max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
deps/pybind11/tests/test_smart_ptr.py
Mistobaan/coremltools
11,356
129720
<filename>deps/pybind11/tests/test_smart_ptr.py import pytest from pybind11_tests import ConstructorStats def test_smart_ptr(capture): # Object1 from pybind11_tests import (MyObject1, make_object_1, make_object_2, print_object_1, print_object_2, print_object_3, print_object_4) for i, o in enumerate([make_object_1(), make_object_2(), MyObject1(3)], start=1): assert o.getRefCount() == 1 with capture: print_object_1(o) print_object_2(o) print_object_3(o) print_object_4(o) assert capture == "MyObject1[{i}]\n".format(i=i) * 4 from pybind11_tests import (make_myobject1_1, make_myobject1_2, print_myobject1_1, print_myobject1_2, print_myobject1_3, print_myobject1_4) for i, o in enumerate([make_myobject1_1(), make_myobject1_2(), MyObject1(6), 7], start=4): print(o) with capture: if not isinstance(o, int): print_object_1(o) print_object_2(o) print_object_3(o) print_object_4(o) print_myobject1_1(o) print_myobject1_2(o) print_myobject1_3(o) print_myobject1_4(o) assert capture == "MyObject1[{i}]\n".format(i=i) * (4 if isinstance(o, int) else 8) cstats = ConstructorStats.get(MyObject1) assert cstats.alive() == 0 expected_values = ['MyObject1[{}]'.format(i) for i in range(1, 7)] + ['MyObject1[7]'] * 4 assert cstats.values() == expected_values assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # Object2 from pybind11_tests import (MyObject2, make_myobject2_1, make_myobject2_2, make_myobject3_1, make_myobject3_2, print_myobject2_1, print_myobject2_2, print_myobject2_3, print_myobject2_4) for i, o in zip([8, 6, 7], [MyObject2(8), make_myobject2_1(), make_myobject2_2()]): print(o) with capture: print_myobject2_1(o) print_myobject2_2(o) print_myobject2_3(o) print_myobject2_4(o) assert capture == "MyObject2[{i}]\n".format(i=i) * 4 cstats = ConstructorStats.get(MyObject2) assert cstats.alive() == 1 o = None assert cstats.alive() == 0 assert cstats.values() == ['MyObject2[8]', 'MyObject2[6]', 'MyObject2[7]'] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # Object3 from pybind11_tests import (MyObject3, print_myobject3_1, print_myobject3_2, print_myobject3_3, print_myobject3_4) for i, o in zip([9, 8, 9], [MyObject3(9), make_myobject3_1(), make_myobject3_2()]): print(o) with capture: print_myobject3_1(o) print_myobject3_2(o) print_myobject3_3(o) print_myobject3_4(o) assert capture == "MyObject3[{i}]\n".format(i=i) * 4 cstats = ConstructorStats.get(MyObject3) assert cstats.alive() == 1 o = None assert cstats.alive() == 0 assert cstats.values() == ['MyObject3[9]', 'MyObject3[8]', 'MyObject3[9]'] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # Object and ref from pybind11_tests import Object, cstats_ref cstats = ConstructorStats.get(Object) assert cstats.alive() == 0 assert cstats.values() == [] assert cstats.default_constructions == 10 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 cstats = cstats_ref() assert cstats.alive() == 0 assert cstats.values() == ['from pointer'] * 10 assert cstats.default_constructions == 30 assert cstats.copy_constructions == 12 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 30 assert cstats.move_assignments == 0 def test_smart_ptr_refcounting(): from pybind11_tests import test_object1_refcounting assert test_object1_refcounting() def test_unique_nodelete(): from pybind11_tests import MyObject4 o = MyObject4(23) assert o.value == 23 cstats = ConstructorStats.get(MyObject4) assert cstats.alive() == 1 del o cstats = ConstructorStats.get(MyObject4) assert cstats.alive() == 1 # Leak, but that's intentional def test_shared_ptr_and_references(): from pybind11_tests.smart_ptr import SharedPtrRef, A s = SharedPtrRef() stats = ConstructorStats.get(A) assert stats.alive() == 2 ref = s.ref # init_holder_helper(holder_ptr=false, owned=false) assert stats.alive() == 2 assert s.set_ref(ref) with pytest.raises(RuntimeError) as excinfo: assert s.set_holder(ref) assert "Unable to cast from non-held to held instance" in str(excinfo.value) copy = s.copy # init_holder_helper(holder_ptr=false, owned=true) assert stats.alive() == 3 assert s.set_ref(copy) assert s.set_holder(copy) holder_ref = s.holder_ref # init_holder_helper(holder_ptr=true, owned=false) assert stats.alive() == 3 assert s.set_ref(holder_ref) assert s.set_holder(holder_ref) holder_copy = s.holder_copy # init_holder_helper(holder_ptr=true, owned=true) assert stats.alive() == 3 assert s.set_ref(holder_copy) assert s.set_holder(holder_copy) del ref, copy, holder_ref, holder_copy, s assert stats.alive() == 0 def test_shared_ptr_from_this_and_references(): from pybind11_tests.smart_ptr import SharedFromThisRef, B s = SharedFromThisRef() stats = ConstructorStats.get(B) assert stats.alive() == 2 ref = s.ref # init_holder_helper(holder_ptr=false, owned=false, bad_wp=false) assert stats.alive() == 2 assert s.set_ref(ref) assert s.set_holder(ref) # std::enable_shared_from_this can create a holder from a reference bad_wp = s.bad_wp # init_holder_helper(holder_ptr=false, owned=false, bad_wp=true) assert stats.alive() == 2 assert s.set_ref(bad_wp) with pytest.raises(RuntimeError) as excinfo: assert s.set_holder(bad_wp) assert "Unable to cast from non-held to held instance" in str(excinfo.value) copy = s.copy # init_holder_helper(holder_ptr=false, owned=true, bad_wp=false) assert stats.alive() == 3 assert s.set_ref(copy) assert s.set_holder(copy) holder_ref = s.holder_ref # init_holder_helper(holder_ptr=true, owned=false, bad_wp=false) assert stats.alive() == 3 assert s.set_ref(holder_ref) assert s.set_holder(holder_ref) holder_copy = s.holder_copy # init_holder_helper(holder_ptr=true, owned=true, bad_wp=false) assert stats.alive() == 3 assert s.set_ref(holder_copy) assert s.set_holder(holder_copy) del ref, bad_wp, copy, holder_ref, holder_copy, s assert stats.alive() == 0 def test_move_only_holder(): from pybind11_tests.smart_ptr import TypeWithMoveOnlyHolder a = TypeWithMoveOnlyHolder.make() stats = ConstructorStats.get(TypeWithMoveOnlyHolder) assert stats.alive() == 1 del a assert stats.alive() == 0
django-rest-framework-fast/characters/migrations/0001_squashed_0003_auto_20190416_1625.py
mervatkheir/kite-python-blog-post-code
238
129751
# Generated by Django 2.2 on 2019-04-16 19:59 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Line', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('line_text', models.TextField()), ], ), migrations.CreateModel( name='Team', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('description', models.TextField()), ], ), migrations.CreateModel( name='Character', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('description', models.TextField()), ('profession', models.CharField(max_length=50)), ('type', models.CharField(choices=[('hero', 'Hero'), ('villain', 'Villain'), ('sidekick', 'Sidekick'), ('comedic', 'Comedic'), ('extra', 'Extra'), ('solo', 'Solo Artist')], default='extra', max_length=20)), ('mentor', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='proteges', to='characters.Character')), ('team', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='characters.Team')), ], ), migrations.CreateModel( name='LineModifier', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('modifier', models.CharField(max_length=50)), ('character', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, related_name='line_modifiers', to='characters.Character')), ], ), ]
funboost/utils/dependency_packages/mongomq/utils.py
DJMIN/funboost
333
129767
<filename>funboost/utils/dependency_packages/mongomq/utils.py def enum(name, *sequential, **named): values = dict(zip(sequential, range(len(sequential))), **named) # NOTE: Yes, we *really* want to cast using str() here. # On Python 2 type() requires a byte string (which is str() on Python 2). # On Python 3 it does not matter, so we'll use str(), which acts as # a no-op. return type(str(name), (), values)
tests/rest/test_rest.py
edmont/ot-br-posix
174
129779
<reponame>edmont/ot-br-posix #!/usr/bin/env python3 # # Copyright (c) 2020, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import urllib.request import urllib.error import ipaddress import json import re from threading import Thread rest_api_addr = "http://0.0.0.0:8081" def assert_is_ipv6_address(string): assert (type(ipaddress.ip_address(string)) is ipaddress.IPv6Address) def get_data_from_url(url, result, index): response = urllib.request.urlopen(urllib.request.Request(url)) body = response.read() data = json.loads(body) result[index] = data def get_error_from_url(url, result, index): try: urllib.request.urlopen(urllib.request.Request(url)) assert False except urllib.error.HTTPError as e: result[index] = e def create_multi_thread(func, url, thread_num, response_data): threads = [None] * thread_num for i in range(thread_num): threads[i] = Thread(target=func, args=(url, response_data, i)) for thread in threads: thread.start() for thread in threads: thread.join() def error404_check(data): assert data is not None assert (data.code == 404) return True def diagnostics_check(data): assert data is not None if len(data) == 0: return 1 for diag in data: expected_keys = [ "ExtAddress", "Rloc16", "Mode", "Connectivity", "Route", "LeaderData", "NetworkData", "IP6AddressList", "MACCounters", "ChildTable", "ChannelPages" ] expected_value_type = [ str, int, dict, dict, dict, dict, str, list, dict, list, str ] expected_check_dict = dict(zip(expected_keys, expected_value_type)) for key, value in expected_check_dict.items(): assert (key in diag) assert (type(diag[key]) == value) assert (re.match(r'^[A-F0-9]{16}$', diag["ExtAddress"]) is not None) mode = diag["Mode"] mode_expected_keys = [ "RxOnWhenIdle", "DeviceType", "NetworkData" ] for key in mode_expected_keys: assert (key in mode) assert (type(mode[key]) == int) connectivity = diag["Connectivity"] connectivity_expected_keys = [ "ParentPriority", "LinkQuality3", "LinkQuality2", "LinkQuality1", "LeaderCost", "IdSequence", "ActiveRouters", "SedBufferSize", "SedDatagramCount" ] for key in connectivity_expected_keys: assert (key in connectivity) assert (type(connectivity[key]) == int) route = diag["Route"] assert ("IdSequence" in route) assert (type(route["IdSequence"]) == int) assert ("RouteData" in route) route_routedata = route["RouteData"] assert (type(route["RouteData"]) == list) routedata_expected_keys = [ "RouteId", "LinkQualityOut", "LinkQualityIn", "RouteCost" ] for item in route_routedata: for key in routedata_expected_keys: assert (key in item) assert (type(item[key]) == int) leaderdata = diag["LeaderData"] leaderdata_expected_keys = [ "PartitionId", "Weighting", "DataVersion", "StableDataVersion", "LeaderRouterId" ] for key in leaderdata_expected_keys: assert (key in leaderdata) assert (type(leaderdata[key]) == int) assert (re.match(r'^[A-F0-9]{12}$', diag["NetworkData"]) is not None) ip6_address_list = diag["IP6AddressList"] assert (type(ip6_address_list) == list) for ip6_address in ip6_address_list: assert (type(ip6_address) == str) assert_is_ipv6_address(ip6_address) mac_counters = diag["MACCounters"] assert (type(mac_counters) == dict) mac_counters_expected_keys = [ "IfInUnknownProtos", "IfInErrors", "IfOutErrors", "IfInUcastPkts", "IfInBroadcastPkts", "IfInDiscards", "IfOutUcastPkts", "IfOutBroadcastPkts", "IfOutDiscards" ] for key in mac_counters_expected_keys: assert (key in mac_counters) assert (type(mac_counters[key]) == int) child_table = diag["ChildTable"] assert (type(child_table) == list) for child in child_table: assert ("ChildId" in child) assert (type(child["ChildId"]) == int) assert ("Timeout" in child) assert (type(child["Timeout"]) == int) assert ("Mode" in child) mode = child["Mode"] assert (type(mode) == dict) for key in mode_expected_keys: assert (key in mode) assert (type(mode[key]) == int) assert (type(diag["ChannelPages"]) == str) assert (re.match(r'^[A-F0-9]{2}$', diag["ChannelPages"]) is not None) return 2 def node_check(data): assert data is not None expected_keys = [ "State", "NumOfRouter", "RlocAddress", "NetworkName", "ExtAddress", "Rloc16", "LeaderData", "ExtPanId" ] expected_value_type = [ int, int, str, str, str, int, dict, str ] expected_check_dict = dict(zip(expected_keys, expected_value_type)) for key, value in expected_check_dict.items(): assert (key in data) assert (type(data[key]) == value) assert_is_ipv6_address(data["RlocAddress"]) assert (re.match(r'^[A-F0-9]{16}$', data["ExtAddress"]) is not None) assert (re.match(r'[A-F0-9]{16}', data["ExtPanId"]) is not None) leaderdata = data["LeaderData"] leaderdata_expected_keys = [ "PartitionId", "Weighting", "DataVersion", "StableDataVersion", "LeaderRouterId" ] for key in leaderdata_expected_keys: assert (key in leaderdata) assert (type(leaderdata[key]) == int) return True def node_rloc_check(data): assert data is not None assert (type(data) == str) assert_is_ipv6_address(data) return True def node_rloc16_check(data): assert data is not None assert (type(data) == int) return True def node_ext_address_check(data): assert data is not None assert (type(data) == str) assert (re.match(r'^[A-F0-9]{16}$', data) is not None) return True def node_state_check(data): assert data is not None assert (type(data) == int) return True def node_network_name_check(data): assert data is not None assert (type(data) == str) return True def node_leader_data_check(data): assert data is not None assert (type(data) == dict) leaderdata_expected_keys = [ "PartitionId", "Weighting", "DataVersion", "StableDataVersion", "LeaderRouterId" ] for key in leaderdata_expected_keys: assert (key in data) assert (type(data[key]) == int) return True def node_num_of_router_check(data): assert data is not None assert (type(data) == int) return True def node_ext_panid_check(data): assert data is not None assert (type(data) == str) return True def node_test(thread_num): url = rest_api_addr + "/node" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_check(data) for data in response_data].count(True) print(" /node : all {}, valid {} ".format(thread_num, valid)) def node_rloc_test(thread_num): url = rest_api_addr + "/node/rloc" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_rloc_check(data) for data in response_data].count(True) print(" /node/rloc : all {}, valid {} ".format(thread_num, valid)) def node_rloc16_test(thread_num): url = rest_api_addr + "/node/rloc16" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_rloc16_check(data) for data in response_data].count(True) print(" /node/rloc16 : all {}, valid {} ".format(thread_num, valid)) def node_ext_address_test(thread_num): url = rest_api_addr + "/node/ext-address" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_ext_address_check(data) for data in response_data].count(True) print(" /node/ext-address : all {}, valid {} ".format(thread_num, valid)) def node_state_test(thread_num): url = rest_api_addr + "/node/state" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_state_check(data) for data in response_data].count(True) print(" /node/state : all {}, valid {} ".format(thread_num, valid)) def node_network_name_test(thread_num): url = rest_api_addr + "/node/network-name" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_network_name_check(data) for data in response_data ].count(True) print(" /node/network-name : all {}, valid {} ".format(thread_num, valid)) def node_leader_data_test(thread_num): url = rest_api_addr + "/node/leader-data" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_leader_data_check(data) for data in response_data].count(True) print(" /node/leader-data : all {}, valid {} ".format(thread_num, valid)) def node_num_of_router_test(thread_num): url = rest_api_addr + "/node/num-of-router" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_num_of_router_check(data) for data in response_data ].count(True) print(" /v1/node/num-of-router : all {}, valid {} ".format(thread_num, valid)) def node_ext_panid_test(thread_num): url = rest_api_addr + "/node/ext-panid" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = [node_ext_panid_check(data) for data in response_data].count(True) print(" /node/ext-panid : all {}, valid {} ".format(thread_num, valid)) def diagnostics_test(thread_num): url = rest_api_addr + "/diagnostics" response_data = [None] * thread_num create_multi_thread(get_data_from_url, url, thread_num, response_data) valid = 0 has_content = 0 for data in response_data: ret = diagnostics_check(data) if ret == 1: valid += 1 elif ret == 2: valid += 1 has_content += 1 print(" /diagnostics : all {}, has content {}, valid {} ".format( thread_num, has_content, valid)) def error_test(thread_num): url = rest_api_addr + "/hello" response_data = [None] * thread_num create_multi_thread(get_error_from_url, url, thread_num, response_data) valid = [error404_check(data) for data in response_data].count(True) print(" /v1/hello : all {}, valid {} ".format(thread_num, valid)) def main(): node_test(200) node_rloc_test(200) node_rloc16_test(200) node_ext_address_test(200) node_state_test(200) node_network_name_test(200) node_leader_data_test(200) node_num_of_router_test(200) node_ext_panid_test(200) diagnostics_test(20) error_test(10) return 0 if __name__ == '__main__': exit(main())
gpytorch/functions/matern_covariance.py
llguo95/gpytorch
2,673
129784
<gh_stars>1000+ import math import torch class MaternCovariance(torch.autograd.Function): @staticmethod def forward(ctx, x1, x2, lengthscale, nu, dist_func): if any(ctx.needs_input_grad[:2]): raise RuntimeError("MaternCovariance cannot compute gradients with " "respect to x1 and x2") if lengthscale.size(-1) > 1: raise ValueError("MaternCovariance cannot handle multiple lengthscales") # Subtract mean for numerical stability. Won't affect computations # because covariance matrix is stationary. needs_grad = any(ctx.needs_input_grad) mean = x1.reshape(-1, x1.size(-1)).mean(0)[(None,) * (x1.dim() - 1)] x1_ = (x1 - mean).div(lengthscale) x2_ = (x2 - mean).div(lengthscale) scaled_unitless_dist = dist_func(x1_, x2_).mul_(math.sqrt(2 * nu)) if nu == 0.5: # 1 kernel sized Tensor if no grad else 2 scaled_unitless_dist_ = scaled_unitless_dist.clone() if needs_grad else scaled_unitless_dist exp_component = scaled_unitless_dist_.neg_().exp_() covar_mat = exp_component if needs_grad: d_output_d_input = scaled_unitless_dist.div_(lengthscale).mul_(exp_component) elif nu == 1.5: # 2 kernel sized Tensors if no grad else 3 if needs_grad: scaled_unitless_dist_ = scaled_unitless_dist.clone() linear_term = scaled_unitless_dist.clone().add_(1) exp_component = scaled_unitless_dist.neg_().exp_() covar_mat = linear_term.mul_(exp_component) if needs_grad: d_output_d_input = scaled_unitless_dist_.pow_(2).div_(lengthscale).mul_(exp_component) elif nu == 2.5: # 3 kernel sized Tensors if no grad else 4 linear_term = scaled_unitless_dist.clone().add_(1) quadratic_term = scaled_unitless_dist.clone().pow_(2).div_(3) exp_component = scaled_unitless_dist.neg_().exp_() if needs_grad: covar_mat = (linear_term + quadratic_term).mul_(exp_component) d_output_d_input = linear_term.mul_(quadratic_term).mul_(exp_component).div_(lengthscale) else: covar_mat = exp_component.mul_(linear_term.add_(quadratic_term)) if needs_grad: ctx.save_for_backward(d_output_d_input) return covar_mat @staticmethod def backward(ctx, grad_output): d_output_d_input = ctx.saved_tensors[0] lengthscale_grad = grad_output * d_output_d_input return None, None, lengthscale_grad, None, None
geopyspark/geotrellis/protobuf/extentMessages_pb2.py
geotrellis/geotrellis-python
182
129792
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: extentMessages.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='extentMessages.proto', package='protos', syntax='proto3', serialized_pb=_b('\n\x14\x65xtentMessages.proto\x12\x06protos\"\'\n\x08ProtoCRS\x12\x0c\n\x04\x65psg\x18\x01 \x01(\x05\x12\r\n\x05proj4\x18\x02 \x01(\t\"E\n\x0bProtoExtent\x12\x0c\n\x04xmin\x18\x01 \x01(\x01\x12\x0c\n\x04ymin\x18\x02 \x01(\x01\x12\x0c\n\x04xmax\x18\x03 \x01(\x01\x12\x0c\n\x04ymax\x18\x04 \x01(\x01\"Z\n\x14ProtoProjectedExtent\x12#\n\x06\x65xtent\x18\x01 \x01(\x0b\x32\x13.protos.ProtoExtent\x12\x1d\n\x03\x63rs\x18\x02 \x01(\x0b\x32\x10.protos.ProtoCRS\"s\n\x1cProtoTemporalProjectedExtent\x12#\n\x06\x65xtent\x18\x01 \x01(\x0b\x32\x13.protos.ProtoExtent\x12\x1d\n\x03\x63rs\x18\x02 \x01(\x0b\x32\x10.protos.ProtoCRS\x12\x0f\n\x07instant\x18\x03 \x01(\x04\x62\x06proto3') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _PROTOCRS = _descriptor.Descriptor( name='ProtoCRS', full_name='protos.ProtoCRS', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='epsg', full_name='protos.ProtoCRS.epsg', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='proj4', full_name='protos.ProtoCRS.proj4', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=32, serialized_end=71, ) _PROTOEXTENT = _descriptor.Descriptor( name='ProtoExtent', full_name='protos.ProtoExtent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='xmin', full_name='protos.ProtoExtent.xmin', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ymin', full_name='protos.ProtoExtent.ymin', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='xmax', full_name='protos.ProtoExtent.xmax', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ymax', full_name='protos.ProtoExtent.ymax', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=73, serialized_end=142, ) _PROTOPROJECTEDEXTENT = _descriptor.Descriptor( name='ProtoProjectedExtent', full_name='protos.ProtoProjectedExtent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='extent', full_name='protos.ProtoProjectedExtent.extent', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crs', full_name='protos.ProtoProjectedExtent.crs', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=144, serialized_end=234, ) _PROTOTEMPORALPROJECTEDEXTENT = _descriptor.Descriptor( name='ProtoTemporalProjectedExtent', full_name='protos.ProtoTemporalProjectedExtent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='extent', full_name='protos.ProtoTemporalProjectedExtent.extent', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crs', full_name='protos.ProtoTemporalProjectedExtent.crs', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='instant', full_name='protos.ProtoTemporalProjectedExtent.instant', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=236, serialized_end=351, ) _PROTOPROJECTEDEXTENT.fields_by_name['extent'].message_type = _PROTOEXTENT _PROTOPROJECTEDEXTENT.fields_by_name['crs'].message_type = _PROTOCRS _PROTOTEMPORALPROJECTEDEXTENT.fields_by_name['extent'].message_type = _PROTOEXTENT _PROTOTEMPORALPROJECTEDEXTENT.fields_by_name['crs'].message_type = _PROTOCRS DESCRIPTOR.message_types_by_name['ProtoCRS'] = _PROTOCRS DESCRIPTOR.message_types_by_name['ProtoExtent'] = _PROTOEXTENT DESCRIPTOR.message_types_by_name['ProtoProjectedExtent'] = _PROTOPROJECTEDEXTENT DESCRIPTOR.message_types_by_name['ProtoTemporalProjectedExtent'] = _PROTOTEMPORALPROJECTEDEXTENT ProtoCRS = _reflection.GeneratedProtocolMessageType('ProtoCRS', (_message.Message,), dict( DESCRIPTOR = _PROTOCRS, __module__ = 'extentMessages_pb2' # @@protoc_insertion_point(class_scope:protos.ProtoCRS) )) _sym_db.RegisterMessage(ProtoCRS) ProtoExtent = _reflection.GeneratedProtocolMessageType('ProtoExtent', (_message.Message,), dict( DESCRIPTOR = _PROTOEXTENT, __module__ = 'extentMessages_pb2' # @@protoc_insertion_point(class_scope:protos.ProtoExtent) )) _sym_db.RegisterMessage(ProtoExtent) ProtoProjectedExtent = _reflection.GeneratedProtocolMessageType('ProtoProjectedExtent', (_message.Message,), dict( DESCRIPTOR = _PROTOPROJECTEDEXTENT, __module__ = 'extentMessages_pb2' # @@protoc_insertion_point(class_scope:protos.ProtoProjectedExtent) )) _sym_db.RegisterMessage(ProtoProjectedExtent) ProtoTemporalProjectedExtent = _reflection.GeneratedProtocolMessageType('ProtoTemporalProjectedExtent', (_message.Message,), dict( DESCRIPTOR = _PROTOTEMPORALPROJECTEDEXTENT, __module__ = 'extentMessages_pb2' # @@protoc_insertion_point(class_scope:protos.ProtoTemporalProjectedExtent) )) _sym_db.RegisterMessage(ProtoTemporalProjectedExtent) # @@protoc_insertion_point(module_scope)
scripts/variance_reduction.py
JannikWirtz/importance-sampling-diagnostics
289
129802
#!/usr/bin/env python # # Copyright (c) 2017 Idiap Research Institute, http://www.idiap.ch/ # Written by <NAME> <<EMAIL>> # import argparse import os from os import path from keras import backend as K from keras.losses import get as get_loss from keras.utils.generic_utils import Progbar import numpy as np from importance_sampling import models from importance_sampling.datasets import CIFAR10, CIFAR100, MNIST, \ OntheflyAugmentedImages, ImageNetDownsampled, PennTreeBank, ZCAWhitening from importance_sampling.model_wrappers import OracleWrapper from importance_sampling.reweighting import BiasedReweightingPolicy from importance_sampling.utils import tf_config from importance_sampling.utils.functional import compose, partial, ___ def build_grad(network): """Return the gradient of the network.""" x = network.input y = network.output target_shape = (None, 1) if "sparse" in network.loss else K.int_shape(y) y_true = K.placeholder(shape=target_shape) sample_weights = K.placeholder(shape=(None,)) l = K.mean(sample_weights * get_loss(network.loss)(y_true, y)) grads = network.optimizer.get_gradients(l, network.trainable_weights) grad = K.concatenate([ K.reshape(g, (-1,)) for g in grads ]) return K.function( [x, y_true, sample_weights], [grad] ) def build_grad_batched(network, batch_size): """Compute the average gradient by splitting the inputs in batches of size 'batch_size' and averaging.""" grad = build_grad(network) def inner(inputs): X, y, w = inputs N = len(X) g = 0 for i in range(0, N, batch_size): g = g + w[i:i+batch_size].sum() * grad([ X[i:i+batch_size], y[i:i+batch_size], w[i:i+batch_size] ])[0] return [g / w.sum()] return inner def load_dataset(dataset): datasets = { "mnist": MNIST, "cifar10": CIFAR10, "cifar100": CIFAR100, "cifar10-augmented": compose( partial(OntheflyAugmentedImages, ___, dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False )), CIFAR10 ), "cifar10-whitened-augmented": compose( partial(OntheflyAugmentedImages, ___, dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False ), N=15*10**5), ZCAWhitening, CIFAR10 ), "cifar100-augmented": compose( partial(OntheflyAugmentedImages, ___, dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False )), CIFAR100 ), "cifar100-whitened-augmented": compose( partial(OntheflyAugmentedImages, ___, dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False ), N=15*10**5), ZCAWhitening, CIFAR100 ), "imagenet-32x32": partial( ImageNetDownsampled, os.getenv("IMAGENET"), size=32 ), "ptb": partial(PennTreeBank, 20), } return datasets[dataset]() def uniform_score(x, y, batch_size=None): return np.ones((len(x),)) def main(argv): parser = argparse.ArgumentParser( description=("Compute the variance reduction achieved by different " "importance sampling methods") ) parser.add_argument( "model", choices=[ "small_cnn", "cnn", "wide_resnet_28_2", "lstm_lm" ], help="Choose the type of the model" ) parser.add_argument( "weights", help="The file containing the model weights" ) parser.add_argument( "dataset", choices=[ "mnist", "cifar10", "cifar100", "cifar10-augmented", "cifar100-augmented", "imagenet-32x32", "ptb", "cifar10-whitened-augmented", "cifar100-whitened-augmented" ], help="Choose the dataset to compute the loss" ) parser.add_argument( "--samples", type=int, default=10, help="How many samples to choose" ) parser.add_argument( "--score", choices=["gnorm", "full_gnorm", "loss", "ones"], nargs="+", default="loss", help="Choose a score to perform sampling with" ) parser.add_argument( "--batch_size", type=int, default=128, help="The batch size for computing the loss" ) parser.add_argument( "--inner_batch_size", type=int, default=32, help=("The batch size to use for gradient computations " "(to decrease memory usage)") ) parser.add_argument( "--sample_size", type=int, default=1024, help="The sample size to compute the variance reduction" ) parser.add_argument( "--random_seed", type=int, default=0, help="A seed for the PRNG (mainly used for dataset generation)" ) parser.add_argument( "--save_scores", help="Directory to save the scores in" ) args = parser.parse_args(argv) np.random.seed(args.random_seed) dataset = load_dataset(args.dataset) network = models.get(args.model)(dataset.shape, dataset.output_size) network.load_weights(args.weights) grad = build_grad_batched(network, args.inner_batch_size) reweighting = BiasedReweightingPolicy() # Compute the full gradient idxs = np.random.choice(len(dataset.train_data), args.sample_size) x, y = dataset.train_data[idxs] full_grad = grad([x, y, np.ones(len(x))])[0] # Sample and approximate for score_metric in args.score: if score_metric != "ones": model = OracleWrapper(network, reweighting, score=score_metric) score = model.score else: score = uniform_score gs = np.zeros(shape=(10,) + full_grad.shape, dtype=np.float32) print "Calculating %s..." % (score_metric,) scores = score(x, y, batch_size=1) p = scores/scores.sum() pb = Progbar(args.samples) for i in range(args.samples): pb.update(i) idxs = np.random.choice(args.sample_size, args.batch_size, p=p) w = reweighting.sample_weights(idxs, scores).ravel() gs[i] = grad([x[idxs], y[idxs], w])[0] pb.update(args.samples) norms = np.sqrt(((full_grad - gs)**2).sum(axis=1)) alignment = gs.dot(full_grad[:, np.newaxis]) / np.sqrt(np.sum(full_grad**2)) alignment /= np.sqrt((gs**2).sum(axis=1, keepdims=True)) print "Mean of norms of diff", np.mean(norms) print "Variance of norms of diff", np.var(norms) print "Mean of alignment", np.mean(alignment) print "Variance of alignment", np.var(alignment) if args.save_scores: np.savetxt( path.join(args.save_scores, score_metric+".txt"), scores ) if __name__ == "__main__": import sys main(sys.argv[1:])
sdk/python/pulumi_aws/outposts/get_sites.py
alexbowers/pulumi-aws
260
129803
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetSitesResult', 'AwaitableGetSitesResult', 'get_sites', ] @pulumi.output_type class GetSitesResult: """ A collection of values returned by getSites. """ def __init__(__self__, id=None, ids=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if ids and not isinstance(ids, list): raise TypeError("Expected argument 'ids' to be a list") pulumi.set(__self__, "ids", ids) @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def ids(self) -> Sequence[str]: """ Set of Outposts Site identifiers. """ return pulumi.get(self, "ids") class AwaitableGetSitesResult(GetSitesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSitesResult( id=self.id, ids=self.ids) def get_sites(opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSitesResult: """ Provides details about multiple Outposts Sites. ## Example Usage ```python import pulumi import pulumi_aws as aws all = aws.outposts.get_sites() ``` """ __args__ = dict() if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:outposts/getSites:getSites', __args__, opts=opts, typ=GetSitesResult).value return AwaitableGetSitesResult( id=__ret__.id, ids=__ret__.ids)
openmdao/utils/file_wrap.py
friedenhe/OpenMDAO
451
129809
<filename>openmdao/utils/file_wrap.py """ A collection of utilities for file wrapping. Note: This is a work in progress. """ import re from pyparsing import CaselessLiteral, Combine, OneOrMore, Optional, \ TokenConverter, Word, nums, oneOf, printables, ParserElement, alphanums import numpy as np def _getformat(val): """ Get the output format for a floating point number. The general format is used with 16 places of accuracy, except for when the floating point value is an integer, in which case a decimal point followed by a single zero is used. Parameters ---------- val : float or int the number which needs formatted. Returns ------- string the format string. """ if int(val) == val: return "%.1f" else: return "%.16g" class _SubHelper(object): """ Replaces file text at the correct word location in a line. This class contains the Helper Function that is passed to re.sub. Attributes ---------- _newtext : str text to insert. _replace_location : int location in the file where replacement is to occur. _current_location : int current location in the file. _counter : int counter _start_location : int initial location where replacement is to occur. _end_location : int final location where replacement is to occur. """ def __init__(self): """ Initialize attributes. """ self._newtext = "" self._replace_location = 0 self._current_location = 0 self._counter = 0 self._start_location = 0 self._end_location = 0 def set(self, newtext, location): """ Set a new word location and value for replacement. Parameters ---------- newtext : str text to insert. location : int location in the file where replacement is to occur. """ self._newtext = newtext self._replace_location = location self._current_location = 0 def set_array(self, newtext, start_location, end_location): """ Set a new starting location, ending location, and value for replacement. Parameters ---------- newtext : str text to insert. start_location : int location end_location : int location """ self._newtext = newtext self._start_location = start_location self._end_location = end_location self._current_location = 0 def replace(self, text): """ Replace text in file. This function should be passed to re.sub. Parameters ---------- text : str text to insert. Returns ------- string newtext if current location is replace location else the input text. """ self._current_location += 1 if self._current_location == self._replace_location: if isinstance(self._newtext, float): return _getformat(self._newtext) % self._newtext else: return str(self._newtext) else: return text.group() def replace_array(self, text): """ Replace array of text values in file. This function should be passed to re.sub. Parameters ---------- text : str text to insert. Returns ------- string newtext if current location is replace location else the input text. """ self._current_location += 1 end = len(self._newtext) if self._current_location >= self._start_location and \ self._current_location <= self._end_location and \ self._counter < end: if isinstance(self._newtext[self._counter], float): val = self._newtext[self._counter] newval = _getformat(val) % val else: newval = str(self._newtext[self._counter]) self._counter += 1 return newval else: return text.group() class _ToInteger(TokenConverter): """ Converter for PyParsing that is used to turn a token into an int. """ def postParse(self, instring, loc, tokenlist): """ Convert token into an integer. Parameters ---------- instring : str the input string loc : int the location of the matching string tokenlist : list list of matched tokens Returns ------- int integer value for token. """ return int(tokenlist[0]) class _ToFloat(TokenConverter): """ Converter for PyParsing that is used to turn a token into a float. """ def postParse(self, instring, loc, tokenlist): """ Convert token into a float. Parameters ---------- instring : str the input string loc : int the location of the matching string tokenlist : list list of matched tokens Returns ------- float float value for token. """ return float(tokenlist[0].replace('D', 'E')) class _ToNan(TokenConverter): """ Converter for PyParsing that is used to turn a token into Python nan. """ def postParse(self, instring, loc, tokenlist): """ Convert token into Python nan. Parameters ---------- instring : str the input string loc : int the location of the matching string tokenlist : list list of matched tokens Returns ------- float the float value for NaN. """ return float('nan') class _ToInf(TokenConverter): """ Converter for PyParsing that is used to turn a token into Python inf. """ def postParse(self, instring, loc, tokenlist): """ Convert token into Python inf. Parameters ---------- instring : str the input string loc : int the location of the matching string tokenlist : list list of matched tokens Returns ------- float the float value for infinity. """ return float('inf') class InputFileGenerator(object): """ Utility to generate an input file from a template. Substitution of values is supported. Data is located with a simple API. Attributes ---------- _template_filename : str or None the name of the template file. _output_filename : str or None the name of the output file. _delimiter : int delimiter. _reg : int regular expression. _data : list of string the contents of the file, by line _current_row : int the current row of the file _anchored : bool indicator that position is relative to a landmark location. """ def __init__(self): """ Initialize attributes. """ self._template_filename = None self._output_filename = None self._delimiter = " " self._reg = re.compile('[^ \n]+') self._data = [] self._current_row = 0 self._anchored = False def set_template_file(self, filename): """ Set the name of the template file to be used. The template file is also read into memory when this method is called. Parameters ---------- filename : str Name of the template file to be used. """ self._template_filename = filename templatefile = open(filename, 'r') self._data = templatefile.readlines() templatefile.close() def set_generated_file(self, filename): """ Set the name of the file that will be generated. Parameters ---------- filename : str Name of the input file to be generated. """ self._output_filename = filename def set_delimiters(self, delimiter): """ Set the delimiters that are used to identify field boundaries. Parameters ---------- delimiter : str A string containing characters to be used as delimiters. """ self._delimiter = delimiter self._reg = re.compile('[^' + delimiter + '\n]+') def mark_anchor(self, anchor, occurrence=1): """ Mark the location of a landmark. This lets you describe data by relative position. Note that a forward search begins at the old anchor location. If you want to restart the search for the anchor at the file beginning, then call ``reset_anchor()`` before ``mark_anchor``. Parameters ---------- anchor : str The text you want to search for. occurrence : int, optional Find nth instance of text; default is 1 (first). Use -1 to find last occurrence. Reverse searches always start at the end of the file no matter the state of any previous anchor. """ if not isinstance(occurrence, int): raise ValueError("The value for occurrence must be an integer") instance = 0 if occurrence > 0: count = 0 max_lines = len(self._data) for index in range(self._current_row, max_lines): line = self._data[index] # If we are marking a new anchor from an existing anchor, and # the anchor is mid-line, then we still search the line, but # only after the anchor. if count == 0 and self._anchored: line = line.split(anchor)[-1] if line.find(anchor) > -1: instance += 1 if instance == occurrence: self._current_row += count self._anchored = True return count += 1 elif occurrence < 0: max_lines = len(self._data) - 1 count = max_lines for index in range(max_lines, -1, -1): line = self._data[index] # If we are marking a new anchor from an existing anchor, and # the anchor is mid-line, then we still search the line, but # only before the anchor. if count == max_lines and self._anchored: line = line.split(anchor)[0] if line.find(anchor) > -1: instance += -1 if instance == occurrence: self._current_row = count self._anchored = True return count -= 1 else: raise ValueError("0 is not valid for an anchor occurrence.") raise RuntimeError("Could not find pattern %s in template file %s" % (anchor, self._template_filename)) def reset_anchor(self): """ Reset anchor to the beginning of the file. """ self._current_row = 0 self._anchored = False def transfer_var(self, value, row, field): """ Change a single variable in the template relative to the current anchor. Parameters ---------- value : float, int, bool, str New value to set at the location. row : int Number of lines offset from anchor line (0 is anchor line). This can be negative. field : int Which word in line to replace, as denoted by delimiter(s). """ j = self._current_row + row line = self._data[j] sub = _SubHelper() sub.set(value, field) newline = re.sub(self._reg, sub.replace, line) self._data[j] = newline def transfer_array(self, value, row_start, field_start, field_end, row_end=None, sep=", "): """ Change the values of an array in the template relative to the current anchor. This should generally be used for one-dimensional or free form arrays. Parameters ---------- value : float, int, bool, str Array of values to insert. row_start : int Starting row for inserting the array. This is relative to the anchor, and can be negative. field_start : int Starting field in the given row_start as denoted by delimiter(s). field_end : int The final field the array uses in row_end. We need this to figure out if the template is too small or large. row_end : int, optional Use if the array wraps to cover additional lines. sep : int, optional Separator to use if we go beyond the template. """ # Simplified input for single-line arrays if row_end is None: row_end = row_start sub = _SubHelper() for row in range(row_start, row_end + 1): j = self._current_row + row line = self._data[j] if row == row_end: f_end = field_end else: f_end = 99999 sub.set_array(value, field_start, f_end) field_start = 0 newline = re.sub(self._reg, sub.replace_array, line) self._data[j] = newline # Sometimes an array is too large for the example in the template # This is resolved by adding more fields at the end if sub._counter < len(value): for val in value[sub._counter:]: newline = newline.rstrip() + sep + str(val) self._data[j] = newline # Sometimes an array is too small for the template # This is resolved by removing fields elif sub._counter > len(value): # TODO - Figure out how to handle this. # Ideally, we'd remove the extra field placeholders raise ValueError("Array is too small for the template.") def transfer_2Darray(self, value, row_start, row_end, field_start, field_end): """ Change the values of a 2D array in the template relative to the current anchor. This method is specialized for 2D arrays, where each row of the array is on its own line. Parameters ---------- value : ndarray Array of values to insert. row_start : int Starting row for inserting the array. This is relative to the anchor, and can be negative. row_end : int Final row for the array, relative to the anchor. field_start : int Starting field in the given row_start as denoted by delimiter(s). field_end : int The final field the array uses in row_end. We need this to figure out if the template is too small or large. """ sub = _SubHelper() i = 0 for row in range(row_start, row_end + 1): j = self._current_row + row line = self._data[j] sub.set_array(value[i, :], field_start, field_end) newline = re.sub(self._reg, sub.replace_array, line) self._data[j] = newline sub._current_location = 0 sub._counter = 0 i += 1 # TODO - Note, we currently can't handle going beyond the end of # the template line def clearline(self, row): """ Replace the contents of a row with the newline character. Parameters ---------- row : int Row number to clear, relative to current anchor. """ self._data[self._current_row + row] = "\n" def generate(self, return_data=False): """ Use the template file to generate the input file. Parameters ---------- return_data : bool If True, generated file data will be returned as a string. Returns ------- string The generated file data if return_data is True or output filename has not been provided, else None. """ if self._output_filename: with open(self._output_filename, 'w') as f: f.writelines(self._data) else: return_data = True if return_data: return '\n'.join(self._data) else: return None class FileParser(object): """ Utility to locate and read data from a file. Parameters ---------- end_of_line_comment_char : str, optional End-of-line comment character to be ignored (e.g., Python supports in-line comments with "#"). full_line_comment_char : str, optional Comment character that signifies a line should be skipped. Attributes ---------- _filename : str the name of the file. _data : list of string the contents of the file, by line _delimiter : str the name of the file. _end_of_line_comment_char : str end-of-line comment character to be ignored. _full_line_comment_char : str comment character that signifies a line should be skipped. _current_row : int the current row of the file. _anchored : bool indicator that position is relative to a landmark location. """ def __init__(self, end_of_line_comment_char=None, full_line_comment_char=None): """ Initialize attributes. """ self._filename = None self._data = [] self._delimiter = " \t" self._end_of_line_comment_char = end_of_line_comment_char self._full_line_comment_char = full_line_comment_char self._current_row = 0 self._anchored = False self.set_delimiters(self._delimiter) def set_file(self, filename): """ Set the name of the file that will be generated. Parameters ---------- filename : str Name of the input file to be generated. """ self._filename = filename inputfile = open(filename, 'r') if not self._end_of_line_comment_char and not self._full_line_comment_char: self._data = inputfile.readlines() else: self._data = [] for line in inputfile: if line[0] == self._full_line_comment_char: continue self._data.append(line.split(self._end_of_line_comment_char)[0]) inputfile.close() def set_delimiters(self, delimiter): r""" Set the delimiters that are used to identify field boundaries. Parameters ---------- delimiter : str A string containing characters to be used as delimiters. The default value is ' \t', which means that spaces and tabs are not taken as data but instead mark the boundaries. Note that the parser is smart enough to recognize characters within quotes as non-delimiters. """ self._delimiter = delimiter if delimiter != "columns": ParserElement.setDefaultWhitespaceChars(str(delimiter)) self._reset_tokens() def mark_anchor(self, anchor, occurrence=1): """ Mark the location of a landmark, which lets you describe data by relative position. Note that a forward search begins at the old anchor location. If you want to restart the search for the anchor at the file beginning, then call ``reset_anchor()`` before ``mark_anchor``. Parameters ---------- anchor : str The text you want to search for. occurrence : int Find nth instance of text; default is 1 (first). Use -1 to find last occurrence. Reverse searches always start at the end of the file no matter the state of any previous anchor. """ if not isinstance(occurrence, int): raise ValueError("The value for occurrence must be an integer") instance = 0 if occurrence > 0: count = 0 max_lines = len(self._data) for index in range(self._current_row, max_lines): line = self._data[index] # If we are marking a new anchor from an existing anchor, and # the anchor is mid-line, then we still search the line, but # only after the anchor. if count == 0 and self._anchored: line = line.split(anchor)[-1] if anchor in line: instance += 1 if instance == occurrence: self._current_row += count self._anchored = True return count += 1 elif occurrence < 0: max_lines = len(self._data) - 1 count = max_lines for index in range(max_lines, -1, -1): line = self._data[index] # If we are marking a new anchor from an existing anchor, and # the anchor is mid-line, then we still search the line, but # only before the anchor. if count == max_lines and self._anchored: line = line.split(anchor)[0] if anchor in line: instance += -1 if instance == occurrence: self._current_row = count self._anchored = True return count -= 1 else: raise ValueError("0 is not valid for an anchor occurrence.") raise RuntimeError("Could not find pattern %s in output file %s" % (anchor, self._filename)) def reset_anchor(self): """ Reset anchor to the beginning of the file. """ self._current_row = 0 self._anchored = False def transfer_line(self, row): """ Return an entire line, relative to current anchor. Parameters ---------- row : int Number of lines offset from anchor line (0 is anchor line). This can be negative. Returns ------- string Line at the location requested. """ return self._data[self._current_row + row].rstrip() def transfer_var(self, row, field, fieldend=None): """ Get a single variable relative to the current anchor. Parameters ---------- row : int Number of lines offset from anchor line (0 is anchor line). This can be negative. field : int If the delimiter is a set of chars: which word in line to retrieve. If the delimiter is 'columns': character position to start. fieldend : int (optional) If the delimiter is a set of chars: IGNORED. If the delimiter is 'columns': position of last character to return, or if omitted, the end of the line is used. Returns ------- string Data from the requested location in the file. """ j = self._current_row + row line = self._data[j] if self._delimiter == "columns": if not fieldend: line = line[(field - 1):] else: line = line[(field - 1):(fieldend)] # Let pyparsing figure out if this is a number, and return it # as a float or int as appropriate data = self._parse_line().parseString(line) # data might have been split if it contains whitespace. If so, # just return the whole string if len(data) > 1: return line else: return data[0] else: data = self._parse_line().parseString(line) return data[field - 1] def transfer_keyvar(self, key, field, occurrence=1, rowoffset=0): """ Search for a key relative to the current anchor and get a field from that line. You can do the same thing with a call to ``mark_anchor`` and ``transfer_var``. This function just combines them for convenience. Parameters ---------- key : str The key to search for. field : int Which field to transfer. Field 0 is the key. occurrence : int Find nth instance of text; default is 1 (first value field). Use -1 to find last occurance. Position 0 is the key field, so it should not be used as a value for occurrence. rowoffset : int (optional) Optional row offset from the occurrence of key. This can also be negative. Returns ------- string Data from the requested location in the file. """ if not isinstance(occurrence, int) or occurrence == 0: msg = "The value for occurrence must be a nonzero integer" raise ValueError(msg) instance = 0 if occurrence > 0: row = 0 for line in self._data[self._current_row:]: if line.find(key) > -1: instance += 1 if instance == occurrence: break row += 1 elif occurrence < 0: row = -1 for line in reversed(self._data[self._current_row:]): if line.find(key) > -1: instance += -1 if instance == occurrence: break row -= 1 j = self._current_row + row + rowoffset line = self._data[j] fields = self._parse_line().parseString(line.replace(key, "KeyField")) return fields[field] def transfer_array(self, rowstart, fieldstart, rowend=None, fieldend=None): """ Get an array of variables relative to the current anchor. Setting the delimiter to 'columns' elicits some special behavior from this method. Normally, the extraction process wraps around at the end of a line and continues grabbing each field at the start of a newline. When the delimiter is set to columns, the parameters (rowstart, fieldstart, rowend, fieldend) demark a box, and all values in that box are retrieved. Note that standard whitespace is the secondary delimiter in this case. Parameters ---------- rowstart : int Row number to start, relative to the current anchor. fieldstart : int Field number to start. rowend : int, optional Row number to end. If not set, then only one row is grabbed. fieldend : int Field number to end. Returns ------- string Data from the requested location in the file. """ j1 = self._current_row + rowstart if rowend is None: j2 = j1 + 1 else: j2 = self._current_row + rowend + 1 if not fieldend: raise ValueError("fieldend is missing, currently required") lines = self._data[j1:j2] data = np.zeros(shape=(0, 0)) for i, line in enumerate(lines): if self._delimiter == "columns": line = line[(fieldstart - 1):fieldend] # Stripping whitespace may be controversial. line = line.strip() # Let pyparsing figure out if this is a number, and return it # as a float or int as appropriate parsed = self._parse_line().parseString(line) newdata = np.array(parsed[:]) # data might have been split if it contains whitespace. If the # data is string, we probably didn't want this. if newdata.dtype.type is np.str_: newdata = np.array(line) data = np.append(data, newdata) else: parsed = self._parse_line().parseString(line) if i == j2 - j1 - 1: data = np.append(data, np.array(parsed[(fieldstart - 1):fieldend])) else: data = np.append(data, np.array(parsed[(fieldstart - 1):])) fieldstart = 1 return data def transfer_2Darray(self, rowstart, fieldstart, rowend, fieldend=None): """ Get a 2D array of variables relative to the current anchor. Each line of data is placed in a separate row. If the delimiter is set to 'columns', then the values contained in fieldstart and fieldend should be the column number instead of the field number. Parameters ---------- rowstart : int Row number to start, relative to the current anchor. fieldstart : int Field number to start. rowend : int Row number to end relative to current anchor. fieldend : int (optional) Field number to end. If not specified, grabs all fields up to the end of the line. Returns ------- string Data from the requested location in the file. """ if fieldend and (fieldstart > fieldend): msg = "fieldend must be greater than fieldstart" raise ValueError(msg) if rowstart > rowend: msg = "rowend must be greater than rowstart" raise ValueError(msg) j1 = self._current_row + rowstart j2 = self._current_row + rowend + 1 lines = list(self._data[j1:j2]) if self._delimiter == "columns": if fieldend: line = lines[0][(fieldstart - 1):fieldend] else: line = lines[0][(fieldstart - 1):] parsed = self._parse_line().parseString(line) row = np.array(parsed[:]) data = np.zeros(shape=(abs(j2 - j1), len(row))) data[0, :] = row for i, line in enumerate(list(lines[1:])): if fieldend: line = line[(fieldstart - 1):fieldend] else: line = line[(fieldstart - 1):] parsed = self._parse_line().parseString(line) data[i + 1, :] = np.array(parsed[:]) else: parsed = self._parse_line().parseString(lines[0]) if fieldend: row = np.array(parsed[(fieldstart - 1):fieldend]) else: row = np.array(parsed[(fieldstart - 1):]) data = np.zeros(shape=(abs(j2 - j1), len(row))) data[0, :] = row for i, line in enumerate(list(lines[1:])): parsed = self._parse_line().parseString(line) if fieldend: try: data[i + 1, :] = np.array(parsed[(fieldstart - 1):fieldend]) except Exception: print(data) else: data[i + 1, :] = np.array(parsed[(fieldstart - 1):]) return data def _parse_line(self): """ Parse a single data line that may contain string or numerical data. Float and Int 'words' are converted to their appropriate type. Exponentiation is supported, as are NaN and Inf. Returns ------- <ParserElement> the parsed line. """ return self.line_parse_token def _reset_tokens(self): """ Set up the tokens for pyparsing. """ # Somewhat of a hack, but we can only use printables if the delimiter is # just whitespace. Otherwise, some seprators (like ',' or '=') potentially # get parsed into the general string text. So, if we have non whitespace # delimiters, we need to fall back to just alphanums, and then add in any # missing but important symbols to parse. if self._delimiter.isspace(): textchars = printables else: textchars = alphanums symbols = ['.', '/', '+', '*', '^', '(', ')', '[', ']', '=', ':', ';', '?', '%', '&', '!', '#', '|', '<', '>', '{', '}', '-', '_', '@', '$', '~'] for symbol in symbols: if symbol not in self._delimiter: textchars = textchars + symbol digits = Word(nums) dot = "." sign = oneOf("+ -") ee = CaselessLiteral('E') | CaselessLiteral('D') num_int = _ToInteger(Combine(Optional(sign) + digits)) num_float = _ToFloat(Combine( Optional(sign) + ((digits + dot + Optional(digits)) | (dot + digits)) + Optional(ee + Optional(sign) + digits) )) # special case for a float written like "3e5" mixed_exp = _ToFloat(Combine(digits + ee + Optional(sign) + digits)) nan = (_ToInf(oneOf("Inf -Inf")) | _ToNan(oneOf("NaN nan NaN% NaNQ NaNS qNaN sNaN 1.#SNAN 1.#QNAN -1.#IND"))) string_text = Word(textchars) self.line_parse_token = (OneOrMore((nan | num_float | mixed_exp | num_int | string_text)))
rplugin/python3/ultest/models/result.py
jpserra/vim-ultest
313
129815
<reponame>jpserra/vim-ultest<filename>rplugin/python3/ultest/models/result.py import json from dataclasses import asdict, dataclass @dataclass class Result: id: str file: str code: int output: str def __str__(self): props = self.dict() return json.dumps(props) def dict(self): return asdict(self)
tests/gis_tests/geogapp/models.py
ni-ning/django
61,676
129819
<gh_stars>1000+ from django.contrib.gis.db import models class NamedModel(models.Model): name = models.CharField(max_length=30) class Meta: abstract = True def __str__(self): return self.name class City(NamedModel): point = models.PointField(geography=True) class Meta: app_label = 'geogapp' class Zipcode(NamedModel): code = models.CharField(max_length=10) poly = models.PolygonField(geography=True) class County(NamedModel): state = models.CharField(max_length=20) mpoly = models.MultiPolygonField(geography=True) class Meta: app_label = 'geogapp' def __str__(self): return ' County, '.join([self.name, self.state])
networkx/algorithms/centrality/voterank_alg.py
jebogaert/networkx
10,024
129832
"""Algorithm to select influential nodes in a graph using VoteRank.""" __all__ = ["voterank"] def voterank(G, number_of_nodes=None): """Select a list of influential nodes in a graph using VoteRank algorithm VoteRank [1]_ computes a ranking of the nodes in a graph G based on a voting scheme. With VoteRank, all nodes vote for each of its in-neighbours and the node with the highest votes is elected iteratively. The voting ability of out-neighbors of elected nodes is decreased in subsequent turns. Note: We treat each edge independently in case of multigraphs. Parameters ---------- G : graph A NetworkX graph. number_of_nodes : integer, optional Number of ranked nodes to extract (default all nodes). Returns ------- voterank : list Ordered list of computed seeds. Only nodes with positive number of votes are returned. References ---------- .. [1] <NAME>. et al. (2016). Identifying a set of influential spreaders in complex networks. Sci. Rep. 6, 27823; doi: 10.1038/srep27823. """ influential_nodes = [] voterank = {} if len(G) == 0: return influential_nodes if number_of_nodes is None or number_of_nodes > len(G): number_of_nodes = len(G) if G.is_directed(): # For directed graphs compute average out-degree avgDegree = sum(deg for _, deg in G.out_degree()) / len(G) else: # For undirected graphs compute average degree avgDegree = sum(deg for _, deg in G.degree()) / len(G) # step 1 - initiate all nodes to (0,1) (score, voting ability) for n in G.nodes(): voterank[n] = [0, 1] # Repeat steps 1b to 4 until num_seeds are elected. for _ in range(number_of_nodes): # step 1b - reset rank for n in G.nodes(): voterank[n][0] = 0 # step 2 - vote for n, nbr in G.edges(): # In directed graphs nodes only vote for their in-neighbors voterank[n][0] += voterank[nbr][1] if not G.is_directed(): voterank[nbr][0] += voterank[n][1] for n in influential_nodes: voterank[n][0] = 0 # step 3 - select top node n = max(G.nodes, key=lambda x: voterank[x][0]) if voterank[n][0] == 0: return influential_nodes influential_nodes.append(n) # weaken the selected node voterank[n] = [0, 0] # step 4 - update voterank properties for _, nbr in G.edges(n): voterank[nbr][1] -= 1 / avgDegree voterank[nbr][1] = max(voterank[nbr][1], 0) return influential_nodes
nlpaug/augmenter/audio/mask.py
techthiyanes/nlpaug
3,121
129848
""" Augmenter that apply mask operation to audio. """ from nlpaug.augmenter.audio import AudioAugmenter import nlpaug.model.audio as nma from nlpaug.util import Action, WarningMessage class MaskAug(AudioAugmenter): """ :param int sampling_rate: Sampling rate of input audio. Mandatory if duration is provided. :param tuple zone: Assign a zone for augmentation. Default value is (0.2, 0.8) which means that no any augmentation will be applied in first 20% and last 20% of whole audio. :param float coverage: Portion of augmentation. Value should be between 0 and 1. If `1` is assigned, augment operation will be applied to target audio segment. For example, the audio duration is 60 seconds while zone and coverage are (0.2, 0.8) and 0.7 respectively. 42 seconds ((0.8-0.2)*0.7*60) audio will be augmented. :param int duration: Duration of augmentation (in second). Default value is None. If value is provided. `coverage` value will be ignored. :param bool mask_with_noise: If it is True, targeting area will be replaced by noise. Otherwise, it will be replaced by 0. :param str name: Name of this augmenter >>> import nlpaug.augmenter.audio as naa >>> aug = naa.MaskAug(sampling_rate=44010) """ def __init__(self, sampling_rate=None, zone=(0.2, 0.8), coverage=1., duration=None, mask_with_noise=True, name='Mask_Aug', verbose=0, stateless=True): super().__init__( action=Action.SUBSTITUTE, zone=zone, coverage=coverage, duration=duration, name=name, device='cpu', verbose=verbose, stateless=stateless) self.mask_with_noise = mask_with_noise self.model = nma.Mask() def substitute(self, data): start_pos, end_pos = self.get_augment_range_by_coverage(data) if not self.stateless: self.start_pos, self.end_pos = start_pos, end_pos return self.model.manipulate(data, start_pos=start_pos, end_pos=end_pos, mask_with_noise=self.mask_with_noise)
pymorphy2__examples/определение_комментариев_женщин/main.py
gil9red/SimplePyScripts
117
129878
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # pip install nltk import nltk # pip install pymorphy2 import pymorphy2 # TODO: объединить функции is_ADJS_sing_* и is_VERB_sing_*, # а проверку пола вынести в отдельую функцию def is_ADJS_sing_femn(parsed: pymorphy2.analyzer.Parse) -> bool: """ Имя прилагательное (краткое) + единственное число + женский род """ return {'ADJS', 'sing', 'femn'} in parsed.tag def is_ADJS_sing_masc(parsed: pymorphy2.analyzer.Parse) -> bool: """ Имя прилагательное (краткое) + единственное число + мужской род """ return {'ADJS', 'sing', 'masc'} in parsed.tag def is_VERB_sing_femn(parsed: pymorphy2.analyzer.Parse) -> bool: """ Глагол (личная форма) + единственное число + женский род """ return {'VERB', 'sing', 'femn'} in parsed.tag def is_VERB_sing_masc(parsed: pymorphy2.analyzer.Parse) -> bool: """ Глагол (личная форма) + единственное число + мужской род """ return {'VERB', 'sing', 'masc'} in parsed.tag def is_NPRO_1per_sing(parsed: pymorphy2.analyzer.Parse) -> bool: """ Местоимение-существительное + 1 лицо + единственное число """ return {'NPRO', '1per', 'sing'} in parsed.tag LOG_DEBUG = False # LOG_DEBUG = True morph = pymorphy2.MorphAnalyzer() def is_femn(text: str) -> bool: for line in text.splitlines(): LOG_DEBUG and print(f'[#] Comment: {line!r}') # Перебор предложений for sent in nltk.sent_tokenize(line, language='russian'): LOG_DEBUG and print(f'[#] Comment part: {sent!r}') words = nltk.word_tokenize(sent) parsed_words = [morph.parse(word)[0] for word in words] parsed = parsed_words[0] if is_ADJS_sing_femn(parsed) or is_VERB_sing_femn(parsed): return True if is_ADJS_sing_masc(parsed) or is_VERB_sing_masc(parsed): return False has_NPRO_1per_sing = False LOG_DEBUG and print(f'[#] ({len(words)}): {words}') LOG_DEBUG and print(f'[#] ({len(parsed_words)}):') for parsed in parsed_words: LOG_DEBUG and print(f'[#] {parsed.word} - {str(parsed.tag)!r}') if is_NPRO_1per_sing(parsed): has_NPRO_1per_sing = True LOG_DEBUG and print(f'[!]{" " * 12} FOUND #1!') continue if has_NPRO_1per_sing: # Если встретили в мужском роде, выходим if is_ADJS_sing_masc(parsed) or is_VERB_sing_masc(parsed): return False if is_ADJS_sing_femn(parsed) or is_VERB_sing_femn(parsed): LOG_DEBUG and print(f'[!]{" " * 12} FOUND #2!') return True return False if __name__ == '__main__': import json with open('comments.json', encoding='utf-8') as f: data = json.load(f) comments = [(x['text'], x['expected']) for x in data] matches = 0 total = len(comments) for i, (text, expected) in enumerate(comments, 1): has_female = is_femn(text) match = has_female == (expected == 'female') matches += match print(f"{i}. {text!r}" f"\n [{'+' if match else '-'}] " f"Expected={expected}, " f"actual={'female' if has_female else 'male'}") print('-' * 100) print(f'Total: {matches} / {total}')
sdk/python/pulumi_gcp/projects/iam_policy.py
la3mmchen/pulumi-gcp
121
129888
<filename>sdk/python/pulumi_gcp/projects/iam_policy.py<gh_stars>100-1000 # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['IAMPolicyArgs', 'IAMPolicy'] @pulumi.input_type class IAMPolicyArgs: def __init__(__self__, *, policy_data: pulumi.Input[str], project: pulumi.Input[str]): """ The set of arguments for constructing a IAMPolicy resource. :param pulumi.Input[str] policy_data: The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. :param pulumi.Input[str] project: The project id of the target project. This is not inferred from the provider. """ pulumi.set(__self__, "policy_data", policy_data) pulumi.set(__self__, "project", project) @property @pulumi.getter(name="policyData") def policy_data(self) -> pulumi.Input[str]: """ The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. """ return pulumi.get(self, "policy_data") @policy_data.setter def policy_data(self, value: pulumi.Input[str]): pulumi.set(self, "policy_data", value) @property @pulumi.getter def project(self) -> pulumi.Input[str]: """ The project id of the target project. This is not inferred from the provider. """ return pulumi.get(self, "project") @project.setter def project(self, value: pulumi.Input[str]): pulumi.set(self, "project", value) @pulumi.input_type class _IAMPolicyState: def __init__(__self__, *, etag: Optional[pulumi.Input[str]] = None, policy_data: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering IAMPolicy resources. :param pulumi.Input[str] etag: (Computed) The etag of the project's IAM policy. :param pulumi.Input[str] policy_data: The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. :param pulumi.Input[str] project: The project id of the target project. This is not inferred from the provider. """ if etag is not None: pulumi.set(__self__, "etag", etag) if policy_data is not None: pulumi.set(__self__, "policy_data", policy_data) if project is not None: pulumi.set(__self__, "project", project) @property @pulumi.getter def etag(self) -> Optional[pulumi.Input[str]]: """ (Computed) The etag of the project's IAM policy. """ return pulumi.get(self, "etag") @etag.setter def etag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "etag", value) @property @pulumi.getter(name="policyData") def policy_data(self) -> Optional[pulumi.Input[str]]: """ The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. """ return pulumi.get(self, "policy_data") @policy_data.setter def policy_data(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "policy_data", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The project id of the target project. This is not inferred from the provider. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) class IAMPolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, policy_data: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, __props__=None): """ Four different resources help you manage your IAM policy for a project. Each of these resources serves a different use case: * `projects.IAMPolicy`: Authoritative. Sets the IAM policy for the project and replaces any existing policy already attached. * `projects.IAMBinding`: Authoritative for a given role. Updates the IAM policy to grant a role to a list of members. Other roles within the IAM policy for the project are preserved. * `projects.IAMMember`: Non-authoritative. Updates the IAM policy to grant a role to a new member. Other members for the role for the project are preserved. * `projects.IAMAuditConfig`: Authoritative for a given service. Updates the IAM policy to enable audit logging for the given service. > **Note:** `projects.IAMPolicy` **cannot** be used in conjunction with `projects.IAMBinding`, `projects.IAMMember`, or `projects.IAMAuditConfig` or they will fight over what your policy should be. > **Note:** `projects.IAMBinding` resources **can be** used in conjunction with `projects.IAMMember` resources **only if** they do not grant privilege to the same role. > **Note:** The underlying API method `projects.setIamPolicy` has a lot of constraints which are documented [here](https://cloud.google.com/resource-manager/reference/rest/v1/projects/setIamPolicy). In addition to these constraints, IAM Conditions cannot be used with Basic Roles such as Owner. Violating these constraints will result in the API returning 400 error code so please review these if you encounter errors with this resource. ## google\_project\_iam\_policy > **Be careful!** You can accidentally lock yourself out of your project using this resource. Deleting a `projects.IAMPolicy` removes access from anyone without organization-level access to the project. Proceed with caution. It's not recommended to use `projects.IAMPolicy` with your provider project to avoid locking yourself out, and it should generally only be used with projects fully managed by this provider. If you do use this resource, it is recommended to **import** the policy before applying the change. ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( role="roles/editor", members=["user:<EMAIL>"], )]) project = gcp.projects.IAMPolicy("project", project="your-project-id", policy_data=admin.policy_data) ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( condition=gcp.organizations.GetIAMPolicyBindingConditionArgs( description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", title="expires_after_2019_12_31", ), members=["user:<EMAIL>"], role="roles/compute.admin", )]) project = gcp.projects.IAMPolicy("project", policy_data=admin.policy_data, project="your-project-id") ``` ## google\_project\_iam\_binding ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMBinding("project", members=["user:<EMAIL>"], project="your-project-id", role="roles/editor") ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMBinding("project", condition=gcp.projects.IAMBindingConditionArgs( description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", title="expires_after_2019_12_31", ), members=["user:<EMAIL>"], project="your-project-id", role="roles/container.admin") ``` ## google\_project\_iam\_member ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMMember("project", member="user:<EMAIL>", project="your-project-id", role="roles/editor") ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMMember("project", condition=gcp.projects.IAMMemberConditionArgs( description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", title="expires_after_2019_12_31", ), member="user:<EMAIL>", project="your-project-id", role="roles/firebase.admin") ``` ## google\_project\_iam\_audit\_config ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMAuditConfig("project", audit_log_configs=[ gcp.projects.IAMAuditConfigAuditLogConfigArgs( log_type="ADMIN_READ", ), gcp.projects.IAMAuditConfigAuditLogConfigArgs( exempted_members=["user:<EMAIL>"], log_type="DATA_READ", ), ], project="your-project-id", service="allServices") ``` ## Import IAM member imports use space-delimited identifiers; the resource in question, the role, and the account. This member resource can be imported using the `project_id`, role, and member e.g. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project "your-project-id roles/viewer user:<EMAIL>" ``` IAM binding imports use space-delimited identifiers; the resource in question and the role. This binding resource can be imported using the `project_id` and role, e.g. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project "your-project-id roles/viewer" ``` IAM policy imports use the identifier of the resource in question. This policy resource can be imported using the `project_id`. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project your-project-id ``` IAM audit config imports use the identifier of the resource in question and the service, e.g. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project "your-project-id foo.googleapis.com" ``` -> **Custom Roles**If you're importing a IAM resource with a custom role, make sure to use the full name of the custom role, e.g. `[projects/my-project|organizations/my-org]/roles/my-custom-role`. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] policy_data: The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. :param pulumi.Input[str] project: The project id of the target project. This is not inferred from the provider. """ ... @overload def __init__(__self__, resource_name: str, args: IAMPolicyArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Four different resources help you manage your IAM policy for a project. Each of these resources serves a different use case: * `projects.IAMPolicy`: Authoritative. Sets the IAM policy for the project and replaces any existing policy already attached. * `projects.IAMBinding`: Authoritative for a given role. Updates the IAM policy to grant a role to a list of members. Other roles within the IAM policy for the project are preserved. * `projects.IAMMember`: Non-authoritative. Updates the IAM policy to grant a role to a new member. Other members for the role for the project are preserved. * `projects.IAMAuditConfig`: Authoritative for a given service. Updates the IAM policy to enable audit logging for the given service. > **Note:** `projects.IAMPolicy` **cannot** be used in conjunction with `projects.IAMBinding`, `projects.IAMMember`, or `projects.IAMAuditConfig` or they will fight over what your policy should be. > **Note:** `projects.IAMBinding` resources **can be** used in conjunction with `projects.IAMMember` resources **only if** they do not grant privilege to the same role. > **Note:** The underlying API method `projects.setIamPolicy` has a lot of constraints which are documented [here](https://cloud.google.com/resource-manager/reference/rest/v1/projects/setIamPolicy). In addition to these constraints, IAM Conditions cannot be used with Basic Roles such as Owner. Violating these constraints will result in the API returning 400 error code so please review these if you encounter errors with this resource. ## google\_project\_iam\_policy > **Be careful!** You can accidentally lock yourself out of your project using this resource. Deleting a `projects.IAMPolicy` removes access from anyone without organization-level access to the project. Proceed with caution. It's not recommended to use `projects.IAMPolicy` with your provider project to avoid locking yourself out, and it should generally only be used with projects fully managed by this provider. If you do use this resource, it is recommended to **import** the policy before applying the change. ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( role="roles/editor", members=["user:<EMAIL>"], )]) project = gcp.projects.IAMPolicy("project", project="your-project-id", policy_data=admin.policy_data) ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( condition=gcp.organizations.GetIAMPolicyBindingConditionArgs( description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", title="expires_after_2019_12_31", ), members=["user:<EMAIL>"], role="roles/compute.admin", )]) project = gcp.projects.IAMPolicy("project", policy_data=admin.policy_data, project="your-project-id") ``` ## google\_project\_iam\_binding ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMBinding("project", members=["user:<EMAIL>"], project="your-project-id", role="roles/editor") ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMBinding("project", condition=gcp.projects.IAMBindingConditionArgs( description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", title="expires_after_2019_12_31", ), members=["user:<EMAIL>"], project="your-project-id", role="roles/container.admin") ``` ## google\_project\_iam\_member ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMMember("project", member="user:<EMAIL>", project="your-project-id", role="roles/editor") ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMMember("project", condition=gcp.projects.IAMMemberConditionArgs( description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", title="expires_after_2019_12_31", ), member="user:<EMAIL>", project="your-project-id", role="roles/firebase.admin") ``` ## google\_project\_iam\_audit\_config ```python import pulumi import pulumi_gcp as gcp project = gcp.projects.IAMAuditConfig("project", audit_log_configs=[ gcp.projects.IAMAuditConfigAuditLogConfigArgs( log_type="ADMIN_READ", ), gcp.projects.IAMAuditConfigAuditLogConfigArgs( exempted_members=["user:<EMAIL>"], log_type="DATA_READ", ), ], project="your-project-id", service="allServices") ``` ## Import IAM member imports use space-delimited identifiers; the resource in question, the role, and the account. This member resource can be imported using the `project_id`, role, and member e.g. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project "your-project-id roles/viewer user:<EMAIL>" ``` IAM binding imports use space-delimited identifiers; the resource in question and the role. This binding resource can be imported using the `project_id` and role, e.g. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project "your-project-id roles/viewer" ``` IAM policy imports use the identifier of the resource in question. This policy resource can be imported using the `project_id`. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project your-project-id ``` IAM audit config imports use the identifier of the resource in question and the service, e.g. ```sh $ pulumi import gcp:projects/iAMPolicy:IAMPolicy my_project "your-project-id foo.googleapis.com" ``` -> **Custom Roles**If you're importing a IAM resource with a custom role, make sure to use the full name of the custom role, e.g. `[projects/my-project|organizations/my-org]/roles/my-custom-role`. :param str resource_name: The name of the resource. :param IAMPolicyArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(IAMPolicyArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, policy_data: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = IAMPolicyArgs.__new__(IAMPolicyArgs) if policy_data is None and not opts.urn: raise TypeError("Missing required property 'policy_data'") __props__.__dict__["policy_data"] = policy_data if project is None and not opts.urn: raise TypeError("Missing required property 'project'") __props__.__dict__["project"] = project __props__.__dict__["etag"] = None super(IAMPolicy, __self__).__init__( 'gcp:projects/iAMPolicy:IAMPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, etag: Optional[pulumi.Input[str]] = None, policy_data: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None) -> 'IAMPolicy': """ Get an existing IAMPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] etag: (Computed) The etag of the project's IAM policy. :param pulumi.Input[str] policy_data: The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. :param pulumi.Input[str] project: The project id of the target project. This is not inferred from the provider. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _IAMPolicyState.__new__(_IAMPolicyState) __props__.__dict__["etag"] = etag __props__.__dict__["policy_data"] = policy_data __props__.__dict__["project"] = project return IAMPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ (Computed) The etag of the project's IAM policy. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="policyData") def policy_data(self) -> pulumi.Output[str]: """ The `organizations.get_iam_policy` data source that represents the IAM policy that will be applied to the project. The policy will be merged with any existing policy applied to the project. """ return pulumi.get(self, "policy_data") @property @pulumi.getter def project(self) -> pulumi.Output[str]: """ The project id of the target project. This is not inferred from the provider. """ return pulumi.get(self, "project")
python/GafferImageTest/ImageReaderTest.py
ddesmond/gaffer
561
129899
########################################################################## # # Copyright (c) 2015, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import shutil import unittest import six import imath import IECore import Gaffer import GafferTest import GafferImage import GafferImageTest class ImageReaderTest( GafferImageTest.ImageTestCase ) : fileName = os.path.expandvars( "$GAFFER_ROOT/python/GafferImageTest/images/circles.exr" ) colorSpaceFileName = os.path.expandvars( "$GAFFER_ROOT/python/GafferImageTest/images/circles_as_cineon.exr" ) offsetDataWindowFileName = os.path.expandvars( "$GAFFER_ROOT/python/GafferImageTest/images/rgb.100x100.exr" ) jpgFileName = os.path.expandvars( "$GAFFER_ROOT/python/GafferImageTest/images/circles.jpg" ) largeFileName = os.path.expandvars( "$GAFFER_ROOT/python/GafferImageTest/images/colorbars_max_clamp.exr" ) def setUp( self ) : GafferImageTest.ImageTestCase.setUp( self ) self.__defaultColorSpaceFunction = GafferImage.ImageReader.getDefaultColorSpaceFunction() def tearDown( self ) : GafferImageTest.ImageTestCase.tearDown( self ) GafferImage.ImageReader.setDefaultColorSpaceFunction( self.__defaultColorSpaceFunction ) def test( self ) : n = GafferImage.ImageReader() n["fileName"].setValue( self.fileName ) oiio = GafferImage.OpenImageIOReader() oiio["fileName"].setValue( self.fileName ) self.assertEqual( n["out"]["format"].getValue(), oiio["out"]["format"].getValue() ) self.assertEqual( n["out"]["dataWindow"].getValue(), oiio["out"]["dataWindow"].getValue() ) self.assertEqual( n["out"]["metadata"].getValue(), oiio["out"]["metadata"].getValue() ) self.assertEqual( n["out"]["deep"].getValue(), oiio["out"]["deep"].getValue() ) self.assertEqual( n["out"]["channelNames"].getValue(), oiio["out"]["channelNames"].getValue() ) self.assertEqual( n["out"].sampleOffsets( imath.V2i( 0 ) ), oiio["out"].sampleOffsets( imath.V2i( 0 ) ) ) self.assertEqual( n["out"].channelData( "R", imath.V2i( 0 ) ), oiio["out"].channelData( "R", imath.V2i( 0 ) ) ) self.assertImagesEqual( n["out"], oiio["out"] ) def testUnspecifiedFilename( self ) : n = GafferImage.ImageReader() n["out"]["channelNames"].getValue() self.assertTrue( GafferImage.BufferAlgo.empty( n["out"]['dataWindow'].getValue() ) ) def testChannelDataHashes( self ) : # Test that two tiles within the same image have different hashes. n = GafferImage.ImageReader() n["fileName"].setValue( self.largeFileName ) h1 = n["out"].channelData( "R", imath.V2i( 0 ) ).hash() h2 = n["out"].channelData( "R", imath.V2i( GafferImage.ImagePlug().tileSize() ) ).hash() self.assertNotEqual( h1, h2 ) def testColorSpaceOverride( self ) : exrReader = GafferImage.ImageReader() exrReader["fileName"].setValue( self.fileName ) exrReader["colorSpace"].setValue( "Cineon" ) colorSpaceOverrideReader = GafferImage.ImageReader() colorSpaceOverrideReader["fileName"].setValue( self.colorSpaceFileName ) exrImage = exrReader["out"] colorSpaceOverrideImage = colorSpaceOverrideReader["out"] self.assertImagesEqual( colorSpaceOverrideImage, exrImage, ignoreMetadata = True, maxDifference = 0.005 ) def testJpgRead( self ) : exrReader = GafferImage.ImageReader() exrReader["fileName"].setValue( self.fileName ) jpgReader = GafferImage.ImageReader() jpgReader["fileName"].setValue( self.jpgFileName ) self.assertImagesEqual( exrReader["out"], jpgReader["out"], ignoreMetadata = True, maxDifference = 0.001 ) def testSupportedExtensions( self ) : self.assertEqual( GafferImage.ImageReader.supportedExtensions(), GafferImage.OpenImageIOReader.supportedExtensions() ) def testFileRefresh( self ) : testFile = self.temporaryDirectory() + "/refresh.exr" shutil.copyfile( self.fileName, testFile ) reader = GafferImage.ImageReader() reader["fileName"].setValue( testFile ) image1 = GafferImage.ImageAlgo.image( reader["out"] ) # even though we've change the image on disk, gaffer will # still have the old one in its cache. shutil.copyfile( self.jpgFileName, testFile ) self.assertEqual( GafferImage.ImageAlgo.image( reader["out"] ), image1 ) # until we force a refresh reader["refreshCount"].setValue( reader["refreshCount"].getValue() + 1 ) self.assertNotEqual( GafferImage.ImageAlgo.image( reader["out"] ), image1 ) def testNonexistentFiles( self ) : reader = GafferImage.ImageReader() reader["fileName"].setValue( "wellIDontExist.exr" ) six.assertRaisesRegex( self, RuntimeError, ".*wellIDontExist.exr.*", reader["out"]["format"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*wellIDontExist.exr.*", reader["out"]["dataWindow"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*wellIDontExist.exr.*", reader["out"]["metadata"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*wellIDontExist.exr.*", reader["out"]["channelNames"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*wellIDontExist.exr.*", reader["out"].channelData, "R", imath.V2i( 0 ) ) six.assertRaisesRegex( self, RuntimeError, ".*wellIDontExist.exr.*", GafferImage.ImageAlgo.image, reader["out"] ) def testMissingFrameMode( self ) : testSequence = IECore.FileSequence( self.temporaryDirectory() + "/incompleteSequence.####.exr" ) shutil.copyfile( self.fileName, testSequence.fileNameForFrame( 1 ) ) shutil.copyfile( self.offsetDataWindowFileName, testSequence.fileNameForFrame( 3 ) ) reader = GafferImage.ImageReader() reader["fileName"].setValue( testSequence.fileName ) oiio = GafferImage.OpenImageIOReader() oiio["fileName"].setValue( testSequence.fileName ) def assertMatch() : self.assertEqual( reader["out"]["format"].getValue(), oiio["out"]["format"].getValue() ) self.assertEqual( reader["out"]["dataWindow"].getValue(), oiio["out"]["dataWindow"].getValue() ) self.assertEqual( reader["out"]["metadata"].getValue(), oiio["out"]["metadata"].getValue() ) self.assertEqual( reader["out"]["channelNames"].getValue(), oiio["out"]["channelNames"].getValue() ) # It is only valid to query the data inside the data window if not GafferImage.BufferAlgo.empty( reader["out"]["dataWindow"].getValue() ): self.assertEqual( reader["out"].channelData( "R", imath.V2i( 0 ) ), oiio["out"].channelData( "R", imath.V2i( 0 ) ) ) self.assertImagesEqual( reader["out"], oiio["out"] ) context = Gaffer.Context() # set to a missing frame context.setFrame( 2 ) # everything throws reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Error ) with context : six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["format"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["dataWindow"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["metadata"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["channelNames"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"].channelData, "R", imath.V2i( 0 ) ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", GafferImage.ImageAlgo.image, reader["out"] ) # Hold mode matches OpenImageIOReader reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Hold ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Hold ) with context : assertMatch() # Black mode matches OpenImageIOReader reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Black ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Black ) with context : assertMatch() # set to a different missing frame context.setFrame( 4 ) # Hold mode matches OpenImageIOReader reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Hold ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Hold ) with context : assertMatch() # Black mode matches OpenImageIOReader reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Black ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Black ) with context : assertMatch() # set to a missing frame before the start of the sequence context.setFrame( 0 ) # Hold mode matches OpenImageIOReader reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Hold ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Hold ) with context : assertMatch() # Black mode matches OpenImageIOReader reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Black ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Black ) with context : assertMatch() # explicit fileNames do not support MissingFrameMode reader["fileName"].setValue( testSequence.fileNameForFrame( 0 ) ) reader["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Hold ) with context : six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", GafferImage.ImageAlgo.image, reader["out"] ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["format"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["dataWindow"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["metadata"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["channelNames"].getValue ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"].channelData, "R", imath.V2i( 0 ) ) reader["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Black ) oiio["missingFrameMode"].setValue( GafferImage.OpenImageIOReader.MissingFrameMode.Black ) with context : six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", GafferImage.ImageAlgo.image, reader["out"] ) six.assertRaisesRegex( self, RuntimeError, ".*incompleteSequence.*.exr.*", reader["out"]["format"].getValue ) self.assertEqual( reader["out"]["dataWindow"].getValue(), oiio["out"]["dataWindow"].getValue() ) self.assertEqual( reader["out"]["metadata"].getValue(), oiio["out"]["metadata"].getValue() ) self.assertEqual( reader["out"]["channelNames"].getValue(), oiio["out"]["channelNames"].getValue() ) self.assertTrue( GafferImage.BufferAlgo.empty( reader["out"]['dataWindow'].getValue() ) ) self.assertTrue( GafferImage.BufferAlgo.empty( oiio["out"]['dataWindow'].getValue() ) ) def testFrameRangeMask( self ) : testSequence = IECore.FileSequence( self.temporaryDirectory() + "/incompleteSequence.####.exr" ) shutil.copyfile( self.fileName, testSequence.fileNameForFrame( 1 ) ) shutil.copyfile( self.fileName, testSequence.fileNameForFrame( 3 ) ) shutil.copyfile( self.offsetDataWindowFileName, testSequence.fileNameForFrame( 5 ) ) shutil.copyfile( self.offsetDataWindowFileName, testSequence.fileNameForFrame( 7 ) ) reader = GafferImage.ImageReader() reader["fileName"].setValue( testSequence.fileName ) reader["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Hold ) oiio = GafferImage.OpenImageIOReader() oiio["fileName"].setValue( testSequence.fileName ) oiio["missingFrameMode"].setValue( GafferImage.ImageReader.MissingFrameMode.Hold ) context = Gaffer.Context() # make sure the tile we're comparing isn't black # so we can tell if BlackOutside is working. blackTile = IECore.FloatVectorData( [ 0 ] * GafferImage.ImagePlug.tileSize() * GafferImage.ImagePlug.tileSize() ) with context : for i in range( 1, 11 ) : context.setFrame( i ) self.assertNotEqual( reader["out"].channelData( "R", imath.V2i( 0 ) ), blackTile ) def assertBlack() : # format and data window still match self.assertEqual( reader["out"]["format"].getValue(), oiio["out"]["format"].getValue() ) self.assertEqual( reader["out"]["dataWindow"].getValue(), oiio["out"]["dataWindow"].getValue() ) self.assertNotEqual( GafferImage.ImageAlgo.image( reader["out"] ), GafferImage.ImageAlgo.image( oiio["out"] ) ) # the metadata and channel names are at the defaults self.assertEqual( reader["out"]["metadata"].getValue(), reader["out"]["metadata"].defaultValue() ) self.assertEqual( reader["out"]["channelNames"].getValue(), reader["out"]["channelNames"].defaultValue() ) # channel data is black self.assertEqual( reader["out"].channelData( "R", imath.V2i( 0 ) ), blackTile ) def assertMatch() : self.assertEqual( reader["out"]["format"].getValue(), oiio["out"]["format"].getValue() ) self.assertEqual( reader["out"]["dataWindow"].getValue(), oiio["out"]["dataWindow"].getValue() ) self.assertEqual( reader["out"]["metadata"].getValue(), oiio["out"]["metadata"].getValue() ) self.assertEqual( reader["out"]["channelNames"].getValue(), oiio["out"]["channelNames"].getValue() ) self.assertEqual( reader["out"].channelData( "R", imath.V2i( 0 ) ), oiio["out"].channelData( "R", imath.V2i( 0 ) ) ) self.assertImagesEqual( reader["out"], oiio["out"] ) def assertHold( holdFrame ) : context = Gaffer.Context() context.setFrame( holdFrame ) with context : holdImage = GafferImage.ImageAlgo.image( reader["out"] ) holdFormat = reader["out"]["format"].getValue() holdDataWindow = reader["out"]["dataWindow"].getValue() holdMetadata = reader["out"]["metadata"].getValue() holdChannelNames = reader["out"]["channelNames"].getValue() holdTile = reader["out"].channelData( "R", imath.V2i( 0 ) ) self.assertEqual( reader["out"]["format"].getValue(), holdFormat ) self.assertEqual( reader["out"]["dataWindow"].getValue(), holdDataWindow ) self.assertEqual( reader["out"]["metadata"].getValue(), holdMetadata ) self.assertEqual( reader["out"]["channelNames"].getValue(), holdChannelNames ) self.assertEqual( reader["out"].channelData( "R", imath.V2i( 0 ) ), holdTile ) self.assertEqual( GafferImage.ImageAlgo.image( reader["out"] ), holdImage ) reader["start"]["frame"].setValue( 4 ) reader["end"]["frame"].setValue( 7 ) # frame 0 errors, match from 1-10 reader["start"]["mode"].setValue( GafferImage.ImageReader.FrameMaskMode.None_ ) reader["end"]["mode"].setValue( GafferImage.ImageReader.FrameMaskMode.None_ ) with context : for i in range( 0, 11 ) : context.setFrame( i ) assertMatch() # black from 0-3, match from 4-10 reader["start"]["mode"].setValue( GafferImage.ImageReader.FrameMaskMode.BlackOutside ) with context : for i in range( 0, 4 ) : context.setFrame( i ) assertBlack() for i in range( 4, 11 ) : context.setFrame( i ) assertMatch() # black from 0-3, match from 4-7, black from 8-10 reader["end"]["mode"].setValue( GafferImage.ImageReader.FrameMaskMode.BlackOutside ) with context : for i in range( 0, 4 ) : context.setFrame( i ) assertBlack() for i in range( 4, 8 ) : context.setFrame( i ) assertMatch() for i in range( 8, 11 ) : context.setFrame( i ) assertBlack() # hold frame 4 from 0-3, match from 4-7, black from 8-10 reader["start"]["mode"].setValue( GafferImage.ImageReader.FrameMaskMode.ClampToFrame ) with context : for i in range( 0, 4 ) : context.setFrame( i ) assertHold( 4 ) for i in range( 4, 8 ) : context.setFrame( i ) assertMatch() for i in range( 8, 11 ) : context.setFrame( i ) assertBlack() # hold frame 4 from 0-3, match from 4-7, hold frame 7 from 8-10 reader["end"]["mode"].setValue( GafferImage.ImageReader.FrameMaskMode.ClampToFrame ) with context : for i in range( 0, 4 ) : context.setFrame( i ) assertHold( 4 ) for i in range( 4, 8 ) : context.setFrame( i ) assertMatch() for i in range( 8, 11 ) : context.setFrame( i ) assertHold( 7 ) def testDefaultColorSpaceFunctionArguments( self ) : # Make a network to write and read an image # in various formats. c = GafferImage.Constant() c["format"].setValue( GafferImage.Format( 64, 64 ) ) w = GafferImage.ImageWriter() w["in"].setInput( c["out"] ) r = GafferImage.ImageReader() r["fileName"].setInput( w["fileName"] ) # Register a custom colorspace function that # just captures its arguments. capturedArguments = {} def f( fileName, fileFormat, dataType, metadata ) : capturedArguments.update( { "fileName" : fileName, "fileFormat" : fileFormat, "dataType" : dataType, "metadata" : metadata, } ) return "linear" GafferImage.ImageReader.setDefaultColorSpaceFunction( f ) # Verify that the correct arguments are passed for # a variety of fileNames and dataTypes. for ext, fileFormat, dataType in [ ( "exr", "openexr", "half" ), ( "dpx", "dpx", "uint12" ), ( "TIFF", "tiff", "float" ), ( "tif", "tiff", "uint32" ), ] : w["fileName"].setValue( "{0}/{1}.{2}".format( self.temporaryDirectory(), dataType, ext ) ) w[fileFormat]["dataType"].setValue( dataType ) w.execute() capturedArguments.clear() r["out"].channelData( "R", imath.V2i( 0 ) ) # Triggers call to color space function self.assertEqual( len( capturedArguments ), 4 ) self.assertEqual( capturedArguments["fileName"], w["fileName"].getValue() ) self.assertEqual( capturedArguments["fileFormat"], fileFormat ) self.assertEqual( capturedArguments["dataType"], dataType ) self.assertEqual( capturedArguments["metadata"], r["out"]["metadata"].getValue() ) def testDisabling( self ) : reader = GafferImage.ImageReader() reader["fileName"].setValue( self.fileName ) reader["enabled"].setValue( False ) constant = GafferImage.Constant() constant["enabled"].setValue( False ) self.assertImagesEqual( reader["out"], constant["out"] ) if __name__ == "__main__": unittest.main()
tensorflow/security/fuzzing/dataFormatVecPermute_fuzz.py
EricRemmerswaal/tensorflow
190,993
129941
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This is a Python API fuzzer for tf.raw_ops.DataFormatVecPermute.""" import atheris with atheris.instrument_imports(): import sys from python_fuzzing import FuzzingHelper import tensorflow as tf @atheris.instrument_func def TestOneInput(input_bytes): """Test randomized integer fuzzing input for tf.raw_ops.DataFormatVecPermute.""" fh = FuzzingHelper(input_bytes) dtype = fh.get_tf_dtype() # Max shape can be 8 in length and randomized from 0-8 without running into # a OOM error. shape = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8) seed = fh.get_int() try: x = tf.random.uniform(shape=shape, dtype=dtype, seed=seed) src_format_digits = str(fh.get_int(min_int=0, max_int=999999999)) dest_format_digits = str(fh.get_int(min_int=0, max_int=999999999)) _ = tf.raw_ops.DataFormatVecPermute( x, src_format=src_format_digits, dst_format=dest_format_digits, name=fh.get_string()) except (tf.errors.InvalidArgumentError, ValueError, TypeError): pass def main(): atheris.Setup(sys.argv, TestOneInput, enable_python_coverage=True) atheris.Fuzz() if __name__ == '__main__': main()
docs/demos/multi_page_basics/pages/outlook.py
ruxi/dash-labs
110
129949
import dash dash.register_page( __name__, title="Forward Outlook", description="This is the forward outlook", # should accept callable too path="/forward-outlook", image="birds.jpeg", ) def layout(): return "Forward outlook"
tests/general_spinless_fermion_opstr_test.py
anton-buyskikh/QuSpin
195
129994
from __future__ import print_function, division import sys,os qspin_path = os.path.join(os.getcwd(),"../") sys.path.insert(0,qspin_path) from quspin.basis import spinless_fermion_basis_1d from quspin.basis import spinless_fermion_basis_general import numpy as np from itertools import product def check_ME(b1,b2,opstr,indx,dtype,err_msg): if b1.Ns != b2.Ns: print(b1._basis) print(b2._basis) raise Exception("number of states do not match.") ME1,row1,col1=b1.Op(opstr,indx,1.0,dtype) ME2,row2,col2=b2.Op(opstr,indx,1.0,dtype) if len(ME1) != len(ME2): print(ME1) print(row1) print(col1) print() print(ME2) print(row2) print(col2) raise Exception("number of matrix elements do not match.") if len(ME1)>0 and len(ME2)>0: try: np.testing.assert_allclose(row1-row2,0,atol=1e-6,err_msg=err_msg) np.testing.assert_allclose(col1-col2,0,atol=1e-6,err_msg=err_msg) np.testing.assert_allclose(ME1-ME2,0,atol=1e-6,err_msg=err_msg) except: print(ME1) print(row1) print(col1) print() print(ME2) print(row2) print(col2) raise Exception def test_gen_basis_spinless_fermion(l_max,N=4): L=6 kblocks = [None] kblocks.extend(range(L)) pblocks = [None,0,1] ops = ["n","z","+","-","I"] Nfs = [None,N] t = np.array([(i+1)%L for i in range(L)]) p = np.array([L-i-1 for i in range(L)]) for Nf,kblock,pblock in product(Nfs,kblocks,pblocks): gen_blocks = {} basis_blocks = {} if kblock==0 or kblock==L//2: if pblock is not None: basis_blocks["pblock"] = (-1)**pblock gen_blocks["pblock"] = (p,pblock) else: basis_blocks["pblock"] = None gen_blocks["pblock"] = None else: basis_blocks["pblock"] = None gen_blocks["pblock"] = None if kblock is not None: basis_blocks["kblock"] = kblock gen_blocks["kblock"] = (t,kblock) else: basis_blocks["kblock"] = None gen_blocks["kblock"] = None basis_1d = spinless_fermion_basis_1d(L,Nf=Nf,**basis_blocks) gen_basis = spinless_fermion_basis_general(L,Nf=Nf,**gen_blocks) n = basis_1d._get_norms(np.float64)**2 n_gen = (gen_basis._n.astype(np.float64))*gen_basis._pers.prod() if basis_1d.Ns != gen_basis.Ns: print(L,basis_blocks) print(basis_1d) print(gen_basis) raise ValueError("basis size mismatch") np.testing.assert_allclose(basis_1d._basis-gen_basis._basis,0,atol=1e-6) np.testing.assert_allclose(n-n_gen ,0,atol=1e-6) for l in range(1,l_max+1): for i0 in range(0,L-l+1,1): indx = range(i0,i0+l,1) for opstr in product(*[ops for i in range(l)]): opstr = "".join(list(opstr)) printing = dict(basis_blocks) printing["opstr"]=opstr printing["indx"]=indx printing["Nf"]=Nf err_msg="testing: {opstr:} {indx:} Nf={Nf:} kblock={kblock:} pblock={pblock:}".format(**printing) check_ME(basis_1d,gen_basis,opstr,indx,np.complex128,err_msg) print("testing Nf=4") test_gen_basis_spinless_fermion(3,N=4) print("testing Nf=5") test_gen_basis_spinless_fermion(3,N=5) print("testing Nf=6") test_gen_basis_spinless_fermion(3,N=6)
update/venv/lib/python3.9/site-packages/fontTools/__init__.py
Imudassir77/material-design-icons
38,667
129996
<reponame>Imudassir77/material-design-icons import logging from fontTools.misc.loggingTools import configLogger log = logging.getLogger(__name__) version = __version__ = "4.22.1" __all__ = ["version", "log", "configLogger"]
benchmarks/proximal_gradient_benchmark.py
GeoffNN/jaxopt
434
130002
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Benchmark JAX implementation vs. NumPy implementation of proximal gradient.""" import time from typing import NamedTuple from typing import Sequence from absl import app from absl import flags from sklearn import datasets from sklearn import preprocessing import numpy as onp import jax import jax.numpy as jnp from jaxopt import base from jaxopt import proximal_gradient2 as pg from jaxopt.prox import prox_lasso FLAGS = flags.FLAGS flags.DEFINE_string("dataset", default="boston", help=("Dataset to use.")) flags.DEFINE_bool("float64", default=False, help=("Enable double precision.")) flags.DEFINE_float("lam", default=1.0, help=("Regularization value.")) flags.DEFINE_integer("maxiter", default=200, help=("Max # of iterations.")) flags.DEFINE_integer("n_samples", default=100000, help=("Number of samples.")) flags.DEFINE_integer("n_features", default=200, help=("Number of features.")) flags.DEFINE_bool("verbose", default=False, help=("Enable verbose output.")) def _make_linesearch(fun, prox, maxls): def linesearch(curr_x, curr_x_fun_val, curr_x_fun_grad, curr_stepsize): """A pure NumPy re-implementation of linesearch for benchmarking reasons.""" for _ in range(maxls): next_x = prox(curr_x - curr_stepsize * curr_x_fun_grad, curr_stepsize) diff = next_x - curr_x sqdist = onp.vdot(diff, diff) value_F = fun(next_x) value_Q = (curr_x_fun_val + onp.vdot(diff, curr_x_fun_grad) + 0.5 * sqdist / curr_stepsize) if value_F <= value_Q: return next_x, curr_stepsize curr_stepsize *= 0.5 # Undo the last decrase when `maxls` is reached. curr_stepsize *= 2 return next_x, curr_stepsize return linesearch def proximal_gradient_onp(fun, init, prox, stepsize, maxiter=200, maxls=15, tol=1e-3, verbose=0): """A pure NumPy re-implementation of proximal gradient for benchmarking.""" curr_x = init curr_stepsize = 1.0 linesearch = _make_linesearch(fun, prox, maxls) for iter_num in range(1, maxiter + 1): # Convergence monitoring. curr_x_fun_val, curr_x_fun_grad = fun(curr_x, grad=True) diff_x = curr_x - prox(curr_x - curr_x_fun_grad) curr_error = onp.sqrt(onp.sum(diff_x ** 2)) if verbose: print(iter_num, curr_error) if curr_error <= tol: break if stepsize <= 0: # With line search. curr_x, curr_stepsize = linesearch(curr_x, curr_x_fun_val, curr_x_fun_grad, curr_stepsize) if curr_stepsize <= 1e-6: # Reset step size. curr_stepsize = 1.0 else: curr_stepsize *= 2 else: # Without line search. curr_x = prox(curr_x - stepsize * curr_x_fun_grad, stepsize) state = pg.ProxGradState(iter_num=iter_num, error=curr_error, stepsize=curr_stepsize) return base.OptStep(params=curr_x, state=state) def proximal_gradient_accel_onp(fun, init, prox, stepsize, maxiter=200, maxls=15, tol=1e-3, verbose=0): """A pure NumPy re-implementation of proximal gradient with acceleration.""" curr_x = init curr_y = init curr_t = 1.0 curr_stepsize = 1.0 linesearch = _make_linesearch(fun, prox, maxls) for iter_num in range(1, maxiter + 1): # Convergence monitoring curr_x_fun_grad = fun(curr_x, grad=True)[1] diff_x = curr_x - prox(curr_x - curr_x_fun_grad) curr_error = onp.sqrt(onp.sum(diff_x ** 2)) if verbose: print(iter_num, curr_error) if curr_error <= tol: break # Iteration. curr_y_fun_val, curr_y_fun_grad = fun(curr_y, grad=True) if stepsize <= 0: # With line search. next_x, curr_stepsize = linesearch(curr_y, curr_y_fun_val, curr_y_fun_grad, curr_stepsize) if curr_stepsize <= 1e-6: # Reset step size. curr_stepsize = 1.0 else: curr_stepsize *= 2 else: # Without line search. next_x = prox(curr_y - stepsize * curr_y_fun_grad, stepsize) next_t = 0.5 * (1 + onp.sqrt(1 + 4 * curr_t ** 2)) diff_x = next_x - curr_x next_y = next_x + (curr_t - 1) / next_t * diff_x curr_x = next_x curr_y = next_y curr_t = next_t state = pg.ProxGradState(iter_num=iter_num, error=curr_error, stepsize=curr_stepsize) return base.OptStep(params=curr_x, state=state) def lasso_onp(X, y, lam, stepsize, tol, maxiter, acceleration, verbose): def fun(w, grad=False): y_pred = onp.dot(X, w) diff = y_pred - y obj = 0.5 * onp.dot(diff, diff) if not grad: return obj g = onp.dot(X.T, diff) return obj, g def prox(w, stepsize=1.0): return onp.sign(w) * onp.maximum(onp.abs(w) - lam * stepsize, 0) init = onp.zeros(X.shape[1], dtype=X.dtype) solver_fun = proximal_gradient_accel_onp if acceleration else proximal_gradient_onp return solver_fun(fun=fun, init=init, prox=prox, stepsize=stepsize, maxiter=maxiter, tol=tol, verbose=verbose) def lasso_jnp(X, y, lam, stepsize, tol, maxiter, acceleration, verbose): def fun(w, data): X, y = data y_pred = jnp.dot(X, w) diff = y_pred - y return 0.5 * jnp.dot(diff, diff) init = jnp.zeros(X.shape[1], dtype=X.dtype) solver = pg.ProximalGradient(fun=fun, prox=prox_lasso, tol=tol, stepsize=stepsize, maxiter=maxiter, acceleration=acceleration, verbose=verbose) return solver.run(init, lam, (X, y)) def run_proximal_gradient(X, y, lam, stepsize, maxiter, verbose): if stepsize <= 0: print("proximal gradient (line search)") else: print("proximal gradient (constant step size)") print("-" * 50) start = time.time() res_onp = lasso_onp(X=X, y=y, lam=lam, stepsize=stepsize, tol=1e-3, maxiter=maxiter, acceleration=False, verbose=verbose).state print("error onp:", res_onp.error) print("iter_num onp:", res_onp.iter_num) print("time onp", time.time() - start) print(flush=True) start = time.time() res_jnp = lasso_jnp(X=X, y=y, lam=lam, stepsize=stepsize, tol=1e-3, maxiter=maxiter, acceleration=False, verbose=verbose).state print("error jnp:", res_jnp.error) print("iter_num jnp:", res_jnp.iter_num) print("time jnp", time.time() - start) print(flush=True) def run_accelerated_proximal_gradient(X, y, lam, stepsize, maxiter, verbose): if stepsize <= 0: print("accelerated proximal gradient descent (line search)") else: print("accelerated proximal gradient descent (constant step size)") print("-" * 50) start = time.time() res_onp = lasso_onp(X=X, y=y, lam=lam, stepsize=stepsize, tol=1e-3, maxiter=maxiter, acceleration=True, verbose=verbose).state print("error onp:", res_onp.error) print("iter_num onp:", res_onp.iter_num) print("time onp", time.time() - start) print(flush=True) start = time.time() res_jnp = lasso_jnp(X=X, y=y, lam=lam, stepsize=stepsize, tol=1e-3, maxiter=maxiter, acceleration=True, verbose=verbose).state print("error jnp:", res_jnp.error) print("iter_num jnp:", res_jnp.iter_num) print("time jnp", time.time() - start) print(flush=True) def load_dataset(dataset, float64=False): if dataset == "boston": X, y = datasets.load_boston(return_X_y=True) elif dataset == "synth": X, y = datasets.make_classification(n_samples=FLAGS.n_samples, n_features=FLAGS.n_features, n_classes=2, random_state=0) else: raise ValueError("Invalid dataset.") X = preprocessing.Normalizer().fit_transform(X) if not float64: X = X.astype(onp.float32) y = y.astype(onp.float32) return X, y def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") if FLAGS.float64: jax.config.update("jax_enable_x64", True) X, y = load_dataset(FLAGS.dataset, FLAGS.float64) print("Dataset:", FLAGS.dataset) print("n_samples:", X.shape[0]) print("n_features:", X.shape[1]) print("lambda:", FLAGS.lam) print("maxiter:", FLAGS.maxiter) print("float64:", FLAGS.float64) print() kw = dict(lam=FLAGS.lam, maxiter=FLAGS.maxiter, verbose=FLAGS.verbose) run_proximal_gradient(X, y, stepsize=1e-3, **kw) run_proximal_gradient(X, y, stepsize=0, **kw) run_accelerated_proximal_gradient(X, y, stepsize=1e-3, **kw) run_accelerated_proximal_gradient(X, y, stepsize=0, **kw) if __name__ == '__main__': app.run(main)
tests/test_json_loader.py
sephiartlist/dynaconf
2,293
130016
<filename>tests/test_json_loader.py import json import pytest from dynaconf import LazySettings from dynaconf.loaders.json_loader import DynaconfEncoder from dynaconf.loaders.json_loader import load from dynaconf.strategies.filtering import PrefixFilter settings = LazySettings(environments=True, ENV_FOR_DYNACONF="PRODUCTION") JSON = """ { "a": "a,b", "default": { "password": <PASSWORD>", "host": "server.com", "port": "@int 8080", "alist": ["item1", "item2", 23], "service": { "url": "service.com", "port": 80, "auth": { "password": "<PASSWORD>", "test": 1234 } } }, "development": { "password": <PASSWORD>", "host": "devserver.com" }, "production": { "password": <PASSWORD>", "host": "prodserver.com" }, "global": { "global_value": "global" } } """ # the @float is not needed in JSON but kept to ensure it works JSON2 = """ { "global": { "secret": "@float 42", "password": <PASSWORD>, "host": "otherjson.com" } } """ JSONS = [JSON, JSON2] def test_load_from_json(): """Assert loads from JSON string""" load(settings, filename=JSON) assert settings.HOST == "prodserver.com" assert settings.PORT == 8080 assert settings.ALIST == ["item1", "item2", 23] assert settings.SERVICE["url"] == "service.com" assert settings.SERVICE.url == "service.com" assert settings.SERVICE.port == 80 assert settings.SERVICE.auth.password == "<PASSWORD>" assert settings.SERVICE.auth.test == 1234 load(settings, filename=JSON, env="DEVELOPMENT") assert settings.HOST == "devserver.com" load(settings, filename=JSON) assert settings.HOST == "prodserver.com" def test_load_from_multiple_json(): """Assert loads from JSON string""" load(settings, filename=JSONS) assert settings.HOST == "otherjson.com" assert settings.PASSWORD == <PASSWORD> assert settings.SECRET == 42.0 assert settings.PORT == 8080 assert settings.SERVICE["url"] == "service.com" assert settings.SERVICE.url == "service.com" assert settings.SERVICE.port == 80 assert settings.SERVICE.auth.password == "<PASSWORD>" assert settings.SERVICE.auth.test == 1234 load(settings, filename=JSONS, env="DEVELOPMENT") assert settings.PORT == 8080 assert settings.HOST == "otherjson.com" load(settings, filename=JSONS) assert settings.HOST == "otherjson.com" assert settings.PASSWORD == <PASSWORD> load(settings, filename=JSON, env="DEVELOPMENT") assert settings.PORT == 8080 assert settings.HOST == "devserver.com" load(settings, filename=JSON) assert settings.HOST == "prodserver.com" assert settings.PASSWORD == <PASSWORD> def test_no_filename_is_none(): """Assert if passed no filename return is None""" assert load(settings) is None def test_key_error_on_invalid_env(): """Assert error raised if env is not found in JSON""" with pytest.raises(KeyError): load(settings, filename=JSON, env="FOOBAR", silent=False) def test_no_key_error_on_invalid_env(): """Assert error raised if env is not found in JSON""" load(settings, filename=JSON, env="FOOBAR", silent=True) def test_load_single_key(): """Test loading a single key""" _JSON = """ { "foo": { "bar": "blaz", "zaz": "naz" } } """ load(settings, filename=_JSON, env="FOO", key="bar") assert settings.BAR == "blaz" assert settings.exists("BAR") is True assert settings.exists("ZAZ") is False def test_empty_value(): load(settings, filename="") def test_multiple_filenames(): load(settings, filename="a.json,b.json,c.json,d.json") def test_cleaner(): load(settings, filename=JSON) assert settings.HOST == "prodserver.com" assert settings.PORT == 8080 assert settings.ALIST == ["item1", "item2", 23] assert settings.SERVICE["url"] == "service.com" assert settings.SERVICE.url == "service.com" assert settings.SERVICE.port == 80 assert settings.SERVICE.auth.password == "<PASSWORD>" assert settings.SERVICE.auth.test == 1234 load(settings, filename=JSON, env="DEVELOPMENT") assert settings.HOST == "devserver.com" load(settings, filename=JSON) assert settings.HOST == "prodserver.com" settings.clean() with pytest.raises(AttributeError): assert settings.HOST == "prodserver.com" def test_using_env(tmpdir): load(settings, filename=JSON) assert settings.HOST == "prodserver.com" tmpfile = tmpdir.mkdir("sub").join("test_using_env.json") tmpfile.write(JSON) with settings.using_env("DEVELOPMENT", filename=str(tmpfile)): assert settings.HOST == "devserver.com" assert settings.HOST == "prodserver.com" def test_load_dunder(): """Test loading with dunder settings""" _JSON = """ { "foo": { "colors__yellow__code": "#FFCC00", "COLORS__yellow__name": "Yellow" } } """ load(settings, filename=_JSON, env="FOO") assert settings.COLORS.yellow.code == "#FFCC00" assert settings.COLORS.yellow.name == "Yellow" def test_dynaconf_encoder(): class Dummy: def _dynaconf_encode(self): return "Dummy" class DummyNotSerializable: _dynaconf_encode = 42 data = {"dummy": Dummy()} data_error = {"dummy": DummyNotSerializable()} assert json.dumps(data, cls=DynaconfEncoder) == '{"dummy": "Dummy"}' with pytest.raises(TypeError): json.dumps(data_error, cls=DynaconfEncoder) def test_envless(): settings = LazySettings() _json = """ { "colors__yellow__code": "#FFCC00", "COLORS__yellow__name": "Yellow" } """ load(settings, filename=_json) assert settings.COLORS.yellow.code == "#FFCC00" assert settings.COLORS.yellow.name == "Yellow" def test_prefix(): settings = LazySettings(filter_strategy=PrefixFilter("prefix")) _json = """ { "prefix_colors__yellow__code": "#FFCC00", "COLORS__yellow__name": "Yellow" } """ load(settings, filename=_json) assert settings.COLORS.yellow.code == "#FFCC00" with pytest.raises(AttributeError): settings.COLORS.yellow.name
stream/clients/python/bookkeeper/common/future/_helpers.py
pkumar-singh/bookkeeper
1,545
130022
<reponame>pkumar-singh/bookkeeper # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Private helpers for futures.""" import logging import threading _LOGGER = logging.getLogger(__name__) def start_daemon_thread(*args, **kwargs): """Starts a thread and marks it as a daemon thread.""" thread = threading.Thread(*args, **kwargs) thread.daemon = True thread.start() return thread def safe_invoke_callback(callback, *args, **kwargs): """Invoke a callback, swallowing and logging any exceptions.""" # pylint: disable=bare-except # We intentionally want to swallow all exceptions. try: return callback(*args, **kwargs) except Exception: _LOGGER.exception('Error while executing Future callback.')
