max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/unit/test_parse_env_file.py
Parnassius/poethepoet
446
85885
from poethepoet.envfile import parse_env_file import pytest valid_examples = [ ( """ # empty """, {}, ), ( """ # single word values WORD=something WORD_WITH_HASH=some#thing NUMBER=0 EMOJI=😃😃 DOUBLE_QUOTED_WORD="something" SINGLE_QUOTED_WORD='something' """, { "WORD": "something", "WORD_WITH_HASH": "some#thing", "NUMBER": "0", "EMOJI": "😃😃", "DOUBLE_QUOTED_WORD": "something", "SINGLE_QUOTED_WORD": "something", }, ), ( """ # multiword values WORD=some\\ thing # and trailing comments DOUBLE_QUOTED_WORD="some thing" SINGLE_QUOTED_WORD='some thing' """, { "WORD": r"some thing", "DOUBLE_QUOTED_WORD": "some thing", "SINGLE_QUOTED_WORD": "some thing", }, ), ( """ # values with line breaks WORD=some\\ thing DOUBLE_QUOTED_WORD="some thing" SINGLE_QUOTED_WORD='some thing' """, { "WORD": "some\nthing", "DOUBLE_QUOTED_WORD": "some\n thing", "SINGLE_QUOTED_WORD": "some\n thing", }, ), ( """ # without linebreak between vars FOO=BAR BAR=FOO """, {"FOO": "BAR", "BAR": "FOO"}, ), ( """ # with semicolons ; FOO=BAR;BAR=FOO ; ; BAZ="2;'2"#; \tQUX=3\t; """, {"FOO": "BAR", "BAR": "FOO", "BAZ": "2;'2#", "QUX": "3"}, ), ( r""" # with extra backslashes FOO=a\\\ b BAR='a\\\ b' BAZ="a\\\ b" """, {"FOO": r"a\ b", "BAR": r"a\\\ b", "BAZ": r"a\ b"}, ), ( # a value with many parts and some empty vars r"""FOO=a\\\ b'a\\\ b'"a\\\ b"#"#"'\'' ;'#;\t BAR= BAZ= # still empty QUX=""", {"FOO": r"a\ ba\\\ ba\ b##\ ;#", "BAR": "", "BAZ": "", "QUX": ""}, ), # export keyword is allowed ( """export answer=42 export \t question=undefined export\tdinner=chicken """, {"answer": "42", "question": "undefined", "dinner": "chicken"}, ), ] invalid_examples = [ "foo = bar", "foo =bar", "foo= bar", "foo\t=\tbar", "foo\t=bar", "foo=\tbar", "foo= 'bar", 'foo= "bar"', "foo", "foo;", "8oo=bar", "foo@=bar", '"foo@"=bar', "'foo@'=bar", r"foo\=bar", r"foo\==bar", r"export;foo=bar", r"export\nfoo=bar", ] @pytest.mark.parametrize("example", valid_examples) def test_parse_valid_env_files(example): assert parse_env_file(example[0]) == example[1] @pytest.mark.parametrize("example", invalid_examples) def test_parse_invalid_env_files(example): with pytest.raises(ValueError): parse_env_file(example)
django/django-pyodbc-azure/DjangoWebProject1/__init__.py
garotogordo/azure-sql-database-samples
674
85892
""" Package for DjangoWebProject1. """
alg/interpole/diag-bias/main-offpoirl.py
DaraOrange/mlforhealthlabpub
171
85898
<filename>alg/interpole/diag-bias/main-offpoirl.py import argparse import dill import jax import numpy as np import pomdp pomdp.horizon = 25 parser = argparse.ArgumentParser() parser.add_argument('--silent', action='store_true') parser.add_argument('--cont', action='store_true') parser.add_argument('--bias', action='store_true') args = parser.parse_args() key = jax.random.PRNGKey(0) with open('data/data{}-meta.obj'.format('-bias' if args.bias else ''), 'rb') as f: data_meta = dill.load(f) S = data_meta['S'] A = data_meta['A'] Z = data_meta['Z'] with open('data/data{}.obj'.format('-bias' if args.bias else ''), 'rb') as f: data = dill.load(f) def log_pi(alp, bet, b): res = np.zeros(A) for a in range(A): if alp[a].size == 0: res[a] = -1e6 else: res[a] = bet * (alp[a] @ b).max() return res - np.log(np.sum(np.exp(res))) def likelihood(b0, T, O, alp): res = 0 for traj in data: b = b0 for a, z in zip(traj['a'], traj['z']): res += log_pi(alp, 10, b)[a] b = O[a,:,z] * (T[:,a,:].T @ b) b /= b.sum() return res if args.cont: with open(args.output, 'rb') as f: res = dill.load(f) key = res['key'] b0, T, O, R = res['out'][-1] else: res = dict() res['out'] = list() key, *subkey = jax.random.split(key, 4) b0 = np.array(jax.random.dirichlet(subkey[0], np.ones(S))) T = np.array(jax.random.dirichlet(subkey[1], np.ones((S,A,S)), shape=(S,A))) O = np.array(jax.random.dirichlet(subkey[1], np.ones((A,S,Z)), shape=(A,S))) ### T = np.array([[[1,0],[1,0],[1,0]],[[0,1],[0,1],[0,1]]]) O[:2,...] = np.array([[[1,0],[1,0]],[[0,1],[0,1]]]) ### key, subkey = jax.random.split(key) R = np.array([[1,-1.5,0], [-1.5,1,0]]) * .25 R += .001 * np.array(jax.random.normal(subkey, shape=(S,A))) alp = pomdp.solve(S, A, Z, b0, T, O, R) like = likelihood(b0, T, O, alp) rtio = 0 rtio_n = 0 for i in range(len(res['out']), 1000): _b0, _T, _O, _R = b0, T, O, R key, subkey = jax.random.split(key) if jax.random.choice(subkey, [True, False]): for traj in data: alp = [None] * (traj['tau']+1) alp[0] = b0 for t in range(traj['tau']): alp[t+1] = O[traj['a'][t],:,traj['z'][t]] * (T[:,traj['a'][t],:].T @ alp[t]) alp[t+1] /= alp[t+1].sum() bet = [None] * (traj['tau']+1) bet[-1] = np.ones(S) for t in reversed(range(traj['tau'])): bet[t] = T[:,traj['a'][t],:] @ (O[traj['a'][t],:,traj['z'][t]] * bet[t+1]) bet[t] /= bet[t].sum() gmm = [None] * (traj['tau']+1) for t in range(traj['tau']+1): gmm[t] = alp[t] * bet[t] gmm[t] /= gmm[t].sum() traj['s'] = [None] * (traj['tau']+1) for t in range(traj['tau']+1): key, subkey = jax.random.split(key) traj['s'][t] = jax.random.choice(subkey, range(S), p=gmm[t]) dir_b0 = np.ones(b0.shape) dir_T = np.ones(T.shape) dir_O = np.ones(O.shape) for traj in data: dir_b0[traj['s'][0]] += 1 for t in range(traj['tau']): dir_T[traj['s'][t],traj['a'][t],traj['s'][t+1]] += 1 for t in range(traj['tau']): dir_O[traj['a'][t],traj['s'][t+1],traj['z'][t]] += 1 ### key, subkey = jax.random.split(key) _b0 = np.array(jax.random.dirichlet(subkey, dir_b0)) if args.bias: _b0 = np.array([.5,.5]) _T = np.array([[[1,0],[1,0],[1,0]],[[0,1],[0,1],[0,1]]]) _O = np.array([[[1,0],[1,0]],[[0,1],[0,1]],[[.5,.5],[.5,.5]]]) for s in range(S): key, subkey = jax.random.split(key) _O[2,s,:] = np.array(jax.random.dirichlet(subkey, dir_O[2,s,:])) else: key, subkey = jax.random.split(key) _R = R + .001 * np.array(jax.random.normal(subkey, shape=(S,A))) _alp = pomdp.solve(S, A, Z, _b0, _T, _O, _R) _like = likelihood(_b0, _T, _O, _alp) key, subkey = jax.random.split(key) unif = jax.random.uniform(subkey) if np.log(unif) < _like - like: b0, T, O, R = _b0, _T, _O, _R like = _like rtio += 1 if like == _like else 0 rtio_n += 1 if not args.silent: print('i = {}, like = {}, {} ({})'.format(i, like, '*' if like == _like else '-', rtio / rtio_n)) res['key'] = key res['out'].append((b0, T, O, R)) if (i+1) % 100 == 0: with open('res/res{}-offpoirl.obj'.format('-bias' if args.bias else ''), 'wb') as f: dill.dump(res, f) with open('res/res{}-offpoirl.obj'.format('-bias' if args.bias else ''), 'wb') as f: dill.dump(res, f)
tests/dataframe_protocol_test.py
sethvargo/vaex
337
85922
<reponame>sethvargo/vaex import numpy as np import pyarrow as pa import pytest from typing import Any, Optional, Tuple, Dict, Iterable, Sequence DataFrameObject = Any ColumnObject = Any import vaex from common import * from vaex.dataframe_protocol import _from_dataframe_to_vaex, _DtypeKind, _VaexBuffer, _VaexColumn, _VaexDataFrame def test_float_only(df_factory): df = df_factory(x=[1.5, 2.5, 3.5], y=[9.2, 10.5, 11.8]) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.x.tolist() == df.x.tolist() assert df2.y.tolist() == df.y.tolist() assert df2.__dataframe__().get_column_by_name("x").null_count == 0 assert df2.__dataframe__().get_column_by_name("y").null_count == 0 assert_dataframe_equal(df.__dataframe__(), df) def test_mixed_intfloat(df_factory): df = df_factory(x=[1, 2, 0], y=[9.2, 10.5, 11.8]) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.x.tolist() == df.x.tolist() assert df2.y.tolist() == df.y.tolist() assert df2.__dataframe__().get_column_by_name("x").null_count == 0 assert df2.__dataframe__().get_column_by_name("y").null_count == 0 assert_dataframe_equal(df.__dataframe__(), df) def test_mixed_intfloatbool(df_factory): df = df_factory(x=np.array([True, True, False]), y=np.array([1, 2, 0]), z=np.array([9.2, 10.5, 11.8])) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.x.tolist() == df.x.tolist() assert df2.y.tolist() == df.y.tolist() assert df2.z.tolist() == df.z.tolist() assert df2.__dataframe__().get_column_by_name("x").null_count == 0 assert df2.__dataframe__().get_column_by_name("y").null_count == 0 assert df2.__dataframe__().get_column_by_name("z").null_count == 0 # Additionl tests for _VaexColumn assert df2.__dataframe__().get_column_by_name("x")._allow_copy == True assert df2.__dataframe__().get_column_by_name("x").size == 3 assert df2.__dataframe__().get_column_by_name("x").offset == 0 assert df2.__dataframe__().get_column_by_name("z").dtype[0] == 2 # 2: float64 assert df2.__dataframe__().get_column_by_name("z").dtype[1] == 64 # 64: float64 assert df2.__dataframe__().get_column_by_name("z").dtype == (2, 64, "<f8", "=") with pytest.raises(TypeError): assert df2.__dataframe__().get_column_by_name("y").describe_categorical if df2['y'].dtype.is_arrow: assert df2.__dataframe__().get_column_by_name("y").describe_null == (3, 0) else: assert df2.__dataframe__().get_column_by_name("y").describe_null == (0, None) assert_dataframe_equal(df.__dataframe__(), df) def test_mixed_missing(df_factory_arrow): df = df_factory_arrow(x=np.array([True, None, False, None, True]), y=np.array([None, 2, 0, 1, 2]), z=np.array([9.2, 10.5, None, 11.8, None])) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df.__dataframe__().metadata == df2.__dataframe__().metadata assert df["x"].tolist() == df2["x"].tolist() assert not df2["x"].is_masked assert df2.__dataframe__().get_column_by_name("x").null_count == 2 assert df["x"].dtype == df2["x"].dtype assert df["y"].tolist() == df2["y"].tolist() assert not df2["y"].is_masked assert df2.__dataframe__().get_column_by_name("y").null_count == 1 assert df["y"].dtype == df2["y"].dtype assert df["z"].tolist() == df2["z"].tolist() assert not df2["z"].is_masked assert df2.__dataframe__().get_column_by_name("z").null_count == 2 assert df["z"].dtype == df2["z"].dtype assert_dataframe_equal(df.__dataframe__(), df) def test_missing_from_masked(df_factory_numpy): df = df_factory_numpy( x=np.ma.array([1, 2, 3, 4, 0], mask=[0, 0, 0, 1, 1], dtype=int), y=np.ma.array([1.5, 2.5, 3.5, 4.5, 0], mask=[False, True, True, True, False], dtype=float), z=np.ma.array([True, False, True, True, True], mask=[1, 0, 0, 1, 0], dtype=bool), ) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df.__dataframe__().metadata == df2.__dataframe__().metadata assert df["x"].tolist() == df2["x"].tolist() assert not df2["x"].is_masked assert df2.__dataframe__().get_column_by_name("x").null_count == 2 assert df["x"].dtype == df2["x"].dtype assert df["y"].tolist() == df2["y"].tolist() assert not df2["y"].is_masked assert df2.__dataframe__().get_column_by_name("y").null_count == 3 assert df["y"].dtype == df2["y"].dtype assert df["z"].tolist() == df2["z"].tolist() assert not df2["z"].is_masked assert df2.__dataframe__().get_column_by_name("z").null_count == 2 assert df["z"].dtype == df2["z"].dtype assert_dataframe_equal(df.__dataframe__(), df) def test_categorical(): df = vaex.from_arrays(year=[2012, 2013, 2015, 2019], weekday=[0, 1, 4, 6]) df = df.categorize("year", min_value=2012, max_value=2019) df = df.categorize("weekday", labels=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]) # Some detailed testing for correctness of dtype and null handling: col = df.__dataframe__().get_column_by_name("year") assert col.dtype[0] == _DtypeKind.CATEGORICAL assert col.describe_categorical == (False, True, {0: 2012, 1: 2013, 2: 2014, 3: 2015, 4: 2016, 5: 2017, 6: 2018, 7: 2019}) assert col.describe_null == (0, None) assert col.dtype == (23, 64, "u", "=") col2 = df.__dataframe__().get_column_by_name("weekday") assert col2.dtype[0] == _DtypeKind.CATEGORICAL assert col2.describe_categorical == (False, True, {0: "Mon", 1: "Tue", 2: "Wed", 3: "Thu", 4: "Fri", 5: "Sat", 6: "Sun"}) assert col2.describe_null == (0, None) assert col2.dtype == (23, 64, "u", "=") df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2["year"].tolist() == [2012, 2013, 2015, 2019] assert df2["weekday"].tolist() == ["Mon", "Tue", "Fri", "Sun"] assert_dataframe_equal(df.__dataframe__(), df) def test_arrow_dictionary(): indices = pa.array([0, 1, 0, 1, 2, 0, 1, 2]) dictionary = pa.array(["foo", "bar", "baz"]) dict_array = pa.DictionaryArray.from_arrays(indices, dictionary) df = vaex.from_arrays(x=dict_array) # Some detailed testing for correctness of dtype and null handling: col = df.__dataframe__().get_column_by_name("x") assert col.dtype[0] == _DtypeKind.CATEGORICAL assert col.describe_categorical == (False, True, {0: "foo", 1: "bar", 2: "baz"}) if df['x'].dtype.is_arrow: assert col.describe_null == (3, 0) else: assert col.describe_null == (0, None) assert col.dtype == (23, 64, "u", "=") df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.x.tolist() == df.x.tolist() assert df2.__dataframe__().get_column_by_name("x").null_count == 0 assert_dataframe_equal(df.__dataframe__(), df) def test_arrow_dictionary_missing(): indices = pa.array([0, 1, 2, 0, 1], mask=np.array([0, 1, 1, 0, 0], dtype=bool)) dictionary = pa.array(["aap", "noot", "mies"]) dict_array = pa.DictionaryArray.from_arrays(indices, dictionary) df = vaex.from_arrays(x=dict_array) # Some detailed testing for correctness of dtype and null handling: col = df.__dataframe__().get_column_by_name("x") assert col.dtype[0] == _DtypeKind.CATEGORICAL assert col.describe_categorical == (False, True, {0: "aap", 1: "noot", 2: "mies"}) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.x.tolist() == df.x.tolist() assert df2.__dataframe__().get_column_by_name("x").null_count == 2 assert df["x"].dtype.index_type == df2["x"].dtype.index_type assert_dataframe_equal(df.__dataframe__(), df) def test_string(): df = vaex.from_dict({"A": ["a", None, "cdef", "", "g"]}) col = df.__dataframe__().get_column_by_name("A") assert col._col.tolist() == df.A.tolist() assert col.size == 5 assert col.null_count == 1 assert col.dtype[0] == _DtypeKind.STRING assert col.describe_null == (3,0) df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.A.tolist() == df.A.tolist() assert df2.__dataframe__().get_column_by_name("A").null_count == 1 assert df2.__dataframe__().get_column_by_name("A").describe_null == (3,0) assert df2.__dataframe__().get_column_by_name("A").dtype[0] == _DtypeKind.STRING df_sliced = df[1:] col = df_sliced.__dataframe__().get_column_by_name("A") assert col.size == 4 assert col.null_count == 1 assert col.dtype[0] == _DtypeKind.STRING assert col.describe_null == (3,0) df2 = _from_dataframe_to_vaex(df_sliced.__dataframe__()) assert df2.A.tolist() == df_sliced.A.tolist() assert df2.__dataframe__().get_column_by_name("A").null_count == 1 assert df2.__dataframe__().get_column_by_name("A").describe_null == (3,0) assert df2.__dataframe__().get_column_by_name("A").dtype[0] == _DtypeKind.STRING def test_no_mem_copy(): strings = ["a", "", "cdef", "", "g"] # data for above string array dbuf = np.array([ 97, 99, 100, 101, 102, 103], dtype='uint8') obuf = np.array([0, 1, 1, 5, 5, 6], dtype='int64') length = 5 buffers = [None, pa.py_buffer(obuf), pa.py_buffer(dbuf)] s = pa.Array.from_buffers(pa.large_utf8(), length, buffers) x = np.arange(0, 5) df = vaex.from_arrays(x=x, s=s) df2 = _from_dataframe_to_vaex(df.__dataframe__()) # primitive data x[0] = 999 assert df2.x.tolist() == [999, 1, 2, 3, 4] # strings assert df.s.tolist() == strings assert df2.s.tolist() == strings # mutate the buffer data (which actually arrow and vaex both don't support/want) strings[0] = "b" dbuf[0] += 1 assert df.s.tolist() == strings assert df2.s.tolist() == strings def test_object(): df = vaex.from_arrays(x=np.array([None, True, False])) col = df.__dataframe__().get_column_by_name("x") assert col._col.tolist() == df.x.tolist() assert col.size == 3 with pytest.raises(ValueError): assert col.dtype with pytest.raises(ValueError): assert col.describe_null def test_virtual_column(): df = vaex.from_arrays(x=np.array([True, True, False]), y=np.array([1, 2, 0]), z=np.array([9.2, 10.5, 11.8])) df.add_virtual_column("r", "sqrt(y**2 + z**2)") df2 = _from_dataframe_to_vaex(df.__dataframe__()) assert df2.r.tolist() == df.r.tolist() def test_VaexBuffer(): x = np.ndarray(shape=(5,), dtype=float, order="F") x_buffer = _VaexBuffer(x) assert x_buffer.bufsize == 5 * x.itemsize assert x_buffer.ptr == x.__array_interface__["data"][0] assert x_buffer.__dlpack_device__() == (1, None) assert x_buffer.__repr__() == f"VaexBuffer({{'bufsize': {5*x.itemsize}, 'ptr': {x.__array_interface__['data'][0]}, 'device': 'CPU'}})" with pytest.raises(NotImplementedError): assert x_buffer.__dlpack__() def test_VaexDataFrame(): df = vaex.from_arrays(x=np.array([True, True, False]), y=np.array([1, 2, 0]), z=np.array([9.2, 10.5, 11.8])) df2 = df.__dataframe__() assert df2._allow_copy == True assert df2.num_columns() == 3 assert df2.num_rows() == 3 assert df2.num_chunks() == 1 assert df2.column_names() == ["x", "y", "z"] assert df2.get_column(0)._col.tolist() == df.x.tolist() assert df2.get_column_by_name("y")._col.tolist() == df.y.tolist() for col in df2.get_columns(): assert col._col.tolist() == df[col._col.expression].tolist() assert df2.select_columns((0, 2))._df[:, 0].tolist() == df2.select_columns_by_name(("x", "z"))._df[:, 0].tolist() assert df2.select_columns((0, 2))._df[:, 1].tolist() == df2.select_columns_by_name(("x", "z"))._df[:, 1].tolist() def test_chunks(df_factory): x = np.arange(10) df = df_factory(x=x) df2 = df.__dataframe__() chunk_iter = iter(df2.get_chunks(3)) chunk = next(chunk_iter) assert chunk.num_rows() == 4 chunk = next(chunk_iter) assert chunk.num_rows() == 4 chunk = next(chunk_iter) assert chunk.num_rows() == 2 with pytest.raises(StopIteration): chunk = next(chunk_iter) def assert_buffer_equal(buffer_dtype: Tuple[_VaexBuffer, Any], vaexcol: vaex.expression.Expression): buf, dtype = buffer_dtype pytest.raises(NotImplementedError, buf.__dlpack__) assert buf.__dlpack_device__() == (1, None) assert dtype[1] == vaexcol.dtype.index_type.numpy.itemsize * 8 if not isinstance(vaexcol.values, np.ndarray) and isinstance(vaexcol.values.type, pa.DictionaryType): assert dtype[2] == vaexcol.index_values().dtype.numpy.str else: assert dtype[2] == vaexcol.dtype.numpy.str def assert_column_equal(col: _VaexColumn, vaexcol: vaex.expression.Expression): assert col.size == vaexcol.df.count("*") assert col.offset == 0 assert col.null_count == vaexcol.countmissing() assert_buffer_equal(col._get_data_buffer(), vaexcol) def assert_dataframe_equal(dfo: DataFrameObject, df: vaex.dataframe.DataFrame): assert dfo.num_columns() == len(df.columns) assert dfo.num_rows() == len(df) assert dfo.column_names() == list(df.get_column_names()) for col in df.get_column_names(): assert_column_equal(dfo.get_column_by_name(col), df[col])
spikeinterface/comparison/groundtruthcomparison.py
khl02007/spikeinterface
116
85936
import pandas as pd import numpy as np from .basecomparison import BaseTwoSorterComparison from .comparisontools import (do_score_labels, make_possible_match, make_best_match, make_hungarian_match, do_confusion_matrix, do_count_score, compute_performance) class GroundTruthComparison(BaseTwoSorterComparison): """ Compares a sorter to a ground truth. This class can: * compute a "match between gt_sorting and tested_sorting * compute optionally the score label (TP, FN, CL, FP) for each spike * count by unit of GT the total of each (TP, FN, CL, FP) into a Dataframe GroundTruthComparison.count * compute the confusion matrix .get_confusion_matrix() * compute some performance metric with several strategy based on the count score by unit * count well detected units * count false positive detected units * count redundant units * count overmerged units * summary all this Parameters ---------- gt_sorting: SortingExtractor The first sorting for the comparison tested_sorting: SortingExtractor The second sorting for the comparison gt_name: str The name of sorter 1 tested_name: : str The name of sorter 2 delta_time: float Number of ms to consider coincident spikes (default 0.4 ms) match_score: float Minimum agreement score to match units (default 0.5) chance_score: float Minimum agreement score to for a possible match (default 0.1) redundant_score: float Agreement score above which units are redundant (default 0.2) overmerged_score: float Agreement score above which units can be overmerged (default 0.2) well_detected_score: float Agreement score above which units are well detected (default 0.8) exhaustive_gt: bool (default True) Tell if the ground true is "exhaustive" or not. In other world if the GT have all possible units. It allows more performance measurement. For instance, MEArec simulated dataset have exhaustive_gt=True match_mode: 'hungarian', or 'best' What is match used for counting : 'hungarian' or 'best match'. n_jobs: int Number of cores to use in parallel. Uses all available if -1 compute_labels: bool If True, labels are computed at instantiation (default False) compute_misclassifications: bool If True, misclassifications are computed at instantiation (default False) verbose: bool If True, output is verbose Returns ------- sorting_comparison: SortingComparison The SortingComparison object """ def __init__(self, gt_sorting, tested_sorting, gt_name=None, tested_name=None, delta_time=0.4, sampling_frequency=None, match_score=0.5, well_detected_score=0.8, redundant_score=0.2, overmerged_score=0.2, chance_score=0.1, exhaustive_gt=False, n_jobs=-1, match_mode='hungarian', compute_labels=False, compute_misclassifications=False, verbose=False): if gt_name is None: gt_name = 'ground truth' if tested_name is None: tested_name = 'tested' BaseTwoSorterComparison.__init__(self, gt_sorting, tested_sorting, sorting1_name=gt_name, sorting2_name=tested_name, delta_time=delta_time, match_score=match_score, # sampling_frequency=sampling_frequency, chance_score=chance_score, n_jobs=n_jobs, verbose=verbose) self.exhaustive_gt = exhaustive_gt self._compute_misclassifications = compute_misclassifications self.redundant_score = redundant_score self.overmerged_score = overmerged_score self.well_detected_score = well_detected_score assert match_mode in ['hungarian', 'best'] self.match_mode = match_mode self._compute_labels = compute_labels self._do_count() self._labels_st1 = None self._labels_st2 = None if self._compute_labels: self._do_score_labels() # confusion matrix is compute on demand self._confusion_matrix = None def get_labels1(self, unit_id): if self._labels_st1 is None: self._do_score_labels() if unit_id in self.sorting1.get_unit_ids(): return self._labels_st1[unit_id] else: raise Exception("Unit_id is not a valid unit") def get_labels2(self, unit_id): if self._labels_st1 is None: self._do_score_labels() if unit_id in self.sorting2.get_unit_ids(): return self._labels_st2[unit_id] else: raise Exception("Unit_id is not a valid unit") def _do_matching(self): if self._verbose: print("Matching...") self.possible_match_12, self.possible_match_21 = make_possible_match(self.agreement_scores, self.chance_score) self.best_match_12, self.best_match_21 = make_best_match(self.agreement_scores, self.chance_score) self.hungarian_match_12, self.hungarian_match_21 = make_hungarian_match(self.agreement_scores, self.match_score) def _do_count(self): """ Do raw count into a dataframe. Internally use hungarian match or best match. """ if self.match_mode == 'hungarian': match_12 = self.hungarian_match_12 elif self.match_mode == 'best': match_12 = self.best_match_12 self.count_score = do_count_score(self.event_counts1, self.event_counts2, match_12, self.match_event_count) def _do_confusion_matrix(self): if self._verbose: print("Computing confusion matrix...") if self.match_mode == 'hungarian': match_12 = self.hungarian_match_12 elif self.match_mode == 'best': match_12 = self.best_match_12 self._confusion_matrix = do_confusion_matrix(self.event_counts1, self.event_counts2, match_12, self.match_event_count) def get_confusion_matrix(self): """ Computes the confusion matrix. Returns ------- confusion_matrix: pandas.DataFrame The confusion matrix """ if self._confusion_matrix is None: self._do_confusion_matrix() return self._confusion_matrix def _do_score_labels(self): assert self.match_mode == 'hungarian', \ 'Labels (TP, FP, FN) can be computed only with hungarian match' if self._verbose: print("Adding labels...") self._labels_st1, self._labels_st2 = do_score_labels(self.sorting1, self.sorting2, self.delta_frames, self.hungarian_match_12, self._compute_misclassifications) def get_performance(self, method='by_unit', output='pandas'): """ Get performance rate with several method: * 'raw_count' : just render the raw count table * 'by_unit' : render perf as rate unit by unit of the GT * 'pooled_with_average' : compute rate unit by unit and average Parameters ---------- method: str 'by_unit', or 'pooled_with_average' output: str 'pandas' or 'dict' Returns ------- perf: pandas dataframe/series (or dict) dataframe/series (based on 'output') with performance entries """ possibles = ('raw_count', 'by_unit', 'pooled_with_average') if method not in possibles: raise Exception("'method' can be " + ' or '.join(possibles)) if method == 'raw_count': perf = self.count_score elif method == 'by_unit': perf = compute_performance(self.count_score) elif method == 'pooled_with_average': perf = self.get_performance(method='by_unit').mean(axis=0) if output == 'dict' and isinstance(perf, pd.Series): perf = perf.to_dict() return perf def print_performance(self, method='pooled_with_average'): """ Print performance with the selected method """ template_txt_performance = _template_txt_performance if method == 'by_unit': perf = self.get_performance(method=method, output='pandas') perf = perf * 100 # ~ print(perf) d = {k: perf[k].tolist() for k in perf.columns} txt = template_txt_performance.format(method=method, **d) print(txt) elif method == 'pooled_with_average': perf = self.get_performance(method=method, output='pandas') perf = perf * 100 txt = template_txt_performance.format(method=method, **perf.to_dict()) print(txt) def print_summary(self, well_detected_score=None, redundant_score=None, overmerged_score=None): """ Print a global performance summary that depend on the context: * exhaustive= True/False * how many gt units (one or several) This summary mix several performance metrics. """ txt = _template_summary_part1 d = dict( num_gt=len(self.unit1_ids), num_tested=len(self.unit2_ids), num_well_detected=self.count_well_detected_units(well_detected_score), num_redundant=self.count_redundant_units(redundant_score), num_overmerged=self.count_overmerged_units(overmerged_score), ) if self.exhaustive_gt: txt = txt + _template_summary_part2 d['num_false_positive_units'] = self.count_false_positive_units() d['num_bad'] = self.count_bad_units() txt = txt.format(**d) print(txt) def get_well_detected_units(self, well_detected_score=None): """ Return units list of "well detected units" from tested_sorting. "well detected units" are defined as units in tested that are well matched to GT units. Parameters ---------- well_detected_score: float (default 0.8) The agreement score above which tested units are counted as "well detected". """ if well_detected_score is not None: self.well_detected_score = well_detected_score matched_units2 = self.hungarian_match_12 well_detected_ids = [] for u2 in self.unit2_ids: if u2 in list(matched_units2.values): u1 = self.hungarian_match_21[u2] score = self.agreement_scores.at[u1, u2] if score >= self.well_detected_score: well_detected_ids.append(u2) return well_detected_ids def count_well_detected_units(self, well_detected_score): """ Count how many well detected units. kwargs are the same as get_well_detected_units. """ return len(self.get_well_detected_units(well_detected_score=well_detected_score)) def get_false_positive_units(self, redundant_score=None): """ Return units list of "false positive units" from tested_sorting. "false positive units" are defined as units in tested that are not matched at all in GT units. Need exhaustive_gt=True Parameters ---------- redundant_score: float (default 0.2) The agreement score below which tested units are counted as "false positive"" (and not "redundant"). """ assert self.exhaustive_gt, 'false_positive_units list is valid only if exhaustive_gt=True' if redundant_score is not None: self.redundant_score = redundant_score matched_units2 = list(self.hungarian_match_12.values) false_positive_ids = [] for u2 in self.unit2_ids: if u2 not in matched_units2: if self.best_match_21[u2] == -1: false_positive_ids.append(u2) else: u1 = self.best_match_21[u2] score = self.agreement_scores.at[u1, u2] if score < self.redundant_score: false_positive_ids.append(u2) return false_positive_ids def count_false_positive_units(self, redundant_score=None): """ See get_false_positive_units(). """ return len(self.get_false_positive_units(redundant_score)) def get_redundant_units(self, redundant_score=None): """ Return "redundant units" "redundant units" are defined as units in tested that match a GT units with a big agreement score but it is not the best match. In other world units in GT that detected twice or more. Parameters ---------- redundant_score=None: float (default 0.2) The agreement score above which tested units are counted as "redundant" (and not "false positive" ). """ assert self.exhaustive_gt, 'redundant_units list is valid only if exhaustive_gt=True' if redundant_score is not None: self.redundant_score = redundant_score matched_units2 = list(self.hungarian_match_12.values) redundant_ids = [] for u2 in self.unit2_ids: if u2 not in matched_units2 and self.best_match_21[u2] != -1: u1 = self.best_match_21[u2] if u2 != self.best_match_12[u1]: score = self.agreement_scores.at[u1, u2] if score >= self.redundant_score: redundant_ids.append(u2) return redundant_ids def count_redundant_units(self, redundant_score=None): """ See get_redundant_units(). """ return len(self.get_redundant_units(redundant_score=redundant_score)) def get_overmerged_units(self, overmerged_score=None): """ Return "overmerged units" "overmerged units" are defined as units in tested that match more than one GT unit with an agreement score larger than overmerged_score. Parameters ---------- overmerged_score: float (default 0.4) Tested units with 2 or more agreement scores above 'overmerged_score' are counted as "overmerged". """ assert self.exhaustive_gt, 'overmerged_units list is valid only if exhaustive_gt=True' if overmerged_score is not None: self.overmerged_score = overmerged_score overmerged_ids = [] for u2 in self.unit2_ids: scores = self.agreement_scores.loc[:, u2] if len(np.where(scores > self.overmerged_score)[0]) > 1: overmerged_ids.append(u2) return overmerged_ids def count_overmerged_units(self, overmerged_score=None): """ See get_overmerged_units(). """ return len(self.get_overmerged_units(overmerged_score=overmerged_score)) def get_bad_units(self): """ Return units list of "bad units". "bad units" are defined as units in tested that are not in the best match list of GT units. So it is the union of "false positive units" + "redundant units". Need exhaustive_gt=True """ assert self.exhaustive_gt, 'bad_units list is valid only if exhaustive_gt=True' matched_units2 = list(self.hungarian_match_12.values) bad_ids = [] for u2 in self.unit2_ids: if u2 not in matched_units2: bad_ids.append(u2) return bad_ids def count_bad_units(self): """ See get_bad_units """ return len(self.get_bad_units()) # usefull also for gathercomparison _template_txt_performance = """PERFORMANCE ({method}) ----------- ACCURACY: {accuracy} RECALL: {recall} PRECISION: {precision} FALSE DISCOVERY RATE: {false_discovery_rate} MISS RATE: {miss_rate} """ _template_summary_part1 = """SUMMARY ------- GT num_units: {num_gt} TESTED num_units: {num_tested} num_well_detected: {num_well_detected} num_redundant: {num_redundant} num_overmerged: {num_overmerged} """ _template_summary_part2 = """num_false_positive_units {num_false_positive_units} num_bad: {num_bad} """ def compare_sorter_to_ground_truth(*args, **kwargs): return GroundTruthComparison(*args, **kwargs) compare_sorter_to_ground_truth.__doc__ = GroundTruthComparison.__doc__
src/cutadapt/adapters.py
marcelm/cutadapt
375
85941
""" Adapter finding and trimming classes The ...Adapter classes are responsible for finding adapters. The ...Match classes trim the reads. """ import logging from enum import IntFlag from collections import defaultdict from typing import Optional, Tuple, Sequence, Dict, Any, List, Union from abc import ABC, abstractmethod from .align import EndSkip, Aligner, PrefixComparer, SuffixComparer, edit_environment, hamming_environment logger = logging.getLogger() class InvalidCharacter(Exception): pass # TODO remove this enum, this should be within each Adapter class class Where(IntFlag): """ Aligner flag combinations for all adapter types. "REFERENCE" is the adapter sequence, "QUERY" is the read sequence """ BACK = EndSkip.QUERY_START | EndSkip.QUERY_STOP | EndSkip.REFERENCE_END FRONT = EndSkip.QUERY_START | EndSkip.QUERY_STOP | EndSkip.REFERENCE_START PREFIX = EndSkip.QUERY_STOP SUFFIX = EndSkip.QUERY_START # Just like FRONT/BACK, but without internal matches FRONT_NOT_INTERNAL = EndSkip.REFERENCE_START | EndSkip.QUERY_STOP BACK_NOT_INTERNAL = EndSkip.QUERY_START | EndSkip.REFERENCE_END ANYWHERE = EndSkip.SEMIGLOBAL def returns_defaultdict_int(): # We need this function to make EndStatistics picklable. # Even a @staticmethod of EndStatistics is not sufficient # as that is not picklable before Python 3.5. return defaultdict(int) class EndStatistics: """Statistics about the 5' or 3' end""" def __init__(self, adapter: "SingleAdapter"): self.max_error_rate: float = adapter.max_error_rate self.sequence: str = adapter.sequence self.effective_length: int = adapter.effective_length self.has_wildcards: bool = adapter.adapter_wildcards self.indels: bool = adapter.indels self.adapter_type: str = adapter.descriptive_identifier() self.allows_partial_matches: bool = adapter.allows_partial_matches # self.errors[l][e] == n iff a sequence of length l matching at e errors was removed n times self.errors: Dict[int, Dict[int, int]] = defaultdict(returns_defaultdict_int) self.adjacent_bases = {'A': 0, 'C': 0, 'G': 0, 'T': 0, '': 0} # TODO avoid hard-coding the list of classes self._remove_prefix = isinstance(adapter, FrontAdapter) def __repr__(self): errors = {k: dict(v) for k, v in self.errors.items()} return "EndStatistics(max_error_rate={}, errors={}, adjacent_bases={})".format( self.max_error_rate, errors, self.adjacent_bases, ) def __iadd__(self, other: Any): if not isinstance(other, self.__class__): raise ValueError("Cannot compare") if ( self.max_error_rate != other.max_error_rate or self.sequence != other.sequence or self.effective_length != other.effective_length or self.indels != other.indels ): raise RuntimeError('Incompatible EndStatistics, cannot be added') for base in ('A', 'C', 'G', 'T', ''): self.adjacent_bases[base] += other.adjacent_bases[base] for length, error_dict in other.errors.items(): for errors in error_dict: self.errors[length][errors] += other.errors[length][errors] return self @property def lengths(self): d = {length: sum(errors.values()) for length, errors in self.errors.items()} return d def random_match_probabilities(self, gc_content: float) -> List[float]: """ Estimate probabilities that this adapter end matches a random sequence. Indels are not taken into account. Returns a list p, where p[i] is the probability that i bases of this adapter match a random sequence with GC content gc_content. """ assert 0.0 <= gc_content <= 1.0 seq = self.sequence # FIXME this is broken for 'anywhere' adapters if self._remove_prefix: seq = seq[::-1] allowed_bases = 'CGRYSKMBDHVN' if self.has_wildcards else 'GC' p = 1. probabilities = [p] for i, c in enumerate(seq): if c in allowed_bases: p *= gc_content / 2. else: p *= (1. - gc_content) / 2. probabilities.append(p) return probabilities class AdapterStatistics(ABC): reverse_complemented: int = 0 name: str adapter: "Adapter" @abstractmethod def __iadd__(self, other): pass @abstractmethod def end_statistics(self) -> Tuple[Optional[EndStatistics], Optional[EndStatistics]]: pass @abstractmethod def add_match(self, match) -> None: pass class SingleAdapterStatistics(AdapterStatistics, ABC): """ Statistics about a 5' or 3' adapter, where we only need to keep track of sequences removed from one "end". """ def __init__(self, adapter: "SingleAdapter"): self.name = adapter.name self.adapter = adapter self.end = EndStatistics(adapter) def __repr__(self): return f"SingleAdapterStatistics(name={self.name}, end={self.end})" def __iadd__(self, other: "SingleAdapterStatistics"): if not isinstance(other, self.__class__): raise ValueError("Cannot iadd") self.end += other.end self.reverse_complemented += other.reverse_complemented return self class FrontAdapterStatistics(SingleAdapterStatistics): def add_match(self, match: "RemoveBeforeMatch"): self.end.errors[match.removed_sequence_length()][match.errors] += 1 def end_statistics(self) -> Tuple[Optional[EndStatistics], Optional[EndStatistics]]: return self.end, None class BackAdapterStatistics(SingleAdapterStatistics): def add_match(self, match: "RemoveAfterMatch"): adjacent_base = match.adjacent_base() self.end.errors[match.removed_sequence_length()][match.errors] += 1 try: self.end.adjacent_bases[adjacent_base] += 1 except KeyError: self.end.adjacent_bases[""] += 1 def end_statistics(self) -> Tuple[Optional[EndStatistics], Optional[EndStatistics]]: return None, self.end class LinkedAdapterStatistics(AdapterStatistics): """ Statistics about sequences removed by a lined adapter. """ def __init__( self, adapter: "LinkedAdapter", front: "SingleAdapter", back: "SingleAdapter", ): self.name = adapter.name self.adapter = adapter self.front = EndStatistics(front) self.back = EndStatistics(back) self.reverse_complemented = 0 def __repr__(self): return f"LinkedAdapterStatistics(name={self.name}, front={self.front}, back={self.back})" def __iadd__(self, other: "LinkedAdapterStatistics"): if not isinstance(other, self.__class__): raise ValueError("Cannot iadd") self.front += other.front self.back += other.back self.reverse_complemented += other.reverse_complemented return self def add_match(self, match: "LinkedMatch"): # TODO this is duplicated code if match.front_match: self.front.errors[match.front_match.removed_sequence_length()][match.errors] += 1 if match.back_match: adjacent_base = match.back_match.adjacent_base() self.back.errors[match.back_match.removed_sequence_length()][match.errors] += 1 try: self.back.adjacent_bases[adjacent_base] += 1 except KeyError: self.back.adjacent_bases[""] += 1 def end_statistics(self) -> Tuple[Optional[EndStatistics], Optional[EndStatistics]]: return self.front, self.back class AnywhereAdapterStatistics(AdapterStatistics): """ Statistics about sequences removed by a lined adapter. """ def __init__(self, adapter: "AnywhereAdapter"): self.name = adapter.name self.adapter = adapter self.front = EndStatistics(adapter) self.back = EndStatistics(adapter) self.reverse_complemented = 0 def __repr__(self): return f"AnywhereAdapterStatistics(name={self.name}, front={self.front}, back={self.back})" def __iadd__(self, other: "AnywhereAdapterStatistics"): if not isinstance(other, AnywhereAdapterStatistics): raise ValueError("Cannot add") self.front += other.front self.back += other.back self.reverse_complemented += other.reverse_complemented return self def add_match(self, match: Union["RemoveBeforeMatch", "RemoveAfterMatch"]) -> None: # TODO contains duplicated code from the other add_match() methods if isinstance(match, RemoveBeforeMatch): self.front.errors[match.removed_sequence_length()][match.errors] += 1 else: adjacent_base = match.adjacent_base() self.back.errors[match.removed_sequence_length()][match.errors] += 1 try: self.back.adjacent_bases[adjacent_base] += 1 except KeyError: self.back.adjacent_bases[""] += 1 def end_statistics(self) -> Tuple[Optional[EndStatistics], Optional[EndStatistics]]: return self.front, self.back class Match(ABC): adapter: "Adapter" @abstractmethod def remainder_interval(self) -> Tuple[int, int]: pass @abstractmethod def retained_adapter_interval(self) -> Tuple[int, int]: pass @abstractmethod def get_info_records(self, read) -> List[List]: pass @abstractmethod def trimmed(self, read): pass class SingleMatch(Match, ABC): """ Representation of a single adapter matched to a single string """ __slots__ = ['astart', 'astop', 'rstart', 'rstop', 'matches', 'errors', 'adapter', 'sequence', 'length', 'adjacent_base'] def __init__( self, astart: int, astop: int, rstart: int, rstop: int, matches: int, errors: int, adapter: "SingleAdapter", sequence: str, ): self.astart: int = astart self.astop: int = astop self.rstart: int = rstart self.rstop: int = rstop self.matches: int = matches self.errors: int = errors self.adapter: SingleAdapter = adapter self.sequence = sequence # Number of aligned characters in the adapter. If there are # indels, this may be different from the number of characters # in the read. self.length: int = astop - astart def __repr__(self): return 'SingleMatch(astart={}, astop={}, rstart={}, rstop={}, matches={}, errors={})'.format( self.astart, self.astop, self.rstart, self.rstop, self.matches, self.errors) def __eq__(self, other) -> bool: return ( other.__class__ is self.__class__ and self.astart == other.astart and self.astop == other.astop and self.rstart == other.rstart and self.rstop == other.rstop and self.matches == other.matches and self.errors == other.errors and self.adapter is other.adapter and self.sequence == other.sequence ) def wildcards(self, wildcard_char: str = "N") -> str: """ Return a string that contains, for each wildcard character, the character that it matches. For example, if the adapter ATNGNA matches ATCGTA, then the string 'CT' is returned. If there are indels, this is not reliable as the full alignment is not available. """ wildcards = [self.sequence[self.rstart + i] for i in range(self.length) if self.adapter.sequence[self.astart + i] == wildcard_char and self.rstart + i < len(self.sequence)] return ''.join(wildcards) def get_info_records(self, read) -> List[List]: seq = read.sequence qualities = read.qualities info = [ "", self.errors, self.rstart, self.rstop, seq[0:self.rstart], seq[self.rstart:self.rstop], seq[self.rstop:], self.adapter.name, ] if qualities: info += [ qualities[0:self.rstart], qualities[self.rstart:self.rstop], qualities[self.rstop:], ] else: info += ["", "", ""] return [info] @abstractmethod def removed_sequence_length(self) -> int: pass class RemoveBeforeMatch(SingleMatch): """A match that removes sequence before the match""" def __repr__(self): return 'RemoveBeforeMatch(astart={}, astop={}, rstart={}, rstop={}, matches={}, errors={})'.format( self.astart, self.astop, self.rstart, self.rstop, self.matches, self.errors) def rest(self) -> str: """ Return the part of the read before this match if this is a 'front' (5') adapter, return the part after the match if this is not a 'front' adapter (3'). This can be an empty string. """ return self.sequence[:self.rstart] def remainder_interval(self) -> Tuple[int, int]: """ Return an interval (start, stop) that describes the part of the read that would remain after trimming """ return self.rstop, len(self.sequence) def retained_adapter_interval(self) -> Tuple[int, int]: return self.rstart, len(self.sequence) def trim_slice(self): # Same as remainder_interval, but as a slice() object return slice(self.rstop, None) def trimmed(self, read): return read[self.rstop:] def removed_sequence_length(self) -> int: return self.rstop class RemoveAfterMatch(SingleMatch): """A match that removes sequence after the match""" def __repr__(self): return "RemoveAfterMatch(astart={}, astop={}, rstart={}, rstop={}, matches={}, errors={})".format( self.astart, self.astop, self.rstart, self.rstop, self.matches, self.errors) def rest(self) -> str: """ Return the part of the read before this match if this is a 'front' (5') adapter, return the part after the match if this is not a 'front' adapter (3'). This can be an empty string. """ return self.sequence[self.rstop:] def remainder_interval(self) -> Tuple[int, int]: """ Return an interval (start, stop) that describes the part of the read that would remain after trimming """ return 0, self.rstart def retained_adapter_interval(self) -> Tuple[int, int]: return 0, self.rstop def trim_slice(self): # Same as remainder_interval, but as a slice() object return slice(None, self.rstart) def trimmed(self, read): return read[:self.rstart] def adjacent_base(self) -> str: return self.sequence[self.rstart - 1:self.rstart] def removed_sequence_length(self) -> int: return len(self.sequence) - self.rstart def _generate_adapter_name(_start=[1]) -> str: name = str(_start[0]) _start[0] += 1 return name class Matchable(ABC): """Something that has a match_to() method.""" def __init__(self, name: str, *args, **kwargs): self.name = name @abstractmethod def enable_debug(self): pass @abstractmethod def match_to(self, sequence: str): pass class Adapter(Matchable, ABC): description = "adapter with one component" # this is overriden in subclasses @abstractmethod def spec(self) -> str: """Return string representation of this adapter""" @abstractmethod def create_statistics(self) -> AdapterStatistics: pass @abstractmethod def descriptive_identifier(self) -> str: pass class SingleAdapter(Adapter, ABC): """ This class can find a single adapter characterized by sequence, error rate, type etc. within reads. where -- A Where enum value. This influences where the adapter is allowed to appear within the read. sequence -- The adapter sequence as string. Will be converted to uppercase. Also, Us will be converted to Ts. max_errors -- Maximum allowed errors (non-negative float). If the values is less than 1, this is interpreted as a rate directly and passed to the aligner. If it is 1 or greater, the value is converted to a rate by dividing it by the length of the sequence. The error rate is the number of errors in the alignment divided by the length of the part of the alignment that matches the adapter. minimum_overlap -- Minimum length of the part of the alignment that matches the adapter. read_wildcards -- Whether IUPAC wildcards in the read are allowed. adapter_wildcards -- Whether IUPAC wildcards in the adapter are allowed. name -- optional name of the adapter. If not provided, the name is set to a unique number. """ allows_partial_matches: bool = True def __init__( self, sequence: str, max_errors: float = 0.1, min_overlap: int = 3, read_wildcards: bool = False, adapter_wildcards: bool = True, name: Optional[str] = None, indels: bool = True, ): self.name: str = _generate_adapter_name() if name is None else name super().