max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
module/M_drown.py
mehrdad-shokri/a2sv
655
108968
<filename>module/M_drown.py<gh_stars>100-1000 import socket from C_display import * #Module def check_tls(hostname,port): client_hello = '16030100d8010000d403037d408377c8e5204623867604ab0ee4a140043a4e383f770a1e6b66c2d45d34e820de8656a211d79fa9809e9ae6404bb7bcc372afcdd6f51882e39ac2241a8535090016c02bc02fc00ac009c013c01400330039002f0035000a0100007500000014001200000f7777772e65746973616c61742e6567ff01000100000a00080006001700180019000b00020100002300003374000000100017001502683208737064792f332e3108687474702f312e31000500050100000000000d001600140401050106010201040305030603020304020202' s = socket.socket() s.settimeout(5) s.connect((hostname,int(port))) s.send(client_hello.decode('hex')) try: data = s.recv(1024*1024) except socket.timeout: data = '' if data: server_hello_len = int(data[3:5].encode('hex'),16) index = 5 index += server_hello_len cert_msg = data[index:] return cert_msg def m_drown_run(hostname,port,displayMode): client_hello_payload = '803e0100020015001000100100800200800600400400800700c00800800500806161616161616161616161616161616161616161616161616161616161616161' s = socket.socket() s.settimeout(5) s.connect((hostname,int(port))) s.sendall(client_hello_payload.decode('hex')) try: server_hello = s.recv(10*1024) except socket.timeout: server_hello = '' except socket.error: showDisplay(displayMode," - [LOG] Execption") return "0x02" if server_hello: try: #parse incoming packet to extract the certificate index = 0 length = server_hello[index:index+2].encode('hex') index +=2 msg_type = server_hello[index].encode('hex') index +=1 session_id = server_hello[index].encode('hex') index +=1 cert_type = server_hello[index].encode('hex') index +=1 ssl_version = server_hello[index:index+2] index +=2 cert_len = int(server_hello[index:index+2].encode('hex'),16) #showDisplay(displayMode,'cert_len',cert_len) index +=2 cipher_spec_len = server_hello[index:index+2] index +=2 conn_id = server_hello[index:index+2] index +=2 cert = server_hello[index:cert_len+1] data = check_tls(hostname,port) if data: showDisplay(displayMode," - [LOG] Check the TLS CERT") showDisplay(displayMode," - [LOG] Check the SSLv2 CERT") if cert.encode('hex') in data.encode('hex'): showDisplay(displayMode," - [LOG] SSLv2 Enable - Same cert") return "0x01" else: showDisplay(displayMode," - [LOG] SSLv2 Enable - Not same cert") return "0x01" except Exception as e: showDisplay(displayMode,str(e)) return "0x02" else: showDisplay(displayMode," - [LOG] Not connected SSLv2") return "0x00" s.close()
accessify/__init__.py
dmytrostriletskyi/design-kit
107
108994
from accessify.access import ( accessify, private, protected, ) from accessify.interfaces import ( implements, throws, )
tests/test_provider_pmorillon_grid5000.py
mjuenema/python-terrascript
507
108998
# tests/test_provider_pmorillon_grid5000.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:17:36 UTC) def test_provider_import(): import terrascript.provider.pmorillon.grid5000 def test_resource_import(): from terrascript.resource.pmorillon.grid5000 import grid5000_ceph_pool from terrascript.resource.pmorillon.grid5000 import grid5000_deployment from terrascript.resource.pmorillon.grid5000 import grid5000_job def test_datasource_import(): from terrascript.data.pmorillon.grid5000 import grid5000_ceph_auth from terrascript.data.pmorillon.grid5000 import grid5000_node from terrascript.data.pmorillon.grid5000 import grid5000_site from terrascript.data.pmorillon.grid5000 import grid5000_vlan_nodelist # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.pmorillon.grid5000 # # t = terrascript.provider.pmorillon.grid5000.grid5000() # s = str(t) # # assert 'https://github.com/pmorillon/terraform-provider-grid5000' in s # assert '0.0.7' in s
ghostwriter/commandcenter/migrations/0002_auto_20201009_1918.py
bbhunter/Ghostwriter
601
109000
# Generated by Django 2.2.3 on 2020-10-09 19:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('commandcenter', '0001_initial'), ] operations = [ migrations.AlterField( model_name='cloudservicesconfiguration', name='ignore_tag', field=models.CharField(default='gw_ignore', help_text='Ghostwriter will ignore cloud assets with one of these tags (comma-separated list)', max_length=255, verbose_name='Ignore Tags'), ), ]
examples/starwars/data.py
radekwlsk/graphene-django
4,038
109015
<filename>examples/starwars/data.py from .models import Character, Faction, Ship def initialize(): human = Character(name="Human") human.save() droid = Character(name="Droid") droid.save() rebels = Faction(id="1", name="Alliance to Restore the Republic", hero=human) rebels.save() empire = Faction(id="2", name="Galactic Empire", hero=droid) empire.save() xwing = Ship(id="1", name="X-Wing", faction=rebels) xwing.save() human.ship = xwing human.save() ywing = Ship(id="2", name="Y-Wing", faction=rebels) ywing.save() awing = Ship(id="3", name="A-Wing", faction=rebels) awing.save() # Yeah, technically it's Corellian. But it flew in the service of the rebels, # so for the purposes of this demo it's a rebel ship. falcon = Ship(id="4", name="Millenium Falcon", faction=rebels) falcon.save() homeOne = Ship(id="5", name="Home One", faction=rebels) homeOne.save() tieFighter = Ship(id="6", name="TIE Fighter", faction=empire) tieFighter.save() tieInterceptor = Ship(id="7", name="TIE Interceptor", faction=empire) tieInterceptor.save() executor = Ship(id="8", name="Executor", faction=empire) executor.save() def create_ship(ship_name, faction_id): new_ship = Ship(name=ship_name, faction_id=faction_id) new_ship.save() return new_ship def get_ship(_id): return Ship.objects.get(id=_id) def get_ships(): return Ship.objects.all() def get_faction(_id): return Faction.objects.get(id=_id) def get_rebels(): return get_faction(1) def get_empire(): return get_faction(2)
reckoner/meta.py
LynRodWS/reckoner
192
109031
# -- coding: utf-8 -- # pylint: skip-file # Copyright 2019 FairwindsOps Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pkg_resources import get_distribution, DistributionNotFound import re __version_modifier__ = re.compile(r'^([0-9]+\.[0-9]+\.[0-9]+)\.(.*)$') __distribution_name__ = 'reckoner' try: __version__ = re.sub(__version_modifier__, r'\g<1>-\g<2>', get_distribution(__distribution_name__).version) except DistributionNotFound: # Attempt to discover Version from pyinstaller data from pkgutil import get_data _raw_ver = get_data(__distribution_name__, 'version.txt').decode('UTF-8', 'ignore').rstrip("\r\n") __version__ = re.sub(__version_modifier__, r'\g<1>-\g<2>', _raw_ver) __author__ = 'FairwindsOps, Inc.'
tests/features/change_theme_on_legacy_widgets.py
dmalves/ttkbootstrap
406
109041
import tkinter as tk from ttkbootstrap import Style from random import choice root = tk.Tk() root.minsize(500, 500) style = Style('superhero') def new_theme(): theme = choice(style.theme_names()) print(theme) style.theme_use(theme) btn = tk.Button(root, text='Primary') btn.configure(command=new_theme) btn.pack(padx=10, pady=10, fill=tk.BOTH, expand=tk.YES) label = tk.Label(text="Hello world!") label.pack(padx=10, pady=10) text = tk.Text() text.pack(padx=10, pady=10) text.insert(tk.END, 'This is a demo of themes applied to regular tk widgets.') frame = tk.Frame() frame.pack(padx=10, pady=10, fill=tk.X) cb1 = tk.Checkbutton(frame, text="Check 1") cb1.pack(padx=10, pady=10, side=tk.LEFT) cb1.invoke() cb2 = tk.Checkbutton(frame, text="Check 2") cb2.pack(padx=10, pady=10, side=tk.LEFT) rb_var = tk.Variable(value=1) rb1 = tk.Radiobutton(frame, text='Radio 1', value=1, variable=rb_var) rb1.pack(padx=10, pady=10, side=tk.LEFT) rb2 = tk.Radiobutton(frame, text='Radio 2', value=2, variable=rb_var) rb2.pack(padx=10, pady=10, side=tk.LEFT) frame2 = tk.LabelFrame(text="Items") frame2.pack(padx=10, pady=10, fill=tk.X) entry = tk.Entry(frame2) entry.pack(padx=10, pady=10, side=tk.LEFT) scale = tk.Scale(frame2, orient=tk.HORIZONTAL) scale.set(25) scale.pack(padx=10, pady=10, side=tk.LEFT) sb = tk.Spinbox(frame2) sb.pack(padx=10, pady=10, side=tk.LEFT) lb = tk.Listbox(height=3) lb.insert(tk.END, 'one', 'two', 'three') lb.pack(padx=10, pady=10) mb = tk.Menubutton(frame2, text="Hello world") menu = tk.Menu(mb) menu.add_checkbutton(label="Option 1") menu.add_checkbutton(label="Option 2") mb['menu'] = menu mb.pack(padx=10, pady=10) root.mainloop()
test/modules/redfish_auth.py
arunrordell/RackHD
451
109054
from config.redfish1_0_config import config from config.auth import * from config.settings import * from logger import Log from json import loads, dumps import pexpect import pxssh import subprocess LOG = Log(__name__) class Auth(object): """ Class to abstract python authentication functionality """ @staticmethod def get_auth_token(): """ call /SessionService/Sessions to get auth_token """ resource_path = '/redfish/v1/SessionService/Sessions' method = 'POST' body_params = { 'UserName': 'admin', 'Password': '<PASSWORD>' } config.api_client.host = config.host_authed config.api_client.call_api(resource_path, method, body=body_params) return config.api_client.last_response.getheader('X-Auth-Token') @staticmethod def enable(): """ update config to enable auth """ if config.auth_enabled: LOG.info('auth already enabled.') config.api_client.default_headers['X-Auth-Token'] = Auth.get_auth_token() config.api_client.host = config.host_authed + config.api_root config.auth_enabled = True LOG.info('Enable auth successfully.') @staticmethod def disable(): """ update config to disable auth """ if not config.auth_enabled: LOG.info('auth already disabled.') del config.api_client.default_headers['X-Auth-Token'] config.api_client.host = config.host + config.api_root config.auth_enabled = False LOG.info('Disable auth successfully.')
src/netius/test/middleware/proxy.py
timgates42/netius
107
109057
<reponame>timgates42/netius<gh_stars>100-1000 #!/usr/bin/python # -*- coding: utf-8 -*- # Hive Netius System # Copyright (c) 2008-2020 Hive Solutions Lda. # # This file is part of Hive Netius System. # # Hive Netius System is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Netius System is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Netius System. If not, see <http://www.apache.org/licenses/>. __author__ = "<NAME> <<EMAIL>>" """ The author(s) of the module """ __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2020 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """ import struct import unittest import netius.common import netius.middleware class ProxyMiddlewareTest(unittest.TestCase): def setUp(self): unittest.TestCase.setUp(self) self.server = netius.Server(poll = netius.Poll) self.server.poll.open() def tearDown(self): unittest.TestCase.tearDown(self) self.server.cleanup() def test_ipv4_v1(self): instance = self.server.register_middleware( netius.middleware.ProxyMiddleware ) connection = netius.Connection(owner = self.server) connection.open() connection.restore(b"PROXY TCP4 192.168.1.1 192.168.1.2 32598 8080\r\n") instance._proxy_handshake_v1(connection) self.assertEqual(connection.address, ("192.168.1.1", 32598)) self.assertEqual(len(connection.restored), 0) def test_ipv6_v1(self): instance = self.server.register_middleware( netius.middleware.ProxyMiddleware ) connection = netius.Connection(owner = self.server) connection.open() connection.restore(b"PROXY TCP4 fe80::787f:f63f:3176:d61b fe80::787f:f63f:3176:d61c 32598 8080\r\n") instance._proxy_handshake_v1(connection) self.assertEqual(connection.address, ("fe80::787f:f63f:3176:d61b", 32598)) self.assertEqual(len(connection.restored), 0) def test_starter_v1(self): self.server.register_middleware( netius.middleware.ProxyMiddleware ) connection = netius.Connection(owner = self.server) connection.open() connection.restore(b"PROXY TCP4 192.168.1.1 192.168.1.2 32598 8080\r\n") connection.run_starter() self.assertEqual(connection.address, ("192.168.1.1", 32598)) self.assertEqual(connection.restored_s, 0) self.assertEqual(len(connection.restored), 0) connection = netius.Connection(owner = self.server) connection.open() connection.restore(b"PROXY TCP4 192.168.1.3 ") connection.restore(b"192.168.1.4 32598 8080\r\n") connection.run_starter() self.assertEqual(connection.address, ("192.168.1.3", 32598)) self.assertEqual(connection.restored_s, 0) self.assertEqual(len(connection.restored), 0) connection = netius.Connection(owner = self.server) connection.open() connection.restore(b"PROXY TCP4 192.168.1.3 ") connection.restore(b"192.168.1.4 32598 8080\r\nGET") connection.restore(b" / HTTP/1.0\r\n\r\n") connection.run_starter() self.assertEqual(connection.address, ("192.168.1.3", 32598)) self.assertEqual(connection.restored_s, 18) self.assertEqual(len(connection.restored), 2) def test_starter_v2(self): self.server.register_middleware( netius.middleware.ProxyMiddleware, version = 2 ) connection = netius.Connection(owner = self.server) connection.open() body = struct.pack( "!IIHH", netius.common.ip4_to_addr("192.168.1.1"), netius.common.ip4_to_addr("192.168.1.2"), 32598, 8080 ) header = struct.pack( "!12sBBH", netius.middleware.ProxyMiddleware.HEADER_MAGIC_V2, (2 << 4) + (netius.middleware.ProxyMiddleware.TYPE_PROXY_V2), (netius.middleware.ProxyMiddleware.AF_INET_v2 << 4) + (netius.middleware.ProxyMiddleware.PROTO_STREAM_v2), len(body) ) connection.restore(header) connection.restore(body) connection.run_starter() self.assertEqual(connection.address, ("192.168.1.1", 32598)) self.assertEqual(connection.restored_s, 0) self.assertEqual(len(connection.restored), 0)
python/test/resource/test_dataset_mixed.py
Fosstack/vmaf
2,874
109074
<gh_stars>1000+ dataset_name = 'example' quality_width = 1920 quality_height = 1080 from vmaf.config import VmafConfig ref_videos = [ {'content_id': 0, 'path': VmafConfig.resource_path('yuv', 'checkerboard_1920_1080_10_3_0_0.yuv'), 'yuv_fmt': 'yuv420p', 'width': 1920, 'height': 1080}, {'content_id': 1, 'path': VmafConfig.resource_path('yuv', 'flat_1920_1080_0.yuv'), 'yuv_fmt': 'yuv420p', 'width': 720, 'height': 480}, ] dis_videos = [ {'content_id': 0, 'asset_id': 0, 'dmos': 100, 'path': VmafConfig.resource_path('yuv', 'checkerboard_1920_1080_10_3_0_0.yuv'), 'yuv_fmt': 'yuv420p', 'width': 1920, 'height': 1080}, # ref {'content_id': 0, 'asset_id': 1, 'dmos': 50, 'path': VmafConfig.resource_path('yuv', 'checkerboard_1920_1080_10_3_1_0.264'), 'yuv_fmt': 'notyuv',}, {'content_id': 1, 'asset_id': 2, 'dmos': 100, 'path': VmafConfig.resource_path('yuv', 'flat_1920_1080_0.yuv'), 'yuv_fmt': 'yuv420p', 'width': 720, 'height': 480}, # ref {'content_id': 1, 'asset_id': 3, 'dmos': 80, 'path': VmafConfig.resource_path('yuv', 'flat_1920_1080_10.264'), 'yuv_fmt': 'notyuv',}, ]
yacv/abstractsyntaxtree.py
amitpatra/yacv
120
109091
from yacv.grammar import Production from yacv.constants import YACV_EPSILON from pprint import pformat class AbstractSyntaxTree(object): def __init__(self, *args): if len(args) == 0: self.root = None self.desc = [] self.prod_id = None self.node_id = None if len(args) == 1: if isinstance(args[0], Production): self.root = args[0].lhs desc = [] for symbol in args[0].rhs: desc.append(AbstractSyntaxTree(symbol)) self.desc = desc self.prod_id = None elif isinstance(args[0], str): self.root = args[0] self.desc = [] self.prod_id = None def __str__(self): return '{}->{}'.format(self.root, pformat(self.desc)) def __repr__(self): return str(self)
micro-benchmark/snippets/external/cls_parent/main.py
WenJinfeng/PyCG
121
109096
from ext import parent class A(parent): def fn(self): self.parent_fn() a = A() a.fn()
stereomag/rank.py
Dawars/stereo-magnification
348
109100
<reponame>Dawars/stereo-magnification #!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Quantitative evaluation of view synthesis results. Read in dumped json data and compute various statistics. """ import os import json import numpy as np from scipy.stats import wilcoxon from scipy.stats.mstats import rankdata from pyglib import app from pyglib import flags FLAGS = flags.FLAGS flags.DEFINE_string('root', 'evaluation', 'Evaluation directory') flags.DEFINE_string( 'model_names', 'v4_1024,v4_1024_alpha,v4_1024_singleRGB,v4_1024_fgbg,v4_1024_all', 'model names') flags.DEFINE_string('data_split', 'test', 'split of the data') flags.DEFINE_string('stats', 'mean,rank,diff,wilcoxon', 'which stats to compute') def load_data(root, model): with open(root + '/json/' + model + '.json') as f: data = json.load(f) return data def merge_into(data, d): if data == {}: data['models'] = [] data['examples'] = d['examples'] n = len(data['examples']) data['ssim'] = [[]] * n data['psnr'] = [[]] * n for m in d['model_names']: assert m not in data['models'] data['models'].append(str(m)) assert d['examples'] == data['examples'] assert len(data['ssim']) == len(d['ssim']) assert len(data['psnr']) == len(d['psnr']) data['ssim'] = [a + b for (a, b) in zip(data['ssim'], d['ssim'])] data['psnr'] = [a + b for (a, b) in zip(data['psnr'], d['psnr'])] def compute_mean(data): print '\nMEAN + STD\n' ssim = np.array(data['ssim']) psnr = np.array(data['psnr']) for i, m in enumerate(data['models']): print '%30s ssim %.3f ± %.3f psnr %.2f ± %.2f' % ( m, np.mean(ssim[:, i]), np.std(ssim[:, i]), np.mean(psnr[:, i]), np.std(psnr[:, i])) def compute_rank(data): print '\nRANK\n' # rankdata assigns rank 1 to the lowest element, so # we need to negate before ranking. ssim_rank = rankdata(np.array(data['ssim']) * -1.0, axis=1) psnr_rank = rankdata(np.array(data['psnr']) * -1.0, axis=1) # Rank mean + std. for i, m in enumerate(data['models']): print '%30s ssim-rank %.2f ± %.2f psnr-rank %.2f ± %.2f' % ( m, np.mean(ssim_rank[:, i]), np.std(ssim_rank[:, i]), np.mean(psnr_rank[:, i]), np.std(psnr_rank[:, i])) # Rank frequencies print '\n SSIM rank freqs' print_rank_freqs(data, ssim_rank) print '\n PSNR rank freqs' print_rank_freqs(data, psnr_rank) def print_rank_freqs(data, rank): e = len(data['examples']) m = len(data['models']) freqs = [] for i in range(m): one_rank = np.count_nonzero( np.logical_and(np.less_equal(i + 1.0, rank), np.less(rank, i + 2.0)), axis=0) * 1.0 / e freqs.append(one_rank) freqs = np.array(freqs) print '%30s %s' % ('', ''.join('%4.0f ' % (x + 1) for x in range(m))) for i, m in enumerate(data['models']): print '%30s %s' % (m, ''.join( '%4.0f%%' % (100 * x) for x in freqs[:, i])) def compute_diff(data): print '\nDIFF\n' # We take the first model as the best! ssim = np.array(data['ssim']) psnr = np.array(data['psnr']) ssim_diff = ssim - ssim[:, 0:1] psnr_diff = psnr - psnr[:, 0:1] for i, m in enumerate(data['models']): print '%30s ssim-diff %.3f ± %.3f psnr-diff %.2f ± %.2f' % ( m, np.mean(ssim_diff[:, i]), np.std(ssim_diff[:, i]), np.mean(psnr_diff[:, i]), np.std(psnr_diff[:, i])) def compute_wilcoxon(data): print '\nWILCOXON SIGNED-RANK TEST\n' # We take the first model as the basis for each comparison. ssim = np.array(data['ssim']) psnr = np.array(data['psnr']) for i, m in enumerate(data['models']): if i == 0: print ' [differences from %s]' % m continue ssim_v, ssim_p = wilcoxon(ssim[:, i], ssim[:, 0]) psnr_v, psnr_p = wilcoxon(psnr[:, i], psnr[:, 0]) print '%30s ssim %.3f, p %.1e psnr %.2f, p %.1e' % (m, ssim_v, ssim_p, psnr_v, psnr_p) def main(_): stats = FLAGS.stats.split(',') root = FLAGS.root model_names = FLAGS.model_names.split(',') data = {} for m in model_names: d = load_data(root, m) merge_into(data, d) print '\nLOADED %d models, %d examples' % (len(data['models']), len(data['examples'])) if 'mean' in stats: compute_mean(data) if 'rank' in stats: compute_rank(data) if 'diff' in stats: compute_diff(data) if 'wilcoxon' in stats: compute_wilcoxon(data) print if __name__ == '__main__': app.run()
esphome/components/tcs34725/sensor.py
OttoWinter/esphomeyaml
249
109147
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import i2c, sensor from esphome.const import ( CONF_COLOR_TEMPERATURE, CONF_GAIN, CONF_ID, CONF_ILLUMINANCE, CONF_GLASS_ATTENUATION_FACTOR, CONF_INTEGRATION_TIME, DEVICE_CLASS_ILLUMINANCE, ICON_LIGHTBULB, STATE_CLASS_MEASUREMENT, UNIT_PERCENT, ICON_THERMOMETER, UNIT_KELVIN, UNIT_LUX, ) DEPENDENCIES = ["i2c"] CONF_RED_CHANNEL = "red_channel" CONF_GREEN_CHANNEL = "green_channel" CONF_BLUE_CHANNEL = "blue_channel" CONF_CLEAR_CHANNEL = "clear_channel" tcs34725_ns = cg.esphome_ns.namespace("tcs34725") TCS34725Component = tcs34725_ns.class_( "TCS34725Component", cg.PollingComponent, i2c.I2CDevice ) TCS34725IntegrationTime = tcs34725_ns.enum("TCS34725IntegrationTime") TCS34725_INTEGRATION_TIMES = { "auto": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_AUTO, "2.4ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_2_4MS, "24ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_24MS, "50ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_50MS, "101ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_101MS, "120ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_120MS, "154ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_154MS, "180ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_180MS, "199ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_199MS, "240ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_240MS, "300ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_300MS, "360ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_360MS, "401ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_401MS, "420ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_420MS, "480ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_480MS, "499ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_499MS, "540ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_540MS, "600ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_600MS, "614ms": TCS34725IntegrationTime.TCS34725_INTEGRATION_TIME_614MS, } TCS34725Gain = tcs34725_ns.enum("TCS34725Gain") TCS34725_GAINS = { "1X": TCS34725Gain.TCS34725_GAIN_1X, "4X": TCS34725Gain.TCS34725_GAIN_4X, "16X": TCS34725Gain.TCS34725_GAIN_16X, "60X": TCS34725Gain.TCS34725_GAIN_60X, } color_channel_schema = sensor.sensor_schema( unit_of_measurement=UNIT_PERCENT, icon=ICON_LIGHTBULB, accuracy_decimals=1, state_class=STATE_CLASS_MEASUREMENT, ) color_temperature_schema = sensor.sensor_schema( unit_of_measurement=UNIT_KELVIN, icon=ICON_THERMOMETER, accuracy_decimals=1, state_class=STATE_CLASS_MEASUREMENT, ) illuminance_schema = sensor.sensor_schema( unit_of_measurement=UNIT_LUX, accuracy_decimals=1, device_class=DEVICE_CLASS_ILLUMINANCE, state_class=STATE_CLASS_MEASUREMENT, ) CONFIG_SCHEMA = ( cv.Schema( { cv.GenerateID(): cv.declare_id(TCS34725Component), cv.Optional(CONF_RED_CHANNEL): color_channel_schema, cv.Optional(CONF_GREEN_CHANNEL): color_channel_schema, cv.Optional(CONF_BLUE_CHANNEL): color_channel_schema, cv.Optional(CONF_CLEAR_CHANNEL): color_channel_schema, cv.Optional(CONF_ILLUMINANCE): illuminance_schema, cv.Optional(CONF_COLOR_TEMPERATURE): color_temperature_schema, cv.Optional(CONF_INTEGRATION_TIME, default="auto"): cv.enum( TCS34725_INTEGRATION_TIMES, lower=True ), cv.Optional(CONF_GAIN, default="1X"): cv.enum(TCS34725_GAINS, upper=True), cv.Optional(CONF_GLASS_ATTENUATION_FACTOR, default=1.0): cv.float_range( min=1.0 ), } ) .extend(cv.polling_component_schema("60s")) .extend(i2c.i2c_device_schema(0x29)) ) async def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) await cg.register_component(var, config) await i2c.register_i2c_device(var, config) cg.add(var.set_integration_time(config[CONF_INTEGRATION_TIME])) cg.add(var.set_gain(config[CONF_GAIN])) cg.add(var.set_glass_attenuation_factor(config[CONF_GLASS_ATTENUATION_FACTOR])) if CONF_RED_CHANNEL in config: sens = await sensor.new_sensor(config[CONF_RED_CHANNEL]) cg.add(var.set_red_sensor(sens)) if CONF_GREEN_CHANNEL in config: sens = await sensor.new_sensor(config[CONF_GREEN_CHANNEL]) cg.add(var.set_green_sensor(sens)) if CONF_BLUE_CHANNEL in config: sens = await sensor.new_sensor(config[CONF_BLUE_CHANNEL]) cg.add(var.set_blue_sensor(sens)) if CONF_CLEAR_CHANNEL in config: sens = await sensor.new_sensor(config[CONF_CLEAR_CHANNEL]) cg.add(var.set_clear_sensor(sens)) if CONF_ILLUMINANCE in config: sens = await sensor.new_sensor(config[CONF_ILLUMINANCE]) cg.add(var.set_illuminance_sensor(sens)) if CONF_COLOR_TEMPERATURE in config: sens = await sensor.new_sensor(config[CONF_COLOR_TEMPERATURE]) cg.add(var.set_color_temperature_sensor(sens))
vnpy/gateway/deribit/__init__.py
ChaunceyDong/vnpy
19,529
109173
<gh_stars>1000+ from vnpy_deribit import DeribitGateway
deepy/tensor/__init__.py
uaca/deepy
260
109184
<reponame>uaca/deepy<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- from wrapper import deepy_tensor from functions import concat, concatenate, reverse, ifelse, apply, repeat, var, vars, activate, is_neural_var, is_theano_var from onehot import onehot_tensor, onehot import theano_nnet_imports as nnet import costs as costs from theano_imports import *
test/IECore/TypedDataAsObject.py
bradleyhenke/cortex
386
109226
########################################################################## # # Copyright (c) 2007, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import IECore class TestTypedDataAsObject( unittest.TestCase ) : def testSimpleCopy( self ) : o = IECore.IntData( 1 ) self.assertEqual( o.value, 1 ) self.assertEqual( o, o ) o.value = 2 self.assertEqual( o.value, 2 ) oo = o.copy() self.assertEqual( oo.value, 2 ) self.assertEqual( o, oo ) o.value = 3 self.assertEqual( o.value, 3 ) self.assertEqual( oo.value, 2 ) self.assertNotEqual( o, oo ) oo.value = 4 self.assertEqual( o.value, 3 ) self.assertEqual( oo.value, 4 ) self.assertNotEqual( o, oo ) def testCompoundCopy( self ) : """CompoundData must specialise the copyFrom() method to ensure that a genuine deep copy of the data is produced. This tests that.""" a = IECore.IntData( 2 ) self.assertEqual( a.value, 2 ) self.assertEqual( a, a ) c = IECore.CompoundData() c["A"] = a self.assertEqual( c["A"].value, 2 ) a.value = 3 self.assertEqual( a.value, 3 ) self.assertEqual( c["A"].value, 3 ) self.assertTrue( a.isSame( c["A"] ) ) cc = c.copy() self.assertTrue( a.isSame( c["A"] ) ) self.assertTrue( not a.isSame( cc["A"] ) ) self.assertEqual( c, cc ) a.value = 10 self.assertEqual( a.value, 10 ) self.assertEqual( c["A"].value, 10 ) self.assertEqual( cc["A"].value, 3 ) self.assertNotEqual( c, cc ) cc["A"].value = 100 self.assertEqual( cc["A"].value, 100 ) self.assertEqual( c["A"].value, 10 ) self.assertEqual( a.value, 10 ) self.assertNotEqual( c, cc ) a.value = 100 self.assertEqual( c, cc ) if __name__ == "__main__": unittest.main()
dataviva/api/hedu/services.py
joelvisroman/dataviva-site
126
109265