deps/v8/tools/testrunner/objects/testcase.py
zeusdeux/node
239
130029
# Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from . import output class TestCase(object): def __init__(self, suite, path, variant='default', flags=None, dependency=None): self.suite = suite # TestSuite object self.path = path # string, e.g. 'div-mod', 'test-api/foo' self.flags = flags or [] # list of strings, flags specific to this test self.variant = variant # name of the used testing variant self.dependency = dependency # |path| for testcase that must be run first self.outcomes = set([]) self.output = None self.id = None # int, used to map result back to TestCase instance self.duration = None # assigned during execution self.run = 1 # The nth time this test is executed. def CopyAddingFlags(self, variant, flags): copy = TestCase(self.suite, self.path, variant, self.flags + flags, self.dependency) copy.outcomes = self.outcomes return copy def PackTask(self): """ Extracts those parts of this object that are required to run the test and returns them as a JSON serializable object. """ assert self.id is not None return [self.suitename(), self.path, self.variant, self.flags, self.dependency, list(self.outcomes or []), self.id] @staticmethod def UnpackTask(task): """Creates a new TestCase object based on packed task data.""" # For the order of the fields, refer to PackTask() above. test = TestCase(str(task[0]), task[1], task[2], task[3], task[4]) test.outcomes = set(task[5]) test.id = task[6] test.run = 1 return test def SetSuiteObject(self, suites): self.suite = suites[self.suite] def PackResult(self): """Serializes the output of the TestCase after it has run.""" self.suite.StripOutputForTransmit(self) return [self.id, self.output.Pack(), self.duration] def MergeResult(self, result): """Applies the contents of a Result to this object.""" assert result[0] == self.id self.output = output.Output.Unpack(result[1]) self.duration = result[2] def suitename(self): return self.suite.name def GetLabel(self): return self.suitename() + "/" + self.suite.CommonTestName(self)
utils/android/adb_test_runner/main.py
lwhsu/swift
72,551
130034
# main.py - Push executables and run them on an Android device -*- python -*- # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ---------------------------------------------------------------------------- # # lit tests assume a single program can be invoked to execute Swift code and # make expectations upon the output. This program is a wrapper that has the # same API, but runs the Swift program on an Android device instead of on the # host. # # ---------------------------------------------------------------------------- from __future__ import print_function import os import sys from adb.commands import execute_on_device def _usage(program_name): return 'usage: {} [executable_path] [executable_arguments]'.format( program_name) def _help(program_name): return '{}\n\n'.format(_usage(program_name)) + \ 'positional arguments:\n' + \ '\texecutable_path\t\tThe path to a local executable that is to ' + \ 'be run on a connected Android device.\n' + \ '\texecutable_arguments\tAdditional arguments that are to be ' + \ 'given to the executable when it is run on the device.\n' def main(args=sys.argv): """ The main entry point for adb_test_runner. Parse arguments and kick off the script. Return zero to indicate success, a non-zero integer otherwise. """ # We don't use argparse, because we need to be able to pass # --arbitrary -params --like=this to the executable we're running # on device. program_name = os.path.basename(args.pop(0)) if len(args) == 1 and args[0] in ['-h', '--help']: print(_help(program_name)) return 0 try: executable_path, executable_arguments = args[0], args[1:] except IndexError: print(_usage(program_name)) print('{}: error: argument "executable_path" is required'.format( program_name)) return 1 return execute_on_device(executable_path, executable_arguments)
src/ostorlab/agent/message/proto/v2/scan_pb2.py
bbhunter/ostorlab
113
130036
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: v2/scan.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='v2/scan.proto', package='', serialized_pb=_b('\n\rv2/scan.proto\"\x17\n\x04scan\x12\x0f\n\x07scan_id\x18\x01 \x02(\x05') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _SCAN = _descriptor.Descriptor( name='scan', full_name='scan', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scan_id', full_name='scan.scan_id', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17, serialized_end=40, ) DESCRIPTOR.message_types_by_name['scan'] = _SCAN scan = _reflection.GeneratedProtocolMessageType('scan', (_message.Message,), dict( DESCRIPTOR=_SCAN, __module__='v2.scan_pb2' # @@protoc_insertion_point(class_scope:scan) )) _sym_db.RegisterMessage(scan) # @@protoc_insertion_point(module_scope)
apps/hosts/migrations/Add_blank_in_host_team_URL.py
kaustubh-s1/EvalAI
1,470
130038
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-01-10 18:37 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("hosts", "0003_challengehostteam_team_url")] operations = [ migrations.AlterField( model_name="challengehostteam", name="team_url", field=models.CharField(blank=True, default="", max_length=1000), ) ]
tasks/language_model/chinese_bert.py
chinaliwenbo/ChineseBert
298
130049
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @file : chinese_bert.py @author: zijun @contact : <EMAIL> @date : 2021/7/5 11:22 @version: 1.0 @desc : """ import argparse from datasets.bert_dataset import BertDataset from models.modeling_glycebert import GlyceBertModel def sentence_hidden(): # init args parser = argparse.ArgumentParser(description="Chinese Bert Hidden") parser.add_argument("--pretrain_path", required=True, type=str, help="pretrain model path") parser.add_argument("--sentence", required=True, type=str, help="input sentence") args = parser.parse_args() # step 1: tokenizer tokenizer = BertDataset(args.pretrain_path) # step 2: load model chinese_bert = GlyceBertModel.from_pretrained(args.pretrain_path) # step 3: get hidden input_ids, pinyin_ids = tokenizer.tokenize_sentence(args.sentence) length = input_ids.shape[0] input_ids = input_ids.view(1, length) pinyin_ids = pinyin_ids.view(1, length, 8) output_hidden = chinese_bert.forward(input_ids, pinyin_ids)[0] print(output_hidden) if __name__ == '__main__': sentence_hidden()
tests/k8s/conftest.py
pawelkopka/kopf
1,038
130088
import pytest @pytest.fixture(autouse=True) def _autouse_resp_mocker(resp_mocker, version_api): pass
uldlib/cmd.py
SpiReCZ/ulozto-streamer
120
130097
<filename>uldlib/cmd.py import argparse import sys import signal from os import path from uldlib import downloader, captcha, __version__, __path__ def run(): parser = argparse.ArgumentParser( description='Download file from Uloz.to using multiple parallel downloads.', formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument('url', metavar='URL', type=str, help="URL from Uloz.to (tip: enter in 'quotes' because the URL contains ! sign)") parser.add_argument('--parts', metavar='N', type=int, default=10, help='Number of parts that will be downloaded in parallel') parser.add_argument('--output', metavar='DIRECTORY', type=str, default="./", help='Target directory') parser.add_argument('--auto-captcha', default=False, action="store_true", help='Try to solve captchas automatically using TensorFlow') parser.add_argument('--version', action='version', version=__version__) args = parser.parse_args() if args.auto_captcha: model_path = path.join(__path__[0], "model.tflite") model_download_url = "https://github.com/JanPalasek/ulozto-captcha-breaker/releases/download/v2.2/model.tflite" captcha_solve_fnc = captcha.AutoReadCaptcha( model_path, model_download_url) else: captcha_solve_fnc = captcha.tkinter_user_prompt d = downloader.Downloader(captcha_solve_fnc) # Register sigint handler def sigint_handler(sig, frame): d.terminate() print('Program terminated.') sys.exit(1) signal.signal(signal.SIGINT, sigint_handler) d.download(args.url, args.parts, args.output) d.terminate()
python-modules/twisted/twisted/mail/smtp.py
stormtheh4ck3r/python-for-android
267
130106
<gh_stars>100-1000 # -*- test-case-name: twisted.mail.test.test_smtp -*- # Copyright (c) 2001-2010 Twisted Matrix Laboratories. # See LICENSE for details. """ Simple Mail Transfer Protocol implementation. """ import time, re, base64, types, socket, os, random, rfc822 import binascii from email.base64MIME import encode as encode_base64 from zope.interface import implements, Interface from twisted.copyright import longversion from twisted.protocols import basic from twisted.protocols import policies from twisted.internet import protocol from twisted.internet import defer from twisted.internet import error from twisted.internet import reactor from twisted.internet.interfaces import ITLSTransport from twisted.python import log from twisted.python import util from twisted import cred from twisted.python.runtime import platform try: from cStringIO import StringIO except ImportError: from StringIO import StringIO # Cache the hostname (XXX Yes - this is broken) if platform.isMacOSX(): # On OS X, getfqdn() is ridiculously slow - use the # probably-identical-but-sometimes-not gethostname() there. DNSNAME = socket.gethostname() else: DNSNAME = socket.getfqdn() # Used for fast success code lookup SUCCESS = dict(map(None, range(200, 300), [])) class IMessageDelivery(Interface): def receivedHeader(helo, origin, recipients): """ Generate the Received header for a message @type helo: C{(str, str)} @param helo: The argument to the HELO command and the client's IP address. @type origin: C{Address} @param origin: The address the message is from @type recipients: C{list} of L{User} @param recipients: A list of the addresses for which this message is bound. @rtype: C{str} @return: The full \"Received\" header string. """ def validateTo(user): """ Validate the address for which the message is destined. @type user: C{User} @param user: The address to validate. @rtype: no-argument callable @return: A C{Deferred} which becomes, or a callable which takes no arguments and returns an object implementing C{IMessage}. This will be called and the returned object used to deliver the message when it arrives. @raise SMTPBadRcpt: Raised if messages to the address are not to be accepted. """ def validateFrom(helo, origin): """ Validate the address from which the message originates. @type helo: C{(str, str)} @param helo: The argument to the HELO command and the client's IP address. @type origin: C{Address} @param origin: The address the message is from @rtype: C{Deferred} or C{Address} @return: C{origin} or a C{Deferred} whose callback will be passed C{origin}. @raise SMTPBadSender: Raised of messages from this address are not to be accepted. """ class IMessageDeliveryFactory(Interface): """An alternate interface to implement for handling message delivery. It is useful to implement this interface instead of L{IMessageDelivery} directly because it allows the implementor to distinguish between different messages delivery over the same connection. This can be used to optimize delivery of a single message to multiple recipients, something which cannot be done by L{IMessageDelivery} implementors due to their lack of information. """ def getMessageDelivery(): """Return an L{IMessageDelivery} object. This will be called once per message. """ class SMTPError(Exception): pass class SMTPClientError(SMTPError): """Base class for SMTP client errors. """ def __init__(self, code, resp, log=None, addresses=None, isFatal=False, retry=False): """ @param code: The SMTP response code associated with this error. @param resp: The string response associated with this error. @param log: A string log of the exchange leading up to and including the error. @type log: L{str} @param isFatal: A boolean indicating whether this connection can proceed or not. If True, the connection will be dropped. @param retry: A boolean indicating whether the delivery should be retried. If True and the factory indicates further retries are desirable, they will be attempted, otherwise the delivery will be failed. """ self.code = code self.resp = resp self.log = log self.addresses = addresses self.isFatal = isFatal self.retry = retry def __str__(self): if self.code > 0: res = ["%.3d %s" % (self.code, self.resp)] else: res = [self.resp] if self.log: res.append(self.log) res.append('') return '\n'.join(res) class ESMTPClientError(SMTPClientError): """Base class for ESMTP client errors. """ class EHLORequiredError(ESMTPClientError): """The server does not support EHLO. This is considered a non-fatal error (the connection will not be dropped). """ class AUTHRequiredError(ESMTPClientError): """Authentication was required but the server does not support it. This is considered a non-fatal error (the connection will not be dropped). """ class TLSRequiredError(ESMTPClientError): """Transport security was required but the server does not support it. This is considered a non-fatal error (the connection will not be dropped). """ class AUTHDeclinedError(ESMTPClientError): """The server rejected our credentials. Either the username, password, or challenge response given to the server was rejected. This is considered a non-fatal error (the connection will not be dropped). """ class AuthenticationError(ESMTPClientError): """An error ocurred while authenticating. Either the server rejected our request for authentication or the challenge received was malformed. This is considered a non-fatal error (the connection will not be dropped). """ class TLSError(ESMTPClientError): """An error occurred while negiotiating for transport security. This is considered a non-fatal error (the connection will not be dropped). """ class SMTPConnectError(SMTPClientError): """Failed to connect to the mail exchange host. This is considered a fatal error. A retry will be made. """ def __init__(self, code, resp, log=None, addresses=None, isFatal=True, retry=True): SMTPClientError.__init__(self, code, resp, log, addresses, isFatal, retry) class SMTPTimeoutError(SMTPClientError): """Failed to receive a response from the server in the expected time period. This is considered a fatal error. A retry will be made. """ def __init__(self, code, resp, log=None, addresses=None, isFatal=True, retry=True): SMTPClientError.__init__(self, code, resp, log, addresses, isFatal, retry) class SMTPProtocolError(SMTPClientError): """The server sent a mangled response. This is considered a fatal error. A retry will not be made. """ def __init__(self, code, resp, log=None, addresses=None, isFatal=True, retry=False): SMTPClientError.__init__(self, code, resp, log, addresses, isFatal, retry) class SMTPDeliveryError(SMTPClientError): """Indicates that a delivery attempt has had an error. """ class SMTPServerError(SMTPError): def __init__(self, code, resp): self.code = code self.resp = resp def __str__(self): return "%.3d %s" % (self.code, self.resp) class SMTPAddressError(SMTPServerError): def __init__(self, addr, code, resp): SMTPServerError.__init__(self, code, resp) self.addr = Address(addr) def __str__(self): return "%.3d <%s>... %s" % (self.code, self.addr, self.resp) class SMTPBadRcpt(SMTPAddressError): def __init__(self, addr, code=550, resp='Cannot receive for specified address'): SMTPAddressError.__init__(self, addr, code, resp) class SMTPBadSender(SMTPAddressError): def __init__(self, addr, code=550, resp='Sender not acceptable'): SMTPAddressError.__init__(self, addr, code, resp) def rfc822date(timeinfo=None,local=1): """ Format an RFC-2822 compliant date string. @param timeinfo: (optional) A sequence as returned by C{time.localtime()} or C{time.gmtime()}. Default is now. @param local: (optional) Indicates if the supplied time is local or universal time, or if no time is given, whether now should be local or universal time. Default is local, as suggested (SHOULD) by rfc-2822. @returns: A string representing the time and date in RFC-2822 format. """ if not timeinfo: if local: timeinfo = time.localtime() else: timeinfo = time.gmtime() if local: if timeinfo[8]: # DST tz = -time.altzone else: tz = -time.timezone (tzhr, tzmin) = divmod(abs(tz), 3600) if tz: tzhr *= int(abs(tz)/tz) (tzmin, tzsec) = divmod(tzmin, 60) else: (tzhr, tzmin) = (0,0) return "%s, %02d %s %04d %02d:%02d:%02d %+03d%02d" % ( ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'][timeinfo[6]], timeinfo[2], ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'][timeinfo[1] - 1], timeinfo[0], timeinfo[3], timeinfo[4], timeinfo[5], tzhr, tzmin) def idGenerator(): i = 0 while True: yield i i += 1 def messageid(uniq=None, N=idGenerator().next): """Return a globally unique random string in RFC 2822 Message-ID format <<EMAIL>> Optional uniq string will be added to strenghten uniqueness if given. """ datetime = time.strftime('%Y%m%d%H%M%S', time.gmtime()) pid = os.getpid() rand = random.randrange(2**31L-1) if uniq is None: uniq = '' else: uniq = '.' + uniq return '<%s.%s.%s%s.%s@%s>' % (datetime, pid, rand, uniq, N(), DNSNAME) def quoteaddr(addr): """Turn an email address, possibly with realname part etc, into a form suitable for and SMTP envelope. """ if isinstance(addr, Address): return '<%s>' % str(addr) res = rfc822.parseaddr(addr) if res == (None, None): # It didn't parse, use it as-is return '<%s>' % str(addr) else: return '<%s>' % str(res[1]) COMMAND, DATA, AUTH = 'COMMAND', 'DATA', 'AUTH' class AddressError(SMTPError): "Parse error in address" # Character classes for parsing addresses atom = r"[-A-Za-z0-9!\#$%&'*+/=?^_`{|}~]" class Address: """Parse and hold an RFC 2821 address. Source routes are stipped and ignored, UUCP-style bang-paths and %-style routing are not parsed. @type domain: C{str} @ivar domain: The domain within which this address resides. @type local: C{str} @ivar local: The local (\"user\") portion of this address. """ tstring = re.compile(r'''( # A string of (?:"[^"]*" # quoted string |\\. # backslash-escaped characted |''' + atom + r''' # atom character )+|.) # or any single character''',re.X) atomre = re.compile(atom) # match any one atom character def __init__(self, addr, defaultDomain=None): if isinstance(addr, User): addr = addr.dest if isinstance(addr, Address): self.__dict__ = addr.__dict__.copy() return elif not isinstance(addr, types.StringTypes): addr = str(addr) self.addrstr = addr # Tokenize atl = filter(None,self.tstring.split(addr)) local = [] domain = [] while atl: if atl[0] == '<': if atl[-1] != '>': raise AddressError, "Unbalanced <>" atl = atl[1:-1] elif atl[0] == '@': atl = atl[1:] if not local: # Source route while atl and atl[0] != ':': # remove it atl = atl[1:] if not atl: raise AddressError, "Malformed source route" atl = atl[1:] # remove : elif domain: raise AddressError, "Too many @" else: # Now in domain domain = [''] elif len(atl[0]) == 1 and not self.atomre.match(atl[0]) and atl[0] != '.': raise AddressError, "Parse error at %r of %r" % (atl[0], (addr, atl)) else: if not domain: local.append(atl[0]) else: domain.append(atl[0]) atl = atl[1:] self.local = ''.join(local) self.domain = ''.join(domain) if self.local != '' and self.domain == '': if defaultDomain is None: defaultDomain = DNSNAME self.domain = defaultDomain dequotebs = re.compile(r'\\(.)') def dequote(self,addr): """Remove RFC-2821 quotes from address.""" res = [] atl = filter(None,self.tstring.split(str(addr))) for t in atl: if t[0] == '"' and t[-1] == '"': res.append(t[1:-1]) elif '\\' in t: res.append(self.dequotebs.sub(r'\1',t)) else: res.append(t) return ''.join(res) def __str__(self): if self.local or self.domain: return '@'.join((self.local, self.domain)) else: return '' def __repr__(self): return "%s.%s(%s)" % (self.__module__, self.__class__.__name__, repr(str(self))) class User: """Hold information about and SMTP message recipient, including information on where the message came from """ def __init__(self, destination, helo, protocol, orig): host = getattr(protocol, 'host', None) self.dest = Address(destination, host) self.helo = helo self.protocol = protocol if isinstance(orig, Address): self.orig = orig else: self.orig = Address(orig, host) def __getstate__(self): """Helper for pickle. protocol isn't picklabe, but we want User to be, so skip it in the pickle. """ return { 'dest' : self.dest, 'helo' : self.helo, 'protocol' : None, 'orig' : self.orig } def __str__(self): return str(self.dest) class IMessage(Interface): """Interface definition for messages that can be sent via SMTP.""" def lineReceived(line): """handle another line""" def eomReceived(): """handle end of message return a deferred. The deferred should be called with either: callback(string) or errback(error) """ def connectionLost(): """handle message truncated semantics should be to discard the message """ class SMTP(basic.LineOnlyReceiver, policies.TimeoutMixin): """SMTP server-side protocol.""" timeout = 600 host = DNSNAME portal = None # Control whether we log SMTP events noisy = True # A factory for IMessageDelivery objects. If an # avatar implementing IMessageDeliveryFactory can # be acquired from the portal, it will be used to # create a new IMessageDelivery object for each # message which is received. deliveryFactory = None # An IMessageDelivery object. A new instance is # used for each message received if we can get an # IMessageDeliveryFactory from the portal. Otherwise, # a single instance is used throughout the lifetime # of the connection. delivery = None # Cred cleanup function. _onLogout = None def __init__(self, delivery=None, deliveryFactory=None): self.mode = COMMAND self._from = None self._helo = None self._to = [] self.delivery = delivery self.deliveryFactory = deliveryFactory def timeoutConnection(self): msg = '%s Timeout. Try talking faster next time!' % (self.host,) self.sendCode(421, msg) self.transport.loseConnection() def greeting(self): return '%s NO UCE NO UBE NO RELAY PROBES' % (self.host,) def connectionMade(self): # Ensure user-code always gets something sane for _helo peer = self.transport.getPeer() try: host = peer.host except AttributeError: # not an IPv4Address host = str(peer) self._helo = (None, host) self.sendCode(220, self.greeting()) self.setTimeout(self.timeout) def sendCode(self, code, message=''): "Send an SMTP code with a message." lines = message.splitlines() lastline = lines[-1:] for line in lines[:-1]: self.sendLine('%3.3d-%s' % (code, line)) self.sendLine('%3.3d %s' % (code, lastline and lastline[0] or '')) def lineReceived(self, line): self.resetTimeout() return getattr(self, 'state_' + self.mode)(line) def state_COMMAND(self, line): # Ignore leading and trailing whitespace, as well as an arbitrary # amount of whitespace between the command and its argument, though # it is not required by the protocol, for it is a nice thing to do. line = line.strip() parts = line.split(None, 1) if parts: method = self.lookupMethod(parts[0]) or self.do_UNKNOWN if len(parts) == 2: method(parts[1]) else: method('') else: self.sendSyntaxError() def sendSyntaxError(self): self.sendCode(500, 'Error: bad syntax') def lookupMethod(self, command): return getattr(self, 'do_' + command.upper(), None) def lineLengthExceeded(self, line): if self.mode is DATA: for message in self.__messages: message.connectionLost() self.mode = COMMAND del self.__messages self.sendCode(500, 'Line too long') def do_UNKNOWN(self, rest): self.sendCode(500, 'Command not implemented') def do_HELO(self, rest): peer = self.transport.getPeer() try: host = peer.host except AttributeError: host = str(peer) self._helo = (rest, host) self._from = None self._to = [] self.sendCode(250, '%s Hello %s, nice to meet you' % (self.host, host)) def do_QUIT(self, rest): self.sendCode(221, 'See you later') self.transport.loseConnection() # A string of quoted strings, backslash-escaped character or # atom characters + '@.,:' qstring = r'("[^"]*"|\\.|' + atom + r'|[@.,:])+' mail_re = re.compile(r'''\s*FROM:\s*(?P<path><> # Empty <> |<''' + qstring + r'''> # <addr> |''' + qstring + r''' # addr )\s*(\s(?P<opts>.*))? # Optional WS + ESMTP options $''',re.I|re.X) rcpt_re = re.compile(r'\s*TO:\s*(?P<path><' + qstring + r'''> # <addr> |''' + qstring + r''' # addr )\s*(\s(?P<opts>.*))? # Optional WS + ESMTP options $''',re.I|re.X) def do_MAIL(self, rest): if self._from: self.sendCode(503,"Only one sender per message, please") return # Clear old recipient list self._to = [] m = self.mail_re.match(rest) if not m: self.sendCode(501, "Syntax error") return try: addr = Address(m.group('path'), self.host) except AddressError, e: self.sendCode(553, str(e)) return validated = defer.maybeDeferred(self.validateFrom, self._helo, addr) validated.addCallbacks(self._cbFromValidate, self._ebFromValidate) def _cbFromValidate(self, from_, code=250, msg='Sender address accepted'): self._from = from_ self.sendCode(code, msg) def _ebFromValidate(self, failure): if failure.check(SMTPBadSender): self.sendCode(failure.value.code, 'Cannot receive from specified address %s: %s' % (quoteaddr(failure.value.addr), failure.value.resp)) elif failure.check(SMTPServerError): self.sendCode(failure.value.code, failure.value.resp) else: log.err(failure, "SMTP sender validation failure") self.sendCode( 451, 'Requested action aborted: local error in processing') def do_RCPT(self, rest): if not self._from: self.sendCode(503, "Must have sender before recipient") return m = self.rcpt_re.match(rest) if not m: self.sendCode(501, "Syntax error") return try: user = User(m.group('path'), self._helo, self, self._from) except AddressError, e: self.sendCode(553, str(e)) return d = defer.maybeDeferred(self.validateTo, user) d.addCallbacks( self._cbToValidate, self._ebToValidate, callbackArgs=(user,) ) def _cbToValidate(self, to, user=None, code=250, msg='Recipient address accepted'): if user is None: user = to self._to.append((user, to)) self.sendCode(code, msg) def _ebToValidate(self, failure): if failure.check(SMTPBadRcpt, SMTPServerError): self.sendCode(failure.value.code, failure.value.resp) else: log.err(failure) self.sendCode( 451, 'Requested action aborted: local error in processing' ) def _disconnect(self, msgs): for msg in msgs: try: msg.connectionLost() except: log.msg("msg raised exception from connectionLost") log.err() def do_DATA(self, rest): if self._from is None or (not self._to): self.sendCode(503, 'Must have valid receiver and originator') return self.mode = DATA helo, origin = self._helo, self._from recipients = self._to self._from = None self._to = [] self.datafailed = None msgs = [] for (user, msgFunc) in recipients: try: msg = msgFunc() rcvdhdr = self.receivedHeader(helo, origin, [user]) if rcvdhdr: msg.lineReceived(rcvdhdr) msgs.append(msg) except SMTPServerError, e: self.sendCode(e.code, e.resp) self.mode = COMMAND self._disconnect(msgs) return except: log.err() self.sendCode(550, "Internal server error") self.mode = COMMAND self._disconnect(msgs) return self.__messages = msgs self.__inheader = self.__inbody = 0 self.sendCode(354, 'Continue') if self.noisy: fmt = 'Receiving message for delivery: from=%s to=%s' log.msg(fmt % (origin, [str(u) for (u, f) in recipients])) def connectionLost(self, reason): # self.sendCode(421, 'Dropping connection.') # This does nothing... # Ideally, if we (rather than the other side) lose the connection, # we should be able to tell the other side that we are going away. # RFC-2821 requires that we try. if self.mode is DATA: try: for message in self.__messages: try: message.connectionLost() except: log.err() del self.__messages except AttributeError: pass if self._onLogout: self._onLogout() self._onLogout = None self.setTimeout(None) def do_RSET(self, rest): self._from = None self._to = [] self.sendCode(250, 'I remember nothing.') def dataLineReceived(self, line): if line[:1] == '.': if line == '.': self.mode = COMMAND if self.datafailed: self.sendCode(self.datafailed.code, self.datafailed.resp) return if not self.__messages: self._messageHandled("thrown away") return defer.DeferredList([ m.eomReceived() for m in self.__messages ], consumeErrors=True).addCallback(self._messageHandled ) del self.__messages return line = line[1:] if self.datafailed: return try: # Add a blank line between the generated Received:-header # and the message body if the message comes in without any # headers if not self.__inheader and not self.__inbody: if ':' in line: self.__inheader = 1 elif line: for message in self.__messages: message.lineReceived('') self.__inbody = 1 if not line: self.__inbody = 1 for message in self.__messages: message.lineReceived(line) except SMTPServerError, e: self.datafailed = e for message in self.__messages: message.connectionLost() state_DATA = dataLineReceived def _messageHandled(self, resultList): failures = 0 for (success, result) in resultList: if not success: failures += 1 log.err(result) if failures: msg = 'Could not send e-mail' L = len(resultList) if L > 1: msg += ' (%d failures out of %d recipients)' % (failures, L) self.sendCode(550, msg) else: self.sendCode(250, 'Delivery in progress') def _cbAnonymousAuthentication(self, (iface, avatar, logout)): """ Save the state resulting from a successful anonymous cred login. """ if issubclass(iface, IMessageDeliveryFactory): self.deliveryFactory = avatar self.delivery = None elif issubclass(iface, IMessageDelivery): self.deliveryFactory = None self.delivery = avatar else: raise RuntimeError("%s is not a supported interface" % (iface.__name__,)) self._onLogout = logout self.challenger = None # overridable methods: def validateFrom(self, helo, origin): """ Validate the address from which the message originates. @type helo: C{(str, str)} @param helo: The argument to the HELO command and the client's IP address. @type origin: C{Address} @param origin: The address the message is from @rtype: C{Deferred} or C{Address} @return: C{origin} or a C{Deferred} whose callback will be passed C{origin}. @raise SMTPBadSender: Raised of messages from this address are not to be accepted. """ if self.deliveryFactory is not None: self.delivery = self.deliveryFactory.getMessageDelivery() if self.delivery is not None: return defer.maybeDeferred(self.delivery.validateFrom, helo, origin) # No login has been performed, no default delivery object has been # provided: try to perform an anonymous login and then invoke this # method again. if self.portal: result = self.portal.login( cred.credentials.Anonymous(), None, IMessageDeliveryFactory, IMessageDelivery) def ebAuthentication(err): """ Translate cred exceptions into SMTP exceptions so that the protocol code which invokes C{validateFrom} can properly report the failure. """ if err.check(cred.error.UnauthorizedLogin): exc = SMTPBadSender(origin) elif err.check(cred.error.UnhandledCredentials): exc = SMTPBadSender( origin, resp="Unauthenticated senders not allowed") else: return err return defer.fail(exc) result.addCallbacks( self._cbAnonymousAuthentication, ebAuthentication) def continueValidation(ignored): """ Re-attempt from address validation. """ return self.validateFrom(helo, origin) result.addCallback(continueValidation) return result raise SMTPBadSender(origin) def validateTo(self, user): """ Validate the address for which the message is destined. @type user: C{User} @param user: The address to validate. @rtype: no-argument callable @return: A C{Deferred} which becomes, or a callable which takes no arguments and returns an object implementing C{IMessage}. This will be called and the returned object used to deliver the message when it arrives. @raise SMTPBadRcpt: Raised if messages to the address are not to be accepted. """ if self.delivery is not None: return self.delivery.validateTo(user) raise SMTPBadRcpt(user) def receivedHeader(self, helo, origin, recipients): if self.delivery is not None: return self.delivery.receivedHeader(helo, origin, recipients) heloStr = "" if helo[0]: heloStr = " helo=%s" % (helo[0],) domain = self.transport.getHost().host from_ = "from %s ([%s]%s)" % (helo[0], helo[1], heloStr) by = "by %s with %s (%s)" % (domain, self.__class__.__name__, longversion) for_ = "for %s; %s" % (' '.join(map(str, recipients)), rfc822date()) return "Received: %s\n\t%s\n\t%s" % (from_, by, for_) def startMessage(self, recipients): if self.delivery: return self.delivery.startMessage(recipients) return [] class SMTPFactory(protocol.ServerFactory): """Factory for SMTP.""" # override in instances or subclasses domain = DNSNAME timeout = 600 protocol = SMTP portal = None def __init__(self, portal = None): self.portal = portal def buildProtocol(self, addr): p = protocol.ServerFactory.buildProtocol(self, addr) p.portal = self.portal p.host = self.domain return p class SMTPClient(basic.LineReceiver, policies.TimeoutMixin): """ SMTP client for sending emails. After the client has connected to the SMTP server, it repeatedly calls L{SMTPClient.getMailFrom}, L{SMTPClient.getMailTo} and L{SMTPClient.getMailData} and uses this information to send an email. It then calls L{SMTPClient.getMailFrom} again; if it returns C{None}, the client will disconnect, otherwise it will continue as normal i.e. call L{SMTPClient.getMailTo} and L{SMTPClient.getMailData} and send a new email. """ # If enabled then log SMTP client server communication debug = True # Number of seconds to wait before timing out a connection. If # None, perform no timeout checking. timeout = None def __init__(self, identity, logsize=10): self.identity = identity or '' self.toAddressesResult = [] self.successAddresses = [] self._from = None self.resp = [] self.code = -1 self.log = util.LineLog(logsize) def sendLine(self, line): # Log sendLine only if you are in debug mode for performance if self.debug: self.log.append('>>> ' + line) basic.LineReceiver.sendLine(self,line) def connectionMade(self): self.setTimeout(self.timeout) self._expected = [ 220 ] self._okresponse = self.smtpState_helo self._failresponse = self.smtpConnectionFailed def connectionLost(self, reason=protocol.connectionDone): """We are no longer connected""" self.setTimeout(None) self.mailFile = None def timeoutConnection(self): self.sendError( SMTPTimeoutError( -1, "Timeout waiting for SMTP server response", self.log.str())) def lineReceived(self, line): self.resetTimeout() # Log lineReceived only if you are in debug mode for performance if self.debug: self.log.append('<<< ' + line) why = None try: self.code = int(line[:3]) except ValueError: # This is a fatal error and will disconnect the transport lineReceived will not be called again self.sendError(SMTPProtocolError(-1, "Invalid response from SMTP server: %s" % line, self.log.str())) return if line[0] == '0': # Verbose informational message, ignore it return self.resp.append(line[4:]) if line[3:4] == '-': # continuation return if self.code in self._expected: why = self._okresponse(self.code,'\n'.join(self.resp)) else: why = self._failresponse(self.code,'\n'.join(self.resp)) self.code = -1 self.resp = [] return why def smtpConnectionFailed(self, code, resp): self.sendError(SMTPConnectError(code, resp, self.log.str())) def smtpTransferFailed(self, code, resp): if code < 0: self.sendError(SMTPProtocolError(code, resp, self.log.str())) else: self.smtpState_msgSent(code, resp) def smtpState_helo(self, code, resp): self.sendLine('HELO ' + self.identity) self._expected = SUCCESS self._okresponse = self.smtpState_from def smtpState_from(self, code, resp): self._from = self.getMailFrom() self._failresponse = self.smtpTransferFailed if self._from is not None: self.sendLine('MAIL FROM:%s' % quoteaddr(self._from)) self._expected = [250] self._okresponse = self.smtpState_to else: # All messages have been sent, disconnect self._disconnectFromServer() def smtpState_disconnect(self, code, resp): self.transport.loseConnection() def smtpState_to(self, code, resp): self.toAddresses = iter(self.getMailTo()) self.toAddressesResult = [] self.successAddresses = [] self._okresponse = self.smtpState_toOrData self._expected = xrange(0,1000) self.lastAddress = None return self.smtpState_toOrData(0, '') def smtpState_toOrData(self, code, resp): if self.lastAddress is not None: self.toAddressesResult.append((self.lastAddress, code, resp)) if code in SUCCESS: self.successAddresses.append(self.lastAddress) try: self.lastAddress = self.toAddresses.next() except StopIteration: if self.successAddresses: self.sendLine('DATA') self._expected = [ 354 ] self._okresponse = self.smtpState_data else: return self.smtpState_msgSent(code,'No recipients accepted') else: self.sendLine('RCPT TO:%s' % quoteaddr(self.lastAddress)) def smtpState_data(self, code, resp): s = basic.FileSender() d = s.beginFileTransfer( self.getMailData(), self.transport, self.transformChunk) def ebTransfer(err): self.sendError(err.value) d.addCallbacks(self.finishedFileTransfer, ebTransfer) self._expected = SUCCESS self._okresponse = self.smtpState_msgSent def smtpState_msgSent(self, code, resp): if self._from is not None: self.sentMail(code, resp, len(self.successAddresses), self.toAddressesResult, self.log) self.toAddressesResult = [] self._from = None self.sendLine('RSET') self._expected = SUCCESS self._okresponse = self.smtpState_from ## ## Helpers for FileSender ## def transformChunk(self, chunk): """ Perform the necessary local to network newline conversion and escape leading periods. This method also resets the idle timeout so that as long as process is being made sending the message body, the client will not time out. """ self.resetTimeout() return chunk.replace('\n', '\r\n').replace('\r\n.', '\r\n..') def finishedFileTransfer(self, lastsent): if lastsent != '\n': line = '\r\n.' else: line = '.' self.sendLine(line) ## # these methods should be overriden in subclasses def getMailFrom(self): """Return the email address the mail is from.""" raise NotImplementedError def getMailTo(self): """Return a list of emails to send to.""" raise NotImplementedError def getMailData(self): """Return file-like object containing data of message to be sent. Lines in the file should be delimited by '\\n'. """ raise NotImplementedError def sendError(self, exc): """ If an error occurs before a mail message is sent sendError will be called. This base class method sends a QUIT if the error is non-fatal and disconnects the connection. @param exc: The SMTPClientError (or child class) raised @type exc: C{SMTPClientError} """ if isinstance(exc, SMTPClientError) and not exc.isFatal: self._disconnectFromServer() else: # If the error was fatal then the communication channel with the # SMTP Server is broken so just close the transport connection self.smtpState_disconnect(-1, None) def sentMail(self, code, resp, numOk, addresses, log): """Called when an attempt to send an email is completed. If some addresses were accepted, code and resp are the response to the DATA command. If no addresses were accepted, code is -1 and resp is an informative message. @param code: the code returned by the SMTP Server @param resp: The string response returned from the SMTP Server @param numOK: the number of addresses accepted by the remote host. @param addresses: is a list of tuples (address, code, resp) listing the response to each RCPT command. @param log: is the SMTP session log """ raise NotImplementedError def _disconnectFromServer(self): self._expected = xrange(0, 1000) self._okresponse = self.smtpState_disconnect self.sendLine('QUIT') class ESMTPClient(SMTPClient): # Fall back to HELO if the server does not support EHLO heloFallback = True # Refuse to proceed if authentication cannot be performed requireAuthentication = False # Refuse to proceed if TLS is not available requireTransportSecurity = False # Indicate whether or not our transport can be considered secure. tlsMode = False # ClientContextFactory to use for STARTTLS context = None def __init__(self, secret, contextFactory=None, *args, **kw): SMTPClient.__init__(self, *args, **kw) self.authenticators = [] self.secret = secret self.context = contextFactory self.tlsMode = False def esmtpEHLORequired(self, code=-1, resp=None): self.sendError(EHLORequiredError(502, "Server does not support ESMTP Authentication", self.log.str())) def esmtpAUTHRequired(self, code=-1, resp=None): tmp = [] for a in self.authenticators: tmp.append(a.getName().upper()) auth = "[%s]" % ', '.join(tmp) self.sendError(AUTHRequiredError(502, "Server does not support Client Authentication schemes %s" % auth, self.log.str())) def esmtpTLSRequired(self, code=-1, resp=None): self.sendError(TLSRequiredError(502, "Server does not support secure communication via TLS / SSL", self.log.str())) def esmtpTLSFailed(self, code=-1, resp=None): self.sendError(TLSError(code, "Could not complete the SSL/TLS handshake", self.log.str())) def esmtpAUTHDeclined(self, code=-1, resp=None): self.sendError(AUTHDeclinedError(code, resp, self.log.str())) def esmtpAUTHMalformedChallenge(self, code=-1, resp=None): str = "Login failed because the SMTP Server returned a malformed Authentication Challenge" self.sendError(AuthenticationError(501, str, self.log.str())) def esmtpAUTHServerError(self, code=-1, resp=None): self.sendError(AuthenticationError(code, resp, self.log.str())) def registerAuthenticator(self, auth): """Registers an Authenticator with the ESMTPClient. The ESMTPClient will attempt to login to the SMTP Server in the order the Authenticators are registered. The most secure Authentication mechanism should be registered first. @param auth: The Authentication mechanism to register @type auth: class implementing C{IClientAuthentication} """ self.authenticators.append(auth) def connectionMade(self): SMTPClient.connectionMade(self) self._okresponse = self.esmtpState_ehlo def esmtpState_ehlo(self, code, resp): self._expected = SUCCESS self._okresponse = self.esmtpState_serverConfig self._failresponse = self.esmtpEHLORequired if self.heloFallback: self._failresponse = self.smtpState_helo self.sendLine('EHLO ' + self.identity) def esmtpState_serverConfig(self, code, resp): items = {} for line in resp.splitlines(): e = line.split(None, 1) if len(e) > 1: items[e[0]] = e[1] else: items[e[0]] = None if self.tlsMode: self.authenticate(code, resp, items) else: self.tryTLS(code, resp, items) def tryTLS(self, code, resp, items): if self.context and 'STARTTLS' in items: self._expected = [220] self._okresponse = self.esmtpState_starttls self._failresponse = self.esmtpTLSFailed self.sendLine('STARTTLS') elif self.requireTransportSecurity: self.tlsMode = False self.esmtpTLSRequired() else: self.tlsMode = False self.authenticate(code, resp, items) def esmtpState_starttls(self, code, resp): try: self.transport.startTLS(self.context) self.tlsMode = True except: log.err() self.esmtpTLSFailed(451) # Send another EHLO once TLS has been started to # get the TLS / AUTH schemes. Some servers only allow AUTH in TLS mode. self.esmtpState_ehlo(code, resp) def authenticate(self, code, resp, items): if self.secret and items.get('AUTH'): schemes = items['AUTH'].split() tmpSchemes = {} #XXX: May want to come up with a more efficient way to do this for s in schemes: tmpSchemes[s.upper()] = 1 for a in self.authenticators: auth = a.getName().upper() if auth in tmpSchemes: self._authinfo = a # Special condition handled if auth == "PLAIN": self._okresponse = self.smtpState_from self._failresponse = self._esmtpState_plainAuth self._expected = [235] challenge = encode_base64(self._authinfo.challengeResponse(self.secret, 1), eol="") self.sendLine('AUTH ' + auth + ' ' + challenge) else: self._expected = [334] self._okresponse = self.esmtpState_challenge # If some error occurs here, the server declined the AUTH # before the user / password phase. This would be # a very rare case self._failresponse = self.esmtpAUTHServerError self.sendLine('AUTH ' + auth) return if self.requireAuthentication: self.esmtpAUTHRequired() else: self.smtpState_from(code, resp) def _esmtpState_plainAuth(self, code, resp): self._okresponse = self.smtpState_from self._failresponse = self.esmtpAUTHDeclined self._expected = [235] challenge = encode_base64(self._authinfo.challengeResponse(self.secret, 2), eol="") self.sendLine('AUTH PLAIN ' + challenge) def esmtpState_challenge(self, code, resp): self._authResponse(self._authinfo, resp) def _authResponse(self, auth, challenge): self._failresponse = self.esmtpAUTHDeclined try: challenge = base64.decodestring(challenge) except binascii.Error: # Illegal challenge, give up, then quit self.sendLine('*') self._okresponse = self.esmtpAUTHMalformedChallenge self._failresponse = self.esmtpAUTHMalformedChallenge else: resp = auth.challengeResponse(self.secret, challenge) self._expected = [235, 334] self._okresponse = self.smtpState_maybeAuthenticated self.sendLine(encode_base64(resp, eol="")) def smtpState_maybeAuthenticated(self, code, resp): """ Called to handle the next message from the server after sending a response to a SASL challenge. The server response might be another challenge or it might indicate authentication has succeeded. """ if code == 235: # Yes, authenticated! del self._authinfo self.smtpState_from(code, resp) else: # No, not authenticated yet. Keep trying. self._authResponse(self._authinfo, resp) class ESMTP(SMTP): ctx = None canStartTLS = False startedTLS = False authenticated = False def __init__(self, chal = None, contextFactory = None): SMTP.__init__(self) if chal is None: chal = {} self.challengers = chal self.authenticated = False self.ctx = contextFactory def connectionMade(self): SMTP.connectionMade(self) self.canStartTLS = ITLSTransport.providedBy(self.transport) self.canStartTLS = self.canStartTLS and (self.ctx is not None) def greeting(self): return SMTP.greeting(self) + ' ESMTP' def extensions(self): ext = {'AUTH': self.challengers.keys()} if self.canStartTLS and not self.startedTLS: ext['STARTTLS'] = None return ext def lookupMethod(self, command): m = SMTP.lookupMethod(self, command) if m is None: m = getattr(self, 'ext_' + command.upper(), None) return m def listExtensions(self): r = [] for (c, v) in self.extensions().iteritems(): if v is not None: if v: # Intentionally omit extensions with empty argument lists r.append('%s %s' % (c, ' '.join(v))) else: r.append(c) return '\n'.join(r) def do_EHLO(self, rest): peer = self.transport.getPeer().host self._helo = (rest, peer) self._from = None self._to = [] self.sendCode( 250, '%s Hello %s, nice to meet you\n%s' % ( self.host, peer, self.listExtensions(), ) ) def ext_STARTTLS(self, rest): if self.startedTLS: self.sendCode(503, 'TLS already negotiated') elif self.ctx and self.canStartTLS: self.sendCode(220, 'Begin TLS negotiation now') self.transport.startTLS(self.ctx) self.startedTLS = True else: self.sendCode(454, 'TLS not available') def ext_AUTH(self, rest): if self.authenticated: self.sendCode(503, 'Already authenticated') return parts = rest.split(None, 1) chal = self.challengers.get(parts[0].upper(), lambda: None)() if not chal: self.sendCode(504, 'Unrecognized authentication type') return self.mode = AUTH self.challenger = chal if len(parts) > 1: chal.getChallenge() # Discard it, apparently the client does not # care about it. rest = parts[1] else: rest = None self.state_AUTH(rest) def _cbAuthenticated(self, loginInfo): """ Save the state resulting from a successful cred login and mark this connection as authenticated. """ result = SMTP._cbAnonymousAuthentication(self, loginInfo) self.authenticated = True return result def _ebAuthenticated(self, reason): """ Handle cred login errors by translating them to the SMTP authenticate failed. Translate all other errors into a generic SMTP error code and log the failure for inspection. Stop all errors from propagating. """ self.challenge = None if reason.check(cred.error.UnauthorizedLogin): self.sendCode(535, 'Authentication failed') else: log.err(reason, "SMTP authentication failure") self.sendCode( 451, 'Requested action aborted: local error in processing') def state_AUTH(self, response): """ Handle one step of challenge/response authentication. @param response: The text of a response. If None, this function has been called as a result of an AUTH command with no initial response. A response of '*' aborts authentication, as per RFC 2554. """ if self.portal is None: self.sendCode(454, 'Temporary authentication failure') self.mode = COMMAND return if response is None: challenge = self.challenger.getChallenge() encoded = challenge.encode('base64') self.sendCode(334, encoded) return if response == '*': self.sendCode(501, 'Authentication aborted') self.challenger = None self.mode = COMMAND return try: uncoded = response.decode('base64') except binascii.Error: self.sendCode(501, 'Syntax error in parameters or arguments') self.challenger = None self.mode = COMMAND return self.challenger.setResponse(uncoded) if self.challenger.moreChallenges(): challenge = self.challenger.getChallenge() coded = challenge.encode('base64')[:-1] self.sendCode(334, coded) return self.mode = COMMAND result = self.portal.login( self.challenger, None, IMessageDeliveryFactory, IMessageDelivery) result.addCallback(self._cbAuthenticated) result.addCallback(lambda ign: self.sendCode(235, 'Authentication successful.')) result.addErrback(self._ebAuthenticated) class SenderMixin: """Utility class for sending emails easily. Use with SMTPSenderFactory or ESMTPSenderFactory. """ done = 0 def getMailFrom(self): if not self.done: self.done = 1 return str(self.factory.fromEmail) else: return None def getMailTo(self): return self.factory.toEmail def getMailData(self): return self.factory.file def sendError(self, exc): # Call the base class to close the connection with the SMTP server SMTPClient.sendError(self, exc) # Do not retry to connect to SMTP Server if: # 1. No more retries left (This allows the correct error to be returned to the errorback) # 2. retry is false # 3. The error code is not in the 4xx range (Communication Errors) if (self.factory.retries >= 0 or (not exc.retry and not (exc.code >= 400 and exc.code < 500))): self.factory.sendFinished = 1 self.factory.result.errback(exc) def sentMail(self, code, resp, numOk, addresses, log): # Do not retry, the SMTP server acknowledged the request self.factory.sendFinished = 1 if code not in SUCCESS: errlog = [] for addr, acode, aresp in addresses: if acode not in SUCCESS: errlog.append("%s: %03d %s" % (addr, acode, aresp)) errlog.append(log.str()) exc = SMTPDeliveryError(code, resp, '\n'.join(errlog), addresses) self.factory.result.errback(exc) else: self.factory.result.callback((numOk, addresses)) class SMTPSender(SenderMixin, SMTPClient): """ SMTP protocol that sends a single email based on information it gets from its factory, a L{SMTPSenderFactory}. """ class SMTPSenderFactory(protocol.ClientFactory): """ Utility factory for sending emails easily. """ domain = DNSNAME protocol = SMTPSender def __init__(self, fromEmail, toEmail, file, deferred, retries=5, timeout=None): """ @param fromEmail: The RFC 2821 address from which to send this message. @param toEmail: A sequence of RFC 2821 addresses to which to send this message. @param file: A file-like object containing the message to send. @param deferred: A Deferred to callback or errback when sending of this message completes. @param retries: The number of times to retry delivery of this message. @param timeout: Period, in seconds, for which to wait for server responses, or None to wait forever. """ assert isinstance(retries, (int, long)) if isinstance(toEmail, types.StringTypes): toEmail = [toEmail] self.fromEmail = Address(fromEmail) self.nEmails = len(toEmail) self.toEmail = toEmail self.file = file self.result = deferred self.result.addBoth(self._removeDeferred) self.sendFinished = 0 self.retries = -retries self.timeout = timeout def _removeDeferred(self, argh): del self.result return argh def clientConnectionFailed(self, connector, err): self._processConnectionError(connector, err) def clientConnectionLost(self, connector, err): self._processConnectionError(connector, err) def _processConnectionError(self, connector, err): if self.retries < self.sendFinished <= 0: log.msg("SMTP Client retrying server. Retry: %s" % -self.retries) # Rewind the file in case part of it was read while attempting to # send the message. self.file.seek(0, 0) connector.connect() self.retries += 1 elif self.sendFinished <= 0: # If we were unable to communicate with the SMTP server a ConnectionDone will be # returned. We want a more clear error message for debugging if err.check(error.ConnectionDone): err.value = SMTPConnectError(-1, "Unable to connect to server.") self.result.errback(err.value) def buildProtocol(self, addr): p = self.protocol(self.domain, self.nEmails*2+2) p.factory = self p.timeout = self.timeout return p from twisted.mail.imap4 import IClientAuthentication from twisted.mail.imap4 import CramMD5ClientAuthenticator, LOGINAuthenticator class PLAINAuthenticator: implements(IClientAuthentication) def __init__(self, user): self.user = user def getName(self): return "PLAIN" def challengeResponse(self, secret, chal=1): if chal == 1: return "%s\0%s\0%s" % (self.user, self.user, secret) else: return "%s\0%s" % (self.user, secret) class ESMTPSender(SenderMixin, ESMTPClient): requireAuthentication = True requireTransportSecurity = True def __init__(self, username, secret, contextFactory=None, *args, **kw): self.heloFallback = 0 self.username = username if contextFactory is None: contextFactory = self._getContextFactory() ESMTPClient.__init__(self, secret, contextFactory, *args, **kw) self._registerAuthenticators() def _registerAuthenticators(self): # Register Authenticator in order from most secure to least secure self.registerAuthenticator(CramMD5ClientAuthenticator(self.username)) self.registerAuthenticator(LOGINAuthenticator(self.username)) self.registerAuthenticator(PLAINAuthenticator(self.username)) def _getContextFactory(self): if self.context is not None: return self.context try: from twisted.internet import ssl except ImportError: return None else: try: context = ssl.ClientContextFactory() context.method = ssl.SSL.TLSv1_METHOD return context except AttributeError: return None class ESMTPSenderFactory(SMTPSenderFactory): """ Utility factory for sending emails easily. """ protocol = ESMTPSender def __init__(self, username, password, fromEmail, toEmail, file, deferred, retries=5, timeout=None, contextFactory=None, heloFallback=False, requireAuthentication=True, requireTransportSecurity=True): SMTPSenderFactory.__init__(self, fromEmail, toEmail, file, deferred, retries, timeout) self.username = username self.password = password self._contextFactory = contextFactory self._heloFallback = heloFallback self._requireAuthentication = requireAuthentication self._requireTransportSecurity = requireTransportSecurity def buildProtocol(self, addr): p = self.protocol(self.username, self.password, self._contextFactory, self.domain, self.nEmails*2+2) p.heloFallback = self._heloFallback p.requireAuthentication = self._requireAuthentication p.requireTransportSecurity = self._requireTransportSecurity p.factory = self p.timeout = self.timeout return p def sendmail(smtphost, from_addr, to_addrs, msg, senderDomainName=None, port=25): """Send an email This interface is intended to be a direct replacement for smtplib.SMTP.sendmail() (with the obvious change that you specify the smtphost as well). Also, ESMTP options are not accepted, as we don't do ESMTP yet. I reserve the right to implement the ESMTP options differently. @param smtphost: The host the message should be sent to @param from_addr: The (envelope) address sending this mail. @param to_addrs: A list of addresses to send this mail to. A string will be treated as a list of one address @param msg: The message, including headers, either as a file or a string. File-like objects need to support read() and close(). Lines must be delimited by '\\n'. If you pass something that doesn't look like a file, we try to convert it to a string (so you should be able to pass an email.Message directly, but doing the conversion with email.Generator manually will give you more control over the process). @param senderDomainName: Name by which to identify. If None, try to pick something sane (but this depends on external configuration and may not succeed). @param port: Remote port to which to connect. @rtype: L{Deferred} @returns: A L{Deferred}, its callback will be called if a message is sent to ANY address, the errback if no message is sent. The callback will be called with a tuple (numOk, addresses) where numOk is the number of successful recipient addresses and addresses is a list of tuples (address, code, resp) giving the response to the RCPT command for each address. """ if not hasattr(msg,'read'): # It's not a file msg = StringIO(str(msg)) d = defer.Deferred() factory = SMTPSenderFactory(from_addr, to_addrs, msg, d) if senderDomainName is not None: factory.domain = senderDomainName reactor.connectTCP(smtphost, port, factory) return d ## ## Yerg. Codecs! ## import codecs def xtext_encode(s, errors=None): r = [] for ch in s: o = ord(ch) if ch == '+' or ch == '=' or o < 33 or o > 126: r.append('+%02X' % o) else: r.append(chr(o)) return (''.join(r), len(s)) def _slowXTextDecode(s, errors=None): """ Decode the xtext-encoded string C{s}. """ r = [] i = 0 while i < len(s): if s[i] == '+': try: r.append(chr(int(s[i + 1:i + 3], 16))) except ValueError: r.append(s[i:i + 3]) i += 3 else: r.append(s[i]) i += 1 return (''.join(r), len(s)) try: from twisted.protocols._c_urlarg import unquote as _helper_unquote except ImportError: xtext_decode = _slowXTextDecode else: def xtext_decode(s, errors=None): """ Decode the xtext-encoded string C{s} using a fast extension function. """ return (_helper_unquote(s, '+'), len(s)) class xtextStreamReader(codecs.StreamReader): def decode(self, s, errors='strict'): return xtext_decode(s) class xtextStreamWriter(codecs.StreamWriter): def decode(self, s, errors='strict'): return xtext_encode(s) def xtext_codec(name): if name == 'xtext': return (xtext_encode, xtext_decode, xtextStreamReader, xtextStreamWriter) codecs.register(xtext_codec)
lambdas/shared/tests/test_preview.py
BearerPipelineTest/quilt
1,115
130123
""" Preview helper functions """ import os import pathlib from unittest import TestCase from unittest.mock import patch import pyarrow.parquet as pq from py_w3c.validators.html.validator import HTMLValidator from t4_lambda_shared.preview import ( extract_excel, extract_fcs, extract_parquet, get_bytes, get_preview_lines, ) TEST_EXTRACT_PARQUET_MAX_BYTES = 10_000 BASE_DIR = pathlib.Path(__file__).parent / 'data' ACCEPTABLE_ERROR_MESSAGES = [ 'Start tag seen without seeing a doctype first. Expected “<!DOCTYPE html>”.', 'Element “head” is missing a required instance of child element “title”.', 'Element “style” not allowed as child of element “div” in this context. ' '(Suppressing further errors from this subtree.)', 'The “border” attribute on the “table” element is obsolete. Use CSS instead.', ] def iterate_chunks(file_obj, chunk_size=4096): return iter(lambda: file_obj.read(chunk_size), b'') class TestPreview(TestCase): """Tests the preview functions""" def test_extract_parquet(self): file = BASE_DIR / 'amazon-reviews-1000.snappy.parquet' cell_value = '<td>TSD Airsoft/Paintball Full-Face Mask, Goggle Lens</td>' with patch('t4_lambda_shared.preview.get_available_memory') as mem_mock: mem_mock.return_value = 1 with open(file, mode='rb') as parquet: body, info = extract_parquet(parquet, max_bytes=TEST_EXTRACT_PARQUET_MAX_BYTES) assert all(bracket in body for bracket in ('<', '>')) assert body.count('<') == body.count('>'), \ 'expected matching HTML tags' assert cell_value not in body, 'only expected columns' assert 'skipped rows' in info['warnings'] with open(file, mode='rb') as parquet: body, info = extract_parquet(parquet, as_html=True, max_bytes=TEST_EXTRACT_PARQUET_MAX_BYTES) assert cell_value in body, 'missing expected HTML cell' with open(file, mode='rb') as parquet: body, info = extract_parquet(parquet, skip_rows=True, max_bytes=TEST_EXTRACT_PARQUET_MAX_BYTES) assert 'skipped rows' in info['warnings'] assert cell_value not in body, 'only expected columns' with open(file, mode='rb') as parquet: body, info = extract_parquet(parquet, as_html=False, max_bytes=TEST_EXTRACT_PARQUET_MAX_BYTES) assert all(bracket not in body for bracket in ('<', '>')), \ 'did not expect HTML' parquet_file = pq.ParquetFile(file) assert all( column in info['schema']['names'] for column in parquet_file.schema.names ) assert [ parquet_file.metadata.num_rows, parquet_file.metadata.num_columns ] == info['shape'], 'Unexpected number of rows or columns' def test_excel(self): """test XLS, XLSX parsing""" test_files = { "Revised.Haplogroups.1000G.20140205.xlsx": { "contents": [ "Continent", "Population", "ID", "Macrohaplogroup", "Haplogroup", "Informative SNPs", "NA19239", "NA19256", "E1b1a1a1g1a2", ] }, "lclarke_phase1_sequence_stats_20120330.xls": { "contents": [ "Breakdown of data generated by project, technology, submitting centre", "92219554043", "90363687334" ] } } vld = HTMLValidator() for file, expected_data in test_files.items(): in_file = os.path.join(BASE_DIR, "excel", file) with open(in_file, mode="rb") as excel: for html in [False, True]: body, _ = extract_excel(excel, as_html=html) # print(body) tags = ['<div>', '<tbody>', '<th>', '<td>', '<tr>'] if html: vld.validate_fragment(body) assert all(t in body for t in tags) serious_errors = [ e for e in vld.errors if e["message"] not in ACCEPTABLE_ERROR_MESSAGES ] assert not serious_errors print(vld.warnings) else: assert not any(t in body for t in tags) assert all(c in body for c in expected_data["contents"]) def test_fcs(self): """test FCS parsing""" # store test files and expectations test_files = { 'normal.fcs': { 'columns_string': 'FSC-A,SSC-A,FL1-A,FL2-A,FL3-A,FL4-A,FSC-H,SSC-H,FL1-H,FL2-H,FL3-H,FL4-H,Width,Time', 'in_body': '<th>FL3-H</th>', 'in_meta_keys': '#P1MaxUsefulDataChannel', 'in_meta_values': '491519', 'has_warnings': False, }, 'meta_only.fcs': { 'in_meta_keys': '_channel_names_', 'in_meta_values': 'Compensation Controls_G710 Stained Control.fcs', 'has_warnings': True, }, } for file, expected_data in test_files.items(): in_file = os.path.join(BASE_DIR, 'fcs', file) with open(in_file, mode='rb') as fcs: body, info = extract_fcs(fcs) if body != "": assert expected_data['in_body'] in body assert not expected_data.get('has_warnings') else: assert expected_data['has_warnings'] assert info['warnings'] assert expected_data['in_meta_keys'] in info['metadata'].keys() assert expected_data['in_meta_values'] in info['metadata'].values() # when there's a body, check if columns only works if expected_data.get('in_body'): # move to start so we can use the file-like a second time fcs.seek(0) body, info = extract_fcs(fcs, as_html=False) assert body == expected_data['columns_string'] def test_long(self): """test a text file with lots of lines""" txt = BASE_DIR / 'long.txt' max_lines = 500 max_bytes = 10000 with open(txt, 'rb') as file_obj: lines = get_preview_lines(iterate_chunks(file_obj), None, max_lines, max_bytes) assert len(lines) == max_lines, 'unexpected number of lines' assert lines[0] == 'Line 1', 'unexpected first line' assert lines[-1] == f'Line {max_lines}', 'unexpected last line' def test_long_gz(self): """test a gzipped text file with lots of lines""" txt = BASE_DIR / 'long.txt.gz' max_lines = 500 max_bytes = 10000 with open(txt, 'rb') as file_obj: lines = get_preview_lines(iterate_chunks(file_obj), 'gz', max_lines, max_bytes) assert len(lines) == max_lines, 'unexpected number of lines' assert lines[0] == 'Line 1', 'unexpected first line' assert lines[-1] == f'Line {max_lines}', 'unexpected last line' def test_txt_max_bytes(self): """test truncation to CATALOG_LIMIT_BYTES""" txt = BASE_DIR / 'two-line.txt' max_lines = 500 max_bytes = 5 with open(txt, 'rb') as file_obj: lines = get_preview_lines(iterate_chunks(file_obj), None, max_lines, max_bytes) assert len(lines) == 1, 'failed to truncate bytes' assert lines[0] == '1234😊', 'failed to truncate bytes' def test_txt_max_bytes_one_line(self): """test truncation to CATALOG_LIMIT_BYTES""" txt = BASE_DIR / 'one-line.txt' max_lines = 500 max_bytes = 8 chunk_size = 10 with open(txt, 'rb') as file_obj: lines = get_preview_lines( iterate_chunks(file_obj, chunk_size), None, max_lines, max_bytes ) assert len(lines) == 1, 'failed to truncate bytes' assert lines[0] == '🚷🚯', 'failed to truncate bytes' def test_bytes(self): txt = BASE_DIR / 'long.txt.gz' with open(txt, 'rb') as file_obj: buffer = get_bytes(file_obj, 'gz') lines = buffer.getvalue().splitlines() assert lines[0] == b'Line 1' assert lines[-1] == b'Line 999'
tools/state_updates.py
pnbruckner/homeassistant-conf
165
130125
#!/usr/bin/env python3 from collections import OrderedDict import re import sys try: filename = sys.argv[1] if '.' not in sys.argv[2]: raise ValueError except: print('Usage: python3 {} filename (entity_id [attribute...])...'.format(sys.argv[0])) sys.exit(1) attrs = {} entity_id = None for arg in sys.argv[2:]: if '.' in arg: if entity_id is not None: attrs[entity_id] = entity_attrs entity_id = arg entity_attrs = [] else: entity_attrs.append(arg) attrs[entity_id] = entity_attrs haevent = re.compile( r'([0-9-]+ [0-9:]+).*homeassistant_(start|started|stop|final_write|close)\[.*' ) new_state_none = re.compile(r'([0-9-]+ [0-9:]+)(.*)new_state=None(.*)') ent_id = re.compile(r'.*entity_id=([^,>]+).*') new_state = re.compile( r'([0-9-]+ [0-9:]+).*new_state=<state ([^=]+)=([^;]*); (.*) @ ([0-9+-:.T]+)>.*') new_state2 = re.compile( r'([0-9-]+ [0-9:]+).*new_state=<state ([^=]+)=([^@]*) @ ([0-9+-:.T]+)>.*') ent_hdr = 'entity_id' max_ent = len(ent_hdr) ts_hdr = 'log time' max_ts = len(ts_hdr) lc_hdr = 'last_changed' max_lc = len(lc_hdr) state_hdr = 'state' max_state = len(state_hdr) if len(attrs) == 1: max_attr = {} for attr in entity_attrs: max_attr[attr] = len(attr) else: attr_hdr = 'attributes' HAEVENT = 'Home Assistant' HAFMT = ' {} {{}} '.format(HAEVENT) states = [] with open(filename) as f: for line in f: m = haevent.match(line) if m: ts = m.group(1) max_ts = max(max_ts, len(ts)) last_changed = HAFMT.format(m.group(2).replace('_', ' ').title()) max_lc = max(max_lc, len(last_changed)) states.append((None, ts, last_changed, None, None)) continue m = new_state_none.match(line) if m: n = ent_id.match(m.group(2)) or ent_id.match(m.group(3)) entity_id = n.group(1) if entity_id in attrs: max_ent = max(max_ent, len(entity_id)) ts = m.group(1) max_ts = max(max_ts, len(ts)) state = '=== None ===' max_state = max(max_state, len(state)) states.append((entity_id, ts, '', state, {})) continue m = new_state.match(line) if m: s = m.group(4) last_changed = m.group(5) else: m = new_state2.match(line) s = '' last_changed = m.group(4) if m else '' if m and m.group(2) in attrs: entity_id = m.group(2) max_ent = max(max_ent, len(entity_id)) ts = m.group(1) max_ts = max(max_ts, len(ts)) max_lc = max(max_lc, len(last_changed)) state = m.group(3) max_state = max(max_state, len(state)) _attrs = OrderedDict() for attr in attrs[entity_id]: try: start = s.index(attr+'=')+len(attr)+1 _attr = s[start:s.rfind(', ', start, s.find('=', start))] except: _attr = '???' _attrs[attr] = _attr if len(attrs) == 1: for attr in entity_attrs: max_attr[attr] = max(max_attr[attr], len(_attrs[attr])) states.append((entity_id, ts, last_changed, state, _attrs)) if len(attrs) > 1: print('{:{}} | '.format(ent_hdr, max_ent), end='') print('{:{}} | {:{}} | {:{}}'.format(ts_hdr, max_ts, lc_hdr, max_lc, state_hdr, max_state), end='') if len(attrs) == 1: for attr in entity_attrs: print(' | {:{}}'.format(attr, max_attr[attr]), end='') else: print(' | {}'.format(attr_hdr), end='') print('') if len(attrs) > 1: print('-'*max_ent, end='-|-') print('-'*max_ts, '-'*max_lc, '-'*max_state, sep='-|-', end='') if len(attrs) == 1: for attr in entity_attrs: print('', '-'*max_attr[attr], sep='-|-', end='') else: print('-|-', end='') print('-'*len(attr_hdr), end='') print('') prev_entity_id = None for entity_id, ts, last_changed, state, _attrs in states: if HAEVENT in last_changed: entity_id = '='*max_ent last_changed = '{:=^{}}'.format(last_changed, max_lc) state = '='*max_state if len(attrs) == 1: _attrs = OrderedDict() for attr in entity_attrs: _attrs[attr] = '='*max_attr[attr] else: _attrs = {'=': '='*(len(attr_hdr)-2)} if len(attrs) > 1: print('{:{}} | '.format('' if entity_id == prev_entity_id and HAEVENT not in last_changed else entity_id, max_ent), end='') prev_entity_id = entity_id print('{:{}} | {:{}} | {:{}}'.format(ts, max_ts, last_changed , max_lc, state , max_state), end='') if len(attrs) == 1: for k,v in _attrs.items(): print(' | {:{}}'.format(v if HAEVENT not in last_changed else '='*max_attr[k], max_attr[k]), end='') else: print(' |', end='') for k,v in _attrs.items(): print(' {}={}'.format(k, v), end='') print('')
Chapter 4/restful_python_chapter_04_05/gamesapi/games/admin.py
Mohamed2011-bit/Building-RESTful-Python-Web-Services
116
130133
<gh_stars>100-1000 """ Book: Building RESTful Python Web Services Chapter 4: Throttling, Filtering, Testing and Deploying an API with Django Author: <NAME> - Twitter.com/gastonhillar Publisher: Packt Publishing Ltd. - http://www.packtpub.com """ from django.contrib import admin # Register your models here.