__init__(self.name) self._debug: bool = False self.sequence: str = sequence.upper().replace("U", "T") if not self.sequence: raise ValueError("Adapter sequence is empty") if max_errors >= 1: max_errors /= len(self.sequence) self.max_error_rate: float = max_errors self.min_overlap: int = min(min_overlap, len(self.sequence)) iupac = frozenset('ABCDGHKMNRSTUVWXY') if adapter_wildcards and not set(self.sequence) <= iupac: for c in self.sequence: if c not in iupac: if c == "I": extra = "For inosine, consider using N instead and please comment " \ "on <https://github.com/marcelm/cutadapt/issues/546>." else: extra = "Use only characters 'ABCDGHKMNRSTUVWXY'." raise InvalidCharacter( f"Character '{c}' in adapter sequence '{self.sequence}' is " f"not a valid IUPAC code. {extra}" ) # Optimization: Use non-wildcard matching if only ACGT is used self.adapter_wildcards: bool = adapter_wildcards and not set(self.sequence) <= set("ACGT") self.read_wildcards: bool = read_wildcards self.indels: bool = indels self.aligner = self._aligner() def _make_aligner(self, flags: int) -> Aligner: # TODO # Indels are suppressed by setting their cost very high, but a different algorithm # should be used instead. indel_cost = 1 if self.indels else 100000 return Aligner( self.sequence, self.max_error_rate, flags=flags, wildcard_ref=self.adapter_wildcards, wildcard_query=self.read_wildcards, indel_cost=indel_cost, min_overlap=self.min_overlap, ) def __repr__(self): return '<{cls}(name={name!r}, sequence={sequence!r}, '\ 'max_error_rate={max_error_rate}, min_overlap={min_overlap}, '\ 'read_wildcards={read_wildcards}, '\ 'adapter_wildcards={adapter_wildcards}, '\ 'indels={indels})>'.format(cls=self.__class__.__name__, **vars(self)) @property def effective_length(self) -> int: return self.aligner.effective_length def enable_debug(self) -> None: """ Print out the dynamic programming matrix after matching a read to an adapter. """ self._debug = True self.aligner.enable_debug() @abstractmethod def _aligner(self): pass @abstractmethod def match_to(self, sequence: str): """ Attempt to match this adapter to the given string. Return a Match instance if a match was found; return None if no match was found given the matching criteria (minimum overlap length, maximum error rate). """ def __len__(self) -> int: return len(self.sequence) class FrontAdapter(SingleAdapter): """A 5' adapter""" description = "regular 5'" def __init__(self, *args, **kwargs): self._force_anywhere = kwargs.pop("force_anywhere", False) super().__init__(*args, **kwargs) def descriptive_identifier(self) -> str: return "regular_five_prime" def _aligner(self) -> Aligner: return self._make_aligner(Where.ANYWHERE.value if self._force_anywhere else Where.FRONT.value) def match_to(self, sequence: str): """ Attempt to match this adapter to the given read. Return a Match instance if a match was found; return None if no match was found given the matching criteria (minimum overlap length, maximum error rate). """ alignment: Optional[Tuple[int, int, int, int, int, int]] = self.aligner.locate(sequence) if self._debug: print(self.aligner.dpmatrix) if alignment is None: return None return RemoveBeforeMatch(*alignment, adapter=self, sequence=sequence) def spec(self) -> str: return f"{self.sequence}..." def create_statistics(self) -> FrontAdapterStatistics: return FrontAdapterStatistics(self) class BackAdapter(SingleAdapter): """A 3' adapter""" description = "regular 3'" def __init__(self, *args, **kwargs): self._force_anywhere = kwargs.pop("force_anywhere", False) super().__init__(*args, **kwargs) def descriptive_identifier(self) -> str: return "regular_three_prime" def _aligner(self): return self._make_aligner(Where.ANYWHERE.value if self._force_anywhere else Where.BACK.value) def match_to(self, sequence: str): """ Attempt to match this adapter to the given read. Return a Match instance if a match was found; return None if no match was found given the matching criteria (minimum overlap length, maximum error rate). """ alignment: Optional[Tuple[int, int, int, int, int, int]] = self.aligner.locate(sequence) if self._debug: print(self.aligner.dpmatrix) # pragma: no cover if alignment is None: return None return RemoveAfterMatch(*alignment, adapter=self, sequence=sequence) def spec(self) -> str: return f"{self.sequence}" def create_statistics(self) -> BackAdapterStatistics: return BackAdapterStatistics(self) class AnywhereAdapter(SingleAdapter): """ An adapter that can be 5' or 3'. If a match involves the first base of the read, it is assumed to be a 5' adapter and a 3' otherwise. """ description = "variable 5'/3'" def descriptive_identifier(self) -> str: return "anywhere" def _aligner(self): return self._make_aligner(Where.ANYWHERE.value) def match_to(self, sequence: str): """ Attempt to match this adapter to the given string. Return a Match instance if a match was found; return None if no match was found given the matching criteria (minimum overlap length, maximum error rate). """ alignment = self.aligner.locate(sequence.upper()) if self._debug: print(self.aligner.dpmatrix) if alignment is None: return None # guess: if alignment starts at pos 0, it’s a 5' adapter if alignment[2] == 0: # index 2 is rstart match = RemoveBeforeMatch(*alignment, adapter=self, sequence=sequence) # type: ignore else: match = RemoveAfterMatch(*alignment, adapter=self, sequence=sequence) # type: ignore return match def spec(self) -> str: return f"...{self.sequence}..." def create_statistics(self) -> AnywhereAdapterStatistics: return AnywhereAdapterStatistics(self) class NonInternalFrontAdapter(FrontAdapter): """A non-internal 5' adapter""" description = "non-internal 5'" def descriptive_identifier(self) -> str: return "noninternal_five_prime" def _aligner(self): return self._make_aligner(Where.FRONT_NOT_INTERNAL.value) def match_to(self, sequence: str): # The locate function takes care of uppercasing the sequence alignment = self.aligner.locate(sequence) if self._debug: try: print(self.aligner.dpmatrix) except AttributeError: pass if alignment is None: return None return RemoveBeforeMatch(*alignment, adapter=self, sequence=sequence) # type: ignore def spec(self) -> str: return f"X{self.sequence}..." class NonInternalBackAdapter(BackAdapter): """A non-internal 3' adapter""" description = "non-internal 3'" def descriptive_identifier(self) -> str: return "noninternal_three_prime" def _aligner(self): return self._make_aligner(Where.BACK_NOT_INTERNAL.value) def match_to(self, sequence: str): # The locate function takes care of uppercasing the sequence alignment = self.aligner.locate(sequence) if self._debug: try: print(self.aligner.dpmatrix) # pragma: no cover except AttributeError: pass if alignment is None: return None return RemoveAfterMatch(*alignment, adapter=self, sequence=sequence) # type: ignore def spec(self) -> str: return f"{self.sequence}X" class PrefixAdapter(NonInternalFrontAdapter): """An anchored 5' adapter""" description = "anchored 5'" allows_partial_matches = False def __init__(self, sequence: str, *args, **kwargs): kwargs["min_overlap"] = len(sequence) super().__init__(sequence, *args, **kwargs) def descriptive_identifier(self) -> str: return "anchored_five_prime" def _aligner(self): if not self.indels: # TODO or if error rate allows 0 errors anyway return PrefixComparer( self.sequence, self.max_error_rate, wildcard_ref=self.adapter_wildcards, wildcard_query=self.read_wildcards, min_overlap=self.min_overlap ) else: return self._make_aligner(Where.PREFIX.value) def spec(self) -> str: return f"^{self.sequence}..." class SuffixAdapter(NonInternalBackAdapter): """An anchored 3' adapter""" description = "anchored 3'" allows_partial_matches = False def __init__(self, sequence: str, *args, **kwargs): kwargs["min_overlap"] = len(sequence) super().__init__(sequence, *args, **kwargs) def descriptive_identifier(self) -> str: return "anchored_three_prime" def _aligner(self): if not self.indels: # TODO or if error rate allows 0 errors anyway return SuffixComparer( self.sequence, self.max_error_rate, wildcard_ref=self.adapter_wildcards, wildcard_query=self.read_wildcards, min_overlap=self.min_overlap ) else: return self._make_aligner(Where.SUFFIX.value) def spec(self) -> str: return f"{self.sequence}$" class LinkedMatch(Match): """ Represent a match of a LinkedAdapter """ def __init__(self, front_match: RemoveBeforeMatch, back_match: RemoveAfterMatch, adapter: "LinkedAdapter"): assert front_match is not None or back_match is not None self.front_match: RemoveBeforeMatch = front_match self.back_match: RemoveAfterMatch = back_match self.adapter: LinkedAdapter = adapter def __repr__(self): return '<LinkedMatch(front_match={!r}, back_match={}, adapter={})>'.format( self.front_match, self.back_match, self.adapter) @property def matches(self): """Number of matching bases""" m = 0 if self.front_match is not None: m += self.front_match.matches if self.back_match is not None: m += self.back_match.matches return m @property def errors(self): e = 0 if self.front_match is not None: e += self.front_match.errors if self.back_match is not None: e += self.back_match.errors return e def trimmed(self, read): if self.front_match: read = self.front_match.trimmed(read) if self.back_match: read = self.back_match.trimmed(read) return read def remainder_interval(self) -> Tuple[int, int]: matches = [match for match in [self.front_match, self.back_match] if match is not None] return remainder(matches) def retained_adapter_interval(self) -> Tuple[int, int]: if self.front_match: start = self.front_match.rstart offset = self.front_match.rstop else: start = offset = 0 if self.back_match: end = self.back_match.rstop + offset else: end = len(self.front_match.sequence) return start, end def get_info_records(self, read) -> List[List]: records = [] for match, namesuffix in [ (self.front_match, ";1"), (self.back_match, ";2"), ]: if match is None: continue record = match.get_info_records(read)[0] record[7] = ("none" if self.adapter.name is None else self.adapter.name) + namesuffix records.append(record) read = match.trimmed(read) return records class LinkedAdapter(Adapter): """A 5' adapter combined with a 3' adapter""" description = "linked" def __init__( self, front_adapter: SingleAdapter, back_adapter: SingleAdapter, front_required: bool, back_required: bool, name: str, ): super().__init__(name) self.front_required = front_required self.back_required = back_required # The following attributes are needed for the report self.where = "linked" self.name = _generate_adapter_name() if name is None else name self.front_adapter = front_adapter self.front_adapter.name = self.name self.back_adapter = back_adapter def descriptive_identifier(self) -> str: return "linked" def enable_debug(self): self.front_adapter.enable_debug() self.back_adapter.enable_debug() def match_to(self, sequence: str) -> Optional[LinkedMatch]: """ Match the two linked adapters against a string """ front_match = self.front_adapter.match_to(sequence) if self.front_required and front_match is None: return None if front_match is not None: sequence = sequence[front_match.trim_slice()] back_match = self.back_adapter.match_to(sequence) if back_match is None and (self.back_required or front_match is None): return None return LinkedMatch(front_match, back_match, self) def create_statistics(self) -> LinkedAdapterStatistics: return LinkedAdapterStatistics(self, front=self.front_adapter, back=self.back_adapter) @property def sequence(self): return self.front_adapter.sequence + "..." + self.back_adapter.sequence @property def remove(self): return None def spec(self) -> str: return f"{self.front_adapter.spec()}...{self.back_adapter.spec()}" class MultipleAdapters(Matchable): """ Represent multiple adapters at once """ def __init__(self, adapters: Sequence[Matchable]): super().__init__(name="multiple_adapters") self._adapters = adapters def enable_debug(self): for a in self._adapters: a.enable_debug() def __getitem__(self, item): return self._adapters[item] def __len__(self): return len(self._adapters) def match_to(self, sequence: str) -> Optional[SingleMatch]: """ Find the adapter that best matches the sequence. Return either a Match instance or None if there are no matches. """ best_match = None for adapter in self._adapters: match = adapter.match_to(sequence) if match is None: continue # the no. of matches determines which adapter fits best if best_match is None or match.matches > best_match.matches or ( match.matches == best_match.matches and match.errors < best_match.errors ): best_match = match return best_match class IndexedAdapters(Matchable, ABC): """ Represent multiple adapters of the same type at once and use an index data structure to speed up matching. This acts like a "normal" Adapter as it provides a match_to method, but is faster with lots of adapters. There are quite a few restrictions: - the error rate allows at most 2 mismatches - wildcards in the adapter are not allowed - wildcards in the read are not allowed Use the is_acceptable() method to check individual adapters. """ AdapterIndex = Dict[str, Tuple[SingleAdapter, int, int]] def __init__(self, adapters): """All given adapters must be of the same type""" super().__init__(name="indexed_adapters") if not adapters: raise ValueError("Adapter list is empty") for adapter in adapters: self._accept(adapter) self._adapters = adapters self._multiple_adapters = MultipleAdapters(adapters) self._lengths, self._index = self._make_index() logger.debug("String lengths in the index: %s", sorted(self._lengths, reverse=True)) if len(self._lengths) == 1: self._length = self._lengths[0] self.match_to = self._match_to_one_length else: self.match_to = self._match_to_multiple_lengths self._make_affix = self._get_make_affix() def __repr__(self): return f"{self.__class__.__name__}(adapters={self._adapters!r})" def match_to(self, sequence: str): """Never called because it gets overwritten in __init__""" @abstractmethod def _get_make_affix(self): pass @abstractmethod def _make_match(self, adapter, length, matches, errors, sequence) -> SingleMatch: pass @classmethod def _accept(cls, adapter): """Raise a ValueError if the adapter is not acceptable""" if adapter.read_wildcards: raise ValueError("Wildcards in the read not supported") if adapter.adapter_wildcards: raise ValueError("Wildcards in the adapter not supported") k = int(len(adapter) * adapter.max_error_rate) if k > 2: raise ValueError("Error rate too high") @classmethod def is_acceptable(cls, adapter): """ Return whether this adapter is acceptable for being used in an index Adapters are not acceptable if they allow wildcards, allow too many errors, or would lead to a very large index. """ try: cls._accept(adapter) except ValueError: return False return True def _make_index(self) -> Tuple[List[int], "AdapterIndex"]: logger.info('Building index of %s adapters ...', len(self._adapters)) index: Dict[str, Tuple[SingleAdapter, int, int]] = dict() lengths = set() has_warned = False for adapter in self._adapters: sequence = adapter.sequence k = int(adapter.max_error_rate * len(sequence)) environment = edit_environment if adapter.indels else hamming_environment for s, errors, matches in environment(sequence, k): if s in index: other_adapter, other_errors, other_matches = index[s] if matches < other_matches: continue if other_matches == matches and not has_warned: logger.warning( "Adapters %s %r and %s %r are very similar. At %s allowed errors, " "the sequence %r cannot be assigned uniquely because the number of " "matches is %s compared to both adapters.", other_adapter.name, other_adapter.sequence, adapter.name, adapter.sequence, k, s, matches ) has_warned = True else: index[s] = (adapter, errors, matches) lengths.add(len(s)) logger.info('Built an index containing %s strings.', len(index)) return sorted(lengths, reverse=True), index def _match_to_one_length(self, sequence: str): """ Match the adapters against a string and return a Match that represents the best match or None if no match was found """ affix = self._make_affix(sequence.upper(), self._length) if "N" in affix: # Fall back to non-indexed matching return self._multiple_adapters.match_to(sequence) try: adapter, e, m = self._index[affix] except KeyError: return None return self._make_match(adapter, self._length, m, e, sequence) def _match_to_multiple_lengths(self, sequence: str): """ Match the adapters against a string and return a Match that represents the best match or None if no match was found """ affix = sequence.upper() # Check all the prefixes or suffixes (affixes) that could match best_adapter: Optional[SingleAdapter] = None best_length = 0 best_m = -1 best_e = 1000 check_n = True for length in self._lengths: if length < best_m: # No chance of getting the same or a higher number of matches, so we can stop early break affix = self._make_affix(affix, length) if check_n: if "N" in affix: return self._multiple_adapters.match_to(sequence) check_n = False try: adapter, e, m = self._index[affix] except KeyError: continue if m > best_m or (m == best_m and e < best_e): # TODO this could be made to work: # assert best_m == -1 best_adapter = adapter best_e = e best_m = m best_length = length if best_m == -1: return None else: return self._make_match(best_adapter, best_length, best_m, best_e, sequence) def enable_debug(self): pass class IndexedPrefixAdapters(IndexedAdapters): @classmethod def _accept(cls, adapter): if not isinstance(adapter, PrefixAdapter): raise ValueError("Only 5' anchored adapters are allowed") return super()._accept(adapter) def _make_match(self, adapter, length, matches, errors, sequence): return RemoveBeforeMatch( astart=0, astop=len(adapter.sequence), rstart=0, rstop=length, matches=matches, errors=errors, adapter=adapter, sequence=sequence, ) def _get_make_affix(self): return self._make_prefix @staticmethod def _make_prefix(s, n): return s[:n] class IndexedSuffixAdapters(IndexedAdapters): @classmethod def _accept(cls, adapter): if not isinstance(adapter, SuffixAdapter): raise ValueError("Only anchored 3' adapters are allowed") return super()._accept(adapter) def _make_match(self, adapter, length, matches, errors, sequence): return RemoveAfterMatch( astart=0, astop=len(adapter.sequence), rstart=len(sequence) - length, rstop=len(sequence), matches=matches, errors=errors, adapter=adapter, sequence=sequence, ) def _get_make_affix(self): return self._make_suffix @staticmethod def _make_suffix(s, n): return s[-n:] def warn_duplicate_adapters(adapters): d = dict() for adapter in adapters: key = (adapter.__class__, adapter.sequence) if key in d: logger.warning("Adapter %r (%s) was specified multiple times! " "Please make sure that this is what you want.", adapter.sequence, adapter.description) d[key] = adapter.name def remainder(matches: Sequence[Match]) -> Tuple[int, int]: """ Determine which section of the read would not be trimmed. Return a tuple (start, stop) that gives the interval of the untrimmed part relative to the original read. matches must be non-empty """ if not matches: raise ValueError("matches must not be empty") start = 0 for match in matches: match_start, match_stop = match.remainder_interval() start += match_start length = match_stop - match_start return (start, start + length)
tests/previs/test_track.py
MehmetErer/anima
101
85958
<filename>tests/previs/test_track.py # -*- coding: utf-8 -*- import unittest from anima.edit import Track, Clip, File class TrackTestCase(unittest.TestCase): """tests the anima.previs.Track class """ def test_to_xml_method_is_working_properly(self): """testing if the to xml method is working properly """ t = Track() t.enabled = True t.locked = False # clip 1 f = File() f.duration = 34 f.name = 'shot2' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov' c = Clip() c.id = 'shot2' c.start = 1 c.end = 35 c.name = 'shot2' c.enabled = True c.duration = 34 c.in_ = 0 c.out = 34 c.file = f t.clips.append(c) # clip 2 f = File() f.duration = 30 f.name = 'shot' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot.mov' c = Clip() c.id = 'shot' c.start = 35 c.end = 65 c.name = 'shot' c.enabled = True c.duration = 30 c.in_ = 0 c.out = 30 c.file = f t.clips.append(c) # clip 3 f = File() f.duration = 45 f.name = 'shot1' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov' c = Clip() c.id = 'shot1' c.start = 65 c.end = 110 c.name = 'shot1' c.enabled = True c.duration = 45 c.in_ = 0 c.out = 45 c.file = f t.clips.append(c) expected_xml = \ """<track> <locked>FALSE</locked> <enabled>TRUE</enabled> <clipitem id="shot2"> <end>35</end> <name>shot2</name> <enabled>True</enabled> <start>1</start> <in>0</in> <duration>34</duration> <out>34</out> <file id="shot2.mov"> <duration>34</duration> <name>shot2</name> <pathurl>file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov</pathurl> </file> </clipitem> <clipitem id="shot"> <end>65</end> <name>shot</name> <enabled>True</enabled> <start>35</start> <in>0</in> <duration>30</duration> <out>30</out> <file id="shot.mov"> <duration>30</duration> <name>shot</name> <pathurl>file://localhost/home/eoyilmaz/maya/projects/default/data/shot.mov</pathurl> </file> </clipitem> <clipitem id="shot1"> <end>110</end> <name>shot1</name> <enabled>True</enabled> <start>65</start> <in>0</in> <duration>45</duration> <out>45</out> <file id="shot1.mov"> <duration>45</duration> <name>shot1</name> <pathurl>file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov</pathurl> </file> </clipitem> </track>""" self.assertEqual( expected_xml, t.to_xml() ) def test_from_xml_method_is_working_properly(self): """testing if the from_xml method will fill object attributes from the given xml node """ from xml.etree import ElementTree track_node = ElementTree.Element('track') locked_node = ElementTree.SubElement(track_node, 'locked') locked_node.text = 'FALSE' enabled_node = ElementTree.SubElement(track_node, 'enabled') enabled_node.text = 'TRUE' # clip1 clip_node = ElementTree.SubElement(track_node, 'clipitem', attrib={'id': 'shot2'}) end_node = ElementTree.SubElement(clip_node, 'end') end_node.text = '35' name_node = ElementTree.SubElement(clip_node, 'name') name_node.text = 'shot2' enabled_node = ElementTree.SubElement(clip_node, 'enabled') enabled_node.text = 'True' start_node = ElementTree.SubElement(clip_node, 'start') start_node.text = '1' in_node = ElementTree.SubElement(clip_node, 'in') in_node.text = '0' duration_node = ElementTree.SubElement(clip_node, 'duration') duration_node.text = '34' out_node = ElementTree.SubElement(clip_node, 'out') out_node.text = '34' file_node = ElementTree.SubElement(clip_node, 'file') duration_node = ElementTree.SubElement(file_node, 'duration') duration_node.text = '34' name_node = ElementTree.SubElement(file_node, 'name') name_node.text = 'shot2' pathurl_node = ElementTree.SubElement(file_node, 'pathurl') pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov' pathurl_node.text = pathurl # clip2 clip_node = ElementTree.SubElement(track_node, 'clipitem', attrib={'id': 'shot'}) end_node = ElementTree.SubElement(clip_node, 'end') end_node.text = '65' name_node = ElementTree.SubElement(clip_node, 'name') name_node.text = 'shot' enabled_node = ElementTree.SubElement(clip_node, 'enabled') enabled_node.text = 'True' start_node = ElementTree.SubElement(clip_node, 'start') start_node.text = '35' in_node = ElementTree.SubElement(clip_node, 'in') in_node.text = '0' duration_node = ElementTree.SubElement(clip_node, 'duration') duration_node.text = '30' out_node = ElementTree.SubElement(clip_node, 'out') out_node.text = '30' file_node = ElementTree.SubElement(clip_node, 'file') duration_node = ElementTree.SubElement(file_node, 'duration') duration_node.text = '30' name_node = ElementTree.SubElement(file_node, 'name') name_node.text = 'shot' pathurl_node = ElementTree.SubElement(file_node, 'pathurl') pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot.mov' pathurl_node.text = pathurl # clip3 clip_node = ElementTree.SubElement(track_node, 'clipitem', attrib={'id': 'shot1'}) end_node = ElementTree.SubElement(clip_node, 'end') end_node.text = '110' name_node = ElementTree.SubElement(clip_node, 'name') name_node.text = 'shot1' enabled_node = ElementTree.SubElement(clip_node, 'enabled') enabled_node.text = 'True' start_node = ElementTree.SubElement(clip_node, 'start') start_node.text = '65' in_node = ElementTree.SubElement(clip_node, 'in') in_node.text = '0' duration_node = ElementTree.SubElement(clip_node, 'duration') duration_node.text = '45' out_node = ElementTree.SubElement(clip_node, 'out') out_node.text = '45' file_node = ElementTree.SubElement(clip_node, 'file') duration_node = ElementTree.SubElement(file_node, 'duration') duration_node.text = '45' name_node = ElementTree.SubElement(file_node, 'name') name_node.text = 'shot1' pathurl_node = ElementTree.SubElement(file_node, 'pathurl') pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov' pathurl_node.text = pathurl t = Track() t.from_xml(track_node) self.assertEqual(False, t.locked) self.assertEqual(True, t.enabled) # clip1 c = t.clips[0] self.assertEqual(35, c.end) self.assertEqual('shot2', c.name) self.assertEqual(True, c.enabled) self.assertEqual(1, c.start) self.assertEqual(0, c.in_) self.assertEqual(34, c.duration) self.assertEqual(34, c.out) f = c.file self.assertEqual(34, f.duration) self.assertEqual('shot2', f.name) self.assertEqual( 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov', f.pathurl ) # clip2 c = t.clips[1] self.assertEqual(65, c.end) self.assertEqual('shot', c.name) self.assertEqual(True, c.enabled) self.assertEqual(35, c.start) self.assertEqual(0, c.in_) self.assertEqual(30, c.duration) self.assertEqual(30, c.out) f = c.file self.assertEqual(30, f.duration) self.assertEqual('shot', f.name) self.assertEqual( 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot.mov', f.pathurl ) # clip3 c = t.clips[2] self.assertEqual(110, c.end) self.assertEqual('shot1', c.name) self.assertEqual(True, c.enabled) self.assertEqual(65, c.start) self.assertEqual(0, c.in_) self.assertEqual(45, c.duration) self.assertEqual(45, c.out) f = c.file self.assertEqual(45, f.duration) self.assertEqual('shot1', f.name) self.assertEqual( 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov', f.pathurl ) def test_optimize_clips_is_working_properly(self): """testing if the optimize_clips method will optimize the clips to use the same file node if the file pathurls are same """ t = Track() t.enabled = True t.locked = False # clip 1 f = File() f.duration = 34 f.name = 'shot2' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov' c = Clip() c.id = 'shot2' c.start = 1 c.end = 35 c.name = 'shot2' c.enabled = True c.duration = 34 c.in_ = 0 c.out = 34 c.file = f t.clips.append(c) # clip 2 f = File() f.duration = 30 f.name = 'shot' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov' c = Clip() c.id = 'shot' c.start = 35 c.end = 65 c.name = 'shot' c.enabled = True c.duration = 30 c.in_ = 0 c.out = 30 c.file = f t.clips.append(c) # clip 3 f = File() f.duration = 45 f.name = 'shot1' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov' c = Clip() c.id = 'shot1' c.start = 65 c.end = 110 c.name = 'shot1' c.enabled = True c.duration = 45 c.in_ = 0 c.out = 45 c.file = f t.clips.append(c) # check if the file objects are different self.assertNotEqual(t.clips[0].file, t.clips[1].file) self.assertNotEqual(t.clips[0].file, t.clips[2].file) self.assertNotEqual(t.clips[1].file, t.clips[2].file) # now optimize the clips t.optimize_clips() # check if the file[0] and file[1] is the same file node # and the file[2] is different than the others self.assertEqual(t.clips[0].file, t.clips[1].file) self.assertNotEqual(t.clips[0].file, t.clips[2].file) self.assertNotEqual(t.clips[1].file, t.clips[2].file) def test_to_xml_method_with_optimized_clips_is_working_properly(self): """testing if the to xml method is working properly with the clips are optimized """ t = Track() t.enabled = True t.locked = False # clip 1 f = File() f.duration = 34 f.name = 'shot2' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov' c = Clip() c.id = 'shot2' c.start = 1 c.end = 35 c.name = 'shot2' c.enabled = True c.duration = 34 c.in_ = 0 c.out = 34 c.file = f t.clips.append(c) # clip 2 f = File() f.duration = 30 f.name = 'shot' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov' c = Clip() c.id = 'shot2' c.start = 35 c.end = 65 c.name = 'shot2' c.enabled = True c.duration = 30 c.in_ = 0 c.out = 30 c.file = f t.clips.append(c) # clip 3 f = File() f.duration = 45 f.name = 'shot1' f.pathurl = 'file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov' c = Clip() c.id = 'shot1' c.start = 65 c.end = 110 c.name = 'shot1' c.enabled = True c.duration = 45 c.in_ = 0 c.out = 45 c.file = f t.clips.append(c) expected_xml = \ """<track> <locked>FALSE</locked> <enabled>TRUE</enabled> <clipitem id="shot2"> <end>35</end> <name>shot2</name> <enabled>True</enabled> <start>1</start> <in>0</in> <duration>34</duration> <out>34</out> <file id="shot2.mov"> <duration>34</duration> <name>shot2</name> <pathurl>file://localhost/home/eoyilmaz/maya/projects/default/data/shot2.mov</pathurl> </file> </clipitem> <clipitem id="shot2 2"> <end>65</end> <name>shot2</name> <enabled>True</enabled> <start>35</start> <in>0</in> <duration>30</duration> <out>30</out> <file id="shot2.mov"/> </clipitem> <clipitem id="shot1"> <end>110</end> <name>shot1</name> <enabled>True</enabled> <start>65</start> <in>0</in> <duration>45</duration> <out>45</out> <file id="shot1.mov"> <duration>45</duration> <name>shot1</name> <pathurl>file://localhost/home/eoyilmaz/maya/projects/default/data/shot1.mov</pathurl> </file> </clipitem> </track>""" t.optimize_clips() self.assertEqual( expected_xml, t.to_xml() )
pydpm/_model/_basic_model.py
HalcyonBravado/Pydpm
112
85975
# Author: <NAME> <<EMAIL>>; <NAME> <<EMAIL>>; <NAME> <<EMAIL>> # License: BSD-3-Claus class Params(object): def __init__(self): """ The basic class for storing the parameters in the probabilistic model """ super(Params, self).__init__() class Basic_Model(object): def __init__(self, *args, **kwargs): """ The basic model for all probabilistic models in this package Attributes: @public: global_params : [Params] the global parameters of the probabilistic model local_params : [Params] the local parameters of the probabilistic model @private: _model_setting : [Params] the model settings of the probabilistic model _hyper_params : [Params] the hyper parameters of the probabilistic model """ super(Basic_Model, self).__init__() setattr(self, 'global_params', Params()) setattr(self, 'local_params', Params()) setattr(self, '_model_setting', Params()) setattr(self, '_hyper_params', Params())
pyfakefs/tests/fixtures/module_with_attributes.py
kmerenkov/pyfakefs
422
86003
<reponame>kmerenkov/pyfakefs # Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module is for testing pyfakefs :py:class:`fake_filesystem_unittest.Patcher`. It defines attributes that have the same names as file modules, sudh as 'io` and `path`. Since these are not modules, :py:class:`fake_filesystem_unittest.Patcher` should not patch them. Whenever a new module is added to :py:meth:`fake_filesystem_unittest.Patcher._findModules`, the corresponding attribute should be added here and in the test :py:class:`fake_filesystem_unittest_test.TestAttributesWithFakeModuleNames`. """ os = 'os attribute value' path = 'path attribute value' pathlib = 'pathlib attribute value' shutil = 'shutil attribute value' io = 'io attribute value'
Geometry/RPCGeometry/test/rpcgeo.py
ckamtsikis/cmssw
852
86034
<filename>Geometry/RPCGeometry/test/rpcgeo.py import FWCore.ParameterSet.Config as cms process = cms.Process("Demo") process.load("Configuration.Geometry.GeometryExtended2015Reco_cff") process.load("Geometry.RPCGeometry.rpcGeometry_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("EmptySource") process.MessageLogger = cms.Service("MessageLogger") process.demo = cms.EDAnalyzer("RPCGEO") process.p = cms.Path(process.demo)
recipes/Python/148291_Behavior_like_list_object_carried_out/recipe-148291.py
tdiprima/code
2,023
86066
class Listlike: def __init__(self): self.list = [1, 2, 3, 4, 5] def __getitem__(self, index): return self.list[index] def __len__(self): return len(self.list) >>> listlike = Listlike() >>> list(listlike) [1, 2, 3, 4, 5]
ptstat/dist/uniform.py
timmyzhao/ptstat
116
86080
import torch from torch.autograd import Variable from ptstat.core import RandomVariable, _to_v # TODO: Implement Uniform(a, b) constructor. class Uniform(RandomVariable): """ Uniform(0, 1) iid rv. """ def __init__(self, size, cuda=False): super(Uniform, self).__init__() assert len(size) == 2, str(size) self._cuda = cuda self._p_size = size def _size(self): return self._p_size def _log_pdf(self, x): return self._entropy() def _sample(self): # TODO: Use CUDA random_ when implemented. y = Variable(torch.FloatTensor(*self._p_size).uniform_()) if self._cuda: y = y.cuda() return y def _entropy(self): return _to_v(0, self._p_size[0], self._cuda)
recipes/Python/303061_Remove_whitespaceonly_text_nodes_XML/recipe-303061.py
tdiprima/code
2,023
86106
def remove_whilespace_nodes(node, unlink=False): """Removes all of the whitespace-only text decendants of a DOM node. When creating a DOM from an XML source, XML parsers are required to consider several conditions when deciding whether to include whitespace-only text nodes. This function ignores all of those conditions and removes all whitespace-only text decendants of the specified node. If the unlink flag is specified, the removed text nodes are unlinked so that their storage can be reclaimed. If the specified node is a whitespace-only text node then it is left unmodified.""" remove_list = [] for child in node.childNodes: if child.nodeType == dom.Node.TEXT_NODE and \ not child.data.strip(): remove_list.append(child) elif child.hasChildNodes(): remove_whilespace_nodes(child, unlink) for node in remove_list: node.parentNode.removeChild(node) if unlink: node.unlink()
mindspore_serving/server/start_worker.py
mindspore-ai/serving
157
86119
<gh_stars>100-1000 # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Start worker process with single core servable""" import os import time import threading import signal import argparse import psutil import mindspore_serving.log as logger from mindspore_serving.server import worker from mindspore_serving.server.common import check_type from mindspore_serving._mindspore_serving import ExitSignalHandle_ from mindspore_serving._mindspore_serving import Worker_ _main_thread_exited = False def start_listening_parent_thread(servable_name, device_id): """listening to parent process status""" def worker_listening_parent_thread(): parent_process = psutil.Process(os.getppid()) while parent_process.is_running() and not ExitSignalHandle_.has_stopped(): time.sleep(0.1) logger.warning(f"Worker {servable_name} device_id {device_id}, detect parent " f"pid={parent_process.pid} has exited or receive Ctrl+C message, worker begin to exit" f", parent running {parent_process.is_running()}, exit status {ExitSignalHandle_.has_stopped()}") worker.stop() cur_process = psutil.Process(os.getpid()) for _ in range(100): # 100x0.1=10s try: children = cur_process.children(recursive=True) if not children and _main_thread_exited: logger.info(f"All current children processes have exited") break for child in children: os.kill(child.pid, signal.SIGTERM) time.sleep(0.1) # pylint: disable=broad-except except Exception as e: logger.warning(f"Kill children catch exception {e}") thread = threading.Thread(target=worker_listening_parent_thread) thread.start() def start_worker(servable_directory, servable_name, version_number, device_type, device_id, master_address, dec_key, dec_mode, listening_master=False): """Start worker process with single core servable""" signal.signal(signal.SIGCHLD, signal.SIG_DFL) # for ccec compiler check_type.check_str('servable_directory', servable_directory) check_type.check_str('servable_name', servable_name) check_type.check_int('version_number', version_number, 0) check_type.check_str('device_type', device_type) check_type.check_int('device_id', device_id, 0) check_type.check_str('master_address', master_address) check_type.check_bool('listening_master', listening_master) ExitSignalHandle_.start() # Set flag to running and receive Ctrl+C message if listening_master: start_listening_parent_thread(servable_name, device_id) # for servable_config.py to get device id of current worker. os.environ["SERVING_DEVICE_ID"] = str(device_id) worker_pid = os.getpid() unix_socket_dir = "unix_socket_files" try: os.mkdir(unix_socket_dir) except FileExistsError: pass worker_address = f"unix:{unix_socket_dir}/serving_worker_{servable_name}_device{device_id}_{worker_pid}" if len(worker_address) > 107: # maximum unix domain socket address length worker_address = worker_address[:50] + "___" + worker_address[-50:] try: worker.start_servable(servable_directory=servable_directory, servable_name=servable_name, version_number=version_number, device_type=device_type, device_id=device_id, master_address=master_address, worker_address=worker_address, dec_key=dec_key, dec_mode=dec_mode) except Exception as ex: Worker_.notify_failed(master_address, f"{{servable name:{servable_name}, device id:{device_id}, <{ex}>}}") raise def parse_args_and_start(): """Parse args and start distributed worker""" parser = argparse.ArgumentParser(description="Serving start extra worker") parser.add_argument('--servable_directory', type=str, required=True, help="servable directory") parser.add_argument('--servable_name', type=str, required=True, help="servable name") parser.add_argument('--version_number', type=int, required=True, help="version numbers") parser.add_argument('--device_type', type=str, required=True, help="device type") parser.add_argument('--device_id', type=str, required=True, help="device id") parser.add_argument('--master_address', type=str, required=True, help="master address") parser.add_argument('--dec_key_pipe_file', type=str, required=True, help="dec key pipe file") parser.add_argument('--dec_mode', type=str, required=True, help="dec mode") parser.add_argument('--listening_master', type=str, required=True, help="whether listening master") args = parser.parse_args() servable_directory = args.servable_directory servable_name = args.servable_name version_number = int(args.version_number) device_type = args.device_type device_id = int(args.device_id) master_address = args.master_address dec_key_pipe = args.dec_key_pipe_file if dec_key_pipe != "None": with open(dec_key_pipe, "rb") as fp: dec_key = fp.read() prefix = "serving_temp_dec_" if dec_key_pipe[:len(prefix)] == prefix: os.remove(dec_key_pipe) else: dec_key = None dec_mode = args.dec_mode # pylint: disable=simplifiable-if-expression listening_master = True if args.listening_master.lower() == "true" else False try: start_worker(servable_directory, servable_name, version_number, device_type, device_id, master_address, dec_key, dec_mode, listening_master) finally: global _main_thread_exited _main_thread_exited = True if __name__ == '__main__': parse_args_and_start()
pymtl3/stdlib/test_utils/valrdy_test_srcs.py
jbrzozo24/pymtl3
152
86157
""" ======================================================================== Test sources ======================================================================== Test sources with CL or RTL interfaces. Author : <NAME> Date : Mar 11, 2019 """ from collections import deque from copy import deepcopy from pymtl3 import * from pymtl3.stdlib.ifcs import OutValRdyIfc class TestSrcRTL( Component ): def construct( s, Type, msgs, initial_delay=0, interval_delay=0 ): # Interface s.out = OutValRdyIfc( Type ) # Data s.msgs = deepcopy(msgs) # TODO: use wires and ROM to make it translatable s.idx = 0 s.num_msgs = len(s.msgs) s.count = 0 @update_ff def up_src(): if s.reset: s.idx = 0 s.count = initial_delay s.out.val <<= 0 else: if s.out.val & s.out.rdy: s.idx += 1 s.count = interval_delay if s.count > 0: s.count -= 1 s.out.val <<= 0 else: # s.count == 0 if s.idx < s.num_msgs: s.out.val <<= 1 s.out.msg <<= s.msgs[s.idx] else: s.out.val <<= 0 def done( s ): return s.idx >= s.num_msgs # Line trace def line_trace( s ): return f"{s.out}"
cctbx/miller/tst_map_to_asu_isym.py
dperl-sol/cctbx_project
155
86160
from __future__ import absolute_import, division, print_function from six.moves import range def intify(a): return tuple([int(round(val)) for val in a]) def reference_map(sg, mi): from cctbx import sgtbx asu = sgtbx.reciprocal_space_asu(sg.type()) isym_ = [] mi_ = [] for hkl in mi: found = False for i_inv in range(sg.f_inv()): for i_smx in range(sg.n_smx()): rt_mx = sg(0, i_inv, i_smx) hkl_ = intify(hkl * rt_mx.r()) if asu.is_inside(hkl_): mi_.append(hkl_) if i_inv: isym_.append(- i_smx) else: isym_.append(i_smx) found = True break if found: continue else: assert(not sg.is_centric()) for i_inv in range(sg.f_inv()): for i_smx in range(sg.n_smx()): rt_mx = sg(0, i_inv, i_smx) _hkl = [-h for h in hkl] mhkl_ = intify(_hkl * rt_mx.r()) if asu.is_inside(mhkl_): mi_.append(mhkl_) isym_.append(- i_smx) found = True break return mi_, isym_ def tst_map_to_asu_isym(anomalous_flag): from cctbx import sgtbx from cctbx.miller import map_to_asu_isym from cctbx.array_family import flex mi = flex.miller_index() i = flex.int() import random nhkl = 1000 for j in range(nhkl): hkl = [random.randint(-10, 10) for j in range(3)] mi.append(hkl) i.append(0) spacegroup = sgtbx.space_group_symbols(195).hall() sg = sgtbx.space_group(spacegroup) mi_, isym_ = reference_map(sg, mi) map_to_asu_isym(sg.type(), anomalous_flag, mi, i) for j in range(nhkl): assert(i[j] == isym_[j]) if __name__ == '__main__': tst_map_to_asu_isym(True) tst_map_to_asu_isym(False) print('OK')
articles/making-chrome-headless-undetectable/inject.py
sangaline/intoli-article-materials
248
86202
<reponame>sangaline/intoli-article-materials<filename>articles/making-chrome-headless-undetectable/inject.py from bs4 import BeautifulSoup from mitmproxy import ctx # load in the javascript to inject with open('injected-test-bypasses.js', 'r') as f: content_js = f.read() def response(flow): # only process 200 responses of html content if flow.response.headers['Content-Type'] != 'text/html': return if not flow.response.status_code == 200: return # inject the script tag html = BeautifulSoup(flow.response.text, 'lxml') container = html.head or html.body if container: script = html.new_tag('script', type='text/javascript') script.string = content_js container.insert(0, script) flow.response.text = str(html) ctx.log.info('Successfully injected the injected-test-bypasses.js script.')
