""" # We want all employees that started at the same date or the closest newer # date. To calculate that, we go through all the data and find the # employees that started on the smallest date that's equal or bigger than # the given start date. min_date = datetime.datetime.today() min_date_employees = [] for row in data: row_date = datetime.datetime.strptime(row[3], '%Y-%m-%d') # If this date is smaller than the one we're looking for, # we skip this row if row_date < start_date: continue # If this date is smaller than the current minimum, # we pick it as the new minimum, resetting the list of # employees at the minimal date. if row_date < min_date: min_date = row_date min_date_employees = [] # If this date is the same as the current minimum, # we add the employee in this row to the list of # employees at the minimal date. if row_date == min_date: min_date_employees.append("{} {}".format(row[0], row[1])) return min_date, min_date_employees def list_newer(data, start_date): while start_date < datetime.datetime.today(): start_date, employees = get_same_or_newer(data, start_date) print("Started on {}: {}".format(start_date.strftime("%b %d, %Y"), employees)) # Now move the date to the next one start_date = start_date + datetime.timedelta(days=1) def main(): start_date = get_start_date() FILE_URL = "https://storage.googleapis.com/gwg-hol-assets/gic215/employees-with-date.csv" data = download_file(FILE_URL) # Hint 1. Download the file only once from the URL. reader = csv.reader(data[1:]) data_list = list(reader) data_list.sort(key = lambda x: x[3]) # Hint 2. To sort the data by start_date and then go date by date. list_newer(data_list, start_date) if __name__ == "__main__": main() """ # Testing in my local machine, many improvement can be more applied Before: 1st attempt | 2nd attempt | 3rd attempt real 0m46,007s | 1m1,561s | 0m53,076s user 0m7,663s | 0m9,278s | 0m9,166s sys 0m0,362s | 0m0,426s | 0m0,405s After: 1st attempt | 2nd attempt | 3rd attempt real 0m1,770s | 0m3,155s | 0m3,642s user 0m1,216s | 0m0,311s | 0m0,284s sys 0m0,045s | 0m0,038s | 0m0,045s """
plenum/test/input_validation/test_message_factory.py
andkononykhin/plenum
148
73456
import pytest from plenum.common.exceptions import MissingNodeOp, InvalidNodeOp from plenum.common.messages.fields import NonNegativeNumberField, AnyValueField, HexField, BooleanField, Base58Field from plenum.common.messages.message_base import MessageBase from plenum.common.messages.node_message_factory import MessageFactory, NodeMessageFactory from plenum.test.input_validation.stub_messages import Message1, Message2, Message3, Message4 @pytest.fixture def factory(): return MessageFactory('plenum.test.input_validation.stub_messages') def test_message_factory_module_is_not_found_fails(): with pytest.raises(ImportError): MessageFactory('foo.bar') def test_message_factory_classes_not_found_fails(): with pytest.raises(ValueError) as excinfo: # TODO assumes that __init__ won't import any # MessageBase child classes MessageFactory('plenum.test.input_validation.__init__') assert "no messages classes found" in str(excinfo.value) def test_message_factory_missed_op_fails(factory): msg = {'a': 0, 'b': 'bar'} with pytest.raises(MissingNodeOp): factory.get_instance(**msg) def test_message_factory_invalid_op_fails(factory): msg = {'op': 'unknown_op', 'a': 0, 'b': 'bar'} with pytest.raises(InvalidNodeOp): factory.get_instance(**msg) def test_message_factory_stub_module_is_loaded(factory): msg = {'op': 'Message1', 'a': 0, 'b': 'bar'} assert isinstance(factory.get_instance(**msg), Message1) def test_message_factory_set_non_message_class_fails(factory): class NonMessageClass: pass with pytest.raises(ValueError): factory.set_message_class(NonMessageClass) def test_message_factory_set_message_class_can_add_message_class(factory): class ANewMessageClass(MessageBase): typename = 'NewMessage' schema = ( ('a', NonNegativeNumberField()), ) factory.set_message_class(ANewMessageClass) msg = {'op': 'NewMessage', 'a': 0} assert isinstance(factory.get_instance(**msg), ANewMessageClass) def test_node_message_factory_module_is_loaded(): NodeMessageFactory() def test_message_factory_can_replace_field(factory): # check precondition msg = {'op': 'Message2', 'a': 0, 'b': 'foo'} assert isinstance(factory.get_instance(**msg), Message2) factory.update_schemas_by_field_type(AnyValueField, NonNegativeNumberField) with pytest.raises(TypeError) as exc_info: factory.get_instance(**msg) exc_info.match("expected types 'int', got 'str'") def test_message_factory_can_replace_iterable_field(factory): # check precondition msg = {'op': 'Message3', 'a': 0, 'b': [True, False]} assert isinstance(factory.get_instance(**msg), Message3) factory.update_schemas_by_field_type(BooleanField, Base58Field) with pytest.raises(TypeError) as exc_info: factory.get_instance(**msg) exc_info.match("expected types 'str', got 'bool'") def test_message_factory_can_replace_map_field(factory): # check precondition msg = {'op': 'Message4', 'a': 0, 'b': {'123': 'abc'}} assert isinstance(factory.get_instance(**msg), Message4) factory.update_schemas_by_field_type(HexField, NonNegativeNumberField) with pytest.raises(TypeError) as exc_info: factory.get_instance(**msg) exc_info.match("expected types 'int', got 'str'")
paperbroker/adapters/accounts/LocalFileSystemAccountAdapter.py
yutiansut/paperbroker
227
73462
from ...accounts import Account, account_factory import tempfile import os import pickle from os import listdir from os.path import isfile, join class LocalFileSystemAccountAdapter(): def __init__(self, root=None): if root is None: root = tempfile.gettempdir() if not os.path.exists(root+"/accounts/"): os.makedirs(root+"/accounts/") self.root = root def get_account(self, account_id: str, current_date=None): with open(self.root + "/accounts/" + account_id + ".pickle", 'rb') as f: return pickle.load(file=f) def has_account(self, account_id: str, current_date=None): try: pickle.load(file=self.root + "/accounts/" + account_id + ".pickle") return True except: return False def put_account(self, account: Account, current_date=None): with open(self.root + "/accounts/" + account.account_id + ".pickle", 'wb') as f: pickle.dump(account, file=f) def get_account_ids(self, current_date=None): mypath = self.root + "/accounts/" return [f.split(".")[0] for f in listdir(mypath) if isfile(join(mypath, f))] def delete_account(self, account, current_date=None): try: os.remove(self.root + "/accounts/" + account_factory(account).account_id + ".pickle") except: pass def delete_accounts(self, accounts, current_date=None): [self.delete_account(account) for account in accounts]
setup.py
dexy/dexy
136
73471
from setuptools import setup, find_packages from dexy.version import DEXY_VERSION import platform is_windows = platform.system() == 'Windows' if is_windows: os_specific_requires = [] else: os_specific_requires = ['pexpect'] setup( author='<NAME>', author_email='<EMAIL>', classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Financial and Insurance Industry", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Topic :: Documentation", "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Code Generators", "Topic :: Software Development :: Documentation", "Topic :: Text Processing", "Topic :: Text Processing :: Markup :: HTML", "Topic :: Text Processing :: Markup :: LaTeX" ], description='Document Automation', ### "entry-points" entry_points = { 'console_scripts' : [ 'dexy = dexy.commands:run' ], 'pygments.lexers' : [ 'rst+django = dexy.filters.utils:RstDjangoLexer' ] }, ### @end include_package_data = True, install_requires = os_specific_requires + [ # for internal dexy use or used in many common plugins 'BeautifulSoup4', 'PyYAML', 'cashew>=0.4.1', 'chardet', 'inflection>=0.2.0', 'jinja2', 'ply>=3.4', 'pygments', 'python3-modargs', 'requests>=0.10.6', # for convenience of running additional filters 'Markdown', 'docutils' ], name='dexy', packages=find_packages(), url='http://dexy.it', version=DEXY_VERSION )
trafaret/dataerror.py
jona-sassenhagen/trafaret
259
73485
<filename>trafaret/dataerror.py from .lib import _empty, STR_TYPES class DataError(ValueError): """ Error with data preserve error can be a message or None if error raised in childs data can be anything """ __slots__ = ['error', 'name', 'value', 'trafaret', 'code'] error_code = 'unknown' def __init__(self, error=None, name=None, value=_empty, trafaret=None, code=None): """ :attribute error: can be a string or a dict[string, dataerror] :attribute name: :attribute value: validated value that leads to this error :attribute trafaret: trafaret raised error :attribute code: code for error, like `value_is_too_big` """ if not isinstance(error, STR_TYPES + (dict, )): raise RuntimeError('Only str or dict is supported, got %r' % error) self.error = error self.name = name self.value = value self.trafaret = trafaret self.code = code or self.__class__.error_code # if self.code == 'unknown': # raise RuntimeError() def __str__(self, value=False): if value and self.value != _empty: return '%s, got %r' % (str(self.error), self.value) else: return str(self.error) def __repr__(self): return 'DataError(%r)' % str(self) def to_struct(self, value=False): if isinstance(self.error, dict): return { 'code': self.code, 'nested': dict( (k, v.to_struct(value=value) if isinstance(v, DataError) else v) for k, v in self.error.items() ), } return { 'code': self.code, 'message': self.__str__(value=value), } def as_dict(self, value=False): """Use `to_struct` if need consistency""" if not isinstance(self.error, dict): return self.__str__(value=value) return dict( (k, v.as_dict(value=value) if isinstance(v, DataError) else v) for k, v in self.error.items() )
train_sppe/src/predict/annot/coco_minival.py
tech-life-hacking/AlphaPose
153
73535