tests/unit/operations/test_sshops.py
myungseokang/aws-elastic-beanstalk-cli
110
130179
<filename>tests/unit/operations/test_sshops.py # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import os import shutil from copy import deepcopy import mock import unittest from ebcli.operations import sshops from .. import mock_responses class TestSSHOps(unittest.TestCase): def setUp(self): self.root_dir = os.getcwd() if not os.path.exists('testDir'): os.mkdir('testDir') os.chdir('testDir') def tearDown(self): os.chdir(self.root_dir) shutil.rmtree('testDir') @mock.patch('ebcli.operations.sshops.io.prompt') @mock.patch('ebcli.operations.sshops.subprocess.call') @mock.patch('ebcli.operations.sshops.commonops.upload_keypair_if_needed') def test_generate_and_upload_keypair__exit_code_0( self, upload_keypair_if_needed_mock, call_mock, prompt_mock ): prompt_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 0 self.assertEqual( 'aws-eb-us-west-2', sshops._generate_and_upload_keypair(['aws-eb', 'aws-eb-us-east-2']) ) upload_keypair_if_needed_mock.assert_called_once_with('aws-eb-us-west-2') call_mock.assert_called_once_with( [ 'ssh-keygen', '-f', os.path.expanduser('~') + '{0}.ssh{0}aws-eb-us-west-2'.format(os.path.sep), '-C', 'aws-eb-us-west-2' ] ) @mock.patch('ebcli.operations.sshops.io.prompt') @mock.patch('ebcli.operations.sshops.subprocess.call') @mock.patch('ebcli.operations.sshops.commonops.upload_keypair_if_needed') def test_generate_and_upload_keypair__exit_code_1( self, upload_keypair_if_needed_mock, call_mock, prompt_mock ): prompt_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 1 self.assertEqual( 'aws-eb-us-west-2', sshops._generate_and_upload_keypair(['aws-eb', 'aws-eb-us-east-2']) ) upload_keypair_if_needed_mock.assert_called_once_with('aws-eb-us-west-2') call_mock.assert_called_once_with( [ 'ssh-keygen', '-f', os.path.expanduser('~') + '{0}.ssh{0}aws-eb-us-west-2'.format(os.path.sep), '-C', 'aws-eb-us-west-2' ] ) @mock.patch('ebcli.operations.sshops.io.prompt') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_generate_and_upload_keypair__exit_code_is_other_than_1_and_0( self, call_mock, prompt_mock ): prompt_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 2 with self.assertRaises(sshops.CommandError) as context_manager: sshops._generate_and_upload_keypair(['aws-eb', 'aws-eb-us-east-2']) self.assertEqual( 'An error occurred while running ssh-keygen.', str(context_manager.exception) ) @mock.patch('ebcli.operations.sshops.io.prompt') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_generate_and_upload_keypair__ssh_keygen_not_present( self, call_mock, prompt_mock ): prompt_mock.return_value = 'aws-eb-us-west-2' call_mock.sideeffect = OSError with self.assertRaises(sshops.CommandError) as context_manager: sshops._generate_and_upload_keypair(['aws-eb', 'aws-eb-us-east-2']) self.assertEqual( 'An error occurred while running ssh-keygen.', str(context_manager.exception) ) @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops._generate_and_upload_keypair') @mock.patch('ebcli.operations.sshops.ec2.get_key_pairs') @mock.patch('ebcli.operations.sshops.io.validate_action') def test_prompt_for_ec2_keyname( self, validate_action_mock, get_key_pairs_mock, generate_and_upload_keypair_mock, prompt_for_item_in_list_mock ): get_key_pairs_mock.return_value = mock_responses.DESCRIBE_KEY_PAIRS_RESPONSE['KeyPairs'] prompt_for_item_in_list_mock.return_value = '[ Create new KeyPair ]' sshops.prompt_for_ec2_keyname('my-environment') validate_action_mock.assert_called_once_with('To confirm, type the environment name', 'my-environment') generate_and_upload_keypair_mock.assert_called_once_with(['key_pair_1', 'key_pair_2', '[ Create new KeyPair ]']) @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops._generate_and_upload_keypair') @mock.patch('ebcli.operations.sshops.ec2.get_key_pairs') @mock.patch('ebcli.operations.sshops.io.validate_action') def test_prompt_for_ec2_keyname__choose_existing_key( self, validate_action_mock, get_key_pairs_mock, generate_and_upload_keypair_mock, prompt_for_item_in_list_mock ): get_key_pairs_mock.return_value = mock_responses.DESCRIBE_KEY_PAIRS_RESPONSE['KeyPairs'] prompt_for_item_in_list_mock.return_value = 'key_pair_2' sshops.prompt_for_ec2_keyname('my-environment') validate_action_mock.assert_called_once_with('To confirm, type the environment name', 'my-environment') generate_and_upload_keypair_mock.assert_not_called() @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops._generate_and_upload_keypair') @mock.patch('ebcli.operations.sshops.ec2.get_key_pairs') @mock.patch('ebcli.operations.sshops.io.get_boolean_response') def test_prompt_for_ec2_keyname__get_boolean_response_to_confirm_termination( self, get_boolean_response_mock, get_key_pairs_mock, generate_and_upload_keypair_mock, prompt_for_item_in_list_mock ): get_key_pairs_mock.return_value = mock_responses.DESCRIBE_KEY_PAIRS_RESPONSE['KeyPairs'] prompt_for_item_in_list_mock.return_value = 'key_pair_2' get_boolean_response_mock.return_value = True sshops.prompt_for_ec2_keyname() generate_and_upload_keypair_mock.assert_not_called() @mock.patch('ebcli.operations.sshops._generate_and_upload_keypair') @mock.patch('ebcli.operations.sshops.ec2.get_key_pairs') @mock.patch('ebcli.operations.sshops.io.validate_action') @mock.patch('ebcli.operations.sshops.io.get_boolean_response') def test_prompt_for_ec2_keyname__no_keys_exist( self, get_boolean_response_mock, validate_action_mock, get_key_pairs_mock, generate_and_upload_keypair_mock ): get_key_pairs_mock.return_value = [] get_boolean_response_mock.return_value = True sshops.prompt_for_ec2_keyname('my-environment') generate_and_upload_keypair_mock.assert_called_once_with([]) validate_action_mock.assert_called_once() @mock.patch('ebcli.operations.sshops.fileoperations.get_ssh_folder') def test_get_ssh_file( self, get_ssh_folder_mock ): open('aws-eb-us-west-2', 'w').close() get_ssh_folder_mock.return_value = os.getcwd() + os.path.sep sshops._get_ssh_file('aws-eb-us-west-2').endswith('testDir{}aws-eb-us-west-2'.format(os.pathsep)) @mock.patch('ebcli.operations.sshops.fileoperations.get_ssh_folder') def test_get_ssh_file__file_present_as_pem( self, get_ssh_folder_mock ): open('aws-eb-us-west-2.pem', 'w').close() get_ssh_folder_mock.return_value = os.getcwd() + os.path.sep sshops._get_ssh_file('aws-eb-us-west-2').endswith('testDir{}aws-eb-us-west-2.pem'.format(os.pathsep)) @mock.patch('ebcli.operations.sshops.fileoperations.get_ssh_folder') def test_get_ssh_file__file_absent( self, get_ssh_folder_mock ): open('aws-eb-us-west-2.pem', 'w').close() get_ssh_folder_mock.return_value = os.getcwd() + os.path.sep with self.assertRaises(sshops.NotFoundError) as context_manager: sshops._get_ssh_file('absent_file').endswith('testDir{}aws-eb-us-west-2.pem'.format(os.pathsep)) self.assertEqual( 'The EB CLI cannot find your SSH key file for keyname "absent_file". ' 'Your SSH key file must be located in the .ssh folder in your home directory.', str(context_manager.exception)) @mock.patch('ebcli.operations.sshops.ec2.describe_instance') def test_ssh_into_instance__no_key_pair( self, describe_instance_mock ): describe_instance_mock.return_value = dict() with self.assertRaises(sshops.NoKeypairError): sshops.ssh_into_instance('some-instance-id') @mock.patch('ebcli.operations.sshops.ec2.describe_instance') @mock.patch('ebcli.operations.sshops.ec2.describe_security_group') @mock.patch('ebcli.operations.sshops.ec2.authorize_ssh') @mock.patch('ebcli.operations.sshops._get_ssh_file') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_ssh_into_instance( self, call_mock, _get_ssh_file_mock, authorize_ssh_mock, describe_security_group_mock, describe_instance_mock ): describe_instance_mock.return_value = mock_responses.DESCRIBE_INSTANCES_RESPONSE['Reservations'][0]['Instances'][0] describe_security_group_mock.return_value = mock_responses.DESCRIBE_SECURITY_GROUPS_RESPONSE['SecurityGroups'][0] _get_ssh_file_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 0 sshops.ssh_into_instance('instance-id') @mock.patch('ebcli.operations.sshops.ec2.describe_instance') @mock.patch('ebcli.operations.sshops.ec2.describe_security_group') @mock.patch('ebcli.operations.sshops.ec2.authorize_ssh') @mock.patch('ebcli.operations.sshops._get_ssh_file') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_ssh_into_instance__ssh_fails( self, call_mock, _get_ssh_file_mock, authorize_ssh_mock, describe_security_group_mock, describe_instance_mock ): describe_instance_mock.return_value = mock_responses.DESCRIBE_INSTANCES_RESPONSE['Reservations'][0]['Instances'][0] describe_security_group_mock.return_value = mock_responses.DESCRIBE_SECURITY_GROUPS_RESPONSE['SecurityGroups'][0] _get_ssh_file_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 1 with self.assertRaises(sshops.CommandError) as context_manager: sshops.ssh_into_instance('instance-id') self.assertEqual( 'An error occurred while running: ssh.', str(context_manager.exception) ) @mock.patch('ebcli.operations.sshops.ec2.describe_instance') @mock.patch('ebcli.operations.sshops._get_ssh_file') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_ssh_into_instance__neither_public_nor_private_ip_found( self, call_mock, _get_ssh_file_mock, describe_instance_mock ): describe_instance_response = deepcopy(mock_responses.DESCRIBE_INSTANCES_RESPONSE['Reservations'][0]['Instances'][0]) del describe_instance_response['PublicIpAddress'] del describe_instance_response['PrivateIpAddress'] describe_instance_mock.return_value = describe_instance_response _get_ssh_file_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 0 with self.assertRaises(sshops.NotFoundError): sshops.ssh_into_instance('instance-id') @mock.patch('ebcli.operations.sshops.ec2.describe_instance') @mock.patch('ebcli.operations.sshops.ec2.describe_security_group') @mock.patch('ebcli.operations.sshops.ec2.authorize_ssh') @mock.patch('ebcli.operations.sshops._get_ssh_file') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_ssh_into_instance__uses_private_address( self, call_mock, _get_ssh_file_mock, authorize_ssh_mock, describe_security_group_mock, describe_instance_mock ): describe_instance_response = deepcopy(mock_responses.DESCRIBE_INSTANCES_RESPONSE['Reservations'][0]['Instances'][0]) del describe_instance_response['PublicIpAddress'] describe_instance_mock.return_value = describe_instance_response describe_security_group_mock.return_value = mock_responses.DESCRIBE_SECURITY_GROUPS_RESPONSE['SecurityGroups'][0] _get_ssh_file_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 0 sshops.ssh_into_instance('instance-id') call_mock.assert_called_once_with(['ssh', '-i', 'aws-eb-us-west-2', '[email protected]']) @mock.patch('ebcli.operations.sshops.ec2.describe_instance') @mock.patch('ebcli.operations.sshops.ec2.describe_security_group') @mock.patch('ebcli.operations.sshops.ec2.revoke_ssh') @mock.patch('ebcli.operations.sshops.ec2.authorize_ssh') @mock.patch('ebcli.operations.sshops._get_ssh_file') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_ssh_into_instance__ssh_rule_exists( self, call_mock, _get_ssh_file_mock, authorize_ssh_mock, revoke_ssh_mock, describe_security_group_mock, describe_instance_mock ): describe_instance_response = deepcopy(mock_responses.DESCRIBE_INSTANCES_RESPONSE['Reservations'][0]['Instances'][0]) describe_instance_mock.return_value = describe_instance_response describe_security_group_mock.return_value = mock_responses.DESCRIBE_SECURITY_GROUPS_RESPONSE['SecurityGroups'][0] _get_ssh_file_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 0 sshops.ssh_into_instance('instance-id') authorize_ssh_mock.assert_not_called() revoke_ssh_mock.assert_not_called() call_mock.assert_called_once_with(['ssh', '-i', 'aws-eb-us-west-2', '[email protected]']) @mock.patch('ebcli.operations.sshops.ec2.describe_instance') @mock.patch('ebcli.operations.sshops.ec2.describe_security_group') @mock.patch('ebcli.operations.sshops.ec2.revoke_ssh') @mock.patch('ebcli.operations.sshops.ec2.authorize_ssh') @mock.patch('ebcli.operations.sshops._get_ssh_file') @mock.patch('ebcli.operations.sshops.subprocess.call') def test_ssh_into_instance__no_ssh_rule_exists( self, call_mock, _get_ssh_file_mock, authorize_ssh_mock, revoke_ssh_mock, describe_security_group_mock, describe_instance_mock ): describe_instance_response = deepcopy(mock_responses.DESCRIBE_INSTANCES_RESPONSE['Reservations'][0]['Instances'][0]) describe_instance_mock.return_value = describe_instance_response describe_security_group_mock.return_value = mock_responses.DESCRIBE_SECURITY_GROUPS_RESPONSE['SecurityGroups'][1] _get_ssh_file_mock.return_value = 'aws-eb-us-west-2' call_mock.return_value = 0 sshops.ssh_into_instance('instance-id') authorize_ssh_mock.assert_called_once_with('sg-12312313') revoke_ssh_mock.assert_called_once_with('sg-12312313') call_mock.assert_called_once_with(['ssh', '-i', 'aws-eb-us-west-2', '[email protected]']) @mock.patch('ebcli.operations.sshops.prompt_for_ec2_keyname') @mock.patch('ebcli.operations.sshops.commonops.update_environment') def test_setup_ssh( self, update_environment_mock, prompt_for_ec2_keyname_mock ): prompt_for_ec2_keyname_mock.return_value = 'aws-eb-us-west-2' sshops.setup_ssh('my-environment', 'aws-eb-us-west-2') update_environment_mock.assert_called_once_with( 'my-environment', [ { 'Namespace': 'aws:autoscaling:launchconfiguration', 'OptionName': 'EC2KeyName', 'Value': 'aws-eb-us-west-2' } ], False, timeout=5 ) @mock.patch('ebcli.operations.sshops.prompt_for_ec2_keyname') @mock.patch('ebcli.operations.sshops.commonops.update_environment') def test_setup_ssh__keyname_not_entered( self, update_environment_mock, prompt_for_ec2_keyname_mock ): prompt_for_ec2_keyname_mock.return_value = None sshops.setup_ssh('my-environment', 'aws-eb-us-west-2') update_environment_mock.assert_not_called() @mock.patch('ebcli.operations.sshops.setup_ssh') def test_prepare_for_ssh( self, setup_ssh_mock ): sshops.prepare_for_ssh( 'my-environment', 'instance', False, False, True, None ) setup_ssh_mock.assert_called_once_with('my-environment', None, timeout=None) def test_prepare_for_ssh__instance_and_number(self): with self.assertRaises(sshops.InvalidOptionsError) as context_manager: sshops.prepare_for_ssh( 'my-environment', 'instance', False, False, False, 1 ) self.assertEqual( 'You cannot use the "--instance" and "--number" options together.', str(context_manager.exception) ) @mock.patch('ebcli.operations.sshops.commonops.get_instance_ids') @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops.ssh_into_instance') def test_prepare_for_ssh__choose_instance_to_ssh_into( self, ssh_into_instance_mock, prompt_for_item_in_list_mock, get_instance_ids_mock ): get_instance_ids_mock.return_value = [ 'i-123123123123', 'i-234234234424', 'i-353454535434', ] prompt_for_item_in_list_mock.return_value = 'i-353454535434' sshops.prepare_for_ssh( 'my-environment', None, False, False, False, None ) ssh_into_instance_mock.assert_called_once_with( 'i-353454535434', command=None, custom_ssh=None, force_open=False, keep_open=False ) @mock.patch('ebcli.operations.sshops.commonops.get_instance_ids') @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops.ssh_into_instance') def test_prepare_for_ssh__choose_instance_to_ssh_into( self, ssh_into_instance_mock, prompt_for_item_in_list_mock, get_instance_ids_mock ): get_instance_ids_mock.return_value = [ 'i-123123123123', ] prompt_for_item_in_list_mock.return_value = 'i-353454535434' sshops.prepare_for_ssh( 'my-environment', None, False, False, False, None ) ssh_into_instance_mock.assert_called_once_with( 'i-123123123123', command=None, custom_ssh=None, force_open=False, keep_open=False ) @mock.patch('ebcli.operations.sshops.commonops.get_instance_ids') @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops.ssh_into_instance') def test_prepare_for_ssh__number_of_instance_specified( self, ssh_into_instance_mock, prompt_for_item_in_list_mock, get_instance_ids_mock ): get_instance_ids_mock.return_value = [ 'i-123123123123', 'i-234234234424', 'i-353454535434', ] prompt_for_item_in_list_mock.return_value = 'i-353454535434' sshops.prepare_for_ssh( 'my-environment', None, False, False, False, 2 ) ssh_into_instance_mock.assert_called_once_with( 'i-234234234424', command=None, custom_ssh=None, force_open=False, keep_open=False ) @mock.patch('ebcli.operations.sshops.commonops.get_instance_ids') @mock.patch('ebcli.operations.sshops.utils.prompt_for_item_in_list') @mock.patch('ebcli.operations.sshops.ssh_into_instance') @mock.patch('ebcli.operations.sshops.io.log_error') def test_prepare_for_ssh__ssh_into_instance_fails( self, log_error_mock, ssh_into_instance_mock, prompt_for_item_in_list_mock, get_instance_ids_mock ): get_instance_ids_mock.return_value = [ 'i-123123123123', 'i-234234234424', 'i-353454535434', ] prompt_for_item_in_list_mock.return_value = 'i-353454535434' ssh_into_instance_mock.side_effect = sshops.NoKeypairError sshops.prepare_for_ssh( 'my-environment', None, False, False, False, 2 ) ssh_into_instance_mock.assert_called_once_with( 'i-234234234424', command=None, custom_ssh=None, force_open=False, keep_open=False ) log_error_mock.assert_called_once_with( 'This environment is not set up for SSH. Use "eb ssh --setup" to set up SSH for the environment.' )
python_utils/pycaffe_utils.py
xzabg/fast-adversarial
520
130182
# --------------------------------------------------------- # Copyright (c) 2015, <NAME> # # Licensed under The MIT License [see LICENSE for details] # --------------------------------------------------------- import caffe, yaml def net_surgery(net, json_file_or_dict): # Load the JSON file if isinstance(json_file_or_dict, str): with open(json_file_or_dict, 'rt') as f: source_description = yaml.load(f) else: source_description = json_file_or_dict # Find a list of blobs in the target net target_blobs = net.params.keys() target_blobs = dict(zip(target_blobs, [0]*len(target_blobs))) # For each item in the json file load the network and copy the layers for src_desc in source_description: net_source = caffe.Net(src_desc['prototxt'], src_desc['model'], caffe.TEST) for j in xrange(len(src_desc['copy_ops']['dest'])): dest_name = src_desc['copy_ops']['dest'][j] assert dest_name in target_blobs, \ 'Destination name {} not in target network blobs'.format(dest_name) src_name = src_desc['copy_ops']['source'][j] assert src_name in net_source.params.keys(), \ 'Source name {} not in source network blobs'.format(src_name) allow_different_shape = src_desc['copy_ops']['reshape'][j] if target_blobs[dest_name] is not 0: print 'Target blob {} is being reassigned'.format(dest_name) target_blobs[dest_name] = target_blobs[dest_name] + 1 assert(len(net.params[dest_name]) == \ len(net_source.params[src_name])), \ 'Number of blobs in {} in source do not match number of blobs in {} in destination'\ .format(src_name, dest_name) for k in xrange(len(net.params[dest_name])): src = net_source.params[src_name][k] dest = net.params[dest_name][k] if allow_different_shape: assert(src.count == dest.count), \ 'Count of blobs in {}[{:d}] in source do not match count of blobs in {}[{:d}] in destination'\ .format(src_name, k, dest_name, k) dest.data[...] = src.data.reshape(dest.data.shape) else: src_shape = src.data.shape dest_shape = dest.data.shape assert(src_shape == dest_shape), \ 'Shape of blobs in {}[{:d}] {} in source do not match shape of blobs in {}[{:d}] {} in destination'\ .format(src_name, k, str(src_shape), dest_name, k, str(dest_shape)) dest.data[...] = src.data unusual = [x for x in target_blobs.keys() if target_blobs[x] is not 1] for x in unusual: print 'Parameter blob {} copied {:d} times.'.format(x, target_blobs[x]) return target_blobs
ipfshttpclient/filescanner.py
Eternity-labs/py-ipfs-http-client
186
130215
<reponame>Eternity-labs/py-ipfs-http-client import abc import collections.abc import enum import fnmatch import os import re import sys import types import typing as ty from . import utils from .exceptions import MatcherSpecInvalidError # PyCharm rejects typing.AnyStr and will flag all usages of an error, # effectively breaking PyCharm's ability to provide typing assistance. # # To encourage contributions from PyCharm users, we redefine AnyStr. # # This will get inlined if/when PyCharm no longer flags typing.AnyStr. AnyStr = ty.TypeVar('AnyStr', bytes, str) if sys.version_info >= (3, 7): #PY37+ re_pattern_type = re.Pattern if ty.TYPE_CHECKING: re_pattern_t = re.Pattern[AnyStr] else: re_pattern_t = re.Pattern else: #PY36- re_pattern_t = re_pattern_type = type(re.compile("")) # Windows does not have os.O_DIRECTORY O_DIRECTORY: int = getattr(os, "O_DIRECTORY", 0) # Neither Windows nor MacOS have os.fwalk even through Python 3.9 HAVE_FWALK: bool = hasattr(os, "fwalk") HAVE_FWALK_BYTES = HAVE_FWALK and sys.version_info >= (3, 7) class FSNodeType(enum.Enum): FILE = enum.auto() DIRECTORY = enum.auto() #XXX: This should be a generic `ty.NamedTuple` subclass, but GH/python/mypy#685 … class FSNodeEntry(ty.Generic[AnyStr]): type: FSNodeType path: AnyStr relpath: AnyStr name: AnyStr parentfd: ty.Optional[int] def __init__( self, type: FSNodeType, path: AnyStr, relpath: AnyStr, name: AnyStr, parentfd: ty.Optional[int]) -> None: self.type = type self.path = path self.relpath = relpath self.name = name self.parentfd = parentfd def __repr__(self) -> str: return ( f'FSNodeEntry(' f'type={self.type!r}, ' f'path={self.path!r}, ' f'relpath={self.relpath!r}, ' f'name={self.name!r}, ' f'parentfd={self.parentfd!r}' f')' ) def __str__(self) -> str: return str(self.path) class Matcher(ty.Generic[AnyStr], metaclass=abc.ABCMeta): """Represents a type that can match on file paths and decide whether they should be included in some file scanning/adding operation""" __slots__ = ("is_binary",) is_binary: bool def __init__(self, is_binary: bool = False) -> None: self.is_binary = is_binary @abc.abstractmethod def should_descend(self, path: AnyStr) -> bool: r"""Decides whether the file scanner should descend into the given directory path Arguments --------- path A directory path upholding the same guarantees as those mentioned in :meth:`should_store` """ @abc.abstractmethod def should_report(self, path: AnyStr, *, is_dir: bool) -> bool: r"""Decides whether the file scanner should store the given file or directory Note that in this case “file” may refer to anything that is not a directory and not just regular files. If the settings of the file scanner do not permit it to follow symbolic links this may even include symbolic links pointing at directories. Arguments --------- path The file or directory path to check – the argument's type depends on the type of the path originally passed to the file scanner and may either be :type:`bytes` or :type:`str`, but will usually be :type:`str` The given path is guaranteed to have the following additional properties: * It will be properly normalized: There won't be any empty (``…//…`), single-dot (``…/./…``) or (``…/../…``) directory labels or leading or trailing slashes. * Its path separator will match the one found in :var:`os.path.sep` – that is: It will be \ on Windows and / everywhere else. * It will be relative to the file scanner's base directory. is_dir Whether the given path refers to a directory, see the above paragraph for what this means exactly """ class MatchAll(ty.Generic[AnyStr], Matcher[AnyStr]): """I want it all – I want it now…""" __slots__ = () def should_descend(self, path: AnyStr) -> utils.Literal_True: return True def should_report(self, path: AnyStr, *, is_dir: bool) -> utils.Literal_True: return True class MatchNone(ty.Generic[AnyStr], Matcher[AnyStr]): """Fuck it""" __slots__ = () def should_descend(self, path: AnyStr) -> utils.Literal_False: return False def should_report(self, path: AnyStr, *, is_dir: bool) -> utils.Literal_False: return False class GlobMatcher(Matcher[AnyStr], ty.Generic[AnyStr]): """Matches files and directories according to the shell glob conventions For details on the syntax see the Python :py:mod:`glob` module that this class emulates. If your are accustomed the globing on real Unix shells make sure to also carefully study its limitations as these also apply here. Also not that this matcher always has recursion enabled and hence treats ``**``-labels as special. Additionally the *period_special* parameter is provided that may be used to disable the special handling of “dot-files” (files whose name starts with a leading period). One important thing to keep in mind that this is a *matcher* and works entirely I/O-less. As such, trying to include any files or directories *outside* of the matching domain will *not* work. For instance, a pattern like ``../a`` or ``b/../c`` would never match anything as a conforming file scanner would never pass in such a path, the same applies to any notion of absolute paths. This matcher will try its best to normalize or reject such cases, but if you're wondering why your pattern just won't match while pasting it into a real shell works this may be why. """ __slots__ = ("period_special", "_sep", "_pat", "_dir_only") period_special: bool _sep: AnyStr _pat: "ty.List[ty.Optional[re_pattern_t[AnyStr]]]" _dir_only: bool def __init__(self, pat: AnyStr, *, period_special: bool = True): """ Arguments --------- pat The glob pattern to use for matching period_special Whether a leading period in file/directory names should be matchable by ``*``, ``?`` and ``[…]`` – traditionally they are not, but many modern shells allow one to disable this behaviour """ super().__init__(isinstance(pat, bytes)) self.period_special = period_special self._sep = utils.maybe_fsencode(os.path.sep, pat) dblstar = utils.maybe_fsencode("**", pat) dot = utils.maybe_fsencode(".", pat) pat_ndot = utils.maybe_fsencode(r"(?![.])", pat) # Normalize path separator if os.path.altsep: pat = pat.replace(utils.maybe_fsencode(os.path.altsep, pat), self._sep) # Sanity checks for stuff that will definitely NOT EVER match # (there is another one in the loop below) assert not os.path.isabs(pat), "Absolute matching patterns will never match" # Note the extra final slash for its effect of only matching directories # # (TBH, I find it hard to see how that is useful, but everybody does it # and it keeps things consistent overall – something to only match files # would be nice however.) self._dir_only = pat.endswith(self._sep) self._pat = [] for label in pat.split(self._sep): # Skip over useless path components if len(label) < 1 or label == dot: continue assert label != dot + dot, 'Matching patterns containing ".." will never match' if label == dblstar: self._pat.append(None) elif dblstar in label: raise NotImplementedError( "Using double-star (**) and other characters in the same glob " "path label ({0}) is not currently supported – please do file " "an issue if you need this!".format(os.fsdecode(label)) ) else: if not isinstance(label, bytes): re_expr = fnmatch.translate(label) else: re_expr = fnmatch.translate(label.decode("latin-1")).encode("latin-1") if period_special and not label.startswith(dot): re_expr = pat_ndot + re_expr self._pat.append(re.compile(re_expr)) def should_descend(self, path: AnyStr) -> bool: for idx, label in enumerate(path.split(self._sep)): # Always descend into any directory below a recursive pattern as we # cannot predict what we will later do a tail match on pattern = self._pat[idx] if pattern is None: return True # Do not descend further if we reached the last label of the pattern # (unless the final pattern label is a recursive match, see above) # # This is independent of whether this *directory* will be included # or not. if idx == (len(self._pat) - 1): return False # Match the current pattern to decide whether to keep looking or not if not pattern.match(label): return False # The given path matched part of this pattern, so we should include this # directory to go further return True def should_report(self, path: AnyStr, *, is_dir: bool) -> bool: # A final slash means “only match directories” if self._dir_only and not is_dir: return False labels = path.split(self._sep) return self._match(labels, idx_pat=0, idx_path=0, is_dir=is_dir) def _match(self, labels: ty.List[AnyStr], *, idx_pat: int, idx_path: int, is_dir: bool) -> bool: while idx_pat < len(self._pat): pattern = self._pat[idx_pat] if pattern is None: break # Match initial labels before recursion if idx_path >= len(labels): # Pattern refers to something below this path, store it only if it # is a directory return is_dir elif not pattern.match(labels[idx_path]): # Pattern did not match return False idx_pat += 1 idx_path += 1 dot = utils.maybe_fsencode(".", labels[0]) # We reached the end of the matching labels or the start of recursion if idx_pat == len(self._pat): # End of matching labels – only include path if it was of the same # length or the previous pattern label was recursive if self._pat[idx_pat - 1] is None: return not self.period_special or not labels[idx_path].startswith(dot) else: return idx_path == len(labels) # Start of recursion – move to next label and recurse this method too # # If the path is then matched by our inferior self return success, # otherwise retry with the next path label until all labels have been # exhausted meaning that there was no match. idx_pat += 1 while idx_path < len(labels): if self._match(labels, idx_pat=idx_pat, idx_path=idx_path, is_dir=is_dir): return True # Do not add dot-files as part of recursive patterns by default if self.period_special and labels[idx_path].startswith(dot): break idx_path += 1 # Nothing matched return False class ReMatcher(Matcher[AnyStr], ty.Generic[AnyStr]): """Matches files and directories using a regular expression pattern See the description of :meth:`Matcher.should_store` for the specifics on how the matching path is formatted, but note that there is one important difference: In order to allow the regular expression to distinguish between files and directories, all directories (if *is_dir* is ``True``) contain a trailing forward or backward slash (depending on the platform). If you don't care about the this information you may want to add ``[\\/]?`` to end of the pattern. Unlike glob patterns, regular expressions cannot be reliably analyzed for which directories the file paths they may or may not match are in. Because of this, this matcher will cause the file scanner **to recurse into any directory it encounters** possibly causing an unnecessarily slow-down during scanning even if only very few files end up being selected. If this causes problems for you *use non-recursive glob patterns instead* or implement your own matcher with a proper :meth:`Matcher.should_descend` method. """ __slots__ = ("_pat",) _pat: "re_pattern_t[AnyStr]" def __init__(self, pat: ty.Union[AnyStr, "re_pattern_t[AnyStr]"]): self._pat = re.compile(pat) super().__init__(not (self._pat.flags & re.UNICODE)) def should_descend(self, path: AnyStr) -> bool: return True def should_report(self, path: AnyStr, *, is_dir: bool) -> bool: suffix: AnyStr = utils.maybe_fsencode(os.path.sep, path) if is_dir else type(path)() return bool(self._pat.match(path + suffix)) class MetaMatcher(Matcher[AnyStr], ty.Generic[AnyStr]): """Match files and directories by delegating to other matchers""" __slots__ = ("_children",) _children: ty.List[Matcher[AnyStr]] def __init__(self, children: ty.List[Matcher[AnyStr]]): assert len(children) > 0 super().__init__(children[0].is_binary) self._children = children def should_descend(self, path: AnyStr) -> bool: return any(m.should_descend(path) for m in self._children) def should_report(self, path: AnyStr, *, is_dir: bool) -> bool: return any(m.should_report(path, is_dir=is_dir) for m in self._children) class NoRecusionAdapterMatcher(Matcher[AnyStr], ty.Generic[AnyStr]): """Matcher adapter that will prevent any recursion Takes a subordinate matcher, but tells the scanner to never descend into any child directory and to never store files from such a directory. This is an effective way to prevent any non-top-level files from being emitted by the scanner and hence provides ``recursive=False`` semantics. """ __slots__ = ("_child",) _child: Matcher[AnyStr] def __init__(self, child: Matcher[AnyStr]): super().__init__(child.is_binary) self._child = child def should_descend(self, path: AnyStr) -> bool: return False def should_report(self, path: AnyStr, *, is_dir: bool) -> bool: return utils.maybe_fsencode(os.path.sep, path) not in path \ and self._child.should_report(path, is_dir=is_dir) if ty.TYPE_CHECKING: _match_spec_t = ty.Union[AnyStr, re_pattern_t[AnyStr], Matcher[AnyStr]] else: # Using `re_pattern_t` here like in the type checking case makes # sphinx_autodoc_typehints explode _match_spec_t = ty.Union[AnyStr, re_pattern_t, Matcher[AnyStr]] match_spec_t = ty.Union[ ty.Iterable[_match_spec_t[AnyStr]], _match_spec_t[AnyStr] ] def _require_spec(spec: ty.Optional[match_spec_t[AnyStr]]) -> match_spec_t[AnyStr]: """ Assist the type checker by narrowing the number of places accepting Optional. """ if spec is None: return MatchAll() else: return spec @ty.overload def matcher_from_spec(spec: match_spec_t[bytes], *, period_special: bool = ..., recursive: bool = ...) -> Matcher[bytes]: ... @ty.overload def matcher_from_spec(spec: match_spec_t[str], *, period_special: bool = ..., recursive: bool = ...) -> Matcher[str]: ... @ty.overload def matcher_from_spec(spec: None, *, period_special: bool = ..., recursive: bool = ...) -> Matcher[str]: ... def matcher_from_spec(spec: ty.Optional[match_spec_t[AnyStr]], *, period_special: bool = True, recursive: bool = True) -> Matcher[AnyStr]: """Processes the given simplified matching spec, creating an equivalent :type:`Matcher` object""" return _matcher_from_spec( _require_spec(spec), period_special=period_special, recursive=recursive ) def _matcher_from_spec(spec: match_spec_t[AnyStr], *, period_special: bool = True, recursive: bool = True) -> Matcher[AnyStr]: if recursive: return _recursive_matcher_from_spec(spec, period_special=period_special) else: guarded = matcher_from_spec( spec, recursive=True, period_special=period_special ) return NoRecusionAdapterMatcher(guarded) def _recursive_matcher_from_spec(spec: match_spec_t[AnyStr], *, period_special: bool = True) -> Matcher[AnyStr]: if isinstance(spec, re_pattern_type): return ReMatcher(spec) elif isinstance(spec, (str, bytes)): return GlobMatcher(spec, period_special=period_special) elif isinstance(spec, Matcher): return spec elif isinstance(spec, collections.abc.Iterable): matchers: ty.List[Matcher[AnyStr]] = [ _recursive_matcher_from_spec( ty.cast(match_spec_t[AnyStr], s), period_special=period_special) for s in spec ] if len(matchers) == 0: # Edge case: Empty list of matchers return MatchNone() elif len(matchers) == 1: # Edge case: List of exactly one matcher return matchers[0] else: # Actual list of matchers (plural) return MetaMatcher(matchers) else: raise MatcherSpecInvalidError(spec) class walk(ty.Generator[FSNodeEntry[AnyStr], ty.Any, None], ty.Generic[AnyStr]): __slots__ = ("_generator", "_close_fd") _generator: ty.Generator[FSNodeEntry[AnyStr], ty.Any, None] _close_fd: ty.Optional[int] def __init__( self, directory: ty.Union[AnyStr, utils.PathLike[AnyStr], int], match_spec: ty.Optional[match_spec_t[AnyStr]] = None, *, follow_symlinks: bool = False, intermediate_dirs: bool = True, period_special: bool = True, recursive: bool = True ) -> None: """ Arguments --------- directory Path to, or file descriptor of, directory to scan match_spec Matching rules for limiting the files and directories to include in the scan By default everything will be scanned and included. follow_symlinks Follow symbolic links while scanning? period_special The value to pass to the *period_special* argument of :class:`GlobMatcher` when constructing such an object from the given *match_spec* intermediate_dirs When reporting a file or directory first ensure that all containing directories were already reported Due to the way matching works, a matcher may only ask for its target files to be included but not care about the directories leading up to that file and this would cause the file to be reported without these intermediate directories to the caller as well. If you require these directories to be reported for consistency, this option will keep track of these intermediate paths and make it appear as if these had been included up-front. recursive Recurse into the given directory while scanning? If ``False`` this will wrap the given matcher inside :class:`NoRecusionAdapterMatcher` and hence prevent the scanner from doing any recursion. """ self._close_fd = None # Create matcher object matcher: Matcher[AnyStr] = _matcher_from_spec( _require_spec(match_spec), recursive=recursive, period_special=period_special ) # Convert directory path to string … if isinstance(directory, int): if not HAVE_FWALK: raise NotImplementedError("Passing a file descriptor as directory is " "not supported on this platform") self._generator = self._walk( directory, None, matcher, follow_symlinks, intermediate_dirs ) else: directory_str = os.fspath(directory) # Best-effort ensure that target directory exists if it is accessed by path os.stat(directory_str) # … and possibly open it as a FD if this is supported by the platform # # Note: `os.fwalk` support for binary paths was only added in 3.7+. directory_str_or_fd: ty.Union[AnyStr, int] = directory_str if HAVE_FWALK and (not isinstance(directory_str, bytes) or HAVE_FWALK_BYTES): fd = os.open(directory_str, os.O_RDONLY | O_DIRECTORY) self._close_fd = directory_str_or_fd = fd self._generator = self._walk( directory_str_or_fd, directory_str, matcher, follow_symlinks, intermediate_dirs ) def _close_file_descriptor(self) -> None: if self._close_fd is not None: os.close(self._close_fd) self._close_fd = None def __iter__(self) -> 'walk[AnyStr]': return self def __next__(self) -> FSNodeEntry[AnyStr]: return next(self._generator) def __enter__(self) -> 'walk[AnyStr]': return self def __exit__(self, *a: ty.Any) -> None: self.close() def send(self, value: ty.Any) -> FSNodeEntry[AnyStr]: return self._generator.send(value) @ty.overload def throw(self, typ: ty.Type[BaseException], # noqa: E704 val: ty.Union[BaseException, object] = ..., tb: ty.Optional[types.TracebackType] = ...) -> FSNodeEntry[AnyStr]: ... @ty.overload def throw(self, typ: BaseException, val: None = ..., # noqa: E704 tb: ty.Optional[types.TracebackType] = ...) -> FSNodeEntry[AnyStr]: ... def throw(self, typ: ty.Union[ty.Type[BaseException], BaseException], val: ty.Union[BaseException, object] = None, tb: ty.Optional[types.TracebackType] = None) -> FSNodeEntry[AnyStr]: try: if isinstance(typ, type): bt = ty.cast(ty.Type[BaseException], typ) # type: ignore[redundant-cast] return self._generator.throw(bt, val, tb) else: assert val is None return self._generator.throw(typ, val, tb) except: self._close_file_descriptor() raise def close(self) -> None: try: self.throw(GeneratorExit) except GeneratorExit: pass @staticmethod def _join_dirs_and_files(dirnames: ty.List[AnyStr], filenames: ty.List[AnyStr]) \ -> ty.Iterator[ty.Tuple[AnyStr, bool]]: for dirname in dirnames: yield dirname, True for filename in filenames: yield filename, False @staticmethod def _walk_separator( matcher: Matcher[AnyStr], directory_str: ty.Optional[AnyStr] ) -> ty.Union[bytes, str]: """ Determine which separator to use. Because os.fsencode can return a byte array, we must allow returning a byte array, regardless of AnyType. """ if directory_str is not None: return utils.maybe_fsencode(os.path.sep, directory_str) elif matcher is not None and matcher.is_binary: return os.fsencode(os.path.sep) else: return os.path.sep @staticmethod def _walk_wide( dot: AnyStr, directory: ty.Union[AnyStr, int], follow_symlinks: bool ) -> ty.Generator[ ty.Tuple[AnyStr, ty.List[AnyStr], ty.List[AnyStr], ty.Optional[int]], ty.Any, None ]: """ Return a four-part tuple just like os.fwalk does, even if we won't use os.fwalk. The directory file descriptor will be None when os.fwalk is not used. """ if isinstance(directory, int): yield from os.fwalk(dot, dir_fd=directory, follow_symlinks=follow_symlinks) else: for dir_path, dir_names, file_names in os.walk(directory, followlinks=follow_symlinks): yield dir_path, dir_names, file_names, None def _walk( self, directory: ty.Union[AnyStr, int], directory_str: ty.Optional[AnyStr], matcher: Matcher[AnyStr], follow_symlinks: bool, intermediate_dirs: bool ) -> ty.Generator[FSNodeEntry[AnyStr], ty.Any, None]: separator = self._walk_separator(matcher=matcher, directory_str=directory_str) # TODO: Because os.fsencode can return a byte array, we need to refactor how we use 'sep' sep: AnyStr = separator # type: ignore[assignment] dot = utils.maybe_fsencode(".", sep) # Identify the leading portion of the `dirpath` returned by `os.walk` # that should be dropped if not isinstance(directory, int): while directory.endswith(sep): directory = directory[:-len(sep)] prefix = (directory if not isinstance(directory, int) else dot) + sep reported_directories: ty.Set[AnyStr] = set() # Always report the top-level directory even if nothing therein is matched reported_directories.add(utils.maybe_fsencode("", sep)) yield FSNodeEntry( type=FSNodeType.DIRECTORY, path=prefix[:-len(sep)], relpath=dot, name=dot, parentfd=None ) walk_iter = self._walk_wide(dot=dot, directory=directory, follow_symlinks=follow_symlinks) try: for dirpath, dirnames, filenames, dirfd in walk_iter: # Remove the directory prefix from the received path _, _, dirpath = dirpath.partition(prefix) # Keep track of reported intermediaries, so that we only check for # these at most once per directory base intermediates_reported = False for filename, is_dir in self._join_dirs_and_files(list(dirnames), filenames): filepath = os.path.join(dirpath, filename) # Check if matcher thinks we should descend into this directory if is_dir and not matcher.should_descend(filepath): dirnames.remove(filename) # Check if matcher thinks we should report this node if not matcher.should_report(filepath, is_dir=is_dir): continue # Ensure that all containing directories are reported # before reporting this node if not intermediates_reported and intermediate_dirs: parts = dirpath.split(sep) for end_offset in range(len(parts)): parent_dirpath = sep.join(parts[0:(end_offset + 1)]) if parent_dirpath not in reported_directories: reported_directories.add(parent_dirpath) yield FSNodeEntry( type=FSNodeType.DIRECTORY, path=(prefix + parent_dirpath), relpath=parent_dirpath, name=parts[end_offset], parentfd=None ) intermediates_reported = True # Report the target file or directory if is_dir: reported_directories.add(filepath) yield FSNodeEntry( type=FSNodeType.DIRECTORY, path=(prefix + filepath), relpath=filepath, name=filename, parentfd=dirfd ) else: yield FSNodeEntry( type=FSNodeType.FILE, path=(prefix + filepath), relpath=filepath, name=filename, parentfd=dirfd ) finally: # Make sure the file descriptors bound by `os.fwalk` are freed on error walk_iter.close() self._close_file_descriptor() if HAVE_FWALK: # pragma: no cover supports_fd: ty.FrozenSet[ty.Callable[..., ty.Any]] = frozenset({walk}) else: # pragma: no cover supports_fd = frozenset()
src/app/test/metrics_test.py
ExpressHermes/beer-garden
230
130253
# -*- coding: utf-8 -*- from datetime import datetime from time import sleep import pytest from mock import Mock import beer_garden.metrics as metrics @pytest.fixture def prometheus_mocks(monkeypatch): # TODO - Test http api latency # monkeypatch.setattr(metrics, "http_api_latency_total", Mock()) monkeypatch.setattr(metrics, "plugin_command_latency", Mock()) monkeypatch.setattr(metrics, "completed_request_counter", Mock()) monkeypatch.setattr(metrics, "request_counter_total", Mock()) monkeypatch.setattr(metrics, "queued_request_gauge", Mock()) monkeypatch.setattr(metrics, "in_progress_request_gauge", Mock()) class TestMetrics(object): @pytest.mark.parametrize("wait", [0, 0.1, 0.25]) def test_request_latency(self, wait): now = datetime.utcnow() sleep(wait) latency = metrics.request_latency(now) assert 0.01 > latency - wait @pytest.mark.parametrize( "status,queued,in_progress", [("CREATED", 1, 0), ("IN_PROGRESS", 0, 1), ("SUCCESS", 0, 0)], ) def test_initialize_counts( self, prometheus_mocks, monkeypatch, bg_request, status, queued, in_progress ): bg_request.status = status monkeypatch.setattr(metrics.db, "query", Mock(return_value=[bg_request])) metrics.initialize_counts() assert queued == metrics.queued_request_gauge.labels.return_value.inc.call_count assert ( in_progress == metrics.in_progress_request_gauge.labels.return_value.inc.call_count ) def test_request_created(self, prometheus_mocks, bg_request): metrics.request_created(bg_request) metrics.queued_request_gauge.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, ) assert metrics.queued_request_gauge.labels.return_value.inc.call_count == 1 metrics.request_counter_total.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, command=bg_request.command, ) assert metrics.request_counter_total.labels.return_value.inc.call_count == 1 def test_request_started(self, prometheus_mocks, bg_request): metrics.request_started(bg_request) metrics.queued_request_gauge.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, ) assert metrics.queued_request_gauge.labels.return_value.dec.call_count == 1 metrics.in_progress_request_gauge.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, ) assert metrics.in_progress_request_gauge.labels.return_value.inc.call_count == 1 def test_request_completed(self, prometheus_mocks, bg_request): metrics.request_completed(bg_request) metrics.in_progress_request_gauge.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, ) assert metrics.in_progress_request_gauge.labels.return_value.dec.call_count == 1 metrics.completed_request_counter.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, command=bg_request.command, status=bg_request.status, ) assert metrics.completed_request_counter.labels.return_value.inc.call_count == 1 metrics.plugin_command_latency.labels.assert_called_once_with( system=bg_request.system, system_version=bg_request.system_version, instance_name=bg_request.instance_name, command=bg_request.command, status=bg_request.status, ) assert ( metrics.plugin_command_latency.labels.return_value.observe.call_count == 1 )
topicnet/cooking_machine/config_parser.py
bt2901/TopicNet
123
130263
""" Parsing text file into Experiment instance using strictyaml (github.com/crdoconnor/strictyaml/) The aim here is to make config: * possible to use even for non-programmers * hard to misuse * easy debuggable Hence, the process of parsing config is a bit more complicated than it could be, but it produces more useful error messages. For example: File $YOUR_CONFIG.yaml, line 42 topic_names: 10 ^ this value should be a 'list' instead of 'int' YAMLValidationError: 'int' passed instead of 'list' instead of: File $SOME_FILE.py, line 666, in $SOME_FUNCTION for topic_name in topic_names: TypeError: 'int' object is not iterable To achieve this, strictyaml makes use of various validators which keep track of individual line numbers and which fragments are already checked and which aren't quite here yet. Our process consists of three stages: 1) we check the high-level structure using `BASE_SCHEMA`. The presence of each required key is ensured. After this stage we could be sure than we can create a valid model using specified parameters. 2) we make a second pass and revalidate 'regularizers' and 'stages' This step is performed semi-automatically: using `inspect`, we extract everything from `__init__` method signature. For example: def __init__(self, num_iters: int = 5) allows us to infer that num_iters parameter should be int, but it isn't strictly required. 3) we construct instances of classes required, convert types manually and implement some shortcuts. Ideally, this stage should be performed using revalidate() as well, but it's a work-in-progress currently. """ # noqa: W291 from inspect import signature, Parameter from typing import ( Callable, Type, ) from .cubes import ( CubeCreator, RegularizersModifierCube, GreedyStrategy, PerplexityStrategy, ) from .experiment import Experiment from .dataset import Dataset from .models import scores as tnscores from .models import TopicModel from .model_constructor import ( create_default_topics, init_simple_default_model, ) from .rel_toolbox_lite import ( count_vocab_size, handle_regularizer, ) import artm from strictyaml import Map, Str, Int, Seq, Float, Bool from strictyaml import Any, Optional, EmptyDict, EmptyNone, EmptyList from strictyaml import dirty_load SUPPORTED_CUBES = [CubeCreator, RegularizersModifierCube] SUPPORTED_STRATEGIES = [PerplexityStrategy, GreedyStrategy] TYPE_VALIDATORS = { 'int': Int(), 'bool': Bool(), 'str': Str(), 'float': Float() } def choose_key(param): """ Parameters ---------- param : inspect.Parameter Returns ------- str or strictyaml.Optional """ if param.default is not Parameter.empty: return Optional(param.name) return param.name def choose_validator(param): """ Parameters ---------- param : inspect.Parameter Returns ------- instance of strictyaml.Validator """ if param.annotation is int: return Int() if param.annotation is float: return Float() if param.annotation is bool: return Bool() if param.annotation is str: return Str() if param.name in ARTM_TYPES: return ARTM_TYPES[param.name] return Any() # TODO: maybe this is cool, but do we really need this? def build_schema_from_function(func: Callable) -> dict: from docstring_parser import parse as docstring_parse func_params = signature(func).parameters func_params_schema = dict() for elem in docstring_parse(func.__doc__).params: if elem.arg_name in func_params: key = choose_key(func_params[elem.arg_name]) func_params_schema[key] = TYPE_VALIDATORS[elem.type_name] return func_params_schema # TODO: use stackoverflow.com/questions/37929851/parse-numpydoc-docstring-and-access-components # for now just hardcode most common / important types ARTM_TYPES = { "tau": Float(), "topic_names": Str() | Seq(Str()) | EmptyNone(), # TODO: handle class_ids in model and in regularizers separately "class_ids": Str() | Seq(Str()) | EmptyNone(), "gamma": Float() | EmptyNone(), "seed": Int(), "num_document_passes": Int(), "num_processors": Int(), "cache_theta": Bool(), "reuse_theta": Bool(), "theta_name": Str() } _ELEMENT = Any() # TODO: maybe better _DICTIONARY_FILTER_SCHEMA = build_schema_from_function(artm.Dictionary.filter) # TODO: modalities, filter params - these all are dataset's options, not model's # maybe make separate YML block for dataset? BASE_SCHEMA = Map({ 'regularizers': Seq(_ELEMENT), Optional('scores'): Seq(_ELEMENT), 'stages': Seq(_ELEMENT), 'model': Map({ "dataset_path": Str(), Optional("dictionary_filter_parameters"): Map({ Optional("class_id"): Str(), Optional("min_df"): Float(), Optional("max_df"): Float(), Optional("min_df_rate"): Float(), Optional("max_df_rate"): Float(), Optional("min_tf"): Float(), Optional("max_tf"): Float(), Optional("max_dictionary_size"): Float(), Optional("recalculate_value"): Bool(), }), Optional("keep_in_memory"): Bool(), Optional("internals_folder_path"): Bool(), Optional("modalities_to_use"): Seq(Str()), Optional("modalities_weights"): Any(), "main_modality": Str(), }), 'topics': Map({ "background_topics": Seq(Str()) | Int() | EmptyList(), "specific_topics": Seq(Str()) | Int() | EmptyList(), }) }) KEY_DICTIONARY_FILTER_PARAMETERS = 'dictionary_filter_parameters' def build_schema_from_signature(class_of_object, use_optional=True): """ Parameters ---------- class_of_object : class Returns ------- dict each element is either str -> Validator or Optional(str) -> Validator """ choose_key_func = choose_key if use_optional else (lambda param: param.name) return {choose_key_func(param): choose_validator(param) for param in signature(class_of_object.__init__).parameters.values() if param.name != 'self'} def wrap_in_map(dictionary): could_be_empty = all(isinstance(key, Optional) for key in dictionary) if could_be_empty: return Map(dictionary) | EmptyDict() return Map(dictionary) def build_schema_for_scores(): """ Returns ------- strictyaml.Map schema used for validation and type-coercion """ schemas = {} for elem in artm.scores.__all__: if "Score" in elem: class_of_object = getattr(artm.scores, elem) # TODO: check if every key is Optional. If it is, then "| EmptyDict()" # otherwise, just Map() res = wrap_in_map(build_schema_from_signature(class_of_object)) specific_schema = Map({class_of_object.__name__: res}) schemas[class_of_object.__name__] = specific_schema for elem in tnscores.__all__: if "Score" in elem: class_of_object = getattr(tnscores, elem) res = build_schema_from_signature(class_of_object) # res["name"] = Str() # TODO: support custom names res = wrap_in_map(res) specific_schema = Map({class_of_object.__name__: res}) schemas[class_of_object.__name__] = specific_schema return schemas def build_schema_for_regs(): """ Returns ------- strictyaml.Map schema used for validation and type-coercion """ schemas = {} for elem in artm.regularizers.__all__: if "Regularizer" in elem: class_of_object = getattr(artm.regularizers, elem) res = build_schema_from_signature(class_of_object) if elem in ["SmoothSparseThetaRegularizer", "SmoothSparsePhiRegularizer", "DecorrelatorPhiRegularizer"]: res[Optional("relative", default=None)] = Bool() res = wrap_in_map(res) specific_schema = Map({class_of_object.__name__: res}) schemas[class_of_object.__name__] = specific_schema return schemas def is_key_in_schema(key, schema): if key in schema: return True return any( key_val.key == key for key_val in schema if isinstance(key_val, Optional) ) def build_schema_for_cubes(): """ Returns ------- dict each element is str -> strictyaml.Map where key is name of cube, value is a schema used for validation and type-coercion """ schemas = {} for class_of_object in SUPPORTED_CUBES: res = build_schema_from_signature(class_of_object) # "selection" isn't used in __init__, but we will need it later res["selection"] = Seq(Str()) # shortcut for strategy intialization if is_key_in_schema("strategy", res): signature_validation = {} for strategy_class in SUPPORTED_STRATEGIES: local_signature_validation = build_schema_from_signature(strategy_class) signature_validation.update(local_signature_validation) res[Optional("strategy_params")] = Map(signature_validation) # we will deal with "values" later, but we can check at least some simple things already if class_of_object.__name__ == "CubeCreator": element = Map({"name": Str(), "values": Seq(Any())}) res["parameters"] = Seq(element) if class_of_object.__name__ == "RegularizersModifierCube": element = Map({ Optional("name"): Str(), Optional("regularizer"): Any(), Optional("tau_grid"): Seq(Float()) }) res["regularizer_parameters"] = element | Seq(element) res = Map(res) specific_schema = Map({class_of_object.__name__: res}) schemas[class_of_object.__name__] = specific_schema return schemas def preprocess_parameters_for_cube_creator(elem_args): """ This function does two things: 1) convert class_ids from name: class_ids@text, values: [0, 1, 2, 3] to name: class_ids, values: {"@text": [0, 1, 2, 3]} 2) type conversion for "values" field. Parameters ---------- elem_args: strictyaml.YAML object (contains dict inside) Returns ------- new_elem_args: dict """ for param_portion in elem_args["parameters"]: name = str(param_portion["name"]) if name.startswith("class_ids"): validator = Float() | Seq(Float()) else: validator = Seq(ARTM_TYPES[name]) param_schema = Map({ "name": Str(), "values": validator }) param_portion.revalidate(param_schema) def handle_special_cases(elem_args, kwargs): """ In-place fixes kwargs, handling special cases and shortcuts (only strategy for now) Parameters ---------- elem_args: dict kwargs: dict """ # special case: shortcut for strategy if "strategy" in elem_args: strategy = None for strategy_class in SUPPORTED_STRATEGIES: if strategy_class.__name__ == elem_args["strategy"]: strat_schema = build_schema_from_signature(strategy_class, use_optional=False) strat_kwargs = {} for key, value in elem_args["strategy_params"].items(): key = str(key) value.revalidate(strat_schema[key]) strat_kwargs[key] = value.data strategy = strategy_class(**strat_kwargs) kwargs["strategy"] = strategy # or None if failed to identify it def build_score(elemtype, elem_args, is_artm_score): """ Parameters ---------- elemtype : str name of score elem_args: dict is_artm_score: bool Returns ------- instance of artm.scores.BaseScore or topicnet.cooking_machine.models.base_score """ module = artm.scores if is_artm_score else tnscores class_of_object = getattr(module, elemtype) kwargs = {name: value for name, value in elem_args.items()} return class_of_object(**kwargs) def build_regularizer(elemtype, elem_args, specific_topic_names, background_topic_names): """ Parameters ---------- elemtype : str name of regularizer elem_args: dict parsed: strictyaml.YAML object Returns ------- instance of artm.Regularizer """ class_of_object = getattr(artm.regularizers, elemtype) kwargs = {name: value for name, value in elem_args.items()} # special case: shortcut for topic_names if "topic_names" in kwargs: if kwargs["topic_names"] == "background_topics": kwargs["topic_names"] = background_topic_names if kwargs["topic_names"] == "specific_topics": kwargs["topic_names"] = specific_topic_names return class_of_object(**kwargs) def build_cube_settings(elemtype, elem_args): """ Parameters ---------- elemtype : str name of regularizer elem_args: strictyaml.YAML object (contains dict inside) Returns ------- list of dict """ if elemtype == "CubeCreator": preprocess_parameters_for_cube_creator(elem_args) kwargs = {name: value for name, value in elem_args.data.items() if name not in ['selection', 'strategy', 'strategy_params']} handle_special_cases(elem_args, kwargs) return {elemtype: kwargs, "selection": elem_args['selection'].data} def _add_parsed_scores(parsed, topic_model): """ """ for score in parsed.data.get('scores', []): for elemtype, elem_args in score.items(): is_artm_score = elemtype in artm.scores.__all__ score_object = build_score(elemtype, elem_args, is_artm_score) if is_artm_score: topic_model._model.scores.add(score_object, overwrite=True) else: topic_model.custom_scores[elemtype] = score_object def _add_parsed_regularizers( parsed, model, specific_topic_names, background_topic_names, data_stats ): """ """ regularizers = [] for stage in parsed.data['regularizers']: for elemtype, elem_args in stage.items(): should_be_relative = None if "relative" in elem_args: should_be_relative = elem_args["relative"] elem_args.pop("relative") regularizer_object = build_regularizer( elemtype, elem_args, specific_topic_names, background_topic_names ) handle_regularizer(should_be_relative, model, regularizer_object, data_stats) regularizers.append(model.regularizers[regularizer_object.name]) return regularizers def parse_modalities_data(parsed): has_modalities_to_use = is_key_in_schema("modalities_to_use", parsed["model"]) has_weights = is_key_in_schema("modalities_weights", parsed["model"]) main_modality = parsed["model"]["main_modality"] # exactly one should be specified if has_modalities_to_use == has_weights: raise ValueError("Either 'modalities_to_use' or 'modalities_weights' should be specified") if has_weights: modalities_to_use = list(parsed["model"]["modalities_weights"].data) if main_modality not in modalities_to_use: modalities_to_use.append(main_modality) local_schema = Map({ key: Float() for key in modalities_to_use }) parsed["model"]["modalities_weights"].revalidate(local_schema) modalities_weights = parsed["model"]["modalities_weights"].data return modalities_weights else: modalities_to_use = parsed.data["model"]["modalities_to_use"] return modalities_to_use def parse( yaml_string: str, force_separate_thread: bool = False, dataset_class: Type[Dataset] = Dataset ): """ Parameters ---------- yaml_string : str force_separate_thread : bool dataset_class : class Returns ------- cube_settings: list of dict regularizers: list topic_model: TopicModel dataset: Dataset """ parsed = dirty_load(yaml_string, BASE_SCHEMA, allow_flow_style=True) specific_topic_names, background_topic_names = create_default_topics( parsed.data["topics"]["specific_topics"], parsed.data["topics"]["background_topics"] ) revalidate_section(parsed, "stages") revalidate_section(parsed, "regularizers") if "scores" in parsed: revalidate_section(parsed, "scores") dataset = dataset_class( data_path=parsed.data["model"]["dataset_path"], keep_in_memory=parsed.data["model"].get("keep_in_memory", True), internals_folder_path=parsed.data["model"].get("internals_folder_path", None), ) filter_parameters = parsed.data["model"].get( KEY_DICTIONARY_FILTER_PARAMETERS, dict() ) if len(filter_parameters) > 0: filtered_dictionary = dataset.get_dictionary().filter(**filter_parameters) dataset._cached_dict = filtered_dictionary modalities_to_use = parse_modalities_data(parsed) data_stats = count_vocab_size(dataset.get_dictionary(), modalities_to_use) model = init_simple_default_model( dataset=dataset, modalities_to_use=modalities_to_use, main_modality=parsed.data["model"]["main_modality"], specific_topics=parsed.data["topics"]["specific_topics"], background_topics=parsed.data["topics"]["background_topics"], ) regularizers = _add_parsed_regularizers( parsed, model, specific_topic_names, background_topic_names, data_stats ) topic_model = TopicModel(model) _add_parsed_scores(parsed, topic_model) cube_settings = list() for stage in parsed['stages']: for elemtype, elem_args in stage.items(): settings = build_cube_settings(elemtype.data, elem_args) settings[elemtype]["separate_thread"] = force_separate_thread cube_settings.append(settings) return cube_settings, regularizers, topic_model, dataset def revalidate_section(parsed, section): """ Perofrms in-place type coercion and validation Parameters ---------- parsed : strictyaml.YAML object (half-parsed, half-validated chunk of config) section: str """ if section == "stages": schemas = build_schema_for_cubes() elif section == "regularizers": schemas = build_schema_for_regs() elif section == "scores": schemas = build_schema_for_scores() else: raise ValueError(f"Unknown section name '{section}'") for i, stage in enumerate(parsed[section]): assert len(stage) == 1 name = list(stage.data)[0] if name not in schemas: raise ValueError(f"Unsupported {section} value: {name} at line {stage.start_line}") local_schema = schemas[name] stage.revalidate(local_schema) def build_experiment_environment_from_yaml_config( yaml_string, experiment_id, save_path, force_separate_thread=False, ): """ Wraps up parameter extraction and class instances creation from yaml formatted string together with the method that builds experiment pipeline from given experiment parameters (model, cubes, regularizers, etc) Parameters ---------- yaml_string: str config that contains the whole experiment pipeline description with its parameters save_path: str path to the folder to save experiment logs and models experiment_id: str name of the experiment folder force_separate_thread: bool default = False experimental feature that packs model training into separate process which is killed upon training completion by default is not used Returns ------- tuple experiment, dataset instances of corresponding classes from topicnet """ settings, regs, model, dataset = parse(yaml_string, force_separate_thread) # TODO: handle dynamic addition of regularizers experiment = Experiment(experiment_id=experiment_id, save_path=save_path, topic_model=model) experiment.build(settings) return experiment, dataset
argoverse/utils/heuristic_ground_removal.py
gargrohin/argoverse-api
560
130270
<reponame>gargrohin/argoverse-api<filename>argoverse/utils/heuristic_ground_removal.py<gh_stars>100-1000 # <Copyright 2019, Argo AI, LLC. Released under the MIT license.> import math from typing import List import numpy as np LIDAR_RANGE = 250 GRID_DIST = 0.4 HEIGHT_VARIANCE_THRESHOLD = 0.001 HEIGHT_MEAN_THRESHOLD = -1 NUM_ANGLE_BINS = 2000 def filter_ground_pts_polar_grid_mean_var(lidar_pts: np.ndarray) -> np.ndarray: """ We divide the world into polar voxels. We aggregate the height statistics of all of the points that fall into each polar voxel. If the mean is below a threshold, we call it a ground voxel. If the z-axis variance is very low, we also call it a ground voxel. Var(X) = E[X^2] - E[X]^2 Args: lidar_pts: NumPy n-d array of shape (n,3) Returns: non_ground_lidar_pts: NumPy n-d array of shape (n,3) """ print("Total number of points (before filtering): ", lidar_pts.shape) non_ground_lidar_pts: List[List[List[np.ndarray]]] = [] xyz_mean = np.mean(lidar_pts, axis=0) # Zero-center the point cloud because we compute statistics around (0,0,0)-centered polar grid lidar_pts -= xyz_mean num_radial_bins = int(LIDAR_RANGE / GRID_DIST) angle_increment = 2 * math.pi / NUM_ANGLE_BINS ang_voxel_mean = np.zeros((NUM_ANGLE_BINS, num_radial_bins)) ang_voxel_variance = np.zeros((NUM_ANGLE_BINS, num_radial_bins)) num_elements_per_bin = np.zeros((NUM_ANGLE_BINS, num_radial_bins)) pts_per_bin: List[List[List[np.ndarray]]] = [[[] for _ in range(num_radial_bins)] for _ in range(NUM_ANGLE_BINS)] for i in range(lidar_pts.shape[0]): x = lidar_pts[i, 0] y = lidar_pts[i, 1] z = lidar_pts[i, 2] dist_away = math.sqrt(x ** 2 + y ** 2) angle_rad = np.arctan2(y, x) if angle_rad <= 0: angle_rad += 2 * math.pi radial_bin = int(math.floor(dist_away / GRID_DIST)) angle_bin = int(math.floor(angle_rad / angle_increment)) ang_voxel_mean[angle_bin, radial_bin] += z ang_voxel_variance[angle_bin, radial_bin] += z ** 2 num_elements_per_bin[angle_bin, radial_bin] += 1.0 pts_per_bin[angle_bin][radial_bin].append(lidar_pts[i, :]) for i in range(NUM_ANGLE_BINS): for j in range(num_radial_bins): if len(pts_per_bin[i][j]) > 0: ang_voxel_mean[i, j] /= num_elements_per_bin[i, j] ang_voxel_variance[i, j] = (ang_voxel_variance[i, j] / num_elements_per_bin[i, j]) - ang_voxel_mean[ i, j ] ** 2 if (ang_voxel_mean[i, j] > HEIGHT_MEAN_THRESHOLD) or ( ang_voxel_variance[i, j] > HEIGHT_VARIANCE_THRESHOLD ): non_ground_lidar_pts += pts_per_bin[i][j] non_ground_lidar_pts_np = np.array(non_ground_lidar_pts) print("Number of non-ground points: ", non_ground_lidar_pts_np.shape) non_ground_lidar_pts += xyz_mean return non_ground_lidar_pts
semantic_segmentation/configs/convnext/upernet_convnext_tiny_512_160k_ade20k_ss.py
ParikhKadam/ConvNeXt
3,453
130271
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[96, 192, 384, 768], num_classes=150, ), auxiliary_head=dict( in_channels=384, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 6}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
skfem/element/element_tri/element_tri_hermite.py
reverendbedford/scikit-fem
238
130305
<filename>skfem/element/element_tri/element_tri_hermite.py import numpy as np from ..element_global import ElementGlobal from ...refdom import RefTri class ElementTriHermite(ElementGlobal): """The Hermite element with 3 DOFs per vertex and one interior DOF.""" nodal_dofs = 3 interior_dofs = 1 maxdeg = 3 dofnames = ['u', 'u_x', 'u_y', 'u'] doflocs = np.array([[0., 0.], [0., 0.], [0., 0.], [1., 0.], [1., 0.], [1., 0.], [0., 1.], [0., 1.], [0., 1.], [1 / 3, 1 / 3]]) refdom = RefTri def gdof(self, F, w, i): if i < 9: j = i % 3 k = int(i / 3) if j == 0: return F[()](*w['v'][k]) elif j == 1: return F[(0,)](*w['v'][k]) elif j == 2: return F[(1,)](*w['v'][k]) elif i == 9: mx = (w['v'][0][0] + w['v'][1][0] + w['v'][2][0]) / 3 my = (w['v'][0][1] + w['v'][1][1] + w['v'][2][1]) / 3 return F[()](mx, my) self._index_error()
test/unit/transform/__init__.py
Wheelspawn/pudl
285
130314
<gh_stars>100-1000 """Unit tests for the pudl.transform subpackage."""
gaphor/core/modeling/tests/test_diagram.py
vanillajonathan/gaphor
867
130329
import gaphas import pytest from gaphor.core.modeling import Diagram, Presentation, StyleSheet class Example(gaphas.Element, Presentation): def __init__(self, diagram, id): super().__init__(connections=diagram.connections, diagram=diagram, id=id) def unlink(self): self.test_unlinked = True super().unlink() class ExampleLine(gaphas.Line, Presentation): def __init__(self, diagram, id): super().__init__(connections=diagram.connections, diagram=diagram, id=id) def unlink(self): self.test_unlinked = True super().unlink() @pytest.fixture def diagram(element_factory): return element_factory.create(Diagram) def test_diagram_can_be_used_as_gtkview_model(): diagram = Diagram("id", None) assert isinstance(diagram, gaphas.view.model.Model) def test_canvas_is_saved(): diagram = Diagram("id", None) saved_keys = [] diagram.save(lambda name, val: saved_keys.append(name)) assert "canvas" not in saved_keys def test_canvas_item_is_created(element_factory): diagram = element_factory.create(Diagram) example = diagram.create(Example) assert example in diagram.get_all_items() assert example.diagram is diagram def test_canvas_is_unlinked(element_factory): diagram = element_factory.create(Diagram) example = diagram.create(Example) diagram.unlink() assert example.test_unlinked def test_can_only_add_diagram_items(element_factory): diagram = element_factory.create(Diagram) with pytest.raises(TypeError): diagram.create(Diagram) def test_diagram_stylesheet(element_factory): diagram = element_factory.create(Diagram) styleSheet = element_factory.create(StyleSheet) assert diagram.styleSheet is styleSheet class ViewMock: def __init__(self): self.removed_items = set() def request_update(self, items, removed_items) -> None: self.removed_items.update(removed_items) def test_remove_presentation_triggers_view(element_factory): diagram = element_factory.create(Diagram) view = ViewMock() diagram.register_view(view) example = diagram.create(Example) example.unlink() assert example.diagram is None assert example not in diagram.ownedPresentation assert example in view.removed_items def test_order_presentations_lines_are_last(diagram): example_line = diagram.create(ExampleLine) example = diagram.create(Example) assert list(diagram.get_all_items()) == [example, example_line] def test_order_presentations_line_is_grouped(diagram): example_line = diagram.create(ExampleLine) example_1 = diagram.create(Example) example_2 = diagram.create(Example) example_line.parent = example_1 assert list(diagram.get_all_items()) == [example_1, example_2, example_line] def test_order_grouped_presentations(diagram): example_1 = diagram.create(Example) example_2 = diagram.create(Example) example_1.parent = example_2 assert list(diagram.get_all_items()) == [example_2, example_1]
sequence_folders.py
flamehaze1115/DPSNet
217
130349
<filename>sequence_folders.py import torch.utils.data as data import numpy as np from scipy.misc import imread from path import Path import random def load_as_float(path): return imread(path).astype(np.float32) class SequenceFolder(data.Dataset): """A sequence data loader where the files are arranged in this way: root/scene_1/0000000.jpg root/scene_1/0000001.jpg .. root/scene_1/cam.txt root/scene_2/0000000.jpg . transform functions must take in a list a images and a numpy array (usually intrinsics matrix) """ def __init__(self, root, seed=None, ttype='train.txt', sequence_length=2, transform=None, target_transform=None): np.random.seed(seed) random.seed(seed) self.root = Path(root) scene_list_path = self.root/ttype scenes = [self.root/folder[:-1] for folder in open(scene_list_path)] self.ttype = ttype self.scenes = sorted(scenes) self.transform = transform self.crawl_folders(sequence_length) def crawl_folders(self, sequence_length): sequence_set = [] demi_length = sequence_length//2 for scene in self.scenes: intrinsics = np.genfromtxt(scene/'cam.txt').astype(np.float32).reshape((3, 3)) poses = np.genfromtxt(scene/'poses.txt').astype(np.float32) imgs = sorted(scene.files('*.jpg')) if len(imgs) < sequence_length: continue for i in range(len(imgs)): if i < demi_length: shifts = list(range(0,sequence_length)) shifts.pop(i) elif i >= len(imgs)-demi_length: shifts = list(range(len(imgs)-sequence_length,len(imgs))) shifts.pop(i-len(imgs)) else: shifts = list(range(i-demi_length, i+(sequence_length+1)//2)) shifts.pop(demi_length) img = imgs[i] depth = img.dirname()/img.name[:-4] + '.npy' pose_tgt = np.concatenate((poses[i,:].reshape((3,4)), np.array([[0,0,0,1]])), axis=0) sample = {'intrinsics': intrinsics, 'tgt': img, 'tgt_depth': depth, 'ref_imgs': [], 'ref_poses': []} for j in shifts: sample['ref_imgs'].append(imgs[j]) pose_src = np.concatenate((poses[j,:].reshape((3,4)), np.array([[0,0,0,1]])), axis=0) pose_rel = pose_src @ np.linalg.inv(pose_tgt) pose = pose_rel[:3,:].reshape((1,3,4)).astype(np.float32) sample['ref_poses'].append(pose) sequence_set.append(sample) if self.ttype == 'train.txt': random.shuffle(sequence_set) self.samples = sequence_set def __getitem__(self, index): sample = self.samples[index] tgt_img = load_as_float(sample['tgt']) tgt_depth = np.load(sample['tgt_depth']) ref_imgs = [load_as_float(ref_img) for ref_img in sample['ref_imgs']] ref_poses = sample['ref_poses'] if self.transform is not None: imgs, tgt_depth, intrinsics = self.transform([tgt_img] + ref_imgs, tgt_depth, np.copy(sample['intrinsics'])) tgt_img = imgs[0] ref_imgs = imgs[1:] else: intrinsics = np.copy(sample['intrinsics']) return tgt_img, ref_imgs, ref_poses, intrinsics, np.linalg.inv(intrinsics), tgt_depth def __len__(self): return len(self.samples)
gunicorn/arbiter.py
Bloomstack/gunicorn
6,851
130378
<reponame>Bloomstack/gunicorn # -*- coding: utf-8 - # # This file is part of gunicorn released under the MIT license. # See the NOTICE for more information. import errno import os import random import select import signal import sys import time import traceback from gunicorn.errors import HaltServer, AppImportError from gunicorn.pidfile import Pidfile from gunicorn import sock, systemd, util from gunicorn import __version__, SERVER_SOFTWARE class Arbiter(object): """ Arbiter maintain the workers processes alive. It launches or kills them if needed. It also manages application reloading via SIGHUP/USR2. """ # A flag indicating if a worker failed to # to boot. If a worker process exist with # this error code, the arbiter will terminate. WORKER_BOOT_ERROR = 3 # A flag indicating if an application failed to be loaded APP_LOAD_ERROR = 4 START_CTX = {} LISTENERS = [] WORKERS = {} PIPE = [] # I love dynamic languages SIG_QUEUE = [] SIGNALS = [getattr(signal, "SIG%s" % x) for x in "HUP QUIT INT TERM TTIN TTOU USR1 USR2 WINCH".split()] SIG_NAMES = dict( (getattr(signal, name), name[3:].lower()) for name in dir(signal) if name[:3] == "SIG" and name[3] != "_" ) def __init__(self, app): os.environ["SERVER_SOFTWARE"] = SERVER_SOFTWARE self._num_workers = None self._last_logged_active_worker_count = None self.log = None self.setup(app) self.pidfile = None self.systemd = False self.worker_age = 0 self.reexec_pid = 0 self.master_pid = 0 self.master_name = "Master" cwd = util.getcwd() args = sys.argv[:] args.insert(0, sys.executable) # init start context self.START_CTX = { "args": args, "cwd": cwd, 0: sys.executable } def _get_num_workers(self): return self._num_workers def _set_num_workers(self, value): old_value = self._num_workers self._num_workers = value self.cfg.nworkers_changed(self, value, old_value) num_workers = property(_get_num_workers, _set_num_workers) def setup(self, app): self.app = app self.cfg = app.cfg if self.log is None: self.log = self.cfg.logger_class(app.cfg) # reopen files if 'GUNICORN_FD' in os.environ: self.log.reopen_files() self.worker_class = self.cfg.worker_class self.address = self.cfg.address self.num_workers = self.cfg.workers self.timeout = self.cfg.timeout self.proc_name = self.cfg.proc_name self.log.debug('Current configuration:\n{0}'.format( '\n'.join( ' {0}: {1}'.format(config, value.value) for config, value in sorted(self.cfg.settings.items(), key=lambda setting: setting[1])))) # set enviroment' variables if self.cfg.env: for k, v in self.cfg.env.items(): os.environ[k] = v if self.cfg.preload_app: self.app.wsgi() def start(self): """\ Initialize the arbiter. Start listening and set pidfile if needed. """ self.log.info("Starting gunicorn %s", __version__) if 'GUNICORN_PID' in os.environ: self.master_pid = int(os.environ.get('GUNICORN_PID')) self.proc_name = self.proc_name + ".2" self.master_name = "Master.2" self.pid = os.getpid() if self.cfg.pidfile is not None: pidname = self.cfg.pidfile if self.master_pid != 0: pidname += ".2" self.pidfile = Pidfile(pidname) self.pidfile.create(self.pid) self.cfg.on_starting(self) self.init_signals() if not self.LISTENERS: fds = None listen_fds = systemd.listen_fds() if listen_fds: self.systemd = True fds = range(systemd.SD_LISTEN_FDS_START, systemd.SD_LISTEN_FDS_START + listen_fds) elif self.master_pid: fds = [] for fd in os.environ.pop('GUNICORN_FD').split(','): fds.append(int(fd)) self.LISTENERS = sock.create_sockets(self.cfg, self.log, fds) listeners_str = ",".join([str(l) for l in self.LISTENERS]) self.log.debug("Arbiter booted") self.log.info("Listening at: %s (%s)", listeners_str, self.pid) self.log.info("Using worker: %s", self.cfg.worker_class_str) systemd.sd_notify("READY=1\nSTATUS=Gunicorn arbiter booted", self.log) # check worker class requirements if hasattr(self.worker_class, "check_config"): self.worker_class.check_config(self.cfg, self.log) self.cfg.when_ready(self) def init_signals(self): """\ Initialize master signal handling. Most of the signals are queued. Child signals only wake up the master. """ # close old PIPE for p in self.PIPE: os.close(p) # initialize the pipe self.PIPE = pair = os.pipe() for p in pair: util.set_non_blocking(p) util.close_on_exec(p) self.log.close_on_exec() # initialize all signals for s in self.SIGNALS: signal.signal(s, self.signal) signal.signal(signal.SIGCHLD, self.handle_chld) def signal(self, sig, frame): if len(self.SIG_QUEUE) < 5: self.SIG_QUEUE.append(sig) self.wakeup() def run(self): "Main master loop." self.start() util._setproctitle("master [%s]" % self.proc_name) try: self.manage_workers() while True: self.maybe_promote_master() sig = self.SIG_QUEUE.pop(0) if self.SIG_QUEUE else None if sig is None: self.sleep() self.murder_workers() self.manage_workers() continue if sig not in self.SIG_NAMES: self.log.info("Ignoring unknown signal: %s", sig) continue signame = self.SIG_NAMES.get(sig) handler = getattr(self, "handle_%s" % signame, None) if not handler: self.log.error("Unhandled signal: %s", signame) continue self.log.info("Handling signal: %s", signame) handler() self.wakeup() except (StopIteration, KeyboardInterrupt): self.halt() except HaltServer as inst: self.halt(reason=inst.reason, exit_status=inst.exit_status) except SystemExit: raise except Exception: self.log.info("Unhandled exception in main loop", exc_info=True) self.stop(False) if self.pidfile is not None: self.pidfile.unlink() sys.exit(-1) def handle_chld(self, sig, frame): "SIGCHLD handling" self.reap_workers() self.wakeup() def handle_hup(self): """\ HUP handling. - Reload configuration - Start the new worker processes with a new configuration - Gracefully shutdown the old worker processes """ self.log.info("Hang up: %s", self.master_name) self.reload() def handle_term(self): "SIGTERM handling" raise StopIteration def handle_int(self): "SIGINT handling" self.stop(False) raise StopIteration def handle_quit(self): "SIGQUIT handling" self.stop(False) raise StopIteration def handle_ttin(self): """\ SIGTTIN handling. Increases the number of workers by one. """ self.num_workers += 1 self.manage_workers() def handle_ttou(self): """\ SIGTTOU handling. Decreases the number of workers by one. """ if self.num_workers <= 1: return self.num_workers -= 1 self.manage_workers() def handle_usr1(self): """\ SIGUSR1 handling. Kill all workers by sending them a SIGUSR1 """ self.log.reopen_files() self.kill_workers(signal.SIGUSR1) def handle_usr2(self): """\ SIGUSR2 handling. Creates a new arbiter/worker set as a fork of the current arbiter without affecting old workers. Use this to do live deployment with the ability to backout a change. """ self.reexec() def handle_winch(self): """SIGWINCH handling""" if self.cfg.daemon: self.log.info("graceful stop of workers") self.num_workers = 0 self.kill_workers(signal.SIGTERM) else: self.log.debug("SIGWINCH ignored. Not daemonized") def maybe_promote_master(self): if self.master_pid == 0: return if self.master_pid != os.getppid(): self.log.info("Master has been promoted.") # reset master infos self.master_name = "Master" self.master_pid = 0 self.proc_name = self.cfg.proc_name del os.environ['GUNICORN_PID'] # rename the pidfile if self.pidfile is not None: self.pidfile.rename(self.cfg.pidfile) # reset proctitle util._setproctitle("master [%s]" % self.proc_name) def wakeup(self): """\ Wake up the arbiter by writing to the PIPE """ try: os.write(self.PIPE[1], b'.') except IOError as e: if e.errno not in [errno.EAGAIN, errno.EINTR]: raise def halt(self, reason=None, exit_status=0): """ halt arbiter """ self.stop() self.log.info("Shutting down: %s", self.master_name) if reason is not None: self.log.info("Reason: %s", reason) if self.pidfile is not None: self.pidfile.unlink() self.cfg.on_exit(self) sys.exit(exit_status) def sleep(self): """\ Sleep until PIPE is readable or we timeout. A readable PIPE means a signal occurred. """ try: ready = select.select([self.PIPE[0]], [], [], 1.0) if not ready[0]: return while os.read(self.PIPE[0], 1): pass except (select.error, OSError) as e: # TODO: select.error is a subclass of OSError since Python 3.3. error_number = getattr(e, 'errno', e.args[0]) if error_number not in [errno.EAGAIN, errno.EINTR]: raise except KeyboardInterrupt: sys.exit() def stop(self, graceful=True): """\ Stop workers :attr graceful: boolean, If True (the default) workers will be killed gracefully (ie. trying to wait for the current connection) """ unlink = ( self.reexec_pid == self.master_pid == 0 and not self.systemd and not self.cfg.reuse_port ) sock.close_sockets(self.LISTENERS, unlink) self.LISTENERS = [] sig = signal.SIGTERM if not graceful: sig = signal.SIGQUIT limit = time.time() + self.cfg.graceful_timeout # instruct the workers to exit self.kill_workers(sig) # wait until the graceful timeout while self.WORKERS and time.time() < limit: time.sleep(0.1) self.kill_workers(signal.SIGKILL) def reexec(self): """\ Relaunch the master and workers. """ if self.reexec_pid != 0: self.log.warning("USR2 signal ignored. Child exists.") return if self.master_pid != 0: self.log.warning("USR2 signal ignored. Parent exists.") return master_pid = os.getpid() self.reexec_pid = os.fork() if self.reexec_pid != 0: return self.cfg.pre_exec(self) environ = self.cfg.env_orig.copy() environ['GUNICORN_PID'] = str(master_pid) if self.systemd: environ['LISTEN_PID'] = str(os.getpid()) environ['LISTEN_FDS'] = str(len(self.LISTENERS)) else: environ['GUNICORN_FD'] = ','.join( str(l.fileno()) for l in self.LISTENERS) os.chdir(self.START_CTX['cwd']) # exec the process using the original environment os.execvpe(self.START_CTX[0], self.START_CTX['args'], environ) def reload(self): old_address = self.cfg.address # reset old environment for k in self.cfg.env: if k in self.cfg.env_orig: # reset the key to the value it had before # we launched gunicorn os.environ[k] = self.cfg.env_orig[k] else: # delete the value set by gunicorn try: del os.environ[k] except KeyError: pass # reload conf self.app.reload() self.setup(self.app) # reopen log files self.log.reopen_files() # do we need to change listener ? if old_address != self.cfg.address: # close all listeners for l in self.LISTENERS: l.close() # init new listeners self.LISTENERS = sock.create_sockets(self.cfg, self.log) listeners_str = ",".join([str(l) for l in self.LISTENERS]) self.log.info("Listening at: %s", listeners_str) # do some actions on reload self.cfg.on_reload(self) # unlink pidfile if self.pidfile is not None: self.pidfile.unlink() # create new pidfile if self.cfg.pidfile is not None: self.pidfile = Pidfile(self.cfg.pidfile) self.pidfile.create(self.pid) # set new proc_name util._setproctitle("master [%s]" % self.proc_name) # spawn new workers for _ in range(self.cfg.workers): self.spawn_worker() # manage workers self.manage_workers() def murder_workers(self): """\ Kill unused/idle workers """ if not self.timeout: return workers = list(self.WORKERS.items()) for (pid, worker) in workers: try: if time.time() - worker.tmp.last_update() <= self.timeout: continue except (OSError, ValueError): continue if not worker.aborted: self.log.critical("WORKER TIMEOUT (pid:%s)", pid) worker.aborted = True self.kill_worker(pid, signal.SIGABRT) else: self.kill_worker(pid, signal.SIGKILL) def reap_workers(self): """\ Reap workers to avoid zombie processes """ try: while True: wpid, status = os.waitpid(-1, os.WNOHANG) if not wpid: break if self.reexec_pid == wpid: self.reexec_pid = 0 else: # A worker was terminated. If the termination reason was # that it could not boot, we'll shut it down to avoid # infinite start/stop cycles. exitcode = status >> 8 if exitcode == self.WORKER_BOOT_ERROR: reason = "Worker failed to boot." raise HaltServer(reason, self.WORKER_BOOT_ERROR) if exitcode == self.APP_LOAD_ERROR: reason = "App failed to load." raise HaltServer(reason, self.APP_LOAD_ERROR) worker = self.WORKERS.pop(wpid, None) if not worker: continue worker.tmp.close() self.cfg.child_exit(self, worker) except OSError as e: if e.errno != errno.ECHILD: raise def manage_workers(self): """\ Maintain the number of workers by spawning or killing as required. """ if len(self.WORKERS) < self.num_workers: self.spawn_workers() workers = self.WORKERS.items() workers = sorted(workers, key=lambda w: w[1].age) while len(workers) > self.num_workers: (pid, _) = workers.pop(0) self.kill_worker(pid, signal.SIGTERM) active_worker_count = len(workers) if self._last_logged_active_worker_count != active_worker_count: self._last_logged_active_worker_count = active_worker_count self.log.debug("{0} workers".format(active_worker_count), extra={"metric": "gunicorn.workers", "value": active_worker_count, "mtype": "gauge"}) def spawn_worker(self): self.worker_age += 1 worker = self.worker_class(self.worker_age, self.pid, self.LISTENERS, self.app, self.timeout / 2.0, self.cfg, self.log) self.cfg.pre_fork(self, worker) pid = os.fork() if pid != 0: worker.pid = pid self.WORKERS[pid] = worker return pid # Do not inherit the temporary files of other workers for sibling in self.WORKERS.values(): sibling.tmp.close() # Process Child worker.pid = os.getpid() try: util._setproctitle("worker [%s]" % self.proc_name) self.log.info("Booting worker with pid: %s", worker.pid) self.cfg.post_fork(self, worker) worker.init_process() sys.exit(0) except SystemExit: raise except AppImportError as e: self.log.debug("Exception while loading the application", exc_info=True) print("%s" % e, file=sys.stderr) sys.stderr.flush() sys.exit(self.APP_LOAD_ERROR) except Exception: self.log.exception("Exception in worker process") if not worker.booted: sys.exit(self.WORKER_BOOT_ERROR) sys.exit(-1) finally: self.log.info("Worker exiting (pid: %s)", worker.pid) try: worker.tmp.close() self.cfg.worker_exit(self, worker) except Exception: self.log.warning("Exception during worker exit:\n%s", traceback.format_exc()) def spawn_workers(self): """\ Spawn new workers as needed. This is where a worker process leaves the main loop of the master process. """ for _ in range(self.num_workers - len(self.WORKERS)): self.spawn_worker() time.sleep(0.1 * random.random()) def kill_workers(self, sig): """\ Kill all workers with the signal `sig` :attr sig: `signal.SIG*` value """ worker_pids = list(self.WORKERS.keys()) for pid in worker_pids: self.kill_worker(pid, sig) def kill_worker(self, pid, sig): """\ Kill a worker :attr pid: int, worker pid :attr sig: `signal.SIG*` value """ try: os.kill(pid, sig) except OSError as e: if e.errno == errno.ESRCH: try: worker = self.WORKERS.pop(pid) worker.tmp.close() self.cfg.worker_exit(self, worker) return except (KeyError, OSError): return raise
tests/conftest.py
hugovk/tldextract
1,200
130405
<filename>tests/conftest.py<gh_stars>1000+ """py.test standard config file.""" import logging import pytest import tldextract.cache @pytest.fixture(autouse=True) def reset_log_level(): """Automatically reset log level verbosity between tests. Generally want test output the Unix way: silence is golden.""" tldextract.cache._DID_LOG_UNABLE_TO_CACHE = ( # pylint: disable=protected-access False ) logging.getLogger().setLevel(logging.WARN)
tests/test_timekline.py
rayshifu/easyquotation
3,630
130407
# coding:utf8 import unittest from unittest import mock import easyquotation class TestTimeklineQuotation(unittest.TestCase): MOCK_RESPONSE_DATA = [ ( "000001", 'min_data="\\n\\\ndate:180413\\n\\\n0930 11.64 29727\\n\\\n0931 11.65 52410\\n\\\n";', ) ] def setUp(self): self._obj = easyquotation.use("timekline") @mock.patch( "easyquotation.timekline.basequotation.BaseQuotation._fetch_stock_data" ) def test_fetch_stock_data(self, mock_super_fetch): test_cases = [ (["000001"], ["test_data"], [("000001", "test_data")]), ( ["000001", "000002"], ["test_data", None], [("000001", "test_data")], ), ([], [], []), ] for stock_list, resp_data, expected in test_cases: mock_super_fetch.return_value = resp_data res = self._obj._fetch_stock_data(stock_list) self.assertListEqual(res, expected) def test_format_response_data(self): excepted = { "000001": { "date": "20180413", "time_data": [ ["0930", "11.64", "29727"], ["0931", "11.65", "52410"], ], } } result = self._obj.format_response_data(self.MOCK_RESPONSE_DATA) self.assertDictEqual(result, excepted) if __name__ == "__main__": unittest.main()
recipes/Python/576556_Generating_random_numbers_arbitrary/recipe-576556.py
tdiprima/code
2,023
130418
import pylab import numpy class GeneralRandom: """This class enables us to generate random numbers with an arbitrary distribution.""" def __init__(self, x = pylab.arange(-1.0, 1.0, .01), p = None, Nrl = 1000): """Initialize the lookup table (with default values if necessary) Inputs: x = random number values p = probability density profile at that point Nrl = number of reverse look up values between 0 and 1""" if p == None: p = pylab.exp(-10*x**2.0) self.set_pdf(x, p, Nrl) def set_pdf(self, x, p, Nrl = 1000): """Generate the lookup tables. x is the value of the random variate pdf is its probability density cdf is the cumulative pdf inversecdf is the inverse look up table """ self.x = x self.pdf = p/p.sum() #normalize it self.cdf = self.pdf.cumsum() self.inversecdfbins = Nrl self.Nrl = Nrl y = pylab.arange(Nrl)/float(Nrl) delta = 1.0/Nrl self.inversecdf = pylab.zeros(Nrl) self.inversecdf[0] = self.x[0] cdf_idx = 0 for n in xrange(1,self.inversecdfbins): while self.cdf[cdf_idx] < y[n] and cdf_idx < Nrl: cdf_idx += 1 self.inversecdf[n] = self.x[cdf_idx-1] + (self.x[cdf_idx] - self.x[cdf_idx-1]) * (y[n] - self.cdf[cdf_idx-1])/(self.cdf[cdf_idx] - self.cdf[cdf_idx-1]) if cdf_idx >= Nrl: break self.delta_inversecdf = pylab.concatenate((pylab.diff(self.inversecdf), [0])) def random(self, N = 1000): """Give us N random numbers with the requested distribution""" idx_f = numpy.random.uniform(size = N, high = self.Nrl-1) idx = pylab.array([idx_f],'i') y = self.inversecdf[idx] + (idx_f - idx)*self.delta_inversecdf[idx] return y def plot_pdf(self): pylab.plot(self.x, self.pdf) def self_test(self, N = 1000): pylab.figure() #The cdf pylab.subplot(2,2,1) pylab.plot(self.x, self.cdf) #The inverse cdf pylab.subplot(2,2,2) y = pylab.arange(self.Nrl)/float(self.Nrl) pylab.plot(y, self.inversecdf) #The actual generated numbers pylab.subplot(2,2,3) y = self.random(N) p1, edges = pylab.histogram(y, bins = 50, range = (self.x.min(), self.x.max()), normed = True, new = True) x1 = 0.5*(edges[0:-1] + edges[1:]) pylab.plot(x1, p1/p1.max()) pylab.plot(self.x, self.pdf/self.pdf.max())
emukit/benchmarking/loop_benchmarking/benchmark_result.py
ndalchau/emukit
272
130453
from typing import List import numpy as np class BenchmarkResult: def __init__(self, loop_names: List[str], n_repeats: int, metric_names: List[str]): """ :param loop_names: List of loop names :param n_repeats: Number of random restarts in benchmarking :param metric_names: List of metric names """ self.loop_names = loop_names self.n_repeats = n_repeats self.metric_names = metric_names self._results = dict() for loop_name in loop_names: self._results[loop_name] = dict() for metric_name in metric_names: self._results[loop_name][metric_name] = [] for i in range(n_repeats): self._results[loop_name][metric_name].append([]) def add_results(self, loop_name: str, i_repeat: int, metric_name: str, metric_values: np.ndarray) -> None: """ Add results for a specific loop, metric and repeat combination :param loop_name: Name of loop :param i_repeat: Index of repeat :param metric_name: Name of metric :param metric_values: Metric values to add """ self._results[loop_name][metric_name][i_repeat] = metric_values.flatten() def extract_metric_as_array(self, loop_name: str, metric_name: str) -> np.ndarray: """ Returns results over all repeats and iterations for a specific metric and loop name pair :param loop_name: Name of loop to return results for :param metric_name: Name of metric to extract :return: 2-d numpy array of shape (n_repeats x n_iterations) """ return np.array(self._results[loop_name][metric_name])
tensorflow/python/kernel_tests/batch_dataset_op_test.py
ryorda/tensorflow-viennacl
522
130515