screen.py
nicholas-zww/ActualVim
849
86224
class Cell: def __init__(self, c=' '): self.c = c self.highlight = {} def __mul__(self, n): return [Cell(self.c) for i in range(n)] def __str__(self): return self.c class Highlight: def __init__(self, line, highlight): self.line = line self.highlight = highlight self.start = 0 self.end = 0 def s(self): return (self.line, self.start, self.end, tuple(self.highlight.items())) def __eq__(self, h): return self.s() == h.s() def __hash__(self): return hash((self.line, self.start, self.end, tuple(self.highlight.items()))) class Screen: def __init__(self): self.x = 0 self.y = 0 self.resize(1, 1) self.highlight = {} self.changes = 0 def resize(self, w, h): self.w = w self.h = h # TODO: should resize clear? self.screen = [Cell() * w for i in range(h)] self.scroll_region = [0, self.h, 0, self.w] # clamp cursor self.x = min(self.x, w - 1) self.y = min(self.y, h - 1) def clear(self): self.resize(self.w, self.h) def scroll(self, dy): ya, yb = self.scroll_region[0:2] xa, xb = self.scroll_region[2:4] yi = (ya, yb) if dy < 0: yi = (yb, ya - 1) for y in range(yi[0], yi[1], int(dy / abs(dy))): if ya <= y + dy < yb: self.screen[y][xa:xb] = self.screen[y + dy][xa:xb] else: self.screen[y][xa:xb] = Cell() * (xb - xa) def redraw(self, updates): blacklist = [ 'mode_change', 'bell', 'mouse_on', 'highlight_set', 'update_fb', 'update_bg', 'update_sp', 'clear', ] changed = False for cmd in updates: if not cmd: continue name, args = cmd[0], cmd[1:] if name == 'cursor_goto': self.y, self.x = args[0] elif name == 'eol_clear': changed = True self.screen[self.y][self.x:] = Cell() * (self.w - self.x) elif name == 'put': changed = True for cs in args: for c in cs: cell = self.screen[self.y][self.x] cell.c = c cell.highlight = self.highlight self.x += 1 # TODO: line wrap is not specified, neither is wrapping off the end. semi-sane defaults. if self.x >= self.w: self.x = 0 self.y += 1 if self.y >= self.h: self.y = 0 elif name == 'resize': changed = True self.resize(*args[0]) elif name == 'highlight_set': self.highlight = args[0][0] elif name == 'set_scroll_region': self.scroll_region = args[0] elif name == 'scroll': changed = True self.scroll(args[0][0]) elif name in blacklist: pass # else: # print('unknown update cmd', name) if changed: self.changes += 1 def highlights(self): hlset = [] for y, line in enumerate(self.screen): cur = {} h = None for x, cell in enumerate(line): if h and cur and cell.highlight == cur: h.end = x + 1 else: cur = cell.highlight if cur: h = Highlight(y, cur) h.start = x h.end = x + 1 hlset.append(h) return hlset def p(self): print('-' * self.w) print(str(self)) print('-' * self.w) def __setitem__(self, xy, c): x, y = xy try: cell = self.screen[y][x] cell.c = c cell.highlight = self.highlight except IndexError: pass def __getitem__(self, y): if isinstance(y, tuple): return self.screen[y[1]][y[0]] return ''.join(str(c) for c in self.screen[y]) def __str__(self): return '\n'.join([self[y] for y in range(self.h)])
data_processing/create_voxel_off.py
vedanthpadigelwar/if-net
209
86245
<filename>data_processing/create_voxel_off.py from voxels import VoxelGrid import numpy as np import multiprocessing as mp from multiprocessing import Pool import glob import os import argparse def create_voxel_off(path): voxel_path = path + '/voxelization_{}.npy'.format( res) off_path = path + '/voxelization_{}.off'.format( res) if unpackbits: occ = np.unpackbits(np.load(voxel_path)) voxels = np.reshape(occ, (res,)*3) else: voxels = np.reshape(np.load(voxel_path)['occupancies'], (res,)*3) loc = ((min+max)/2, )*3 scale = max - min VoxelGrid(voxels, loc, scale).to_mesh().export(off_path) print('Finished: {}'.format(path)) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Run voxalization to off' ) parser.add_argument('-res', type=int) args = parser.parse_args() ROOT = 'shapenet/data' unpackbits = True res = args.res min = -0.5 max = 0.5 p = Pool(mp.cpu_count()) p.map(create_voxel_off, glob.glob( ROOT + '/*/*/'))
pygorithm/geometry/rect_broad_phase.py
bharadwaj-9/pygorithm
4,736
86269
""" Author: <NAME> Created On: 23 August 2017 """ # To test if two rectangle intersect, we only have to find out # if their projections intersect on all of the coordinate axes import inspect class Coord: """Coord Class to initialize Coordinate of one point """ def __init__(self, x, y): self.x = x self.y = y class SimpleRectangle: """SimpleRectangle Class to initialize Body of Object """ def __init__(self, coord1, coord2): """ :type coord1: object of class Coord :type coord2: object of class Coord """ self.min_x = coord1.x self.min_y = coord1.y self.max_x = coord2.x self.max_y = coord2.y def broad_phase(simpleRect1, simpleRect2): """ :type simpleRect1: object :type simpleRect2: object """ d1x = simpleRect2.min_x - simpleRect1.max_x d1y = simpleRect2.min_y - simpleRect1.max_y d2x = simpleRect1.min_x - simpleRect2.max_x d2y = simpleRect1.min_y - simpleRect2.max_y if d1x > 0 or d1y > 0: return False if d2x > 0 or d2y > 0: return False return True def get_code(): """ returns the code for the broad phase function """ return inspect.getsource(broad_phase)
examples/python_api_example/src/example.py
zmughal-contrib/SourcetrailDB
274
86314
import argparse import os import sourcetraildb as srctrl def main(): parser = argparse.ArgumentParser(description="SourcetrailDB Python API Example") parser.add_argument("--database-file-path", help="path to the generated Sourcetrail database file", type=str, required=True) parser.add_argument("--source-file-path", help="path to the source file to index", type=str, required=True) parser.add_argument("--database-version", help="database version of the invoking Sourcetrail binary", type=int, required=False, default=0) args = parser.parse_args() databaseFilePath = args.database_file_path sourceFilePath = args.source_file_path.replace("\\", "/") dbVersion = args.database_version print("SourcetrailDB Python API Example") print("Supported database version: " + str(srctrl.getSupportedDatabaseVersion())) if dbVersion > 0 and dbVersion != srctrl.getSupportedDatabaseVersion(): print("ERROR: Only supports database version: " + str(srctrl.getSupportedDatabaseVersion()) + ". Requested version: " + str(dbVersion)) return 1 if not srctrl.open(databaseFilePath): print("ERROR: " + srctrl.getLastError()) return 1 print("Clearing loaded database now...") srctrl.clear() print("start indexing") srctrl.beginTransaction() fileId = srctrl.recordFile(sourceFilePath) srctrl.recordFileLanguage(fileId, "python") if len(srctrl.getLastError()) > 0: print("ERROR: " + srctrl.getLastError()) return 1 symbolId = srctrl.recordSymbol( '{ "name_delimiter": ".", "name_elements": [ ' '{ "prefix": "", "name": "MyType", "postfix": "" } ' '] }') srctrl.recordSymbolDefinitionKind(symbolId, srctrl.DEFINITION_EXPLICIT) srctrl.recordSymbolKind(symbolId, srctrl.SYMBOL_CLASS) srctrl.recordSymbolLocation(symbolId, fileId, 2, 7, 2, 12) srctrl.recordSymbolScopeLocation(symbolId, fileId, 2, 1, 7, 1) memberId = srctrl.recordSymbol( '{ "name_delimiter": ".", "name_elements": [ ' '{ "prefix": "", "name": "MyType", "postfix": "" }, ' '{ "prefix": "", "name": "my_member", "postfix": "" } ' '] }') srctrl.recordSymbolDefinitionKind(memberId, srctrl.DEFINITION_EXPLICIT) srctrl.recordSymbolKind(memberId, srctrl.SYMBOL_FIELD) srctrl.recordSymbolLocation(memberId, fileId, 4, 2, 4, 10) methodId = srctrl.recordSymbol( '{ "name_delimiter": ".", "name_elements": [ ' '{ "prefix": "", "name": "MyType", "postfix": "" }, ' '{ "prefix": "", "name": "my_method", "postfix": "" } ' '] }') srctrl.recordSymbolDefinitionKind(methodId, srctrl.DEFINITION_EXPLICIT) srctrl.recordSymbolKind(methodId, srctrl.SYMBOL_METHOD) srctrl.recordSymbolLocation(methodId, fileId, 6, 6, 6, 14) srctrl.recordSymbolScopeLocation(methodId, fileId, 6, 1, 7, 1) useageId = srctrl.recordReference(methodId, memberId, srctrl.REFERENCE_USAGE) srctrl.recordReferenceLocation(useageId, fileId, 7, 10, 7, 18) srctrl.commitTransaction() if len(srctrl.getLastError()) > 0: print("ERROR: " + srctrl.getLastError()) return 1 if not srctrl.close(): print("ERROR: " + srctrl.getLastError()) return 1 print("done") return 0 main()
15Flask/day04/cart/__init__.py
HaoZhang95/PythonAndMachineLearning
937
86321
from flask import Blueprint # 每一个模块蓝图可以拥有自己的静态文件夹,默认的app会设置好系统级别的static # 但是蓝图需要自己手动设置注册静态文件的路径 # 为了区分加载的是主应用下的static还是模块下的static,给模块初始化的时候添加url前缀 # 添加前缀后,那么该蓝图.route的时候就自动添加了该前缀, 加载img的时候使用/cart/static/xxx.img # 如果模块模板和主营业模板下都拥有相同的html名字,则优先加载主营业下的模板 cart_blue = Blueprint('cart', __name__, static_folder='static', template_folder='templates', url_prefix='/cart') # 只能在蓝图初始化之后再倒入views,因为.views使用了蓝图 from .views import *
codewars_Error_correction_1__Hamming_Code.py
DazEB2/SimplePyScripts
117
86355
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://www.codewars.com/kata/5ef9ca8b76be6d001d5e1c3e/train/python def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i: i + n] # Task 1: Encode function # # Implement the encode function, using the following steps: # - convert every letter of the text to its ASCII value; # - convert ASCII values to 8-bit binary; # - triple every bit; # - concatenate the result; # # For example: # input: "hey" # --> 104, 101, 121 // ASCII values # --> 01101000, 01100101, 01111001 // binary # --> 000111111000111000000000 000111111000000111000111 000111111111111000000111 // tripled # --> "000111111000111000000000000111111000000111000111000111111111111000000111" // concatenated def encode(text: str) -> str: return ''.join( ''.join(b * 3 for b in f"{ord(c):08b}") # Tripled bits for c in text ) # Task 2: Decode function: # Check if any errors happened and correct them. Errors will be only bit flips, and not a loss of bits: # - 111 --> 101 : this can and will happen # - 111 --> 11 : this cannot happen # # Note: the length of the input string is also always divisible by 24 so that you can convert it to an ASCII value. # # Steps: # - Split the input into groups of three characters; # - Check if an error occurred: replace each group with the character that occurs most often, # e.g. 010 --> 0, 110 --> 1, etc; # - Take each group of 8 characters and convert that binary number; # - Convert the binary values to decimal (ASCII); # - Convert the ASCII values to characters and concatenate the result # # For example: # input: "100111111000111001000010000111111000000111001111000111110110111000010111" # --> 100, 111, 111, 000, 111, 001, ... // triples # --> 0, 1, 1, 0, 1, 0, ... // corrected bits # --> 01101000, 01100101, 01111001 // bytes # --> 104, 101, 121 // ASCII values # --> "hey" def decode(bits: str) -> str: bit_items = [] for tripled_bits in chunks(bits, 3): sums = sum(map(int, tripled_bits)) # Example: 110 or 111 -> 1 and 000 -> 0 or 001 -> 0 bit_items.append('1' if sums == 2 or sums == 3 else '0') binary = ''.join(bit_items) items = [] for byte in chunks(binary, 8): items.append(chr(int(byte, 2))) return ''.join(items) if __name__ == '__main__': text = 'hey' encoded = encode(text) print(encoded) assert encoded == '000111111000111000000000000111111000000111000111000111111111111000000111' decoded = decode(encoded) print(decoded) assert text == decoded invalid_encoded = '100111111000111001000010000111111000000111001111000111110110111000010111' decoded = decode(invalid_encoded) print(decoded) assert text == decoded
intro/summary-exercises/examples/plot_optimize_lidar_data_fit.py
zmoon/scipy-lecture-notes
2,538
86361
""" The lidar system, data and fit (1 of 2 datasets) ================================================ Generate a chart of the data fitted by Gaussian curve """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq def model(t, coeffs): return coeffs[0] + coeffs[1] * np.exp(- ((t-coeffs[2])/coeffs[3])**2) def residuals(coeffs, y, t): return y - model(t, coeffs) waveform_1 = np.load('waveform_1.npy') t = np.arange(len(waveform_1)) x0 = np.array([3, 30, 15, 1], dtype=float) x, flag = leastsq(residuals, x0, args=(waveform_1, t)) print(x) fig, ax = plt.subplots(figsize=(8, 6)) plt.plot(t, waveform_1, t, model(t, x)) plt.xlabel('Time [ns]') plt.ylabel('Amplitude [bins]') plt.legend(['Waveform', 'Model']) plt.show()
venv/Lib/site-packages/statsmodels/tsa/arima/datasets/brockwell_davis_2002/data/dowj.py
EkremBayar/bayar
6,931
86363
<gh_stars>1000+ """ Dow-Jones Utilities Index, Aug.28--Dec.18, 1972. Dataset described in [1]_ and included as a part of the ITSM2000 software [2]_. Downloaded on April 22, 2019 from: http://www.springer.com/cda/content/document/cda_downloaddocument/ITSM2000.zip See also https://finance.yahoo.com/quote/%5EDJU/history?period1=83822400&period2=93502800&interval=1d&filter=history&frequency=1d TODO: Add the correct business days index for this data (freq='B' does not work) References ---------- .. [1] Brockwell, <NAME>., and <NAME>. 2016. Introduction to Time Series and Forecasting. Springer. .. [2] Brockwell, <NAME>., and <NAME>. n.d. ITSM2000. """ # noqa:E501 import pandas as pd dowj = pd.Series([ 110.94, 110.69, 110.43, 110.56, 110.75, 110.84, 110.46, 110.56, 110.46, 110.05, 109.6, 109.31, 109.31, 109.25, 109.02, 108.54, 108.77, 109.02, 109.44, 109.38, 109.53, 109.89, 110.56, 110.56, 110.72, 111.23, 111.48, 111.58, 111.9, 112.19, 112.06, 111.96, 111.68, 111.36, 111.42, 112, 112.22, 112.7, 113.15, 114.36, 114.65, 115.06, 115.86, 116.4, 116.44, 116.88, 118.07, 118.51, 119.28, 119.79, 119.7, 119.28, 119.66, 120.14, 120.97, 121.13, 121.55, 121.96, 122.26, 123.79, 124.11, 124.14, 123.37, 123.02, 122.86, 123.02, 123.11, 123.05, 123.05, 122.83, 123.18, 122.67, 122.73, 122.86, 122.67, 122.09, 122, 121.23])
mmedit/models/backbones/sr_backbones/ttsr_net.py
Jian137/mmediting-1
1,884
86373
from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import build_conv_layer from mmcv.runner import load_checkpoint from mmedit.models.common import (PixelShufflePack, ResidualBlockNoBN, make_layer) from mmedit.models.registry import BACKBONES from mmedit.utils import get_root_logger # Use partial to specify some default arguments _conv3x3_layer = partial( build_conv_layer, dict(type='Conv2d'), kernel_size=3, padding=1) _conv1x1_layer = partial( build_conv_layer, dict(type='Conv2d'), kernel_size=1, padding=0) class SFE(nn.Module): """Structural Feature Encoder Backbone of Texture Transformer Network for Image Super-Resolution. Args: in_channels (int): Number of channels in the input image mid_channels (int): Channel number of intermediate features num_blocks (int): Block number in the trunk network res_scale (float): Used to scale the residual in residual block. Default: 1. """ def __init__(self, in_channels, mid_channels, num_blocks, res_scale): super().__init__() self.num_blocks = num_blocks self.conv_first = _conv3x3_layer(in_channels, mid_channels) self.body = make_layer( ResidualBlockNoBN, num_blocks, mid_channels=mid_channels, res_scale=res_scale) self.conv_last = _conv3x3_layer(mid_channels, mid_channels) def forward(self, x): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). Returns: Tensor: Forward results. """ x1 = x = F.relu(self.conv_first(x)) x = self.body(x) x = self.conv_last(x) x = x + x1 return x class CSFI2(nn.Module): """Cross-Scale Feature Integration between 1x and 2x features. Cross-Scale Feature Integration in Texture Transformer Network for Image Super-Resolution. It is cross-scale feature integration between 1x and 2x features. For example, `conv2to1` means conv layer from 2x feature to 1x feature. Down-sampling is achieved by conv layer with stride=2, and up-sampling is achieved by bicubic interpolate and conv layer. Args: mid_channels (int): Channel number of intermediate features """ def __init__(self, mid_channels): super().__init__() self.conv1to2 = _conv1x1_layer(mid_channels, mid_channels) self.conv2to1 = _conv3x3_layer(mid_channels, mid_channels, stride=2) self.conv_merge1 = _conv3x3_layer(mid_channels * 2, mid_channels) self.conv_merge2 = _conv3x3_layer(mid_channels * 2, mid_channels) def forward(self, x1, x2): """Forward function. Args: x1 (Tensor): Input tensor with shape (n, c, h, w). x2 (Tensor): Input tensor with shape (n, c, 2h, 2w). Returns: x1 (Tensor): Output tensor with shape (n, c, h, w). x2 (Tensor): Output tensor with shape (n, c, 2h, 2w). """ x12 = F.interpolate( x1, scale_factor=2, mode='bicubic', align_corners=False) x12 = F.relu(self.conv1to2(x12)) x21 = F.relu(self.conv2to1(x2)) x1 = F.relu(self.conv_merge1(torch.cat((x1, x21), dim=1))) x2 = F.relu(self.conv_merge2(torch.cat((x2, x12), dim=1))) return x1, x2 class CSFI3(nn.Module): """Cross-Scale Feature Integration between 1x, 2x, and 4x features. Cross-Scale Feature Integration in Texture Transformer Network for Image Super-Resolution. It is cross-scale feature integration between 1x and 2x features. For example, `conv2to1` means conv layer from 2x feature to 1x feature. Down-sampling is achieved by conv layer with stride=2, and up-sampling is achieved by bicubic interpolate and conv layer. Args: mid_channels (int): Channel number of intermediate features """ def __init__(self, mid_channels): super().__init__() self.conv1to2 = _conv1x1_layer(mid_channels, mid_channels) self.conv1to4 = _conv1x1_layer(mid_channels, mid_channels) self.conv2to1 = _conv3x3_layer(mid_channels, mid_channels, stride=2) self.conv2to4 = _conv1x1_layer(mid_channels, mid_channels) self.conv4to1_1 = _conv3x3_layer(mid_channels, mid_channels, stride=2) self.conv4to1_2 = _conv3x3_layer(mid_channels, mid_channels, stride=2) self.conv4to2 = _conv3x3_layer(mid_channels, mid_channels, stride=2) self.conv_merge1 = _conv3x3_layer(mid_channels * 3, mid_channels) self.conv_merge2 = _conv3x3_layer(mid_channels * 3, mid_channels) self.conv_merge4 = _conv3x3_layer(mid_channels * 3, mid_channels) def forward(self, x1, x2, x4): """Forward function. Args: x1 (Tensor): Input tensor with shape (n, c, h, w). x2 (Tensor): Input tensor with shape (n, c, 2h, 2w). x4 (Tensor): Input tensor with shape (n, c, 4h, 4w). Returns: x1 (Tensor): Output tensor with shape (n, c, h, w). x2 (Tensor): Output tensor with shape (n, c, 2h, 2w). x4 (Tensor): Output tensor with shape (n, c, 4h, 4w). """ x12 = F.interpolate( x1, scale_factor=2, mode='bicubic', align_corners=False) x12 = F.relu(self.conv1to2(x12)) x14 = F.interpolate( x1, scale_factor=4, mode='bicubic', align_corners=False) x14 = F.relu(self.conv1to4(x14)) x21 = F.relu(self.conv2to1(x2)) x24 = F.interpolate( x2, scale_factor=2, mode='bicubic', align_corners=False) x24 = F.relu(self.conv2to4(x24)) x41 = F.relu(self.conv4to1_1(x4)) x41 = F.relu(self.conv4to1_2(x41)) x42 = F.relu(self.conv4to2(x4)) x1 = F.relu(self.conv_merge1(torch.cat((x1, x21, x41), dim=1))) x2 = F.relu(self.conv_merge2(torch.cat((x2, x12, x42), dim=1))) x4 = F.relu(self.conv_merge4(torch.cat((x4, x14, x24), dim=1))) return x1, x2, x4 class MergeFeatures(nn.Module): """Merge Features. Merge 1x, 2x, and 4x features. Final module of Texture Transformer Network for Image Super-Resolution. Args: mid_channels (int): Channel number of intermediate features out_channels (int): Number of channels in the output image """ def __init__(self, mid_channels, out_channels): super().__init__() self.conv1to4 = _conv1x1_layer(mid_channels, mid_channels) self.conv2to4 = _conv1x1_layer(mid_channels, mid_channels) self.conv_merge = _conv3x3_layer(mid_channels * 3, mid_channels) self.conv_last1 = _conv3x3_layer(mid_channels, mid_channels // 2) self.conv_last2 = _conv1x1_layer(mid_channels // 2, out_channels) def forward(self, x1, x2, x4): """Forward function. Args: x1 (Tensor): Input tensor with shape (n, c, h, w). x2 (Tensor): Input tensor with shape (n, c, 2h, 2w). x4 (Tensor): Input tensor with shape (n, c, 4h, 4w). Returns: x (Tensor): Output tensor with shape (n, c_out, 4h, 4w). """ x14 = F.interpolate( x1, scale_factor=4, mode='bicubic', align_corners=False) x14 = F.relu(self.conv1to4(x14)) x24 = F.interpolate( x2, scale_factor=2, mode='bicubic', align_corners=False) x24 = F.relu(self.conv2to4(x24)) x = F.relu(self.conv_merge(torch.cat((x4, x14, x24), dim=1))) x = self.conv_last1(x) x = self.conv_last2(x) x = torch.clamp(x, -1, 1) return x @BACKBONES.register_module() class TTSRNet(nn.Module): """TTSR network structure (main-net) for reference-based super-resolution. Paper: Learning Texture Transformer Network for Image Super-Resolution Adapted from 'https://github.com/researchmm/TTSR.git' 'https://github.com/researchmm/TTSR' Copyright permission at 'https://github.com/researchmm/TTSR/issues/38'. Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels in the output image mid_channels (int): Channel number of intermediate features. Default: 64 num_blocks (tuple[int]): Block numbers in the trunk network. Default: (16, 16, 8, 4) res_scale (float): Used to scale the residual in residual block. Default: 1. """ def __init__(self, in_channels, out_channels, mid_channels=64, texture_channels=64, num_blocks=(16, 16, 8, 4), res_scale=1.0): super().__init__() self.texture_channels = texture_channels self.sfe = SFE(in_channels, mid_channels, num_blocks[0], res_scale) # stage 1 self.conv_first1 = _conv3x3_layer(4 * texture_channels + mid_channels, mid_channels) self.res_block1 = make_layer( ResidualBlockNoBN, num_blocks[1], mid_channels=mid_channels, res_scale=res_scale) self.conv_last1 = _conv3x3_layer(mid_channels, mid_channels) # up-sampling 1 -> 2 self.up1 = PixelShufflePack( in_channels=mid_channels, out_channels=mid_channels, scale_factor=2, upsample_kernel=3) # stage 2 self.conv_first2 = _conv3x3_layer(2 * texture_channels + mid_channels, mid_channels) self.csfi2 = CSFI2(mid_channels) self.res_block2_1 = make_layer( ResidualBlockNoBN, num_blocks[2], mid_channels=mid_channels, res_scale=res_scale) self.res_block2_2 = make_layer( ResidualBlockNoBN, num_blocks[2], mid_channels=mid_channels, res_scale=res_scale) self.conv_last2_1 = _conv3x3_layer(mid_channels, mid_channels) self.conv_last2_2 = _conv3x3_layer(mid_channels, mid_channels) # up-sampling 2 -> 3 self.up2 = PixelShufflePack( in_channels=mid_channels, out_channels=mid_channels, scale_factor=2, upsample_kernel=3) # stage 3 self.conv_first3 = _conv3x3_layer(texture_channels + mid_channels, mid_channels) self.csfi3 = CSFI3(mid_channels) self.res_block3_1 = make_layer( ResidualBlockNoBN, num_blocks[3], mid_channels=mid_channels, res_scale=res_scale) self.res_block3_2 = make_layer( ResidualBlockNoBN, num_blocks[3], mid_channels=mid_channels, res_scale=res_scale) self.res_block3_3 = make_layer( ResidualBlockNoBN, num_blocks[3], mid_channels=mid_channels, res_scale=res_scale) self.conv_last3_1 = _conv3x3_layer(mid_channels, mid_channels) self.conv_last3_2 = _conv3x3_layer(mid_channels, mid_channels) self.conv_last3_3 = _conv3x3_layer(mid_channels, mid_channels) # end, merge features self.merge_features = MergeFeatures(mid_channels, out_channels) def forward(self, x, soft_attention, textures): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). soft_attention (Tensor): Soft-Attention tensor with shape (n, 1, h, w). textures (Tuple[Tensor]): Transferred HR texture tensors. [(N, C, H, W), (N, C/2, 2H, 2W), ...] Returns: Tensor: Forward results. """ assert textures[-1].shape[1] == self.texture_channels x1 = self.sfe(x) # stage 1 x1_res = torch.cat((x1, textures[0]), dim=1) x1_res = self.conv_first1(x1_res) # soft-attention x1 = x1 + x1_res * soft_attention x1_res = self.res_block1(x1) x1_res = self.conv_last1(x1_res) x1 = x1 + x1_res # stage 2 x21 = x1 x22 = self.up1(x1) x22 = F.relu(x22) x22_res = torch.cat((x22, textures[1]), dim=1) x22_res = self.conv_first2(x22_res) # soft-attention x22_res = x22_res * F.interpolate( soft_attention, scale_factor=2, mode='bicubic', align_corners=False) x22 = x22 + x22_res x21_res, x22_res = self.csfi2(x21, x22) x21_res = self.res_block2_1(x21_res) x22_res = self.res_block2_2(x22_res) x21_res = self.conv_last2_1(x21_res) x22_res = self.conv_last2_2(x22_res) x21 = x21 + x21_res x22 = x22 + x22_res # stage 3 x31 = x21 x32 = x22 x33 = self.up2(x22) x33 = F.relu(x33) x33_res = torch.cat((x33, textures[2]), dim=1) x33_res = self.conv_first3(x33_res) # soft-attention x33_res = x33_res * F.interpolate( soft_attention, scale_factor=4, mode='bicubic', align_corners=False) x33 = x33 + x33_res x31_res, x32_res, x33_res = self.csfi3(x31, x32, x33) x31_res = self.res_block3_1(x31_res) x32_res = self.res_block3_2(x32_res) x33_res = self.res_block3_3(x33_res) x31_res = self.conv_last3_1(x31_res) x32_res = self.conv_last3_2(x32_res) x33_res = self.conv_last3_3(x33_res) x31 = x31 + x31_res x32 = x32 + x32_res x33 = x33 + x33_res x = self.merge_features(x31, x32, x33) return x def init_weights(self, pretrained=None, strict=True): """Init weights for models. Args: pretrained (str, optional): Path for pretrained weights. If given None, pretrained weights will not be loaded. Defaults to None. strict (boo, optional): Whether strictly load the pretrained model. Defaults to True. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=strict, logger=logger) elif pretrained is None: pass # use default initialization else: raise TypeError('"pretrained" must be a str or None. ' f'But received {type(pretrained)}.')
src/c3nav/routing/utils/draw.py
johnjohndoe/c3nav
132
86384
from django.conf import settings def _ellipse_bbox(x, y, height): x *= settings.RENDER_SCALE y *= settings.RENDER_SCALE y = height-y return ((x - 2, y - 2), (x + 2, y + 2)) def _line_coords(from_point, to_point, height): return (from_point.x * settings.RENDER_SCALE, height - (from_point.y * settings.RENDER_SCALE), to_point.x * settings.RENDER_SCALE, height - (to_point.y * settings.RENDER_SCALE))
draft_kings/response/schema/draft_group.py
jaebradley/draftkings_client
111
86398
# pylint: disable=unused-argument, no-self-use from marshmallow import Schema, fields, EXCLUDE, post_load from draft_kings.response.objects.draft_group import ContestType, League, Game, DraftGroup, DraftGroupResponse class ContestTypeSchema(Schema): class Meta: unknown = EXCLUDE contestTypeId = fields.Int(attribute="contest_type_id", missing=None) gameType = fields.Str(attribute="game_type", missing=None) @post_load def make_contest_type(self, data, **kwargs): return ContestType(**data) class LeagueSchema(Schema): class Meta: unknown = EXCLUDE leagueAbbreviation = fields.Str(attribute="league_abbreviation", missing=None) leagueId = fields.Int(attribute="league_id", missing=None) leagueName = fields.Str(attribute="league_name", missing=None) @post_load def make_league(self, data, **kwargs): return League(**data) class GameSchema(Schema): class Meta: unknown = EXCLUDE awayTeamId = fields.Int(attribute="away_team_id", missing=None) description = fields.Str(attribute="description", missing=None) gameId = fields.Int(attribute="game_id", missing=None) homeTeamId = fields.Int(attribute="home_team_id", missing=None) location = fields.Str(attribute="location", missing=None) name = fields.Str(attribute="name", missing=None) startDate = fields.AwareDateTime(attribute="start_date", missing=None) status = fields.Str(attribute="status", missing=None) @post_load def make_game(self, data, **kwargs): return Game(**data) class DraftGroupSchema(Schema): class Meta: unknown = EXCLUDE contestType = fields.Nested(ContestTypeSchema, attribute="contest_type", required=True) draftGroupId = fields.Int(attribute="draft_group_id", missing=None) draftGroupState = fields.Str(attribute="draft_group_state", missing=None) games = fields.List(fields.Nested(GameSchema, required=True), attribute="games", missing=[]) leagues = fields.List(fields.Nested(LeagueSchema, required=True), attribute="leagues", missing=[]) maxStartTime = fields.AwareDateTime(attribute="max_start_time", missing=None) minStartTime = fields.AwareDateTime(attribute="min_start_time", missing=None) sportId = fields.Int(attribute="sport_id", missing=None) startTimeType = fields.Str(attribute="start_time_type", missing=None) @post_load def make_draft_group(self, data, **kwargs): return DraftGroup(**data) class DraftGroupResponseSchema(Schema): class Meta: unknown = EXCLUDE draftGroup = fields.Nested(DraftGroupSchema, attribute="draft_group", required=True) @post_load def make_draft_group_response(self, data, **kwargs): return DraftGroupResponse(**data) # pylint: enable=unused-argument, no-self-use
etl/parsers/etw/Microsoft_Windows_WMPNSS_PublicAPI.py
IMULMUL/etl-parser
104
86404
# -*- coding: utf-8 -*- """ Microsoft-Windows-WMPNSS-PublicAPI GUID : 614696c9-85af-4e64-b389-d2c0db4ff87b """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=100, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_100_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=101, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_101_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=102, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_102_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=103, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_103_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=104, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_104_0(Etw): pattern = Struct( "LibraryName" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=105, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_105_0(Etw): pattern = Struct( "LibraryName" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=106, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_106_0(Etw): pattern = Struct( "LibraryName" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=107, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_107_0(Etw): pattern = Struct( "LibraryName" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=108, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_108_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=109, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_109_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=110, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_110_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=111, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_111_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=112, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_112_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=113, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_113_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=114, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_114_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=115, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_115_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=116, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_116_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=117, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_117_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=118, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_118_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=119, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_119_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=120, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_120_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=121, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_121_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=122, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_122_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=123, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_123_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=124, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_124_0(Etw): pattern = Struct( "MACAddress" / WString, "FriendlyName" / WString, "Authorize" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=125, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_125_0(Etw): pattern = Struct( "MACAddress" / WString, "FriendlyName" / WString, "Authorize" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=126, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_126_0(Etw): pattern = Struct( "MACAddress" / WString, "Authorize" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=127, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_127_0(Etw): pattern = Struct( "MACAddress" / WString, "Authorize" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=128, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_128_0(Etw): pattern = Struct( "Devices" / Int64ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=129, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_129_0(Etw): pattern = Struct( "Devices" / Int64ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=130, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_130_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=131, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_131_0(Etw): pattern = Struct( "Enable" / Int8ul, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=132, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_132_0(Etw): pattern = Struct( "DeviceID" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=133, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_133_0(Etw): pattern = Struct( "DeviceID" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=134, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_134_0(Etw): pattern = Struct( "SecurityGroup" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=135, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_135_0(Etw): pattern = Struct( "SecurityGroup" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=136, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_136_0(Etw): pattern = Struct( "SecurityGroup" / WString, "HResult" / Int32ul ) @declare(guid=guid("614696c9-85af-4e64-b389-d2c0db4ff87b"), event_id=137, version=0) class Microsoft_Windows_WMPNSS_PublicAPI_137_0(Etw): pattern = Struct( "SecurityGroup" / WString, "HResult" / Int32ul )
mc-cnn/rgs.py
datvuthanh/SPIMNET
746
86438
#!/usr/bin/env python3 import sys dataset, action = sys.argv[1:] assert(dataset in {'mb', 'kitti'}) assert(action in {'test_te', 'train_tr'}) workers = [ ('localhost', '-gpu 1'), ('localhost', '-gpu 2'), ('localhost', '-gpu 3'), ('localhost', '-gpu 4'), ] if dataset == 'kitti' and action == 'train_tr': params = [ ('l1', [3, 4, 5]), ('fm_s', [1, 2, 3, 4, 5, 6, 7]), ('fm_t', [4, 5, 6, 7, 8, 9, 10]), ('l2', [3, 4, 5]), ('nh2', [200, 300, 400]), ('lr', [0.001, 0.003, 0.01]), ('true1', [0.5, 1, 1.5]), ('false1', [2, 3, 4, 5]), ('false2', [4, 6, 8, 10, 12]), ] def valid(ps): if ps['fm_s'] > ps['fm_t']: return False if ps['true1'] > ps['false1']: return False return True if dataset == 'mb' and action == 'train_tr': params = [ ('l1', [3, 4, 5]), ('fm_s', [1, 2, 3, 4, 5, 6]), ('fm_t', [1, 2, 3, 4, 5, 6]), ('l2', [3, 4, 5]), ('nh2', [100, 150, 200]), ('lr', [0.001, 0.003, 0.01]), ('true1', [0.5, 1, 1.5]), ('false1', [1, 1.5, 2, 2.5, 3]), ('false2', [4, 6, 8, 10, 12]), ] def valid(ps): if ps['fm_s'] > ps['fm_t']: return False if ps['true1'] > ps['false1']: return False return True if dataset == 'mb' and action == 'test_te': params = [ # ('L1', range(0, 10)), # ('cbca_i1', [0, 2, 4, 6, 8]), # ('cbca_i2', [0, 2, 4, 6, 8]), ('tau1', [2**(i/2.) for i in range(-13,-4)]), # ('pi1', [2**i for i in range(-3, 4)]), # ('pi2', [2**i for i in range(2, 9)]), # ('sgm_q1', [3, 3.5, 4, 4.5, 5]), # ('sgm_q2', [2, 2.5, 3, 3.5, 4, 4.5]), # ('alpha1', [1 + i/4. for i in range(0, 8)]), ('tau_so', [2**(i/2.) for i in range(-10,0)]), # ('blur_sigma', [2**(i/2.) for i in range(0, 8)]), # ('blur_t', range(1, 8)), ] def valid(ps): # if ps['pi1'] > ps['pi2']: return False return True ### import random import threading import multiprocessing import subprocess import sys def start_job(ps, level): worker = multiprocessing.current_process()._identity[0] - 1 host, args = workers[worker] ps_str = ' '.join('-%s %r' % (name, vals[i]) for name, vals, i in ps) if action == 'test_te': ps_str += ' -use_cache' cmd = "ssh %s 'cd devel/mc-cnn;TERM=xterm ./main.lua %s -a %s %s %s'" % (host, dataset, action, args, ps_str) try: o = subprocess.check_output(cmd, shell=True) return float(o.split()[-1]), ps_str, ps, level except: print('Exception!') return 1, ps_str, ps, level def stop_job(res): results.append(res) #print(min(results)[:2]) for r in sorted(results, reverse=True)[-50:]: print(r[:2]) print(res[:2]) print('--') sem.release() for worker in set(w[0] for w in workers): subprocess.call("ssh {} 'pkill luajit'".format(worker), shell=True) pool = multiprocessing.Pool(len(workers)) sem = threading.Semaphore(len(workers)) results = [] visited = set() while True: # get level level = random.randint(0, max([r[3] for r in results])) if results else 0 if level == 0: ps = tuple((name, tuple(vals), random.randint(0, len(vals) - 1)) for name, vals in params) else: ps_min = min([r for r in results if r[3] == level])[2] ps = [] for name, vals, i in ps_min: xs = [i] if i - 1 >= 0: xs.append(i - 1) if i + 1 < len(vals): xs.append(i + 1) ps.append((name, vals, random.choice(xs))) ps = tuple(ps) if not valid({name: vals[i] for name, vals, i in ps}): continue if ps in visited: continue visited.add(ps) sem.acquire() pool.apply_async(start_job, (ps, level + 1), callback=stop_job)
tests/unit/tasks/test_check_queue_size.py
guvenbz/amazon-s3-find-and-forget
165
86474
from types import SimpleNamespace import pytest from mock import patch, MagicMock from backend.lambdas.tasks.check_queue_size import handler pytestmark = [pytest.mark.unit, pytest.mark.task] @patch("backend.lambdas.tasks.check_queue_size.sqs") def test_it_returns_correct_queue_size(mock_resource): mock_queue = MagicMock() mock_resource.Queue.return_value = mock_queue mock_queue.attributes = { "ApproximateNumberOfMessages": "4", "ApproximateNumberOfMessagesNotVisible": "2", } event = {"QueueUrl": "queue_url"} resp = handler(event, SimpleNamespace()) assert {"Visible": 4, "NotVisible": 2, "Total": 6} == resp
tests/tensortrade/unit/feed/api/float/test_operations.py
nicomon24/tensortrade
3,081
86476
<gh_stars>1000+ import pandas as pd from tensortrade.feed import Stream from tests.utils.ops import assert_op def test_add(): # (left, right) : (Stream, Stream) s1 = Stream.source([3, -4, 6, -7, 2, -6], dtype="float") s2 = Stream.source([-3, 4, -6, 7, -2, 6], dtype="float") w1 = s1.add(s2).rename("w1") w2 = (s1 + s2).rename("w2") assert_op([w1, w2], 6*[0]) # (left, right) : (Stream, float) s1 = Stream.source([1, 2, 3, 4, 5, 6], dtype="float") s2 = 1 w1 = s1.add(s2).rename("w1") w2 = (s1 + s2).rename("w2") assert_op([w1, w2], [2, 3, 4, 5, 6, 7]) def test_radd(): # (left, right) : (float, Stream) s1 = 1 s2 = Stream.source([1, 2, 3, 4, 5, 6], dtype="float") w = (s1 + s2).rename("w") assert_op([w], [2, 3, 4, 5, 6, 7]) def test_sub(): expected = [0, 1, 2, 3, 4, 5] # (left, right) : (Stream, Stream) s1 = Stream.source([1, 2, 3, 4, 5, 6], dtype="float") s2 = Stream.source([1, 1, 1, 1, 1, 1], dtype="float") w1 = s1.sub(s2).rename("w1") w2 = (s1 - s2).rename("w2") assert_op([w1, w2], expected) # (left, right) : (Stream, float) w1 = s1.sub(1).rename("w1") w2 = (s1 - 1).rename("w2") assert_op([w1, w2], expected) def test_rsub(): # (left, right) : (float, Stream) s1 = 6 s2 = Stream.source([1, 2, 3, 4, 5, 6], dtype="float") w = (s1 - s2).rename("w") assert_op([w], [5, 4, 3, 2, 1, 0]) def test_mul(): expected = [2, 4, 6, 8, 10, 12] # (left, right) : (Stream, Stream) s1 = Stream.source([1, 2, 3, 4, 5, 6], dtype="float") s2 = Stream.source([2, 2, 2, 2, 2, 2], dtype="float") w1 = s1.mul(s2).rename("w1") w2 = (s1 * s2).rename("w2") assert_op([w1, w2], expected) # (left, right) : (Stream, float) w1 = s1.mul(2).rename("w1") w2 = (s1 * 2).rename("w2") assert_op([w1, w2], expected) def test_rmul(): expected = [2, 4, 6, 8, 10, 12] # (left, right) : (Stream, Stream) s = Stream.source([1, 2, 3, 4, 5, 6], dtype="float") # (left, right) : (Stream, float) w = (2 * s).rename("w") assert_op([w], expected) def test_div(): expected = [1, 2, 3, 4, 5, 6] # (left, right) : (Stream, Stream) s1 = Stream.source([2, 4, 6, 8, 10, 12], dtype="float") s2 = Stream.source([2, 2, 2, 2, 2, 2], dtype="float") w1 = s1.div(s2).rename("w1") w2 = (s1 / s2).rename("w2") assert_op([w1, w2], expected) # (left, right) : (Stream, float) w1 = s1.div(2).rename("w1") w2 = (s1 / 2).rename("w2") assert_op([w1, w2], expected) def test_rdiv(): expected = [6, 3, 2, 3/2, 6/5, 1] # (left, right) : (Stream, Stream) s = Stream.source([2, 4, 6, 8, 10, 12], dtype="float") # (left, right) : (Stream, float) w = (12 / s).rename("w") assert_op([w], expected) def test_abs(): s = Stream.source([3, -4, 6, -7, 2, -6], dtype="float") s1 = s.abs().rename("s1") s2 = abs(s).rename("s2") assert_op([s1, s2], [3, 4, 6, 7, 2, 6]) def test_neg(): s = Stream.source([3, -4, 6, -7, 2, -6], dtype="float") s1 = s.neg().rename("s1") s2 = (-s).rename("s2") assert_op([s1, s2], [-3, 4, -6, 7, -2, 6]) def test_pow(): array = [1, -2, 3, -4, 5, -6] s = Stream.source(array, dtype="float") s1 = s.pow(3).rename("s1") s2 = (s**3).rename("s2") expected = list(pd.Series(array)**3) assert_op([s1, s2], expected)
net/util.py
juandesant/astrometry.net
460
86479
<gh_stars>100-1000 from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django import forms from django.utils.safestring import mark_safe from django.forms import widgets class HorizontalRadioSelect(widgets.RadioSelect): input_type = 'radio' template_name = 'radio-horizontal.html' option_template_name = 'django/forms/widgets/radio_option.html' class NoBulletsRadioSelect(widgets.RadioSelect): input_type = 'radio' template_name = 'radio-nobullets.html' option_template_name = 'django/forms/widgets/radio_option.html' # class HorizontalRenderer(forms.RadioSelect.renderer): # def render(self): # return mark_safe(u'\n'.join([u'%s' % w for w in self])) # # class NoBulletsRenderer(forms.RadioSelect.renderer): # def render(self): # return mark_safe(u'<br />\n'.join([u'%s' % w for w in self])) def store_session_form(session, form_class, data): session[form_class.__name__] = data def get_session_form(session, form_class, **kwargs): if session.get(form_class.__name__): form = form_class(session[form_class.__name__], **kwargs) form.is_valid() del session[form_class.__name__] else: form = form_class(**kwargs) return form def dict_pack(struct_tuple, data_tuple): pack = [] for data in data_tuple: index = 0 packed_data = {} for key in struct_tuple: packed_data.update({key:data[index]}) index += 1 pack += [packed_data] return tuple(pack) def choicify(choice_dict_list, database_value, human_readable_value): choice_list = [] for d in choice_dict_list: choice_list.append((d[database_value],d[human_readable_value])) return tuple(choice_list) def get_page(object_list, page_size, page_number): paginator = Paginator(object_list, page_size) try: page = paginator.page(page_number) except PageNotAnInteger: page = paginator.page(1) except EmptyPage: page = paginator.page(paginator.num_pages) return page
src/sensing/drivers/radar/umrr_driver/src/smartmicro/Helper/basicThreadHelper/threadHelper.py
P4nos/Aslan
227
86492
import threading import logging import time class ThreadHelperException(Exception): pass class ThreadHelper(threading.Thread): """ The class provides a frame for the threads used in the framework. """ # ---------------------------------------------------------------------------------------------------------------- # # function: initialization # # ---------------------------------------------------------------------------------------------------------------- # def __init__(self): """ The function initializes all necessary variables and instances to deal with threads. """ # init parent class threading.Thread.__init__(self) # init additional instances and variables self.mutex = threading.Lock() self.eventWakeup = threading.Event() self.running = True self.shutDownBool = False # bind thread to main process self.setDaemon(True) # ---------------------------------------------------------------------------------------------------------------- # # function: suspend # # ---------------------------------------------------------------------------------------------------------------- # def suspend(self): """ Suspends the thread. """ with self.mutex: self.running = False # ---------------------------------------------------------------------------------------------------------------- # # function: resume # # ---------------------------------------------------------------------------------------------------------------- # def resume(self): """ Resumes the thread. """ with self.mutex: if self.running is not True: self.running = True self.eventWakeup.set() # ---------------------------------------------------------------------------------------------------------------- # # function: shutDown # # ---------------------------------------------------------------------------------------------------------------- # def shutDown(self): """ Shut down the thread. """ with self.mutex: self.shutDownBool = True if self.running is not True: self.resume() # ---------------------------------------------------------------------------------------------------------------- # # function: run # # ---------------------------------------------------------------------------------------------------------------- # def run(self): """ The default run function. """ logging.debug("Start the default thread") while self.shutDownBool is not True: if self.running: # raise ThreadHelperException("The thread use the default run function. Implement a run function in the" # " derived class") logging.debug("Default thread executed") time.sleep(0.05) else: logging.debug('Default thread wait') self.eventWakeup.wait() logging.debug('Default thread resumed') logging.debug("Shut down the default thread")
pyGPs/Optimization/scg.py
Corentin-LF/pyGPs
196
86519
from __future__ import division from past.utils import old_div #=============================================================================== # SCG Scaled conjugate gradient optimization. # # Copyright (c) <NAME> (1996-2001) # updates by <NAME> 2013 # # Permission is granted for anyone to copy, use, or modify these # programs and accompanying documents for purposes of research or # education, provided this copyright notice is retained, and note is # made of any changes that have been made. # # These programs and documents are distributed without any warranty, # express or implied. As the programs were written for research # purposes only, they have not been tested to the degree that would be # advisable in any important application. All use of these programs is # entirely at the user's own risk." #=============================================================================== from math import sqrt import numpy as np import logging def run(f, x, args=(), niters = 100, gradcheck = False, display = 0, flog = False, pointlog = False, scalelog = False, tolX = 1.0e-8, tolO = 1.0e-8, eval = None): '''Scaled conjugate gradient optimization. ''' if display: logging.getLogger(__name__).info('***** starting optimization (SCG) *****') nparams = len(x); # Check gradients if gradcheck: pass eps = 1.0e-4 sigma0 = 1.0e-4 result = f(x, *args) fold = result[0] # Initial function value. fnow = fold funcCount = 1 # Increment function evaluation counter. gradnew = result[1] # Initial gradient. gradold = gradnew gradCount = 1 # Increment gradient evaluation counter. d = -gradnew # Initial search direction. success = 1 # Force calculation of directional derivs. nsuccess = 0 # nsuccess counts number of successes. beta = 1.0 # Initial scale parameter. betamin = 1.0e-15 # Lower bound on scale. betamax = 1.0e50 # Upper bound on scale. j = 1 # j counts number of iterations. if flog: pass #flog(j, :) = fold; if pointlog: pass #pointlog(j, :) = x; # Main optimization loop. listF = [fold] if eval is not None: evalue, timevalue = eval(x, *args) evalList = [evalue] time = [timevalue] while (j <= niters): # Calculate first and second directional derivatives. if (success == 1): mu = np.dot(d, gradnew) if (mu >= 0): d = - gradnew mu = np.dot(d, gradnew) kappa = np.dot(d, d) if (kappa < eps): logging.getLogger(__name__).info("FNEW: " + str(fnow)) #options(8) = fnow if eval is not None: return x, listF, evalList, time else: return x, listF sigma = old_div(sigma0,sqrt(kappa)) xplus = x + sigma*d gplus = f(xplus, *args)[1] gradCount += 1 theta = old_div((np.dot(d, (gplus - gradnew))),sigma); # Increase effective curvature and evaluate step size alpha. delta = theta + beta*kappa if (delta <= 0): delta = beta*kappa beta = beta - old_div(theta,kappa) alpha = old_div(- mu,delta) # Calculate the comparison ratio. xnew = x + alpha*d fnew = f(xnew, *args)[0] funcCount += 1; Delta = 2*(fnew - fold)/(alpha*mu) if (Delta >= 0): success = 1; nsuccess += 1; x = xnew; fnow = fnew; listF.append(fnow) if eval is not None: evalue, timevalue = eval(x, *args) evalList.append(evalue) time.append(timevalue) else: success = 0; fnow = fold; if flog: # Store relevant variables #flog(j) = fnow; # Current function value pass if pointlog: #pointlog(j,:) = x; # Current position pass if scalelog: #scalelog(j) = beta; # Current scale parameter pass if display > 0: logging.getLogger(__name__).info('***** Cycle %4d Error %11.6f Scale %e', j, fnow, beta) if (success == 1): # Test for termination # print type (alpha), type(d), type(tolX), type(fnew), type(fold) if ((max(abs(alpha*d)) < tolX) & (abs(fnew-fold) < tolO)): # options(8) = fnew; # print "FNEW: " , fnew if eval is not None: return x, listF, evalList, time else: return x, listF else: # Update variables for new position fold = fnew gradold = gradnew gradnew = f(x, *args)[1] gradCount += 1 # If the gradient is zero then we are done. if (np.dot(gradnew, gradnew) == 0): # print "FNEW: " , fnew # options(8) = fnew; if eval is not None: return x, listF, evalList, time else: return x, listF # Adjust beta according to comparison ratio. if (Delta < 0.25): beta = min(4.0*beta, betamax); if (Delta > 0.75): beta = max(0.5*beta, betamin); # Update search direction using Polak-Ribiere formula, or re-start # in direction of negative gradient after nparams steps. if (nsuccess == nparams): d = -gradnew; nsuccess = 0; else: if (success == 1): gamma = old_div(np.dot((gradold - gradnew), gradnew),(mu)) d = gamma*d - gradnew; j += 1 # If we get here, then we haven't terminated in the given number of # iterations. # options(8) = fold; if (display): logging.getLogger(__name__).info("maximum number of iterations reached") if eval is not None: return x, listF, evalList, time else: return x, listF
tests/integration/test_hive_query/test.py
DevTeamBK/ClickHouse
8,629
86540
import logging import os import time import pytest from helpers.cluster import ClickHouseCluster from helpers.test_tools import TSV logging.getLogger().setLevel(logging.INFO) logging.getLogger().addHandler(logging.StreamHandler()) SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) @pytest.fixture(scope="module") def started_cluster(): try: cluster = ClickHouseCluster(__file__) cluster.add_instance( "h0_0_0", main_configs=["configs/config.xml"], extra_configs=["configs/hdfs-site.xml", "data/prepare_hive_data.sh"], with_hive=True, ) logging.info("Starting cluster ...") cluster.start() cluster.copy_file_to_container( "roottesthivequery_hdfs1_1", "/ClickHouse/tests/integration/test_hive_query/data/prepare_hive_data.sh", "/prepare_hive_data.sh", ) cluster.exec_in_container( "roottesthivequery_hdfs1_1", ["bash", "-c", "bash /prepare_hive_data.sh"] ) yield cluster finally: cluster.shutdown() def test_create_parquet_table(started_cluster): logging.info("Start testing creating hive table ...") node = started_cluster.instances["h0_0_0"] test_passed = False for i in range(10): node.query("set input_format_parquet_allow_missing_columns = true") result = node.query( """ DROP TABLE IF EXISTS default.demo_parquet; CREATE TABLE default.demo_parquet (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)) ENGINE = Hive('thrift://hivetest:9083', 'test', 'demo') PARTITION BY(day) """ ) logging.info("create result {}".format(result)) if result.strip() == "": test_passed = True break time.sleep(60) assert test_passed def test_create_parquet_table_1(started_cluster): logging.info("Start testing creating hive table ...") node = started_cluster.instances["h0_0_0"] for i in range(10): node.query("set input_format_parquet_allow_missing_columns = true") result = node.query( """ DROP TABLE IF EXISTS default.demo_parquet_parts; CREATE TABLE default.demo_parquet_parts (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String), `hour` String) ENGINE = Hive('thrift://hivetest:9083', 'test', 'parquet_demo') PARTITION BY(day, hour); """ ) logging.info("create result {}".format(result)) if result.strip() == "": test_passed = True break time.sleep(60) assert test_passed def test_create_orc_table(started_cluster): logging.info("Start testing creating hive table ...") node = started_cluster.instances["h0_0_0"] test_passed = False for i in range(10): result = node.query( """ DROP TABLE IF EXISTS default.demo_orc; CREATE TABLE default.demo_orc (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)) ENGINE = Hive('thrift://hivetest:9083', 'test', 'demo_orc') PARTITION BY(day) """ ) logging.info("create result {}".format(result)) if result.strip() == "": test_passed = True break time.sleep(60) assert test_passed def test_create_text_table(started_cluster): logging.info("Start testing creating hive table ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ DROP TABLE IF EXISTS default.demo_text; CREATE TABLE default.demo_text (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)) ENGINE = Hive('thrift://hivetest:9083', 'test', 'demo_text') PARTITION BY (tuple()) """ ) logging.info("create result {}".format(result)) assert result.strip() == "" def test_parquet_groupby(started_cluster): logging.info("Start testing groupby ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT day, count(*) FROM default.demo_parquet group by day order by day """ ) expected_result = """2021-11-01 1 2021-11-05 2 2021-11-11 1 2021-11-16 2 """ assert result == expected_result def test_parquet_in_filter(started_cluster): logging.info("Start testing groupby ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT count(*) FROM default.demo_parquet_parts where day = '2021-11-05' and hour in ('00') """ ) expected_result = """2 """ logging.info("query result:{}".format(result)) assert result == expected_result def test_orc_groupby(started_cluster): logging.info("Start testing groupby ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT day, count(*) FROM default.demo_orc group by day order by day """ ) expected_result = """2021-11-01 1 2021-11-05 2 2021-11-11 1 2021-11-16 2 """ assert result == expected_result @pytest.mark.parametrize( "table,use_local_cache_for_remote_storage,enable_orc_file_minmax_index,enable_orc_stripe_minmax_index", [ pytest.param( "demo_orc_no_cache_no_index", "false", "false", "false", id="demo_orc_no_cache_no_index", ), pytest.param( "demo_orc_with_cache_no_index", "true", "false", "false", id="demo_orc_with_cache_no_index", ), pytest.param( "demo_orc_no_cache_file_index", "false", "true", "false", id="demo_orc_no_cache_file_index", ), pytest.param( "demo_orc_with_cache_file_index", "true", "true", "false", id="demo_orc_with_cache_file_index", ), pytest.param( "demo_orc_no_cache_stripe_index", "false", "true", "true", id="demo_orc_no_cache_stripe_index", ), pytest.param( "demo_orc_with_cache_stripe_index", "true", "true", "true", id="demo_orc_with_cache_stripe_index", ), ], ) def test_orc_minmax_index( started_cluster, table, use_local_cache_for_remote_storage, enable_orc_file_minmax_index, enable_orc_stripe_minmax_index, ): node = started_cluster.instances["h0_0_0"] result = node.query( """ DROP TABLE IF EXISTS default.{table}; CREATE TABLE default.{table} (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)) ENGINE = Hive('thrift://hivetest:9083', 'test', 'demo_orc') PARTITION BY(day) SETTINGS enable_orc_file_minmax_index = {enable_orc_file_minmax_index}, enable_orc_stripe_minmax_index = {enable_orc_stripe_minmax_index}; """.format( table=table, enable_orc_file_minmax_index=enable_orc_file_minmax_index, enable_orc_stripe_minmax_index=enable_orc_stripe_minmax_index, ) ) assert result.strip() == "" for i in range(2): result = node.query( """ SELECT day, id, score FROM default.{table} where day >= '2021-11-05' and day <= '2021-11-16' and score >= 15 and score <= 30 order by day, id SETTINGS use_local_cache_for_remote_storage = {use_local_cache_for_remote_storage} """.format( table=table, use_local_cache_for_remote_storage=use_local_cache_for_remote_storage, ) ) assert ( result == """2021-11-05 abd 15 2021-11-16 aaa 22 """ ) @pytest.mark.parametrize( "table,use_local_cache_for_remote_storage,enable_parquet_rowgroup_minmax_index", [ pytest.param( "demo_parquet_no_cache_no_index", "false", "false", id="demo_parquet_no_cache_no_index", ), pytest.param( "demo_parquet_with_cache_no_index", "true", "false", id="demo_parquet_with_cache_no_index", ), pytest.param( "demo_parquet_no_cache_rowgroup_index", "false", "true", id="demo_parquet_no_cache_rowgroup_index", ), pytest.param( "demo_parquet_with_cache_rowgroup_index", "true", "true", id="demo_parquet_with_cache_rowgroup_index", ), ], ) def test_parquet_minmax_index( started_cluster, table, use_local_cache_for_remote_storage, enable_parquet_rowgroup_minmax_index, ): node = started_cluster.instances["h0_0_0"] result = node.query( """ DROP TABLE IF EXISTS default.{table}; CREATE TABLE default.{table} (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)) ENGINE = Hive('thrift://hivetest:9083', 'test', 'demo') PARTITION BY(day) SETTINGS enable_parquet_rowgroup_minmax_index = {enable_parquet_rowgroup_minmax_index} """.format( table=table, enable_parquet_rowgroup_minmax_index=enable_parquet_rowgroup_minmax_index, ) ) assert result.strip() == "" for i in range(2): result = node.query( """ SELECT day, id, score FROM default.{table} where day >= '2021-11-05' and day <= '2021-11-16' and score >= 15 and score <= 30 order by day, id SETTINGS use_local_cache_for_remote_storage = {use_local_cache_for_remote_storage} """.format( table=table, use_local_cache_for_remote_storage=use_local_cache_for_remote_storage, ) ) assert ( result == """2021-11-05 abd 15 2021-11-16 aaa 22 """ ) def test_hive_columns_prunning(started_cluster): logging.info("Start testing groupby ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT count(*) FROM default.demo_parquet_parts where day = '2021-11-05' """ ) expected_result = """4 """ logging.info("query result:{}".format(result)) assert result == expected_result def test_text_count(started_cluster): node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT day, count(*) FROM default.demo_orc group by day order by day SETTINGS format_csv_delimiter = '\x01' """ ) expected_result = """2021-11-01 1 2021-11-05 2 2021-11-11 1 2021-11-16 2 """ assert result == expected_result def test_parquet_groupby_with_cache(started_cluster): logging.info("Start testing groupby ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT day, count(*) FROM default.demo_parquet group by day order by day """ ) expected_result = """2021-11-01 1 2021-11-05 2 2021-11-11 1 2021-11-16 2 """ assert result == expected_result def test_parquet_groupby_by_hive_function(started_cluster): logging.info("Start testing groupby ...") node = started_cluster.instances["h0_0_0"] result = node.query( """ SELECT day, count(*) FROM hive('thrift://hivetest:9083', 'test', 'demo', '`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)', 'day') group by day order by day """ ) expected_result = """2021-11-01 1 2021-11-05 2 2021-11-11 1 2021-11-16 2 """ assert result == expected_result def test_cache_read_bytes(started_cluster): node = started_cluster.instances["h0_0_0"] result = node.query( """ CREATE TABLE IF NOT EXISTS default.demo_parquet_1 (`id` Nullable(String), `score` Nullable(Int32), `day` Nullable(String)) ENGINE = Hive('thrift://hivetest:9083', 'test', 'demo') PARTITION BY(day) """ ) test_passed = False for i in range(10): result = node.query( """ SELECT * FROM default.demo_parquet_1 settings input_format_parquet_allow_missing_columns = true """ ) node.query("system flush logs") result = node.query( "select sum(ProfileEvent_ExternalDataSourceLocalCacheReadBytes) from system.metric_log where ProfileEvent_ExternalDataSourceLocalCacheReadBytes > 0" ) if result.strip() == "0": logging.info("ProfileEvent_ExternalDataSourceLocalCacheReadBytes == 0") time.sleep(10) continue test_passed = True break assert test_passed def test_cache_dir_use(started_cluster): node = started_cluster.instances["h0_0_0"] result0 = node.exec_in_container( ["bash", "-c", "ls /tmp/clickhouse_local_cache | wc -l"] ) result1 = node.exec_in_container( ["bash", "-c", "ls /tmp/clickhouse_local_cache1 | wc -l"] ) assert result0 != "0" and result1 != "0"
src/tests/t_general.py
tizenorg/platform.upstream.krb5
372
86559
#!/usr/bin/python from k5test import * for realm in multipass_realms(create_host=False): # Create a policy and see if it survives a dump/load. realm.run_kadminl('addpol fred') dumpfile = os.path.join(realm.testdir, 'dump') realm.run_as_master([kdb5_util, 'dump', dumpfile]) realm.run_as_master([kdb5_util, 'load', dumpfile]) output = realm.run_kadminl('getpols') if 'fred\n' not in output: fail('Policy not preserved across dump/load.') # Check that kinit fails appropriately with the wrong password. output = realm.run_as_client([kinit, realm.user_princ], input='wrong\n', expected_code=1) if 'Password incorrect while getting initial credentials' not in output: fail('Expected error message not seen in kinit output') # Check that we can kinit as a different principal. realm.kinit(realm.admin_princ, password('<PASSWORD>')) realm.klist(realm.admin_princ) # Test FAST kinit. fastpw = password('<PASSWORD>') realm.run_kadminl('ank -pw %s +requires_preauth user/fast' % fastpw) realm.kinit('user/fast', fastpw) realm.kinit('user/fast', fastpw, flags=['-T', realm.ccache]) realm.klist('user/fast@%s' % realm.realm) # Test kinit against kdb keytab realm.run_as_master([kinit, "-k", "-t", "KDB:", realm.user_princ]) # Test kdestroy and klist of a non-existent ccache. realm.run_as_client([kdestroy]) output = realm.run_as_client([klist], expected_code=1) if 'No credentials cache found' not in output: fail('Expected error message not seen in klist output') # Test handling of kvno values beyond 255. princ = 'foo/bar@%s' % realm.realm realm.addprinc(princ) realm.run_kadminl('modprinc -kvno 252 %s' % princ) for kvno in range(253, 259): realm.run_kadminl('ktadd -k %s %s' % (realm.keytab, princ)) realm.klist_keytab(princ) output = realm.run_kadminl('getprinc %s' % princ) if 'Key: vno 258,' not in output: fail('Expected vno not seen in kadmin.local output') success('Dump/load, FAST kinit, kdestroy, kvno wrapping.')