<reponame>tech-life-hacking/AlphaPose<filename>train_sppe/src/predict/annot/coco_minival.py # ----------------------------------------------------- # Copyright (c) Shanghai Jiao Tong University. All rights reserved. # Written by <NAME> (<EMAIL>) # ----------------------------------------------------- import os import h5py import torch import torch.utils.data as data from utils.img import (load_image, cropBox) from opt import opt class Mscoco_minival(data.Dataset): def __init__(self, annoSet='coco-minival-images-newnms/test-dev'): self.img_folder = '../data/coco/images' # root image folders self.annot = dict() # Read in annotation information from hdf5 file tags = ['xmin', 'ymin', 'xmax', 'ymax'] with h5py.File('./predict/annot/' + annoSet + '.h5', 'r') as a: for tag in tags: self.annot[tag] = a[tag][:] # Load in image file names with open('./predict/annot/' + annoSet + '_images.txt', 'r') as f: self.images = f.readlines() self.images = list(map(lambda x: x.strip('\n'), self.images)) assert len(self.images) == self.annot['xmin'].shape[0] self.size = len(self.images) self.flipRef = ((2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (12, 13), (14, 15), (16, 17)) self.year = 2017 def __getitem__(self, index): if self.year == 2014: imgname = self.images[index] else: imgname = self.images[index].split('_')[2] img_path = os.path.join(self.img_folder, imgname) img = load_image(img_path) ori_img = img.clone() img[0].add_(-0.406) img[1].add_(-0.457) img[2].add_(-0.480) imght = img.size(1) imgwidth = img.size(2) upLeft = torch.Tensor( (float(self.annot['xmin'][index]), float(self.annot['ymin'][index]))) bottomRight = torch.Tensor( (float(self.annot['xmax'][index]), float(self.annot['ymax'][index]))) ht = bottomRight[1] - upLeft[1] width = bottomRight[0] - upLeft[0] if width > 100: scaleRate = 0.2 else: scaleRate = 0.3 upLeft[0] = max(0, upLeft[0] - width * scaleRate / 2) upLeft[1] = max(0, upLeft[1] - ht * scaleRate / 2) bottomRight[0] = max( min(imgwidth - 1, bottomRight[0] + width * scaleRate / 2), upLeft[0] + 5) bottomRight[1] = max( min(imght - 1, bottomRight[1] + ht * scaleRate / 2), upLeft[1] + 5) inp = cropBox(img, upLeft, bottomRight, opt.inputResH, opt.inputResW) ori_inp = cropBox(ori_img, upLeft, bottomRight, opt.inputResH, opt.inputResW) metaData = ( upLeft, bottomRight, ori_inp ) box = torch.zeros(4) box[0] = upLeft[0] box[1] = upLeft[1] box[2] = bottomRight[0] box[3] = bottomRight[1] return inp, box, imgname, metaData def __len__(self): return self.size
python/ovs/unixctl/__init__.py
noobcoderT/SDN-openvswitch-2.3.1
269
73552
<filename>python/ovs/unixctl/__init__.py # Copyright (c) 2011, 2012 Nicira, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import types import ovs.util commands = {} strtypes = types.StringTypes class _UnixctlCommand(object): def __init__(self, usage, min_args, max_args, callback, aux): self.usage = usage self.min_args = min_args self.max_args = max_args self.callback = callback self.aux = aux def _unixctl_help(conn, unused_argv, unused_aux): reply = "The available commands are:\n" command_names = sorted(commands.keys()) for name in command_names: reply += " " usage = commands[name].usage if usage: reply += "%-23s %s" % (name, usage) else: reply += name reply += "\n" conn.reply(reply) def command_register(name, usage, min_args, max_args, callback, aux): """ Registers a command with the given 'name' to be exposed by the UnixctlServer. 'usage' describes the arguments to the command; it is used only for presentation to the user in "help" output. 'callback' is called when the command is received. It is passed a UnixctlConnection object, the list of arguments as unicode strings, and 'aux'. Normally 'callback' should reply by calling UnixctlConnection.reply() or UnixctlConnection.reply_error() before it returns, but if the command cannot be handled immediately, then it can defer the reply until later. A given connection can only process a single request at a time, so a reply must be made eventually to avoid blocking that connection.""" assert isinstance(name, strtypes) assert isinstance(usage, strtypes) assert isinstance(min_args, int) assert isinstance(max_args, int) assert isinstance(callback, types.FunctionType) if name not in commands: commands[name] = _UnixctlCommand(usage, min_args, max_args, callback, aux) def socket_name_from_target(target): assert isinstance(target, strtypes) if target.startswith("/"): return 0, target pidfile_name = "%s/%s.pid" % (ovs.dirs.RUNDIR, target) pid = ovs.daemon.read_pidfile(pidfile_name) if pid < 0: return -pid, "cannot read pidfile \"%s\"" % pidfile_name return 0, "%s/%s.%d.ctl" % (ovs.dirs.RUNDIR, target, pid) command_register("help", "", 0, 0, _unixctl_help, None)
recipes/Python/578637_Wigle_wifi/recipe-578637.py
tdiprima/code
2,023
73579
<filename>recipes/Python/578637_Wigle_wifi/recipe-578637.py from uuid import getnode import re import requests class WigleAgent(): def __init__(self, username, password): self.agent(username, password) self.mac_address() def get_lat_lng(self, mac_address=None): if mac_address == None: mac_address = self.mac_address if '-' in mac_address: mac_address = mac_address.replace('-', ':') try: self.query_response = self.send_query(mac_address) response = self.parse_response() except IndexError: response = 'MAC location not known' return response def agent(self, username, password): self.agent = requests.Session() self.agent.post('https://wigle.net/api/v1/jsonLogin', data={'credential_0': username, 'credential_1': password, 'destination': '/https://wigle.net/'}) def mac_address(self): mac = hex(getnode()) mac_bytes = [mac[x:x+2] for x in xrange(0, len(mac), 2)] self.mac_address = ':'.join(mac_bytes[1:6]) def send_query(self, mac_address): response = self.agent.post(url='https://wigle.net/api/v1/jsonLocation', data={'netid': mac_address, 'Query2': 'Query'}) return response.json() def parse_response(self): lat = self.get_lat() lng = self.get_lng() return lat, lng def get_lat(self): resp_lat = self.query_response['result'][0]['locationData'][0]['latitude'] return float(resp_lat) def get_lng(self): resp_lng = self.query_response['result'][0]['locationData'][0]['longitude'] return float(resp_lng) if __name__ == "__main__": wa = WigleAgent('your-username', 'your-key') print wa.get_lat_lng('00:1C:0E:42:79:43')
users/migrations/0017_auto_20200712_1559.py
ujlbu4/vas3k.club
496
73598
# Generated by Django 3.0.4 on 2020-07-12 15:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0016_auto_20200712_1557'), ] operations = [ migrations.AlterField( model_name='user', name='email', field=models.EmailField(max_length=254, unique=True), ), migrations.RunSQL(""" CREATE OR REPLACE FUNCTION generate_random_hash(int) RETURNS text AS $$ SELECT array_to_string( ARRAY ( SELECT substring( 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!#*+./:<=>?@[]()^_~' FROM (random() * 72)::int FOR 1) FROM generate_series(1, $1) ), '' ) $$ LANGUAGE sql; """), migrations.RunSQL(""" update users set secret_hash = generate_random_hash(16); """), migrations.RunSQL(""" drop function generate_random_hash(int); """), ]
computer_science/algorithms/recursion/fibonacci/fibonacci.py
LeandroTk/Algorithms
205
73606
<gh_stars>100-1000 # Fibonacci Sequence: 0 1 1 2 3 5 8 13 ... def fibonacci(num): if num == 1: return 0 if num == 2: return 1 return fibonacci(num-1) + fibonacci(num-2) print(fibonacci(1)) print(fibonacci(2)) print(fibonacci(3)) print(fibonacci(4)) print(fibonacci(5))
src/openue/models/__init__.py
ikutalilas/OpenUE
461
73622
<gh_stars>100-1000 from .model import *
setup.py
stargz/autoremove-torrents
437
73661
#-*- coding:UTF-8 -*- from setuptools import setup, find_packages from autoremovetorrents.version import __version__ from autoremovetorrents.compatibility.disk_usage_ import SUPPORT_SHUTIL from autoremovetorrents.compatibility.open_ import open_ setup(name = 'autoremove-torrents', version = __version__, description = 'Automatically remove torrents according to your strategies.', long_description = open_('README.rst', 'r', encoding='utf-8').read(), classifiers = [ 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Topic :: Utilities' ], # Get classifiers from https://pypi.org/pypi?%3Aaction=list_classifiers keywords = 'python autoremove torrent', author = 'jerrymakesjelly', author_email = '<EMAIL>', url = 'https://github.com/jerrymakesjelly/autoremove-torrents', license = 'MIT', packages = find_packages(), include_package_data = True, zip_safe = True, install_requires = [ 'deluge-client', 'enum34', 'ply', '' if SUPPORT_SHUTIL else 'psutil', 'pyyaml', 'requests', ], entry_points = { 'console_scripts':[ 'autoremove-torrents = autoremovetorrents.main:main' ] } )
basic/demo_time.py
708yamaguchi/MaixPy_scripts
485
73679
<reponame>708yamaguchi/MaixPy_scripts import time import machine print(time.time()) t1 = time.localtime(546450051) print('t1', t1) t2 = time.mktime(t1) print('t2', t2) print(time.time()) time.set_time(t1) print(time.time()) time.sleep(1) print(time.localtime(time.time())) ''' raw REPL; CTRL-B to exit >OK 74 t1 (2017, 4, 25, 15, 40, 51, 1, 115) t2 546450051 546450065 546450051 (2017, 4, 25, 15, 40, 52, 1, 115) > MicroPython v0.5.1-136-g039f72b6c-dirty on 2020-11-18; Sipeed_M1 with kendryte-k210 Type "help()" for more information. >>> >>> '''
moshmosh/__init__.py
prendradjaja/moshmosh
114
73690
<filename>moshmosh/__init__.py<gh_stars>100-1000 from .ast_compat import ast from .extension_register import * from .extensions import template_python from .extensions import lazy_import import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", category=SyntaxWarning) from .extensions import pattern_matching from .extensions import scoped_operators from .extensions import pipelines from .extensions import quick_lambdas
asreader/text_comprehension/eval/fusion.py
rkadlec/asreader
113
73694