from dataviva.api.hedu.models import Ybu, Ybc_hedu, Yu, Yuc, Yc_hedu, Ybuc from dataviva.api.attrs.models import University as uni, Course_hedu, Bra from dataviva import db from sqlalchemy.sql.expression import func, desc, not_ class University: def __init__(self, university_id): self._hedu = None self._hedu_sorted_by_enrolled = None self._hedu_sorted_by_entrants = None self._hedu_sorted_by_graduates = None self.university_id = university_id if university_id is None: self.max_year_query = db.session.query(func.max(Yu.year)) self.hedu_query = Yu.query.filter(Yu.year == self.max_year_query) else: self.max_year_query = db.session.query( func.max(Yu.year)).filter_by(university_id=university_id) self.hedu_query = Yu.query.filter( Yu.university_id == self.university_id, Yu.year == self.max_year_query) def __hedu__(self): if not self._hedu: hedu_data = self.hedu_query.first_or_404() self._hedu = hedu_data return self._hedu def __hedu_list__(self): if not self._hedu: hedu_data = self.hedu_query.all() self._hedu = hedu_data return self._hedu def __hedu_sorted_by_enrolled__(self): if not self._hedu_sorted_by_enrolled: self._hedu_sorted_by_enrolled = self.__hedu_list__() self._hedu_sorted_by_enrolled.sort( key=lambda hedu: hedu.enrolled, reverse=True) return self._hedu_sorted_by_enrolled def __hedu_sorted_by_entrants__(self): if not self._hedu_sorted_by_entrants: self._hedu_sorted_by_entrants = self.__hedu_list__() self._hedu_sorted_by_entrants.sort( key=lambda hedu: hedu.entrants, reverse=True) return self._hedu_sorted_by_entrants def __hedu_sorted_by_graduates__(self): if not self._hedu_sorted_by_graduates: self._hedu_sorted_by_graduates = self.__hedu_list__() self._hedu_sorted_by_graduates.sort( key=lambda hedu: hedu.graduates, reverse=True) return self._hedu_sorted_by_graduates def name(self): return self.__hedu__().university.name() def university_type(self): return self.__hedu__().university.school_type() def enrolled(self): return self.__hedu__().enrolled def entrants(self): return self.__hedu__().entrants def graduates(self): return self.__hedu__().graduates def profile(self): return self.__hedu__().university.desc_pt def year(self): return self.max_year_query.first()[0] def highest_enrolled_number(self): hedu = self.__hedu_sorted_by_enrolled__()[0] return hedu.enrolled def highest_entrants_number(self): hedu = self.__hedu_sorted_by_entrants__()[0] return hedu.entrants def highest_graduates_number(self): hedu = self.__hedu_sorted_by_graduates__()[0] return hedu.graduates def highest_enrolled_by_university(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.enrolled else: return None def highest_enrolled_by_university_name(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.university.name() else: return None class UniversityMajors(University): def __init__(self, university_id): University.__init__(self, university_id) self.max_year_query = db.session.query(func.max(Yuc.year)) self.hedu_query = Yuc.query.filter( Yuc.university_id == self.university_id, Yuc.year == self.max_year_query, func.length(Yuc.course_hedu_id) == 6) def major_with_more_enrollments(self): hedu = self.__hedu_sorted_by_enrolled__()[0] return hedu.course_hedu.name() def major_with_more_entrants(self): hedu = self.__hedu_sorted_by_entrants__()[0] return hedu.course_hedu.name() def major_with_more_graduates(self): hedu = self.__hedu_sorted_by_graduates__()[0] return hedu.course_hedu.name() class Major: def __init__(self, course_hedu_id, bra_id): self._hedu = None self._hedu_sorted_by_enrolled = None self._hedu_sorted_by_entrants = None self._hedu_sorted_by_graduates = None self._hedu_major_rank = None self.course_hedu_id = course_hedu_id self.bra_id = bra_id if course_hedu_id is None and bra_id is None: self.max_year_query = db.session.query(func.max(Yc_hedu.year)) self.hedu_query = Ybc_hedu.query.filter(Ybc_hedu.year == self.max_year_query) else: self.max_year_query = db.session.query( func.max(Yc_hedu.year)).filter_by(course_hedu_id=course_hedu_id) if bra_id != '': self.hedu_query = Ybc_hedu.query.filter( Ybc_hedu.course_hedu_id == self.course_hedu_id, Ybc_hedu.bra_id == self.bra_id, Ybc_hedu.year == self.max_year_query) else: self.hedu_query = Yc_hedu.query.filter( Yc_hedu.course_hedu_id == self.course_hedu_id, Yc_hedu.year == self.max_year_query) def __hedu__(self): if not self._hedu: hedu_data = self.hedu_query.first_or_404() self._hedu = hedu_data return self._hedu def __hedu_list__(self): if not self._hedu: hedu_data = self.hedu_query.all() self._hedu = hedu_data return self._hedu def __hedu_sorted_by_enrolled__(self): if not self._hedu_sorted_by_enrolled: self._hedu_sorted_by_enrolled = self.__hedu_list__() self._hedu_sorted_by_enrolled.sort( key=lambda hedu: hedu.enrolled, reverse=True) return self._hedu_sorted_by_enrolled def __hedu_sorted_by_entrants__(self): if not self._hedu_sorted_by_entrants: self._hedu_sorted_by_entrants = self.__hedu_list__() self._hedu_sorted_by_entrants.sort( key=lambda hedu: hedu.entrants, reverse=True) return self._hedu_sorted_by_entrants def __hedu_sorted_by_graduates__(self): if not self._hedu_sorted_by_graduates: self._hedu_sorted_by_graduates = self.__hedu_list__() self._hedu_sorted_by_graduates.sort( key=lambda hedu: hedu.graduates, reverse=True) return self._hedu_sorted_by_graduates def name(self): return self.__hedu__().course_hedu.name() def enrolled(self): return self.__hedu__().enrolled def entrants(self): return self.__hedu__().entrants def graduates(self): return self.__hedu__().graduates def profile(self): return self.__hedu__().course_hedu.desc_pt def year(self): return self.__hedu__().year def highest_enrolled_number(self): hedu = self.__hedu_sorted_by_enrolled__()[0] return hedu.enrolled def highest_entrants_number(self): hedu = self.__hedu_sorted_by_entrants__()[0] return hedu.entrants def highest_graduates_number(self): hedu = self.__hedu_sorted_by_graduates__()[0] return hedu.graduates def location_name(self): return Bra.query.filter(Bra.id == self.bra_id).first().name() def highest_enrolled_by_major(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.enrolled else: return None def highest_enrolled_by_major_name(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.course_hedu.name() else: return None class MajorUniversities(Major): def __init__(self, course_hedu_id, bra_id): Major.__init__(self, course_hedu_id, bra_id) self.course_hedu_id = course_hedu_id self.max_year_query = db.session.query( func.max(Yuc.year)).filter_by(course_hedu_id=course_hedu_id) if bra_id == '': self.hedu_query = Yuc.query.filter( Yuc.course_hedu_id == self.course_hedu_id, Yuc.year == self.max_year_query) else: self.hedu_query = Ybuc.query.filter( Ybuc.course_hedu_id == self.course_hedu_id, Ybuc.bra_id == self.bra_id, Ybuc.year == self.max_year_query) def university_with_more_enrolled(self): hedu = self.__hedu_sorted_by_enrolled__()[0] return hedu.university.name() def university_with_more_entrants(self): hedu = self.__hedu_sorted_by_entrants__()[0] return hedu.university.name() def university_with_more_graduates(self): hedu = self.__hedu_sorted_by_graduates__()[0] return hedu.university.name() class MajorMunicipalities(Major): def __init__(self, course_hedu_id, bra_id): Major.__init__(self, course_hedu_id, bra_id) self.course_hedu_id = course_hedu_id self.max_year_query = db.session.query( func.max(Ybc_hedu.year)).filter_by(course_hedu_id=course_hedu_id) if bra_id == '': self.hedu_query = Ybc_hedu.query.filter( Ybc_hedu.course_hedu_id == self.course_hedu_id, Ybc_hedu.year == self.max_year_query, not_(Ybc_hedu.bra_id.like('0xx%')), func.length(Ybc_hedu.bra_id) == 9) else: self.hedu_query = Ybc_hedu.query.filter( Ybc_hedu.course_hedu_id == self.course_hedu_id, Ybc_hedu.year == self.max_year_query, Ybc_hedu.bra_id.like(self.bra_id+'%'), not_(Ybc_hedu.bra_id.like('0xx%')), func.length(Ybc_hedu.bra_id) == 9) def municipality_with_more_enrolled(self): hedu = self.__hedu_sorted_by_enrolled__()[0] return hedu.bra.name() def municipality_with_more_enrolled_state(self): hedu = self.__hedu_sorted_by_enrolled__()[0] return hedu.bra.abbreviation def municipality_with_more_entrants(self): hedu = self.__hedu_sorted_by_entrants__()[0] return hedu.bra.name() def municipality_with_more_entrants_state(self): hedu = self.__hedu_sorted_by_entrants__()[0] return hedu.bra.abbreviation def municipality_with_more_graduates(self): hedu = self.__hedu_sorted_by_graduates__()[0] return hedu.bra.name() def municipality_with_more_graduates_state(self): hedu = self.__hedu_sorted_by_graduates__()[0] return hedu.bra.abbreviation class LocationUniversity: def __init__(self, bra_id): self._hedu_sorted_by_enrolled = None self._hedu = None self.bra_id = bra_id self.max_year_query = db.session.query( func.max(Ybu.year)).filter_by(bra_id=bra_id) self.hedu_query = Ybu.query.join(uni).filter( Ybu.bra_id == self.bra_id, Ybu.year == self.max_year_query) def __hedu__(self): if not self._hedu: hedu_data = self.hedu_query.one() self._hedu = hedu_data return self._hedu def __hedu_list__(self): if not self._hedu: hedu_data = self.hedu_query.all() self._hedu = hedu_data return self._hedu def __hedu_sorted_by_enrolled__(self): if not self._hedu_sorted_by_enrolled: self._hedu_sorted_by_enrolled = self.__hedu_list__() self._hedu_sorted_by_enrolled.sort( key=lambda hedu: hedu.enrolled, reverse=True) return self._hedu_sorted_by_enrolled def year(self): return self.max_year_query.first()[0] def highest_enrolled_by_university(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.enrolled else: return None def highest_enrolled_by_university_name(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.university.name() else: return None class LocationMajor(LocationUniversity): def __init__(self, bra_id): LocationUniversity.__init__(self, bra_id) self._hedu = None self.bra_id = bra_id self.max_year_query = db.session.query( func.max(Ybc_hedu.year)).filter_by(bra_id=bra_id) self.hedu_query = Ybc_hedu.query.join(Course_hedu).filter( Ybc_hedu.bra_id == self.bra_id, Ybc_hedu.course_hedu_id_len == 6, Ybc_hedu.year == self.max_year_query) def highest_enrolled_by_major(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.enrolled else: return None def highest_enrolled_by_major_name(self): hedu_list = self.__hedu_sorted_by_enrolled__() if len(hedu_list) != 0: hedu = hedu_list[0] return hedu.course_hedu.name() else: return None
tt/tests/unit/definitions/test_boolean_inputs_factory.py
fkromer/tt
233
109322
"""Tests for boolean_inputs_factory method.""" import unittest from tt.definitions import boolean_variables_factory class TestBooleanInputsFactory(unittest.TestCase): def test_str_methods(self): """Test converting to string via __str__ and __repr__.""" factory = boolean_variables_factory(['A', 'B', 'C', 'D']) instance = factory(A=1, B=False, C=True, D=0) self.assertEqual(str(instance), 'A=1, B=0, C=1, D=0') self.assertEqual(repr(instance), '<BooleanValues [A=1, B=0, C=1, D=0]>') def test_attr_access(self): """Test attribute access.""" factory = boolean_variables_factory(['op1', 'op2', 'op3']) instance = factory(op1=1, op2=False, op3=True) self.assertEqual(instance.op1, 1) self.assertEqual(instance.op2, False) self.assertEqual(instance.op3, True)
packages/pyright-internal/src/tests/samples/tryExcept7.py
martindemello/pyright
4,391
109355
# This sample tests the syntax handling for Python 3.11 exception groups # as described in PEP 654. def func1(): try: pass # This should generate an error if using Python 3.10 or earlier. except* BaseException: pass # This should generate an error if using Python 3.10 or earlier. except*: pass
SRT/lib/xvision/style_trans.py
yerang823/landmark-detection
612
109385
<gh_stars>100-1000 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # from PIL import Image, ImageOps import numpy as np import random import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap class AugStyle(object): def __init__(self): self.contrast = iaa.ContrastNormalization((0.5, 1.5), per_channel=0.3) self.mulaug = iaa.Multiply((0.8, 1.2), per_channel=0.3) self.grayaug = iaa.Grayscale(alpha=(0.0, 1.0)) self.sharpen = iaa.Sharpen(alpha=(0.0, 1.0), lightness=(0.75, 2.0)) self.coloraug = iaa.Sequential([ iaa.ChangeColorspace(from_colorspace="RGB", to_colorspace="HSV"), iaa.WithChannels(0, iaa.Add((-50, 50))), iaa.WithChannels(1, iaa.Add((-50, 50))), iaa.WithChannels(2, iaa.Add((-50, 50))), iaa.ChangeColorspace(from_colorspace="HSV", to_colorspace="RGB") ]) def augment(self, pic): assert isinstance(pic, Image.Image) image = np.array(pic) aug = False if random.random() > 0.4: image, aug = self.contrast.augment_image(image), True if random.random() > 0.4: image, aug = self.mulaug.augment_image(image), True if random.random() > 0.4: image, aug = self.grayaug.augment_image(image), True if random.random() > 0.4 or aug == False: image, aug = self.sharpen.augment_image(image), True #if random.random() > 0.4 or aug == False: # image, aug = self.coloraug.augment_image(image), True augpic = Image.fromarray(image) return augpic def __call__(self, imgs, point_meta): point_meta = point_meta.copy() if isinstance(imgs, list): is_list = True else: is_list, imgs = False, [imgs] augimages = [self.augment(x) for x in imgs] return imgs + augimages, point_meta
tools/expand_model.py
nyu-dl/dl4mt-multi
143
109389
<gh_stars>100-1000 import sys import numpy import logging rng = numpy.random.RandomState(1234) logging.basicConfig(level=logging.INFO) logger = logging.getLogger('expand_model') ref_model = dict(numpy.load(sys.argv[1])) old_model = dict(numpy.load(sys.argv[2])) for o_key, o_val in old_model.items(): if o_key not in ref_model: logger.info( 'parameter {} does not exist in the old model'.format(o_key)) continue elif o_val.shape != ref_model[o_key].shape: if len(set(o_val.shape) & set(ref_model[o_key].shape)) == 0 and \ len(o_val.shape) > 1: logger.info( 'not initializing {} since old shape{} and new shape {}' .format(o_key, o_val.shape, ref_model[o_key].shape)) else: logger.info( 'expanding parameter {} from {} into {}'.format( o_key, o_val.shape, ref_model[o_key].shape)) val = o_val.std() * rng.randn(*ref_model[o_key].shape).astype('float32') + \ o_val.mean() if len(val.shape) == 1: val[:o_val.shape[0]] = o_val else: val[:o_val.shape[0], :o_val.shape[1]] = o_val ref_model[o_key] = val else: logger.info('copying parameter {}'.format(o_key)) ref_model[o_key] = o_val logger.info('saving {}.expanded'.format(sys.argv[1])) numpy.savez(sys.argv[1] + '.expanded', **ref_model)
src/sparsify/schemas/system.py
dhuangnm/sparsify
152
109420
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Schemas for anything related to system routes """ from marshmallow import Schema, fields, validate from sparsify.schemas.helpers import INFERENCE_ENGINE_TYPES, INSTRUCTION_SETS __all__ = ["VersionInfoSchema", "SystemInfo", "ResponseSystemInfo"] class VersionInfoSchema(Schema): deepsparse = fields.Str(allow_none=True) sparseml = fields.Str(allow_none=True) sparsezoo = fields.Str(allow_none=True) onnx = fields.Str(allow_none=True) onnxruntime = fields.Str(allow_none=True) class SystemInfo(Schema): """ Schema for the system info the server is currently running on """ vendor = fields.Str(required=False, default=None, missing=None, allow_none=True) isa = fields.Str(required=False, default=None, missing=None, allow_none=True) vnni = fields.Bool(required=False, default=None, missing=None, allow_none=True) num_sockets = fields.Int( required=False, default=None, missing=None, allow_none=True ) cores_per_socket = fields.Int( required=False, default=None, missing=None, allow_none=True ) threads_per_core = fields.Int( required=False, default=None, missing=None, allow_none=True ) l1_instruction_cache_size = fields.Int( required=False, default=None, missing=None, allow_none=True ) l1_data_cache_size = fields.Int( required=False, default=None, missing=None, allow_none=True ) l2_cache_size = fields.Int( required=False, default=None, missing=None, allow_none=True ) l3_cache_size = fields.Int( required=False, default=None, missing=None, allow_none=True ) ip_address = fields.Str(required=False, default=None, missing=None, allow_none=True) available_engines = fields.List( fields.Str(validate=validate.OneOf(INFERENCE_ENGINE_TYPES)), required=False, default=None, missing=None, allow_none=True, ) available_instructions = fields.List( fields.Str(validate=validate.OneOf(INSTRUCTION_SETS)), required=False, default=None, missing=None, allow_none=True, ) version_info = fields.Nested( VersionInfoSchema, allow_none=True, default=None, required=False ) class ResponseSystemInfo(Schema): """ Schema for returning a response with the system info """ info = fields.Nested(SystemInfo, required=True)
tests/rtllib/test_aes.py
SwiftWinds/PyRTL
159
109437
import unittest import pyrtl import pyrtl.corecircuits from pyrtl.rtllib import aes, testingutils class TestAESDecrypt(unittest.TestCase): """ Test vectors are retrieved from: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf """ def setUp(self): pyrtl.reset_working_block() self.aes_decrypt = aes.AES() self.in_vector = pyrtl.Input(bitwidth=128, name='in_vector') self.out_vector = pyrtl.Output(bitwidth=128, name='out_vector') def test_inv_shift_rows(self): self.out_vector <<= self.aes_decrypt._inv_shift_rows(self.in_vector) in_vals = [0x3e1c22c0b6fcbf768da85067f6170495, 0x2d6d7ef03f33e334093602dd5bfb12c7] true_result = [0x3e175076b61c04678dfc2295f6a8bfc0, 0x2dfb02343f6d12dd09337ec75b36e3f0] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, true_result) def test_inv_sub_bytes(self): self.out_vector <<= self.aes_decrypt._sub_bytes(self.in_vector, True) in_vals = [0x3e175076b61c04678dfc2295f6a8bfc0, 0x2dfb02343f6d12dd09337ec75b36e3f0] true_result = [0xd1876c0f79c4300ab45594add66ff41f, 0xfa636a2825b339c940668a3157244d17] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, true_result) def test_inv_mix_columns(self): self.out_vector <<= self.aes_decrypt._mix_columns(self.in_vector, True) in_vals = [0xe9f74eec023020f61bf2ccf2353c21c7, 0xbaa03de7a1f9b56ed5512cba5f414d23] real_res = [0x54d990a16ba09ab596bbf40ea111702f, 0x3e1c22c0b6fcbf768da85067f6170495] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, real_res) @unittest.skip def test_key_expansion(self): # This is not at all correct. Needs to be completely rewritten self.out_vector <<=\ pyrtl.corecircuits.concat_list(self.aes_decrypt._key_gen(self.in_vector)) in_vals = [0xd1876c0f79c4300ab45594add66ff41f, 0xfa636a2825b339c940668a3157244d17] true_result = [0x3e175076b61c04678dfc2295f6a8bfc0, 0x2dfb02343f6d12dd09337ec75b36e3f0] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, true_result) def test_aes_full(self): aes_key = pyrtl.Input(bitwidth=128, name='aes_key') self.out_vector <<= self.aes_decrypt.decryption(self.in_vector, aes_key) ciphers = [0x3ad77bb40d7a3660a89ecaf32466ef97, 0x66e94bd4ef8a2c3b884cfa59ca342b2e] keys = [0x2b7e151628aed2a6abf7158809cf4f3c, 0x0] plain_text = [0x6bc1bee22e409f96e93d7e117393172a, 0x0] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector, aes_key), (ciphers, keys)) self.assertEqual(calculated_result, plain_text) def test_aes_state_machine(self): # self.longMessage = True aes_key = pyrtl.Input(bitwidth=128, name='aes_key') reset = pyrtl.Input(1) ready = pyrtl.Output(1, name='ready') decrypt_ready, decrypt_out =\ self.aes_decrypt.decryption_statem(self.in_vector, aes_key, reset) self.out_vector <<= decrypt_out ready <<= decrypt_ready sim_trace = pyrtl.SimulationTrace() sim = pyrtl.Simulation(tracer=sim_trace) sim.step({ self.in_vector: 0x69c4e0d86a7b0430d8cdb78070b4c55a, aes_key: 0x000102030405060708090a0b0c0d0e0f, reset: 1 }) true_vals = [0x69c4e0d86a7b0430d8cdb78070b4c55a, 0x7ad5fda789ef4e272bca100b3d9ff59f, 0x54d990a16ba09ab596bbf40ea111702f, 0x3e1c22c0b6fcbf768da85067f6170495, 0xb458124c68b68a014b99f82e5f15554c, 0xe8dab6901477d4653ff7f5e2e747dd4f, 0x36339d50f9b539269f2c092dc4406d23, 0x2d6d7ef03f33e334093602dd5bfb12c7, 0x3bd92268fc74fb735767cbe0c0590e2d, 0xa7be1a6997ad739bd8c9ca451f618b61, 0x6353e08c0960e104cd70b751bacad0e7, 0x00112233445566778899aabbccddeeff, 0x00112233445566778899aabbccddeeff, ] for cycle in range(1, 13): # Bogus data for while the state machine churns sim.step({ self.in_vector: 0x0, aes_key: 0x1, reset: 0 }) circuit_out = sim_trace.trace[self.out_vector][cycle] self.assertEqual(circuit_out, true_vals[cycle], "\nAssertion failed on cycle: " + str(cycle) + " Gotten value: " + hex(circuit_out)) for ready_signal in sim_trace.trace[ready][:11]: self.assertEquals(ready_signal, 0) for ready_signal in sim_trace.trace[ready][11:]: self.assertEquals(ready_signal, 1) class TestAESEncrypt(unittest.TestCase): """ Test vectors are retrieved from: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf """ def setUp(self): pyrtl.reset_working_block() self.aes_encrypt = aes.AES() self.in_vector = pyrtl.Input(bitwidth=128, name='in_vector') self.out_vector = pyrtl.Output(bitwidth=128, name='out_vector') def test_shift_rows(self): self.out_vector <<= self.aes_encrypt._shift_rows(self.in_vector) in_vals = [0x3b59cb73fcd90ee05774222dc067fb68, 0xb415f8016858552e4bb6124c5f998a4c] true_result = [0x3bd92268fc74fb735767cbe0c0590e2d, 0xb458124c68b68a014b99f82e5f15554c] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, true_result) def test_sub_bytes(self): self.out_vector <<= self.aes_encrypt._sub_bytes(self.in_vector) in_vals = [0x4915598f55e5d7a0daca94fa1f0a63f7, 0xc62fe109f75eedc3cc79395d84f9cf5d] true_result = [0x3b59cb73fcd90ee05774222dc067fb68, 0xb415f8016858552e4bb6124c5f998a4c] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, true_result) def test_mix_columns(self): self.out_vector <<= self.aes_encrypt._mix_columns(self.in_vector) in_vals = [0x6353e08c0960e104cd70b751bacad0e7, 0xa7be1a6997ad739bd8c9ca451f618b61] real_res = [0x5f72641557f5bc92f7be3b291db9f91a, 0xff87968431d86a51645151fa773ad009] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, real_res) @unittest.skip def test_key_expansion(self): # This is not at all correct. Needs to be completely rewritten self.out_vector <<= pyrtl.concat_list(self.aes_encrypt._key_gen(self.in_vector)) in_vals = [0x4c9c1e66f771f0762c3f868e534df256, 0xc57e1c159a9bd286f05f4be098c63439] true_result = [0x3bd92268fc74fb735767cbe0c0590e2d, 0xb458124c68b68a014b99f82e5f15554c] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector,), (in_vals,)) self.assertEqual(calculated_result, true_result) def test_aes_full(self): aes_key = pyrtl.Input(bitwidth=128, name='aes_key') self.out_vector <<= self.aes_encrypt.encryption(self.in_vector, aes_key) plain_text = [0x00112233445566778899aabbccddeeff, 0x0] keys = [<KEY>, 0x0] ciphers = [0x69c4e0d86a7b0430d8cdb78070b4c55a, 0x66e94bd4ef8a2c3b884cfa59ca342b2e] calculated_result = testingutils.sim_and_ret_out(self.out_vector, (self.in_vector, aes_key), (plain_text, keys)) self.assertEqual(calculated_result, ciphers) def test_aes_state_machine(self): # self.longMessage = True aes_key = pyrtl.Input(bitwidth=128, name='aes_key') reset = pyrtl.Input(1) ready = pyrtl.Output(1, name='ready') encrypt_ready, encrypt_out = self.aes_encrypt.encrypt_state_m(self.in_vector, aes_key, reset) self.out_vector <<= encrypt_out ready <<= encrypt_ready sim_trace = pyrtl.SimulationTrace() sim = pyrtl.Simulation(tracer=sim_trace) sim.step({ self.in_vector: 0x00112233445566778899aabbccddeeff, aes_key: <KEY>, reset: 1 }) true_vals = [0x00112233445566778899aabbccddeeff, 0x00102030405060708090a0b0c0d0e0f0, 0x89d810e8855ace682d1843d8cb128fe4, 0x4915598f55e5d7a0daca94fa1f0a63f7, 0xfa636a2825b339c940668a3157244d17, 0x247240236966b3fa6ed2753288425b6c, 0xc81677bc9b7ac93b25027992b0261996, 0xc62fe109f75eedc3cc79395d84f9cf5d, 0xd1876c0f79c4300ab45594add66ff41f, 0xfde3bad205e5d0d73547964ef1fe37f1, 0xbd6e7c3df2b5779e0b61216e8b10b689, 0x69c4e0d86a7b0430d8cdb78070b4c55a, 0x69c4e0d86a7b0430d8cdb78070b4c55a, ] for cycle in range(1, 13): # Bogus data for while the state machine churns sim.step({ self.in_vector: 0x0, aes_key: 0x1, reset: 0 }) circuit_out = sim_trace.trace[self.out_vector][cycle] # sim_trace.render_trace(symbol_len=40) self.assertEqual(circuit_out, true_vals[cycle], "\nAssertion failed on cycle: " + str(cycle) + " Gotten value: " + hex(circuit_out)) for ready_signal in sim_trace.trace[ready][:11]: self.assertEquals(ready_signal, 0) for ready_signal in sim_trace.trace[ready][11:]: self.assertEquals(ready_signal, 1)
python/ccxt/static_dependencies/__init__.py
DavidFelsen/ccxt
24,910
109456
<filename>python/ccxt/static_dependencies/__init__.py __all__ = ['ecdsa', 'keccak']
tests/ignite/engine/__init__.py
Juddd/ignite
4,119
109465
import torch try: from torch.utils.data import IterableDataset except ImportError: class IterableDataset: pass class BatchChecker: def __init__(self, data, init_counter=0): self.counter = init_counter self.data = data self.true_batch = None def check(self, batch): self.true_batch = self.data[self.counter % len(self.data)] self.counter += 1 res = self.true_batch == batch return res.all() if not isinstance(res, bool) else res class IterationCounter: def __init__(self, start_value=1): self.current_iteration_count = start_value def __call__(self, engine): assert engine.state.iteration == self.current_iteration_count self.current_iteration_count += 1 class EpochCounter: def __init__(self, start_value=1): self.current_epoch_count = start_value def __call__(self, engine): assert engine.state.epoch == self.current_epoch_count self.current_epoch_count += 1 def setup_sampler(sampler_type, num_iters, batch_size): if sampler_type is None: return None, batch_size if sampler_type == "weighted": from torch.utils.data.sampler import WeightedRandomSampler w = torch.ones(num_iters * batch_size, dtype=torch.float) for i in range(num_iters): w[batch_size * i : batch_size * (i + 1)] += i * 1.0 return WeightedRandomSampler(w, num_samples=num_iters * batch_size, replacement=True), batch_size if sampler_type == "distributed": import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler num_replicas = 1 rank = 0 if dist.is_available() and dist.is_initialized(): num_replicas = dist.get_world_size() rank = dist.get_rank() dataset = torch.zeros(num_iters * batch_size) return DistributedSampler(dataset, num_replicas=num_replicas, rank=rank), batch_size // num_replicas class MyIterableDataset(IterableDataset): def __init__(self, start, end): super(MyIterableDataset).__init__() assert end > start, "this example code only works with end >= start" self.start = start self.end = end def __iter__(self): return iter(range(self.start, self.end)) def get_iterable_dataset(*args, **kwargs): return MyIterableDataset(*args, **kwargs)
tests/test_multi_k_model.py
shifaoh/dna2vec
151
109501
<gh_stars>100-1000 import pytest from dna2vec.multi_k_model import MultiKModel K_LOW = 3 K_HIGH = 8 kmer_samples = ['AAA', 'ACGT', 'ACGTACGT'] cosine_testdata = [ ('AAA', 'AAAA', 'CCCC'), ('ACGA', 'ACGT', 'TTTT'), ('ACGT', 'ACGTAA', 'TTT'), ] @pytest.fixture(scope="module") def mk_model(): filepath = 'pretrained/dna2vec-20161219-0153-k3to8-100d-10c-29320Mbp-sliding-Xat.w2v' return MultiKModel(filepath) @pytest.mark.parametrize('k_len', list(range(K_LOW, K_HIGH + 1))) def test_num_of_vectors(k_len, mk_model): assert len(mk_model.model(k_len).vocab) == 4 ** k_len @pytest.mark.parametrize('kmer', kmer_samples) def test_cosine_dist_to_itself(kmer, mk_model): assert abs(mk_model.cosine_distance(kmer, kmer) - 1.0) < 1e-10 @pytest.mark.parametrize('kmer0, kmer_greater, kmer_less', cosine_testdata) def test_cosine_dist_sanity(kmer0, kmer_greater, kmer_less, mk_model): assert mk_model.cosine_distance(kmer0, kmer_greater) > mk_model.cosine_distance(kmer0, kmer_less)
pytools/modules/newyearcardgenerator/__init__.py
maopucheng/pytools
757
109508
'''初始化''' from .newyearcardgenerator import NewYearCardGenerator
examples/pxScene2d/external/libnode-v10.15.3/deps/v8/tools/lldb_commands.py
madanagopaltcomcast/pxCore
2,151
109520
# Copyright 2017 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import lldb import re def jst(debugger, *args): """Print the current JavaScript stack trace""" target = debugger.GetSelectedTarget() process = target.GetProcess() thread = process.GetSelectedThread() frame = thread.GetSelectedFrame() frame.EvaluateExpression("_v8_internal_Print_StackTrace();") print("") def jss(debugger, *args): """Skip the jitted stack on x64 to where we entered JS last""" target = debugger.GetSelectedTarget() process = target.GetProcess() thread = process.GetSelectedThread() frame = thread.GetSelectedFrame() js_entry_sp = frame.EvaluateExpression( "v8::internal::Isolate::Current()->thread_local_top()->js_entry_sp_;") \ .GetValue() sizeof_void = frame.EvaluateExpression("sizeof(void*)").GetValue() rbp = frame.FindRegister("rbp") rsp = frame.FindRegister("rsp") pc = frame.FindRegister("pc") rbp = js_entry_sp rsp = js_entry_sp + 2 *sizeof_void pc.value = js_entry_sp + sizeof_void def bta(debugger, *args): """Print stack trace with assertion scopes""" func_name_re = re.compile("([^(<]+)(?:\(.+\))?") assert_re = re.compile( "^v8::internal::Per\w+AssertType::(\w+)_ASSERT, (false|true)>") target = debugger.GetSelectedTarget() process = target.GetProcess() thread = process.GetSelectedThread() frame = thread.GetSelectedFrame() for frame in thread: functionSignature = frame.GetDisplayFunctionName() if functionSignature is None: continue functionName = func_name_re.match(functionSignature) line = frame.GetLineEntry().GetLine() sourceFile = frame.GetLineEntry().GetFileSpec().GetFilename() if line: sourceFile = sourceFile + ":" + str(line) if sourceFile is None: sourceFile = "" print("[%-2s] %-60s %-40s" % (frame.GetFrameID(), functionName.group(1), sourceFile)) match = assert_re.match(str(functionSignature)) if match: if match.group(3) == "false": prefix = "Disallow" color = "\033[91m" else: prefix = "Allow" color = "\033[92m" print("%s -> %s %s (%s)\033[0m" % ( color, prefix, match.group(2), match.group(1))) def __lldb_init_module (debugger, dict): debugger.HandleCommand('command script add -f lldb_commands.jst jst') debugger.HandleCommand('command script add -f lldb_commands.jss jss') debugger.HandleCommand('command script add -f lldb_commands.bta bta')
lucent/misc/io/collapse_channels.py
fuzhanrahmanian/lucent
449
109546
<gh_stars>100-1000 # Copyright 2018 The Lucid Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Convert an "image" with n channels into 3 RGB channels.""" from __future__ import absolute_import, division, print_function import math import numpy as np def hue_to_rgb(ang, warp=True): """Produce an RGB unit vector corresponding to a hue of a given angle.""" ang = ang - 360*(ang//360) colors = np.asarray([ [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 1, 1], [0, 0, 1], [1, 0, 1], ]) colors = colors / np.linalg.norm(colors, axis=1, keepdims=True) R = 360 / len(colors) n = math.floor(ang / R) D = (ang - n * R) / R if warp: # warping the angle away from the primary colors (RGB) # helps make equally-spaced angles more visually distinguishable adj = lambda x: math.sin(x * math.pi / 2) if n % 2 == 0: D = adj(D) else: D = 1 - adj(1 - D) v = (1-D) * colors[n] + D * colors[(n+1) % len(colors)] return v / np.linalg.norm(v) def sparse_channels_to_rgb(array): assert (array >= 0).all() channels = array.shape[-1] rgb = 0 for i in range(channels): ang = 360 * i / channels color = hue_to_rgb(ang) color = color[tuple(None for _ in range(len(array.shape)-1))] rgb += array[..., i, None] * color rgb += np.ones(array.shape[:-1])[..., None] * (array.sum(-1) - array.max(-1))[..., None] rgb /= 1e-4 + np.linalg.norm(rgb, axis=-1, keepdims=True) rgb *= np.linalg.norm(array, axis=-1, keepdims=True) return rgb def collapse_channels(array): if (array < 0).any(): array = np.concatenate([np.maximum(0, array), np.maximum(0, -array)], axis=-1) return sparse_channels_to_rgb(array)
Python/Tests/TestData/AddImport/ImportFunctionFromExistingFromImportParens.py
techkey/PTVS
404
109553
<gh_stars>100-1000 from test_module import (module_func_2) module_func()
src/olympia/devhub/cron.py
covariant/addons-server
843
109574
from datetime import datetime from django.conf import settings import requests import olympia.core.logger from olympia.devhub.models import BlogPost log = olympia.core.logger.getLogger('z.cron') def update_blog_posts(): """Update the blog post cache.""" items = requests.get(settings.DEVELOPER_BLOG_URL, timeout=10).json() if not items: return BlogPost.objects.all().delete() for item in items[:5]: BlogPost.objects.create( title=item['title']['rendered'], date_posted=datetime.strptime(item['date'], '%Y-%m-%dT%H:%M:%S'), permalink=item['link'], ) log.info(f'Adding {BlogPost.objects.count():d} blog posts.')