djangoerp/core/templatetags/avatar.py
xarala221/django-erp
345
86580
#!/usr/bin/env python """This file is part of the django ERP project. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright (c) 2013-2015, django ERP Team' __version__ = '0.0.5' from hashlib import md5 from django import template from django.utils.html import format_html, mark_safe, escape register = template.Library() @register.simple_tag def avatar(email, size=32, default="mm", css_class="avatar image"): """Returns the gravatar image associated to the given email. More info: http://www.gravatar.com Example tag usage: {% avatar email_address 80 "http://.../my_default_image.jpg" [css_class] %} """ # Creates and returns the URL. h = "" if email: h = md5(email.encode('utf-8')).hexdigest() url = 'http://www.gravatar.com/avatar/%s?s=%s&r=g' % (h, escape(size)) # Adds a default image URL (if present). if default: url += "&d=%s" % escape(default) url = mark_safe(url) return format_html('<img class="{}" width="{}" height="{}" src="{}" />', css_class, size, size, url)
DQM/SiStripMonitorClient/python/RecoForDQM_Cosmic_cff.py
ckamtsikis/cmssw
852
86593
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms # Digitiser #### # SiStrip from EventFilter.SiStripRawToDigi.SiStripDigis_cfi import * siStripDigis.ProductLabel = 'source' # SiPixel from EventFilter.SiPixelRawToDigi.SiPixelRawToDigi_cfi import * siPixelDigis.InputLabel = 'source' # Local Reco Cosmic #### from RecoLocalTracker.Configuration.RecoLocalTracker_Cosmics_cff import * #DefaultClusterizer.ConditionsLabel = '' #not needed to specify it is used as default # Track Reconstruction Cosmic ######## from RecoTracker.Configuration.RecoTrackerP5_cff import * # Beam Spot ######## from RecoVertex.BeamSpotProducer.BeamSpot_cff import * # Reconstruction Sequence RecoForDQMCosmic = cms.Sequence(siPixelDigis*siStripDigis*offlineBeamSpot*trackerlocalreco*ctftracksP5)
twilio/rest/api/v2010/account/call/event.py
BrimmingDev/twilio-python
1,362
86615
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import values from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class EventList(ListResource): def __init__(self, version, account_sid, call_sid): """ Initialize the EventList :param Version version: Version that contains the resource :param account_sid: The SID of the Account that created this resource :param call_sid: The unique string that identifies this resource :returns: twilio.rest.api.v2010.account.call.event.EventList :rtype: twilio.rest.api.v2010.account.call.event.EventList """ super(EventList, self).__init__(version) # Path Solution self._solution = {'account_sid': account_sid, 'call_sid': call_sid, } self._uri = '/Accounts/{account_sid}/Calls/{call_sid}/Events.json'.format(**self._solution) def stream(self, limit=None, page_size=None): """ Streams EventInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.call.event.EventInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page(page_size=limits['page_size'], ) return self._version.stream(page, limits['limit']) def list(self, limit=None, page_size=None): """ Lists EventInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.call.event.EventInstance] """ return list(self.stream(limit=limit, page_size=page_size, )) def page(self, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of EventInstance records from the API. Request is executed immediately :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of EventInstance :rtype: twilio.rest.api.v2010.account.call.event.EventPage """ data = values.of({'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page(method='GET', uri=self._uri, params=data, ) return EventPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of EventInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of EventInstance :rtype: twilio.rest.api.v2010.account.call.event.EventPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return EventPage(self._version, response, self._solution) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.EventList>' class EventPage(Page): def __init__(self, version, response, solution): """ Initialize the EventPage :param Version version: Version that contains the resource :param Response response: Response from the API :param account_sid: The SID of the Account that created this resource :param call_sid: The unique string that identifies this resource :returns: twilio.rest.api.v2010.account.call.event.EventPage :rtype: twilio.rest.api.v2010.account.call.event.EventPage """ super(EventPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of EventInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.call.event.EventInstance :rtype: twilio.rest.api.v2010.account.call.event.EventInstance """ return EventInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.EventPage>' class EventInstance(InstanceResource): def __init__(self, version, payload, account_sid, call_sid): """ Initialize the EventInstance :returns: twilio.rest.api.v2010.account.call.event.EventInstance :rtype: twilio.rest.api.v2010.account.call.event.EventInstance """ super(EventInstance, self).__init__(version) # Marshaled Properties self._properties = {'request': payload.get('request'), 'response': payload.get('response'), } # Context self._context = None self._solution = {'account_sid': account_sid, 'call_sid': call_sid, } @property def request(self): """ :returns: Call Request. :rtype: dict """ return self._properties['request'] @property def response(self): """ :returns: Call Response with Events. :rtype: dict """ return self._properties['response'] def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.EventInstance>'
monk/pytorch_tests.py
take2rohit/monk_v1
542
86634
<reponame>take2rohit/monk_v1<gh_stars>100-1000 import os import sys import time from monk.pip_unit_tests.pytorch.test_optimizer_sgd import test_optimizer_sgd from monk.pip_unit_tests.pytorch.test_optimizer_nesterov_sgd import test_optimizer_nesterov_sgd from monk.pip_unit_tests.pytorch.test_optimizer_rmsprop import test_optimizer_rmsprop from monk.pip_unit_tests.pytorch.test_optimizer_momentum_rmsprop import test_optimizer_momentum_rmsprop from monk.pip_unit_tests.pytorch.test_optimizer_adam import test_optimizer_adam from monk.pip_unit_tests.pytorch.test_optimizer_adamax import test_optimizer_adamax from monk.pip_unit_tests.pytorch.test_optimizer_adamw import test_optimizer_adamw from monk.pip_unit_tests.pytorch.test_optimizer_adadelta import test_optimizer_adadelta from monk.pip_unit_tests.pytorch.test_optimizer_adagrad import test_optimizer_adagrad from monk.pip_unit_tests.pytorch.test_loss_l1 import test_loss_l1 from monk.pip_unit_tests.pytorch.test_loss_l2 import test_loss_l2 from monk.pip_unit_tests.pytorch.test_loss_l2 import test_loss_l2 from monk.pip_unit_tests.pytorch.test_loss_softmax_crossentropy import test_loss_softmax_crossentropy from monk.pip_unit_tests.pytorch.test_loss_crossentropy import test_loss_crossentropy from monk.pip_unit_tests.pytorch.test_loss_sigmoid_binary_crossentropy import test_loss_sigmoid_binary_crossentropy from monk.pip_unit_tests.pytorch.test_loss_binary_crossentropy import test_loss_binary_crossentropy from monk.pip_unit_tests.pytorch.test_loss_kldiv import test_loss_kldiv from monk.pip_unit_tests.pytorch.test_loss_poisson_nll import test_loss_poisson_nll from monk.pip_unit_tests.pytorch.test_loss_huber import test_loss_huber from monk.pip_unit_tests.pytorch.test_loss_hinge import test_loss_hinge from monk.pip_unit_tests.pytorch.test_loss_squared_hinge import test_loss_squared_hinge from monk.pip_unit_tests.pytorch.test_loss_multimargin import test_loss_multimargin from monk.pip_unit_tests.pytorch.test_loss_squared_multimargin import test_loss_squared_multimargin from monk.pip_unit_tests.pytorch.test_loss_multilabelmargin import test_loss_multilabelmargin from monk.pip_unit_tests.pytorch.test_loss_multilabelsoftmargin import test_loss_multilabelsoftmargin from monk.pip_unit_tests.pytorch.test_layer_convolution1d import test_layer_convolution1d from monk.pip_unit_tests.pytorch.test_layer_convolution2d import test_layer_convolution2d from monk.pip_unit_tests.pytorch.test_layer_convolution3d import test_layer_convolution3d from monk.pip_unit_tests.pytorch.test_layer_transposed_convolution1d import test_layer_transposed_convolution1d from monk.pip_unit_tests.pytorch.test_layer_transposed_convolution2d import test_layer_transposed_convolution2d from monk.pip_unit_tests.pytorch.test_layer_transposed_convolution3d import test_layer_transposed_convolution3d from monk.pip_unit_tests.pytorch.test_layer_max_pooling1d import test_layer_max_pooling1d from monk.pip_unit_tests.pytorch.test_layer_max_pooling2d import test_layer_max_pooling2d from monk.pip_unit_tests.pytorch.test_layer_max_pooling3d import test_layer_max_pooling3d from monk.pip_unit_tests.pytorch.test_layer_average_pooling1d import test_layer_average_pooling1d from monk.pip_unit_tests.pytorch.test_layer_average_pooling2d import test_layer_average_pooling2d from monk.pip_unit_tests.pytorch.test_layer_average_pooling3d import test_layer_average_pooling3d from monk.pip_unit_tests.pytorch.test_layer_global_max_pooling1d import test_layer_global_max_pooling1d from monk.pip_unit_tests.pytorch.test_layer_global_max_pooling2d import test_layer_global_max_pooling2d from monk.pip_unit_tests.pytorch.test_layer_global_max_pooling3d import test_layer_global_max_pooling3d from monk.pip_unit_tests.pytorch.test_layer_global_average_pooling1d import test_layer_global_average_pooling1d from monk.pip_unit_tests.pytorch.test_layer_global_average_pooling2d import test_layer_global_average_pooling2d from monk.pip_unit_tests.pytorch.test_layer_global_average_pooling3d import test_layer_global_average_pooling3d from monk.pip_unit_tests.pytorch.test_layer_batch_normalization import test_layer_batch_normalization from monk.pip_unit_tests.pytorch.test_layer_instance_normalization import test_layer_instance_normalization from monk.pip_unit_tests.pytorch.test_layer_layer_normalization import test_layer_layer_normalization from monk.pip_unit_tests.pytorch.test_layer_identity import test_layer_identity from monk.pip_unit_tests.pytorch.test_layer_fully_connected import test_layer_fully_connected from monk.pip_unit_tests.pytorch.test_layer_dropout import test_layer_dropout from monk.pip_unit_tests.pytorch.test_layer_flatten import test_layer_flatten from monk.pip_unit_tests.pytorch.test_activation_relu import test_activation_relu from monk.pip_unit_tests.pytorch.test_activation_sigmoid import test_activation_sigmoid from monk.pip_unit_tests.pytorch.test_activation_tanh import test_activation_tanh from monk.pip_unit_tests.pytorch.test_activation_softplus import test_activation_softplus from monk.pip_unit_tests.pytorch.test_activation_softsign import test_activation_softsign from monk.pip_unit_tests.pytorch.test_activation_elu import test_activation_elu from monk.pip_unit_tests.pytorch.test_activation_leaky_relu import test_activation_leaky_relu from monk.pip_unit_tests.pytorch.test_activation_prelu import test_activation_prelu from monk.pip_unit_tests.pytorch.test_activation_selu import test_activation_selu from monk.pip_unit_tests.pytorch.test_activation_hardshrink import test_activation_hardshrink from monk.pip_unit_tests.pytorch.test_activation_hardtanh import test_activation_hardtanh from monk.pip_unit_tests.pytorch.test_activation_logsigmoid import test_activation_logsigmoid from monk.pip_unit_tests.pytorch.test_activation_relu6 import test_activation_relu6 from monk.pip_unit_tests.pytorch.test_activation_rrelu import test_activation_rrelu from monk.pip_unit_tests.pytorch.test_activation_celu import test_activation_celu from monk.pip_unit_tests.pytorch.test_activation_softshrink import test_activation_softshrink from monk.pip_unit_tests.pytorch.test_activation_tanhshrink import test_activation_tanhshrink from monk.pip_unit_tests.pytorch.test_activation_threshold import test_activation_threshold from monk.pip_unit_tests.pytorch.test_activation_softmin import test_activation_softmin from monk.pip_unit_tests.pytorch.test_activation_softmax import test_activation_softmax from monk.pip_unit_tests.pytorch.test_activation_logsoftmax import test_activation_logsoftmax from monk.pip_unit_tests.pytorch.test_layer_concatenate import test_layer_concatenate from monk.pip_unit_tests.pytorch.test_layer_add import test_layer_add from monk.pip_unit_tests.pytorch.test_block_resnet_v1 import test_block_resnet_v1 from monk.pip_unit_tests.pytorch.test_block_resnet_v2 import test_block_resnet_v2 from monk.pip_unit_tests.pytorch.test_block_resnet_v1_bottleneck import test_block_resnet_v1_bottleneck from monk.pip_unit_tests.pytorch.test_block_resnet_v2_bottleneck import test_block_resnet_v2_bottleneck from monk.pip_unit_tests.pytorch.test_block_resnext import test_block_resnext from monk.pip_unit_tests.pytorch.test_block_mobilenet_v2_linear_bottleneck import test_block_mobilenet_v2_linear_bottleneck from monk.pip_unit_tests.pytorch.test_block_mobilenet_v2_inverted_linear_bottleneck import test_block_mobilenet_v2_inverted_linear_bottleneck from monk.pip_unit_tests.pytorch.test_block_squeezenet_fire import test_block_squeezenet_fire from monk.pip_unit_tests.pytorch.test_block_densenet import test_block_densenet from monk.pip_unit_tests.pytorch.test_block_conv_bn_relu import test_block_conv_bn_relu from monk.pip_unit_tests.pytorch.test_block_inception_a import test_block_inception_a from monk.pip_unit_tests.pytorch.test_block_inception_b import test_block_inception_b from monk.pip_unit_tests.pytorch.test_block_inception_c import test_block_inception_c from monk.pip_unit_tests.pytorch.test_block_inception_d import test_block_inception_d from monk.pip_unit_tests.pytorch.test_block_inception_e import test_block_inception_e from monk.pip_functionality_tests.pytorch.test_default_train import test_default_train from monk.pip_functionality_tests.pytorch.test_default_eval_infer import test_default_eval_infer from monk.pip_functionality_tests.pytorch.test_update_copy_from import test_update_copy_from from monk.pip_functionality_tests.pytorch.test_update_normal import test_update_normal from monk.pip_functionality_tests.pytorch.test_update_eval_infer import test_update_eval_infer from monk.pip_functionality_tests.pytorch.test_expert_train import test_expert_train from monk.pip_functionality_tests.pytorch.test_expert_eval_infer import test_expert_eval_infer from monk.pip_functionality_tests.pytorch.test_switch_default import test_switch_default from monk.pip_functionality_tests.pytorch.test_switch_expert import test_switch_expert from monk.pip_functionality_tests.pytorch.test_compare import test_compare from monk.pip_functionality_tests.pytorch.test_analyse import test_analyse def run_functionality_tests(): origstdout = sys.stdout print("Running Tests..."); sys.stdout = open("test_logs.txt", 'w'); system_dict = {}; system_dict["total_tests"] = 0; system_dict["successful_tests"] = 0; system_dict["failed_tests_lists"] = []; system_dict["failed_tests_exceptions"] = []; system_dict["skipped_tests_lists"] = []; start = time.time() print("Running 1/11"); system_dict = test_default_train(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 2/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_default_eval_infer(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 3/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_update_copy_from(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 4/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_update_normal(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 5/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_update_eval_infer(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 6/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_expert_train(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("Running 7/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_expert_eval_infer(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 8/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_switch_default(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 9/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_switch_expert(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 10/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_compare(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running 11/11"); sys.stdout = open("test_logs.txt", 'a'); system_dict = test_analyse(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") sys.stdout = open("test_logs.txt", 'a'); end = time.time(); print("Total Tests - {}".format(system_dict["total_tests"])); print("Time Taken - {} sec".format(end-start)); print("Num Successful Tests - {}".format(system_dict["successful_tests"])); print("Num Failed Tests - {}".format(len(system_dict["failed_tests_lists"]))); print("Num Skipped Tests - {}".format(len(system_dict["skipped_tests_lists"]))); print(""); for i in range(len(system_dict["failed_tests_lists"])): print("{}. Failed Test:".format(i+1)); print("Name - {}".format(system_dict["failed_tests_lists"][i])); print("Error - {}".format(system_dict["failed_tests_exceptions"][i])); print(""); print("Skipped Tests List - {}".format(system_dict["skipped_tests_lists"])); print(""); sys.stdout = origstdout; print("Total Tests - {}".format(system_dict["total_tests"])); print("Time Taken - {} sec".format(end-start)); print("Num Successful Tests - {}".format(system_dict["successful_tests"])); print("Num Failed Tests - {}".format(len(system_dict["failed_tests_lists"]))); print("Num Skipped Tests - {}".format(len(system_dict["skipped_tests_lists"]))); print("See test_logs.txt for errors"); print(""); os.system("rm -r workspace"); def run_unit_tests(): origstdout = sys.stdout print("Running Tests..."); sys.stdout = open("test_logs.txt", 'w'); system_dict = {}; system_dict["total_tests"] = 0; system_dict["successful_tests"] = 0; system_dict["failed_tests_lists"] = []; system_dict["failed_tests_exceptions"] = []; system_dict["skipped_tests_lists"] = []; start = time.time() exp_num = 1; print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_sgd(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_nesterov_sgd(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_rmsprop(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_adam(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_adamax(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_adamw(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_adadelta(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_optimizer_adagrad(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_l1(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_l2(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_softmax_crossentropy(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_crossentropy(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_sigmoid_binary_crossentropy(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_binary_crossentropy(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_kldiv(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_poisson_nll(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_huber(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_hinge(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_squared_hinge(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_multimargin(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_squared_multimargin(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_multilabelmargin(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_loss_multilabelsoftmargin(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_convolution1d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_convolution2d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_convolution3d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_transposed_convolution1d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_transposed_convolution2d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_transposed_convolution3d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_max_pooling1d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_max_pooling2d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_max_pooling3d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_average_pooling1d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_average_pooling2d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_average_pooling3d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_global_max_pooling1d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_global_max_pooling2d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_global_max_pooling3d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_global_average_pooling1d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_global_average_pooling2d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_global_average_pooling3d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_batch_normalization(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_instance_normalization(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_layer_normalization(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_identity(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_fully_connected(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_dropout(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_flatten(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_relu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_sigmoid(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_tanh(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_softplus(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_softsign(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_elu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_leaky_relu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_prelu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_selu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_hardshrink(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_hardtanh(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_logsigmoid(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_relu6(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_rrelu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_celu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_softshrink(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_tanhshrink(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_threshold(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_softmin(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_softmax(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_activation_logsoftmax(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_concatenate(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_layer_add(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_resnet_v1(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_resnet_v2(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_resnet_v1_bottleneck(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_resnet_v2_bottleneck(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_resnext(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_mobilenet_v2_linear_bottleneck(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_mobilenet_v2_inverted_linear_bottleneck(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_squeezenet_fire(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_densenet(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_conv_bn_relu(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_inception_a(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_inception_b(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_inception_c(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_inception_d(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") print("Running {}/<num>".format(exp_num)); exp_num += 1; system_dict = test_block_inception_e(system_dict) sys.stdout = origstdout; print("Tests Completed - {}".format(system_dict["total_tests"])); print("Tests Succesful - {}".format(system_dict["successful_tests"])); print("") sys.stdout = open("test_logs.txt", 'a'); end = time.time(); print("Total Tests - {}".format(system_dict["total_tests"])); print("Time Taken - {} sec".format(end-start)); print("Num Successful Tests - {}".format(system_dict["successful_tests"])); print("Num Failed Tests - {}".format(len(system_dict["failed_tests_lists"]))); print("Num Skipped Tests - {}".format(len(system_dict["skipped_tests_lists"]))); print(""); for i in range(len(system_dict["failed_tests_lists"])): print("{}. Failed Test:".format(i+1)); print("Name - {}".format(system_dict["failed_tests_lists"][i])); print("Error - {}".format(system_dict["failed_tests_exceptions"][i])); print(""); print("Skipped Tests List - {}".format(system_dict["skipped_tests_lists"])); print(""); sys.stdout = origstdout; print("Total Tests - {}".format(system_dict["total_tests"])); print("Time Taken - {} sec".format(end-start)); print("Num Successful Tests - {}".format(system_dict["successful_tests"])); print("Num Failed Tests - {}".format(len(system_dict["failed_tests_lists"]))); print("Num Skipped Tests - {}".format(len(system_dict["skipped_tests_lists"]))); print("See test_logs.txt for errors"); print(""); os.system("rm -r workspace");
python/GafferSceneUI/BoundQueryUI.py
ddesmond/gaffer
561
86659
########################################################################## # # Copyright (c) 2021, Cinesite VFX Ltd. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import Gaffer import GafferScene Gaffer.Metadata.registerNode( GafferScene.BoundQuery, "description", """ Queries a particular location in a scene and outputs the bound. """, "layout:activator:spaceIsRelative", lambda node : node["space"].getValue() == GafferScene.BoundQuery.Space.Relative, plugs = { "scene" : [ "description", """ The scene to query the bounds for. """ ], "location" : [ "description", """ The location within the scene to query the bound at. > Note : If the location does not exist then the query will not be > performed and all outputs will be set to their default values. """, "plugValueWidget:type", "GafferSceneUI.ScenePathPlugValueWidget", "scenePathPlugValueWidget:scene", "scene", "nodule:type", "" ], "space" : [ "description", """ The space to query the bound in. """, "preset:Local", GafferScene.BoundQuery.Space.Local, "preset:World", GafferScene.BoundQuery.Space.World, "preset:Relative", GafferScene.BoundQuery.Space.Relative, "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", "nodule:type", "" ], "relativeLocation" : [ "description", """ The location within the scene to use for relative space mode. > Note : If the location does not exist then the query will not be > performed and all outputs will be set to their default values. """, "plugValueWidget:type", "GafferSceneUI.ScenePathPlugValueWidget", "scenePathPlugValueWidget:scene", "scene", "layout:activator", "spaceIsRelative", "nodule:type", "" ], "bound" : [ "description", """ Bounding box at specified location in specified space. """, "layout:section", "Settings.Outputs" ], "center" : [ "description", """ Center point vector of the requested bound. """, "layout:section", "Settings.Outputs" ], "size" : [ "description", """ Size vector of the requested bound. """, "layout:section", "Settings.Outputs" ], } )
desktop/core/ext-py/ply-3.9/example/optcalc/calc.py
kokosing/hue
7,986
86701
<filename>desktop/core/ext-py/ply-3.9/example/optcalc/calc.py<gh_stars>1000+ # ----------------------------------------------------------------------------- # calc.py # # A simple calculator with variables. This is from O'Reilly's # "Lex and Yacc", p. 63. # ----------------------------------------------------------------------------- import sys sys.path.insert(0, "../..") if sys.version_info[0] >= 3: raw_input = input tokens = ( 'NAME', 'NUMBER', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'EQUALS', 'LPAREN', 'RPAREN', ) # Tokens t_PLUS = r'\+' t_MINUS = r'-' t_TIMES = r'\*' t_DIVIDE = r'/' t_EQUALS = r'=' t_LPAREN = r'\(' t_RPAREN = r'\)' t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*' def t_NUMBER(t): r'\d+' try: t.value = int(t.value) except ValueError: print("Integer value too large %s" % t.value) t.value = 0 return t t_ignore = " \t" def t_newline(t): r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) # Build the lexer import ply.lex as lex lex.lex(optimize=1) # Parsing rules precedence = ( ('left', 'PLUS', 'MINUS'), ('left', 'TIMES', 'DIVIDE'), ('right', 'UMINUS'), ) # dictionary of names names = {} def p_statement_assign(t): 'statement : NAME EQUALS expression' names[t[1]] = t[3] def p_statement_expr(t): 'statement : expression' print(t[1]) def p_expression_binop(t): '''expression : expression PLUS expression | expression MINUS expression | expression TIMES expression | expression DIVIDE expression''' if t[2] == '+': t[0] = t[1] + t[3] elif t[2] == '-': t[0] = t[1] - t[3] elif t[2] == '*': t[0] = t[1] * t[3] elif t[2] == '/': t[0] = t[1] / t[3] elif t[2] == '<': t[0] = t[1] < t[3] def p_expression_uminus(t): 'expression : MINUS expression %prec UMINUS' t[0] = -t[2] def p_expression_group(t): 'expression : LPAREN expression RPAREN' t[0] = t[2] def p_expression_number(t): 'expression : NUMBER' t[0] = t[1] def p_expression_name(t): 'expression : NAME' try: t[0] = names[t[1]] except LookupError: print("Undefined name '%s'" % t[1]) t[0] = 0 def p_error(t): if t: print("Syntax error at '%s'" % t.value) else: print("Syntax error at EOF") import ply.yacc as yacc yacc.yacc(optimize=1) while 1: try: s = raw_input('calc > ') except EOFError: break yacc.parse(s)
tests/test_plotly.py
paultimothymooney/docker-python-2
2,030
86704
import unittest import plotly.graph_objs as go class TestPlotly(unittest.TestCase): def test_figure(self): trace = {'x': [1, 2], 'y': [1, 3]} data = [ trace ] go.Figure(data=data)
datadog_checks_dev/datadog_checks/dev/tooling/commands/meta/windows/__init__.py
tdimnet/integrations-core
663
86764
<reponame>tdimnet/integrations-core # (C) Datadog, Inc. 2021-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import click from ...console import CONTEXT_SETTINGS from .pdh import pdh ALL_COMMANDS = [pdh] @click.group(context_settings=CONTEXT_SETTINGS, short_help='Windows utilities') def windows(): pass for command in ALL_COMMANDS: windows.add_command(command)
src/robots/__init__.py
sergioisidoro/django-robots
252
86777
<gh_stars>100-1000 from pkg_resources import get_distribution __version__ = get_distribution("django-robots").version
convlab2/policy/ppo/multiwoz/__init__.py
Malavikka/ConvLab-2
339
86781
<reponame>Malavikka/ConvLab-2<filename>convlab2/policy/ppo/multiwoz/__init__.py from convlab2.policy.ppo.multiwoz.ppo_policy import PPOPolicy
omniglot/archs.py
tam17aki/pytorch-adacos
209
86847
import numpy as np from torch import nn from torch.nn import functional as F import torch from torchvision import models import torchvision __all__ = ['ResNet_IR'] class ResNet_IR(nn.Module): def __init__(self, args): super().__init__() if args.backbone == 'resnet18': self.backbone = models.resnet18(pretrained=True) last_channels = 512 elif args.backbone == 'resnet34': self.backbone = models.resnet34(pretrained=True) last_channels = 512 elif args.backbone == 'resnet50': self.backbone = models.resnet50(pretrained=True) last_channels = 2048 elif args.backbone == 'resnet101': self.backbone = models.resnet101(pretrained=True) last_channels = 2048 elif args.backbone == 'resnet152': self.backbone = models.resnet152(pretrained=True) last_channels = 2048 self.features = nn.Sequential( self.backbone.conv1, self.backbone.bn1, self.backbone.relu, self.backbone.layer1, self.backbone.layer2, self.backbone.layer3, self.backbone.layer4) self.bn1 = nn.BatchNorm2d(last_channels) self.dropout = nn.Dropout2d(0.5) self.fc = nn.Linear(8*8*last_channels, args.num_features) self.bn2 = nn.BatchNorm1d(args.num_features) def freeze_bn(self): for m in self.features.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.requires_grad = False m.bias.requires_grad = False def forward(self, x): x = self.features(x) x = self.bn1(x) x = self.dropout(x) x = x.view(x.shape[0], -1) x = self.fc(x) output = self.bn2(x) return output
kuwala/common/jupyter/modules/poi_controller.py
bmahmoudyan/kuwala
381
86849
import json import os from geojson import Polygon from kuwala.modules.common import polyfill_polygon # Get the aggregated number of a specific POI category per H3 index at a given resolution def get_pois_by_category_in_h3(sp, category, resolution, polygon_coords): polygon_cells = None if polygon_coords: polygon_coords = json.loads(polygon_coords) polygon = Polygon(polygon_coords) polygon_cells = list(polyfill_polygon(polygon, resolution=resolution)) # noinspection SqlNoDataSourceInspection query = ''' CALL { MATCH (pc:PoiCategory)<-[:BELONGS_TO]-(po:PoiOSM)-[:BELONGS_TO]->(p:Poi)-[:LOCATED_AT]->(h:H3Index) ''' + f''' WITH p, pc, io.kuwala.h3.h3ToParent(h.h3Index, {resolution}) AS h3_index WHERE {f'h3_index IN {polygon_cells} AND' if polygon_cells else ''} pc.name = '{category}' RETURN p UNION MATCH (pc:PoiCategory)<-[:BELONGS_TO]-(pg:PoiGoogle)-[b:BELONGS_TO]->(p:Poi)-[:LOCATED_AT]->(h:H3Index) WITH p, pc, io.kuwala.h3.h3ToParent(h.h3Index, {resolution}) AS h3_index WHERE {f'h3_index IN {polygon_cells} AND' if polygon_cells else ''} b.confidence >= 0.8 AND pc.name = '{category}' RETURN p ''' + '''} WITH p MATCH (p)-[:LOCATED_AT]->(h:H3Index) ''' + f'''WITH p, io.kuwala.h3.h3ToParent(h.h3Index, {resolution}) AS h3_index RETURN h3_index, COUNT(p) AS number_of_{category} ''' url = os.getenv('NEO4J_HOST') or 'bolt://localhost:7687' return sp.read.format("org.neo4j.spark.DataSource") \ .option("url", url) \ .option("authentication.type", "basic") \ .option("authentication.basic.username", "neo4j") \ .option("authentication.basic.password", "password") \ .option("query", query) \ .load()
megatron/module.py
eric-haibin-lin/Megatron-LM
309
86873
<gh_stars>100-1000 # coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron Module""" import torch class MegatronModule(torch.nn.Module): """Megatron specific extentions of torch Module.""" def __init__(self): super(MegatronModule, self).__init__() def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """Use this function to override the state dict for saving checkpoints.""" return self.state_dict(destination, prefix, keep_vars)
tick/base/tests/standard_normal_distribution_test.py
sumau/tick
411
86887
# License: BSD 3 clause # -*- coding: utf8 -*- import unittest from tick.base.build.base import standard_normal_cdf, \ standard_normal_inv_cdf from scipy.stats import norm import numpy as np from numpy.random import normal, uniform class Test(unittest.TestCase): def setUp(self): self.size = 10 def test_standard_normal_cdf(self): """...Test normal cumulative distribution function """ tested_sample = normal(size=self.size) actual = np.array([standard_normal_cdf(s) for s in tested_sample]) expected = norm.cdf(tested_sample) np.testing.assert_almost_equal(actual, expected, decimal=7) def test_standard_normal_inv_cdf(self): """...Test inverse of normal cumulative distribution function """ tested_sample = uniform(size=self.size) actual = np.array([standard_normal_inv_cdf(s) for s in tested_sample]) expected = norm.ppf(tested_sample) np.testing.assert_almost_equal(actual, expected, decimal=7) actual_array = np.empty(self.size) standard_normal_inv_cdf(tested_sample, actual_array) np.testing.assert_almost_equal(actual_array, expected, decimal=7)
fastflix/widgets/panels/info_panel.py
ObviousInRetrospect/FastFlix
388
86895
<filename>fastflix/widgets/panels/info_panel.py #!/usr/bin/env python # -*- coding: utf-8 -*- import logging import re from itertools import chain from pathlib import Path from typing import List, Union from box import Box, BoxList from PySide6 import QtCore, QtGui, QtWidgets from fastflix.language import t from fastflix.models.encode import AttachmentTrack from fastflix.models.fastflix_app import FastFlixApp from fastflix.models.video import Video from fastflix.shared import link logger = logging.getLogger("fastflix") class InfoPanel(QtWidgets.QTabWidget): def __init__(self, parent, app: FastFlixApp): super().__init__(parent) self.app = app self.main = parent.main self.attachments = Box() def reset(self): for i in range(self.count() - 1, -1, -1): self.removeTab(i) if not self.app.fastflix.current_video: return all_stream = [] for x in self.app.fastflix.current_video.streams.values(): all_stream.extend(x) for stream in sorted(all_stream, key=lambda z: z["index"]): widget = QtWidgets.QTextBrowser(self) widget.setReadOnly(True) widget.setDisabled(False) widget.setText(Box(stream).to_yaml(default_flow_style=False)) self.addTab(widget, f"{stream['index']}: {stream['codec_type'].title()} ({stream.get('codec_name', '')})")
bot-bosses/tsadmiral/MyBot.py
HaliteChallenge/Halite-II
232
86925
""" Welcome to your first Halite-II bot! This bot's name is Settler. It's purpose is simple (don't expect it to win complex games :) ): 1. Initialize game 2. If a ship is not docked and there are unowned planets 2.a. Try to Dock in the planet if close enough 2.b If not, go towards the planet Note: Please do not place print statements here as they are used to communicate with the Halite engine. If you need to log anything use the logging module. """ # Let's start by importing the Halite Starter Kit so we can interface with the Halite engine import hlt import numpy import math import gc import hlt.entity import hlt.collision import logging import time import random # GAME START # Here we define the bot's name as Settler and initialize the game, including communication with the Halite engine. game = hlt.Game("MyBot16") initialized = False first_dock = False cos = [math.cos(math.radians(x)) for x in range(360)] sin = [math.sin(math.radians(x)) for x in range(360)] def compute_dist(dx, dy): return numpy.sqrt(dx * dx + dy * dy) def compute_square_dist(dx, dy): return dx * dx + dy * dy def custom_intersect_segment_circle(start, end, circle, *, fudge=0.5): # threshold = 2 * hlt.constants.MAX_SPEED + fudge + circle.radius # if numpy.abs(start.x - circle.x) > threshold or numpy.abs(start.y - circle.y) > threshold: # return False dx = end.x - start.x dy = end.y - start.y a = dx**2 + dy**2 b = -2 * (start.x**2 - start.x*end.x - start.x*circle.x + end.x*circle.x + start.y**2 - start.y*end.y - start.y*circle.y + end.y*circle.y) c = (start.x - circle.x)**2 + (start.y - circle.y)**2 if a == 0.0: # Start and end are the same point return start.calculate_distance_between(circle) <= circle.radius + fudge # Time along segment when closest to the circle (vertex of the quadratic) t = min(-b / (2 * a), 1.0) if t < 0: return False closest_x = start.x + dx * t closest_y = start.y + dy * t closest_distance = hlt.entity.Position(closest_x, closest_y).calculate_distance_between(circle) return closest_distance <= circle.radius + fudge SKIP_THRESHOLD = (hlt.constants.MAX_SPEED + 1.1) ** 2 def exists_obstacles_between(ship, target, all_planets, all_ships, all_my_ships_moves, ignore=()): obstacles = [] entities = ([] if issubclass(hlt.entity.Planet, ignore) else all_planets) \ + ([] if issubclass(hlt.entity.Ship , ignore) else all_ships) \ + ([] if issubclass(hlt.entity.Ship , ignore) else all_my_ships_moves) if not issubclass(hlt.entity.Planet, ignore): for foreign_entity in all_planets: if foreign_entity == ship or foreign_entity == target: continue if custom_intersect_segment_circle(ship, target, foreign_entity, fudge=ship.radius + 0.1): return True if not issubclass(hlt.entity.Ship, ignore): for foreign_entity in all_ships + all_my_ships_moves: if foreign_entity == ship or foreign_entity == target: continue if compute_square_dist(foreign_entity.x - ship.x, foreign_entity.y - ship.y) > SKIP_THRESHOLD: continue if custom_intersect_segment_circle(ship, target, foreign_entity, fudge=ship.radius + 0.1): return True return False def custom_navigate(ship, target, game_map, max_speed, min_speed, speed_decay, step, all_planets, all_ships, all_my_ships_moves, avoid_obstacles=True, max_corrections=90, angular_step=1, ignore_ships=False, ignore_planets=False, suicide=False): # Assumes a position, not planet (as it would go to the center of the planet otherwise) if max_corrections <= 0: return 999999, None, None if not suicide: distance = ship.calculate_distance_between(target) - target.radius - ship.radius else: distance = ship.calculate_distance_between(target) angle = int(ship.calculate_angle_between(target)) ignore = () if not (ignore_ships or ignore_planets) \ else hlt.entity.Ship if (ignore_ships and not ignore_planets) \ else hlt.entity.Planet if (ignore_planets and not ignore_ships) \ else hlt.entity.Entity if avoid_obstacles and exists_obstacles_between(ship, target, all_planets, all_ships, all_my_ships_moves, ignore): new_angle = angle + angular_step while new_angle >= 360: new_angle -= 360 while new_angle < 0: new_angle += 360 new_target_dx = cos[int(new_angle)] * distance new_target_dy = sin[int(new_angle)] * distance new_target = hlt.entity.Position(ship.x + new_target_dx, ship.y + new_target_dy) return custom_navigate(ship, new_target, game_map, max_speed, min_speed, speed_decay, step + 1, all_planets, all_ships, all_my_ships_moves, True, max_corrections - 1, angular_step, ignore_ships, ignore_planets, suicide) # TODO formulize this better speed = max(max_speed - step * speed_decay, min_speed) speed = speed if (distance >= speed) else distance - 0.1 final_target_dx = cos[int(angle)] * speed final_target_dy = sin[int(angle)] * speed final_target = hlt.entity.Position(ship.x + final_target_dx, ship.y + final_target_dy) final_target.radius = ship.radius return step, final_target, ship.thrust(speed, angle) # parameters ANGULAR_STEP = 6 MAX_SPEED = hlt.constants.MAX_SPEED MIN_SPEED = hlt.constants.MAX_SPEED * 0.5 SPEED_DECAY = 0.0 MAX_CORRECTIONS = 30 MIN_OPPONENT_DIST_TO_DOCK = 25.0 MIN_OPPONENT_DIST_TO_TARGET_PLANET = 25.0 DOCKED_BONUS = 0.0 PLANET_BONUS = 10.0 UNDOCKED_BONUS = -100.0 MAX_OPPONENT_SHIP_TARGET_CNT = 4 MAX_MY_SHIP_TARGET_CNT = 4 PLANET_DOCKED_ALLIES_BONUS = 40.0 OPPONENT_SHIP_CLOSE_TO_MY_DOCKED_BONUS = 40.0 MAX_DIST_TO_TARGET_OPPONENT_UNDOCKED_SHIP = 15.0 #PLANET_CAPACITY_BONUS = #UNDOCKED_OPPONENT_CLOSE_TO_MY_DOCKED_BONUS = 10.0 PLANET_NEARBY_PLANET_MAX_BONUS = 36.0 PLANET_NEARBY_PLANET_BIAS = 3.0 PLANET_NEARBY_PLANET_SLOPE = 0.25 SUICIDE_UNDOCKED_OPPONENT_DIST = 15.0 ALL_IN_DIST = 50.0 PLANET_FAR_FROM_CENTER_BONUS = 1.0 MAX_PLANET_FAR_FROM_CENTER_BONUS = 70.0 SUICIDE_HEALTH_MULT = 1.0 CLOSE_OPPONENT_DIST = 12.0 CLOSE_ALLY_DIST = 5.0 DOUBLE_NAVIGATE_SHIP_CNT = 999 def planet_nearby_empty_planet_score(dist_matrix, planet_owner, planet_capacity): score = numpy.maximum(0.0, PLANET_NEARBY_PLANET_BIAS - dist_matrix * PLANET_NEARBY_PLANET_SLOPE) score = ((planet_owner == -1) * planet_capacity)[numpy.newaxis,:] * ((planet_owner == -1) * planet_capacity)[:,numpy.newaxis] * score return numpy.minimum(PLANET_NEARBY_PLANET_MAX_BONUS, numpy.sum(score, axis=0)) #PLANET_DOCK_SYNERGE_BONUS = 5.0 # TODOS # 2. parameter tuning # 5. collide to planets? # 6. if timeout, move ship to center of the enemies or allies? # 7. Add our own planet in target to be more defensive # 8. count ships of I and opponent to figure out who's winning. If even, be more defensive # 9. if I have more ships, collide to opponent planet # 10. go to my ally when there's more enemy # 11. if you are a lone warrior, far away from my docked ship, and many enemies in your target but no allies, get back # 12. In a 4P game, be more defensive # 13. Defend early game rush # 14. Create a pivot early_game_all_in = 0 while True: # TURN START st = time.time() # Update the map for the new turn and get the latest version game_map = game.update_map() # Here we define the set of commands to be sent to the Halite engine at the end of the turn command_queue = [] # initialize game info if not initialized: my_id = game_map.my_id me = game_map.get_me() width = game_map.width height = game_map.height initialized = True # cache players, planets and ships all_players_ids = game_map._players.keys() num_players = len(all_players_ids) all_planets = game_map.all_planets() all_my_ships = game_map.get_me().all_ships() num_my_ships = len(all_my_ships) all_opponent_ships = [] for pid in all_players_ids: if my_id != pid: all_opponent_ships += game_map.get_player(pid).all_ships() num_opponent_ships = len(all_opponent_ships) all_ships = all_my_ships + all_opponent_ships # cache coordinates and misc all_my_ships_x = numpy.array([v.x for v in all_my_ships]) all_my_ships_y = numpy.array([v.y for v in all_my_ships]) all_my_ships_center_x = numpy.mean(all_my_ships_x) all_my_ships_center_y = numpy.mean(all_my_ships_y) all_opponent_ships_x = numpy.array([v.x for v in all_opponent_ships]) all_opponent_ships_y = numpy.array([v.y for v in all_opponent_ships]) all_opponent_ships_center_x = numpy.mean(all_opponent_ships_x) all_opponent_ships_center_y = numpy.mean(all_opponent_ships_y) all_planets_x = numpy.array([v.x for v in all_planets]) all_planets_y = numpy.array([v.y for v in all_planets]) my_ships_status = numpy.array([v.docking_status for v in all_my_ships]) num_my_undocked_ships = numpy.sum(my_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKED) opponent_ships_status = numpy.array([v.docking_status for v in all_opponent_ships]) num_opponent_undocked_ships = numpy.sum(opponent_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKED) planet_owner = numpy.array([-1 if v.owner is None else v.owner.id for v in all_planets]) def compute_dist_matrix(x1, y1, x2, y2): dx = x1[:,numpy.newaxis] - x2[numpy.newaxis,:] dy = y1[:,numpy.newaxis] - y2[numpy.newaxis,:] return numpy.sqrt(dx * dx + dy * dy) my_ship_dist_matrix = compute_dist_matrix(all_my_ships_x, all_my_ships_y, all_my_ships_x, all_my_ships_y) ship_dist_matrix = compute_dist_matrix(all_my_ships_x, all_my_ships_y, all_opponent_ships_x, all_opponent_ships_y) planet_dist_matrix = compute_dist_matrix(all_my_ships_x, all_my_ships_y, all_planets_x, all_planets_y) planet_planet_dist_matrix = compute_dist_matrix(all_planets_x, all_planets_y, all_planets_x, all_planets_y) closest_opponent_ship = numpy.min(ship_dist_matrix, axis=1) closest_undocked_opponent_ship = numpy.min(ship_dist_matrix + 99999999.0 * (opponent_ships_status != hlt.entity.Ship.DockingStatus.UNDOCKED)[numpy.newaxis,:], axis=1) cnt_too_close_to_dock_opponent = numpy.sum((ship_dist_matrix < MIN_OPPONENT_DIST_TO_DOCK) * ((my_ships_status == hlt.entity.Ship.DockingStatus.DOCKED) | (my_ships_status == hlt.entity.Ship.DockingStatus.DOCKING))[:,numpy.newaxis], axis=0) cnt_too_close_to_dock_ally = numpy.sum((ship_dist_matrix < MIN_OPPONENT_DIST_TO_DOCK) * ((my_ships_status == hlt.entity.Ship.DockingStatus.DOCKED) | (my_ships_status == hlt.entity.Ship.DockingStatus.DOCKING))[:,numpy.newaxis], axis=1) close_opponent_ship_cnt = numpy.sum((ship_dist_matrix < CLOSE_OPPONENT_DIST) * (opponent_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKED)[numpy.newaxis,:], axis=1) close_ally_ship_cnt = numpy.sum((my_ship_dist_matrix < CLOSE_ALLY_DIST), axis=1) cnt_too_close_to_dock_closest_ally = numpy.zeros(len(all_my_ships), dtype=numpy.int) for i in range(len(all_opponent_ships)): if opponent_ships_status[i] == hlt.entity.Ship.DockingStatus.UNDOCKED: # TODO optimize this k = numpy.argmin(ship_dist_matrix[:,i] + 99999999.0 * ((my_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKED) | (my_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKING))) if ship_dist_matrix[k][i] < MIN_OPPONENT_DIST_TO_DOCK: cnt_too_close_to_dock_closest_ally[k] += 1 planet_capacity = numpy.array([p.num_docking_spots for p in all_planets]) planet_docked_cnt = numpy.array([len(p._docked_ship_ids) for p in all_planets]) #TODO does this include docking ships? planet_remaining_cnt = planet_capacity - planet_docked_cnt # my ship target scores my_ship_score = numpy.array([0.0] * len(all_my_ships)) my_ship_score += OPPONENT_SHIP_CLOSE_TO_MY_DOCKED_BONUS * cnt_too_close_to_dock_closest_ally my_ship_score += -99999999.0 * (cnt_too_close_to_dock_closest_ally == 0) my_ship_max_target_cnt = numpy.minimum(MAX_MY_SHIP_TARGET_CNT, cnt_too_close_to_dock_closest_ally) # opponent ship target scores opponent_ship_score = numpy.array([0.0] * len(all_opponent_ships)) opponent_ship_score += OPPONENT_SHIP_CLOSE_TO_MY_DOCKED_BONUS * cnt_too_close_to_dock_opponent opponent_ship_score += UNDOCKED_BONUS * \ ((opponent_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKED) | (opponent_ships_status == hlt.entity.Ship.DockingStatus.UNDOCKING)) opponent_ship_score += DOCKED_BONUS * \ ((opponent_ships_status == hlt.entity.Ship.DockingStatus.DOCKED) | (opponent_ships_status == hlt.entity.Ship.DockingStatus.DOCKING)) opponent_ship_max_target_cnt = numpy.array([MAX_OPPONENT_SHIP_TARGET_CNT] * len(all_opponent_ships)) # planet target scores planet_score = numpy.array([PLANET_BONUS] * len(all_planets)) if not first_dock and num_players == 2: planet_score[numpy.argmin(planet_dist_matrix[0])] += 20.0 # so that all ships go to the same planet at the beginning planet_score[(planet_owner == my_id)] += PLANET_DOCKED_ALLIES_BONUS if num_players == 2: planet_score += planet_nearby_empty_planet_score(planet_planet_dist_matrix, planet_owner, planet_capacity) elif num_players > 2: planet_score += numpy.minimum(MAX_PLANET_FAR_FROM_CENTER_BONUS, PLANET_FAR_FROM_CENTER_BONUS * (compute_dist(all_planets_x - width / 2.0, all_planets_y - height / 2.0))) planet_max_target_cnt = planet_remaining_cnt.copy() my_ship_target_cnt = numpy.array([0] * len(all_my_ships)) opponent_ship_target_cnt = numpy.array([0] * len(all_opponent_ships)) planet_target_cnt = numpy.array([0] * len(all_planets)) my_ship_target_available = my_ship_target_cnt < my_ship_max_target_cnt opponent_ship_target_available = opponent_ship_target_cnt < opponent_ship_max_target_cnt planet_target_available = planet_target_cnt < planet_max_target_cnt # Early game exception if early_game_all_in == 0: if len(all_my_ships) != 3 or len(all_opponent_ships) != 3 or num_players > 2 or numpy.sum(my_ships_status != hlt.entity.Ship.DockingStatus.UNDOCKED) == 3: early_game_all_in = 2 if numpy.min(ship_dist_matrix) < ALL_IN_DIST: early_game_all_in = 1 if early_game_all_in == 1: opponent_ship_score += 1.0e9 # compute scores of all edges scores = [0.0] * (len(all_my_ships) * (1 + len(all_planets) + len(all_opponent_ships) + len(all_my_ships))) len_scores = 0 for k in range(len(all_my_ships)): ed = time.time() if ed - st > 1.7: break ship = all_my_ships[k] if ship.docking_status != ship.DockingStatus.UNDOCKED: continue if not early_game_all_in == 1: opponent_too_close_to_target_planet = False if closest_undocked_opponent_ship[k] > MIN_OPPONENT_DIST_TO_TARGET_PLANET else True opponent_too_close_to_dock = False if closest_undocked_opponent_ship[k] > MIN_OPPONENT_DIST_TO_DOCK else True for i in range(len(all_planets)): planet = all_planets[i] if planet.owner == None or planet.owner.id == my_id: dist_score = -(planet_dist_matrix[k][i] - planet.radius) # TODO move this to planet_score opponent_score = -99999999.0 if opponent_too_close_to_target_planet else 0.0 # TODO opponent_score # TODO geographical_score total_score = planet_score[i] + dist_score + opponent_score scores[len_scores] = (total_score, k, i, 'planet') len_scores += 1 if ship.can_dock(planet) and not opponent_too_close_to_dock: total_score = 99999999.0 scores[len_scores] = (total_score, k, i, 'dock') len_scores += 1 else: # TODO: suicide to opponent planet when I got more ships pass for i in range(len(all_my_ships)): if my_ships_status[i] == hlt.entity.Ship.DockingStatus.UNDOCKED or my_ships_status[i] == hlt.entity.Ship.DockingStatus.UNDOCKING: continue mship = all_my_ships[i] dist_score = -(my_ship_dist_matrix[k][i] - mship.radius) total_score = my_ship_score[i] + dist_score scores[len_scores] = (total_score, k, i, 'my_ship') len_scores += 1 for i in range(len(all_opponent_ships)): if ship_dist_matrix[k][i] > MAX_DIST_TO_TARGET_OPPONENT_UNDOCKED_SHIP and opponent_ships_status[i] == hlt.entity.Ship.DockingStatus.UNDOCKED and not early_game_all_in == 1: continue oship = all_opponent_ships[i] dist_score = -(ship_dist_matrix[k][i] - oship.radius) # TODO geograpihcal_score total_score = opponent_ship_score[i] + dist_score scores[len_scores] = (total_score, k, i, 'opponent_ship') len_scores += 1 # choose action in decreasing score order all_my_ships_moves_from = [] all_my_ships_moves_to = [] ship_used = numpy.array([False] * len(all_my_ships)) scores = sorted(scores[:len_scores], reverse=True) for i in range(len(scores)): ed = time.time() if ed - st > 1.7: break ship_idx = scores[i][1] my_ship = all_my_ships[ship_idx] target_idx = scores[i][2] action = scores[i][3] if ship_used[ship_idx]: continue command = None if action == 'dock': if not planet_target_available[target_idx]: continue target = all_planets[target_idx] command = my_ship.dock(target) first_dock = True planet_target_cnt[target_idx] += 1 if planet_target_cnt[target_idx] >= planet_max_target_cnt[target_idx]: planet_target_available[target_idx] = False elif action == 'planet': if not planet_target_available[target_idx]: continue target = all_planets[target_idx] # rand_angle = random.randint(0, 359) # rand_dist = random.uniform(0.0, radius # rand_target = hlt.entity.Position(target.x + step, ship_move, command = custom_navigate(my_ship, target, game_map, MAX_SPEED, MIN_SPEED, SPEED_DECAY, 0, all_planets, all_ships, all_my_ships_moves_to, avoid_obstacles=True, max_corrections=MAX_CORRECTIONS, angular_step=ANGULAR_STEP, ignore_ships=False, ignore_planets=False, suicide=False) if step != 0 and num_my_ships < DOUBLE_NAVIGATE_SHIP_CNT : step2, ship_move2, command2 = custom_navigate(my_ship, target, game_map, MAX_SPEED, MIN_SPEED, SPEED_DECAY, 0, all_planets, all_ships, all_my_ships_moves_to, avoid_obstacles=True, max_corrections=MAX_CORRECTIONS, angular_step=-ANGULAR_STEP, ignore_ships=False, ignore_planets=False, suicide=False) if step2 < step: ship_move = ship_move2 command = command2 if (ship_move is not None) and (command is not None): # TODO refactor this collide = False for j in range(len(all_my_ships_moves_from)): end = hlt.entity.Position(ship_move.x - (all_my_ships_moves_to[j].x - all_my_ships_moves_from[j].x), ship_move.y - (all_my_ships_moves_to[j].y - all_my_ships_moves_from[j].y)) end.radius = my_ship.radius if custom_intersect_segment_circle(my_ship, end, all_my_ships_moves_from[j], fudge=my_ship.radius + 0.1): collide = True break if not collide: all_my_ships_moves_to.append(ship_move) all_my_ships_moves_from.append(my_ship) planet_target_cnt[target_idx] += 1 if planet_target_cnt[target_idx] >= planet_max_target_cnt[target_idx]: planet_target_available[target_idx] = False else: command = None ship_move = None elif action == 'my_ship': if not my_ship_target_available[target_idx]: continue target = all_my_ships[target_idx] suicide = False step, ship_move, command = custom_navigate(my_ship, target, game_map, MAX_SPEED, MIN_SPEED, SPEED_DECAY, 0, all_planets, all_ships, all_my_ships_moves_to, avoid_obstacles=True, max_corrections=MAX_CORRECTIONS, angular_step=ANGULAR_STEP, ignore_ships=False, ignore_planets=False, suicide=suicide) if step != 0 and num_my_ships < DOUBLE_NAVIGATE_SHIP_CNT : step2, ship_move2, command2 = custom_navigate(my_ship, target, game_map, MAX_SPEED, MIN_SPEED, SPEED_DECAY, 0, all_planets, all_ships, all_my_ships_moves_to, avoid_obstacles=True, max_corrections=MAX_CORRECTIONS, angular_step=-ANGULAR_STEP, ignore_ships=False, ignore_planets=False, suicide=suicide) if step2 < step: ship_move = ship_move2 command = command2 if (ship_move is not None) and (command is not None): collide = False for j in range(len(all_my_ships_moves_from)): end = hlt.entity.Position(ship_move.x - (all_my_ships_moves_to[j].x - all_my_ships_moves_from[j].x), ship_move.y - (all_my_ships_moves_to[j].y - all_my_ships_moves_from[j].y)) end.radius = my_ship.radius if custom_intersect_segment_circle(my_ship, end, all_my_ships_moves_from[j], fudge=my_ship.radius + 0.1): collide = True break if not collide: all_my_ships_moves_to.append(ship_move) all_my_ships_moves_from.append(my_ship) my_ship_target_cnt[target_idx] += 1 if my_ship_target_cnt[target_idx] >= my_ship_max_target_cnt[target_idx]: my_ship_target_available[target_idx] = False else: command = None ship_move = None elif action == 'opponent_ship': if not opponent_ship_target_available[target_idx]: continue target = all_opponent_ships[target_idx] suicide = False ignore_ships = False if not early_game_all_in == 1: if my_ship.health <= SUICIDE_HEALTH_MULT * hlt.constants.WEAPON_DAMAGE * float(close_opponent_ship_cnt[ship_idx]) / float(close_ally_ship_cnt[ship_idx]) or \ (opponent_ships_status[target_idx] == hlt.entity.Ship.DockingStatus.DOCKED and closest_undocked_opponent_ship[ship_idx] < SUICIDE_UNDOCKED_OPPONENT_DIST): suicide = True ignore_ships = True else: if my_ship.health <= SUICIDE_HEALTH_MULT * hlt.constants.WEAPON_DAMAGE * float(close_opponent_ship_cnt[ship_idx]) / float(close_ally_ship_cnt[ship_idx]): suicide = True ignore_ships = True step, ship_move, command = custom_navigate(my_ship, target, game_map, MAX_SPEED, MIN_SPEED, SPEED_DECAY, 0, all_planets, all_ships, all_my_ships_moves_to, avoid_obstacles=True, max_corrections=MAX_CORRECTIONS, angular_step=ANGULAR_STEP, ignore_ships=ignore_ships, ignore_planets=False, suicide=suicide) if step != 0 and num_my_ships < DOUBLE_NAVIGATE_SHIP_CNT : step2, ship_move2, command2 = custom_navigate(my_ship, target, game_map, MAX_SPEED, MIN_SPEED, SPEED_DECAY, 0, all_planets, all_ships, all_my_ships_moves_to, avoid_obstacles=True, max_corrections=MAX_CORRECTIONS, angular_step=-ANGULAR_STEP, ignore_ships=ignore_ships, ignore_planets=False, suicide=suicide) if step2 < step: ship_move = ship_move2 command = command2 if (ship_move is not None) and (command is not None): collide = False for j in range(len(all_my_ships_moves_from)): end = hlt.entity.Position(ship_move.x - (all_my_ships_moves_to[j].x - all_my_ships_moves_from[j].x), ship_move.y - (all_my_ships_moves_to[j].y - all_my_ships_moves_from[j].y)) end.radius = my_ship.radius if custom_intersect_segment_circle(my_ship, end, all_my_ships_moves_from[j], fudge=my_ship.radius + 0.1): collide = True break if not collide: all_my_ships_moves_to.append(ship_move) all_my_ships_moves_from.append(my_ship) opponent_ship_target_cnt[target_idx] += 1 if opponent_ship_target_cnt[target_idx] >= opponent_ship_max_target_cnt[target_idx]: opponent_ship_target_available[target_idx] = False else: command = None ship_move = None else: assert False if command is not None: ship_used[ship_idx] = True command_queue.append(command) # logging.info('my_id ' + str(my_id)) # for i in range(len(all_planets)): # planet = all_planets[i] # logging.info(planet.owner) # Send our set of commands to the Halite engine for this turn game.send_command_queue(command_queue) # TURN END # GAME END