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import string_ops from tensorflow.python.platform import test from tensorflow.python.util import compat class BatchDatasetTest(test.TestCase): def testBatchDataset(self): """Test an dataset that maps a TF function across its input elements.""" # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(count) -> BatchDataset(batch_size). components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count = array_ops.placeholder(dtypes.int64, shape=[]) batch_size = array_ops.placeholder(dtypes.int64, shape=[]) def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) iterator = (dataset_ops.Dataset.from_tensor_slices(components).map(_map_fn) .repeat(count).batch(batch_size).make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([[None] + list(c.shape[1:]) for c in components], [t.shape.as_list() for t in get_next]) with self.test_session() as sess: # Batch of a finite input, where the batch_size divides the # total number of elements. sess.run(init_op, feed_dict={count: 28, batch_size: 14}) num_batches = (28 * 7) // 14 for i in range(num_batches): result = sess.run(get_next) for component, result_component in zip(components, result): for j in range(14): self.assertAllEqual(component[(i*14 + j) % 7]**2, result_component[j]) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Batch of a finite input, where the batch_size does not # divide the total number of elements. sess.run(init_op, feed_dict={count: 14, batch_size: 8}) # We expect (num_batches - 1) full-sized batches. num_batches = int(math.ceil((14 * 7) / 8)) for i in range(num_batches - 1): result = sess.run(get_next) for component, result_component in zip(components, result): for j in range(8): self.assertAllEqual(component[(i*8 + j) % 7]**2, result_component[j]) result = sess.run(get_next) for component, result_component in zip(components, result): for j in range((14 * 7) % 8): self.assertAllEqual(component[((num_batches - 1)*8 + j) % 7]**2, result_component[j]) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Batch of an empty input should fail straight away. sess.run(init_op, feed_dict={count: 0, batch_size: 8}) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Empty batch should be an initialization time error. with self.assertRaises(errors.InvalidArgumentError): sess.run(init_op, feed_dict={count: 14, batch_size: 0}) def testPaddedBatchDataset(self): seq_lens = array_ops.placeholder(dtypes.int32, shape=[None]) padded_shape = array_ops.placeholder(dtypes.int64, shape=[1]) iterator = (dataset_ops.Dataset.from_tensor_slices(seq_lens) .map(lambda x: array_ops.fill([x], x)).padded_batch( 4, padded_shapes=padded_shape).make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: # Test with random sequence lengths, and max padding. random_seq_lens = np.random.randint(20, size=(32,)).astype(np.int32) sess.run(init_op, feed_dict={padded_shape: [-1], seq_lens: random_seq_lens}) for i in range(8): result = sess.run(get_next) padded_len = np.max(result) self.assertEqual((4, padded_len), result.shape) for j in range(4): seq_len = random_seq_lens[(i*4)+j] self.assertAllEqual(result[j, :seq_len], [seq_len] * seq_len) self.assertAllEqual(result[j, seq_len:], [0] * (padded_len - seq_len)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test with random sequence lengths, and constant padding. sess.run(init_op, feed_dict={padded_shape: [25], seq_lens: random_seq_lens}) for i in range(8): result = sess.run(get_next) self.assertEqual((4, 25), result.shape) for j in range(4): seq_len = random_seq_lens[(i*4)+j] self.assertAllEqual(result[j, :seq_len], [seq_len] * seq_len) self.assertAllEqual(result[j, seq_len:], [0] * (25 - seq_len)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test correct handling of empty tensors. sess.run(init_op, feed_dict={padded_shape: [-1], seq_lens: [0, 0, 0, 0]}) result = sess.run(get_next) self.assertAllEqual([[], [], [], []], result) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test error handling with constant sequence lengths, and # too-short padding. sess.run(init_op, feed_dict={padded_shape: [5], seq_lens: [6, 5, 5, 5]}) with self.assertRaises(errors.DataLossError): result = sess.run(get_next) def testPaddedBatchDatasetNonDefaultPadding(self): seq_lens = array_ops.placeholder(dtypes.int32, shape=[None]) padded_shape = array_ops.placeholder(dtypes.int64, shape=[1]) def fill_tuple(x): filled = array_ops.fill([x], x) return (filled, string_ops.as_string(filled)) iterator = (dataset_ops.Dataset.from_tensor_slices(seq_lens).map(fill_tuple) .padded_batch( 4, padded_shapes=(padded_shape, padded_shape), padding_values=(-1, "<end>")).make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: # Test with random sequence lengths, and max padding. random_seq_lens = np.random.randint(20, size=(32,)).astype(np.int32) sess.run(init_op, feed_dict={padded_shape: [-1], seq_lens: random_seq_lens}) for i in range(8): result = sess.run(get_next) padded_len = np.max(result[0]) self.assertEqual((4, padded_len), result[0].shape) self.assertEqual((4, padded_len), result[1].shape) for j in range(4): seq_len = random_seq_lens[(i*4)+j] self.assertAllEqual(result[0][j, :seq_len], [seq_len] * seq_len) self.assertAllEqual(result[0][j, seq_len:], [-1] * (padded_len - seq_len)) self.assertAllEqual(result[1][j, :seq_len], [compat.as_bytes(str(seq_len))] * seq_len) self.assertAllEqual(result[1][j, seq_len:], [b"<end>"] * (padded_len - seq_len)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testPaddedBatchDatasetShapeSpecifications(self): int_placeholder = array_ops.placeholder(dtypes.int32) float_placeholder = array_ops.placeholder(dtypes.float32) string_placeholder = array_ops.placeholder(dtypes.string) input_dataset = dataset_ops.Dataset.from_tensors( (int_placeholder, float_placeholder, string_placeholder)) # Test different ways of specifying the `padded_shapes` argument. dynamic_padding_from_tensor_shapes = input_dataset.padded_batch( 32, padded_shapes=(tensor_shape.TensorShape([None]), tensor_shape.TensorShape([None, None]), tensor_shape.TensorShape([37]))) dynamic_padding_from_lists = input_dataset.padded_batch( 32, padded_shapes=([None], [None, None], [37])) dynamic_padding_from_lists_with_minus_one = input_dataset.padded_batch( 32, padded_shapes=([-1], [-1, -1], [37])) dynamic_padding_from_tensors = input_dataset.padded_batch( 32, padded_shapes=(constant_op.constant([-1], dtype=dtypes.int64), constant_op.constant([-1, -1], dtype=dtypes.int64), constant_op.constant([37], dtype=dtypes.int64))) for dataset in [dynamic_padding_from_tensor_shapes, dynamic_padding_from_lists, dynamic_padding_from_lists_with_minus_one, dynamic_padding_from_tensors]: self.assertEqual([None, None], dataset.output_shapes[0].as_list()) self.assertEqual([None, None, None], dataset.output_shapes[1].as_list()) self.assertEqual([None, 37], dataset.output_shapes[2].as_list()) if __name__ == "__main__": test.main()
venv/Lib/site-packages/nipype/utils/nipype_cmd.py
richung99/digitizePlots
585
130516
# -*- coding: utf-8 -*- import os import argparse import inspect import sys from ..interfaces.base import Interface, InputMultiPath, traits from ..interfaces.base.support import get_trait_desc from .misc import str2bool def listClasses(module=None): if module: __import__(module) pkg = sys.modules[module] print("Available Interfaces:") for k, v in sorted(list(pkg.__dict__.items())): if inspect.isclass(v) and issubclass(v, Interface): print("\t%s" % k) def add_options(parser=None, module=None, function=None): interface = None if parser and module and function: __import__(module) interface = getattr(sys.modules[module], function)() inputs = interface.input_spec() for name, spec in sorted(interface.inputs.traits(transient=None).items()): desc = "\n".join(get_trait_desc(inputs, name, spec))[len(name) + 2 :] args = {} if spec.is_trait_type(traits.Bool): args["action"] = "store_true" if hasattr(spec, "mandatory") and spec.mandatory: if spec.is_trait_type(InputMultiPath): args["nargs"] = "+" parser.add_argument(name, help=desc, **args) else: if spec.is_trait_type(InputMultiPath): args["nargs"] = "*" parser.add_argument("--%s" % name, dest=name, help=desc, **args) return parser, interface def run_instance(interface, options): print("setting function inputs") for input_name, _ in list(interface.inputs.items()): if getattr(options, input_name) is not None: value = getattr(options, input_name) try: setattr(interface.inputs, input_name, value) except ValueError as e: print("Error when setting the value of %s: '%s'" % (input_name, str(e))) print(interface.inputs) res = interface.run() print(res.outputs) def main(argv): if len(argv) == 2 and not argv[1].startswith("-"): listClasses(argv[1]) sys.exit(0) parser = argparse.ArgumentParser( description="Nipype interface runner", prog=argv[0] ) parser.add_argument("module", type=str, help="Module name") parser.add_argument("interface", type=str, help="Interface name") parsed = parser.parse_args(args=argv[1:3]) _, prog = os.path.split(argv[0]) interface_parser = argparse.ArgumentParser( description="Run %s" % parsed.interface, prog=" ".join([prog] + argv[1:3]) ) interface_parser, interface = add_options( interface_parser, parsed.module, parsed.interface ) args = interface_parser.parse_args(args=argv[3:]) run_instance(interface, args)
tests/models/data/horovod/__init__.py
neptune-ml/pytorch-lightning
15,666
130517
<filename>tests/models/data/horovod/__init__.py # this is needed only for mypy==0.800 as it undestands only packages
tests/test_redundant.py
pooya/disco
786
130531
from disco.core import result_iterator from disco.error import DataError from disco.test import TestCase, TestJob, FailedReply class RedundantJob(TestJob): @staticmethod def map(e, params): yield int(e), '' @staticmethod def reduce(iter, params): yield sum(k for k, v in iter), '' class RedundantTestCase(TestCase): def serve(self, path): if 'fail' in path: raise FailedReply() return '{0}\n'.format(int(path) * 10) def runTest(self): input = ['1', ['2_fail', '2_still_fail', '200'], '3', ['4_fail', '400']] self.job = RedundantJob().run(input=self.test_server.urls(input)) self.assertResults(self.job, [(6040, '')]) class RedundantOutputTestCase(TestCase): # This is a tricky test case now that comm.py tries really # hard to access the url, which in this case doesn't exist # (http://nonode). The test could take almost 10 minutes. # We should have a way to lower the number of retries # globally. """ def test_unavailable(self): from disco.schemes import scheme_raw results = list(result_iterator([['http://nonode', 'raw://hello']], reader=scheme_raw.input_stream)) self.assertEquals(results, ['hello']) """ def test_corrupt(self): def corrupt_reader(fd, size, url, params): yield 'hello' if 'corrupt' in url: raise DataError("Corrupt!", url) yield 'there' self.assertAllEqual(result_iterator([['raw://corrupt'] * 9 + ['raw://decent']], reader=corrupt_reader), ['hello', 'there'])
datasets/csqa_new/extract_submission.py
gogowhy/ENet_framework
244
130535
<reponame>gogowhy/ENet_framework import json with open("test_rand_split.jsonl", 'r') as fw: for line in open("test_rand_split.jsonl", 'r').readlines(): data = json.loads(line.strip()) print(data["id"]+','+data["answerKey"])
superset/reports/logs/api.py
razzius/superset
18,621
130550
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import Any, Dict, Optional from flask import Response from flask_appbuilder.api import expose, permission_name, protect, rison, safe from flask_appbuilder.api.schemas import get_item_schema, get_list_schema from flask_appbuilder.hooks import before_request from flask_appbuilder.models.sqla.interface import SQLAInterface from superset import is_feature_enabled from superset.constants import MODEL_API_RW_METHOD_PERMISSION_MAP, RouteMethod from superset.models.reports import ReportExecutionLog from superset.reports.logs.schemas import openapi_spec_methods_override from superset.views.base_api import BaseSupersetModelRestApi logger = logging.getLogger(__name__) class ReportExecutionLogRestApi(BaseSupersetModelRestApi): datamodel = SQLAInterface(ReportExecutionLog) @before_request def ensure_alert_reports_enabled(self) -> Optional[Response]: if not is_feature_enabled("ALERT_REPORTS"): return self.response_404() return None include_route_methods = {RouteMethod.GET, RouteMethod.GET_LIST} method_permission_name = MODEL_API_RW_METHOD_PERMISSION_MAP class_permission_name = "ReportSchedule" resource_name = "report" allow_browser_login = True show_columns = [ "id", "scheduled_dttm", "end_dttm", "start_dttm", "value", "value_row_json", "state", "error_message", "uuid", ] list_columns = [ "id", "scheduled_dttm", "end_dttm", "start_dttm", "value", "value_row_json", "state", "error_message", "uuid", ] order_columns = [ "state", "value", "error_message", "end_dttm", "start_dttm", "scheduled_dttm", ] openapi_spec_tag = "Report Schedules" openapi_spec_methods = openapi_spec_methods_override @staticmethod def _apply_layered_relation_to_rison( # pylint: disable=invalid-name layer_id: int, rison_parameters: Dict[str, Any] ) -> None: if "filters" not in rison_parameters: rison_parameters["filters"] = [] rison_parameters["filters"].append( {"col": "report_schedule", "opr": "rel_o_m", "value": layer_id} ) @expose("/<int:pk>/log/", methods=["GET"]) @protect() @safe @permission_name("get") @rison(get_list_schema) def get_list( # pylint: disable=arguments-differ self, pk: int, **kwargs: Any ) -> Response: """Get a list of report schedule logs --- get: description: >- Get a list of report schedule logs parameters: - in: path schema: type: integer description: The report schedule id for these logs name: pk - in: query name: q content: application/json: schema: $ref: '#/components/schemas/get_list_schema' responses: 200: description: Items from logs content: application/json: schema: type: object properties: ids: description: >- A list of log ids type: array items: type: string count: description: >- The total record count on the backend type: number result: description: >- The result from the get list query type: array items: $ref: '#/components/schemas/{{self.__class__.__name__}}.get_list' # pylint: disable=line-too-long 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ self._apply_layered_relation_to_rison(pk, kwargs["rison"]) return self.get_list_headless(**kwargs) @expose("/<int:pk>/log/<int:log_id>", methods=["GET"]) @protect() @safe @permission_name("get") @rison(get_item_schema) def get( # pylint: disable=arguments-differ self, pk: int, log_id: int, **kwargs: Any ) -> Response: """Get a report schedule log --- get: description: >- Get a report schedule log parameters: - in: path schema: type: integer name: pk description: The report schedule pk for log - in: path schema: type: integer name: log_id description: The log pk - in: query name: q content: application/json: schema: $ref: '#/components/schemas/get_item_schema' responses: 200: description: Item log content: application/json: schema: type: object properties: id: description: The log id type: string result: $ref: '#/components/schemas/{{self.__class__.__name__}}.get' 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 404: $ref: '#/components/responses/404' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ self._apply_layered_relation_to_rison(pk, kwargs["rison"]) return self.get_headless(log_id, **kwargs)
convlab2/policy/hdsa/multiwoz/predictor.py
Malavikka/ConvLab-2
339
130551
<reponame>Malavikka/ConvLab-2<gh_stars>100-1000 import os import zipfile import torch from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE from pytorch_pretrained_bert.modeling import BertForSequenceClassification from pytorch_pretrained_bert.tokenization import BertTokenizer from convlab2.policy.hdsa.multiwoz.transformer import Constants from convlab2.util.file_util import cached_path from convlab2.util.multiwoz.dbquery import Database def examine(domain, slot): if slot == "addr": slot = 'address' elif slot == "post": slot = 'postcode' elif slot == "ref": slot = 'ref' elif slot == "car": slot = "type" elif slot == 'dest': slot = 'destination' elif domain == 'train' and slot == 'id': slot = 'trainid' elif slot == 'leave': slot = 'leaveat' elif slot == 'arrive': slot = 'arriveby' elif slot == 'price': slot = 'pricerange' elif slot == 'depart': slot = 'departure' elif slot == 'name': slot = 'name' elif slot == 'type': slot = 'type' elif slot == 'area': slot = 'area' elif slot == 'parking': slot = 'parking' elif slot == 'internet': slot = 'internet' elif slot == 'stars': slot = 'stars' elif slot == 'food': slot = 'food' elif slot == 'phone': slot = 'phone' elif slot == 'day': slot = 'day' else: slot = 'illegal' return slot def truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, file, turn, guid, text_m, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.file = file self.turn = turn self.guid = guid self.text_m = text_m self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, file, turn, input_ids, input_mask, segment_ids, label_id): self.file = file self.turn = turn self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id class HDSA_predictor(): def __init__(self, archive_file, model_file=None, use_cuda=False): if not os.path.isfile(archive_file): if not model_file: raise Exception("No model for DA-predictor is specified!") archive_file = cached_path(model_file) model_dir = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(os.path.join(model_dir, 'checkpoints')): archive = zipfile.ZipFile(archive_file, 'r') archive.extractall(model_dir) load_dir = os.path.join(model_dir, "checkpoints/predictor/save_step_23926") self.db=Database() if not os.path.exists(load_dir): archive = zipfile.ZipFile('{}.zip'.format(load_dir), 'r') archive.extractall(os.path.dirname(load_dir)) self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) self.max_seq_length = 256 self.domain = 'restaurant' self.model = BertForSequenceClassification.from_pretrained(load_dir, cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(-1)), num_labels=44) self.device = 'cuda' if use_cuda else 'cpu' self.model.to(self.device) def gen_example(self, state): file = '' turn = 0 guid = 'infer' act = state['user_action'] for w in act: d=w[1] if Constants.domains.index(d.lower()) < 8: self.domain = d.lower() hierarchical_act_vecs = [0 for _ in range(44)] # fake target meta = state['belief_state'] constraints = [] if self.domain != 'bus': for slot in meta[self.domain]['semi']: if meta[self.domain]['semi'][slot] != "": constraints.append([slot, meta[self.domain]['semi'][slot]]) query_result = self.db.query(self.domain, constraints) if not query_result: kb = {'count':'0'} src = "no information" else: kb = query_result[0] kb['count'] = str(len(query_result)) src = [] for k, v in kb.items(): k = examine(self.domain, k.lower()) if k != 'illegal' and isinstance(v, str): src.extend([k, 'is', v]) src = " ".join(src) usr = state['history'][-1][-1] sys = state['history'][-2][-1] if len(state['history']) > 1 else None example = InputExample(file, turn, guid, src, usr, sys, hierarchical_act_vecs) kb['domain'] = self.domain return example, kb def gen_feature(self, example): tokens_a = self.tokenizer.tokenize(example.text_a) tokens_b = self.tokenizer.tokenize(example.text_b) tokens_m = self.tokenizer.tokenize(example.text_m) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" truncate_seq_pair(tokens_a, tokens_b, self.max_seq_length - 3) tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * (len(tokens_a) + 2) assert len(tokens) == len(segment_ids) tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) if len(tokens) < self.max_seq_length: if len(tokens_m) > self.max_seq_length - len(tokens) - 1: tokens_m = tokens_m[:self.max_seq_length - len(tokens) - 1] tokens += tokens_m + ['[SEP]'] segment_ids += [0] * (len(tokens_m) + 1) input_ids = self.tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (self.max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == self.max_seq_length assert len(input_mask) == self.max_seq_length assert len(segment_ids) == self.max_seq_length feature = InputFeatures(file=example.file, turn=example.turn, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=example.label) return feature def predict(self, state): example, kb = self.gen_example(state) feature = self.gen_feature(example) input_ids = torch.tensor([feature.input_ids], dtype=torch.long).to(self.device) input_masks = torch.tensor([feature.input_mask], dtype=torch.long).to(self.device) segment_ids = torch.tensor([feature.segment_ids], dtype=torch.long).to(self.device) with torch.no_grad(): logits = self.model(input_ids, segment_ids, input_masks, labels=None) logits = torch.sigmoid(logits) preds = (logits > 0.4).float() preds_numpy = preds.cpu().nonzero().squeeze().numpy() # for i in preds_numpy: # if i < 10: # print(Constants.domains[i], end=' ') # elif i < 17: # print(Constants.functions[i-10], end=' ') # else: # print(Constants.arguments[i-17], end=' ') # print() return preds, kb
examples/domain_generalization/re_identification/baseline.py
neka-nat/Transfer-Learning-Library
1,474
130556
<reponame>neka-nat/Transfer-Learning-Library """ @author: <NAME> @contact: <EMAIL> """ import random import time import warnings import sys import argparse import shutil import os.path as osp import numpy as np import torch import torch.nn as nn from torch.nn import DataParallel import torch.backends.cudnn as cudnn from torch.optim import Adam from torch.utils.data import DataLoader sys.path.append('../../..') from common.vision.models.reid.loss import CrossEntropyLossWithLabelSmooth, SoftTripletLoss from common.vision.models.reid.identifier import ReIdentifier import common.vision.datasets.reid as datasets from common.vision.datasets.reid.convert import convert_to_pytorch_dataset from common.utils.scheduler import WarmupMultiStepLR from common.utils.metric.reid import validate, visualize_ranked_results from common.utils.data import ForeverDataIterator, RandomMultipleGallerySampler from common.utils.metric import accuracy from common.utils.meter import AverageMeter, ProgressMeter from common.utils.logger import CompleteLogger sys.path.append('.') import utils device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(args: argparse.Namespace): logger = CompleteLogger(args.log, args.phase) print(args) if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') cudnn.benchmark = True # Data loading code train_transform = utils.get_train_transform(args.height, args.width, args.train_resizing, random_horizontal_flip=True, random_color_jitter=False, random_gray_scale=False) val_transform = utils.get_val_transform(args.height, args.width) print("train_transform: ", train_transform) print("val_transform: ", val_transform) working_dir = osp.dirname(osp.abspath(__file__)) root = osp.join(working_dir, args.root) # source dataset source_dataset = datasets.__dict__[args.source](root=osp.join(root, args.source.lower())) sampler = RandomMultipleGallerySampler(source_dataset.train, args.num_instances) train_loader = DataLoader( convert_to_pytorch_dataset(source_dataset.train, root=source_dataset.images_dir, transform=train_transform), batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, pin_memory=True, drop_last=True) train_iter = ForeverDataIterator(train_loader) val_loader = DataLoader( convert_to_pytorch_dataset(list(set(source_dataset.query) | set(source_dataset.gallery)), root=source_dataset.images_dir, transform=val_transform), batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True) # target dataset target_dataset = datasets.__dict__[args.target](root=osp.join(root, args.target.lower())) test_loader = DataLoader( convert_to_pytorch_dataset(list(set(target_dataset.query) | set(target_dataset.gallery)), root=target_dataset.images_dir, transform=val_transform), batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True) # create model num_classes = source_dataset.num_train_pids backbone = utils.get_model(args.arch) pool_layer = nn.Identity() if args.no_pool else None model = ReIdentifier(backbone, num_classes, finetune=args.finetune, pool_layer=pool_layer).to(device) model = DataParallel(model) # define optimizer and learning rate scheduler optimizer = Adam(model.module.get_parameters(base_lr=args.lr, rate=args.rate), args.lr, weight_decay=args.weight_decay) lr_scheduler = WarmupMultiStepLR(optimizer, args.milestones, gamma=0.1, warmup_factor=0.1, warmup_steps=args.warmup_steps) # resume from the best checkpoint if args.phase != 'train': checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu') model.load_state_dict(checkpoint) # analysis the model if args.phase == 'analysis': # plot t-SNE utils.visualize_tsne(source_loader=val_loader, target_loader=test_loader, model=model, filename=osp.join(logger.visualize_directory, 'analysis', 'TSNE.pdf'), device=device) # visualize ranked results visualize_ranked_results(test_loader, model, target_dataset.query, target_dataset.gallery, device, visualize_dir=logger.visualize_directory, width=args.width, height=args.height, rerank=args.rerank) return if args.phase == 'test': print("Test on source domain:") validate(val_loader, model, source_dataset.query, source_dataset.gallery, device, cmc_flag=True, rerank=args.rerank) print("Test on target domain:") validate(test_loader, model, target_dataset.query, target_dataset.gallery, device, cmc_flag=True, rerank=args.rerank) return # define loss function criterion_ce = CrossEntropyLossWithLabelSmooth(num_classes).to(device) criterion_triplet = SoftTripletLoss(margin=args.margin).to(device) # start training best_val_mAP = 0. best_test_mAP = 0. for epoch in range(args.epochs): # print learning rate print(lr_scheduler.get_lr()) # train for one epoch train(train_iter, model, criterion_ce, criterion_triplet, optimizer, epoch, args) # update learning rate lr_scheduler.step() if (epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1): # evaluate on validation set print("Validation on source domain...") _, val_mAP = validate(val_loader, model, source_dataset.query, source_dataset.gallery, device, cmc_flag=True) # remember best mAP and save checkpoint torch.save(model.state_dict(), logger.get_checkpoint_path('latest')) if val_mAP > best_val_mAP: shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best')) best_val_mAP = max(val_mAP, best_val_mAP) # evaluate on test set print("Test on target domain...") _, test_mAP = validate(test_loader, model, target_dataset.query, target_dataset.gallery, device, cmc_flag=True, rerank=args.rerank) best_test_mAP = max(test_mAP, best_test_mAP) # evaluate on test set model.load_state_dict(torch.load(logger.get_checkpoint_path('best'))) print("Test on target domain:") _, test_mAP = validate(test_loader, model, target_dataset.query, target_dataset.gallery, device, cmc_flag=True, rerank=args.rerank) print("test mAP on target = {}".format(test_mAP)) print("oracle mAP on target = {}".format(best_test_mAP)) logger.close() def train(train_iter: ForeverDataIterator, model, criterion_ce: CrossEntropyLossWithLabelSmooth, criterion_triplet: SoftTripletLoss, optimizer: Adam, epoch: int, args: argparse.Namespace): batch_time = AverageMeter('Time', ':4.2f') data_time = AverageMeter('Data', ':3.1f') losses_ce = AverageMeter('CeLoss', ':3.2f') losses_triplet = AverageMeter('TripletLoss', ':3.2f') losses = AverageMeter('Loss', ':3.2f') cls_accs = AverageMeter('Cls Acc', ':3.1f') progress = ProgressMeter( args.iters_per_epoch, [batch_time, data_time, losses_ce, losses_triplet, losses, cls_accs], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i in range(args.iters_per_epoch): x, _, labels, _ = next(train_iter) x = x.to(device) labels = labels.to(device) # measure data loading time data_time.update(time.time() - end) # compute output y, f = model(x) # cross entropy loss loss_ce = criterion_ce(y, labels) # triplet loss loss_triplet = criterion_triplet(f, f, labels) loss = loss_ce + loss_triplet * args.trade_off cls_acc = accuracy(y, labels)[0] losses_ce.update(loss_ce.item(), x.size(0)) losses_triplet.update(loss_triplet.item(), x.size(0)) losses.update(loss.item(), x.size(0)) cls_accs.update(cls_acc.item(), x.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) if __name__ == '__main__': dataset_names = sorted( name for name in datasets.__dict__ if not name.startswith("__") and callable(datasets.__dict__[name]) ) parser = argparse.ArgumentParser(description="Baseline for Domain Generalization ReID") # dataset parameters parser.add_argument('root', metavar='DIR', help='root path of dataset') parser.add_argument('-s', '--source', type=str, help='source domain') parser.add_argument('-t', '--target', type=str, help='target domain') parser.add_argument('--train-resizing', type=str, default='default') # model parameters parser.add_argument('-a', '--arch', metavar='ARCH', default='reid_resnet50', choices=utils.get_model_names(), help='backbone architecture: ' + ' | '.join(utils.get_model_names()) + ' (default: reid_resnet50)') parser.add_argument('--no-pool', action='store_true', help='no pool layer after the feature extractor.') parser.add_argument('--finetune', action='store_true', help='whether use 10x smaller lr for backbone') parser.add_argument('--rate', type=float, default=0.2) # training parameters parser.add_argument('--trade-off', type=float, default=1, help='trade-off hyper parameter between cross entropy loss and triplet loss') parser.add_argument('--margin', type=float, default=0.0, help='margin for the triplet loss with batch hard') parser.add_argument('-j', '--workers', type=int, default=4) parser.add_argument('-b', '--batch-size', type=int, default=16) parser.add_argument('--height', type=int, default=256, help="input height") parser.add_argument('--width', type=int, default=128, help="input width") parser.add_argument('--num-instances', type=int, default=4, help="each minibatch consist of " "(batch_size // num_instances) identities, and " "each identity has num_instances instances, " "default: 4") parser.add_argument('--lr', type=float, default=0.00035, help="initial learning rate") parser.add_argument('--weight-decay', type=float, default=5e-4) parser.add_argument('--epochs', type=int, default=80) parser.add_argument('--warmup-steps', type=int, default=10, help='number of warp-up steps') parser.add_argument('--milestones', nargs='+', type=int, default=[40, 70], help='milestones for the learning rate decay') parser.add_argument('--eval-step', type=int, default=40) parser.add_argument('--iters-per-epoch', type=int, default=400) parser.add_argument('--print-freq', type=int, default=40) parser.add_argument('--seed', default=None, type=int, help='seed for initializing training.') parser.add_argument('--rerank', action='store_true', help="evaluation only") parser.add_argument("--log", type=str, default='baseline', help="Where to save logs, checkpoints and debugging images.") parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'], help="When phase is 'test', only test the model." "When phase is 'analysis', only analysis the model.") args = parser.parse_args() main(args)
model/resnet34.py
FAHAI-1/tensorflow-cifar100
109
130561
<reponame>FAHAI-1/tensorflow-cifar100<filename>model/resnet34.py import tensorflow as tf def identity_block2d(input_tensor, kernel_size, filters, stage, block, is_training, reuse, kernel_initializer=tf.contrib.layers.variance_scaling_initializer()): filters1, filters2, filters3 = filters conv_name_2 = 'conv' + str(stage) + '_' + str(block) + '_3x3' bn_name_2 = 'bn' + str(stage) + '_' + str(block) + '_3x3' x = tf.layers.conv2d(input_tensor, filters2, kernel_size, use_bias=False, padding='SAME', kernel_initializer=kernel_initializer, name=conv_name_2, reuse=reuse) x = tf.layers.batch_normalization(x, training=is_training, name=bn_name_2, reuse=reuse) x = tf.nn.relu(x) conv_name_3 = 'conv' + str(stage) + '_' + str(block) + '_1x1_increase' bn_name_3 = 'bn' + str(stage) + '_' + str(block) + '_1x1_increase' x = tf.layers.conv2d(x, filters3, (kernel_size, kernel_size), use_bias=False, padding='SAME', kernel_initializer=kernel_initializer, name=conv_name_3, reuse=reuse) x = tf.layers.batch_normalization(x, training=is_training, name=bn_name_3, reuse=reuse) x = tf.add(input_tensor, x) x = tf.nn.relu(x) return x def conv_block_2d(input_tensor, kernel_size, filters, stage, block, is_training, reuse, strides=(2, 2), kernel_initializer=tf.contrib.layers.variance_scaling_initializer()): filters1, filters2, filters3 = filters conv_name_2 = 'conv' + str(stage) + '_' + str(block) + '_3x3' bn_name_2 = 'bn' + str(stage) + '_' + str(block) + '_3x3' x = tf.layers.conv2d(input_tensor, filters2, (kernel_size, kernel_size), use_bias=False, strides=strides, padding='SAME', kernel_initializer=kernel_initializer, name=conv_name_2, reuse=reuse) x = tf.layers.batch_normalization(x, training=is_training, name=bn_name_2, reuse=reuse) x = tf.nn.relu(x) conv_name_3 = 'conv' + str(stage) + '_' + str(block) + '_1x1_increase' bn_name_3 = 'bn' + str(stage) + '_' + str(block) + '_1x1_increase' x = tf.layers.conv2d(x, filters3, (kernel_size, kernel_size), use_bias=False, padding='SAME', kernel_initializer=kernel_initializer, name=conv_name_3, reuse=reuse) x = tf.layers.batch_normalization(x, training=is_training, name=bn_name_3, reuse=reuse) conv_name_4 = 'conv' + str(stage) + '_' + str(block) + '_1x1_shortcut' bn_name_4 = 'bn' + str(stage) + '_' + str(block) + '_1x1_shortcut' shortcut = tf.layers.conv2d(input_tensor, filters3, (kernel_size, kernel_size), use_bias=False, strides=strides, padding='SAME', kernel_initializer=kernel_initializer, name=conv_name_4, reuse=reuse) shortcut = tf.layers.batch_normalization(shortcut, training=is_training, name=bn_name_4, reuse=reuse) x = tf.add(shortcut, x) x = tf.nn.relu(x) return x def resnet18(input_tensor, is_training=True, pooling_and_fc=True, reuse=False, kernel_initializer=tf.contrib.layers.variance_scaling_initializer()): x = tf.layers.conv2d(input_tensor, 64, (3,3), strides=(1,1), kernel_initializer=kernel_initializer, use_bias=False, padding='SAME', name='conv1_1/3x3_s1', reuse=reuse) x = tf.layers.batch_normalization(x, training=is_training, name='bn1_1/3x3_s1', reuse=reuse) x = tf.nn.relu(x) x1 = identity_block2d(x, 3, [48, 64, 64], stage=2, block='1b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x1 = identity_block2d(x1, 3, [48, 64, 64], stage=3, block='1c', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x2 = conv_block_2d(x1, 3, [96, 128, 128], stage=3, block='2a', strides=(2,2), is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x2 = identity_block2d(x2, 3, [96, 128, 128], stage=3, block='2b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = conv_block_2d(x2, 3, [128, 256, 256], stage=4, block='3a', strides=(2,2), is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = identity_block2d(x3, 3, [128, 256, 256], stage=4, block='3b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x4 = conv_block_2d(x3, 3, [256, 512, 512], stage=5, block='4a', strides=(2,2), is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x4 = identity_block2d(x4, 3, [256, 512, 512], stage=5, block='4b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) # print('before gap: ', x4) x4 = tf.reduce_mean(x4, [1,2]) # print('after gap: ', x4) # flatten = tf.contrib.layers.flatten(x4) prob = tf.layers.dense(x4, 100, reuse=reuse, kernel_initializer=tf.contrib.layers.xavier_initializer()) # prob = tf.layers.batch_normalization(prob, training=is_training, name='fbn', reuse=reuse) # print('prob', prob) return prob def resnet34(input_tensor, is_training=True, pooling_and_fc=True, reuse=False, kernel_initializer=tf.contrib.layers.variance_scaling_initializer()): x = tf.layers.conv2d(input_tensor, 64, (3,3), strides=(1,1), kernel_initializer=kernel_initializer, use_bias=False, padding='SAME', name='conv1_1/3x3_s1', reuse=reuse) x = tf.layers.batch_normalization(x, training=is_training, name='bn1_1/3x3_s1', reuse=reuse) x = tf.nn.relu(x) x1 = identity_block2d(x, 3, [48, 64, 64], stage=1, block='1a', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x1 = identity_block2d(x1, 3, [48, 64, 64], stage=1, block='1b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x1 = identity_block2d(x1, 3, [48, 64, 64], stage=1, block='1c', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x2 = conv_block_2d(x1, 3, [96, 128, 128], stage=2, block='2a', strides=(2,2), is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x2 = identity_block2d(x2, 3, [96, 128, 128], stage=2, block='2b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x2 = identity_block2d(x2, 3, [96, 128, 128], stage=2, block='2c', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x2 = identity_block2d(x2, 3, [96, 128, 128], stage=2, block='2d', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = conv_block_2d(x2, 3, [128, 256, 256], stage=3, block='3a', strides=(2,2), is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = identity_block2d(x3, 3, [128, 256, 256], stage=3, block='3b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = identity_block2d(x3, 3, [128, 256, 256], stage=3, block='3c', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = identity_block2d(x3, 3, [128, 256, 256], stage=3, block='3d', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = identity_block2d(x3, 3, [128, 256, 256], stage=3, block='3e', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x3 = identity_block2d(x3, 3, [128, 256, 256], stage=3, block='3f', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x4 = conv_block_2d(x3, 3, [256, 512, 512], stage=4, block='4a', strides=(2,2), is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x4 = identity_block2d(x4, 3, [256, 512, 512], stage=4, block='4b', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) x4 = identity_block2d(x4, 3, [256, 512, 512], stage=4, block='4c', is_training=is_training, reuse=reuse, kernel_initializer=kernel_initializer) # print('before gap: ', x4) x4 = tf.reduce_mean(x4, [1,2]) # print('after gap: ', x4) # flatten = tf.contrib.layers.flatten(x4) prob = tf.layers.dense(x4, 100, reuse=reuse, kernel_initializer=tf.contrib.layers.xavier_initializer(), bias_initializer=tf.zeros_initializer()) # prob = tf.layers.batch_normalization(prob, training=is_training, name='fbn', reuse=reuse) # print('prob', prob) return prob
data_managers/data_manager_homer_preparsed/data_manager/homer_genome_preparse.py
supernord/tools-iuc
142
130586
<gh_stars>100-1000 #!/usr/bin/env python # <NAME> for bowtie2 # Modified by <NAME> for homer from __future__ import print_function import json import optparse import os import subprocess import sys DEFAULT_DATA_TABLE_NAME = "homer_preparse" def get_id_name(params, dbkey, fasta_description=None): # TODO: ensure sequence_id is unique and does not already appear in location file sequence_id = params['param_dict']['sequence_id'] if not sequence_id: sequence_id = dbkey sequence_name = params['param_dict']['sequence_name'] if not sequence_name: sequence_name = fasta_description if not sequence_name: sequence_name = dbkey return sequence_id, sequence_name def homer_preparse(data_manager_dict, fasta_filename, params, target_directory, dbkey, sequence_id, sequence_name, size, mask, version, data_table_name=DEFAULT_DATA_TABLE_NAME): args = ['preparseGenome.pl', fasta_filename, '-size', str(size), '-preparsedDir', target_directory] if mask: args.append('-mask') proc = subprocess.Popen(args=args, shell=False, cwd=target_directory) return_code = proc.wait() if return_code: print("Error preparsing genome.", file=sys.stderr) sys.exit(return_code) mask_suffix = 'r' if mask else '' mask_suffix_name = ' masked' if mask else '' data_table_entry = dict(value=sequence_id + mask_suffix + '_' + str(size), dbkey=dbkey, mask=str(mask), size=str(size), name=sequence_name + mask_suffix_name + ' (' + str(size) + 'bp)', path=sequence_id + mask_suffix + '_' + str(size), path_fasta=fasta_filename, version=version) _add_data_table_entry(data_manager_dict, data_table_name, data_table_entry) def _add_data_table_entry(data_manager_dict, data_table_name, data_table_entry): data_manager_dict['data_tables'] = data_manager_dict.get('data_tables', {}) data_manager_dict['data_tables'][data_table_name] = data_manager_dict['data_tables'].get(data_table_name, []) data_manager_dict['data_tables'][data_table_name].append(data_table_entry) return data_manager_dict def main(): parser = optparse.OptionParser() parser.add_option('-f', '--fasta_filename', dest='fasta_filename', action='store', type="string", default=None, help='fasta_filename') parser.add_option('-d', '--fasta_dbkey', dest='fasta_dbkey', action='store', type="string", default=None, help='fasta_dbkey') parser.add_option('-t', '--fasta_description', dest='fasta_description', action='store', type="string", default=None, help='fasta_description') parser.add_option('-s', '--size', dest='size', action='store', type="int", default=200, help='fragment size') parser.add_option('-m', '--mask', dest='mask', action='store_true', default=False, help='mask the lower case bases (repeats)') parser.add_option('-n', '--data_table_name', dest='data_table_name', action='store', type="string", default=None, help='data_table_name') parser.add_option('--index_version', dest='index_version', action='store', type="string", default=None, help='index version') (options, args) = parser.parse_args() filename = args[0] with open(filename) as fh: params = json.load(fh) target_directory = params['output_data'][0]['extra_files_path'] os.mkdir(target_directory) data_manager_dict = {} dbkey = options.fasta_dbkey if dbkey in [None, '', '?']: raise Exception('"%s" is not a valid dbkey. You must specify a valid dbkey.' % (dbkey)) sequence_id, sequence_name = get_id_name(params, dbkey=dbkey, fasta_description=options.fasta_description) # preparse the genome homer_preparse(data_manager_dict, options.fasta_filename, params, target_directory, dbkey, sequence_id, sequence_name, options.size, options.mask, options.index_version, data_table_name=options.data_table_name or DEFAULT_DATA_TABLE_NAME) # save info to json file with open(filename, 'w') as fh: json.dump(data_manager_dict, fh, sort_keys=True) if __name__ == "__main__": main()
samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/BasicLinearTransforms.py
thisisgopalmandal/opencv
56,632
130592
<reponame>thisisgopalmandal/opencv from __future__ import print_function from builtins import input import cv2 as cv import numpy as np import argparse # Read image given by user ## [basic-linear-transform-load] parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.') parser.add_argument('--input', help='Path to input image.', default='lena.jpg') args = parser.parse_args() image = cv.imread(cv.samples.findFile(args.input)) if image is None: print('Could not open or find the image: ', args.input) exit(0) ## [basic-linear-transform-load] ## [basic-linear-transform-output] new_image = np.zeros(image.shape, image.dtype) ## [basic-linear-transform-output] ## [basic-linear-transform-parameters] alpha = 1.0 # Simple contrast control beta = 0 # Simple brightness control # Initialize values print(' Basic Linear Transforms ') print('-------------------------') try: alpha = float(input('* Enter the alpha value [1.0-3.0]: ')) beta = int(input('* Enter the beta value [0-100]: ')) except ValueError: print('Error, not a number') ## [basic-linear-transform-parameters] # Do the operation new_image(i,j) = alpha*image(i,j) + beta # Instead of these 'for' loops we could have used simply: # new_image = cv.convertScaleAbs(image, alpha=alpha, beta=beta) # but we wanted to show you how to access the pixels :) ## [basic-linear-transform-operation] for y in range(image.shape[0]): for x in range(image.shape[1]): for c in range(image.shape[2]): new_image[y,x,c] = np.clip(alpha*image[y,x,c] + beta, 0, 255) ## [basic-linear-transform-operation] ## [basic-linear-transform-display] # Show stuff cv.imshow('Original Image', image) cv.imshow('New Image', new_image) # Wait until user press some key cv.waitKey() ## [basic-linear-transform-display]
pyairctrl/http_client.py
isvogor-foi/py-air-control
203
130600
<filename>pyairctrl/http_client.py """HTTP Client.""" # pylint: disable=invalid-name, missing-class-docstring, missing-function-docstring import base64 import binascii import configparser import json import os import random import socket import urllib.request import xml.etree.ElementTree as ET from collections import OrderedDict from Cryptodome.Cipher import AES from Cryptodome.Util.Padding import pad, unpad G = int( "<KEY>", 16, ) P = int( "B10B8F96A080E01DDE92DE5EAE5D54EC52C99FBCFB06A3C69A6A9DCA52D23B616073E28675A23D189838EF1E2EE652C013ECB4AEA906112324975C3CD49B83BFACCBDD7D90C4BD7098488E9C219A73724EFFD6FAE5644738FAA31A4FF55BCCC0A151AF5F0DC8B4BD45BF37DF365C1A65E68CFDA76D4DA708DF1FB2BC2E4A4371", 16, ) def aes_decrypt(data, key): iv = bytes(16) cipher = AES.new(key, AES.MODE_CBC, iv) return cipher.decrypt(data) def encrypt(values, key): # add two random bytes in front of the body data = "AA" + json.dumps(values) data = pad(bytearray(data, "ascii"), 16, style="pkcs7") iv = bytes(16) cipher = AES.new(key, AES.MODE_CBC, iv) data_enc = cipher.encrypt(data) return base64.b64encode(data_enc) def decrypt(data, key): payload = base64.b64decode(data) data = aes_decrypt(payload, key) # response starts with 2 random bytes, exclude them response = unpad(data, 16, style="pkcs7")[2:] return response.decode("ascii") class HTTPAirClient: @staticmethod def ssdp(timeout=1, repeats=3): addr = "172.16.58.3" port = 1900 msg = "\r\n".join( [ "M-SEARCH * HTTP/1.1", "HOST: {}:{}".format(addr, port), "ST: urn:philips-com:device:DiProduct:1", "MX: 1", 'MAN: "ssdp:discover"', "", "", ] ).encode("ascii") urls = {} with socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if hasattr(socket, "SO_REUSEPORT"): # SO_REUSEPORT is not supported on some systems s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) s.setsockopt(socket.SOL_IP, socket.IP_MULTICAST_TTL, 20) s.settimeout(timeout) for i in range(repeats): s.sendto(msg, (addr, port)) try: while True: data, (ip, _) = s.recvfrom(1024) url = next( ( x for x in data.decode("ascii").splitlines() if x.startswith("LOCATION: ") ), None, ) urls.update({ip: url[10:]}) except socket.timeout: pass if len(urls): break resp = [] for ip in urls.keys(): with urllib.request.urlopen(urls[ip]) as response: xml = ET.fromstring(response.read()) resp.append({"ip": ip}) ns = {"urn": "urn:schemas-upnp-org:device-1-0"} for d in xml.findall("urn:device", ns): for t in ["modelName", "modelNumber", "friendlyName"]: resp[-1].update({t: d.find("urn:" + t, ns).text}) return resp def __init__(self, host, debug=False): self._host = host self._session_key = None self._debug = debug self.load_key() def _get_key(self): if self._debug: print("Exchanging secret key with the device ...") url = "http://{}/di/v1/products/0/security".format(self._host) a = random.getrandbits(256) A = pow(G, a, P) data = json.dumps({"diffie": format(A, "x")}) data_enc = data.encode("ascii") req = urllib.request.Request(url=url, data=data_enc, method="PUT") with urllib.request.urlopen(req) as response: resp = response.read().decode("ascii") dh = json.loads(resp) key = dh["key"] B = int(dh["hellman"], 16) s = pow(B, a, P) s_bytes = s.to_bytes(128, byteorder="big")[:16] session_key = aes_decrypt(bytes.fromhex(key), s_bytes) self._session_key = session_key[:16] self._save_key() def _save_key(self): config = configparser.ConfigParser() fpath = os.path.expanduser("~/.pyairctrl") config.read(fpath) if "keys" not in config.sections(): config["keys"] = {} hex_key = binascii.hexlify(self._session_key).decode("ascii") config["keys"][self._host] = hex_key if self._debug: print("Saving session_key {} to {}".format(hex_key, fpath)) with open(fpath, "w") as f: config.write(f) def load_key(self): fpath = os.path.expanduser("~/.pyairctrl") if os.path.isfile(fpath): config = configparser.ConfigParser() config.read(fpath) if "keys" in config and self._host in config["keys"]: hex_key = config["keys"][self._host] self._session_key = bytes.fromhex(hex_key) self._check_key() else: self._get_key() else: self._get_key() return self._session_key def _check_key(self): url = "http://{}/di/v1/products/1/air".format(self._host) self._get(url) def set_values(self, values): body = encrypt(values, self._session_key) url = "http://{}/di/v1/products/1/air".format(self._host) req = urllib.request.Request(url=url, data=body, method="PUT") with urllib.request.urlopen(req) as response: resp = response.read() resp = decrypt(resp.decode("ascii"), self._session_key) status = json.loads(resp) return status def set_wifi(self, ssid, pwd): values = {} if ssid: values["ssid"] = ssid if pwd: values["password"] = <PASSWORD> body = encrypt(values, self._session_key) url = "http://{}/di/v1/products/0/wifi".format(self._host) req = urllib.request.Request(url=url, data=body, method="PUT") with urllib.request.urlopen(req) as response: resp = response.read() resp = decrypt(resp.decode("ascii"), self._session_key) wifi = json.loads(resp) return wifi def _get_once(self, url): with urllib.request.urlopen(url) as response: resp = response.read() resp = decrypt(resp.decode("ascii"), self._session_key) return json.loads(resp, object_pairs_hook=OrderedDict) def _get(self, url): try: return self._get_once(url) except Exception as e: if self._debug: print("GET error: {}".format(str(e))) print("Will retry after getting a new key ...") self._get_key() return self._get_once(url) def get_status(self, debug=False): url = "http://{}/di/v1/products/1/air".format(self._host) status = self._get(url) return status def get_wifi(self): url = "http://{}/di/v1/products/0/wifi".format(self._host) wifi = self._get(url) return wifi def get_firmware(self): url = "http://{}/di/v1/products/0/firmware".format(self._host) firmware = self._get(url) return firmware def get_filters(self): url = "http://{}/di/v1/products/1/fltsts".format(self._host) filters = self._get(url) return filters def pair(self, client_id, client_secret): values = {} values["Pair"] = ["FI-AIR-AND", client_id, client_secret] body = encrypt(values, self._session_key) url = "http://{}/di/v1/products/0/pairing".format(self._host) req = urllib.request.Request(url=url, data=body, method="PUT") with urllib.request.urlopen(req) as response: resp = response.read() resp = decrypt(resp.decode("ascii"), self._session_key) resp = json.loads(resp) return resp
examples/multiline_textbox.py
pzahemszky/guizero
320
130603
from guizero import App, TextBox, PushButton, Text def show(): output.value = textbox.value app = App() textbox = TextBox(app, multiline=True, height=10, width=50, scrollbar=True) textbox.value = "hello\ngoodbye\nno way\nthis is a very long stream of text, very long indeed, the best long line of text, its super bigly and very long, I dont think it could possibly be any better particularly as it was created by someone who is super good at creating long lines of text." button = PushButton(app, text="Print", command=show) output = Text(app) app.display()
tests/torch/test_extensions_build.py
GreenWaves-Technologies/nncf
136
130619
<filename>tests/torch/test_extensions_build.py import os import subprocess import pytest import pathlib import shutil import torch from tests.common.helpers import TEST_ROOT from tests.torch.helpers import Command EXTENSIONS_BUILD_FILENAME = 'extensions_build_checks.py' @pytest.mark.parametrize("venv_type, package_type,install_type", [('venv', 'develop', 'GPU')]) def test_force_cuda_build(tmp_venv_with_nncf, install_type, tmp_path, package_type): ''' Check that CUDA Extensions weren't initially built and \ then with TORCH_CUDA_ARCH_LIST were forced to be built ''' cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home is None: try: nvcc = subprocess.check_output(['which', 'nvcc']) cuda_home = os.path.dirname(os.path.dirname(nvcc)) except subprocess.CalledProcessError: if not cuda_home: cuda_home = '/usr/local/cuda' if not os.path.exists(cuda_home): cuda_home = None if not cuda_home and not torch.cuda.is_available(): pytest.skip('There is no CUDA on the machine. The test will be skipped') venv_path = tmp_venv_with_nncf torch_build_dir = tmp_path / 'extensions' export_env_variables = "export CUDA_VISIBLE_DEVICES='' export TORCH_EXTENSIONS_DIR={}".format(torch_build_dir) python_executable_with_venv = ". {0}/bin/activate && {1} && {0}/bin/python".format(venv_path, export_env_variables) run_path = tmp_path / 'run' shutil.copy(TEST_ROOT / 'torch' / EXTENSIONS_BUILD_FILENAME, run_path) torch_ext_dir = pathlib.Path(torch_build_dir) assert not torch_ext_dir.exists() mode = 'cpu' command = Command("{} {}/extensions_build_checks.py {}".format(python_executable_with_venv, run_path, mode), path=run_path) command.run() version_command = Command('{} -c "import torch; print(torch.__version__)"'.format(python_executable_with_venv), path=run_path) version_command.run() torch_version = version_command.output[0].replace('\n', '') cpu_ext_dir = (torch_ext_dir / 'nncf' / 'quantized_functions_cpu' / torch_version) assert cpu_ext_dir.exists() cpu_ext_so = (cpu_ext_dir / 'quantized_functions_cpu.so' ) assert cpu_ext_so.exists() cuda_ext_dir = (torch_ext_dir / 'nncf'/ 'quantized_functions_cuda' / torch_version) assert not cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'quantized_functions_cuda.so') assert not cuda_ext_so.exists() cpu_ext_dir = (torch_ext_dir / 'nncf' / 'binarized_functions_cpu' / torch_version) assert cpu_ext_dir.exists() cpu_ext_so = (cpu_ext_dir / 'binarized_functions_cpu.so') assert cpu_ext_so.exists() cuda_ext_dir = (torch_ext_dir / 'nncf' / 'binarized_functions_cuda' / torch_version) assert not cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'nncf' / torch_version / 'binarized_functions_cuda.so') assert not cuda_ext_so.exists() mode = 'cuda' command = Command("{} {}/extensions_build_checks.py {}".format(python_executable_with_venv, run_path, mode), path=run_path) command.run() cuda_ext_dir = (torch_ext_dir / 'nncf' / 'quantized_functions_cuda' / torch_version) assert cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'quantized_functions_cuda.so') assert cuda_ext_so.exists() cuda_ext_dir = (torch_ext_dir / 'nncf' / 'binarized_functions_cuda' / torch_version) assert cuda_ext_dir.exists() cuda_ext_so = (cuda_ext_dir / 'binarized_functions_cuda.so') assert cuda_ext_so.exists()
models/yolo_nano.py
RealNewNoob/yolo_nano
295
130623
<reponame>RealNewNoob/yolo_nano<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F from .basic_layers import conv1x1, conv3x3, EP, PEP, FCA, YOLOLayer from utils.stats import build_targets, to_cpu, non_max_suppression class YOLONano(nn.Module): def __init__(self, num_classes, image_size): super(YOLONano, self).__init__() self.num_classes = num_classes self.image_size = image_size self.num_anchors = 3 self.yolo_channels = (self.num_classes + 5) * self.num_anchors anchors52 = [[10,13], [16,30], [33,23]] # 52x52 anchors26 = [[30,61], [62,45], [59,119]] # 26x26 anchors13 = [[116,90], [156,198], [373,326]] # 13x13 # image: 416x416x3 self.conv1 = conv3x3(3, 12, stride=1) # output: 416x416x12 self.conv2 = conv3x3(12, 24, stride=2) # output: 208x208x24 self.pep1 = PEP(24, 24, 7, stride=1) # output: 208x208x24 self.ep1 = EP(24, 70, stride=2) # output: 104x104x70 self.pep2 = PEP(70, 70, 25, stride=1) # output: 104x104x70 self.pep3 = PEP(70, 70, 24, stride=1) # output: 104x104x70 self.ep2 = EP(70, 150, stride=2) # output: 52x52x150 self.pep4 = PEP(150, 150, 56, stride=1) # output: 52x52x150 self.conv3 = conv1x1(150, 150, stride=1) # output: 52x52x150 self.fca1 = FCA(150, 8) # output: 52x52x150 self.pep5 = PEP(150, 150, 73, stride=1) # output: 52x52x150 self.pep6 = PEP(150, 150, 71, stride=1) # output: 52x52x150 self.pep7 = PEP(150, 150, 75, stride=1) # output: 52x52x150 self.ep3 = EP(150, 325, stride=2) # output: 26x26x325 self.pep8 = PEP(325, 325, 132, stride=1) # output: 26x26x325 self.pep9 = PEP(325, 325, 124, stride=1) # output: 26x26x325 self.pep10 = PEP(325, 325, 141, stride=1) # output: 26x26x325 self.pep11 = PEP(325, 325, 140, stride=1) # output: 26x26x325 self.pep12 = PEP(325, 325, 137, stride=1) # output: 26x26x325 self.pep13 = PEP(325, 325, 135, stride=1) # output: 26x26x325 self.pep14 = PEP(325, 325, 133, stride=1) # output: 26x26x325 self.pep15 = PEP(325, 325, 140, stride=1) # output: 26x26x325 self.ep4 = EP(325, 545, stride=2) # output: 13x13x545 self.pep16 = PEP(545, 545, 276, stride=1) # output: 13x13x545 self.conv4 = conv1x1(545, 230, stride=1) # output: 13x13x230 self.ep5 = EP(230, 489, stride=1) # output: 13x13x489 self.pep17 = PEP(489, 469, 213, stride=1) # output: 13x13x469 self.conv5 = conv1x1(469, 189, stride=1) # output: 13x13x189 self.conv6 = conv1x1(189, 105, stride=1) # output: 13x13x105 # upsampling conv6 to 26x26x105 # concatenating [conv6, pep15] -> pep18 (26x26x430) self.pep18 = PEP(430, 325, 113, stride=1) # output: 26x26x325 self.pep19 = PEP(325, 207, 99, stride=1) # output: 26x26x325 self.conv7 = conv1x1(207, 98, stride=1) # output: 26x26x98 self.conv8 = conv1x1(98, 47, stride=1) # output: 26x26x47 # upsampling conv8 to 52x52x47 # concatenating [conv8, pep7] -> pep20 (52x52x197) self.pep20 = PEP(197, 122, 58, stride=1) # output: 52x52x122 self.pep21 = PEP(122, 87, 52, stride=1) # output: 52x52x87 self.pep22 = PEP(87, 93, 47, stride=1) # output: 52x52x93 self.conv9 = conv1x1(93, self.yolo_channels, stride=1, bn=False) # output: 52x52x yolo_channels self.yolo_layer52 = YOLOLayer(anchors52, num_classes, img_dim=image_size) # conv7 -> ep6 self.ep6 = EP(98, 183, stride=1) # output: 26x26x183 self.conv10 = conv1x1(183, self.yolo_channels, stride=1, bn=False) # output: 26x26x yolo_channels self.yolo_layer26 = YOLOLayer(anchors26, num_classes, img_dim=image_size) # conv5 -> ep7 self.ep7 = EP(189, 462, stride=1) # output: 13x13x462 self.conv11 = conv1x1(462, self.yolo_channels, stride=1, bn=False) # output: 13x13x yolo_channels self.yolo_layer13 = YOLOLayer(anchors13, num_classes, img_dim=image_size) for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight = nn.init.xavier_normal_(m.weight, gain=0.02) elif isinstance(m, nn.BatchNorm2d): nn.init.normal_(m.weight.data, 1.0, 0.02) m.bias.data.zero_() def forward(self, x, targets=None): loss = 0 yolo_outputs = [] image_size = x.size(2) out = self.conv1(x) out = self.conv2(out) out = self.pep1(out) out = self.ep1(out) out = self.pep2(out) out = self.pep3(out) out = self.ep2(out) out = self.pep4(out) out = self.conv3(out) out = self.fca1(out) out = self.pep5(out) out = self.pep6(out) out_pep7 = self.pep7(out) out = self.ep3(out_pep7) out = self.pep8(out) out = self.pep9(out) out = self.pep10(out) out = self.pep11(out) out = self.pep12(out) out = self.pep13(out) out = self.pep14(out) out_pep15 = self.pep15(out) out = self.ep4(out_pep15) out = self.pep16(out) out = self.conv4(out) out = self.ep5(out) out = self.pep17(out) out_conv5 = self.conv5(out) out = F.interpolate(self.conv6(out_conv5), scale_factor=2) out = torch.cat([out, out_pep15], dim=1) out = self.pep18(out) out = self.pep19(out) out_conv7 = self.conv7(out) out = F.interpolate(self.conv8(out_conv7), scale_factor=2) out = torch.cat([out, out_pep7], dim=1) out = self.pep20(out) out = self.pep21(out) out = self.pep22(out) out_conv9 = self.conv9(out) temp, layer_loss = self.yolo_layer52(out_conv9, targets, image_size) loss += layer_loss yolo_outputs.append(temp) out = self.ep6(out_conv7) out_conv10 = self.conv10(out) temp, layer_loss = self.yolo_layer26(out_conv10, targets, image_size) loss += layer_loss yolo_outputs.append(temp) out = self.ep7(out_conv5) out_conv11 = self.conv11(out) temp, layer_loss = self.yolo_layer13(out_conv11, targets, image_size) loss += layer_loss yolo_outputs.append(temp) yolo_outputs = to_cpu(torch.cat(yolo_outputs, 1)) return yolo_outputs if targets is None else (loss, yolo_outputs) def name(self): return "YoloNano"
tests/test_core.py
victorvasil93/flask-ask
2,028
130634
# -*- coding: utf-8 -*- import unittest from aniso8601.timezone import UTCOffset, build_utcoffset from flask_ask.core import Ask from datetime import datetime, timedelta from mock import patch, MagicMock import json class FakeRequest(object): """ Fake out a Flask request for testing purposes for now """ headers = {'Signaturecertchainurl': None, 'Signature': None} def __init__(self, data): self.data = json.dumps(data) class TestCoreRoutines(unittest.TestCase): """ Tests for core Flask Ask functionality """ def setUp(self): self.mock_app = MagicMock() self.mock_app.debug = True self.mock_app.config = {'ASK_VERIFY_TIMESTAMP_DEBUG': False} # XXX: this mess implies we should think about tidying up Ask._alexa_request self.patch_current_app = patch('flask_ask.core.current_app', new=self.mock_app) self.patch_load_cert = patch('flask_ask.core.verifier.load_certificate') self.patch_verify_sig = patch('flask_ask.core.verifier.verify_signature') self.patch_current_app.start() self.patch_load_cert.start() self.patch_verify_sig.start() @patch('flask_ask.core.flask_request', new=FakeRequest({'request': {'timestamp': 1234}, 'session': {'application': {'applicationId': 1}}})) def test_alexa_request_parsing(self): ask = Ask() ask._alexa_request() def test_parse_timestamp(self): utc = build_utcoffset('UTC', timedelta(hours=0)) result = Ask._parse_timestamp('2017-07-08T07:38:00Z') self.assertEqual(datetime(2017, 7, 8, 7, 38, 0, 0, utc), result) result = Ask._parse_timestamp(1234567890) self.assertEqual(datetime(2009, 2, 13, 23, 31, 30), result) with self.assertRaises(ValueError): Ask._parse_timestamp(None) def test_tries_parsing_on_valueerror(self): max_timestamp = 253402300800 # should cause a ValueError normally with self.assertRaises(ValueError): datetime.utcfromtimestamp(max_timestamp) # should safely parse, assuming scale change needed # note: this assert looks odd, but Py2 handles the parsing # differently, resulting in a differing timestamp # due to more granularity of microseconds result = Ask._parse_timestamp(max_timestamp) self.assertEqual(datetime(1978, 1, 11, 21, 31, 40).timetuple()[0:6], result.timetuple()[0:6]) with self.assertRaises(ValueError): # still raise an error if too large Ask._parse_timestamp(max_timestamp * 1000) def tearDown(self): self.patch_current_app.stop() self.patch_load_cert.stop() self.patch_verify_sig.stop()
exampleapp/dinosaurs/apps.py
jupiterFierce31/A-simple-example-of-a-Django-REST-app-Angular2
163
130647
<reponame>jupiterFierce31/A-simple-example-of-a-Django-REST-app-Angular2<filename>exampleapp/dinosaurs/apps.py from django.apps import AppConfig class DinosaursConfig(AppConfig): name = 'dinosaurs'
section-04-research-and-development/preprocessors.py
karanvijaygit/DMLM
477
130658
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin class TemporalVariableTransformer(BaseEstimator, TransformerMixin): # Temporal elapsed time transformer def __init__(self, variables, reference_variable): if not isinstance(variables, list): raise ValueError('variables should be a list') self.variables = variables self.reference_variable = reference_variable def fit(self, X, y=None): # we need this step to fit the sklearn pipeline return self def transform(self, X): # so that we do not over-write the original dataframe X = X.copy() for feature in self.variables: X[feature] = X[self.reference_variable] - X[feature] return X # categorical missing value imputer class Mapper(BaseEstimator, TransformerMixin): def __init__(self, variables, mappings): if not isinstance(variables, list): raise ValueError('variables should be a list') self.variables = variables self.mappings = mappings def fit(self, X, y=None): # we need the fit statement to accomodate the sklearn pipeline return self def transform(self, X): X = X.copy() for feature in self.variables: X[feature] = X[feature].map(self.mappings) return X
tests/pyconverter-test/cases/array_index_type.py
jaydeetay/pxt
977
130704
<reponame>jaydeetay/pxt foo = [7] i = foo[0] testNamespace.numberArgument(i)
floss/logging_.py
mandiant/flare-floss
145
130715
# Copyright (C) 2022 Mandiant, Inc. All Rights Reserved. import logging from enum import Enum TRACE = logging.DEBUG - 1 setattr(logging, "TRACE", TRACE) logging.addLevelName(TRACE, "TRACE") class DebugLevel(int, Enum): NONE = 0 DEFAULT = 1 TRACE = 2 SUPERTRACE = 3 GREY = "\x1b[38;21m" CYAN = "\x1b[36;21m" MAUVE = "\x1b[34;21m" YELLOW = "\x1b[33;21m" RED = "\x1b[31;21m" BOLD_RED = "\x1b[31;1m" RESET = "\x1b[0m" def make_format(color): return f"{color}%(levelname)s{RESET}: %(name)s: %(message)s" FORMATS = { logging.TRACE: make_format(MAUVE), # type: ignore logging.DEBUG: make_format(GREY), logging.INFO: make_format(CYAN), logging.WARNING: make_format(YELLOW), logging.ERROR: make_format(RED), logging.CRITICAL: make_format(BOLD_RED), } FORMATTERS = {level: logging.Formatter(FORMATS[level]) for level in FORMATS.keys()} class ColorFormatter(logging.Formatter): """ Logging Formatter to add colors and count warning / errors via: https://stackoverflow.com/a/56944256/87207 """ def format(self, record): return FORMATTERS[record.levelno].format(record) class LoggerWithTrace(logging.getLoggerClass()): # type: ignore def trace(self, msg, *args, **kwargs): self.log(TRACE, msg, *args, **kwargs) logging.setLoggerClass(LoggerWithTrace) def getLogger(name) -> LoggerWithTrace: """ a logging constructor that guarantees that the TRACE level is available. use this just like `logging.getLogger`. because we patch stdlib logging upon import of this module (side-effect), and we can't be sure how callers order their imports, then we want to provide a way to ensure that callers can access TRACE consistently. if callers use `floss.logging.getLogger()` intead of `logging.getLogger()`, then they'll be guaranteed to have access to TRACE. """ return logging.getLogger(name) # type: ignore
pororo/tasks/semantic_role_labeling.py
jayten42/pororo
1,137
130758
"""Semantic Role Labeling related modeling class""" from copy import deepcopy from typing import List, Optional from pororo.tasks.utils.base import PororoFactoryBase, PororoSimpleBase class PororoSrlFactory(PororoFactoryBase): """ Conduct semantic role labeling Korean (`charbert.base.ko.srl`) - dataset: UCorpus - metric: TBU - ref: http://nlplab.ulsan.ac.kr/doku.php?id=start Args: sent: (str) sentence to be parsed dependency Returns: List[Tuple[int, str, int, str]]: token index, token label, token head and its relation Examples: >>> srl = Pororo(task="srl", lang="ko") >>> srl("카터는 역삼에서 카카오브레인으로 출근한다.") [[('카터는', 'AGT'), ('역삼에서', 'LOC'), ('카카오브레인으로', 'GOL'), ('출근한다.', 'PREDICATE')]] >>> srl("피고인은 거제에서 400만 원 상당의 순금목걸이를 피해자로부터 강취하였다.") [[('피고인은', 'AGT'), ('거제에서', '-'), ('400만', '-'), ('원', '-'), ('상당의', '-'), ('순금목걸이를', 'THM'), ('피해자로부터', 'SRC'), ('강취하였다.', 'PREDICATE')]] """ def __init__(self, task: str, lang: str, model: Optional[str]): super().__init__(task, lang, model) @staticmethod def get_available_langs(): return ["ko"] @staticmethod def get_available_models(): return {"ko": ["charbert.base.ko.srl"]} def load(self, device: str): """ Load user-selected task-specific model Args: device (str): device information Returns: object: User-selected task-specific model """ if "charbert" in self.config.n_model: from pororo.models.brainbert import RobertaLabelModel from pororo.tasks import PororoPosFactory model = RobertaLabelModel.load_model( f"bert/{self.config.n_model}", self.config.lang, ).eval().to(device) tagger = PororoPosFactory( task="pos", model="mecab-ko", lang=self.config.lang, ).load(device) return PororoBertSRL(model, tagger, self.config) class PororoBertSRL(PororoSimpleBase): def __init__(self, model, tagger, config): super().__init__(config) self._tagger = tagger self._model = model self._verbs = ["VV", "VA", "XSV", "XSA", "VCN"] def _split_list(self, lst: List, seperator: str): """ Split list using seperator Args: lst (list): PoS tagger pair list seperator (str): seperator token Returns: list: splitted list of list """ res = [] tmp = [] for elem in lst: if elem[0] == seperator: res.append(tmp) tmp = [] continue tmp.append(elem) res.append(tmp) return res def _preprocess(self, sent: str) -> str: """ Preprocess semantic role labeling input to specify predicate Args: sent (str): input sentence Returns: str: preprocessed input """ words = self._split_list([list(tag) for tag in self._tagger(sent)], " ") vs = [] for i, word in enumerate(words): for morph in word: if morph[1] in self._verbs: vs.append(i) break sents = [] for v in vs: morphs = deepcopy(words) morphs[v][0][0] = f"★{morphs[v][0][0]}" sent, seg = str(), str() for elems in morphs: for pair in elems: morph, tag = pair tag = f"{tag} " if morph == " ": sent += "▁ " seg += tag continue chars = [c for c in morph] sent += f"{' '.join(chars)} " seg += tag * len(chars) sent += "▁ " seg += "SPACE " sents.append((sent.strip(), seg.strip())) return sents def _postprocess(self, result: List, origin: str): """ Postprocess semantic role labeling model inference result Args: result (List): inferenced semantic roles origin (str): original query string Returns: List[Tuple]: postprocessed result """ tokens = origin.split() fin = [] for res in result: res = self._split_list(res, "▁") tmp = [] for i, token in enumerate(tokens): if "★" in res[i][0][0]: tmp.append((token, "PREDICATE")) continue tmp.append((token, res[i][0][1])) fin.append(tmp) return fin def predict(self, sent: str, **kwargs): """ Conduct semantic role labeling Args: sent: (str) sentence to be parsed dependency Returns: List[Tuple[int, str, int, str]]: token index, token label, token head and its relation """ preproc = self._preprocess(sent) if not preproc: return "There is NO predicate to be labeled" res = [] for p in preproc: res.append(self._model.predict_srl(p[0], p[1])) return self._postprocess(res, sent)
quantities/constants/electron.py
502E532E/python-quantities
105
130765
""" """ from ._utils import _cd from ..unitquantity import UnitConstant e = elementary_charge = UnitConstant( 'elementary_charge', _cd('elementary charge'), symbol='e' ) elementary_charge_over_h = UnitConstant( 'elementary_charge_over_h', _cd('elementary charge over h'), symbol='e/h' ) Faraday_constant = UnitConstant( 'Faraday_constant', _cd('Faraday constant'), symbol='F' ) #F_star = Faraday_constant_for_conventional_electric_current = UnitConstant( # _cd('Faraday constant for conventional electric current') what is a unit of C_90? r_e = classical_electron_radius = UnitConstant( 'classical_electron_radius', _cd('classical electron radius'), symbol='r_e', u_symbol='rₑ' ) m_e = electron_mass = UnitConstant( 'electron_mass', _cd('electron mass'), symbol='m_e', u_symbol='mₑ' ) lambda_C = Compton_wavelength = UnitConstant( 'Compton_wavelength', _cd('Compton wavelength'), symbol='lambda_C', u_symbol='λ_C' ) Compton_wavelength_over_2_pi = UnitConstant( 'Compton_wavelength_over_2_pi', _cd('Compton wavelength over 2 pi'), symbol='lambdabar_C', u_symbol='ƛ_C' ) electron_charge_to_mass_quotient = UnitConstant( 'electron_charge_to_mass_quotient', _cd('electron charge to mass quotient'), symbol='(-e/m_e)', u_symbol='(-e/mₑ)' ) g_e = electron_g_factor = UnitConstant( 'electron_g_factor', _cd('electron g factor'), symbol='g_e', u_symbol='gₑ' ) gamma_e = electron_gyromagnetic_ratio = UnitConstant( 'electron_gyromagnetic_ratio', _cd('electron gyromagnetic ratio'), symbol='gamma_e', u_symbol='γₑ' ) electron_gyromagnetic_ratio_over_2_pi = UnitConstant( 'electron_gyromagnetic_ratio_over_2_pi', _cd('electron gyromagnetic ratio over 2 pi'), symbol='gamma_e/(2*pi)', u_symbol='γₑ/(2·π)' ) mu_e = electron_magnetic_moment = UnitConstant( 'electron_magnetic_moment', _cd('electron magnetic moment'), symbol='mu_e', u_symbol='μₑ' ) a_e = electron_magnetic_moment_anomaly = UnitConstant( 'electron_magnetic_moment_anomaly', _cd('electron magnetic moment anomaly'), symbol='a_e', u_symbol='aₑ' ) eV = electron_volt = UnitConstant( 'electron_volt', _cd('electron volt'), symbol='eV' ) sigma_e = Thomson_cross_section = UnitConstant( 'Thomson_cross_section', _cd('Thomson cross section'), symbol='sigma_e', u_symbol='σₑ' ) mu_B = Bohr_magneton = UnitConstant( 'Bohr_magneton', _cd('Bohr magneton'), symbol='mu_B', u_symbol='μ_B' ) Bohr_magneton_in_Hz_per_T = UnitConstant( 'Bohr_magneton_in_Hz_per_T', _cd('Bohr magneton in Hz/T') ) Bohr_magneton_in_inverse_meters_per_tesla = UnitConstant( 'Bohr_magneton_in_inverse_meters_per_tesla', _cd('Bohr magneton in inverse meters per tesla') ) Bohr_magneton_in_K_per_T = UnitConstant( 'Bohr_magneton_in_K_per_T', _cd('Bohr magneton in K/T') ) electron_mass_energy_equivalent = UnitConstant( 'electron_mass_energy_equivalent', _cd('electron mass energy equivalent'), symbol='(m_e*c**2)', u_symbol='(mₑ·c²)' ) electron_mass_energy_equivalent_in_MeV = UnitConstant( 'electron_mass_energy_equivalent_in_MeV', _cd('electron mass energy equivalent in MeV') ) electron_mass_in_u = UnitConstant( 'electron_mass_in_u', _cd('electron mass in u') ) electron_molar_mass = UnitConstant( 'electron_molar_mass', _cd('electron molar mass'), symbol='M_e', u_symbol='Mₑ' ) electron_deuteron_mass_ratio = UnitConstant( 'electron_deuteron_mass_ratio', _cd('electron-deuteron mass ratio'), symbol='(m_e/m_d)', u_symbol='(mₑ/m_d)' ) electron_muon_mass_ratio = UnitConstant( 'electron_muon_mass_ratio', _cd('electron-muon mass ratio'), symbol='(m_e/m_mu)', u_symbol='(mₑ/m_μ)' ) electron_neutron_mass_ratio = UnitConstant( 'electron_neutron_mass_ratio', _cd('electron-neutron mass ratio'), symbol='(m_e/m_n)', u_symbol='(mₑ/m_n)' ) electron_proton_mass_ratio = UnitConstant( 'electron_proton_mass_ratio', _cd('electron-proton mass ratio'), symbol='(m_e/m_p)', u_symbol='(mₑ/m_p)' ) electron_tau_mass_ratio = UnitConstant( 'electron_tau_mass_ratio', _cd('electron-tau mass ratio'), symbol='(m_e/m_tau)', u_symbol='(mₑ/m_τ)' ) electron_to_alpha_particle_mass_ratio = UnitConstant( 'electron_to_alpha_particle_mass_ratio', _cd('electron to alpha particle mass ratio'), symbol='(m_e/m_alpha)', u_symbol='(mₑ/m_α)' ) electron_deuteron_magnetic_moment_ratio = UnitConstant( 'electron_deuteron_magnetic_moment_ratio', _cd('electron-deuteron magnetic moment ratio'), symbol='(mu_e/mu_d)', u_symbol='(μₑ/μ_d)' ) electron_magnetic_moment_to_Bohr_magneton_ratio = UnitConstant( 'electron_magnetic_moment_to_Bohr_magneton_ratio', _cd('electron magnetic moment to Bohr magneton ratio'), symbol='(mu_e/mu_B)', u_symbol='(μₑ/μ_B)' ) electron_magnetic_moment_to_nuclear_magneton_ratio = UnitConstant( 'electron_magnetic_moment_to_nuclear_magneton_ratio', _cd('electron magnetic moment to nuclear magneton ratio'), symbol='(mu_e/mu_N)', u_symbol='(μₑ/μ_N)' ) electron_muon_magnetic_moment_ratio = UnitConstant( 'electron_muon_magnetic_moment_ratio', _cd('electron-muon magnetic moment ratio'), symbol='(mu_e/mu_mu)', u_symbol='(μₑ/μ_μ)' ) electron_neutron_magnetic_moment_ratio = UnitConstant( 'electron_neutron_magnetic_moment_ratio', _cd('electron-neutron magnetic moment ratio'), symbol='(mu_e/mu_n)', u_symbol='(μₑ/μ_n)' ) electron_proton_magnetic_moment_ratio = UnitConstant( 'electron_proton_magnetic_moment_ratio', _cd('electron-proton magnetic moment ratio'), symbol='(mu_e/mu_p)', u_symbol='(μₑ/μ_p)' ) electron_to_shielded_helion_magnetic_moment_ratio = UnitConstant( 'electron_to_shielded_helion_magnetic_moment_ratio', _cd('electron to shielded helion magnetic moment ratio'), symbol='(mu_e/muprime_h)', u_symbol='(μₑ/μ′_h)' ) electron_to_shielded_proton_magnetic_moment_ratio = UnitConstant( 'electron_to_shielded_proton_magnetic_moment_ratio', _cd('electron to shielded proton magnetic moment ratio'), symbol='(mu_e/muprime_p)', u_symbol='(μₑ/μ′_p)' ) electron_volt_atomic_mass_unit_relationship = UnitConstant( 'electron_volt_atomic_mass_unit_relationship', _cd('electron volt-atomic mass unit relationship') ) electron_volt_hartree_relationship = UnitConstant( 'electron_volt_hartree_relationship', _cd('electron volt-hartree relationship') ) electron_volt_hertz_relationship = UnitConstant( 'electron_volt_hertz_relationship', _cd('electron volt-hertz relationship') ) electron_volt_inverse_meter_relationship = UnitConstant( 'electron_volt_inverse_meter_relationship', _cd('electron volt-inverse meter relationship') ) electron_volt_joule_relationship = UnitConstant( 'electron_volt_joule_relationship', _cd('electron volt-joule relationship') ) electron_volt_kelvin_relationship = UnitConstant( 'electron_volt_kelvin_relationship', _cd('electron volt-kelvin relationship') ) electron_volt_kilogram_relationship = UnitConstant( 'electron_volt_kilogram_relationship', _cd('electron volt-kilogram relationship') ) hertz_electron_volt_relationship = UnitConstant( 'hertz_electron_volt_relationship', _cd('hertz-electron volt relationship') ) inverse_meter_electron_volt_relationship = UnitConstant( 'inverse_meter_electron_volt_relationship', _cd('inverse meter-electron volt relationship') ) joule_electron_volt_relationship = UnitConstant( 'joule_electron_volt_relationship', _cd('joule-electron volt relationship') ) kelvin_electron_volt_relationship = UnitConstant( 'kelvin_electron_volt_relationship', _cd('kelvin-electron volt relationship') ) kilogram_electron_volt_relationship = UnitConstant( 'kilogram_electron_volt_relationship', _cd('kilogram-electron volt relationship') ) del UnitConstant, _cd
desktop/core/ext-py/phoenixdb-1.1.0/phoenixdb/sqlalchemy_phoenix.py
rohankumardubey/hue
5,079
130776
<filename>desktop/core/ext-py/phoenixdb-1.1.0/phoenixdb/sqlalchemy_phoenix.py # Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import sys import phoenixdb from sqlalchemy import types from sqlalchemy.engine.default import DefaultDialect, DefaultExecutionContext from sqlalchemy.exc import CompileError from sqlalchemy.sql.compiler import DDLCompiler from sqlalchemy.types import BIGINT, BOOLEAN, CHAR, DATE, DECIMAL, FLOAT, INTEGER, NUMERIC,\ SMALLINT, TIME, TIMESTAMP, VARBINARY, VARCHAR if sys.version_info.major == 3: from urllib.parse import urlunsplit, SplitResult, urlencode else: from urllib import urlencode from urlparse import urlunsplit, SplitResult class PhoenixDDLCompiler(DDLCompiler): def visit_primary_key_constraint(self, constraint): if constraint.name is None: raise CompileError("Can't create primary key without a name.") return DDLCompiler.visit_primary_key_constraint(self, constraint) AUTOCOMMIT_REGEXP = re.compile( r"\s*(?:UPDATE|UPSERT|CREATE|DELETE|DROP|ALTER)", re.I | re.UNICODE ) class PhoenixExecutionContext(DefaultExecutionContext): def should_autocommit_text(self, statement): return AUTOCOMMIT_REGEXP.match(statement) class PhoenixDialect(DefaultDialect): '''Phoenix dialect dialect:: phoenix :name: Phoenix note:: The Phoenix dialect for SQLAlchemy is incomplete. It implements the functions required by Hue for basic operation, but little else. Connecting ---------- The connection URL has the format of phoenix://host:port This format does not allow for specifying the http scheme, or the URL path the the server uses. Setting tls=True sets the server URL scheme to https. If the path arg is set , it used as the path of the server URL. The phoenix-specific authentication options can be set via the standard connect_args argument. Connecting to an unsecure server:: create_engine('phoenix://localhost:8765') Connecting to a secure server via SPNEGO (after kinit):: create_engine('phoenix://localhost:8765', tls=True, connect_args={'authentication': 'SPNEGO'}) Connecting to a secure server via Knox:: create_engine('phoenix://localhost:8765', tls=True, path='/gateway/avatica/'\ connect_args={'authentication':'BASIC', 'avatica_user':'user', 'avatica_password':'password'}) ''' name = "phoenix" driver = "phoenixdb" ddl_compiler = PhoenixDDLCompiler execution_ctx_cls = PhoenixExecutionContext def __init__(self, tls=False, path='/', **opts): ''' :param tls: If True, then use https for connecting, otherwise use http :param path: The path component of the connection URL ''' # There is no way to pass these via the SqlAlchemy url object self.tls = tls self.path = path super(PhoenixDialect, self).__init__(self, **opts) @classmethod def dbapi(cls): return phoenixdb def create_connect_args(self, url): connect_args = dict() if url.username is not None: connect_args['user'] = url.username if url.password is not None: connect_args['password'] = url.username phoenix_url = urlunsplit(SplitResult( scheme='https' if self.tls else 'http', netloc='{}:{}'.format(url.host, 8765 if url.port is None else url.port), path=self.path, query=urlencode(url.query), fragment='', )) return [phoenix_url], connect_args def has_table(self, connection, table_name, schema=None, **kw): if schema is None: schema = '' return bool(connection.connect().connection.meta().get_tables( tableNamePattern=table_name, schemaPattern=schema, typeList=('TABLE', 'SYSTEM_TABLE'))) def get_schema_names(self, connection, **kw): schemas = connection.connect().connection.meta().get_schemas() schema_names = [schema['TABLE_SCHEM'] for schema in schemas] # Phoenix won't return the default schema if there aren't any tables in it if '' not in schema_names: schema_names.insert(0, '') return schema_names def get_table_names(self, connection, schema=None, order_by=None, **kw): '''order_by is ignored''' if schema is None: schema = '' tables = connection.connect().connection.meta().get_tables( schemaPattern=schema, typeList=('TABLE', 'SYSTEM TABLE')) return [table['TABLE_NAME'] for table in tables] def get_view_names(self, connection, schema=None, **kw): if schema is None: schema = '' return connection.connect().connection.meta().get_tables(schemaPattern=schema, typeList=('VIEW')) def get_columns(self, connection, table_name, schema=None, **kw): if schema is None: schema = '' raw = connection.connect().connection.meta().get_columns( schemaPattern=schema, tableNamePattern=table_name) return [self._map_column(row) for row in raw] def get_pk_constraint(self, connection, table_name, schema=None, **kw): if schema is None: schema = '' raw = connection.connect().connection.meta().get_primary_keys( schema=schema, table=table_name) cooked = { 'constrained_columns': [] } if raw: cooked['name'] = raw[0]['PK_NAME'] for row in raw: cooked['constrained_columns'].insert(row['KEY_SEQ'] - 1, row['COLUMN_NAME']) return cooked def get_indexes(self, connection, table_name, schema=None, **kw): if schema is None: schema = '' raw = connection.connect().connection.meta().get_index_info(schema=schema, table=table_name) # We know that Phoenix returns the rows ordered by INDEX_NAME and ORDINAL_POSITION cooked = [] current = None for row in raw: if current is None or row['INDEX_NAME'] != current['name']: current = { 'name': row['INDEX_NAME'], 'unique': not row['NON_UNIQUE'] is False, 'column_names': [], } cooked.append(current) # Phoenix returns the column names in its internal representation here # Remove the default CF prefix canonical_name = row['INDEX_NAME'] if canonical_name.startswith('0:'): canonical_name = canonical_name[len(':0')] if canonical_name.startswith(':'): canonical_name = canonical_name[len(':')] current['column_names'].append(canonical_name) return cooked def get_foreign_keys(self, conn, table_name, schema=None, **kw): '''Foreign keys are a foreign concept to Phoenix, and SqlAlchemy cannot parse the DB schema if it's not implemented ''' return [] def _map_column(self, raw): cooked = {} cooked['name'] = raw['COLUMN_NAME'] cooked['type'] = COLUMN_DATA_TYPE[raw['TYPE_ID']] cooked['nullable'] = bool(raw['IS_NULLABLE']) cooked['autoincrement'] = bool(raw['IS_AUTOINCREMENT']) cooked['comment'] = raw['REMARKS'] cooked['default'] = None # Not apparent how to get this from the metatdata return cooked class TINYINT(types.Integer): __visit_name__ = "SMALLINT" class UNSIGNED_TINYINT(types.Integer): __visit_name__ = "SMALLINT" class UNSIGNED_INTEGER(types.Integer): __visit_name__ = "INTEGER" class DOUBLE(types.FLOAT): __visit_name__ = "FLOAT" class UNSIGNED_DOUBLE(types.FLOAT): __visit_name__ = "FLOAT" class UNSIGNED_FLOAT(types.FLOAT): __visit_name__ = "FLOAT" class UNSIGNED_LONG(types.BIGINT): __visit_name__ = "BIGINT" class UNSIGNED_TIME(types.TIME): __visit_name__ = "TIME" class UNSIGNED_DATE(types.DATE): __visit_name__ = "DATE" class UNSIGNED_TIMESTAMP(types.TIMESTAMP): __visit_name__ = "TIMESTAMP" class ROWID (types.String): __visit_name__ = "VARCHAR" COLUMN_DATA_TYPE = { -6: TINYINT, -5: BIGINT, -3: VARBINARY, 1: CHAR, 2: NUMERIC, 3: DECIMAL, 4: INTEGER, 5: SMALLINT, 6: FLOAT, 8: DOUBLE, 9: UNSIGNED_INTEGER, 10: UNSIGNED_LONG, 11: UNSIGNED_TINYINT, 12: VARCHAR, 13: ROWID, 14: UNSIGNED_FLOAT, 15: UNSIGNED_DOUBLE, 16: BOOLEAN, 18: UNSIGNED_TIME, 19: UNSIGNED_DATE, 20: UNSIGNED_TIMESTAMP, 91: DATE, 92: TIME, 93: TIMESTAMP }
venv/Lib/site-packages/statsmodels/tsa/statespace/tests/test_simulation_smoothing.py
EkremBayar/bayar
6,931
130785
""" Tests for simulation smoothing Author: <NAME> License: Simplified-BSD """ import os import numpy as np from numpy.testing import assert_allclose, assert_equal import pandas as pd from statsmodels import datasets from statsmodels.tsa.statespace import mlemodel, sarimax, structural from statsmodels.tsa.statespace.simulation_smoother import ( SIMULATION_STATE, SIMULATION_DISTURBANCE, SIMULATION_ALL) current_path = os.path.dirname(os.path.abspath(__file__)) class MultivariateVARKnown(object): """ Tests for simulation smoothing values in a couple of special cases of variates. Both computed values and KFAS values are used for comparison against the simulation smoother output. """ @classmethod def setup_class(cls, missing=None, test_against_KFAS=True, *args, **kwargs): cls.test_against_KFAS = test_against_KFAS # Data dta = datasets.macrodata.load_pandas().data dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS') obs = np.log(dta[['realgdp', 'realcons', 'realinv']]).diff().iloc[1:] if missing == 'all': obs.iloc[0:50, :] = np.nan elif missing == 'partial': obs.iloc[0:50, 0] = np.nan elif missing == 'mixed': obs.iloc[0:50, 0] = np.nan obs.iloc[19:70, 1] = np.nan obs.iloc[39:90, 2] = np.nan obs.iloc[119:130, 0] = np.nan obs.iloc[119:130, 2] = np.nan obs.iloc[-10:, :] = np.nan if test_against_KFAS: obs = obs.iloc[:9] # Create the model mod = mlemodel.MLEModel(obs, k_states=3, k_posdef=3, **kwargs) mod['design'] = np.eye(3) mod['obs_cov'] = np.array([ [0.0000640649, 0., 0.], [0., 0.0000572802, 0.], [0., 0., 0.0017088585]]) mod['transition'] = np.array([ [-0.1119908792, 0.8441841604, 0.0238725303], [0.2629347724, 0.4996718412, -0.0173023305], [-3.2192369082, 4.1536028244, 0.4514379215]]) mod['selection'] = np.eye(3) mod['state_cov'] = np.array([ [0.0000640649, 0.0000388496, 0.0002148769], [0.0000388496, 0.0000572802, 0.000001555], [0.0002148769, 0.000001555, 0.0017088585]]) mod.initialize_approximate_diffuse(1e6) mod.ssm.filter_univariate = True cls.model = mod cls.results = mod.smooth([], return_ssm=True) cls.sim = cls.model.simulation_smoother() def test_loglike(self): assert_allclose(np.sum(self.results.llf_obs), self.true_llf) def test_simulate_0(self): n = 10 # Test with all inputs as zeros measurement_shocks = np.zeros((n, self.model.k_endog)) state_shocks = np.zeros((n, self.model.ssm.k_posdef)) initial_state = np.zeros(self.model.k_states) obs, states = self.model.ssm.simulate( nsimulations=n, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(obs, np.zeros((n, self.model.k_endog))) assert_allclose(states, np.zeros((n, self.model.k_states))) def test_simulate_1(self): n = 10 # Test with np.arange / 10 measurement shocks only measurement_shocks = np.reshape( np.arange(n * self.model.k_endog) / 10., (n, self.model.k_endog)) state_shocks = np.zeros((n, self.model.ssm.k_posdef)) initial_state = np.zeros(self.model.k_states) obs, states = self.model.ssm.simulate( nsimulations=n, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(obs, np.reshape( np.arange(n * self.model.k_endog) / 10., (n, self.model.k_endog))) assert_allclose(states, np.zeros((n, self.model.k_states))) def test_simulate_2(self): n = 10 Z = self.model['design'] T = self.model['transition'] # Test with non-zero state shocks and initial state measurement_shocks = np.zeros((n, self.model.k_endog)) state_shocks = np.ones((n, self.model.ssm.k_posdef)) initial_state = np.ones(self.model.k_states) * 2.5 obs, states = self.model.ssm.simulate( nsimulations=n, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired_obs = np.zeros((n, self.model.k_endog)) desired_state = np.zeros((n, self.model.k_states)) desired_state[0] = initial_state desired_obs[0] = np.dot(Z, initial_state) for i in range(1, n): desired_state[i] = np.dot(T, desired_state[i-1]) + state_shocks[i] desired_obs[i] = np.dot(Z, desired_state[i]) assert_allclose(obs, desired_obs) assert_allclose(states, desired_state) def test_simulation_smoothing_0(self): # Simulation smoothing when setting all variates to zeros # In this case: # - unconditional disturbances are zero, because they are simply # transformed to have the appropriate variance matrix, but keep the # same mean - of zero # - generated states are zeros, because initial state is # zeros and all state disturbances are zeros # - generated observations are zeros, because states are zeros and all # measurement disturbances are zeros # - The simulated state is equal to the smoothed state from the # original model, because # simulated state = (generated state - smoothed generated state + # smoothed state) # and here generated state = smoothed generated state = 0 # - The simulated measurement disturbance is equal to the smoothed # measurement disturbance for very similar reasons, because # simulated measurement disturbance = ( # generated measurement disturbance - # smoothed generated measurement disturbance + # smoothed measurement disturbance) # and here generated measurement disturbance and # smoothed generated measurement disturbance are zero. # - The simulated state disturbance is equal to the smoothed # state disturbance for exactly the same reason as above. sim = self.sim Z = self.model['design'] n_disturbance_variates = ( (self.model.k_endog + self.model.ssm.k_posdef) * self.model.nobs) # Test against known quantities (see above for description) sim.simulate(disturbance_variates=np.zeros(n_disturbance_variates), initial_state_variates=np.zeros(self.model.k_states)) assert_allclose(sim.generated_measurement_disturbance, 0) assert_allclose(sim.generated_state_disturbance, 0) assert_allclose(sim.generated_state, 0) assert_allclose(sim.generated_obs, 0) assert_allclose(sim.simulated_state, self.results.smoothed_state) if not self.model.ssm.filter_collapsed: assert_allclose(sim.simulated_measurement_disturbance, self.results.smoothed_measurement_disturbance) assert_allclose(sim.simulated_state_disturbance, self.results.smoothed_state_disturbance) # Test against R package KFAS values if self.test_against_KFAS: path = os.path.join(current_path, 'results', 'results_simulation_smoothing0.csv') true = pd.read_csv(path) assert_allclose(sim.simulated_state, true[['state1', 'state2', 'state3']].T, atol=1e-7) assert_allclose(sim.simulated_measurement_disturbance, true[['eps1', 'eps2', 'eps3']].T, atol=1e-7) assert_allclose(sim.simulated_state_disturbance, true[['eta1', 'eta2', 'eta3']].T, atol=1e-7) signals = np.zeros((3, self.model.nobs)) for t in range(self.model.nobs): signals[:, t] = np.dot(Z, sim.simulated_state[:, t]) assert_allclose(signals, true[['signal1', 'signal2', 'signal3']].T, atol=1e-7) def test_simulation_smoothing_1(self): # Test with measurement disturbance as np.arange / 10., all other # disturbances are zeros sim = self.sim Z = self.model['design'] # Construct the variates measurement_disturbance_variates = np.reshape( np.arange(self.model.nobs * self.model.k_endog) / 10., (self.model.nobs, self.model.k_endog)) disturbance_variates = np.r_[ measurement_disturbance_variates.ravel(), np.zeros(self.model.nobs * self.model.ssm.k_posdef)] # Compute some additional known quantities generated_measurement_disturbance = np.zeros( measurement_disturbance_variates.shape) chol = np.linalg.cholesky(self.model['obs_cov']) for t in range(self.model.nobs): generated_measurement_disturbance[t] = np.dot( chol, measurement_disturbance_variates[t]) generated_model = mlemodel.MLEModel( generated_measurement_disturbance, k_states=self.model.k_states, k_posdef=self.model.ssm.k_posdef) for name in ['design', 'obs_cov', 'transition', 'selection', 'state_cov']: generated_model[name] = self.model[name] generated_model.initialize_approximate_diffuse(1e6) generated_model.ssm.filter_univariate = True generated_res = generated_model.ssm.smooth() simulated_state = ( 0 - generated_res.smoothed_state + self.results.smoothed_state) if not self.model.ssm.filter_collapsed: simulated_measurement_disturbance = ( generated_measurement_disturbance.T - generated_res.smoothed_measurement_disturbance + self.results.smoothed_measurement_disturbance) simulated_state_disturbance = ( 0 - generated_res.smoothed_state_disturbance + self.results.smoothed_state_disturbance) # Test against known values sim.simulate(disturbance_variates=disturbance_variates, initial_state_variates=np.zeros(self.model.k_states)) assert_allclose(sim.generated_measurement_disturbance, generated_measurement_disturbance) assert_allclose(sim.generated_state_disturbance, 0) assert_allclose(sim.generated_state, 0) assert_allclose(sim.generated_obs, generated_measurement_disturbance.T) assert_allclose(sim.simulated_state, simulated_state) if not self.model.ssm.filter_collapsed: assert_allclose(sim.simulated_measurement_disturbance, simulated_measurement_disturbance) assert_allclose(sim.simulated_state_disturbance, simulated_state_disturbance) # Test against R package KFAS values if self.test_against_KFAS: path = os.path.join(current_path, 'results', 'results_simulation_smoothing1.csv') true = pd.read_csv(path) assert_allclose(sim.simulated_state, true[['state1', 'state2', 'state3']].T, atol=1e-7) assert_allclose(sim.simulated_measurement_disturbance, true[['eps1', 'eps2', 'eps3']].T, atol=1e-7) assert_allclose(sim.simulated_state_disturbance, true[['eta1', 'eta2', 'eta3']].T, atol=1e-7) signals = np.zeros((3, self.model.nobs)) for t in range(self.model.nobs): signals[:, t] = np.dot(Z, sim.simulated_state[:, t]) assert_allclose(signals, true[['signal1', 'signal2', 'signal3']].T, atol=1e-7) def test_simulation_smoothing_2(self): # Test with measurement and state disturbances as np.arange / 10., # initial state variates are zeros. sim = self.sim Z = self.model['design'] T = self.model['transition'] # Construct the variates measurement_disturbance_variates = np.reshape( np.arange(self.model.nobs * self.model.k_endog) / 10., (self.model.nobs, self.model.k_endog)) state_disturbance_variates = np.reshape( np.arange(self.model.nobs * self.model.ssm.k_posdef) / 10., (self.model.nobs, self.model.ssm.k_posdef)) disturbance_variates = np.r_[ measurement_disturbance_variates.ravel(), state_disturbance_variates.ravel()] initial_state_variates = np.zeros(self.model.k_states) # Compute some additional known quantities generated_measurement_disturbance = np.zeros( measurement_disturbance_variates.shape) chol = np.linalg.cholesky(self.model['obs_cov']) for t in range(self.model.nobs): generated_measurement_disturbance[t] = np.dot( chol, measurement_disturbance_variates[t]) generated_state_disturbance = np.zeros( state_disturbance_variates.shape) chol = np.linalg.cholesky(self.model['state_cov']) for t in range(self.model.nobs): generated_state_disturbance[t] = np.dot( chol, state_disturbance_variates[t]) generated_obs = np.zeros((self.model.k_endog, self.model.nobs)) generated_state = np.zeros((self.model.k_states, self.model.nobs+1)) chol = np.linalg.cholesky(self.results.initial_state_cov) generated_state[:, 0] = ( self.results.initial_state + np.dot(chol, initial_state_variates)) for t in range(self.model.nobs): generated_state[:, t+1] = (np.dot(T, generated_state[:, t]) + generated_state_disturbance.T[:, t]) generated_obs[:, t] = (np.dot(Z, generated_state[:, t]) + generated_measurement_disturbance.T[:, t]) generated_model = mlemodel.MLEModel( generated_obs.T, k_states=self.model.k_states, k_posdef=self.model.ssm.k_posdef) for name in ['design', 'obs_cov', 'transition', 'selection', 'state_cov']: generated_model[name] = self.model[name] generated_model.initialize_approximate_diffuse(1e6) generated_model.ssm.filter_univariate = True generated_res = generated_model.ssm.smooth() simulated_state = ( generated_state[:, :-1] - generated_res.smoothed_state + self.results.smoothed_state) if not self.model.ssm.filter_collapsed: simulated_measurement_disturbance = ( generated_measurement_disturbance.T - generated_res.smoothed_measurement_disturbance + self.results.smoothed_measurement_disturbance) simulated_state_disturbance = ( generated_state_disturbance.T - generated_res.smoothed_state_disturbance + self.results.smoothed_state_disturbance) # Test against known values sim.simulate(disturbance_variates=disturbance_variates, initial_state_variates=np.zeros(self.model.k_states)) assert_allclose(sim.generated_measurement_disturbance, generated_measurement_disturbance) assert_allclose(sim.generated_state_disturbance, generated_state_disturbance) assert_allclose(sim.generated_state, generated_state) assert_allclose(sim.generated_obs, generated_obs) assert_allclose(sim.simulated_state, simulated_state) if not self.model.ssm.filter_collapsed: assert_allclose(sim.simulated_measurement_disturbance.T, simulated_measurement_disturbance.T) assert_allclose(sim.simulated_state_disturbance, simulated_state_disturbance) # Test against R package KFAS values if self.test_against_KFAS: path = os.path.join(current_path, 'results', 'results_simulation_smoothing2.csv') true = pd.read_csv(path) assert_allclose(sim.simulated_state.T, true[['state1', 'state2', 'state3']], atol=1e-7) assert_allclose(sim.simulated_measurement_disturbance, true[['eps1', 'eps2', 'eps3']].T, atol=1e-7) assert_allclose(sim.simulated_state_disturbance, true[['eta1', 'eta2', 'eta3']].T, atol=1e-7) signals = np.zeros((3, self.model.nobs)) for t in range(self.model.nobs): signals[:, t] = np.dot(Z, sim.simulated_state[:, t]) assert_allclose(signals, true[['signal1', 'signal2', 'signal3']].T, atol=1e-7) class TestMultivariateVARKnown(MultivariateVARKnown): @classmethod def setup_class(cls, *args, **kwargs): super(TestMultivariateVARKnown, cls).setup_class() cls.true_llf = 39.01246166 class TestMultivariateVARKnownMissingAll(MultivariateVARKnown): """ Notes ----- Cannot test against KFAS because they have a different behavior for missing entries. When an entry is missing, KFAS does not draw a simulation smoothed value for that entry, whereas we draw from the unconditional distribution. It appears there is nothing to definitively recommend one approach over the other, but it makes it difficult to line up the variates correctly in order to replicate results. """ @classmethod def setup_class(cls, *args, **kwargs): super(TestMultivariateVARKnownMissingAll, cls).setup_class( missing='all', test_against_KFAS=False) cls.true_llf = 1305.739288 class TestMultivariateVARKnownMissingPartial(MultivariateVARKnown): @classmethod def setup_class(cls, *args, **kwargs): super(TestMultivariateVARKnownMissingPartial, cls).setup_class( missing='partial', test_against_KFAS=False) cls.true_llf = 1518.449598 class TestMultivariateVARKnownMissingMixed(MultivariateVARKnown): @classmethod def setup_class(cls, *args, **kwargs): super(TestMultivariateVARKnownMissingMixed, cls).setup_class( missing='mixed', test_against_KFAS=False) cls.true_llf = 1117.265303 class TestDFM(TestMultivariateVARKnown): test_against_KFAS = False @classmethod def setup_class(cls, which='none', *args, **kwargs): # Data dta = datasets.macrodata.load_pandas().data dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS') levels = dta[['realgdp', 'realcons', 'realinv']] obs = np.log(levels).diff().iloc[1:] * 400 if which == 'all': obs.iloc[:50, :] = np.nan obs.iloc[119:130, :] = np.nan elif which == 'partial': obs.iloc[0:50, 0] = np.nan obs.iloc[119:130, 0] = np.nan elif which == 'mixed': obs.iloc[0:50, 0] = np.nan obs.iloc[19:70, 1] = np.nan obs.iloc[39:90, 2] = np.nan obs.iloc[119:130, 0] = np.nan obs.iloc[119:130, 2] = np.nan # Create the model with typical state space mod = mlemodel.MLEModel(obs, k_states=2, k_posdef=2, **kwargs) mod['design'] = np.array([[-32.47143586, 17.33779024], [-7.40264169, 1.69279859], [-209.04702853, 125.2879374]]) mod['obs_cov'] = np.diag( np.array([0.0622668, 1.95666886, 58.37473642])) mod['transition'] = np.array([[0.29935707, 0.33289005], [-0.7639868, 1.2844237]]) mod['selection'] = np.eye(2) mod['state_cov'] = np.array([[1.2, -0.25], [-0.25, 1.1]]) mod.initialize_approximate_diffuse(1e6) mod.ssm.filter_univariate = True mod.ssm.filter_collapsed = True cls.model = mod cls.results = mod.smooth([], return_ssm=True) cls.sim = cls.model.simulation_smoother() def test_loglike(self): pass class MultivariateVAR(object): """ More generic tests for simulation smoothing; use actual N(0,1) variates """ @classmethod def setup_class(cls, missing='none', *args, **kwargs): # Data dta = datasets.macrodata.load_pandas().data dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS') obs = np.log(dta[['realgdp', 'realcons', 'realinv']]).diff().iloc[1:] if missing == 'all': obs.iloc[0:50, :] = np.nan elif missing == 'partial': obs.iloc[0:50, 0] = np.nan elif missing == 'mixed': obs.iloc[0:50, 0] = np.nan obs.iloc[19:70, 1] = np.nan obs.iloc[39:90, 2] = np.nan obs.iloc[119:130, 0] = np.nan obs.iloc[119:130, 2] = np.nan obs.iloc[-10:, :] = np.nan # Create the model mod = mlemodel.MLEModel(obs, k_states=3, k_posdef=3, **kwargs) mod['design'] = np.eye(3) mod['obs_cov'] = np.array([ [0.0000640649, 0., 0.], [0., 0.0000572802, 0.], [0., 0., 0.0017088585]]) mod['transition'] = np.array([ [-0.1119908792, 0.8441841604, 0.0238725303], [0.2629347724, 0.4996718412, -0.0173023305], [-3.2192369082, 4.1536028244, 0.4514379215]]) mod['selection'] = np.eye(3) mod['state_cov'] = np.array([ [0.0000640649, 0.0000388496, 0.0002148769], [0.0000388496, 0.0000572802, 0.000001555], [0.0002148769, 0.000001555, 0.0017088585]]) mod.initialize_approximate_diffuse(1e6) mod.ssm.filter_univariate = True cls.model = mod cls.results = mod.smooth([], return_ssm=True) cls.sim = cls.model.simulation_smoother() def test_loglike(self): assert_allclose(np.sum(self.results.llf_obs), self.true_llf) def test_simulation_smoothing(self): sim = self.sim Z = self.model['design'] # Simulate with known variates sim.simulate(disturbance_variates=self.variates[:-3], initial_state_variates=self.variates[-3:]) # Test against R package KFAS values assert_allclose(sim.simulated_state.T, self.true[['state1', 'state2', 'state3']], atol=1e-7) assert_allclose(sim.simulated_measurement_disturbance, self.true[['eps1', 'eps2', 'eps3']].T, atol=1e-7) assert_allclose(sim.simulated_state_disturbance, self.true[['eta1', 'eta2', 'eta3']].T, atol=1e-7) signals = np.zeros((3, self.model.nobs)) for t in range(self.model.nobs): signals[:, t] = np.dot(Z, sim.simulated_state[:, t]) assert_allclose(signals, self.true[['signal1', 'signal2', 'signal3']].T, atol=1e-7) class TestMultivariateVAR(MultivariateVAR): @classmethod def setup_class(cls): super(TestMultivariateVAR, cls).setup_class() path = os.path.join(current_path, 'results', 'results_simulation_smoothing3_variates.csv') cls.variates = pd.read_csv(path).values.squeeze() path = os.path.join(current_path, 'results', 'results_simulation_smoothing3.csv') cls.true = pd.read_csv(path) cls.true_llf = 1695.34872 def test_misc(): # Create the model and simulation smoother dta = datasets.macrodata.load_pandas().data dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS') obs = np.log(dta[['realgdp', 'realcons', 'realinv']]).diff().iloc[1:] mod = sarimax.SARIMAX(obs['realgdp'], order=(1, 0, 0)) mod['design', 0, 0] = 0. mod['obs_cov', 0, 0] = 1. mod.update(np.r_[1., 1.]) sim = mod.simulation_smoother() # Test that the simulation smoother is drawing variates correctly np.random.seed(1234) n_disturbance_variates = mod.nobs * (mod.k_endog + mod.k_states) variates = np.random.normal(size=n_disturbance_variates) np.random.seed(1234) sim.simulate() assert_allclose(sim.generated_measurement_disturbance[:, 0], variates[:mod.nobs]) assert_allclose(sim.generated_state_disturbance[:, 0], variates[mod.nobs:]) # Test that we can change the options of the simulations smoother assert_equal(sim.simulation_output, mod.ssm.smoother_output) sim.simulation_output = 0 assert_equal(sim.simulation_output, 0) sim.simulate_state = True assert_equal(sim.simulation_output, SIMULATION_STATE) sim.simulate_state = False assert_equal(sim.simulation_output, 0) sim.simulate_disturbance = True assert_equal(sim.simulation_output, SIMULATION_DISTURBANCE) sim.simulate_disturbance = False assert_equal(sim.simulation_output, 0) sim.simulate_all = True assert_equal(sim.simulation_output, SIMULATION_ALL) sim.simulate_all = False assert_equal(sim.simulation_output, 0) def test_simulation_smoothing_obs_intercept(): nobs = 10 intercept = 100 endog = np.ones(nobs) * intercept mod = structural.UnobservedComponents(endog, 'rwalk', exog=np.ones(nobs)) mod.update([1, intercept]) sim = mod.simulation_smoother() sim.simulate(disturbance_variates=np.zeros(mod.nobs * 2), initial_state_variates=np.zeros(1)) assert_equal(sim.simulated_state[0], 0) def test_simulation_smoothing_state_intercept(): nobs = 10 intercept = 100 endog = np.ones(nobs) * intercept mod = sarimax.SARIMAX(endog, order=(0, 0, 0), trend='c', measurement_error=True) mod.initialize_known([100], [[0]]) mod.update([intercept, 1., 1.]) sim = mod.simulation_smoother() sim.simulate(disturbance_variates=np.zeros(mod.nobs * 2), initial_state_variates=np.zeros(1)) assert_equal(sim.simulated_state[0], intercept) def test_simulation_smoothing_state_intercept_diffuse(): nobs = 10 intercept = 100 endog = np.ones(nobs) * intercept # Test without missing values mod = sarimax.SARIMAX(endog, order=(0, 0, 0), trend='c', measurement_error=True, initialization='diffuse') mod.update([intercept, 1., 1.]) sim = mod.simulation_smoother() sim.simulate(disturbance_variates=np.zeros(mod.nobs * 2), initial_state_variates=np.zeros(1)) assert_equal(sim.simulated_state[0], intercept) # Test with missing values endog[5] = np.nan mod = sarimax.SARIMAX(endog, order=(0, 0, 0), trend='c', measurement_error=True, initialization='diffuse') mod.update([intercept, 1., 1.]) sim = mod.simulation_smoother() sim.simulate(disturbance_variates=np.zeros(mod.nobs * 2), initial_state_variates=np.zeros(1)) assert_equal(sim.simulated_state[0], intercept)