<gh_stars>100-1000 from __future__ import division import argparse import glob import numpy import scipy.optimize as opt import os import pickle import re """ This script computes ensemble predictions based on multiple ASReader models. In an optional first step it loads a dumped model and generates predictions from a validation and test dataset. Subsequently it combines the predictions of several models using one of three methods * AverageAll - the ensemble prediction is a mean of all the supplied single-model predictions * pBest - sorts the candidate models by validation accuracy and selects the best proportion p of models to form the ensemble * AddImprover - sorts the candidate models by validation accuracy and then tries adding them to the ensemble in that order keeping each model in the ensemble only if it improves its val. accuracy Validation and test accuracies are printed for the ensemble and the best single model. typical usage: python fusion.py -pr "out_dir/best_predictions/*.y_hat_valid" -o out_dir/best_predictions/fusion.y_hat -t foo --fusion_method AverageAll where the best_predictions directory should contain predictions selected by the copyBestPredictions.py script """ def accuracy_k_best(probas, mute=False, k_vals=[1,2,5]): """ Gives the percentage of predictions that have the correct answer among the k most likely suggested answers for k=[1,2,5] :param probas: a list of numpy arrays, each containing a distribution of probabilities over candidates answers for one example :param mute: if True, stops the function from printing the accuracies into std out :param k_vals: values :return: an array of recall@k for k=1,2,5 """ recall_k = {} for k in k_vals: recall_k[k] = 0 line = 0 for row in probas: line += 1 indices = numpy.argpartition(row, -k)[-k:] # Gives indices of k highest probabilities recall_k[k] += (0 in indices) # Uses the fact that correct answer is at index 0. recall_k[k] /= len(probas) if not mute: print 'recall@%d' % k, recall_k[k] return recall_k def accuracy(probas): """ Returns the proportion of predictions that assign the highest probability to the correct answer :param probas: a list of numpy arrays, each containing a distribution of probabilities over candidates answers for one example :return: accuracy """ ncorrect = 0 for row in probas: # We use the convention of having the ground truth answer at index 0 ncorrect += (numpy.argmax(row) == 0) return ncorrect / len(probas) def dump_model_predictions(model_filenames, input_data, suffix="y_hat", regenerate=False): """ Loops through model files and uses the cbt_memory_pointer script to generate the y_hat predictions from each model :param model_filenames: list of filenames of saved models :param input_data: the dataset to which the models will be applied to generate predictions :param suffix: suffix of the generated prediction files (the rest of the filename is the same as the model filename :param regenerate: if true the model rewrites the prediction files even if they're already present :return: list of filenames of the generated predictions """ prediction_filenames = [] for model_file in model_filenames: y_hat_file = model_file + "." + suffix if not os.path.isfile(y_hat_file) or regenerate: load_model_command = 'python ' + args.blocks_nlp_path + 'as_reader.py --load_model ' + model_file + ' --y_hat_out_file ' + y_hat_file + ' --files_to_visualize ' + input_data + ' --no_html' if args.cnn: load_model_command += ' --dataset_type cnn' os.system(load_model_command) prediction_filenames.append(y_hat_file) return prediction_filenames def adjust_length(pred_line, lineN, max_length): """ Messy function that handles problems that arise if predictions for the same example have different lengths which may happen due to using a different batch size for each model. Normally it shouldn't be needed. :param pred_line: :param lineN: :param max_length: :return: """ pred_line = numpy.trim_zeros(pred_line, trim='b') # The following takes care of lines that are shorter than the ones for previous files due to 0-trimming if lineN > len(max_length): maxLen = numpy.append(max_length, len(pred_line)) while len(pred_line) < maxLen[lineN - 1]: pred_line = numpy.append(pred_line, 0) # print "Tail zero added to line "+str(lineN)+" of "+pred_file if len(pred_line) > maxLen[lineN - 1]: print '!!! Warning: Line ' + str(lineN) + ' is longer than the corresponding lines of previous files.' maxLen[lineN - 1] = len(pred_line) return pred_line, max_length def predictions_from_csv(fh, max_length): """ Loads single model predictions from a csv file where lines may differ in length :param fh: file handle to the csv file :return: list of numpy arrays representing the predictions of individual examples """ preds = list() lineN = 0 for line in fh: lineN += 1 pred_line = numpy.fromstring(line, sep=', ') if (args.trim_zeros): # If different batch sizes are used for the fused models, the prediction vectors need to be adjusted pred_line, max_length = adjust_length(pred_line, lineN, max_length) preds.append(pred_line) return preds, max_length def load_all_predictions(prediction_filenames): # list of model predictions all_preds = [] # list of corresponding accuracies model_accuracies=[] # the length of the longest prediction vector for each training example max_lengths = numpy.array([0]) for pred_file in prediction_filenames: pred_fh = open(pred_file, 'r') # Predictions can be saved either in a csv or a pickle file if args.prediction_format == 'csv': preds, max_lengths =predictions_from_csv(pred_fh, max_lengths) else: preds = pickle.load(pred_fh) pred_fh.close() print "Results for " + pred_file acc = accuracy(preds) model_accuracies.append(acc) print 'Accuracy: ' + str(acc) all_preds.append(preds) return all_preds, model_accuracies def fuse_predictions(prediction_filenames, weights=None): """ reads the y_hat files and averages all the predictions :param prediction_filenames: :param weights: a list of weights given to the individual predictions within the fusion (defaults to equel weights) :return: """ all_preds, model_accuracies = load_all_predictions(prediction_filenames) print print "Ensemble (equal weights): " ensemble_accuracy = accuracy(numpy.mean(all_preds, 0)) print "Accuracy:\t"+str(ensemble_accuracy) # If weights were provided, calculate the prediction of a weighted ensemble averaged = numpy.average(all_preds, axis=0, weights=weights) if weights is not None: print "Weighted ensemble: " print "Accuracy:\t"+accuracy(averaged) return {'averaged': averaged, 'model_preds': all_preds, 'ensemble_acc': ensemble_accuracy, 'model_accuracies': model_accuracies} def greedy_add(prediction_filenames, greedy_iterations=1): """ Builds up an ensemble by starting with the best validation model and then adding each model only if it improves the ensemble performance :param prediction_filenames: List of files containing candidate models' validation predictions :param greedy_iterations: int how many times each candidate model is considered for adding into the ensemble :return: """ all_preds, model_accuracies = load_all_predictions(prediction_filenames) # Sort models by validation accuracy sorted_indices = numpy.argsort(model_accuracies)[::-1] # Indices of models included in the ensemble ensemble = numpy.array([], dtype='i') ensemble_accuracy = 0 # List of predictions of models included in the ensemble member_predictions = [] for _ in range(greedy_iterations): for i in sorted_indices: # Create a candidate ensemble and test whether it's better than the current ensemble if len(member_predictions) == 0: candidate_prediction = all_preds[i] else: candidate_member_predictions = member_predictions + [all_preds[i]] candidate_prediction = numpy.mean(candidate_member_predictions, 0) candidate_accuracy = accuracy(candidate_prediction) if candidate_accuracy > ensemble_accuracy: ensemble = numpy.hstack([ensemble, [i]]) ensemble_accuracy = candidate_accuracy member_predictions.append(all_preds[i]) print print 'Predictions included in the ensemble and their validation accuracies:' for i in ensemble: print str(model_accuracies[i]) + "\t" + prediction_filenames[i] best_single_valid_acc = model_accuracies[ensemble[0]] print print 'Ensemble accuracy: ' + str(ensemble_accuracy) ensemble_pred = numpy.mean(member_predictions, 0) return {'ensemble_prediction': ensemble_pred, 'ensemble_indices': ensemble, 'ens_member_predictions': member_predictions, 'best_single_valid_acc': best_single_valid_acc, 'ensemble_acc': ensemble_accuracy} def p_best_models(prediction_filenames, p=0.7): """ Sorts models by validation accuracy and forms the ensemble from the best ones. A proportion p of models is included. :param prediction_filenames: :param p: proportion of the provided models that is included in the ensemble :return: """ all_preds, model_accuracies = load_all_predictions(prediction_filenames) # Sort models by validation accuracy sorted_indices = numpy.argsort(model_accuracies)[::-1] ensemble_size = int(p * len(sorted_indices)) ensemble = sorted_indices[0:ensemble_size] # List of predictions of models included in the ensemble member_predictions = [] for i in ensemble: member_predictions.append(all_preds[i]) ensemble_pred = numpy.mean(member_predictions, 0) # the ensemble prediction print print 'Predictions included in the ensemble and their validation accuracies:' for i in ensemble: print str(model_accuracies[i]) + "\t" + prediction_filenames[i] best_single_valid_acc = model_accuracies[ensemble[0]] print ensemble_accuracy = accuracy(ensemble_pred) print 'Ensemble accuracy: ' + str(ensemble_accuracy) ensemble_pred = numpy.mean(member_predictions, 0) # print 'Worse case: ' + str(accuracy_k_best(ensemble_pred)[1]) return {'ensemble_prediction': ensemble_pred, 'ensemble_indices': ensemble, 'ens_member_predictions': member_predictions, 'best_single_valid_acc': best_single_valid_acc, 'ensemble_acc': ensemble_accuracy} def optimize_weights(ensemble_indices, ens_member_predictions): """ Optimizes the weights of models in the ensemble using the Constrained Optimization by Linear Approximation (COBYLA) method to maximize the validation accuracy :param ensemble_indices: list of indices of individual models that should be included in the optimized ensemble :param ens_member_predictions: list of prediction lists of the individual models :return: optimal weights, predictions of the optimal ensemble """ def weight_accuracy(weights): # Objective function (negative accuracy) to be minimized averaged_pred = numpy.average(ens_member_predictions, axis=0, weights=weights) return -accuracy(averaged_pred) opt_result = opt.minimize(weight_accuracy, numpy.ones(len(ensemble_indices)) / len(ensemble_indices), method='COBYLA', constraints=({'type': 'ineq', 'fun': lambda x: 1 - sum(x)})) averaged_pred = numpy.average(ens_member_predictions, axis=0, weights=opt_result['x']) print 'Optimized ensemble accuracy: ' print accuracy(averaged_pred) print 'Optimal weights: ' + str(opt_result['x']) return opt_result['x'], averaged_pred def predictions2csv(predictions, fh): """ Dump predictions in a csv format using filehandle fh """ fh.write("\n".join(",".join(numpy.char.mod('%f', row)) for row in predictions)) """ Parse command line arguments """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Utility for fusing multiple classifier results.") parser.add_argument('-m', '--models', nargs="+", default=None, help='files containing models to fuse') parser.add_argument('-mr', '--models_regexp', default=None, help='regexp to match model files to fuse') parser.add_argument('-d', '--input_data', default=None, help='Input data to which we apply the models') parser.add_argument('-t', '--test_data', default=None, help='Test data for the ensemble') parser.add_argument('-p', '--predictions', nargs="+", default=None, help='files containing previously generated predictions') parser.add_argument('-pr', '--prediction_regexp', default=None, help='regexp to match prediction files to fuse') parser.add_argument('-o', '--output', default=None, help='file where fused predictions will be saved') parser.add_argument('--blocks_nlp_path', default='~/dev/blocks-nlp/text_comprehension/', help='absolute path of the directory containing as_reader.py ending with "(...)