src/api-service/__app__/onefuzzlib/azure/creds.py
tonybaloney/onefuzz
2,692
86967
<reponame>tonybaloney/onefuzz #!/usr/bin/env python # # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import functools import logging import os import urllib.parse from typing import Any, Callable, Dict, List, Optional, TypeVar, cast from uuid import UUID import requests from azure.core.exceptions import ClientAuthenticationError from azure.identity import DefaultAzureCredential from azure.keyvault.secrets import SecretClient from azure.mgmt.resource import ResourceManagementClient from azure.mgmt.subscription import SubscriptionClient from memoization import cached from msrestazure.azure_active_directory import MSIAuthentication from msrestazure.tools import parse_resource_id from onefuzztypes.primitives import Container, Region from .monkeypatch import allow_more_workers, reduce_logging # https://docs.microsoft.com/en-us/graph/api/overview?view=graph-rest-1.0 GRAPH_RESOURCE = "https://graph.microsoft.com" GRAPH_RESOURCE_ENDPOINT = "https://graph.microsoft.com/v1.0" @cached def get_msi() -> MSIAuthentication: allow_more_workers() reduce_logging() return MSIAuthentication() @cached def get_identity() -> DefaultAzureCredential: allow_more_workers() reduce_logging() return DefaultAzureCredential() @cached def get_base_resource_group() -> Any: # should be str return parse_resource_id(os.environ["ONEFUZZ_RESOURCE_GROUP"])["resource_group"] @cached def get_base_region() -> Region: client = ResourceManagementClient( credential=get_identity(), subscription_id=get_subscription() ) group = client.resource_groups.get(get_base_resource_group()) return Region(group.location) @cached def get_subscription() -> Any: # should be str return parse_resource_id(os.environ["ONEFUZZ_DATA_STORAGE"])["subscription"] @cached def get_insights_instrumentation_key() -> Any: # should be str return os.environ["APPINSIGHTS_INSTRUMENTATIONKEY"] @cached def get_insights_appid() -> str: return os.environ["APPINSIGHTS_APPID"] @cached def get_instance_name() -> str: return os.environ["ONEFUZZ_INSTANCE_NAME"] @cached def get_instance_url() -> str: return "https://%s.azurewebsites.net" % get_instance_name() @cached def get_instance_id() -> UUID: from .containers import get_blob from .storage import StorageType blob = get_blob(Container("base-config"), "instance_id", StorageType.config) if blob is None: raise Exception("missing instance_id") return UUID(blob.decode()) DAY_IN_SECONDS = 60 * 60 * 24 @cached(ttl=DAY_IN_SECONDS) def get_regions() -> List[Region]: subscription = get_subscription() client = SubscriptionClient(credential=get_identity()) locations = client.subscriptions.list_locations(subscription) return sorted([Region(x.name) for x in locations]) class GraphQueryError(Exception): def __init__(self, message: str, status_code: Optional[int]) -> None: super(GraphQueryError, self).__init__(message) self.message = message self.status_code = status_code def query_microsoft_graph( method: str, resource: str, params: Optional[Dict] = None, body: Optional[Dict] = None, ) -> Dict: cred = get_identity() access_token = cred.get_token(f"{GRAPH_RESOURCE}/.default") url = urllib.parse.urljoin(f"{GRAPH_RESOURCE_ENDPOINT}/", resource) headers = { "Authorization": "Bearer %s" % access_token.token, "Content-Type": "application/json", } response = requests.request( method=method, url=url, headers=headers, params=params, json=body ) if 200 <= response.status_code < 300: if response.content and response.content.strip(): json = response.json() if isinstance(json, Dict): return json else: raise GraphQueryError( "invalid data expected a json object: HTTP" f" {response.status_code} - {json}", response.status_code, ) else: return {} else: error_text = str(response.content, encoding="utf-8", errors="backslashreplace") raise GraphQueryError( f"request did not succeed: HTTP {response.status_code} - {error_text}", response.status_code, ) def query_microsoft_graph_list( method: str, resource: str, params: Optional[Dict] = None, body: Optional[Dict] = None, ) -> List[Any]: result = query_microsoft_graph( method, resource, params, body, ) value = result.get("value") if isinstance(value, list): return value else: raise GraphQueryError("Expected data containing a list of values", None) @cached def get_scaleset_identity_resource_path() -> str: scaleset_id_name = "%s-scalesetid" % get_instance_name() resource_group_path = "/subscriptions/%s/resourceGroups/%s/providers" % ( get_subscription(), get_base_resource_group(), ) return "%s/Microsoft.ManagedIdentity/userAssignedIdentities/%s" % ( resource_group_path, scaleset_id_name, ) @cached def get_scaleset_principal_id() -> UUID: api_version = "2018-11-30" # matches the apiversion in the deployment template client = ResourceManagementClient( credential=get_identity(), subscription_id=get_subscription() ) uid = client.resources.get_by_id(get_scaleset_identity_resource_path(), api_version) return UUID(uid.properties["principalId"]) @cached def get_keyvault_client(vault_url: str) -> SecretClient: return SecretClient(vault_url=vault_url, credential=DefaultAzureCredential()) def clear_azure_client_cache() -> None: # clears the memoization of the Azure clients. from .compute import get_compute_client from .containers import get_blob_service from .network_mgmt_client import get_network_client from .storage import get_mgmt_client # currently memoization.cache does not project the wrapped function's types. # As a workaround, CI comments out the `cached` wrapper, then runs the type # validation. This enables calling the wrapper's clear_cache if it's not # disabled. for func in [ get_msi, get_identity, get_compute_client, get_blob_service, get_network_client, get_mgmt_client, ]: clear_func = getattr(func, "clear_cache", None) if clear_func is not None: clear_func() T = TypeVar("T", bound=Callable[..., Any]) class retry_on_auth_failure: def __call__(self, func: T) -> T: @functools.wraps(func) def decorated(*args, **kwargs): # type: ignore try: return func(*args, **kwargs) except ClientAuthenticationError as err: logging.warning( "clearing authentication cache after auth failure: %s", err ) clear_azure_client_cache() return func(*args, **kwargs) return cast(T, decorated)
pyx12/examples/deident834.py
azoner/pyx12
120
86969
#! /usr/bin/env python import sys import getopt import os.path import logging import random # Intrapackage imports libpath = os.path.abspath(os.path.join(os.path.dirname(__file__), '../..')) if os.path.isdir(libpath): sys.path.insert(0, libpath) import pyx12 import pyx12.x12file import pyx12.x12context import pyx12.params import pyx12.segment from collections import namedtuple __author__ = '<NAME>' __version__ = '1.0' __date__ = '2015-02-12' """ De-indentify 834 Enrollment file Not production ready """ VERBOSE = 0 logger = logging.getLogger() sub_idx = 0 Demographic = namedtuple('Demographic', 'primaryId, ssn, \ medicaidId, dob, dod, firstname, lastname, middlename, street, street2, county') class FakeDeidentify(object): def __init__(self): pass def getDeidentified(self, primaryId, datatree): demo = Demographic(primaryId, '99999999', '009999999', '19500101', \ '', 'Joe', 'Smith', '', '123 Elm', '', '99') return demo class RandomDeidentify(object): def __init__(self): self.identities = {} def getDeidentified(self, primaryId, datatree): if primaryId in self.identities: return self.identities[primaryId] demo = Demographic( primaryId = "{0:0>10}".format(random.randint(1000, 99999999999)), ssn = "{0:0>9}".format(random.randint(10000, 999999999)), medicaidId = "{0:0>10}".format(random.randint(1000, 99999999999)), dob = '19520101', dod = '', firstname = 'AA', lastname = 'Smith', middlename = '', street = "{0} Oak".format(random.randint(10, 9999)), street2 = '', county = '98' ) self.identities[primaryId] = demo return demo def deidentify_file(fd_in): """ """ param = pyx12.params.params() errh = pyx12.error_handler.errh_null() src = pyx12.x12context.X12ContextReader(param, errh, fd_in) #deident = FakeDeidentify() deident = RandomDeidentify() with open('newfile.txt', 'w', encoding='ascii') as fd_out: wr = pyx12.x12file.X12Writer(fd_out) for datatree in src.iter_segments('2000'): if datatree.id == '2000': scrub2000(datatree, deident) for seg1 in datatree.iterate_segments(): #wr.Write(seg1['segment'].format()) print((seg1['segment'].format())) def scrub2000(loop_sub, deident): primaryId = loop_sub.get_value('2100A/NM109') demo = deident.getDeidentified(primaryId, loop_sub) loop_sub.set_value('INS12', demo.dod) loop_sub.set_value('REF[0F]02', demo.primaryId) loop_sub.set_value('2100A/NM103', demo.lastname) loop_sub.set_value('2100A/NM104', demo.firstname) loop_sub.set_value('2100A/NM105', demo.middlename) loop_sub.set_value('2100A/NM109', demo.medicaidId) loop_sub.set_value('2100A/N301', demo.street) loop_sub.set_value('2100A/N302', demo.street2) loop_sub.set_value('2100A/N406', demo.county) loop_sub.set_value('2100A/DMG02', demo.dob) def usage(): pgm_nme = os.path.basename(sys.argv[0]) sys.stdout.write('%s %s (%s)\n' % (pgm_nme, __version__, __date__)) sys.stdout.write('usage: %s [options] source_file\n' % (pgm_nme)) sys.stdout.write('\noptions:\n') sys.stdout.write(' -h Help\n') sys.stdout.write(' -d Debug mode\n') sys.stdout.write(' -o output_directory \n') def main(): try: opts, args = getopt.getopt(sys.argv[1:], 'dhv') except getopt.error as msg: usage() return False formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') stdout_hdlr = logging.StreamHandler() stdout_hdlr.setFormatter(formatter) logger.addHandler(stdout_hdlr) logger.setLevel(logging.INFO) for o, a in opts: if o == '-h': usage() return True if o == '-d': logger.setLevel(logging.DEBUG) if o == '-v': logger.setLevel(logging.DEBUG) for file_in in args: if not os.path.isfile(file_in): logger.error('File %s was not found' % (file_in)) usage() return False #file_name = os.path.basename(file_in) fd_in = open(file_in, 'r', encoding='ascii') deidentify_file(fd_in) return True if __name__ == '__main__': sys.exit(not main())
dex-net/src/dexnet/database/keys.py
peter0749/PointNetGPD
193
86996
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Copyright ©2017. The Regents of the University of California (Regents). All Rights Reserved. Permission to use, copy, modify, and distribute this software and its documentation for educational, research, and not-for-profit purposes, without fee and without a signed licensing agreement, is hereby granted, provided that the above copyright notice, this paragraph and the following two paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643- 7201, <EMAIL>, http://ipira.berkeley.edu/industry-info for commercial licensing opportunities. IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. """ # Keys for easy lookups in HDF5 databases METRICS_KEY = 'metrics' OBJECTS_KEY = 'objects' MESH_KEY = 'mesh' SDF_KEY = 'sdf' GRASPS_KEY = 'grasps' GRIPPERS_KEY = 'grippers' NUM_GRASPS_KEY = 'num_grasps' LOCAL_FEATURES_KEY = 'local_features' GLOBAL_FEATURES_KEY = 'global_features' SHOT_FEATURES_KEY = 'shot' RENDERED_IMAGES_KEY = 'rendered_images' SENSOR_DATA_KEY = 'sensor_data' STP_KEY = 'stable_poses' CATEGORY_KEY = 'category' MASS_KEY = 'mass' CONVEX_PIECES_KEY = 'convex_pieces' CREATION_KEY = 'time_created' DATASETS_KEY = 'datasets' DATASET_KEY = 'dataset' # data keys for easy access SDF_DATA_KEY = 'data' SDF_ORIGIN_KEY = 'origin' SDF_RES_KEY = 'resolution' SDF_POSE_KEY = 'pose' SDF_SCALE_KEY = 'scale' SDF_FRAME_KEY = 'frame' MESH_VERTICES_KEY = 'vertices' MESH_TRIANGLES_KEY = 'triangles' MESH_NORMALS_KEY = 'normals' MESH_POSE_KEY = 'pose' MESH_SCALE_KEY = 'scale' MESH_DENSITY_KEY = 'density' LOCAL_FEATURE_NUM_FEAT_KEY = 'num_features' LOCAL_FEATURE_DESC_KEY = 'descriptors' LOCAL_FEATURE_RF_KEY = 'rfs' LOCAL_FEATURE_POINT_KEY = 'points' LOCAL_FEATURE_NORMAL_KEY = 'normals' SHOT_FEATURES_KEY = 'shot' FEATURE_KEY = 'feature' NUM_STP_KEY = 'num_stable_poses' POSE_KEY = 'pose' STABLE_POSE_PROB_KEY = 'p' STABLE_POSE_ROT_KEY = 'r' STABLE_POSE_PT_KEY = 'x0' NUM_GRASPS_KEY = 'num_grasps' GRASP_KEY = 'grasp' GRASP_ID_KEY = 'id' GRASP_TYPE_KEY = 'type' GRASP_CONFIGURATION_KEY = 'configuration' GRASP_RF_KEY = 'frame' GRASP_TIMESTAMP_KEY = 'timestamp' GRASP_METRICS_KEY = 'metrics' GRASP_FEATURES_KEY = 'features' GRASP_FEATURE_NAME_KEY = 'name' GRASP_FEATURE_TYPE_KEY = 'type' GRASP_FEATURE_VECTOR_KEY = 'vector' NUM_IMAGES_KEY = 'num_images' IMAGE_KEY = 'image' IMAGE_DATA_KEY = 'image_data' IMAGE_FRAME_KEY = 'image_frame' CAM_POS_KEY = 'cam_pos' CAM_ROT_KEY = 'cam_rot' CAM_INT_PT_KEY = 'cam_int_pt' CAM_FRAME_KEY = 'cam_frame' # Extras RENDERED_IMAGE_TYPES = ['segmask', 'depth', 'scaled_depth'] # Metadata METADATA_KEY = 'metadata' METADATA_TYPE_KEY = 'type' METADATA_DESC_KEY = 'description' METADATA_FUNC_KEY = 'func' # Connected components CONNECTED_COMPONENTS_KEY = 'connected_components'
paddlespeech/server/utils/onnx_infer.py
jerryuhoo/PaddleSpeech
1,379
87000
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Optional import onnxruntime as ort def get_sess(model_path: Optional[os.PathLike]=None, sess_conf: dict=None): sess_options = ort.SessionOptions() sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL if "gpu" in sess_conf["device"]: # fastspeech2/mb_melgan can't use trt now! if sess_conf["use_trt"]: providers = ['TensorrtExecutionProvider'] else: providers = ['CUDAExecutionProvider'] elif sess_conf["device"] == "cpu": providers = ['CPUExecutionProvider'] sess_options.intra_op_num_threads = sess_conf["cpu_threads"] sess = ort.InferenceSession( model_path, providers=providers, sess_options=sess_options) return sess
omaha_server/feedback/tasks.py
makar21/omaha-server
142
87005
# coding: utf8 """ This software is licensed under the Apache 2 license, quoted below. Copyright 2014 Crystalnix Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import os from django.core.mail.message import EmailMessage from django.core.files.storage import default_storage from omaha_server.celery import app from feedback.models import Feedback logger =logging.getLogger(__name__) email_body_tmpl = """ Description: %s Page URL: %s User email: %s User IP: %s Feedback JSON data: %s """ @app.task(name='tasks.send_email_feedback', ignore_result=True, max_retries=12, bind=True) def send_email_feedback(self, feedback_pk, sender, recipents): try: feedback = Feedback.objects.get(pk=feedback_pk) except Feedback.DoesNotExist as exc: logger.error('Failed processing_crash_dump', exc_info=True, extra=dict(crash_pk=feedback_pk)) raise self.retry(exc=exc, countdown=2 ** send_email_feedback.request.retries) recipients = [x.strip() for x in recipents.split(',')] body = email_body_tmpl % ( feedback.description, feedback.page_url, feedback.email, feedback.ip, feedback.feedback_data, ) email = EmailMessage("Feedback # %s" % feedback_pk, body, sender, recipients) attachments = [ feedback.screenshot, feedback.blackbox, feedback.system_logs, feedback.attached_file ] for attach in attachments: if attach: email.attach(os.path.basename(attach.name), attach.read()) email.send()
Examples/AppKit/CocoaBindings/TableModelWithSearch/FilteringArrayController.py
Khan/pyobjc-framework-Cocoa
132
87032
<gh_stars>100-1000 # # FilteringArrayController.py # TableModelWithSearch # # Created by <NAME> on Sun Apr 04 2004. # Copyright (c) 2004 __MyCompanyName__. All rights reserved. # from Cocoa import * import re kLiteralSearch = u'Literal Search' kRegularExpressionSearch = u'Regular Expression Search' def regexForSearchString(searchString, searchType): if not searchString: return None searchString = searchString.strip() if searchType == kLiteralSearch: searchString = re.escape(searchString.strip()) + ur'(?i)' return re.compile(searchString) def dictValueFilter(dicts, regex): for dct in dicts: for value in dct.itervalues(): print value if regex.search(value): yield dct break class FilteringArrayController (NSArrayController): searchString = None lastRegex = None searchType = kLiteralSearch def arrangeObjects_(self, objects): supermethod = super(FilteringArrayController, self).arrangeObjects_ try: regex = regexForSearchString(self.searchString, self.searchType) except: regex = self.lastRegex self.lastRegex = regex if regex is None: return supermethod(objects) return supermethod(list(dictValueFilter(objects, regex))) @objc.IBAction def performSearch_(self, sender): self.searchString = sender.stringValue() self.rearrangeObjects() @objc.IBAction def changeSearchType_(self, searchType): self.lastRegex = None self.searchString = None self.searchType = searchType self.rearrangeObjects()
examples/bicycle/kifdd_triangle.py
okkhoy/rlpy
265
87036
<gh_stars>100-1000 from __future__ import division from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from past.utils import old_div import rlpy import numpy as np from hyperopt import hp param_space = { 'kernel_resolution': hp.loguniform("kernel_resolution", np.log(5), np.log(50)), 'discover_threshold': hp.loguniform( "discover_threshold", np.log(1e4), np.log(1e8)), 'lambda_': hp.uniform("lambda_", 0., 1.), 'boyan_N0': hp.loguniform("boyan_N0", np.log(1e1), np.log(1e5)), 'initial_learn_rate': hp.loguniform("initial_learn_rate", np.log(5e-2), np.log(1))} def make_experiment( exp_id=1, path="./Results/Temp/{domain}/{agent}/{representation}/", discover_threshold=88044., boyan_N0=64502, lambda_=0.43982644088, initial_learn_rate=0.920244401, kernel_resolution=11.6543336229): opt = {} opt["exp_id"] = exp_id opt["path"] = path opt["max_steps"] = 150000 opt["num_policy_checks"] = 30 opt["checks_per_policy"] = 1 active_threshold = 0.01 max_base_feat_sim = 0.5 sparsify = 1 domain = rlpy.Domains.BicycleRiding() opt["domain"] = domain kernel_width = old_div((domain.statespace_limits[:, 1] - domain.statespace_limits[:, 0]), kernel_resolution) representation = rlpy.Representations.KernelizediFDD(domain, sparsify=sparsify, kernel=rlpy.Representations.linf_triangle_kernel, kernel_args=[kernel_width], active_threshold=active_threshold, discover_threshold=discover_threshold, normalization=True, max_active_base_feat=10, max_base_feat_sim=max_base_feat_sim) policy = rlpy.Policies.eGreedy(representation, epsilon=0.1) # agent = SARSA(representation,policy,domain,initial_learn_rate=initial_learn_rate, # lambda_=.0, learn_rate_decay_mode="boyan", boyan_N0=boyan_N0) opt["agent"] = rlpy.Agents.Q_Learning(policy, representation, discount_factor=domain.discount_factor, lambda_=lambda_, initial_learn_rate=initial_learn_rate, learn_rate_decay_mode="boyan", boyan_N0=boyan_N0) experiment = rlpy.Experiments.Experiment(**opt) return experiment if __name__ == '__main__': from rlpy.Tools.run import run_profiled # run_profiled(make_experiment) experiment = make_experiment(1) experiment.run(visualize_learning=True, visualize_performance=True) experiment.plot() # experiment.save()
pythran/tests/scipy/hausdorff.py
davidbrochart/pythran
1,647
87046
# # Copyright (C) <NAME>, <NAME>, and <NAME>, 2016 # # Distributed under the same BSD license as Scipy. # # adapted from scipy's cython version import numpy as np import numpy.random as random #pythran export directed_hausdorff(float64[:,:], float64[:,:], int) #pythran export directed_hausdorff_noshuffle(float64[:,:], float64[:,:]) #runas import numpy as np; x = np.arange((100 * 100.)).reshape(100,-1); y = np.ones((100,100)) * 3; directed_hausdorff_noshuffle(x, y) def directed_hausdorff(ar1, ar2, seed=0): N1, data_dims = ar1.shape N2 = ar2.shape[0] i_store = j_store = i_ret = j_ret = 0 # shuffling the points in each array generally increases the likelihood of # an advantageous break in the inner search loop and never decreases the # performance of the algorithm random.seed(seed) resort1 = np.arange(N1) resort2 = np.arange(N2) random.shuffle(resort1) random.shuffle(resort2) ar1 = np.asarray(ar1)[resort1] ar2 = np.asarray(ar2)[resort2] cmax = 0 for i in range(N1): cmin = np.inf for j in range(N2): d = np.sum((ar1[i] - ar2[j]) ** 2) # faster performance with square of distance # avoid sqrt until very end if d < cmax: # break out of `for j` loop break if d < cmin: # always true on first iteration of for-j loop cmin = d i_store = i j_store = j else: # always true on first iteration of for-j loop, after that only # if d >= cmax if cmin != np.inf and cmin > cmax: cmax = cmin i_ret = i_store j_ret = j_store return np.sqrt(cmax), resort1[i_ret], resort2[j_ret] def directed_hausdorff_noshuffle(ar1, ar2, seed=0): N1, data_dims = ar1.shape N2 = ar2.shape[0] i_store = j_store = i_ret = j_ret = 0 resort1 = np.arange(N1) resort2 = np.arange(N2) ar1 = np.asarray(ar1)[resort1] ar2 = np.asarray(ar2)[resort2] cmax = 0 for i in range(N1): cmin = np.inf for j in range(N2): d = np.sum((ar1[i] - ar2[j]) ** 2) # faster performance with square of distance # avoid sqrt until very end if d < cmax: # break out of `for j` loop break if d < cmin: # always true on first iteration of for-j loop cmin = d i_store = i j_store = j else: # always true on first iteration of for-j loop, after that only # if d >= cmax if cmin != np.inf and cmin > cmax: cmax = cmin i_ret = i_store j_ret = j_store return np.sqrt(cmax), resort1[i_ret], resort2[j_ret]
src/ralph/dns/tests.py
pinoatrome/ralph
1,668
87077
<reponame>pinoatrome/ralph<filename>src/ralph/dns/tests.py # -*- coding: utf-8 -*- from unittest.mock import patch from django.db import transaction from django.test import override_settings, TestCase, TransactionTestCase from ralph.assets.tests.factories import ( ConfigurationClassFactory, EthernetFactory ) from ralph.data_center.models import BaseObjectCluster, DataCenterAsset from ralph.dns.dnsaas import DNSaaS from ralph.dns.forms import DNSRecordForm, RecordType from ralph.dns.publishers import _get_txt_data_to_publish_to_dnsaas from ralph.dns.views import ( add_errors, DNSaaSIntegrationNotEnabledError, DNSView ) from ralph.networks.tests.factories import IPAddressFactory from ralph.virtual.models import VirtualServer from ralph.virtual.tests.factories import VirtualServerFactory class TestGetDnsRecords(TestCase): @patch.object(DNSaaS, '_get_oauth_token') def setUp(self, mocked): mocked.return_value = 'token' self.dnsaas = DNSaaS() @patch.object(DNSaaS, 'get_api_result') def test_return_empty_when_api_returns_empty(self, mocked): mocked.return_value = [] found_dns = self.dnsaas.get_dns_records(['192.168.0.1']) self.assertEqual(found_dns, []) def test_return_empty_when_no_ipaddress(self): found_dns = self.dnsaas.get_dns_records([]) self.assertEqual(found_dns, []) @patch.object(DNSaaS, 'get_api_result') def test_return_dns_records_when_api_returns_records(self, mocked): data = { 'content': '127.0.0.3', 'name': '1.test.pl', 'type': 'A', 'id': 1 } mocked.return_value = [data] found_dns = self.dnsaas.get_dns_records(['192.168.0.1']) self.assertEqual(len(found_dns), 1) self.assertEqual(found_dns[0]['content'], data['content']) self.assertEqual(found_dns[0]['name'], data['name']) self.assertEqual(found_dns[0]['type'], RecordType.a) @override_settings(DNSAAS_URL='http://dnsaas.com/') def test_build_url(self): self.assertEqual( self.dnsaas.build_url('domains'), 'http://dnsaas.com/api/domains/' ) @override_settings(DNSAAS_URL='http://dnsaas.com/') def test_build_url_with_version(self): self.assertEqual( self.dnsaas.build_url('domains'), 'http://dnsaas.com/api/domains/' ) @override_settings(DNSAAS_URL='http://dnsaas.com/') def test_build_url_with_id(self): self.assertEqual( self.dnsaas.build_url('domains', id=1), 'http://dnsaas.com/api/domains/1/' ) @override_settings(DNSAAS_URL='http://dnsaas.com/') def test_build_url_with_get_params(self): self.assertEqual( self.dnsaas.build_url('domains', get_params=[('name', 'ralph')]), 'http://dnsaas.com/api/domains/?name=ralph' ) @override_settings(DNSAAS_URL='http://dnsaas.com/') def test_build_url_with_id_and_get_params(self): self.assertEqual( self.dnsaas.build_url( 'domains', id=1, get_params=[('name', 'ralph')] ), 'http://dnsaas.com/api/domains/1/?name=ralph' ) class TestDNSView(TestCase): @override_settings(ENABLE_DNSAAS_INTEGRATION=False) def test_dnsaasintegration_disabled(self): with self.assertRaises(DNSaaSIntegrationNotEnabledError): DNSView() @override_settings(ENABLE_DNSAAS_INTEGRATION=True) @patch('ralph.dns.views.DNSaaS._get_oauth_token') def test_dnsaasintegration_enabled(self, _get_oauth_token_mock): # should not raise exception _get_oauth_token_mock.return_value = 'token' DNSView() class TestGetTXTDataToPublishToDNSaaS(TestCase): @classmethod def setUpClass(cls): from ralph.data_center.tests.factories import ( ClusterFactory, DataCenterAssetFactory, RackFactory, ) super().setUpClass() cls.dc_asset = DataCenterAssetFactory( hostname='ralph0.allegro.pl', service_env__service__name='service', service_env__environment__name='test', model__name='DL360', model__manufacturer__name='Asus', model__category__name='ATS', rack=RackFactory( name='Rack #100', server_room__name='Server Room A', server_room__data_center__name='DC1', ), position=1, slot_no='1', configuration_path__class_name='www', configuration_path__module__name='ralph', ) cls.dc_ip = IPAddressFactory( base_object=cls.dc_asset, ethernet=EthernetFactory(base_object=cls.dc_asset), ) IPAddressFactory( base_object=cls.dc_asset, ethernet=EthernetFactory(base_object=cls.dc_asset), is_management=True, ) cls.virtual_server = VirtualServerFactory( hostname='s000.local', configuration_path=ConfigurationClassFactory( class_name='worker', module__name='auth' ), service_env__service__name='service', service_env__environment__name='prod', type__name='Xen', parent=DataCenterAssetFactory( hostname='parent', model__name='DL380p', model__manufacturer__name='Brother', model__category__name='Database Machine', rack=RackFactory( name='Rack #101', server_room__name='Server Room B', server_room__data_center__name='DC2', ), position=1, slot_no='1', ), ) # refresh virtual server to get parent as BaseObject, not # DataCenterAsset cls.vs_ip = IPAddressFactory( base_object=cls.virtual_server, ethernet=EthernetFactory(base_object=cls.virtual_server), ) cls.virtual_server = VirtualServer.objects.get( pk=cls.virtual_server.id ) cluster = ClusterFactory( hostname='', type__name='Application', configuration_path__class_name='www', configuration_path__module__name='ralph', service_env__service__name='service', service_env__environment__name='preprod', ) cls.boc_1 = BaseObjectCluster.objects.create( cluster=cluster, base_object=DataCenterAssetFactory( rack=RackFactory(), position=1, ) ) cls.boc_2 = BaseObjectCluster.objects.create( cluster=cluster, base_object=DataCenterAssetFactory( rack=RackFactory( server_room__data_center__name='DC2', server_room__name='Server Room B', name='Rack #101', ), position=1, ), is_master=True ) cls.cluster = ClusterFactory._meta.model.objects.get(pk=cluster) cls.cluster_ip = IPAddressFactory( base_object=cls.cluster, ethernet=EthernetFactory(base_object=cls.cluster), ) def test_dc_asset_gets_data_ok(self): data = _get_txt_data_to_publish_to_dnsaas(self.dc_asset) self.assertEqual(data, [{ 'content': 'www', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'VENTURE', 'service_uid': self.dc_asset.service.uid }, { 'content': 'ralph', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'ROLE', 'service_uid': self.dc_asset.service.uid }, { 'content': 'ralph/www', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH', 'service_uid': self.dc_asset.service.uid }, { 'content': 'service - test', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'SERVICE_ENV', 'service_uid': self.dc_asset.service.uid }, { 'content': '[ATS] Asus DL360', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'MODEL', 'service_uid': self.dc_asset.service.uid }, { 'content': 'DC1 / Server Room A / Rack #100 / 1 / 1', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'LOCATION', 'service_uid': self.dc_asset.service.uid }]) def test_dc_asset_without_service_gets_data_ok(self): self.dc_asset.service_env = None self.dc_asset.save() data = _get_txt_data_to_publish_to_dnsaas(self.dc_asset) self.assertEqual(data, [{ 'content': 'www', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'VENTURE' }, { 'content': 'ralph', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'ROLE' }, { 'content': 'ralph/www', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH' }, { 'content': '[ATS] Asus DL360', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'MODEL' }, { 'content': 'DC1 / Server Room A / Rack #100 / 1 / 1', 'ips': [self.dc_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'LOCATION' }]) def test_virtual_server_gets_data_ok(self): data = _get_txt_data_to_publish_to_dnsaas(self.virtual_server) self.assertEqual(data, [{ 'content': 'worker', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'VENTURE', 'service_uid': self.virtual_server.service.uid }, { 'content': 'auth', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'ROLE', 'service_uid': self.virtual_server.service.uid }, { 'content': 'auth/worker', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH', 'service_uid': self.virtual_server.service.uid }, { 'content': 'service - prod', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'SERVICE_ENV', 'service_uid': self.virtual_server.service.uid }, { 'content': 'Xen', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'MODEL', 'service_uid': self.virtual_server.service.uid }, { 'content': 'DC2 / Server Room B / Rack #101 / 1 / 1 / parent', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'LOCATION', 'service_uid': self.virtual_server.service.uid }]) def test_virtual_server_without_service_gets_data_ok(self): self.virtual_server.service_env = None self.virtual_server.save() data = _get_txt_data_to_publish_to_dnsaas(self.virtual_server) self.assertEqual(data, [{ 'content': 'worker', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'VENTURE' }, { 'content': 'auth', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'ROLE' }, { 'content': 'auth/worker', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH' }, { 'content': 'Xen', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'MODEL' }, { 'content': 'DC2 / Server Room B / Rack #101 / 1 / 1 / parent', 'ips': [self.vs_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'LOCATION' }]) def test_cluster_gets_data_ok(self): data = _get_txt_data_to_publish_to_dnsaas(self.cluster) self.assertEqual(data, [{ 'content': 'www', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'VENTURE', 'service_uid': self.cluster.service.uid }, { 'content': 'ralph', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'ROLE', 'service_uid': self.cluster.service.uid }, { 'content': 'ralph/www', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH', 'service_uid': self.cluster.service.uid }, { 'content': 'service - preprod', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'SERVICE_ENV', 'service_uid': self.cluster.service.uid }, { 'content': 'Application', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'MODEL', 'service_uid': self.cluster.service.uid }, { 'content': 'DC2 / Server Room B / Rack #101 / 1', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'LOCATION', 'service_uid': self.cluster.service.uid }]) def test_cluster_without_service_gets_data_ok(self): self.cluster.service_env = None self.cluster.save() data = _get_txt_data_to_publish_to_dnsaas(self.cluster) self.assertEqual(data, [{ 'content': 'www', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'VENTURE' }, { 'content': 'ralph', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'ROLE' }, { 'content': 'ralph/www', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH' }, { 'content': 'Application', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'MODEL' }, { 'content': 'DC2 / Server Room B / Rack #101 / 1', 'ips': [self.cluster_ip.address], 'owner': 'ralph', 'target_owner': 'ralph', 'purpose': 'LOCATION' }]) class TestPublishAutoTXTToDNSaaS(TransactionTestCase): @classmethod def setUpClass(cls): from ralph.data_center.tests.factories import ( DataCenterAssetFactory, RackFactory, ) super().setUpClass() cls.dc_asset = DataCenterAssetFactory( hostname='ralph0.allegro.pl', service_env__service__name='service', service_env__environment__name='test', model__name='DL360', model__manufacturer__name='Asus', model__category__name='ATS', rack=RackFactory( name='Rack #100', server_room__name='Server Room A', server_room__data_center__name='DC1', ), position=1, slot_no='1', configuration_path__class_name='www', configuration_path__module__name='ralph', ) cls.dc_ip = IPAddressFactory( base_object=cls.dc_asset, ethernet=EthernetFactory(base_object=cls.dc_asset), ) IPAddressFactory( base_object=cls.dc_asset, ethernet=EthernetFactory(base_object=cls.dc_asset), is_management=True, ) @override_settings( DNSAAS_AUTO_TXT_RECORD_TOPIC_NAME='dnsaas_auto_txt_record' ) @patch('ralph.dns.publishers.publish') def test_publishing_auto_txt_data_when_dc_asset_updated(self, publish_mock): # fetch clean instance dc_asset = DataCenterAsset.objects.get(pk=self.dc_asset) with transaction.atomic(): dc_asset.save() self.assertEqual(publish_mock.call_count, 1) publish_data = publish_mock.call_args[0][1] # owner could be non-deterministic, depending on order of tests # and it's not part of this test to check its correctness for data_dict in publish_data: data_dict.pop('owner') self.assertCountEqual(publish_data, [ { 'content': 'www', 'ips': [self.dc_ip.address], 'target_owner': 'ralph', 'purpose': 'VENTURE', 'service_uid': dc_asset.service.uid }, { 'content': 'ralph', 'ips': [self.dc_ip.address], 'target_owner': 'ralph', 'purpose': 'ROLE', 'service_uid': dc_asset.service.uid }, { 'content': 'ralph/www', 'ips': [self.dc_ip.address], 'target_owner': 'ralph', 'purpose': 'CONFIGURATION_PATH', 'service_uid': dc_asset.service.uid }, { 'content': 'service - test', 'ips': [self.dc_ip.address], 'target_owner': 'ralph', 'purpose': 'SERVICE_ENV', 'service_uid': dc_asset.service.uid }, { 'content': '[ATS] Asus DL360', 'ips': [self.dc_ip.address], 'target_owner': 'ralph', 'purpose': 'MODEL', 'service_uid': dc_asset.service.uid }, { 'content': 'DC1 / Server Room A / Rack #100 / 1 / 1', 'ips': [self.dc_ip.address], 'target_owner': 'ralph', 'purpose': 'LOCATION', 'service_uid': dc_asset.service.uid } ]) class TestDNSForm(TestCase): def test_unknown_field_goes_to_non_field_errors(self): errors = {'errors': [{'reason': 'unknown', 'comment': 'value'}]} form = DNSRecordForm({}) add_errors(form, errors) self.assertIn('value', form.non_field_errors())
rpython/rtyper/lltypesystem/llgroup.py
nanjekyejoannah/pypy
381
87091
import weakref from rpython.rtyper.lltypesystem import lltype, llmemory, rffi from rpython.rlib.rarithmetic import LONG_BIT class GroupType(lltype.ContainerType): """A 'group' that stores static structs together in memory. On 32-bit platforms, the point is that they can be referenced by a GroupMemberOffset which only takes 2 bytes (a USHORT), so the total size of a group is limited to 18 (= the 16 bits in a USHORT, plus 2 bits at the end that are zero and so don't need to be stored). On 64-bit platforms, we check that the address they end up at is within the first 32 bits, so that we can store that address in half a long (i.e. in a UINT). """ _gckind = 'raw' Group = GroupType() class group(lltype._container): _TYPE = Group outdated = None def __init__(self, name): self.name = name self.members = [] def add_member(self, structptr): TYPE = lltype.typeOf(structptr) assert isinstance(TYPE.TO, lltype.Struct) assert TYPE.TO._gckind == 'raw' struct = structptr._as_obj() prevgroup = _membership.get(struct) if prevgroup is not None: prevgroup.outdated = ( "structure %s was inserted into another group" % (struct,)) assert struct._parentstructure() is None index = len(self.members) self.members.append(struct) _membership[struct] = self return GroupMemberOffset(self, index) def member_of_group(structptr): return _membership.get(structptr._as_obj(), None) _membership = weakref.WeakValueDictionary() if LONG_BIT == 32: HALFSHIFT = 16 HALFWORD = rffi.USHORT r_halfword = rffi.r_ushort else: HALFSHIFT = 32 HALFWORD = rffi.UINT r_halfword = rffi.r_uint class GroupMemberOffset(llmemory.Symbolic): """The offset of a struct inside a group, stored compactly in a HALFWORD (a USHORT or UINT). Can only be used by the lloperation 'get_group_member'. """ def annotation(self): from rpython.annotator import model return model.SomeInteger(knowntype=r_halfword) def lltype(self): return HALFWORD def __init__(self, grp, memberindex): assert lltype.typeOf(grp) == Group self.grpptr = grp._as_ptr() self.index = memberindex self.member = grp.members[memberindex]._as_ptr() def __repr__(self): return '%s(%s, %s)' % (self.__class__.__name__, self.grpptr, self.index) def __nonzero__(self): return True def _get_group_member(self, grpptr): assert grpptr == self.grpptr, "get_group_member: wrong group!" return self.member def _get_next_group_member(self, grpptr, skipoffset): # ad-hoc: returns a pointer to the group member that follows this one, # given information in 'skipoffset' about how much to skip -- which # is the size of the current member. assert grpptr == self.grpptr, "get_next_group_member: wrong group!" assert isinstance(skipoffset, llmemory.ItemOffset) assert skipoffset.TYPE == lltype.typeOf(self.member).TO assert skipoffset.repeat == 1 return self.grpptr._as_obj().members[self.index + 1]._as_ptr() class CombinedSymbolic(llmemory.Symbolic): """A general-purpose Signed symbolic that combines an unsigned half-word (USHORT on 32-bit platforms, UINT on 64-bit platforms) and the rest of the word (typically flags). Only supports extracting the half-word with 'llop.extract_ushort', and extracting the rest of the word with '&~0xFFFF' or with a direct masking like '&0x10000' (resp. on 64-bit platform, with '&~0xFFFFFFFF' or '&0x100000000'). """ __slots__ = ['lowpart', 'rest'] MASK = (1<<HALFSHIFT)-1 # 0xFFFF or 0xFFFFFFFF def annotation(self): from rpython.annotator import model return model.SomeInteger() def lltype(self): return lltype.Signed def __init__(self, lowpart, rest): assert (rest & CombinedSymbolic.MASK) == 0 self.lowpart = lowpart self.rest = rest def __repr__(self): return '<CombinedSymbolic %r|%s>' % (self.lowpart, self.rest) def __nonzero__(self): return True def __and__(self, other): if (other & CombinedSymbolic.MASK) == 0: return self.rest & other if (other & CombinedSymbolic.MASK) == CombinedSymbolic.MASK: return CombinedSymbolic(self.lowpart, self.rest & other) raise Exception("other=0x%x" % other) def __or__(self, other): assert (other & CombinedSymbolic.MASK) == 0 return CombinedSymbolic(self.lowpart, self.rest | other) def __add__(self, other): assert (other & CombinedSymbolic.MASK) == 0 return CombinedSymbolic(self.lowpart, self.rest + other) def __sub__(self, other): assert (other & CombinedSymbolic.MASK) == 0 return CombinedSymbolic(self.lowpart, self.rest - other) def __rshift__(self, other): assert other >= HALFSHIFT return self.rest >> other def __eq__(self, other): if (isinstance(other, CombinedSymbolic) and self.lowpart is other.lowpart): return self.rest == other.rest else: return NotImplemented def __ne__(self, other): if (isinstance(other, CombinedSymbolic) and self.lowpart is other.lowpart): return self.rest != other.rest else: return NotImplemented
examples/protocols/sockets/scripts/udpclient.py
Dangku/ESP8266_RTOS_SDK
2,701
87093
# This example code is in the Public Domain (or CC0 licensed, at your option.) # Unless required by applicable law or agreed to in writing, this # software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. # -*- coding: utf-8 -*- from builtins import input import socket import sys # ----------- Config ---------- PORT = 3333 IP_VERSION = 'IPv4' IPV4 = '192.168.0.167' IPV6 = 'FE80::32AE:A4FF:FE80:5288' # ------------------------------- if IP_VERSION == 'IPv4': host = IPV4 family_addr = socket.AF_INET elif IP_VERSION == 'IPv6': host = IPV6 family_addr = socket.AF_INET6 else: print('IP_VERSION must be IPv4 or IPv6') sys.exit(1) try: sock = socket.socket(family_addr, socket.SOCK_DGRAM) except socket.error as msg: print('Failed to create socket') sys.exit() while True: msg = input('Enter message to send : ') try: sock.sendto(msg.encode(), (host, PORT)) reply, addr = sock.recvfrom(128) if not reply: break print('Reply[' + addr[0] + ':' + str(addr[1]) + '] - ' + str(reply)) except socket.error as msg: print('Error Code : ' + str(msg[0]) + ' Message: ' + msg[1]) sys.exit()
keanu-python/docs/remove_underscores.py
bwplotka/keanu
153
87094
<gh_stars>100-1000 import os try: os.rename('_build/html/_static', '_build/html/static') os.rename('_build/html/_modules', '_build/html/modules') os.rename('_build/html/_sources', '_build/html/sources') except: pass root_dir = '_build/html' for directory, subdirectories, files in os.walk(root_dir): for fileName in files: try: fileName = os.path.join(directory, fileName) file = open(fileName, 'r') contents = file.read() file.close() file = open(fileName, 'w') replaced_contents = contents.replace('_static', 'static') replaced_contents = replaced_contents.replace('_modules', 'modules') replaced_contents = replaced_contents.replace('_sources', 'sources') file.write(replaced_contents) except: pass print("Finished renaming all directories and mentions of directories with underscores")
examples/competitive/bot.py
DrInfy/python-sc2
242
87096
<filename>examples/competitive/bot.py import sc2 class CompetitiveBot(sc2.BotAI): async def on_start(self): print("Game started") # Do things here before the game starts async def on_step(self, iteration): # Populate this function with whatever your bot should do! pass def on_end(self, result): print("Game ended.") # Do things here after the game ends
src/maestral/cli/cli_settings.py
gliptak/maestral
436
87124
from __future__ import annotations from typing import TYPE_CHECKING import click from .output import echo, ok from .common import convert_api_errors, existing_config_option, inject_proxy from .core import DropboxPath, CliException if TYPE_CHECKING: from ..main import Maestral @click.command( help=""" Automatically start the sync daemon on login. A systemd or launchd service will be created to start a sync daemon for the given configuration on user login. """, ) @click.option("--yes", "-Y", is_flag=True, default=False) @click.option("--no", "-N", is_flag=True, default=False) @existing_config_option def autostart(yes: bool, no: bool, config_name: str) -> None: from ..autostart import AutoStart auto_start = AutoStart(config_name) if not auto_start.implementation: echo( "Autostart is currently not supported for your platform.\n" "Autostart requires systemd on Linux or launchd on macOS." ) return if yes or no: if yes: auto_start.enable() ok("Enabled start on login.") else: auto_start.disable() ok("Disabled start on login.") else: if auto_start.enabled: echo("Autostart is enabled. Use -N to disable.") else: echo("Autostart is disabled. Use -Y to enable.") @click.group(help="View and manage excluded folders.") def excluded(): pass @excluded.command(name="list", help="List all excluded files and folders.") @inject_proxy(fallback=True, existing_config=True) def excluded_list(m: Maestral) -> None: excluded_items = m.excluded_items excluded_items.sort() if len(excluded_items) == 0: echo("No excluded files or folders.") else: for item in excluded_items: echo(item) @excluded.command( name="add", help="Add a file or folder to the excluded list and re-sync.", ) @click.argument("dropbox_path", type=DropboxPath()) @inject_proxy(fallback=True, existing_config=True) @convert_api_errors def excluded_add(m: Maestral, dropbox_path: str) -> None: if dropbox_path == "/": raise CliException("Cannot exclude the root directory.") m.exclude_item(dropbox_path) ok(f"Excluded '{dropbox_path}'.") @excluded.command( name="remove", help=""" Remove a file or folder from the excluded list and re-sync. It is safe to call this method with items which have already been included, they will not be downloaded again. If the given path lies inside an excluded folder, the parent folder will be included as well (but no other items inside it). """, ) @click.argument("dropbox_path", type=DropboxPath()) @inject_proxy(fallback=False, existing_config=True) @convert_api_errors def excluded_remove(m: Maestral, dropbox_path: str) -> None: if dropbox_path == "/": return echo("The root directory is always included") m.include_item(dropbox_path) ok(f"Included '{dropbox_path}'. Now downloading...") @click.group(help="Manage desktop notifications.") def notify(): pass @notify.command( name="level", help="Get or set the level for desktop notifications.", ) @click.argument( "level_name", required=False, type=click.Choice(["ERROR", "SYNCISSUE", "FILECHANGE"], case_sensitive=False), ) @inject_proxy(fallback=True, existing_config=True) def notify_level(m: Maestral, level_name: str) -> None: from .. import notify as _notify if level_name: m.notification_level = _notify.level_name_to_number(level_name) ok(f"Notification level set to {level_name}.") else: level_name = _notify.level_number_to_name(m.notification_level) echo(f"Notification level: {level_name}.") @notify.command( name="snooze", help="Snooze desktop notifications of file changes.", ) @click.argument("minutes", type=click.IntRange(min=0)) @inject_proxy(fallback=True, existing_config=True) def notify_snooze(m: Maestral, minutes: int) -> None: m.notification_snooze = minutes if minutes > 0: ok(f"Notifications snoozed for {minutes} min. Set snooze to 0 to reset.") else: ok("Notifications enabled.")