models/tf_Cifar_OC_NN_Models.py
chihyunsong/oc-nn
203
130790
<filename>models/tf_Cifar_OC_NN_Models.py # USAGE # python test_network.py --model dog_not_dog.model --image images/examples/dog_01.png # import the necessary packages import numpy as np import tensorflow as tf from keras import backend as K import time ## Declare the scoring functions g = lambda x : 1/(1 + tf.exp(-x)) #g = lambda x : x # Linear def nnScore(X, w, V, g): # print "X",X.shape # print "w",w[0].shape # print "v",V[0].shape return tf.matmul(g((tf.matmul(X, w))), V) def relu(x): y = x y[y < 0] = 0 return y import csv from itertools import izip_longest import matplotlib as plt def write_decisionScores2Csv(path, filename, positiveScores, negativeScores): newfilePath = path+filename print "Writing file to ", path+filename poslist = positiveScores.tolist() neglist = negativeScores.tolist() # rows = zip(poslist, neglist) d = [poslist, neglist] export_data = izip_longest(*d, fillvalue='') with open(newfilePath, 'w') as myfile: wr = csv.writer(myfile) wr.writerow(("Normal", "Anomaly")) wr.writerows(export_data) myfile.close() return decision_scorePath = "/Users/raghav/Documents/Uni/oc-nn/Decision_Scores/cifar/" def tf_OneClass_NN_linear(data_train,data_test,nu): tf.reset_default_graph() RANDOM_SEED = 42 tf.set_random_seed(RANDOM_SEED) train_X = data_train # Layer's sizes x_size = train_X.shape[1] # Number of input nodes: 4 features and 1 bias print "Input Shape:",x_size h_size = 16 # Number of hidden nodes y_size = 1 # Number of outcomes (3 iris flowers) D = x_size K = h_size theta = np.random.normal(0, 1, K + K*D + 1) rvalue = np.random.normal(0,1,(len(train_X),y_size)) # nu = 0.1 def init_weights(shape): """ Weight initialization """ weights = tf.random_normal(shape,mean=0, stddev=1) return tf.Variable(weights) def forwardprop(X, w_1, w_2): """ Forward-propagation. IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally. """ X = tf.cast(X, tf.float32) w_1 = tf.cast(w_1, tf.float32) w_2 = tf.cast(w_2, tf.float32) h = (tf.matmul(X, w_1)) # yhat = tf.matmul(h, w_2) # The \varphi function return yhat g = lambda x : x def nnScore(X, w, V, g): X = tf.cast(X, tf.float32) w = tf.cast(w, tf.float32) V = tf.cast(V, tf.float32) return tf.matmul(g((tf.matmul(X, w))), V) def relu1(x): y = x y = tf.nn.relu(x) return y def relu(x): with sess.as_default(): x = x.eval() y = x y[y< 0] = 0 # y = tf.nn.relu(x) return y def ocnn_obj(theta, X, nu, w1, w2, g,r): w = w1 V = w2 X = tf.cast(X, tf.float32) w = tf.cast(w1, tf.float32) V = tf.cast(w2, tf.float32) term1 = 0.5 * tf.reduce_sum(w**2) term2 = 0.5 * tf.reduce_sum(V**2) term3 = 1/nu * tf.reduce_mean(tf.nn.relu(r - nnScore(X, w, V, g))) term4 = -r return term1 + term2 + term3 + term4 # For testing the algorithm test_X = data_test # Symbols X = tf.placeholder("float32", shape=[None, x_size]) r = tf.get_variable("r", dtype=tf.float32,shape=(),trainable=False) # Weight initializations w_1 = init_weights((x_size, h_size)) w_2 = init_weights((h_size, y_size)) # Forward propagation # yhat = forwardprop(X, w_1, w_2) # predict = tf.argmax(yhat, axis=1) # Backward propagation # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=yhat)) cost = ocnn_obj(theta, X, nu, w_1, w_2, g,r) updates = tf.train.AdamOptimizer(0.05).minimize(cost) # Run optimization routine after initialization sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) rvalue = 0.1 start_time = time.time() for epoch in range(100): # Train with each example sess.run(updates, feed_dict={X: train_X,r:rvalue}) rvalue = nnScore(train_X, w_1, w_2, g) with sess.as_default(): rvalue = rvalue.eval() rvalue = np.percentile(rvalue,q=100*nu) print("Epoch = %d, r = %f" % (epoch + 1,rvalue)) trainTime = time.time() - start_time ### Get the optimized weights here start_time = time.time() train = nnScore(train_X, w_1, w_2, g) test = nnScore(test_X, w_1, w_2, g) testTime = time.time() - start_time with sess.as_default(): arrayTrain = train.eval() arrayTest = test.eval() # rstar = r.eval() rstar =rvalue sess.close() print "Session Closed!!!" pos_decisionScore = arrayTrain-rstar pos_decisionScore[pos_decisionScore < 0] = 0 neg_decisionScore = arrayTest-rstar print "&&&&&&&&&&&&" print pos_decisionScore print neg_decisionScore # write_decisionScores2Csv(decision_scorePath, "OneClass_NN_linear.csv", pos_decisionScore, neg_decisionScore) return [pos_decisionScore, neg_decisionScore,trainTime,testTime] def tf_OneClass_NN_sigmoid(data_train,data_test,nu): tf.reset_default_graph() sess = tf.Session() train_X = data_train RANDOM_SEED = 42 tf.set_random_seed(RANDOM_SEED) # Layer's sizes x_size = train_X.shape[1] # Number of input nodes: 4 features and 1 bias print "Input Shape:", x_size h_size = 16 # Number of hidden nodes y_size = 1 # Number of outcomes (3 iris flowers) D = x_size K = h_size theta = np.random.normal(0, 1, K + K*D + 1) rvalue = np.random.normal(0,1,(len(train_X),y_size)) # nu = 0.1 import math def plotNNFilter(units): filters = 3 fig = plt.figure(1, figsize=(20, 20)) n_columns = 6 n_rows = math.ceil(filters / n_columns) + 1 for i in range(filters): plt.subplot(n_rows, n_columns, i + 1) plt.title('Filter ' + str(i)) plt.imshow(units[0, :, :, i], interpolation="nearest", cmap="gray") plt.savefig('/Users/raghav/Documents/Uni/oc-nn/models/representation_sigmoid_dog.png') # def getActivations(layer, stimuli): # units = sess.run(layer, feed_dict={x: np.reshape(stimuli, [1, 784], order='F'), keep_prob: 1.0}) # plotNNFilter(units) def init_weights(shape): """ Weight initialization """ weights = tf.random_normal(shape,mean=0, stddev=0.00001) return tf.Variable(weights) def forwardprop(X, w_1, w_2): """ Forward-propagation. IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally. """ X = tf.cast(X, tf.float32) w_1 = tf.cast(w_1, tf.float32) w_2 = tf.cast(w_2, tf.float32) h = tf.nn.sigmoid(tf.matmul(X, w_1)) # The \sigma function yhat = tf.matmul(h, w_2) # The \varphi function return yhat g = lambda x : 1/(1 + tf.exp(-x)) def nnScore(X, w, V, g): X = tf.cast(X, tf.float32) w = tf.cast(w, tf.float32) V = tf.cast(V, tf.float32) return tf.matmul(g((tf.matmul(X, w))), V) def data_rep(X, w, V, g): X = tf.cast(X, tf.float32) w = tf.cast(w, tf.float32) return g((tf.matmul(X, w))) def relu(x): y = tf.nn.relu(x) return y def ocnn_obj(theta, X, nu, w1, w2, g,r): w = w1 V = w2 X = tf.cast(X, tf.float32) w = tf.cast(w1, tf.float32) V = tf.cast(w2, tf.float32) term1 = 0.5 * tf.reduce_sum(w**2) term2 = 0.5 * tf.reduce_sum(V**2) term3 = 1/nu * tf.reduce_mean(relu(r - nnScore(X, w, V, g))) term4 = -r return term1 + term2 + term3 + term4 # For testing the algorithm test_X = data_test # Symbols X = tf.placeholder("float32", shape=[None, x_size]) r = tf.get_variable("r", dtype=tf.float32,shape=(),trainable=False) # Weight initializations w_1 = init_weights((x_size, h_size)) w_2 = init_weights((h_size, y_size)) # Forward propagation yhat = forwardprop(X, w_1, w_2) predict = tf.argmax(yhat, axis=1) # Backward propagation # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=yhat)) cost = ocnn_obj(theta, X, nu, w_1, w_2, g,r) updates = tf.train.GradientDescentOptimizer(0.0001).minimize(cost) # Run SGD init = tf.global_variables_initializer() sess.run(init) rvalue = 0.1 start_time = time.time() for epoch in range(100): # Train with each example units = sess.run(updates, feed_dict={X: train_X,r:rvalue}) # plotNNFilter(units) with sess.as_default(): w1 = w_1.eval() w2 = w_2.eval() rvalue = nnScore(train_X, w1, w2, g) with sess.as_default(): rvalue = rvalue.eval() rvalue = np.percentile(rvalue,q=100*nu) print("Epoch = %d, r = %f" % (epoch + 1,rvalue)) trainTime = time.time() - start_time with sess.as_default(): w1 = w_1.eval() w2 = w_2.eval() start_time = time.time() train = nnScore(train_X, w1, w2, g) test = nnScore(test_X, w1, w2, g) train_rep = data_rep(train_X, w1, w2, g) test_rep = data_rep(test_X, w1, w2, g) testTime = time.time() - start_time with sess.as_default(): arrayTrain = train.eval() arrayTest = test.eval() arraytrain_rep =train_rep.eval() arraytest_rep= test_rep.eval() # rstar = r.eval() rstar =rvalue sess.close() print "Session Closed!!!" print "Saving Hidden layer weights w1 for cifar.. data" import scipy.io as sio sio.savemat('/Users/raghav/Documents/Uni/oc-nn/models/w1.mat', {'data': arraytrain_rep}) sio.savemat('/Users/raghav/Documents/Uni/oc-nn/models/w2.mat', {'data': arraytest_rep}) pos_decisionScore = arrayTrain-rstar pos_decisionScore[pos_decisionScore< 0] = 0 ## Clip all the negative values to zero neg_decisionScore = arrayTest-rstar # write_decisionScores2Csv(decision_scorePath, "OneClass_NN_sigmoid.csv", pos_decisionScore, neg_decisionScore) return [pos_decisionScore, neg_decisionScore,trainTime,testTime] def tf_OneClass_NN_relu(data_train,data_test,nu): tf.reset_default_graph() sess = tf.Session() train_X = data_train RANDOM_SEED = 42 tf.set_random_seed(RANDOM_SEED) # Layer's sizes x_size = train_X.shape[1] # Number of input nodes: 4 features and 1 bias print "Input Shape:", x_size h_size = 16 # Number of hidden nodes y_size = 1 # Number of outcomes (3 iris flowers) D = x_size K = h_size theta = np.random.normal(0, 1, K + K*D + 1) rvalue = np.random.normal(0,1,(len(train_X),y_size)) # nu = 0.1 def init_weights(shape): """ Weight initialization """ weights = tf.random_normal(shape,mean=0, stddev=0.00001) return tf.Variable(weights) def forwardprop(X, w_1, w_2): """ Forward-propagation. IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally. """ X = tf.cast(X, tf.float32) w_1 = tf.cast(w_1, tf.float32) w_2 = tf.cast(w_2, tf.float32) h = tf.nn.sigmoid(tf.matmul(X, w_1)) # The \sigma function yhat = tf.matmul(h, w_2) # The \varphi function return yhat g = lambda x : relu(x) def nnScore(X, w, V, g): X = tf.cast(X, tf.float32) w = tf.cast(w, tf.float32) V = tf.cast(V, tf.float32) return tf.matmul(g((tf.matmul(X, w))), V) def relu(x): y = tf.nn.relu(x) return y def ocnn_obj(theta, X, nu, w1, w2, g,r): w = w1 V = w2 X = tf.cast(X, tf.float32) w = tf.cast(w1, tf.float32) V = tf.cast(w2, tf.float32) term1 = 0.5 * tf.reduce_sum(w**2) term2 = 0.5 * tf.reduce_sum(V**2) term3 = 1/nu * tf.reduce_mean(relu(r - nnScore(X, w, V, g))) term4 = -r return term1 + term2 + term3 + term4 # For testing the algorithm test_X = data_test # Symbols X = tf.placeholder("float32", shape=[None, x_size]) r = tf.get_variable("r", dtype=tf.float32,shape=(),trainable=False) # Weight initializations w_1 = init_weights((x_size, h_size)) w_2 = init_weights((h_size, y_size)) # Forward propagation yhat = forwardprop(X, w_1, w_2) predict = tf.argmax(yhat, axis=1) # Backward propagation # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=yhat)) cost = ocnn_obj(theta, X, nu, w_1, w_2, g,r) updates = tf.train.GradientDescentOptimizer(0.0001).minimize(cost) # Run SGD init = tf.global_variables_initializer() sess.run(init) rvalue = 0.1 for epoch in range(100): # Train with each example sess.run(updates, feed_dict={X: train_X,r:rvalue}) with sess.as_default(): w1 = w_1.eval() w2 = w_2.eval() rvalue = nnScore(train_X, w1, w2, g) with sess.as_default(): rvalue = rvalue.eval() rvalue = np.percentile(rvalue,q=100*nu) print("Epoch = %d, r = %f" % (epoch + 1,rvalue)) with sess.as_default(): w1 = w_1.eval() w2 = w_2.eval() train = nnScore(train_X, w1, w2, g) test = nnScore(test_X, w1, w2, g) with sess.as_default(): arrayTrain = train.eval() arrayTest = test.eval() # rstar = r.eval() rstar =rvalue sess.close() print "Session Closed!!!" pos_decisionScore = arrayTrain-rstar pos_decisionScore[pos_decisionScore< 0] = 0 ## Clip all the negative values to zero neg_decisionScore = arrayTest-rstar return [pos_decisionScore,neg_decisionScore]
ext/bookstructures.py
kawaken/typescript-guide
456
130796
<filename>ext/bookstructures.py from docutils import nodes from docutils.parsers.rst import Directive from sphinx.locale import _ def frontmatter(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return [nodes.raw( '', r""" \include{tobiraura} \frontmatter \setcounter{page}{3} """, format='latex')] def mainmatter(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return [nodes.raw( '', r""" \withintoctrue \tableofcontents \withintocfalse \mainmatter """, format='latex')] def backmatter(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return [nodes.raw( '', r""" \backmatter """, format='latex')] def appendix(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return [nodes.raw( '', r""" \appendix """, format='latex')] def setup(app): app.add_directive('frontmatter', frontmatter, 1, (0, 0, 0)) app.add_directive('mainmatter', mainmatter, 1, (0, 0, 0)) app.add_directive('appendix', appendix, 1, (0, 0, 0)) app.add_directive('backmatter', backmatter, 1, (0, 0, 0))
pommerman/forward_model.py
aarunsrinivas/pommerman
725
130807
'''Module to manage and advanced game state''' from collections import defaultdict import numpy as np from . import constants from . import characters from . import utility class ForwardModel(object): """Class for helping with the [forward] modeling of the game state.""" def run(self, num_times, board, agents, bombs, items, flames, is_partially_observable, agent_view_size, action_space, training_agent=None, is_communicative=False): """Run the forward model. Args: num_times: The number of times to run it for. This is a maximum and it will stop early if we reach a done. board: The board state to run it from. agents: The agents to use to run it. bombs: The starting bombs. items: The starting items. flames: The starting flames. is_partially_observable: Whether the board is partially observable or not. Only applies to TeamRadio. agent_view_size: If it's partially observable, then the size of the square that the agent can view. action_space: The actions that each agent can take. training_agent: The training agent to pass to done. is_communicative: Whether the action depends on communication observations as well. Returns: steps: The list of step results, which are each a dict of "obs", "next_obs", "reward", "action". board: Updated board. agents: Updated agents, same models though. bombs: Updated bombs. items: Updated items. flames: Updated flames. done: Whether we completed the game in these steps. info: The result of the game if it's completed. """ steps = [] for _ in num_times: obs = self.get_observations( board, agents, bombs, is_partially_observable, agent_view_size) actions = self.act( agents, obs, action_space, is_communicative=is_communicative) board, agents, bombs, items, flames = self.step( actions, board, agents, bombs, items, flames) next_obs = self.get_observations( board, agents, bombs, is_partially_observable, agent_view_size) reward = self.get_rewards(agents, game_type, step_count, max_steps) done = self.get_done(agents, game_type, step_count, max_steps, training_agent) info = self.get_info(done, rewards, game_type, agents) steps.append({ "obs": obs, "next_obs": next_obs, "reward": reward, "actions": actions, }) if done: # Callback to let the agents know that the game has ended. for agent in agents: agent.episode_end(reward[agent.agent_id]) break return steps, board, agents, bombs, items, flames, done, info @staticmethod def act(agents, obs, action_space, is_communicative=False): """Returns actions for each agent in this list. Args: agents: A list of agent objects. obs: A list of matching observations per agent. action_space: The action space for the environment using this model. is_communicative: Whether the action depends on communication observations as well. Returns a list of actions. """ def act_ex_communication(agent): '''Handles agent's move without communication''' if agent.is_alive: return agent.act(obs[agent.agent_id], action_space=action_space) else: return constants.Action.Stop.value def act_with_communication(agent): '''Handles agent's move with communication''' if agent.is_alive: action = agent.act( obs[agent.agent_id], action_space=action_space) if type(action) == int: action = [action] + [0, 0] assert (type(action) == list) return action else: return [constants.Action.Stop.value, 0, 0] ret = [] for agent in agents: if is_communicative: ret.append(act_with_communication(agent)) else: ret.append(act_ex_communication(agent)) return ret @staticmethod def step(actions, curr_board, curr_agents, curr_bombs, curr_items, curr_flames, max_blast_strength=10): board_size = len(curr_board) # Tick the flames. Replace any dead ones with passages. If there is an # item there, then reveal that item. flames = [] for flame in curr_flames: position = flame.position if flame.is_dead(): item_value = curr_items.get(position) if item_value: del curr_items[position] else: item_value = constants.Item.Passage.value curr_board[position] = item_value else: flame.tick() flames.append(flame) curr_flames = flames # Redraw all current flames # Multiple flames may share a position and the map should contain # a flame until all flames are dead to avoid issues with bomb # movements and explosions. for flame in curr_flames: curr_board[flame.position] = constants.Item.Flames.value # Step the living agents and moving bombs. # If two agents try to go to the same spot, they should bounce back to # their previous spots. This is complicated with one example being when # there are three agents all in a row. If the one in the middle tries # to go to the left and bounces with the one on the left, and then the # one on the right tried to go to the middle one's position, she should # also bounce. A way of doing this is to gather all the new positions # before taking any actions. Then, if there are disputes, correct those # disputes iteratively. # Additionally, if two agents try to switch spots by moving into each # Figure out desired next position for alive agents alive_agents = [agent for agent in curr_agents if agent.is_alive] desired_agent_positions = [agent.position for agent in alive_agents] for num_agent, agent in enumerate(alive_agents): position = agent.position # We change the curr_board here as a safeguard. We will later # update the agent's new position. curr_board[position] = constants.Item.Passage.value action = actions[agent.agent_id] if action == constants.Action.Stop.value: pass elif action == constants.Action.Bomb.value: position = agent.position if not utility.position_is_bomb(curr_bombs, position): bomb = agent.maybe_lay_bomb() if bomb: curr_bombs.append(bomb) elif utility.is_valid_direction(curr_board, position, action): desired_agent_positions[num_agent] = agent.get_next_position( action) # Gather desired next positions for moving bombs. Handle kicks later. desired_bomb_positions = [bomb.position for bomb in curr_bombs] for num_bomb, bomb in enumerate(curr_bombs): curr_board[bomb.position] = constants.Item.Passage.value if bomb.is_moving(): desired_position = utility.get_next_position( bomb.position, bomb.moving_direction) if utility.position_on_board(curr_board, desired_position) \ and not utility.position_is_powerup(curr_board, desired_position) \ and not utility.position_is_wall(curr_board, desired_position): desired_bomb_positions[num_bomb] = desired_position # Position switches: # Agent <-> Agent => revert both to previous position. # Bomb <-> Bomb => revert both to previous position. # Agent <-> Bomb => revert Bomb to previous position. crossings = {} def crossing(current, desired): '''Checks to see if an agent is crossing paths''' current_x, current_y = current desired_x, desired_y = desired if current_x != desired_x: assert current_y == desired_y return ('X', min(current_x, desired_x), current_y) assert current_x == desired_x return ('Y', current_x, min(current_y, desired_y)) for num_agent, agent in enumerate(alive_agents): if desired_agent_positions[num_agent] != agent.position: desired_position = desired_agent_positions[num_agent] border = crossing(agent.position, desired_position) if border in crossings: # Crossed another agent - revert both to prior positions. desired_agent_positions[num_agent] = agent.position num_agent2, _ = crossings[border] desired_agent_positions[num_agent2] = alive_agents[ num_agent2].position else: crossings[border] = (num_agent, True) for num_bomb, bomb in enumerate(curr_bombs): if desired_bomb_positions[num_bomb] != bomb.position: desired_position = desired_bomb_positions[num_bomb] border = crossing(bomb.position, desired_position) if border in crossings: # Crossed - revert to prior position. desired_bomb_positions[num_bomb] = bomb.position num, is_agent = crossings[border] if not is_agent: # Crossed bomb - revert that to prior position as well. desired_bomb_positions[num] = curr_bombs[num].position else: crossings[border] = (num_bomb, False) # Deal with multiple agents or multiple bomb collisions on desired next # position by resetting desired position to current position for # everyone involved in the collision. agent_occupancy = defaultdict(int) bomb_occupancy = defaultdict(int) for desired_position in desired_agent_positions: agent_occupancy[desired_position] += 1 for desired_position in desired_bomb_positions: bomb_occupancy[desired_position] += 1 # Resolve >=2 agents or >=2 bombs trying to occupy the same space. change = True while change: change = False for num_agent, agent in enumerate(alive_agents): desired_position = desired_agent_positions[num_agent] curr_position = agent.position # Either another agent is going to this position or more than # one bomb is going to this position. In both scenarios, revert # to the original position. if desired_position != curr_position and \ (agent_occupancy[desired_position] > 1 or bomb_occupancy[desired_position] > 1): desired_agent_positions[num_agent] = curr_position agent_occupancy[curr_position] += 1 change = True for num_bomb, bomb in enumerate(curr_bombs): desired_position = desired_bomb_positions[num_bomb] curr_position = bomb.position if desired_position != curr_position and \ (bomb_occupancy[desired_position] > 1 or agent_occupancy[desired_position] > 1): desired_bomb_positions[num_bomb] = curr_position bomb_occupancy[curr_position] += 1 change = True # Handle kicks. agent_indexed_by_kicked_bomb = {} kicked_bomb_indexed_by_agent = {} delayed_bomb_updates = [] delayed_agent_updates = [] # Loop through all bombs to see if they need a good kicking or cause # collisions with an agent. for num_bomb, bomb in enumerate(curr_bombs): desired_position = desired_bomb_positions[num_bomb] if agent_occupancy[desired_position] == 0: # There was never an agent around to kick or collide. continue agent_list = [ (num_agent, agent) for (num_agent, agent) in enumerate(alive_agents) \ if desired_position == desired_agent_positions[num_agent]] if not agent_list: # Agents moved from collision. continue # The agent_list should contain a single element at this point. assert (len(agent_list) == 1) num_agent, agent = agent_list[0] if desired_position == agent.position: # Agent did not move if desired_position != bomb.position: # Bomb moved, but agent did not. The bomb should revert # and stop. delayed_bomb_updates.append((num_bomb, bomb.position)) continue # NOTE: At this point, we have that the agent in question tried to # move into this position. if not agent.can_kick: # If we move the agent at this point, then we risk having two # agents on a square in future iterations of the loop. So we # push this change to the next stage instead. delayed_bomb_updates.append((num_bomb, bomb.position)) delayed_agent_updates.append((num_agent, agent.position)) continue # Agent moved and can kick - see if the target for the kick never had anyhing on it direction = constants.Action(actions[agent.agent_id]) target_position = utility.get_next_position(desired_position, direction) if utility.position_on_board(curr_board, target_position) and \ agent_occupancy[target_position] == 0 and \ bomb_occupancy[target_position] == 0 and \ not utility.position_is_powerup(curr_board, target_position) and \ not utility.position_is_wall(curr_board, target_position): # Ok to update bomb desired location as we won't iterate over it again here # but we can not update bomb_occupancy on target position and need to check it again # However we need to set the bomb count on the current position to zero so # that the agent can stay on this position. bomb_occupancy[desired_position] = 0 delayed_bomb_updates.append((num_bomb, target_position)) agent_indexed_by_kicked_bomb[num_bomb] = num_agent kicked_bomb_indexed_by_agent[num_agent] = num_bomb bomb.moving_direction = direction # Bombs may still collide and we then need to reverse bomb and agent .. else: delayed_bomb_updates.append((num_bomb, bomb.position)) delayed_agent_updates.append((num_agent, agent.position)) for (num_bomb, bomb_position) in delayed_bomb_updates: desired_bomb_positions[num_bomb] = bomb_position bomb_occupancy[bomb_position] += 1 change = True for (num_agent, agent_position) in delayed_agent_updates: desired_agent_positions[num_agent] = agent_position agent_occupancy[agent_position] += 1 change = True while change: change = False for num_agent, agent in enumerate(alive_agents): desired_position = desired_agent_positions[num_agent] curr_position = agent.position # Agents and bombs can only share a square if they are both in their # original position (Agent dropped bomb and has not moved) if desired_position != curr_position and \ (agent_occupancy[desired_position] > 1 or bomb_occupancy[desired_position] != 0): # Late collisions resulting from failed kicks force this agent to stay at the # original position. Check if this agent successfully kicked a bomb above and undo # the kick. if num_agent in kicked_bomb_indexed_by_agent: num_bomb = kicked_bomb_indexed_by_agent[num_agent] bomb = curr_bombs[num_bomb] desired_bomb_positions[num_bomb] = bomb.position bomb_occupancy[bomb.position] += 1 del agent_indexed_by_kicked_bomb[num_bomb] del kicked_bomb_indexed_by_agent[num_agent] desired_agent_positions[num_agent] = curr_position agent_occupancy[curr_position] += 1 change = True for num_bomb, bomb in enumerate(curr_bombs): desired_position = desired_bomb_positions[num_bomb] curr_position = bomb.position # This bomb may be a boomerang, i.e. it was kicked back to the # original location it moved from. If it is blocked now, it # can't be kicked and the agent needs to move back to stay # consistent with other movements. if desired_position == curr_position and num_bomb not in agent_indexed_by_kicked_bomb: continue bomb_occupancy_ = bomb_occupancy[desired_position] agent_occupancy_ = agent_occupancy[desired_position] # Agents and bombs can only share a square if they are both in their # original position (Agent dropped bomb and has not moved) if bomb_occupancy_ > 1 or agent_occupancy_ != 0: desired_bomb_positions[num_bomb] = curr_position bomb_occupancy[curr_position] += 1 num_agent = agent_indexed_by_kicked_bomb.get(num_bomb) if num_agent is not None: agent = alive_agents[num_agent] desired_agent_positions[num_agent] = agent.position agent_occupancy[agent.position] += 1 del kicked_bomb_indexed_by_agent[num_agent] del agent_indexed_by_kicked_bomb[num_bomb] change = True for num_bomb, bomb in enumerate(curr_bombs): if desired_bomb_positions[num_bomb] == bomb.position and \ not num_bomb in agent_indexed_by_kicked_bomb: # Bomb was not kicked this turn and its desired position is its # current location. Stop it just in case it was moving before. bomb.stop() else: # Move bomb to the new position. # NOTE: We already set the moving direction up above. bomb.position = desired_bomb_positions[num_bomb] for num_agent, agent in enumerate(alive_agents): if desired_agent_positions[num_agent] != agent.position: agent.move(actions[agent.agent_id]) if utility.position_is_powerup(curr_board, agent.position): agent.pick_up( constants.Item(curr_board[agent.position]), max_blast_strength=max_blast_strength) # Explode bombs. exploded_map = np.zeros_like(curr_board) has_new_explosions = False for bomb in curr_bombs: bomb.tick() if bomb.exploded(): has_new_explosions = True elif curr_board[bomb.position] == constants.Item.Flames.value: bomb.fire() has_new_explosions = True # Chain the explosions. while has_new_explosions: next_bombs = [] has_new_explosions = False for bomb in curr_bombs: if not bomb.exploded(): next_bombs.append(bomb) continue bomb.bomber.incr_ammo() for _, indices in bomb.explode().items(): for r, c in indices: if not all( [r >= 0, c >= 0, r < board_size, c < board_size]): break if curr_board[r][c] == constants.Item.Rigid.value: break exploded_map[r][c] = 1 if curr_board[r][c] == constants.Item.Wood.value: break curr_bombs = next_bombs for bomb in curr_bombs: if bomb.in_range(exploded_map): bomb.fire() has_new_explosions = True # Update the board's bombs. for bomb in curr_bombs: curr_board[bomb.position] = constants.Item.Bomb.value # Update the board's flames. flame_positions = np.where(exploded_map == 1) for row, col in zip(flame_positions[0], flame_positions[1]): curr_flames.append(characters.Flame((row, col))) for flame in curr_flames: curr_board[flame.position] = constants.Item.Flames.value # Kill agents on flames. Otherwise, update position on curr_board. for agent in alive_agents: if curr_board[agent.position] == constants.Item.Flames.value: agent.die() else: curr_board[agent.position] = utility.agent_value(agent.agent_id) return curr_board, curr_agents, curr_bombs, curr_items, curr_flames def get_observations(self, curr_board, agents, bombs, flames, is_partially_observable, agent_view_size, game_type, game_env): """Gets the observations as an np.array of the visible squares. The agent gets to choose whether it wants to keep the fogged part in memory. """ board_size = len(curr_board) def make_bomb_maps(position): ''' Makes an array of an agents bombs and the bombs attributes ''' blast_strengths = np.zeros((board_size, board_size)) life = np.zeros((board_size, board_size)) moving_direction = np.zeros((board_size, board_size)) for bomb in bombs: x, y = bomb.position if not is_partially_observable \ or in_view_range(position, x, y): blast_strengths[(x, y)] = bomb.blast_strength life[(x, y)] = bomb.life if bomb.moving_direction is not None: moving_direction[(x, y)] = bomb.moving_direction.value return blast_strengths, life, moving_direction def make_flame_map(position): ''' Makes an array of an agents flame life''' life = np.zeros((board_size, board_size)) for flame in flames: x, y = flame.position if not is_partially_observable \ or in_view_range(position, x, y): # +1 needed because flame removal check is done # before flame is ticked down, i.e. flame life # in environment is 2 -> 1 -> 0 -> dead life[(x, y)] = flame.life + 1 return life def in_view_range(position, v_row, v_col): '''Checks to see if a tile is in an agents viewing area''' row, col = position return all([ row >= v_row - agent_view_size, row <= v_row + agent_view_size, col >= v_col - agent_view_size, col <= v_col + agent_view_size ]) attrs = [ 'position', 'blast_strength', 'can_kick', 'teammate', 'ammo', 'enemies' ] alive_agents = [ utility.agent_value(agent.agent_id) for agent in agents if agent.is_alive ] observations = [] for agent in agents: agent_obs = {'alive': alive_agents} board = curr_board.copy() if is_partially_observable: for row in range(board_size): for col in range(board_size): if not in_view_range(agent.position, row, col): board[row, col] = constants.Item.Fog.value agent_obs['board'] = board bomb_blast_strengths, bomb_life, bomb_moving_direction = make_bomb_maps(agent.position) agent_obs['bomb_blast_strength'] = bomb_blast_strengths agent_obs['bomb_life'] = bomb_life agent_obs['bomb_moving_direction'] = bomb_moving_direction flame_life = make_flame_map(agent.position) agent_obs['flame_life'] = flame_life agent_obs['game_type'] = game_type.value agent_obs['game_env'] = game_env for attr in attrs: assert hasattr(agent, attr) agent_obs[attr] = getattr(agent, attr) observations.append(agent_obs) return observations @staticmethod def get_done(agents, step_count, max_steps, game_type, training_agent): alive = [agent for agent in agents if agent.is_alive] alive_ids = sorted([agent.agent_id for agent in alive]) if step_count >= max_steps: return True elif game_type == constants.GameType.FFA or game_type == constants.GameType.OneVsOne: if training_agent is not None and training_agent not in alive_ids: return True return len(alive) <= 1 elif any([ len(alive_ids) <= 1, alive_ids == [0, 2], alive_ids == [1, 3], ]): return True return False @staticmethod def get_info(done, rewards, game_type, agents): if game_type == constants.GameType.FFA or game_type == constants.GameType.OneVsOne: alive = [agent for agent in agents if agent.is_alive] if done: if len(alive) != 1: # Either we have more than 1 alive (reached max steps) or # we have 0 alive (last agents died at the same time). return { 'result': constants.Result.Tie, } else: return { 'result': constants.Result.Win, 'winners': [num for num, reward in enumerate(rewards) \ if reward == 1] } else: return { 'result': constants.Result.Incomplete, } elif done: # We are playing a team game. if rewards == [-1] * 4: return { 'result': constants.Result.Tie, } else: return { 'result': constants.Result.Win, 'winners': [num for num, reward in enumerate(rewards) \ if reward == 1], } else: return { 'result': constants.Result.Incomplete, } @staticmethod def get_rewards(agents, game_type, step_count, max_steps): def any_lst_equal(lst, values): '''Checks if list are equal''' return any([lst == v for v in values]) alive_agents = [num for num, agent in enumerate(agents) \ if agent.is_alive] if game_type == constants.GameType.FFA: if len(alive_agents) == 1: # An agent won. Give them +1, others -1. return [2 * int(agent.is_alive) - 1 for agent in agents] elif step_count >= max_steps: # Game is over from time. Everyone gets -1. return [-1] * 4 else: # Game running: 0 for alive, -1 for dead. return [int(agent.is_alive) - 1 for agent in agents] elif game_type == constants.GameType.OneVsOne: if len(alive_agents) == 1: # An agent won. Give them +1, the other -1. return [2 * int(agent.is_alive) - 1 for agent in agents] elif step_count >= max_steps: # Game is over from time. Everyone gets -1. return [-1] * 2 else: # Game running return [0, 0] else: # We are playing a team game. if any_lst_equal(alive_agents, [[0, 2], [0], [2]]): # Team [0, 2] wins. return [1, -1, 1, -1] elif any_lst_equal(alive_agents, [[1, 3], [1], [3]]): # Team [1, 3] wins. return [-1, 1, -1, 1] elif step_count >= max_steps: # Game is over by max_steps. All agents tie. return [-1] * 4 elif len(alive_agents) == 0: # Everyone's dead. All agents tie. return [-1] * 4 else: # No team has yet won or lost. return [0] * 4
tests/snippets.py
pierogis/imageio-ffmpeg
127
130811
<reponame>pierogis/imageio-ffmpeg<gh_stars>100-1000 """ Snippets of code that are hard to bring under test, but that can be used to manually test the behavior of imageip-ffmpeg in certain use-cases. Some may depend on imageio. """ # %% Write a series of large frames # In earlier versions of imageio-ffmpeg, the ffmpeg process was given a timeout # to complete, but this timeout must be longer for longer movies. The default # is now to wait for ffmpeg. import os import numpy as np import imageio_ffmpeg ims = [ np.random.uniform(0, 255, size=(1000, 1000, 3)).astype(np.uint8) for i in range(10) ] filename = os.path.expanduser("~/Desktop/foo.mp4") w = imageio_ffmpeg.write_frames(filename, (1000, 1000), ffmpeg_timeout=0) w.send(None) for i in range(200): w.send(ims[i % 10]) print(i) w.close() # %% Behavior of KeyboardInterrupt / Ctrl+C import os import imageio_ffmpeg filename = os.path.expanduser("~/.imageio/images/cockatoo.mp4") reader = imageio_ffmpeg.read_frames(filename) meta = reader.__next__() try: input("Do a manual KeyboardInterrupt now [Ctrl]+[c]") # Note: Raising an error with code won't trigger the original error. except BaseException as err: print(err) print("out1", len(reader.__next__())) print("out2", len(reader.__next__())) print("closing") reader.close() print("closed")
axelrod/tests/strategies/test_gambler.py
nandhinianandj/Axelrod
596
130818
<filename>axelrod/tests/strategies/test_gambler.py """Test for the Gambler strategy. Most tests come from the LookerUp test suite. """ import copy import unittest import axelrod as axl from axelrod.load_data_ import load_pso_tables from axelrod.strategies.lookerup import create_lookup_table_keys from .test_evolvable_player import PartialClass, TestEvolvablePlayer from .test_lookerup import convert_original_to_current from .test_player import TestPlayer tables = load_pso_tables("pso_gambler.csv", directory="data") C, D = axl.Action.C, axl.Action.D random = axl.RandomGenerator() class TestGambler(TestPlayer): name = "Gambler" player = axl.Gambler expected_classifier = { "memory_depth": 1, "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } expected_class_classifier = copy.copy(expected_classifier) def test_strategy(self): tft_table = {((), (D,), ()): 0, ((), (C,), ()): 1} self.versus_test( axl.Alternator(), expected_actions=[(C, C)] + [(C, D), (D, C)] * 5, init_kwargs={"lookup_dict": tft_table}, ) def test_stochastic_values(self): stochastic_lookup = {((), (), ()): 0.3} expected_actions = [(C, C), (D, C), (D, C), (C, C), (D, C)] self.versus_test( axl.Cooperator(), expected_actions=expected_actions, init_kwargs={"lookup_dict": stochastic_lookup}, seed=80, ) class TestPSOGamblerMem1(TestPlayer): name = "PSO Gambler Mem1" player = axl.PSOGamblerMem1 expected_classifier = { "memory_depth": 1, "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } expected_class_classifier = copy.copy(expected_classifier) def test_new_data(self): original_data = { ("", "C", "C"): 1.0, ("", "C", "D"): 0.52173487, ("", "D", "C"): 0.0, ("", "D", "D"): 0.12050939, } converted_original = convert_original_to_current(original_data) self.assertEqual(self.player().lookup_dict, converted_original) def test_strategy(self): vs_cooperator = [(C, C)] * 5 self.versus_test(axl.Cooperator(), expected_actions=vs_cooperator) def test_defects_forever_with_correct_conditions(self): opponent_actions = [D, D] + [C] * 10 expected = [(C, D), (C, D), (D, C)] + [(D, C)] * 9 self.versus_test( axl.MockPlayer(actions=opponent_actions), expected_actions=expected, seed=1, ) class TestPSOGambler1_1_1(TestPlayer): name = "PSO Gambler 1_1_1" player = axl.PSOGambler1_1_1 expected_classifier = { "memory_depth": float("inf"), "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_new_data(self): original_data = { ("C", "C", "C"): 1.0, ("C", "C", "D"): 0.12304797, ("C", "D", "C"): 0.0, ("C", "D", "D"): 0.13581423, ("D", "C", "C"): 1.0, ("D", "C", "D"): 0.57740178, ("D", "D", "C"): 0.0, ("D", "D", "D"): 0.11886807, } converted_original = convert_original_to_current(original_data) self.assertEqual(self.player().lookup_dict, converted_original) def test_cooperate_forever(self): opponent = [D] * 3 + [C] * 10 expected = [(C, D), (D, D), (D, D)] + [(C, C)] * 10 self.versus_test( axl.MockPlayer(opponent), expected_actions=expected, seed=4 ) def test_defect_forever(self): opponent_actions = [C] + [D] + [C] * 10 expected = [(C, C), (C, D)] + [(D, C)] * 10 self.versus_test( axl.MockPlayer(opponent_actions), expected_actions=expected, seed=2 ) def test_defect_forever2(self): opponent_actions = [D] + [C] * 10 expected = [(C, D)] + [(D, C)] * 10 self.versus_test( axl.MockPlayer(opponent_actions), expected_actions=expected, seed=4 ) class TestPSOGambler2_2_2(TestPlayer): name = "PSO Gambler 2_2_2" player = axl.PSOGambler2_2_2 expected_classifier = { "memory_depth": float("inf"), "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_new_data(self): original_data = { ("CC", "CC", "CC"): 1.0, ("CC", "CC", "CD"): 1.0, ("CC", "CC", "DC"): 0.0, ("CC", "CC", "DD"): 0.02126434, ("CC", "CD", "CC"): 0.0, ("CC", "CD", "CD"): 1.0, ("CC", "CD", "DC"): 1.0, ("CC", "CD", "DD"): 0.0, ("CC", "DC", "CC"): 0.0, ("CC", "DC", "CD"): 0.0, ("CC", "DC", "DC"): 0.0, ("CC", "DC", "DD"): 0.0, ("CC", "DD", "CC"): 0.0, ("CC", "DD", "CD"): 0.0, ("CC", "DD", "DC"): 0.0, ("CC", "DD", "DD"): 1.0, ("CD", "CC", "CC"): 1.0, ("CD", "CC", "CD"): 0.95280465, ("CD", "CC", "DC"): 0.80897541, ("CD", "CC", "DD"): 0.0, ("CD", "CD", "CC"): 0.0, ("CD", "CD", "CD"): 0.0, ("CD", "CD", "DC"): 0.0, ("CD", "CD", "DD"): 0.65147565, ("CD", "DC", "CC"): 0.15412392, ("CD", "DC", "CD"): 0.24922166, ("CD", "DC", "DC"): 0.0, ("CD", "DC", "DD"): 0.0, ("CD", "DD", "CC"): 0.0, ("CD", "DD", "CD"): 0.0, ("CD", "DD", "DC"): 0.0, ("CD", "DD", "DD"): 0.24523149, ("DC", "CC", "CC"): 1.0, ("DC", "CC", "CD"): 0.0, ("DC", "CC", "DC"): 0.0, ("DC", "CC", "DD"): 0.43278586, ("DC", "CD", "CC"): 1.0, ("DC", "CD", "CD"): 0.0, ("DC", "CD", "DC"): 0.23563137, ("DC", "CD", "DD"): 1.0, ("DC", "DC", "CC"): 1.0, ("DC", "DC", "CD"): 1.0, ("DC", "DC", "DC"): 0.00227615, ("DC", "DC", "DD"): 0.0, ("DC", "DD", "CC"): 0.0, ("DC", "DD", "CD"): 0.0, ("DC", "DD", "DC"): 0.0, ("DC", "DD", "DD"): 1.0, ("DD", "CC", "CC"): 0.0, ("DD", "CC", "CD"): 0.0, ("DD", "CC", "DC"): 0.0, ("DD", "CC", "DD"): 0.0, ("DD", "CD", "CC"): 0.15140743, ("DD", "CD", "CD"): 0.0, ("DD", "CD", "DC"): 0.0, ("DD", "CD", "DD"): 0.0, ("DD", "DC", "CC"): 0.0, ("DD", "DC", "CD"): 0.0, ("DD", "DC", "DC"): 0.0, ("DD", "DC", "DD"): 1.0, ("DD", "DD", "CC"): 0.0, ("DD", "DD", "CD"): 1.0, ("DD", "DD", "DC"): 0.77344942, ("DD", "DD", "DD"): 0.0, } converted_original = convert_original_to_current(original_data) self.assertEqual(self.player().lookup_dict, converted_original) def test_vs_defector(self): expected = [(C, D), (C, D)] + [(D, D)] * 10 self.versus_test(axl.Defector(), expected_actions=expected) def test_vs_cooperator(self): expected = [(C, C)] * 10 self.versus_test(axl.Cooperator(), expected_actions=expected) def test_vs_alternator(self): expected = [(C, C), (C, D), (C, C), (D, D), (D, C), (D, D), (D, C)] self.versus_test(axl.Alternator(), expected_actions=expected, seed=20) def test_vs_DCDDC(self): opponent_actions = [D, C, D, D, C] expected = [ (C, D), (C, C), (D, D), (D, D), (C, C), (D, D), (D, C), (D, D), (D, D), (C, C), ] self.versus_test( axl.MockPlayer(actions=opponent_actions), expected_actions=expected, seed=2, ) def test_vs_DCDDC2(self): opponent_actions = [D, C, D, D, C] expected = [ (C, D), (C, C), (D, D), (D, D), (C, C), (D, D), (D, C), (D, D), (D, D), (C, C), ] expected[5] = (C, D) self.versus_test( axl.MockPlayer(actions=opponent_actions), expected_actions=expected, seed=531, ) class TestPSOGambler2_2_2_Noise05(TestPlayer): name = "PSO Gambler 2_2_2 Noise 05" player = axl.PSOGambler2_2_2_Noise05 expected_classifier = { "memory_depth": float("inf"), "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_new_data(self): original_data = { ("CC", "CC", "CC"): 1.0, ("CC", "CC", "CD"): 0.0, ("CC", "CC", "DC"): 1.0, ("CC", "CC", "DD"): 0.63548102, ("CC", "CD", "CC"): 1.0, ("CC", "CD", "CD"): 1.0, ("CC", "CD", "DC"): 1.0, ("CC", "CD", "DD"): 0.0, ("CC", "DC", "CC"): 0.0, ("CC", "DC", "CD"): 1.0, ("CC", "DC", "DC"): 0.0, ("CC", "DC", "DD"): 0.0, ("CC", "DD", "CC"): 1.0, ("CC", "DD", "CD"): 0.0, ("CC", "DD", "DC"): 0.0, ("CC", "DD", "DD"): 0.0, ("CD", "CC", "CC"): 1.0, ("CD", "CC", "CD"): 1.0, ("CD", "CC", "DC"): 0.0, ("CD", "CC", "DD"): 0.0, ("CD", "CD", "CC"): 0.0, ("CD", "CD", "CD"): 0.13863175, ("CD", "CD", "DC"): 1.0, ("CD", "CD", "DD"): 0.7724137, ("CD", "DC", "CC"): 0.0, ("CD", "DC", "CD"): 1.0, ("CD", "DC", "DC"): 0.0, ("CD", "DC", "DD"): 0.07127653, ("CD", "DD", "CC"): 0.0, ("CD", "DD", "CD"): 1.0, ("CD", "DD", "DC"): 0.28124022, ("CD", "DD", "DD"): 0.0, ("DC", "CC", "CC"): 0.0, ("DC", "CC", "CD"): 0.98603825, ("DC", "CC", "DC"): 0.0, ("DC", "CC", "DD"): 0.0, ("DC", "CD", "CC"): 1.0, ("DC", "CD", "CD"): 0.06434619, ("DC", "CD", "DC"): 1.0, ("DC", "CD", "DD"): 1.0, ("DC", "DC", "CC"): 1.0, ("DC", "DC", "CD"): 0.50999729, ("DC", "DC", "DC"): 0.00524508, ("DC", "DC", "DD"): 1.0, ("DC", "DD", "CC"): 1.0, ("DC", "DD", "CD"): 1.0, ("DC", "DD", "DC"): 1.0, ("DC", "DD", "DD"): 1.0, ("DD", "CC", "CC"): 0.0, ("DD", "CC", "CD"): 1.0, ("DD", "CC", "DC"): 0.16240799, ("DD", "CC", "DD"): 0.0, ("DD", "CD", "CC"): 0.0, ("DD", "CD", "CD"): 1.0, ("DD", "CD", "DC"): 1.0, ("DD", "CD", "DD"): 0.0, ("DD", "DC", "CC"): 0.0, ("DD", "DC", "CD"): 1.0, ("DD", "DC", "DC"): 0.87463905, ("DD", "DC", "DD"): 0.0, ("DD", "DD", "CC"): 0.0, ("DD", "DD", "CD"): 1.0, ("DD", "DD", "DC"): 0.0, ("DD", "DD", "DD"): 0.0, } converted_original = convert_original_to_current(original_data) self.assertEqual(self.player().lookup_dict, converted_original) def test_vs_defector(self): expected = [(C, D), (C, D)] + [(D, D)] * 10 self.versus_test(axl.Defector(), expected_actions=expected) def test_vs_cooperator(self): expected = [(C, C)] * 10 self.versus_test(axl.Cooperator(), expected_actions=expected) def test_vs_alternator(self): expected = [(C, C), (C, D), (C, C), (D, D), (D, C), (D, D), (C, C)] self.versus_test(axl.Alternator(), expected_actions=expected, seed=2) def test_vs_alternator2(self): expected = [(C, C), (C, D), (C, C), (D, D), (D, C), (D, D), (C, C)] expected[4] = (C, C) expected[6] = (D, C) self.versus_test(axl.Alternator(), expected_actions=expected, seed=3) def test_vs_DCDDC(self): opponent_actions = [D, C, D, D, C] expected = [ (C, D), (C, C), (D, D), (D, D), (C, C), (D, D), (D, C), (C, D), (C, D), ] self.versus_test( axl.MockPlayer(opponent_actions), expected_actions=expected, seed=1 ) def test_vs_DCDDC2(self): opponent_actions = [D, C, D, D, C] expected = [ (C, D), (C, C), (D, D), (D, D), (C, C), (D, D), (D, C), (C, D), (D, D), # different than above test ] self.versus_test( axl.MockPlayer(opponent_actions), expected_actions=expected, seed=5, ) def test_vs_DCDDC3(self): opponent_actions = [D, C, D, D, C] expected = [ (C, D), (C, C), (D, D), (D, D), (C, C), (D, D), (D, C), (C, C), # different than above test (D, D), # different than above test (D, D), # different than above test ] new_expected = expected[:6] + [(C, C), (D, D), (D, D)] self.versus_test( axl.MockPlayer(opponent_actions), expected_actions=new_expected, seed=10, ) class TestZDMem2(TestPlayer): name = "ZD-Mem2" player = axl.ZDMem2 expected_classifier = { "memory_depth": 2, "stochastic": True, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_new_data(self): original_data = { ("", "CC", "CC"): 11 / 12, ("", "CC", "CD"): 4 / 11, ("", "CC", "DC"): 7 / 9, ("", "CC", "DD"): 1 / 10, ("", "CD", "CC"): 5 / 6, ("", "CD", "CD"): 3 / 11, ("", "CD", "DC"): 7 / 9, ("", "CD", "DD"): 1 / 10, ("", "DC", "CC"): 2 / 3, ("", "DC", "CD"): 1 / 11, ("", "DC", "DC"): 7 / 9, ("", "DC", "DD"): 1 / 10, ("", "DD", "CC"): 3 / 4, ("", "DD", "CD"): 2 / 11, ("", "DD", "DC"): 7 / 9, ("", "DD", "DD"): 1 / 10, } converted_original = convert_original_to_current(original_data) self.assertEqual(self.player().lookup_dict, converted_original) def test_vs_defector(self): expected = [ (C, D), (C, D), (D, D), (D, D), (D, D), (D, D), (D, D), (D, D), (C, D), (D, D), ] self.versus_test(axl.Defector(), expected_actions=expected, seed=30) def test_vs_cooperator(self): expected = [ (C, C), (C, C), (C, C), (C, C), (C, C), (D, C), (C, C), (D, C), (C, C), (C, C), ] self.versus_test(axl.Cooperator(), expected_actions=expected, seed=33) def test_vs_alternator(self): expected = [(C, C), (C, D), (D, C), (D, D), (C, C), (C, D), (D, C)] self.versus_test(axl.Alternator(), expected_actions=expected, seed=42) def test_vs_alternator2(self): expected = [(C, C), (C, D), (C, C), (D, D), (D, C), (C, D), (D, C)] self.versus_test(axl.Alternator(), expected_actions=expected, seed=67) class TestEvolvableGambler(unittest.TestCase): def test_receive_vector(self): plays, op_plays, op_start_plays = 1, 1, 1 player = axl.EvolvableGambler( parameters=(plays, op_plays, op_start_plays), seed=1 ) self.assertRaises( AttributeError, axl.EvolvableGambler.__getattribute__, *[player, "vector"] ) vector = [random.random() for _ in range(8)] player.receive_vector(vector) self.assertEqual(player.pattern, vector) def test_vector_to_instance(self): plays, op_plays, op_start_plays = 1, 1, 1 player = axl.EvolvableGambler( parameters=(plays, op_plays, op_start_plays), seed=1 ) vector = [random.random() for _ in range(8)] player.receive_vector(vector) keys = create_lookup_table_keys( player_depth=plays, op_depth=op_plays, op_openings_depth=op_start_plays, ) action_dict = dict(zip(keys, vector)) self.assertEqual(player._lookup.dictionary, action_dict) def test_create_vector_bounds(self): plays, op_plays, op_start_plays = 1, 1, 1 player = axl.EvolvableGambler( parameters=(plays, op_plays, op_start_plays), seed=1 ) lb, ub = player.create_vector_bounds() self.assertIsInstance(lb, list) self.assertIsInstance(ub, list) self.assertEqual(len(lb), 8) self.assertEqual(len(ub), 8) def test_mutate_value_bounds(self): player = axl.EvolvableGambler(parameters=(1, 1, 1), seed=0) self.assertEqual(player.mutate_value(2), 1) self.assertEqual(player.mutate_value(-2), 0) class TestEvolvableGambler2(TestEvolvablePlayer): name = "EvolvableGambler" player_class = axl.EvolvableGambler parent_class = axl.Gambler parent_kwargs = ["lookup_dict"] init_parameters = {"parameters": (1, 1, 1), "initial_actions": (C,)} class TestEvolvableGambler3(TestEvolvablePlayer): name = "EvolvableGambler" player_class = axl.EvolvableGambler parent_class = axl.Gambler parent_kwargs = ["lookup_dict"] init_parameters = { "parameters": (3, 2, 1), "initial_actions": ( C, C, C, ), } class TestEvolvableGambler4(TestEvolvablePlayer): name = "EvolvableGambler" player_class = axl.EvolvableGambler parent_class = axl.Gambler parent_kwargs = ["lookup_dict"] init_parameters = { "parameters": (2, 2, 2), "pattern": [random.random() for _ in range(64)], "initial_actions": ( C, C, ), } # Substitute EvolvableHMMPlayer as a regular HMMPlayer. EvolvableGamblerWithDefault = PartialClass( axl.EvolvableGambler, pattern=tables[("PSO Gambler 2_2_2", 2, 2, 2)], parameters=(2, 2, 2), initial_actions=( C, C, ), ) class EvolvableGamblerAsGambler(TestPSOGambler2_2_2): player = EvolvableGamblerWithDefault def test_equality_of_clone(self): pass def test_equality_of_pickle_clone(self): pass def test_repr(self): pass
noxfile.py
jads-nl/intro-to-python
614
130863
<reponame>jads-nl/intro-to-python<filename>noxfile.py<gh_stars>100-1000 """Configure nox as the task runner. Nox provides the following tasks: - "init-project": install the pre-commit hooks - "doctests": run the xdoctests in the source files - "fix-branch-references": adjusts links with git branch references in various files (e.g., Mardown or notebooks) """ import contextlib import glob import os import re import shutil import subprocess import tempfile import nox REPOSITORY = "webartifex/intro-to-python" SRC_LOCATIONS = ( "02_functions/sample_module.py", "11_classes/sample_package", ) # Use a unified .cache/ folder for all develop tools. nox.options.envdir = ".cache/nox" # All tools except git and poetry are project dependencies. # Avoid accidental successes if the environment is not set up properly. nox.options.error_on_external_run = True @nox.session(name="init-project", venv_backend="none") def init_project(session): """Install the pre-commit hooks.""" for type_ in ( "pre-commit", "pre-merge-commit", ): session.run("poetry", "run", "pre-commit", "install", f"--hook-type={type_}") # Copy the extensions' JavaScript and CSS files into Jupyter's search directory. session.run( "poetry", "run", "jupyter", "contrib", "nbextension", "install", "--user" ) @nox.session(venv_backend="none") def doctests(session): """Run the xdoctests in the source files.""" for location in SRC_LOCATIONS: session.run("poetry", "run", "xdoctest", "--silent", location) @nox.session(name="fix-branch-references", venv_backend="none") def fix_branch_references(_session): """Change git branch references. Intended to be run as a pre-commit hook. Many files in the project (e.g., README.md) contain links to resources on github.com, nbviewer.jupyter.org, or mybinder.org that contain git branch labels. This task rewrites branch labels into either "main" or "develop". """ # Glob patterns that expand into the files whose links are re-written. paths = ["*.md", "**/*.ipynb"] branch = ( subprocess.check_output( ("git", "rev-parse", "--abbrev-ref", "HEAD"), ) .decode() .strip() ) # If the current branch is only temporary and will be merged into "main", ... if branch.startswith("release-") or branch.startswith("hotfix-"): branch = "main" # If the branch is not "main", we assume it is a feature branch. elif branch != "main": branch = "develop" rewrites = [ { "name": "github", "pattern": re.compile( fr"((((http)|(https))://github\.com/{REPOSITORY}/((blob)|(tree))/)([\w-]+)/)" ), "replacement": fr"\2{branch}/", }, { "name": "nbviewer", "pattern": re.compile( fr"((((http)|(https))://nbviewer\.jupyter\.org/github/{REPOSITORY}/((blob)|(tree))/)([\w-]+)/)", ), "replacement": fr"\2{branch}/", }, { "name": "mybinder", "pattern": re.compile( fr"((((http)|(https))://mybinder\.org/v2/gh/{REPOSITORY}/)([\w-]+)\?)", ), "replacement": fr"\2{branch}?", }, ] for expanded in _expand(*paths): with _line_by_line_replace(expanded) as (old_file, new_file): for line in old_file: for rewrite in rewrites: line = re.sub(rewrite["pattern"], rewrite["replacement"], line) new_file.write(line) def _expand(*patterns): """Expand glob patterns into paths. Args: *patterns: the patterns to be expanded Yields: path: a single expanded path """ for pattern in patterns: yield from glob.glob(pattern.strip()) @contextlib.contextmanager def _line_by_line_replace(path): """Replace/change the lines in a file one by one. This generator function yields two file handles, one to the current file (i.e., `old_file`) and one to its replacement (i.e., `new_file`). Usage: loop over the lines in `old_file` and write the files to be kept to `new_file`. Files not written to `new_file` are removed! Args: path: the file whose lines are to be replaced Yields: old_file, new_file: handles to a file and its replacement """ file_handle, new_file_path = tempfile.mkstemp() with os.fdopen(file_handle, "w") as new_file: with open(path) as old_file: yield old_file, new_file shutil.copymode(path, new_file_path) os.remove(path) shutil.move(new_file_path, path)
examples/clingo/tmode/tmode.py
potassco/gringo
423
130864
from sys import stdout, exit from textwrap import dedent from copy import copy from clingo.application import Application from clingo import SymbolType, Number, Function, ast, clingo_main class TermTransformer(ast.Transformer): def __init__(self, parameter): self.parameter = parameter def __get_param(self, name, location): n = name.replace('\'', '') primes = len(name) - len(n) param = ast.SymbolicTerm(location, self.parameter) if primes > 0: param = ast.BinaryOperation(location, ast.BinaryOperator.Minus, param, ast.SymbolicTerm(location, Number(primes))) return n, param def visit_Function(self, term): name, param = self.__get_param(term.name, term.location) term = term.update(name=name) term.arguments.append(param) return term def visit_SymbolicTerm(self, term): # this function is not necessary if gringo's parser is used # but this case could occur in a valid AST raise RuntimeError("not implemented") class ProgramTransformer(ast.Transformer): def __init__(self, parameter): self.final = False self.parameter = parameter self.term_transformer = TermTransformer(parameter) def visit(self, x, *args, **kwargs): ret = super().visit(x, *args, **kwargs) if self.final and hasattr(ret, "body"): if x is ret: ret = copy(x) loc = ret.location fun = ast.Function(loc, "finally", [ast.SymbolicTerm(loc, self.parameter)], False) atm = ast.SymbolicAtom(fun) lit = ast.Literal(loc, ast.Sign.NoSign, atm) ret.body.append(lit) return ret def visit_SymbolicAtom(self, atom): return atom.update(symbol=self.term_transformer(atom.symbol)) def visit_Program(self, prg): self.final = prg.name == "final" prg = copy(prg) if self.final: prg.name = "static" prg.parameters.append(ast.Id(prg.location, self.parameter.name)) return prg def visit_ShowSignature(self, sig): return sig.update(arity=sig.arity + 1) def visit_ProjectSignature(self, sig): return sig.update(arity=sig.arity + 1) class TModeApp(Application): def __init__(self): self._imin = 0 self._imax = None self._istop = "SAT" self._horizon = 0 def _parse_imin(self, value): try: self._imin = int(value) except ValueError: return False return self._imin >= 0 def _parse_imax(self, value): if value.upper() in ("INF", "INFINITY"): self._imax = None return True try: self._imax = int(value) except ValueError: return False return self._imax >= 0 def _parse_istop(self, value): self._istop = value.upper() return self._istop in ["SAT", "UNSAT", "UNKNOWN"] def register_options(self, options): group = "Incremental Options" options.add(group, "imin", "Minimum number of solving steps [0]", self._parse_imin, argument="<n>") options.add(group, "imax", "Maximum number of solving steps [infinity]", self._parse_imax, argument="<n>") options.add(group, "istop", dedent("""\ Stop criterion [sat] <arg>: {sat|unsat|unknown}"""), self._parse_istop) def print_model(self, model, printer): table = {} for sym in model.symbols(shown=True): if sym.type == SymbolType.Function and len(sym.arguments) > 0: table.setdefault(sym.arguments[-1], []).append(Function(sym.name, sym.arguments[:-1])) for step, symbols in sorted(table.items()): stdout.write(" State {}:".format(step)) sig = None for sym in sorted(symbols): if (sym.name, len(sym.arguments)) != sig: stdout.write("\n ") sig = (sym.name, len(sym.arguments)) stdout.write(" {}".format(sym)) stdout.write("\n") def _main(self, ctl): step, ret = 0, None while ((self._imax is None or step < self._imax) and (step == 0 or step < self._imin or ( (self._istop == "SAT" and not ret.satisfiable) or (self._istop == "UNSAT" and not ret.unsatisfiable) or (self._istop == "UNKNOWN" and not ret.unknown)))): parts = [] parts.append(("base", [Number(step)])) parts.append(("static", [Number(step)])) if step > 0: ctl.release_external(Function("finally", [Number(step-1)])) parts.append(("dynamic", [Number(step)])) else: parts.append(("initial", [Number(0)])) ctl.ground(parts) ctl.assign_external(Function("finally", [Number(step)]), True) ret, step = ctl.solve(), step+1 def main(self, ctl, files): with ast.ProgramBuilder(ctl) as bld: ptf = ProgramTransformer(Function("__t")) ast.parse_files(files, lambda stm: bld.add(ptf(stm))) ctl.add("initial", ["t"], "initially(t).") ctl.add("static", ["t"], "#external finally(t).") self._main(ctl) exit(clingo_main(TModeApp()))
linebot/async_http_client.py
naotokuwa/line-bot-sdk-python
1,563
130893
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """linebot.async_http_client module.""" from __future__ import unicode_literals from abc import ABCMeta, abstractmethod, abstractproperty from future.utils import with_metaclass class AsyncHttpClient(with_metaclass(ABCMeta)): """Abstract Base Classes of HttpClient.""" DEFAULT_TIMEOUT = 5 def __init__(self, timeout=DEFAULT_TIMEOUT): """__init__ method. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`DEFAULT_TIMEOUT` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ self.timeout = timeout @abstractmethod async def get(self, url, headers=None, params=None, timeout=None): """GET request. :param str url: Request url :param dict headers: (optional) Request headers :param dict params: (optional) Request query parameter :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ raise NotImplementedError @abstractmethod async def post(self, url, headers=None, data=None, timeout=None): """POST request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ raise NotImplementedError @abstractmethod async def delete(self, url, headers=None, data=None, timeout=None): """DELETE request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ raise NotImplementedError @abstractmethod async def put(self, url, headers=None, data=None, timeout=None): """PUT request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: :py:class:`AsyncHttpResponse` :return: AsyncHttpResponse instance """ raise NotImplementedError class AsyncHttpResponse(with_metaclass(ABCMeta)): """HttpResponse.""" @abstractproperty def status_code(self): """Get status code.""" raise NotImplementedError @abstractproperty def headers(self): """Get headers.""" raise NotImplementedError @abstractproperty async def text(self): """Get response body as text-decoded.""" raise NotImplementedError @abstractproperty async def content(self): """Get response body as binary.""" raise NotImplementedError @abstractproperty def json(self): """Get response body as json-decoded.""" raise NotImplementedError @abstractmethod def iter_content(self, chunk_size=1024): """Get response body as iterator content (stream). :param int chunk_size: """ raise NotImplementedError
ignite/distributed/launcher.py
iamhardikat11/ignite
4,119
130909
<reponame>iamhardikat11/ignite<gh_stars>1000+ from typing import Any, Callable, Dict, Optional from ignite.distributed import utils as idist from ignite.utils import setup_logger __all__ = [ "Parallel", ] class Parallel: """Distributed launcher context manager to simplify distributed configuration setup for multiple backends: - backends from native torch distributed configuration: "nccl", "gloo" and "mpi" (if available) - XLA on TPUs via `pytorch/xla <https://github.com/pytorch/xla>`_ (if installed) - using `Horovod distributed framework <https://horovod.readthedocs.io>`_ (if installed) Namely, it can: 1) Spawn ``nproc_per_node`` child processes and initialize a processing group according to provided ``backend`` (useful for standalone scripts). 2) Only initialize a processing group given the ``backend`` (useful with tools like `torch.distributed.launch`_, `horovodrun`_, etc). Args: backend: backend to use: `nccl`, `gloo`, `xla-tpu`, `horovod`. If None, no distributed configuration. nproc_per_node: optional argument, number of processes per node to specify. If not None, :meth:`~ignite.distributed.launcher.Parallel.run` will spawn ``nproc_per_node`` processes that run input function with its arguments. nnodes: optional argument, number of nodes participating in distributed configuration. If not None, :meth:`~ignite.distributed.launcher.Parallel.run` will spawn ``nproc_per_node`` processes that run input function with its arguments. Total world size is `nproc_per_node * nnodes`. This option is only supported by native torch distributed module. For other modules, please setup ``spawn_kwargs`` with backend specific arguments. node_rank: optional argument, current machine index. Mandatory argument if ``nnodes`` is specified and larger than one. This option is only supported by native torch distributed module. For other modules, please setup ``spawn_kwargs`` with backend specific arguments. master_addr: optional argument, master node TCP/IP address for torch native backends (`nccl`, `gloo`). Mandatory argument if ``nnodes`` is specified and larger than one. master_port: optional argument, master node port for torch native backends (`nccl`, `gloo`). Mandatory argument if ``master_addr`` is specified. init_method: optional argument to specify processing group initialization method for torch native backends (`nccl`, `gloo`). Default, "env://". See more info: `dist.init_process_group`_. spawn_kwargs: kwargs to ``idist.spawn`` function. Examples: 1) Single node or Multi-node, Multi-GPU training launched with `torch.distributed.launch`_ or `horovodrun`_ tools Single node option with 4 GPUs .. code-block:: bash python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py # or if installed horovod horovodrun -np=4 python main.py Multi-node option : 2 nodes with 8 GPUs each .. code-block:: bash ## node 0 python -m torch.distributed.launch --nnodes=2 --node_rank=0 --master_addr=master \ --master_port=3344 --nproc_per_node=8 --use_env main.py # or if installed horovod horovodrun -np 16 -H hostname1:8,hostname2:8 python main.py ## node 1 python -m torch.distributed.launch --nnodes=2 --node_rank=1 --master_addr=master \ --master_port=3344 --nproc_per_node=8 --use_env main.py User code is the same for both options: .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... backend = "nccl" # or "horovod" if package is installed with idist.Parallel(backend=backend) as parallel: parallel.run(training, config, a=1, b=2) 2) Single node, Multi-GPU training launched with `python` .. code-block:: bash python main.py .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... backend = "nccl" # or "horovod" if package is installed # no "init_method" was specified , "env://" will be used with idist.Parallel(backend=backend, nproc_per_node=4) as parallel: parallel.run(training, config, a=1, b=2) Initializing the process using ``file://`` .. code-block:: python with idist.Parallel(backend=backend, init_method='file:///d:/tmp/some_file', nproc_per_node=4) as parallel: parallel.run(training, config, a=1, b=2) Initializing the process using ``tcp://`` .. code-block:: python with idist.Parallel(backend=backend, init_method='tcp://10.1.1.20:23456', nproc_per_node=4) as parallel: parallel.run(training, config, a=1, b=2) 3) Single node, Multi-TPU training launched with `python` .. code-block:: bash python main.py .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... with idist.Parallel(backend="xla-tpu", nproc_per_node=8) as parallel: parallel.run(training, config, a=1, b=2) 4) Multi-node, Multi-GPU training launched with `python`. For example, 2 nodes with 8 GPUs: Using torch native distributed framework: .. code-block:: bash # node 0 python main.py --node_rank=0 # node 1 python main.py --node_rank=1 .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... dist_config = { "nproc_per_node": 8, "nnodes": 2, "node_rank": args.node_rank, "master_addr": "master", "master_port": 15000 } with idist.Parallel(backend="nccl", **dist_config) as parallel: parallel.run(training, config, a=1, b=2) .. _torch.distributed.launch: https://pytorch.org/docs/stable/distributed.html#launch-utility .. _horovodrun: https://horovod.readthedocs.io/en/latest/api.html#module-horovod.run .. _dist.init_process_group: https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group .. versionchanged:: 0.4.2 ``backend`` now accepts `horovod` distributed framework. .. versionchanged:: 0.4.5 ``init_method`` added. """ def __init__( self, backend: Optional[str] = None, nproc_per_node: Optional[int] = None, nnodes: Optional[int] = None, node_rank: Optional[int] = None, master_addr: Optional[str] = None, master_port: Optional[int] = None, init_method: Optional[str] = None, **spawn_kwargs: Any, ) -> None: if backend is not None: if backend not in idist.available_backends(): raise ValueError(f"Unknown backend '{backend}'. Available backends: {idist.available_backends()}") else: arg_names = ["nproc_per_node", "nnodes", "node_rank", "master_addr", "master_port"] arg_values = [nproc_per_node, nnodes, node_rank, master_addr, master_port] for name, value in zip(arg_names, arg_values): if value is not None: raise ValueError(f"If backend is None, argument '{name}' should be also None, but given {value}") self.backend = backend self._spawn_params = None self.init_method = init_method if self.backend is not None: if nproc_per_node is not None: self._spawn_params = self._setup_spawn_params( nproc_per_node, nnodes, node_rank, master_addr, master_port, init_method, **spawn_kwargs ) # The logger will be setup after the idist.initialize() call self._logger = None @staticmethod def _setup_spawn_params( nproc_per_node: int, nnodes: Optional[int] = None, node_rank: Optional[int] = None, master_addr: Optional[str] = None, master_port: Optional[int] = None, init_method: Optional[str] = None, **spawn_kwargs: Any, ) -> Dict: if nproc_per_node < 1: raise ValueError(f"Argument nproc_per_node should positive, but given {nproc_per_node}") if nnodes is None: nnodes = 1 if nnodes < 1: raise ValueError(f"Argument nnodes should positive, but given {nnodes}") if node_rank is None: if nnodes > 1: raise ValueError("If number of nodes larger than one, arguments node_rank should be given") node_rank = 0 if node_rank >= nnodes or node_rank < 0: raise ValueError(f"Argument node_rank should be between 0 and {nnodes - 1}, but given {node_rank}") if nnodes > 1 and (master_addr is None or master_port is None or init_method is None): raise ValueError( "If number of nodes larger than one, arguments master_addr and master_port or init_method" f"should be specified, but given master_addr={master_addr}, master_port={master_port} and " f"init_method={init_method}." ) params = { "nproc_per_node": nproc_per_node, "nnodes": nnodes, "node_rank": node_rank, "master_addr": master_addr, "master_port": master_port, "init_method": init_method, } params.update(spawn_kwargs) return {k: v for k, v in params.items() if v is not None} def run(self, func: Callable, *args: Any, **kwargs: Any) -> None: """Execute ``func`` with provided arguments in distributed context. Args: func: function to execute. First argument of the function should be `local_rank` - local process index. args: positional arguments of ``func`` (without `local_rank`). kwargs: keyword arguments of ``func``. Examples: .. code-block:: python def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... with idist.Parallel(backend=backend) as parallel: parallel.run(training, config, a=1, b=2) """ if self._spawn_params is not None and self.backend is not None: self._logger.info( # type: ignore[attr-defined] f"Spawn function '{func}' in {self._spawn_params['nproc_per_node']} processes" ) idist.spawn(self.backend, func, args=args, kwargs_dict=kwargs, **self._spawn_params) else: self._logger.info(f"- Run '{func}' in {idist.get_world_size()} processes") # type: ignore[attr-defined] local_rank = idist.get_local_rank() func(local_rank, *args, **kwargs) self._logger.info("End of run") # type: ignore[attr-defined] def __enter__(self) -> "Parallel": if self.backend is not None and self._spawn_params is None: idist.initialize(self.backend, init_method=self.init_method) # The logger can be setup from now since idist.initialize() has been called (if needed) self._logger = setup_logger(__name__ + "." + self.__class__.__name__) # type: ignore[assignment] if self.backend is not None: if self._spawn_params is None: self._logger.info( # type: ignore[attr-defined] f"Initialized processing group with backend: '{self.backend}'" ) else: self._logger.info( # type: ignore[attr-defined] f"Initialized distributed launcher with backend: '{self.backend}'" ) msg = "\n\t".join([f"{k}: {v}" for k, v in self._spawn_params.items() if v is not None]) self._logger.info(f"- Parameters to spawn processes: \n\t{msg}") # type: ignore[attr-defined] return self def __exit__(self, *args: Any, **kwargs: Any) -> None: if (self.backend is not None) and self._spawn_params is None: self._logger.info( # type: ignore[attr-defined] f"Finalized processing group with backend: '{self.backend}'" ) idist.finalize()
frappe/desk/form/test_form.py
Don-Leopardo/frappe
3,755
130922
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: MIT. See LICENSE import frappe, unittest from frappe.desk.form.linked_with import get_linked_docs, get_linked_doctypes class TestForm(unittest.TestCase): def test_linked_with(self): results = get_linked_docs("Role", "System Manager", linkinfo=get_linked_doctypes("Role")) self.assertTrue("User" in results) self.assertTrue("DocType" in results) if __name__=="__main__": frappe.connect() unittest.main()
VMEncryption/test/test_disk_util.py
shridpant/azure-linux-extensions
266
130949
<gh_stars>100-1000 import unittest import mock from main.Common import CryptItem from main.EncryptionEnvironment import EncryptionEnvironment from main.DiskUtil import DiskUtil from console_logger import ConsoleLogger from test_utils import MockDistroPatcher class TestDiskUtil(unittest.TestCase): """ unit tests for functions in the CryptMountConfig module """ def setUp(self): self.logger = ConsoleLogger() self.disk_util = DiskUtil(None, MockDistroPatcher('Ubuntu', '14.04', '4.15'), self.logger, EncryptionEnvironment(None, self.logger)) def _mock_open_with_read_data_dict(self, open_mock, read_data_dict): open_mock.content_dict = read_data_dict def _open_side_effect(filename, mode, *args, **kwargs): read_data = open_mock.content_dict.get(filename) mock_obj = mock.mock_open(read_data=read_data) handle = mock_obj.return_value def write_handle(data, *args, **kwargs): if 'a' in mode: open_mock.content_dict[filename] += data else: open_mock.content_dict[filename] = data def write_lines_handle(data, *args, **kwargs): if 'a' in mode: open_mock.content_dict[filename] += "".join(data) else: open_mock.content_dict[filename] = "".join(data) handle.write.side_effect = write_handle handle.writelines.side_effect = write_lines_handle return handle open_mock.side_effect = _open_side_effect def _create_expected_crypt_item(self, mapper_name=None, dev_path=None, uses_cleartext_key=None, luks_header_path=None, mount_point=None, file_system=None, current_luks_slot=None): crypt_item = CryptItem() crypt_item.mapper_name = mapper_name crypt_item.dev_path = dev_path crypt_item.uses_cleartext_key = uses_cleartext_key crypt_item.luks_header_path = luks_header_path crypt_item.mount_point = mount_point crypt_item.file_system = file_system crypt_item.current_luks_slot = current_luks_slot return crypt_item def test_parse_crypttab_line(self): # empty line line = "" crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(None, crypt_item) # line with not enough entries line = "mapper_name dev_path" crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(None, crypt_item) # commented out line line = "# mapper_name dev_path" crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(None, crypt_item) # An unfamiliar key_file_path implies that we shouln't be processing this crypttab line line = "mapper_name /dev/dev_path /non_managed_key_file_path" crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(None, crypt_item) # a bare bones crypttab line line = "mapper_name /dev/dev_path /mnt/azure_bek_disk/LinuxPassPhraseFileName luks" expected_crypt_item = self._create_expected_crypt_item(mapper_name="mapper_name", dev_path="/dev/dev_path") crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(str(expected_crypt_item), str(crypt_item)) # a line that implies a cleartext key line = "mapper_name /dev/dev_path /var/lib/azure_disk_encryption_config/cleartext_key_mapper_name luks" expected_crypt_item = self._create_expected_crypt_item(mapper_name="mapper_name", dev_path="/dev/dev_path", uses_cleartext_key=True) crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(str(expected_crypt_item), str(crypt_item)) # a line that implies a luks header line = "mapper_name /dev/dev_path /var/lib/azure_disk_encryption_config/cleartext_key_mapper_name luks,header=headerfile" expected_crypt_item = self._create_expected_crypt_item(mapper_name="mapper_name", dev_path="/dev/dev_path", uses_cleartext_key=True, luks_header_path="headerfile") crypt_item = self.disk_util.parse_crypttab_line(line) self.assertEquals(str(expected_crypt_item), str(crypt_item)) @mock.patch('__builtin__.open') @mock.patch('os.path.exists', return_value=True) def test_should_use_azure_crypt_mount(self, exists_mock, open_mock): # if the acm file exists and has only a root disk acm_contents = """ osencrypt /dev/dev_path None / ext4 False 0 """ mock.mock_open(open_mock, acm_contents) self.assertFalse(self.disk_util.should_use_azure_crypt_mount()) # if the acm file exists and has a data disk acm_contents = """ mapper_name /dev/dev_path None /mnt/point ext4 False 0 mapper_name2 /dev/dev_path2 None /mnt/point2 ext4 False 0 """ mock.mock_open(open_mock, acm_contents) self.assertTrue(self.disk_util.should_use_azure_crypt_mount()) # empty file mock.mock_open(open_mock, "") self.assertFalse(self.disk_util.should_use_azure_crypt_mount()) # no file exists_mock.return_value = False open_mock.reset_mock() self.assertFalse(self.disk_util.should_use_azure_crypt_mount()) open_mock.assert_not_called() @mock.patch('os.path.exists', return_value=True) @mock.patch('main.DiskUtil.ProcessCommunicator') @mock.patch('main.CommandExecutor.CommandExecutor', autospec=True) @mock.patch('__builtin__.open') @mock.patch('main.DiskUtil.DiskUtil.should_use_azure_crypt_mount') @mock.patch('main.DiskUtil.DiskUtil.get_encryption_status') @mock.patch('main.DiskUtil.DiskUtil.get_mount_items') def test_get_crypt_items(self, get_mount_items_mock, get_enc_status_mock, use_acm_mock, open_mock, ce_mock, pc_mock, exists_mock): self.disk_util.command_executor = ce_mock use_acm_mock.return_value = True # Use the Azure_Crypt_Mount file get_enc_status_mock.return_value = "{\"os\" : \"Encrypted\"}" acm_contents = """ osencrypt /dev/dev_path None / ext4 True 0 """ mock.mock_open(open_mock, acm_contents) crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([self._create_expected_crypt_item(mapper_name="osencrypt", dev_path="/dev/dev_path", uses_cleartext_key=True, mount_point="/", file_system="ext4", current_luks_slot=0)], crypt_items) ce_mock.ExecuteInBash.return_value = 0 # The grep on cryptsetup succeeds pc_mock.return_value.stdout = "osencrypt /dev/dev_path" # The grep find this line in there mock.mock_open(open_mock, "") # No content in the azure crypt mount file get_mount_items_mock.return_value = [{"src": "/dev/mapper/osencrypt", "dest": "/", "fs": "ext4"}] exists_mock.return_value = False # No luksheader file found crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([self._create_expected_crypt_item(mapper_name="osencrypt", dev_path="/dev/dev_path", mount_point="/", file_system="ext4")], crypt_items) use_acm_mock.return_value = False # Now, use the /etc/crypttab file exists_mock.return_value = True # Crypttab file found self._mock_open_with_read_data_dict(open_mock, {"/etc/fstab": "/dev/mapper/osencrypt / ext4 defaults,nofail 0 0", "/etc/crypttab": "osencrypt /dev/sda1 /mnt/azure_bek_disk/LinuxPassPhraseFileName luks,discard"}) crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([self._create_expected_crypt_item(mapper_name="osencrypt", dev_path="/dev/sda1", file_system=None, mount_point="/")], crypt_items) # if there was no crypttab entry for osencrypt exists_mock.side_effect = [True, False] # Crypttab file found but luksheader not found self._mock_open_with_read_data_dict(open_mock, {"/etc/fstab": "/dev/mapper/osencrypt / ext4 defaults,nofail 0 0", "/etc/crypttab": ""}) ce_mock.ExecuteInBash.return_value = 0 # The grep on cryptsetup succeeds pc_mock.return_value.stdout = "osencrypt /dev/sda1" # The grep find this line in there crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([self._create_expected_crypt_item(mapper_name="osencrypt", dev_path="/dev/sda1", file_system="ext4", mount_point="/")], crypt_items) exists_mock.side_effect = None # Crypttab file found exists_mock.return_value = True # Crypttab file found get_enc_status_mock.return_value = "{\"os\" : \"NotEncrypted\"}" self._mock_open_with_read_data_dict(open_mock, {"/etc/fstab": "", "/etc/crypttab": ""}) crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([], crypt_items) self._mock_open_with_read_data_dict(open_mock, {"/etc/fstab": "/dev/mapper/encrypteddatadisk /mnt/datadisk auto defaults,nofail 0 0", "/etc/crypttab": "encrypteddatadisk /dev/disk/azure/scsi1/lun0 /someplainfile luks"}) crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([], crypt_items) self._mock_open_with_read_data_dict(open_mock, {"/etc/fstab": "/dev/mapper/encrypteddatadisk /mnt/datadisk auto defaults,nofail 0 0", "/etc/crypttab": "encrypteddatadisk /dev/disk/azure/scsi1/lun0 /mnt/azure_bek_disk/LinuxPassPhraseFileName luks,discard,header=/headerfile"}) crypt_items = self.disk_util.get_crypt_items() self.assertListEqual([self._create_expected_crypt_item(mapper_name="encrypteddatadisk", dev_path="/dev/disk/azure/scsi1/lun0", file_system=None, luks_header_path="/headerfile", mount_point="/mnt/datadisk")], crypt_items) @mock.patch('shutil.copy2', return_value=True) @mock.patch('os.rename', return_value=True) @mock.patch('os.path.exists', return_value=True) @mock.patch('__builtin__.open') @mock.patch('main.DiskUtil.DiskUtil.should_use_azure_crypt_mount', return_value=True) @mock.patch('main.DiskUtil.DiskUtil.get_encryption_status') def test_migrate_crypt_items(self, get_enc_status_mock, use_acm_mock, open_mock, exists_mock, rename_mock, shutil_mock): def rename_side_effect(name1, name2): use_acm_mock.return_value = False return True rename_mock.side_effect = rename_side_effect get_enc_status_mock.return_value = "{\"os\" : \"NotEncrypted\"}" # Test 1: migrate an entry self._mock_open_with_read_data_dict(open_mock, {"/var/lib/azure_disk_encryption_config/azure_crypt_mount": "mapper_name /dev/dev_path None /mnt/point ext4 False 0", "/etc/fstab.azure.backup": "/dev/dev_path /mnt/point ext4 defaults,nofail 0 0", "/etc/fstab": "", "/etc/crypttab": ""}) self.disk_util.migrate_crypt_items("/test_passphrase_path") self.assertTrue("/dev/mapper/mapper_name /mnt/point" in open_mock.content_dict["/etc/fstab"]) self.assertTrue("mapper_name /dev/dev_path /test_passphrase_path" in open_mock.content_dict["/etc/crypttab"]) # Test 2: migrate no entry use_acm_mock.return_value = True self._mock_open_with_read_data_dict(open_mock, {"/var/lib/azure_disk_encryption_config/azure_crypt_mount": "", "/etc/fstab.azure.backup": "", "/etc/fstab": "", "/etc/crypttab": ""}) self.disk_util.migrate_crypt_items("/test_passphrase_path") self.assertTrue("" == open_mock.content_dict["/etc/fstab"].strip()) self.assertTrue("" == open_mock.content_dict["/etc/crypttab"].strip()) # Test 3: skip migrating the OS entry use_acm_mock.return_value = True self._mock_open_with_read_data_dict(open_mock, {"/var/lib/azure_disk_encryption_config/azure_crypt_mount": "osencrypt /dev/dev_path None / ext4 False 0", "/etc/fstab.azure.backup": "/dev/dev_path / ext4 defaults 0 0", "/etc/fstab": "", "/etc/crypttab": ""}) self.disk_util.migrate_crypt_items("/test_passphrase_path") self.assertTrue("" == open_mock.content_dict["/etc/fstab"].strip()) self.assertTrue("" == open_mock.content_dict["/etc/crypttab"].strip()) # Test 4: migrate many entries use_acm_mock.return_value = True acm_contents = """ mapper_name /dev/dev_path None /mnt/point ext4 False 0 mapper_name2 /dev/dev_path2 None /mnt/point2 ext4 False 0 """ fstab_backup_contents = """ /dev/dev_path /mnt/point ext4 defaults,nofail 0 0 /dev/dev_path2 /mnt/point2 ext4 defaults,nofail 0 0 """ self._mock_open_with_read_data_dict(open_mock, {"/var/lib/azure_disk_encryption_config/azure_crypt_mount": acm_contents, "/etc/fstab.azure.backup": fstab_backup_contents, "/etc/fstab": "", "/etc/crypttab": ""}) self.disk_util.migrate_crypt_items("/test_passphrase_path") self.assertTrue("/dev/mapper/mapper_name /mnt/point ext4 defaults,nofail 0 0\n" in open_mock.content_dict["/etc/fstab"]) self.assertTrue("\n/dev/mapper/mapper_name2 /mnt/point2 ext4 defaults,nofail 0 0" in open_mock.content_dict["/etc/fstab"]) self.assertTrue("\nmapper_name /dev/dev_path /test_passphrase_path" in open_mock.content_dict["/etc/crypttab"]) self.assertTrue("\nmapper_name2 /dev/dev_path2 /test_passphrase_path" in open_mock.content_dict["/etc/crypttab"])
SohuNewCrawler/TK_News.py
wangbl11/ECommerceCrawlers
3,469
130964
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __author__ = 'AJay' __mtime__ = '2019/4/15 0015' """ # ! /usr/bin/env python # -*- coding: utf-8 -*- import time import threading from datetime import datetime import tkinter as tk import os from db import MongoArticle,MongoUrl,MongoConfig from multiprocessing import Process, JoinableQueue from tkinter import * from tkinter import scrolledtext from tkinter import messagebox class MainPage(object): def __init__(self, master): self.window = master sw = self.window.winfo_screenwidth() sh = self.window.winfo_screenheight() ww = 1400 wh = 650 x = (sw - ww) / 2 y = (sh - wh) / 2 self.window.geometry('%dx%d+%d+%d' % (ww, wh, x, y)) # 父容器大小 self.threadnumVar = tk.IntVar() self.timeVar = tk.IntVar() self.save_pathVar = tk.StringVar() self.logMessage = JoinableQueue() self.errMessage = JoinableQueue() self.dbconf = MongoConfig() self.dburl = MongoUrl() self.dbarticle = MongoArticle() self.create_page() self.show_logs() self.asyCraler() def asyCraler(self): from run_main import NewsClawer nc = NewsClawer() nc.init_set() t = threading.Thread(target=nc.run, args=()) t.start() print('启动主线程') def say_export_data(self): t = threading.Thread(target=self.export_data, args=()) t.start() print('启动主线程保存数据') self.exportDbBtn.config(state=tk.DISABLED) def _temp_t(self): from souhu.souhu_new import SouhuSpider ss = SouhuSpider() self.startBtn.config(text='正在采集') while True: ss.run(self.logMessage,self.errMessage) configs = self.dbconf.select_one() sleep_time = configs.get("time", 60) print(sleep_time) time.sleep(int(sleep_time)) self.errMessage.put('【周期扫描】:{}秒'.format(sleep_time)) def create_page(self): self.meun() # 菜单 self.config() # 配置 self.log() # 日志 self.error_log() # 系统日志 self.img() # 图片 # self.loading() # 进度条 def img(self): # 图片 photo = PhotoImage(file='news.png') label = Label(image=photo) label.image = photo label.grid(row=0, column=2, columnspan=2, rowspan=2, sticky=W + E + N + S, padx=5, pady=5) def config(self): # 配置 Config = tk.LabelFrame(self.window, text="配置", padx=25, pady=5) # 水平,垂直方向上的边距均为 10 Config.place(x=30, y=100) tk.Label(Config, text="爬取频率/s:").grid(column=0, row=0, sticky='w', pady=5) # tk.Label(Config, text="爬取线程:").grid(column=0, row=1, sticky='w', pady=5) # 添加波特率标签 tk.Label(Config, text="保存路径:").grid(column=0, row=2, sticky='w', pady=5) # 添加波特率标签 try: configs = self.dbconf.select_one() self.threadnum = configs.get('thread') self.timenum = configs.get('time') self.save_path = configs.get('path') except Exception as e: self.dbconf.insert({"flag": 1, "time": 60, "thread": 10,"path":"news"}) self.threadnum = 10 self.timenum = 60 self.save_path="默认路径news" self.threadnumVar.set(self.threadnum) self.timeVar.set(self.timenum) self.save_pathVar.set(self.save_path) self.threadEntry = tk.Entry(Config, textvariable=self.threadnumVar, width=22) self.threadEntry.grid(column=1, row=1, pady=5) self.timeEntry = tk.Entry(Config, textvariable=self.timeVar, width=22) self.timeEntry.grid(column=1, row=0, pady=5) print(self.save_pathVar) self.pathEntry = tk.Entry(Config, textvariable=self.save_pathVar, width=22) self.pathEntry.grid(column=1, row=2, pady=5) self.logoutBtn = tk.Button(Config, text="测试路径", command=self.check_path) self.logoutBtn.grid(column=2, row=2, pady=5, ipadx=15, padx=15) Config_start = tk.LabelFrame(self.window, text="", padx=10, pady=5) # 水平,垂直方向上的边距均为 10 Config_start.place(x=30, y=250) tk.Button(Config_start, text="更新配置", command=self.updata_config).grid(column=0, row=0, pady=5, ipadx=20,padx=15) self.clearDbBtn = tk.Button(Config_start, text="清空数据库", command=self.clearDB) self.clearDbBtn.config(bg='red') self.clearDbBtn.grid(column=1, row=1, pady=5, ipadx=15,padx=15) self.logoutBtn = tk.Button(Config_start, text="清除缓存", command=self.clear_product) self.logoutBtn.grid(column=0, row=1, pady=5, ipadx=15,padx=15) self.exportDbBtn = tk.Button(Config_start, text="导出数据", command=self.say_export_data) # self.exportDbBtn.config(state=tk.DISABLED) self.exportDbBtn.grid(column=2, row=1, pady=5, ipadx=15,padx=15) self.startBtn = tk.Button(Config_start, text="开始采集", command=self.start_spider) self.startBtn.grid(column=0, row=2, pady=5, ipadx=15) # self.stopBtn = tk.Button(Config_start, text="停止采集", command=self.stop_spider) # self.stopBtn.grid(column=2, row=2, pady=5, ipadx=15) def log(self): # 日志 self.logMessage.put('欢迎使用【新闻网采集器器定制版ByAjay13】') logInformation = tk.LabelFrame(self.window, text="日志", padx=10, pady=10) # 水平,垂直方向上的边距均为10 logInformation.place(x=450, y=100) self.logInformation_Window = scrolledtext.ScrolledText(logInformation, width=118, height=22, padx=10, pady=10, wrap=tk.WORD) self.logInformation_Window.grid() def error_log(self): # 系统日志 error_logInformation = tk.LabelFrame(self.window, text="系统日志", padx=10, pady=10) # 水平,垂直方向上的边距均为10 error_logInformation.place(x=450, y=460) self.errorInformation_Window = scrolledtext.ScrolledText(error_logInformation, width=118, height=8, padx=10, pady=10, wrap=tk.WORD) self.errorInformation_Window.grid() # 菜单说明 def meun(self): menubar = tk.Menu(self.window) aboutmemu = tk.Menu(menubar, tearoff=0) menubar.add_cascade(label='关于', menu=aboutmemu) aboutmemu.add_command(label='软件说明', command=self.show_Description) aboutmemu.add_command(label='版本', command=self.show_Version) aboutmemu.add_command(label='开发者', command=self.show_Developer) window.config(menu=menubar) # 检测路径 def check_path(self): from export_article import EexportTxt et = EexportTxt() path = self.pathEntry.get() checkout = et.check_input_path(path) if checkout: tk.messagebox.showinfo(title='路径', message='路径正确!') elif path=="默认路径news": tk.messagebox.showinfo(title='路径', message='保存路径将作为默认路径!') else: tk.messagebox.showerror(title='路径', message='路径不正确!创建正确路径') # 导出数据 def export_data(self): from export_article import EexportTxt et = EexportTxt() path = self.pathEntry.get() et.run(input_path=path,errMessage=self.errMessage) # 跟新配置 def updata_config(self): self.logMessage.put('更新配置') threadnum = self.threadEntry.get() timenum = self.timeEntry.get() path = self.pathEntry.get() self.dbconf.update(thread=threadnum,time=timenum,path=path) tk.messagebox.showinfo(title='配置', message='配置信息更新成功!') def start_spider(self): # TODO: 获取所有的配置信息函数。 self.errMessage.put('开始新闻数据采集') self.startBtn.config(state=tk.DISABLED) t = threading.Thread(target=self._temp_t, args=()) # t.daemon=True t.start() print('启动线程') def clear_product(self): if tk.messagebox.askyesno(title='删除', message='这将清空缓存数据,是否确定删除?'): self.errMessage.put('开始清除数据库缓存') self.dburl.delete_all({}) self.errMessage.put('清除数据库缓存结束') tk.messagebox.showinfo(title='恭喜', message='清除数据库缓存结束') # 清空数据库 def clearDB(self): if tk.messagebox.askyesno(title='删除', message='这将清空所有的数据,是否确定删除?'): if tk.messagebox.askyesno(title='再次确认', message='清空数据后请重启软件,是否确定删除?'): self.dbconf.delete_all({}) self.dburl.delete_all({}) self.dbarticle.delete_all({}) self.errMessage.put('清除数据库所有数据') self.errMessage.put('请重新启动软件,加载配置') self.window.update() tk.messagebox.showinfo(title='恭喜', message='所有数据清除完成!请重新启动软件,加载配置') def log_queue(self): while True: log = self.logMessage.get() date = datetime.now().strftime("%m-%d %H:%M:%S") self.logInformation_Window.insert(END, '[{date}][{log}]'.format(date=date, log=log) + '\n') self.logInformation_Window.see(END) # self.logMessage.task_done() def errlog_queue(self): while True: log = self.errMessage.get() if log==1: self.exportDbBtn.config(state=tk.ACTIVE) date = datetime.now().strftime("%m-%d %H:%M:%S") self.errorInformation_Window.insert(END, '[{date}][{log}]'.format(date=date, log=log) + '\n') self.errorInformation_Window.see(END) def show_logs(self): Tlog_queue = threading.Thread(target=self.log_queue, args=()) Terrlog_queue = threading.Thread(target=self.errlog_queue, args=()) Tlog_queue.daemon = True Tlog_queue.start() Terrlog_queue.daemon = True Terrlog_queue.start() # self.logMessage.join() def show_Description(self): Description(self.window) def show_Version(self): Version(self.window) def show_Developer(self): Developer(self.window) # 使用说明界面 class Description(): ''' 软件描述说明介绍界面 ''' def __init__(self, master): self.master = master self.window = tk.Toplevel(master) self.window.wm_attributes('-topmost', 1) sw = self.window.winfo_screenwidth() sh = self.window.winfo_screenheight() ww = 650 wh = 720 x = (sw - ww) / 3 y = (sh - wh) / 3 self.window.geometry('%dx%d+%d+%d' % (ww, wh, x, y)) # 父容器大小 self.window.title('使用说明') self.create_page() def create_page(self): Dev = tk.LabelFrame(self.window, text="关于使用说明", padx=10, pady=5) # 水平,垂直方向上的边距均为 10 Dev.place(x=50, y=50) text = "【使用前仔细阅读使用说明】 \n\n" \ "使用说明\n" \ "本项目采用多线程爬取新闻网咨询,爬取速度快,效率高。\n" \ "根据数据库能做到新闻去重,不去爬取已经爬取过的新闻\n\n" \ "**注意事项**\n\n" \ "- 爬取之前检测数据库是否开启成功\n\n" \ "- 爬取频率:为多久进行一次爬取,默认数值60s,可以根据需求设置\n5分钟=5*60=300秒,时间间隔太小会封ip\n\n" \ "- 爬取线程: 爬取的线程与电脑的性能有关、一般电脑10个线程,\n电脑性能高可以开50、100个\n\n"\ "- 爬取的路径:爬取路径错误或者路径不设置将会文件将导出到news文件夹下面\n\n"\ "- 每次修改配置后,可以需要更新配置,\n\n"\ "- 清除缓存后,将删除所有的爬取信息\n\n"\ "- 清空数据库后,将删除所有的的数据库\n\n"\ "- 建议每隔5天左右清空一次数据库,将减少电脑压力\n\n"\ "- 关闭程序后结束爬取\n\n"\ " \n"\ "- 祝你使用愉快\n"\ tk.Label(Dev, text=text, justify='left').grid(column=0, row=0, sticky='w', pady=5, padx=5) # 添加用户账号 # 版本说明界面 class Version(): ''' 软件版本说明介绍界面 ''' def __init__(self, master): self.master = master self.window = tk.Toplevel(master) self.window.wm_attributes('-topmost', 1) sw = self.window.winfo_screenwidth() sh = self.window.winfo_screenheight() ww = 400 wh = 300 x = (sw - ww) / 3 y = (sh - wh) / 3 self.window.geometry('%dx%d+%d+%d' % (ww, wh, x, y)) # 父容器大小 self.window.title('软件版本') self.create_page() def create_page(self): Dev = tk.LabelFrame(self.window, text="关于版本更新", padx=10, pady=5) # 水平,垂直方向上的边距均为 10 Dev.place(x=50, y=50) text = " 2019年5月 10日 版本:V1.0 正式版\n " \ " 2019年5月 09日 版本:V0.2\n " tk.Label(Dev, text=text).grid(column=0, row=0, sticky='w', pady=5, padx=5) # 添加用户账号 # 开发者说明界面 class Developer(): ''' 软件开发者介绍界面 ''' def __init__(self, master): self.master = master self.window = tk.Toplevel(master) self.window.wm_attributes('-topmost', 1) sw = self.window.winfo_screenwidth() sh = self.window.winfo_screenheight() ww = 400 wh = 300 x = (sw - ww) / 3 y = (sh - wh) / 3 self.window.geometry('%dx%d+%d+%d' % (ww, wh, x, y)) # 父容器大小 self.window.title('开发者') self.create_page() def create_page(self): Dev = tk.LabelFrame(self.window, text="关于开发者", padx=10, pady=5) # 水平,垂直方向上的边距均为 10 Dev.place(x=50, y=50) text = " 作者:AJay13\n" \ " 技能:熟悉各项爬虫与反爬虫,数据清洗,\n 网站搭建,软件编写\n" \ " 联系:BoeSKh5446sa23sadKJH84ads5\n" tk.Label(Dev, text=text, justify='left').grid(column=0, row=0, sticky='w', pady=5, padx=5) # 添加用户账号 # 版本测试时间 def test_time(over_time): from datetime import datetime d2 = datetime.strptime(over_time, '%Y-%m-%d %H:%M:%S') now = datetime.now() if d2 > now: return True else: return False if __name__ == '__main__': if test_time('2020-5-11 16:00:00'): # 测试授权日期 window = tk.Tk() # 父容器 print('开始') window.title("新闻网采集器器定制版ByAjay13") # 父容器标题 basePath = os.path.abspath(os.path.dirname(__file__)) print('base_path基础路径',basePath) if not os.path.exists(os.path.join(basePath, 'temp')): os.mkdir(os.path.join(basePath, 'temp')) if not os.path.exists(os.path.join(basePath, 'log')): os.mkdir(os.path.join(basePath, 'log')) mongod = os.path.join(basePath, 'bin', 'mongod.exe') dbpath = os.path.join(basePath, 'temp') logpath = os.path.join(basePath, 'log', 'mongodb.log') #'D:\mongodb\bin\mongod.exe --dbpath D:\mongodb\xianyudb --logpath D:\mongodb\tb_log\MongoDB.log --directoryperdb --serviceName mongodb_tb --install' if not os.path.exists(logpath): os.system( '{} --dbpath {} --logpath {} --directoryperdb --serviceName mongodb --install'.format(mongod, dbpath, logpath)) os.system('net start mongodb') else: os.system('net start mongodb') MainPage(window) # 前提配置 # 配置mongodb为数据服务 初始化配置服务 ''' 启动服务器服务 尝试链接数据库,搜寻配置项中db=1.链接不成功 alert 弹出数据库配置错误,尝试自动初始化,或联系管理员 1.创建本地mongodb的数据库文件夹 2.创建本地mongodb的数据库日志的文件夹 3.使用配置服务的命令 4.启动服务 5.数据库配置项中插入db为1 服务正常启动,tk面板加载配置项 异步爬虫线程启动,按照每隔10秒读取配置项内容。然后加载到进程中 关键字为:start == 1 开始加入爬取队列 ''' print('监听') window.mainloop() else: window = tk.Tk() # 父容器 window.title("新闻网采集器器定制版ByAjay13") # 父容器标题 window.wm_attributes('-topmost', 1) sw = window.winfo_screenwidth() sh = window.winfo_screenheight() ww = 400 wh = 300 x = (sw - ww) / 3 y = (sh - wh) / 3 window.geometry('%dx%d+%d+%d' % (ww, wh, x, y)) # 父容器大小 Dev = tk.LabelFrame(window, text="授权超时", padx=10, pady=5) # 水平,垂直方向上的边距均为 10 Dev.place(x=50, y=50) text = " 你已经超出授权使用期限\n" \ " 请联系管理员进行提权\n \n" \ " 联系:BoeSKh5446sa23sadKJH84ads5\n" tk.Label(Dev, text=text, justify='left').grid(column=0, row=0, sticky='w', pady=5, padx=5) # 添加用户账号 window.mainloop()