eval/evaluate.py
aiainui/crnn-audio-classification
307
109583
<filename>eval/evaluate.py import os import torch from tqdm import tqdm from net import MelspectrogramStretch from utils import plot_heatmap, mkdir_p class ClassificationEvaluator(object): def __init__(self, data_loader, model): self.data_loader = data_loader self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = model.to(self.device) self.model.eval() self.mel = MelspectrogramStretch(norm='db').to(self.device) def evaluate(self, metrics, debug=False): with torch.no_grad(): total_metrics = torch.zeros(len(metrics)) for batch_idx, batch in enumerate(tqdm(self.data_loader)): batch = [b.to(self.device) for b in batch] data, target = batch[:-1], batch[-1] output = self.model(data) self.model.classes batch_size = data[0].size(0) if debug: self._store_batch(data, batch_size, output, target) for i, metric in enumerate(metrics): total_metrics[i] += metric(output, target) * batch_size size = len(self.data_loader.dataset) ret = {met.__name__ : "%.3f"%(total_metrics[i].item() / size) for i, met in enumerate(metrics)} return ret def _store_batch(self, data, batch_size, output, target): path = 'eval_batch' mkdir_p(path) sig, lengths, _ = data inds = output.argmax(1) confs = torch.exp(output)[torch.arange(batch_size), inds] spec, lengths = self.mel(sig.transpose(1,2).float(), lengths) for i in range(batch_size): if inds[i] == target[i]: label = self.model.classes[inds[i]] pred_txt = "%s (%.1f%%)"%(label, 100*confs[inds[i]]) out_path = os.path.join(path, '%s.png'%i) plot_heatmap(spec[i][...,:lengths[i]].cpu().numpy(), out_path, pred=pred_txt)
tools/clang/bindings/python/tests/cindex/test_comment.py
clayne/DirectXShaderCompiler
1,192
109623
from clang.cindex import TranslationUnit from tests.cindex.util import get_cursor def test_comment(): files = [('fake.c', """ /// Aaa. int test1; /// Bbb. /// x void test2(void); void f() { } """)] # make a comment-aware TU tu = TranslationUnit.from_source('fake.c', ['-std=c99'], unsaved_files=files, options=TranslationUnit.PARSE_INCLUDE_BRIEF_COMMENTS_IN_CODE_COMPLETION) test1 = get_cursor(tu, 'test1') assert test1 is not None, "Could not find test1." assert test1.type.is_pod() raw = test1.raw_comment brief = test1.brief_comment assert raw == """/// Aaa.""" assert brief == """Aaa.""" test2 = get_cursor(tu, 'test2') raw = test2.raw_comment brief = test2.brief_comment assert raw == """/// Bbb.\n/// x""" assert brief == """Bbb. x""" f = get_cursor(tu, 'f') raw = f.raw_comment brief = f.brief_comment assert raw is None assert brief is None
BRATS/data/explore.py
eanemo/KiU-Net-pytorch
236
109638
import os import numpy as np from numpy.lib.stride_tricks import as_strided import nibabel as nib def nib_load(file_name): proxy = nib.load(file_name) data = proxy.get_data().astype('float32') proxy.uncache() return data def crop(x, ksize, stride=3): shape = (np.array(x.shape[:3]) - ksize)/stride + 1 shape = tuple(shape) + (ksize, )*3 + (x.shape[3], ) strides = np.array(x.strides[:3])*3 strides = tuple(strides) + x.strides x = as_strided(x, shape=shape, strides=strides) return x modalities = ('flair', 't1ce', 't1', 't2') root = '/home/thuyen/Data/brats17/Brats17TrainingData/' file_list = root + 'file_list.txt' subjects = open(file_list).read().splitlines() subj = subjects[0] name = subj.split('/')[-1] path = os.path.join(root, subj, name + '_') x0 = np.stack([ nib_load(path + modal + '.nii.gz') \ for modal in modalities], 3) y0 = nib_load(path + 'seg.nii.gz')[..., None] x0 = np.pad(x0, ((0, 0), (0, 0), (0, 1), (0, 0)), mode='constant') y0 = np.pad(y0, ((0, 0), (0, 0), (0, 1), (0, 0)), mode='constant') x1 = crop(x0, 9) x2 = crop(np.pad(x0, ((8, 8), (8, 8), (8, 8), (0, 0)), mode='constant'), 25) x3 = crop(np.pad(x0, ((24, 24), (24, 24), (24, 24), (0, 0)), mode='constant'), 57) y1 = crop(y0, 9) m = x1.reshape(x1.shape[:3] + (-1, )).sum(3) > 0 x1 = x1[m] x2 = x2[m] x3 = x3[m] y1 = y1[m] print(x1.shape) print(x2.shape) print(x3.shape) print(y1.shape)
conceptnet5/db/connection.py
tesYolan/conceptnet5
2,195
109644
<filename>conceptnet5/db/connection.py import psycopg2 from conceptnet5.db import config _CONNECTIONS = {} def get_db_connection(dbname=None): """ Get a global connection to the ConceptNet PostgreSQL database. `dbname` specifies the name of the database in PostgreSQL. """ if dbname is None: dbname = config.DB_NAME if dbname in _CONNECTIONS: return _CONNECTIONS[dbname] else: _CONNECTIONS[dbname] = _get_db_connection_inner(dbname) return _CONNECTIONS[dbname] def _get_db_connection_inner(dbname): if config.DB_PASSWORD: conn = psycopg2.connect( dbname=dbname, user=config.DB_USERNAME, password=<PASSWORD>, host=config.DB_HOSTNAME, port=config.DB_PORT ) else: conn = psycopg2.connect(dbname=dbname) conn.autocommit = True psycopg2.paramstyle = 'named' return conn def check_db_connection(dbname=None): """ Raise an error early if we can't access the database. This is intended to be used at the start of the build script. The desired outcome is that we successfully make a connection (and then throw it away). If the DB is unavailable, this will raise an uncaught error. """ if dbname is None: dbname = config.DB_NAME _get_db_connection_inner(dbname)
Python3/598.py
rakhi2001/ecom7
854
109685
__________________________________________________________________________________________________ sample 68 ms submission class Solution: def maxCount(self, m: int, n: int, ops: List[List[int]]) -> int: rMin, cMin = sys.maxsize, sys.maxsize for i in ops: rMin = min(rMin, i[0]) cMin = min(cMin, i[1]) return min(m, rMin) * min(n, cMin) __________________________________________________________________________________________________ sample 14136 kb submission class Solution: def maxCount(self, m: int, n: int, ops: List[List[int]]) -> int: if not ops: return m*n row = min(m, min([op[0] for op in ops])) col = min(n, min([op[1] for op in ops])) return row * col __________________________________________________________________________________________________
saas/aiops/api/aiops-server/services/base_service.py
iuskye/SREWorks
407
109750
<gh_stars>100-1000 #!/usr/bin/env python # encoding: utf-8 """ """ __author__ = 'sreworks' from models.db_session import db class BaseService(object): def __init__(self): self.db = db self.db_session = db.session
swift_rpc/server/__init__.py
rfyiamcool/swift_rpc
116
109780
#coding:utf-8 from tornado import ( gen, ioloop, log, web ) from tornado.httpserver import HTTPServer from .handlers import _AsyncBase, _Base, _ThreadPoolBase, _MessageQueueBase from swift_rpc.log import get_logger class RPCServer(object): def __init__(self,config): self.config = config self._routes = [] self.log = log.logging.getLogger("transmit.%s" % __name__) log.logging.config.dictConfig(config.LOGCONFIG) #log.enable_pretty_logging(logger=self.log) self.register_async(self._getroutes) @gen.coroutine def _getroutes(self): raise gen.Return([v.__name__ for _, v in self._routes]) def _make(self, func, base): name = func.__name__ handler = type(name, (base,), {'func': [func],'config':self.config}) self._routes.append((r'/{0}'.format(name), handler)) self.log.info('Registered {0} command {1}'.format(base.TYPE, name)) def register(self, func): self._make(func, _Base) def register_async(self, func): self._make(func, _AsyncBase) def register_pool(self, func): self._make(func, _ThreadPoolBase) def register_mq(self, func): self._make(func, _MessageQueueBase) def start(self, host, port): self.log.info('Starting server on port {0}'.format(port)) # app = web.Application(self._routes, debug=True) server = HTTPServer(web.Application(self._routes, debug=True),xheaders=True) server.listen(int(port), host) ioloop.IOLoop.current().start() __all__ = ('RPCServer') if __name__ == "__main__": pass
Configuration/DataProcessing/python/Impl/cosmicsEra_Run2_2017.py
Purva-Chaudhari/cmssw
852
109784
<filename>Configuration/DataProcessing/python/Impl/cosmicsEra_Run2_2017.py<gh_stars>100-1000 #!/usr/bin/env python3 """ _cosmicsEra_Run2_2017_ Scenario supporting cosmic data taking """ import os import sys from Configuration.Eras.Era_Run2_2017_cff import Run2_2017 from Configuration.DataProcessing.Impl.cosmics import cosmics class cosmicsEra_Run2_2017(cosmics): def __init__(self): cosmics.__init__(self) self.eras = Run2_2017 """ _cosmicsEra_Run2_2017_ Implement configuration building for data processing for cosmic data taking in Run2 """
finalists/yc14600/PyTorch-Encoding/tests/unit_test/test_function.py
lrzpellegrini/cvpr_clvision_challenge
2,190
109806
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: <NAME> ## ECE Department, Rutgers University ## Email: <EMAIL> ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import numpy as np import torch from torch.autograd import Variable, gradcheck import encoding EPS = 1e-3 ATOL = 1e-3 def _assert_tensor_close(a, b, atol=ATOL, rtol=EPS): npa, npb = a.cpu().numpy(), b.cpu().numpy() assert np.allclose(npa, npb, rtol=rtol, atol=atol), \ 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format( a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max()) def test_aggregate(): B,N,K,D = 2,3,4,5 A = Variable(torch.cuda.DoubleTensor(B,N,K).uniform_(-0.5,0.5), requires_grad=True) X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True) C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True) input = (A, X, C) test = gradcheck(encoding.functions.aggregate, input, eps=EPS, atol=ATOL) print('Testing aggregate(): {}'.format(test)) def test_scaled_l2(): B,N,K,D = 2,3,4,5 X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True) C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True) S = Variable(torch.cuda.DoubleTensor(K).uniform_(-0.5,0.5), requires_grad=True) input = (X, C, S) test = gradcheck(encoding.functions.scaled_l2, input, eps=EPS, atol=ATOL) print('Testing scaled_l2(): {}'.format(test)) def test_moments(): B,C,H = 2,3,4 X = Variable(torch.cuda.DoubleTensor(B,C,H).uniform_(-0.5,0.5), requires_grad=True) input = (X,) test = gradcheck(encoding.functions.moments, input, eps=EPS, atol=ATOL) print('Testing moments(): {}'.format(test)) def test_non_max_suppression(): def _test_nms(cuda): # check a small test case boxes = torch.Tensor([ [[10.2, 23., 50., 20.], [11.3, 23., 52., 20.1], [23.2, 102.3, 23.3, 50.3], [101.2, 32.4, 70.6, 70.], [100.2, 30.9, 70.7, 69.]], [[200.3, 234., 530., 320.], [110.3, 223., 152., 420.1], [243.2, 240.3, 50.3, 30.3], [243.2, 236.4, 48.6, 30.], [100.2, 310.9, 170.7, 691.]]]) scores = torch.Tensor([ [0.9, 0.7, 0.11, 0.23, 0.8], [0.13, 0.89, 0.45, 0.23, 0.3]]) if cuda: boxes = boxes.cuda() scores = scores.cuda() expected_output = ( torch.ByteTensor( [[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]]), torch.LongTensor( [[0, 4, 1, 3, 2], [1, 2, 4, 3, 0]]) ) mask, inds = encoding.functions.NonMaxSuppression(boxes, scores, 0.7) _assert_tensor_close(mask, expected_output[0]) _assert_tensor_close(inds, expected_output[1]) _test_nms(False) _test_nms(True) if __name__ == '__main__': import nose nose.runmodule()
quantifiedcode/backend/api/v1/task.py
marcinguy/quantifiedcode
118
109829
# -*- coding: utf-8 -*- """ """ from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import import os from flask import request from quantifiedcode.settings import backend, settings from ...utils.api import ArgumentError, get_pagination_args from ...models import Task from ...decorators import valid_user, valid_project from ..resource import Resource from .forms.task import TaskLogForm class TaskDetails(Resource): export_map = ( {'project': ('pk', 'name')}, 'pk', 'status', 'created_at', 'updated_at', 'last_ping', 'type', ) @valid_user(anon_ok=True) @valid_project(public_ok=True) def get(self, project_id, task_id): """ Get the task with the given task id for the project with the given project id. :param project_id: id of the project :param task_id: id of the task :return: task information """ try: task = backend.get(Task, {'project.pk': request.project.pk, 'pk': task_id}, only=self.export_fields, include=('project',), raw=True) except Task.DoesNotExist: return {'message': "unknown task"}, 404 return {'task': self.export(task)}, 200 class TaskLog(Resource): @valid_user(anon_ok=True) @valid_project(public_ok=True) def get(self, project_id, task_id): """ Returns the log for the specified project task. Accepts a from request parameter, which seeks into the log file to return the rest of the file. :param project_id: id of the project :param task_id: id of the task :return: log, its length, offset, and the task status """ form = TaskLogForm(request.args) if not form.validate(): return {'message' : 'please correct the errors mentioned below.'}, 400 data = form.data from_chr = data['from_chr'] try: task = backend.get(Task, {'project.pk': request.project.pk, 'pk': task_id}, raw=True) except Task.DoesNotExist: return {'message': "unknown task"}, 404 log_path = os.path.join(settings.get('backend.path'), settings.get('backend.paths.tasks'), "{}.log".format(task['pk'])) try: with open(log_path, "r") as task_log: task_log.seek(from_chr) content = task_log.read() data = { 'task_log': content, 'len': len(content), 'from': from_chr, 'task_status': task['status'] if 'status' in task else "unknown" } return data, 200 except IOError: return {'message': "no log found {}".format(log_path)}, 404 class Tasks(Resource): DEFAULT_LIMIT = 20 DEFAULT_OFFSET = 0 @valid_user(anon_ok=True) @valid_project(public_ok=True) def get(self, project_id): """ Get all tasks for the project with the given id. :param project_id: id of the project :return: tasks for the project """ try: pagination_args = get_pagination_args(request) except ArgumentError as e: return {'message': e.message}, 500 limit = pagination_args['limit'] if 'limit' in pagination_args else self.DEFAULT_LIMIT offset = pagination_args['offset'] if 'offset' in pagination_args else self.DEFAULT_OFFSET tasks = backend.filter(Task, {'project.pk': request.project.pk}, include=('project',), only=TaskDetails.export_fields, raw=True ).sort('created_at', -1) return {'tasks': [TaskDetails.export(task) for task in tasks[offset:offset + limit]]}, 200
Chapter17/PI-QTicTacToe/run.py
trappn/Mastering-GUI-Programming-with-Python
138
109837
<gh_stars>100-1000 """Qtictactoe by <NAME>""" from qtictactoe.__main__ import main if __name__ == '__main__': main()
deepy/utils/__init__.py
uaca/deepy
260
109872
<filename>deepy/utils/__init__.py #!/usr/bin/env python # -*- coding: utf-8 -*- from dim_to_var import dim_to_var from fake_generator import FakeGenerator from initializers import * from map_dict import MapDict from scanner import Scanner from stream_pickler import StreamPickler from timer import Timer
examples/processing/plot_line_noise.py
dieloz/fooof
154
109900
<reponame>dieloz/fooof """ Dealing with Line Noise ======================= This example covers strategies for dealing with line noise. """ ################################################################################################### # sphinx_gallery_thumbnail_number = 2 # Import the spectral parameterization object and utilities from fooof import FOOOF from fooof.plts import plot_spectra from fooof.utils import trim_spectrum, interpolate_spectrum # Import simulation functions to create some example data from fooof.sim.gen import gen_power_spectrum # Import NeuroDSP functions for simulating & processing time series from neurodsp.sim import sim_combined from neurodsp.filt import filter_signal from neurodsp.spectral import compute_spectrum ################################################################################################### # Line Noise Peaks # ---------------- # # Neural recordings typically have power line artifacts, at either 50 or 60 Hz, depending on # where the data were collected, which can impact spectral parameterization. # # In this example, we explore some options for dealing with line noise artifacts. # # Interpolating Line Noise Peaks # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # One approach is to interpolate away line noise peaks, in the frequency domain. This # approach simply gets rid of the peaks, interpolating the data to maintain the 1/f # character of the data, allowing for subsequent fitting. # # The :func:`~fooof.utils.interpolate_spectrum` function allows for doing simple # interpolation. Given a narrow frequency region, this function interpolates the spectrum, # such that the 'peak' of the line noise is removed. # ################################################################################################### # Generate an example power spectrum, with line noise freqs1, powers1 = gen_power_spectrum([3, 75], [1, 1], [[10, 0.75, 2], [60, 1, 0.5]]) # Visualize the generated power spectrum plot_spectra(freqs1, powers1, log_powers=True) ################################################################################################### # # In the plot above, we have an example spectrum, with some power line noise. # # To prepare this data for fitting, we can interpolate away the line noise region. # ################################################################################################### # Interpolate away the line noise region interp_range = [58, 62] freqs_int1, powers_int1 = interpolate_spectrum(freqs1, powers1, interp_range) ################################################################################################### # Plot the spectra for the power spectra before and after interpolation plot_spectra(freqs1, [powers1, powers_int1], log_powers=True, labels=['Original Spectrum', 'Interpolated Spectrum']) ################################################################################################### # # As we can see in the above, the interpolation removed the peak from the data. # # We can now go ahead and parameterize the spectrum. # ################################################################################################### # Initialize a power spectrum model fm1 = FOOOF(verbose=False) fm1.report(freqs_int1, powers_int1) ################################################################################################### # Multiple Interpolation Regions # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Line noise artifacts often also display harmonics, such that when analyzing broader # frequency ranges, there may be multiple peaks that need to be interpolated. # # This can be done by passing in multiple interpolation regions to # :func:`~fooof.utils.interpolate_spectrum`, which we will do in the next example. # ################################################################################################### # Generate an example power spectrum, with line noise & harmonics freqs2, powers2 = gen_power_spectrum([1, 150], [1, 500, 1.5], [[10, 0.5, 2], [60, 0.75, 0.5], [120, 0.5, 0.5]]) # Interpolate away the line noise region & harmonics interp_ranges = [[58, 62], [118, 122]] freqs_int2, powers_int2 = interpolate_spectrum(freqs2, powers2, interp_ranges) ################################################################################################### # Plot the power spectrum before and after interpolation plot_spectra(freqs2, [powers2, powers_int2], log_powers=True, labels=['Original Spectrum', 'Interpolated Spectrum']) ################################################################################################### # Parameterize the interpolated power spectrum fm2 = FOOOF(aperiodic_mode='knee', verbose=False) fm2.report(freqs2, powers_int2) ################################################################################################### # Fitting Line Noise as Peaks # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # In some cases, you may also be able to simply allow the parameterization to peaks to the # line noise and harmonics. By simply fitting the line noise as peaks, the model can deal # with the peaks in order to accurately fit the aperiodic component. # # These peaks are of course not to be analyzed, but once the model has been fit, you can # simply ignore them. There should generally be no issue with fitting and having them in # the model, and allowing the model to account for these peaks typically helps the model # better fit the rest of the data. # # Below we can see that the model does indeed work when fitting data with line noise peaks. # ################################################################################################### # Fit power spectrum models to original spectra fm1.report(freqs1, powers1) fm2.report(freqs2, powers2) ################################################################################################### # The Problem with Bandstop Filtering # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # A common approach for getting rid of line noise activity is to use bandstop filtering to # remove activity at the line noise frequencies. Such a filter effectively set the power # of these frequencies to be approximately zero. # # Unfortunately, this doesn't work very well with spectral parameterization, since the # parameterization algorithm tries to fit each power value as either part of the aperiodic # component, or as an overlying peak. Frequencies that have filtered out are neither, and # the model has trouble, as it and has no concept of power values below the aperiodic component. # # In practice, this means that the "missing" power will impact the fit, and pull down the # aperiodic component. One way to think of this is that the power spectrum model can deal with, # and even expects, 'positive outliers' above the aperiodic (these are considered 'peaks'), but # not 'negative outliers', or values below the aperiodic, as there is no expectation of this # happening in the model. # # In the following example, we can see how bandstop filtering negatively impacts fitting. # Because of this, for the purposes of spectral parameterization, bandstop filters are not # recommended as a way to remove line noise. # # Note that if one has already applied a bandstop filter, then you can still # apply the interpolation from above. # ################################################################################################### # General settings for the simulation n_seconds = 30 fs = 1000 # Define the settings for the simulated signal components = {'sim_powerlaw' : {'exponent' : -1.5}, 'sim_oscillation' : [{'freq' : 10}, {'freq' : 60}]} comp_vars = [0.5, 1, 1] # Simulate a time series sig = sim_combined(n_seconds, fs, components, comp_vars) ################################################################################################### # Bandstop filter the signal to remove line noise frequencies sig_filt = filter_signal(sig, fs, 'bandstop', (57, 63), n_seconds=2, remove_edges=False) ################################################################################################### # Compute a power spectrum of the simulated signal freqs, powers_pre = trim_spectrum(*compute_spectrum(sig, fs), [3, 75]) freqs, powers_post = trim_spectrum(*compute_spectrum(sig_filt, fs), [3, 75]) ################################################################################################### # Plot the spectrum of the data, pre and post bandstop filtering plot_spectra(freqs, [powers_pre, powers_post], log_powers=True, labels=['Pre-Filter', 'Post-Filter']) ################################################################################################### # # In the above, we can see that the the bandstop filter removes power in the filtered range, # leaving a "dip" in the power spectrum. This dip causes issues with subsequent fitting. # ################################################################################################### # Initialize and fit a power spectrum model fm = FOOOF() fm.report(freqs, powers_post) ################################################################################################### # # In order to try and capture the data points in the "dip", the power spectrum model # gets 'pulled' down, leading to an inaccurate fit of the aperiodic component. This is # why fitting frequency regions that included frequency regions that have been filtered # out is not recommended. #
homeassistant/components/uptime/__init__.py
domwillcode/home-assistant
22,481
109901
<reponame>domwillcode/home-assistant<filename>homeassistant/components/uptime/__init__.py """The uptime component."""
tests/formatters/chrome_preferences.py
pyllyukko/plaso
1,253
109920
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the Google Chrome Preferences file event formatter.""" import unittest from plaso.formatters import chrome_preferences from tests.formatters import test_lib class ChromePreferencesPrimaryURLFormatterHelperTest( test_lib.EventFormatterTestCase): """Tests for the Google Chrome preferences primary URL formatter helper.""" def testFormatEventValues(self): """Tests the FormatEventValues function.""" formatter_helper = ( chrome_preferences.ChromePreferencesPrimaryURLFormatterHelper()) event_values = {'primary_url': 'https://example.com'} formatter_helper.FormatEventValues(event_values) self.assertEqual(event_values['primary_url'], 'https://example.com') event_values = {'primary_url': ''} formatter_helper.FormatEventValues(event_values) self.assertEqual(event_values['primary_url'], 'local file') event_values = {'primary_url': None} formatter_helper.FormatEventValues(event_values) self.assertIsNone(event_values['primary_url']) class ChromePreferencesSecondaryURLFormatterHelperTest( test_lib.EventFormatterTestCase): """Tests for the Google Chrome preferences secondary URL formatter helper.""" def testFormatEventValues(self): """Tests the FormatEventValues function.""" formatter_helper = ( chrome_preferences.ChromePreferencesSecondaryURLFormatterHelper()) event_values = { 'primary_url': 'https://example.com', 'secondary_url': 'https://anotherexample.com'} formatter_helper.FormatEventValues(event_values) self.assertEqual( event_values['secondary_url'], 'https://anotherexample.com') event_values = { 'primary_url': 'https://example.com', 'secondary_url': 'https://example.com'} formatter_helper.FormatEventValues(event_values) self.assertIsNone(event_values['secondary_url']) event_values = { 'primary_url': 'https://example.com', 'secondary_url': ''} formatter_helper.FormatEventValues(event_values) self.assertEqual(event_values['secondary_url'], 'local file') event_values = { 'primary_url': 'https://example.com', 'secondary_url': None} formatter_helper.FormatEventValues(event_values) self.assertIsNone(event_values['secondary_url']) if __name__ == '__main__': unittest.main()
qiskit/opflow/gradients/circuit_qfis/lin_comb_full.py
QAMP-Spring-2022-Transpiler-Hackathon/qiskit-terra
1,456
109933
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The module for Quantum the Fisher Information.""" from typing import List, Union import numpy as np from qiskit.circuit import QuantumCircuit, QuantumRegister, ParameterVector, ParameterExpression from qiskit.utils.arithmetic import triu_to_dense from ...operator_base import OperatorBase from ...list_ops.list_op import ListOp from ...list_ops.summed_op import SummedOp from ...operator_globals import I, Z, Y from ...state_fns.state_fn import StateFn from ...state_fns.circuit_state_fn import CircuitStateFn from ..circuit_gradients.lin_comb import LinComb from .circuit_qfi import CircuitQFI class LinCombFull(CircuitQFI): r"""Compute the full Quantum Fisher Information (QFI). Given a pure, parameterized quantum state this class uses the linear combination of unitaries See also :class:`~qiskit.opflow.QFI`. """ # pylint: disable=signature-differs, arguments-differ def __init__( self, aux_meas_op: OperatorBase = Z, phase_fix: bool = True, ): """ Args: aux_meas_op: The operator that the auxiliary qubit is measured with respect to. For ``aux_meas_op = Z`` we compute 4Re[(dω⟨ψ(ω)|)O(θ)|ψ(ω)〉], for ``aux_meas_op = -Y`` we compute 4Im[(dω⟨ψ(ω)|)O(θ)|ψ(ω)〉], and for ``aux_meas_op = Z - 1j * Y`` we compute 4(dω⟨ψ(ω)|)O(θ)|ψ(ω)〉. phase_fix: Whether or not to compute and add the additional phase fix term Re[(dω⟨<ψ(ω)|)|ψ(ω)><ψ(ω)|(dω|ψ(ω))>]. Raises: ValueError: If the provided auxiliary measurement operator is not supported. """ super().__init__() if aux_meas_op not in [Z, -Y, (Z - 1j * Y)]: raise ValueError( "This auxiliary measurement operator is currently not supported. Please choose " "either Z, -Y, or Z - 1j * Y. " ) self._aux_meas_op = aux_meas_op self._phase_fix = phase_fix def convert( self, operator: CircuitStateFn, params: Union[ParameterExpression, ParameterVector, List[ParameterExpression]], ) -> ListOp: r""" Args: operator: The operator corresponding to the quantum state :math:`|\psi(\omega)\rangle` for which we compute the QFI. params: The parameters :math:`\omega` with respect to which we are computing the QFI. Returns: A ``ListOp[ListOp]`` where the operator at position ``[k][l]`` corresponds to the matrix element :math:`k, l` of the QFI. Raises: TypeError: If ``operator`` is an unsupported type. """ # QFI & phase fix observable qfi_observable = StateFn( 4 * self._aux_meas_op ^ (I ^ operator.num_qubits), is_measurement=True ) # Check if the given operator corresponds to a quantum state given as a circuit. if not isinstance(operator, CircuitStateFn): raise TypeError( "LinCombFull is only compatible with states that are given as " f"CircuitStateFn, not {type(operator)}" ) # If a single parameter is given wrap it into a list. if isinstance(params, ParameterExpression): params = [params] elif isinstance(params, ParameterVector): params = params[:] # unroll to list if self._phase_fix: # First, the operators are computed which can compensate for a potential phase-mismatch # between target and trained state, i.e.〈ψ|∂lψ〉 phase_fix_observable = I ^ operator.num_qubits gradient_states = LinComb(aux_meas_op=(Z - 1j * Y))._gradient_states( operator, meas_op=phase_fix_observable, target_params=params, open_ctrl=False, trim_after_grad_gate=True, ) # pylint: disable=unidiomatic-typecheck if type(gradient_states) == ListOp: phase_fix_states = gradient_states.oplist else: phase_fix_states = [gradient_states] # Get 4 * Re[〈∂kψ|∂lψ] qfi_operators = [] # Add a working qubit qr_work = QuantumRegister(1, "work_qubit") state_qc = QuantumCircuit(*operator.primitive.qregs, qr_work) state_qc.h(qr_work) # unroll separately from the H gate since we need the H gate to be the first # operation in the data attributes of the circuit unrolled = LinComb._transpile_to_supported_operations( operator.primitive, LinComb.SUPPORTED_GATES ) state_qc.compose(unrolled, inplace=True) # Get the circuits needed to compute〈∂iψ|∂jψ〉 for i, param_i in enumerate(params): # loop over parameters qfi_ops = [] for j, param_j in enumerate(params[i:], i): # Get the gates of the quantum state which are parameterized by param_i qfi_op = [] param_gates_i = state_qc._parameter_table[param_i] for gate_i, idx_i in param_gates_i: grad_coeffs_i, grad_gates_i = LinComb._gate_gradient_dict(gate_i)[idx_i] # get the location of gate_i, used for trimming location_i = None for idx, (op, _, _) in enumerate(state_qc._data): if op is gate_i: location_i = idx break for grad_coeff_i, grad_gate_i in zip(grad_coeffs_i, grad_gates_i): # Get the gates of the quantum state which are parameterized by param_j param_gates_j = state_qc._parameter_table[param_j] for gate_j, idx_j in param_gates_j: grad_coeffs_j, grad_gates_j = LinComb._gate_gradient_dict(gate_j)[idx_j] # get the location of gate_j, used for trimming location_j = None for idx, (op, _, _) in enumerate(state_qc._data): if op is gate_j: location_j = idx break for grad_coeff_j, grad_gate_j in zip(grad_coeffs_j, grad_gates_j): grad_coeff_ij = np.conj(grad_coeff_i) * grad_coeff_j qfi_circuit = LinComb.apply_grad_gate( state_qc, gate_i, idx_i, grad_gate_i, grad_coeff_ij, qr_work, open_ctrl=True, trim_after_grad_gate=(location_j < location_i), ) # create a copy of the original circuit with the same registers qfi_circuit = LinComb.apply_grad_gate( qfi_circuit, gate_j, idx_j, grad_gate_j, 1, qr_work, open_ctrl=False, trim_after_grad_gate=(location_j >= location_i), ) qfi_circuit.h(qr_work) # Convert the quantum circuit into a CircuitStateFn and add the # coefficients i, j and the original operator coefficient coeff = operator.coeff coeff *= np.sqrt(np.abs(grad_coeff_i) * np.abs(grad_coeff_j)) state = CircuitStateFn(qfi_circuit, coeff=coeff) param_grad = 1 for gate, idx, param in zip( [gate_i, gate_j], [idx_i, idx_j], [param_i, param_j] ): param_expression = gate.params[idx] param_grad *= param_expression.gradient(param) meas = param_grad * qfi_observable term = meas @ state qfi_op.append(term) # Compute −4 * Re(〈∂kψ|ψ〉〈ψ|∂lψ〉) def phase_fix_combo_fn(x): return -4 * np.real(x[0] * np.conjugate(x[1])) if self._phase_fix: phase_fix_op = ListOp( [phase_fix_states[i], phase_fix_states[j]], combo_fn=phase_fix_combo_fn ) # Add the phase fix quantities to the entries of the QFI # Get 4 * Re[〈∂kψ|∂lψ〉−〈∂kψ|ψ〉〈ψ|∂lψ〉] qfi_ops += [SummedOp(qfi_op) + phase_fix_op] else: qfi_ops += [SummedOp(qfi_op)] qfi_operators.append(ListOp(qfi_ops)) # Return estimate of the full QFI -- A QFI is by definition positive semi-definite. return ListOp(qfi_operators, combo_fn=triu_to_dense)