/blocks-nlp/text_comprehension/"') parser.add_argument('--fusion_method', default='AddImprover', choices=['AddImprover', 'AverageAll', 'pBest'], help='Choose the method of fusing models') parser.add_argument('--greedy_iterations', type=int, default=1, help='How many times the greedy algorithm iterates over the candidate models.') parser.add_argument('--regenerate', action='store_true', help='Force models to regenerate predictions even if they are already present in the directory') parser.add_argument('--pred_file_suffix', default="", help="Appends an additional suffix to prediction files - useful for regenerating predictions while keeping the old ones.") parser.add_argument('--cnn', action='store_true', help='Indicates that datasets are in the CNN format.') parser.add_argument('--optimize_weights', action='store_true', help='Optimize weights of ensemble models to maximize validation accuracy.') parser.add_argument('-f', '--prediction_format', default='csv', choices=['csv', 'pickle'], help='format of the saved predictions (at the moment cannot generate csv from models)') parser.add_argument('-es', '--ensemble_size', type=float, default=0.7, help='proportion of models to be included in the ensemble (if relevant to the fusion method used)') parser.add_argument('--trim_zeros', action='store_true', help='Trims tail zeros of the predictions. Don\'t use for CBT.') args = parser.parse_args() # Filenames of dumped models to be used to_fuse = [] # Add the model files from both arguments to a common array: if args.models_regexp: to_fuse += glob.glob(args.models_regexp) if args.models: to_fuse += args.models print "Models to be fused:" for model in enumerate(to_fuse): print model print # Save model predictions to disk and retain their paths prediction_files = dump_model_predictions(to_fuse, args.input_data, 'y_hat_valid' + args.pred_file_suffix) # Add previously generated prediction files if specified if args.prediction_regexp: prediction_files += glob.glob(args.prediction_regexp) if args.predictions: prediction_files += args.predictions # Build the ensemble and generate the fused prediction: if args.fusion_method == 'AddImprover': result = greedy_add(prediction_files, greedy_iterations=args.greedy_iterations) ensemble_indices = result['ensemble_indices'] ens_member_predictions = result['ens_member_predictions'] best_single_valid = result['best_single_valid_acc'] if (args.optimize_weights): ens_weights, fused = optimize_weights(ensemble_indices, ens_member_predictions) else: fused = result['ensemble_prediction'] ens_weights = None elif args.fusion_method == 'pBest': result = p_best_models(prediction_files, args.ensemble_size) ens_member_predictions = result['ens_member_predictions'] ensemble_indices = result['ensemble_indices'] best_single_valid = result['best_single_valid_acc'] if args.optimize_weights: ens_weights, fused = optimize_weights(ensemble_indices, ens_member_predictions) else: fused = result['ensemble_prediction'] ens_weights = None elif args.fusion_method == 'AverageAll': result = fuse_predictions(prediction_files) ens_member_predictions = result['model_preds'] ensemble_indices = numpy.argsort(result['model_accuracies'])[::-1] best_single_valid = max(result['model_accuracies']) if args.optimize_weights: ens_weights, fused = optimize_weights(ensemble_indices, ens_member_predictions) else: fused = result['averaged'] ens_weights = None ensemble_valid = result['ensemble_acc'] print "Ensemble size: " + str(len(ensemble_indices)) # Optionally, save the fusion predictions if args.output: output_fh = open(args.output, 'w') if args.prediction_format == 'csv': predictions2csv(fused,output_fh) else: pickle.dump(fused, output_fh) output_fh.close() print "Fused validation predictions saved to " + args.output # Generate prediction files for ensemble models from test data if args.test_data: print print '___________ Applying ensemble models to test data __________' # Create a list of filenames of dumped models included in the ensemble ensemble_models = [] for i in ensemble_indices: ensemble_models += [re.sub('\.y_hat(_valid)?' + args.pred_file_suffix + '$', '', prediction_files[i])] # Use these models to generate test predictions prediction_files = dump_model_predictions(ensemble_models, args.test_data, 'y_hat_test' + args.pred_file_suffix) # Fuse these predictions result = fuse_predictions(prediction_files, ens_weights) ensemble_test_prediction = result['averaged'].squeeze() best_single_test = result['model_accuracies'][0] ensemble_test = result['ensemble_acc'] # If required, dump the ensemble test prediction if args.output: output_fh = open(args.output + '_test', 'w') if args.prediction_format == 'csv': predictions2csv(ensemble_test_prediction,output_fh) else: pickle.dump(ensemble_test_prediction, output_fh) output_fh.close() print print "Fused test predictions saved to " + args.output + '_test' print print "Summary of results (model - valid. acc. - test acc.):" print "Best single model:\t" + str(best_single_valid) + "\t" + str(best_single_test) print args.fusion_method + " Ensemble:\t" + str(ensemble_valid) + "\t" + str(ensemble_test)
mobilenext/codebase/models/model.py
yitu-opensource/daquan.zhou-intern-sg
153
73695
import torch from torch import nn from torch.nn import functional as F from .activations import sigmoid, HardSwish, Swish from .utils_i2rnet import ( relu_fn, round_filters, round_repeats, drop_connect, get_same_padding_conv2d, Conv2dDynamicSamePadding, get_model_params, efficientnet_params, load_pretrained_weights, ) def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class MBConvBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d padding = self._block_args.kernel_size //2 # Conv2d = Conv2dDynamicSamePadding # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels if self._block_args.expand_ratio != 1: self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase k = self._block_args.kernel_size s = self._block_args.stride self._depthwise_conv = Conv2d( in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise kernel_size=k, stride=s, bias=False, padding = padding) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired if self.has_se: num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) # Output phase final_oup = self._block_args.output_filters self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution x = inputs if self._block_args.expand_ratio != 1: x = relu_fn(self._bn0(self._expand_conv(inputs))) x = relu_fn(self._bn1(self._depthwise_conv(x))) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x x = self._bn2(self._project_conv(x)) # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class I2RConvBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d padding = self._block_args.kernel_size //2 # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride if self._block_args.expand_ratio == 2: self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, stride = s, groups = final_oup) self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) elif inp != final_oup and s == 1: self._project_conv = None self._expand_conv = None self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) elif inp != final_oup and s == 2: self._project_conv = None self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, stride = s, groups = final_oup) self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) else: # if inp == final_oup: self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # if not (self._block_args.expand_ratio == 2): self.identity = True self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired if self.has_se: num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() x = inputs # NOTE:remove the first 3x3 conv to reduce running mem, need to verfy the performance if self._project_conv is not None: x = relu_fn(self._bn0(self._project_conv(inputs))) x = self._bn1(self._linear1(x)) x = relu_fn(self._bn2(self._linear2(x))) if self._expand_conv is not None: x = self._bn3(self._expand_conv(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class MBConvBlockV1(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup group_1x1 = 1 self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: self.features = nn.Sequential( Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp), nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps), Swish(), #first linear layer Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), # sec linear layer Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), # expand layer Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), ) elif inp != final_oup and s == 1: self.features=nn.Sequential( Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), # only two linear layers are needed Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), ) elif inp != final_oup and s == 2: self.features = nn.Sequential( Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), ) else: self.identity = True self.features = nn.Sequential( Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp), nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps), Swish(), Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_expand_ratio = 1 # num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() x = self.features(inputs) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class GhostI2RBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect group_1x1 = 1 # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # apply repeat scheme self.split_ratio = 2 self.ghost_idx_inp = inp // self.split_ratio self.ghost_idx_oup = int(final_oup - self.ghost_idx_inp) self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() #first linear layer self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups = group_1x1) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() # ) elif inp != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1=Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_mode = 'small' if se_mode == 'large': se_expand_ratio = 0.5 num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) else: se_expand_ratio = 1 num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) if self._block_args.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x,ghost_id],dim=1) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x,ghost_id],dim=1) x = self.bn4(self.dwise_conv2(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # import pdb;pdb.set_trace() if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class GhostI2RBlock_change_droppath_pos(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect group_1x1 = 1 apply_ghost = True # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride if apply_ghost: # apply repeat scheme self.split_ratio = 2 self.ghost_idx_inp = inp // self.split_ratio self.ghost_idx_oup = int(final_oup - self.ghost_idx_inp) else: self.ghost_idx_inp = inp self.ghost_idx_oup = final_oup self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() #first linear layer self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups = group_1x1) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() # ) elif inp != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1=Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_expand_ratio = 0.5 num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) # num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self._block_args.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x,ghost_id],dim=1) if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x,ghost_id],dim=1) if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = self.bn4(self.dwise_conv2(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # if drop_connect_rate: # x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class NESI2RBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect group_1x1 = 1 # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # apply repeat scheme self.split_ratio = 2 self.nes_idx_inp = inp // self.split_ratio self.nes_idx_oup = final_oup // self.split_ratio self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() #first linear layer self.project_layer = Conv2d(in_channels=self.nes_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.nes_idx_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.nes_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups = group_1x1) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() # ) elif inp != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1=Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.project_layer = Conv2d(in_channels=self.nes_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.nes_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = nn.BatchNorm2d(num_features=self.nes_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_expand_ratio = 0.5 num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) # num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) if self._block_args.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv nes_x = x[:,:self.nes_idx_inp,:,:] + x[:,self.nes_idx_inp:,:,:] x = self.bn2(self.project_layer(nes_x)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x,x],dim=1) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv nes_x = x[:,:self.nes_idx_inp,:,:] + x[:,self.nes_idx_inp:,:,:] x = self.bn2(self.project_layer(nes_x)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x,x],dim=1) x = self.bn4(self.dwise_conv2(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class EfficientNet(nn.Module): """ An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods Args: blocks_args (list): A list of BlockArgs to construct blocks global_params (namedtuple): A set of GlobalParams shared between blocks Example: model = EfficientNet.from_pretrained('efficientnet-b0') """ def __init__(self, blocks_args=None, global_params=None): super().__init__() assert isinstance(blocks_args, list), 'blocks_args should be a list' assert len(blocks_args) > 0, 'block args must be greater than 0' self._global_params = global_params self._blocks_args = blocks_args # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Batch norm parameters bn_mom = 1 - self._global_params.batch_norm_momentum bn_eps = self._global_params.batch_norm_epsilon # Stem in_channels = 3 # rgb # NOTE change first filter to be 16 to follow MOBILENETV3 # NOTE change back to 32 for efficientnet series out_channels = round_filters(32, self._global_params) # number of output channels self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # build_block = NESI2RBlock build_block = GhostI2RBlock # build_block = GhostI2RBlock_change_droppath_pos # build_block = MBConvBlockV1 # build_block = I2RConvBlock # Build blocks self._blocks = nn.ModuleList([]) for block_args in self._blocks_args: # Update block input and output filters based on depth multiplier. block_args = block_args._replace( input_filters=round_filters(block_args.input_filters, self._global_params), output_filters=round_filters(block_args.output_filters, self._global_params), num_repeat=round_repeats(block_args.num_repeat, self._global_params) ) # The first block needs to take care of stride and filter size increase. self._blocks.append(build_block(block_args, self._global_params)) if block_args.num_repeat > 1: block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) for _ in range(block_args.num_repeat - 1): self._blocks.append(build_block(block_args, self._global_params)) # Head in_channels = block_args.output_filters # output of final block out_channels = round_filters(1280, self._global_params) # self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Final linear layer self._dropout = self._global_params.dropout_rate self._fc = nn.Linear(out_channels, self._global_params.num_classes) def extract_features(self, inputs): """ Returns output of the final convolution layer """ # Stem x = relu_fn(self._bn0(self._conv_stem(inputs))) # Blocks for idx, block in enumerate(self._blocks): drop_connect_rate = self._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self._blocks) x = block(x, drop_connect_rate=drop_connect_rate) # Head # x = relu_fn(self._bn1(self._conv_head(x))) return x def forward(self, inputs): """ Calls extract_features to extract features, applies final linear layer, and returns logits. """ # Convolution layers x = self.extract_features(inputs) # Pooling and final linear layer x = F.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1) if self._dropout: x = F.dropout(x, p=self._dropout, training=self.training) x = self._fc(x) return x @classmethod def from_name(cls, model_name, override_params=None): cls._check_model_name_is_valid(model_name) blocks_args, global_params = get_model_params(model_name, override_params) return EfficientNet(blocks_args, global_params) @classmethod def from_pretrained(cls, model_name, num_classes=1000): model = EfficientNet.from_name(model_name, override_params={'num_classes': num_classes}) load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000)) return model @classmethod def get_image_size(cls, model_name): cls._check_model_name_is_valid(model_name) _, _, res, _ = efficientnet_params(model_name) return res @classmethod def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False): """ Validates model name. None that pretrained weights are only available for the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """ num_models = 4 if also_need_pretrained_weights else 8 valid_models = ['efficientnet_b'+str(i) for i in range(num_models)] + ['i2rnet_b' + str(i) for i in range(num_models)] + ['mnext_l', 'mnext_s',' mnext_mbv2_cfg'] if model_name.replace('-','_') not in valid_models: raise ValueError('model_name should be one of: ' + ', '.join(valid_models)) def efficient_i2rnet(progress=None,width_mult=1, rm_1x1=None, interpolation=None, group_1x1=None): return EfficientNet.from_name('efficientnet-b0') # class I2RConvBlock_half_id(nn.Module): # """ # Mobile Inverted Residual Bottleneck Block # Args: # block_args (namedtuple): BlockArgs, see above # global_params (namedtuple): GlobalParam, see above # Attributes: # has_se (bool): Whether the block contains a Squeeze and Excitation layer. # """ # def __init__(self, block_args, global_params): # super().__init__() # self._block_args = block_args # self._bn_mom = 1 - global_params.batch_norm_momentum # self._bn_eps = global_params.batch_norm_epsilon # self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) # self.id_skip = block_args.id_skip # skip connection and drop connect # # Get static or dynamic convolution depending on image size # Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # # Conv2d = nn.Conv2d # padding = self._block_args.kernel_size //2 # # Expansion phase # inp = self._block_args.input_filters # number of input channels # oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels # final_oup = self._block_args.output_filters # self.inp, self.final_oup = inp, final_oup # self.identity = False # if oup < oup / 6.: # oup = math.ceil(oup / 6.) # oup = _make_divisible(oup,16) # k = self._block_args.kernel_size # s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # if self._block_args.expand_ratio == 2: # self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) # self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, # stride = s, groups = final_oup) # self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # elif inp != final_oup and s == 1: # self._project_conv = None # self._expand_conv = None # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # elif inp != final_oup and s == 2: # self._project_conv = None # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, # stride = s, groups = final_oup) # self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # else: # # if inp == final_oup: # self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) # self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) # self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) # self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # # if not (self._block_args.expand_ratio == 2): # self.identity = True # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase # # self._depthwise_conv = Conv2d( # # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # # kernel_size=k, stride=s, bias=False) # # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # # Squeeze and Excitation layer, if desired # if self.has_se: # num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio)) # self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) # self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # # Output phase # # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # def forward(self, inputs, drop_connect_rate=None): # """ # :param inputs: input tensor # :param drop_connect_rate: drop connect rate (float, between 0 and 1) # :return: output of block # """ # # Expansion and Depthwise Convolution # # import pdb;pdb.set_trace() # x = inputs # # NOTE:remove the first 3x3 conv to reduce running mem, need to verfy the performance # if self._project_conv is not None: # x = relu_fn(self._bn0(self._project_conv(inputs))) # x = self._bn1(self._linear1(x)) # x = relu_fn(self._bn2(self._linear2(x))) # if self._expand_conv is not None: # x = self._bn3(self._expand_conv(x)) # # Squeeze and Excitation # if self.has_se: # x_squeezed = F.adaptive_avg_pool2d(x, 1) # x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) # x = torch.sigmoid(x_squeezed) * x # # Skip connection and drop connect # input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters # if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # if drop_connect_rate: # x = drop_connect(x, p=drop_connect_rate, training=self.training) # shape = inputs.shape # # shape[1] = shape[1]//2 # id_tensor = torch.cat([inputs[:,:shape[1]//2,:,:],torch.zeros(shape)[:,shape[1]//2:,:,:].cuda()],dim=1) # x = x + id_tensor # # import pdb;pdb.set_trace() # # x = x + inputs # skip connection # return x
tutorials/eboutique/microservices/payment/src/commands/services.py
bhardwajRahul/minos-python
247
73696
from minos.cqrs import ( CommandService, ) from minos.networks import ( Request, Response, ResponseException, enroute, ) from ..aggregates import ( PaymentAggregate, ) class PaymentCommandService(CommandService): """PaymentCommandService class.""" def validate_card(self, card_number: str) -> bool: def digits_of(n): return [int(d) for d in str(n)] digits = digits_of(card_number) odd_digits = digits[-1::-2] even_digits = digits[-2::-2] checksum = 0 checksum += sum(odd_digits) for d in even_digits: checksum += sum(digits_of(d * 2)) return_value = checksum % 10 if return_value == 0: return True return False @enroute.broker.command("CreatePayment") async def create_payment(self, request: Request) -> Response: """Create a new ``Payment`` instance. :param request: The ``Request`` instance. :return: A ``Response`` instance. """ try: content = await request.content() if self.validate_card(content["card_number"]): payment = await PaymentAggregate.create( content["card_number"], content["validity"], content["security_code"], content["name"], content["surname"], ) return Response({"status": "payment accepted"}) except Exception as exc: raise ResponseException(f"An error occurred during Payment creation: {exc}")
train.py
sourcery-ai-bot/rps-cv
107
73723
<reponame>sourcery-ai-bot/rps-cv # train.py # Source: https://github.com/DrGFreeman/rps-cv # # MIT License # # Copyright (c) 2017-2019 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # This script reads the pre-processed image data and trains the image # classifier. The trained classifier is stored in a .pkl (pickle) file. import sys import numpy as np # Settings: # Random State rs = 42 # Classifier output .pkl filename pklFilename = 'clf.pkl' # Number of folds of Stratified KFold cross-validation n_splits = 5 # Grid Search parameters pca__n_components = [40] # Number of components of Principal Component Analysis clf__gamma = np.logspace(-4, -2, 3) # [.0001, .001, .01] clf__C = np.logspace(0, 2, 3) # [1, 10, 100] scoring = 'f1_micro' # The n_jobs parameter controls the number of CPU cores to use in parallel for # training the machine learning model. Training with a higher number of cores # will result in faster training time but uses more memory. # # If training on a Raspberry Pi 3B or 3B+, due to the limited available memory, # the following values are recommended as function of the total number of images # available. # # Less than ~700 images: n_jobs=1 (training time* ~35 minutes) # Less than ~450 images: n_jobs=2 (training time* ~10 minutes) # Less than ~350 images: n_jobs=3 (training time* ~7 minutes) # Less than ~280 images: n_jobs=4 (-1) (training time* ~5 minutes) # * Training times estimates are based on a total of 9 grid-search combinations # performed on a Raspberry Pi 3 model B+. # # NOTE: Ensure the Raspberry Pi has adequate cooling if running on multiple # CPU cores for extended periods. # # If training on a PC with 8+Gb of memory, the n_jobs parameter can be set to # -1 which will use all available CPU cores. If you run out of memory due to a # large number of images, reduce the number of CPU cores by ajusting n_jobs. n_jobs = -1 def train(nbImg=0, cvScore=True): import time t0 = time.time() def dt(): return round(time.time() - t0, 2) print('+{}s: Importing libraries'.format(dt())) import pickle from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from rpscv import imgproc as imp from rpscv import utils # Generate image data from stored images print('+{}s: Generating image data'.format(dt())) features, labels = imp.generateGrayFeatures(nbImg=nbImg, verbose=False, rs=rs) unique, count = np.unique(labels, return_counts=True) # Print the number of traning images for each label for i, label in enumerate(unique): print(' {}: {} images'.format(utils.gestureTxt[label], count[i])) # Generate test set print('+{}s: Generating test set'.format(dt())) sssplit = StratifiedShuffleSplit(n_splits=1, test_size=.15, random_state=rs) for train_index, test_index in sssplit.split(features, labels): features_train = features[train_index] features_test = features[test_index] labels_train = labels[train_index] labels_test = labels[test_index] # Define pipeline parameters print('+{}s: Defining pipeline'.format(dt())) steps = [('pca', PCA()), ('clf', SVC(kernel='rbf'))] pipe = Pipeline(steps) # Define cross-validation parameters print('+{}s: Defining cross-validation'.format(dt())) cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=rs) # Define grid-search parameters print('+{}s: Defining grid search'.format(dt())) grid_params = dict(pca__n_components=pca__n_components, clf__gamma=clf__gamma, clf__C=clf__C) grid = GridSearchCV(pipe, grid_params, scoring=scoring, n_jobs=n_jobs, refit=True, cv=cv, verbose=1) print('Grid search parameters:') print(grid) # Fit the classifier t0_train = time.time() print('+{}s: Fitting classifier'.format(dt())) grid.fit(features_train, labels_train) dt_train = time.time() - t0_train if cvScore: # Print the results of the grid search cross-validation cvres = grid.cv_results_ print('Cross-validation results:') for score, std, params in zip(cvres['mean_test_score'], cvres['std_test_score'], cvres['params']): print(' {}, {}, {}'.format(round(score, 4), round(std, 5), params)) # Print the best score and best parameters from the grid-search print('Grid search best score: {}'.format(grid.best_score_)) print('Grid search best parameters:') for key, value in grid.best_params_.items(): print(' {}: {}'.format(key, value)) # Validate classifier on test set print('+{}s: Validating classifier on test set'.format(dt())) pred = grid.predict(features_test) score = f1_score(labels_test, pred, average='micro') print('Classifier f1-score on test set: {}'.format(score)) print('Confusion matrix:') print(confusion_matrix(labels_test, pred)) print('Classification report:') tn = [utils.gestureTxt[i] for i in range(3)] print(classification_report(labels_test, pred, target_names=tn)) # Write classifier to a .pkl file print('+{}s: Writing classifier to {}'.format(dt(), pklFilename)) with open(pklFilename, 'wb') as f: f.flush() pickle.dump(grid, f) print('+{}s: Done!'.format(dt())) return grid.best_score_, score, dt_train if __name__ == '__main__': # Read command line arguments argv = sys.argv cvScore = True if len(sys.argv) > 1: for arg in argv[1:]: if arg == '--no-cv-score': cvScore = False train(cvScore=cvScore)
hardware/opentrons_hardware/firmware_bindings/message.py
anuwrag/opentrons
235
73750
"""Can message.""" from __future__ import annotations from dataclasses import dataclass from .arbitration_id import ArbitrationId @dataclass(frozen=True) class CanMessage: """A can message.""" arbitration_id: ArbitrationId data: bytes
tests/transactions_regress/models.py
pomarec/django
166
73760
<gh_stars>100-1000 from django.db import models class Mod(models.Model): fld = models.IntegerField() class SubMod(Mod): cnt = models.IntegerField(unique=True) class M2mA(models.Model): others = models.ManyToManyField('M2mB') class M2mB(models.Model): fld = models.IntegerField()
unsplash/models.py
videowala/python-unsplash
124
73771