buildroot/utils/checkpackagelib/lib_mk.py
efficiosoft/hassos
617
130982
<reponame>efficiosoft/hassos # See utils/checkpackagelib/readme.txt before editing this file. # There are already dependency checks during the build, so below check # functions don't need to check for things already checked by exploring the # menu options using "make menuconfig" and by running "make" with appropriate # packages enabled. import re from base import _CheckFunction from lib import ConsecutiveEmptyLines # noqa: F401 from lib import EmptyLastLine # noqa: F401 from lib import NewlineAtEof # noqa: F401 from lib import TrailingSpace # noqa: F401 class Indent(_CheckFunction): COMMENT = re.compile("^\s*#") CONDITIONAL = re.compile("^\s*(ifeq|ifneq|endif)\s") ENDS_WITH_BACKSLASH = re.compile(r"^[^#].*\\$") END_DEFINE = re.compile("^\s*endef\s") MAKEFILE_TARGET = re.compile("^[^# \t]+:\s") START_DEFINE = re.compile("^\s*define\s") def before(self): self.define = False self.backslash = False self.makefile_target = False def check_line(self, lineno, text): if self.START_DEFINE.search(text): self.define = True return if self.END_DEFINE.search(text): self.define = False return expect_tabs = False if self.define or self.backslash or self.makefile_target: expect_tabs = True if self.CONDITIONAL.search(text): expect_tabs = False # calculate for next line if self.ENDS_WITH_BACKSLASH.search(text): self.backslash = True else: self.backslash = False if self.MAKEFILE_TARGET.search(text): self.makefile_target = True return if text.strip() == "": self.makefile_target = False return # comment can be indented or not inside define ... endef, so ignore it if self.define and self.COMMENT.search(text): return if expect_tabs: if not text.startswith("\t"): return ["{}:{}: expected indent with tabs" .format(self.filename, lineno), text] else: if text.startswith("\t"): return ["{}:{}: unexpected indent with tabs" .format(self.filename, lineno), text] class PackageHeader(_CheckFunction): def before(self): self.skip = False def check_line(self, lineno, text): if self.skip or lineno > 6: return if lineno in [1, 5]: if lineno == 1 and text.startswith("include "): self.skip = True return if text.rstrip() != "#" * 80: return ["{}:{}: should be 80 hashes ({}#writing-rules-mk)" .format(self.filename, lineno, self.url_to_manual), text, "#" * 80] elif lineno in [2, 4]: if text.rstrip() != "#": return ["{}:{}: should be 1 hash ({}#writing-rules-mk)" .format(self.filename, lineno, self.url_to_manual), text] elif lineno == 6: if text.rstrip() != "": return ["{}:{}: should be a blank line ({}#writing-rules-mk)" .format(self.filename, lineno, self.url_to_manual), text] class RemoveDefaultPackageSourceVariable(_CheckFunction): packages_that_may_contain_default_source = ["binutils", "gcc", "gdb"] PACKAGE_NAME = re.compile("/([^/]+)\.mk") def before(self): package = self.PACKAGE_NAME.search(self.filename).group(1) package_upper = package.replace("-", "_").upper() self.package = package self.FIND_SOURCE = re.compile( "^{}_SOURCE\s*=\s*{}-\$\({}_VERSION\)\.tar\.gz" .format(package_upper, package, package_upper)) def check_line(self, lineno, text): if self.FIND_SOURCE.search(text): if self.package in self.packages_that_may_contain_default_source: return return ["{}:{}: remove default value of _SOURCE variable " "({}#generic-package-reference)" .format(self.filename, lineno, self.url_to_manual), text] class SpaceBeforeBackslash(_CheckFunction): TAB_OR_MULTIPLE_SPACES_BEFORE_BACKSLASH = re.compile(r"^.*( |\t ?)\\$") def check_line(self, lineno, text): if self.TAB_OR_MULTIPLE_SPACES_BEFORE_BACKSLASH.match(text.rstrip()): return ["{}:{}: use only one space before backslash" .format(self.filename, lineno), text] class TrailingBackslash(_CheckFunction): ENDS_WITH_BACKSLASH = re.compile(r"^[^#].*\\$") def before(self): self.backslash = False def check_line(self, lineno, text): last_line_ends_in_backslash = self.backslash # calculate for next line if self.ENDS_WITH_BACKSLASH.search(text): self.backslash = True self.lastline = text return self.backslash = False if last_line_ends_in_backslash and text.strip() == "": return ["{}:{}: remove trailing backslash" .format(self.filename, lineno - 1), self.lastline] class TypoInPackageVariable(_CheckFunction): ALLOWED = re.compile("|".join([ "ACLOCAL_DIR", "ACLOCAL_HOST_DIR", "BR_CCACHE_INITIAL_SETUP", "BR_LIBC", "BR_NO_CHECK_HASH_FOR", "LINUX_EXTENSIONS", "LINUX_POST_PATCH_HOOKS", "LINUX_TOOLS", "LUA_RUN", "MKFS_JFFS2", "MKIMAGE_ARCH", "PACKAGES_PERMISSIONS_TABLE", "PKG_CONFIG_HOST_BINARY", "SUMTOOL", "TARGET_FINALIZE_HOOKS", "TARGETS_ROOTFS", "XTENSA_CORE_NAME"])) PACKAGE_NAME = re.compile("/([^/]+)\.mk") VARIABLE = re.compile("^([A-Z0-9_]+_[A-Z0-9_]+)\s*(\+|)=") def before(self): package = self.PACKAGE_NAME.search(self.filename).group(1) package = package.replace("-", "_").upper() # linux tools do not use LINUX_TOOL_ prefix for variables package = package.replace("LINUX_TOOL_", "") # linux extensions do not use LINUX_EXT_ prefix for variables package = package.replace("LINUX_EXT_", "") self.package = package self.REGEX = re.compile("^(HOST_|ROOTFS_)?({}_[A-Z0-9_]+)".format(package)) self.FIND_VIRTUAL = re.compile( "^{}_PROVIDES\s*(\+|)=\s*(.*)".format(package)) self.virtual = [] def check_line(self, lineno, text): m = self.VARIABLE.search(text) if m is None: return variable = m.group(1) # allow to set variables for virtual package this package provides v = self.FIND_VIRTUAL.search(text) if v: self.virtual += v.group(2).upper().split() return for virtual in self.virtual: if variable.startswith("{}_".format(virtual)): return if self.ALLOWED.match(variable): return if self.REGEX.search(text) is None: return ["{}:{}: possible typo: {} -> *{}*" .format(self.filename, lineno, variable, self.package), text] class UselessFlag(_CheckFunction): DEFAULT_AUTOTOOLS_FLAG = re.compile("^.*{}".format("|".join([ "_AUTORECONF\s*=\s*NO", "_LIBTOOL_PATCH\s*=\s*YES"]))) DEFAULT_GENERIC_FLAG = re.compile("^.*{}".format("|".join([ "_INSTALL_IMAGES\s*=\s*NO", "_INSTALL_REDISTRIBUTE\s*=\s*YES", "_INSTALL_STAGING\s*=\s*NO", "_INSTALL_TARGET\s*=\s*YES"]))) END_CONDITIONAL = re.compile("^\s*(endif)") START_CONDITIONAL = re.compile("^\s*(ifeq|ifneq)") def before(self): self.conditional = 0 def check_line(self, lineno, text): if self.START_CONDITIONAL.search(text): self.conditional += 1 return if self.END_CONDITIONAL.search(text): self.conditional -= 1 return # allow non-default conditionally overridden by default if self.conditional > 0: return if self.DEFAULT_GENERIC_FLAG.search(text): return ["{}:{}: useless default value ({}#" "_infrastructure_for_packages_with_specific_build_systems)" .format(self.filename, lineno, self.url_to_manual), text] if self.DEFAULT_AUTOTOOLS_FLAG.search(text) and not text.lstrip().startswith("HOST_"): return ["{}:{}: useless default value " "({}#_infrastructure_for_autotools_based_packages)" .format(self.filename, lineno, self.url_to_manual), text]
calendarserver/accesslog.py
backwardn/ccs-calendarserver
462
130994
## # Copyright (c) 2006-2017 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Access logs. """ __all__ = [ "DirectoryLogWrapperResource", "RotatingFileAccessLoggingObserver", "AMPCommonAccessLoggingObserver", "AMPLoggingFactory", ] import collections import datetime import json import os try: import psutil except ImportError: psutil = None from sys import platform import time from calendarserver.logAnalysis import getAdjustedMethodName from twext.python.log import Logger from twext.who.idirectory import RecordType from txweb2 import iweb from txweb2.log import BaseCommonAccessLoggingObserver from txweb2.log import LogWrapperResource from twisted.internet import protocol, task from twisted.protocols import amp from twistedcaldav.config import config log = Logger() class DirectoryLogWrapperResource(LogWrapperResource): def __init__(self, resource, directory): super(DirectoryLogWrapperResource, self).__init__(resource) self.directory = directory def getDirectory(self): return self.directory class CommonAccessLoggingObserverExtensions(BaseCommonAccessLoggingObserver): """ A base class for our extension to the L{BaseCommonAccessLoggingObserver} """ def emit(self, eventDict): format = None formatArgs = None if eventDict.get("interface") is iweb.IRequest: request = eventDict["request"] response = eventDict["response"] loginfo = eventDict["loginfo"] # Try to determine authentication and authorization identifiers uid = "-" if getattr(request, "authnUser", None) is not None: def convertPrincipaltoShortName(principal): if principal.record.recordType == RecordType.user: return principal.record.shortNames[0] else: return "({rtype}){name}".format(rtype=principal.record.recordType, name=principal.record.shortNames[0],) uidn = convertPrincipaltoShortName(request.authnUser) uidz = convertPrincipaltoShortName(request.authzUser) if uidn != uidz: uid = '"{authn} as {authz}"'.format(authn=uidn, authz=uidz,) else: uid = uidn # # For some methods which basically allow you to tunnel a # custom request (eg. REPORT, POST), the method name # itself doesn't tell you much about what action is being # requested. This allows a method to tack a submethod # attribute to the request, so we can provide a little # more detail here. # if config.EnableExtendedAccessLog and hasattr(request, "submethod"): method = "%s(%s)" % (request.method, request.submethod) else: method = request.method # Standard Apache access log fields format = ( '%(host)s - %(uid)s [%(date)s]' ' "%(method)s %(uri)s HTTP/%(protocolVersion)s"' ' %(statusCode)s %(bytesSent)d' ' "%(referer)s" "%(userAgent)s"' ) formatArgs = { "host": request.remoteAddr.host, "uid": uid, "date": self.logDateString(response.headers.getHeader("date", 0)), "method": method, "uri": request.uri.replace('"', "%22"), "protocolVersion": ".".join(str(x) for x in request.clientproto), "statusCode": response.code, "bytesSent": loginfo.bytesSent, "referer": request.headers.getHeader("referer", "-"), "userAgent": request.headers.getHeader("user-agent", "-"), } # Add extended items to format and formatArgs if config.EnableExtendedAccessLog: format += ' i=%(serverInstance)s' formatArgs["serverInstance"] = config.LogID if config.LogID else "0" if request.chanRequest: # This can be None during tests format += ' or=%(outstandingRequests)s' formatArgs["outstandingRequests"] = request.chanRequest.channel.factory.outstandingRequests # Tags for time stamps collected along the way - the first one in the list is the initial # time for request creation - we use that to track the entire request/response time nowtime = time.time() if config.EnableExtendedTimingAccessLog: basetime = request.timeStamps[0][1] request.timeStamps[0] = ("t", time.time(),) for tag, timestamp in request.timeStamps: format += " %s=%%(%s).1f" % (tag, tag,) formatArgs[tag] = (timestamp - basetime) * 1000 if tag != "t": basetime = timestamp if len(request.timeStamps) > 1: format += " t-log=%(t-log).1f" formatArgs["t-log"] = (timestamp - basetime) * 1000 else: format += " t=%(t).1f" formatArgs["t"] = (nowtime - request.timeStamps[0][1]) * 1000 if hasattr(request, "extendedLogItems"): for k, v in sorted(request.extendedLogItems.iteritems(), key=lambda x: x[0]): k = str(k).replace('"', "%22") v = str(v).replace('"', "%22") if " " in v: v = '"%s"' % (v,) format += " %s=%%(%s)s" % (k, k,) formatArgs[k] = v # Add the name of the XML error element for debugging purposes if hasattr(response, "error"): format += " err=%(err)s" formatArgs["err"] = response.error.qname()[1] fwdHeaders = request.headers.getRawHeaders("x-forwarded-for", "") if fwdHeaders: # Limit each x-forwarded-header to 50 in case someone is # trying to overwhelm the logs forwardedFor = ",".join([hdr[:50] for hdr in fwdHeaders]) forwardedFor = forwardedFor.replace(" ", "") format += " fwd=%(fwd)s" formatArgs["fwd"] = forwardedFor if formatArgs["host"] == "0.0.0.0": fwdHeaders = request.headers.getRawHeaders("x-forwarded-for", "") if fwdHeaders: formatArgs["host"] = fwdHeaders[-1].split(",")[-1].strip() format += " unix=%(unix)s" formatArgs["unix"] = "true" elif "overloaded" in eventDict: overloaded = eventDict.get("overloaded") format = ( '%(host)s - %(uid)s [%(date)s]' ' "%(method)s"' ' %(statusCode)s %(bytesSent)d' ' "%(referer)s" "%(userAgent)s"' ) formatArgs = { "host": overloaded.transport.hostname, "uid": "-", "date": self.logDateString(time.time()), "method": "???", "uri": "", "protocolVersion": "", "statusCode": 503, "bytesSent": 0, "referer": "-", "userAgent": "-", } if config.EnableExtendedAccessLog: format += ' p=%(serverPort)s' formatArgs["serverPort"] = overloaded.transport.server.port format += ' or=%(outstandingRequests)s' formatArgs["outstandingRequests"] = overloaded.outstandingRequests # Write anything we got to the log and stats if format is not None: # sanitize output to mitigate log injection for k, v in formatArgs.items(): if not isinstance(v, basestring): continue v = v.replace("\r", "\\r") v = v.replace("\n", "\\n") v = v.replace("\"", "\\\"") formatArgs[k] = v formatArgs["type"] = "access-log" formatArgs["log-format"] = format self.logStats(formatArgs) class RotatingFileAccessLoggingObserver(CommonAccessLoggingObserverExtensions): """ Class to do "apache" style access logging to a rotating log file. The log file is rotated after midnight each day. This class also currently handles the collection of system and log statistics. """ def __init__(self, logpath): self.logpath = logpath self.systemStats = None self.statsByMinute = [] self.stats1m = None self.stats5m = None self.stats1h = None def accessLog(self, message, allowrotate=True): """ Log a message to the file and possibly rotate if date has changed. @param message: C{str} for the message to log. @param allowrotate: C{True} if log rotate allowed, C{False} to log to current file without testing for rotation. """ if self.shouldRotate() and allowrotate: self.flush() self.rotate() if isinstance(message, unicode): message = message.encode("utf-8") self.f.write(message + "\n") def start(self): """ Start logging. Open the log file and log an "open" message. """ super(RotatingFileAccessLoggingObserver, self).start() self._open() self.accessLog("Log opened - server start: [%s]." % (datetime.datetime.now().ctime(),)) def stop(self): """ Stop logging. Close the log file and log an "open" message. """ self.accessLog("Log closed - server stop: [%s]." % (datetime.datetime.now().ctime(),), False) super(RotatingFileAccessLoggingObserver, self).stop() self._close() if self.systemStats is not None: self.systemStats.stop() def _open(self): """ Open the log file. """ self.f = open(self.logpath, "a", 1) self.lastDate = self.toDate(os.stat(self.logpath)[8]) def _close(self): """ Close the log file. """ self.f.close() def flush(self): """ Flush the log file. """ self.f.flush() def shouldRotate(self): """ Rotate when the date has changed since last write """ if config.RotateAccessLog: return self.toDate() > self.lastDate else: return False def toDate(self, *args): """ Convert a unixtime to (year, month, day) localtime tuple, or return the current (year, month, day) localtime tuple. This function primarily exists so you may overload it with gmtime, or some cruft to make unit testing possible. """ # primarily so this can be unit tested easily return time.localtime(*args)[:3] def suffix(self, tupledate): """ Return the suffix given a (year, month, day) tuple or unixtime """ try: return "_".join(map(str, tupledate)) except: # try taking a float unixtime return "_".join(map(str, self.toDate(tupledate))) def rotate(self): """ Rotate the file and create a new one. If it's not possible to open new logfile, this will fail silently, and continue logging to old logfile. """ newpath = "%s.%s" % (self.logpath, self.suffix(self.lastDate)) if os.path.exists(newpath): log.info("Cannot rotate log file to '{path}' because it already exists.", path=newpath) return self.accessLog("Log closed - rotating: [%s]." % (datetime.datetime.now().ctime(),), False) log.info("Rotating log file to: '{path}'", path=newpath, system="Logging") self.f.close() os.rename(self.logpath, newpath) self._open() self.accessLog("Log opened - rotated: [%s]." % (datetime.datetime.now().ctime(),), False) def logStats(self, stats): """ Update stats """ # Only use the L{SystemMonitor} when stats socket is in use if config.Stats.EnableUnixStatsSocket or config.Stats.EnableTCPStatsSocket: # Initialize a L{SystemMonitor} on the first call if self.systemStats is None: self.systemStats = SystemMonitor() # Currently only storing stats for access log type if "type" not in stats or stats["type"] != "access-log": return currentStats = self.ensureSequentialStats() self.updateStats(currentStats, stats) if stats["type"] == "access-log": self.accessLog(stats["log-format"] % stats) def getStats(self): """ Return the stats """ # Only use the L{SystemMonitor} when stats socket is in use if not config.Stats.EnableUnixStatsSocket and not config.Stats.EnableTCPStatsSocket: return {} # Initialize a L{SystemMonitor} on the first call if self.systemStats is None: self.systemStats = SystemMonitor() # The current stats currentStats = self.ensureSequentialStats() # Get previous minute details if self.stats1m is None: index = min(2, len(self.statsByMinute)) if index > 0: self.stats1m = self.statsByMinute[-index][1] else: self.stats1m = self.initStats() # Do five minute aggregate if self.stats5m is None: self.stats5m = self.initStats() index = min(6, len(self.statsByMinute)) for i in range(-index, -1): stat = self.statsByMinute[i][1] self.mergeStats(self.stats5m, stat) # Do one hour aggregate if self.stats1h is None: self.stats1h = self.initStats() index = min(61, len(self.statsByMinute)) for i in range(-index, -1): stat = self.statsByMinute[i][1] self.mergeStats(self.stats1h, stat) printStats = { "system": self.systemStats.items, "current": currentStats, "1m": self.stats1m, "5m": self.stats5m, "1h": self.stats1h, } return printStats def ensureSequentialStats(self): """ Make sure the list of timed stats is contiguous wrt time. """ dtindex = int(time.time() / 60.0) * 60 if len(self.statsByMinute) > 0: if self.statsByMinute[-1][0] != dtindex: oldindex = self.statsByMinute[-1][0] if oldindex != dtindex: # Adding a new minutes worth of data - clear out any cached # historical data self.stats1m = None self.stats5m = None self.stats1h = None # Add enough new stats to account for any idle minutes between # the last recorded stat and the current one while oldindex != dtindex: oldindex += 60 self.statsByMinute.append((oldindex, self.initStats(),)) else: self.statsByMinute.append((dtindex, self.initStats(),)) self.stats1m = None self.stats5m = None self.stats1h = None # We only need up to 1 hour's worth of data, so truncate the cached data # to avoid filling memory threshold = 65 if len(self.statsByMinute) > threshold: self.statsByMinute = self.statsByMinute[-threshold:] return self.statsByMinute[-1][1] def initStats(self): def initTimeHistogram(): return { "<10ms": 0, "10ms<->100ms": 0, "100ms<->1s": 0, "1s<->10s": 0, "10s<->30s": 0, "30s<->60s": 0, ">60s": 0, "Over 1s": 0, "Over 10s": 0, } return { "requests": 0, "method": collections.defaultdict(int), "method-t": collections.defaultdict(float), "500": 0, "401": 0, "t": 0.0, "t-resp-wr": 0.0, "slots": 0, "max-slots": 0, "T": initTimeHistogram(), "T-RESP-WR": initTimeHistogram(), "T-MAX": 0.0, "cpu": self.systemStats.items["cpu use"], } def updateStats(self, current, stats): # Gather specific information and aggregate into our persistent stats adjustedMethod = getAdjustedMethodName(stats) if current["requests"] == 0: current["cpu"] = 0.0 current["requests"] += 1 current["method"][adjustedMethod] += 1 current["method-t"][adjustedMethod] += stats.get("t", 0.0) if stats["statusCode"] >= 500: current["500"] += 1 elif stats["statusCode"] == 401: current["401"] += 1 current["t"] += stats.get("t", 0.0) current["t-resp-wr"] += stats.get("t-resp-wr", 0.0) current["slots"] += stats.get("outstandingRequests", 0) current["max-slots"] = max(current["max-slots"], self.limiter.maxOutstandingRequests if hasattr(self, "limiter") else 0) current["cpu"] += self.systemStats.items["cpu use"] def histogramUpdate(t, key): if t >= 60000.0: current[key][">60s"] += 1 elif t >= 30000.0: current[key]["30s<->60s"] += 1 elif t >= 10000.0: current[key]["10s<->30s"] += 1 elif t >= 1000.0: current[key]["1s<->10s"] += 1 elif t >= 100.0: current[key]["100ms<->1s"] += 1 elif t >= 10.0: current[key]["10ms<->100ms"] += 1 else: current[key]["<10ms"] += 1 if t >= 1000.0: current[key]["Over 1s"] += 1 elif t >= 10000.0: current[key]["Over 10s"] += 1 t = stats.get("t", None) if t is not None: histogramUpdate(t, "T") current["T-MAX"] = max(current["T-MAX"], t) t = stats.get("t-resp-wr", None) if t is not None: histogramUpdate(t, "T-RESP-WR") def mergeStats(self, current, stats): # Gather specific information and aggregate into our persistent stats if current["requests"] == 0: current["cpu"] = 0.0 current["requests"] += stats["requests"] for method in stats["method"].keys(): current["method"][method] += stats["method"][method] for method in stats["method-t"].keys(): current["method-t"][method] += stats["method-t"][method] current["500"] += stats["500"] current["401"] += stats["401"] current["t"] += stats["t"] current["t-resp-wr"] += stats["t-resp-wr"] current["slots"] += stats["slots"] current["max-slots"] = max(current["max-slots"], stats["max-slots"]) current["cpu"] += stats["cpu"] def histogramUpdate(t, key): if t >= 60000.0: current[key][">60s"] += 1 elif t >= 30000.0: current[key]["30s<->60s"] += 1 elif t >= 10000.0: current[key]["10s<->30s"] += 1 elif t >= 1000.0: current[key]["1s<->10s"] += 1 elif t >= 100.0: current[key]["100ms<->1s"] += 1 elif t >= 10.0: current[key]["10ms<->100ms"] += 1 else: current[key]["<10ms"] += 1 if t >= 1000.0: current[key]["Over 1s"] += 1 elif t >= 10000.0: current[key]["Over 10s"] += 1 for bin in stats["T"].keys(): current["T"][bin] += stats["T"][bin] current["T-MAX"] = max(current["T-MAX"], stats["T-MAX"]) for bin in stats["T-RESP-WR"].keys(): current["T-RESP-WR"][bin] += stats["T-RESP-WR"][bin] class SystemMonitor(object): """ Keeps track of system usage information. This installs a reactor task to run about once per second and track system use. """ CPUStats = collections.namedtuple("CPUStats", ("total", "idle",)) def __init__(self): self.items = { "cpu count": psutil.cpu_count() if psutil is not None else -1, "cpu use": 0.0, "memory used": 0, "memory percent": 0.0, "start time": time.time(), } if psutil is not None: times = psutil.cpu_times() self.previous_cpu = SystemMonitor.CPUStats(sum(times), times.idle,) else: self.previous_cpu = SystemMonitor.CPUStats(0, 0) self.task = task.LoopingCall(self.update) self.task.start(1.0) def stop(self): """ Just stop the task """ self.task.stop() def update(self): # CPU usage based on diff'ing CPU times if psutil is not None: times = psutil.cpu_times() cpu_now = SystemMonitor.CPUStats(sum(times), times.idle,) try: self.items["cpu use"] = 100.0 * (1.0 - (cpu_now.idle - self.previous_cpu.idle) / (cpu_now.total - self.previous_cpu.total)) except ZeroDivisionError: self.items["cpu use"] = 0.0 self.previous_cpu = cpu_now # Memory usage if psutil is not None and 'freebsd' not in platform: mem = psutil.virtual_memory() self.items["memory used"] = mem.used self.items["memory percent"] = mem.percent class LogStats(amp.Command): arguments = [("message", amp.String())] class AMPCommonAccessLoggingObserver(CommonAccessLoggingObserverExtensions): def __init__(self): self.protocol = None self._buffer = [] def flushBuffer(self): if self._buffer: for msg in self._buffer: self.logStats(msg) def addClient(self, connectedClient): """ An AMP client connected; hook it up to this observer. """ self.protocol = connectedClient self.flushBuffer() def logStats(self, message): """ Log server stats via the remote AMP Protocol """ if self.protocol is not None: message = json.dumps(message) if isinstance(message, unicode): message = message.encode("utf-8") d = self.protocol.callRemote(LogStats, message=message) d.addErrback(log.error) else: self._buffer.append(message) class AMPLoggingProtocol(amp.AMP): """ A server side protocol for logging to the given observer. """ def __init__(self, observer): self.observer = observer super(AMPLoggingProtocol, self).__init__() def logStats(self, message): stats = json.loads(message) self.observer.logStats(stats) return {} LogStats.responder(logStats) class AMPLoggingFactory(protocol.ServerFactory): def __init__(self, observer): self.observer = observer def doStart(self): self.observer.start() def doStop(self): self.observer.stop() def buildProtocol(self, addr): return AMPLoggingProtocol(self.observer)
examples/unfinished/flp_nonlinear.py
gasse/PySCIPOpt
311
130998
<reponame>gasse/PySCIPOpt # todo """ flp_nonlinear.py: piecewise linear model for the capacitated facility location problem minimize the total (weighted) travel cost from n customers to a given set of facilities, with fixed costs and limited capacities; costs are nonlinear (square root of the total quantity serviced by a facility). Approaches: use - convex combination - multiple selection formulations defined in 'piecewise.py'. Copyright (c) by <NAME> and <NAME>, 2012 """ import math import random from pyscipopt import Model, quicksum, multidict from piecewise import * def flp_nonlinear_mselect(I,J,d,M,f,c,K): """flp_nonlinear_mselect -- use multiple selection model Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- piecewise linear version with multiple selection") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,z = {},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],z[j] = mult_selection(model,a[j],b[j]) X[j].ub = M[j] # for i in I: # model.addCons( # x[i,j] <= \ # quicksum(min(d[i],a[j][k+1]) * z[j][k] for k in range(K)),\ # "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def flp_nonlinear_cc_dis_strong(I,J,d,M,f,c,K): """flp_nonlinear_bin -- use convex combination model, with binary variables Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- piecewise linear version with convex combination") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,z = {},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],z[j] = convex_comb_dis(model,a[j],b[j]) X[j].ub = M[j] for i in I: model.addCons( x[i,j] <= \ quicksum(min(d[i],a[j][k+1]) * z[j][k] for k in range(K)),\ "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def flp_nonlinear_cc_dis(I,J,d,M,f,c,K): """flp_nonlinear_bin -- use convex combination model, with binary variables Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- piecewise linear version with convex combination") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,z = {},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],z[j] = convex_comb_dis(model,a[j],b[j]) X[j].ub = M[j] # for i in I: # model.addCons( # x[i,j] <= \ # quicksum(min(d[i],a[j][k+1]) * z[j][k] for k in range(K)),\ # "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def flp_nonlinear_cc_dis_log(I,J,d,M,f,c,K): """flp_nonlinear_cc_dis_log -- convex combination model with logarithmic number of binary variables Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- convex combination model with logarithmic number of binary variables") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,yL,yR = {},{},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],yL[j],yR[j] = convex_comb_dis_log(model,a[j],b[j]) X[j].ub = M[j] # for i in I: # model.addCons( # x[i,j] <= \ # quicksum(min(d[i],a[j][k+1]) * (yL[j][k]+yR[j][k]) for k in range(K)),\ # "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def flp_nonlinear_cc_agg(I,J,d,M,f,c,K): """flp_nonlinear_cc_agg -- aggregated convex combination model Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- piecewise linear aggregated convex combination") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,z = {},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],z[j] = convex_comb_agg(model,a[j],b[j]) X[j].ub = M[j] # for i in I: # model.addCons( # x[i,j] <= \ # quicksum(min(d[i],a[j][k+1]) * z[j][k] for k in range(K)),\ # "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def flp_nonlinear_cc_agg_log(I,J,d,M,f,c,K): """flp_nonlinear_cc_agg_logg -- aggregated convex combination model, with log. binary variables Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- piecewise linear version with convex combination") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,y = {},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],y[j] = convex_comb_agg_log(model,a[j],b[j]) X[j].ub = M[j] # for i in I: # model.addCons( # x[i,j] <= \ # quicksum(min(d[i],a[j][k+1]) * (y[j][k]+y[j][k+1]) for k in range(K)),\ # "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def flp_nonlinear_sos(I,J,d,M,f,c,K): """flp_nonlinear_sos -- use model with SOS constraints Parameters: - I: set of customers - J: set of facilities - d[i]: demand for customer i - M[j]: capacity of facility j - f[j]: fixed cost for using a facility in point j - c[i,j]: unit cost of servicing demand point i from facility j - K: number of linear pieces for approximation of non-linear cost function Returns a model, ready to be solved. """ a,b = {},{} for j in J: U = M[j] L = 0 width = U/float(K) a[j] = [k*width for k in range(K+1)] b[j] = [f[j]*math.sqrt(value) for value in a[j]] model = Model("nonlinear flp -- use model with SOS constraints") x = {} for j in J: for i in I: x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j)) # i's demand satisfied from j # total volume transported from plant j, corresponding (linearized) cost, selection variable: X,F,z = {},{},{} for j in J: # add constraints for linking piecewise linear part: X[j],F[j],z[j] = convex_comb_sos(model,a[j],b[j]) X[j].ub = M[j] # for i in I: # model.addCons( # x[i,j] <= \ # quicksum(min(d[i],a[j][k+1]) * (z[j][k] + z[j][k+1])\ # for k in range(len(a[j])-1)), # "Strong(%s,%s)"%(i,j)) # constraints for customer's demand satisfaction for i in I: model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i) for j in J: model.addCons(quicksum(x[i,j] for i in I) == X[j], "Capacity(%s)"%j) model.setObjective(quicksum(F[j] for j in J) +\ quicksum(c[i,j]*x[i,j] for j in J for i in I),\ "minimize") model.data = x,X,F return model def distance(x1,y1,x2,y2): return math.sqrt((x2-x1)**2 + (y2-y1)**2) def make_data(n,m,same=True): x,y = {},{} if same == True: I = range(1,n+1) J = range(1,m+1) for i in range(1,1+max(m,n)): # positions of the points in the plane x[i] = random.random() y[i] = random.random() else: I = range(1,n+1) J = range(n+1,n+m+1) for i in I: # positions of the points in the plane x[i] = random.random() y[i] = random.random() for j in J: # positions of the points in the plane x[j] = random.random() y[j] = random.random() f,c,d,M = {},{},{},{} total_demand = 0. for i in I: for j in J: c[i,j] = int(100*distance(x[i],y[i],x[j],y[j])) + 1 d[i] = random.randint(1,10) total_demand += d[i] total_cap = 0. r = {} for j in J: r[j] = random.randint(0,m) f[j] = random.randint(100,100+r[j]*m) M[j] = 1 + 100+r[j]*m - f[j] # M[j] = int(total_demand/m) + random.randint(1,m) total_cap += M[j] for j in J: M[j] = int(M[j] * total_demand / total_cap + 1) + random.randint(0,r[j]) # print("%s\t%s\t%s" % (j,f[j],M[j]) # print("demand:",total_demand # print("capacity:",sum([M[j] for j in J]) return I,J,d,M,f,c,x,y def example(): I,d = multidict({1:80, 2:270, 3:250, 4:160, 5:180}) # demand J,M,f = multidict({10:[500,100], 11:[500,100], 12:[500,100]}) # capacity, fixed costs c = {(1,10):4, (1,11):6, (1,12):9, # transportation costs (2,10):5, (2,11):4, (2,12):7, (3,10):6, (3,11):3, (3,12):4, (4,10):8, (4,11):5, (4,12):3, (5,10):10, (5,11):8, (5,12):4, } x_pos = {1:0, 2:0, 3:0, 4:0, 5:0, 10:2, 11:2, 12:2} # positions of the points in the plane y_pos = {1:2, 2:1, 3:0, 4:-1, 5:-2, 10:1, 11:0, 12:-1} return I,J,d,M,f,c,x_pos,y_pos if __name__ == "__main__": # I,J,d,M,f,c,x_pos,y_pos = example() random.seed(1) n = 25 m = 5 I,J,d,M,f,c,x_pos,y_pos = make_data(n,m,same=False) # from flp_make_data import read_orlib,read_cortinhal # I,J,d,M,f,c,x_pos,y_pos = read_orlib("DATA/ORLIB/cap101.txt.gz") # I,J,d,M,f,c,x_pos,y_pos = read_cortinhal("DATA/8_25/A8_25_11.DAT") # I,J,d,M,f,c,x_pos,y_pos = example() K = 4 print("demand:",d) print("cost:",c) print("fixed:",f) print("capacity:",M) # print("x:",x_pos # print("y:",y_pos print("number of intervals:",K) print("\n\n\nflp: multiple selection") model = flp_nonlinear_mselect(I,J,d,M,f,c,K) x,X,F = model.data model.hideOutput() # silent/verbose mode model.optimize() objMS = model.getObjVal() print("Obj.",objMS) print("\n\n\nflp: convex combination with binary variables") model = flp_nonlinear_cc_dis(I,J,d,M,f,c,K) x,X,F = model.data model.hideOutput() # silent/verbose mode model.optimize() objCC = model.getObjVal() print("Obj.",objCC) print("\n\n\nflp: convex combination with logarithmic number of binary variables") model = flp_nonlinear_cc_dis_log(I,J,d,M,f,c,K) x,X,F = model.data model.hideOutput() # silent/verbose mode model.optimize() objLOG = model.getObjVal() print("Obj.",objLOG) print("\n\n\nflp: model with SOS constraints") model = flp_nonlinear_sos(I,J,d,M,f,c,K) x,X,F = model.data model.hideOutput() # silent/verbose mode model.optimize() objSOS = model.getObjVal() print("Obj.",objSOS) print("\n\n\nflp: aggregated CC model") model = flp_nonlinear_cc_agg(I,J,d,M,f,c,K) x,X,F = model.data model.hideOutput() # silent/verbose mode model.optimize() objND = model.getObjVal() print("Obj.",objND) print("\n\n\nflp: aggregated CC model, log number variables") model = flp_nonlinear_cc_agg_log(I,J,d,M,f,c,K) x,X,F = model.data model.hideOutput() # silent/verbose mode model.optimize() objNDlog = model.getObjVal() print("Obj.",objNDlog) EPS = 1.e-4 assert abs(objCC-objMS)<EPS and abs(objLOG-objMS)<EPS and abs(objSOS-objMS)<EPS\ and abs(objSOS-objND)<EPS and abs(objSOS-objNDlog)<EPS edges = [] flow = {} for (i,j) in sorted(x): if model.getVal(x[i,j]) > EPS: edges.append((i,j)) flow[(i,j)] = model.getVal(x[i,j]) print("\n\n\nflp: model with piecewise linear approximation of cost function") print("Obj.",model.getObjVal(),"\nedges",sorted(edges)) print("flows:",flow) if x_pos == None: exit(0) try: # plot the result using networkx and matplotlib import networkx as NX import matplotlib.pyplot as P P.clf() G = NX.Graph() facilities = J client = I G.add_nodes_from(facilities) G.add_nodes_from(client) for (i,j) in edges: G.add_edge(i,j) position = {} for i in I + J: position[i] = (x_pos[i],y_pos[i]) NX.draw(G,position,node_color="g",nodelist=client) NX.draw(G,position,node_color="y",nodelist=facilities) P.show() except ImportError: print("install 'networkx' and 'matplotlib' for plotting")
compiler/rule_translate.py
RAbraham/logica
1,434
131020
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compiler of a single Logica rule to SQL.""" import collections import copy import string import sys if '.' not in __package__: from common import color from compiler import expr_translate else: from ..common import color from ..compiler import expr_translate xrange = range def Indent2(s): return '\n'.join(' ' + l for l in s.split('\n')) class RuleCompileException(Exception): """Exception thrown when user-error is detected at rule-compile time.""" def __init__(self, message, rule_str): super(RuleCompileException, self).__init__(message) self.rule_str = rule_str def ShowMessage(self, stream=sys.stderr): print(color.Format('{underline}Compiling{end}:'), file=stream) print(self.rule_str, file=stream) print(color.Format('\n[ {error}Error{end} ] ') + str(self), file=stream) def LogicaFieldToSqlField(logica_field): if isinstance(logica_field, int): # TODO: Ensure that no collision occurs. return 'col%d' % logica_field return logica_field def HeadToSelect(head): """Converting a rule head to a SELECT representation.""" select = collections.OrderedDict() aggregated_vars = [] for field_value in head['record']['field_value']: k = field_value['field'] v = field_value['value'] if 'aggregation' in v: select[k] = copy.deepcopy(v['aggregation']['expression']) aggregated_vars.append(k) else: assert 'expression' in v, 'Bad select value: %s' % str(v) select[k] = v['expression'] # <=> v as k return (select, aggregated_vars) def AllMentionedVariables(x, dive_in_combines=False): """Extracting all variables mentioned in an expression.""" r = [] if isinstance(x, dict) and 'variable' in x: r.append(x['variable']['var_name']) if isinstance(x, list): for v in x: r.extend(AllMentionedVariables(v, dive_in_combines)) if isinstance(x, dict): for k in x: # Variables mentioned in 'combine' expression may be resolved via tables # of the 'combine' expression. So they are not to be included in the # parent query. if k != 'combine' or dive_in_combines: r.extend(AllMentionedVariables(x[k], dive_in_combines)) return set(r) def ReplaceVariable(old_var, new_expr, s): """Replacing a variable in expressoin s.""" if isinstance(s, dict): member_index = sorted(s.keys(), key=str) elif isinstance(s, list): member_index = range(len(s)) else: assert False, 'Replace should be called on list or dict. Got: %s' % str(s) for k in member_index: if (isinstance(s[k], dict) and 'variable' in s[k] and s[k]['variable']['var_name'] == old_var): s[k] = new_expr if isinstance(s, dict): for k in s: if isinstance(s[k], dict) or isinstance(s[k], list): ReplaceVariable(old_var, new_expr, s[k]) if isinstance(s, list): for k in s: if isinstance(k, dict) or isinstance(k, list): ReplaceVariable(old_var, new_expr, k) class NamesAllocator(object): """Allocator of unique names for tables and variables. Also holds existing built-in function names. """ def __init__(self, custom_udfs=None): self.aux_var_num = 0 self.table_num = 0 self.allocated_tables = set() self.custom_udfs = custom_udfs or {} def AllocateVar(self, hint=None): v = 'x_%d' % self.aux_var_num self.aux_var_num += 1 return v def AllocateTable(self, hint_for_user=None): """Allocating a table name.""" allowed_chars = set(string.ascii_letters + string.digits + '_./') if hint_for_user and len(hint_for_user) < 100: suffix = ''.join( ('_' if c in ['.', '/'] else c) for c in hint_for_user if c in allowed_chars) else: suffix = '' if suffix and suffix not in self.allocated_tables: t = suffix else: if suffix: suffix = '_' + suffix t = 't_%d%s' % (self.table_num, suffix) self.table_num += 1 self.allocated_tables.add(t) return t def FunctionExists(self, function_name): return (function_name in expr_translate.QL.BasisFunctions() or function_name in self.custom_udfs) class ExceptExpression(object): """Namespace for constructing and recognizing 'Except' expressions.""" @classmethod def Build(cls, table_name, except_fields): return '(SELECT AS STRUCT %s.* EXCEPT (%s))' % (table_name, ','.join(except_fields)) @classmethod def Recognize(cls, field_name): # Only 'Except' variables start with "(SELECT AS STRUCT". return field_name.startswith('(SELECT AS STRUCT') class RuleStructure(object): """Representing a single Logica rule structure. Can convert itself into an SQL SELECT statement. """ def __init__(self, names_allocator=None, external_vocabulary=None, custom_udfs=None): # Name of this predicate. self.this_predicate_name = '' # Table name to table predicate. self.tables = collections.OrderedDict() # Table variable to clause variable map. self.vars_map = {} # Clause variable to one table variable. self.inv_vars_map = {} self.vars_unification = [] self.constraints = [] self.select = collections.OrderedDict() self.unnestings = [] self.distinct_vars = [] names_allocator = names_allocator or NamesAllocator(custom_udfs=custom_udfs) self.allocator = names_allocator self.external_vocabulary = external_vocabulary self.synonym_log = {} self.full_rull_text = None self.distinct_denoted = None def OwnVarsVocabulary(self): """Returns a map: logica variable -> SQL expression with the value.""" def TableAndFieldToSql(table, field): if ExceptExpression.Recognize(field): return field elif table and field != '*': return '%s.%s' % (table, field) elif not table: return field else: # field == '*' return table return {k: TableAndFieldToSql(v[0], LogicaFieldToSqlField(v[1])) for k, v in self.inv_vars_map.items()} def VarsVocabulary(self): r = {} r.update(self.OwnVarsVocabulary()) if self.external_vocabulary: r.update(self.external_vocabulary) return r def ExtractedVariables(self): return set(self.VarsVocabulary().keys()) def InternalVariables(self): return self.AllVariables() - self.ExtractedVariables() def AllVariables(self): r = set() r |= AllMentionedVariables(self.select) r |= AllMentionedVariables(self.vars_unification) r |= AllMentionedVariables(self.constraints) r |= AllMentionedVariables(self.unnestings) return r def SortUnnestings(self): """Sorts unnestings in dependency order.""" unnesting_of = {u[0]['variable']['var_name']: u for u in self.unnestings} unnesting_variables = set(unnesting_of) depends_on = {u[0]['variable']['var_name']: set(AllMentionedVariables(u[1], dive_in_combines=True)) & unnesting_variables for u in self.unnestings} unnested = set() ordered_unnestings = [] while unnesting_of: for v, u in sorted(unnesting_of.items()): if depends_on[v] <= unnested: ordered_unnestings.append(unnesting_of[v]) del unnesting_of[v] unnested.add(v) break else: raise RuleCompileException( color.Format( 'There seem to be a circular dependency of {warning}In{end} ' 'calls. ' 'This error might also come from injected sub-rules.'), self.full_rule_text) self.unnestings = ordered_unnestings def ElliminateInternalVariables(self, assert_full_ellimination=False): """Elliminates internal variables via substitution.""" variables = self.InternalVariables() while True: done = True for u in self.vars_unification: for k, r in [['left', 'right'], ['right', 'left']]: if u[k] == u[r]: continue ur_variables = AllMentionedVariables(u[r]) ur_variables_incl_combines = AllMentionedVariables( u[r], dive_in_combines=True) if (isinstance(u[k], dict) and 'variable' in u[k] and u[k]['variable']['var_name'] in variables and u[k]['variable']['var_name'] not in ur_variables_incl_combines and ( ur_variables <= self.ExtractedVariables() or not str(u[k]['variable']['var_name']).startswith('x_'))): u_left = u[k]['variable']['var_name'] u_right = u[r] if 'variable' in u_right: l = self.synonym_log.get(u_right['variable']['var_name'], []) l.append(u_left) l.extend(self.synonym_log.get(u_left, [])) self.synonym_log[u_right['variable']['var_name']] = l ReplaceVariable(u_left, u_right, self.unnestings) ReplaceVariable(u_left, u_right, self.select) ReplaceVariable(u_left, u_right, self.vars_unification) ReplaceVariable(u_left, u_right, self.constraints) done = False if done: variables = self.InternalVariables() if assert_full_ellimination: if True: if variables: violators = [] for v in variables: violators.extend(self.synonym_log.get(v, [])) violators.append(v) violators = {v for v in violators if not v.startswith('x_')} assert violators, ( 'Logica needs better error messages: purely internal ' 'variable was not eliminated. It looks like you have ' 'not passed a required argument to some called predicate. ' 'Use --add_debug_info_to_var_names flag to make this message ' 'a little more informatvie. ' 'Variables: %s, synonym_log: %s' % (str(variables), str(self.synonym_log))) # Remove disambiguation suffixes from variables not to confuse # the user. violators = {v.split(' # disambiguated')[0] for v in violators} raise RuleCompileException( color.Format( 'Found no way to assign variables: ' '{warning}{violators}{end}. ' 'This error might also come from injected sub-rules.', dict(violators=', '.join(sorted(violators)))), self.full_rule_text) else: assert not variables, ( 'Not all internal variables were eliminated. Violators:\n' + ',\n'.join( '%s (aka %s)' % (v, self.synonym_log[v]) for v in variables) + '\nRule: %s' % self) else: unassigned_variables = [] for v in variables: if not v.startswith('x_'): unassigned_variables.append(v) # Remove disambiguation suffixes from variables not to confuse # the user. unassigned_variables = {v.split(' # disambiguated')[0] for v in unassigned_variables} if unassigned_variables: raise RuleCompileException( color.Format( 'Found no way to assign variables: ' '{warning}{violators}{end}. ' 'This error might also come from injected sub-rules.', dict(violators=', '.join(sorted(unassigned_variables)))), self.full_rule_text) break def __str__(self): return ('%s ==> \n' 'tables = %s,\n ' 'vars_map = %s,\n ' 'vars_unification = %s,\n ' 'external_vocabulary = %s,\n ' 'constraints = %s,\n ' 'select = %s,\n ' 'unnest = %s' % ( self.this_predicate_name, self.tables, self.vars_map, self.vars_unification, self.external_vocabulary, self.constraints, self.select, self.unnestings)) def UnificationsToConstraints(self): for u in self.vars_unification: if u['left'] == u['right']: continue self.constraints.append({ 'call': { 'predicate_name': '==', 'record': { 'field_value': [{ 'field': 'left', 'value': { 'expression': u['left'] } }, { 'field': 'right', 'value': { 'expression': u['right'] } }] } } }) def AsSql(self, subquery_encoder=None, flag_values=None): """Outputing SQL representing this structure.""" # pylint: disable=g-long-lambda ql = expr_translate.QL(self.VarsVocabulary(), subquery_encoder, lambda message: RuleCompileException(message, self.full_rule_text), flag_values, custom_udfs=subquery_encoder.execution.custom_udfs, dialect=subquery_encoder.execution.dialect) r = 'SELECT\n' fields = [] if not self.select: raise RuleCompileException( color.Format( 'Tables with {warning}no columns{end} are not allowed in ' 'StandardSQL, so they are not allowed in Logica.'), self.full_rule_text) for k, v in self.select.items(): if k == '*': fields.append('%s.*' % ql.ConvertToSql(v)) else: fields.append('%s AS %s' % (ql.ConvertToSql(v), LogicaFieldToSqlField(k))) r += ',\n'.join(' ' + f for f in fields) if (self.tables or self.unnestings or self.constraints or self.distinct_denoted): r += '\nFROM\n' tables = [] for k, v in self.tables.items(): if subquery_encoder: # Note that we are passing external_vocabulary, not VarsVocabulary # here. I.e. if this is a sub-query then variables of outer tables # can be used. sql = subquery_encoder.TranslateTable(v, self.external_vocabulary) if not sql: raise RuleCompileException( color.Format( 'Rule uses table {warning}{table}{end}, which is not ' 'defined. External tables can not be used in ' '{warning}\'testrun\'{end} mode. This error may come ' 'from injected sub-rules.', dict(table=v)), self.full_rule_text) if sql != k: tables.append(sql + ' AS ' + k) else: tables.append(sql) self.SortUnnestings() for element, the_list in self.unnestings: tables.append( subquery_encoder.execution.dialect.UnnestPhrase().format( ql.ConvertToSql(the_list), ql.ConvertToSql(element))) if not tables: tables.append('(SELECT "singleton" as s) as unused_singleton') from_str = ', '.join(tables) # Indent the from_str. from_str = '\n'.join(' ' + l for l in from_str.split('\n')) r += from_str if self.constraints: r += '\nWHERE\n' constraints = [] for c in self.constraints: constraints.append(ql.ConvertToSql(c)) r += ' AND\n'.join(map(Indent2, constraints)) if self.distinct_vars: ordered_distinct_vars = [ v for v in self.select.keys() if v in self.distinct_vars] r += '\nGROUP BY ' if subquery_encoder.execution.dialect.GroupBySpecBy() == 'name': r += ', '.join(map(LogicaFieldToSqlField, ordered_distinct_vars)) elif subquery_encoder.execution.dialect.GroupBySpecBy() == 'index': selected_fields = list(self.select.keys()) r += ', '.join(str(selected_fields.index(v) + 1) for v in ordered_distinct_vars) elif subquery_encoder.execution.dialect.GroupBySpecBy() == 'expr': r += ', '.join( ql.ConvertToSql(self.select[k]) for k in ordered_distinct_vars ) else: assert False, 'Broken dialect %s, group by spec: %s' % ( subquery_encoder.execution.dialect.Name(), subquery_encoder.execution.dialect.GroupBySpecBy()) return r def ExtractPredicateStructure(c, s): """Updating RuleStructure s with a predicate call.""" predicate = c['predicate_name'] if predicate in ( '<=', '<', '>', '>=', '!=', '&&', '||', '!', 'IsNull', 'Like', 'Constraint'): s.constraints.append({'call': c}) return table_name = s.allocator.AllocateTable(predicate) s.tables[table_name] = predicate for field_value in c['record']['field_value']: assert 'field' in field_value, ('Corrupt record: %s' % c['record']) if 'except' in field_value: table_var = ExceptExpression.Build(table_name, field_value['except']) else: table_var = field_value['field'] expr = field_value['value']['expression'] var_name = s.allocator.AllocateVar('%s_%s' % (table_name, table_var)) s.vars_map[table_name, table_var] = var_name s.inv_vars_map[var_name] = (table_name, table_var) s.vars_unification.append( { 'left': {'variable': {'var_name': var_name}}, 'right': expr }) def ExtractInclusionStructure(inclusion, s): """Updating RuleStructure s with an inclusion.""" # Handling inclusion as a WHERE constraint. if 'call' in inclusion['list']: if inclusion['list']['call']['predicate_name'] == 'Container': s.constraints.append({ 'call': { 'predicate_name': 'In', 'record': { 'field_value': [ { 'field': 'left', 'value': {'expression': inclusion['element']} }, { 'field': 'right', 'value': {'expression': inclusion['list']} } ] } } }) return # Handling inclusion as an UNNEST. var_name = s.allocator.AllocateVar('unnest_`%s`' % inclusion['element']) s.vars_map[None, var_name] = var_name s.inv_vars_map[var_name] = (None, var_name) s.unnestings.append([{'variable': {'var_name': var_name}}, inclusion['list']]) s.vars_unification.append({ 'left': inclusion['element'], 'right': { 'call': { 'predicate_name': 'ValueOfUnnested', 'record': { 'field_value': [{ 'field': 0, 'value': { 'expression': { 'variable': { 'var_name': var_name } } } }] } } } }) def ExtractConjunctiveStructure(conjuncts, s): """Updates RuleStructure with the conjuncts.""" for c in conjuncts: if 'predicate' in c: ExtractPredicateStructure(c['predicate'], s) elif 'unification' in c: if ('variable' in c['unification']['right_hand_side'] or 'variable' in c['unification']['left_hand_side']): s.vars_unification.append({ 'left': c['unification']['left_hand_side'], 'right': c['unification']['right_hand_side']}) else: if (c['unification']['left_hand_side'] != c['unification']['right_hand_side']): s.constraints.append({ 'call': { 'predicate_name': '==', 'record': { 'field_value': [ { 'field': 'left', 'value': { 'expression': c['unification']['left_hand_side'] } }, { 'field': 'right', 'value': { 'expression': c['unification']['right_hand_side'] } } ] } } }) elif 'inclusion' in c: ExtractInclusionStructure(c['inclusion'], s) else: assert False, 'Unsupported conjunct: %s' % c def HasCombine(r): """Whether structure involves Combine predicate.""" if isinstance(r, dict): member_index = sorted(r.keys()) elif isinstance(r, list): member_index = range(len(r)) else: assert False, ( 'HasCombine should be called on list or dict. Got: %s' % str(r)) if isinstance(r, dict): if 'predicate_name' in r and r['predicate_name'] == 'Combine': return True for k in member_index: if isinstance(r[k], dict) or isinstance(r[k], list): if HasCombine(r[k]): return True return False def AllRecordFields(record): result = [] for field_value in record['field_value']: result.append(field_value['field']) return result def InlinePredicateValuesRecursively(r, names_allocator, conjuncts): """Replaces expression predicate calls with logica_value column.""" if isinstance(r, dict): member_index = sorted(r.keys()) elif isinstance(r, list): member_index = range(len(r)) else: assert False, ( 'InlinePredicateValuesRecursively should be called on list or dict. ' 'Got: %s' % str(r)) for k in member_index: if k != 'combine': if isinstance(r[k], dict) or isinstance(r[k], list): InlinePredicateValuesRecursively(r[k], names_allocator, conjuncts) if isinstance(r, dict): if 'call' in r: if not names_allocator.FunctionExists(r['call']['predicate_name']): aux_var = names_allocator.AllocateVar('inline') r_predicate = {} r_predicate['predicate'] = copy.deepcopy(r['call']) r_predicate['predicate']['record']['field_value'].append({ 'field': 'logica_value', 'value': {'expression': {'variable': {'var_name': aux_var}}} }) del r['call'] r['variable'] = {'var_name': aux_var} conjuncts.append(r_predicate) def InlinePredicateValues(rule, names_allocator): extra_conjuncts = [] InlinePredicateValuesRecursively(rule, names_allocator, extra_conjuncts) if extra_conjuncts: conjuncts = rule.get('body', {}).get('conjunction', {}).get('conjunct', []) conjuncts.extend(extra_conjuncts) rule['body'] = {'conjunction': {'conjunct': conjuncts}} def GetTreeOfCombines(rule, tree=None): """Get the tree structure of combines in the rule syntax subtree.""" if not tree: tree = {'rule': rule, 'variables': set(), 'subtrees': []} if isinstance(rule, list): for v in rule: tree = GetTreeOfCombines(v, tree) if isinstance(rule, dict): if 'variable' in rule: variables = tree['variables'] variables.add(rule['variable']['var_name']) for k in rule: # Variables mentioned in 'combine' expression may be resolved via tables # of the 'combine' expression. So they are not to be included in the # parent query. if k != 'combine': tree = GetTreeOfCombines(rule[k], tree) else: subtree = GetTreeOfCombines(rule[k]) subtrees = tree['subtrees'] subtrees.append(subtree) return tree def DisambiguateCombineVariables(rule, names_allocator): """Disambiguate variables in combine expressions. Variables of the same name in different combine statements are actually different. The same name becomes a problem if one combine statement is substituted into another when unifications are processed. This function appends a disambiguation suffix to all variables first mentioned in combine statements. Args: rule: A rule to process. names_allocator: An execution level allocator of variable names. """ def Replace(tree, outer_variables): """Replace all variables with their disambiguated counterparts.""" variables = tree['variables'] introduced_variables = variables - outer_variables all_variables = variables | outer_variables for v in introduced_variables: if '# disambiguated with' in v: # This variable was already disambiguated. # We get here, when ExtractRuleStructure is called on the combine # expression itself. continue new_name = '%s # disambiguated with %s' % ( v, names_allocator.AllocateVar('combine_dis')) ReplaceVariable(v, {'variable': {'var_name': new_name}}, tree['rule']) for s in tree['subtrees']: Replace(s, all_variables) tree = GetTreeOfCombines(rule) top_variables = tree['variables'] for t in tree['subtrees']: Replace(t, top_variables) def ExtractRuleStructure(rule, names_allocator=None, external_vocabulary=None): """Extracts RuleStructure from rule.""" rule = copy.deepcopy(rule) # Not disambiguating if this rule is extracting structure of the combine # itself, as variables of this combine were already disambiguated from # parent rule. if rule['head']['predicate_name'] != 'Combine': DisambiguateCombineVariables(rule, names_allocator) s = RuleStructure(names_allocator, external_vocabulary) InlinePredicateValues(rule, names_allocator) s.full_rule_text = rule['full_text'] s.this_predicate_name = rule['head']['predicate_name'] (s.select, aggregated_vars) = HeadToSelect(rule['head']) # Adding internal variable unification with select arguments to avoid # confusion of user variables between injected predicates. for k, expr in s.select.items(): if 'variable' in expr: s.vars_unification.append({ 'left': expr, 'right': {'variable': {'var_name': names_allocator.AllocateVar( 'extract_%s_%s' % (s.this_predicate_name, k))}}}) if 'body' in rule: ExtractConjunctiveStructure(rule['body']['conjunction']['conjunct'], s) distinct_denoted = 'distinct_denoted' in rule s.distinct_denoted = distinct_denoted if aggregated_vars and not distinct_denoted: raise RuleCompileException( color.Format( 'Aggregating predicate must be {warning}distinct{end} denoted.'), s.full_rule_text) if distinct_denoted: s.distinct_vars = sorted( list(set(s.select.keys()) - set(aggregated_vars)), key=str) return s
models.py
OpnTec/open-event-scraper
1,946
131021
class Track(object): id = 0 header_line = 1 filename = "" key_color = "#FF4D55" name = "" description = "" track_image_url = "http://lorempixel.com/400/200" location = "" gid = "" order = -1 def __init__(self, id, name, header_line, key_color, location, gid, order): super(Track, self).__init__() self.id = id self.name = name self.header_line = header_line self.key_color = key_color self.track_image_url = "http://lorempixel.com/400/200" self.location = location self.gid = gid self.order = order class Service(object): id = 0 service = "" url = "" def __init__(self, id, service, url): super(Service, self).__init__() self.id = id self.service = service self.url = url class LogoIco(object): logo_url = "" ico_url = "" main_page_url = "" def __init__(self, logo_url, ico_url, main_page_url): super(LogoIco, self).__init__() self.logo_url = logo_url self.ico_url = ico_url self.main_page_url = main_page_url class Speaker(object): def __init__(self): super(Speaker, self).__init__() class Copyright(object): def __init__(self): super(Copyright, self).__init__() class Session(object): def __init__(self): super(Session, self).__init__() class Sponsor(object): def __init__(self): super(Sponsor, self).__init__() class Microlocation(object): def __init__(self): super(Microlocation, self).__init__()
django/CVE-2021-35042/web/vuln/apps.py
nobgr/vulhub
9,681
131028
<reponame>nobgr/vulhub<gh_stars>1000+ from django.apps import AppConfig class VulnConfig(AppConfig): name = 'vuln' default_auto_field = 'django.db.models.BigAutoField'
pytorch/main.py
bangab/GMVAE
177
131032
""" --------------------------------------------------------------------- -- Author: <NAME> --------------------------------------------------------------------- Main file to execute the model on the MNIST dataset """ import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import argparse import random import numpy as np import os import torch from torchvision import datasets, transforms from torch.utils.data.sampler import SubsetRandomSampler import torch.utils.data from model.GMVAE import * ######################################################### ## Input Parameters ######################################################### parser = argparse.ArgumentParser(description='PyTorch Implementation of DGM Clustering') ## Used only in notebooks parser.add_argument('-f', '--file', help='Path for input file. First line should contain number of lines to search in') ## Dataset parser.add_argument('--dataset', type=str, choices=['mnist'], default='mnist', help='dataset (default: mnist)') parser.add_argument('--seed', type=int, default=0, help='random seed (default: 0)') ## GPU parser.add_argument('--cuda', type=int, default=1, help='use of cuda (default: 1)') parser.add_argument('--gpuID', type=int, default=0, help='set gpu id to use (default: 0)') ## Training parser.add_argument('--epochs', type=int, default=100, help='number of total epochs to run (default: 200)') parser.add_argument('--batch_size', default=64, type=int, help='mini-batch size (default: 64)') parser.add_argument('--batch_size_val', default=200, type=int, help='mini-batch size of validation (default: 200)') parser.add_argument('--learning_rate', default=1e-3, type=float, help='learning rate (default: 0.001)') parser.add_argument('--decay_epoch', default=-1, type=int, help='Reduces the learning rate every decay_epoch') parser.add_argument('--lr_decay', default=0.5, type=float, help='Learning rate decay for training (default: 0.5)') ## Architecture parser.add_argument('--num_classes', type=int, default=10, help='number of classes (default: 10)') parser.add_argument('--gaussian_size', default=64, type=int, help='gaussian size (default: 64)') parser.add_argument('--input_size', default=784, type=int, help='input size (default: 784)') ## Partition parameters parser.add_argument('--train_proportion', default=1.0, type=float, help='proportion of examples to consider for training only (default: 1.0)') ## Gumbel parameters parser.add_argument('--init_temp', default=1.0, type=float, help='Initial temperature used in gumbel-softmax (recommended 0.5-1.0, default:1.0)') parser.add_argument('--decay_temp', default=1, type=int, help='Set 1 to decay gumbel temperature at every epoch (default: 1)') parser.add_argument('--hard_gumbel', default=0, type=int, help='Set 1 to use the hard version of gumbel-softmax (default: 1)') parser.add_argument('--min_temp', default=0.5, type=float, help='Minimum temperature of gumbel-softmax after annealing (default: 0.5)' ) parser.add_argument('--decay_temp_rate', default=0.013862944, type=float, help='Temperature decay rate at every epoch (default: 0.013862944)') ## Loss function parameters parser.add_argument('--w_gauss', default=1, type=float, help='weight of gaussian loss (default: 1)') parser.add_argument('--w_categ', default=1, type=float, help='weight of categorical loss (default: 1)') parser.add_argument('--w_rec', default=1, type=float, help='weight of reconstruction loss (default: 1)') parser.add_argument('--rec_type', type=str, choices=['bce', 'mse'], default='bce', help='desired reconstruction loss function (default: bce)') ## Others parser.add_argument('--verbose', default=0, type=int, help='print extra information at every epoch.(default: 0)') parser.add_argument('--random_search_it', type=int, default=20, help='iterations of random search (default: 20)') args = parser.parse_args() if args.cuda == 1: os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpuID) ## Random Seed SEED = args.seed np.random.seed(SEED) random.seed(SEED) torch.manual_seed(SEED) if args.cuda: torch.cuda.manual_seed(SEED) ######################################################### ## Read Data ######################################################### if args.dataset == "mnist": print("Loading mnist dataset...") # Download or load downloaded MNIST dataset train_dataset = datasets.MNIST('./mnist', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.MNIST('./mnist', train=False, transform=transforms.ToTensor()) ######################################################### ## Data Partition ######################################################### def partition_dataset(n, proportion=0.8): train_num = int(n * proportion) indices = np.random.permutation(n) train_indices, val_indices = indices[:train_num], indices[train_num:] return train_indices, val_indices if args.train_proportion == 1.0: train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size_val, shuffle=False) val_loader = test_loader else: train_indices, val_indices = partition_dataset(len(train_dataset), args.train_proportion) # Create data loaders for train, validation and test datasets train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, sampler=SubsetRandomSampler(train_indices)) val_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size_val, sampler=SubsetRandomSampler(val_indices)) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size_val, shuffle=False) ## Calculate flatten size of each input data args.input_size = np.prod(train_dataset[0][0].size()) print(args.input_size) ######################################################### ## Train and Test Model ######################################################### gmvae = GMVAE(args) ## Training Phase history_loss = gmvae.train(train_loader, val_loader) ## Testing Phase accuracy, nmi = gmvae.test(test_loader) print("Testing phase...") print("Accuracy: %.5lf, NMI: %.5lf" % (accuracy, nmi) )
tests/test_client.py
ysinjab/erppeek
134
131043
<filename>tests/test_client.py # -*- coding: utf-8 -*- import mock from mock import call, sentinel, ANY import erppeek from ._common import XmlRpcTestCase, OBJ AUTH = sentinel.AUTH ID1, ID2 = 4001, 4002 STABLE = ['uninstallable', 'uninstalled', 'installed'] def _skip_test(test_case): pass class IdentDict(object): def __init__(self, _id): self._id = _id def __repr__(self): return 'IdentDict(%s)' % (self._id,) def __getitem__(self, key): return (key == 'id') and self._id or ('v_%s_%s' % (key, self._id)) def __eq__(self, other): return self._id == other._id DIC1 = IdentDict(ID1) DIC2 = IdentDict(ID2) class TestService(XmlRpcTestCase): """Test the Service class.""" protocol = 'xmlrpc' def _patch_service(self): return mock.patch('erppeek.ServerProxy._ServerProxy__request').start() def _get_client(self): client = mock.Mock() client._server = 'http://127.0.0.1:8069/%s' % self.protocol proxy = getattr(erppeek.Client, '_proxy_%s' % self.protocol) client._proxy = proxy.__get__(client, erppeek.Client) return client def test_service(self): client = self._get_client() svc_alpha = erppeek.Service(client, 'alpha', ['beta']) self.assertIn('alpha', str(svc_alpha.beta)) self.assertRaises(AttributeError, getattr, svc_alpha, 'theta') if self.protocol == 'xmlrpc': self.assertIn('_ServerProxy__request', str(svc_alpha.beta(42))) self.assertCalls(call('beta', (42,)), "().__str__") else: self.assertCalls() self.assertOutput('') def test_service_openerp(self): client = self._get_client() def get_proxy(name, methods=None): if methods is None: methods = erppeek._methods.get(name, ()) return erppeek.Service(client, name, methods, verbose=False) self.assertIn('common', str(get_proxy('common').login)) login = get_proxy('common').login('aaa') with self.assertRaises(AttributeError): get_proxy('common').non_existent if self.protocol == 'xmlrpc': self.assertIn('_ServerProxy__request', str(login)) self.assertCalls(call('login', ('aaa',)), 'call().__str__') else: self.assertEqual(login, 'JSON_RESULT',) self.assertCalls(ANY) self.assertOutput('') def test_service_openerp_client(self, server_version=11.0): server = 'http://127.0.0.1:8069/%s' % self.protocol return_values = [str(server_version), ['newdb'], 1] if self.protocol == 'jsonrpc': return_values = [{'result': rv} for rv in return_values] self.service.side_effect = return_values client = erppeek.Client(server, 'newdb', 'usr', 'pss') self.service.return_value = ANY self.assertIsInstance(client.db, erppeek.Service) self.assertIsInstance(client.common, erppeek.Service) self.assertIsInstance(client._object, erppeek.Service) if server_version >= 11.0: self.assertIs(client._report, None) self.assertIs(client._wizard, None) elif server_version >= 7.0: self.assertIsInstance(client._report, erppeek.Service) self.assertIs(client._wizard, None) else: self.assertIsInstance(client._report, erppeek.Service) self.assertIsInstance(client._wizard, erppeek.Service) self.assertIn('/%s|db' % self.protocol, str(client.db.create_database)) self.assertIn('/%s|db' % self.protocol, str(client.db.db_exist)) if server_version >= 8.0: self.assertRaises(AttributeError, getattr, client.db, 'create') self.assertRaises(AttributeError, getattr, client.db, 'get_progress') else: self.assertIn('/%s|db' % self.protocol, str(client.db.create)) self.assertIn('/%s|db' % self.protocol, str(client.db.get_progress)) self.assertCalls(ANY, ANY, ANY) self.assertOutput('') def test_service_openerp_50_to_70(self): self.test_service_openerp_client(server_version=7.0) self.test_service_openerp_client(server_version=6.1) self.test_service_openerp_client(server_version=6.0) self.test_service_openerp_client(server_version=5.0) def test_service_odoo_80_90(self): self.test_service_openerp_client(server_version=9.0) self.test_service_openerp_client(server_version=8.0) def test_service_odoo_10_11(self): self.test_service_openerp_client(server_version=11.0) self.test_service_openerp_client(server_version=10.0) class TestServiceJsonRpc(TestService): """Test the Service class with JSON-RPC.""" protocol = 'jsonrpc' def _patch_service(self): return mock.patch('erppeek.http_post', return_value={'result': 'JSON_RESULT'}).start() class TestCreateClient(XmlRpcTestCase): """Test the Client class.""" server_version = '6.1' startup_calls = ( call(ANY, 'db', ANY, verbose=ANY), 'db.server_version', call(ANY, 'db', ANY, verbose=ANY), call(ANY, 'common', ANY, verbose=ANY), call(ANY, 'object', ANY, verbose=ANY), call(ANY, 'report', ANY, verbose=ANY), call(ANY, 'wizard', ANY, verbose=ANY), 'db.list', ) def test_create(self): self.service.db.list.return_value = ['newdb'] self.service.common.login.return_value = 1 client = erppeek.Client('http://127.0.0.1:8069', 'newdb', 'usr', 'pss') expected_calls = self.startup_calls + ( ('common.login', 'newdb', 'usr', 'pss'),) self.assertIsInstance(client, erppeek.Client) self.assertCalls(*expected_calls) self.assertEqual( client._login.cache, {('http://127.0.0.1:8069/xmlrpc', 'newdb', 'usr'): (1, 'pss')}) self.assertOutput('') def test_create_getpass(self): getpass = mock.patch('getpass.getpass', return_value='password').start() self.service.db.list.return_value = ['database'] expected_calls = self.startup_calls + ( ('common.login', 'database', 'usr', 'password'),) # A: Invalid login self.assertRaises(erppeek.Error, erppeek.Client, 'http://127.0.0.1:8069', 'database', 'usr') self.assertCalls(*expected_calls) self.assertEqual(getpass.call_count, 1) # B: Valid login self.service.common.login.return_value = 17 getpass.reset_mock() client = erppeek.Client('http://127.0.0.1:8069', 'database', 'usr') self.assertIsInstance(client, erppeek.Client) self.assertCalls(*expected_calls) self.assertEqual(getpass.call_count, 1) def test_create_with_cache(self): self.service.db.list.return_value = ['database'] self.assertFalse(erppeek.Client._login.cache) erppeek.Client._login.cache[ ('http://127.0.0.1:8069/xmlrpc', 'database', 'usr')] = (1, 'password') client = erppeek.Client('http://127.0.0.1:8069', 'database', 'usr') expected_calls = self.startup_calls + ( ('object.execute', 'database', 1, 'password', 'res.users', 'fields_get_keys'),) self.assertIsInstance(client, erppeek.Client) self.assertCalls(*expected_calls) self.assertOutput('') def test_create_from_config(self): env_tuple = ('http://127.0.0.1:8069', 'database', 'usr', None) read_config = mock.patch('erppeek.read_config', return_value=env_tuple).start() getpass = mock.patch('getpass.getpass', return_value='password').start() self.service.db.list.return_value = ['database'] expected_calls = self.startup_calls + ( ('common.login', 'database', 'usr', 'password'),) # A: Invalid login self.assertRaises(erppeek.Error, erppeek.Client.from_config, 'test') self.assertCalls(*expected_calls) self.assertEqual(read_config.call_count, 1) self.assertEqual(getpass.call_count, 1) # B: Valid login self.service.common.login.return_value = 17 read_config.reset_mock() getpass.reset_mock() client = erppeek.Client.from_config('test') self.assertIsInstance(client, erppeek.Client) self.assertCalls(*expected_calls) self.assertEqual(read_config.call_count, 1) self.assertEqual(getpass.call_count, 1) def test_create_invalid(self): # Without mock self.service.stop() self.assertRaises(EnvironmentError, erppeek.Client, 'dsadas') self.assertOutput('') class TestSampleSession(XmlRpcTestCase): server_version = '6.1' server = 'http://127.0.0.1:8069' database = 'database' user = 'user' password = '<PASSWORD>' uid = 1 def test_simple(self): self.service.object.execute.side_effect = [ 42, [{'model': 'res.users'}], 4, sentinel.IDS, sentinel.CRON] c = self.client res_users = c.model('res.users') self.assertIs(c.ResUsers, res_users) self.assertEqual(c.ResUsers.count(), 4) self.assertEqual(c.read('ir.cron', ['active = False'], 'active function'), sentinel.CRON) self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'res.users')]), OBJ('ir.model', 'read', 42, ('model',)), OBJ('res.users', 'search_count', []), OBJ('ir.cron', 'search', [('active', '=', False)]), OBJ('ir.cron', 'read', sentinel.IDS, ['active', 'function']), ) self.assertOutput('') def test_list_modules(self): self.service.object.execute.side_effect = [ ['delivery_a', 'delivery_b'], [{'state': 'not installed', 'name': 'dummy'}]] modules = self.client.modules('delivery') self.assertIsInstance(modules, dict) self.assertIn('not installed', modules) imm = ('object.execute', AUTH, 'ir.module.module') self.assertCalls( imm + ('search', [('name', 'like', 'delivery')]), imm + ('read', ['delivery_a', 'delivery_b'], ['name', 'state']), ) self.assertOutput('') def test_module_upgrade(self): self.service.object.execute.side_effect = [ (42, 0), [42], [], ANY, [42], [{'id': 42, 'state': ANY, 'name': ANY}], ANY] result = self.client.upgrade('dummy') self.assertIsNone(result) imm = ('object.execute', AUTH, 'ir.module.module') bmu = ('object.execute', AUTH, 'base.module.upgrade') self.assertCalls( imm + ('update_list',), imm + ('search', [('name', 'in', ('dummy',))]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('button_upgrade', [42]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('read', [42], ['name', 'state']), bmu + ('upgrade_module', []), ) self.assertOutput(ANY) class TestSampleSession50(TestSampleSession): server_version = '5.0' def test_module_upgrade(self): self.service.object.execute.side_effect = [ (42, 0), [42], [], ANY, [42], [{'id': 42, 'state': ANY, 'name': ANY}]] self.service.wizard.create.return_value = 17 self.service.wizard.execute.return_value = {'state': (['config'],)} result = self.client.upgrade('dummy') self.assertIsNone(result) imm = ('object.execute', AUTH, 'ir.module.module') self.assertCalls( imm + ('update_list',), imm + ('search', [('name', 'in', ('dummy',))]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('button_upgrade', [42]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('read', [42], ['name', 'state']), ('wizard.create', AUTH, 'module.upgrade'), ('wizard.execute', AUTH, 17, {}, 'start', None), ) self.assertOutput(ANY) class TestClientApi(XmlRpcTestCase): """Test the Client API.""" server_version = '6.1' server = 'http://127.0.0.1:8069' database = 'database' user = 'user' password = '<PASSWORD>' uid = 1 def obj_exec(self, *args): if args[4] == 'search': return [ID2, ID1] if args[4] == 'read': return [IdentDict(res_id) for res_id in args[5][::-1]] return sentinel.OTHER def test_create_database(self): create_database = self.client.create_database self.client.db.list.side_effect = [['db1'], ['db2']] create_database('abc', 'db1') create_database('xyz', 'db2', user_password='<PASSWORD>', lang='fr_FR') self.assertCalls( call.db.create_database('abc', 'db1', False, 'en_US', 'admin'), call.db.list(), call.common.login('db1', 'admin', 'admin'), call.db.create_database('xyz', 'db2', False, 'fr_FR', 'secret'), call.db.list(), call.common.login('db2', 'admin', 'secret'), ) self.assertOutput('') if float(self.server_version) < 9.0: self.assertRaises(erppeek.Error, create_database, 'xyz', 'db2', user_password='<PASSWORD>', lang='fr_FR', login='other_login', country_code='CA') self.assertRaises(erppeek.Error, create_database, 'xyz', 'db2', login='other_login') self.assertRaises(erppeek.Error, create_database, 'xyz', 'db2', country_code='CA') self.assertOutput('') return # Odoo 9 self.client.db.list.side_effect = [['db2']] create_database('xyz', 'db2', user_password='<PASSWORD>', lang='fr_FR', login='other_login', country_code='CA') self.assertCalls( call.db.create_database('xyz', 'db2', False, 'fr_FR', 'secret', 'other_login', 'CA'), call.db.list(), call.common.login('db2', 'other_login', 'secret'), ) self.assertOutput('') def test_search(self): search = self.client.search self.service.object.execute.side_effect = self.obj_exec searchterm = 'name like Morice' self.assertEqual(search('foo.bar', [searchterm]), [ID2, ID1]) self.assertEqual(search('foo.bar', [searchterm], limit=2), [ID2, ID1]) self.assertEqual(search('foo.bar', [searchterm], offset=80, limit=99), [ID2, ID1]) self.assertEqual(search('foo.bar', [searchterm], order='name ASC'), [ID2, ID1]) search('foo.bar', ['name = mushroom', 'state != draft']) search('foo.bar', [('name', 'like', 'Morice')]) self.client.execute('foo.bar', 'search', [('name like Morice')]) search('foo.bar', []) search('foo.bar') domain = [('name', 'like', 'Morice')] domain2 = [('name', '=', 'mushroom'), ('state', '!=', 'draft')] self.assertCalls( OBJ('foo.bar', 'search', domain), OBJ('foo.bar', 'search', domain, 0, 2, None), OBJ('foo.bar', 'search', domain, 80, 99, None), OBJ('foo.bar', 'search', domain, 0, None, 'name ASC'), OBJ('foo.bar', 'search', domain2), OBJ('foo.bar', 'search', domain), OBJ('foo.bar', 'search', domain), OBJ('foo.bar', 'search', []), OBJ('foo.bar', 'search', []), ) self.assertOutput('') # No longer supported since 1.6 search('foo.bar', 'name like Morice') self.assertCalls(OBJ('foo.bar', 'search', 'name like Morice')) search('foo.bar', ['name like Morice'], missingkey=42) self.assertCalls(OBJ('foo.bar', 'search', domain)) self.assertOutput('Ignoring: missingkey = 42\n') self.assertRaises(TypeError, search) self.assertRaises(AssertionError, search, object()) self.assertRaises(ValueError, search, 'foo.bar', ['abc']) self.assertRaises(ValueError, search, 'foo.bar', ['< id']) self.assertRaises(ValueError, search, 'foo.bar', ['name Morice']) self.assertCalls() self.assertOutput('') def test_count(self): count = self.client.count count('foo.bar', ['name like Morice']) count('foo.bar', ['name = mushroom', 'state != draft']) count('foo.bar', [('name', 'like', 'Morice')]) self.client.execute('foo.bar', 'search_count', [('name like Morice')]) count('foo.bar', []) count('foo.bar') domain = [('name', 'like', 'Morice')] domain2 = [('name', '=', 'mushroom'), ('state', '!=', 'draft')] self.assertCalls( OBJ('foo.bar', 'search_count', domain), OBJ('foo.bar', 'search_count', domain2), OBJ('foo.bar', 'search_count', domain), OBJ('foo.bar', 'search_count', domain), OBJ('foo.bar', 'search_count', []), OBJ('foo.bar', 'search_count', []), ) self.assertOutput('') # No longer supported since 1.6 count('foo.bar', 'name like Morice') self.assertCalls(OBJ('foo.bar', 'search_count', 'name like Morice')) self.assertRaises(TypeError, count) self.assertRaises(TypeError, count, ['name like Morice'], limit=2) self.assertRaises(TypeError, count, ['name like Morice'], offset=80, limit=99) self.assertRaises(TypeError, count, ['name like Morice'], order='name ASC') self.assertRaises(AssertionError, count, object()) self.assertRaises(ValueError, count, 'foo.bar', ['abc']) self.assertRaises(ValueError, count, 'foo.bar', ['< id']) self.assertRaises(ValueError, count, 'foo.bar', ['name Morice']) self.assertCalls() self.assertOutput('') def test_read_simple(self): read = self.client.read self.service.object.execute.side_effect = self.obj_exec read('foo.bar', 42) read('foo.bar', [42]) read('foo.bar', [13, 17]) read('foo.bar', [42], 'first_name') self.assertCalls( OBJ('foo.bar', 'read', [42], None), OBJ('foo.bar', 'read', [42], None), OBJ('foo.bar', 'read', [13, 17], None), OBJ('foo.bar', 'read', [42], ['first_name']), ) self.assertOutput('') def test_read_complex(self): read = self.client.read self.service.object.execute.side_effect = self.obj_exec searchterm = 'name like Morice' self.assertEqual(read('foo.bar', [searchterm]), [DIC1, DIC2]) self.assertEqual(read('foo.bar', [searchterm], limit=2), [DIC1, DIC2]) self.assertEqual(read('foo.bar', [searchterm], offset=80, limit=99), [DIC1, DIC2]) self.assertEqual(read('foo.bar', [searchterm], order='name ASC'), [DIC2, DIC1]) read('foo.bar', [searchterm], 'birthdate city') read('foo.bar', [searchterm], 'birthdate city', limit=2) read('foo.bar', [searchterm], limit=2, fields=['birthdate', 'city']) read('foo.bar', [searchterm], order='name ASC') read('foo.bar', ['name = mushroom', 'state != draft']) read('foo.bar', [('name', 'like', 'Morice')]) self.client.execute('foo.bar', 'read', ['name like Morice']) rv = read('foo.bar', ['name like Morice'], 'aaa %(birthdate)s bbb %(city)s', offset=80, limit=99) self.assertEqual(rv, ['aaa v_birthdate_4001 bbb v_city_4001', 'aaa v_birthdate_4002 bbb v_city_4002']) def call_read(fields=None): return OBJ('foo.bar', 'read', [ID2, ID1], fields) domain = [('name', 'like', 'Morice')] domain2 = [('name', '=', 'mushroom'), ('state', '!=', 'draft')] self.assertCalls( OBJ('foo.bar', 'search', domain), call_read(), OBJ('foo.bar', 'search', domain, 0, 2, None), call_read(), OBJ('foo.bar', 'search', domain, 80, 99, None), call_read(), OBJ('foo.bar', 'search', domain, 0, None, 'name ASC'), call_read(), OBJ('foo.bar', 'search', domain), call_read(['birthdate', 'city']), OBJ('foo.bar', 'search', domain, 0, 2, None), call_read(['birthdate', 'city']), OBJ('foo.bar', 'search', domain, 0, 2, None), call_read(['birthdate', 'city']), OBJ('foo.bar', 'search', domain, 0, None, 'name ASC'), call_read(), OBJ('foo.bar', 'search', domain2), call_read(), OBJ('foo.bar', 'search', domain), call_read(), OBJ('foo.bar', 'search', domain), call_read(), OBJ('foo.bar', 'search', domain, 80, 99, None), call_read(['birthdate', 'city']), ) self.assertOutput('') def test_read_false(self): read = self.client.read self.service.object.execute.side_effect = self.obj_exec self.assertEqual(read('foo.bar', False), False) self.assertEqual(read('foo.bar', [False]), []) self.assertEqual(read('foo.bar', [False, False]), []) self.assertEqual(read('foo.bar', [False], 'first_name'), []) self.assertEqual(read('foo.bar', [False], order=True), [False]) self.assertEqual(read('foo.bar', [False, False], order=True), [False, False]) self.assertEqual(read('foo.bar', [False], 'first_name', order=True), [False]) self.assertEqual(read('foo.bar', [], 'first_name'), False) self.assertEqual(read('foo.bar', [], 'first_name', order=True), False) self.assertCalls() self.assertEqual(read('foo.bar', [False, 42]), [IdentDict(42)]) self.assertEqual(read('foo.bar', [False, 13, 17, False]), [IdentDict(17), IdentDict(13)]) self.assertEqual(read('foo.bar', [13, False, 17], 'first_name'), ['v_first_name_17', 'v_first_name_13']) self.assertEqual(read('foo.bar', [False, 42], order=True), [False, IdentDict(42)]) self.assertEqual(read('foo.bar', [False, 13, 17, False], order=True), [False, IdentDict(13), IdentDict(17), False]) self.assertEqual(read('foo.bar', [13, False, 17], 'city', order=True), ['v_city_13', False, 'v_city_17']) self.assertCalls( OBJ('foo.bar', 'read', [42], None), OBJ('foo.bar', 'read', [13, 17], None), OBJ('foo.bar', 'read', [13, 17], ['first_name']), OBJ('foo.bar', 'read', [42], None), OBJ('foo.bar', 'read', [13, 17], None), OBJ('foo.bar', 'read', [13, 17], ['city']), ) self.assertOutput('') def test_read_invalid(self): read = self.client.read self.service.object.execute.side_effect = self.obj_exec domain = [('name', 'like', 'Morice')] # No longer supported since 1.6 read('foo.bar', 'name like Morice') read('foo.bar', ['name like Morice'], missingkey=42) self.assertCalls( OBJ('foo.bar', 'read', ['name like Morice'], None), OBJ('foo.bar', 'search', domain), OBJ('foo.bar', 'read', ANY, None)) self.assertOutput('Ignoring: missingkey = 42\n') self.assertRaises(TypeError, read) self.assertRaises(AssertionError, read, object()) self.assertRaises(AssertionError, read, 'foo.bar') self.assertRaises(ValueError, read, 'foo.bar', ['abc']) self.assertRaises(ValueError, read, 'foo.bar', ['< id']) self.assertRaises(ValueError, read, 'foo.bar', ['name Morice']) self.assertCalls() self.assertOutput('') def test_method(self, method_name='method', single_id=True): method = getattr(self.client, method_name) single_id = single_id and 42 or [42] method('foo.bar', 42) method('foo.bar', [42]) method('foo.bar', [13, 17]) self.client.execute('foo.bar', method_name, [42]) method('foo.bar', []) self.assertCalls( OBJ('foo.bar', method_name, single_id), OBJ('foo.bar', method_name, [42]), OBJ('foo.bar', method_name, [13, 17]), OBJ('foo.bar', method_name, [42]), OBJ('foo.bar', method_name, []), ) self.assertRaises(TypeError, method) self.assertRaises(AssertionError, method, object()) self.assertOutput('') def test_standard_methods(self): for method in 'write', 'create', 'copy', 'unlink': self.test_method(method) self.test_method('perm_read', single_id=False) def test_model(self): self.service.object.execute.side_effect = self.obj_exec self.assertTrue(self.client.models('foo.bar')) self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'foo.bar')]), OBJ('ir.model', 'read', [ID2, ID1], ('model',)), ) self.assertOutput('') self.assertRaises(erppeek.Error, self.client.model, 'foo.bar') self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'foo.bar')]), OBJ('ir.model', 'read', [ID2, ID1], ('model',)), ) self.assertOutput('') self.service.object.execute.side_effect = [ sentinel.IDS, [{'id': 13, 'model': 'foo.bar'}]] self.assertIsInstance(self.client.model('foo.bar'), erppeek.Model) self.assertIs(self.client.model('foo.bar'), erppeek.Model(self.client, 'foo.bar')) self.assertIs(self.client.model('foo.bar'), self.client.FooBar) self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'foo.bar')]), OBJ('ir.model', 'read', sentinel.IDS, ('model',)), ) self.assertOutput('') def test_keys(self): self.service.object.execute.side_effect = [ sentinel.IDS, [{'model': 'foo.bar'}], ['spam']] self.assertTrue(self.client.keys('foo.bar')) self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'foo.bar')]), OBJ('ir.model', 'read', sentinel.IDS, ('model',)), OBJ('foo.bar', 'fields_get_keys'), ) self.assertOutput('') def test_fields(self): self.service.object.execute.side_effect = [ sentinel.IDS, [{'model': 'foo.bar'}], {'spam': sentinel.FIELD}] self.assertTrue(self.client.fields('foo.bar')) self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'foo.bar')]), OBJ('ir.model', 'read', sentinel.IDS, ('model',)), OBJ('foo.bar', 'fields_get'), ) self.assertOutput('') def test_field(self): self.service.object.execute.side_effect = [ sentinel.IDS, [{'model': 'foo.bar'}], {'spam': sentinel.FIELD}] self.assertTrue(self.client.field('foo.bar', 'spam')) self.assertRaises(TypeError, self.client.field) self.assertRaises(TypeError, self.client.field, 'foo.bar') self.assertCalls( OBJ('ir.model', 'search', [('model', 'like', 'foo.bar')]), OBJ('ir.model', 'read', sentinel.IDS, ('model',)), OBJ('foo.bar', 'fields_get'), ) self.assertOutput('') def test_access(self): self.assertTrue(self.client.access('foo.bar')) self.assertCalls(OBJ('ir.model.access', 'check', 'foo.bar', 'read')) self.assertOutput('') def test_execute_kw(self): execute_kw = self.client.execute_kw execute_kw('foo.bar', 'any_method', 42) execute_kw('foo.bar', 'any_method', [42]) execute_kw('foo.bar', 'any_method', [13, 17]) self.assertCalls( ('object.execute_kw', AUTH, 'foo.bar', 'any_method', 42), ('object.execute_kw', AUTH, 'foo.bar', 'any_method', [42]), ('object.execute_kw', AUTH, 'foo.bar', 'any_method', [13, 17]), ) self.assertOutput('') def test_exec_workflow(self): exec_workflow = self.client.exec_workflow self.assertTrue(exec_workflow('foo.bar', 'light', 42)) self.assertRaises(TypeError, exec_workflow) self.assertRaises(TypeError, exec_workflow, 'foo.bar') self.assertRaises(TypeError, exec_workflow, 'foo.bar', 'rip') self.assertRaises(TypeError, exec_workflow, 'foo.bar', 'rip', 42, None) self.assertRaises(AssertionError, exec_workflow, 42, 'rip', 42) self.assertRaises(AssertionError, exec_workflow, 'foo.bar', 42, 42) self.assertCalls( ('object.exec_workflow', AUTH, 'foo.bar', 'light', 42), ) self.assertOutput('') def test_wizard(self): wizard = self.client.wizard self.service.wizard.create.return_value = ID1 self.assertTrue(wizard('foo.bar')) self.assertTrue(wizard('billy', action='shake')) self.assertTrue(wizard(42, action='kick')) self.assertRaises(TypeError, wizard) self.assertCalls( ('wizard.create', AUTH, 'foo.bar'), ('wizard.create', AUTH, 'billy'), ('wizard.execute', AUTH, ID1, {}, 'shake', None), ('wizard.execute', AUTH, 42, {}, 'kick', None), ) self.assertOutput('') def test_report(self): self.assertTrue(self.client.report('foo.bar', sentinel.IDS)) self.assertCalls( ('report.report', AUTH, 'foo.bar', sentinel.IDS), ) self.assertOutput('') def test_render_report(self): self.assertTrue(self.client.render_report('foo.bar', sentinel.IDS)) self.assertCalls( ('report.render_report', AUTH, 'foo.bar', sentinel.IDS), ) self.assertOutput('') def test_report_get(self): self.assertTrue(self.client.report_get(ID1)) self.assertCalls( ('report.report_get', AUTH, ID1), ) self.assertOutput('') def _module_upgrade(self, button='upgrade'): execute_return = [ [7, 0], [42], [], {'name': 'Upgrade'}, [4, 42, 5], [{'id': 4, 'state': ANY, 'name': ANY}, {'id': 5, 'state': ANY, 'name': ANY}, {'id': 42, 'state': ANY, 'name': ANY}], ANY] action = getattr(self.client, button) imm = ('object.execute', AUTH, 'ir.module.module') bmu = ('object.execute', AUTH, 'base.module.upgrade') expected_calls = [ imm + ('update_list',), imm + ('search', [('name', 'in', ('dummy', 'spam'))]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('button_' + button, [42]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('read', [4, 42, 5], ['name', 'state']), bmu + ('upgrade_module', []), ] if button == 'uninstall': execute_return[3:3] = [[], ANY] expected_calls[3:3] = [ imm + ('search', [('id', 'in', [42]), ('state', '!=', 'installed'), ('state', '!=', 'to upgrade'), ('state', '!=', 'to remove')]), imm + ('write', [42], {'state': 'to remove'}), ] self.service.object.execute.side_effect = execute_return result = action('dummy', 'spam') self.assertIsNone(result) self.assertCalls(*expected_calls) self.assertIn('to process', self.stdout.popvalue()) self.assertOutput('') def test_module_upgrade(self): self._module_upgrade('install') self._module_upgrade('upgrade') self._module_upgrade('uninstall') class TestClientApi50(TestClientApi): """Test the Client API for OpenERP 5.""" server_version = '5.0' test_execute_kw = test_render_report = _skip_test def test_create_database(self): create_database = self.client.create_database mock.patch('time.sleep').start() self.client.db.create.return_value = ID1 self.client.db.get_progress.return_value = \ [1, [{'login': 'admin', 'password': 'PP'}]] self.client.db.list.side_effect = [['db1'], ['db2']] create_database('abc', 'db1') create_database('xyz', 'db2', user_password='<PASSWORD>', lang='fr_FR') self.assertCalls( call.db.create('abc', 'db1', False, 'en_US', 'admin'), call.db.get_progress('abc', ID1), call.db.list(), call.common.login('db1', 'admin', 'admin'), call.db.create('xyz', 'db2', False, 'fr_FR', 'secret'), call.db.get_progress('xyz', ID1), call.db.list(), call.common.login('db2', 'admin', 'secret'), ) self.assertOutput('') def _module_upgrade(self, button='upgrade'): execute_return = [ [7, 0], [42], [], {'name': 'Upgrade'}, [4, 42, 5], [{'id': 4, 'state': ANY, 'name': ANY}, {'id': 5, 'state': ANY, 'name': ANY}, {'id': 42, 'state': ANY, 'name': ANY}]] self.service.wizard.create.return_value = 17 self.service.wizard.execute.return_value = {'state': (['config'],)} action = getattr(self.client, button) imm = ('object.execute', AUTH, 'ir.module.module') expected_calls = [ imm + ('update_list',), imm + ('search', [('name', 'in', ('dummy', 'spam'))]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('button_' + button, [42]), imm + ('search', [('state', 'not in', STABLE)]), imm + ('read', [4, 42, 5], ['name', 'state']), ('wizard.create', AUTH, 'module.upgrade'), ('wizard.execute', AUTH, 17, {}, 'start', None), ] if button == 'uninstall': execute_return[3:3] = [[], ANY] expected_calls[3:3] = [ imm + ('search', [('id', 'in', [42]), ('state', '!=', 'installed'), ('state', '!=', 'to upgrade'), ('state', '!=', 'to remove')]), imm + ('write', [42], {'state': 'to remove'}), ] self.service.object.execute.side_effect = execute_return result = action('dummy', 'spam') self.assertIsNone(result) self.assertCalls(*expected_calls) self.assertIn('to process', self.stdout.popvalue()) self.assertOutput('') class TestClientApi90(TestClientApi): """Test the Client API for Odoo 9.""" server_version = '9.0' test_wizard = _skip_test class TestClientApi11(TestClientApi): """Test the Client API for Odoo 11.""" server_version = '11.0' test_wizard = _skip_test test_report = test_render_report = test_report_get = _skip_test