plenum/test/node_catchup/test_catchup_from_unequal_nodes_without_waiting.py
andkononykhin/plenum
148
109936
<reponame>andkononykhin/plenum import pytest from plenum.common.messages.node_messages import Commit from plenum.server.catchup.node_leecher_service import NodeLeecherService from plenum.test.delayers import delay_3pc from plenum.test.helper import sdk_send_random_and_check, max_3pc_batch_limits, assert_eq, sdk_send_random_requests, \ sdk_get_replies, sdk_get_and_check_replies from plenum.test.node_catchup.helper import ensure_all_nodes_have_same_data from plenum.test.stasher import delay_rules_without_processing, delay_rules from stp_core.loop.eventually import eventually @pytest.fixture(scope="module") def tconf(tconf): with max_3pc_batch_limits(tconf, size=1) as tconf: old_cons_proof_timeout = tconf.ConsistencyProofsTimeout # Effectively disable resending cons proof requests after timeout tconf.ConsistencyProofsTimeout = 1000 yield tconf tconf.ConsistencyProofsTimeout = old_cons_proof_timeout def test_catchup_from_unequal_nodes_without_waiting(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client): normal_node = txnPoolNodeSet[0] lagging_node_1 = txnPoolNodeSet[1] lagging_node_2 = txnPoolNodeSet[2] stopped_node = txnPoolNodeSet[3] # Make sure everyone have one batch sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 1) # Wait until all nodes have same data and store last 3PC number of node that's going to be "stopped" ensure_all_nodes_have_same_data(looper, txnPoolNodeSet, custom_timeout=30) last_3pc = stopped_node.master_last_ordered_3PC with delay_rules_without_processing(stopped_node.nodeIbStasher, delay_3pc()): # Create one more batch on all nodes except "stopped" node sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 1) with delay_rules(lagging_node_1.nodeIbStasher, delay_3pc(msgs=Commit)): # Create one more batch on all nodes except "stopped" and first lagging node sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 1) with delay_rules(lagging_node_2.nodeIbStasher, delay_3pc(msgs=Commit)): # Create one more batch on all nodes except "stopped" and both lagging nodes # This time we can't wait for replies because there will be only one reqs = sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 1) # Wait until normal node orders txn looper.run(eventually(lambda: assert_eq(normal_node.master_last_ordered_3PC[1], last_3pc[1] + 3))) # Now all nodes have different number of txns, so if we try to start a catch up # it is guaranteed that we'll need to ask for equal consistency proofs, and # disabled timeout ensures that node can do so without relying on timeout stopped_node.start_catchup() # Wait until catchup ends looper.run(eventually(lambda: assert_eq(stopped_node.ledgerManager._node_leecher._state, NodeLeecherService.State.Idle))) # Ensure stopped node caught up at least one batch assert stopped_node.master_last_ordered_3PC[1] > last_3pc[1] # And there was no view change assert stopped_node.master_last_ordered_3PC[0] == last_3pc[0] # Make sure replies from last request are eventually received sdk_get_and_check_replies(looper, reqs)
utils/tests/test_text_utils.py
nathandarnell/sal
215
109960
<reponame>nathandarnell/sal """General functional tests for the text_utils module.""" from django.test import TestCase from utils import text_utils class TextUtilsTest(TestCase): """Test the Utilities module.""" def test_safe_text_null(self): """Ensure that null characters are dropped.""" original = '\x00' self.assertTrue(text_utils.safe_text(original) == '') self.assertTrue(text_utils.safe_text(original.encode() == '')) def test_listify_basic(self): """Ensure non-collection data is only str converted.""" catalogs = 'testing' result = text_utils.stringify(catalogs) self.assertEqual(result, catalogs) self.assertTrue(isinstance(result, str)) # Bool, int, float, dict tests = (False, 5, 5.0, {'a': 'test'}) for test in tests: self.assertEqual(text_utils.stringify(test), str(test)) def test_listify_list(self): """Ensure list data can be converted to strings.""" catalogs = ['testing', 'phase', 'production'] result = text_utils.stringify(catalogs) self.assertEqual(result, ', '.join(catalogs)) def test_listify_dict(self): """Ensure dict data can be converted to strings.""" catalogs = ['testing', 'phase', {'key': 'value'}] result = text_utils.stringify(catalogs) self.assertEqual(result, "testing, phase, {'key': 'value'}") def test_listify_non_str_types(self): """Ensure nested non-str types are converted.""" catalogs = [5, 5.0, {'a': 'test'}] result = text_utils.stringify(catalogs) self.assertEqual(result, "5, 5.0, {'a': 'test'}")
tt/expressions/__init__.py
fkromer/tt
233
109970
<reponame>fkromer/tt """Tools for working with Boolean expressions.""" from .bexpr import BooleanExpression # noqa
examples/window.py
superzazu/pylibui
222
109982
""" Shows an empty window. """ from pylibui.core import App from pylibui.controls import Window class MyWindow(Window): def onClose(self, data): super().onClose(data) app.stop() app = App() window = MyWindow('Window', 800, 600) window.setMargined(True) window.show() app.start() app.close()
btalib/utils.py
demattia/bta-lib
352
110009
#!/usr/bin/env python # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # Copyright (C) 2020 <NAME> # Use of this source code is governed by the MIT License ############################################################################### __all__ = [ 'SEED_AVG', 'SEED_LAST', 'SEED_SUM', 'SEED_NONE', 'SEED_ZERO', 'SEED_ZFILL', '_INCPERIOD', '_DECPERIOD', '_MINIDX', '_SERIES', '_MPSERIES', '_SETVAL', '_MPSETVAL', ] SEED_AVG = 0 SEED_LAST = 1 SEED_SUM = 2 SEED_NONE = 4 SEED_ZERO = 5 SEED_ZFILL = 6 def _INCPERIOD(x, p=1): ''' Forces an increase `p` in the minperiod of object `x`. Example: `ta-lib` calculates `+DM` a period of 1 too early, but calculates the depending `+DI` from the right starting point. Increasing the period, without changing the underlying already calculated `+DM` values, allows the `+DI` values to be right ''' x._minperiod += p def _DECPERIOD(x, p=1): ''' Forces an increase `p` in the minperiod of object `x`. Example: `ta-lib` calculates `obv` already when the period is `1`, discarding the needed "close" to "previous close" comparison. The only way to take this into account is to decrease the delivery period of the comparison by 1 to start the calculation before (and using a fixed criterion as to what to do in the absence of a valid close to close comparison) ''' x._minperiod -= p def _MINIDX(x, p=0): ''' Delivers the index to an array which corresponds to `_minperiod` offset by `p`. This allow direct manipulation of single values in arrays like in the `obv` scenario in which a seed value is needed for the 1st delivered value (in `ta-lib` mode) because no `close` to `previous close` comparison is possible. ''' return x._minperiod - 1 + p def _SERIES(x): '''Macro like function which makes clear that one is retrieving the actual underlying series and not something a wrapped version''' return x._series def _MPSERIES(x): '''Macro like function which makes clear that one is retrieving the actual underlying series, sliced starting at the MINPERIOD of the series''' return x._series[x._minperiod - 1:] def _SETVAL(x, idx, val): '''Macro like function which makes clear that one is setting a value in the underlying series''' x._series[idx] = val def _MPSETVAL(x, idx, val): '''Macro like function which makes clear that one is setting a value in the underlying series''' x._series[x._minperiod - 1 + idx] = val
ConvertShellcode.py
rvrsh3ll/CPLResourceRunner
232
110036
<reponame>rvrsh3ll/CPLResourceRunner<filename>ConvertShellcode.py #!/usr/bin/env python import binascii import sys file_name = sys.argv[1] with open (file_name) as f: hexdata = binascii.hexlify(f.read()) hexlist = map(''.join, zip(hexdata[::2], hexdata[1::2])) shellcode = '' for i in hexlist: shellcode += "0x{},".format(i) shellcode = shellcode[:-1] output = open('shellcode.txt', 'w') output.write(shellcode) output.close() print "Shellcode written to shellcode.txt"
mopp/mopp_lib.py
diwashsapkota/jupyter-text2code
2,147
110046
<reponame>diwashsapkota/jupyter-text2code import json from IPython import get_ipython from IPython.core.magics.namespace import NamespaceMagics _nms = NamespaceMagics() _Jupyter = get_ipython() _nms.shell = _Jupyter.kernel.shell def dataframes_info(): values = _nms.who_ls() info = {v: (eval(v).columns.tolist()) for v in values if type(eval(v)).__name__ == 'DataFrame'} return json.dumps(info)
river/datasets/synth/friedman.py
fox-ds/river
2,184
110055
import math import random from typing import Tuple from .. import base class Friedman(base.SyntheticDataset): """Friedman synthetic dataset. Each observation is composed of 10 features. Each feature value is sampled uniformly in [0, 1]. The target is defined by the following function: $$y = 10 sin(\\pi x_0 x_1) + 20 (x_2 - 0.5)^2 + 10 x_3 + 5 x_4 + \\epsilon$$ In the last expression, $\\epsilon \\sim \\mathcal{N}(0, 1)$, is the noise. Therefore, only the first 5 features are relevant. Parameters ---------- seed Random seed number used for reproducibility. Examples -------- >>> from river import synth >>> dataset = synth.Friedman(seed=42) >>> for x, y in dataset.take(5): ... print(list(x.values()), y) [0.63, 0.02, 0.27, 0.22, 0.73, 0.67, 0.89, 0.08, 0.42, 0.02] 7.66 [0.02, 0.19, 0.64, 0.54, 0.22, 0.58, 0.80, 0.00, 0.80, 0.69] 8.33 [0.34, 0.15, 0.95, 0.33, 0.09, 0.09, 0.84, 0.60, 0.80, 0.72] 7.04 [0.37, 0.55, 0.82, 0.61, 0.86, 0.57, 0.70, 0.04, 0.22, 0.28] 18.16 [0.07, 0.23, 0.10, 0.27, 0.63, 0.36, 0.37, 0.20, 0.26, 0.93] 8.90 References ---------- [^1]: [<NAME>., 1991. Multivariate adaptive regression splines. The annals of statistics, pp.1-67.](https://projecteuclid.org/euclid.aos/1176347963) """ def __init__(self, seed: int = None): super().__init__(task=base.REG, n_features=10) self.seed = seed def __iter__(self): rng = random.Random(self.seed) while True: x = {i: rng.uniform(a=0, b=1) for i in range(10)} y = ( 10 * math.sin(math.pi * x[0] * x[1]) + 20 * (x[2] - 0.5) ** 2 + 10 * x[3] + 5 * x[4] + rng.gauss(mu=0, sigma=1) ) yield x, y class FriedmanDrift(Friedman): """Friedman synthetic dataset with concept drifts. Each observation is composed of 10 features. Each feature value is sampled uniformly in [0, 1]. Only the first 5 features are relevant. The target is defined by different functions depending on the type of the drift. The three available modes of operation of the data generator are described in [^1]. Parameters ---------- drift_type The variant of concept drift.</br> - `'lea'`: Local Expanding Abrupt drift. The concept drift appears in two distinct regions of the instance space, while the remaining regions are left unaltered. There are three points of abrupt change in the training dataset. At every consecutive change the regions of drift are expanded.</br> - `'gra'`: Global Recurring Abrupt drift. The concept drift appears over the whole instance space. There are two points of concept drift. At the second point of drift the old concept reoccurs.</br> - `'gsg'`: Global and Slow Gradual drift. The concept drift affects all the instance space. However, the change is gradual and not abrupt. After each one of the two change points covered by this variant, and during a window of length `transition_window`, examples from both old and the new concepts are generated with equal probability. After the transition period, only the examples from the new concept are generated. position The amount of monitored instances after which each concept drift occurs. A tuple with at least two element must be passed, where each number is greater than the preceding one. If `drift_type='lea'`, then the tuple must have three elements. transition_window The length of the transition window between two concepts. Only applicable when `drift_type='gsg'`. If set to zero, the drifts will be abrupt. Anytime `transition_window > 0`, it defines a window in which instances of the new concept are gradually introduced among the examples from the old concept. During this transition phase, both old and new concepts appear with equal probability. seed Random seed number used for reproducibility. Examples -------- >>> from river import synth >>> dataset = synth.FriedmanDrift( ... drift_type='lea', ... position=(1, 2, 3), ... seed=42 ... ) >>> for x, y in dataset.take(5): ... print(list(x.values()), y) [0.63, 0.02, 0.27, 0.22, 0.73, 0.67, 0.89, 0.08, 0.42, 0.02] 7.66 [0.02, 0.19, 0.64, 0.54, 0.22, 0.58, 0.80, 0.00, 0.80, 0.69] 8.33 [0.34, 0.15, 0.95, 0.33, 0.09, 0.09, 0.84, 0.60, 0.80, 0.72] 7.04 [0.37, 0.55, 0.82, 0.61, 0.86, 0.57, 0.70, 0.04, 0.22, 0.28] 18.16 [0.07, 0.23, 0.10, 0.27, 0.63, 0.36, 0.37, 0.20, 0.26, 0.93] -2.65 >>> dataset = synth.FriedmanDrift( ... drift_type='gra', ... position=(2, 3), ... seed=42 ... ) >>> for x, y in dataset.take(5): ... print(list(x.values()), y) [0.63, 0.02, 0.27, 0.22, 0.73, 0.67, 0.89, 0.08, 0.42, 0.02] 7.66 [0.02, 0.19, 0.64, 0.54, 0.22, 0.58, 0.80, 0.00, 0.80, 0.69] 8.33 [0.34, 0.15, 0.95, 0.33, 0.09, 0.09, 0.84, 0.60, 0.80, 0.72] 8.96 [0.37, 0.55, 0.82, 0.61, 0.86, 0.57, 0.70, 0.04, 0.22, 0.28] 18.16 [0.07, 0.23, 0.10, 0.27, 0.63, 0.36, 0.37, 0.20, 0.26, 0.93] 8.90 >>> dataset = synth.FriedmanDrift( ... drift_type='gsg', ... position=(1, 4), ... transition_window=2, ... seed=42 ... ) >>> for x, y in dataset.take(5): ... print(list(x.values()), y) [0.63, 0.02, 0.27, 0.22, 0.73, 0.67, 0.89, 0.08, 0.42, 0.02] 7.66 [0.02, 0.19, 0.64, 0.54, 0.22, 0.58, 0.80, 0.00, 0.80, 0.69] 8.33 [0.34, 0.15, 0.95, 0.33, 0.09, 0.09, 0.84, 0.60, 0.80, 0.72] 8.92 [0.37, 0.55, 0.82, 0.61, 0.86, 0.57, 0.70, 0.04, 0.22, 0.28] 17.32 [0.07, 0.23, 0.10, 0.27, 0.63, 0.36, 0.37, 0.20, 0.26, 0.93] 6.05 References ---------- [^1]: <NAME>., <NAME>. and <NAME>., 2011. Learning model trees from evolving data streams. Data mining and knowledge discovery, 23(1), pp.128-168. """ _LOCAL_EXPANDING_ABRUPT = "lea" _GLOBAL_RECURRING_ABRUPT = "gra" _GLOBAL_AND_SLOW_GRADUAL = "gsg" _VALID_DRIFT_TYPES = [ _LOCAL_EXPANDING_ABRUPT, _GLOBAL_RECURRING_ABRUPT, _GLOBAL_AND_SLOW_GRADUAL, ] def __init__( self, drift_type: str = "lea", position: Tuple[int, ...] = (50_000, 100_000, 150_000), transition_window: int = 10_000, seed: int = None, ): super().__init__(seed=seed) if drift_type not in self._VALID_DRIFT_TYPES: raise ValueError( f'Invalid "drift_type: {drift_type}"\n' f"Valid options are: {self._VALID_DRIFT_TYPES}" ) self.drift_type = drift_type if self.drift_type == self._LOCAL_EXPANDING_ABRUPT and len(position) < 3: raise ValueError( "Insufficient number of concept drift locations passed.\n" 'Three concept drift points should be passed when drift_type=="lea"' ) elif self.drift_type != self._LOCAL_EXPANDING_ABRUPT and len(position) < 2: raise ValueError( "Insufficient number of concept drift locations passed.\n" "Two locations must be defined." ) elif len(position) > 3: raise ValueError( "Too many concept drift locations passed. Check the documentation" "for details on the usage of this class." ) self.position = position if self.drift_type == self._LOCAL_EXPANDING_ABRUPT: ( self._change_point1, self._change_point2, self._change_point3, ) = self.position else: self._change_point1, self._change_point2 = self.position self._change_point3 = math.inf if not self._change_point1 < self._change_point2 < self._change_point3: raise ValueError( "The concept drift locations must be defined in an increasing order." ) if ( transition_window > self._change_point2 - self._change_point1 or transition_window > self._change_point3 - self._change_point2 ) and self.drift_type == self._GLOBAL_AND_SLOW_GRADUAL: raise ValueError( f'The chosen "transition_window" value is too big: {transition_window}' ) self.transition_window = transition_window if self.drift_type == self._LOCAL_EXPANDING_ABRUPT: self._y_maker = self._local_expanding_abrupt_gen elif self.drift_type == self._GLOBAL_RECURRING_ABRUPT: self._y_maker = self._global_recurring_abrupt_gen else: # Global and slow gradual drifts self._y_maker = self._global_and_slow_gradual_gen def __lea_in_r1(self, x, index): if index < self._change_point1: return False elif self._change_point1 <= index < self._change_point2: return x[1] < 0.3 and x[2] < 0.3 and x[3] > 0.7 and x[4] < 0.3 elif self._change_point2 <= index < self._change_point3: return x[1] < 0.3 and x[2] < 0.3 and x[3] > 0.7 else: return x[1] < 0.3 and x[2] < 0.3 def __lea_in_r2(self, x, index): if index < self._change_point1: return False elif self._change_point1 <= index < self._change_point2: return x[1] > 0.7 and x[2] > 0.7 and x[3] < 0.3 and x[4] > 0.7 elif self._change_point2 <= index < self._change_point3: return x[1] > 0.7 and x[2] > 0.7 and x[3] < 0.3 else: return x[1] > 0.7 and x[2] > 0.7 def _local_expanding_abrupt_gen( self, x, index: int, rc: random.Random = None ): # noqa if self.__lea_in_r1(x, index): return 10 * x[0] * x[1] + 20 * (x[2] - 0.5) + 10 * x[3] + 5 * x[4] if self.__lea_in_r2(x, index): return ( 10 * math.cos(x[0] * x[1]) + 20 * (x[2] - 0.5) + math.exp(x[3]) + 5 * x[4] ** 2 ) # default case return ( 10 * math.sin(math.pi * x[0] * x[1]) + 20 * (x[2] - 0.5) ** 2 + 10 * x[3] + 5 * x[4] ) def _global_recurring_abrupt_gen( self, x, index: int, rc: random.Random = None ): # noqa if index < self._change_point1 or index >= self._change_point2: # The initial concept is recurring return ( 10 * math.sin(math.pi * x[0] * x[1]) + 20 * (x[2] - 0.5) ** 2 + 10 * x[3] + 5 * x[4] ) else: # Drift: the positions of the features are swapped return ( 10 * math.sin(math.pi * x[3] * x[5]) + 20 * (x[1] - 0.5) ** 2 + 10 * x[0] + 5 * x[2] ) def _global_and_slow_gradual_gen(self, x, index: int, rc: random.Random): if index < self._change_point1: # default function return ( 10 * math.sin(math.pi * x[0] * x[1]) + 20 * (x[2] - 0.5) ** 2 + 10 * x[3] + 5 * x[4] ) elif self._change_point1 <= index < self._change_point2: if index < self._change_point1 + self.transition_window and bool( rc.getrandbits(1) ): # default function return ( 10 * math.sin(math.pi * x[0] * x[1]) + 20 * (x[2] - 0.5) ** 2 + 10 * x[3] + 5 * x[4] ) else: # First new function return ( 10 * math.sin(math.pi * x[3] * x[4]) + 20 * (x[1] - 0.5) ** 2 + 10 * x[0] + 5 * x[2] ) elif index >= self._change_point2: if index < self._change_point2 + self.transition_window and bool( rc.getrandbits(1) ): # First new function return ( 10 * math.sin(math.pi * x[3] * x[4]) + 20 * (x[1] - 0.5) ** 2 + 10 * x[0] + 5 * x[2] ) else: # Second new function return ( 10 * math.sin(math.pi * x[1] * x[4]) + 20 * (x[3] - 0.5) ** 2 + 10 * x[2] + 5 * x[0] ) def __iter__(self): rng = random.Random(self.seed) # To produce True or False with equal probability. Only used in gradual drifts if self.drift_type == self._GLOBAL_AND_SLOW_GRADUAL: rc = random.Random(self.seed) else: rc = None i = 0 while True: x = {i: rng.uniform(a=0, b=1) for i in range(10)} y = self._y_maker(x, i, rc) + rng.gauss(mu=0, sigma=1) yield x, y i += 1
models/warp.py
RNubla/FeatureFlow
161
110069
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class backWarp(nn.Module): """ A class for creating a backwarping object. This is used for backwarping to an image: Given optical flow from frame I0 to I1 --> F_0_1 and frame I1, it generates I0 <-- backwarp(F_0_1, I1). ... Methods ------- forward(x) Returns output tensor after passing input `img` and `flow` to the backwarping block. """ def __init__(self, H, W): """ Parameters ---------- W : int width of the image. H : int height of the image. device : device computation device (cpu/cuda). """ super(backWarp, self).__init__() # create a grid gridX, gridY = np.meshgrid(np.arange(W), np.arange(H)) self.W = W self.H = H self.gridX = torch.nn.Parameter(torch.tensor(gridX), requires_grad=False) self.gridY = torch.nn.Parameter(torch.tensor(gridY), requires_grad=False) def forward(self, img, flow): """ Returns output tensor after passing input `img` and `flow` to the backwarping block. I0 = backwarp(I1, F_0_1) Parameters ---------- img : tensor frame I1. flow : tensor optical flow from I0 and I1: F_0_1. Returns ------- tensor frame I0. """ # Extract horizontal and vertical flows. u = flow[:, 0, :, :] v = flow[:, 1, :, :] x = self.gridX.unsqueeze(0).expand_as(u).float() + u y = self.gridY.unsqueeze(0).expand_as(v).float() + v # range -1 to 1 x = 2*(x/self.W - 0.5) y = 2*(y/self.H - 0.5) # stacking X and Y grid = torch.stack((x,y), dim=3) # Sample pixels using bilinear interpolation. imgOut = torch.nn.functional.grid_sample(img, grid, padding_mode='border') return imgOut # Creating an array of `t` values for the 7 intermediate frames between # reference frames I0 and I1. class Coeff(nn.Module): def __init__(self): super(Coeff, self).__init__() self.t = torch.nn.Parameter(torch.FloatTensor(np.linspace(0.125, 0.875, 7)), requires_grad=False) def getFlowCoeff (self, indices): """ Gets flow coefficients used for calculating intermediate optical flows from optical flows between I0 and I1: F_0_1 and F_1_0. F_t_0 = C00 x F_0_1 + C01 x F_1_0 F_t_1 = C10 x F_0_1 + C11 x F_1_0 where, C00 = -(1 - t) x t C01 = t x t C10 = (1 - t) x (1 - t) C11 = -t x (1 - t) Parameters ---------- indices : tensor indices corresponding to the intermediate frame positions of all samples in the batch. device : device computation device (cpu/cuda). Returns ------- tensor coefficients C00, C01, C10, C11. """ # Convert indices tensor to numpy array ind = indices.detach() C11 = C00 = - (1 - (self.t[ind])) * (self.t[ind]) C01 = (self.t[ind]) * (self.t[ind]) C10 = (1 - (self.t[ind])) * (1 - (self.t[ind])) return C00[None, None, None, :].permute(3, 0, 1, 2), C01[None, None, None, :].permute(3, 0, 1, 2), C10[None, None, None, :].permute(3, 0, 1, 2), C11[None, None, None, :].permute(3, 0, 1, 2) def getWarpCoeff (self, indices): """ Gets coefficients used for calculating final intermediate frame `It_gen` from backwarped images using flows F_t_0 and F_t_1. It_gen = (C0 x V_t_0 x g_I_0_F_t_0 + C1 x V_t_1 x g_I_1_F_t_1) / (C0 x V_t_0 + C1 x V_t_1) where, C0 = 1 - t C1 = t V_t_0, V_t_1 --> visibility maps g_I_0_F_t_0, g_I_1_F_t_1 --> backwarped intermediate frames Parameters ---------- indices : tensor indices corresponding to the intermediate frame positions of all samples in the batch. device : device computation device (cpu/cuda). Returns ------- tensor coefficients C0 and C1. """ # Convert indices tensor to numpy array ind = indices.detach() C0 = 1 - self.t[ind] C1 = self.t[ind] return C0[None, None, None, :].permute(3, 0, 1, 2), C1[None, None, None, :].permute(3, 0, 1, 2) def set_t(self, factor): ti = 1 / factor self.t = torch.nn.Parameter(torch.FloatTensor(np.linspace(ti, 1 - ti, factor - 1)), requires_grad=False)
src/intensio_obfuscator/core/obfuscation/intensio_delete.py
bbhunter/Intensio-Obfuscator
553
110075
# -*- coding: utf-8 -*- # https://github.com/Hnfull/Intensio-Obfuscator #---------------------------------------------------------- [Lib] -----------------------------------------------------------# import re import fileinput import os import sys from progress.bar import Bar try: from intensio_obfuscator.core.utils.intensio_utils import Utils, Reg except ModuleNotFoundError: from core.utils.intensio_utils import Utils, Reg #------------------------------------------------- [Function(s)/Class(es)] --------------------------------------------------# class Delete: def __init__(self): self.utils = Utils() def LinesSpaces(self, outputArg, verboseArg): checkLinesSpace = {} checkEmptyLineOutput = 0 checkEmptyLineInput = 0 countRecursFiles = 0 numberLine = 0 recursFiles = self.utils.CheckFileDir( output=outputArg, detectFiles="py", blockDir="__pycache__", blockFile=False, dirOnly=False ) for file in recursFiles: countRecursFiles += 1 # -- Delete all empty lines -- # with Bar("Obfuscation ", fill="=", max=countRecursFiles, suffix="%(percent)d%%") as bar: for file in recursFiles: with fileinput.FileInput(file, inplace=True) as inputFile: for eachLine in inputFile: if re.match(Reg.detectLineEmpty, eachLine): checkEmptyLineInput += 1 pass else: sys.stdout.write(eachLine) bar.next(1) bar.finish() with Bar("Check ", fill="=", max=countRecursFiles, suffix="%(percent)d%%") as bar: for file in recursFiles: numberLine = 0 with open(file, "r") as readFile: readF = readFile.readlines() for eachLine in readF: numberLine += 1 if re.match(Reg.detectLineEmpty, eachLine): checkLinesSpace[numberLine] = file checkEmptyLineOutput += 1 bar.next(1) bar.finish() if checkEmptyLineOutput == 0: return 1 else: if verboseArg: print("\n[!] Empty line that not been deleted... :\n") for key, value in checkLinesSpace.items(): print("\n-> File : {}".format(value)) print("-> Line : {}".format(key)) else: print("\n[*] Empty line that deleted : {}\n".format(checkEmptyLineInput)) return 0 def Comments(self, outputArg, verboseArg): getIndexList = [] filesConcerned = [] eachLineListCheckIndex = [] countLineCommentOutput = 0 countLineCommentInput = 0 multipleLinesComments = 0 countRecursFiles = 0 noCommentsQuotes = 0 getIndex = 0 detectIntoSimpleQuotes = None eachLineCheckIndex = "" recursFiles = self.utils.CheckFileDir( output=outputArg, detectFiles="py", blockDir="__pycache__", blockFile=False, dirOnly=False ) for i in recursFiles: countRecursFiles += 1 # -- Delete comments and count comments will be deleted -- # print("\n[+] Running delete comments in {} file(s)...\n".format(countRecursFiles)) with Bar("Obfuscation ", fill="=", max=countRecursFiles, suffix="%(percent)d%%") as bar: for file in recursFiles: with fileinput.input(file, inplace=True) as inputFile: for eachLine in inputFile: if re.match(Reg.pythonFileHeader, eachLine): sys.stdout.write(eachLine) else: if multipleLinesComments == 1: if re.match(Reg.quotesCommentsEndMultipleLines, eachLine): if self.utils.VerifyMultipleLinesComments(eachLine) == True: if multipleLinesComments == 1: countLineCommentInput += 1 multipleLinesComments = 0 else: countLineCommentInput += 1 else: countLineCommentInput += 1 elif noCommentsQuotes == 1: if re.match(Reg.checkIfEndVarStdoutMultipleQuotes, eachLine): sys.stdout.write(eachLine) noCommentsQuotes = 0 else: sys.stdout.write(eachLine) else: if re.match(Reg.quotesCommentsOneLine, eachLine): countLineCommentInput += 1 else: if re.match(Reg.quotesCommentsMultipleLines, eachLine): if self.utils.VerifyMultipleLinesComments(eachLine) == True: countLineCommentInput += 1 multipleLinesComments = 1 else: sys.stdout.write(eachLine) else: if re.match(Reg.checkIfStdoutMultipleQuotes, eachLine) \ or re.match(Reg.checkIfVarMultipleQuotes, eachLine): sys.stdout.write(eachLine) noCommentsQuotes = 1 elif re.match(Reg.checkIfRegexMultipleQuotes, eachLine): sys.stdout.write(eachLine) else: sys.stdout.write(eachLine) with fileinput.input(file, inplace=True) as inputFile: for eachLine in inputFile: if re.match(Reg.pythonFileHeader, eachLine): sys.stdout.write(eachLine) else: if re.match(Reg.hashCommentsBeginLine, eachLine): countLineCommentInput += 1 elif re.match(Reg.hashCommentsAfterLine, eachLine): eachLineList = list(eachLine) getIndexList = [] for i, v in enumerate(eachLineList): if v == "#": getIndexList.append(i) for i in getIndexList: if self.utils.DetectIntoSimpleQuotes(eachLine, maxIndexLine=i) == False: countLineCommentInput += 1 detectIntoSimpleQuotes = False break else: continue if detectIntoSimpleQuotes == False: for i in getIndexList: eachLineListCheckIndex = eachLineList[:i] eachLineListCheckIndex.append("\n") eachLineCheckIndex = "".join(eachLineListCheckIndex) if self.utils.DetectIntoSimpleQuotes(eachLineCheckIndex, maxIndexLine=i) == False: getIndex = i break else: continue eachLineList = eachLineList[:getIndex] eachLineList.append("\n") eachLine = "".join(eachLineList) sys.stdout.write(eachLine) detectIntoSimpleQuotes = None countLineCommentInput += 1 else: sys.stdout.write(eachLine) else: sys.stdout.write(eachLine) bar.next(1) bar.finish() # -- Check if all comments are deleted -- # with Bar("Check ", fill="=", max=countRecursFiles, suffix="%(percent)d%%") as bar: for file in recursFiles: with open(file, "r") as readFile: readF = readFile.readlines() for eachLine in readF: if re.match(Reg.pythonFileHeader, eachLine): continue else: if multipleLinesComments == 1: if re.match(Reg.quotesCommentsEndMultipleLines, eachLine): if self.utils.VerifyMultipleLinesComments(eachLine) == True: if multipleLinesComments == 1: countLineCommentOutput += 1 multipleLinesComments = 0 filesConcerned.append(file) else: countLineCommentOutput += 1 filesConcerned.append(file) else: countLineCommentOutput += 1 filesConcerned.append(file) elif noCommentsQuotes == 1: if re.match(Reg.checkIfEndVarStdoutMultipleQuotes, eachLine): noCommentsQuotes = 0 else: continue else: if re.match(Reg.quotesCommentsOneLine, eachLine): countLineCommentOutput += 1 filesConcerned.append(file) else: if re.match(Reg.quotesCommentsMultipleLines, eachLine): if self.utils.VerifyMultipleLinesComments(eachLine) == True: countLineCommentOutput += 1 multipleLinesComments = 1 filesConcerned.append(file) else: continue else: if re.match(Reg.checkIfStdoutMultipleQuotes, eachLine) \ or re.match(Reg.checkIfVarMultipleQuotes, eachLine): noCommentsQuotes = 1 elif re.match(Reg.checkIfRegexMultipleQuotes, eachLine): continue else: continue with open(file, "r") as readFile: readF = readFile.readlines() for eachLine in readF: if re.match(Reg.pythonFileHeader, eachLine): continue else: if re.match(Reg.hashCommentsBeginLine, eachLine): countLineCommentOutput += 1 filesConcerned.append(file) elif re.match(Reg.hashCommentsAfterLine, eachLine): eachLineList = list(eachLine) getIndexList = [] for i, v in enumerate(eachLineList): if v == "#": getIndexList.append(i) for i in getIndexList: if self.utils.DetectIntoSimpleQuotes(eachLine, maxIndexLine=i) == False: countLineCommentOutput += 1 detectIntoSimpleQuotes = False filesConcerned.append(file) break else: continue if detectIntoSimpleQuotes == False: for i in getIndexList: eachLineListCheckIndex = eachLineList[:i] eachLineListCheckIndex.append("\n") eachLineCheckIndex = "".join(eachLineListCheckIndex) if self.utils.DetectIntoSimpleQuotes(eachLineCheckIndex, maxIndexLine=i) == False: getIndex = i break else: continue eachLineList = eachLineList[:getIndex] eachLineList.append("\n") eachLine = "".join(eachLineList) countLineCommentOutput += 1 detectIntoSimpleQuotes = None else: continue else: continue bar.next(1) bar.finish() if countLineCommentOutput == 0: print("\n-> {} lines of comments deleted\n".format(countLineCommentInput)) return 1 else: if verboseArg: filesConcerned = self.utils.RemoveDuplicatesValuesInList(filesConcerned) print("\nFiles concerned of comments no deleted :\n") for f in filesConcerned: print("-> {}".format(f)) print("\n-> {} lines of comments no deleted\n".format(countLineCommentOutput)) return 0 def TrashFiles(self, outputArg, verboseArg): countRecursFiles = 0 deleteFiles = 0 checkPycFile = [] currentPosition = os.getcwd() recursFiles = self.utils.CheckFileDir( output=outputArg, detectFiles="pyc", blockDir="__pycache__", blockFile=False, dirOnly=False ) for number in recursFiles: countRecursFiles += 1 if countRecursFiles == 0: print("[!] No .pyc file(s) found in {}".format(outputArg)) return 1 print("\n[+] Running delete {} .pyc file(s)...\n".format(countRecursFiles)) # -- Check if .pyc file(s) exists and delete it -- # with Bar("Setting up ", fill="=", max=countRecursFiles, suffix="%(percent)d%%") as bar: for file in recursFiles: if re.match(Reg.detectPycFiles, file): deleteFiles += 1 checkPycFile.append(file) bar.next(1) bar.finish() # -- Delete pyc file(s) -- # with Bar("Correction ", fill="=", max=countRecursFiles, suffix="%(percent)d%%") as bar: for file in recursFiles: if re.match(Reg.detectPycFiles, file): extractPycFiles = re.search(r".*\.pyc$", file) moveFolder = re.sub(r".*\.pyc$", "", file) os.chdir(moveFolder) os.remove(extractPycFiles.group(0)) os.chdir(currentPosition) bar.next(1) bar.finish() checkRecursFiles = self.utils.CheckFileDir( output=outputArg, detectFiles="pyc", blockDir="__pycache__", blockFile=False, dirOnly=False ) if checkRecursFiles != []: if verboseArg: for pycFile in checkRecursFiles: print("-> .pyc file no deleted : {}".format(pycFile)) return 0 else: if verboseArg: for pycFile in checkPycFile: print("-> .pyc file deleted : {}".format(pycFile)) print("\n-> {} .pyc file(s) deleted".format(deleteFiles)) return 1
scripts/conversionScripts/Opt_FD_name.py