class ResultSet(list): """A list like object that holds results from a Unsplash API query.""" class Model(object): def __init__(self, **kwargs): self._repr_values = ["id"] @classmethod def parse(cls, data): """Parse a JSON object into a model instance.""" raise NotImplementedError @classmethod def parse_list(cls, data): """Parse a list of JSON objects into a result set of model instances.""" results = ResultSet() data = data or [] for obj in data: if obj: results.append(cls.parse(obj)) return results def __repr__(self): items = filter(lambda x: x[0] in self._repr_values, vars(self).items()) state = ['%s=%s' % (k, repr(v)) for (k, v) in items] return '%s(%s)' % (self.__class__.__name__, ', '.join(state)) class Photo(Model): @classmethod def parse(cls, data): data = data or {} photo = cls() if data else None for key, value in data.items(): if not value: setattr(photo, key, value) continue if key == "user": user = User.parse(value) setattr(photo, key, user) elif key == "exif": exif = Exif.parse(value) setattr(photo, key, exif) elif key in ["urls", "links"]: link = Link.parse(value) setattr(photo, key, link) elif key == "location": location = Location.parse(value) setattr(photo, key, location) else: setattr(photo, key, value) return photo class Exif(Model): def __init__(self, **kwargs): super(Exif, self).__init__(**kwargs) self._repr_values = ["make", "model"] @classmethod def parse(cls, data): data = data or {} exif = cls() if data else None for key, value in data.items(): setattr(exif, key, value) return exif class Link(Model): def __init__(self, **kwargs): super(Link, self).__init__(**kwargs) self._repr_values = ["html", "raw", "url"] @classmethod def parse(cls, data): data = data or {} link = cls() if data else None for key, value in data.items(): setattr(link, key, value) return link class Location(Model): def __init__(self, **kwargs): super(Location, self).__init__(**kwargs) self._repr_values = ["title"] @classmethod def parse(cls, data): data = data or {} location = cls() if data else None for key, value in data.items(): setattr(location, key, value) return location class User(Model): def __init__(self, **kwargs): super(User, self).__init__(**kwargs) self._repr_values = ["id", "name", "username"] @classmethod def parse(cls, data): data = data or {} user = cls() if data else None for key, value in data.items(): if not value: setattr(user, key, value) continue if key in ["links", "profile_image"]: link = Link.parse(value) setattr(user, key, link) elif key == "photos": photo = Photo.parse_list(value) setattr(user, key, photo) else: setattr(user, key, value) return user class Stat(Model): def __init__(self, **kwargs): super(Stat, self).__init__(**kwargs) self._repr_values = ["total_photos", "photo_downloads"] @classmethod def parse(cls, data): data = data or {} stat = cls() if data else None for key, value in data.items(): if not value: setattr(stat, key, value) continue if key == "links": link = Link.parse(value) setattr(stat, key, link) else: setattr(stat, key, value) return stat class Collection(Model): def __init__(self, **kwargs): super(Collection, self).__init__(**kwargs) self._repr_values = ["id", "title"] @classmethod def parse(cls, data): data = data or {} collection = cls() if data else None for key, value in data.items(): if not value: setattr(collection, key, value) continue if key == "cover_photo": photo = Photo.parse(value) setattr(collection, key, photo) elif key == "user": user = User.parse(value) setattr(collection, key, user) elif key == "links": link = Link.parse(value) setattr(collection, key, link) else: setattr(collection, key, value) return collection
test/test_arm_allinea_studio.py
pauleonix/hpc-container-maker
340
73772
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods, bad-continuation """Test cases for the arm_allinea_studio module""" from __future__ import unicode_literals from __future__ import print_function import logging # pylint: disable=unused-import import unittest from helpers import aarch64, centos, centos8, docker, thunderx2, ubuntu20, ubuntu from hpccm.building_blocks.arm_allinea_studio import arm_allinea_studio class Test_arm_allinea_studio(unittest.TestCase): def setUp(self): """Disable logging output messages""" logging.disable(logging.ERROR) @aarch64 @ubuntu20 @docker def test_defaults_ubuntu(self): """Default arm_allinea_studio building block""" a = arm_allinea_studio(eula=True) self.assertEqual(str(a), r'''# Arm Allinea Studio version 21.1 RUN apt-get update -y && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ libc6-dev \ lmod \ python \ tar \ tcl \ wget && \ rm -rf /var/lib/apt/lists/* RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://developer.arm.com/-/media/Files/downloads/hpc/arm-allinea-studio/21-1/ACfL/arm-compiler-for-linux_21.1_Ubuntu-20.04_aarch64.tar && \ mkdir -p /var/tmp && tar -x -f /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-20.04_aarch64.tar -C /var/tmp && \ cd /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-20.04 && ./arm-compiler-for-linux_21.1_Ubuntu-20.04.sh --install-to /opt/arm --accept && \ rm -rf /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-20.04_aarch64.tar /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-20.04 ENV MODULEPATH=/opt/arm/modulefiles:$MODULEPATH''') @aarch64 @centos @docker def test_defaults_centos(self): """Default arm_allinea_studio building block""" a = arm_allinea_studio(eula=True) self.assertEqual(str(a), r'''# Arm Allinea Studio version 21.1 RUN yum install -y epel-release && \ yum install -y \ Lmod \ glibc-devel \ tar \ wget && \ rm -rf /var/cache/yum/* RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://developer.arm.com/-/media/Files/downloads/hpc/arm-allinea-studio/21-1/ACfL/arm-compiler-for-linux_21.1_RHEL-7_aarch64.tar && \ mkdir -p /var/tmp && tar -x -f /var/tmp/arm-compiler-for-linux_21.1_RHEL-7_aarch64.tar -C /var/tmp && \ cd /var/tmp/arm-compiler-for-linux_21.1_RHEL-7 && ./arm-compiler-for-linux_21.1_RHEL-7.sh --install-to /opt/arm --accept && \ rm -rf /var/tmp/arm-compiler-for-linux_21.1_RHEL-7_aarch64.tar /var/tmp/arm-compiler-for-linux_21.1_RHEL-7 ENV MODULEPATH=/opt/arm/modulefiles:$MODULEPATH''') @aarch64 @centos8 @docker def test_thunderx2_centos8(self): """Default arm_allinea_studio building block""" a = arm_allinea_studio(eula=True, version='20.3', microarchitectures=['generic', 'thunderx2t99']) self.assertEqual(str(a), r'''# Arm Allinea Studio version 20.3 RUN yum install -y epel-release && \ yum install -y \ Lmod \ glibc-devel \ tar \ wget && \ rm -rf /var/cache/yum/* RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://developer.arm.com/-/media/Files/downloads/hpc/arm-allinea-studio/20-3/RHEL8/arm-compiler-for-linux_20.3_RHEL-8_aarch64.tar && \ mkdir -p /var/tmp && tar -x -f /var/tmp/arm-compiler-for-linux_20.3_RHEL-8_aarch64.tar -C /var/tmp && \ cd /var/tmp/arm-compiler-for-linux_20.3_RHEL-8_aarch64 && ./arm-compiler-for-linux_20.3_RHEL-8.sh --install-to /opt/arm --accept --only-install-microarchitectures=generic,thunderx2t99 && \ rm -rf /var/tmp/arm-compiler-for-linux_20.3_RHEL-8_aarch64.tar /var/tmp/arm-compiler-for-linux_20.3_RHEL-8_aarch64 ENV MODULEPATH=/opt/arm/modulefiles:$MODULEPATH''') @aarch64 @ubuntu @docker def test_eula(self): """Decline EULA""" with self.assertRaises(RuntimeError): a = arm_allinea_studio(eula=False) str(a) @aarch64 @ubuntu @docker def test_tarball(self): """tarball""" a = arm_allinea_studio(eula=True, tarball='arm-compiler-for-linux_21.1_Ubuntu-18.04_aarch64.tar') self.assertEqual(str(a), r'''# Arm Allinea Studio version 21.1 RUN apt-get update -y && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ libc6-dev \ lmod \ python \ tar \ tcl \ wget && \ rm -rf /var/lib/apt/lists/* COPY arm-compiler-for-linux_21.1_Ubuntu-18.04_aarch64.tar /var/tmp RUN mkdir -p /var/tmp && tar -x -f /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-18.04_aarch64.tar -C /var/tmp && \ cd /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-18.04 && ./arm-compiler-for-linux_21.1_Ubuntu-18.04.sh --install-to /opt/arm --accept && \ rm -rf /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-18.04_aarch64.tar /var/tmp/arm-compiler-for-linux_21.1_Ubuntu-18.04 ENV MODULEPATH=/opt/arm/modulefiles:$MODULEPATH''') @aarch64 @centos @docker def test_runtime_centos(self): """Runtime""" a = arm_allinea_studio(eula=True) r = a.runtime() self.assertEqual(r, r'''# Arm Allinea Studio COPY --from=0 /opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib/libgomp.so \ /opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib/libiomp5.so \ /opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib/libomp.so \ /opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib/libflang.so \ /opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib/libflangrti.so \ /opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib/ COPY --from=0 /opt/arm/armpl-21.1.0_AArch64_RHEL-7_arm-linux-compiler_aarch64-linux/lib/libamath.so \ /opt/arm/armpl-21.1.0_AArch64_RHEL-7_arm-linux-compiler_aarch64-linux/lib/libamath_dummy.so \ /opt/arm/armpl-21.1.0_AArch64_RHEL-7_arm-linux-compiler_aarch64-linux/lib/libastring.so \ /opt/arm/armpl-21.1.0_AArch64_RHEL-7_arm-linux-compiler_aarch64-linux/lib/ COPY --from=0 /opt/arm/armpl-21.1.0_AArch64_RHEL-7_gcc_aarch64-linux/lib/libamath.so \ /opt/arm/armpl-21.1.0_AArch64_RHEL-7_gcc_aarch64-linux/lib/libamath_dummy.so \ /opt/arm/armpl-21.1.0_AArch64_RHEL-7_gcc_aarch64-linux/lib/libastring.so \ /opt/arm/armpl-21.1.0_AArch64_RHEL-7_gcc_aarch64-linux/lib/ ENV LD_LIBRARY_PATH=/opt/arm/arm-linux-compiler-21.1_Generic-AArch64_RHEL-7_aarch64-linux/lib:/opt/arm/armpl-21.1.0_AArch64_RHEL-7_arm-linux-compiler_aarch64-linux/lib:/opt/arm/armpl-21.1.0_AArch64_RHEL-7_gcc_aarch64-linux/lib:$LD_LIBRARY_PATH''') def test_toolchain(self): """Toolchain""" a = arm_allinea_studio(eula=True) tc = a.toolchain self.assertEqual(tc.CC, 'armclang') self.assertEqual(tc.CXX, 'armclang++') self.assertEqual(tc.FC, 'armflang') self.assertEqual(tc.F77, 'armflang') self.assertEqual(tc.F90, 'armflang') @thunderx2 def test_toolchain_thunderx2(self): """CPU target optimization flags""" a = arm_allinea_studio(eula=True) tc = a.toolchain self.assertEqual(tc.CFLAGS, '-mcpu=thunderx2t99') self.assertEqual(tc.CXXFLAGS, '-mcpu=thunderx2t99')
vendor/tensorboxresnet/tensorboxresnet/utils/rect.py
mdcatapult/deepfigures-open
103
73774
class Rect(object): def __init__(self, cx, cy, width, height, confidence): self.cx = cx self.cy = cy self.width = width self.height = height self.confidence = confidence self.true_confidence = confidence def overlaps(self, other): if abs(self.cx - other.cx) > (self.width + other.width) / 1.5: return False elif abs(self.cy - other.cy) > (self.height + other.height) / 2.0: return False else: return True def distance(self, other): return sum( map( abs, [ self.cx - other.cx, self.cy - other.cy, self.width - other.width, self.height - other.height ] ) ) def intersection(self, other): left = max(self.cx - self.width / 2., other.cx - other.width / 2.) right = min(self.cx + self.width / 2., other.cx + other.width / 2.) width = max(right - left, 0) top = max(self.cy - self.height / 2., other.cy - other.height / 2.) bottom = min(self.cy + self.height / 2., other.cy + other.height / 2.) height = max(bottom - top, 0) return width * height def area(self): return self.height * self.width def union(self, other): return self.area() + other.area() - self.intersection(other) def iou(self, other): return self.intersection(other) / self.union(other) def __eq__(self, other): return ( self.cx == other.cx and self.cy == other.cy and self.width == other.width and self.height == other.height and self.confidence == other.confidence )