neo/bin/prompt.py
volekerb/neo-python
387
87128
<reponame>volekerb/neo-python #!/usr/bin/env python3 import argparse import datetime import os import traceback import asyncio import termios import sys from prompt_toolkit.completion import WordCompleter from prompt_toolkit.history import FileHistory from prompt_toolkit.shortcuts import print_formatted_text, PromptSession from prompt_toolkit.formatted_text import FormattedText from prompt_toolkit.application import get_app as prompt_toolkit_get_app from neo import __version__ from neo.Core.Blockchain import Blockchain from neo.Storage.Implementation.DBFactory import getBlockchainDB from neo.Implementations.Notifications.NotificationDB import NotificationDB from neo.Prompt.Commands.Wallet import CommandWallet from neo.Prompt.Commands.Show import CommandShow from neo.Prompt.Commands.Search import CommandSearch from neo.Prompt.Commands.Config import CommandConfig from neo.Prompt.Commands.SC import CommandSC from neo.Prompt.PromptData import PromptData from neo.Prompt.InputParser import InputParser from neo.Settings import settings, PrivnetConnectionError from neo.UserPreferences import preferences from neo.logging import log_manager from neo.Prompt.PromptPrinter import prompt_print, token_style from neo.Network.nodemanager import NodeManager import neo.Storage.Implementation.DBFactory as DBFactory logger = log_manager.getLogger() from prompt_toolkit.eventloop import use_asyncio_event_loop from neo.Network.p2pservice import NetworkService from contextlib import suppress class PromptFileHistory(FileHistory): def append(self, string): string = self.redact_command(string) if len(string) == 0: return self.strings.append(string) # Save to file. with open(self.filename, 'ab') as f: def write(t): f.write(t.encode('utf-8')) write('\n# %s\n' % datetime.datetime.now()) for line in string.split('\n'): write('+%s\n' % line) def redact_command(self, string): if len(string) == 0: return string command = [comm for comm in ['import wif', 'export wif', 'import nep2', 'export nep2'] if comm in string] if len(command) > 0: command = command[0] # only redacts command if wif/nep2 keys are in the command, not if the argument is left empty. if command in string and len(command + " ") < len(string): # example: import wif 5HueCGU8 --> import wif <wif> return command + " <" + command.split(" ")[1] + ">" else: return string return string class PromptInterface: prompt_completer = None history = None go_on = True wallet_loop_deferred = None Wallet = None _known_things = [] _commands = [ CommandWallet(), CommandShow(), CommandSearch(), CommandConfig(), CommandSC() ] _command_descs = [desc for c in _commands for desc in c.command_descs_with_sub_commands()] commands = {command.command_desc().command: command for command in _commands} start_height = None start_dt = None prompt_session = None def __init__(self, history_filename=None): PromptData.Prompt = self if history_filename: PromptInterface.history = PromptFileHistory(history_filename) self.input_parser = InputParser() self.start_height = Blockchain.Default().Height self.start_dt = datetime.datetime.utcnow() def get_bottom_toolbar(self, cli=None): out = [] try: if PromptData.Wallet is None: return "[%s] Progress: 0/%s/%s" % (settings.net_name, str(Blockchain.Default().Height), str(Blockchain.Default().HeaderHeight)) else: return "[%s] Progress: %s/%s/%s" % (settings.net_name, str(PromptData.Wallet._current_height), str(Blockchain.Default().Height), str(Blockchain.Default().HeaderHeight)) except Exception as e: pass return out def get_completer(self): standard_completions = list({word for d in self._command_descs for word in d.command.split()}) # Use a set to ensure unicity of words standard_completions += ['quit', 'help', 'exit'] if PromptData.Wallet: for addr in PromptData.Wallet.Addresses: if addr not in self._known_things: self._known_things.append(addr) for alias in PromptData.Wallet.NamedAddr: if alias.Title not in self._known_things: self._known_things.append(alias.Title) for tkn in PromptData.Wallet.GetTokens().values(): if tkn.symbol not in self._known_things: self._known_things.append(tkn.symbol) all_completions = standard_completions + self._known_things PromptInterface.prompt_completer = WordCompleter(all_completions) return PromptInterface.prompt_completer def quit(self): print('Shutting down. This may take a bit...') self.go_on = False PromptData.close_wallet() raise SystemExit def help(self): prompt_print(f"\nCommands:") for command_group in sorted(self.commands.keys()): command = self.commands[command_group] prompt_print(f" {command_group:<15} - {command.command_desc().short_help}") prompt_print(f"\nRun 'COMMAND help' for more information on a command.") def on_looperror(self, err): logger.debug("On DB loop error! %s " % err) async def run(self): nodemgr = NodeManager() while not nodemgr.running: await asyncio.sleep(0.1) tokens = [("class:neo", 'NEO'), ("class:default", ' cli. Type '), ("class:command", '\'help\' '), ("class:default", 'to get started')] print_formatted_text(FormattedText(tokens), style=token_style) print('\n') session = PromptSession("neo> ", completer=self.get_completer(), history=self.history, bottom_toolbar=self.get_bottom_toolbar, style=token_style, refresh_interval=3, ) self.prompt_session = session result = "" while self.go_on: # with patch_stdout(): try: result = await session.prompt(async_=True) except EOFError: # Control-D pressed: quit return self.quit() except KeyboardInterrupt: # Control-C pressed: pause for user input # temporarily mute stdout during user input # components like `network` set at DEBUG level will spam through the console # making it impractical to input user data log_manager.mute_stdio() print('Logging output muted during user input...') try: result = await session.prompt(async_=True) except Exception as e: logger.error("Exception handling input: %s " % e) # and re-enable stdio log_manager.unmute_stdio() except Exception as e: logger.error("Exception handling input: %s " % e) try: command, arguments = self.input_parser.parse_input(result) if command is not None and len(command) > 0: command = command.lower() if command in self.commands: cmd = self.commands[command] if len(arguments) > 0 and arguments[-1] == 'help': cmd.handle_help(arguments) else: cmd.execute(arguments) else: if command == 'quit' or command == 'exit': self.quit() elif command == 'help': self.help() elif command is None: print("Please specify a command") else: print("Command '%s' not found" % command) except Exception as e: print("Could not execute command: %s" % e) traceback.print_stack() traceback.print_exc() def main(): parser = argparse.ArgumentParser() # Network group group = parser.add_mutually_exclusive_group() group.add_argument("-m", "--mainnet", action="store_true", default=False, help="Use MainNet instead of the default TestNet") group.add_argument("-p", "--privnet", nargs="?", metavar="host", const=True, default=False, help="Use a private net instead of the default TestNet, optionally using a custom host (default: 127.0.0.1)") group.add_argument("--coznet", action="store_true", default=False, help="Use the CoZ network instead of the default TestNet") group.add_argument("-u", "--unittest", nargs="?", metavar="host", const=True, default=False, help="Use a private net instead of the default TestNet, optionally using a custom host (default: 127.0.0.1)") group.add_argument("-c", "--config", action="store", help="Use a specific config file") # Theme parser.add_argument("-t", "--set-default-theme", dest="theme", choices=["dark", "light"], help="Set the default theme to be loaded from the config file. Default: 'dark'") # Verbose parser.add_argument("-v", "--verbose", action="store_true", default=False, help="Show smart-contract events by default") # Where to store stuff parser.add_argument("--datadir", action="store", help="Absolute path to use for database directories") # peers parser.add_argument("--minpeers", action="store", type=int, choices=range(1, 10 + 1), metavar="[1-10]", help="Min peers to use for P2P Joining") parser.add_argument("--maxpeers", action="store", type=int, default=5, choices=range(1, 10 + 1), metavar="[1-10]", help="Max peers to use for P2P Joining") # Show the neo-python version parser.add_argument("--version", action="version", version="neo-python v{version}".format(version=__version__)) args = parser.parse_args() # Setting the datadir must come before setting the network, else the wrong path is checked at net setup. if args.datadir: settings.set_data_dir(args.datadir) # Setup depending on command line arguments. By default, the testnet settings are already loaded. if args.config: settings.setup(args.config) elif args.mainnet: settings.setup_mainnet() elif args.privnet: try: settings.setup_privnet(args.privnet) except PrivnetConnectionError as e: logger.error(str(e)) return elif args.coznet: settings.setup_coznet() elif args.unittest: settings.setup_unittest_net() # Logfile settings & setup logfile_fn = os.path.join(settings.DATA_DIR_PATH, 'prompt.log') logfile_max_bytes = 5e7 # 50 MB logfile_backup_count = 3 # 3 logfiles history settings.set_logfile(logfile_fn, logfile_max_bytes, logfile_backup_count) if args.theme: preferences.set_theme(args.theme) if args.verbose: settings.set_log_smart_contract_events(True) def set_min_peers(num_peers) -> bool: try: settings.set_min_peers(num_peers) print("Minpeers set to ", num_peers) return True except ValueError: print("Please supply a positive integer for minpeers") return False def set_max_peers(num_peers) -> bool: try: settings.set_max_peers(num_peers) print("Maxpeers set to ", num_peers) return True except ValueError: print("Please supply a positive integer for maxpeers") return False minpeers = args.minpeers maxpeers = args.maxpeers if minpeers and maxpeers: if minpeers > maxpeers: print("minpeers setting cannot be bigger than maxpeers setting") return if not set_min_peers(minpeers) or not set_max_peers(maxpeers): return elif minpeers: if not set_min_peers(minpeers): return if minpeers > settings.CONNECTED_PEER_MAX: if not set_max_peers(minpeers): return elif maxpeers: if not set_max_peers(maxpeers): return if maxpeers < settings.CONNECTED_PEER_MIN: if not set_min_peers(maxpeers): return loop = asyncio.get_event_loop() # put prompt_toolkit on top of asyncio to avoid blocking use_asyncio_event_loop() # Instantiate the blockchain and subscribe to notifications blockchain = Blockchain(DBFactory.getBlockchainDB(settings.chain_leveldb_path)) Blockchain.RegisterBlockchain(blockchain) # Try to set up a notification db if NotificationDB.instance(): NotificationDB.instance().start() # Start the prompt interface fn_prompt_history = os.path.join(settings.DATA_DIR_PATH, '.prompt.py.history') cli = PromptInterface(fn_prompt_history) cli_task = loop.create_task(cli.run()) p2p = NetworkService() loop.create_task(p2p.start()) async def shutdown(): all_tasks = asyncio.all_tasks() for task in all_tasks: task.cancel() with suppress(asyncio.CancelledError): await task # prompt_toolkit hack for not cleaning up see: https://github.com/prompt-toolkit/python-prompt-toolkit/issues/787 old_attrs = termios.tcgetattr(sys.stdin) try: loop.run_forever() except SystemExit: pass finally: with suppress(asyncio.InvalidStateError): app = prompt_toolkit_get_app() if app.is_running: app.exit() with suppress((SystemExit, Exception)): cli_task.exception() loop.run_until_complete(p2p.shutdown()) loop.run_until_complete(shutdown()) loop.run_until_complete(loop.shutdown_asyncgens()) loop.stop() loop.close() # Run things # After the reactor is stopped, gracefully shutdown the database. NotificationDB.close() Blockchain.Default().Dispose() # clean up prompt_toolkit mess, see above termios.tcsetattr(sys.stdin, termios.TCSANOW, old_attrs) if __name__ == "__main__": main()
numba/pylowering.py
mawanda-jun/numba
1,738
87130
<gh_stars>1000+ """ Lowering implementation for object mode. """ from __future__ import print_function, division, absolute_import from llvmlite.llvmpy.core import Type, Constant import llvmlite.llvmpy.core as lc import operator from . import cgutils, generators, ir, types, utils from .errors import ForbiddenConstruct from .lowering import BaseLower from .utils import builtins, HAS_MATMUL_OPERATOR, IS_PY3 # Issue #475: locals() is unsupported as calling it naively would give # out wrong results. _unsupported_builtins = set([locals]) # Map operators to methods on the PythonAPI class PYTHON_BINOPMAP = { operator.add: ("number_add", False), operator.sub: ("number_subtract", False), operator.mul: ("number_multiply", False), operator.truediv: ("number_truedivide", False), operator.floordiv: ("number_floordivide", False), operator.mod: ("number_remainder", False), operator.pow: ("number_power", False), operator.lshift: ("number_lshift", False), operator.rshift: ("number_rshift", False), operator.and_: ("number_and", False), operator.or_: ("number_or", False), operator.xor: ("number_xor", False), # inplace operators operator.iadd: ("number_add", True), operator.isub: ("number_subtract", True), operator.imul: ("number_multiply", True), operator.itruediv: ("number_truedivide", True), operator.ifloordiv: ("number_floordivide", True), operator.imod: ("number_remainder", True), operator.ipow: ("number_power", True), operator.ilshift: ("number_lshift", True), operator.irshift: ("number_rshift", True), operator.iand: ("number_and", True), operator.ior: ("number_or", True), operator.ixor: ("number_xor", True), } if not IS_PY3: PYTHON_BINOPMAP[operator.div] = ("number_divide", False) PYTHON_BINOPMAP[operator.idiv] = ("number_divide", True) if HAS_MATMUL_OPERATOR: PYTHON_BINOPMAP[operator.matmul] = ("number_matrix_multiply", False) PYTHON_BINOPMAP[operator.imatmul] = ("number_matrix_multiply", True) PYTHON_COMPAREOPMAP = { operator.eq: '==', operator.ne: '!=', operator.lt: '<', operator.le: '<=', operator.gt: '>', operator.ge: '>=', operator.is_: 'is', operator.is_not: 'is not', operator.contains: 'in' } class PyLower(BaseLower): GeneratorLower = generators.PyGeneratorLower def init(self): # Strings to be frozen into the Environment object self._frozen_strings = set() self._live_vars = set() def pre_lower(self): super(PyLower, self).pre_lower() self.init_pyapi() # Pre-computed for later use from .dispatcher import OmittedArg self.omitted_typobj = self.pyapi.unserialize( self.pyapi.serialize_object(OmittedArg)) def post_lower(self): pass def pre_block(self, block): self.init_vars(block) def lower_inst(self, inst): if isinstance(inst, ir.Assign): value = self.lower_assign(inst) self.storevar(value, inst.target.name) elif isinstance(inst, ir.SetItem): target = self.loadvar(inst.target.name) index = self.loadvar(inst.index.name) value = self.loadvar(inst.value.name) ok = self.pyapi.object_setitem(target, index, value) self.check_int_status(ok) elif isinstance(inst, ir.DelItem): target = self.loadvar(inst.target.name) index = self.loadvar(inst.index.name) ok = self.pyapi.object_delitem(target, index) self.check_int_status(ok) elif isinstance(inst, ir.SetAttr): target = self.loadvar(inst.target.name) value = self.loadvar(inst.value.name) ok = self.pyapi.object_setattr(target, self._freeze_string(inst.attr), value) self.check_int_status(ok) elif isinstance(inst, ir.DelAttr): target = self.loadvar(inst.target.name) ok = self.pyapi.object_delattr(target, self._freeze_string(inst.attr)) self.check_int_status(ok) elif isinstance(inst, ir.StoreMap): dct = self.loadvar(inst.dct.name) key = self.loadvar(inst.key.name) value = self.loadvar(inst.value.name) ok = self.pyapi.dict_setitem(dct, key, value) self.check_int_status(ok) elif isinstance(inst, ir.Return): retval = self.loadvar(inst.value.name) if self.generator_info: # StopIteration # We own a reference to the "return value", but we # don't return it. self.pyapi.decref(retval) self.genlower.return_from_generator(self) return # No need to incref() as the reference is already owned. self.call_conv.return_value(self.builder, retval) elif isinstance(inst, ir.Branch): cond = self.loadvar(inst.cond.name) if cond.type == Type.int(1): istrue = cond else: istrue = self.pyapi.object_istrue(cond) zero = lc.Constant.null(istrue.type) pred = self.builder.icmp(lc.ICMP_NE, istrue, zero) tr = self.blkmap[inst.truebr] fl = self.blkmap[inst.falsebr] self.builder.cbranch(pred, tr, fl) elif isinstance(inst, ir.Jump): target = self.blkmap[inst.target] self.builder.branch(target) elif isinstance(inst, ir.Del): self.delvar(inst.value) elif isinstance(inst, ir.Raise): if inst.exception is not None: exc = self.loadvar(inst.exception.name) # A reference will be stolen by raise_object() and another # by return_exception_raised(). self.incref(exc) else: exc = None self.pyapi.raise_object(exc) self.return_exception_raised() else: raise NotImplementedError(type(inst), inst) def lower_assign(self, inst): """ The returned object must have a new reference """ value = inst.value if isinstance(value, (ir.Const, ir.FreeVar)): return self.lower_const(value.value) elif isinstance(value, ir.Var): val = self.loadvar(value.name) self.incref(val) return val elif isinstance(value, ir.Expr): return self.lower_expr(value) elif isinstance(value, ir.Global): return self.lower_global(value.name, value.value) elif isinstance(value, ir.Yield): return self.lower_yield(value) elif isinstance(value, ir.Arg): obj = self.fnargs[value.index] # When an argument is omitted, the dispatcher hands it as # _OmittedArg(<default value>) typobj = self.pyapi.get_type(obj) slot = cgutils.alloca_once_value(self.builder, obj) is_omitted = self.builder.icmp_unsigned('==', typobj, self.omitted_typobj) with self.builder.if_else(is_omitted, likely=False) as (omitted, present): with present: self.incref(obj) self.builder.store(obj, slot) with omitted: # The argument is omitted => get the default value obj = self.pyapi.object_getattr_string(obj, 'value') self.builder.store(obj, slot) return self.builder.load(slot) else: raise NotImplementedError(type(value), value) def lower_yield(self, inst): yp = self.generator_info.yield_points[inst.index] assert yp.inst is inst self.genlower.init_generator_state(self) # Save live vars in state # We also need to save live vars that are del'ed afterwards. y = generators.LowerYield(self, yp, yp.live_vars | yp.weak_live_vars) y.lower_yield_suspend() # Yield to caller val = self.loadvar(inst.value.name) # Let caller own the reference self.pyapi.incref(val) self.call_conv.return_value(self.builder, val) # Resumption point y.lower_yield_resume() # None is returned by the yield expression return self.pyapi.make_none() def lower_binop(self, expr, op, inplace=False): lhs = self.loadvar(expr.lhs.name) rhs = self.loadvar(expr.rhs.name) assert not isinstance(op, str) if op in PYTHON_BINOPMAP: fname, inplace = PYTHON_BINOPMAP[op] fn = getattr(self.pyapi, fname) res = fn(lhs, rhs, inplace=inplace) else: # Assumed to be rich comparison fn = PYTHON_COMPAREOPMAP.get(expr.fn, expr.fn) if fn == 'in': # 'in' and operator.contains have args reversed lhs, rhs = rhs, lhs res = self.pyapi.object_richcompare(lhs, rhs, fn) self.check_error(res) return res def lower_expr(self, expr): if expr.op == 'binop': return self.lower_binop(expr, expr.fn, inplace=False) elif expr.op == 'inplace_binop': return self.lower_binop(expr, expr.fn, inplace=True) elif expr.op == 'unary': value = self.loadvar(expr.value.name) if expr.fn == operator.neg: res = self.pyapi.number_negative(value) elif expr.fn == operator.pos: res = self.pyapi.number_positive(value) elif expr.fn == operator.not_: res = self.pyapi.object_not(value) self.check_int_status(res) longval = self.builder.zext(res, self.pyapi.long) res = self.pyapi.bool_from_long(longval) elif expr.fn == operator.invert: res = self.pyapi.number_invert(value) else: raise NotImplementedError(expr) self.check_error(res) return res elif expr.op == 'call': argvals = [self.loadvar(a.name) for a in expr.args] fn = self.loadvar(expr.func.name) args = self.pyapi.tuple_pack(argvals) if expr.vararg: # Expand *args new_args = self.pyapi.number_add(args, self.loadvar(expr.vararg.name)) self.decref(args) args = new_args if not expr.kws: # No named arguments ret = self.pyapi.call(fn, args, None) else: # Named arguments keyvalues = [(k, self.loadvar(v.name)) for k, v in expr.kws] kws = self.pyapi.dict_pack(keyvalues) ret = self.pyapi.call(fn, args, kws) self.decref(kws) self.decref(args) self.check_error(ret) return ret elif expr.op == 'getattr': obj = self.loadvar(expr.value.name) res = self.pyapi.object_getattr(obj, self._freeze_string(expr.attr)) self.check_error(res) return res elif expr.op == 'build_tuple': items = [self.loadvar(it.name) for it in expr.items] res = self.pyapi.tuple_pack(items) self.check_error(res) return res elif expr.op == 'build_list': items = [self.loadvar(it.name) for it in expr.items] res = self.pyapi.list_pack(items) self.check_error(res) return res elif expr.op == 'build_map': res = self.pyapi.dict_new(expr.size) self.check_error(res) for k, v in expr.items: key = self.loadvar(k.name) value = self.loadvar(v.name) ok = self.pyapi.dict_setitem(res, key, value) self.check_int_status(ok) return res elif expr.op == 'build_set': items = [self.loadvar(it.name) for it in expr.items] res = self.pyapi.set_new() self.check_error(res) for it in items: ok = self.pyapi.set_add(res, it) self.check_int_status(ok) return res elif expr.op == 'getiter': obj = self.loadvar(expr.value.name) res = self.pyapi.object_getiter(obj) self.check_error(res) return res elif expr.op == 'iternext': iterobj = self.loadvar(expr.value.name) item = self.pyapi.iter_next(iterobj) is_valid = cgutils.is_not_null(self.builder, item) pair = self.pyapi.tuple_new(2) with self.builder.if_else(is_valid) as (then, otherwise): with then: self.pyapi.tuple_setitem(pair, 0, item) with otherwise: self.check_occurred() # Make the tuple valid by inserting None as dummy # iteration "result" (it will be ignored). self.pyapi.tuple_setitem(pair, 0, self.pyapi.make_none()) self.pyapi.tuple_setitem(pair, 1, self.pyapi.bool_from_bool(is_valid)) return pair elif expr.op == 'pair_first': pair = self.loadvar(expr.value.name) first = self.pyapi.tuple_getitem(pair, 0) self.incref(first) return first elif expr.op == 'pair_second': pair = self.loadvar(expr.value.name) second = self.pyapi.tuple_getitem(pair, 1) self.incref(second) return second elif expr.op == 'exhaust_iter': iterobj = self.loadvar(expr.value.name) tup = self.pyapi.sequence_tuple(iterobj) self.check_error(tup) # Check tuple size is as expected tup_size = self.pyapi.tuple_size(tup) expected_size = self.context.get_constant(types.intp, expr.count) has_wrong_size = self.builder.icmp(lc.ICMP_NE, tup_size, expected_size) with cgutils.if_unlikely(self.builder, has_wrong_size): self.return_exception(ValueError) return tup elif expr.op == 'getitem': value = self.loadvar(expr.value.name) index = self.loadvar(expr.index.name) res = self.pyapi.object_getitem(value, index) self.check_error(res) return res elif expr.op == 'static_getitem': value = self.loadvar(expr.value.name) index = self.context.get_constant(types.intp, expr.index) indexobj = self.pyapi.long_from_ssize_t(index) self.check_error(indexobj) res = self.pyapi.object_getitem(value, indexobj) self.decref(indexobj) self.check_error(res) return res elif expr.op == 'getslice': target = self.loadvar(expr.target.name) start = self.loadvar(expr.start.name) stop = self.loadvar(expr.stop.name) slicefn = self.get_builtin_obj("slice") sliceobj = self.pyapi.call_function_objargs(slicefn, (start, stop)) self.decref(slicefn) self.check_error(sliceobj) res = self.pyapi.object_getitem(target, sliceobj) self.check_error(res) return res elif expr.op == 'cast': val = self.loadvar(expr.value.name) self.incref(val) return val else: raise NotImplementedError(expr) def lower_const(self, const): # All constants are frozen inside the environment index = self.env_manager.add_const(const) ret = self.env_manager.read_const(index) self.check_error(ret) self.incref(ret) return ret def lower_global(self, name, value): """ 1) Check global scope dictionary. 2) Check __builtins__. 2a) is it a dictionary (for non __main__ module) 2b) is it a module (for __main__ module) """ moddict = self.get_module_dict() obj = self.pyapi.dict_getitem(moddict, self._freeze_string(name)) self.incref(obj) # obj is borrowed try: if value in _unsupported_builtins: raise ForbiddenConstruct("builtins %s() is not supported" % name, loc=self.loc) except TypeError: # `value` is unhashable, ignore pass if hasattr(builtins, name): obj_is_null = self.is_null(obj) bbelse = self.builder.basic_block with self.builder.if_then(obj_is_null): mod = self.pyapi.dict_getitem(moddict, self._freeze_string("__builtins__")) builtin = self.builtin_lookup(mod, name) bbif = self.builder.basic_block retval = self.builder.phi(self.pyapi.pyobj) retval.add_incoming(obj, bbelse) retval.add_incoming(builtin, bbif) else: retval = obj with cgutils.if_unlikely(self.builder, self.is_null(retval)): self.pyapi.raise_missing_global_error(name) self.return_exception_raised() return retval # ------------------------------------------------------------------------- def get_module_dict(self): return self.env_body.globals def get_builtin_obj(self, name): # XXX The builtins dict could be bound into the environment moddict = self.get_module_dict() mod = self.pyapi.dict_getitem(moddict, self._freeze_string("__builtins__")) return self.builtin_lookup(mod, name) def builtin_lookup(self, mod, name): """ Args ---- mod: The __builtins__ dictionary or module, as looked up in a module's globals. name: str The object to lookup """ fromdict = self.pyapi.dict_getitem(mod, self._freeze_string(name)) self.incref(fromdict) # fromdict is borrowed bbifdict = self.builder.basic_block with cgutils.if_unlikely(self.builder, self.is_null(fromdict)): # This happen if we are using the __main__ module frommod = self.pyapi.object_getattr(mod, self._freeze_string(name)) with cgutils.if_unlikely(self.builder, self.is_null(frommod)): self.pyapi.raise_missing_global_error(name) self.return_exception_raised() bbifmod = self.builder.basic_block builtin = self.builder.phi(self.pyapi.pyobj) builtin.add_incoming(fromdict, bbifdict) builtin.add_incoming(frommod, bbifmod) return builtin def check_occurred(self): """ Return if an exception occurred. """ err_occurred = cgutils.is_not_null(self.builder, self.pyapi.err_occurred()) with cgutils.if_unlikely(self.builder, err_occurred): self.return_exception_raised() def check_error(self, obj): """ Return if *obj* is NULL. """ with cgutils.if_unlikely(self.builder, self.is_null(obj)): self.return_exception_raised() return obj def check_int_status(self, num, ok_value=0): """ Raise an exception if *num* is smaller than *ok_value*. """ ok = lc.Constant.int(num.type, ok_value) pred = self.builder.icmp(lc.ICMP_SLT, num, ok) with cgutils.if_unlikely(self.builder, pred): self.return_exception_raised() def is_null(self, obj): return cgutils.is_null(self.builder, obj) def return_exception_raised(self): """ Return with the currently raised exception. """ self.cleanup_vars() self.call_conv.return_exc(self.builder) def init_vars(self, block): """ Initialize live variables for *block*. """ self._live_vars = set(self.func_ir.get_block_entry_vars(block)) def _getvar(self, name, ltype=None): if name not in self.varmap: self.varmap[name] = self.alloca(name, ltype=ltype) return self.varmap[name] def loadvar(self, name): """ Load the llvm value of the variable named *name*. """ # If this raises then the live variables analysis is wrong assert name in self._live_vars, name ptr = self.varmap[name] val = self.builder.load(ptr) with cgutils.if_unlikely(self.builder, self.is_null(val)): self.pyapi.raise_missing_name_error(name) self.return_exception_raised() return val def delvar(self, name): """ Delete the variable slot with the given name. This will decref the corresponding Python object. """ # If this raises then the live variables analysis is wrong self._live_vars.remove(name) ptr = self._getvar(name) # initializes `name` if not already self.decref(self.builder.load(ptr)) # This is a safety guard against double decref's, but really # the IR should be correct and have only one Del per variable # and code path. self.builder.store(cgutils.get_null_value(ptr.type.pointee), ptr) def storevar(self, value, name, clobber=False): """ Stores a llvm value and allocate stack slot if necessary. The llvm value can be of arbitrary type. """ is_redefine = name in self._live_vars and not clobber ptr = self._getvar(name, ltype=value.type) if is_redefine: old = self.builder.load(ptr) else: self._live_vars.add(name) assert value.type == ptr.type.pointee, (str(value.type), str(ptr.type.pointee)) self.builder.store(value, ptr) # Safe to call decref even on non python object if is_redefine: self.decref(old) def cleanup_vars(self): """ Cleanup live variables. """ for name in self._live_vars: ptr = self._getvar(name) self.decref(self.builder.load(ptr)) def alloca(self, name, ltype=None): """ Allocate a stack slot and initialize it to NULL. The default is to allocate a pyobject pointer. Use ``ltype`` to override. """ if ltype is None: ltype = self.context.get_value_type(types.pyobject) with self.builder.goto_block(self.entry_block): ptr = self.builder.alloca(ltype, name=name) self.builder.store(cgutils.get_null_value(ltype), ptr) return ptr def incref(self, value): self.pyapi.incref(value) def decref(self, value): """ This is allow to be called on non pyobject pointer, in which case no code is inserted. """ lpyobj = self.context.get_value_type(types.pyobject) if value.type == lpyobj: self.pyapi.decref(value) def _freeze_string(self, string): """ Freeze a Python string object into the code. """ return self.lower_const(string)
openfda/parallel/reducer.py
FDA/openfda
388
87155
import collections import logging import os import tempfile from pickle import loads import leveldb logger = logging.getLogger('mapreduce') def group_by_key(iterator): '''Group identical keys together. Given a sorted iterator of (key, value) pairs, returns an iterator of (key1, values), (key2, values). ''' last_key = None values = [] for key, value in iterator: value = loads(value) key = key.decode() user_key, _ = key.rsplit('.', 1) if user_key != last_key: if last_key is not None: yield last_key, values last_key = user_key values = [value] else: values.append(value) if last_key is not None: yield last_key, values class Reducer(object): def initialize(self, input_queue, tmp_prefix, output_class, output_prefix, shard_idx, num_shards): self.tmp_prefix = tmp_prefix self.output_prefix = output_prefix self.input_queue = input_queue self.output_class = output_class self.shard_idx = shard_idx self.num_shards = num_shards def reduce_shard(self, input_db, output_db): for idx, (key, values) in enumerate(group_by_key(input_db.RangeIter())): # if idx % 1000 == 0: # logger.info('Reducing records=%d key=%s shard=%d', idx, key, self.shard_idx) self.reduce(key, values, output_db) def shuffle(self): os.system('mkdir -p "%s"' % self.tmp_prefix) shuffle_dir = tempfile.mkdtemp( prefix='shard-%05d-of-%05d' % (self.shard_idx, self.num_shards), dir=self.tmp_prefix) shuffle_db = leveldb.LevelDB(shuffle_dir) idx = 0 while 1: next_entry = self.input_queue.get() if next_entry is None: break key, value_str = next_entry shuffle_db.Put((key + ('.%s' % idx)).encode(), value_str) idx += 1 # if idx % 1000 == 0: # logger.info('Shuffling records=%d key=%s shard=%d', idx, key, self.shard_idx) output_db = self.output_class.create_writer(self.output_prefix, self.shard_idx, self.num_shards) # logger.debug('Reducer: %s', output_db) self.reduce_shard(shuffle_db, output_db) output_db.flush() del output_db del shuffle_db os.system('rm -rf "%s"' % shuffle_dir) def reduce(self, key, values, output): raise NotImplementedError def reduce_finished(self): '''Called after all values have been reduced. The result of this call is returned to the caller of `mapreduce`. ''' pass class IdentityReducer(Reducer): def reduce(self, key, values, output): for value in values: output.put(key, value) class SumReducer(Reducer): def reduce(self, key, values, output): output.put(key, sum([float(v) for v in values])) class ListReducer(Reducer): def reduce(self, key, values, output): output.put(key, list(values)) class NullReducer(Reducer): def reduce(self, key, values, output): return def pivot_values(value_list): ''' Takes a list of (name, value) tuples, and `pivots` them, returning a dictionary from name -> [values]. This is frequently used when joining a number of inputs together, where each input is tagged with a table name. ''' intermediate = collections.defaultdict(list) for row in value_list: table_name, val = row intermediate[table_name].append(val) return intermediate class PivotReducer(Reducer): def reduce(self, key, values, output): val = pivot_values(values) output.put(key, val)
packages/syft/src/syft/core/node/common/node_table/entity.py
vishalbelsare/PySyft
8,428
87159
# stdlib from typing import Any # third party from sqlalchemy import Column from sqlalchemy import LargeBinary from sqlalchemy import String # relative from . import Base from ..... import deserialize from ..... import serialize class Entity(Base): __tablename__ = "entity" name = Column(String(255), primary_key=True) entity_bin = Column(LargeBinary(3072)) @property def obj(self) -> Any: return deserialize(self.entity_bin, from_bytes=True) # TODO: techdebt fix @obj.setter def obj(self, value: Any) -> None: self.entity_bin = serialize(value, to_bytes=True) # TODO: techdebt fix
examples/pervasive/modules/wip/ll_controls.py
EricLina/attn2d
490
87177
import sys import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils def progressive_max(x): T = x.size(1) x = F.pad(x, (T-1, 0), 'constant', -1) x = F.max_pool1d(x.unsqueeze(1).float(), # shape into B, C, T T, # kernel size 1, # stride 0, # padding 1, # dilation False, # ceil_mode False, # return indices ) return x.squeeze(1) # B, Tt def logsumexp(a, b): m = torch.max(a, b) return torch.log(torch.exp(a - m) + torch.exp(b - m)) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.) return m class LLControls(nn.Module): """ LL based controller """ def __init__(self, args, controller_dim): nn.Module.__init__(self) self.gate = nn.Linear(controller_dim, 1, bias=True) nn.init.normal_(self.gate.weight, 0, 1/controller_dim) nn.init.constant_(self.gate.bias, 0) self.penalty = args.oracle_penalty self.write_right = args.write_right def get_positions_proba(self, rw_logits): """ Inputs: rw_logits [log(rho), log(1-rho)] : (Tt, B, Ts, 2) Returns the probabilities of being at position (t,j) (Tt, B, Ts) """ Tt, B, Ts, _ = rw_logits.size() Mr1 = rw_logits[0:1,:,:-1,0].exp() Mc1 = rw_logits[:,:,0:1,1].exp() M = rw_logits[1:,:,:-1,0].exp() + rw_logits[:-1,:,1:,1].exp() M = torch.cat((Mr1, M), dim=0) M = torch.cat((Mc1, M), dim=-1) return M def predict_read_write(self, x): """ Returns log(rho), log(1-rho) in B, Tt, Ts, 2 """ x = self.gate(x) s = F.logsigmoid(x) return torch.cat((s, s-x), dim=-1).float() def forward(self, observations, scores): """ Inputs: observations : Input for the controller: B, Tt, Ts, C Scores : log p(y_t | x<j) : B, Tt, Ts """ controls = self.predict_read_write(observations) # B,Tt,Ts,2 B, Tt, Ts = scores.size() with torch.no_grad(): if self.penalty: # Penalize large contexts: indices = torch.arange( Ts, dtype=scores.dtype, device=scores.device ) / Ts scores = scores - self.penalty * indices.unsqueeze(0).unsqueeze(0) best_context = scores.max(-1)[1] # B, Tt best_context = progressive_max(best_context).type_as(best_context) AP = best_context.float().mean(dim=1) / Ts print('AP:', ' '.join(map(lambda x: '{:.2f}'.format(x), AP.tolist()))) gamma = torch.zeros_like(scores).scatter_(-1, best_context.unsqueeze(-1), 1.0) # B, Tt, Ts if self.write_right: gamma = gamma.cumsum(dim=-1) # Write beyond the ideal context if self.write_right: write = gamma[:, 1:] # B, Tt-1, Ts else: write = gamma[:, 1:].cumsum(dim=-1) # B, Tt-1, Ts read = 1 - write return controls[:, :-1], gamma, read, write
examples/scripts/10_custom_backends.py
buildfail/frontera
1,267
87186
""" Custom backend example """ import random from frontera import FrontierManager, Settings, FrontierTester, graphs from frontera.contrib.backends.memory import MemoryBaseBackend SITE_LIST = [ [('http://google.com', [])], [('http://scrapinghub.com', [])], [('http://zynga.com', [])], [('http://microsoft.com', [])], [('http://apple.com', [])], ] class AlphabeticSortBackend(MemoryBaseBackend): """ Custom backend that sort pages alphabetically from url """ name = 'Alphabetic domain name sort backend' def _compare_pages(self, first, second): return cmp(first.url, second.url) class RandomSortBackend(MemoryBaseBackend): """ Custom backend that sort pages randomly """ name = 'Random sort backend' def _compare_pages(self, first, second): return random.choice([-1, 0, 1]) def test_backend(backend): # Graph graph = graphs.Manager() graph.add_site_list(SITE_LIST) # Frontier settings = Settings() settings.BACKEND = backend settings.LOGGING_MANAGER_ENABLED = True settings.LOGGING_BACKEND_ENABLED = True settings.LOGGING_DEBUGGING_ENABLED = False frontier = FrontierManager.from_settings(settings) print '-'*80 print frontier.backend.name print '-'*80 # Tester tester = FrontierTester(frontier, graph) tester.run() # Show crawling sequence for page in tester.sequence: print page.url if __name__ == '__main__': test_backend('10_custom_backends.AlphabeticSortBackend') test_backend('10_custom_backends.RandomSortBackend')
tests/__init__.py
JKitok/girder
395
87191
# -*- coding: utf-8 -*- import unittest.mock from girder import constants, logger # Mock the logging methods so that we don't actually write logs to disk, # and so tests can potentially inspect calls to logging methods. print(constants.TerminalColor.warning('Mocking Girder log methods.')) for handler in logger.handlers: handler.emit = unittest.mock.MagicMock()
asreader/custombricks/save_the_best.py
rkadlec/asreader
113
87194
<reponame>rkadlec/asreader __author__ = 'lada' import os.path from blocks.extensions import SimpleExtension from blocks.serialization import secure_dump SAVED_TO = "saved_to" class SaveTheBest(SimpleExtension): """Check if a log quantity has the minimum/maximum value so far and if that is true then save a pickled version of the main loop to the disk. The pickled main loop can be later reloaded and training can be resumed. Makes a `SAVED_TO` record in the log with the serialization destination in the case of success and ``None`` in the case of failure. The value of the record is a tuple of paths to which saving was done (there can be more than one if the user added a condition with an argument, see :meth:`do` docs). Parameters ---------- record_name : str The name of the record to track. choose_best : callable, optional A function that takes the current value and the best so far and return the best of two. By default :func:`min`, which corresponds to tracking the minimum value. path : str The destination path for pickling. save_separately : list of str, optional The list of the main loop's attributes to be pickled separately to their own files. The paths will be formed by adding the attribute name preceded by an underscore before the before the `path` extension. The whole main loop will still be pickled as usual. use_cpickle : bool See docs of :func:`~blocks.serialization.dump`. Attributes ---------- best_name : str The name of the status record to keep the best value so far. Notes ----- Using pickling for saving the whole main loop object comes with certain limitations: * Theano computation graphs build in the GPU-mode cannot be used in the usual mode (and vice-versa). Therefore using this extension binds you to using only one kind of device. """ def __init__(self, record_name, path, choose_best=min, save_separately=None, use_cpickle=False, **kwargs): self.record_name = record_name self.best_name = "bestsave_" + record_name self.choose_best = choose_best if not save_separately: save_separately = [] self.path = path self.save_separately = save_separately self.use_cpickle = use_cpickle # kwargs.setdefault("after_training", True) kwargs.setdefault("after_epoch", True) super(SaveTheBest, self).__init__(**kwargs) def save_separately_filenames(self, path): """ Compute paths for separately saved attributes. Parameters ---------- path : str Path to which the main savethebest file is being saved. Returns ------- paths : dict A dictionary mapping attribute names to derived paths based on the `path` passed in as an argument. """ root, ext = os.path.splitext(path) return {attribute: root + "_" + attribute + ext for attribute in self.save_separately} def do(self, which_callback, *args): current_value = self.main_loop.log.current_row.get(self.record_name) if current_value is None: return best_value = self.main_loop.status.get(self.best_name, None) if(best_value is None or (current_value != best_value and self.choose_best(current_value, best_value) == current_value)): self.main_loop.status[self.best_name] = current_value # save main_loop _, from_user = self.parse_args(which_callback, args) try: path = self.path if from_user: path, = from_user secure_dump(self.main_loop, path, use_cpickle=self.use_cpickle) filenames = self.save_separately_filenames(path) for attribute in self.save_separately: secure_dump(getattr(self.main_loop, attribute), filenames[attribute], use_cpickle=self.use_cpickle) except Exception: path = None raise finally: already_saved_to = self.main_loop.log.current_row.get(SAVED_TO, ()) self.main_loop.log.current_row[SAVED_TO] = (already_saved_to + (path,)) import logging logger = logging.getLogger(__name__)
infer_tools_tree/utils.py
gvieralopez/Coronary-Artery-Tracking-via-3D-CNN-Classification
107
87195
import numpy as np import warnings from scipy.ndimage.interpolation import zoom import torch import math import copy import cv2 from skimage import measure import pandas as pd def resample(imgs, spacing, new_spacing, order=2): if len(imgs.shape) == 3: new_shape = np.round(imgs.shape * spacing / new_spacing) true_spacing = spacing * imgs.shape / new_shape resize_factor = new_shape / imgs.shape with warnings.catch_warnings(): warnings.simplefilter("ignore") imgs = zoom(imgs, resize_factor, mode='nearest', order=order) return imgs, true_spacing, resize_factor elif len(imgs.shape) == 4: n = imgs.shape[-1] newimg = [] for i in range(n): slice = imgs[:, :, :, i] newslice, true_spacing = resample(slice, spacing, new_spacing) newimg.append(newslice) newimg = np.transpose(np.array(newimg), [1, 2, 3, 0]) return newimg, true_spacing else: raise ValueError('wrong shape') def get_start_ind(center_points): curr_x = center_points[0][0] curr_y = center_points[0][1] curr_z = center_points[0][2] curr_r = 3 start_ind = -1 ellipsis = 0.1 for i in range(1, len(center_points)): v1 = np.array([curr_x, curr_y, curr_z]) v2 = np.array([center_points[i][0], center_points[i][1], center_points[i][2]]) dist = np.linalg.norm(v1 - v2) if (dist - curr_r) <= ellipsis and dist >= curr_r: start_ind = i break return start_ind def get_spacing_res2(x, spacing_x, spacing_new): return int(round((x / spacing_x) * spacing_new)) def get_world_cood(x, spacing_x, spacing_new): return (x / spacing_new) * spacing_x def data_preprocess(img): mean_intensity = np.mean(img) std_intensity = np.std(img) upper_bound = np.percentile(img, 99.5) lower_bound = np.percentile(img, 00.5) img = np.clip(img, lower_bound, upper_bound) # 防止除0 img = (img - mean_intensity) / (std_intensity + 1e-9) img = np.array([img]) img = torch.from_numpy(img) return img.unsqueeze(0) def get_shell(fl_Num_Points, fl_Radius): x_list = [] y_list = [] z_list = [] offset = 2.0 / fl_Num_Points increment = math.pi * (3.0 - math.sqrt(5.0)) for i in range(fl_Num_Points): z = ((i * offset) - 1.0) + (offset / 2.0) r = math.sqrt(1.0 - pow(z, 2.0)) phi = ((i + 1) % fl_Num_Points) * increment x = math.cos(phi) * r y = math.sin(phi) * r x_list.append(fl_Radius * x) y_list.append(fl_Radius * y) z_list.append(fl_Radius * z) return x_list, y_list, z_list def prob_terminates(pre_y, max_points): res = torch.sum(-pre_y * torch.log2(pre_y)) return res / torch.log2(torch.from_numpy(np.array([max_points])).float()) def get_closer_distance(vessel, target_point): min_dis = float("inf") for i in range(len(vessel)): curr_point = vessel[i] dist = np.linalg.norm(target_point - curr_point) if dist < min_dis: min_dis = dist index = i return min_dis, index def get_distance(v1, v2): return np.linalg.norm(v1 - v2) def get_angle(v1, v2): cosangle = v1.dot(v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) cosangle = np.clip(cosangle, -1, 1) return math.degrees(np.arccos(cosangle)) def save_info(res: list, path: str): x_list = [] y_list = [] z_list = [] for i in range(len(res)): x_list.append(res[i][0][0]) y_list.append(res[i][0][1]) z_list.append(res[i][0][2]) dataframe = pd.DataFrame( {'x': x_list, 'y': y_list, 'z': z_list}) dataframe.to_csv(path, index=False, columns=['x', 'y', 'z'], sep=',',float_format='%.5f') def crop_heart(input_arr): ''' In order to remove the influence of pulmonary vessels, we will use threshold method to segment the heart region :param input_arr: image arr :return: Data after removing lung areas ''' src_array = copy.deepcopy(input_arr) z, w, h = src_array.shape new_arr = np.zeros((z, w, h)) new_arr += -1000 sum_minr = 0 sum_minc = 0 sum_maxr = 0 sum_maxc = 0 for k in range(z): image = src_array[k][:, :] ret, thresh = cv2.threshold(image, 20, 400, cv2.THRESH_BINARY) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, anchor=(-1, -1), iterations=4) label_opening = measure.label(opening) regionprops = measure.regionprops(label_opening) max_area = 0 index = 0 for i in range(len(regionprops)): if regionprops[i].area > max_area: max_area = regionprops[i].area index = i minr, minc, maxr, maxc = regionprops[index].bbox new_arr[k][minr:maxr, minc:maxc] = src_array[k][minr:maxr, minc:maxc] sum_minr += minr sum_minc += minc sum_maxr += maxr sum_maxc += maxc mean_minr = sum_minr // z meam_minc = sum_minc // z mean_maxr = sum_maxr // z mean_maxc = sum_maxc // z return new_arr, meam_minc, mean_minr, mean_maxc, mean_maxr
Python/demos/d04_SimpleReconstruction.py
tsadakane/TIGRE
326
87220
<gh_stars>100-1000 #%% Demo 4: Simple Image reconstruction # # # This demo will show how a simple image reconstruction can be performed, # by using OS-SART and FDK # # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- # This file is part of the TIGRE Toolbox # # Copyright (c) 2015, University of Bath and # CERN-European Organization for Nuclear Research # All rights reserved. # # License: Open Source under BSD. # See the full license at # https://github.com/CERN/TIGRE/blob/master/LICENSE # # Contact: <EMAIL> # Codes: https://github.com/CERN/TIGRE/ # Coded by: <NAME> # -------------------------------------------------------------------------- #%%Initialize import tigre import numpy as np from tigre.utilities import sample_loader from tigre.utilities import CTnoise import tigre.algorithms as algs #%% Geometry geo = tigre.geometry_default(high_resolution=False) #%% Load data and generate projections # define angles angles = np.linspace(0, 2 * np.pi, 100) # Load thorax phatom data head = sample_loader.load_head_phantom(geo.nVoxel) # generate projections projections = tigre.Ax(head, geo, angles) # add noise noise_projections = CTnoise.add(projections, Poisson=1e5, Gaussian=np.array([0, 10])) #%% Reconstruct image using OS-SART and FDK # FDK imgFDK = algs.fdk(noise_projections, geo, angles) # OS-SART niter = 50 imgOSSART = algs.ossart(noise_projections, geo, angles, niter) #%% Show the results tigre.plotimg(np.concatenate([imgFDK, imgOSSART], axis=1), dim="z")