rinelson456/raven
159
110143
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import xml.etree.ElementTree as ET import xml.dom.minidom as pxml import os def convert(tree,fileName=None): """ Converts input files to be compatible with merge request #460: - Removes "all" node - Sets default variable names @ In, tree, xml.etree.ElementTree.ElementTree object, the contents of a RAVEN input file @ In, fileName, the name for the raven input file @Out, tree, xml.etree.ElementTree.ElementTree object, the modified RAVEN input file """ simulation = tree.getroot() opts = simulation.find('Optimizers') if opts is not None: for child in opts: if child.tag == 'FiniteDifferenceGradientOptimizer': child.tag = 'FiniteDifference' return tree if __name__=='__main__': import convert_utils import sys convert_utils.standardMain(sys.argv,convert)
torchMoji/examples/create_twitter_vocab.py
UmaTaru/run
163
110149
""" Creates a vocabulary from a tsv file. """ import codecs from torchMoji.torchmoji.create_vocab import VocabBuilder from torchMoji.torchmoji.word_generator import TweetWordGenerator with codecs.open('../../twitterdata/tweets.2016-09-01', 'rU', 'utf-8') as stream: wg = TweetWordGenerator(stream) vb = VocabBuilder(wg) vb.count_all_words() vb.save_vocab()
release/stubs.min/Tekla/Structures/ModelInternal_parts/dotStringProperty_t.py
htlcnn/ironpython-stubs
182
110202
<gh_stars>100-1000 class dotStringProperty_t(object): # no doc aName=None aValueString=None FatherId=None ValueStringIteration=None
functions/source/CleanupPV/lambda_function.py
srinivasreddych/quickstart-redhat-openshift
179
110213
import json import logging import boto3 import cfnresponse import time ec2_client = boto3.client('ec2') logs_client = boto3.client('logs') def boto_throttle_backoff(boto_method, max_retries=10, backoff_multiplier=2, **kwargs): retry = 0 results = None while not results: try: results = boto_method(**kwargs) except Exception as e: if 'ThrottlingException' in str(e) or 'VolumeInUse' in str(e): retry += 1 if retry > max_retries: print("Maximum retries of %s reached" % str(max_retries)) raise print("hit an api throttle, or eventual consistency error, waiting for %s seconds before retrying" % str(retry * backoff_multiplier)) time.sleep(retry * backoff_multiplier) else: raise return results def handler(event, context): print('Received event: %s' % json.dumps(event)) status = cfnresponse.SUCCESS physical_resource_id = 'PVCleanup' data = {} reason = None try: if event['RequestType'] == 'Delete': print('Removing any orphaned EBS volumes...') tag_name = 'tag:kubernetes.io/cluster/%s' % event['ResourceProperties']['ClusterId'] response = boto_throttle_backoff( ec2_client.describe_volumes, Filters=[{'Name': tag_name, 'Values': ['owned']}] )['Volumes'] for volume in response: print('deleting volume %s' % volume['VolumeId']) boto_throttle_backoff(ec2_client.delete_volume, VolumeId=volume['VolumeId']) except Exception as e: logging.error('Exception: %s' % e, exc_info=True) reason = str(e) status = cfnresponse.FAILED finally: if event['RequestType'] == 'Delete': try: wait_message = 'waiting for events for request_id %s to propagate to cloudwatch...' % context.aws_request_id while not logs_client.filter_log_events( logGroupName=context.log_group_name, logStreamNames=[context.log_stream_name], filterPattern='"%s"' % wait_message )['events']: print(wait_message) time.sleep(5) except Exception as e: logging.error('Exception: %s' % e, exc_info=True) time.sleep(120) cfnresponse.send(event, context, status, data, physical_resource_id, reason)
plugins/webosint/who/whois.py
Appnet1337/OSINT-SAN
313
110242
import requests def whois_more(IP): result = requests.get('http://api.hackertarget.com/whois/?q=' + IP).text print('\n'+ result + '\n')
tests/warnings/semantic/UNDEFINED_DECORATOR.py
dina-fouad/pyccel
206
110243
# pylint: disable=missing-function-docstring, missing-module-docstring/ @toto # pylint: disable=undefined-variable def f(): pass
mastiff/plugins/analysis/EXE/EXE-resources.py
tt1379/mastiff
164
110248
#!/usr/bin/env python """ Copyright 2012-2013 The MASTIFF Project, All Rights Reserved. This software, having been partly or wholly developed and/or sponsored by KoreLogic, Inc., is hereby released under the terms and conditions set forth in the project's "README.LICENSE" file. For a list of all contributors and sponsors, please refer to the project's "README.CREDITS" file. """ __doc__ = """ PE Resources Plug-in Plugin Type: EXE Purpose: This plug-in obtains information on any resources contained within the Windows EXE and extracts them. More information on how resources are stored can be found in the Microsoft PE and COFF Specification document. http://msdn.microsoft.com/library/windows/hardware/gg463125 Thanks to <NAME> for creating the pefile library, whose code helped understand how to process resources. Output: resources.txt - File containing a list of all resources in the EXE and any associated information. log_dir/resource - Directory containing any extracted resource. Pre-requisites: - pefile library (http://code.google.com/p/pefile/) """ __version__ = "$Id: 519a2014141003f89b18bb5c3de571729a952f8e $" import logging import os import time try: import pefile except ImportError, err: print ("Unable to import pefile: %s" % err) import mastiff.plugins.category.exe as exe class EXE_Resources(exe.EXECat): """EXE Resources plugin code.""" def __init__(self): """Initialize the plugin.""" exe.EXECat.__init__(self) self.resources = list() self.pe = None self.output = dict() def analyze_dir(self, directory, prefix='', _type='', timedate=0): """ Analyze a resource directory and obtain all of its items.""" log = logging.getLogger('Mastiff.Plugins.' + self.name + '.analyze') # save the timedate stamp timedate = directory.struct.TimeDateStamp for top_item in directory.entries: if hasattr(top_item, 'data'): # at the language level that contains all of our information resource = dict() resource['Id'] = prefix resource['Type'] = _type # store the offset as the offset within the file, not the RVA! try: resource['Offset'] = self.pe.get_offset_from_rva(top_item.data.struct.OffsetToData) resource['Size'] = top_item.data.struct.Size resource['Lang'] = [ pefile.LANG.get(top_item.data.lang, '*unknown*'), \ pefile.get_sublang_name_for_lang( top_item.data.lang, top_item.data.sublang ) ] resource['TimeDate'] = timedate except pefile.PEFormatError, err: log.error('Error grabbing resource \"%s\" info: %s' % (prefix, err)) return False self.resources.append(resource) log.debug('Adding resource item %s' % resource['Id']) elif hasattr(top_item, 'directory'): if top_item.name is not None: # in a name level if len(prefix) == 0: newprefix = prefix + str(top_item.name) else: newprefix = ', '.join([prefix, str(top_item.name)]) else: # if name is blank, we are in a Type level if len(prefix) == 0: newprefix = 'ID ' + str(top_item.id) _type = pefile.RESOURCE_TYPE.get(top_item.id) else: newprefix = ', '.join([prefix, 'ID ' + str(top_item.id)]) # we aren't at the end, recurse self.analyze_dir(top_item.directory, prefix=newprefix, _type=_type) def extract_resources(self, log_dir, filename): """ Extract any resources from the file and put them in the resources dir. """ log = logging.getLogger('Mastiff.Plugins.' + self.name + '.extract') if len(self.resources) == 0: # no resources return False # create the dir if it doesn't exist log_dir = log_dir + os.sep + 'resources' if not os.path.exists(log_dir): try: os.makedirs(log_dir) except IOError, err: log.error('Unable to create dir %s: %s' % (log_dir, err)) return False try: my_file = open(filename, 'rb') except IOError, err: log.error('Unable to open file.') return False file_size = os.path.getsize(filename) # cycle through resources and extract them for res_item in self.resources: # check to make sure we won't go past the EOF if (res_item['Offset'] + res_item['Size']) > file_size: log.error('File is smaller than resource location. Could be a packed file.') continue my_file.seek(res_item['Offset']) data = my_file.read(res_item['Size']) out_name = res_item['Id'].replace('ID ', '_').replace(', ', '_').lstrip('_') if res_item['Type'] is not None and len(res_item['Type']) > 0: out_name += '_' + res_item['Type'] with open(log_dir + os.sep + out_name, 'wb') as out_file: log.debug('Writing %s to %s.' % (res_item['Id'], out_name)) out_file.write(data) out_file.close() my_file.close() return True def analyze(self, config, filename): """Analyze the file.""" # sanity check to make sure we can run if self.is_activated == False: return False log = logging.getLogger('Mastiff.Plugins.' + self.name) log.info('Starting execution.') try: self.pe = pefile.PE(filename) except pefile.PEFormatError, err: log.error('Unable to parse PE file: %s' % err) return False if not hasattr(self.pe, 'DIRECTORY_ENTRY_RESOURCE'): log.info('No resources for this file.') return False # parse the directory structure self.analyze_dir(self.pe.DIRECTORY_ENTRY_RESOURCE) self.output['metadata'] = { } self.output['data'] = dict() if len(self.resources) == 0: log.info('No resources could be found.') else: # output data to file and extract resources self.gen_output(config.get_var('Dir','log_dir')) self.output_file(config.get_var('Dir','log_dir')) self.extract_resources(config.get_var('Dir','log_dir'), filename) return self.output def gen_output(self, outdir): """ Generate the output to send back. """ self.output['data']['resources'] = list() self.output['data']['resources'].append([ 'Name/ID', 'Type', 'File Offset', 'Size', 'Language', 'Time Date Stamp']) for item in sorted(self.resources, key=lambda mydict: mydict['Offset']): lang = ', '.join(item['Lang']).replace('SUBLANG_', '').replace('LANG_', '') my_time = time.asctime(time.gmtime(item['TimeDate'])) self.output['data']['resources'].append([ item['Id'], item['Type'], hex(item['Offset']), hex(item['Size']), lang, my_time ]) return True def output_file(self, outdir): """Print output from analysis to a file.""" log = logging.getLogger('Mastiff.Plugins.' + self.name + '.output') try: outfile = open(outdir + os.sep + 'resources.txt', 'w') outfile.write('Resource Information\n\n') except IOError, err: log.error('Could not open resources.txt: %s' % err) return False outstr = '{0:20} {1:15} {2:15} {3:8} {4:<30} {5:<25}\n'.format( \ 'Name/ID', 'Type', 'File Offset', 'Size', 'Language', 'Time Date Stamp') outfile.write(outstr) outfile.write('-' * len(outstr) + '\n') for item in sorted(self.resources, key=lambda mydict: mydict['Offset']): lang = ', '.join(item['Lang']).replace('SUBLANG_', '').replace('LANG_', '') my_time = time.asctime(time.gmtime(item['TimeDate'])) outstr = '{0:20} {1:15} {2:<15} {3:<8} {4:30} {5:<25}\n'.format(item['Id'], item['Type'], hex(item['Offset']), hex(item['Size']), lang, my_time) outfile.write(outstr) return True
baseline/onnx/apis/grpc_service_pb2_grpc.py
sagnik/baseline
241
110249
<filename>baseline/onnx/apis/grpc_service_pb2_grpc.py # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc import baseline.onnx.apis.grpc_service_pb2 as grpc__service__pb2 class GRPCInferenceServiceStub(object): """@@ @@.. cpp:var:: service InferenceService @@ @@ Inference Server GRPC endpoints. @@ """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.ServerLive = channel.unary_unary( '/inference.GRPCInferenceService/ServerLive', request_serializer=grpc__service__pb2.ServerLiveRequest.SerializeToString, response_deserializer=grpc__service__pb2.ServerLiveResponse.FromString, ) self.ServerReady = channel.unary_unary( '/inference.GRPCInferenceService/ServerReady', request_serializer=grpc__service__pb2.ServerReadyRequest.SerializeToString, response_deserializer=grpc__service__pb2.ServerReadyResponse.FromString, ) self.ModelReady = channel.unary_unary( '/inference.GRPCInferenceService/ModelReady', request_serializer=grpc__service__pb2.ModelReadyRequest.SerializeToString, response_deserializer=grpc__service__pb2.ModelReadyResponse.FromString, ) self.ServerMetadata = channel.unary_unary( '/inference.GRPCInferenceService/ServerMetadata', request_serializer=grpc__service__pb2.ServerMetadataRequest.SerializeToString, response_deserializer=grpc__service__pb2.ServerMetadataResponse.FromString, ) self.ModelMetadata = channel.unary_unary( '/inference.GRPCInferenceService/ModelMetadata', request_serializer=grpc__service__pb2.ModelMetadataRequest.SerializeToString, response_deserializer=grpc__service__pb2.ModelMetadataResponse.FromString, ) self.ModelInfer = channel.unary_unary( '/inference.GRPCInferenceService/ModelInfer', request_serializer=grpc__service__pb2.ModelInferRequest.SerializeToString, response_deserializer=grpc__service__pb2.ModelInferResponse.FromString, ) self.ModelStreamInfer = channel.stream_stream( '/inference.GRPCInferenceService/ModelStreamInfer', request_serializer=grpc__service__pb2.ModelInferRequest.SerializeToString, response_deserializer=grpc__service__pb2.ModelStreamInferResponse.FromString, ) self.ModelConfig = channel.unary_unary( '/inference.GRPCInferenceService/ModelConfig', request_serializer=grpc__service__pb2.ModelConfigRequest.SerializeToString, response_deserializer=grpc__service__pb2.ModelConfigResponse.FromString, ) self.ModelStatistics = channel.unary_unary( '/inference.GRPCInferenceService/ModelStatistics', request_serializer=grpc__service__pb2.ModelStatisticsRequest.SerializeToString, response_deserializer=grpc__service__pb2.ModelStatisticsResponse.FromString, ) self.RepositoryIndex = channel.unary_unary( '/inference.GRPCInferenceService/RepositoryIndex', request_serializer=grpc__service__pb2.RepositoryIndexRequest.SerializeToString, response_deserializer=grpc__service__pb2.RepositoryIndexResponse.FromString, ) self.RepositoryModelLoad = channel.unary_unary( '/inference.GRPCInferenceService/RepositoryModelLoad', request_serializer=grpc__service__pb2.RepositoryModelLoadRequest.SerializeToString, response_deserializer=grpc__service__pb2.RepositoryModelLoadResponse.FromString, ) self.RepositoryModelUnload = channel.unary_unary( '/inference.GRPCInferenceService/RepositoryModelUnload', request_serializer=grpc__service__pb2.RepositoryModelUnloadRequest.SerializeToString, response_deserializer=grpc__service__pb2.RepositoryModelUnloadResponse.FromString, ) self.SystemSharedMemoryStatus = channel.unary_unary( '/inference.GRPCInferenceService/SystemSharedMemoryStatus', request_serializer=grpc__service__pb2.SystemSharedMemoryStatusRequest.SerializeToString, response_deserializer=grpc__service__pb2.SystemSharedMemoryStatusResponse.FromString, ) self.SystemSharedMemoryRegister = channel.unary_unary( '/inference.GRPCInferenceService/SystemSharedMemoryRegister', request_serializer=grpc__service__pb2.SystemSharedMemoryRegisterRequest.SerializeToString, response_deserializer=grpc__service__pb2.SystemSharedMemoryRegisterResponse.FromString, ) self.SystemSharedMemoryUnregister = channel.unary_unary( '/inference.GRPCInferenceService/SystemSharedMemoryUnregister', request_serializer=grpc__service__pb2.SystemSharedMemoryUnregisterRequest.SerializeToString, response_deserializer=grpc__service__pb2.SystemSharedMemoryUnregisterResponse.FromString, ) self.CudaSharedMemoryStatus = channel.unary_unary( '/inference.GRPCInferenceService/CudaSharedMemoryStatus', request_serializer=grpc__service__pb2.CudaSharedMemoryStatusRequest.SerializeToString, response_deserializer=grpc__service__pb2.CudaSharedMemoryStatusResponse.FromString, ) self.CudaSharedMemoryRegister = channel.unary_unary( '/inference.GRPCInferenceService/CudaSharedMemoryRegister', request_serializer=grpc__service__pb2.CudaSharedMemoryRegisterRequest.SerializeToString, response_deserializer=grpc__service__pb2.CudaSharedMemoryRegisterResponse.FromString, ) self.CudaSharedMemoryUnregister = channel.unary_unary( '/inference.GRPCInferenceService/CudaSharedMemoryUnregister', request_serializer=grpc__service__pb2.CudaSharedMemoryUnregisterRequest.SerializeToString, response_deserializer=grpc__service__pb2.CudaSharedMemoryUnregisterResponse.FromString, ) class GRPCInferenceServiceServicer(object): """@@ @@.. cpp:var:: service InferenceService @@ @@ Inference Server GRPC endpoints. @@ """ def ServerLive(self, request, context): """@@ .. cpp:var:: rpc ServerLive(ServerLiveRequest) returns @@ (ServerLiveResponse) @@ @@ Check liveness of the inference server. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ServerReady(self, request, context): """@@ .. cpp:var:: rpc ServerReady(ServerReadyRequest) returns @@ (ServerReadyResponse) @@ @@ Check readiness of the inference server. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModelReady(self, request, context): """@@ .. cpp:var:: rpc ModelReady(ModelReadyRequest) returns @@ (ModelReadyResponse) @@ @@ Check readiness of a model in the inference server. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ServerMetadata(self, request, context): """@@ .. cpp:var:: rpc ServerMetadata(ServerMetadataRequest) returns @@ (ServerMetadataResponse) @@ @@ Get server metadata. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModelMetadata(self, request, context): """@@ .. cpp:var:: rpc ModelMetadata(ModelMetadataRequest) returns @@ (ModelMetadataResponse) @@ @@ Get model metadata. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModelInfer(self, request, context): """@@ .. cpp:var:: rpc ModelInfer(ModelInferRequest) returns @@ (ModelInferResponse) @@ @@ Perform inference using a specific model. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModelStreamInfer(self, request_iterator, context): """@@ .. cpp:var:: rpc ModelStreamInfer(stream ModelInferRequest) returns @@ (stream ModelStreamInferResponse) @@ @@ Perform streaming inference. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModelConfig(self, request, context): """@@ .. cpp:var:: rpc ModelConfig(ModelConfigRequest) returns @@ (ModelConfigResponse) @@ @@ Get model configuration. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModelStatistics(self, request, context): """@@ .. cpp:var:: rpc ModelStatistics( @@ ModelStatisticsRequest) @@ returns (ModelStatisticsResponse) @@ @@ Get the cumulative inference statistics for a model. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RepositoryIndex(self, request, context): """@@ .. cpp:var:: rpc RepositoryIndex(RepositoryIndexRequest) returns @@ (RepositoryIndexResponse) @@ @@ Get the index of model repository contents. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RepositoryModelLoad(self, request, context): """@@ .. cpp:var:: rpc RepositoryModelLoad(RepositoryModelLoadRequest) returns @@ (RepositoryModelLoadResponse) @@ @@ Load or reload a model from a repository. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RepositoryModelUnload(self, request, context): """@@ .. cpp:var:: rpc RepositoryModelUnload(RepositoryModelUnloadRequest) @@ returns (RepositoryModelUnloadResponse) @@ @@ Unload a model. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SystemSharedMemoryStatus(self, request, context): """@@ .. cpp:var:: rpc SystemSharedMemoryStatus( @@ SystemSharedMemoryStatusRequest) @@ returns (SystemSharedMemoryStatusRespose) @@ @@ Get the status of all registered system-shared-memory regions. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SystemSharedMemoryRegister(self, request, context): """@@ .. cpp:var:: rpc SystemSharedMemoryRegister( @@ SystemSharedMemoryRegisterRequest) @@ returns (SystemSharedMemoryRegisterResponse) @@ @@ Register a system-shared-memory region. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SystemSharedMemoryUnregister(self, request, context): """@@ .. cpp:var:: rpc SystemSharedMemoryUnregister( @@ SystemSharedMemoryUnregisterRequest) @@ returns (SystemSharedMemoryUnregisterResponse) @@ @@ Unregister a system-shared-memory region. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CudaSharedMemoryStatus(self, request, context): """@@ .. cpp:var:: rpc CudaSharedMemoryStatus( @@ CudaSharedMemoryStatusRequest) @@ returns (CudaSharedMemoryStatusRespose) @@ @@ Get the status of all registered CUDA-shared-memory regions. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CudaSharedMemoryRegister(self, request, context): """@@ .. cpp:var:: rpc CudaSharedMemoryRegister( @@ CudaSharedMemoryRegisterRequest) @@ returns (CudaSharedMemoryRegisterResponse) @@ @@ Register a CUDA-shared-memory region. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CudaSharedMemoryUnregister(self, request, context): """@@ .. cpp:var:: rpc CudaSharedMemoryUnregister( @@ CudaSharedMemoryUnregisterRequest) @@ returns (CudaSharedMemoryUnregisterResponse) @@ @@ Unregister a CUDA-shared-memory region. @@ """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_GRPCInferenceServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'ServerLive': grpc.unary_unary_rpc_method_handler( servicer.ServerLive, request_deserializer=grpc__service__pb2.ServerLiveRequest.FromString, response_serializer=grpc__service__pb2.ServerLiveResponse.SerializeToString, ), 'ServerReady': grpc.unary_unary_rpc_method_handler( servicer.ServerReady, request_deserializer=grpc__service__pb2.ServerReadyRequest.FromString, response_serializer=grpc__service__pb2.ServerReadyResponse.SerializeToString, ), 'ModelReady': grpc.unary_unary_rpc_method_handler( servicer.ModelReady, request_deserializer=grpc__service__pb2.ModelReadyRequest.FromString, response_serializer=grpc__service__pb2.ModelReadyResponse.SerializeToString, ), 'ServerMetadata': grpc.unary_unary_rpc_method_handler( servicer.ServerMetadata, request_deserializer=grpc__service__pb2.ServerMetadataRequest.FromString, response_serializer=grpc__service__pb2.ServerMetadataResponse.SerializeToString, ), 'ModelMetadata': grpc.unary_unary_rpc_method_handler( servicer.ModelMetadata, request_deserializer=grpc__service__pb2.ModelMetadataRequest.FromString, response_serializer=grpc__service__pb2.ModelMetadataResponse.SerializeToString, ), 'ModelInfer': grpc.unary_unary_rpc_method_handler( servicer.ModelInfer, request_deserializer=grpc__service__pb2.ModelInferRequest.FromString, response_serializer=grpc__service__pb2.ModelInferResponse.SerializeToString, ), 'ModelStreamInfer': grpc.stream_stream_rpc_method_handler( servicer.ModelStreamInfer, request_deserializer=grpc__service__pb2.ModelInferRequest.FromString, response_serializer=grpc__service__pb2.ModelStreamInferResponse.SerializeToString, ), 'ModelConfig': grpc.unary_unary_rpc_method_handler( servicer.ModelConfig, request_deserializer=grpc__service__pb2.ModelConfigRequest.FromString, response_serializer=grpc__service__pb2.ModelConfigResponse.SerializeToString, ), 'ModelStatistics': grpc.unary_unary_rpc_method_handler( servicer.ModelStatistics, request_deserializer=grpc__service__pb2.ModelStatisticsRequest.FromString, response_serializer=grpc__service__pb2.ModelStatisticsResponse.SerializeToString, ), 'RepositoryIndex': grpc.unary_unary_rpc_method_handler( servicer.RepositoryIndex, request_deserializer=grpc__service__pb2.RepositoryIndexRequest.FromString, response_serializer=grpc__service__pb2.RepositoryIndexResponse.SerializeToString, ), 'RepositoryModelLoad': grpc.unary_unary_rpc_method_handler( servicer.RepositoryModelLoad, request_deserializer=grpc__service__pb2.RepositoryModelLoadRequest.FromString, response_serializer=grpc__service__pb2.RepositoryModelLoadResponse.SerializeToString, ), 'RepositoryModelUnload': grpc.unary_unary_rpc_method_handler( servicer.RepositoryModelUnload, request_deserializer=grpc__service__pb2.RepositoryModelUnloadRequest.FromString, response_serializer=grpc__service__pb2.RepositoryModelUnloadResponse.SerializeToString, ), 'SystemSharedMemoryStatus': grpc.unary_unary_rpc_method_handler( servicer.SystemSharedMemoryStatus, request_deserializer=grpc__service__pb2.SystemSharedMemoryStatusRequest.FromString, response_serializer=grpc__service__pb2.SystemSharedMemoryStatusResponse.SerializeToString, ), 'SystemSharedMemoryRegister': grpc.unary_unary_rpc_method_handler( servicer.SystemSharedMemoryRegister, request_deserializer=grpc__service__pb2.SystemSharedMemoryRegisterRequest.FromString, response_serializer=grpc__service__pb2.SystemSharedMemoryRegisterResponse.SerializeToString, ), 'SystemSharedMemoryUnregister': grpc.unary_unary_rpc_method_handler( servicer.SystemSharedMemoryUnregister, request_deserializer=grpc__service__pb2.SystemSharedMemoryUnregisterRequest.FromString, response_serializer=grpc__service__pb2.SystemSharedMemoryUnregisterResponse.SerializeToString, ), 'CudaSharedMemoryStatus': grpc.unary_unary_rpc_method_handler( servicer.CudaSharedMemoryStatus, request_deserializer=grpc__service__pb2.CudaSharedMemoryStatusRequest.FromString, response_serializer=grpc__service__pb2.CudaSharedMemoryStatusResponse.SerializeToString, ), 'CudaSharedMemoryRegister': grpc.unary_unary_rpc_method_handler( servicer.CudaSharedMemoryRegister, request_deserializer=grpc__service__pb2.CudaSharedMemoryRegisterRequest.FromString, response_serializer=grpc__service__pb2.CudaSharedMemoryRegisterResponse.SerializeToString, ), 'CudaSharedMemoryUnregister': grpc.unary_unary_rpc_method_handler( servicer.CudaSharedMemoryUnregister, request_deserializer=grpc__service__pb2.CudaSharedMemoryUnregisterRequest.FromString, response_serializer=grpc__service__pb2.CudaSharedMemoryUnregisterResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'inference.GRPCInferenceService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class GRPCInferenceService(object): """@@ @@.. cpp:var:: service InferenceService @@ @@ Inference Server GRPC endpoints. @@ """ @staticmethod def ServerLive(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ServerLive', grpc__service__pb2.ServerLiveRequest.SerializeToString, grpc__service__pb2.ServerLiveResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ServerReady(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ServerReady', grpc__service__pb2.ServerReadyRequest.SerializeToString, grpc__service__pb2.ServerReadyResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ModelReady(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ModelReady', grpc__service__pb2.ModelReadyRequest.SerializeToString, grpc__service__pb2.ModelReadyResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ServerMetadata(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ServerMetadata', grpc__service__pb2.ServerMetadataRequest.SerializeToString, grpc__service__pb2.ServerMetadataResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ModelMetadata(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ModelMetadata', grpc__service__pb2.ModelMetadataRequest.SerializeToString, grpc__service__pb2.ModelMetadataResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ModelInfer(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ModelInfer', grpc__service__pb2.ModelInferRequest.SerializeToString, grpc__service__pb2.ModelInferResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ModelStreamInfer(request_iterator, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.stream_stream(request_iterator, target, '/inference.GRPCInferenceService/ModelStreamInfer', grpc__service__pb2.ModelInferRequest.SerializeToString, grpc__service__pb2.ModelStreamInferResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ModelConfig(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ModelConfig', grpc__service__pb2.ModelConfigRequest.SerializeToString, grpc__service__pb2.ModelConfigResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ModelStatistics(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/ModelStatistics', grpc__service__pb2.ModelStatisticsRequest.SerializeToString, grpc__service__pb2.ModelStatisticsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def RepositoryIndex(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/RepositoryIndex', grpc__service__pb2.RepositoryIndexRequest.SerializeToString, grpc__service__pb2.RepositoryIndexResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def RepositoryModelLoad(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/RepositoryModelLoad', grpc__service__pb2.RepositoryModelLoadRequest.SerializeToString, grpc__service__pb2.RepositoryModelLoadResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def RepositoryModelUnload(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/RepositoryModelUnload', grpc__service__pb2.RepositoryModelUnloadRequest.SerializeToString, grpc__service__pb2.RepositoryModelUnloadResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def SystemSharedMemoryStatus(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/SystemSharedMemoryStatus', grpc__service__pb2.SystemSharedMemoryStatusRequest.SerializeToString, grpc__service__pb2.SystemSharedMemoryStatusResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def SystemSharedMemoryRegister(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/SystemSharedMemoryRegister', grpc__service__pb2.SystemSharedMemoryRegisterRequest.SerializeToString, grpc__service__pb2.SystemSharedMemoryRegisterResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def SystemSharedMemoryUnregister(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/SystemSharedMemoryUnregister', grpc__service__pb2.SystemSharedMemoryUnregisterRequest.SerializeToString, grpc__service__pb2.SystemSharedMemoryUnregisterResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CudaSharedMemoryStatus(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/CudaSharedMemoryStatus', grpc__service__pb2.CudaSharedMemoryStatusRequest.SerializeToString, grpc__service__pb2.CudaSharedMemoryStatusResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CudaSharedMemoryRegister(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/CudaSharedMemoryRegister', grpc__service__pb2.CudaSharedMemoryRegisterRequest.SerializeToString, grpc__service__pb2.CudaSharedMemoryRegisterResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CudaSharedMemoryUnregister(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/inference.GRPCInferenceService/CudaSharedMemoryUnregister', grpc__service__pb2.CudaSharedMemoryUnregisterRequest.SerializeToString, grpc__service__pb2.CudaSharedMemoryUnregisterResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
dfvfs/path/xfs_path_spec.py
dfjxs/dfvfs
176
110252
# -*- coding: utf-8 -*- """The XFS path specification implementation.""" from dfvfs.lib import definitions from dfvfs.path import factory from dfvfs.path import path_spec class XFSPathSpec(path_spec.PathSpec): """XFS path specification implementation. Attributes: inode (int): inode. location (str): location. """ TYPE_INDICATOR = definitions.TYPE_INDICATOR_XFS def __init__( self, inode=None, location=None, parent=None, **kwargs): """Initializes a path specification. Note that an XFS path specification must have a parent. Args: inode (Optional[int]): inode. location (Optional[str]): location. parent (Optional[PathSpec]): parent path specification. Raises: ValueError: when parent or both inode and location are not set. """ if (not inode and not location) or not parent: raise ValueError('Missing inode and location, or parent value.') super(XFSPathSpec, self).__init__(parent=parent, **kwargs) self.inode = inode self.location = location @property def comparable(self): """str: comparable representation of the path specification.""" string_parts = [] if self.inode is not None: string_parts.append('inode: {0:d}'.format(self.inode)) if self.location is not None: string_parts.append('location: {0:s}'.format(self.location)) return self._GetComparable(sub_comparable_string=', '.join(string_parts)) factory.Factory.RegisterPathSpec(XFSPathSpec)
koku/api/migrations/0031_clone_schema.py