updater/reports/ReportReposPersonalNonOwnerPushes.py
eisenhowerj/hubble
146
73784
from .ReportDaily import * # Find personal repositories that nonowners are pushing to. # These repositories should be moved into organizations. # Only look at active users (not suspended!) and only look at pushes # of the last 4 weeks. class ReportReposPersonalNonOwnerPushes(ReportDaily): def name(self): return "repositories-personal-nonowner-pushes" def updateDailyData(self): self.detailedHeader, self.detailedData = self.parseData(self.executeQuery(self.query())) self.header = ["date", "personal repositories with nonowner pushes"] self.data.append([str(self.yesterday()), len(self.detailedData)]) self.truncateData(self.timeRangeTotal()) self.sortDataByDate() def query(self): fourWeeksAgo = self.daysAgo(28) return ''' SELECT CONCAT(users.login, "/", repositories.name) as "repository", COUNT(DISTINCT(pushes.pusher_id)) as "nonowner pushers" FROM repositories JOIN users ON repositories.owner_id = users.id JOIN pushes ON pushes.repository_id = repositories.id WHERE users.type = "user" AND users.suspended_at IS NULL AND CAST(pushes.created_at AS DATE) BETWEEN "''' + str(fourWeeksAgo) + '''" AND "''' + str(self.yesterday()) + '''" AND pushes.pusher_id != users.id GROUP BY repositories.id ORDER BY 2 DESC, 1'''
recon_surf/spherically_project.py
greydongilmore/FastSurfer
257
73806
# Copyright 2019 Image Analysis Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # IMPORTS import optparse import sys import nibabel.freesurfer.io as fs import numpy as np import math from lapy.DiffGeo import tria_mean_curvature_flow from lapy.TriaMesh import TriaMesh from lapy.read_geometry import read_geometry from lapy.Solver import Solver HELPTEXT = """ Script to compute ShapeDNA using linear FEM matrices. After correcting sign flips, embeds a surface mesh into the spectral domain, then projects it onto a unit sphere. This is scaled and rotated to match the atlas used for FreeSurfer surface registion. USAGE: spherically_project -i <input_surface> -o <output_surface> References: <NAME> et al. Discrete Laplace-Beltrami Operators for Shape Analysis and Segmentation. Computers & Graphics 33(3):381-390, 2009 Martin Reuter et al. Laplace-Beltrami spectra as "Shape-DNA" of surfaces and solids Computer-Aided Design 38(4):342-366, 2006 <NAME> at al. High-resolution inter-subject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8:272-284, 1999 Dependencies: Python 3.5 Scipy 0.10 or later to solve the generalized eigenvalue problem. http://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html Numpy http://www.numpy.org Nibabel to read and write FreeSurfer surface meshes http://nipy.org/nibabel/ Original Author: <NAME> Date: Jan-18-2016 """ h_input = 'path to input surface' h_output = 'path to ouput surface, spherically projected' def options_parse(): """ Command line option parser for spherically_project.py """ parser = optparse.OptionParser(version='$Id: spherically_project,v 1.1 2017/01/30 20:42:08 ltirrell Exp $', usage=HELPTEXT) parser.add_option('--input', '-i', dest='input_surf', help=h_input) parser.add_option('--output', '-o', dest='output_surf', help=h_output) (options, args) = parser.parse_args() if options.input_surf is None or options.output_surf is None: sys.exit('ERROR: Please specify input and output surfaces') return options def tria_spherical_project(tria, flow_iter=3, debug=False): """ spherical(tria) computes the first three non-constant eigenfunctions and then projects the spectral embedding onto a sphere. This works when the first functions have a single closed zero level set, splitting the mesh into two domains each. Depending on the original shape triangles could get inverted. We also flip the functions according to the axes that they are aligned with for the special case of brain surfaces in FreeSurfer coordinates. Inputs: tria : TriaMesh flow_iter : mean curv flow iterations (3 should be enough) Outputs: tria : TriaMesh """ if not tria.is_closed(): raise ValueError('Error: Can only project closed meshes!') # sub-function to compute flipped area of trias where normal # points towards origin, meaningful for the sphere, centered at zero def get_flipped_area(tria): v1 = tria.v[tria.t[:, 0], :] v2 = tria.v[tria.t[:, 1], :] v3 = tria.v[tria.t[:, 2], :] v2mv1 = v2 - v1 v3mv1 = v3 - v1 cr = np.cross(v2mv1, v3mv1) spatvol = np.sum(v1 * cr, axis=1) areas = 0.5 * np.sqrt(np.sum(cr * cr, axis=1)) area = np.sum(areas[np.where(spatvol < 0)]) return area fem = Solver(tria, lump=False) evals, evecs = fem.eigs(k=4) if debug: data = dict() data['Eigenvalues'] = evals data['Eigenvectors'] = evecs data['Creator'] = 'spherically_project.py' data['Refine'] = 0 data['Degree'] = 1 data['Dimension'] = 2 data['Elements'] = tria.t.shape[0] data['DoF'] = evecs.shape[0] data['NumEW'] = 4 from lapy.FuncIO import export_ev export_ev(data, 'debug.ev') # flip efuncs to align to coordinates consistently ev1 = evecs[:, 1] # ev1maxi = np.argmax(ev1) # ev1mini = np.argmin(ev1) # cmax = v[ev1maxi,:] # cmin = v[ev1mini,:] cmax1 = np.mean(tria.v[ev1 > 0.5 * np.max(ev1), :], 0) cmin1 = np.mean(tria.v[ev1 < 0.5 * np.min(ev1), :], 0) ev2 = evecs[:, 2] cmax2 = np.mean(tria.v[ev2 > 0.5 * np.max(ev2), :], 0) cmin2 = np.mean(tria.v[ev2 < 0.5 * np.min(ev2), :], 0) ev3 = evecs[:, 3] cmax3 = np.mean(tria.v[ev3 > 0.5 * np.max(ev3), :], 0) cmin3 = np.mean(tria.v[ev3 < 0.5 * np.min(ev3), :], 0) # we trust ev 1 goes from front to back l11 = abs(cmax1[1] - cmin1[1]) l21 = abs(cmax2[1] - cmin2[1]) l31 = abs(cmax3[1] - cmin3[1]) if l11 < l21 or l11 < l31: print("ERROR: direction 1 should be (anterior -posterior) but is not!") print(" debug info: {} {} {} ".format(l11, l21, l31)) # sys.exit(1) raise ValueError('Direction 1 should be anterior - posterior') # only flip direction if necessary print("ev1 min: {} max {} ".format(cmin1, cmax1)) # axis 1 = y is aligned with this function (for brains in FS space) v1 = cmax1 - cmin1 if cmax1[1] < cmin1[1]: ev1 = -1 * ev1 print("inverting direction 1 (anterior - posterior)") l1 = abs(cmax1[1] - cmin1[1]) # for ev2 and ev3 there could be also a swap of the two l22 = abs(cmax2[2] - cmin2[2]) l32 = abs(cmax3[2] - cmin3[2]) # usually ev2 should be superior inferior, if ev3 is better in that direction, swap if l22 < l32: print("swapping direction 2 and 3") ev2, ev3 = ev3, ev2 cmax2, cmax3 = cmax3, cmax2 cmin2, cmin3 = cmin3, cmin2 l23 = abs(cmax2[0] - cmin2[0]) l33 = abs(cmax3[0] - cmin3[0]) if l33 < l23: print("WARNING: direction 3 wants to swap with 2, but cannot") print("ev2 min: {} max {} ".format(cmin2, cmax2)) # axis 2 = z is aligned with this function (for brains in FS space) v2 = cmax2 - cmin2 if cmax2[2] < cmin2[2]: ev2 = -1 * ev2 print("inverting direction 2 (superior - inferior)") l2 = abs(cmax2[2] - cmin2[2]) print("ev3 min: {} max {} ".format(cmin3, cmax3)) # axis 0 = x is aligned with this function (for brains in FS space) v3 = cmax3 - cmin3 if cmax3[0] < cmin3[0]: ev3 = -1 * ev3 print("inverting direction 3 (right - left)") l3 = abs(cmax3[0] - cmin3[0]) v1 = v1 * (1.0 / np.sqrt(np.sum(v1 * v1))) v2 = v2 * (1.0 / np.sqrt(np.sum(v2 * v2))) v3 = v3 * (1.0 / np.sqrt(np.sum(v3 * v3))) spatvol = abs(np.dot(v1, np.cross(v2, v3))) print("spat vol: {}".format(spatvol)) mvol = tria.volume() print("orig mesh vol {}".format(mvol)) bvol = l1 * l2 * l3 print("box {}, {}, {} volume: {} ".format(l1, l2, l3, bvol)) print("box coverage: {}".format(bvol / mvol)) # we map evN to -1..0..+1 (keep zero level fixed) # I have the feeling that this helps a little with the stretching # at the poles, but who knows... ev1min = np.amin(ev1) ev1max = np.amax(ev1) ev1[ev1 < 0] /= - ev1min ev1[ev1 > 0] /= ev1max ev2min = np.amin(ev2) ev2max = np.amax(ev2) ev2[ev2 < 0] /= - ev2min ev2[ev2 > 0] /= ev2max ev3min = np.amin(ev3) ev3max = np.amax(ev3) ev3[ev3 < 0] /= - ev3min ev3[ev3 > 0] /= ev3max # set evec as new coordinates (spectral embedding) vn = np.empty(tria.v.shape) vn[:, 0] = ev3 vn[:, 1] = ev1 vn[:, 2] = ev2 # do a few mean curvature flow euler steps to make more convex # three should be sufficient if flow_iter > 0: tflow = tria_mean_curvature_flow(TriaMesh(vn, tria.t), max_iter=flow_iter) vn = tflow.v # project to sphere and scaled to have the same scale/origin as FS: dist = np.sqrt(np.sum(vn * vn, axis=1)) vn = 100 * (vn / dist[:, np.newaxis]) trianew = TriaMesh(vn, tria.t) svol = trianew.area() / (4.0 * math.pi * 10000) print("sphere area fraction: {} ".format(svol)) flippedarea = get_flipped_area(trianew) / (4.0 * math.pi * 10000) if flippedarea > 0.95: print("ERROR: global normal flip, exiting ..") raise ValueError('global normal flip') print("flipped area fraction: {} ".format(flippedarea)) if svol < 0.99: print("ERROR: sphere area fraction should be above .99, exiting ..") raise ValueError('sphere area fraction should be above .99') if flippedarea > 0.0008: print("ERROR: flipped area fraction should be below .0008, exiting ..") raise ValueError('flipped area fraction should be below .0008') # here we finally check also the spat vol (orthogonality of direction vectors) # we could stop earlier, but most failure cases will be covered by the svol and # flipped area which can be better interpreted than spatvol if spatvol < 0.6: print("ERROR: spat vol (orthogonality) should be above .6, exiting ..") raise ValueError('spat vol (orthogonality) should be above .6') return trianew def spherically_project_surface(insurf, outsurf): """ (string) -> None takes path to insurf, spherically projects it, outputs it to outsurf """ surf = read_geometry(insurf, read_metadata=True) projected = tria_spherical_project(TriaMesh(surf[0], surf[1]), flow_iter=3) fs.write_geometry(outsurf, projected.v, projected.t, volume_info=surf[2]) if __name__ == "__main__": # Command Line options are error checking done here options = options_parse() surf_to_project = options.input_surf projected_surf = options.output_surf print("Reading in surface: {} ...".format(surf_to_project)) spherically_project_surface(surf_to_project, projected_surf) print ("Outputing spherically projected surface: {}".format(projected_surf)) sys.exit(0)