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/data/yolo_dataset.py
huaweicloud/ModelArts-Lab
1,045
87232
# Copyright 2018 Deep Learning Service of Huawei Cloud. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function import os import numpy as np from moxing.framework import file from data.yolo_load.detection_dataset import Detection_dataset from utils.read_image_to_list import get_image_list from mxnet import gluon, io, nd def _pad_arrs_to_max_length(arrs, max_gt_box_number, pad_axis=0, pad_val=-1): """Inner Implementation of the Pad batchify""" if not isinstance(arrs[0], (nd.NDArray, np.ndarray)): arrs = [np.asarray(ele) for ele in arrs] max_size = max_gt_box_number ret_shape = list(arrs[0].shape) ret_shape[pad_axis] = max_size ret_shape = (len(arrs), ) + tuple(ret_shape) ret = nd.full(shape=ret_shape, val=pad_val, dtype=arrs[0].dtype) for i, arr in enumerate(arrs): if arr.shape[pad_axis] == max_size: ret[i] = arr else: slices = [slice(None) for _ in range(arr.ndim)] slices[pad_axis] = slice(0, arr.shape[pad_axis]) slices = [slice(i, i + 1)] + slices ret[tuple(slices)] = arr return ret class _train_batchify_fn(object): def __init__(self, max_gt_box_number): self._max_gt_box_number = max_gt_box_number def __call__(self, data): """Collate train data into batch.""" img_data = nd.stack(*[item[0] for item in data]) center_targets = nd.stack(*[item[1] for item in data]) scale_targets = nd.stack(*[item[2] for item in data]) weights = nd.stack(*[item[3] for item in data]) objectness = nd.stack(*[item[4] for item in data]) class_targets = nd.stack(*[item[5] for item in data]) gt_bboxes = _pad_arrs_to_max_length([item[6] for item in data], self._max_gt_box_number, pad_axis=0, pad_val=-1) batch_data = io.DataBatch(data=[img_data], label=[gt_bboxes, objectness, center_targets, scale_targets, weights, class_targets]) return batch_data class _val_batchify_fn(object): def __init__(self, max_gt_box_number): self._max_gt_box_number = max_gt_box_number def __call__(self, data): """Collate train data into batch.""" img_data = nd.stack(*[item[0] for item in data]) gt_bboxes = _pad_arrs_to_max_length([item[1] for item in data], self._max_gt_box_number, pad_axis=0, pad_val=-1) batch_data = io.DataBatch(data=[img_data], label=[gt_bboxes]) return batch_data def _get_provide_data(next_batch): next_data = next_batch.data return [io.DataDesc(name='data', shape=next_data[0].shape)] def _get_provide_label(next_batch, gt_boxes_shape=(32, 56, 4), is_train=True): next_label = next_batch.label if is_train: provide_label = [io.DataDesc(name='gt_boxes', shape=next_label[0].shape), io.DataDesc(name='obj_t', shape=next_label[1].shape), io.DataDesc(name='centers_t', shape=next_label[2].shape), io.DataDesc(name='scales_t', shape=next_label[3].shape), io.DataDesc(name='weights_t', shape=next_label[4].shape), io.DataDesc(name='clas_t', shape=next_label[5].shape)] else: provide_label = None return provide_label def _reset(): pass def get_data_iter(data_path, train_file=None, val_file=None, split_spec=1, hyper_train={}, hyper_val={}, **kwargs): train_set = None val_set = None train_list = None val_list = None if train_file is not None: assert file.exists(train_file), 'not found train file' train_path = file.read(train_file).split("\n")[0:-1] train_list = [path.replace('\r', '').split(' ') for path in train_path] train_list = [[os.path.join(data_path, path[0]), os.path.join(data_path, path[1])] for path in train_list] if val_file is not None: assert file.exists(val_file), 'not found val file' val_path = file.read(val_file).split("\n")[0:-1] val_list = [path.replace('\r', '').split(' ') for path in val_path] val_list = [[os.path.join(data_path, path[0]), os.path.join(data_path, path[1])] for path in val_list] if train_file is None and val_file is None: train_list, val_list, _ = get_image_list(data_path, split_spec) if 'anchors' not in kwargs: kwargs['anchors'] = [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23]] if 'offsets' not in kwargs: kwargs['offsets'] = [(13, 13), (26, 26), (52, 52)] if train_list is not None and len(train_list) > 0: dataset = Detection_dataset(img_list=train_list, index_file=hyper_train.get( 'index_file', None), width=hyper_train.get('width', 416), height=hyper_train.get('height', 416), is_train=True, ** kwargs) max_gt_box_number = max([len(item) for item in dataset.label_cache]) batch_size = hyper_train.get('batch_size', 32) train_set = gluon.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=hyper_train.get('shuffle', True), batchify_fn=_train_batchify_fn(max_gt_box_number), last_batch='rollover', num_workers=hyper_train.get('preprocess_threads', 4)) next_data_batch = next(iter(train_set)) setattr(train_set, 'reset', _reset) setattr(train_set, 'provide_data', _get_provide_data(next_data_batch)) setattr(train_set, 'provide_label', _get_provide_label( next_data_batch, (batch_size, max_gt_box_number, 4), is_train=True)) if val_list is not None and len(val_list) > 0: assert 'index_file' in hyper_val and file.exists( hyper_val['index_file']), 'not found label name file' dataset = Detection_dataset(img_list=val_list, index_file=hyper_val.get( 'index_file'), width=hyper_val.get('width', 416), height=hyper_val.get('height', 416), is_train=False, ** kwargs) max_gt_box_number = max([len(item) for item in dataset.label_cache]) batch_size = hyper_val.get('batch_size', 32) val_set = gluon.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=hyper_val.get('shuffle', True), batchify_fn=_val_batchify_fn(max_gt_box_number), last_batch='keep', num_workers=hyper_val.get('preprocess_threads', 4)) next_data_batch = next(iter(val_set)) setattr(val_set, 'reset', _reset) setattr(val_set, 'provide_data', _get_provide_data(next_data_batch)) setattr(val_set, 'provide_label', _get_provide_label( next_data_batch, is_train=False)) return train_set, val_set
hardware/chip/rtl872xd/hal/hal_test/uart/ucube.py
wstong999/AliOS-Things
4,538
87281
src = Split(''' uart_test.c ''') component = aos_component('uart_test', src) component.add_cflags('-Wall') component.add_cflags('-Werror')
pad__unpad__example.py
DazEB2/SimplePyScripts
117
87284
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' def pad(s: bytes, bs=8) -> bytes: pad_size = bs - (len(s) % bs) return s + bytes([pad_size] * pad_size) def unpad(s: bytes) -> bytes: pad_size = s[-1] return s[:-pad_size] if __name__ == '__main__': data = b'Hello' padded_data = pad(data) print(padded_data) # b'Hello\x03\x03\x03' print(unpad(padded_data)) # b'Hello' print(unpad(padded_data).decode('utf-8')) # Hello assert data == unpad(pad(data)) print() assert b'123' == unpad(pad(b'123')) assert b'123' * 9999 == unpad(pad(b'123' * 9999)) assert b'11111111' == unpad(pad(b'11111111')) assert b'abcd123' == unpad(pad(b'abcd123')) print(unpad(b'12\x02\x02')) # b'12' print(unpad(b'1\x01')) # b'1' print() data = 'Привет!'.encode('utf-8') padded_data = pad(data) print(padded_data) # b'\xd0\x9f\xd1\x80\xd0\xb8\xd0\xb2\xd0\xb5\xd1\x82!\x03\x03\x03' print(unpad(padded_data)) # b'\xd0\x9f\xd1\x80\xd0\xb8\xd0\xb2\xd0\xb5\xd1\x82!' print(unpad(padded_data).decode('utf-8')) # Привет! assert data == unpad(pad(data))
bmtk/simulator/pointnet/pyfunction_cache.py
aaberbach/bmtk
216
87297
<reponame>aaberbach/bmtk<gh_stars>100-1000 # Copyright 2017. <NAME>. All rights reserved # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import types from functools import wraps class _PyFunctions(object): """Structure for holding custom user-defined python functions. Will store a set of functions created by the user. Should not access this directly but rather user the decorators or setter functions, and use the py_modules class variable to access individual functions. Is divided up into synaptic_weight: functions for calcuating synaptic weight. cell_model: should return NEURON cell hobj. synapse model: should return a NEURON synapse object. """ def __init__(self): self.__syn_weights = {} self.__cell_models = {} self.__synapse_models = {} self.__cell_processors = {} def clear(self): self.__syn_weights.clear() self.__cell_models.clear() self.__synapse_models.clear() self.__cell_processors.clear() def add_synaptic_weight(self, name, func, overwrite=True): """stores synpatic fuction for given name""" if overwrite or name not in self.__syn_weights: self.__syn_weights[name] = func @property def synaptic_weights(self): """return list of the names of all available synaptic weight functions""" return self.__syn_weights.keys() def synaptic_weight(self, name): """return the synpatic weight function""" return self.__syn_weights[name] def has_synaptic_weight(self, name): return name in self.__syn_weights def __cell_model_key(self, directive, model_type): return (directive, model_type) def add_cell_model(self, directive, model_type, func, overwrite=True): key = self.__cell_model_key(directive, model_type) if overwrite or key not in self.__cell_models: self.__cell_models[key] = func @property def cell_models(self): return self.__cell_models.keys() def cell_model(self, directive, model_type): return self.__cell_models[self.__cell_model_key(directive, model_type)] def has_cell_model(self, directive, model_type): return self.__cell_model_key(directive, model_type) in self.__cell_models def add_synapse_model(self, name, func, overwrite=True): if overwrite or name not in self.__synapse_models: self.__synapse_models[name] = func @property def synapse_models(self): return self.__synapse_models.keys() def synapse_model(self, name): return self.__synapse_models[name] @property def cell_processors(self): return self.__cell_processors.keys() def cell_processor(self, name): return self.__cell_processors[name] def add_cell_processor(self, name, func, overwrite=True): if overwrite or name not in self.__syn_weights: self.__cell_processors[name] = func def __repr__(self): rstr = '{}: {}\n'.format('cell_models', self.cell_models) rstr += '{}: {}\n'.format('synapse_models', self.synapse_models) rstr += '{}: {}'.format('synaptic_weights', self.synaptic_weights) return rstr py_modules = _PyFunctions() def synaptic_weight(*wargs, **wkwargs): """A decorator for registering a function as a synaptic weight function. To use either:: @synaptic_weight def weight_function(): ... or:: @synaptic_weight(name='name_in_edge_types') def weight_function(): ... Once the decorator has been attached and imported the functions will automatically be added to py_modules. """ if len(wargs) == 1 and callable(wargs[0]): # for the case without decorator arguments, grab the function object in wargs and create a decorator func = wargs[0] py_modules.add_synaptic_weight(func.__name__, func) # add function assigned to its original name @wraps(func) def func_wrapper(*args, **kwargs): return func(*args, **kwargs) return func_wrapper else: # for the case with decorator arguments assert(all(k in ['name'] for k in wkwargs.keys())) def decorator(func): # store the function in py_modules but under the name given in the decorator arguments py_modules.add_synaptic_weight(wkwargs['name'], func) @wraps(func) def func_wrapper(*args, **kwargs): return func(*args, **kwargs) return func_wrapper return decorator def cell_model(*wargs, **wkwargs): """A decorator for registering NEURON cell loader functions.""" if len(wargs) == 1 and callable(wargs[0]): # for the case without decorator arguments, grab the function object in wargs and create a decorator func = wargs[0] py_modules.add_cell_model(func.__name__, func) # add function assigned to its original name @wraps(func) def func_wrapper(*args, **kwargs): return func(*args, **kwargs) return func_wrapper else: # for the case with decorator arguments assert(all(k in ['name'] for k in wkwargs.keys())) def decorator(func): # store the function in py_modules but under the name given in the decorator arguments py_modules.add_cell_model(wkwargs['name'], func) @wraps(func) def func_wrapper(*args, **kwargs): return func(*args, **kwargs) return func_wrapper return decorator def synapse_model(*wargs, **wkwargs): """A decorator for registering NEURON synapse loader functions.""" if len(wargs) == 1 and callable(wargs[0]): # for the case without decorator arguments, grab the function object in wargs and create a decorator func = wargs[0] py_modules.add_synapse_model(func.__name__, func) # add function assigned to its original name @wraps(func) def func_wrapper(*args, **kwargs): return func(*args, **kwargs) return func_wrapper else: # for the case with decorator arguments assert(all(k in ['name'] for k in wkwargs.keys())) def decorator(func): # store the function in py_modules but under the name given in the decorator arguments py_modules.add_synapse_model(wkwargs['name'], func) @wraps(func) def func_wrapper(*args, **kwargs): return func(*args, **kwargs) return func_wrapper return decorator def add_weight_function(func, name=None, overwrite=True): assert(callable(func)) func_name = name if name is not None else func.__name__ py_modules.add_synaptic_weight(func_name, func, overwrite) def add_cell_model(func, directive, model_type, overwrite=True): assert(callable(func)) # func_name = name if name is not None else func.__name__ py_modules.add_cell_model(directive, model_type, func, overwrite) def add_cell_processor(func, name=None, overwrite=True): assert(callable(func)) func_name = name if name is not None else func.__name__ py_modules.add_cell_processor(func_name, func, overwrite) def add_synapse_model(func, name=None, overwrite=True): assert (callable(func)) func_name = name if name is not None else func.__name__ py_modules.add_synapse_model(func_name, func, overwrite) def load_py_modules(cell_models=None, syn_models=None, syn_weights=None): # py_modules.clear() if cell_models is not None: assert(isinstance(cell_models, types.ModuleType)) for f in [cell_models.__dict__.get(f) for f in dir(cell_models)]: if isinstance(f, types.FunctionType): py_modules.add_cell_model(f.__name__, f) if syn_models is not None: assert(isinstance(syn_models, types.ModuleType)) for f in [syn_models.__dict__.get(f) for f in dir(syn_models)]: if isinstance(f, types.FunctionType): py_modules.add_synapse_model(f.__name__, f) if syn_weights is not None: assert(isinstance(syn_weights, types.ModuleType)) for f in [syn_weights.__dict__.get(f) for f in dir(syn_weights)]: if isinstance(f, types.FunctionType): py_modules.add_synaptic_weight(f.__name__, f)
tests/unit/fixtures/mock_hooks.py
troyready/runway
134
87306
"""Mock hooks.""" import os GLOBAL_VALUE = os.getenv("AWS_DEFAULT_REGION")
test/issues/test_012.py
ajnelson-nist/pySHACL
167
87336
<reponame>ajnelson-nist/pySHACL # -*- coding: utf-8 -*- # """ https://github.com/RDFLib/pySHACL/issues/12 """ from pyshacl import validate shacl_file_text = """ @prefix hei: <http://hei.org/customer/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xml: <http://www.w3.org/XML/1998/namespace> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . hei:HeiAddressShape a sh:NodeShape ; sh:property [ rdfs:comment "Street constraint" ; sh:datatype xsd:string ; sh:minLength 30 ; sh:path hei:Ship_to_street ] ; sh:targetClass hei:Hei_customer . """ data_file_text = """ @prefix hei: <http://hei.org/customer/> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . hei:hei_cust_1281 a hei:Hei_customer ; rdfs:label "XYZHorecagroothandel" ; hei:Klant_nummer 1281 ; hei:Ship_to_City "Middenmeer" ; hei:Ship_to_postcode "1799 AB" ; hei:Ship_to_street "Industrieweg" . """ def test_012_text(): res = validate(data_file_text, shacl_graph=shacl_file_text, data_graph_format='turtle', shacl_graph_format='turtle', inference='both', debug=True) conforms, graph, string = res assert not conforms def test_012_graph(): from rdflib import Graph g = Graph() g.parse(data=data_file_text, format='turtle') sg = Graph() sg.parse(data=shacl_file_text, format='turtle') res = validate(g, shacl_graph=sg, inference='both', debug=True) conforms, graph, string = res assert not conforms
dev/mixtures/Table2.9_to_JSON.py
pauliacomi/CoolProp
520
87393
<reponame>pauliacomi/CoolProp data = """CO2-H2O 1.030538 0.828472 1.021392 0.895156 1 CO2-N2 0.994140013 1.107654104 1.022709642 1.047578256 1 CO2-O2 1.000000 1.031986 1.000000 1.084460 0 CO2-Ar 1.027147 0.968781 1.001378 1.029710 1 CO2-CO 0.993245 1.068392 1.030855 1.245499 0 H2O-N2 0.954149 0.805147 1.079628 0.733443 1 H2O-O2 0.798046 0.807842 0.972576 0.873460 0.6017 H2O-Ar 0.679104 0.921000 0.940398 1.050952 0 H2O-CO 1.045927 0.823984 1.063348 0.766756 0.9897 N2-O2 0.997190589 0.995157044 0.999521770 0.997082328 0 N2-Ar 0.999442 0.989311 1.006697 1.001549 0 N2-CO 1.002409 0.994100 1.000000 1.001317 0 O2-Ar 0.999039 0.988822 1.006502 1.001341 0 O2-CO 1.000000 1.000000 1.000000 1.000000 0 CO-Ar 1.000000000 0.954215746 1.000000000 1.159720623 0""" namedict = dict(O2='Oxygen', N2='Nitrogen', CO2='CarbonDioxide', CO='CarbonMonoxide', H2O='Water', Ar='Argon') import CoolProp CASdict = {namedict[n]: CoolProp.CoolProp.get_fluid_param_string(namedict[n], "CAS") for n in namedict} functiondict = {'CO2-H2O': 'CarbonDioxide-Water', 'CO2-N2': 'CarbonDioxide-Nitrogen', 'CO2-Ar': 'CarbonDioxide-Argon', 'H2O-N2': 'GeneralizedAirWater', 'H2O-O2': 'GeneralizedAirWater', 'H2O-CO': 'GeneralizedAirWater'} out = [] for line in data.split('\n'): pair, betaT, betaV, gammaT, gammaV, F = line.split(' ') n1, n2 = pair.split('-') out.append(dict(BibTeX='Gernert-Thesis-2013', F=float(F), betaT=float(betaT), betaV=float(betaV), gammaT=float(gammaT), gammaV=float(gammaV), Name1=namedict[n1], Name2=namedict[n2], CAS1=CASdict[namedict[n1]], CAS2=CASdict[namedict[n2]])) if F != '0': out[-1]['function'] = functiondict[pair] import json, sys sys.path.append('..') from package_json import json_options print(json.dumps(out, **json_options))
research/cvt_text/corpus_processing/example.py
873040/Abhishek
82,518
87413
<filename>research/cvt_text/corpus_processing/example.py # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base class for training examples.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from base import embeddings CONTRACTION_WORDS = set(w + 'n' for w in ['do', 'does', 'did', 'is', 'are', 'was', 'were', 'has', 'have', 'had', 'could', 'would', 'should', 'ca', 'wo', 'ai', 'might']) class Example(object): def __init__(self, words, word_vocab, char_vocab): words = words[:] # Fix inconsistent tokenization between datasets for i in range(len(words)): if (words[i].lower() == '\'t' and i > 0 and words[i - 1].lower() in CONTRACTION_WORDS): words[i] = words[i - 1][-1] + words[i] words[i - 1] = words[i - 1][:-1] self.words = ([embeddings.START] + [word_vocab[embeddings.normalize_word(w)] for w in words] + [embeddings.END]) self.chars = ([[embeddings.MISSING]] + [[char_vocab[c] for c in embeddings.normalize_chars(w)] for w in words] + [[embeddings.MISSING]]) def __repr__(self,): inv_char_vocab = embeddings.get_inv_char_vocab() return ' '.join([''.join([inv_char_vocab[c] for c in w]) for w in self.chars])
tests/test_message.py
xjiro/python-valve
136
87421
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Copyright (C) 2013 <NAME> from __future__ import (absolute_import, unicode_literals, print_function, division) import inspect try: from mock import Mock except ImportError: from unittest.mock import Mock import pytest import six from valve.source import messages class TestUseDefault(object): def test_pass_value(self): instance = messages.MessageField("", optional=False, default_value=5) called = [] @messages.use_default def test(instance, value, values): called.append(None) assert value == 5 test(instance, 5) assert called def test_nonoptional_no_value(self): instance = messages.MessageField("", optional=False, default_value=5) called = [] @messages.use_default def test(instance, value, values): called.append(None) assert value == 5 with pytest.raises(ValueError): test(instance) assert not called def test_optional_pass_value(self): instance = messages.MessageField("", optional=True, default_value=5) called = [] @messages.use_default def test(instance, value, values): called.append(None) assert value == 10 test(instance, 10) assert called def test_optional_no_value(self): instance = messages.MessageField("", optional=True, default_value=5) called = [] @messages.use_default def test(instance, value, values): called.append(None) assert value == 5 test(instance) assert called class TestNeedsBuffer(object): def test_not_empty(self): called = [] @messages.needs_buffer def test(instance, buf, values): called.append(None) test(None, b"...", {}) assert called def test_empty(self): called = [] @messages.needs_buffer def test(instance, buf, values): called.append(None) with pytest.raises(messages.BufferExhaustedError): test(None, b"", {}) assert not called class TestMessageField(object): def test_default_little_endian(self): class TestField(messages.MessageField): fmt = "i" assert TestField("").format.startswith("<") def test_explicit_endian(self): for fmt in "!<>=@": TestField = type("TestField" if six.PY3 else b"TestField", (messages.MessageField,), {"fmt": fmt}) assert TestField("").format.startswith(fmt) def test_validate(self): validators = [ Mock(side_effect=lambda x: x == 5), Mock(side_effect=lambda x: isinstance(x, int)) ] field = messages.MessageField("", validators=validators) field.validate(5) for validator in validators: assert validator.called with pytest.raises(messages.BrokenMessageError): field.validate("10") def test_validate_exception(self): field = messages.MessageField("", validators=[Mock(side_effect=Exception)]) with pytest.raises(messages.BrokenMessageError): field.validate(5) def test_decode_empty(self): field = messages.MessageField("") with pytest.raises(messages.BufferExhaustedError): field.decode(b"") def test_decode_small_buffer(self): field = messages.MessageField("") field.format = b"<d" # 8 bytes with pytest.raises(messages.BufferExhaustedError): field.decode(b"\x00\x00\x00\x00\x00\x00\x00") def test_decode(self): field = messages.MessageField("") field.format = b"<B" # 1 byte value, remnants = field.decode(b"\xFF\x01\x02\x03") assert value == 255 assert isinstance(remnants, bytes) assert remnants == b"\x01\x02\x03" def test_decode_junk(self, monkeypatch): field = messages.MessageField("") field.format = b"B" unpack = Mock(side_effect=messages.struct.error) monkeypatch.setattr(messages.struct, "unpack", unpack) with pytest.raises(messages.BrokenMessageError): field.decode(b"\x01\x02\x03") @pytest.mark.parametrize("field,value,expected", [ (messages.ByteField, 26, b"\x1A"), (messages.ShortField, 4056, b"\xD8\x0F"), (messages.LongField, 2394838, b"\xD6\x8A\x24\x00"), (messages.FloatField, 1.0, b"\x00\x00\x80\x3F"), (messages.MSAddressEntryPortField, 6969, b"\x1B\x39") ]) def test_encode(self, field, value, expected): encoded = field("").encode(value) assert isinstance(encoded, bytes) assert encoded == expected @pytest.mark.parametrize("field,value", [ (messages.ByteField, -1), (messages.ByteField, 256), (messages.ShortField, -32769), (messages.ShortField, 32768), (messages.LongField, -2147483649), (messages.LongField, 2147483648), (messages.MSAddressEntryPortField, -1), (messages.MSAddressEntryPortField, 65536) ]) def test_encode_out_of_range(self, field, value): with pytest.raises(messages.BrokenMessageError): field("").encode(value) class TestStringField(object): def test_encode(self): field = messages.StringField("") encoded = field.encode("Hello") assert isinstance(encoded, bytes) assert encoded.endswith(b"\x00") assert encoded[:-1] == b"\x48\x65\x6C\x6C\x6F" def test_decode(self): field = messages.StringField("") encoded = b"\x48\x65\x6C\x6C\x6F\x00\x02\x01\x00" decoded, remnants = field.decode(encoded) assert isinstance(decoded, six.text_type) assert decoded == "Hello" assert isinstance(remnants, bytes) assert remnants == b"\x02\x01\x00" def test_decode_empty(self): field = messages.StringField("") with pytest.raises(messages.BufferExhaustedError): field.decode(b"") def test_no_null_terminator(self): field = messages.StringField("") with pytest.raises(messages.BufferExhaustedError): field.decode(b"\xFF\xFF\xFF") class TestMessageArrayField(object): @pytest.fixture def Message(self): """Simple message with a byte field and short filed""" class Message(messages.Message): fields = ( messages.ByteField("byte"), messages.ShortField("short") ) return Message def test_constant_count(self): array = messages.MessageArrayField("", None, 5) assert array.count() == 5 assert array.count.minimum == 5 def test_callable_count(self): def function(values={}): pass array = messages.MessageArrayField("", None, function) assert array.count is function def test_decode_constant(self): class Message(messages.Message): fields = messages.ByteField("field"), array = messages.MessageArrayField("", Message, 5) encoded = b"\x00\x01\x02\x03\x04\x00\x00\x00" values, remnants = array.decode(encoded) for sub_message, expected in zip(values, range(4)): assert sub_message["field"] == expected assert isinstance(remnants, bytes) assert remnants == b"\x00\x00\x00" def test_decode_insufficient_buffer(self): class Message(messages.Message): fields = messages.ByteField("field"), array = messages.MessageArrayField("", Message, 5) encoded = b"\xFF\xFE\xFD" with pytest.raises(messages.BrokenMessageError): array.decode(encoded) def test_decode_minimum(self): class Message(messages.Message): fields = messages.ByteField("field"), array = messages.MessageArrayField("", Message, 5) array.count.minimum = 2 encoded = b"\x00\x01" values, remnants = array.decode(encoded) # Minimum for sub_message, expected in zip(values, range(1)): assert sub_message["field"] == expected assert not remnants encoded += b"\x02\x03\x04" values, remnants = array.decode(encoded) # Maximum for sub_message, expected in zip(values, range(4)): assert sub_message["field"] == expected assert not remnants def test_decode_minimum_remnants(self): class Message(messages.Message): fields = messages.ShortField("field"), array = messages.MessageArrayField("", Message, 3) array.count.minimum = 2 # Two shorts and a trailing byte encoded = b"\x00\x00\x11\x11\x22" values, remnants = array.decode(encoded) for sub_message, expected in zip(values, [0, 0x1111]): assert sub_message["field"] == expected assert isinstance(remnants, bytes) assert remnants == b"\x22" def test_deocde_value_of(self): assert messages.MessageArrayField.value_of("f")({"f": 26}) == 26 def test_deocde_all(self): class Message(messages.Message): fields = messages.ByteField(""), array = messages.MessageArrayField( "", Message, messages.MessageArrayField.all()) values, remnants = array.decode(b"\x00" * 128) assert len(values) == 128 assert not remnants def test_deocde_all_remnants(self): class Message(messages.Message): fields = messages.ShortField(""), array = messages.MessageArrayField( "", Message, messages.MessageArrayField.all()) values, remnants = array.decode((b"\x00\x00" * 64) + b"\xFF") assert len(values) == 64 assert isinstance(remnants, bytes) assert remnants == b"\xFF" def test_deocde_at_least_minimum(self): class Message(messages.Message): fields = messages.ByteField(""), array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(5)) values, remnants = array.decode(b"\x00" * 5) assert len(values) == 5 assert not remnants def test_decode_at_least_more(self): class Message(messages.Message): fields = messages.ByteField(""), array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(5)) values, remnants = array.decode(b"\x00" * 10) assert len(values) == 10 assert not remnants def test_deocde_at_least_too_few(self): class Message(messages.Message): fields = messages.ByteField(""), array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(5)) with pytest.raises(messages.BrokenMessageError): array.decode(b"\x00" * 4) def test_deocde_at_least_remnants(self): class Message(messages.Message): fields = messages.ShortField(""), array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(5)) values, remnants = array.decode((b"\x00\x00" * 10) + b"\xFF") assert len(values) == 10 assert isinstance(remnants, bytes) assert remnants == b"\xFF" def test_encode(self, Message): array = messages.MessageArrayField("", Message, 3) elements = [Message(byte=255, short=0x11AA)] * 3 encoded = array.encode(elements) assert isinstance(encoded, bytes) assert encoded == elements[0].encode() * 3 def test_encode_invalid_element(self): class Element(messages.Message): fields = () class Borked(messages.Message): fields = () array = messages.MessageArrayField("", Element, 3) with pytest.raises(messages.BrokenMessageError): array.encode([Borked()]) def test_encode_too_many_elements(self, Message): array = messages.MessageArrayField("", Message, 3) elements = [Message(byte=255, short=0x11AA)] * 5 with pytest.raises(messages.BrokenMessageError): array.encode(elements) def test_encode_too_few_elements(self, Message): array = messages.MessageArrayField("", Message, 5) elements = [Message(byte=255, short=0x11AA)] * 3 with pytest.raises(messages.BrokenMessageError): array.encode(elements) def test_encode_all(self, Message): array = messages.MessageArrayField("", Message) elements = [Message(byte=255, short=0x11AA)] * 10 encoded = array.encode(elements) assert isinstance(encoded, bytes) assert encoded == elements[0].encode() * 10 def test_encode_all_none(self, Message): array = messages.MessageArrayField("", Message) encoded = array.encode([]) assert isinstance(encoded, bytes) assert len(encoded) == 0 def test_encode_value_of(self, Message): array = messages.MessageArrayField( "", Message, messages.MessageArrayField.value_of("life")) elements = [Message(byte=255, short=0x11AA)] * 5 encoded = array.encode(elements, {"life": 5}) assert isinstance(encoded, bytes) assert encoded == elements[0].encode() * 5 def test_encode_at_least_minimum(self, Message): array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(3)) elements = [Message(byte=255, short=0x11AA)] * 3 encoded = array.encode(elements) assert isinstance(encoded, bytes) assert encoded == elements[0].encode() * 3 def test_encode_at_least_more(self, Message): array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(3)) elements = [Message(byte=255, short=0x11AA)] * 5 encoded = array.encode(elements) assert isinstance(encoded, bytes) assert encoded == elements[0].encode() * 5 def test_encode_at_least_too_few(self, Message): array = messages.MessageArrayField( "", Message, messages.MessageArrayField.at_least(5)) elements = [Message(byte=255, short=0x11AA)] * 4 with pytest.raises(messages.BrokenMessageError): encoded = array.encode(elements) class TestMessageDictField(object): def test_decode(self): ddict = messages.MessageDictField("", messages.ByteField("key"), messages.ByteField("value"), 5) encoded = b"" for key in six.moves.range(5): encoded += six.int2byte(key) + b"\xFF" values, remnants = ddict.decode(encoded) for key in values.keys(): assert key in set(six.moves.range(5)) assert values[key] == 255 class TestMessage(object): def test_getitem(self): assert messages.Message(key=":)")["key"] == ":)" def test_setitem(self): message = messages.Message() message["key"] = ":)" assert message["key"] == ":)" def test_delitem(self): message = messages.Message(key=":(") del message["key"] with pytest.raises(KeyError): message["key"] def test_len(self): message = messages.Message(key1=None, key2=None, key3=None) assert len(message) == 3 def test_iter(self): keys = {"key1": None, "key2": None, "key3": None} message = messages.Message(**keys) for key in message: keys.pop(key) assert not keys def test_encode_simple(self): class Message(messages.Message): fields = ( messages.ByteField("first_field"), messages.ByteField("last_field") ) encoded = Message(first_field=5).encode(last_field=10) assert isinstance(encoded, bytes) assert encoded == b"\x05\x0A" def test_encode_missing_nonoptional_field(self): class Message(messages.Message): fields = ( messages.ByteField("first_field"), messages.ByteField("last_field") ) with pytest.raises(ValueError): Message(first_field=5).encode() def test_encode_missing_optional_field(self): class Message(messages.Message): fields = ( messages.ByteField("first_field"), messages.ByteField("last_field", optional=True, default_value=10) ) encoded = Message(first_field=5).encode() assert isinstance(encoded, bytes) assert encoded == b"\x05\x0A" def test_encode_array(self): count = Mock(return_value=1) count.minimum = 1 class Element(messages.Message): fields = () encode = Mock(return_value=b"") class Message(messages.Message): fields = ( messages.ByteField("byte"), messages.MessageArrayField("array", Element, count) ) message = Message(byte=26, array=[Element()]) encoded = message.encode() assert isinstance(encoded, bytes) assert Element.encode.called assert count.called assert count.call_args[0][0] == message.values # TODO: more complex structures, e.g. ArrayField and DictFields class TestFragment(object): def test_is_compressed(self): assert messages.Fragment(message_id=(1 << 31) - 1).is_compressed assert not messages.Fragment(message_id=1 << 30).is_compressed class TestMSAddressEntry(object): def test_decode_ip_insufficient_buffer(self): with pytest.raises(messages.BufferExhaustedError): messages.MSAddressEntryIPField("").decode(b"\x00\x00") def test_decode_ip(self): ip, remnants = messages.MSAddressEntryIPField("").decode( b"\x00\x01\x02\x03\xFF\xFF") assert isinstance(ip, six.text_type) assert ip == "0.1.2.3" assert isinstance(remnants, bytes) assert remnants == b"\xFF\xFF" def test_is_null(self): assert messages.MSAddressEntry.decode( b"\x00\x00\x00\x00\x00\x00").is_null assert not messages.MSAddressEntry.decode( b"\x01\x02\x03\x04\x69\x87").is_null
xpath/extractor/tables.py
r0oth3x49/xpath
113
87446
#!/usr/bin/python3 # -*- coding: utf-8 -*- # pylint: disable=R,W,E,C """ Author : <NAME> (r0ot h3x49) Github : https://github.com/r0oth3x49 License : MIT Copyright (c) 2016-2025 <NAME> (r0ot h3x49) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from xpath.common.session import session from xpath.injector.request import request from xpath.logger.colored_logger import logger from xpath.common.payloads import PAYLOADS_TBLS_COUNT, PAYLOADS_TBLS_NAMES from xpath.common.utils import ( to_hex, prettifier, prepare_payload_request, clean_up_offset_payload, ) from xpath.common.lib import ( binascii, collections, compat_urlencode, DB_TABLES, TBLS_STATEMENT, ) class TablesExtractor(object): """ Extracts table names for a database.. """ def _generate_tbl_payloads(self, tbl_count, payload, index=0): payload = clean_up_offset_payload(payload) payloads = [payload.format(index=i) for i in range(index, tbl_count)] return payloads def _tbl_count(self, db=""): _temp = [] if db: count_payloads = [] [count_payloads.extend(v) for _, v in PAYLOADS_TBLS_COUNT.items()] encode_string = to_hex(db, dbms=self._dbms) if self._dbms: count_payloads = PAYLOADS_TBLS_COUNT.get(self._dbms, count_payloads) for entry in count_payloads: if self._dbms and self._dbms.startswith("Microsoft") and "sysobjects" in entry: data = entry.format(db=db.strip()) else: data = entry.format(db=encode_string) _temp.append(data) payloads = self._generat_payload(payloads_list=_temp) return self._extact(payloads=payloads) def tbl_names(self, db=""): index = 0 _temp = [] is_resumed = False fetched_data = {} _temp_payloads = [] TablesResponse = collections.namedtuple( "TablesResponse", ["fetched", "count", "database", "tables"] ) if db: dump_payloads = [] [dump_payloads.extend(v) for _, v in PAYLOADS_TBLS_NAMES.items()] encode_string = to_hex(db, dbms=self._dbms) if self._dbms: dump_payloads = PAYLOADS_TBLS_NAMES.get(self._dbms, dump_payloads) for entry in dump_payloads: if self._dbms and self._dbms.startswith("Microsoft"): if "sysobjects" in entry: data = entry.format(db=db.strip(), db1=db.strip()) else: data = entry.format(db=encode_string, db1=encode_string) else: data = entry.format(db=encode_string) _temp_payloads.append(data) try: fetched_data = session.fetch_from_table( session_filepath=self.session_filepath, table_name=db, cursor=False, ) if fetched_data: is_resumed = True except Exception as error: pass logger.info("fetching tables for database: '%s'" % (db)) retval = self._tbl_count(db=db) if retval.is_injected: tbl_count = int(retval.result) if tbl_count != 0: logger.info("used SQL query returns %d entries" % (tbl_count)) if tbl_count == 0: logger.warning( "used SQL query returns %d entries for database: '%s'" % (tbl_count, db) ) return TablesResponse( fetched=False, count=tbl_count, database=db, tables=[] ) if is_resumed: for entry in fetched_data: name = entry.get("tblname") if name not in _temp: _temp.append(name) logger.info(f"resumed: '{name}'") index += 1 should_fetch = True if is_resumed: if len(fetched_data) == tbl_count: should_fetch = False if should_fetch: payloads = self._generat_payload(payloads_list=_temp_payloads) retval = self._extact(payloads=payloads) if retval.is_injected: payload = retval.payload payloads = self._generate_tbl_payloads( tbl_count=tbl_count, payload=payload, index=index ) if not is_resumed: session.generate_table( session_filepath=self.session_filepath, query=DB_TABLES.format(name=db, tbl_name=db), ) response_data = self._extract_tbls(payloads=payloads, database=db) if response_data.is_fetched: _temp.extend(response_data.result) self._pprint_tables( cursor_or_list=_temp, field_names="Tables", database=db, ) return TablesResponse( fetched=True, count=tbl_count, database=db, tables=_temp ) if not retval.is_injected: status_code = retval.status_code error = retval.error count = retval.payloads_count if status_code not in [200, 0]: message = f"{error} - {count} times" logger.warning( f"HTTP error codes detected during run:\n{message}" ) else: message = f"tested with '{count}' queries, unable to find working SQL query." logger.critical(message) else: self._pprint_tables( cursor_or_list=_temp, field_names="Tables", database=db, ) return TablesResponse( fetched=True, count=tbl_count, database=db, tables=_temp ) if not retval.is_injected: status_code = retval.status_code error = retval.error count = retval.payloads_count if status_code not in [200, 0]: message = f"{error} - {count} times" logger.warning(f"HTTP error codes detected during run:\n{message}") else: message = ( f"tested with '{count}' queries, unable to find working SQL query." ) logger.critical(message) return TablesResponse(fetched=False, count=0, database="", tables=_temp) def _pprint_tables(self, cursor_or_list, field_names, database=""): obj = prettifier(cursor_or_list, field_names) data = obj.data entries = obj.entries logger.success(f"Database: {database}") logger.success(f"[{entries} tables]") logger.success(f"{data}") def _extract_tbls(self, payloads, database=""): _temp, index = [], 0 Response = collections.namedtuple("Response", ["is_fetched", "result"]) while index < len(payloads): payload = payloads[index] payload_request = prepare_payload_request(self, payload) url = payload_request.url data = payload_request.data regex = payload_request.regex headers = payload_request.headers try: response = request.inject_payload( url=url, regex=regex, data=data, headers=headers, proxy=self._proxy ) except KeyboardInterrupt: logger.warning( "user aborted during enumeration. Xpath will display partial output" ) break else: if response.ok: result = response.result logger.info("retrieved: '%s'" % (result)) _temp.append(result) retval = session.dump( session_filepath=self.session_filepath, query=TBLS_STATEMENT.format(tbl_name=database, tblname=result), ) index += 1 if _temp and len(_temp) > 0: _temp = list(set(_temp)) resp = Response(is_fetched=True, result=_temp) else: resp = Response(is_fetched=True, result=_temp) return resp
test/benchmark_array_creation.py
Yousazoe/oxBot
242
87451
""" Testing what the fastest way is to create a 1D Array with 2 values """ import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..")) import random import numpy as np x, y = random.uniform(0, 300), random.uniform(0, 300) def numpy_array(x, y): # Calculate distances between each of the points return np.array((x, y), dtype=np.float) def numpy_array_tuple(my_tuple): # Calculate distances between each of the points return np.array(my_tuple, dtype=np.float) def numpy_asarray(x, y): # Calculate distances between each of the points return np.asarray((x, y), dtype=np.float) def numpy_asarray_tuple(my_tuple): # Calculate distances between each of the points return np.asarray(my_tuple, dtype=np.float) def numpy_asanyarray(x, y): # Calculate distances between each of the points return np.asanyarray((x, y), dtype=np.float) def numpy_asanyarray_tuple(my_tuple): # Calculate distances between each of the points return np.asanyarray(my_tuple, dtype=np.float) def numpy_fromiter(x, y): # Calculate distances between each of the points return np.fromiter((x, y), dtype=float, count=2) def numpy_fromiter_tuple(my_tuple): # Calculate distances between each of the points return np.fromiter(my_tuple, dtype=float, count=2) def numpy_fromiter_np_float(x, y): # Calculate distances between each of the points return np.fromiter((x, y), dtype=np.float, count=2) def numpy_fromiter_np_float_tuple(my_tuple): # Calculate distances between each of the points return np.fromiter(my_tuple, dtype=np.float, count=2) def numpy_zeros(x, y): # Calculate distances between each of the points a = np.zeros(2, dtype=np.float) a[0] = x a[1] = y return a def numpy_ones(x, y): # Calculate distances between each of the points a = np.ones(2, dtype=np.float) a[0] = x a[1] = y return a numpy_array(x, y) correct_array = np.array([x, y]) def test_numpy_array(benchmark): result = benchmark(numpy_array, x, y) assert np.array_equal(result, correct_array) def test_numpy_array_tuple(benchmark): result = benchmark(numpy_array_tuple, (x, y)) assert np.array_equal(result, correct_array) def test_numpy_asarray(benchmark): result = benchmark(numpy_asarray, x, y) assert np.array_equal(result, correct_array) def test_numpy_asarray_tuple(benchmark): result = benchmark(numpy_asarray_tuple, (x, y)) assert np.array_equal(result, correct_array) def test_numpy_asanyarray(benchmark): result = benchmark(numpy_asanyarray, x, y) assert np.array_equal(result, correct_array) def test_numpy_asanyarray_tuple(benchmark): result = benchmark(numpy_asanyarray_tuple, (x, y)) assert np.array_equal(result, correct_array) def test_numpy_fromiter(benchmark): result = benchmark(numpy_fromiter, x, y) assert np.array_equal(result, correct_array) def test_numpy_fromiter_tuple(benchmark): result = benchmark(numpy_fromiter_tuple, (x, y)) assert np.array_equal(result, correct_array) def test_numpy_fromiter_np_float(benchmark): result = benchmark(numpy_fromiter_np_float, x, y) assert np.array_equal(result, correct_array) def test_numpy_fromiter_np_float_tuple(benchmark): result = benchmark(numpy_fromiter_np_float_tuple, (x, y)) assert np.array_equal(result, correct_array) def test_numpy_zeros(benchmark): result = benchmark(numpy_zeros, x, y) assert np.array_equal(result, correct_array) def test_numpy_ones(benchmark): result = benchmark(numpy_ones, x, y) assert np.array_equal(result, correct_array) # Run this file using # poetry run pytest test/test_benchmark_array_creation.py --benchmark-compare
tests/test_commandline_classify_speakers.py
erayee/Montreal-Forced-Aligner
702
87485
<reponame>erayee/Montreal-Forced-Aligner<gh_stars>100-1000 import os import pytest from montreal_forced_aligner.command_line.classify_speakers import run_classify_speakers from montreal_forced_aligner.command_line.mfa import parser def test_classify(basic_corpus_dir, sick_dict_path, english_ivector_model, generated_dir, temp_dir): output_path = os.path.join(generated_dir, 'classify_test') command = ['classify_speakers', basic_corpus_dir, 'english_ivector', output_path, '-t', temp_dir, '-q', '--clean', '--debug', '-v', '--disable_mp', '-s', '1'] args, unknown = parser.parse_known_args(command) run_classify_speakers(args) def test_cluster(basic_corpus_dir, sick_dict_path, english_ivector_model, generated_dir, transcription_acoustic_model, transcription_language_model, temp_dir): output_path = os.path.join(generated_dir, 'cluster_test') command = ['classify_speakers', basic_corpus_dir, 'english_ivector', output_path, '-t', temp_dir, '-q', '--clean', '--debug', '--cluster', '-s', '2', '--disable_mp'] args, unknown = parser.parse_known_args(command) run_classify_speakers(args)
oracle_problems/problem_3.py
loftwah/Daily-Coding-Problem
129
87509
"""This problem was asked by Oracle. Given a binary search tree, find the floor and ceiling of a given integer. The floor is the highest element in the tree less than or equal to an integer, while the ceiling is the lowest element in the tree greater than or equal to an integer. If either value does not exist, return None. """
recipes/Python/577859_CLOSlike_aroundbeforeafter_auxiliary/recipe-577859.py
tdiprima/code
2,023
87531