rubik-ai/koku
157
110277
# Generated by Django 3.1.2 on 2020-10-14 12:24 import os from django.db import migrations from koku import migration_sql_helpers as msh def apply_clone_schema(apps, schema_editor): path = msh.find_db_functions_dir() msh.apply_sql_file(schema_editor, os.path.join(path, "clone_schema.sql"), literal_placeholder=True) class Migration(migrations.Migration): dependencies = [("api", "0030_auto_20201007_1403")] operations = [migrations.RunPython(code=apply_clone_schema)]
survae/transforms/stochastic/permutation.py
alisiahkoohi/survae_flows
262
110281
<gh_stars>100-1000 import torch from survae.transforms.stochastic import StochasticTransform class StochasticPermutation(StochasticTransform): '''A stochastic permutation layer.''' def __init__(self, dim=1): super(StochasticPermutation, self).__init__() self.register_buffer('buffer', torch.zeros(1)) self.dim = dim def forward(self, x): rand = torch.rand(x.shape[0], x.shape[self.dim], device=x.device) permutation = rand.argsort(dim=1) for d in range(1, self.dim): permutation = permutation.unsqueeze(1) for d in range(self.dim+1, x.dim()): permutation = permutation.unsqueeze(-1) permutation = permutation.expand_as(x) z = torch.gather(x, self.dim, permutation) ldj = self.buffer.new_zeros(x.shape[0]) return z, ldj def inverse(self, z): rand = torch.rand(z.shape[0], z.shape[self.dim], device=z.device) permutation = rand.argsort(dim=1) for d in range(1, self.dim): permutation = permutation.unsqueeze(1) for d in range(self.dim+1, z.dim()): permutation = permutation.unsqueeze(-1) permutation = permutation.expand_as(z) x = torch.gather(z, self.dim, permutation) return x
care/facility/migrations/0121_auto_20200619_2306.py
gigincg/care
189
110283
<gh_stars>100-1000 # Generated by Django 2.2.11 on 2020-06-19 17:36 from django.db import migrations, models import django.db.models.deletion import fernet_fields.fields class Migration(migrations.Migration): dependencies = [ ('facility', '0120_patientsample_icmr_label'), ] operations = [ migrations.AddField( model_name='patientsearch', name='facility', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='facility.Facility'), ), migrations.AddField( model_name='patientsearch', name='patient_external_id', field=fernet_fields.fields.EncryptedCharField(default='', max_length=100), ), ]
apps/reputation/serializers.py
macdaliot/exist
159
110285
<filename>apps/reputation/serializers.py from rest_framework import serializers from .models import blacklist class blSerializer(serializers.ModelSerializer): source = serializers.CharField(source='get_source_display') class Meta: model = blacklist fields = ('__all__') class sourceSerializer(serializers.ModelSerializer): class Meta: model = blacklist fields = ('SOURCES',)
tests/modules/core/test_speedtest.py
spxtr/bumblebee-status
1,089
110299
import pytest pytest.importorskip("speedtest") def test_load_module(): __import__("modules.core.speedtest")
tests/xfdnn/test_xfdnn_compiler_caffe_deephi.py
yarenty/ml-suite
334
110336
<filename>tests/xfdnn/test_xfdnn_compiler_caffe_deephi.py<gh_stars>100-1000 #!/usr/bin/env python # # // SPDX-License-Identifier: BSD-3-CLAUSE # # (C) Copyright 2018, Xilinx, Inc. # import os,sys from xfdnn.tools.compile.bin.xfdnn_compiler_caffe import CaffeFrontend as xfdnnCompiler def run_compiler(dsp, mem, prototxt, caffemodel, quantcfg): print("Testing xfdnn_compiler_caffe...") print("Testing:\n prototxt %s\n caffemodel %s\n quantization file %s\n dsp %s\n mem %s\n" % (prototxt,caffemodel,quantcfg,dsp,mem)) compiler = xfdnnCompiler( usedeephi=True, cpulayermustgo=True, pipelineconvmaxpool=True, quant_cfgfile=quantcfg, networkfile=prototxt, weights=caffemodel, dsp=dsp, memory=mem, generatefile="work/"+prototxt.replace('/','_')+"_"+str(dsp)+"/fpga.cmds", anew="work/"+prototxt.replace('/','_')+"_"+str(dsp)+"/optimized_model" ) SUCCESS = compiler.compile() #assert(SUCCESS) # Compiler will throw exception if it does not succeed as of 3/12/19 del compiler def get_caffe_model_list_all(): prototxt_list = [ \ "/wrk/acceleration/models/deephi/License_Plate_Recognition_INT8_models_test_codes/license_plate_recognition_quantizations.prototxt", \ "/wrk/acceleration/models/deephi/Car_Logo_Recognition_INT8_models_test_codes/car_logo_recognition_quantizations.prototxt", \ "/wrk/acceleration/models/deephi/Car_Attributes_Recognition_INT8_models_test_codes/car_attributes_recognition_quantizations.prototxt", \ "/wrk/acceleration/models/deephi/Pedestrian_Attributes_Recognition_INT8_models_test_codes/pedestrian_attributes_recognition_quantizations.prototxt", \ "/wrk/acceleration/models/deephi/reid_model_release_20190301/deploy.prototxt", \ "/wrk/acceleration/models/deephi/Car_Logo_Detection/deploy.prototxt", \ "/wrk/acceleration/models/deephi/Plate_Detection/deploy.prototxt", \ # "/wrk/acceleration/models/deephi/Pedestrian_Detection_INT8_models_test_codes/deploy.prototxt", \ ] caffemodel_list = [ \ "/wrk/acceleration/models/deephi/License_Plate_Recognition_INT8_models_test_codes/license_plate_recognition_quantizations.caffemodel", \ "/wrk/acceleration/models/deephi/Car_Logo_Recognition_INT8_models_test_codes/car_logo_recognition_quantizations.caffemodel", \ "/wrk/acceleration/models/deephi/Car_Attributes_Recognition_INT8_models_test_codes/car_attributes_recognition_quantizations.caffemodel", \ "/wrk/acceleration/models/deephi/Pedestrian_Attributes_Recognition_INT8_models_test_codes/pedestrian_attributes_recognition_quantizations.caffemodel", \ "/wrk/acceleration/models/deephi/reid_model_release_20190301/deploy.caffemodel", \ "/wrk/acceleration/models/deephi/Car_Logo_Detection/deploy.caffemodel", \ "/wrk/acceleration/models/deephi/Plate_Detection/deploy.caffemodel", \ # "/wrk/acceleration/models/deephi/Pedestrian_Detection_INT8_models_test_codes/deploy.caffemodel", \ ] quantcfg_list = [ \ "/wrk/acceleration/models/deephi/License_Plate_Recognition_INT8_models_test_codes/fix_info.txt", \ "/wrk/acceleration/models/deephi/Car_Logo_Recognition_INT8_models_test_codes/fix_info.txt", \ "/wrk/acceleration/models/deephi/Car_Attributes_Recognition_INT8_models_test_codes/fix_info.txt", \ "/wrk/acceleration/models/deephi/Pedestrian_Attributes_Recognition_INT8_models_test_codes/fix_info.txt", \ "/wrk/acceleration/models/deephi/reid_model_release_20190301/fix_info.txt", \ "/wrk/acceleration/models/deephi/Car_Logo_Detection/fix_info.txt", \ "/wrk/acceleration/models/deephi/Plate_Detection/fix_info.txt", \ # "/wrk/acceleration/models/deephi/Pedestrian_Detection_INT8_models_test_codes/fix_info.txt", \ ] return (prototxt_list,caffemodel_list,quantcfg_list) def get_caffe_model_list_1(): prototxt_list = [ \ "models/caffe/bvlc_googlenet_without_lrn/fp32/bvlc_googlenet_without_lrn_deploy.prototxt" \ ] caffemodel_list = [ \ "models/caffe/bvlc_googlenet_without_lrn/fp32/bvlc_googlenet_without_lrn.caffemodel" \ ] return (prototxt_list,caffemodel_list) def get_caffe_model_list(): (p,c,q) = get_caffe_model_list_all() return list(zip(p,c,q)) testdata = get_caffe_model_list() import pytest @pytest.mark.parametrize('prototxt,caffemodel,quantcfg', testdata) def test_xfdnn_compiler_caffe_28(prototxt,caffemodel,quantcfg): print("Testing xfdnn_compiler_caffe...") dsp = 28 mem = 4 run_compiler(dsp,mem,prototxt,caffemodel,quantcfg) @pytest.mark.parametrize('prototxt,caffemodel,quantcfg', testdata) def test_xfdnn_compiler_caffe_56(prototxt,caffemodel,quantcfg): print("Testing xfdnn_compiler_caffe...") dsp = 56 mem = 6 run_compiler(dsp,mem,prototxt,caffemodel,quantcfg) @pytest.mark.parametrize('prototxt,caffemodel,quantcfg', testdata) def test_xfdnn_compiler_caffe_96(prototxt,caffemodel,quantcfg): print("Testing xfdnn_compiler_caffe...") dsp = 96 mem = 9 run_compiler(dsp,mem,prototxt,caffemodel,quantcfg) if __name__ == "__main__": for (prototxt,caffemodel) in testdata: test_xfdnn_compiler_caffe_28(prototxt,caffemodel,quantcfg) test_xfdnn_compiler_caffe_56(prototxt,caffemodel,quantcfg) test_xfdnn_compiler_caffe_96(prototxt,caffemodel,quantcfg)
yukarin/param.py
m95music/yukarin
139
110376
class AcousticParam(object): def __init__( self, sampling_rate: int = 24000, pad_second: float = 0, threshold_db: float = None, frame_period: int = 5, order: int = 8, alpha: float = 0.466, f0_floor: float = 71, f0_ceil: float = 800, fft_length: int = 1024, dtype: str = 'float32', ) -> None: self.sampling_rate = sampling_rate self.pad_second = pad_second self.threshold_db = threshold_db self.frame_period = frame_period self.order = order self.alpha = alpha self.f0_floor = f0_floor self.f0_ceil = f0_ceil self.fft_length = fft_length self.dtype = dtype def _asdict(self): return self.__dict__
poco/utils/multitouch_gesture.py
HBoPRC/Poco
1,444
110386
<filename>poco/utils/multitouch_gesture.py # coding=utf-8 import math from poco.utils.track import MotionTrack def make_pinching(direction, center, size, percent, dead_zone, duration): w, h = size half_distance = percent / 2 dead_zone_distance = dead_zone / 2 pa0 = center pb0 = list(pa0) pa1 = list(pa0) pb1 = list(pa0) if direction == 'in': pa0[0] += w * half_distance pa0[1] += h * half_distance pb0[0] -= w * half_distance pb0[1] -= h * half_distance pa1[0] += w * dead_zone_distance pa1[1] += h * dead_zone_distance pb1[0] -= w * dead_zone_distance pb1[1] -= h * dead_zone_distance else: pa1[0] += w * half_distance pa1[1] += h * half_distance pb1[0] -= w * half_distance pb1[1] -= h * half_distance pa0[0] += w * dead_zone_distance pa0[1] += h * dead_zone_distance pb0[0] -= w * dead_zone_distance pb0[1] -= h * dead_zone_distance speed = math.sqrt(w * h) * (percent - dead_zone) / 2 / duration track_a = MotionTrack([pa0, pa1], speed) track_b = MotionTrack([pb0, pb1], speed) return track_a, track_b def make_panning(): pass
teradata/tdodbc.py
Teradata/PyTd
133
110388
<gh_stars>100-1000 """An implementation of the Python Database API Specification v2.0 using Teradata ODBC.""" # The MIT License (MIT) # # Copyright (c) 2015 by Teradata # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import atexit import collections import ctypes import platform import re import sys import threading from . import util, datatypes from .api import * # @UnusedWildImport # noqa logger = logging.getLogger(__name__) # ODBC Constants SQL_ATTR_ODBC_VERSION, SQL_OV_ODBC2, SQL_OV_ODBC3 = 200, 2, 3 SQL_ATTR_QUERY_TIMEOUT, SQL_ATTR_AUTOCOMMIT = 0, 102 SQL_NULL_HANDLE, SQL_HANDLE_ENV, SQL_HANDLE_DBC, SQL_HANDLE_STMT = 0, 1, 2, 3 SQL_SUCCESS, SQL_SUCCESS_WITH_INFO = 0, 1, SQL_ERROR, SQL_INVALID_HANDLE = -1, -2 SQL_NEED_DATA, SQL_NO_DATA = 99, 100 SQL_CLOSE, SQL_UNBIND, SQL_RESET_PARAMS = 0, 2, 3 SQL_PARAM_TYPE_UNKNOWN = 0 SQL_PARAM_INPUT, SQL_PARAM_INPUT_OUTPUT, SQL_PARAM_OUTPUT = 1, 2, 4 SQL_ATTR_PARAM_BIND_TYPE = 18 SQL_ATTR_ROWS_FETCHED_PTR, SQL_ATTR_ROW_STATUS_PTR = 26, 25 SQL_ATTR_ROW_ARRAY_SIZE = 27 SQL_ATTR_PARAMS_PROCESSED_PTR, SQL_ATTR_PARAM_STATUS_PTR = 21, 20 SQL_ATTR_PARAMSET_SIZE = 22 SQL_PARAM_BIND_BY_COLUMN = 0 SQL_NULL_DATA, SQL_NTS = -1, -3 SQL_IS_POINTER, SQL_IS_UINTEGER, SQL_IS_INTEGER = -4, -5, -6 SQL_FETCH_NEXT, SQL_FETCH_FIRST, SQL_FETCH_LAST = 1, 2, 4 SQL_SIGNED_OFFSET = -20 SQL_C_BINARY, SQL_BINARY, SQL_VARBINARY, SQL_LONGVARBINARY = -2, -2, -3, -4 SQL_C_WCHAR, SQL_WCHAR, SQL_WVARCHAR, SQL_WLONGVARCHAR = -8, -8, -9, -10 SQL_C_SBIGINT = -5 + SQL_SIGNED_OFFSET SQL_FLOAT = 6 SQL_C_FLOAT = SQL_REAL = 7 SQL_C_DOUBLE = SQL_DOUBLE = 8 SQL_DESC_TYPE_NAME = 14 SQL_COMMIT, SQL_ROLLBACK = 0, 1 SQL_STATE_DATA_TRUNCATED = '01004' SQL_STATE_CONNECTION_NOT_OPEN = '08003' SQL_STATE_INVALID_TRANSACTION_STATE = '25000' SQLLEN = ctypes.c_ssize_t SQLULEN = ctypes.c_size_t SQLUSMALLINT = ctypes.c_ushort SQLSMALLINT = ctypes.c_short SQLINTEGER = ctypes.c_int SQLFLOAT = ctypes.c_float SQLDOUBLE = ctypes.c_double SQLBYTE = ctypes.c_ubyte SQLCHAR = ctypes.c_char SQLWCHAR = ctypes.c_wchar SQLRETURN = SQLSMALLINT SQLPOINTER = ctypes.c_void_p SQLHANDLE = ctypes.c_void_p ADDR = ctypes.byref PTR = ctypes.POINTER ERROR_BUFFER_SIZE = 2 ** 10 SMALL_BUFFER_SIZE = 2 ** 12 LARGE_BUFFER_SIZE = 2 ** 20 TRUE = 1 FALSE = 0 odbc = None hEnv = None drivers = None lock = threading.Lock() pyVer = sys.version_info[0] osType = platform.system() # The amount of seconds to wait when submitting non-user defined SQL (e.g. # set query bands, etc). QUERY_TIMEOUT = 120 if pyVer > 2: unicode = str # @ReservedAssignment # Define OS specific methods for handling buffers and strings. if osType == "Darwin" or osType == "Windows" or osType.startswith('CYGWIN'): # Mac OSx and Windows def _createBuffer(l): return ctypes.create_unicode_buffer(l) def _inputStr(s, l=None): if s is None: return None return ctypes.create_unicode_buffer( (s if util.isString(s) else str(s)), l) def _outputStr(s): return s.value def _convertParam(s): if s is None: return None return s if util.isString(s) else str(s) else: # Unix/Linux # Multiply by 3 as one UTF-16 character can require 3 UTF-8 bytes. def _createBuffer(l): return ctypes.create_string_buffer(l * 3) def _inputStr(s, l=None): if s is None: return None return ctypes.create_string_buffer( (s if util.isString(s) else str(s)).encode('utf8'), l) def _outputStr(s): return unicode(s.raw.partition(b'\00')[0], 'utf8') def _convertParam(s): if s is None: return None return (s if util.isString(s) else str(s)).encode('utf8') SQLWCHAR = ctypes.c_char connections = [] def cleanupConnections(): """Cleanup open connections.""" if connections: logger.warn( "%s open connections found on exit, attempting to close...", len(connections)) for conn in list(connections): conn.close() def getDiagnosticInfo(handle, handleType=SQL_HANDLE_STMT): """Gets diagnostic information associated with ODBC calls, particularly when errors occur.""" info = [] infoNumber = 1 while True: sqlState = _createBuffer(6) nativeError = SQLINTEGER() messageBuffer = _createBuffer(ERROR_BUFFER_SIZE) messageLength = SQLSMALLINT() rc = odbc.SQLGetDiagRecW(handleType, handle, infoNumber, sqlState, ADDR(nativeError), messageBuffer, len(messageBuffer), ADDR(messageLength)) if rc == SQL_SUCCESS_WITH_INFO and \ messageLength.value > ctypes.sizeof(messageBuffer): # Resize buffer to fit entire message. messageBuffer = _createBuffer(messageLength.value) continue if rc == SQL_SUCCESS or rc == SQL_SUCCESS_WITH_INFO: info.append( (_outputStr(sqlState), _outputStr(messageBuffer), abs(nativeError.value))) infoNumber += 1 elif rc == SQL_NO_DATA: return info elif rc == SQL_INVALID_HANDLE: raise InterfaceError( 'SQL_INVALID_HANDLE', "Invalid handle passed to SQLGetDiagRecW.") elif rc == SQL_ERROR: if infoNumber > 1: return info raise InterfaceError( "SQL_ERROR", "SQL_ERROR returned from SQLGetDiagRecW.") else: raise InterfaceError( "UNKNOWN_RETURN_CODE", "SQLGetDiagRecW returned an unknown return code: %s", rc) def checkStatus(rc, hEnv=SQL_NULL_HANDLE, hDbc=SQL_NULL_HANDLE, hStmt=SQL_NULL_HANDLE, method="Method", ignore=None): """ Check return status code and log any information or error messages. If error is returned, raise exception.""" sqlState = [] logger.trace("%s returned status code %s", method, rc) if rc not in (SQL_SUCCESS, SQL_NO_DATA): if hStmt != SQL_NULL_HANDLE: info = getDiagnosticInfo(hStmt, SQL_HANDLE_STMT) elif hDbc != SQL_NULL_HANDLE: info = getDiagnosticInfo(hDbc, SQL_HANDLE_DBC) else: info = getDiagnosticInfo(hEnv, SQL_HANDLE_ENV) for i in info: sqlState.append(i[0]) if rc == SQL_SUCCESS_WITH_INFO: logger.debug( u"{} succeeded with info: [{}] {}".format(method, i[0], i[1])) elif not ignore or i[0] not in ignore: logger.debug((u"{} returned non-successful error code " u"{}: [{}] {}").format(method, rc, i[0], i[1])) msg = ", ".join(map(lambda m: m[1], info)) if re.search(r'[^0-9\s]', msg) is None or i[0] == 'I': msg = msg + (". Check that the ODBC driver is installed " "and the ODBCINI or ODBCINST environment " "variables are correctly set.") raise DatabaseError(i[2], u"[{}] {}".format(i[0], msg), i[0]) else: logger.debug( u"Ignoring return of {} from {}: [{}] {}".format(rc, method, i[0], i[1])) # Breaking here because this error is ignored and info could # contain older error messages. # E.g. if error was SQL_STATE_CONNECTION_NOT_OPEN, the next # error would be the original connection error. break if not info: logger.info( "No information associated with return code %s from %s", rc, method) return sqlState def prototype(func, *args): """Setup function prototype""" func.restype = SQLRETURN func.argtypes = args def initFunctionPrototypes(): """Initialize function prototypes for ODBC calls.""" prototype(odbc.SQLAllocHandle, SQLSMALLINT, SQLHANDLE, PTR(SQLHANDLE)) prototype(odbc.SQLGetDiagRecW, SQLSMALLINT, SQLHANDLE, SQLSMALLINT, PTR(SQLWCHAR), PTR(SQLINTEGER), PTR(SQLWCHAR), SQLSMALLINT, PTR(SQLSMALLINT)) prototype(odbc.SQLSetEnvAttr, SQLHANDLE, SQLINTEGER, SQLPOINTER, SQLINTEGER) prototype(odbc.SQLDriverConnectW, SQLHANDLE, SQLHANDLE, PTR(SQLWCHAR), SQLSMALLINT, PTR(SQLWCHAR), SQLSMALLINT, PTR(SQLSMALLINT), SQLUSMALLINT) prototype(odbc.SQLFreeHandle, SQLSMALLINT, SQLHANDLE) prototype(odbc.SQLExecDirectW, SQLHANDLE, PTR(SQLWCHAR), SQLINTEGER) prototype(odbc.SQLNumResultCols, SQLHANDLE, PTR(SQLSMALLINT)) prototype(odbc.SQLDescribeColW, SQLHANDLE, SQLUSMALLINT, PTR(SQLWCHAR), SQLSMALLINT, PTR(SQLSMALLINT), PTR(SQLSMALLINT), PTR(SQLULEN), PTR(SQLSMALLINT), PTR(SQLSMALLINT)) prototype(odbc.SQLColAttributeW, SQLHANDLE, SQLUSMALLINT, SQLUSMALLINT, SQLPOINTER, SQLSMALLINT, PTR(SQLSMALLINT), PTR(SQLLEN)) prototype(odbc.SQLFetch, SQLHANDLE) prototype(odbc.SQLGetData, SQLHANDLE, SQLUSMALLINT, SQLSMALLINT, SQLPOINTER, SQLLEN, PTR(SQLLEN)) prototype(odbc.SQLFreeStmt, SQLHANDLE, SQLUSMALLINT) prototype(odbc.SQLPrepareW, SQLHANDLE, PTR(SQLWCHAR), SQLINTEGER) prototype(odbc.SQLNumParams, SQLHANDLE, PTR(SQLSMALLINT)) prototype(odbc.SQLDescribeParam, SQLHANDLE, SQLUSMALLINT, PTR( SQLSMALLINT), PTR(SQLULEN), PTR(SQLSMALLINT), PTR(SQLSMALLINT)) prototype(odbc.SQLBindParameter, SQLHANDLE, SQLUSMALLINT, SQLSMALLINT, SQLSMALLINT, SQLSMALLINT, SQLULEN, SQLSMALLINT, SQLPOINTER, SQLLEN, PTR(SQLLEN)) prototype(odbc.SQLExecute, SQLHANDLE) prototype(odbc.SQLSetStmtAttr, SQLHANDLE, SQLINTEGER, SQLPOINTER, SQLINTEGER) prototype(odbc.SQLMoreResults, SQLHANDLE) prototype(odbc.SQLDisconnect, SQLHANDLE) prototype(odbc.SQLSetConnectAttr, SQLHANDLE, SQLINTEGER, SQLPOINTER, SQLINTEGER) prototype(odbc.SQLEndTran, SQLSMALLINT, SQLHANDLE, SQLSMALLINT) prototype(odbc.SQLRowCount, SQLHANDLE, PTR(SQLLEN)) prototype(odbc.SQLBindCol, SQLHANDLE, SQLUSMALLINT, SQLSMALLINT, SQLPOINTER, SQLLEN, PTR(SQLLEN)) prototype(odbc.SQLDrivers, SQLHANDLE, SQLUSMALLINT, PTR(SQLCHAR), SQLSMALLINT, PTR(SQLSMALLINT), PTR(SQLCHAR), SQLSMALLINT, PTR(SQLSMALLINT)) def initOdbcLibrary(odbcLibPath=None): """Initialize the ODBC Library.""" global odbc if odbc is None: if osType == "Windows": odbc = ctypes.windll.odbc32 else: if not odbcLibPath: # If MAC OSx if osType == "Darwin": odbcLibPath = "libiodbc.dylib" elif osType.startswith("CYGWIN"): odbcLibPath = "odbc32.dll" else: odbcLibPath = 'libodbc.so' logger.info("Loading ODBC Library: %s", odbcLibPath) odbc = ctypes.cdll.LoadLibrary(odbcLibPath) def initDriverList(): global drivers if drivers is None: drivers = [] description = ctypes.create_string_buffer(SMALL_BUFFER_SIZE) descriptionLength = SQLSMALLINT() attributesLength = SQLSMALLINT() rc = SQL_SUCCESS direction = SQL_FETCH_FIRST while True: rc = odbc.SQLDrivers(hEnv, direction, description, len(description), ADDR(descriptionLength), None, 0, attributesLength) checkStatus(rc, hEnv=hEnv) if rc == SQL_NO_DATA: break drivers.append(description.value.decode("utf-8")) direction = SQL_FETCH_NEXT logger.info("Available drivers: {}".format(", ".join(drivers))) def initOdbcEnv(): """Initialize ODBC environment handle.""" global hEnv if hEnv is None: hEnv = SQLPOINTER() rc = odbc.SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, ADDR(hEnv)) checkStatus(rc, hEnv=hEnv) atexit.register(cleanupOdbcEnv) atexit.register(cleanupConnections) # Set the ODBC environment's compatibility level to ODBC 3.0 rc = odbc.SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, SQL_OV_ODBC3, 0) checkStatus(rc, hEnv=hEnv) def cleanupOdbcEnv(): """Cleanup ODBC environment handle.""" if hEnv: odbc.SQLFreeHandle(SQL_HANDLE_ENV, hEnv) def init(odbcLibPath=None): try: lock.acquire() initOdbcLibrary(odbcLibPath) initFunctionPrototypes() initOdbcEnv() initDriverList() finally: lock.release() def determineDriver(dbType, driver): retval = driver if driver is not None: if driver not in drivers: raise InterfaceError( "DRIVER_NOT_FOUND", "No driver found with name '{}'. " " Available drivers: {}".format(driver, ",".join(drivers))) else: matches = [] for driver in drivers: if dbType in driver: matches.append(driver) if not matches: raise InterfaceError( "DRIVER_NOT_FOUND", "No driver found for '{}'. " "Available drivers: {}".format(dbType, ",".join(drivers))) else: retval = matches[len(matches) - 1] if len(matches) > 1: logger.warning( "More than one driver found " "for '{}'. Using '{}'." " Specify the 'driver' option to " "select a specific driver.".format(dbType, retval)) return retval class OdbcConnection: """Represents a Connection to Teradata using ODBC.""" def __init__(self, dbType="Teradata", system=None, username=None, password=<PASSWORD>, autoCommit=False, transactionMode=None, queryBands=None, odbcLibPath=None, dataTypeConverter=datatypes.DefaultDataTypeConverter(), driver=None, **kwargs): """Creates an ODBC connection.""" self.hDbc = SQLPOINTER() self.cursorCount = 0 self.sessionno = 0 self.cursors = [] self.dbType = dbType self.converter = dataTypeConverter # Initialize connection handle init(odbcLibPath) # Build connect string extraParams = set(k.lower() for k in kwargs) connectParams = collections.OrderedDict() if "dsn" not in extraParams: connectParams["DRIVER"] = determineDriver(dbType, driver) if system: connectParams["DBCNAME"] = system if username: connectParams["UID"] = username if password: connectParams["PWD"] = password if transactionMode: connectParams["SESSIONMODE"] = "Teradata" \ if transactionMode == "TERA" else transactionMode connectParams.update(kwargs) connectString = u";".join(u"{}={}".format(key, value) for key, value in connectParams.items()) rc = odbc.SQLAllocHandle(SQL_HANDLE_DBC, hEnv, ADDR(self.hDbc)) checkStatus(rc, hEnv=hEnv, method="SQLAllocHandle") # Create connection logger.debug("Creating connection using ODBC ConnectString: %s", re.sub("PWD=.*?(;|$)", "PWD=XXX;", connectString)) try: lock.acquire() rc = odbc.SQLDriverConnectW(self.hDbc, 0, _inputStr(connectString), SQL_NTS, None, 0, None, 0) finally: lock.release() try: checkStatus(rc, hDbc=self.hDbc, method="SQLDriverConnectW") except: rc = odbc.SQLFreeHandle(SQL_HANDLE_DBC, self.hDbc) self.hDbc = None raise connections.append(self) # Setup autocommit, query bands, etc. try: logger.debug("Setting AUTOCOMMIT to %s", "True" if util.booleanValue(autoCommit) else "False") rc = odbc.SQLSetConnectAttr( self.hDbc, SQL_ATTR_AUTOCOMMIT, TRUE if util.booleanValue(autoCommit) else FALSE, 0) checkStatus( rc, hDbc=self.hDbc, method="SQLSetConnectAttr - SQL_ATTR_AUTOCOMMIT") if dbType == "Teradata": with self.cursor() as c: self.sessionno = c.execute( "SELECT SESSION", queryTimeout=QUERY_TIMEOUT).fetchone()[0] logger.debug("SELECT SESSION returned %s", self.sessionno) if queryBands: c.execute(u"SET QUERY_BAND = '{};' FOR SESSION".format( u";".join(u"{}={}".format(util.toUnicode(k), util.toUnicode(v)) for k, v in queryBands.items())), queryTimeout=QUERY_TIMEOUT) self.commit() logger.debug("Created session %s.", self.sessionno) except Exception: self.close() raise def close(self): """CLoses an ODBC Connection.""" if self.hDbc: if self.sessionno: logger.debug("Closing session %s...", self.sessionno) for cursor in list(self.cursors): cursor.close() rc = odbc.SQLDisconnect(self.hDbc) sqlState = checkStatus( rc, hDbc=self.hDbc, method="SQLDisconnect", ignore=[SQL_STATE_CONNECTION_NOT_OPEN, SQL_STATE_INVALID_TRANSACTION_STATE]) if SQL_STATE_INVALID_TRANSACTION_STATE in sqlState: logger.warning("Rolling back open transaction for session %s " "so it can be closed.", self.sessionno) rc = odbc.SQLEndTran(SQL_HANDLE_DBC, self.hDbc, SQL_ROLLBACK) checkStatus( rc, hDbc=self.hDbc, method="SQLEndTran - SQL_ROLLBACK - Disconnect") rc = odbc.SQLDisconnect(self.hDbc) checkStatus(rc, hDbc=self.hDbc, method="SQLDisconnect") rc = odbc.SQLFreeHandle(SQL_HANDLE_DBC, self.hDbc) if rc != SQL_INVALID_HANDLE: checkStatus(rc, hDbc=self.hDbc, method="SQLFreeHandle") connections.remove(self) self.hDbc = None if self.sessionno: logger.debug("Session %s closed.", self.sessionno) def commit(self): """Commits a transaction.""" logger.debug("Committing transaction...") rc = odbc.SQLEndTran(SQL_HANDLE_DBC, self.hDbc, SQL_COMMIT) checkStatus(rc, hDbc=self.hDbc, method="SQLEndTran - SQL_COMMIT") def rollback(self): """Rollsback a transaction.""" logger.debug("Rolling back transaction...") rc = odbc.SQLEndTran(SQL_HANDLE_DBC, self.hDbc, SQL_ROLLBACK) checkStatus(rc, hDbc=self.hDbc, method="SQLEndTran - SQL_ROLLBACK") def cursor(self): """Returns a cursor.""" cursor = OdbcCursor( self, self.dbType, self.converter, self.cursorCount) self.cursorCount += 1 return cursor def __del__(self): self.close() def __enter__(self): return self def __exit__(self, t, value, traceback): self.close() def __repr__(self): return "OdbcConnection(sessionno={})".format(self.sessionno) connect = OdbcConnection class OdbcCursor (util.Cursor): """Represents an ODBC Cursor.""" def __init__(self, connection, dbType, converter, num): util.Cursor.__init__(self, connection, dbType, converter) self.num = num self.moreResults = None if num > 0: logger.debug( "Creating cursor %s for session %s.", self.num, self.connection.sessionno) self.hStmt = SQLPOINTER() rc = odbc.SQLAllocHandle( SQL_HANDLE_STMT, connection.hDbc, ADDR(self.hStmt)) checkStatus(rc, hStmt=self.hStmt) connection.cursors.append(self) def callproc(self, procname, params, queryTimeout=0): self._checkClosed() query = "CALL {} (".format(procname) for i in range(0, len(params)): if i > 0: query += ", " query += "?" query += ")" logger.debug("Executing Procedure: %s", query) self.execute(query, params, queryTimeout=queryTimeout) return util.OutParams(params, self.dbType, self.converter) def close(self): if self.hStmt: if self.num > 0: logger.debug( "Closing cursor %s for session %s.", self.num, self.connection.sessionno) rc = odbc.SQLFreeHandle(SQL_HANDLE_STMT, self.hStmt) checkStatus(rc, hStmt=self.hStmt) self.connection.cursors.remove(self) self.hStmt = None def _setQueryTimeout(self, queryTimeout): rc = odbc.SQLSetStmtAttr( self.hStmt, SQL_ATTR_QUERY_TIMEOUT, SQLPOINTER(queryTimeout), SQL_IS_UINTEGER) checkStatus( rc, hStmt=self.hStmt, method="SQLSetStmtStmtAttr - SQL_ATTR_QUERY_TIMEOUT") def execute(self, query, params=None, queryTimeout=0): self._checkClosed() if params: self.executemany(query, [params, ], queryTimeout) else: if self.connection.sessionno: logger.debug( "Executing query on session %s using SQLExecDirectW: %s", self.connection.sessionno, query) self._free() self._setQueryTimeout(queryTimeout) rc = odbc.SQLExecDirectW( self.hStmt, _inputStr(_convertLineFeeds(query)), SQL_NTS) checkStatus(rc, hStmt=self.hStmt, method="SQLExecDirectW") self._handleResults() return self def executemany(self, query, params, batch=False, queryTimeout=0): self._checkClosed() self._free() # Prepare the query rc = odbc.SQLPrepareW( self.hStmt, _inputStr(_convertLineFeeds(query)), SQL_NTS) checkStatus(rc, hStmt=self.hStmt, method="SQLPrepare") self._setQueryTimeout(queryTimeout) # Get the number of parameters in the SQL statement. numParams = SQLSMALLINT() rc = odbc.SQLNumParams(self.hStmt, ADDR(numParams)) checkStatus(rc, hStmt=self.hStmt, method="SQLNumParams") numParams = numParams.value # The argument types. dataTypes = [] for paramNum in range(0, numParams): dataType = SQLSMALLINT() parameterSize = SQLULEN() decimalDigits = SQLSMALLINT() nullable = SQLSMALLINT() rc = odbc.SQLDescribeParam( self.hStmt, paramNum + 1, ADDR(dataType), ADDR(parameterSize), ADDR(decimalDigits), ADDR(nullable)) checkStatus(rc, hStmt=self.hStmt, method="SQLDescribeParams") dataTypes.append(dataType.value) if batch: logger.debug( "Executing query on session %s using batched SQLExecute: %s", self.connection.sessionno, query) self._executeManyBatch(params, numParams, dataTypes) else: logger.debug( "Executing query on session %s using SQLExecute: %s", self.connection.sessionno, query) rc = odbc.SQLSetStmtAttr(self.hStmt, SQL_ATTR_PARAMSET_SIZE, 1, 0) checkStatus(rc, hStmt=self.hStmt, method="SQLSetStmtAttr") paramSetNum = 0 for p in params: paramSetNum += 1 logger.trace("ParamSet %s: %s", paramSetNum, p) if len(p) != numParams: raise InterfaceError( "PARAMS_MISMATCH", "The number of supplied parameters " "({}) does not match the expected number of " "parameters ({}).".format(len(p), numParams)) paramArray = [] lengthArray = [] for paramNum in range(0, numParams): val = p[paramNum] inputOutputType = _getInputOutputType(val) valueType, paramType = _getParamValueType( dataTypes[paramNum]) param, length, null = _getParamValue(val, valueType, False) paramArray.append(param) if param is not None: if valueType == SQL_C_BINARY: bufSize = SQLLEN(length) lengthArray.append(SQLLEN(length)) columnSize = SQLULEN(length) elif valueType == SQL_C_DOUBLE: bufSize = SQLLEN(length) lengthArray.append(SQLLEN(length)) columnSize = SQLULEN(length) param = ADDR(param) else: bufSize = SQLLEN(ctypes.sizeof(param)) lengthArray.append(SQLLEN(SQL_NTS)) columnSize = SQLULEN(length) if null: # Handle INOUT parameter with NULL input value. lengthArray.pop(-1) lengthArray.append(SQLLEN(SQL_NULL_DATA)) else: bufSize = SQLLEN(0) columnSize = SQLULEN(0) lengthArray.append(SQLLEN(SQL_NULL_DATA)) logger.trace("Binding parameter %s...", paramNum + 1) rc = odbc.SQLBindParameter( self.hStmt, paramNum + 1, inputOutputType, valueType, paramType, columnSize, 0, param, bufSize, ADDR(lengthArray[paramNum])) checkStatus( rc, hStmt=self.hStmt, method="SQLBindParameter") logger.debug("Executing prepared statement.") rc = odbc.SQLExecute(self.hStmt) for paramNum in range(0, numParams): val = p[paramNum] if isinstance(val, OutParam): val.size = lengthArray[paramNum].value checkStatus(rc, hStmt=self.hStmt, method="SQLExecute") self._handleResults() return self def _executeManyBatch(self, params, numParams, dataTypes): # Get the number of parameter sets. paramSetSize = len(params) # Set the SQL_ATTR_PARAM_BIND_TYPE statement attribute to use # column-wise binding. rc = odbc.SQLSetStmtAttr( self.hStmt, SQL_ATTR_PARAM_BIND_TYPE, SQL_PARAM_BIND_BY_COLUMN, 0) checkStatus(rc, hStmt=self.hStmt, method="SQLSetStmtAttr") # Specify the number of elements in each parameter array. rc = odbc.SQLSetStmtAttr( self.hStmt, SQL_ATTR_PARAMSET_SIZE, paramSetSize, 0) checkStatus(rc, hStmt=self.hStmt, method="SQLSetStmtAttr") # Specify a PTR to get the number of parameters processed. # paramsProcessed = SQLULEN() # rc = odbc.SQLSetStmtAttr(self.hStmt, SQL_ATTR_PARAMS_PROCESSED_PTR, # ADDR(paramsProcessed), SQL_IS_POINTER) # checkStatus(rc, hStmt=self.hStmt, method="SQLSetStmtAttr") # Specify a PTR to get the status of the parameters processed. # paramsStatus = (SQLUSMALLINT * paramSetSize)() # rc = odbc.SQLSetStmtAttr(self.hStmt, SQL_ATTR_PARAM_STATUS_PTR, # ADDR(paramsStatus), SQL_IS_POINTER) # checkStatus(rc, hStmt=self.hStmt, method="SQLSetStmtAttr") # Bind the parameters. paramArrays = [] lengthArrays = [] paramSetSize = len(params) paramSetNum = 0 debugEnabled = logger.isEnabledFor(logging.DEBUG) for p in params: paramSetNum += 1 if debugEnabled: logger.debug("ParamSet %s: %s", paramSetNum, p) if len(p) != numParams: raise InterfaceError( "PARAMS_MISMATCH", "The number of supplied parameters " "({}) does not match the expected number of parameters " "({}).".format(len(p), numParams)) for paramNum in range(0, numParams): p = [] valueType, paramType = _getParamValueType(dataTypes[paramNum]) maxLen = 0 for paramSetNum in range(0, paramSetSize): param, length, null = _getParamValue( # @UnusedVariable params[paramSetNum][paramNum], valueType, True) if length > maxLen: maxLen = length p.append(param) if debugEnabled: logger.debug("Max length for parameter %s is %s.", paramNum + 1, maxLen) if valueType == SQL_C_BINARY: valueSize = SQLLEN(maxLen) paramArrays.append((SQLBYTE * (paramSetSize * maxLen))()) elif valueType == SQL_C_DOUBLE: valueSize = SQLLEN(maxLen) paramArrays.append((SQLDOUBLE * paramSetSize)()) else: maxLen += 1 valueSize = SQLLEN(ctypes.sizeof(SQLWCHAR) * maxLen) paramArrays.append(_createBuffer(paramSetSize * maxLen)) lengthArrays.append((SQLLEN * paramSetSize)()) for paramSetNum in range(0, paramSetSize): index = paramSetNum * maxLen if p[paramSetNum] is not None: if valueType == SQL_C_DOUBLE: paramArrays[paramNum][paramSetNum] = p[paramSetNum] else: for c in p[paramSetNum]: paramArrays[paramNum][index] = c index += 1 if valueType == SQL_C_BINARY: lengthArrays[paramNum][ paramSetNum] = len(p[paramSetNum]) else: lengthArrays[paramNum][ paramSetNum] = SQLLEN(SQL_NTS) paramArrays[paramNum][ index] = _convertParam("\x00")[0] else: lengthArrays[paramNum][paramSetNum] = SQLLEN(SQL_NULL_DATA) if valueType == SQL_C_WCHAR: paramArrays[paramNum][index] = _convertParam("\x00")[0] if debugEnabled: logger.debug("Binding parameter %s...", paramNum + 1) rc = odbc.SQLBindParameter(self.hStmt, paramNum + 1, SQL_PARAM_INPUT, valueType, paramType, SQLULEN(maxLen), 0, paramArrays[paramNum], valueSize, lengthArrays[paramNum]) checkStatus(rc, hStmt=self.hStmt, method="SQLBindParameter") # Execute the SQL statement. if debugEnabled: logger.debug("Executing prepared statement.") rc = odbc.SQLExecute(self.hStmt) checkStatus(rc, hStmt=self.hStmt, method="SQLExecute") def _handleResults(self): # Rest cursor attributes. self.description = None self.rowcount = -1 self.rownumber = None self.columns = {} self.types = [] self.moreResults = None # Get column count in result set. columnCount = SQLSMALLINT() rc = odbc.SQLNumResultCols(self.hStmt, ADDR(columnCount)) checkStatus(rc, hStmt=self.hStmt, method="SQLNumResultCols") rowCount = SQLLEN() rc = odbc.SQLRowCount(self.hStmt, ADDR(rowCount)) checkStatus(rc, hStmt=self.hStmt, method="SQLRowCount") self.rowcount = rowCount.value # Get column meta data and create row iterator. if columnCount.value > 0: self.description = [] nameBuf = _createBuffer(SMALL_BUFFER_SIZE) nameLength = SQLSMALLINT() dataType = SQLSMALLINT() columnSize = SQLULEN() decimalDigits = SQLSMALLINT() nullable = SQLSMALLINT() for col in range(0, columnCount.value): rc = odbc.SQLDescribeColW( self.hStmt, col + 1, nameBuf, len(nameBuf), ADDR(nameLength), ADDR(dataType), ADDR(columnSize), ADDR(decimalDigits), ADDR(nullable)) checkStatus(rc, hStmt=self.hStmt, method="SQLDescribeColW") columnName = _outputStr(nameBuf) odbc.SQLColAttributeW( self.hStmt, col + 1, SQL_DESC_TYPE_NAME, ADDR(nameBuf), len(nameBuf), None, None) checkStatus(rc, hStmt=self.hStmt, method="SQLColAttributeW") typeName = _outputStr(nameBuf) typeCode = self.converter.convertType(self.dbType, typeName) self.columns[columnName.lower()] = col self.types.append((typeName, typeCode, dataType.value)) self.description.append(( columnName, typeCode, None, columnSize.value, decimalDigits.value, None, nullable.value)) self.iterator = rowIterator(self) def nextset(self): self._checkClosed() if self.moreResults is None: self._checkForMoreResults() if self.moreResults: self._handleResults() return True def _checkForMoreResults(self): rc = odbc.SQLMoreResults(self.hStmt) checkStatus(rc, hStmt=self.hStmt, method="SQLMoreResults") self.moreResults = rc == SQL_SUCCESS or rc == SQL_SUCCESS_WITH_INFO return self.moreResults def _free(self): rc = odbc.SQLFreeStmt(self.hStmt, SQL_CLOSE) checkStatus(rc, hStmt=self.hStmt, method="SQLFreeStmt - SQL_CLOSE") rc = odbc.SQLFreeStmt(self.hStmt, SQL_RESET_PARAMS) checkStatus( rc, hStmt=self.hStmt, method="SQLFreeStmt - SQL_RESET_PARAMS") def _checkClosed(self): if not self.hStmt: raise InterfaceError("CURSOR_CLOSED", "Operations cannot be performed on a " "closed cursor.") def _convertLineFeeds(query): return "\r".join(util.linesplit(query)) def _getInputOutputType(val): inputOutputType = SQL_PARAM_INPUT if isinstance(val, InOutParam): inputOutputType = SQL_PARAM_INPUT_OUTPUT elif isinstance(val, OutParam): inputOutputType = SQL_PARAM_OUTPUT return inputOutputType def _getParamValueType(dataType): valueType = SQL_C_WCHAR paramType = SQL_WVARCHAR if dataType in (SQL_BINARY, SQL_VARBINARY, SQL_LONGVARBINARY): valueType = SQL_C_BINARY paramType = dataType elif dataType == SQL_WLONGVARCHAR: paramType = SQL_WLONGVARCHAR elif dataType in (SQL_FLOAT, SQL_DOUBLE, SQL_REAL): valueType = SQL_C_DOUBLE paramType = SQL_DOUBLE return valueType, paramType def _getParamBufferSize(val): return SMALL_BUFFER_SIZE if val.size is None else val.size def _getParamValue(val, valueType, batch): length = 0 null = False if val is None: param = None elif valueType == SQL_C_BINARY: ba = val if isinstance(val, InOutParam): ba = val.inValue if val.inValue is None: null = True ba = bytearray(_getParamBufferSize(val)) elif isinstance(val, OutParam): ba = bytearray(_getParamBufferSize(val)) if ba is not None and not isinstance(ba, bytearray): raise InterfaceError("Expected bytearray for BINARY parameter.") length = len(ba) if batch: param = ba else: byteArr = SQLBYTE * length param = byteArr.from_buffer(ba) if isinstance(val, OutParam): val.setValueFunc(lambda: ba[:val.size]) elif valueType == SQL_C_DOUBLE: f = val if isinstance(val, InOutParam): f = val.inValue if f is None: null = True f = float(0) elif isinstance(val, OutParam): f = float(0) param = SQLDOUBLE(f if not util.isString(f) else float(f)) length = ctypes.sizeof(param) if isinstance(val, OutParam): val.setValueFunc(lambda: param.value) else: if batch: param = _convertParam(val) length = len(param) elif isinstance(val, InOutParam): length = _getParamBufferSize(val) if val.inValue is not None: param = _inputStr(val.inValue, length) else: param = _createBuffer(length) null = True val.setValueFunc(lambda: _outputStr(param)) elif isinstance(val, OutParam): length = _getParamBufferSize(val) param = _createBuffer(length) val.setValueFunc(lambda: _outputStr(param)) else: param = _inputStr(val) length = len(param) return param, length, null def _getFetchSize(cursor): """Gets the fetch size associated with the cursor.""" fetchSize = cursor.fetchSize for dataType in cursor.types: if dataType[2] in (SQL_LONGVARBINARY, SQL_WLONGVARCHAR): fetchSize = 1 break return fetchSize def _getBufSize(cursor, colIndex): bufSize = cursor.description[colIndex - 1][3] + 1 dataType = cursor.types[colIndex - 1][0] if dataType in datatypes.BINARY_TYPES: pass elif dataType in datatypes.FLOAT_TYPES: bufSize = ctypes.sizeof(ctypes.c_double) elif dataType in datatypes.INT_TYPES: bufSize = 30 elif cursor.types[colIndex - 1][2] in (SQL_WCHAR, SQL_WVARCHAR, SQL_WLONGVARCHAR): pass elif dataType.startswith("DATE"): bufSize = 20 elif dataType.startswith("TIMESTAMP"): bufSize = 40 elif dataType.startswith("TIME"): bufSize = 30 elif dataType.startswith("INTERVAL"): bufSize = 80 elif dataType.startswith("PERIOD"): bufSize = 80 elif dataType.startswith("DECIMAL"): bufSize = 42 else: bufSize = 2 ** 16 + 1 return bufSize def _setupColumnBuffers(cursor, buffers, bufSizes, dataTypes, indicators, lastFetchSize): """Sets up the column buffers for retrieving multiple rows of a result set at a time""" fetchSize = _getFetchSize(cursor) # If the fetchSize hasn't changed since the last time setupBuffers # was called, then we can reuse the previous buffers. if fetchSize != lastFetchSize: logger.debug("FETCH_SIZE: %s" % fetchSize) rc = odbc.SQLSetStmtAttr( cursor.hStmt, SQL_ATTR_ROW_ARRAY_SIZE, fetchSize, 0) checkStatus(rc, hStmt=cursor.hStmt, method="SQLSetStmtAttr - SQL_ATTR_ROW_ARRAY_SIZE") for col in range(1, len(cursor.description) + 1): dataType = SQL_C_WCHAR buffer = None bufSize = _getBufSize(cursor, col) lob = False if cursor.types[col - 1][2] == SQL_LONGVARBINARY: lob = True bufSize = LARGE_BUFFER_SIZE buffer = (ctypes.c_byte * bufSize)() dataType = SQL_LONGVARBINARY elif cursor.types[col - 1][2] == SQL_WLONGVARCHAR: lob = True buffer = _createBuffer(LARGE_BUFFER_SIZE) bufSize = ctypes.sizeof(buffer) dataType = SQL_WLONGVARCHAR elif cursor.description[col - 1][1] == BINARY: dataType = SQL_C_BINARY buffer = (ctypes.c_byte * bufSize * fetchSize)() elif cursor.types[col - 1][0] in datatypes.FLOAT_TYPES: dataType = SQL_C_DOUBLE buffer = (ctypes.c_double * fetchSize)() else: buffer = _createBuffer(bufSize * fetchSize) bufSize = int(ctypes.sizeof(buffer) / fetchSize) dataTypes.append(dataType) buffers.append(buffer) bufSizes.append(bufSize) logger.debug("Buffer size for column %s: %s", col, bufSize) indicators.append((SQLLEN * fetchSize)()) if not lob: rc = odbc.SQLBindCol(cursor.hStmt, col, dataType, buffer, bufSize, indicators[col - 1]) checkStatus(rc, hStmt=cursor.hStmt, method="SQLBindCol") return fetchSize def _getLobData(cursor, colIndex, buf, binary): """ Get LOB Data """ length = SQLLEN() dataType = SQL_C_WCHAR bufSize = ctypes.sizeof(buf) if binary: dataType = SQL_C_BINARY rc = odbc.SQLGetData( cursor.hStmt, colIndex, dataType, buf, bufSize, ADDR(length)) sqlState = checkStatus(rc, hStmt=cursor.hStmt, method="SQLGetData") val = None if length.value != SQL_NULL_DATA: if SQL_STATE_DATA_TRUNCATED in sqlState: logger.debug( "Data truncated. Calling SQLGetData to get next part " "of data for column %s of size %s.", colIndex, length.value) if dataType == SQL_C_BINARY: val = bytearray(length.value) val[0:bufSize] = buf newBufSize = len(val) - bufSize newBuffer = (ctypes.c_byte * newBufSize).from_buffer( val, bufSize) rc = odbc.SQLGetData( cursor.hStmt, colIndex, dataType, newBuffer, newBufSize, ADDR(length)) checkStatus( rc, hStmt=cursor.hStmt, method="SQLGetData2") else: val = [_outputStr(buf), ] while SQL_STATE_DATA_TRUNCATED in sqlState: rc = odbc.SQLGetData( cursor.hStmt, colIndex, dataType, buf, bufSize, ADDR(length)) sqlState = checkStatus( rc, hStmt=cursor.hStmt, method="SQLGetData2") val.append(_outputStr(buf)) val = "".join(val) else: if dataType == SQL_C_BINARY: val = bytearray( (ctypes.c_byte * length.value).from_buffer(buf)) else: val = _outputStr(buf) return val def _getRow(cursor, buffers, bufSizes, dataTypes, indicators, rowIndex): """Reads a row of data from the fetched input buffers. If the column type is a BLOB or CLOB, then that data is obtained via calls to SQLGetData.""" row = [] for col in range(1, len(cursor.description) + 1): val = None buf = buffers[col - 1] bufSize = bufSizes[col - 1] dataType = dataTypes[col - 1] length = indicators[col - 1][rowIndex] if length != SQL_NULL_DATA: if dataType == SQL_C_BINARY: val = bytearray((ctypes.c_byte * length).from_buffer( buf, bufSize * rowIndex)) elif dataType == SQL_C_DOUBLE: val = ctypes.c_double.from_buffer(buf, bufSize * rowIndex).value elif dataType == SQL_WLONGVARCHAR: val = _getLobData(cursor, col, buf, False) elif dataType == SQL_LONGVARBINARY: val = _getLobData(cursor, col, buf, True) else: chLen = (int)(bufSize / ctypes.sizeof(SQLWCHAR)) chBuf = (SQLWCHAR * chLen) val = _outputStr(chBuf.from_buffer(buf, bufSize * rowIndex)) row.append(val) return row def rowIterator(cursor): buffers = [] bufSizes = [] dataTypes = [] indicators = [] rowCount = SQLULEN() lastFetchSize = None rc = odbc.SQLSetStmtAttr( cursor.hStmt, SQL_ATTR_ROWS_FETCHED_PTR, ADDR(rowCount), 0) checkStatus(rc, hStmt=cursor.hStmt, method="SQLSetStmtAttr - SQL_ATTR_ROWS_FETCHED_PTR") while cursor.description is not None: lastFetchSize = _setupColumnBuffers(cursor, buffers, bufSizes, dataTypes, indicators, lastFetchSize) rc = odbc.SQLFetch(cursor.hStmt) checkStatus(rc, hStmt=cursor.hStmt, method="SQLFetch") if rc == SQL_NO_DATA: break for rowIndex in range(0, rowCount.value): yield _getRow(cursor, buffers, bufSizes, dataTypes, indicators, rowIndex) if not cursor._checkForMoreResults(): cursor._free()
alipay/aop/api/domain/DeviceTradeInfoList.py
antopen/alipay-sdk-python-all
213
110464
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class DeviceTradeInfoList(object): def __init__(self): self._biz_tid = None self._dau = None self._device_face_trade_dau = None self._device_face_trade_dau_d_value = None self._device_name = None self._device_sn = None self._device_status = None self._face_trade_cnt = None self._face_trd_amt = None self._face_trd_cnt_rate = None self._face_trd_user_cnt_rate = None self._face_trd_user_cnt_rate_d_value = None self._gmt_active = None self._iot_trd_up = None self._iot_trd_user_cnt = None self._iot_trd_user_cnt_d_value = None self._max_dt = None self._merchant_pid = None self._shop_id = None self._trade_amt = None self._trade_cnt = None @property def biz_tid(self): return self._biz_tid @biz_tid.setter def biz_tid(self, value): self._biz_tid = value @property def dau(self): return self._dau @dau.setter def dau(self, value): self._dau = value @property def device_face_trade_dau(self): return self._device_face_trade_dau @device_face_trade_dau.setter def device_face_trade_dau(self, value): self._device_face_trade_dau = value @property def device_face_trade_dau_d_value(self): return self._device_face_trade_dau_d_value @device_face_trade_dau_d_value.setter def device_face_trade_dau_d_value(self, value): self._device_face_trade_dau_d_value = value @property def device_name(self): return self._device_name @device_name.setter def device_name(self, value): self._device_name = value @property def device_sn(self): return self._device_sn @device_sn.setter def device_sn(self, value): self._device_sn = value @property def device_status(self): return self._device_status @device_status.setter def device_status(self, value): self._device_status = value @property def face_trade_cnt(self): return self._face_trade_cnt @face_trade_cnt.setter def face_trade_cnt(self, value): self._face_trade_cnt = value @property def face_trd_amt(self): return self._face_trd_amt @face_trd_amt.setter def face_trd_amt(self, value): self._face_trd_amt = value @property def face_trd_cnt_rate(self): return self._face_trd_cnt_rate @face_trd_cnt_rate.setter def face_trd_cnt_rate(self, value): self._face_trd_cnt_rate = value @property def face_trd_user_cnt_rate(self): return self._face_trd_user_cnt_rate @face_trd_user_cnt_rate.setter def face_trd_user_cnt_rate(self, value): self._face_trd_user_cnt_rate = value @property def face_trd_user_cnt_rate_d_value(self): return self._face_trd_user_cnt_rate_d_value @face_trd_user_cnt_rate_d_value.setter def face_trd_user_cnt_rate_d_value(self, value): self._face_trd_user_cnt_rate_d_value = value @property def gmt_active(self): return self._gmt_active @gmt_active.setter def gmt_active(self, value): self._gmt_active = value @property def iot_trd_up(self): return self._iot_trd_up @iot_trd_up.setter def iot_trd_up(self, value): self._iot_trd_up = value @property def iot_trd_user_cnt(self): return self._iot_trd_user_cnt @iot_trd_user_cnt.setter def iot_trd_user_cnt(self, value): self._iot_trd_user_cnt = value @property def iot_trd_user_cnt_d_value(self): return self._iot_trd_user_cnt_d_value @iot_trd_user_cnt_d_value.setter def iot_trd_user_cnt_d_value(self, value): self._iot_trd_user_cnt_d_value = value @property def max_dt(self): return self._max_dt @max_dt.setter def max_dt(self, value): self._max_dt = value @property def merchant_pid(self): return self._merchant_pid @merchant_pid.setter def merchant_pid(self, value): self._merchant_pid = value @property def shop_id(self): return self._shop_id @shop_id.setter def shop_id(self, value): self._shop_id = value @property def trade_amt(self): return self._trade_amt @trade_amt.setter def trade_amt(self, value): self._trade_amt = value @property def trade_cnt(self): return self._trade_cnt @trade_cnt.setter def trade_cnt(self, value): self._trade_cnt = value def to_alipay_dict(self): params = dict() if self.biz_tid: if hasattr(self.biz_tid, 'to_alipay_dict'): params['biz_tid'] = self.biz_tid.to_alipay_dict() else: params['biz_tid'] = self.biz_tid if self.dau: if hasattr(self.dau, 'to_alipay_dict'): params['dau'] = self.dau.to_alipay_dict() else: params['dau'] = self.dau if self.device_face_trade_dau: if hasattr(self.device_face_trade_dau, 'to_alipay_dict'): params['device_face_trade_dau'] = self.device_face_trade_dau.to_alipay_dict() else: params['device_face_trade_dau'] = self.device_face_trade_dau if self.device_face_trade_dau_d_value: if hasattr(self.device_face_trade_dau_d_value, 'to_alipay_dict'): params['device_face_trade_dau_d_value'] = self.device_face_trade_dau_d_value.to_alipay_dict() else: params['device_face_trade_dau_d_value'] = self.device_face_trade_dau_d_value if self.device_name: if hasattr(self.device_name, 'to_alipay_dict'): params['device_name'] = self.device_name.to_alipay_dict() else: params['device_name'] = self.device_name if self.device_sn: if hasattr(self.device_sn, 'to_alipay_dict'): params['device_sn'] = self.device_sn.to_alipay_dict() else: params['device_sn'] = self.device_sn if self.device_status: if hasattr(self.device_status, 'to_alipay_dict'): params['device_status'] = self.device_status.to_alipay_dict() else: params['device_status'] = self.device_status if self.face_trade_cnt: if hasattr(self.face_trade_cnt, 'to_alipay_dict'): params['face_trade_cnt'] = self.face_trade_cnt.to_alipay_dict() else: params['face_trade_cnt'] = self.face_trade_cnt if self.face_trd_amt: if hasattr(self.face_trd_amt, 'to_alipay_dict'): params['face_trd_amt'] = self.face_trd_amt.to_alipay_dict() else: params['face_trd_amt'] = self.face_trd_amt if self.face_trd_cnt_rate: if hasattr(self.face_trd_cnt_rate, 'to_alipay_dict'): params['face_trd_cnt_rate'] = self.face_trd_cnt_rate.to_alipay_dict() else: params['face_trd_cnt_rate'] = self.face_trd_cnt_rate if self.face_trd_user_cnt_rate: if hasattr(self.face_trd_user_cnt_rate, 'to_alipay_dict'): params['face_trd_user_cnt_rate'] = self.face_trd_user_cnt_rate.to_alipay_dict() else: params['face_trd_user_cnt_rate'] = self.face_trd_user_cnt_rate if self.face_trd_user_cnt_rate_d_value: if hasattr(self.face_trd_user_cnt_rate_d_value, 'to_alipay_dict'): params['face_trd_user_cnt_rate_d_value'] = self.face_trd_user_cnt_rate_d_value.to_alipay_dict() else: params['face_trd_user_cnt_rate_d_value'] = self.face_trd_user_cnt_rate_d_value if self.gmt_active: if hasattr(self.gmt_active, 'to_alipay_dict'): params['gmt_active'] = self.gmt_active.to_alipay_dict() else: params['gmt_active'] = self.gmt_active if self.iot_trd_up: if hasattr(self.iot_trd_up, 'to_alipay_dict'): params['iot_trd_up'] = self.iot_trd_up.to_alipay_dict() else: params['iot_trd_up'] = self.iot_trd_up if self.iot_trd_user_cnt: if hasattr(self.iot_trd_user_cnt, 'to_alipay_dict'): params['iot_trd_user_cnt'] = self.iot_trd_user_cnt.to_alipay_dict() else: params['iot_trd_user_cnt'] = self.iot_trd_user_cnt if self.iot_trd_user_cnt_d_value: if hasattr(self.iot_trd_user_cnt_d_value, 'to_alipay_dict'): params['iot_trd_user_cnt_d_value'] = self.iot_trd_user_cnt_d_value.to_alipay_dict() else: params['iot_trd_user_cnt_d_value'] = self.iot_trd_user_cnt_d_value if self.max_dt: if hasattr(self.max_dt, 'to_alipay_dict'): params['max_dt'] = self.max_dt.to_alipay_dict() else: params['max_dt'] = self.max_dt if self.merchant_pid: if hasattr(self.merchant_pid, 'to_alipay_dict'): params['merchant_pid'] = self.merchant_pid.to_alipay_dict() else: params['merchant_pid'] = self.merchant_pid if self.shop_id: if hasattr(self.shop_id, 'to_alipay_dict'): params['shop_id'] = self.shop_id.to_alipay_dict() else: params['shop_id'] = self.shop_id if self.trade_amt: if hasattr(self.trade_amt, 'to_alipay_dict'): params['trade_amt'] = self.trade_amt.to_alipay_dict() else: params['trade_amt'] = self.trade_amt if self.trade_cnt: if hasattr(self.trade_cnt, 'to_alipay_dict'): params['trade_cnt'] = self.trade_cnt.to_alipay_dict() else: params['trade_cnt'] = self.trade_cnt return params @staticmethod def from_alipay_dict(d): if not d: return None o = DeviceTradeInfoList() if 'biz_tid' in d: o.biz_tid = d['biz_tid'] if 'dau' in d: o.dau = d['dau'] if 'device_face_trade_dau' in d: o.device_face_trade_dau = d['device_face_trade_dau'] if 'device_face_trade_dau_d_value' in d: o.device_face_trade_dau_d_value = d['device_face_trade_dau_d_value'] if 'device_name' in d: o.device_name = d['device_name'] if 'device_sn' in d: o.device_sn = d['device_sn'] if 'device_status' in d: o.device_status = d['device_status'] if 'face_trade_cnt' in d: o.face_trade_cnt = d['face_trade_cnt'] if 'face_trd_amt' in d: o.face_trd_amt = d['face_trd_amt'] if 'face_trd_cnt_rate' in d: o.face_trd_cnt_rate = d['face_trd_cnt_rate'] if 'face_trd_user_cnt_rate' in d: o.face_trd_user_cnt_rate = d['face_trd_user_cnt_rate'] if 'face_trd_user_cnt_rate_d_value' in d: o.face_trd_user_cnt_rate_d_value = d['face_trd_user_cnt_rate_d_value'] if 'gmt_active' in d: o.gmt_active = d['gmt_active'] if 'iot_trd_up' in d: o.iot_trd_up = d['iot_trd_up'] if 'iot_trd_user_cnt' in d: o.iot_trd_user_cnt = d['iot_trd_user_cnt'] if 'iot_trd_user_cnt_d_value' in d: o.iot_trd_user_cnt_d_value = d['iot_trd_user_cnt_d_value'] if 'max_dt' in d: o.max_dt = d['max_dt'] if 'merchant_pid' in d: o.merchant_pid = d['merchant_pid'] if 'shop_id' in d: o.shop_id = d['shop_id'] if 'trade_amt' in d: o.trade_amt = d['trade_amt'] if 'trade_cnt' in d: o.trade_cnt = d['trade_cnt'] return o
community-content/pytorch_text_classification_using_vertex_sdk_and_gcloud/python_package/setup.py
gogasca/vertex-ai-samples
213
110467
from setuptools import find_packages from setuptools import setup import setuptools from distutils.command.build import build as _build import subprocess REQUIRED_PACKAGES = [ 'transformers', 'datasets', 'tqdm', 'cloudml-hypertune' ] setup( name='trainer', version='0.1', install_requires=REQUIRED_PACKAGES, packages=find_packages(), include_package_data=True, description='Vertex AI | Training | PyTorch | Text Classification | Python Package' )
codigo_das_aulas/aula_05/aula_05_01.py
VeirichR/curso-python-selenium
234
110472
from selenium.webdriver import Firefox url = 'http://selenium.dunossauro.live/aula_05_a.html' firefox = Firefox() firefox.get(url) div_py = firefox.find_element_by_id('python') div_hk = firefox.find_element_by_id('haskell') print(div_hk.text) firefox.quit()
tensorflow_io/python/ops/archive_ops.py
lgeiger/io
558
110509
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Archive.""" from tensorflow_io.python.ops import core_ops def list_archive_entries(filename, filters, **kwargs): """list_archive_entries""" memory = kwargs.get("memory", "") if not isinstance(filters, list): filters = [filters] return core_ops.io_list_archive_entries(filename, filters=filters, memory=memory) def read_archive( filename, format, entries, **kwargs ): # pylint: disable=redefined-builtin """read_archive""" memory = kwargs.get("memory", "") return core_ops.io_read_archive(filename, format, entries, memory=memory)
mods/NERO/teams.py
LeRoi46/opennero
215
110525
<reponame>LeRoi46/opennero import json import constants import OpenNero import agent as agents def factory(ai, *args): cls = ai_map.get(ai, NeroTeam) return cls(*args) class TeamEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, NeroTeam): return { 'team_ai': inv_ai_map.get(obj.__class__, 'none'), 'agents': [ { 'agent_ai': agent.ai_label(), 'args': agent.args() } for agent in obj.agents ] } return json.JSONEncoder.default(self, obj) def as_team(team_type, dct): if 'team_ai' in dct: team = factory(dct['team_ai'], team_type) for a in dct['agents'][:constants.pop_size]: team.create_agent(a['agent_ai'], *a['args']) return team return dct class NeroTeam(object): """ Basic NERO Team """ def __init__(self, team_type): self.team_type = team_type self.color = constants.TEAM_LABELS[team_type] self.agents = set() self.dead_agents = set() def create_agents(self, ai): for _ in range(constants.pop_size): self.create_agent(ai) def create_agent(self, ai, *args): a = agents.factory(ai, self.team_type, *args) self.add_agent(a) return a def add_agent(self, a): self.agents.add(a) def kill_agent(self, a): self.agents.remove(a) self.dead_agents.add(a) def is_episode_over(self, agent): return False def reset(self, agent): pass def start_training(self): pass def stop_training(self): pass def is_destroyed(self): return len(self.agents) == 0 and len(self.dead_agents) > 0 def reset_all(self): self.agents |= self.dead_agents self.dead_agents = set() class RTNEATTeam(NeroTeam): def __init__(self, team_type): NeroTeam.__init__(self, team_type) self.pop = OpenNero.Population() self.rtneat = OpenNero.RTNEAT("data/ai/neat-params.dat", self.pop, constants.DEFAULT_LIFETIME_MIN, constants.DEFAULT_EVOLVE_RATE) self.generation = 1 def add_agent(self, a): NeroTeam.add_agent(self, a) self.pop.add_organism(a.org) def start_training(self): OpenNero.set_ai('rtneat-%s' % self.team_type, self.rtneat) def stop_training(self): OpenNero.set_ai('rtneat-%s' % self.team_type, None) def is_episode_over(self, agent): return agent.org.eliminate def reset(self, agent): if agent.org.elminate: agent.org = self.rtneat.reproduce_one() def reset_all(self): NeroTeam.reset_all(self) #TODO: Epoch can segfault without fitness differentials if any([agent.org.fitness > 0 for agent in self.agents]): self.generation += 1 self.pop.epoch(self.generation) for agent, org in zip(self.agents, self.pop.organisms): agent.org = org ai_map = { 'rtneat': RTNEATTeam, 'none': NeroTeam } inv_ai_map = {v: k for k, v in ai_map.items()}
pyEX/stocks/quote.py
adamklaff/pyEX
335
110529
<gh_stars>100-1000 # ***************************************************************************** # # Copyright (c) 2020, the pyEX authors. # # This file is part of the pyEX library, distributed under the terms of # the Apache License 2.0. The full license can be found in the LICENSE file. # from functools import wraps import pandas as pd from ..common import ( _get, _quoteSymbols, _raiseIfNotStr, _reindex, _toDatetime, json_normalize, ) def quote(symbol, token="", version="stable", filter="", format="json"): """Get quote for ticker https://iexcloud.io/docs/api/#quote 4:30am-8pm ET Mon-Fri Args: symbol (str): Ticker to request token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Returns: dict or DataFrame: result """ _raiseIfNotStr(symbol) return _get( "stock/{symbol}/quote".format(symbol=_quoteSymbols(symbol)), token=token, version=version, filter=filter, format=format, ) @wraps(quote) def quoteDF(*args, **kwargs): q = quote(*args, **kwargs) if q: df = _reindex(_toDatetime(json_normalize(q)), "symbol") else: df = pd.DataFrame() return df
pygmt/tests/test_grdtrack.py
weiji14/gmt-python
168
110535
""" Tests for grdtrack. """ import os import numpy as np import numpy.testing as npt import pandas as pd import pytest from pygmt import grdtrack from pygmt.exceptions import GMTInvalidInput from pygmt.helpers import GMTTempFile, data_kind from pygmt.helpers.testing import load_static_earth_relief TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data") POINTS_DATA = os.path.join(TEST_DATA_DIR, "track.txt") @pytest.fixture(scope="module", name="dataarray") def fixture_dataarray(): """ Load the grid data from the sample earth_relief file. """ return load_static_earth_relief() @pytest.fixture(scope="module", name="expected_array") def fixture_numpy_array(): """ Load a numpy array with x, y, and bathymetry data. """ array = [ [-51.613, -17.93, 796.59434514], [-48.917, -22.434, 566.49184359], [-50.444, -16.358, 571.1492788], [-50.721, -16.628, 578.76116859], [-51.394, -12.196, 274.43205501], [-50.207, -18.404, 532.11444935], [-52.56, -16.977, 670.16934401], [-51.866, -19.794, 426.77300768], [-48.001, -14.144, 741.35824074], [-54.438, -19.193, 490.02716679], ] return array @pytest.fixture(scope="module", name="dataframe") def fixture_dataframe(): """ Load a pandas DataFrame with points. """ return pd.read_csv( POINTS_DATA, sep=r"\s+", header=None, names=["longitude", "latitude"] ) def test_grdtrack_input_dataframe_and_dataarray(dataarray, dataframe, expected_array): """ Run grdtrack by passing in a pandas.DataFrame and xarray.DataArray as inputs. """ output = grdtrack(points=dataframe, grid=dataarray, newcolname="bathymetry") assert isinstance(output, pd.DataFrame) assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"] npt.assert_allclose(np.array(output), expected_array) def test_grdtrack_input_csvfile_and_dataarray(dataarray, expected_array): """ Run grdtrack by passing in a csvfile and xarray.DataArray as inputs. """ with GMTTempFile() as tmpfile: output = grdtrack(points=POINTS_DATA, grid=dataarray, outfile=tmpfile.name) assert output is None # check that output is None since outfile is set assert os.path.exists(path=tmpfile.name) # check that outfile exists at path output = np.loadtxt(tmpfile.name) npt.assert_allclose(np.array(output), expected_array) def test_grdtrack_input_dataframe_and_ncfile(dataframe, expected_array): """ Run grdtrack by passing in a pandas.DataFrame and netcdf file as inputs. """ output = grdtrack( points=dataframe, grid="@static_earth_relief.nc", newcolname="bathymetry" ) assert isinstance(output, pd.DataFrame) assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"] npt.assert_allclose(np.array(output), expected_array) def test_grdtrack_input_csvfile_and_ncfile_to_dataframe(expected_array): """ Run grdtrack by passing in a csv file and netcdf file as inputs with a pandas.DataFrame output. """ output = grdtrack(points=POINTS_DATA, grid="@static_earth_relief.nc") assert isinstance(output, pd.DataFrame) npt.assert_allclose(np.array(output), expected_array) def test_grdtrack_wrong_kind_of_points_input(dataarray, dataframe): """ Run grdtrack using points input that is not a pandas.DataFrame (matrix) or file. """ invalid_points = dataframe.longitude.to_xarray() assert data_kind(invalid_points) == "grid" with pytest.raises(GMTInvalidInput): grdtrack(points=invalid_points, grid=dataarray, newcolname="bathymetry") def test_grdtrack_wrong_kind_of_grid_input(dataarray, dataframe): """ Run grdtrack using grid input that is not as xarray.DataArray (grid) or file. """ invalid_grid = dataarray.to_dataset() assert data_kind(invalid_grid) == "matrix" with pytest.raises(GMTInvalidInput): grdtrack(points=dataframe, grid=invalid_grid, newcolname="bathymetry") def test_grdtrack_without_newcolname_setting(dataarray, dataframe): """ Run grdtrack by not passing in newcolname parameter setting. """ with pytest.raises(GMTInvalidInput): grdtrack(points=dataframe, grid=dataarray) def test_grdtrack_without_outfile_setting(dataarray, dataframe): """ Run grdtrack by not passing in outfile parameter setting. """ with pytest.raises(GMTInvalidInput): grdtrack(points=dataframe, grid=dataarray)
brew/utils/data.py
va26/brew
344
110562
<reponame>va26/brew from sklearn import cross_validation def split_data(X, y, t_size): if len(X) != len(y): return None if hasattr(cross_validation, 'train_test_split'): return cross_validation.train_test_split(X, y, test_size=t_size) return None
tests/app/serializers.py
simiotics/djangorestframework-queryfields
195
110597
<reponame>simiotics/djangorestframework-queryfields from rest_framework import serializers from drf_queryfields import QueryFieldsMixin from tests.app.fields import BoomField from tests.app.models import Snippet class QuoteSerializer(QueryFieldsMixin, serializers.Serializer): character = serializers.CharField() line = serializers.CharField() sketch = serializers.CharField() class SnippetSerializer(QueryFieldsMixin, serializers.ModelSerializer): class Meta: model = Snippet exclude = () class ExplosiveSerializer(QueryFieldsMixin, serializers.Serializer): safe = serializers.CharField() boom = BoomField()
_build/jupyter_execute/content/c6/s2/bagging.py
curioushruti/mlbook
970
110600