#!/usr/bin/env python # # Copyright (c) 2011 <NAME> (zuo). All rights reserved. # Licensed under the MIT License. # # Python 2.5+/3.x-compatibile. # # The newest version of this module should be downloadable from: # https://github.com/zuo/Zuo-s-Recipes-and-Drafts/blob/master/auxmethods.py from __future__ import with_statement # (Py2.5 needs this) from functools import wraps from inspect import getmro, isfunction __all__ = ( 'ClassNameConflictError', 'aux', 'primary', 'AutoAuxBase', 'AutoAuxMeta', ) # # exceptions class ClassNameConflictError(Exception): """ Conflict: class names are identical after stripping leading underscores. """ def __str__(self): cls1, cls2 = self.args return ( 'Class names: %r and %r -- are identical after stripping leading ' 'underscores, which is forbidden when using aux/primary methods.' % (cls1.__name__, cls2.__name__)) # # non-public stuff _SUFFIXES = '_primary', '_before', '_after', '_around' class _WrappedMethodPlaceholder(object): def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): raise TypeError('method placeholder is not callable ' '(forgot to apply aux() class decorator?)') def _next_around(obj_around, self, basename, *args, **kwargs): # try to get and call next `around` aux method meth_around = getattr(obj_around, basename + '_around', None) if meth_around is not None: return meth_around(*args, **kwargs) else: # if there is no more `around` methods, get and call: # `before` aux method (it can call superclasses' `before` methods) meth_before = getattr(self, basename + '_before', None) if meth_before is not None: meth_before(*args, **kwargs) # primary method (it can call superclasses' primary methods) meth_primary = getattr(self, basename + '_primary') pri_result = meth_primary(*args, **kwargs) # `after` aux method (it can call superclasses' `after` methods) meth_after = getattr(self, basename + '_after', None) if meth_after is not None: meth_after(*args, **kwargs) return pri_result def _provide_wrapper(cls, func, basename): @wraps(func) def wrapper(self, *args, **kwargs): return _next_around(self, self, basename, *args, **kwargs) added_doc = '(See: %s%s() signature).' % (basename, '_primary') existing_doc = (getattr(wrapper, '__doc__', None) or '').rstrip() if existing_doc: wrapper.__doc__ = '%s\n\n%s' % (existing_doc, added_doc) else: wrapper.__doc__ = added_doc setattr(cls, basename, wrapper) def _provide_primary(cls, func, basename): suffixed_name = basename + '_primary' func.__name__ = suffixed_name func.__doc__ = ( 'The actual method implementation ' '(%s() is only a wrapper).' % basename) setattr(cls, suffixed_name, func) def _provide_wrapped_primary(cls, func): basename = func.__name__ _provide_wrapper(cls, func, basename) _provide_primary(cls, func, basename) def _strip_and_check_cls_name(cls): cls_stripped_name = cls.__name__.lstrip('_') for supercls in getmro(cls): if (supercls is not cls and cls_stripped_name == supercls.__name__.lstrip('_')): raise ClassNameConflictError(supercls, cls) return cls_stripped_name def _provide_call_next(cls, suffixed_name): cls_stripped_name = _strip_and_check_cls_name(cls) basename, qualifier = suffixed_name.rsplit('_', 1) cn_name = '_%s__%s' % ( cls_stripped_name, (basename if qualifier == 'primary' else suffixed_name)) if cn_name in vars(cls): return if qualifier == 'around': def call_next(self, *args, **kwargs): return _next_around( super(cls, self), self, basename, *args, **kwargs) else: def call_next(self, *args, **kwargs): super_meth = getattr(super(cls, self), suffixed_name, None) if super_meth is not None: return super_meth(*args, **kwargs) call_next.__name__ = cn_name setattr(cls, cn_name, call_next) # # actual decorators def aux(cls): """Class decorator (for classes containing primary and/or aux methods).""" if not isinstance(cls, type): raise TypeError('%r is not a type' % cls) # wrap/rename primary methods for name, obj in tuple(vars(cls).items()): # (Py2.x/3.x-compatibile way) if isinstance(obj, _WrappedMethodPlaceholder): _provide_wrapped_primary(cls, obj.func) # provide `call-next-method`-like methods for name, obj in tuple(vars(cls).items()): if isfunction(obj) and obj.__name__.endswith(_SUFFIXES): _provide_call_next(cls, obj.__name__) return cls def primary(func): """Method decorator (for primary methods only).""" if not isfunction(func): raise TypeError('%r is not a function' % func) return _WrappedMethodPlaceholder(func) # # convenience classes (any of them can be used *optionally*...) class AutoAuxMeta(type): """Convenience metaclass: `aux()`-decorates classes created by it.""" def __new__(mcs, name, bases, attr_dict): return aux(type.__new__(mcs, name, bases, attr_dict)) # (here: Py2.x/3.x-compatibile way to create a class with a custom metaclass) AutoAuxBase = AutoAuxMeta('AutoAuxBase', (object,), {'__doc__': """`AutoAuxMeta`-created base class: `aux()`-decorates its subclasses."""}) # # basic example if __name__ == '__main__': import sys import time class TimedAction(AutoAuxBase): # note: AutoAuxBase automatically decorates your classes with aux() def action_before(self, *args, **kwargs): """Start action timer.""" print('starting action timer...') self.start_time = time.time() def action_after(self, *args, **kwargs): """Stop action timer and report measured duration.""" self.action_duration = time.time() - self.start_time print('action duration: %f' % self.action_duration) class FileContentAction(AutoAuxBase): def action_around(self, path): """Read file and pass its content on; report success or error.""" print('opening file %r...' % path) try: with open(path) as f: content = f.read() except EnvironmentError: print(sys.exc_info()[1]) else: result = self.__action_around(path, content) print('file %r processed successfully' % path) return result class NewlinesCounter(FileContentAction, TimedAction): item_descr = 'newlines' @primary def action(self, path, content): """Get number of newlines in a given string.""" return content.count('\n') def action_before(self, path, *args): """Print a message and go on...""" print('counting %s in file %r will start...' % ( self.item_descr, path)) self.__action_before(path, *args) def action_around(self, path): """Start operation with given file path. Finally, show summary.""" result = self.__action_around(path) if result is not None: print('%s in file %r: %s\n' % ( self.item_descr, path, result)) else: print('could not count %s in file %r\n' % ( self.item_descr, path)) return result class SpacesAndNewlinesCounter(NewlinesCounter): item_descr = 'spaces and newlines' @primary def action(self, path, content): """Get number of spaces and newlines in a given string.""" spaces = content.count(' ') newlines = self.__action(path, content) return spaces + newlines example_file_paths = __file__, 'spam/spam/spam/non-existent' nl_counter = NewlinesCounter() spc_nl_counter = SpacesAndNewlinesCounter() for path in example_file_paths: nl_counter.action(path) spc_nl_counter.action(path)
testData/typeinspection/ignoreInitArguments.py
alek-sun/pydantic-pycharm-plugin
238
87541
<reponame>alek-sun/pydantic-pycharm-plugin from pydantic import BaseModel class A(BaseModel): a: int def __init__(self, xyz: str): super().__init__(a=xyz) A(xyz=123<warning descr="null">)</warning> A(a=123)
utils/scripts/gen_onnx_spectrogram_model.py
dreiss/glow
2,838
87562
<reponame>dreiss/glow<filename>utils/scripts/gen_onnx_spectrogram_model.py # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import tensorflow as tf from onnx import TensorProto, helper from tensorflow.python.ops import gen_audio_ops as audio_ops # ONNX utility. def make_init(name, dtype, tensor): return helper.make_tensor( name=name, data_type=dtype, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate AudioSpectrogram ONNX test model. def gen_spectrogram_onnx_test_model( model_path, window_count, window_size, stride, magnitude_squared=True ): # Tensor sizes. input_length = window_size + (window_count - 1) * stride fft_length = int(2 ** np.ceil(np.log2(window_size))) input_shape = [1, input_length] spectrogram_length = int(fft_length / 2 + 1) spectrogram_shape = [window_count, spectrogram_length] # Generate random input data. np.random.seed(1) input_data = np.random.randn(*input_shape) # ----------------------------------------- COMPUTE TensorFlow REFERENCE ------------------------------------------- # Define TensorFlow model. tf_input = tf.constant( input_data.reshape([input_length, 1]), name="input", dtype=tf.float32 ) tf_spectrogram = audio_ops.audio_spectrogram( tf_input, window_size=window_size, stride=stride, magnitude_squared=magnitude_squared, ) # Run TensorFlow model and get reference output. with tf.Session() as sess: spectrogram_ref = sess.run(tf_spectrogram) spectrogram_ref = np.reshape(spectrogram_ref, spectrogram_shape) # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # AudioSpectrogram node definition. spectrogram_node_def = onnx.helper.make_node( "AudioSpectrogram", name="audio_spectrogram", inputs=["input"], outputs=["spectrogram"], window_size=int(window_size), stride=int(stride), magnitude_squared=int(magnitude_squared), ) # Error node definition. err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["spectrogram", "spectrogram_ref"], outputs=["spectrogram_err"], ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # Graph inputs. graph_input.append( helper.make_tensor_value_info("input", TensorProto.FLOAT, input_shape) ) graph_input.append( helper.make_tensor_value_info( "spectrogram_ref", TensorProto.FLOAT, spectrogram_shape ) ) # Graph initializers. graph_init.append(make_init("input", TensorProto.FLOAT, input_data)) graph_init.append(make_init("spectrogram_ref", TensorProto.FLOAT, spectrogram_ref)) # Graph outputs. graph_output.append( helper.make_tensor_value_info( "spectrogram_err", TensorProto.FLOAT, spectrogram_shape ) ) # Graph name. graph_name = "audio_spectrogram_test" # Define graph (GraphProto). graph_def = helper.make_graph( [spectrogram_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers. graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto). model_def = helper.make_model(graph_def, producer_name="onnx-audio-spectrogram") # Print model. with open(model_path, "w") as f: f.write(str(model_def)) # One window spectrogram. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramOneWindow.onnxtxt", window_count=1, window_size=512, stride=256, magnitude_squared=True, ) # Two window spectrogram. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramTwoWindow.onnxtxt", window_count=2, window_size=640, stride=320, magnitude_squared=True, ) # Magnitude non-squared. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramNonSquared.onnxtxt", window_count=1, window_size=640, stride=320, magnitude_squared=False, )
psdaq/psdaq/pyxpm/surf/devices/ti/_UCD92xx.py
ZhenghengLi/lcls2
134
87564
<reponame>ZhenghengLi/lcls2<filename>psdaq/psdaq/pyxpm/surf/devices/ti/_UCD92xx.py #----------------------------------------------------------------------------- # This file is part of the 'SLAC Firmware Standard Library'. It is subject to # the license terms in the LICENSE.txt file found in the top-level directory # of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of the 'SLAC Firmware Standard Library', including this file, may be # copied, modified, propagated, or distributed except according to the terms # contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import pyrogue as pr import surf.protocols.i2c class UCD92xx(surf.protocols.i2c.PMBus): def __init__(self, **kwargs): super().__init__(**kwargs) self.add(pr.LinkVariable( name = 'VIN', mode = 'RO', units = 'V', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_VIN], )) self.add(pr.LinkVariable( name = 'IIN', mode = 'RO', units = 'A', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_IIN], )) self.add(pr.LinkVariable( name = 'VOUT', mode = 'RO', units = 'V', disp = '{:1.3f}', linkedGet = surf.protocols.i2c.getPMbusLinearDataFormat, dependencies = [self.READ_VIN], )) self.add(pr.LinkVariable( name = 'IOUT', mode = 'RO', units = 'A', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_IOUT], )) self.add(pr.LinkVariable( name = 'TEMPERATURE[1]', mode = 'RO', units = 'degC', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_TEMPERATURE_1], )) self.add(pr.LinkVariable( name = 'TEMPERATURE[2]', mode = 'RO', units = 'degC', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_TEMPERATURE_2], )) self.add(pr.LinkVariable( name = 'FAN_SPEED[1]', mode = 'RO', units = 'RPM', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_FAN_SPEED_1], )) self.add(pr.LinkVariable( name = 'DUTY_CYCLE', mode = 'RO', units = '%', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_DUTY_CYCLE], )) self.add(pr.LinkVariable( name = 'POUT', mode = 'RO', units = 'W', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_POUT], )) self.add(pr.LinkVariable( name = 'PIN', mode = 'RO', units = 'W', disp = '{:1.3f}', linkedGet = self.getPMbusLinearDataFormat11Bit, dependencies = [self.READ_PIN], )) @staticmethod def getPMbusLinearDataFormat11Bit(var): # Get the 16-bt RAW value raw = var.dependencies[0].value() # V is a 16-bit unsigned binary integer mantissa, V = 1.0*raw # The exponent is reported in the bottom 5 bits of the VOUT_MODE parameter. # In the UCD92xx, this exponent is a read-only parameter # whose value is fixed at –12. This allows setting voltage-related variables # over a range from 0 to 15.9997V, with a resolution of 0.244mV. X = -12.0 return V*(2**X)
bruges/models/test/models_test.py
EvanBianco/bruges
209
87590
import unittest import numpy as np from numpy import array from bruges.models import reconcile, interpolate, panel from bruges.models import wedge class ModelTest(unittest.TestCase): """ Tests models. """ def test_reconcile(self): a = np.array([2, 6, 7, 7, 3]) b = np.array([3, 7, 3]) A, B = reconcile(a, b, order=0) A_, B_ = array([2, 6, 7, 7, 3]), array([3, 7, 7, 3, 3]) self.assertTrue(np.array_equal(A, A_)) self.assertTrue(np.array_equal(B, B_)) def test_interpolate(self): a = np.array([2, 6, 7, 7, 3]) b = np.array([3, 7, 7, 3, 3]) interp = interpolate(a, b, num=10) self.assertTrue(interp.shape == (5, 10)) def test_panel(self): a = np.array([2, 6, 7, 7, 3]) b = np.array([3, 7, 3]) dists = (10,) out = panel(a, b, num=15, dists=dists) sample = out[:, 7] self.assertTrue(np.all(sample[:4] == array([2.5, 6.5, 5., 3.]))) self.assertTrue(np.isnan(sample[-1])) def test_wedge(self): w, top, base, ref = wedge(depth=10, width=7, strat=(10, (20, 30), 40)) col = array([10, 10, 10, 20, 20, 30, 40, 40, 40, 40]) t = array([3., 3., 3., 3., 3., 3., 3.]) b = array([3., 3., 3.6, 4.2, 4.8, 5.4, 6. ]) self.assertTrue(np.all(w[:, -1] == col)) self.assertTrue(w.sum() == 1990) self.assertTrue(np.allclose(top, t)) self.assertTrue(np.allclose(base, b)) self.assertTrue(ref == 6) def test_netgross(self): w, top, *_ = wedge(depth=10, width=7, breadth=3, strat=(10, (20, 30), 40)) self.assertTrue(w.sum() == 6003) self.assertTrue(w.shape == (10, 7, 3)) self.assertTrue(top.sum() == 63.0) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(ModelTest) unittest.TextTestRunner(verbosity=2).run(suite)
depth/self_supervised_sfm/dataset.py
sarthakahuja11/cvml_project
171
87612
import os import numpy as np import tensorflow as tf from depth.self_supervised_sfm.utils import readlines AUTOTUNE = tf.data.experimental.AUTOTUNE ######################## # Constants ######################### KITTI_K = np.array([[0.58, 0, 0.5, 0], # fx/width [0, 1.92, 0.5, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float) class KittiSFMDataset: def __init__(self, dataset_dir, load_option, img_size, batch_size, split='eigen_zhou', frame_idx=(0, -1, 1)): self.h, self.w = img_size self.split = split self.batch_size = batch_size self.load_option = load_option self.dataset_dir = dataset_dir self.frame_idx = frame_idx self.side_map = {"2": 2, "3": 3, "l": 2, "r": 3} # Correspond to image folder # Check that the folder exists assert os.path.exists(dataset_dir) and os.path.isdir(dataset_dir), f"Dataset {dataset_dir} does not exist !" if self.split == 'eigen_zhou': filename = os.path.join('splits', f'eigen_zhou/{load_option}_files.txt') else: raise NotImplementedError print(f'Loading from: {filename}') data_paths = readlines(filename) self.img_paths = [] for i, line in enumerate(data_paths): # Image files folder, frame_idx, side = line.split() per_sample_imgs = [] # Load sequence img for t in self.frame_idx: f_str = f"{int(frame_idx) + t:010d}" image_path = os.path.join(dataset_dir, folder, f"image_0{self.side_map[side]}/data", f_str + '.png') per_sample_imgs.append(image_path) self.img_paths.append(per_sample_imgs) print(f'Total Images for {load_option}: {len(self.img_paths)}') self.num_samples = len(self.img_paths) def load_tfdataset(self): inputs = {} # Intrinsic intrinsic = KITTI_K.copy() intrinsic[0, :] *= self.w intrinsic[1, :] *= self.h inputs['K'] = tf.convert_to_tensor(intrinsic, tf.float32) inputs['K_inv'] = tf.linalg.inv(inputs['K']) dataset = tf.data.Dataset.from_tensor_slices(self.img_paths) dataset = dataset.shuffle(self.num_samples) # Load data def load_sample(img_paths): # load the raw data from the file as a string image_cur = tf.io.read_file(img_paths[0]) image_prev = tf.io.read_file(img_paths[1]) image_next = tf.io.read_file(img_paths[2]) image_cur = tf.image.decode_png(image_cur) image_prev = tf.image.decode_png(image_prev) image_next = tf.image.decode_png(image_next) image_cur = tf.cast(tf.image.resize(image_cur, [self.h, self.w]), tf.float32) / 255. image_prev = tf.cast(tf.image.resize(image_prev, [self.h, self.w]), tf.float32) / 255. image_next = tf.cast(tf.image.resize(image_next, [self.h, self.w]), tf.float32) / 255. if self.load_option == "train": if tf.random.uniform(()) > 0.5: image_cur = tf.image.flip_left_right(image_cur) image_prev = tf.image.flip_left_right(image_prev) image_next = tf.image.flip_left_right(image_next) inputs['img'] = image_cur inputs['img-1'] = image_prev inputs['img1'] = image_next return inputs dataset = dataset.map(load_sample, num_parallel_calls=AUTOTUNE) dataset = dataset.batch(self.batch_size, drop_remainder=True) dataset = dataset.prefetch(buffer_size=AUTOTUNE) return dataset
s3_credentials/cli.py
simonw/s3-credentials
106
87614
from re import A import boto3 import botocore import click import configparser from csv import DictWriter import io import itertools import json import mimetypes import os import re import sys import textwrap from . import policies def bucket_exists(s3, bucket): try: s3.head_bucket(Bucket=bucket) return True except botocore.exceptions.ClientError: return False def user_exists(iam, username): try: iam.get_user(UserName=username) return True except iam.exceptions.NoSuchEntityException: return False def common_boto3_options(fn): for decorator in reversed( ( click.option( "--access-key", help="AWS access key ID", ), click.option( "--secret-key", help="AWS secret access key", ), click.option( "--session-token", help="AWS session token", ), click.option( "--endpoint-url", help="Custom endpoint URL", ), click.option( "-a", "--auth", type=click.File("r"), help="Path to JSON/INI file containing credentials", ), ) ): fn = decorator(fn) return fn def common_output_options(fn): for decorator in reversed( ( click.option("--nl", help="Output newline-delimited JSON", is_flag=True), click.option("--csv", help="Output CSV", is_flag=True), click.option("--tsv", help="Output TSV", is_flag=True), ) ): fn = decorator(fn) return fn @click.group() @click.version_option() def cli(): "A tool for creating credentials for accessing S3 buckets" class PolicyParam(click.ParamType): "Returns string of guaranteed well-formed JSON" name = "policy" def convert(self, policy, param, ctx): if policy.strip().startswith("{"): # Verify policy string is valid JSON try: json.loads(policy) except ValueError: self.fail("Invalid JSON string") return policy else: # Assume policy is a file path or '-' try: with click.open_file(policy) as f: contents = f.read() try: json.loads(contents) return contents except ValueError: self.fail( "{} contained invalid JSON".format( "Input" if policy == "-" else "File" ) ) except FileNotFoundError: self.fail("File not found") class DurationParam(click.ParamType): name = "duration" pattern = re.compile(r"^(\d+)(m|h|s)?$") def convert(self, value, param, ctx): match = self.pattern.match(value) if match is None: self.fail("Duration must be of form 3600s or 15m or 2h") integer_string, suffix = match.groups() integer = int(integer_string) if suffix == "m": integer *= 60 elif suffix == "h": integer *= 3600 # Must be between 15 minutes and 12 hours if not (15 * 60 <= integer <= 12 * 60 * 60): self.fail("Duration must be between 15 minutes and 12 hours") return integer @cli.command() @click.argument( "buckets", nargs=-1, required=True, ) @click.option("--read-only", help="Only allow reading from the bucket", is_flag=True) @click.option("--write-only", help="Only allow writing to the bucket", is_flag=True) @click.option( "--prefix", help="Restrict to keys starting with this prefix", default="*" ) @click.option( "--public-bucket", help="Bucket policy for allowing public access", is_flag=True, ) def policy(buckets, read_only, write_only, prefix, public_bucket): """ Output generated JSON policy for one or more buckets Takes the same options as s3-credentials create To output a read-only JSON policy for a bucket: s3-credentials policy my-bucket --read-only """ "Generate JSON policy for one or more buckets" if public_bucket: if len(buckets) != 1: raise click.ClickException( "--public-bucket policy can only be generated for a single bucket" ) click.echo( json.dumps(policies.bucket_policy_allow_all_get(buckets[0]), indent=4) ) return permission = "read-write" if read_only: permission = "read-only" if write_only: permission = "write-only" statements = [] if permission == "read-write": for bucket in buckets: statements.extend(policies.read_write_statements(bucket, prefix)) elif permission == "read-only": for bucket in buckets: statements.extend(policies.read_only_statements(bucket, prefix)) elif permission == "write-only": for bucket in buckets: statements.extend(policies.write_only_statements(bucket, prefix)) else: assert False, "Unknown permission: {}".format(permission) bucket_access_policy = policies.wrap_policy(statements) click.echo(json.dumps(bucket_access_policy, indent=4)) @cli.command() @click.argument( "buckets", nargs=-1, required=True, ) @click.option( "format_", "-f", "--format", type=click.Choice(["ini", "json"]), default="json", help="Output format for credentials", ) @click.option( "-d", "--duration", type=DurationParam(), help="How long should these credentials work for? Default is forever, use 3600 for 3600 seconds, 15m for 15 minutes, 1h for 1 hour", ) @click.option("--username", help="Username to create or existing user to use") @click.option( "-c", "--create-bucket", help="Create buckets if they do not already exist", is_flag=True, ) @click.option( "--prefix", help="Restrict to keys starting with this prefix", default="*" ) @click.option( "--public", help="Make the created bucket public: anyone will be able to download files if they know their name", is_flag=True, ) @click.option("--read-only", help="Only allow reading from the bucket", is_flag=True) @click.option("--write-only", help="Only allow writing to the bucket", is_flag=True) @click.option( "--policy", type=PolicyParam(), help="Path to a policy.json file, or literal JSON string - $!BUCKET_NAME!$ will be replaced with the name of the bucket", ) @click.option("--bucket-region", help="Region in which to create buckets") @click.option("--silent", help="Don't show performed steps", is_flag=True) @click.option("--dry-run", help="Show steps without executing them", is_flag=True) @click.option( "--user-permissions-boundary", help=( "Custom permissions boundary to use for created users, or 'none' to " "create without. Defaults to limiting to S3 based on " "--read-only and --write-only options." ), ) @common_boto3_options def create( buckets, format_, duration, username, create_bucket, prefix, public, read_only, write_only, policy, bucket_region, user_permissions_boundary, silent, dry_run, **boto_options ): """ Create and return new AWS credentials for specified S3 buckets - optionally also creating the bucket if it does not yet exist. To create a new bucket and output read-write credentials: s3-credentials create my-new-bucket -c To create read-only credentials for an existing bucket: s3-credentials create my-existing-bucket --read-only To create write-only credentials that are only valid for 15 minutes: s3-credentials create my-existing-bucket --write-only -d 15m """ if read_only and write_only: raise click.ClickException( "Cannot use --read-only and --write-only at the same time" ) def log(message): if not silent: click.echo(message, err=True) permission = "read-write" if read_only: permission = "read-only" if write_only: permission = "write-only" s3 = None iam = None sts = None if not dry_run: s3 = make_client("s3", **boto_options) iam = make_client("iam", **boto_options) sts = make_client("sts", **boto_options) # Verify buckets for bucket in buckets: # Create bucket if it doesn't exist if dry_run or (not bucket_exists(s3, bucket)): if (not dry_run) and (not create_bucket): raise click.ClickException( "Bucket does not exist: {} - try --create-bucket to create it".format( bucket ) ) if dry_run or create_bucket: kwargs = {} if bucket_region: kwargs = { "CreateBucketConfiguration": { "LocationConstraint": bucket_region } } bucket_policy = {} if public: bucket_policy = policies.bucket_policy_allow_all_get(bucket) if dry_run: click.echo( "Would create bucket: '{}'{}".format( bucket, ( " with args {}".format(json.dumps(kwargs, indent=4)) if kwargs else "" ), ) ) if bucket_policy: click.echo("... then attach the following bucket policy to it:") click.echo(json.dumps(bucket_policy, indent=4)) else: s3.create_bucket(Bucket=bucket, **kwargs) info = "Created bucket: {}".format(bucket) if bucket_region: info += " in region: {}".format(bucket_region) log(info) if bucket_policy: s3.put_bucket_policy( Bucket=bucket, Policy=json.dumps(bucket_policy) ) log("Attached bucket policy allowing public access") # At this point the buckets definitely exist - create the inline policy for assume_role() assume_role_policy = {} bucket_access_policy = {} if policy: assume_role_policy = json.loads(policy.replace("$!BUCKET_NAME!$", bucket)) else: statements = [] if permission == "read-write": for bucket in buckets: statements.extend(policies.read_write_statements(bucket, prefix)) elif permission == "read-only": for bucket in buckets: statements.extend(policies.read_only_statements(bucket, prefix)) elif permission == "write-only": for bucket in buckets: statements.extend(policies.write_only_statements(bucket, prefix)) else: assert False, "Unknown permission: {}".format(permission) assume_role_policy = policies.wrap_policy(statements) if duration: # We're going to use sts.assume_role() rather than creating a user if dry_run: click.echo("Would ensure role: 's3-credentials.AmazonS3FullAccess'") click.echo( "Would assume role using following policy for {} seconds:".format( duration ) ) click.echo(json.dumps(assume_role_policy, indent=4)) else: s3_role_arn = ensure_s3_role_exists(iam, sts) log("Assume role against {} for {}s".format(s3_role_arn, duration)) credentials_response = sts.assume_role( RoleArn=s3_role_arn, RoleSessionName="s3.{permission}.{buckets}".format( permission="custom" if policy else permission, buckets=",".join(buckets), ), Policy=json.dumps(assume_role_policy), DurationSeconds=duration, ) if format_ == "ini": click.echo( ( "[default]\naws_access_key_id={}\n" "aws_secret_access_key={}\naws_session_token={}" ).format( credentials_response["Credentials"]["AccessKeyId"], credentials_response["Credentials"]["SecretAccessKey"], credentials_response["Credentials"]["SessionToken"], ) ) else: click.echo( json.dumps( credentials_response["Credentials"], indent=4, default=str ) ) return # No duration, so wo create a new user so we can issue non-expiring credentials if not username: # Default username is "s3.read-write.bucket1,bucket2" username = "s3.{permission}.{buckets}".format( permission="custom" if policy else permission, buckets=",".join(buckets) ) if dry_run or (not user_exists(iam, username)): kwargs = {"UserName": username} if user_permissions_boundary != "none": # This is a user-account level limitation, it does not grant # permissions on its own but is a useful extra level of defense # https://github.com/simonw/s3-credentials/issues/1#issuecomment-958201717 if not user_permissions_boundary: # Pick one based on --read-only/--write-only if read_only: user_permissions_boundary = ( "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess" ) else: # Need full access in order to be able to write user_permissions_boundary = ( "arn:aws:iam::aws:policy/AmazonS3FullAccess" ) kwargs["PermissionsBoundary"] = user_permissions_boundary info = " user: '{}'".format(username) if user_permissions_boundary != "none": info += " with permissions boundary: '{}'".format(user_permissions_boundary) if dry_run: click.echo("Would create{}".format(info)) else: iam.create_user(**kwargs) log("Created {}".format(info)) # Add inline policies to the user so they can access the buckets user_policy = {} for bucket in buckets: policy_name = "s3.{permission}.{bucket}".format( permission="custom" if policy else permission, bucket=bucket, ) if policy: user_policy = json.loads(policy.replace("$!BUCKET_NAME!$", bucket)) else: if permission == "read-write": user_policy = policies.read_write(bucket, prefix) elif permission == "read-only": user_policy = policies.read_only(bucket, prefix) elif permission == "write-only": user_policy = policies.write_only(bucket, prefix) else: assert False, "Unknown permission: {}".format(permission) if dry_run: click.echo( "Would attach policy called '{}' to user '{}', details:\n{}".format( policy_name, username, json.dumps(user_policy, indent=4), ) ) else: iam.put_user_policy( PolicyDocument=json.dumps(user_policy), PolicyName=policy_name, UserName=username, ) log("Attached policy {} to user {}".format(policy_name, username)) # Retrieve and print out the credentials if dry_run: click.echo("Would call create access key for user '{}'".format(username)) else: response = iam.create_access_key( UserName=username, ) log("Created access key for user: {}".format(username)) if format_ == "ini": click.echo( ("[default]\naws_access_key_id={}\n" "aws_secret_access_key={}").format( response["AccessKey"]["AccessKeyId"], response["AccessKey"]["SecretAccessKey"], ) ) elif format_ == "json": click.echo(json.dumps(response["AccessKey"], indent=4, default=str)) @cli.command() @common_boto3_options def whoami(**boto_options): "Identify currently authenticated user" sts = make_client("sts", **boto_options) identity = sts.get_caller_identity() identity.pop("ResponseMetadata") click.echo(json.dumps(identity, indent=4, default=str)) @cli.command() @common_output_options @common_boto3_options def list_users(nl, csv, tsv, **boto_options): """ List all users for this account s3-credentials list-users Add --csv or --csv for CSV or TSV format: s3-credentials list-users --csv """ iam = make_client("iam", **boto_options) output( paginate(iam, "list_users", "Users"), ( "UserName", "UserId", "Arn", "Path", "CreateDate", "PasswordLast<PASSWORD>", "PermissionsBoundary", "Tags", ), nl, csv, tsv, ) @cli.command() @click.argument("role_names", nargs=-1) @click.option("--details", help="Include attached policies (slower)", is_flag=True) @common_output_options @common_boto3_options def list_roles(role_names, details, nl, csv, tsv, **boto_options): """ List roles To list all roles for this AWS account: s3-credentials list-roles Add --csv or --csv for CSV or TSV format: s3-credentials list-roles --csv For extra details per role (much slower) add --details s3-credentials list-roles --details """ iam = make_client("iam", **boto_options) headers = ( "Path", "RoleName", "RoleId", "Arn", "CreateDate", "AssumeRolePolicyDocument", "Description", "MaxSessionDuration", "PermissionsBoundary", "Tags", "RoleLastUsed", ) if details: headers += ("inline_policies", "attached_policies") def iterate(): for role in paginate(iam, "list_roles", "Roles"): if role_names and role["RoleName"] not in role_names: continue if details: role_name = role["RoleName"] role["inline_policies"] = [] # Get inline policy names, then policy for each one for policy_name in paginate( iam, "list_role_policies", "PolicyNames", RoleName=role_name ): role_policy_response = iam.get_role_policy( RoleName=role_name, PolicyName=policy_name, ) role_policy_response.pop("ResponseMetadata", None) role["inline_policies"].append(role_policy_response) # Get attached managed policies role["attached_policies"] = [] for attached in paginate( iam, "list_attached_role_policies", "AttachedPolicies", RoleName=role_name, ): policy_arn = attached["PolicyArn"] attached_policy_response = iam.get_policy( PolicyArn=policy_arn, ) policy_details = attached_policy_response["Policy"] # Also need to fetch the policy JSON version_id = policy_details["DefaultVersionId"] policy_version_response = iam.get_policy_version( PolicyArn=policy_arn, VersionId=version_id, ) policy_details["PolicyVersion"] = policy_version_response[ "PolicyVersion" ] role["attached_policies"].append(policy_details) yield role output(iterate(), headers, nl, csv, tsv) @cli.command() @click.argument("usernames", nargs=-1) @common_boto3_options def list_user_policies(usernames, **boto_options): """ List inline policies for specified users s3-credentials list-user-policies username Returns policies for all users if no usernames are provided. """ iam = make_client("iam", **boto_options) if not usernames: usernames = [user["UserName"] for user in paginate(iam, "list_users", "Users")] for username in usernames: click.echo("User: {}".format(username)) for policy_name in paginate( iam, "list_user_policies", "PolicyNames", UserName=username ): click.echo("PolicyName: {}".format(policy_name)) policy_response = iam.get_user_policy( UserName=username, PolicyName=policy_name ) click.echo( json.dumps(policy_response["PolicyDocument"], indent=4, default=str) ) @cli.command() @click.argument("buckets", nargs=-1) @click.option("--details", help="Include extra bucket details (slower)", is_flag=True) @common_output_options @common_boto3_options def list_buckets(buckets, details, nl, csv, tsv, **boto_options): """ List buckets To list all buckets and their creation time as JSON: s3-credentials list-buckets Add --csv or --csv for CSV or TSV format: s3-credentials list-buckets --csv For extra details per bucket (much slower) add --details s3-credentials list-buckets --details """ s3 = make_client("s3", **boto_options) headers = ["Name", "CreationDate"] if details: headers += ["bucket_acl", "public_access_block", "bucket_website"] def iterator(): for bucket in s3.list_buckets()["Buckets"]: if buckets and (bucket["Name"] not in buckets): continue if details: bucket_acl = dict( (key, value) for key, value in s3.get_bucket_acl( Bucket=bucket["Name"], ).items() if key != "ResponseMetadata" ) try: pab = s3.get_public_access_block( Bucket=bucket["Name"], )["PublicAccessBlockConfiguration"] except s3.exceptions.ClientError: pab = None try: bucket_website = dict( (key, value) for key, value in s3.get_bucket_website( Bucket=bucket["Name"], ).items() if key != "ResponseMetadata" ) except s3.exceptions.ClientError: bucket_website = None bucket["bucket_acl"] = bucket_acl bucket["public_access_block"] = pab bucket["bucket_website"] = bucket_website yield bucket output(iterator(), headers, nl, csv, tsv) @cli.command() @click.argument("usernames", nargs=-1, required=True) @common_boto3_options def delete_user(usernames, **boto_options): """ Delete specified users, their access keys and their inline policies s3-credentials delete-user username1 username2 """ iam = make_client("iam", **boto_options) for username in usernames: click.echo("User: {}".format(username)) # Fetch and delete their policies policy_names_to_delete = list( paginate(iam, "list_user_policies", "PolicyNames", UserName=username) ) for policy_name in policy_names_to_delete: iam.delete_user_policy( UserName=username, PolicyName=policy_name, ) click.echo(" Deleted policy: {}".format(policy_name)) # Fetch and delete their access keys access_key_ids_to_delete = [ access_key["AccessKeyId"] for access_key in paginate( iam, "list_access_keys", "AccessKeyMetadata", UserName=username ) ] for access_key_id in access_key_ids_to_delete: iam.delete_access_key( UserName=username, AccessKeyId=access_key_id, ) click.echo(" Deleted access key: {}".format(access_key_id)) iam.delete_user(UserName=username) click.echo(" Deleted user") def make_client(service, access_key, secret_key, session_token, endpoint_url, auth): if auth: if access_key or secret_key or session_token: raise click.ClickException( "--auth cannot be used with --access-key, --secret-key or --session-token" ) auth_content = auth.read().strip() if auth_content.startswith("{"): # Treat as JSON decoded = json.loads(auth_content) access_key = decoded.get("AccessKeyId") secret_key = decoded.get("SecretAccessKey") session_token = decoded.get("SessionToken") else: # Treat as INI config = configparser.ConfigParser() config.read_string(auth_content) # Use the first section that has an aws_access_key_id for section in config.sections(): if "aws_access_key_id" in config[section]: access_key = config[section].get("aws_access_key_id") secret_key = config[section].get("aws_secret_access_key") session_token = config[section].get("aws_session_token") break kwargs = {} if access_key: kwargs["aws_access_key_id"] = access_key if secret_key: kwargs["aws_secret_access_key"] = secret_key if session_token: kwargs["aws_session_token"] = session_token if endpoint_url: kwargs["endpoint_url"] = endpoint_url return boto3.client(service, **kwargs) def ensure_s3_role_exists(iam, sts): "Create s3-credentials.AmazonS3FullAccess role if not exists, return ARN" role_name = "s3-credentials.AmazonS3FullAccess" account_id = sts.get_caller_identity()["Account"] try: role = iam.get_role(RoleName=role_name) return role["Role"]["Arn"] except iam.exceptions.NoSuchEntityException: create_role_response = iam.create_role( Description=( "Role used by the s3-credentials tool to create time-limited " "credentials that are restricted to specific buckets" ), RoleName=role_name, AssumeRolePolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::{}:root".format(account_id) }, "Action": "sts:AssumeRole", } ], } ), ) # Attach AmazonS3FullAccess to it - note that even though we use full access # on the role itself any time we call sts.assume_role() we attach an additional # policy to ensure reduced access for the temporary credentials iam.attach_role_policy( RoleName="s3-credentials.AmazonS3FullAccess", PolicyArn="arn:aws:iam::aws:policy/AmazonS3FullAccess", ) return create_role_response["Role"]["Arn"] @cli.command() @click.argument("bucket") @click.option("--prefix", help="List keys starting with this prefix") @common_output_options @common_boto3_options def list_bucket(bucket, prefix, nl, csv, tsv, **boto_options): """ List contents of bucket To list the contents of a bucket as JSON: s3-credentials list-bucket my-bucket Add --csv or --csv for CSV or TSV format: s3-credentials list-bucket my-bucket --csv """ s3 = make_client("s3", **boto_options) kwargs = {"Bucket": bucket} if prefix: kwargs["Prefix"] = prefix try: output( paginate(s3, "list_objects_v2", "Contents", **kwargs), ("Key", "LastModified", "ETag", "Size", "StorageClass", "Owner"), nl, csv, tsv, ) except botocore.exceptions.ClientError as e: raise click.ClickException(e) @cli.command() @click.argument("bucket") @click.argument("key") @click.argument( "path", type=click.Path( exists=True, file_okay=True, dir_okay=False, readable=True, allow_dash=True ), ) @click.option( "--content-type", help="Content-Type to use (default is auto-detected based on file extension)", ) @click.option("silent", "-s", "--silent", is_flag=True, help="Don't show progress bar") @common_boto3_options def put_object(bucket, key, path, content_type, silent, **boto_options): """ Upload an object to an S3 bucket To upload a file to /my-key.txt in the my-bucket bucket: s3-credentials put-object my-bucket my-key.txt /path/to/file.txt Use - to upload content from standard input: echo "Hello" | s3-credentials put-object my-bucket hello.txt - """ s3 = make_client("s3", **boto_options) size = None extra_args = {} if path == "-": # boto needs to be able to seek fp = io.BytesIO(sys.stdin.buffer.read()) if not silent: size = fp.getbuffer().nbytes else: if not content_type: content_type = mimetypes.guess_type(path)[0] fp = click.open_file(path, "rb") if not silent: size = os.path.getsize(path) if content_type is not None: extra_args["ContentType"] = content_type if not silent: # Show progress bar with click.progressbar(length=size, label="Uploading") as bar: s3.upload_fileobj( fp, bucket, key, Callback=bar.update, ExtraArgs=extra_args ) else: s3.upload_fileobj(fp, bucket, key, ExtraArgs=extra_args) @cli.command() @click.argument("bucket") @click.argument("key") @click.option( "output", "-o", "--output", type=click.Path(file_okay=True, dir_okay=False, writable=True, allow_dash=False), help="Write to this file instead of stdout", ) @common_boto3_options def get_object(bucket, key, output, **boto_options): """ Download an object from an S3 bucket To see the contents of the bucket on standard output: s3-credentials get-object my-bucket hello.txt To save to a file: s3-credentials get-object my-bucket hello.txt -o hello.txt """ s3 = make_client("s3", **boto_options) if not output: fp = sys.stdout.buffer else: fp = click.open_file(output, "wb") s3.download_fileobj(bucket, key, fp) @cli.command() @click.argument("bucket") @click.option( "allowed_methods", "-m", "--allowed-method", multiple=True, help="Allowed method e.g. GET", ) @click.option( "allowed_headers", "-h", "--allowed-header", multiple=True, help="Allowed header e.g. Authorization", ) @click.option( "allowed_origins", "-o", "--allowed-origin", multiple=True, help="Allowed origin e.g. https://www.example.com/", ) @click.option( "expose_headers", "-e", "--expose-header", multiple=True, help="Header to expose e.g. ETag", ) @click.option( "max_age_seconds", "--max-age-seconds", type=int, help="How long to cache preflight requests", ) @common_boto3_options def set_cors_policy( bucket, allowed_methods, allowed_headers, allowed_origins, expose_headers, max_age_seconds, **boto_options ): """ Set CORS policy for a bucket To allow GET requests from any origin: s3-credentials set-cors-policy my-bucket To allow GET and PUT from a specific origin and expose ETag headers: \b s3-credentials set-cors-policy my-bucket \\ --allowed-method GET \\ --allowed-method PUT \\ --allowed-origin https://www.example.com/ \\ --expose-header ETag """ s3 = make_client("s3", **boto_options) if not bucket_exists(s3, bucket): raise click.ClickException("Bucket {} does not exists".format(bucket)) cors_rule = { "ID": "set-by-s3-credentials", "AllowedOrigins": allowed_origins or ["*"], "AllowedHeaders": allowed_headers, "AllowedMethods": allowed_methods or ["GET"], "ExposeHeaders": expose_headers, } if max_age_seconds: cors_rule["MaxAgeSeconds"] = max_age_seconds try: s3.put_bucket_cors(Bucket=bucket, CORSConfiguration={"CORSRules": [cors_rule]}) except botocore.exceptions.ClientError as e: raise click.ClickException(e) @cli.command() @click.argument("bucket") @common_boto3_options def get_cors_policy(bucket, **boto_options): """ Get CORS policy for a bucket s3-credentials get-cors-policy my-bucket Returns the CORS policy for this bucket, if set, as JSON """ s3 = make_client("s3", **boto_options) try: response = s3.get_bucket_cors(Bucket=bucket) except botocore.exceptions.ClientError as e: raise click.ClickException(e) click.echo(json.dumps(response["CORSRules"], indent=4, default=str)) def output(iterator, headers, nl, csv, tsv): if nl: for item in iterator: click.echo(json.dumps(item, default=str)) elif csv or tsv: writer = DictWriter( sys.stdout, headers, dialect="excel-tab" if tsv else "excel" ) writer.writeheader() writer.writerows(fix_json(row) for row in iterator) else: for line in stream_indented_json(iterator): click.echo(line) def stream_indented_json(iterator, indent=2): # We have to iterate two-at-a-time so we can know if we # should output a trailing comma or if we have reached # the last item. current_iter, next_iter = itertools.tee(iterator, 2) next(next_iter, None) first = True for item, next_item in itertools.zip_longest(current_iter, next_iter): is_last = next_item is None data = item line = "{first}{serialized}{separator}{last}".format( first="[\n" if first else "", serialized=textwrap.indent( json.dumps(data, indent=indent, default=str), " " * indent ), separator="," if not is_last else "", last="\n]" if is_last else "", ) yield line first = False if first: # We didn't output anything, so yield the empty list yield "[]" def paginate(service, method, list_key, **kwargs): paginator = service.get_paginator(method) for response in paginator.paginate(**kwargs): yield from response[list_key] def fix_json(row): # If a key value is list or dict, json encode it return dict( [ ( key, json.dumps(value, indent=2, default=str) if isinstance(value, (dict, list, tuple)) else value, ) for key, value in row.items() ] )
test/programytest/extensions/test_base.py
cdoebler1/AIML2
345
87615
import unittest import unittest.mock from programy.extensions.base import Extension class MockExtension(Extension): def execute(self,context, data): raise NotImplementedError() class ExtensionTests(unittest.TestCase): def test_ensure_not_implemented(self): bot = unittest.mock.Mock() extension = MockExtension() self.assertIsNotNone(extension) with self.assertRaises(Exception): extension.execute(bot, "testid", "Some Data")
docs/examples/use_cases/video_superres/tools/split_scenes.py
cyyever/DALI
3,967
87641
<gh_stars>1000+ import argparse import os import subprocess def split_scenes(raw_data_path, out_data_path): out_data_path = os.path.join(out_data_path,'orig','scenes') if not os.path.isdir(os.path.join(out_data_path,'train')): os.makedirs(os.path.join(out_data_path,'train')) if not os.path.isdir(os.path.join(out_data_path,'val')): os.makedirs(os.path.join(out_data_path,'val')) start = "00:00:00.0" with open("./data/timestamps") as f: for i, line in enumerate(f.readlines()): m, s = divmod(float(line), 60) h, m = divmod(m, 60) end = "%02d:%02d:%02d" %(h, m, s) if i < 53: subset = 'train' else: subset = 'val' filepath = os.path.join(out_data_path, subset) filename = os.path.join(filepath, 'scene_' + str(i) + '.mp4') cmd = ["ffmpeg", "-i", raw_data_path, "-ss", start, "-to", end, "-c:v", "copy", "-an", filename] print("Running: ", ' '.join(cmd)) subprocess.run(cmd) start = end if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--raw_data', type=str, default=None) parser.add_argument('--out_data', type=str, default=None) args = parser.parse_args() assert args.raw_data is not None, 'Provide --raw_data path to Myanmar 4K mp4' assert args.out_data is not None, 'Provide --raw_data path to Myanmar 4K mp4' split_scenes(args.raw_data, args.out_data)
uq360/utils/transformers/one_class_svm.py
Sclare87/UQ360
148
87648
from sklearn.svm import OneClassSVM from uq360.utils.transformers.feature_transformer import FeatureTransformer class OneClassSVMTransformer(FeatureTransformer): """One-class SVM outlier-classifier based derived feature. This transformer fits an SVM decision boundary enclosing the full training set. This is then the decision boundary to identify outliers in production data at inference time. """ def __init__(self): super(OneClassSVMTransformer, self).__init__() self.one_class_classifier = OneClassSVM(nu=0.1, kernel="rbf", gamma='auto') self.fit_status = False @classmethod def name(cls): return ('one_class_svm') def fit(self, x, y): self.one_class_classifier.fit(x) self.fit_status = True def transform(self, x, predictions): return self.one_class_classifier.decision_function(x) def save(self, output_location=None): self.register_pkl_object(self.one_class_classifier, 'one_class_classifier') super(OneClassSVMTransformer, self)._save(output_location) def load(self, input_location=None): self._load(input_location) self.one_class_classifier = self.pkl_registry[0][0] assert type(self.one_class_classifier) == OneClassSVM self.fit_status = True