# Bagging Bagging can be used for regression or classification, though we will demonstrate a regression bagging model here. Since this model is based on decision tree regressors, we'll first import our {doc}`regression tree </content/c5/s2/regression_tree>` construction from the previous chapter. We'll also import numpy and the visualization packages. ## Import decision trees import import_ipynb import regression_tree as rt; ## Import numpy and visualization packages import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import datasets We will build our bagging model on the {doc}`tips </content/appendix/data>` dataset from `scikit-learn`. The hidden code cell below loads that data and does a train-test split. ## Load data tips = sns.load_dataset('tips') X = np.array(tips.drop(columns = 'tip')) y = np.array(tips['tip']) ## Train-test split np.random.seed(1) test_frac = 0.25 test_size = int(len(y)*test_frac) test_idxs = np.random.choice(np.arange(len(y)), test_size, replace = False) X_train = np.delete(X, test_idxs, 0) y_train = np.delete(y, test_idxs, 0) X_test = X[test_idxs] y_test = y[test_idxs] Now we can get right into the bagging class. To fit the `Bagger` object, we provide training data, the number of bootstraps (`B`), and size regulation parameters for the decision trees. The object then takes `B` bootstraps of the data, each time fitting a decision tree regressor. To form predictions with the `Bagger` object, we simply run test observations through each bootstrapped tree and average the fitted values. class Bagger: def fit(self, X_train, y_train, B, max_depth = 100, min_size = 2, seed = None): self.X_train = X_train self.N, self.D = X_train.shape self.y_train = y_train self.B = B self.seed = seed self.trees = [] np.random.seed(seed) for b in range(self.B): sample = np.random.choice(np.arange(self.N), size = self.N, replace = True) X_train_b = X_train[sample] y_train_b = y_train[sample] tree = rt.DecisionTreeRegressor() tree.fit(X_train_b, y_train_b, max_depth = max_depth, min_size = min_size) self.trees.append(tree) def predict(self, X_test): y_test_hats = np.empty((len(self.trees), len(X_test))) for i, tree in enumerate(self.trees): y_test_hats[i] = tree.predict(X_test) return y_test_hats.mean(0) We can now fit the bagging model and display the observed versus fitted values. ## Build model bagger = Bagger() bagger.fit(X_train, y_train, B = 30, max_depth = 20, min_size = 5, seed = 123) y_test_hat = bagger.predict(X_test) ## Plot fig, ax = plt.subplots(figsize = (7, 5)) sns.scatterplot(y_test, y_test_hat) ax.set(xlabel = r'$y$', ylabel = r'$\hat{y}$', title = r'Observed vs. Fitted Values for Bagging') sns.despine()
asylo/platform/system_call/type_conversions/types_parse_functions.py
light1021/asylo
890
110620
# # # Copyright 2019 Asylo authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # """Functions for describing type definitions for generating macros. Implements the functions for describing and parsing the type definitions. Allows emitting macros which can be read directly by a C/C++ program, to evaluate the unresolved values in such macros and then generate include directives, constant definitions and conversion functions that allow system constants to be converted from the enclave C library implementation used by Asylo to target host implementation on the untrusted side (typically libc). For each type definition (eg. define_constants, define_structs), a definition and getter methods are provided. The definition methods accept a type definition one at a time, while the get methods return all the type definitions under a single macro. Finally, a write_output() method is provided, which emits all the type definitions recorded so far in the definitions file (types.py). """ from __future__ import print_function import collections import re import sys # Stores system header includes as a set. Only header file names are expected # with or without the .h extension and without the '#include' directive # prefixed. # We include stdbool.h by default so that the generated output (as .inc file) is # also readable by a C program. _includes = {'stdbool.h'} # Map from enum names to dictionary of enum properties and their values. _enum_map = collections.defaultdict(dict) # Map from struct names to dictionary of struct properties and its members. _struct_map = collections.defaultdict(dict) # Declare the prefix to be used for C enum declarations and conversion # functions. This prefix should be used for direct conversions between enclave # C library and host library, ones which do not involve an intermediate bridge. _klinux_prefix = 'kLinux' def set_klinux_prefix(prefix): """Sets the prefix used for constants definitions and conversion functions. Args: prefix: Name of the prefix to be applied to a kernel based constant definition or conversion function name. """ global _klinux_prefix _klinux_prefix = prefix def define_constants(name, values, include_header_file, multi_valued=False, skip_conversions=False, wrap_macros_with_if_defined=False, data_type='int'): """Defines a collection of related constants/macros and their properties. Args: name: Name of the collection of constants. values: Constant names provided as a list of strings. include_header_file: The system header file used for resolving values to generate the type definition. The filename here is expected to be a system header file (included as #include <filename>). This system header file is used twice - once for resolving values of constants on the target host implementation at compile time, then by the generated conversion functions for converting the constant values between enclave C library and the target host C library at runtime. multi_valued: Boolean indicating if the constant values can be combined using bitwise OR operations. skip_conversions: Boolean indicating if generation of types conversion functions be skipped, and only constants definitions be generated. Useful when conversion functions are complex and need to be written manually, but the constants definitions can be generated automatically by resolving the constants for the target host implementation. wrap_macros_with_if_defined: Boolean indicating if each constant value in the collection is to be wrapped inside a #if defined(value) ...#endif while generating the conversion functions. This allows define_constants() to safely accept constants that might not exist on a particular platform or architecture. This parameter is intended for use only with constants that are C/C++ macros. data_type: String specifying the type of constants, if not int. Raises: ValueError: Invalid include_header_file format provided. """ # A constant here are written twice, once as a string literal, then as an # numerical value pointing to the actual integer value of the constant. This # allows types conversions generator to directly interpret the latter as a # valid integer corresponding to the constant value, since casting string to # enum value is non-trivial in c++. # An example 'values', like ['CONST_VAL1', 'CONST_VAL2'] looks like the # following stored as a dictionary entry - # {"CONST_VAL1", CONST_VAL1}, {"CONST_VAL2", CONST_VAL2} _enum_map[name]['values'] = ', '.join( '{{"{}", {}}}'.format(val, val) for val in values) _enum_map[name]['multi_valued'] = multi_valued _enum_map[name]['skip_conversions'] = skip_conversions _enum_map[name]['wrap_macros_with_if_defined'] = wrap_macros_with_if_defined _enum_map[name]['data_type'] = '"{}"'.format(data_type) add_include_header_file(include_header_file) def add_include_header_file(include_header_file): """Adds a system header file to the list of includes to be generated. Args: include_header_file: Name of the system header file, in the format 'filename.h'. Do not use <> or "" to wrap the filename. """ if re.match(r'[<,"].*?[>,"]', include_header_file): raise ValueError( 'Invalid include format for filename "%s". Please provide the include ' 'file without enclosing pointy brackets <> or quotes "".' % include_header_file) if re.match('#include', include_header_file, re.IGNORECASE): raise ValueError( 'Invalid include format for filename "%s". Please provide the filename ' 'without the prefixing #include directive.' % include_header_file) _includes.add(include_header_file) def define_struct(name, values, include_header_file, pack_attributes=True, skip_conversions=False): """Defines a collection of structs and their properties. Args: name: Name of the struct. This should be the same as the struct name used in enclave C library and the host C library for the system calls. Eg. 'stat', 'timeval' values: List containing tuples of struct member types and struct member names. The struct members names should match the corresponding struct member names in the struct from enclave C library and libc. Eg. [("int64_t", "st_dev"), ("int64_t", "st_ino")]. include_header_file: Kernel header file to include to identify |name| as a valid kernel struct when generating conversion functions between kernel structs and enclave structs. pack_attributes: Boolean indicating if the compiler should be prevented from padding the generated kernel struct members from their natural alignment. skip_conversions: Boolean indicating if generation of types conversion functions be skipped, and only kernel struct definitions be generated. Useful when kernel conversion functions are complex and need to be written manually, but the struct definitions can be generated automatically. """ _struct_map[name]['values'] = ', '.join( '{{"{}", "{}"}}'.format(member_name, member_type) for member_type, member_name in values) _struct_map[name]['pack_attributes'] = pack_attributes _struct_map[name]['skip_conversions'] = skip_conversions add_include_header_file(include_header_file) def get_klinux_prefix(): """Gets the prefix for generated C enums and conversion functions.""" return 'const char klinux_prefix[] = "{}";\n'.format(_klinux_prefix) def get_includes_as_include_macros(): """Returns all the includes as line separated #include macros. These includes are required by the types conversions generator at compile time to infer the values of constants for a given host implementation. """ return ''.join( '#include <{}>\n'.format(filename) for filename in sorted(_includes)) def get_includes_in_define_macro(): """Returns all the includes under a #define INCLUDES macro. The returned list can be used to generate #include directives by a consumer. """ quoted_includes = ['"{}"'.format(incl) for incl in sorted(_includes)] return '#define INCLUDES {}'.format(', \\\n'.join(quoted_includes)) def get_constants(): r"""Returns a macro containing all constants' description. The returned macro is used by types conversions generator to initialize a enum description table (enum_properties_table) mapping enum names to a struct (EnumProperties) describing the enum properties, including the enum values. A typical output of get_constants() looks like the following - #define ENUMS_INIT \ {"FcntlCmd", {false, false, false, "int", {{"F_GETFD", F_GETFD}, {"F_SETFD", F_SETFD}}}}, \ {"FileFlags", {0, 0, true, false, false, false, "int", {{"O_RDONLY", O_RDONLY}, {"O_WRONLY", O_WRONLY}}}} Each line contains an enum, and has the following pattern - {"EnumName", {multi_valued, skip_conversions, wrap_macros_with_if_defined, data_type, {{"const_val1", const_val1}, {"const_val2", const_val2}}}}, \ """ enum_rows = [] for enum_name, enum_properties in sorted(_enum_map.items()): enum_rows.append( '{{{name}, {{{multi_valued}, {skip_conversions}, ' '{wrap_macros_with_if_defined}, {data_type}, {{{values}}}}}}}'.format( name='"{}"'.format(enum_name), multi_valued='true' if enum_properties['multi_valued'] else 'false', skip_conversions='true' if enum_properties['skip_conversions'] else 'false', wrap_macros_with_if_defined='true' if enum_properties['wrap_macros_with_if_defined'] else 'false', data_type=enum_properties['data_type'], values=enum_properties['values'])) return '#define ENUMS_INIT \\\n{}\n'.format(', \\\n'.join(enum_rows)) def get_structs(): r"""Returns a macro containing all struct descriptions. The returned macro is used by types conversion generator to initialize a struct description table (struct_properties_table) mapping struct names to a struct (StructProperties) describing the struct properties, including struct members. A typical output of get_structs looks like the following - #define STRUCTS_INIT \ {"stat", {true, false, {{"st_dev", "int64_t"}, {"st_ino", "int64_t"}}}}, \ {"timespec", {true, false, {{"tv_sec", "int64_t"}, {"tv_nsec", "int64_t"}}}} Each line contains a struct, and has the following pattern - {"struct_name", {pack_attributes, skip_conversions, \ {{"member_name1", "member_type1"}, {"member_name2", "member_type2"}}}} """ struct_rows = [] for struct_name, struct_properties in sorted(_struct_map.items()): struct_rows.append( '{{{struct}, {{{pack_attributes}, {skip_conversions}, {{{values}}}}}}}' .format( struct='"{}"'.format(struct_name), pack_attributes='true' if struct_properties['pack_attributes'] else 'false', skip_conversions='true' if struct_properties['skip_conversions'] else 'false', values=struct_properties['values'])) return '#define STRUCTS_INIT \\\n{}\n'.format(', \\\n'.join(struct_rows)) def write_output(stream=sys.stdout): """Writes the macros to a stream, default to stdout.""" print(get_includes_as_include_macros(), file=stream) print(get_includes_in_define_macro(), file=stream) print(get_klinux_prefix(), file=stream) print(get_constants(), file=stream) print(get_structs(), file=stream)
nodes/1.x/python/Buckyball.ByOriginAndRadius.py
jdehotin/Clockworkfordynamo
147
110660
import clr clr.AddReference('ProtoGeometry') from Autodesk.DesignScript.Geometry import * points = IN[0] almostzero = IN[1] struts = list() # this function recursively finds all the pairs of points of the buckyball struts def BuckyballStruts(points,struts): firstpoint = points[0] restofpoints = points[1:] # measure distance between first point and rest of points distances = [firstpoint.DistanceTo(x) for x in restofpoints] # filter out all points that do not have a distance of 2 to the first point strutpoints = list() strutpointpairs = list() i = 0 for dist in distances: # use a little tolerance so we catch all struts if dist > 2 - almostzero and dist < 2 + almostzero: strutpoints.append(restofpoints[i]) strutpointpairs.append((firstpoint,restofpoints[i])) i += 1 # add strutpointpairs to struts if len(strutpointpairs) > 0: struts.extend(strutpointpairs) # Continue processing the list recursively until there's only one point left. By always removing the first point from the list, we ensure that no duplicate struts are computed. if len(restofpoints) > 1: return BuckyballStruts(restofpoints,struts) else: return (restofpoints,struts) OUT = BuckyballStruts(points,struts)[1] ##### NEXT PYTHON NODE ##### import clr clr.AddReference('ProtoGeometry') from Autodesk.DesignScript.Geometry import * struts = IN[0] points = IN[1] almostzero = IN[2] def BuckyballFaces(struts,points,planes,almostzero,vertices): firststrut = struts[0] struts.pop(0) # find the two adjacent struts adjacent = list() for strut in struts: for point in strut: if point.IsAlmostEqualTo(firststrut[0]): adjacent.append(strut) break if len(adjacent) == 2: break # identify planes and find all vertices on planes vlist = list() for item in adjacent: triangle = (firststrut[1],item[0],item[1]) pl = Plane.ByBestFitThroughPoints(triangle) vlist = list() for point in points: dist = pl.DistanceTo(point) if dist < almostzero and dist > -almostzero: vlist.append(point) newplane = (Plane.ByBestFitThroughPoints(vlist)) append_vertices = True for pl in planes: if newplane.IsAlmostEqualTo(pl): append_vertices = False if append_vertices: vertices.append(vlist) planes.append(newplane) # let this function recursively call itself until it finds all planes if len(planes) < 32: return BuckyballFaces(struts,points,planes,almostzero,vertices) else: return (struts,points,planes,almostzero,vertices) def OrderFaceIndices(p_ordered,p_unordered,almostzero): i = 0; for p in p_unordered: dist = p_ordered[(len(p_ordered)-1)].DistanceTo(p) if dist > 2-almostzero and dist < 2+almostzero: p_ordered.append(p) p_unordered.pop(i) break i += 1 if len(p_unordered) > 0: return OrderFaceIndices(p_ordered,p_unordered,almostzero) else: return (p_ordered,p_unordered,almostzero) vlist_unordered = BuckyballFaces(struts,points,list(),almostzero,list())[4] vset_ordered = list() for vset in vlist_unordered: p_ordered = [vset[0]] vset.pop(0) vset_ordered.append(OrderFaceIndices(p_ordered,vset,almostzero)) vset_out = list() for vset in vset_ordered: vset_out.append(vset[0]) OUT = vset_out
build/lib/cort/analysis/plotting.py
leonardoboliveira/cort
141
110670
""" Plot error analysis statistics. """ from __future__ import division from matplotlib import pyplot from matplotlib import cm import numpy from pylab import rcParams __author__ = 'martscsn' def plot(data, title, xlabel, ylabel, filename=None): """ Plot error analysis statistics. In particular, plot a bar chart for the numbers described in ``data``. Args: data (list(str, list((str,int)))): The data to be plotted. The ith entry of this list contains the name which will appear in the legend, and a list of (category, count) pairs. These are the individual data points which will be plotted. title (str): Title of the plot. xlabel (str): Label of the x axis. ylabel (str): Label of the y axis. filename (str, optional): If set, write plot to ``filename``. Example:: pair_errs = errors["pair"]["recall_errors"]["all"] tree_errs = errors["tree"]["recall_errors"]["all"] plot( [("pair", [(cat, len(pair_errs[cat])) for cat in pair_errs.keys()]), ("tree", [(cat, len(tree_errs[cat])) for cat in tree_errs.keys()])], "Recall Errors", "Type of anaphor", "Number of Errors") """ rcParams['xtick.major.pad'] = '12' rcParams['ytick.major.pad'] = '12' fig, ax = pyplot.subplots() systems = [] categories = [] colors = cm.Accent(numpy.linspace(0, 1, len(data))) bars_for_legend = [] for i, system_data in enumerate(data): system_name, categories_and_numbers = system_data systems.append(system_name) for j, cat_and_number in enumerate(categories_and_numbers): category, number = cat_and_number if category not in categories: categories.append(category) bar = ax.bar(2*j + i*(1/len(data)), number, color=colors[i], width=1/len(data), label=system_name) if j == 0: bars_for_legend.append(bar) xticks = [2*k + 0.5 for k in range(0, len(categories))] pyplot.title(title, fontsize=28) pyplot.xlabel(xlabel, fontsize=24) pyplot.ylabel(ylabel, fontsize=24) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.set_xticklabels(categories) ax.set_xticks(xticks) pyplot.tick_params(axis='both', which='major', labelsize=20) if filename: legend = ax.legend(bars_for_legend, systems, loc='upper right', bbox_to_anchor=(1.2, 1.2)) fig.savefig(filename, bbox_extra_artists=(legend,), bbox_inches='tight') else: legend = ax.legend(bars_for_legend, systems, loc='upper right') legend.draggable() fig.show()
niftynet/engine/application_initializer.py
tdml13/NiftyNet
1,403
110696
# -*- coding: utf-8 -*- """ Loading modules from a string representing the class name or a short name that matches the dictionary item defined in this module all classes and docs are taken from https://github.com/tensorflow/tensorflow/blob/r1.3/tensorflow/python/ops/init_ops.py """ import tensorflow as tf SEED = 42 class Constant(object): """ initialize with a constant value """ @staticmethod def get_instance(args): """ create an instance of the initializer """ value = float(args.get('value', 0.0)) return tf.constant_initializer(value) class Zeros(object): """ initialize with zeros """ @staticmethod def get_instance(args): # pylint: disable=unused-argument """ create an instance of the initializer """ return tf.constant_initializer(0.0) class Ones(object): """ initialize with ones """ @staticmethod def get_instance(args): # pylint: disable=unused-argument """ create an instance of the initializer """ return tf.constant_initializer(1.0) class UniformUnitScaling(object): """ see also: https://www.tensorflow.org/api_docs/python/tf/uniform_unit_scaling_initializer """ @staticmethod def get_instance(args): """ create an instance of the initializer """ factor = float(args.get('factor', 1.0)) return tf.uniform_unit_scaling_initializer(factor, seed=SEED) class Orthogonal(object): """ see also: https://www.tensorflow.org/api_docs/python/tf/orthogonal_initializer """ @staticmethod def get_instance(args): """ create an instance of the initializer """ gain = float(args.get('gain', 1.0)) return tf.orthogonal_initializer(gain, seed=SEED) class VarianceScaling(object): """ see also: https://www.tensorflow.org/api_docs/python/tf/variance_scaling_initializer """ @staticmethod def get_instance(args): """ create an instance of the initializer """ scale = float(args.get('scale', 1.0)) mode = args.get('mode', "fan_in") assert (mode in ["fan_in", "fan_out", "fan_avg"]) distribution = args.get('distribution', "normal") assert (distribution in ["normal", "uniform"]) return tf.variance_scaling_initializer(scale, mode, distribution, seed=SEED) class GlorotNormal(object): """ see also: https://www.tensorflow.org/api_docs/python/tf/glorot_normal_initializer """ @staticmethod def get_instance(args): # pylint: disable=unused-argument """ create an instance of the initializer """ return tf.glorot_normal_initializer(seed=SEED) class GlorotUniform(object): """ see also: https://www.tensorflow.org/api_docs/python/tf/glorot_uniform_initializer """ @staticmethod def get_instance(args): # pylint: disable=unused-argument """ create an instance of the initializer """ return tf.glorot_uniform_initializer(seed=SEED) class HeUniform(object): """ He uniform variance scaling initializer. It draws samples from a uniform distribution within [-limit, limit] where ``limit`` is ``sqrt(6 / fan_in)`` where ``fan_in`` is the number of input units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References He et al., https://arxiv.org/abs/1502.01852 """ @staticmethod def get_instance(args): # pylint: disable=unused-argument """ create an instance of the initializer """ if not args: args = {"scale": "2.", "mode": "fan_in", "distribution": "uniform"} return VarianceScaling.get_instance(args) class HeNormal(object): """ He normal initializer. It draws samples from a truncated normal distribution centered on 0 with ``stddev = sqrt(2 / fan_in)`` where ``fan_in`` is the number of input units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References He et al., https://arxiv.org/abs/1502.01852 """ @staticmethod def get_instance(args): # pylint: disable=unused-argument """ create an instance of the initializer """ if not args: args = {"scale": "2.", "mode": "fan_in", "distribution": "normal"} return VarianceScaling.get_instance(args)
test/test_jpiarea.py
liujb/python-geohash
284
110698
<reponame>liujb/python-geohash # coding: UTF-8 import unittest import jpiarea def dms(d,m,s): return float(d) + (float(m) + float(s)/60)/60.0 class TestReference(unittest.TestCase): # hash code examples from open iarea document # http://www.nttdocomo.co.jp/service/imode/make/content/iarea/domestic/index.html def test_lv1(self): self.assertEqual("5438", jpiarea.encode(36,138)[0:4]) self.assertEqual("5637", jpiarea.encode(dms(37,20,0),137)[0:4]) def test_lv2(self): p = jpiarea.bbox("533946") self.assertAlmostEqual(503100000, p["s"]*3600*1000) self.assertAlmostEqual(503550000, p["n"]*3600*1000) self.assertAlmostEqual(128400000, p["w"]*3600*1000) self.assertAlmostEqual(128700000, p["e"]*3600*1000) def test_lv3(self): p = jpiarea.bbox("5339463") self.assertAlmostEqual(503325000, p["s"]*3600*1000) self.assertAlmostEqual(503550000, p["n"]*3600*1000) self.assertAlmostEqual(128550000, p["w"]*3600*1000) self.assertAlmostEqual(128700000, p["e"]*3600*1000) def test_lvN(self): self.assertEqual("53394600300",jpiarea.encode(dms(35,40,41), dms(139,46,9.527))) if __name__=='__main__': unittest.main()
test/test_local_interpolation.py
FedericoV/diffrax
377
110702
<gh_stars>100-1000 import diffrax.local_interpolation import jax import jax.numpy as jnp from helpers import shaped_allclose def test_local_linear_interpolation(): t0 = 2.0 t1 = 3.3 t0_ = 2.8 t1_ = 2.9 for y0 in (2.1, jnp.array(2.1), jnp.array([2.1, 3.1])): for y1 in (2.2, jnp.array(2.2), jnp.array([2.2, 3.2])): interp = diffrax.local_interpolation.LocalLinearInterpolation( t0=t0, t1=t1, y0=y0, y1=y1 ) # evaluate position pred = interp.evaluate(t0_) true = y0 + (y1 - y0) * (t0_ - t0) / (t1 - t0) assert shaped_allclose(pred, true) _, pred = jax.jvp(interp.evaluate, (t0_,), (jnp.ones_like(t0_),)) true = (y1 - y0) / (t1 - t0) assert shaped_allclose(pred, true) # evaluate increment pred = interp.evaluate(t0_, t1_) true = (y1 - y0) * (t1_ - t0_) / (t1 - t0) assert shaped_allclose(pred, true) _, pred = jax.jvp( interp.evaluate, (t0_, t1_), (jnp.ones_like(t0_), jnp.ones_like(t1_)) ) assert shaped_allclose(pred, jnp.zeros_like(pred)) # evaluate over zero-length interval. Note t1=t0. interp = diffrax.local_interpolation.LocalLinearInterpolation( t0=t0, t1=t0, y0=y0, y1=y1 ) pred = interp.evaluate(t0) true, _ = jnp.broadcast_arrays(y0, y1) assert shaped_allclose(pred, true) _, pred = jax.jvp(interp.evaluate, (t0,), (jnp.ones_like(t0),)) assert shaped_allclose(pred, jnp.zeros_like(pred))
libs/sqlobject/tests/test_sqlbuilder_importproxy.py
scambra/HTPC-Manager
422
110713
<reponame>scambra/HTPC-Manager from sqlobject import * from sqlobject.tests.dbtest import * from sqlobject.views import * from sqlobject.sqlbuilder import ImportProxy, Alias def testSimple(): nyi = ImportProxy('NotYetImported') x = nyi.q.name class NotYetImported(SQLObject): name = StringCol(dbName='a_name') y = nyi.q.name assert str(x) == 'not_yet_imported.a_name' assert str(y) == 'not_yet_imported.a_name' def testAddition(): nyi = ImportProxy('NotYetImported2') x = nyi.q.name+nyi.q.name class NotYetImported2(SQLObject): name = StringCol(dbName='a_name') assert str(x) == '((not_yet_imported2.a_name) + (not_yet_imported2.a_name))' def testOnView(): nyi = ImportProxy('NotYetImportedV') x = nyi.q.name class NotYetImported3(SQLObject): name = StringCol(dbName='a_name') class NotYetImportedV(ViewSQLObject): class sqlmeta: idName = NotYetImported3.q.id name = StringCol(dbName=NotYetImported3.q.name) assert str(x) == 'not_yet_imported_v.name' def testAlias(): nyi = ImportProxy('NotYetImported4') y = Alias(nyi, 'y') x = y.q.name class NotYetImported4(SQLObject): name = StringCol(dbName='a_name') assert str(y) == 'not_yet_imported4 y' assert tablesUsedSet(x, None) == set(['not_yet_imported4 y']) assert str(x) == 'y.a_name'
opy/__init__.py
nm17/Opy
284
110718
<reponame>nm17/Opy<filename>opy/__init__.py '''_opy_Copyright 2014, 2015, 2016, 2017, 2018 <NAME>, GEATEC engineering, www.geatec.com Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.''' '''This module makes it possible to use Opy as part of a Python application. The API was kept utterly simple and non-intrusive. It just mimics command line activation without starting a new interpreter. So the normal docs about the Opy command line apply. Just import this module and then call the 'run' function with as parameters the strings that normally would have been the command line arguments to mypy. Function 'run' returns a tuple (<normal_report>, <error_report>, <exit_status>), in which - <normal_report> is what Opy normally writes to sys.stdout - <error_report> is what Opy normally writes to sys.stderr - exit_status is twhat Opy normally returns to the operating system Trivial example of code using this module: import sys from opy import api result = api.run(sys.argv[1:]) if result[0]: print('\nObfuscation report:\n') print(result[0]) # stdout if result[1]: print('\nError report:\n') print(result[1]) # stderr print ('\nExit status:', result[2]) ''' import sys import io import traceback from .opy import main def run (*params): sys.argv = [''] + list (params) old_stdout = sys.stdout new_stdout = io.StringIO () #sys.stdout = new_stdout old_stderr = sys.stderr new_stderr = io.StringIO () sys.stderr = new_stderr try: exit_status = 0 main () except SystemExit as system_exit: exit_status = system_exit.code except Exception as exception: print (traceback.format_exc ()) sys.stdout = old_stdout sys.stderr = old_stderr return new_stdout.getvalue (), new_stderr.getvalue (), exit_status
nlu/components/classifiers/generic_classifier/generic_classifier.py
milyiyo/nlu
480
110730
<gh_stars>100-1000 from sparknlp_jsl.annotator import GenericClassifierModel, GenericClassifierApproach from sparknlp_jsl.base import * class GenericClassifier: @staticmethod def get_default_model(): return GenericClassifierModel.pretrained() \ .setInputCols("feature_vector") \ .setOutputCol("generic_classification") \ @staticmethod def get_pretrained_model(name, language): return GenericClassifierModel.pretrained(name,language) \ .setInputCols("feature_vector") \ .setOutputCol("generic_classification") \ @staticmethod def get_default_trainable_model(): return GenericClassifierApproach() \ .setInputCols("feature_vector") \ .setOutputCol("generic_classification") \ .setLabelColumn("y") \ .setEpochsNumber(2)
tests/test_wd.py
alliance-genome/ontobio
101
110735
<reponame>alliance-genome/ontobio from ontobio.ontol_factory import OntologyFactory from ontobio.assoc_factory import AssociationSetFactory from ontobio.assocmodel import AssociationSet import ontobio.sparql.wikidata as wd import logging PTSD = 'DOID:2055' def test_wd_sparql_ptsd(): """ TODO test using PTSD """ xrefs = wd.fetchall_xrefs('HP') print("XRs: {}".format(list(xrefs.items())[:10])) [doid] = wd.map_id(PTSD, 'DOID') genes = wd.fetchall_sp(doid, 'genetic_association') logging.info("GENES: {}".format(genes)) proteins = wd.canned_query('disease2protein', doid) logging.info("PROTEINS: {}".format(proteins)) for p in proteins: print(p) ofactory = OntologyFactory() afactory = AssociationSetFactory() ont = ofactory.create('go') aset = afactory.create(ontology=ont, subject_category='protein', object_category='function', taxon='NCBITaxon:9606') rs = aset.enrichment_test(proteins, threshold=1e-2, labels=True, direction='less') for r in rs: print("UNDER: "+str(r)) for p in proteins: print("{} {}".format(p, aset.label(p))) for t in aset.annotations(p): print(" {} {}".format(t,ont.label(t)))
rest_registration/signers/register_email.py
psibean/django-rest-registration
329
110766
<gh_stars>100-1000 from rest_registration.settings import registration_settings from rest_registration.utils.signers import URLParamsSigner class RegisterEmailSigner(URLParamsSigner): SALT_BASE = 'register-email' USE_TIMESTAMP = True def get_base_url(self): return registration_settings.REGISTER_EMAIL_VERIFICATION_URL def get_valid_period(self): return registration_settings.REGISTER_EMAIL_VERIFICATION_PERIOD
ghostwriter/reporting/migrations/0004_report_delivered.py
bbhunter/Ghostwriter
601
110779
# Generated by Django 2.2.3 on 2019-08-27 18:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('reporting', '0003_findingnote'), ] operations = [ migrations.AddField( model_name='report', name='delivered', field=models.BooleanField(default=False, help_text='Delivery status of the report', verbose_name='Delivered'), ), ]
tests/estimator/classifier/GaussianNB/GaussianNBJSTest.py
midhunexeter/sklearn-porter
1,197
110789
<reponame>midhunexeter/sklearn-porter<filename>tests/estimator/classifier/GaussianNB/GaussianNBJSTest.py<gh_stars>1000+ # -*- coding: utf-8 -*- from unittest import TestCase from sklearn.naive_bayes import GaussianNB from tests.estimator.classifier.Classifier import Classifier from tests.language.JavaScript import JavaScript class GaussianNBJSTest(JavaScript, Classifier, TestCase): def setUp(self): super(GaussianNBJSTest, self).setUp() self.estimator = GaussianNB() def tearDown(self): super(GaussianNBJSTest, self).tearDown()
evaluation_scripts/2017-evaluation-script/program/task_2_preprocess.py
yolochai/scisumm-corpus
198
110831
import os import sys def process(input_file, output_file): output_text = "" if input_file.endswith("abstract.summary.txt") or input_file.endswith("community.summary.txt") or input_file.endswith("combined.summary.txt") or input_file.endswith("human.summary.txt"): input_text = [] with open(input_file, "r") as f: input_text = f.readlines() for i in range(len(input_text)): inp = input_text[i].strip() if len(inp) == 0: continue if inp.startswith("<S sid ="): out = inp.split(">", 1)[1] out = out.split("</S>", 1)[0] else: out = inp output_text += out + " " else: with open(input_file, "r") as f: output_text = f.read() with open(output_file, "w") as f: f.write(output_text) def main(input_dir, output_dir): if not os.path.exists(input_dir): print("%s not a valid directory" % input_dir) if not os.path.exists(output_dir): print("%s not a valid directory" % output_dir) for file in os.listdir(input_dir): process(os.path.join(input_dir, file), os.path.join(output_dir, file)) if __name__ == "__main__": input_dir = sys.argv[1] output_dir = sys.argv[2] main(input_dir, output_dir)