.venv/lib/python3.8/site-packages/pandas/tests/series/methods/test_at_time.py
acrucetta/Chicago_COVI_WebApp
115
131044
<gh_stars>100-1000 from datetime import time import numpy as np import pytest from pandas._libs.tslibs import timezones from pandas import DataFrame, Series, date_range import pandas._testing as tm class TestAtTime: @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_localized_at_time(self, tzstr): tz = timezones.maybe_get_tz(tzstr) rng = date_range("4/16/2012", "5/1/2012", freq="H") ts = Series(np.random.randn(len(rng)), index=rng) ts_local = ts.tz_localize(tzstr) result = ts_local.at_time(time(10, 0)) expected = ts.at_time(time(10, 0)).tz_localize(tzstr) tm.assert_series_equal(result, expected) assert timezones.tz_compare(result.index.tz, tz) def test_at_time(self): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) assert (rs.index.hour == rng[1].hour).all() assert (rs.index.minute == rng[1].minute).all() assert (rs.index.second == rng[1].second).all() result = ts.at_time("9:30") expected = ts.at_time(time(9, 30)) tm.assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.loc[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] result.index = result.index._with_freq(None) tm.assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.loc["1/4/2000":] result = chunk.loc[time(9, 30)] expected = result_df[-1:] # Without resetting the freqs, these are 5 min and 1440 min, respectively result.index = result.index._with_freq(None) expected.index = expected.index._with_freq(None) tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range("1/1/2000", "1/31/2000") ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) tm.assert_series_equal(result, ts) # time doesn't exist rng = date_range("1/1/2012", freq="23Min", periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time("16:00") assert len(rs) == 0 def test_at_time_raises(self): # GH20725 ser = Series("a b c".split()) msg = "Index must be DatetimeIndex" with pytest.raises(TypeError, match=msg): ser.at_time("00:00")
e3nn/math/_linalg.py
ninarina12/e3nn
385
131050
<reponame>ninarina12/e3nn<gh_stars>100-1000 from typing import Tuple import torch def direct_sum(*matrices): r"""Direct sum of matrices, put them in the diagonal """ front_indices = matrices[0].shape[:-2] m = sum(x.size(-2) for x in matrices) n = sum(x.size(-1) for x in matrices) total_shape = list(front_indices) + [m, n] out = matrices[0].new_zeros(total_shape) i, j = 0, 0 for x in matrices: m, n = x.shape[-2:] out[..., i: i + m, j: j + n] = x i += m j += n return out @torch.jit.script def orthonormalize( original: torch.Tensor, eps: float = 1e-9 ) -> Tuple[torch.Tensor, torch.Tensor]: r"""orthonomalize vectors Parameters ---------- original : `torch.Tensor` list of the original vectors :math:`x` eps : float a small number Returns ------- final : `torch.Tensor` list of orthonomalized vectors :math:`y` matrix : `torch.Tensor` the matrix :math:`A` such that :math:`y = A x` """ assert original.dim() == 2 dim = original.shape[1] final = [] matrix = [] for i, x in enumerate(original): cx = x.new_zeros(len(original)) cx[i] = 1 for j, y in enumerate(final): c = torch.dot(x, y) x = x - c * y cx = cx - c * matrix[j] if x.norm() > 2 * eps: c = 1 / x.norm() x = c * x cx = c * cx x[x.abs() < eps] = 0 cx[cx.abs() < eps] = 0 c = x[x.nonzero()[0, 0]].sign() x = c * x cx = c * cx final += [x] matrix += [cx] final = torch.stack(final) if len(final) > 0 else original.new_zeros((0, dim)) matrix = torch.stack(matrix) if len(matrix) > 0 else original.new_zeros((0, len(original))) return final, matrix @torch.jit.script def complete_basis( vecs: torch.Tensor, eps: float = 1e-9 ) -> torch.Tensor: assert vecs.dim() == 2 dim = vecs.shape[1] base = [x / x.norm() for x in vecs] expand = [] for x in torch.eye(dim, device=vecs.device, dtype=vecs.dtype): for y in base + expand: x -= torch.dot(x, y) * y if x.norm() > 2 * eps: x /= x.norm() x[x.abs() < eps] = x.new_zeros(()) x *= x[x.nonzero()[0, 0]].sign() expand += [x] expand = torch.stack(expand) if len(expand) > 0 else vecs.new_zeros(0, dim) return expand
configs/seg/_base_/models/deeplabv3_central_mnb4.py
OpenGVLab/gv-benchmark
106
131053
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', # pretrained='checkpoints/metanet-b4/det_fmtb4_v1.pth.tar', backbone=dict( type='Central_Model', backbone_name='MTB4', task_names=('gv_patch', 'gv_global'), main_task_name='gv_global', trans_type='crossconvhrnetlayer', task_name_to_backbone={ 'gv_global': { 'repeats': [2, 3, 6, 6, 6, 12], 'expansion': [1, 4, 6, 3, 2, 5], 'channels': [32, 64, 128, 192, 192, 384], 'final_drop': 0.0, 'block_ops': ['MBConv3x3'] * 4 + ['SABlock'] * 2, 'input_size': 256 }, 'gv_patch': { 'repeats': [2, 3, 6, 6, 6, 12], 'expansion': [1, 4, 6, 3, 2, 5], 'channels': [32, 64, 128, 192, 192, 384], 'final_drop': 0.0, 'block_ops': ['MBConv3x3'] * 4 + ['SABlock'] * 2, 'input_size': 256 } }, layer2channel={ 'layer1': 64, 'layer2': 128, 'layer3': 192 }, layer2auxlayers={ 'layer1': [ 'layer1', ], 'layer2': [ 'layer1', 'layer2', ], 'layer3': ['layer1', 'layer2', 'layer3'], }, trans_layers=['layer1', 'layer2', 'layer3'], channels=[64, 128, 192], ), decode_head=dict(type='ASPPHead', in_channels=384, in_index=3, channels=512, dilations=(1, 12, 24, 36), dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict(type='FCNHead', in_channels=192, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole')) custom_imports = dict(imports=[ 'gvbenchmark.seg.models.backbones.central_model', ], allow_failed_imports=False)
modules/adapters/adapter/transports.py
timfjord/sublime_debugger
225
131069
<reponame>timfjord/sublime_debugger<filename>modules/adapters/adapter/transports.py from __future__ import annotations from ...typecheck import * from ...import core from ...dap import Transport import socket import os import subprocess import threading class Process: @staticmethod async def check_output(command: list[str], cwd: str|None = None) -> bytes: return await core.run_in_executor(lambda: subprocess.check_output(command, cwd=cwd)) def __init__(self, command: list[str], cwd: str|None = None): # taken from Default/exec.py # Hide the console window on Windows startupinfo = None if os.name == "nt": startupinfo = subprocess.STARTUPINFO() #type: ignore startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW #type: ignore self.process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, shell=False, bufsize=0, startupinfo=startupinfo, cwd = cwd) self.stdin = self.process.stdin self.stderr = self.process.stderr self.stdout = self.process.stdout self.closed = False def _readline(self, pipe) -> bytes: if l := pipe.readline(): return l raise EOFError def _read(self, pipe, n: int) -> bytes: if l := pipe.read(n): return l raise EOFError async def readline(self, pipe) -> bytes: return await core.run_in_executor(lambda: self._readline(pipe)) async def read(self, pipe, nbytes) -> bytes: return await core.run_in_executor(lambda: self._read(pipe, nbytes)) def dispose(self): self.closed = True try: self.process.terminate() except Exception as e: core.log_exception() class StdioTransport(Transport): def __init__(self, log: core.Logger, command: list[str], cwd: str|None = None, ignore_stderr: bool = False): log.log('transport', f'⟸ process/starting :: {command}') self.process = Process(command, cwd) if ignore_stderr: thread = threading.Thread(target=self._read, args=(self.process.stderr, print)) else: thread = threading.Thread(target=self._read, args=(self.process.stderr, log.info)) thread.start() def _read(self, file: Any, callback: Callable[[str], None]) -> None: while True: try: line = file.read(2**15).decode('UTF-8') if not line: core.log_info('Nothing to read from process, closing') break core.call_soon_threadsafe(callback, line) except Exception as e: core.log_exception() break self.process.dispose() def write(self, message: bytes) -> None: self.process.stdin.write(message) self.process.stdin.flush() def readline(self) -> bytes: if l := self.process.stdout.readline(): return l raise EOFError def read(self, n: int) -> bytes: if l := self.process.stdout.read(n): return l raise EOFError def dispose(self) -> None: self.process.dispose() class SocketTransport(Transport): def __init__(self, log: core.Logger, host: str, port: int, cwd: str|None = None): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.connect((host, port)) self.stdin = self.socket.makefile('wb') self.stdout = self.socket.makefile('rb') def write(self, message: bytes) -> None: self.stdin.write(message) self.stdin.flush() def readline(self) -> bytes: if l := self.stdout.readline(): return l raise EOFError def read(self, n: int) -> bytes: if l := self.stdout.read(n): return l raise EOFError def dispose(self) -> None: try: self.socket.close() except: core.log_exception()
funannotate/library.py
davised/funannotate
199
131081
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) from Bio import BiopythonWarning import os import uuid import io import subprocess import logging import sys import csv import time import re import shutil import platform import distro import multiprocessing import itertools import hashlib import math import gzip import operator import textwrap import errno import datetime from natsort import natsorted import funannotate.resources as resources from funannotate.interlap import InterLap from collections import defaultdict try: from urllib import unquote except ImportError: from urllib.parse import unquote try: from itertools import izip as zip except ImportError: pass import warnings from Bio import SeqIO with warnings.catch_warnings(): warnings.simplefilter('ignore') from Bio import SearchIO warnings.simplefilter('ignore', BiopythonWarning) # get the working directory, so you can move back into DB folder to find the files you need global parentdir parentdir = os.path.join(os.path.dirname(__file__)) GeneMark2GFF = os.path.join(parentdir, 'aux_scripts', 'genemark_gtf2gff3.pl') class colr: GRN = '\033[92m' END = '\033[0m' WARN = '\033[93m' class suppress_stdout_stderr(object): ''' A context manager for doing a "deep suppression" of stdout and stderr in Python, i.e. will suppress all print, even if the print originates in a compiled C/Fortran sub-function. This will not suppress raised exceptions, since exceptions are printed to stderr just before a script exits, and after the context manager has exited (at least, I think that is why it lets exceptions through). ''' def __init__(self): # Open a pair of null files self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. self.save_fds = (os.dup(1), os.dup(2)) def __enter__(self): # Assign the null pointers to stdout and stderr. os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) # Close the null files os.close(self.null_fds[0]) os.close(self.null_fds[1]) class gzopen(object): """Generic opener that decompresses gzipped files if needed. Encapsulates an open file or a GzipFile. Use the same way you would use 'open()'. """ def __init__(self, fname): f = open(fname) # Read magic number (the first 2 bytes) and rewind. magic_number = f.read(2) f.seek(0) # Encapsulated 'self.f' is a file or a GzipFile. if magic_number == b'\x1f\x8b': self.f = gzip.GzipFile(fileobj=f) else: self.f = f # Define '__enter__' and '__exit__' to use in # 'with' blocks. Always close the file and the # GzipFile if applicable. def __enter__(self): return self def __exit__(self, type, value, traceback): try: self.f.fileobj.close() except AttributeError: pass finally: self.f.close() # Reproduce the interface of an open file # by encapsulation. def __getattr__(self, name): return getattr(self.f, name) def __iter__(self): return iter(self.f) def __next__(self): return next(self.f) def createdir(name): try: os.makedirs(name) except OSError as exc: if exc.errno != errno.EEXIST: raise pass def softwrap(string, every=80): lines = [] for i in range(0, len(string), every): lines.append(string[i:i+every]) return '\n'.join(lines) def len_without_format(text): try: return len(remove_formatting(text)) except TypeError: return len(str(text)) def remove_formatting(text): return re.sub('\033.*?m', '', text) def colour(text, text_colour): bold_text = 'bold' in text_colour text_colour = text_colour.replace('bold', '') underline_text = 'underline' in text_colour text_colour = text_colour.replace('underline', '') text_colour = text_colour.replace('_', '') text_colour = text_colour.replace(' ', '') text_colour = text_colour.lower() if 'red' in text_colour: coloured_text = RED elif 'green' in text_colour: coloured_text = GREEN elif 'yellow' in text_colour: coloured_text = YELLOW elif 'dim' in text_colour: coloured_text = DIM else: coloured_text = '' if bold_text: coloured_text += BOLD if underline_text: coloured_text += UNDERLINE if not coloured_text: return text coloured_text += text + END_FORMATTING return coloured_text END_FORMATTING = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' RED = '\033[31m' GREEN = '\033[32m' MAGENTA = '\033[35m' YELLOW = '\033[93m' DIM = '\033[2m' def green(text): return GREEN + text + END_FORMATTING def bold_green(text): return GREEN + BOLD + text + END_FORMATTING def red(text): return RED + text + END_FORMATTING def magenta(text): return MAGENTA + text + END_FORMATTING def bold_red(text): return RED + BOLD + text + END_FORMATTING def bold(text): return BOLD + text + END_FORMATTING def bold_underline(text): return BOLD + UNDERLINE + text + END_FORMATTING def underline(text): return UNDERLINE + text + END_FORMATTING def dim(text): return DIM + text + END_FORMATTING def dim_underline(text): return DIM + UNDERLINE + text + END_FORMATTING def bold_yellow(text): return YELLOW + BOLD + text + END_FORMATTING def bold_yellow_underline(text): return YELLOW + BOLD + UNDERLINE + text + END_FORMATTING def bold_red_underline(text): return RED + BOLD + UNDERLINE + text + END_FORMATTING def print_table(table, alignments='', max_col_width=30, col_separation=3, indent=2, row_colour=None, sub_colour=None, row_extra_text=None, leading_newline=False, subsequent_indent='', return_str=False, header_format='underline', hide_header=False, fixed_col_widths=None, left_align_header=True, bottom_align_header=True, verbosity=1): """ Args: table: a list of lists of strings (one row is one list, all rows should be the same length) alignments: a string of L and R, indicating the alignment for each row max_col_width: values longer than this will be wrapped col_separation: the number of spaces between columns indent: the number of spaces between the table and the left side of the terminal row_colour: a dictionary of row indices and their colour names sub_colour: a dictionary of values to colour names for which the text colour will be set row_extra_text: a dictionary of row indices and extra text to display after the row leading_newline: if True, the function will print a blank line above the table subsequent_indent: this string will be added to the start of wrapped text lines return_str: if True, this function will return a string of the table instead of printing it header_format: the formatting (colour, underline, etc) of the header line hide_header: if True, the header is not printed fixed_col_widths: a list to specify exact column widths (automatic if not used) left_align_header: if False, the header will follow the column alignments bottom_align_header: if False, the header will align to the top, like other rows verbosity: the table will only be logged if the logger verbosity is >= this value """ # this function is written by <NAME> in Unicycler code # modified to not support colors column_count = len(table[0]) table = [x[:column_count] for x in table] table = [x + [''] * (column_count - len(x)) for x in table] if row_colour is None: row_colour = {} if sub_colour is None: sub_colour = {} if row_extra_text is None: row_extra_text = {} if leading_newline: print('') # Ensure the alignments string is the same length as the column count alignments += 'L' * (column_count - len(alignments)) alignments = alignments[:column_count] if fixed_col_widths is not None: col_widths = fixed_col_widths else: col_widths = [0] * column_count for row in table: col_widths = [min(max(col_widths[i], len_without_format(x)), max_col_width) for i, x in enumerate(row)] separator = ' ' * col_separation indenter = ' ' * indent full_table_str = '' for i, row in enumerate(table): row = [str(x) for x in row] if hide_header and i == 0: continue if fixed_col_widths is not None: wrapped_row = [] for col, fixed_width in zip(row, fixed_col_widths): wrapper = textwrap.TextWrapper(subsequent_indent=subsequent_indent, width=fixed_width) wrapped_row.append(wrapper.wrap(col)) else: wrapper = textwrap.TextWrapper( subsequent_indent=subsequent_indent, width=max_col_width) wrapped_row = [wrapper.wrap(x) for x in row] row_rows = max(len(x) for x in wrapped_row) if i == 0 and bottom_align_header: wrapped_row = [[''] * (row_rows - len(x)) + x for x in wrapped_row] for j in range(row_rows): row_line = [x[j] if j < len(x) else '' for x in wrapped_row] aligned_row = [] for value, col_width, alignment in zip(row_line, col_widths, alignments): if alignment == 'L' or (i == 0 and left_align_header): aligned_row.append(value.ljust(col_width)) elif alignment == 'C': aligned_row.append(value.center(col_width)) else: aligned_row.append(value.rjust(col_width)) row_str = separator.join(aligned_row) if i in row_extra_text: row_str += row_extra_text[i] if i == 0 and header_format: row_str = colour(row_str, header_format) if i in row_colour: row_str = colour(row_str, row_colour[i]) for text, colour_name in list(sub_colour.items()): row_str = row_str.replace(text, colour(text, colour_name)) if j < row_rows - 1 and UNDERLINE in row_str: row_str = re.sub('\033\[4m', '', row_str) if return_str: full_table_str += indenter + row_str + '\n' else: print((indenter + row_str)) if return_str: return full_table_str def git_version(): def _minimal_ext_cmd(cmd): # construct minimal environment out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=open( os.devnull, 'w'), cwd=parentdir).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', '--short', 'HEAD']) GIT_REVISION = out.strip().decode('ascii') except OSError: GIT_REVISION = False return GIT_REVISION def Funzip(input, output, cpus): ''' function to unzip as fast as it can, pigz -> bgzip -> gzip ''' if which('pigz'): cmd = ['pigz', '--decompress', '-c', '-p', str(cpus), input] else: cmd = ['gzip', '--decompress', '-c', input] try: runSubprocess2(cmd, '.', log, output) except NameError: with open(output, 'w') as outfile: subprocess.call(cmd, stdout=outfile) def Fzip(input, output, cpus): ''' function to zip as fast as it can, pigz -> bgzip -> gzip ''' if which('pigz'): cmd = ['pigz', '-c', '-p', str(cpus), input] else: cmd = ['gzip', '-c', input] try: runSubprocess2(cmd, '.', log, output) except NameError: with open(output, 'w') as outfile: subprocess.call(cmd, stdout=outfile) def Fzip_inplace(input, cpus): ''' function to zip as fast as it can, pigz -> bgzip -> gzip ''' if which('pigz'): cmd = ['pigz', '-f', '-p', str(cpus), input] else: cmd = ['gzip', '-f', input] try: runSubprocess(cmd, '.', log) except NameError: subprocess.call(cmd) # RNA seq mediated modules def concatenateReads(input, output): ''' Since I can't seem to get the comma separated lists to work with subprocess modules, just concatenate FASTQ files in order and use a single file, input should be a list of FASTQ files using system cat here so that gzipped files are concatenated correctly ''' cmd = ['cat'] cmd = cmd + input runSubprocess2(cmd, '.', log, output) def which2(program): import os def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def open_pipe(command, mode='r', buff=1024*1024): import subprocess import signal if 'r' in mode: return subprocess.Popen(command, shell=True, bufsize=buff, stdout=subprocess.PIPE, universal_newlines=True, preexec_fn=lambda: signal.signal( signal.SIGPIPE, signal.SIG_DFL) ).stdout elif 'w' in mode: return subprocess.Popen(command, shell=True, bufsize=buff, universal_newlines=True, stdin=subprocess.PIPE).stdin return None NORMAL = 0 PROCESS = 1 PARALLEL = 2 WHICH_BZIP2 = which2("bzip2") WHICH_PBZIP2 = which2("pbzip2") def open_bz2(filename, mode='r', buff=1024*1024, external=PARALLEL): if external is None or external == NORMAL: import bz2 return bz2.BZ2File(filename, mode, buff) elif external == PROCESS: if not WHICH_BZIP2: return open_bz2(filename, mode, buff, NORMAL) if 'r' in mode: return open_pipe("bzip2 -dc " + filename, mode, buff) elif 'w' in mode: return open_pipe("bzip2 >" + filename, mode, buff) elif external == PARALLEL: if not WHICH_PBZIP2: return open_bz2(filename, mode, buff, PROCESS) if 'r' in mode: return open_pipe("pbzip2 -dc " + filename, mode, buff) elif 'w' in mode: return open_pipe("pbzip2 >" + filename, mode, buff) return None WHICH_GZIP = which2("gzip") WHICH_PIGZ = which2("pigz") def open_gz(filename, mode='r', buff=1024*1024, external=PARALLEL): if external is None or external == NORMAL: import gzip return gzip.GzipFile(filename, mode, buff) elif external == PROCESS: if not WHICH_GZIP: return open_gz(filename, mode, buff, NORMAL) if 'r' in mode: return open_pipe("gzip -dc " + filename, mode, buff) elif 'w' in mode: return open_pipe("gzip >" + filename, mode, buff) elif external == PARALLEL: if not WHICH_PIGZ: return open_gz(filename, mode, buff, PROCESS) if 'r' in mode: return open_pipe("pigz -dc " + filename, mode, buff) elif 'w' in mode: return open_pipe("pigz >" + filename, mode, buff) return None WHICH_XZ = which2("xz") def open_xz(filename, mode='r', buff=1024*1024, external=PARALLEL): if WHICH_XZ: if 'r' in mode: return open_pipe("xz -dc " + filename, mode, buff) elif 'w' in mode: return open_pipe("xz >" + filename, mode, buff) return None def zopen(filename, mode='r', buff=1024*1024, external=PARALLEL): """ Open pipe, zipped, or unzipped file automagically # external == 0: normal zip libraries # external == 1: (zcat, gzip) or (bzcat, bzip2) # external == 2: (pigz -dc, pigz) or (pbzip2 -dc, pbzip2) """ if 'r' in mode and 'w' in mode: return None if filename.startswith('!'): return open_pipe(filename[1:], mode, buff) elif filename.endswith('.bz2'): return open_bz2(filename, mode, buff, external) elif filename.endswith('.gz'): return open_gz(filename, mode, buff, external) elif filename.endswith('.xz'): return open_xz(filename, mode, buff, external) else: return open(filename, mode, buff) return None def execute(cmd): DEVNULL = open(os.devnull, 'w') popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True, stderr=DEVNULL) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) def getDiamondVersion(): vers = subprocess.Popen(['diamond', 'version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True).communicate() if vers[1] == '': # then this is older version and parse the stdout vers = vers[0].split('version ')[-1].rstrip() else: vers = vers[1].split()[1].replace('v', '') return vers def CheckDiamondDB(database): diamond_version = getDiamondVersion() DBvers = None for line in execute(['diamond', 'dbinfo', '-d', database]): if 'Database format version' in line: DBvers = int(line.strip().split()[-1]) if not DBvers: log.error('Could not determine diamond database version') return False runVers = None if diamond_version < '0.9.10': return False elif diamond_version < '0.9.25': runVers = 2 else: runVers = 3 if runVers >= DBvers: return True else: return False def CheckFASTQandFix(forward, reverse, cpus=2): from Bio.SeqIO.QualityIO import FastqGeneralIterator # open and check first header, if okay exit, if not fix file1 = FastqGeneralIterator(zopen(forward, 'rt')) file2 = FastqGeneralIterator(zopen(reverse, 'rt')) check = True for read1, read2 in zip(file1, file2): if ' ' in read1[0] and ' ' in read2[0]: # std illumina, exit if read1[0].split(' ', 1)[1].startswith('1') and read2[0].split(' ', 1)[1].startswith('2'): break else: log.debug("R1 header: {} and R2 header: {} are not 1 and 2 as expected".format(read1[0],read2[0])) check = False break elif read1[0].endswith('/1') and read2[0].endswith('/2'): # also acceptable break else: # it is not okay missing paired information log.debug("R1 header: {} and R2 header: {} are missing pairing as expected".format(read1[0],read2[0])) check = False break file1.close() file2.close() if not check: log.error('ERROR: FASTQ headers are not properly paired, see logfile and reformat your FASTQ headers') sys.exit(1) ''' # now need to fix these reads log.info( "PE reads do not conform to Trinity naming convention (need either /1 /2 or std illumina), fixing...") # work on forward reads first if forward.endswith('.gz'): Funzip(forward, forward+'.bak', cpus) SafeRemove(forward) else: os.rename(forward, forward+'.bak') # now add ending to reads with open(forward+'.fix', 'w') as forwardfix: for title, seq, qual in FastqGeneralIterator(open(forward+'.bak')): title = title+'/1' forwardfix.write("@%s\n%s\n+\n%s\n" % (title, seq, qual)) Fzip(forward+'.fix', forward, cpus) SafeRemove(forward+'.bak') SafeRemove(forward+'.fix') # now work on reverse reads if reverse.endswith('.gz'): Funzip(reverse, reverse+'.bak', cpus) else: os.rename(reverse, reverse+'.bak') with open(reverse+'.fix', 'w') as reversefix: for title, seq, qual in FastqGeneralIterator(open(reverse+'.bak')): title = title+'/2' reversefix.write("@%s\n%s\n+\n%s\n" % (title, seq, qual)) # zip back up to original file Fzip(reverse+'.fix', reverse, cpus) SafeRemove(reverse+'.bak') SafeRemove(reverse+'.fix') ''' else: log.debug('FASTQ headers seem compatible with Trinity') return 0 def SafeRemove(input): if os.path.isdir(input): shutil.rmtree(input) elif os.path.isfile(input): os.remove(input) else: return def runSubprocess(cmd, dir, logfile): logfile.debug(' '.join(cmd)) proc = subprocess.Popen(cmd, cwd=dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stdout: logfile.error(stdout.decode("utf-8")) if stderr: logfile.error(stderr.decode("utf-8")) sys.exit(1) else: if stdout: logfile.debug(stdout.decode("utf-8")) if stderr: logfile.debug(stderr.decode("utf-8")) def runSubprocess2(cmd, dir, logfile, output): # function where output of cmd is STDOUT, capture STDERR in logfile logfile.debug(' '.join(cmd)) with open(output, 'w') as out: proc = subprocess.Popen(cmd, cwd=dir, stdout=out, stderr=subprocess.PIPE) stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stderr: logfile.error(stderr) sys.exit(1) else: if stderr: if stderr[0] is not None: logfile.debug(stderr) def runSubprocess3(cmd, dir, logfile): # function where STDOUT pipes to FNULL, capture STDERR in logfile FNULL = open(os.devnull, 'w') logfile.debug(' '.join(cmd)) proc = subprocess.Popen(cmd, cwd=dir, stdout=FNULL, stderr=subprocess.PIPE) stderr = proc.communicate() if stderr: logfile.debug(stderr) def runSubprocess4(cmd, dir, logfile): # function where STDOUT and STDERR pipes to FNULL logfile.debug(' '.join(cmd)) proc = subprocess.Popen(cmd, cwd=dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stdout: print(stdout) if stderr: print(stderr) sys.exit(1) def runSubprocess5(cmd, dir, logfile, input, output): # function where STDOUT to file, STDIN as input, STDERR pipes to logfile logfile.debug(' '.join(cmd)) with open(input) as infile: with open(output, 'w') as out: proc = subprocess.Popen(cmd, cwd=dir, stdin=infile, stdout=out, stderr=subprocess.PIPE) stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stderr: logfile.error(stderr) sys.exit(1) else: if stderr: if stderr[0] is not None: logfile.debug(stderr) def runSubprocess6(cmd, dir, logfile, logfile2): # function where cmd captured in logfile, but both stdout and stdin piped to additional logfile logfile.debug(' '.join(cmd)) with open(logfile2, 'w') as logout: proc = subprocess.Popen(cmd, cwd=dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) stdout, stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stdout: logfile.error(stdout) if stderr: logfile.error(stderr) sys.exit(1) else: if stdout: logout.write(stdout) if stderr: logout.write(stderr) def runSubprocess7(cmd, dir, logfile, output): # function where output of cmd is STDOUT, capture STDERR in logfile logfile.debug(' '.join(cmd)) with open(output, 'a') as out: proc = subprocess.Popen(cmd, cwd=dir, stdout=out, stderr=subprocess.PIPE) stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stderr: logfile.error(stderr) sys.exit(1) else: if stderr: if stderr[0] is not None: logfile.debug(stderr) def runSubprocess8(cmd, dir, logfile, output): # function where output of cmd is STDOUT, capture STDERR in FNULL logfile.debug(' '.join(cmd)) with open(output, 'w') as out: proc = subprocess.Popen(cmd, cwd=dir, stdout=out, stderr=subprocess.PIPE) stderr = proc.communicate() if proc.returncode != 0: logfile.error('CMD ERROR: {}'.format(' '.join(cmd))) if stderr: logfile.error(stderr) sys.exit(1) def evmGFFvalidate(input, evmpath, logfile): Validator = os.path.join(evmpath, 'EvmUtils', 'gff3_gene_prediction_file_validator.pl') cmd = ['perl', Validator, os.path.realpath(input)] logfile.debug(' '.join(cmd)) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) stdout, stderr = proc.communicate() if not stderr: return True else: logfile.error(stderr.rstrip()) return False def hashfile(afile, hasher, blocksize=65536): buf = afile.read(blocksize) while len(buf) > 0: hasher.update(buf) buf = afile.read(blocksize) return hasher.digest() def sha256_check(file1, file2): files = [file1, file2] output = [(fname, hashfile(open(fname, 'rb'), hashlib.sha256())) for fname in files] if output[0][1] == output[1][1]: return True else: return False def readBlocks(source, pattern): buffer = [] for line in source: try: line = line.decode('utf-8') except AttributeError: line = line if line.startswith(pattern): if buffer: yield buffer buffer = [line] else: buffer.append(line) yield buffer def readBlocks2(source, startpattern, endpattern): buffer = [] for line in source: try: line = line.decode('utf-8') except AttributeError: line = line if line.startswith(startpattern) or line.endswith(endpattern): if buffer: yield buffer buffer = [line] else: buffer.append(line) yield buffer def empty_line_sep(line): return line == '\n' def get_parent_dir(directory): return os.path.dirname(directory) def getSize(filename): st = os.stat(filename) return st.st_size def checkinputs(filename): if not os.path.isfile(filename): log.error("%s is not a valid file, exiting" % filename) sys.exit(1) size = getSize(filename) if size < 2: # this is 1 character... log.error("%s appears to be empty, exiting" % filename) sys.exit(1) def make_tarfile(output_filename, source_dir): import tarfile with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir)) def multipleReplace(text, wordDict): for key in wordDict: text = text.replace(key, wordDict[key]) return text def which_path(file_name): for path in os.environ["PATH"].split(os.pathsep): full_path = os.path.join(path, file_name) if os.path.exists(full_path) and os.access(full_path, os.X_OK): return full_path return None def which(name): try: with open(os.devnull) as devnull: diff = ['tbl2asn', 'dustmasker', 'mafft', 'signalp', 'proteinortho', 'ete3', 'phyml', 'phobius.pl', 'tantan'] if not any(name in x for x in diff): subprocess.Popen([name], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() else: if name == 'signalp': subprocess.Popen([name, '-V'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() elif name == 'dustmasker': subprocess.Popen( [name, '-version-full'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() elif name == 'tbl2asn': subprocess.Popen( [name, '--help'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() elif name == 'raxmlHPC-PTHREADS': subprocess.Popen( [name, '-version'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() elif name == 'ete3': subprocess.Popen( [name, 'version'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() elif name == 'phobius.pl': subprocess.Popen([name, '-h'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() else: subprocess.Popen( [name, '--version'], stdout=devnull, stderr=devnull, universal_newlines=True).communicate() except OSError as e: if e.errno == errno.ENOENT: return False return True def vers_tblastn(): p1 = subprocess.Popen(['tblastn', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) vers = p1.communicate()[0].split('+')[0] vers = vers.split(' ')[-1] return vers def CheckDependencies(input): missing = [] for p in input: if which(p) is False: missing.append(p) if missing != []: error = ", ".join(missing) try: log.error( "Missing Dependencies: %s. Please install missing dependencies and re-run script" % (error)) except NameError: print("Missing Dependencies: %s. Please install missing dependencies and re-run script" % (error)) sys.exit(1) def checkannotations(input): if input and os.path.isfile(input): filesize = getSize(input) if int(filesize) < 1: return False else: return True elif input and os.path.islink(input): return True else: return False def line_count(fname): with open(fname) as f: i = -1 for i, l in enumerate(f): pass return i + 1 def countfasta(input): count = 0 with open(input, 'r') as f: for line in f: if line.startswith(">"): count += 1 return count def getGeneBasename(fastafile): bases = [] with open(fastafile, 'r') as input: for line in input: line = line.replace('\n', '') if line.startswith('>'): line = line.replace('>', '') transcript, gene = line.split(' ') if '_' in gene: Base = line.split('_')[0]+'_' elif '-' in gene: Base = line.split('-')[0] else: Base = gene if not Base in bases: bases.append(Base) return bases def get_version(): from pkg_resources import get_distribution __version__ = get_distribution('funannotate').version return __version__ def ver_tuple(z): return tuple([int(x) for x in z.split('.') if x.isdigit()]) def cmp(a, b): return (a > b) - (a < b) def ver_cmp(a, b): return cmp(ver_tuple(a), ver_tuple(b)) def versionCheck(a, b): if ver_cmp(a, b) == -1: return False else: return True def checkAugustusFunc(): ''' function to try to test Augustus installation is working, note segmentation fault still results in a pass ''' functional = False p1 = subprocess.Popen(['augustus', '--version'], stderr=subprocess.STDOUT, stdout=subprocess.PIPE, universal_newlines=True).communicate() stdout, stderr = p1 if isinstance(stdout, str): try: stdout = stdout.decode('ascii', 'ignore').encode('ascii') except AttributeError: pass version = stdout.split(' is ')[0] model = os.path.join(parentdir, 'config', 'EOG092C0B3U.prfl') if not os.path.isfile(model): log.error("Testing Augustus Error: installation seems wrong, can't find prfl model") sys.exit(1) profile = '--proteinprofile='+model proc = subprocess.Popen(['augustus', '--species=anidulans', profile, os.path.join(parentdir, 'config', 'busco_test.fa')], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) stdout, stderr = proc.communicate() stderr = stderr.strip() if isinstance(stdout, str): try: stdout = stdout.decode('ascii', 'ignore').encode('ascii') except AttributeError: pass stdout = stdout.strip().split('\n') if stderr.startswith('augustus: ERROR'): print(stderr) return version, functional else: for line in stdout: line = line.strip() if line.startswith('# start gene g1'): functional = True return version, functional def maker2evm(inputfile, outputdir): tr = os.path.join(outputdir, 'transcript_alignments.gff3') pr = os.path.join(outputdir, 'protein_alignments.gff3') gr = os.path.join(outputdir, 'gene_predictions.gff3') with open(tr, 'w') as trout: with open(pr, 'w') as prout: with open(gr, 'w') as grout: with open(inputfile, 'r') as input: for line in input: if line.startswith('#'): continue if 'trnascan' in line: continue cols = line.split('\t') if 'maker' in cols[1]: grout.write(line) elif 'protein2genome' in cols[1]: if 'match_part' in cols[2]: cols[2] = 'nucleotide_to_protein_match' cols[5] = '.' prout.write('\t'.join(cols)) elif 'est2genome' in cols[1]: if 'match_part' in cols[2]: cols[2] = 'EST_match' cols[5] = '.' trout.write('\t'.join(cols)) elif 'cdna2genome' in cols[1]: if 'match_part' in cols[2]: cols[2] = 'EST_match' cols[5] = '.' trout.write('\t'.join(cols)) elif 'pred_gff' in cols[1]: if 'match_part' in cols[2]: cols[1] = cols[1].replace('pred_gff:', '') cols[2] = 'EST_match' cols[5] = '100.0' trout.write('\t'.join(cols)) def flatten(l): flatList = [] for elem in l: # if an element of a list is a list # iterate over this list and add elements to flatList if type(elem) == list: for e in elem: flatList.append(e) else: flatList.append(elem) return flatList def fmtcols(mylist, cols): justify = [] for i in range(0, cols): length = max([len(x) for x in mylist[i::cols]]) length += 2 ljust = [x.ljust(length) for x in mylist[i::cols]] justify.append(ljust) justify = flatten(justify) num_lines = len(mylist) / cols lines = (' '.join(justify[i::num_lines]) for i in range(0, num_lines)) return "\n".join(lines) def list_columns(obj, cols=4, columnwise=True, gap=4): """ Print the given list in evenly-spaced columns. Parameters ---------- obj : list The list to be printed. cols : int The number of columns in which the list should be printed. columnwise : bool, default=True If True, the items in the list will be printed column-wise. If False the items in the list will be printed row-wise. gap : int The number of spaces that should separate the longest column item/s from the next column. This is the effective spacing between columns based on the maximum len() of the list items. """ sobj = [str(item) for item in obj] if cols > len(sobj): cols = len(sobj) max_len = max([len(item) for item in sobj]) if columnwise: cols = int(math.ceil(float(len(sobj)) / float(cols))) plist = [sobj[i: i+cols] for i in range(0, len(sobj), cols)] if columnwise: if not len(plist[-1]) == cols: plist[-1].extend(['']*(len(sobj) - len(plist[-1]))) plist = list(zip(*plist)) printer = '\n'.join([ ''.join([c.ljust(max_len + gap) for c in p]) for p in plist]) return printer def roundup(x): return x if x % 100 == 0 else x + 100 - x % 100 def maxabs(a, axis=None): import numpy as np """Return slice of a, keeping only those values that are furthest away from 0 along axis""" maxa = a.max(axis=axis) mina = a.min(axis=axis) p = abs(maxa) > abs(mina) # bool, or indices where +ve values win n = abs(mina) > abs(maxa) # bool, or indices where -ve values win if axis is None: if p: return maxa else: return mina shape = list(a.shape) shape.pop(axis) out = np.zeros(shape, dtype=a.dtype) out[p] = maxa[p] out[n] = mina[n] return out def setupLogging(LOGNAME): global log if 'darwin' in sys.platform: stdoutformat = logging.Formatter( colr.GRN+'%(asctime)s'+colr.END+': %(message)s', datefmt='[%b %d %I:%M %p]') else: stdoutformat = logging.Formatter( '%(asctime)s: %(message)s', datefmt='[%b %d %I:%M %p]') fileformat = logging.Formatter( '%(asctime)s: %(message)s', datefmt='[%x %H:%M:%S]') log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sth = logging.StreamHandler() sth.setLevel(logging.INFO) sth.setFormatter(stdoutformat) log.addHandler(sth) fhnd = logging.FileHandler(LOGNAME) fhnd.setLevel(logging.DEBUG) fhnd.setFormatter(fileformat) log.addHandler(fhnd) def renameGFF(input, newname, output): contigs = set() with open(output, 'w') as outfile: with open(input, 'r') as infile: for line in infile: if line.startswith('>'): # remove any fasta sequences continue if line.startswith('#'): outfile.write(line) else: cols = line.split('\t') # make sure it has correct columns to be GFF if len(cols) == 9: contigs.add(cols[0]) outfile.write('{}\t{}\t{}'.format(cols[0], newname, '\t'.join(cols[2:]))) return contigs def countGFFgenes(input): count = 0 if os.path.exists(input): with open(input, 'r') as f: for line in f: if "\tgene\t" in line: count += 1 return count def countEVMpredictions(input): Counts = {'total': 0} with open(input, 'r') as f: for line in f: if line.startswith('\n') or line.startswith('#'): continue line = line.strip() contig, source, feature, start, end, blank, strand, score, info = line.split( '\t') if feature == 'gene': Counts['total'] += 1 if not source in Counts: Counts[source] = 1 else: Counts[source] += 1 return Counts def countGMAPtranscripts(input): count = 0 with open(input, 'r') as f: for line in f: if line.startswith('###'): count += 1 return count def runMultiProgress(function, inputList, cpus, progress=True): # setup pool p = multiprocessing.Pool(cpus) # setup results and split over cpus tasks = len(inputList) results = [] for i in inputList: results.append(p.apply_async(function, [i])) # refresh pbar every 5 seconds if progress: while True: incomplete_count = sum(1 for x in results if not x.ready()) if incomplete_count == 0: break sys.stdout.write(" Progress: %.2f%% \r" % (float(tasks - incomplete_count) / tasks * 100)) sys.stdout.flush() time.sleep(1) p.close() p.join() def runMultiNoProgress(function, inputList, cpus): # setup pool p = multiprocessing.Pool(cpus) # setup results and split over cpus results = [] for i in inputList: results.append(p.apply_async(function, [i])) p.close() p.join() def cleanProteins(inputList, output): # expecting a list of protein fasta files for combining/cleaning headers # make sure you aren't duplicated sequences names # dropping proteins less than 50 amino acids seen = set() with open(output, 'w') as out: for x in inputList: with open(x, 'r') as input: for rec in SeqIO.parse(input, 'fasta'): if len(rec.seq) < 50: continue # explicitly check for swissprot and jgi if rec.id.startswith('sp|') or rec.id.startswith('jgi|'): ID = rec.id.split('|')[-1] else: ID = rec.id # now clean up the shit badshit = [':', ';', '/', '\\', '.', ',', '%'] for i in badshit: if i in ID: ID = ID.replace(i, '_') if not ID in seen: seen.add(ID) else: # means that ID has already been used, so add a number to it, auto increment counter = 1 while ID in seen: oldnum = counter-1 ID = ID.replace('_'+str(oldnum), '') + '_'+str(counter) counter += 1 seen.add(ID) out.write('>%s\n%s\n' % (ID, rec.seq)) def genemark2busco(genemark, bedfile, output): #function to load coords into Interlap from bedfile, then pull out #genemark EVM gff3 format counter = 0 inter = bed2interlap(bedfile) with open(output, 'w') as outfile: with open(genemark, 'r') as infile: for gene_model in readBlocks(infile, '\n'): if len(gene_model) < 2: continue if gene_model[0] == '\n': cols = gene_model[1].split('\t') else: cols = gene_model[0].split('\t') coords = [int(cols[3]), int(cols[4])] chr = cols[0] if interlapIntersect(coords, chr, inter): counter += 1 outfile.write('{}'.format(''.join(gene_model))) return counter def evidence2busco(evidence, bedfile, output): counter = 0 inter = bed2interlap(bedfile) with open(output, 'w') as outfile: with open(evidence, 'r') as infile: for hit in readBlocks(infile, '\n'): hit = [x for x in hit if x != '\n'] if len(hit) == 1: start = int(hit[0].split('\t')[3]) end = int(hit[0].split('\t')[4]) coords = [start, end] chr = hit[0].split('\t')[0] elif len(hit) > 1: start = int(hit[0].split('\t')[3]) end = int(hit[-1].split('\t')[4]) chr = hit[0].split('\t')[0] if start < end: coords = [start, end] else: coords = [end, start] else: continue if interlapIntersect(coords, chr, inter): counter += 1 outfile.write('{}\n'.format(''.join(hit))) return counter def fix_busco_naming(busco_infile, genome, augustus, gffout, ploidy=1, proteins=False): def group_separator(line): return line == '\n' # parse the busco table into dictionary format busco_complete = {} passing = ['Complete'] if ploidy > 1: passing.append('Duplicated') with open(busco_infile, 'r') as buscoinput: for line in buscoinput: if line.startswith('#'): continue cols = line.split('\t') if cols[1] in passing: if not cols[0] in busco_complete: busco_complete[cols[0]] = cols[2]+':'+cols[3]+'-'+cols[4] # now parse the augustus input file where gene numbers are likely repeated. results = [] with open(augustus) as f: for key, group in itertools.groupby(f, group_separator): if not key: results.append(list(group)) # loop through each gene model, lookup the BUSCO name, and then replace the name with counter based and busco model name tmpOut = augustus+'.intermediate' counter = 0 inverse_busco = {v: k for k, v in list(busco_complete.items())} with open(tmpOut, 'w') as output: for i in results: counter += 1 cols = i[0].split('\t') lookup = cols[0]+':'+cols[3]+'-'+cols[4] if lookup in inverse_busco: name = inverse_busco.get(lookup) else: name = 'unknown_model' ID = cols[8].split(';')[0] ID = ID.replace('ID=', '') newID = 'gene'+str(counter) newblock = ''.join(i) newblock = newblock.replace('Augustus%20prediction', name) newblock = newblock.replace(ID, newID) output.write(newblock+'\n') #write to GFF3 properly and fix CDS Genes = {} Genes = gff2dict(tmpOut, genome, Genes) dict2gff3(Genes, gffout) if proteins: dict2proteins(Genes, proteins) def gb2output(input, output1, output2, output3): with open(output1, 'w') as proteins: with open(output2, 'w') as transcripts: with open(output3, 'w') as scaffolds: with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: scaffolds.write(">%s\n%s\n" % (record.id, record.seq)) for f in record.features: if f.type == "CDS": proteins.write(">%s\n%s\n" % (f.qualifiers['locus_tag'][0], softwrap( f.qualifiers['translation'][0].rstrip('*')))) if f.type == "mRNA": feature_seq = f.extract(record.seq) transcripts.write(">%s\n%s\n" % ( f.qualifiers['locus_tag'][0], softwrap(feature_seq))) def sortGFF(input, output, order): cmd = ['bedtools', 'sort', '-header', '-faidx', order, '-i', input] with open(output, 'w') as out: proc = subprocess.Popen(cmd, stdout=out, stderr=subprocess.PIPE) stderr = proc.communicate() if stderr: if stderr[0] is None: if stderr[1] != '': log.error( "Sort GFF failed, unreferenced scaffold present in gene predictions, check logfile") sys.exit(1) def sortBedproper(input, output): # sort BED file same as GFF3 files data = [] with open(input, 'r') as infile: for line in infile: if line.startswith('\n'): continue line = line.rstrip() cols = line.split('\t') data.append(cols) # we can now sort sort_data = natsorted(data, key=lambda x: (x[0], int(x[1]))) # now we can write back out to file with open(output, 'w') as outfile: for x in sort_data: outfile.write('{}\n'.format('\t'.join(x))) def sortGFFproper(input, output): # function to sort GFF3 file but maintain gene, mrna, exon, cds order data = [] features = set() comments = [] with open(input, 'r') as infile: for line in infile: if line.startswith('\n'): continue if line.startswith('#'): comments.append(line) continue line = line.rstrip() cols = line.split('\t') data.append(cols) features.add(cols[2]) # build sort order dictionary for features order_map = {'gene': 0, 'mRNA': 1, 'transcript': 2, 'tRNA': 3, 'ncRNA': 4, 'rRNA': 5, 'pseudogene': 6, 'five_prime_utr': 7, 'five_prime_UTR': 8, 'exon': 9, 'CDS': 10, 'three_prime_utr': 11, 'three_prime_UTR': 12} idx = len(order_map) for x in features: if x not in order_map: order_map[x] = idx idx += 1 # we can now sort sort_data = natsorted(data, key=lambda x: (x[0], int(x[3]), order_map[x[2]])) # now we can write back out to file with open(output, 'w') as outfile: for y in comments: outfile.write(y) for x in sort_data: outfile.write('{}\n'.format('\t'.join(x))) def checkGenBank(input): count = 0 with open(input, 'r') as gbk: for record in SeqIO.parse(gbk, 'genbank'): for f in record.features: if f.type == 'CDS': count += 1 if count == 0: return False else: return True def countGenBank(input): cds = 0 trna = 0 dnas = 0 with open(input, 'r') as gbk: for record in SeqIO.parse(gbk, 'genbank'): dnas += 1 for f in record.features: if f.type == 'CDS': cds += 1 elif f.type == 'tRNA': trna += 1 return dnas, cds, trna def checkFastaHeaders(input, limit): length = 0 names = [] with open(input, 'r') as fasta: for line in fasta: if line.startswith('>'): line = line.replace('\n', '') ID = line.replace('>', '').strip() names.append(ID) # subtract one character for fasta carrot headlen = len(line) - 1 if headlen > length: length = headlen if length > int(limit): return (False, names) else: return (True, names) def analyzeAssembly(input, header_max=16): from Bio.SeqIO.FastaIO import SimpleFastaParser bad_names = [] IUPAC = {'A', 'C', 'G', 'T', 'R', 'Y', 'S', 'W', 'K', 'M', 'B', 'D', 'H', 'V', 'N'} nuc_errors = {} suspect = {} with open(input, 'r') as infile: for title, seq in SimpleFastaParser(infile): if len(title) > header_max: bad_names.append(title) # get number of each contig characters = {} for nuc in seq: nuc = nuc.upper() if not nuc in characters: characters[nuc] = 1 else: characters[nuc] += 1 # check for non IUPAC characters errors = [] for k, v in characters.items(): if k not in IUPAC: errors.append((k, v)) if len(errors) > 0: nuc_errors[title] = errors # if there are less than 4 characters in scaffolds, its suspect if len(characters) < 4: suspect[title] = characters return bad_names, nuc_errors, suspect def BamHeaderTest(genome, mapping): # get list of fasta headers from genome genome_headers = [] with open(genome, 'r') as input: for rec in SeqIO.parse(input, 'fasta'): if rec.id not in genome_headers: genome_headers.append(rec.id) # get list of fasta headers from BAM bam_headers = [] cmd = ['samtools', 'idxstats', os.path.realpath(mapping)] for line in execute(cmd): line = line.rstrip() chr, length, mapped, unmapped = line.split('\t')[:4] if chr != '*': bam_headers.append(chr) # now compare lists, basically if BAM headers not in genome headers, then output bad names to logfile and return FALSE genome_headers = set(genome_headers) diffs = [x for x in bam_headers if x not in genome_headers] if len(diffs) > 0: log.debug( "ERROR: These BAM headers not found in genome FASTA headers\n%s" % ','.join(diffs)) return False else: return True def mapCount(input, location_dict, output): Counts = {} for aln in execute(['samtools', 'view', os.path.realpath(input)]): cols = aln.split('\t') if not cols[2] in Counts: Counts[cols[2]] = 1 else: Counts[cols[2]] += 1 with open(output, 'w') as outfile: outfile.write("#mRNA-ID\tgene-ID\tLocation\tTPM\n") for k, v in natsorted(list(location_dict.items())): if k in Counts: tpm = Counts.get(k) else: tpm = 0 geneID = v[0] location = v[1] outfile.write('{:}\t{:}\t{:}\t{:.2f}\n'.format( k, geneID, location, float(tpm))) def tokenizeString(aString, separators): # separators is an array of strings that are being used to split the the string. # sort separators in order of descending length separators.sort(key=len) listToReturn = [] i = 0 while i < len(aString): theSeparator = "" for current in separators: if current == aString[i:i+len(current)]: theSeparator = current if theSeparator != "": listToReturn += [theSeparator] i = i + len(theSeparator) else: if listToReturn == []: listToReturn = [""] if(listToReturn[-1] in separators): listToReturn += [""] listToReturn[-1] += aString[i] i += 1 return listToReturn def bam2gff3(input, output): count = 0 with open(output, 'w') as gffout: gffout.write('##gff-version 3\n') for aln in execute(['samtools', 'view', os.path.realpath(input)]): cols = aln.split('\t') if cols[1] == '0': strand = '+' elif cols[1] == '16': strand = '-' else: continue cs = None nm = None tags = cols[11:] if not tags: continue for x in tags: if x.startswith('cs:'): cs = x.replace('cs:Z:', '') if x.startswith('NM:'): nm = int(x.split(':')[-1]) if nm is None or cs is None: continue matches = 0 ProperSplice = True splitter = [] exons = [int(cols[3])] position = int(cols[3]) query = [1] querypos = 0 num_exons = 1 gaps = 0 splitter = tokenizeString(cs, [':', '*', '+', '-', '~']) for i, x in enumerate(splitter): if x == ':': matches += int(splitter[i+1]) position += int(splitter[i+1]) querypos += int(splitter[i+1]) elif x == '-': gaps += 1 elif x == '+': gaps += 1 querypos += len(splitter[i+1]) elif x == '~': if cols[1] == '0': if splitter[i+1].startswith('gt') and splitter[i+1].endswith('ag'): ProperSplice = True elif splitter[i+1].startswith('at') and splitter[i+1].endswith('ac'): ProperSplice = True else: ProperSplice = False elif cols[1] == '16': if splitter[i+1].startswith('ct') and splitter[i+1].endswith('ac'): ProperSplice = True elif splitter[i+1].startswith('gt') and splitter[i+1].endswith('at'): ProperSplice = True else: ProperSplice = False num_exons += 1 exons.append(position) query.append(querypos) query.append(querypos+1) intronLen = int(splitter[i+1][2:-2]) position += intronLen exons.append(position) # add last Position exons.append(position) query.append(len(cols[9])) # convert exon list into list of exon tuples exons = list(zip(exons[0::2], exons[1::2])) queries = list(zip(query[0::2], query[1::2])) if ProperSplice: mismatches = nm - gaps pident = 100 * (matches / (matches + mismatches)) if pident < 80: continue count += 1 for i, exon in enumerate(exons): start = exon[0] end = exon[1]-1 if strand == '+': qstart = queries[i][0] qend = queries[i][1] else: qstart = len(cols[9]) - queries[i][1] + 1 qend = len(cols[9]) - queries[i][0] + 1 gffout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:.2f}\t{:}\t{:}\tID={:};Target={:} {:} {:}\n'.format( cols[2], 'genome', 'cDNA_match', start, end, pident, strand, '.', cols[0], cols[0], qstart, qend)) return count def bam2ExonsHints(input, gff3, hints): count = 0 with open(gff3, 'w') as gffout: gffout.write('##gff-version 3\n') with open(hints, 'w') as hintsout: num = -1 for aln in execute(['samtools', 'view', os.path.realpath(input)]): num += 1 cols = aln.split('\t') if cols[1] == '0': strand = '+' elif cols[1] == '16': strand = '-' else: continue cs = None nm = None tags = cols[11:] for x in tags: if x.startswith('cs:'): cs = x.replace('cs:Z:', '') if x.startswith('NM:'): nm = int(x.split(':')[-1]) if nm is None or cs is None: continue matches = 0 ProperSplice = True splitter = [] exons = [int(cols[3])] position = int(cols[3]) query = [1] querypos = 0 num_exons = 1 gaps = 0 splitter = tokenizeString(cs, [':', '*', '+', '-', '~']) for i, x in enumerate(splitter): if x == ':': matches += int(splitter[i+1]) position += int(splitter[i+1]) querypos += int(splitter[i+1]) elif x == '-': gaps += 1 elif x == '+': gaps += 1 querypos += len(splitter[i+1]) elif x == '~': if cols[1] == 0: if splitter[i+1].startswith('gt') and splitter[i+1].endswith('ag'): ProperSplice = True elif splitter[i+1].startswith('at') and splitter[i+1].endswith('ac'): ProperSplice = True else: ProperSplice = False break elif cols[1] == 16: if splitter[i+1].startswith('ct') and splitter[i+1].endswith('ac'): ProperSplice = True elif splitter[i+1].startswith('gt') and splitter[i+1].endswith('at'): ProperSplice = True else: ProperSplice = False break num_exons += 1 exons.append(position) query.append(querypos) query.append(querypos+1) intronLen = int(splitter[i+1][2:-2]) position += intronLen exons.append(position) # add last Position exons.append(position) query.append(len(cols[9])) # convert exon list into list of exon tuples exons = list(zip(exons[0::2], exons[1::2])) queries = list(zip(query[0::2], query[1::2])) introns = [] if len(exons) > 1: for x, y in enumerate(exons): try: introns.append((y[1], exons[x+1][0]-1)) except IndexError: pass if ProperSplice: mismatches = nm - gaps pident = 100 * (matches / (matches + mismatches)) if pident < 80: continue feature = 'EST_match' if pident > 95: feature = 'cDNA_match' count += 1 for i, exon in enumerate(exons): start = exon[0] end = exon[1]-1 qstart = queries[i][0] qend = queries[i][1] if i == 0 or i == len(exons)-1: gffout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:.2f}\t{:}\t{:}\tID=minimap2_{:};Target={:} {:} {:} {:}\n'.format( cols[2], 'genome', feature, start, end, pident, strand, '.', num+1, cols[0], qstart, qend, strand)) hintsout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tgrp=minimap2_{:};pri=4;src=E\n'.format( cols[2], 'b2h', 'ep', start, end, 0, strand, '.', num+1, cols[0])) else: gffout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:.2f}\t{:}\t{:}\tID=minimap2_{:};Target={:} {:} {:} {:}\n'.format( cols[2], 'genome', feature, start, end, pident, strand, '.', num+1, cols[0], qstart, qend, strand)) hintsout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tgrp=minimap2_{:};pri=4;src=E\n'.format( cols[2], 'b2h', 'exon', start, end, 0, strand, '.', num+1, cols[0])) if len(introns) > 0: for z in introns: hintsout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tgrp=minimap2_{:};pri=4;src=E\n'.format( cols[2], 'b2h', 'intron', z[0], z[1], 1, strand, '.', num+1, cols[0])) return count def combineTranscripts(minimap, gmap, output): ''' function to combine minimap GFF3 and gmap GFF3 files need to rename GMAP as you loop through and GFF3 from gmap is kind of messed up. ''' with open(output, 'w') as out: if minimap: with open(minimap, 'r') as mini: for line in mini: out.write(line) else: out.write('##gff-version 3\n') with open(gmap, 'r') as gmap_in: for i, aln in enumerate(readBlocks(gmap_in, '###')): for x in aln: if not x.startswith('#'): contig, source, feature, start, end, score, strand, phase, attributes = x.split( '\t') info = attributes.split(';') for y in info: if y.startswith('Target='): Target = y out.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID=gmap_{:};{:}\n'.format( contig, source, feature, start, end, score, strand, phase, i+1, Target)) def RevComp(s): rev_comp_lib = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'U': 'A', 'M': 'K', 'R': 'Y', 'W': 'W', 'S': 'S', 'Y': 'R', 'K': 'M', 'V': 'B', 'H': 'D', 'D': 'H', 'B': 'V', 'X': 'X', 'N': 'N'} cseq = '' n = len(s) s = s.upper() for i in range(0, n): c = s[n-i-1] cseq += rev_comp_lib[c] return cseq def translate(cDNA, strand, phase): ''' translate cDNA into protein sequence trying to see if I can speed this up over Biopython ''' def _split(str, num): return [str[start:start+num] for start in range(0, len(str), num)] codon_table = {'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L', 'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S', 'TAT': 'Y', 'TAC': 'Y', 'TGT': 'C', 'TGC': 'C', 'TGG': 'W', 'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L', 'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P', 'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q', 'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R', 'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M', 'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T', 'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K', 'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R', 'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V', 'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A', 'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E', 'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G', 'TAA': '*', 'TAG': '*', 'TGA': '*'} if strand == '-' or strand == -1: seq = RevComp(cDNA) else: seq = cDNA seq = seq[phase:] # map seq to proteins protSeq = [] for i in _split(seq, 3): if len(i) == 3: iSeq = i.upper() if iSeq in codon_table: aa = codon_table[iSeq] protSeq.append(aa) else: protSeq.append('X') return ''.join(protSeq) def extend2stop(seqDict, header, coordinates, strand, phase, protLen): ''' try to extend a CDS lacking a stop to find a stop codon it will extend a CDS up to 20 codons (60 bp) from the current frame to find a stop codon, if none is found it will return the original coordinates ''' sorted_coordinates = sorted(coordinates, key=lambda tup: tup[0]) if strand == '+': newStop = sorted_coordinates[-1][1]+60 if newStop > len(seqDict[header]): newStop = len(seqDict[header]) lastTup = (sorted_coordinates[-1][0], newStop) if len(sorted_coordinates) > 1: newCoords = sorted_coordinates[:-1] newCoords.append(lastTup) else: newCoords = [lastTup] updateCDS = getSeqRegions(seqDict, header, newCoords) updateProt = translate(updateCDS, strand, phase) if '*' in updateProt: num = (updateProt.find('*') - protLen + 1) * 3 finalTup = (sorted_coordinates[-1][0], sorted_coordinates[-1][1]+num) if len(sorted_coordinates) > 1: finalCoords = sorted_coordinates[:-1] finalCoords.append(finalTup) else: finalCoords = [finalTup] return True, finalCoords else: return False, coordinates else: newStop = sorted_coordinates[0][0]-60 if newStop < 1: newStop = 1 lastTup = (newStop, sorted_coordinates[0][1]) newCoords = [lastTup] if len(sorted_coordinates) > 1: newCoords += sorted_coordinates[1:] updateCDS = getSeqRegions(seqDict, header, newCoords) updateProt = translate(updateCDS, strand, phase) if '*' in updateProt: num = (updateProt.find('*') - protLen + 1) * 3 finalTup = (sorted_coordinates[0][0]-num, sorted_coordinates[0][1]) finalCoords = [finalTup] if len(sorted_coordinates) > 1: finalCoords += sorted_coordinates[1:] finalSort = sorted( finalCoords, key=lambda tup: tup[0], reverse=True) return True, finalSort else: return False, coordinates def getSeqRegions(SeqRecordDict, header, coordinates): # takes SeqRecord dictionary or Index, returns sequence string # coordinates is a list of tuples [(1,10), (20,30)] result = '' sorted_coordinates = sorted(coordinates, key=lambda tup: tup[0]) for x in sorted_coordinates: partial = SeqRecordDict[header][x[0]-1:x[1]] result += str(partial.seq) return result def convertgff2tbl(gff, prefix, fasta, prots, trans, tblout, external=False): from collections import OrderedDict ''' function to convert directly from gff to tbl ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # load GFF annotations into funannotate dictionary Genes = {} Genes = gff2dict(gff, fasta, Genes) # get scaffold names/lengths scaffLen = {} with open(fasta, 'r') as seqin: for record in SeqIO.parse(seqin, 'fasta'): if not record.id in scaffLen: scaffLen[record.id] = len(record.seq) # get partialStart/stop info and load scaffold dictionary with coordinates of Genes sGenes = sorted(iter(Genes.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) renamedGenes = {} scaff2genes = {} counter = 1 for k, v in list(sortedGenes.items()): if not prefix: locusTag = k else: locusTag = prefix+'_'+str(counter).zfill(6) if not locusTag in renamedGenes: renamedGenes[locusTag] = v if not v['contig'] in scaff2genes: scaff2genes[v['contig']] = [locusTag] else: scaff2genes[v['contig']].append(locusTag) counter += 1 if external: log.info('Found {:,} gene models from GFF3 annotation'.format(len(sortedGenes))) dicts2tbl(renamedGenes, scaff2genes, scaffLen, 'CFMR', '12345', [], tblout, external=external) # transcript to geneID dictionary geneDB = {} for k, v in list(renamedGenes.items()): for x in v['ids']: if not x in geneDB: geneDB[x] = k # write to protein and transcripts with open(prots, 'w') as protout: with open(trans, 'w') as tranout: for k, v in natsorted(list(Genes.items())): if v['pseudo'] and v['pseudo'] is True: continue for i, x in enumerate(v['ids']): try: Transcript = str(v['transcript'][i]) except IndexError: print((k, v)) if v['strand'] == '-': Transcript = RevComp(Transcript) tranout.write('>%s %s\n%s\n' % (x, k, softwrap(Transcript))) if v['type'] == 'mRNA': Prot = v['protein'][i] if Prot.endswith('*'): Prot = Prot.rstrip('*') protout.write('>%s %s\n%s\n' % (x, k, softwrap(Prot))) return len(Genes), geneDB def tblfilter(input, remove, output): ''' function to take an NCBI tbl file and drop gene models present in remove file ''' # get items to remove list removeModels = [] with open(remove, 'r') as file: for line in file: if line.startswith('#') or line.startswith('\n'): continue line = line.strip() if not line in removeModels: removeModels.append(line) # now loop through tbl file and get line positions of gene models found = [] with open(output, 'w') as outfile: with open(input, 'r') as infile: for gene in readBlocks2(infile, '>Feature', '\tgene\n'): if gene[0].startswith('>Feature'): outfile.write(''.join(gene)) else: locusTag = None for x in gene: if x.startswith('\t\t\tlocus_tag\t'): locusTag = x.split('\t')[-1].rstrip() if locusTag and not locusTag in removeModels: outfile.write(''.join(gene)) else: if not locusTag: log.debug( 'LocusTag not found parsing NCBI Tbl file (this should not happen)') print(gene) else: found.append(locusTag) log.debug("Removed %i out of %i gene models from annotation" % (len(found), len(removeModels))) s = set(found) diff = [x for x in removeModels if x not in s] if len(diff) > 0: log.debug('Could not find %i gene models:\n %s' % (len(diff), ','.join(diff))) def annotations2dict(input, geneDB={}, custom=False): Annotations = {} with open(input, 'r') as all_annots: for line in all_annots: line = line.replace('\n', '') ID, refDB, description = line.split('\t') if description == '': # there is nothing here, so skip continue if refDB == 'name' or refDB == 'product': if len(geneDB) == 0: if '-T' in ID: geneID = ID.split('-T')[0] else: geneID = ID else: if ID in geneDB: geneID = geneDB[ID] else: geneID = ID else: geneID = ID if not geneID in Annotations: Annotations[geneID] = {refDB: [description]} else: if not refDB in Annotations[geneID]: Annotations[geneID][refDB] = [description] else: Annotations[geneID][refDB].append(description) if custom: log.info("Parsing custom annotations from {:}".format(custom)) with open(custom, 'r') as custom_annots: for line in custom_annots: line = line.rstrip() try: if line.count('\t') != 2: continue except UnicodeDecodeError: log.error('Error parsing the custom annotations:') print(line) sys.exit(1) ID, refDB, description = line.split('\t') if description == '': continue if refDB in ['name', 'product', 'gene_synonym']: if len(geneDB) == 0: if '-T' in ID: geneID = ID.split('-T')[0] else: geneID = ID else: if ID in geneDB: geneID = geneDB[ID] else: geneID = ID else: geneID = ID if not geneID in Annotations: Annotations[geneID] = {refDB: [description]} else: if not refDB in Annotations[geneID]: Annotations[geneID][refDB] = [description] elif refDB == 'name': previousNames = Annotations[geneID][refDB] if not 'gene_synonym' in Annotations[geneID]: Annotations[geneID]['gene_synonym'] = previousNames else: Annotations[geneID]['gene_synonym'] += previousNames Annotations[geneID][refDB] = [description] elif refDB == 'product': Annotations[geneID][refDB] = [description] else: Annotations[geneID][refDB].append(description) # make sure no synonyms are repeated for k, v in natsorted(Annotations.items()): if 'gene_synonym' in v and 'name' in v: synonym_set = set(v['gene_synonym']) cleaned = [x for x in synonym_set if x not in v['name']] Annotations[k]['gene_synonym'] = cleaned elif 'gene_synonm' in v: synonym_set = set(v['gene_synonym']) Annotations[k]['gene_synonym'] = list(synonym_set) return Annotations def updateTBL(input, annotDict, output, prefix=False, newtag=False): ''' general function to parse ncbi tbl format and add functional annotation ''' log.debug('Parsing tbl file: {:}'.format(os.path.abspath(input))) tmpoutput = output+'.tmp' with open(input, 'r') as infile: with open(tmpoutput, 'w') as outfile: for gene in readBlocks2(infile, '>Feature', '\tgene\n'): transcriptsSeen = [] # transcriptNum = 0 if gene[0].startswith('>Feature'): outfile.write(''.join(gene)) else: locusTag, locusTagIndex, LocusType, geneAnnot, transcriptAnnot = ( None,)*5 for i, x in enumerate(gene): if x.startswith('\t\t\tlocus_tag\t'): locusTag = x.split('\t')[-1].rstrip() locusTagIndex = i if not locusTagIndex: outfile.write(''.join(gene)) continue try: locusType = gene[locusTagIndex+1].split('\t')[-1].rstrip() except IndexError: print(gene) except TypeError: print(gene) if locusType in ['tRNA', 'ncRNA', 'rRNA']: outfile.write(''.join(gene)) elif locusType == 'mRNA': if locusTag in annotDict: geneAnnot = annotDict.get(locusTag) else: geneAnnot = {} for line in gene: if line.startswith('\t\t\tlocus_tag\t'): if 'name' in geneAnnot: outfile.write('\t\t\tgene\t%s\n' % geneAnnot['name'][0]) if 'gene_synonym' in geneAnnot: for z in set(geneAnnot['gene_synonym']): outfile.write('\t\t\tgene_synonym\t%s\n' % z) outfile.write(line) elif line.startswith('\t\t\tproduct\t'): if not 'product' in geneAnnot: outfile.write(line) elif line.startswith('\t\t\ttranscript_id\t'): ID = line.split('|')[-1] ID = ID.split('_mrna')[0] if not ID in transcriptsSeen: transcriptsSeen.append(ID) transcriptNum = len(transcriptsSeen) if ID in annotDict: transcriptAnnot = annotDict.get(ID) if 'product' in geneAnnot: Description = geneAnnot['product'][0] if transcriptNum > 1: Description = Description + ', variant {:}'.format(transcriptNum) outfile.write('\t\t\tproduct\t%s\n' % Description) outfile.write(line) elif line.startswith('\t\t\tcodon_start\t'): outfile.write(line) if transcriptAnnot: for item in transcriptAnnot: if item in ['name', 'product', 'gene_synonym']: continue for x in set(transcriptAnnot[item]): outfile.write('\t\t\t%s\t%s\n' % (item, x)) else: outfile.write(line) if newtag: with open(output, 'w') as outfile: with open(tmpoutput, 'r') as infile: for line in infile: if line.startswith('\t\t\tlocus_tag\t'): line = line.replace('\t'+prefix, '\t'+newtag) elif line.startswith('\t\t\ttranscript_id\t') or line.startswith('\t\t\tprotein_id\t'): line = line.replace('|'+prefix, '|'+newtag) outfile.write(line) os.remove(tmpoutput) else: os.rename(tmpoutput, output) def bed2gff3(input, output): ''' convert repeats bed file into GFF3 format Contig245 36 69 Repeat_1 Contig245 265 288 Repeat_2 Contig245 477 493 Repeat_3 Contig245 780 797 Repeat_4 Contig245 997 1016 Repeat_5 ''' with open(output, 'w') as outfile: outfile.write("##gff-version 3\n") with open(input, 'r') as bedfile: for line in bedfile: line = line.strip() if line.startswith('\n'): continue contig, start, end, name = line.split('\t') start = int(start) + 1 # bed is 0-based, gff 1-based outfile.write( '{:}\tRepeatMasker\tdispersed_repeat\t{:}\t{:}\t.\t+\t.\tID={:}\n'.format(contig, start, end, name)) def findUTRs(cds, mrna, strand): import numpy FiveUTR = [] ThreeUTR = [] if cds != mrna: inter = InterLap() inter.add(cds) for i, x in enumerate(mrna): if not x in inter: loc = (list(inter)[0][0], list(inter)[-1][1]) diff = numpy.subtract(x, loc) if diff[0] < 0 and diff[1] < 0: if strand == '+': FiveUTR.append(x) else: ThreeUTR.append(x) elif diff[0] > 0 and diff[1] > 0: if strand == '+': ThreeUTR.append(x) else: FiveUTR.append(x) else: hit = list(inter.find(x)) if x == hit[0]: continue else: diff = numpy.subtract(x, hit[0]) if strand == '+': if int(diff[0]) < 1 and int(diff[1]) == 0: FiveUTR.append((x[0], hit[0][0]-1)) elif int(diff[1]) > 1 and int(diff[0]) == 0: ThreeUTR.append((hit[0][1]+1, x[1])) elif int(diff[0]) < 1 and int(diff[1]) > 1: FiveUTR.append((x[0], hit[0][0]-1)) ThreeUTR.append((hit[0][1]+1, x[1])) else: if diff[0] == 0 and diff[1] > 0: FiveUTR.append((hit[0][1]+1, x[1])) elif diff[0] < 0 and diff[1] == 0: ThreeUTR.append((x[0], hit[0][0]-1)) elif diff[0] < 0 and diff[1] > 0: FiveUTR.append((hit[0][1]+1, x[1])) ThreeUTR.append((x[0], hit[0][0]-1)) return FiveUTR, ThreeUTR def dict2nucleotides2(input, prots, trans, cdstrans): ''' function to generate protein and transcripts from dictionary ''' # write to protein and transcripts with open(prots, 'w') as protout: with open(trans, 'w') as tranout: with open(cdstrans, 'w') as cdsout: for k, v in natsorted(list(input.items())): if 'pseudo' in v: if v['pseudo']: continue if v['type'] == 'mRNA' and not v['CDS']: continue if v['type'] == 'mRNA' and not len(v['ids']) == len(v['mRNA']) == len(v['CDS']): continue for i, x in enumerate(v['ids']): try: Transcript = str(v['transcript'][i]) if v['strand'] == '-': Transcript = RevComp(Transcript) tranout.write('>{:} {:}\n{:}\n'.format( x, k, softwrap(Transcript))) except IndexError: pass try: CDStranscript = str(v['cds_transcript'][i]) if v['strand'] == '-': CDStranscript = RevComp(CDStranscript) cdsout.write('>{:} {:}\n{:}\n'.format( x, k, softwrap(CDStranscript))) except IndexError: pass if v['type'] == 'mRNA': try: Prot = v['protein'][i] except IndexError: print(('ERROR', k, v)) sys.exit(1) if Prot.endswith('*'): Prot = Prot[:-1] protout.write('>{:} {:}\n{:}\n'.format( x, k, softwrap(Prot))) def simpleFastaStats(fasta): from Bio.SeqUtils import GC from Bio.SeqIO.FastaIO import SimpleFastaParser contigs = [] with open(fasta, 'r') as infile: for header, seq in SimpleFastaParser(infile): contigs.append(seq) contigs = sorted(contigs, key=lambda x: len(x), reverse=True) lengths = [len(x) for x in contigs] pctGC = round(GC(''.join(contigs)), 2) #N50 totalLen = sum(lengths) n50_len = totalLen*.50 n90_len = totalLen*.90 n50 = None n90 = None runningSum = 0 for y, c in enumerate(lengths): runningSum += c if not n50 and runningSum >= n50_len: n50 = c if not n90 and runningSum >= n90_len: n90 = c l50 = lengths.index(n50) + 1 l90 = lengths.index(n90) + 1 numContigs = len(contigs) avg_length = '{:.2f}'.format(totalLen / float(len(contigs))) return numContigs, totalLen, pctGC, float(avg_length), n50, l50, n90, l90 def databases2json(FUNDB): resources = {} dbfile = os.path.join(FUNDB, 'funannotate-db-info.txt') if not os.path.isfile(dbfile): return resources else: with open(dbfile, 'r') as infile: for line in infile: line = line.rstrip() cols = line.split('\t') resources[cols[0]] = { 'type': cols[1], 'version': cols[3], 'date': cols[4], 'num-records': cols[5] } return resources def annotation_summary(fasta, output, gff=False, tbl=False, pct=0.90, transcripts=False, proteins=False, previous=False, database='.', command='', organism=''): ''' function to output annotation stats from GFF3 or TBL files ''' import json stats = { 'format': 'annotation', 'command': command, 'organism': organism, 'software':{ 'name': 'funannotate', 'version': get_version(), 'date': datetime.datetime.today().strftime('%Y-%m-%d'), 'resources': databases2json(database) }, 'assembly': { 'num_contigs': 0, 'length': 0, 'mean_length': 0, 'N50': 0, 'L50': 0, 'N90': 0, 'L90': 0, 'GC_content': 0, }, 'annotation': { 'genes': 0, 'common_name': 0, 'mRNA': 0, 'tRNA': 0, 'ncRNA': 0, 'rRNA': 0, 'avg_gene_length': 0, 'transcript-level': { 'CDS_transcripts': 0, 'CDS_five_utr': 0, 'CDS_three_utr': 0, 'CDS_no_utr': 0, 'CDS_five_three_utr': 0, 'CDS_complete': 0, 'CDS_no-start': 0, 'CDS_no-stop': 0, 'CDS_no-start_no-stop': 0, 'total_exons': 0, 'total_cds_exons': 0, 'multiple_exon_transcript': 0, 'single_exon_transcript': 0, 'avg_exon_length': 0, 'avg_protein_length': 0, 'functional': { 'go_terms': 0, 'interproscan': 0, 'eggnog': 0, 'pfam': 0, 'cazyme': 0, 'merops': 0, 'busco': 0, 'secretion': 0 } } } } if previous: # load some stats that cant calculate from annotation with open(previous, 'r') as infile: previousStats = json.load(infile) try: stats['annotation']['transcript-level']['pct_exon_overlap_protein_evidence'] = previousStats['annotation']['transcript-level']['pct_exon_overlap_protein_evidence'] except KeyError: pass try: stats['annotation']['transcript-level']['pct_exon_overlap_transcript_evidence'] = previousStats['annotation']['transcript-level']['pct_exon_overlap_transcript_evidence'] except KeyError: pass num, tot, gc, avg, n50, l50, n90, l90 = simpleFastaStats(fasta) stats['assembly']['num_contigs'] = num stats['assembly']['length'] = tot stats['assembly']['GC_content'] = gc stats['assembly']['mean_length'] = avg stats['assembly']['N50'] = n50 stats['assembly']['L50'] = l50 stats['assembly']['N90'] = n90 stats['assembly']['L90'] = l90 Genes = {} if tbl: Genes = tbl2dict(tbl, fasta, Genes) elif gff: Genes = gff2dict(gff, fasta, Genes) if len(Genes) > 0: protLengths = [] geneLengths = [] exonLengths = [] for k, v in Genes.items(): stats['annotation']['genes'] += 1 gLength = v['location'][1] - v['location'][0] geneLengths.append(gLength) if v['type'] == 'tRNA': stats['annotation']['tRNA'] += 1 elif v['type'] == 'rRNA': stats['annotation']['rRNA'] += 1 elif v['type'] == 'ncRNA': stats['annotation']['ncRNA'] += 1 if v['name']: stats['annotation']['common_name'] += 1 for i in range(0, len(v['ids'])): if v['type'] == 'mRNA': stats['annotation']['mRNA'] += 1 stats['annotation']['transcript-level']['CDS_transcripts'] += 1 pLen = len(v['protein'][i]) if v['protein'][i].endswith('*'): pLen -= 1 protLengths.append(pLen) if len(v['mRNA'][i]) > 1: stats['annotation']['transcript-level']['multiple_exon_transcript'] += 1 for y in v['mRNA'][i]: exon_length = y[1] - y[0] exonLengths.append(exon_length) else: stats['annotation']['transcript-level']['single_exon_transcript'] += 1 stats['annotation']['transcript-level']['total_exons'] += len(v['mRNA'][i]) stats['annotation']['transcript-level']['total_exons'] += len(v['5UTR'][i]) stats['annotation']['transcript-level']['total_exons'] += len(v['3UTR'][i]) stats['annotation']['transcript-level']['total_cds_exons'] += len(v['CDS'][i]) if v['partialStart'][i] and v['partialStop'][i]: stats['annotation']['transcript-level']['CDS_no-start_no-stop'] += 1 elif v['partialStart'][i]: stats['annotation']['transcript-level']['CDS_no-start'] += 1 elif v['partialStop'][i]: stats['annotation']['transcript-level']['CDS_no-stop'] += 1 else: stats['annotation']['transcript-level']['CDS_complete'] += 1 if len(v['5UTR'][i]) > 0 and len(v['3UTR'][i]) > 0: stats['annotation']['transcript-level']['CDS_five_three_utr'] += 1 elif len(v['3UTR'][i]) > 0: stats['annotation']['transcript-level']['CDS_three_utr'] += 1 elif len(v['5UTR'][i]) > 0: stats['annotation']['transcript-level']['CDS_three_utr'] += 1 else: stats['annotation']['transcript-level']['CDS_no_utr'] += 1 if v['go_terms'][i]: stats['annotation']['transcript-level']['functional']['go_terms'] += 1 if any(s.startswith('PFAM:') for s in v['db_xref'][i]): stats['annotation']['transcript-level']['functional']['pfam'] += 1 if any(s.startswith('InterPro:') for s in v['db_xref'][i]): stats['annotation']['transcript-level']['functional']['interproscan'] += 1 if any(s.startswith('EggNog:') for s in v['note'][i]): stats['annotation']['transcript-level']['functional']['eggnog'] += 1 if any(s.startswith('CAZy:') for s in v['note'][i]): stats['annotation']['transcript-level']['functional']['cazyme'] += 1 if any(s.startswith('MEROPS:') for s in v['note'][i]): stats['annotation']['transcript-level']['functional']['merops'] += 1 if any(s.startswith('BUSCO:') for s in v['note'][i]): stats['annotation']['transcript-level']['functional']['busco'] += 1 if any(s.startswith('SECRETED:') for s in v['note'][i]): stats['annotation']['transcript-level']['functional']['secretion'] += 1 stats['annotation']['avg_gene_length'] = round(sum(geneLengths) / float(len(geneLengths)), 2) stats['annotation']['transcript-level']['avg_protein_length'] = round(sum(protLengths) / float(len(protLengths)), 2) stats['annotation']['transcript-level']['avg_exon_length'] = round(sum(exonLengths) / float(len(exonLengths)), 2) exonBED = 'tmp.exon.{}.bed'.format(os.getpid()) if transcripts or proteins: exonCount = 0 bedtools_cmd = ['bedtools', 'intersect', '-a', exonBED, '-u', '-f', str(pct), '-s', '-b'] with open(exonBED, 'w') as outfile: for k, v in Genes.items(): for i in range(0, len(v['ids'])): for z, x in enumerate(v['mRNA'][i]): exonCount += 1 outfile.write('{}\t{}\t{}\t{}.exon{}\t.\t{}\n'.format( v['contig'], x[0]-1, x[1], v['ids'][i], z+1, v['strand'])) if transcripts: # calculate exons covered by transcripts cmd = bedtools_cmd + [transcripts] overlapCount = 0 for line in execute(cmd): overlapCount += 1 pctOverlap = '{:.2f}'.format(overlapCount/exonCount*100) stats['annotation']['transcript-level']['pct_exon_overlap_transcript_evidence'] = float(pctOverlap) if proteins: # calculate exons covered by proteins cmd = bedtools_cmd + [proteins] overlapCount = 0 for line in execute(cmd): overlapCount += 1 pctOverlap = '{:.2f}'.format(overlapCount/exonCount*100) stats['annotation']['transcript-level']['pct_exon_overlap_protein_evidence'] = float(pctOverlap) if os.path.isfile(exonBED): os.remove(exonBED) # write to json format with open(output, 'w') as outfile: json.dump(stats, outfile, indent=4) def tbl2allout(input, fasta, GFF, Proteins, Transcripts, cdsTranscripts, DNA): ''' function to convert NCBI tbl format directly to other formats; this will be a replacement for Genbank derived output files and correctly parse/print the transcript/proteins ''' Genes = {} Genes = tbl2dict(input, fasta, Genes) # write GFF dict2gff3(Genes, GFF) # write to protein and transcripts dict2nucleotides2(Genes, Proteins, Transcripts, cdsTranscripts) # copy over DNA fasta file shutil.copyfile(fasta, DNA) def tbl2dict(input, fasta, Genes): ''' need a method to convert directly from NCBI tbl format to several output formats to avoid conversion problems with GBK files that have mutliple transcripts if can load funannotate dictionary directly from tbl format, then can write the other formats directly ''' with open(input, 'r') as infile: contig = '' for item in readBlocks2(infile, '>Feature', '\tgene\n'): if item[0].startswith('>Feature'): # this will be contig header block contig = item[0].rstrip().split(' ')[-1] else: # these are all gene model blocks geneID, Name, type, start, end, fivepartial, threepartial, strand, location = ( None,)*9 codon_start = [] transcriptID = [] proteinID = [] synonyms = [] product = [] first, firstpartial, second, secondpartial = (False,)*4 position = None # check number of transcripts tNum = 0 for z in item: if z.startswith('\t\t\ttranscript_id'): tNum += 1 if tNum > 0: tNum = int(tNum / 2) else: tNum = 1 # setup lists for transcripts mRNA = [[] for y in range(tNum)] CDS = [[] for y in range(tNum)] note = [[] for y in range(tNum)] dbxref = [[] for y in range(tNum)] ECnum = [[] for y in range(tNum)] go_terms = [[] for y in range(tNum)] fivepartial = [False, ]*tNum threepartial = [False, ]*tNum currentNum = 0 for x in item: exonF, exonR, cdsF, cdsR, cols = (None,)*5 if x.endswith('\tgene\n') and not position: cols = x.strip().split('\t') position = 'gene' if cols[0].startswith('<'): first = int(cols[0].split('<')[-1]) else: first = int(cols[0]) if cols[1].startswith('>'): second = int(cols[1].split('>')[-1]) else: second = int(cols[1]) if first < second: start = first end = second strand = '+' else: start = second end = first strand = '-' location = (start, end) elif x.startswith('\t\t\tgene\t'): Name = x.strip().split('\t')[-1] elif x.startswith('\t\t\tlocus_tag\t'): geneID = x.strip().split('\t')[-1] elif x.endswith('\ttRNA\n') and x.count('\t') == 2 and position == 'gene': type = 'tRNA' position = 'tRNA' cols = x.strip().split('\t') exonF = int(cols[0].replace('<', '')) exonR = int(cols[1].replace('>', '')) if strand == '+': mRNA[currentNum].append((exonF, exonR)) else: mRNA[currentNum].append((exonR, exonF)) elif x.endswith('\tncRNA\n') and x.count('\t') == 2 and position == 'gene': type = 'ncRNA' position = 'ncRNA' cols = x.strip().split('\t') exonF = int(cols[0].replace('<', '')) exonR = int(cols[1].replace('>', '')) if strand == '+': mRNA[currentNum].append((exonF, exonR)) else: mRNA[currentNum].append((exonR, exonF)) elif x.endswith('\trRNA\n') and x.count('\t') == 2 and position == 'gene': type = 'rRNA' position = 'rRNA' cols = x.strip().split('\t') exonF = int(cols[0].replace('<', '')) exonR = int(cols[1].replace('>', '')) if strand == '+': mRNA[currentNum].append((exonF, exonR)) else: mRNA[currentNum].append((exonR, exonF)) elif x.endswith('\tmRNA\n') and x.count('\t') == 2: if position == 'CDS': currentNum += 1 elif position == 'gene': type = 'mRNA' position = 'mRNA' cols = x.strip().split('\t') exonF = int(cols[0].replace('<', '')) exonR = int(cols[1].replace('>', '')) if strand == '+': mRNA[currentNum].append((exonF, exonR)) else: mRNA[currentNum].append((exonR, exonF)) elif x.endswith('\tCDS\n') and x.count('\t') == 2: position = 'CDS' cols = x.strip().split('\t') cdsF = int(cols[0].replace('<', '')) cdsR = int(cols[1].replace('>', '')) if strand == '+': CDS[currentNum].append((cdsF, cdsR)) else: CDS[currentNum].append((cdsR, cdsF)) elif x.startswith('\t\t\tcodon_start\t'): cNum = int(x.strip().split('\t')[-1]) codon_start.append(cNum) elif x.startswith('\t\t\tproduct\t') and position != 'mRNA': product.append(x.strip().split('\t')[-1]) elif x.startswith('\t\t\ttranscript_id\t'): tID = x.strip().split('|')[-1] if '_mrna' in tID: tID = tID.replace('_mrna', '') if not tID in transcriptID: transcriptID.append(tID) elif x.startswith('\t\t\tprotein_id\t'): pID = x.strip().split('|')[-1] if not pID in proteinID: proteinID.append(pID) elif x.startswith('\t\t\tgene_synonym\t'): synonyms.append(x.strip().split('\t')[-1]) elif x.startswith('\t\t\tgo_'): # go terms go_terms[currentNum].append( 'GO:{:}'.format(x.strip().split('|')[1])) elif x.startswith('\t\t\tnote\t'): note[currentNum].append(x.strip().split('\t')[-1]) elif x.startswith('\t\t\tdb_xref\t'): dbxref[currentNum].append(x.strip().split('\t')[-1]) elif x.startswith('\t\t\tEC_number\t'): ECnum[currentNum].append(x.strip().split('\t')[-1]) elif position == 'mRNA' and x.count('\t') == 1: cols = x.strip().split('\t') exonF = int(cols[0].replace('<', '')) exonR = int(cols[1].replace('>', '')) if strand == '+': mRNA[currentNum].append((exonF, exonR)) else: mRNA[currentNum].append((exonR, exonF)) elif position in ['tRNA', 'ncRNA', 'rRNA'] and x.count('\t') == 1: cols = x.strip().split('\t') exonF = int(cols[0].replace('<', '')) exonR = int(cols[1].replace('>', '')) if strand == '+': mRNA[currentNum].append((exonF, exonR)) else: mRNA[currentNum].append((exonR, exonF)) elif position == 'CDS' and x.count('\t') == 1: cols = x.strip().split('\t') cdsF = int(cols[0].replace('<', '')) cdsR = int(cols[1].replace('>', '')) if strand == '+': CDS[currentNum].append((cdsF, cdsR)) else: CDS[currentNum].append((cdsR, cdsF)) if not geneID in Genes: if type in ['tRNA', 'ncRNA', 'rRNA']: Genes[geneID] = {'name': Name, 'type': type, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[]], '3UTR': [[]], 'codon_start': codon_start, 'ids': [geneID+'-T1'], 'CDS': CDS, 'mRNA': mRNA, 'strand': strand, 'gene_synonym': synonyms, 'location': location, 'contig': contig, 'product': product, 'source': 'funannotate', 'phase': [], 'db_xref': dbxref, 'go_terms': go_terms, 'EC_number': ECnum, 'note': note, 'partialStart': [True], 'partialStop': [True], 'pseudo': False } else: Genes[geneID] = {'name': Name, 'type': type, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [], '3UTR': [], 'codon_start': codon_start, 'ids': proteinID, 'CDS': CDS, 'mRNA': mRNA, 'strand': strand, 'gene_synonym': synonyms, 'location': location, 'contig': contig, 'product': product, 'source': 'funannotate', 'phase': [], 'db_xref': dbxref, 'go_terms': go_terms, 'EC_number': ECnum, 'note': note, 'partialStart': fivepartial, 'partialStop': threepartial, 'pseudo': False } # now we need to sort coordinates, get protein/transcript sequences and capture UTRs SeqRecords = SeqIO.to_dict(SeqIO.parse(fasta, 'fasta')) for k, v in list(Genes.items()): # @nextgenusfs we should clarify or rename this variable to indicate # i is the i-th transcript, right?? for i in range(0, len(v['ids'])): if v['type'] in ['mRNA', 'tRNA', 'ncRNA']: if v['strand'] == '+': sortedExons = sorted(v['mRNA'][i], key=lambda tup: tup[0]) else: sortedExons = sorted(v['mRNA'][i], key=lambda tup: tup[0], reverse=True) Genes[k]['mRNA'][i] = sortedExons mrnaSeq = getSeqRegions(SeqRecords, v['contig'], sortedExons) Genes[k]['transcript'].append(mrnaSeq) if v['type'] == 'mRNA': if v['strand'] == '+': sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0]) else: sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0], reverse=True) cdsSeq = getSeqRegions(SeqRecords, v['contig'], sortedCDS) # If the translation starts in middle of a codon, # we need to truncate the CDS seq either at start or end # depending on strand. if v['codon_start'][i] > 1: if v['strand'] == "+": # drop first N bases based on codon_start # to reflect the translation frame cdsSeq = cdsSeq[v['codon_start'][i]-1:] elif v['strand'] == "-": # drop last N bases based on codon_start # to reflect the translation frame (because this is # is reverse strand gene) endTrunc = len(cdsSeq) - (v['codon_start'][i] - 1) cdsSeq = cdsSeq[0:endTrunc] else: # could trigger more of a warning/error print("ERROR strand (%s) is nonsensical for %s"%(v['strand'],k)) Genes[k]['cds_transcript'].append(cdsSeq) Genes[k]['CDS'][i] = sortedCDS protSeq = translate(cdsSeq, v['strand'],0) if protSeq: Genes[k]['protein'].append(protSeq) if protSeq.endswith('*'): Genes[k]['partialStop'][i] = False else: Genes[k]['partialStop'][i] = True if v['codon_start'][i] == 1 and protSeq.startswith('M'): Genes[k]['partialStart'][i] = False else: Genes[k]['partialStart'][i] = True # get UTRs try: FiveUTR, ThreeUTR = findUTRs(sortedCDS, sortedExons, v['strand']) Genes[k]['5UTR'].append(FiveUTR) Genes[k]['3UTR'].append(ThreeUTR) except ValueError: print(('ERROR', k, v)) return Genes def dicts2tbl(genesDict, scaff2genes, scaffLen, SeqCenter, SeqRefNum, skipList, output, annotations=False, external=False): ''' function to take funannotate annotation dictionaries and convert to NCBI tbl output ''' duplicates = 0 pseudo = 0 nocds = 0 # to parse annotations, will need to have access to GO OBO dictionary goDict = {} if annotations: from goatools import obo_parser # location of go.obo for item in obo_parser.OBOReader(os.path.join(os.environ["FUNANNOTATE_DB"], 'go.obo')): goDict[item.id] = {'name': item.name, 'namespace': item.namespace} def _goFormat(id, goDict=goDict): # go_function serine-type endopeptidase activity|0004252||IEA # go_process proteolysis|0006508||IEA # go_component nucleus|0005634||IEA if id in goDict: if goDict[id]['namespace'] == 'biological_process': base = 'go_process' elif goDict[id]['namespace'] == 'molecular_function': base = 'go_function' elif goDict[id]['namespace'] == 'cellular_component': base = 'go_component' reformatted = '\t\t\t{:}\t{:}|{:}||IEA'.format( base, goDict[id]['name'], id.replace('GO:', '')) return reformatted else: return False with open(output, 'w') as tbl: for k, v in natsorted(list(scaff2genes.items())): tbl.write('>Feature %s\n' % k) tbl.write('1\t%s\tREFERENCE\n' % scaffLen.get(k)) tbl.write('\t\t\t%s\t%s\n' % (SeqCenter, SeqRefNum)) for genes in v: # now loop through each gene on the scaffold if genes in skipList: continue # single funannotate standard dictionary geneInfo = genesDict.get(genes) if 'pseudo' in geneInfo: if geneInfo['pseudo']: try: log.debug('{:} is pseudo, skipping'.format(genes)) except NameError: print(('{:} is pseudo, skipping'.format(genes))) pseudo += 1 continue if geneInfo['type'] == 'mRNA' and not geneInfo['CDS']: try: log.debug( 'Skipping {:} because no CDS found.'.format(genes)) except NameError: print(( 'Skipping {:} because no CDS found.'.format(genes))) pseudo += 1 continue if geneInfo['type'] == 'mRNA' and not len(geneInfo['ids']) == len(geneInfo['mRNA']) == len(geneInfo['CDS']): try: log.debug('Incompatible annotation found: {:}\n{:}'.format( genes, geneInfo)) except NameError: print(('Incompatible annotation found: {:}\n{:}'.format( genes, geneInfo))) duplicates += 1 continue if geneInfo['type'] == 'mRNA' and len(geneInfo['CDS']) == 0: nocds += 1 continue if geneInfo['type'] is None: continue # check for partial models if True in geneInfo['partialStart']: ps = '<' else: ps = '' if True in geneInfo['partialStop']: pss = '>' else: pss = '' # now write gene model if geneInfo['strand'] == '+': tbl.write('%s%i\t%s%i\tgene\n' % ( ps, geneInfo['location'][0], pss, geneInfo['location'][1])) if annotations: if geneInfo['name']: tbl.write('\t\t\tgene\t%s\n' % geneInfo['name']) if geneInfo['gene_synonym']: for alias in geneInfo['gene_synonym']: tbl.write('\t\t\tgene_synonym\t%s\n' % alias) tbl.write('\t\t\tlocus_tag\t%s\n' % genes) else: tbl.write('%s%i\t%s%i\tgene\n' % ( ps, geneInfo['location'][1], pss, geneInfo['location'][0])) if annotations: if geneInfo['name']: tbl.write('\t\t\tgene\t%s\n' % geneInfo['name']) if geneInfo['gene_synonym']: for alias in geneInfo['gene_synonym']: tbl.write('\t\t\tgene_synonym\t%s\n' % alias) tbl.write('\t\t\tlocus_tag\t%s\n' % genes) # now will output the gene models with -T1, -T2, -T3 annotations based on expression values # means need to get the order order = [] # multiple transcripts, so get order of highest TPM if len(geneInfo['ids']) > 1: tpms = [] for num, tpm in enumerate(geneInfo['note']): for item in tpm: if item.startswith('TPM:'): value = float(item.split(':')[-1]) tpms.append((value, num)) if len(tpms) > 0: for x in sorted(tpms, reverse=True): order.append(x[1]) else: order = list(range(0, len(geneInfo['ids']))) else: order.append(0) for num, i in enumerate(order): # now write mRNA and CDS features # if geneInfo['ids'][i].startswith('evm.model'): #if from predict, rename to match locus_tag # protein_id = genes+'-T'+str(num+1) # else: # protein_id = geneInfo['ids'][i] if external: protein_id = geneInfo['ids'][i] else: protein_id = genes+'-T'+str(num+1) if geneInfo['type'] == 'mRNA': if geneInfo['partialStart'][i] is False: ps = '' else: ps = '<' if geneInfo['partialStop'][i] is False: pss = '' else: pss = '>' if geneInfo['strand'] == '+': for num, exon in enumerate(geneInfo['mRNA'][i]): # single exon, so slightly differnt method if num == 0 and num == len(geneInfo['mRNA'][i]) - 1: tbl.write('%s%s\t%s%s\tmRNA\n' % (ps, exon[0], pss, exon[1])) elif num == 0: tbl.write('%s%s\t%s\tmRNA\n' % (ps, exon[0], exon[1])) # this is last one elif num == len(geneInfo['mRNA'][i]) - 1: tbl.write('%s\t%s%s\n' % (exon[0], pss, exon[1])) else: tbl.write('%s\t%s\n' % (exon[0], exon[1])) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) tbl.write('\t\t\ttranscript_id\tgnl|ncbi|%s_mrna\n' % (protein_id)) tbl.write('\t\t\tprotein_id\tgnl|ncbi|%s\n' % (protein_id)) for num, cds in enumerate(geneInfo['CDS'][i]): # single exon, so slightly differnt method if num == 0 and num == len(geneInfo['CDS'][i]) - 1: tbl.write('%s%s\t%s%s\tCDS\n' % (ps, cds[0], pss, cds[1])) elif num == 0: tbl.write('%s%s\t%s\tCDS\n' % (ps, cds[0], cds[1])) # this is last one elif num == len(geneInfo['CDS'][i]) - 1: tbl.write('%s\t%s%s\n' % (cds[0], pss, cds[1])) else: tbl.write('%s\t%s\n' % (cds[0], cds[1])) tbl.write('\t\t\tcodon_start\t%i\n' % geneInfo['codon_start'][i]) if annotations: # write functional annotation if geneInfo['EC_number'][i]: for EC in geneInfo['EC_number'][i]: tbl.write('\t\t\tEC_number\t%s\n' % EC) if geneInfo['db_xref'][i]: for xref in geneInfo['db_xref'][i]: tbl.write('\t\t\tdb_xref\t%s\n' % xref) if geneInfo['go_terms'][i]: for go in geneInfo['go_terms'][i]: goLine = _goFormat(go) if goLine: tbl.write('{:}\n'.format(goLine)) if geneInfo['note'][i]: for item in geneInfo['note'][i]: tbl.write('\t\t\tnote\t%s\n' % item) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) tbl.write('\t\t\ttranscript_id\tgnl|ncbi|%s_mrna\n' % (protein_id)) tbl.write('\t\t\tprotein_id\tgnl|ncbi|%s\n' % (protein_id)) else: # means this is on crick strand for num, exon in enumerate(geneInfo['mRNA'][i]): # single exon, so slightly differnt method if num == 0 and num == len(geneInfo['mRNA'][i]) - 1: tbl.write('%s%s\t%s%s\tmRNA\n' % (ps, exon[1], pss, exon[0])) elif num == 0: tbl.write('%s%s\t%s\tmRNA\n' % (ps, exon[1], exon[0])) # this is last one elif num == len(geneInfo['mRNA'][i]) - 1: tbl.write('%s\t%s%s\n' % (exon[1], pss, exon[0])) else: tbl.write('%s\t%s\n' % (exon[1], exon[0])) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) tbl.write('\t\t\ttranscript_id\tgnl|ncbi|%s_mrna\n' % (protein_id)) tbl.write('\t\t\tprotein_id\tgnl|ncbi|%s\n' % (protein_id)) for num, cds in enumerate(geneInfo['CDS'][i]): # single exon, so slightly differnt method if num == 0 and num == len(geneInfo['CDS'][i]) - 1: tbl.write('%s%s\t%s%s\tCDS\n' % (ps, cds[1], pss, cds[0])) elif num == 0: tbl.write('%s%s\t%s\tCDS\n' % (ps, cds[1], cds[0])) # this is last one elif num == (len(geneInfo['CDS'][i]) - 1): tbl.write('%s\t%s%s\n' % (cds[1], pss, cds[0])) else: tbl.write('%s\t%s\n' % (cds[1], cds[0])) tbl.write('\t\t\tcodon_start\t%i\n' % geneInfo['codon_start'][i]) if annotations: # write functional annotation if geneInfo['EC_number'][i]: for EC in geneInfo['EC_number'][i]: tbl.write('\t\t\tEC_number\t%s\n' % EC) if geneInfo['db_xref'][i]: for xref in geneInfo['db_xref'][i]: tbl.write('\t\t\tdb_xref\t%s\n' % xref) if geneInfo['go_terms'][i]: for go in geneInfo['go_terms'][i]: goLine = _goFormat(go) if goLine: tbl.write('{:}\n'.format(goLine)) if geneInfo['note'][i]: for item in geneInfo['note'][i]: tbl.write('\t\t\tnote\t%s\n' % item) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) tbl.write('\t\t\ttranscript_id\tgnl|ncbi|%s_mrna\n' % (protein_id)) tbl.write('\t\t\tprotein_id\tgnl|ncbi|%s\n' % (protein_id)) elif geneInfo['type'] == 'tRNA': if geneInfo['strand'] == '+': for num, exon in enumerate(geneInfo['mRNA'][i]): if num == 0: tbl.write('%s\t%s\t%s\n' % ( exon[0], exon[1], geneInfo['type'])) else: tbl.write('%s\t%s\n' % (exon[0], exon[1])) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) if geneInfo['product'] == 'tRNA-Xxx': tbl.write('\t\t\tpseudo\n') else: for num, exon in enumerate(geneInfo['mRNA'][i]): if num == 0: tbl.write('%s\t%s\t%s\n' % ( exon[1], exon[0], geneInfo['type'])) else: tbl.write('%s\t%s\n' % (exon[1], exon[0])) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) if geneInfo['product'] == 'tRNA-Xxx': tbl.write('\t\t\tpseudo\n') elif geneInfo['type'] in ['rRNA', 'ncRNA']: if geneInfo['strand'] == '+': tbl.write('%s\t%s\t%s\n' % ( geneInfo['location'][0], geneInfo['location'][1], geneInfo['type'])) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) else: tbl.write('%s\t%s\t%s\n' % ( geneInfo['location'][1], geneInfo['location'][0], geneInfo['type'])) tbl.write('\t\t\tproduct\t%s\n' % geneInfo['product'][i]) if any(i > 0 for i in [duplicates, pseudo, nocds]): try: print(('Skipped {:,} annotations: {:,} pseudo genes; {:,} no CDS; {:,} duplicated features'.format( sum([pseudo, nocds, duplicates]), pseudo, nocds, duplicates))) except NameError: print(('Skipped {:,} annotations: {:,} pseudo genes; {:,} no CDS; {:,} duplicated features'.format( sum([pseudo, nocds, duplicates]), pseudo, nocds, duplicates))) def GFF2tbl(evm, trnascan, fasta, scaffLen, prefix, Numbering, SeqCenter, SeqRefNum, tblout): from collections import OrderedDict ''' function to take EVM protein models and tRNA scan GFF to produce a GBK tbl file as well as a new GFF3 file. The function will also rename locus_id if passed. ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][1]) # load GFF into dictionary Genes = {} Genes = gff2dict(evm, fasta, Genes) Genes = gff2dict(trnascan, fasta, Genes) # now sort dictionary by contig and location, rename using prefix, translate to protein space to get proper start/stop info sGenes = natsorted(iter(Genes.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) renamedGenes = {} scaff2genes = {} count = Numbering for k, v in list(sortedGenes.items()): if prefix: locusTag = prefix+'_'+str(count).zfill(6) else: locusTag = k renamedGenes[locusTag] = v if not v['contig'] in scaff2genes: scaff2genes[v['contig']] = [locusTag] else: scaff2genes[v['contig']].append(locusTag) count += 1 # write tbl outputfile dicts2tbl(renamedGenes, scaff2genes, scaffLen, SeqCenter, SeqRefNum, [], tblout) def checkRefSeq(input): refseq = False with open(input, 'r') as infile: for record in SeqIO.parse(infile, 'genbank'): if 'RefSeq' in record.annotations['keywords']: refseq = True break return refseq def getGBKinfo(input): accession = None organism = None strain = None isolate = None gb_gi = None WGS_accession = None version = None with open(input, 'r') as infile: for record in SeqIO.parse(infile, 'genbank'): try: WGS_accession = 'WGS:' + \ record.annotations['contig'].split( ':')[0].replace('join(', '')[:4] except KeyError: pass try: accession = record.annotations['accessions'][0] except KeyError: pass try: organism = record.annotations['organism'].replace( 'Unclassified.', '').rstrip() except KeyError: pass try: gb_gi = record.annotations['gi'] except KeyError: pass try: version = record.annotations['sequence_version'] except KeyError: pass for f in record.features: if f.type == "source": isolate = f.qualifiers.get("isolate", [None])[0] strain = f.qualifiers.get("strain", [None])[0] break return organism, strain, isolate, accession, WGS_accession, gb_gi, version def getGBKLocusTag(input): LocusTags = [] with open(input, 'r') as infile: for record in SeqIO.parse(infile, 'genbank'): for f in record.features: if f.type == 'gene': ID = f.qualifiers['locus_tag'][0] if not ID in LocusTags: LocusTags.append(ID) lastTag = natsorted(LocusTags)[-1] if not '_' in lastTag: print('ERROR: underscore "_" not found in locus_tag, exiting.') sys.exit(1) tag, count = lastTag.rsplit('_', 1) justify = len(count) return tag, count, justify def gb2dna(input, output): with open(output, 'w') as outfile: with open(input, 'r') as infile: for record in SeqIO.parse(infile, 'genbank'): outfile.write(">%s\n%s\n" % (record.id, softwrap(str(record.seq)))) def getID(input, type): # function to get ID from genbank record.features locusTag = None ID = None Parent = None if type == 'gene': try: locusTag = input.qualifiers['locus_tag'][0] except KeyError: pass if not locusTag: try: locusTag = input.qualifiers['gene'][0] except KeyError: pass else: try: ID = input.qualifiers['gene'][0] except KeyError: pass return locusTag, ID, locusTag elif type in ['mRNA', 'tRNA', 'ncRNA', 'rRNA', 'misc_RNA', 'exon']: try: locusTag = input.qualifiers['locus_tag'][0] Parent = locusTag except KeyError: pass if not locusTag: try: locusTag = input.qualifiers['gene'][0] except KeyError: pass if locusTag: Parent = locusTag try: ID = input.qualifiers['transcript_id'][0] except KeyError: pass else: try: locusTag = input.qualifiers['transcript_id'][0] Parent = locusTag except KeyError: pass else: try: ID = input.qualifiers['transcript_id'][0] except KeyError: pass if ID: if ':' in ID: ID = ID.split(':')[-1] else: try: ID = input.qualifiers['standard_name'][0] except KeyError: pass return locusTag, ID, Parent elif type == 'CDS': try: locusTag = input.qualifiers['locus_tag'][0] Parent = locusTag except KeyError: pass if not locusTag: try: locusTag = input.qualifiers['gene'][0] except KeyError: pass if locusTag: Parent = locusTag try: ID = input.qualifiers['protein_id'][0] except KeyError: pass else: try: locusTag = input.qualifiers['protein_id'][0] Parent = locusTag except KeyError: pass else: try: ID = input.qualifiers['protein_id'][0] except KeyError: ID = locusTag if ID: if ':' in ID: ID = ID.split(':')[-1] else: try: ID = input.qualifiers['standard_name'][0] except KeyError: pass return locusTag, ID, Parent def gb2nucleotides(input, prots, trans, dna): ''' function to generate protein, transcripts, and contigs from genbank file ''' genes = {} with open(dna, 'w') as dnaout: with open(input, 'r') as filein: for record in SeqIO.parse(filein, 'genbank'): dnaout.write(">%s\n%s\n" % (record.id, softwrap(str(record.seq)))) for f in record.features: gb_feature_add2dict(f, record, genes) # write to protein and transcripts dict2nucleotides(genes, prots, trans) return len(genes) def dict2proteins(input, prots): with open(prots, 'w') as protout: for k, v in natsorted(list(input.items())): if 'pseudo' in v: if v['pseudo']: continue if v['type'] == 'mRNA' and not v['CDS']: continue if v['type'] == 'mRNA' and not len(v['ids']) == len(v['mRNA']) == len(v['CDS']): continue for i, x in enumerate(v['ids']): if v['type'] == 'mRNA': Prot = v['protein'][i] protout.write('>{:} {:}\n{:}\n'.format( x, k, softwrap(Prot))) def dict2nucleotides(input, prots, trans): ''' function to generate protein and transcripts from dictionary ''' # write to protein and transcripts with open(prots, 'w') as protout: with open(trans, 'w') as tranout: for k, v in natsorted(list(input.items())): if 'pseudo' in v: if v['pseudo']: continue if v['type'] == 'mRNA' and not v['CDS']: continue if v['type'] == 'mRNA' and not len(v['ids']) == len(v['mRNA']) == len(v['CDS']): continue for i, x in enumerate(v['ids']): try: Transcript = str(v['transcript'][i]) tranout.write('>{:} {:}\n{:}\n'.format( x, k, softwrap(Transcript))) except IndexError: pass if v['type'] == 'mRNA': Prot = v['protein'][i] protout.write('>{:} {:}\n{:}\n'.format( x, k, softwrap(Prot))) def gb2gffnuc(input, gff, prots, trans, dna): ''' function to generate protein, transcripts, and contigs from genbank file ''' genes = {} with open(dna, 'w') as dnaout: with open(input, 'r') as filein: for record in SeqIO.parse(filein, 'genbank'): dnaout.write(">{:}\n{:}\n".format( record.id, softwrap(str(record.seq)))) for f in record.features: gb_feature_add2dict(f, record, genes) # write gff3 output dict2gff3(genes, gff) # write to protein and transcripts dict2nucleotides(genes, prots, trans) return len(genes) def gb2parts(input, tbl, gff, prots, trans, dna): ''' function returns a dictionary of all gene models from a genbank file this function can handle multiple transcripts per locus/gene ''' genes = {} scaff2genes = {} scaffLen = {} with open(dna, 'w') as dnaout: with open(input, 'r') as filein: for record in SeqIO.parse(filein, 'genbank'): dnaout.write(">{:}\n{:}\n".format( record.id, softwrap(str(record.seq)))) Contig = record.id if not Contig in scaffLen: scaffLen[Contig] = len(record.seq) for f in record.features: if f.type == 'gene': locusTag, ID, Parent = getID(f, f.type) if not Contig in scaff2genes: scaff2genes[Contig] = [locusTag] else: scaff2genes[Contig].append(locusTag) gb_feature_add2dict(f, record, genes) # write tbl output dicts2tbl(genes, scaff2genes, scaffLen, 'CFMR', '12345', [], tbl) # write gff3 output dict2gff3_old(genes, gff) # write to protein and transcripts dict2nucleotides(genes, prots, trans) return len(genes) def gb_feature_add2dict(f, record, genes): ''' general function to take a genbank feature from flat file and add to funannotate standardized dictionary locustag: { 'contig': contigName 'type': mRNA/rRNA/tRNA/ncRNA 'location': (start, end) #integer tuple 'strand': +/- 'ids': [transcript/protein IDs] #list 'mRNA':[[(ex1,ex1),(ex2,ex2)]] #list of lists of tuples (start, end) 'CDS':[[(cds1,cds1),(cds2,cds2)]] #list of lists of tuples (start, end) 'transcript': [seq1, seq2] #list of mRNA trnascripts 'cds_transcript': [seq1, seq2] list of mRNA (no UTRs) 'protein': [protseq1,protseq2] #list of CDS translations 'protein_id': [id,id] #from NCBI 'codon_start': [1,1] #codon start for translations 'note': [[first note, second note], [first, second, etc]] #list of lists 'name': genename 'product': [hypothetical protein, velvet complex] #list of product definitions 'go_terms': [[GO:0000001,GO:0000002]] #list of lists 'db_xref': [[InterPro:IPR0001,PFAM:004384]] #list of lists 'partialStart': True/False 'partialStop': True/False 'source': annotation source 'pseudo': True/False } ''' # get info from features, if there is no locusTag then exit if f.type and f.type in ['gene', 'mRNA', 'CDS', 'tRNA', 'rRNA', 'ncRNA', 'exon', 'misc_RNA']: try: locusTag, ID, Parent = getID(f, f.type) except TypeError: print('ERROR parsing GBK record') print(f) sys.exit(1) if not locusTag: return genes else: return genes # check for mismatching funannotate ID locus tag basename if ID and '-T' in ID: # then this is from funannotate, okay to modify - this is to capture apparent tbl2asn local error # there is a problem, update locusTag with basename of ID if ID.split('-T')[0] != locusTag: locusTag = ID.split('-T')[0] # standard information from every feature strand = f.location.strand if strand == 1: strand = '+' elif strand == -1: strand = '-' start = f.location.nofuzzy_start + 1 end = f.location.nofuzzy_end chr = record.id num_parts = len(f.location.parts) name, Product = (None,)*2 Fivepartial, Threepartial = (False,)*2 DBxref = [] Note = [] GO = [] EC = [] synonyms = [] pseudo = False if 'pseudo' in f.qualifiers: pseudo = True # parse each type somewhat differently if f.type == 'gene': try: name = f.qualifiers['gene'][0] except KeyError: pass if 'gene_synonym' in f.qualifiers: for z in f.qualifiers['gene_synonym']: synonyms.append(z) if not locusTag in genes: genes[locusTag] = {'name': name, 'type': None, 'transcript': [], 'cds_transcript': [], 'protein': [], 'source': 'GenBank', '5UTR': [[]], '3UTR': [[]], 'codon_start': [], 'ids': [], 'CDS': [], 'mRNA': [], 'strand': strand, 'location': (int(start), int(end)), 'contig': chr, 'product': [], 'gene_synonym': synonyms, 'EC_number': [], 'db_xref': [], 'go_terms': [], 'note': [], 'partialStart': [], 'partialStop': [], 'protein_id': [], 'pseudo': pseudo} else: genes[locusTag]['location'] = (int(start), int(end)) genes[locusTag]['strand'] = strand genes[locusTag]['gene_synonym'] = synonyms if not genes[locusTag]['name']: genes[locusTag]['name'] = name elif f.type in ['tRNA', 'rRNA', 'ncRNA', 'misc_RNA']: feature_seq = f.extract(record.seq) try: name = f.qualifiers['gene'][0] except KeyError: pass try: Product = f.qualifiers['product'][0] if Product == 'tRNA-OTHER': Product = 'tRNA-Xxx' except KeyError: Product = None exonTuples = [] if num_parts < 2: # only single exon exonTuples.append((int(start), int(end))) else: # more than 1 exon, so loop through for i in range(0, num_parts): ex_start = f.location.parts[i].nofuzzy_start + 1 ex_end = f.location.parts[i].nofuzzy_end exonTuples.append((int(ex_start), int(ex_end))) # now we want to sort the positions I think... if strand == '+': sortedExons = sorted(exonTuples, key=lambda tup: tup[0]) if str(f.location.start).startswith('<'): Fivepartial = True if str(f.location.end).startswith('>'): Threepartial = True else: sortedExons = sorted( exonTuples, key=lambda tup: tup[0], reverse=True) if str(f.location.start).startswith('<'): Threepartial = True if str(f.location.end).startswith('>'): Fivepartial = True # update positions if f.type == 'misc_RNA': feature = 'ncRNA' else: feature = f.type if not locusTag in genes: genes[locusTag] = {'name': name, 'type': feature, 'transcript': [feature_seq], 'cds_transcript': [], 'protein': [], 'source': 'GenBank', '5UTR': [[]], '3UTR': [[]], 'codon_start': [], 'ids': [locusTag+'-T1'], 'CDS': [], 'mRNA': [sortedExons], 'strand': strand, 'location': (int(start), int(end)), 'contig': chr, 'product': [Product], 'protein_id': [], 'pseudo': pseudo, 'gene_synonym': synonyms, 'EC_number': [EC], 'db_xref': [DBxref], 'go_terms': [GO], 'note': [Note], 'partialStart': [Fivepartial], 'partialStop': [Threepartial]} else: genes[locusTag]['mRNA'].append(sortedExons) genes[locusTag]['type'] = feature genes[locusTag]['transcript'].append(feature_seq) genes[locusTag]['cds_transcript'].append(None) genes[locusTag]['protein'].append(None) genes[locusTag]['ids'].append( locusTag+'-T'+str(len(genes[locusTag]['ids'])+1)) genes[locusTag]['db_xref'].append(DBxref) genes[locusTag]['note'].append(Note) genes[locusTag]['go_terms'].append(GO) genes[locusTag]['EC_number'].append(EC) genes[locusTag]['product'].append(Product) genes[locusTag]['partialStart'].append(Fivepartial) genes[locusTag]['partialStop'].append(Threepartial) if not genes[locusTag]['name']: genes[locusTag]['name'] = name elif f.type == 'mRNA': feature_seq = f.extract(record.seq) try: name = f.qualifiers['gene'][0] except KeyError: pass exonTuples = [] if num_parts < 2: # only single exon exonTuples.append((int(start), int(end))) else: # more than 1 exon, so loop through for i in range(0, num_parts): ex_start = f.location.parts[i].nofuzzy_start + 1 ex_end = f.location.parts[i].nofuzzy_end exonTuples.append((int(ex_start), int(ex_end))) # now we want to sort the positions I think... if strand == '+': sortedExons = sorted(exonTuples, key=lambda tup: tup[0]) if str(f.location.start).startswith('<'): Fivepartial = True if str(f.location.end).startswith('>'): Threepartial = True else: sortedExons = sorted( exonTuples, key=lambda tup: tup[0], reverse=True) if str(f.location.start).startswith('<'): Threepartial = True if str(f.location.end).startswith('>'): Fivepartial = True # update positions if not locusTag in genes: genes[locusTag] = {'name': name, 'type': f.type, 'transcript': [feature_seq], 'cds_transcript': [], 'protein': [], 'source': 'GenBank', '5UTR': [[]], '3UTR': [[]], 'codon_start': [], 'ids': [], 'CDS': [], 'mRNA': [sortedExons], 'strand': strand, 'location': (int(start), int(end)), 'contig': chr, 'product': [], 'protein_id': [], 'pseudo': pseudo, 'gene_synonym': synonyms, 'EC_number': [], 'db_xref': [], 'go_terms': [], 'note': [], 'partialStart': [Fivepartial], 'partialStop': [Threepartial]} else: genes[locusTag]['mRNA'].append(sortedExons) genes[locusTag]['type'] = f.type genes[locusTag]['transcript'].append(feature_seq) genes[locusTag]['partialStart'].append(Fivepartial) genes[locusTag]['partialStop'].append(Threepartial) if not genes[locusTag]['name']: genes[locusTag]['name'] = name elif f.type == 'exon': # assuming need to overwrite mRNA feature then? if len(genes[locusTag]['mRNA']) == 0: genes[locusTag]['mRNA'] = [] genes[locusTag]['transcript'] = [] feature_seq = f.extract(record.seq) try: name = f.qualifiers['gene'][0] except KeyError: pass exonTuples = [] if num_parts < 2: # only single exon exonTuples.append((int(start), int(end))) else: # more than 1 exon, so loop through for i in range(0, num_parts): ex_start = f.location.parts[i].nofuzzy_start + 1 ex_end = f.location.parts[i].nofuzzy_end exonTuples.append((int(ex_start), int(ex_end))) # now we want to sort the positions I think... if strand == '+': sortedExons = sorted(exonTuples, key=lambda tup: tup[0]) if str(f.location.start).startswith('<'): Fivepartial = True if str(f.location.end).startswith('>'): Threepartial = True else: sortedExons = sorted( exonTuples, key=lambda tup: tup[0], reverse=True) if str(f.location.start).startswith('<'): Threepartial = True if str(f.location.end).startswith('>'): Fivepartial = True # update positions if not locusTag in genes: genes[locusTag] = {'name': name, 'type': f.type, 'transcript': [feature_seq], 'cds_transcript': [], 'protein': [], 'source': 'GenBank', '5UTR': [[]], '3UTR': [[]], 'codon_start': [], 'ids': [], 'CDS': [], 'mRNA': [sortedExons], 'strand': strand, 'location': (int(start), int(end)), 'contig': chr, 'product': [], 'protein_id': [], 'db_xref': [], 'go_terms': [], 'note': [], 'gene_synonym': synonyms, 'EC_number': [], 'partialStart': [Fivepartial], 'partialStop': [Threepartial], 'pseudo': pseudo} else: genes[locusTag]['mRNA'].append(sortedExons) genes[locusTag]['transcript'].append(feature_seq) genes[locusTag]['partialStart'].append(Fivepartial) genes[locusTag]['partialStop'].append(Threepartial) elif f.type == 'CDS' and 'codon_start' in f.qualifiers: feature_seq = f.extract(record.seq) if not ID: try: log.info("putative transcript from %s has no ID\n(%s %s %s)" % ( locusTag, locusTag, ID, Parent)) except NameError: print(("putative transcript from %s has no ID\n(%s %s %s)" % (locusTag, locusTag, ID, Parent))) return genes try: protSeq = f.qualifiers['translation'][0] except KeyError: try: log.debug("%s has no translation" % ID) except NameError: print(("%s has no translation" % ID)) protSeq = '' cdsTuples = [] phase = int(f.qualifiers['codon_start'][0]) if num_parts < 2: # only single CDS cdsTuples.append((int(start), int(end))) else: for i in range(0, num_parts): ex_start = f.location.parts[i].nofuzzy_start + 1 ex_end = f.location.parts[i].nofuzzy_end cdsTuples.append((int(ex_start), int(ex_end))) if strand == '+': sortedCDS = sorted(cdsTuples, key=lambda tup: tup[0]) else: sortedCDS = sorted(cdsTuples, key=lambda tup: tup[0], reverse=True) # check for annotations try: Product = f.qualifiers['product'][0] except KeyError: Product = 'hypothetical protein' try: name = f.qualifiers['gene'][0] except KeyError: pass # note and dbxref are in a dictionary for key, value in list(f.qualifiers.items()): if key == 'note': notes = value[0].split('; ') for n in notes: if n.startswith('GO'): GO.append(n) else: Note.append(n) elif key == 'db_xref': for ref in value: DBxref.append(ref) elif key == 'EC_number': for x in value: EC.append(x) # update dictionary if not locusTag in genes: genes[locusTag] = {'name': name, 'type': 'mRNA', 'transcript': [], '5UTR': [[]], '3UTR': [[]], 'cds_transcript': [feature_seq], 'protein': [], 'source': 'GenBank', 'codon_start': [phase], 'ids': [locusTag+'-T1'], 'CDS': [sortedCDS], 'mRNA': [], 'strand': strand, 'location': (int(start), int(end)), 'contig': chr, 'product': [Product], 'gene_synonym': synonyms, 'EC_number': [EC], 'protein_id': [ID], 'db_xref': [DBxref], 'go_terms': [GO], 'note': [Note], 'partialStart': [], 'partialStop': [], 'pseudo': pseudo} else: genes[locusTag]['protein_id'].append(ID) genes[locusTag]['ids'].append( locusTag+'-T'+str(len(genes[locusTag]['ids'])+1)) genes[locusTag]['CDS'].append(sortedCDS) genes[locusTag]['5UTR'].append([]) genes[locusTag]['3UTR'].append([]) genes[locusTag]['product'].append(Product) genes[locusTag]['protein'].append(protSeq) genes[locusTag]['cds_transcript'].append(feature_seq) genes[locusTag]['codon_start'].append(phase) genes[locusTag]['db_xref'].append(DBxref) genes[locusTag]['note'].append(Note) genes[locusTag]['go_terms'].append(GO) genes[locusTag]['EC_number'].append(EC) if not genes[locusTag]['type']: genes[locusTag]['type'] = 'mRNA' if not genes[locusTag]['name']: genes[locusTag]['name'] = name return genes def bed2interlapNames(bedfile): # load interlap object from a bed file inter = defaultdict(InterLap) with open(bedfile, 'r') as infile: for line in infile: line = line.strip() chr, start, end, name = line.split('\t')[:4] inter[chr].add((int(start), int(end), name)) return inter def bed2interlap(bedfile): # load interlap object from a bed file inter = defaultdict(InterLap) with open(bedfile, 'r') as infile: for line in infile: line = line.strip() chr, start, end = line.split('\t')[:3] inter[chr].add((int(start), int(end))) return inter def interlapIntersect(coords, contig, interObj): # return interlap coords of an intersection if coords in interObj[contig]: return True else: return False def gff2interlap(input, fasta): ''' function to parse GFF3 file, construct scaffold/gene interlap dictionary and funannotate standard annotation dictionary ''' inter = defaultdict(InterLap) Genes = {} Genes = gff2dict(input, fasta, Genes) for k, v in natsorted(list(Genes.items())): inter[v['contig']].add((v['location'][0], v['location'][1], k)) return inter, Genes def gff2interlapDict(input, fasta, inter, Dict): ''' function to parse GFF3 file, construct scaffold/gene interlap dictionary and funannotate standard annotation dictionary ''' Genes = {} Genes = gff2dict(input, fasta, Genes, gap_filter=True) for k, v in natsorted(list(Genes.items())): inter[v['contig']].add( (v['location'][0], v['location'][1], v['strand'], k)) # merge dictionary and return Dict = merge_dicts(Dict, Genes) return inter, Dict def merge_dicts(x, y): """Given two dicts, merge them into a new dict as a shallow copy.""" z = x.copy() z.update(y) return z def exonerate2hints(file, outfile): # mimic exonerate2hints from GFF3 exonerate file # CDSpart +/- 15 bp to each match # intron as is ''' #gff3 via EVM scaffold_20 exonerate nucleotide_to_protein_match 225035 225823 82.13 + . ID=match.11677.2;Target=VC83_07547 1 96 scaffold_20 exonerate nucleotide_to_protein_match 53957 54342 92.93 + . ID=match.11677.3;Target=VC83_02595 1 129 scaffold_20 exonerate nucleotide_to_protein_match 54397 54904 92.93 + . ID=match.11677.3;Target=VC83_02595 130 299 scaffold_107 exonerate nucleotide_to_protein_match 77634 78119 89.95 - . ID=match.11677.5;Target=VC83_08471 1 163 scaffold_107 exonerate nucleotide_to_protein_match 77501 77546 89.95 - . ID=match.11677.5;Target=VC83_08471 163 178 scaffold_107 exonerate nucleotide_to_protein_match 77385 77422 89.95 - . ID=match.11677.5;Target=VC83_08471 179 191 #corresponding exonerate2hints scaffold_20 xnt2h CDSpart 225050 225808 . + . src=XNT;grp=VC83_07547;pri=4 scaffold_20 xnt2h CDSpart 53972 54327 . + . src=XNT;grp=VC83_02595;pri=4 scaffold_20 xnt2h intron 54343 54396 . + . src=XNT;grp=VC83_02595;pri=4 scaffold_20 xnt2h CDSpart 54412 54889 . + . src=XNT;grp=VC83_02595;pri=4 scaffold_107 xnt2h CDSpart 77649 78104 . - . src=XNT;grp=VC83_08471;pri=4 scaffold_107 xnt2h intron 77547 77633 . - . src=XNT;grp=VC83_08471;pri=4 scaffold_107 xnt2h CDSpart 77516 77531 . - . src=XNT;grp=VC83_08471;pri=4 scaffold_107 xnt2h intron 77423 77500 . - . src=XNT;grp=VC83_08471;pri=4 scaffold_107 xnt2h CDSpart 77400 77407 . - . src=XNT;grp=VC83_08471;pri=4 ''' Genes = {} with open(file, 'r') as input: for line in input: if line.startswith('\n') or line.startswith('#'): continue line = line.rstrip() contig, source, feature, start, end, score, strand, phase, attributes = line.split( '\t') start = int(start) end = int(end) ID, Target = (None,)*2 info = attributes.split(';') for x in info: if x.startswith('ID='): ID = x.replace('ID=', '') elif x.startswith('Target='): Target = x.replace('Target=', '').split(' ')[0] if not ID in Genes: Genes[ID] = {'id': ID, 'target': Target, 'loc': [ (start, end)], 'strand': strand, 'contig': contig} else: Genes[ID]['loc'].append((start, end)) # now lets sort through and write hints file with open(outfile, 'w') as output: for k, v in natsorted(list(Genes.items())): if v['strand'] == '+': sortedCDS = sorted(v['loc'], key=lambda tup: tup[0]) for i, x in enumerate(sortedCDS): # loop through tuples output.write('{:}\txnt2h\tCDSpart\t{:}\t{:}\t.\t{:}\t.\tsrc=XNT;grp={:};pri=4\n'.format( v['contig'], x[0]-15, x[1]+15, v['strand'], v['target'])) if len(sortedCDS) > 1: try: output.write('{:}\txnt2h\tintron\t{:}\t{:}\t.\t{:}\t.\tsrc=XNT;grp={:};pri=4\n'.format( v['contig'], x[1]+1, sortedCDS[i+1][0]-1, v['strand'], v['target'])) except IndexError: pass else: sortedCDS = sorted( v['loc'], key=lambda tup: tup[0], reverse=True) for i, x in enumerate(sortedCDS): # loop through tuples output.write('{:}\txnt2h\tCDSpart\t{:}\t{:}\t.\t{:}\t.\tsrc=XNT;grp={:};pri=4\n'.format( v['contig'], x[0]+15, x[1]-15, v['strand'], v['target'])) if len(sortedCDS) > 1: try: output.write('{:}\txnt2h\tintron\t{:}\t{:}\t.\t{:}\t.\tsrc=XNT;grp={:};pri=4\n'.format( v['contig'], sortedCDS[i+1][1]+1, x[0]-1, v['strand'], v['target'])) except IndexError: pass def alignments2dict(input, Genes): ''' function to take a transcript_alignments file and create dictionary structure for each alignment ''' with open(input, 'r') as infile: for line in infile: if line.startswith('\n') or line.startswith('#'): continue line = line.rstrip() contig, source, feature, start, end, score, strand, phase, attributes = line.split( '\t') start = int(start) end = int(end) ID, Target, Extra = (None,)*3 for x in attributes.split(';'): if x.startswith('ID='): ID = x.replace('ID=', '') elif x.startswith('Target='): Target, Extra = x.split(' ', 1) Target = Target.replace('Target=', '') if not ID: continue if not ID in Genes: Genes[ID] = {'mRNA': [(start, end)], 'strand': strand, 'pident': [score], 'location': (start, end), 'contig': contig, 'extra': [Extra]} else: if contig != Genes[ID]['contig']: log.debug('ERROR: {:} mapped to multiple contigs: {:} and {:}'.format(ID, contig, Genes[ID]['contig'])) continue elif strand != Genes[ID]['strand']: log.debug('ERROR: {:} mapped has different strands'.format(ID)) continue else: Genes[ID]['mRNA'].append((start, end)) Genes[ID]['pident'].append(score) Genes[ID]['extra'].append(Extra) # double check mRNA features are contained in gene coordinates if start < Genes[ID]['location'][0]: Genes[ID]['location'] = ( start, Genes[ID]['location'][1]) if end > Genes[ID]['location'][1]: Genes[ID]['location'] = ( Genes[ID]['location'][0], end) return Genes def introns_from_exons(input): introns = [] if len(input) > 1: for x, y in enumerate(input): try: introns.append((y[1]+1, input[x+1][0]-1)) except IndexError: pass return introns def dict2hints(input, hints): from collections import OrderedDict ''' function to take simple alignments dictionary and ouput augustus hints file ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = natsorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) with open(hints, 'w') as hintsout: for k, v in list(sortedGenes.items()): sortedExons = sorted(v['mRNA'], key=lambda tup: tup[0]) introns = introns_from_exons(sortedExons) for i, exon in enumerate(sortedExons): if i == 0 or i == len(sortedExons)-1: hintsout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tgrp={:};pri=4;src=E\n'.format( v['contig'], 'b2h', 'ep', exon[0], exon[1], 0, v['strand'], '.', k)) else: hintsout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tgrp={:};pri=4;src=E\n'.format( v['contig'], 'b2h', 'exon', exon[0], exon[1], 0, v['strand'], '.', k)) if len(introns) > 0: for z in introns: hintsout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tgrp={:};pri=4;src=E\n'.format( v['contig'], 'b2h', 'intron', z[0], z[1], 1, v['strand'], '.', k)) def dict2transcriptgff3(input, output): from collections import OrderedDict ''' function to take simple alignments dictionary and ouput GFF3 transcripts file ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = natsorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) with open(output, 'w') as outfile: outfile.write('##gff-version 3\n') for k, v in list(sortedGenes.items()): for i, exon in enumerate(v['mRNA']): outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:};Target={:} {:}\n'.format( v['contig'], 'genome', 'cDNA_match', exon[0], exon[1], v['pident'][i], v['strand'], '.', k, k, v['extra'][i])) def harmonize_transcripts(genome, alignments, gfffile, hintsfile, evidence=None, tmpdir='.', cpus=1, maxintron=3000): from Bio.SeqIO.FastaIO import SimpleFastaParser ''' function to check if evidence transcripts are missing from existing alignments and/or write the augustus hints file ''' Genes = {} Genes = alignments2dict(alignments, Genes) log.info('Parsed {:,} transcript alignments from: {:}'.format(len(Genes), alignments)) if evidence: # if nothing here then just move on uniqueTranscripts = os.path.join(tmpdir, 'transcript_evidence_unique.fasta') seqcount = 0 with open(uniqueTranscripts, 'w') as fasta_outfile: for file in evidence: with open(file, 'r') as fasta_infile: for title, seq in SimpleFastaParser(fasta_infile): if ' ' in title: id = title.split(' ')[0] else: id = title if not id in Genes: fasta_outfile.write('>{:}\n{:}\n'.format(title, softwrap(seq))) seqcount += 1 if seqcount > 0: log.info('Aligning {:,} unique transcripts [not found in exising alignments] with minimap2'.format(seqcount)) minimapBAM = os.path.join(tmpdir, 'transcript_evidence_unique.bam') minimapGFF = os.path.join(tmpdir, 'transcript_evidence_unique.gff3') minimap2Align(uniqueTranscripts, genome, cpus, maxintron, minimapBAM) mappedReads = bam2gff3(str(minimapBAM), minimapGFF) if mappedReads > 0: log.info('Mapped {:,} of these transcripts to the genome, adding to alignments'.format(mappedReads)) Genes = alignments2dict(minimapGFF, Genes) else: log.info('Mapped 0 of these transcripts to the genome') log.info('Creating transcript EVM alignments and Augustus transcripts hintsfile') dict2transcriptgff3(Genes, gfffile) dict2hints(Genes, hintsfile) def gff2dict(file, fasta, Genes, debug=False, gap_filter=False): ''' general function to take a GFF3 file and return a funannotate standardized dictionary locustag: { 'contig': contigName 'type': mRNA/rRNA/tRNA/ncRNA 'location': (start, end) #integer tuple 'strand': +/- 'ids': [transcript/protein IDs] #list 'mRNA':[[(ex1,ex1),(ex2,ex2)]] #list of lists of tuples (start, end) 'CDS':[[(cds1,cds1),(cds2,cds2)]] #list of lists of tuples (start, end) 'transcript': [seq1, seq2] #list of mRNA trnascripts 'cds_transcript': [seq1, seq2] #list of mRNA trnascripts (no UTRs) 'protein': [protseq1,protseq2] #list of CDS translations 'codon_start': [1,1] #codon start for translations 'note': [[first note, second note], [first, second, etc]] #list of lists 'name': genename 'product': [hypothetical protein, velvet complex] #list of product definitions 'gene_synonym': Aliases 'EC_number': [[ec number]] 'go_terms': [[GO:0000001,GO:0000002]] #list of lists 'db_xref': [[InterPro:IPR0001,PFAM:004384]] #list of lists 'partialStart': True/False 'partialStop': True/False 'source': annotation source 'phase': [[0,2,1]] list of lists '5UTR': [[(),()]] #list of lists of tuples (start, end) '3UTR': [[(),()]] #list of lists of tuples (start, end) } ''' idParent = {} SeqRecords = SeqIO.to_dict(SeqIO.parse(fasta, 'fasta')) with open(file, 'r') as input: for line in input: if line.startswith('\n') or line.startswith('#'): continue line = line.rstrip() contig, source, feature, start, end, score, strand, phase, attributes = line.split('\t') if feature not in ['gene', 'mRNA', 'exon', 'CDS', 'tRNA', 'ncRNA', 'rRNA', 'pseudogene', 'five_prime_UTR', 'five_prime_utr', 'three_prime_UTR', 'three_prime_utr', 'transcript']: continue if not contig in SeqRecords: continue start = int(start) end = int(end) ID, Parent, Name, Product, GeneFeature, gbkey = (None,)*6 Note, DBxref, GO, synonyms, ECnum = ([],)*5 info = attributes.split(';') for x in info: if x.startswith('ID='): ID = x.replace('ID=', '') elif x.startswith('Parent='): Parent = x.replace('Parent=', '') elif x.startswith('Name='): Name = x.replace('Name=', '') elif x.startswith('Note=') or x.startswith('note='): Note = x.split('ote=')[-1] if ',' in Note: Note = Note.split(',') else: Note = [Note] elif x.startswith('Dbxref='): DBxref = x.replace('Dbxref=', '') if ',' in DBxref: DBxref = DBxref.split(',') else: DBxref = [DBxref] elif x.startswith('Ontology_term='): GO = x.replace('Ontology_term=', '') if ',' in GO: GO = GO.split(',') else: GO = [GO] elif x.startswith('EC_number='): ECnum = x.split('=',1)[-1] if ',' in ECnum: ECnum = ECnum.split(',') else: ECnum = [ECnum] elif x.startswith('Product=') or x.startswith('product='): Product = unquote(x.split('roduct=')[-1]) elif x.startswith('description='): Product = unquote(x.replace('description=', '')) elif x.startswith('Alias='): synonyms = x.replace('Alias=', '') synonyms = synonyms.split(',') elif x.startswith('gbkey='): # genbank uses gbkey = x.split('=', 1)[-1] if feature == 'gene' or feature == 'pseudogene': if not ID in Genes: if feature == 'pseudogene': pseudoFlag = True else: pseudoFlag = False Genes[ID] = {'name': Name, 'type': None, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [], '3UTR': [], 'gene_synonym': synonyms, 'codon_start': [], 'ids': [], 'CDS': [], 'mRNA': [], 'strand': strand, 'EC_number': [], 'location': (start, end), 'contig': contig, 'product': [], 'source': source, 'phase': [], 'db_xref': [], 'go_terms': [], 'note': [], 'partialStart': [], 'partialStop': [], 'pseudo': pseudoFlag} else: if start < Genes[ID]['location'][0]: Genes[ID]['location'] = ( start, Genes[ID]['location'][1]) if end > Genes[ID]['location'][1]: Genes[ID]['location'] = (Genes[ID]['location'][0], end) else: if not ID or not Parent: sys.stderr.write("Error, can't find ID or Parent. Malformed GFF file.\n") sys.stderr.write(line) sys.exit(1) if feature in ['mRNA', 'transcript', 'tRNA', 'ncRNA', 'rRNA']: if gbkey and gbkey == 'misc_RNA': feature = 'ncRNA' if not Product: if feature in ['mRNA', 'transcript']: Product = 'hypothetical protein' if not Parent in Genes: Genes[Parent] = {'name': Name, 'type': feature, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[]], '3UTR': [[]], 'codon_start': [[]], 'ids': [ID], 'CDS': [[]], 'mRNA': [[]], 'strand': strand, 'location': (start, end), 'contig': contig, 'product': [Product], 'source': source, 'phase': [[]], 'gene_synonym': synonyms, 'db_xref': [DBxref], 'go_terms': [GO], 'EC_number': [ECnum], 'note': [Note], 'partialStart': [False], 'partialStop': [False], 'pseudo': False} else: Genes[Parent]['ids'].append(ID) Genes[Parent]['mRNA'].append([]) Genes[Parent]['CDS'].append([]) Genes[Parent]['phase'].append([]) Genes[Parent]['5UTR'].append([]) Genes[Parent]['3UTR'].append([]) Genes[Parent]['codon_start'].append([]) Genes[Parent]['partialStart'].append(False) Genes[Parent]['partialStop'].append(False) Genes[Parent]['product'].append(Product) Genes[Parent]['db_xref'].append(DBxref) Genes[Parent]['EC_number'].append(ECnum) Genes[Parent]['gene_synonym'] += synonyms Genes[Parent]['go_terms'].append(GO) Genes[Parent]['note'].append(Note) Genes[Parent]['type'] = feature # double check mRNA features are contained in gene coordinates if start < Genes[Parent]['location'][0]: # print('{:} update start: {:} to {:}'.format(Parent, Genes[Parent]['location'][0],start)) Genes[Parent]['location'] = ( start, Genes[Parent]['location'][1]) if end > Genes[Parent]['location'][1]: # print('{:} update stop: {:} to {:}'.format(Parent, Genes[Parent]['location'][1],end)) Genes[Parent]['location'] = ( Genes[Parent]['location'][0], end) if not ID in idParent: idParent[ID] = Parent elif feature == 'exon': if ',' in Parent: parents = Parent.split(',') else: parents = [Parent] for p in parents: if p in idParent: GeneFeature = idParent.get(p) if GeneFeature: if not GeneFeature in Genes: Genes[GeneFeature] = {'name': Name, 'type': None, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[]], '3UTR': [[]], 'codon_start': [[]], 'ids': [p], 'CDS': [], 'mRNA': [[(start, end)]], 'strand': strand, 'location': None, 'contig': contig, 'product': [], 'source': source, 'phase': [[]], 'db_xref': [], 'go_terms': [], 'EC_number': [], 'note': [], 'partialStart': [False], 'partialStop': [False], 'pseudo': False, 'gene_synonym': synonyms} else: # determine which transcript this is get index from id i = Genes[GeneFeature]['ids'].index(p) Genes[GeneFeature]['mRNA'][i].append( (start, end)) elif feature == 'CDS': if ',' in Parent: parents = Parent.split(',') else: parents = [Parent] for p in parents: if p in idParent: GeneFeature = idParent.get(p) if GeneFeature: if not GeneFeature in Genes: Genes[GeneFeature] = {'name': Name, 'type': None, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[]], '3UTR': [[]], 'codon_start': [[]], 'ids': [p], 'CDS': [[(start, end)]], 'mRNA': [], 'strand': strand, 'location': None, 'contig': contig, 'product': [], 'source': source, 'phase': [[]], 'db_xref': [], 'go_terms': [], 'EC_number': [], 'note': [], 'partialStart': [False], 'partialStop': [False], 'pseudo': False, 'gene_synonym': synonyms} else: # determine which transcript this is get index from id i = Genes[GeneFeature]['ids'].index(p) Genes[GeneFeature]['CDS'][i].append( (start, end)) # add phase try: Genes[GeneFeature]['phase'][i].append(int(phase)) except ValueError: Genes[GeneFeature]['phase'][i].append('?') elif feature == 'five_prime_UTR' or feature == 'five_prime_utr': if ',' in Parent: parents = Parent.split(',') else: parents = [Parent] for p in parents: if p in idParent: GeneFeature = idParent.get(p) if GeneFeature: if not GeneFeature in Genes: Genes[GeneFeature] = {'name': Name, 'type': None, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[(start, end)]], '3UTR': [[]], 'codon_start': [[]], 'ids': [p], 'CDS': [], 'mRNA': [[(start, end)]], 'strand': strand, 'location': None, 'contig': contig, 'product': [], 'source': source, 'phase': [[]], 'db_xref': [], 'go_terms': [], 'EC_number': [], 'note': [], 'partialStart': [False], 'partialStop': [False], 'pseudo': False, 'gene_synonym': synonyms,} else: # determine which transcript this is get index from id i = Genes[GeneFeature]['ids'].index(p) Genes[GeneFeature]['5UTR'][i].append( (start, end)) elif feature == 'three_prime_UTR' or feature == 'three_prime_utr': if ',' in Parent: parents = Parent.split(',') else: parents = [Parent] for p in parents: if p in idParent: GeneFeature = idParent.get(p) if GeneFeature: if not GeneFeature in Genes: Genes[GeneFeature] = {'name': Name, 'type': None, 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[]], '3UTR': [[(start, end)]], 'codon_start': [[]], 'ids': [p], 'CDS': [], 'mRNA': [[(start, end)]], 'strand': strand, 'location': None, 'contig': contig, 'product': [], 'source': source, 'phase': [[]], 'db_xref': [], 'go_terms': [], 'EC_number': [], 'note': [], 'partialStart': [False], 'partialStop': [False], 'pseudo': False, 'gene_synonym': synonyms} else: # determine which transcript this is get index from id i = Genes[GeneFeature]['ids'].index(p) Genes[GeneFeature]['3UTR'][i].append( (start, end)) # loop through and make sure CDS and exons are properly sorted and codon_start is correct, translate to protein space for k, v in list(Genes.items()): for i in range(0, len(v['ids'])): if v['type'] in ['mRNA', 'tRNA', 'ncRNA', 'rRNA']: if v['strand'] == '+': sortedExons = sorted(v['mRNA'][i], key=lambda tup: tup[0]) else: sortedExons = sorted( v['mRNA'][i], key=lambda tup: tup[0], reverse=True) Genes[k]['mRNA'][i] = sortedExons mrnaSeq = getSeqRegions(SeqRecords, v['contig'], sortedExons) if gap_filter: mrnaSeq, Genes[k]['mRNA'][i] = start_end_gap(mrnaSeq, Genes[k]['mRNA'][i]) v['transcript'].append(mrnaSeq) if v['type'] == 'mRNA': if not v['CDS'][i]: sys.stderr.write('ERROR: ID={:} has no CDS features, removing gene model\n'.format(k)) del Genes[k] continue if v['strand'] == '+': sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0]) else: sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0], reverse=True) #get the codon_start by getting first CDS phase + 1 indexStart = [x for x, y in enumerate(v['CDS'][i]) if y[0] == sortedCDS[0][0]] cdsSeq = getSeqRegions(SeqRecords, v['contig'], sortedCDS) if gap_filter: cdsSeq, v['CDS'][i] = start_end_gap(cdsSeq, v['CDS'][i]) protSeq, codon_start = (None,)*2 try: currentphase = v['phase'][i] except IndexError: pass if '?' in v['phase'][i]: #dont know the phase -- malformed GFF3, try to find best CDS translateResults = [] for y in [1,2,3]: protSeq = translate(cdsSeq, v['strand'], y-1) if not protSeq: log.debug('Translation of {:} using {:} phase failed'.format(v['ids'][i], y-1)) continue numStops = protSeq.count('*') if protSeq[-1] == '*': numStops -= 1 translateResults.append((y, numStops, protSeq)) sortedResults = sorted(translateResults, key=lambda tup: tup[1]) codon_start = sortedResults[0][0] protSeq = sortedResults[0][2] else: try: codon_start = int(v['phase'][i][indexStart[0]]) + 1 except IndexError: pass #translate and get protein sequence protSeq = translate(cdsSeq, v['strand'], codon_start-1) Genes[k]['codon_start'][i] = codon_start if codon_start > 1: if v['strand'] == '+': cdsSeq = cdsSeq[codon_start - 1:] elif v['strand'] == '-': endTrunc = len(cdsSeq) - codon_start -1 cdsSeq = cdsSeq[0:endTrunc] else: print("ERROR nonsensical strand (%s) for gene %s"%([v['strand'],k])) Genes[k]['cds_transcript'].append(cdsSeq) Genes[k]['CDS'][i] = sortedCDS v['protein'].append(protSeq) if protSeq: if protSeq.endswith('*'): v['partialStop'][i] = False else: v['partialStop'][i] = True if v['codon_start'][i] == 1 and v['protein'][i].startswith('M'): v['partialStart'][i] = False else: v['partialStart'][i] = True # since its possible updated the mRNA/CDS fields, double check that gene coordinates are ok if k not in Genes: continue all_mRNA_coords = [item for sublist in v['mRNA'] for item in sublist] try: Genes[k]['location'] = (min(all_mRNA_coords, key=lambda item: item[0])[0], max(all_mRNA_coords, key=lambda item: item[1])[1]) except ValueError: continue # clean up any repeated synonym if len(v['gene_synonym']) > 1: uniqueSynonyms = set(v['gene_synonym']) Genes[k]['gene_synonym'] = list(uniqueSynonyms) return Genes def start_end_gap(seq, coords): if seq.startswith('N'): oldLen = len(seq) seq = seq.lstrip('N') numLeftStripped = oldLen - len(seq) coords[0] = (coords[0][0]+numLeftStripped, coords[0][1]) if seq.endswith('N'): oldLen = len(seq) seq = seq.rstrip('N') numRightStripped = oldLen - len(seq) coords[-1] = (coords[-1][0], coords[-1][1]-numRightStripped) return seq, coords def simplifyGO(inputList): simple = [] for x in inputList: if x.startswith('GO:'): simple.append(x.strip()) elif ' ' in x: simple.append(x.split(' ')[1]) return simple def dict2gff3(input, output, debug=False): from collections import OrderedDict ''' function to convert funannotate gene dictionary to gff3 output ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = natsorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) # then loop through and write GFF3 format with open(output, 'w') as gffout: gffout.write("##gff-version 3\n") for k, v in list(sortedGenes.items()): if 'pseudo' in v: if v['pseudo']: continue if v['type'] == 'mRNA' and not v['CDS']: continue if v['type'] == 'mRNA' and not len(v['ids']) == len(v['mRNA']) == len(v['CDS']): continue if v['type'] == 'mRNA' and len(v['CDS']) == 0: continue if v['type'] is None: continue if v['name']: if 'gene_synonym' in v and len(v['gene_synonym']) > 0: gffout.write( "{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};Name={:};Alias={:};\n".format( v['contig'], v['source'],v['location'][0], v['location'][1], v['strand'], k, v['name'], ','.join(v['gene_synonym']))) else: gffout.write( "{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};Name={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k, v['name'])) else: if 'gene_synonym' in v and len(v['gene_synonym']) > 0: gffout.write( "{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};Alias={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k, ','.join(v['gene_synonym']))) else: gffout.write( "{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k)) for i in range(0, len(v['ids'])): # make sure coordinates are sorted if v['strand'] == '+': sortedExons = sorted(v['mRNA'][i], key=lambda tup: tup[0]) sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0]) if '5UTR' in v and v['5UTR'][i]: sortedFive = sorted( v['5UTR'][i], key=lambda tup: tup[0]) if '3UTR' in v and v['3UTR'][i]: sortedThree = sorted( v['3UTR'][i], key=lambda tup: tup[0]) else: sortedExons = sorted( v['mRNA'][i], key=lambda tup: tup[0], reverse=True) sortedCDS = sorted( v['CDS'][i], key=lambda tup: tup[0], reverse=True) if '5UTR' in v and v['5UTR'][i]: sortedFive = sorted( v['5UTR'][i], key=lambda tup: tup[0], reverse=True) if '3UTR' in v and v['3UTR'][i]: sortedThree = sorted( v['3UTR'][i], key=lambda tup: tup[0], reverse=True) # build extra annotations for each transcript if applicable extraAnnotations = '' if 'gene_synonym' in v and len(v['gene_synonym']) > 0: extraAnnotations = extraAnnotations + \ 'Alias={:};'.format(','.join(v['gene_synonym'])) if len(v['go_terms'][i]) > 0: go_annotations = simplifyGO(v['go_terms'][i]) extraAnnotations = extraAnnotations + \ 'Ontology_term={:};'.format(','.join(go_annotations)) if len(v['db_xref'][i]) > 0: extraAnnotations = extraAnnotations + \ 'Dbxref={:};'.format(','.join(v['db_xref'][i])) if 'EC_number' in v and len(v['EC_number'][i]) > 0: extraAnnotations = extraAnnotations + \ 'EC_number={:};'.format(','.join(v['EC_number'][i])) if len(v['note'][i]) > 0: CleanedNote = [] # need to make sure no commas or semi-colons in these data else will cause problems in parsing GFF3 output downstream for x in v['note'][i]: if ';' in x: x = x.replace(';', '.') if ':' in x: base, values = x.split(':', 1) if not ',' in values: CleanedNote.append(base+':'+values) else: for y in values.split(','): CleanedNote.append(base+':'+y) else: CleanedNote.append(x.replace(',', '')) extraAnnotations = extraAnnotations + \ 'note={:};'.format(','.join(CleanedNote)) # now write mRNA feature gffout.write( "{:}\t{:}\t{:}\t{:}\t{:}\t.\t{:}\t.\tID={:};Parent={:};product={:};{:}\n".format( v['contig'], v['source'], v['type'], v['location'][0], v['location'][1], v['strand'], v['ids'][i], k, v['product'][i], extraAnnotations)) if v['type'] in ['mRNA', 'tRNA', 'ncRNA']: if '5UTR' in v and v['5UTR'][i]: # if 5'UTR then write those first num_5utrs = len(v['5UTR'][i]) if num_5utrs > 0: for z in range(0, num_5utrs): u_num = z + 1 gffout.write("{:}\t{:}\tfive_prime_UTR\t{:}\t{:}\t.\t{:}\t.\tID={:}.utr5p{:};Parent={:};\n".format( v['contig'], v['source'], sortedFive[z][0], sortedFive[z][1], v['strand'], v['ids'][i], u_num, v['ids'][i])) # write the exons num_exons = len(v['mRNA'][i]) for x in range(0, num_exons): ex_num = x + 1 gffout.write("{:}\t{:}\texon\t{:}\t{:}\t.\t{:}\t.\tID={:}.exon{:};Parent={:};\n".format( v['contig'], v['source'], sortedExons[x][0], sortedExons[x][1], v['strand'], v['ids'][i], ex_num, v['ids'][i])) # if 3'UTR then write if '3UTR' in v and v['3UTR'][i]: num_3utrs = len(v['3UTR'][i]) if num_3utrs > 0: for z in range(0, num_3utrs): u_num = z + 1 gffout.write("{:}\t{:}\tthree_prime_UTR\t{:}\t{:}\t.\t{:}\t.\tID={:}.utr3p{:};Parent={:};\n".format( v['contig'], v['source'], sortedThree[z][0], sortedThree[z][1], v['strand'], v['ids'][i], u_num, v['ids'][i])) if v['type'] == 'mRNA': num_cds = len(v['CDS'][i]) # GFF3 phase is 1 less than flat file current_phase = v['codon_start'][i] - 1 for y in range(0, num_cds): gffout.write("{:}\t{:}\tCDS\t{:}\t{:}\t.\t{:}\t{:}\tID={:}.cds;Parent={:};\n".format( v['contig'], v['source'], sortedCDS[y][0], sortedCDS[y][1], v['strand'], current_phase, v['ids'][i], v['ids'][i])) current_phase = ( current_phase - (int(sortedCDS[y][1]) - int(sortedCDS[y][0]) + 1)) % 3 if current_phase == 3: current_phase = 0 def dict2gff3_old(input, output): from collections import OrderedDict ''' function to convert funannotate gene dictionary to gff3 output ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = sorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) # then loop through and write GFF3 format with open(output, 'w') as gffout: gffout.write("##gff-version 3\n") for k, v in list(sortedGenes.items()): if 'pseudo' in v: if v['pseudo']: continue if v['type'] == 'mRNA' and not v['CDS']: continue if v['type'] == 'mRNA' and not len(v['ids']) == len(v['mRNA']) == len(v['CDS']): continue if v['type'] == 'mRNA' and len(v['CDS']) == 0: continue if v['type'] is None: continue if v['name']: gffout.write("{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};Name={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k, v['name'])) else: gffout.write("{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k)) for i in range(0, len(v['ids'])): # build extra annotations for each transcript if applicable extraAnnotations = '' if len(v['go_terms'][i]) > 0: extraAnnotations = extraAnnotations + \ 'Ontology_term={:};'.format(','.join(v['go_terms'][i])) if len(v['db_xref'][i]) > 0: extraAnnotations = extraAnnotations + \ 'Dbxref={:};'.format(','.join(v['db_xref'][i])) if len(v['note'][i]) > 0: extraAnnotations = extraAnnotations + \ 'note={:};'.format(','.join(v['note'][i])) # now write mRNA feature gffout.write("{:}\t{:}\t{:}\t{:}\t{:}\t.\t{:}\t.\tID={:};Parent={:};product={:};{:}\n".format( v['contig'], v['source'], v['type'], v['location'][0], v['location'][1], v['strand'], v['ids'][i], k, v['product'][i], extraAnnotations)) if v['type'] == 'mRNA' or v['type'] == 'tRNA': if '5UTR' in v: # if 5'UTR then write those first num_5utrs = len(v['5UTR'][i]) if num_5utrs > 0: for z in range(0, num_5utrs): u_num = z + 1 gffout.write("{:}\t{:}\tfive_prime_UTR\t{:}\t{:}\t.\t{:}\t.\tID={:}.utr5p{:};Parent={:};\n".format( v['contig'], v['source'], v['5UTR'][i][z][0], v['5UTR'][i][z][1], v['strand'], v['ids'][i], u_num, v['ids'][i])) # write the exons num_exons = len(v['mRNA'][i]) for x in range(0, num_exons): ex_num = x + 1 gffout.write("{:}\t{:}\texon\t{:}\t{:}\t.\t{:}\t.\tID={:}.exon{:};Parent={:};\n".format( v['contig'], v['source'], v['mRNA'][i][x][0], v['mRNA'][i][x][1], v['strand'], v['ids'][i], ex_num, v['ids'][i])) # if 3'UTR then write if '3UTR' in v: num_3utrs = len(v['3UTR'][i]) if num_3utrs > 0: for z in range(0, num_3utrs): u_num = z + 1 gffout.write("{:}\t{:}\tthree_prime_UTR\t{:}\t{:}\t.\t{:}\t.\tID={:}.utr3p{:};Parent={:};\n".format( v['contig'], v['source'], v['3UTR'][i][z][0], v['3UTR'][i][z][1], v['strand'], v['ids'][i], u_num, v['ids'][i])) if v['type'] == 'mRNA': num_cds = len(v['CDS'][i]) # GFF3 phase is 1 less than flat file current_phase = v['codon_start'][i] - 1 for y in range(0, num_cds): gffout.write("{:}\t{:}\tCDS\t{:}\t{:}\t.\t{:}\t{:}\tID={:}.cds;Parent={:};\n".format( v['contig'], v['source'], v['CDS'][i][y][0], v['CDS'][i][y][1], v['strand'], current_phase, v['ids'][i], v['ids'][i])) current_phase = ( current_phase - (int(v['CDS'][i][y][1]) - int(v['CDS'][i][y][0]) + 1)) % 3 if current_phase == 3: current_phase = 0 def dict2gff3noUTRs(input, output): from collections import OrderedDict ''' function to convert funannotate gene dictionary to gff3 output, no UTRs! ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = sorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) # then loop through and write GFF3 format with open(output, 'w') as gffout: gffout.write("##gff-version 3\n") for k, v in list(sortedGenes.items()): if v['name']: gffout.write("{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};Name={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k, v['name'])) else: gffout.write("{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k)) for i in range(0, len(v['ids'])): # build extra annotations for each transcript if applicable extraAnnotations = '' if len(v['go_terms'][i]) > 0: extraAnnotations = extraAnnotations + \ 'Ontology_term={:};'.format(','.join(v['go_terms'][i])) if len(v['db_xref'][i]) > 0: extraAnnotations = extraAnnotations + \ 'Dbxref={:};'.format(','.join(v['db_xref'][i])) if len(v['note'][i]) > 0: extraAnnotations = extraAnnotations + \ 'note={:};'.format(','.join(v['note'][i])) # now write mRNA feature gffout.write("{:}\t{:}\t{:}\t{:}\t{:}\t.\t{:}\t.\tID={:};Parent={:};product={:};{:}\n".format( v['contig'], v['source'], v['type'], v['location'][0], v['location'][1], v['strand'], v['ids'][i], k, v['product'][i], extraAnnotations)) if v['type'] == 'tRNA': # write the exons and CDS features num_exons = len(v['mRNA'][i]) for x in range(0, num_exons): ex_num = x + 1 gffout.write("{:}\t{:}\texon\t{:}\t{:}\t.\t{:}\t.\tID={:}.exon{:};Parent={:};\n".format( v['contig'], v['source'], v['mRNA'][i][x][0], v['mRNA'][i][x][1], v['strand'], v['ids'][i], ex_num, v['ids'][i])) elif v['type'] == 'mRNA': num_cds = len(v['CDS'][i]) # GFF3 phase is 1 less than flat file current_phase = v['codon_start'][i] - 1 for y in range(0, num_cds): ex_num = y + 1 gffout.write("{:}\t{:}\texon\t{:}\t{:}\t.\t{:}\t.\tID={:}.exon{:};Parent={:};\n".format( v['contig'], v['source'], v['CDS'][i][y][0], v['CDS'][i][y][1], v['strand'], v['ids'][i], ex_num, v['ids'][i])) gffout.write("{:}\t{:}\tCDS\t{:}\t{:}\t.\t{:}\t{:}\tID={:}.cds;Parent={:};\n".format( v['contig'], v['source'], v['CDS'][i][y][0], v['CDS'][i][y][1], v['strand'], current_phase, v['ids'][i], v['ids'][i])) current_phase = ( current_phase - (int(v['CDS'][i][y][1]) - int(v['CDS'][i][y][0]) + 1)) % 3 if current_phase == 3: current_phase = 0 def gtf2dict(input): Genes = {} with open(input, 'r') as inFile: for line in inFile: if line.startswith('\n') or line.startswith('#'): continue line = line.rstrip() # CM002242 StringTie transcript 4198460 4199001 1000 + . gene_id "STRG.18087"; transcript_id "STRG.18087.2"; cov "5.905163"; FPKM "3.279455"; TPM "9.789504"; # CM002242 StringTie exon 4198460 4198609 1000 + . gene_id "STRG.18087"; transcript_id "STRG.18087.2"; exon_number "1"; cov "6.999466"; contig, source, feature, start, end, score, strand, phase, attributes = line.split( '\t') start = int(start) end = int(end) ID, transcriptID, TPM = (None,)*3 info = attributes.split(';') for x in info: x = x.strip() x = x.replace('"', '') if x.startswith('gene_id '): ID = x.replace('gene_id ', '') elif x.startswith('transcript_id '): transcriptID = x.replace('transcript_id ', '') elif x.startswith('TPM '): TPM = x.replace('TPM ', '') if feature == 'transcript': if not ID in Genes: Genes[ID] = {'type': 'mRNA', 'codon_start': [1], 'ids': [transcriptID], 'CDS': [[]], 'mRNA': [[]], 'strand': strand, 'location': (start, end), 'contig': contig, 'source': source, 'tpm': [TPM]} else: if start < Genes[ID]['location'][0]: Genes[ID]['location'] = ( start, Genes[ID]['location'][1]) if end > Genes[ID]['location'][1]: Genes[ID]['location'] = (Genes[ID]['location'][0], end) Genes[ID]['ids'].append(transcriptID) Genes[ID]['mRNA'].append([]) Genes[ID]['CDS'].append([]) Genes[ID]['codon_start'].append(1) Genes[ID]['tpm'].append(TPM) else: if not ID or not transcriptID: print( "Error, can't find geneID or transcriptID. Malformed GTF file.") print(line) sys.exit(1) if feature == 'exon': if not ID in Genes: Genes[ID] = {'type': 'mRNA', 'codon_start': [1], 'ids': [transcriptID], 'CDS': [[(start, end)]], 'mRNA': [[(start, end)]], 'strand': strand, 'location': (start, end), 'contig': contig, 'source': source, 'tpm': []} else: if transcriptID in Genes[ID]['ids']: # then add exon i = Genes[ID]['ids'].index(transcriptID) Genes[ID]['mRNA'][i].append((start, end)) Genes[ID]['CDS'][i].append((start, end)) # loop through dictionary and make sure properly sorted exons for k, v in list(Genes.items()): for i in range(0, len(v['ids'])): if v['strand'] == '+': sortedExons = sorted(v['mRNA'][i], key=lambda tup: tup[0]) sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0]) else: sortedExons = sorted( v['mRNA'][i], key=lambda tup: tup[0], reverse=True) sortedCDS = sorted( v['CDS'][i], key=lambda tup: tup[0], reverse=True) Genes[k]['mRNA'][i] = sortedExons Genes[k]['CDS'][i] = sortedCDS return Genes def Stringtie_dict2gff3(input, output): from collections import OrderedDict ''' function to convert funannotate gene dictionary to gff3 output ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = sorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) # then loop through and write GFF3 format with open(output, 'w') as outfile: outfile.write("##gff-version 3\n") for k, v in list(sortedGenes.items()): outfile.write("{:}\t{:}\tgene\t{:}\t{:}\t.\t{:}\t.\tID={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], k)) for i in range(0, len(v['ids'])): # build extra annotations for each transcript if applicable # now write mRNA feature outfile.write("{:}\t{:}\t{:}\t{:}\t{:}\t.\t{:}\t.\tID={:};Parent={:};TPM={:}\n".format( v['contig'], v['source'], v['type'], v['location'][0], v['location'][1], v['strand'], v['ids'][i], k, v['tpm'][i])) if v['type'] == 'mRNA': if '5UTR' in v: # if 5'UTR then write those first num_5utrs = len(v['5UTR'][i]) if num_5utrs > 0: for z in range(0, num_5utrs): u_num = z + 1 outfile.write("{:}\t{:}\tfive_prime_UTR\t{:}\t{:}\t.\t{:}\t.\tID={:}.utr5p{:};Parent={:};\n".format( v['contig'], v['source'], v['5UTR'][i][z][0], v['5UTR'][i][z][1], v['strand'], v['ids'][i], u_num, v['ids'][i])) # write the exons num_exons = len(v['mRNA'][i]) for x in range(0, num_exons): ex_num = x + 1 outfile.write("{:}\t{:}\texon\t{:}\t{:}\t.\t{:}\t.\tID={:}.exon{:};Parent={:};\n".format( v['contig'], v['source'], v['mRNA'][i][x][0], v['mRNA'][i][x][1], v['strand'], v['ids'][i], ex_num, v['ids'][i])) # if 3'UTR then write if '3UTR' in v: num_3utrs = len(v['3UTR'][i]) if num_3utrs > 0: for z in range(0, num_3utrs): u_num = z + 1 outfile.write("{:}\t{:}\tthree_prime_UTR\t{:}\t{:}\t.\t{:}\t.\tID={:}.utr3p{:};Parent={:};\n".format( v['contig'], v['source'], v['3UTR'][i][z][0], v['3UTR'][i][z][1], v['strand'], v['ids'][i], u_num, v['ids'][i])) if v['type'] == 'mRNA': num_cds = len(v['CDS'][i]) # GFF3 phase is 1 less than flat file current_phase = v['codon_start'][i] - 1 for y in range(0, num_cds): outfile.write("{:}\t{:}\tCDS\t{:}\t{:}\t.\t{:}\t{:}\tID={:}.cds;Parent={:};\n".format( v['contig'], v['source'], v['CDS'][i][y][0], v['CDS'][i][y][1], v['strand'], current_phase, v['ids'][i], v['ids'][i])) current_phase = ( current_phase - (int(v['CDS'][i][y][1]) - int(v['CDS'][i][y][0]) + 1)) % 3 if current_phase == 3: current_phase = 0 def Quarry2GFF3(input, output): with open(output, 'w') as outfile: outfile.write(("##gff-version 3\n")) exonCounts = {} GeneCount = 1 with open(input, 'r') as infile: for line in infile: line = line.strip() contig, source, feature, start, end, score, strand, phase, attributes = line.split( '\t') source = 'CodingQuarry' ID, Parent, Name = (None,)*3 info = attributes.split(';') for x in info: if x.startswith('ID='): ID = x.replace('ID=', '') elif x.startswith('Parent='): Parent = x.replace('Parent=', '') if ID and ' ' in ID: ID = ID.split(' ')[0] if Parent and ' ' in Parent: Parent = Parent.split(' ')[0] if feature == 'gene': geneID = 'gene_'+str(GeneCount) transID = 'transcript_'+str(GeneCount)+'-T1' outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:};Name={:};Alias={:};\n'.format( contig, source, feature, start, end, score, strand, phase, geneID, geneID, ID)) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:};Parent={:};Alias={:};\n'.format( contig, source, 'mRNA', start, end, '.', strand, '.', transID, geneID, ID)) GeneCount += 1 elif feature == 'CDS': if not transID in exonCounts: exonCounts[transID] = 1 else: exonCounts[transID] += 1 num = exonCounts.get(transID) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:}.exon{:};Parent={:};\n'.format( contig, source, 'exon', start, end, '.', strand, '.', transID, num, transID)) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:}.cds;Parent={:};\n'.format( contig, source, feature, start, end, score, strand, phase, transID, transID)) def runStringtie(bamfile, cpus, output): ''' Function to run stringtie from bamfile Note that when given the bamfile, no way to determine strandeness so will run unstranded ''' cmd = ['stringtie', '-p', str(cpus), os.path.realpath(bamfile)] runSubprocess2(cmd, '.', log, os.path.abspath(output)) def runCodingQuarry(genome, stringtie, cpus, output): ''' run CodingQuarry from stringtie GTF input file ''' # first get basename directory as need to create tmp CodingQuarry dir basedir = os.path.dirname(genome) tmpdir = os.path.join(basedir, 'CodingQuarry') if not os.path.isdir(tmpdir): os.makedirs(tmpdir) # convert GTF to GFF3 file stringtieGFF3 = os.path.join(basedir, 'stringtie.gff3') Genes = gtf2dict(stringtie) Stringtie_dict2gff3(Genes, stringtieGFF3) # now setup command and run from tmpdir folder cmd = ['CodingQuarry', '-p', str(cpus), '-f', os.path.realpath(genome), '-t', os.path.realpath(stringtieGFF3)] runSubprocess(cmd, tmpdir, log) # capture results and reformat to proper GFF3 result = os.path.join(tmpdir, 'out', 'PredictedPass.gff3') if not checkannotations(result): log.error('CodingQuarry failed, moving on without result, check logfile') return False else: Quarry2GFF3(result, output) return True def runCodingQuarryTrained(genome, species, tmpdir, cpus, output): # now setup command and run from tmpdir folder log.info( 'CodingQuarry prediction is running using {:} paremeters'.format(species)) cmd = ['CodingQuarry', '-p', str(cpus), '-f', os.path.realpath(genome), '-s', species] log.debug(' '.join(cmd)) myENV = os.environ if 'QUARRY_PATH' in myENV: del myENV['QUARRY_PATH'] FNULL = open(os.devnull, 'w') p1 = subprocess.Popen(cmd, stdout=FNULL, stderr=FNULL, cwd=tmpdir, env=dict(myENV)) p1.communicate() # capture results and reformat to proper GFF3 result = os.path.join(tmpdir, 'out', 'PredictedPass.gff3') if not checkannotations(result): log.error('CodingQuarry failed, moving on without result, check logfile') return False else: Quarry2GFF3(result, output) return True def dict2gtf(input, output): from collections import OrderedDict def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # sort the annotations by contig and start location sGenes = sorted(iter(input.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) with open(output, 'w') as gtfout: for k, v in list(sortedGenes.items()): if v['type'] != 'mRNA': continue if 'pseudo' in v: if v['pseudo']: continue if v['type'] == 'mRNA' and not v['CDS']: continue if v['type'] == 'mRNA' and not len(v['ids']) == len(v['mRNA']) == len(v['CDS']): continue for i in range(0, len(v['ids'])): # create attributes string attributes = 'gene_id "{:}"; transcript_id "{:}";'.format( k, v['ids'][i]) # if v['name']: # attributes = attributes + ' Name "{:}";'.format(v['name']) if len(v['5UTR'][i]) > 0: for utr in v['5UTR'][i]: gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], '5UTR', utr[0], utr[1], 0, v['strand'], 0, attributes)) if not v['partialStart'][i]: if v['strand'] == '+': startCodon = (v['CDS'][i][0][0], v['CDS'][i][0][0]+2) else: startCodon = (v['CDS'][i][0][1]-2, v['CDS'][i][0][1]) gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'start_codon', startCodon[0], startCodon[1], 0, v['strand'], 0, attributes)) for x, cds in enumerate(v['CDS'][i]): if v['partialStop'][i]: # then just write the whole CDS as no reason to move codon back gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'CDS', cds[0], cds[1], 0, v['strand'], v['phase'][i][x], attributes)) else: if v['strand'] == '+': if x == len(v['CDS'][i])-1: # this is last one gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'CDS', cds[0], cds[1]-3, 0, v['strand'], v['phase'][i][x], attributes)) gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'stop_codon', cds[1]-2, cds[1], 0, v['strand'], 0, attributes)) else: gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'CDS', cds[0], cds[1], 0, v['strand'], v['phase'][i][x], attributes)) else: if x == len(v['CDS'][i])-1: # this is last one gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'CDS', cds[0]+3, cds[1], 0, v['strand'], v['phase'][i][x], attributes)) gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'stop_codon', cds[0], cds[0]+2, 0, v['strand'], 0, attributes)) else: gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], 'CDS', cds[0], cds[1], 0, v['strand'], v['phase'][i][x], attributes)) if len(v['3UTR'][i]) > 0: for utr in v['3UTR'][i]: gtfout.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\n'.format( v['contig'], v['source'], '3UTR', utr[0], utr[1], 0, v['strand'], 0, attributes)) gtfout.write('\n') def gff3_to_gtf(input, genome, output): Genes = {} Genes = gff2dict(input, genome, Genes) dict2gtf(Genes, output) def gb2allout(input, GFF, Proteins, Transcripts, DNA): ''' function to split GBK file into parts, need to be able to deal with multiple transcripts and get naming correct assumption is that the mRNA and CDS features from multiple transcripts are in order, i.e. the first mRNA feature you see corresponds to first CDS feature, etc. **hopefully this is an okay assumption** ''' # idea is to populate the dictionary first, then write GFF, proteins, transcripts, can write DNA on first pass genes = {} with open(DNA, 'w') as scaffolds: with open(input, 'r') as gbk: for record in SeqIO.parse(gbk, 'genbank'): scaffolds.write(">{:}\n{:}\n".format( record.id, softwrap(str(record.seq)))) for f in record.features: gb_feature_add2dict(f, record, genes) # write GFF dict2gff3_old(genes, GFF) # write to protein and transcripts dict2nucleotides(genes, Proteins, Transcripts) def minimap2Align(transcripts, genome, cpus, intron, output): ''' function to align transcripts to genome using minimap2 huge speed increase over gmap + blat ''' FNULL = open(os.devnull, 'w') bamthreads = int(round(int(cpus) / 2)) if bamthreads > 4: bamthreads = 4 minimap2_cmd = ['minimap2', '-ax', 'splice', '-t', str(cpus), '--cs', '-u', 'b', '-G', str(intron), genome, transcripts] samtools_cmd = ['samtools', 'sort', '--reference', genome, '-@', str(bamthreads), '-o', output, '-'] log.debug('{} | {}'.format(' '.join(minimap2_cmd), ' '. join(samtools_cmd))) p1 = subprocess.Popen(minimap2_cmd, stdout=subprocess.PIPE, stderr=FNULL) p2 = subprocess.Popen(samtools_cmd, stdout=subprocess.PIPE, stderr=FNULL, stdin=p1.stdout) p1.stdout.close() p2.communicate() def iso_seq_minimap2(transcripts, genome, cpus, intron, output): ''' function to align PB iso-seq data ''' FNULL = open(os.devnull, 'w') bamthreads = int(round(int(cpus) / 2)) if bamthreads > 4: bamthreads = 4 minimap2_cmd = ['minimap2', '-ax', 'splice', '-t', str(cpus), '--cs', '-uf', '-C5', '-G', str(intron), genome, transcripts] samtools_cmd = ['samtools', 'sort', '--reference', genome, '-@', str(bamthreads), '-o', output, '-'] log.debug('{} | {}'.format(' '.join(minimap2_cmd), ' '. join(samtools_cmd))) p1 = subprocess.Popen(minimap2_cmd, stdout=subprocess.PIPE, stderr=FNULL) p2 = subprocess.Popen(samtools_cmd, stdout=subprocess.PIPE, stderr=FNULL, stdin=p1.stdout) p1.stdout.close() p2.communicate() def nanopore_cDNA_minimap2(transcripts, genome, cpus, intron, output): ''' function to nanopore 2d cDNA ''' FNULL = open(os.devnull, 'w') bamthreads = int(round(int(cpus) / 2)) if bamthreads > 4: bamthreads = 4 minimap2_cmd = ['minimap2', '-ax', 'splice', '-t', str(cpus), '--cs', '-G', str(intron), genome, transcripts] samtools_cmd = ['samtools', 'sort', '--reference', genome, '-@', str(bamthreads), '-o', output, '-'] log.debug('{} | {}'.format(' '.join(minimap2_cmd), ' '. join(samtools_cmd))) p1 = subprocess.Popen(minimap2_cmd, stdout=subprocess.PIPE, stderr=FNULL) p2 = subprocess.Popen(samtools_cmd, stdout=subprocess.PIPE, stderr=FNULL, stdin=p1.stdout) p1.stdout.close() p2.communicate() def nanopore_mRNA_minimap2(transcripts, genome, cpus, intron, output): ''' function to nanopore direct mRNA reads ''' FNULL = open(os.devnull, 'w') bamthreads = int(round(int(cpus) / 2)) if bamthreads > 4: bamthreads = 4 minimap2_cmd = ['minimap2', '-ax', 'splice', '-t', str(cpus), '--cs', '-uf', '-k14', '-G', str(intron), genome, transcripts] samtools_cmd = ['samtools', 'sort', '--reference', genome, '-@', str(bamthreads), '-o', output, '-'] log.debug('{} | {}'.format(' '.join(minimap2_cmd), ' '. join(samtools_cmd))) p1 = subprocess.Popen(minimap2_cmd, stdout=subprocess.PIPE, stderr=FNULL) p2 = subprocess.Popen(samtools_cmd, stdout=subprocess.PIPE, stderr=FNULL, stdin=p1.stdout) p1.stdout.close() p2.communicate() def mergeBAMs(*args, **kwargs): cmd = ['samtools', 'merge', '-@', str(kwargs['cpus']), kwargs['output']] cmd = cmd + list(args) runSubprocess(cmd, '.', log) def catFiles(*args, **kwargs): cmd = ['cat'] cmd = cmd + list(args) runSubprocess2(cmd, '.', log, kwargs['output']) def runGMAP(transcripts, genome, cpus, intron, tmpdir, output): # first build genome database build_log = os.path.join(tmpdir, 'gmap-build.log') with open(build_log, 'w') as logfile: subprocess.call(['gmap_build', '-D', tmpdir, '-d', 'genome', '-k', '13', genome], stdout=logfile, stderr=logfile) # now map transcripts map_log = os.path.join(tmpdir, 'gmap-map.log') with open(map_log, 'w') as logfile: with open(output, 'w') as out: subprocess.call(['gmap', '--cross-species', '-f', '3', '-K', str(intron), '-n', '1', '-t', str( cpus), '-B', '5', '-D', tmpdir, '-d', 'genome', transcripts], stdout=out, stderr=logfile) def runBUSCO(input, Database, cpus, tmpdir, output): # run busco in protein mapping mode if (sys.version_info > (3, 0)): BUSCO = os.path.join(parentdir, 'aux_scripts', 'funannotate-BUSCO2.py') else: BUSCO = os.path.join(parentdir, 'aux_scripts', 'funannotate-BUSCO2-py2.py') cmd = [BUSCO, '-i', input, '-m', 'proteins', '-l', Database, '-o', 'busco', '-c', str(cpus), '-f'] runSubprocess(cmd, tmpdir, log) # now parse output and write to annotation file with open(output, 'w') as out: with open(os.path.join(tmpdir, 'run_busco', 'full_table_busco.tsv'), 'r') as busco: for line in busco: if line.startswith('#'): continue col = line.split('\t') # if diploid these should show up, but problematic for drawing trees.... if col[1] == 'Complete' or col[1] == 'Duplicated': out.write("%s\tnote\tBUSCO:%s\n" % (col[2], col[0])) def dupBUSCO2gff(ID, base_folder, locationID): hmmerfolder = os.path.join(base_folder, 'hmmer_output') geneID = '' AugFile = '' GFFfile = os.path.join(base_folder, 'augustus_output', 'gffs', ID+'.gff') if geneID == '': for file in os.listdir(hmmerfolder): if file.startswith(ID): with open(os.path.join(hmmerfolder, file), 'r') as hmmer: for line in hmmer: if not line.startswith('#'): longID = line.split()[0] longID = longID.replace(']', '') partsID = longID.split('[') if locationID == partsID[1]: geneID = partsID[0] AugFile = os.path.join( base_folder, 'augustus_output', 'predicted_genes', file) break # so now should have gene name, get the GFF from augustus with open(GFFfile, 'w') as gffout: with open(AugFile, 'r') as augustus: for pred in readBlocks(augustus, '# start gene'): if pred[0].startswith('# This output'): continue if pred[0].startswith('##gff-version 3'): continue if pred[0].startswith('# Please cite'): continue if geneID in pred[0]: for x in pred: if not x.startswith('#'): gffout.write(x) def getCompleteBuscos(input, ploidy=1): busco_complete = {} with open(input, 'r') as infile: for line in infile: line = line.rstrip() if line.startswith('#'): continue passing = ['Complete'] if ploidy > 1: passing.append('Duplicated') cols = line.split('\t') if cols[1] in passing: busco, status, gene, score, length = cols if gene not in busco_complete: busco_complete[gene] = busco return busco_complete def filterGFF3(keepDict, genome, gff3, output): #load into Dictionary Genes = {} Genes = gff2dict(gff3, genome, Genes) filtered = {} for k,v in Genes.items(): if v['ids'][0] in keepDict: filtered[k] = v dict2gff3(filtered, output) def parseBUSCO2genome(input, ploidy, ContigSizes, output): # input is BUSCO output, ploidy is integer, ContigSizes is dictionary, output is a bedfile, function returns dictionary busco_complete = {} hits = {} with open(output, 'w') as bedfile: with open(input, 'r') as buscoinput: for line in buscoinput: line = line.replace('\n', '') if line.startswith('#'): continue cols = line.split('\t') if cols[1] == 'Complete' or cols[1] == 'Duplicated': contig = cols[2] start = cols[3] end = cols[4] score = cols[5] length = cols[6] ID = contig+':'+start+'-'+end if cols[1] == 'Complete': if not cols[0] in hits: hits[cols[0]] = ( ID, score, contig, start, end, length) if ploidy > 1: if cols[1] == 'Duplicated': if not cols[0] in hits: hits[cols[0]] = ( ID, score, contig, start, end, length) dupBUSCO2gff( cols[0], os.path.dirname(input), ID) else: oldscore = float(hits.get(cols[0])[1]) if float(score) > oldscore: hits[cols[0]] = ( ID, score, contig, start, end, length) dupBUSCO2gff( cols[0], os.path.dirname(input), ID) for k, v in natsorted(list(hits.items())): # validate locations for bedfile, move 100 bp in each direction for bedfile start = int(v[3]) - 100 if start < 1: # negative no good start = 1 end = int(v[4]) + 100 # check it doesn't go past contig length if end > ContigSizes.get(contig): end = ContigSizes.get(contig) bedfile.write('%s\t%i\t%i\t%s\n' % (contig, start, end, k)) busco_complete[k] = v[0] return busco_complete def RepeatBlast(input, cpus, evalue, DataBase, tmpdir, output, diamond=True): # run blastp against repeats blast_tmp = os.path.join(tmpdir, 'repeats.xml') if diamond: blastdb = os.path.join(DataBase, 'repeats.dmnd') cmd = ['diamond', 'blastp', '--sensitive', '--query', input, '--threads', str(cpus), '--out', blast_tmp, '--db', blastdb, '--evalue', str(evalue), '--max-target-seqs', '1', '--outfmt', '5'] else: blastdb = os.path.join(DataBase, 'REPEATS') cmd = ['blastp', '-db', blastdb, '-outfmt', '5', '-out', blast_tmp, '-num_threads', str(cpus), '-max_target_seqs', '1', '-evalue', str(evalue), '-query', input] runSubprocess4(cmd, '.', log) # parse results with open(output, 'w') as out: with open(blast_tmp, 'r') as results: for qresult in SearchIO.parse(results, "blast-xml"): hits = qresult.hits ID = qresult.id num_hits = len(hits) if num_hits > 0: length = 0 for i in range(0, len(hits[0].hsps)): length += hits[0].hsps[i].aln_span pident = hits[0].hsps[0].ident_num / float(length) out.write("%s\t%s\t%f\t%s\n" % (ID, hits[0].id, pident, hits[0].hsps[0].evalue)) def eggnog2dict(annotations): # load in annotation dictionary EggNog = {} with open(annotations, 'r') as input: reader = csv.reader(input, delimiter='\t') for line in reader: EggNog[line[1]] = line[5] return EggNog def number_present(s): return any(i.isdigit() for i in s) def capfirst(x): return x[0].upper() + x[1:] def item2index(inputList, item): # return the index of an item in the input list item_index = None for x in inputList: if item in x: item_index = inputList.index(x) return item_index def getEggNogHeaders(input): IDi, DBi, OGi, Genei, COGi, Desci = (None,)*6 with open(input, 'r') as infile: for line in infile: line = line.replace('\n', '') if line.startswith('#query_name'): # this is HEADER headerCols = line.split('\t') IDi = item2index(headerCols, 'query_name') Genei = item2index(headerCols, 'predicted_gene_name') DBi = item2index(headerCols, 'Annotation_tax_scope') OGi = item2index(headerCols, 'OGs') COGi = item2index(headerCols, 'COG cat') Desci = item2index(headerCols, 'eggNOG annot') break return IDi, DBi, OGi, Genei, COGi, Desci def parseEggNoggMapper(input, output): Definitions = {} # indexes from header file IDi, DBi, OGi, Genei, COGi, Desci = getEggNogHeaders(input) # take annotations file from eggnog-mapper and create annotations with open(output, 'w') as out: with open(input, 'r') as infile: for line in infile: line = line.replace('\n', '') if line.startswith('#'): continue cols = line.split('\t') ID = cols[IDi] DB = cols[DBi].split('[')[0] OGs = cols[OGi].split(',') NOG = '' for x in OGs: if DB in x: NOG = 'ENOG41' + x.split('@')[0] Gene = '' if cols[Genei] != '': if not '_' in cols[Genei] and not '.' in cols[Genei] and number_present(cols[Genei]): Gene = cols[Genei] Description = cols[Desci] if NOG == '': continue if not NOG in Definitions: Definitions[NOG] = Description out.write("%s\tnote\tEggNog:%s\n" % (ID, NOG)) if cols[COGi] != '': out.write("%s\tnote\tCOG:%s\n" % (ID, cols[COGi].replace(' ', ''))) if Gene != '': product = Gene.lower()+'p' product = capfirst(product) out.write("%s\tname\t%s\n" % (ID.split('-T')[0], Gene)) out.write("%s\tproduct\t%s\n" % (ID, product)) if Description != '': out.write("%s\tnote\t%s\n" % (ID, Description)) return Definitions def batch_iterator(iterator, batch_size): entry = True # Make sure we loop once while entry: batch = [] while len(batch) < batch_size: try: entry = next(iterator) except StopIteration: entry = None if entry is None: # End of file break batch.append(entry) if batch: yield batch def fasta2chunks(input, chunks, tmpdir, output): # split the input fasta file into 20 chunks to process with open(input, 'r') as seqs: SeqCount = countfasta(input) SeqRecords = SeqIO.parse(seqs, 'fasta') chunks = SeqCount / int(chunks) # divide into chunks, store in tmp file folder = os.path.join(tmpdir, output) if not os.path.exists(folder): os.makedirs(folder) else: shutil.rmtree(folder) os.makedirs(folder) for i, batch in enumerate(batch_iterator(SeqRecords, chunks)): filename = "chunk_%i.fa" % (i+1) tmpout = os.path.join(folder, filename) handle = open(tmpout, "w") SeqIO.write(batch, handle, "fasta") handle.close() def signalP(input, tmpdir, output): # split input file into chunks, 20 should mean < 200 proteins per chunk from funannotate.check import check_version7 version = check_version7('signalp') if '.' in version: version = int(version.split('.')[0]) if version > 4: cmd = ['signalp', '-stdout', '-org', 'euk', '-format', 'short', '-fasta'] else: cmd = ['signalp', '-t', 'euk', '-f', 'short'] fasta2chunks(input, 40, tmpdir, 'signalp_tmp') for file in os.listdir(os.path.join(tmpdir, 'signalp_tmp')): if file.startswith('chunk'): file = os.path.join(tmpdir, 'signalp_tmp', file) tmp_out = re.sub(r'\.fa$','.signalp.out',file) cmd1 = cmd + [file] runSubprocess2(cmd1, '.', log, tmp_out) # now concatenate all outputs if os.path.isfile(output): os.remove(output) with open(output, 'a') as finalout: for file in os.listdir(os.path.join(tmpdir, 'signalp_tmp')): if file.endswith('.signalp.out'): file = os.path.join(tmpdir, 'signalp_tmp', file) with open(file) as infile: finalout.write(infile.read()) # cleanup tmp directory shutil.rmtree(os.path.join(tmpdir, 'signalp_tmp')) def parseSignalP(sigP, secretome_annot): sigpDict = {} version = 4 with open(sigP, 'r') as results: for line in results: line = line.rstrip() if line.startswith('#'): if line.startswith('# SignalP-5'): version = 5 elif line.startswith('# SignalP-6'): version = 6 continue if version < 5: col = line.split(' ') # not tab delimited col = [_f for _f in col if _f] # clean up empty spaces if col[9] == 'Y': # then there is signal peptide ID = col[0] end = int(col[2]) - 1 sigpDict[ID] = [end, '', ''] elif version == 5: # version 5 has different format and tab delimited hooray! if '\t' in line: cols = line.split('\t') if cols[1] != 'OTHER': # then signal peptide ID, prediction, score1, score2, position = cols[:5] components = position.split() pos = components[2].split('-')[0] prob = components[-1] aa = components[3].replace('.', '') sigpDict[ID] = [pos, aa, prob] else: if '\t' in line: cols = line.split('\t') if cols[1] == 'SP': # then signal peptide try: ID, prediction, score1, score2, position = cols[:5] except ValueError: sys.stderr.write('signalP parse error: {}\n'.format(line)) continue components = position.split() pos = components[2].split('-')[0] prob = components[-1] sigpDict[ID] = [pos, '', prob] with open(secretome_annot, 'w') as secout: for k, v in natsorted(list(sigpDict.items())): if v[1] != '': secout.write("{:}\tnote\tSECRETED:SignalP(1-{:},cutsite={:},prob={:})\n".format(k, v[0], v[1], v[2])) else: secout.write("{:}\tnote\tSECRETED:SignalP(1-{:})\n".format(k, v[0])) def parsePhobiusSignalP(phobius, sigP, membrane_annot, secretome_annot): # give directory of annotate_misc, first get phobius results ''' This is what phobius results look like ID TM SP Prediction VE00_00001 0 0 o VE00_00002 2 0 i198-219o283-301i VE00_00003 0 0 o VE00_00004 0 Y n8-18c23/24o VE00_00005 12 0 i49-69o89-107i119-138o144-167i179-200o212-234i280-299o319-341i348-366o378-398i410-430o442-465i ''' pSecDict = {} pTMDict = {} sigpDict = {} # parsing short format phobius with open(phobius, 'r') as input1: for line in input1: line = line.rstrip() if line.startswith('ID') or line.startswith('SEQ'): continue if '\t' in line: cols = line.split('\t') else: cols = line.split() geneID = cols[0] if int(cols[1]) > 0: # then found TM domain annot = cols[3] if not geneID in pTMDict: pTMDict[geneID] = 'TransMembrane:'+cols[1]+' ('+annot+')' if cols[2] == 'Y': # then sig pep discovered location = cols[3].split('/')[0] clevage = location.split('c')[-1] if not geneID in pSecDict: pSecDict[geneID] = [clevage, '', ''] if sigP: # will be passed FALSE if signalP data missing # parse signalp output and turn into annotation file version = 4 with open(sigP, 'r') as results: for line in results: line = line.rstrip() if line.startswith('#'): if line.startswith('# SignalP-5'): version = 5 continue if version < 5: col = line.split(' ') # not tab delimited col = [_f for _f in col if _f] # clean up empty spaces if col[9] == 'Y': # then there is signal peptide ID = col[0] end = int(col[2]) - 1 sigpDict[ID] = [end, '', ''] else: # version 5 has different format and tab delimited hooray! if '\t' in line: cols = line.split('\t') if cols[1] != 'OTHER': # then signal peptide ID, prediction, score1, score2, position = cols[:5] components = position.split() pos = components[2].split('-')[0] prob = components[-1] aa = components[3].replace('.', '') sigpDict[ID] = [pos, aa, prob] else: sigpDict = pSecDict # write annotation files with open(membrane_annot, 'w') as memout: for k, v in natsorted(list(pTMDict.items())): memout.write("%s\tnote\t%s\n" % (k, v)) with open(secretome_annot, 'w') as secout: for k, v in natsorted(list(sigpDict.items())): if v[1] != '': secout.write("{:}\tnote\tSECRETED:SignalP(1-{:},cutsite={:},prob={:})\n".format(k, v[0], v[1], v[2])) else: secout.write("{:}\tnote\tSECRETED:SignalP(1-{:})\n".format(k, v[0])) def n_lower_chars(string): return sum(1 for c in string if c.islower()) def CheckAugustusSpecies(input): # get the possible species from augustus augustus_list = [] for i in os.listdir(os.path.join(os.environ["AUGUSTUS_CONFIG_PATH"], 'species')): if not i.startswith('.'): augustus_list.append(i) augustus_list = set(augustus_list) if input in augustus_list: return True else: return False def CheckFunannotateSpecies(input, db): # get the possible species from funannotateDB dir -- on install mirrored Augustus species_list = [] for i in os.listdir(os.path.join(db, 'trained_species')): if not i.startswith('.'): species_list.append(i) species_list = set(species_list) if input in species_list: return True else: return False def SortRenameHeaders(input, output): # sort records and write temp file with open(output, 'w') as out: with open(input, 'r') as input: records = list(SeqIO.parse(input, 'fasta')) records.sort(cmp=lambda x, y: cmp(len(y), len(x))) counter = 1 for rec in records: rec.name = '' rec.description = '' rec.id = 'scaffold_' + str(counter) counter += 1 SeqIO.write(records, out, 'fasta') def validate_tRNA(input, genes, gaps, output): # run bedtools intersect to keep only input that dont intersect with either genes or gaps sortedInput = os.path.abspath(input)+'.sorted.gff3' #sortGFFproper(input, sortedInput) cmd1 = ['bedtools', 'sort', '-i', input] with open(sortedInput, 'w') as outfile: subprocess.call(cmd1, stdout=outfile) sortedGenes = os.path.abspath(genes)+'.sorted.gff3' #sortGFFproper(genes, sortedGenes) cmd2 = ['bedtools', 'sort', '-i', genes] with open(sortedGenes, 'w') as outfile: subprocess.call(cmd2, stdout=outfile) if gaps: sortedGaps = os.path.abspath(gaps)+'.sorted.gff3' #sortGFFproper(gaps, sortedGaps) cmd3 = ['bedtools', 'sort', '-i', gaps] with open(sortedGaps, 'w') as outfile: subprocess.call(cmd3, stdout=outfile) cmd = ['bedtools', 'intersect', '-sorted', '-v', '-a', sortedInput, '-b', sortedGenes] if gaps: cmd.append(sortedGaps) tmpOut = os.path.abspath(output)+'.tmp' runSubprocess2(cmd, '.', log, tmpOut) # now sort properly sortGFFproper(tmpOut, output) os.remove(tmpOut) # via https://stackoverflow.com/questions/2154249/identify-groups-of-continuous-numbers-in-a-list def list2groups(L): if len(L) < 1: return first = last = L[0] for n in L[1:]: if n - 1 == last: # Part of the group, bump the end last = n else: # Not part of the group, yield current group and start a new yield first, last first = last = n yield first, last # Yield the last group def checkMask(genome, bedfile): from Bio.SeqIO.FastaIO import SimpleFastaParser # load contig names and sizes into dictionary, get masked repeat stats GenomeLength = 0 maskedSize = 0 masked = {} ContigSizes = {} with open(genome, 'r') as input: for header, Seq in SimpleFastaParser(input): if ' ' in header: ID = header.split(' ')[0] else: ID = header if not ID in masked: masked[ID] = [] if not ID in ContigSizes: ContigSizes[ID] = len(Seq) GenomeLength += len(Seq) maskedSize += n_lower_chars(Seq) for i, c in enumerate(Seq): if c.islower(): masked[ID].append(i) # 0 based if maskedSize == 0: # not softmasked, return False with open(bedfile, 'w') as bedout: bedout.write('') return ContigSizes, GenomeLength, maskedSize, 0.0 else: counter = 1 with open(bedfile, 'w') as bedout: for k, v in natsorted(list(masked.items())): repeats = list(list2groups(v)) for item in repeats: if len(item) == 2: bedout.write('{:}\t{:}\t{:}\tRepeat_{:}\n'.format( k, item[0], item[1], counter)) counter += 1 percentMask = maskedSize / float(GenomeLength) return ContigSizes, GenomeLength, maskedSize, percentMask def maskingstats2bed(input, counter, alock): from Bio.SeqIO.FastaIO import SimpleFastaParser masked = [] gaps = [] maskedSize = 0 bedfilename = input.replace('.fasta', '.bed') gapfilename = input.replace('.fasta', '.gaps') with open(input, 'r') as infile: for header, Seq in SimpleFastaParser(infile): if ' ' in header: ID = header.split(' ')[0] else: ID = header for i, c in enumerate(Seq): if c == 'N' or c == 'n': masked.append(i) maskedSize += 1 gaps.append(i) elif c.islower(): masked.append(i) # 0 based maskedSize += 1 if maskedSize > 0: # not softmasked, return False with open(bedfilename, 'w') as bedout: repeats = list(list2groups(masked)) for item in repeats: if len(item) == 2: bedout.write('{:}\t{:}\t{:}\tRepeat_\n'.format( ID, item[0], item[1])) if len(gaps) > 0: with open(gapfilename, 'w') as gapout: bedGaps = list(list2groups(gaps)) for item in bedGaps: if len(item) == 2: gapout.write( '{:}\t{:}\t{:}\tassembly-gap_\n'.format(ID, item[0], item[1])) with alock: counter.value += maskedSize def mask_safe_run(*args, **kwargs): """Call run(), catch exceptions.""" try: maskingstats2bed(*args, **kwargs) except Exception as e: print(("error: %s run(*%r, **%r)" % (e, args, kwargs))) def checkMasklowMem(genome, bedfile, gapsfile, cpus): from Bio.SeqIO.FastaIO import SimpleFastaParser # load contig names and sizes into dictionary, get masked repeat stats ContigSizes = {} tmpdir = os.path.join(os.path.dirname(genome), 'mask_'+str(uuid.uuid4())) os.makedirs(tmpdir) file_list = [] with open(genome, 'r') as input: for header, Seq in SimpleFastaParser(input): if ' ' in header: ID = header.split(' ')[0] else: ID = header if not ID in ContigSizes: ContigSizes[ID] = len(Seq) with open(os.path.join(tmpdir, ID+'.fasta'), 'w') as fastaout: fastaout.write('>{:}\n{:}\n'.format(ID, Seq)) file_list.append(os.path.join(tmpdir, ID+'.fasta')) # num = 1 p = multiprocessing.Pool(processes=cpus) TotalMask = multiprocessing.Manager().Value('i', 0) lock = multiprocessing.Manager().Lock() result = [] for i in file_list: result.append(p.apply_async(mask_safe_run, [i, TotalMask, lock])) p.close() p.join() repeatNum = 1 gapNum = 1 with open(bedfile, 'w') as bedout: for file in natsorted(os.listdir(tmpdir)): if file.endswith('.bed'): with open(os.path.join(tmpdir, file), 'r') as infile: for line in infile: line = line.replace( 'Repeat_', 'Repeat_'+str(repeatNum)) bedout.write(line) repeatNum += 1 with open(gapsfile, 'w') as gapout: for file in natsorted(os.listdir(tmpdir)): if file.endswith('.gaps'): with open(os.path.join(tmpdir, file), 'r') as infile: for line in infile: line = line.replace( 'assembly-gap_', 'assembly-gap_'+str(gapNum)) gapout.write(line) gapNum += 1 SafeRemove(tmpdir) GenomeLength = sum(ContigSizes.values()) percentMask = TotalMask.value / float(GenomeLength) return ContigSizes, GenomeLength, TotalMask.value, percentMask def RunGeneMarkES(command, input, ini, maxintron, softmask, cpus, tmpdir, output, fungus): # make directory to run script from outdir = os.path.join(tmpdir, 'genemark') if not os.path.isdir(outdir): os.makedirs(outdir) if cpus > 64: cpus = 64 contigs = os.path.abspath(input) log.info("Running GeneMark-ES on assembly") cmd = [command, '--ES', '--max_intron', str(maxintron), '--soft_mask', str( softmask), '--cores', str(cpus), '--sequence', contigs] if fungus == 'fungus': cmd = cmd + ['--fungus'] if ini: cmd = cmd + ['--ini_mod', os.path.abspath(ini)] runSubprocess3(cmd, outdir, log) # rename results and grab mod file try: os.rename(os.path.join(outdir, 'output', 'gmhmm.mod'), os.path.join(tmpdir, 'gmhmm.mod')) except OSError: log.error("GeneMark-ES failed: {:} file missing, please check logfiles.".format( os.path.join(outdir, 'output', 'gmhmm.mod'))) # convert genemark gtf to gff3 so GAG can interpret it gm_gtf = os.path.join(outdir, 'genemark.gtf') if checkannotations(gm_gtf): # log.info("Converting GeneMark GTF file to GFF3") with open(output, 'w') as out: subprocess.call([GeneMark2GFF, gm_gtf], stdout=out) def RunGeneMarkET(command, input, ini, evidence, maxintron, softmask, cpus, tmpdir, output, fungus): # make directory to run script from outdir = os.path.join(tmpdir, 'genemark') if not os.path.isdir(outdir): os.makedirs(outdir) if cpus > 64: cpus = 64 contigs = os.path.abspath(input) # get only intron information from evidence hintsfile = os.path.join(tmpdir, 'genemark.intron-hints.gff') with open(hintsfile, 'w') as hints: with open(evidence, 'r') as evid: for line in evid: if '\tintron\t' in line and '\tb2h\t' in line: tmprow = line.split("\t") tmprow[5] = "500" # for intron hint score to be 500 hints.write("\t".join(tmprow)) log.info("Running GeneMark-ET on assembly") cmd = [command, '--ET', os.path.abspath(hintsfile), '--max_intron', str( maxintron), '--soft_mask', str(softmask), '--cores', str(cpus), '--sequence', contigs] if fungus == 'fungus': cmd = cmd + ['--fungus'] if ini: cmd = cmd + ['--ini_mod', os.path.abspath(ini)] runSubprocess3(cmd, outdir, log) # rename results and grab mod file try: os.rename(os.path.join(outdir, 'output', 'gmhmm.mod'), os.path.join(tmpdir, 'gmhmm.mod')) except OSError: log.error("GeneMark-ET failed: {:} file missing, please check logfiles.".format( os.path.join(outdir, 'output', 'gmhmm.mod'))) # convert genemark gtf to gff3 so GAG can interpret it gm_gtf = os.path.join(outdir, 'genemark.gtf') if checkannotations(gm_gtf): # log.info("Converting GeneMark GTF file to GFF3") with open(output, 'w') as out: subprocess.call([GeneMark2GFF, gm_gtf], stdout=out) def dict2glimmer(input, output): # take funannotate dictionary convert to glimmer training format with open(output, 'w') as outfile: for k, v in list(input.items()): for i in range(0, len(v['ids'])): for c in v['CDS'][i]: if v['strand'] == '+': outfile.write('{:} {:} {:}\n'.format( v['contig'], c[0], c[1])) else: outfile.write('{:} {:} {:}\n'.format( v['contig'], c[1], c[0])) outfile.write('\n') def glimmer2gff3(input, output): ''' scaffold_39 GlimmerHMM mRNA 23692 25015 . + . ID=scaffold_39.path1.gene12;Name=scaffold_39.path1.gene12 scaffold_39 GlimmerHMM CDS 23692 23886 . + 0 ID=scaffold_39.cds12.1;Parent=scaffold_39.path1.gene12;Name=scaffold_39.path1.gene12;Note=initial-exon scaffold_39 GlimmerHMM CDS 24282 24624 . + 0 ID=scaffold_39.cds12.2;Parent=scaffold_39.path1.gene12;Name=scaffold_39.path1.gene12;Note=internal-exon scaffold_39 GlimmerHMM CDS 24711 25015 . + 2 ID=scaffold_39.cds12.3;Parent=scaffold_39.path1.gene12;Name=scaffold_39.path1.gene12;Note=final-exon scaffold_39 GlimmerHMM mRNA 25874 27899 . - . ID=scaffold_39.path1.gene13;Name=scaffold_39.path1.gene13 scaffold_39 GlimmerHMM CDS 25874 26973 . - 2 ID=scaffold_39.cds13.1;Parent=scaffold_39.path1.gene13;Name=scaffold_39.path1.gene13;Note=final-exon scaffold_39 GlimmerHMM CDS 27257 27899 . - 0 ID=scaffold_39.cds13.2;Parent=scaffold_39.path1.gene13;Name=scaffold_39.path1.gene13;Note=initial-exon ''' with open(output, 'w') as outfile: outfile.write(("##gff-version 3\n")) exonCounts = {} GeneCount = 1 skipList = [] idsSeen = {} with open(input, 'r') as infile: for i, line in enumerate(infile): if line.startswith('##sequence-region'): idsSeen = {} if line.startswith('#') or line.startswith('\n'): continue line = line.strip() if line.count('\t') < 8: print('ERROR parsing GlimmerHMM Raw output in line {}:\n {}'.format(i+1, line)) continue contig, source, feature, start, end, score, strand, phase, attributes = line.split('\t') ID, Parent, Name = (None,)*3 info = attributes.split(';') for x in info: if x.startswith('ID='): ID = x.replace('ID=', '') elif x.startswith('Parent='): Parent = x.replace('Parent=', '') if Parent and Parent in skipList: continue if feature == 'mRNA': genelen = int(end) - int(start) if genelen < 150: if not ID in skipList: skipList.append(ID) continue geneID = 'glimmerG_'+str(GeneCount) transID = 'glimmerT_'+str(GeneCount)+'-T1' idsSeen[ID] = (geneID, transID) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:};Alias={:};\n'.format( contig, source, 'gene', start, end, score, strand, phase, geneID, ID)) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:};Parent={:};Alias={:};\n'.format( contig, source, 'mRNA', start, end, '.', strand, '.', transID, geneID, ID)) GeneCount += 1 elif feature == 'CDS': if Parent in idsSeen: geneID, transID = idsSeen.get(Parent) if not transID in exonCounts: exonCounts[transID] = 1 else: exonCounts[transID] += 1 num = exonCounts.get(transID) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:}.exon{:};Parent={:};\n'.format( contig, source, 'exon', start, end, '.', strand, '.', transID, num, transID)) outfile.write('{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}\tID={:}.cds;Parent={:};\n'.format( contig, source, feature, start, end, score, strand, phase, transID, transID)) else: print('ERROR parsing GlimmerHMM Raw output in line {}:\n {}'.format(i+1, line)) def runGlimmerHMM(fasta, gff3, dir, output): ''' wrapper to run GlimmerHMM training followed by prediction input is GFF3 format high quality models, i.e. from PASA/transdecoder output is standard GFF3 format ''' # generate training directory ontop of the dir that is passed tmpdir = os.path.join(dir, 'glimmerhmm') if os.path.isdir(tmpdir): SafeRemove(tmpdir) # generate glimmer training input # load gff3 into dictionary Genes = {} Genes = gff2dict(os.path.abspath(gff3), os.path.abspath(fasta), Genes) glimmExons = os.path.join(dir, 'glimmer.exons') dict2glimmer(Genes, glimmExons) # now run trainGlimmerHMM cmd = ['trainGlimmerHMM', os.path.abspath( fasta), os.path.abspath(glimmExons), '-d', tmpdir] runSubprocess4(cmd, '.', log) # runSubproces4 --> stdout/stderr to devnull # now run GlimmerHMM prediction # glimmhmm.pl <glimmerhmm_program> <fasta_file> <train_dir> <options> glimmerRaw = os.path.abspath(os.path.join(dir, 'glimmerHMM.output.raw')) cmd = ['perl', which_path('glimmhmm.pl'), which_path( 'glimmerhmm'), os.path.abspath(fasta), os.path.abspath(tmpdir), '-g'] runSubprocess2(cmd, dir, log, glimmerRaw) # now convert to proper GFF3 format glimmer2gff3(glimmerRaw, output) return os.path.abspath(tmpdir) def runGlimmerHMMTrained(fasta, training, dir, output): glimmerRaw = os.path.abspath(os.path.join(dir, 'glimmerHMM.output.raw')) cmd = ['perl', which_path('glimmhmm.pl'), which_path( 'glimmerhmm'), os.path.abspath(fasta), os.path.abspath(training), '-g'] runSubprocess2(cmd, dir, log, glimmerRaw) # now convert to proper GFF3 format glimmer2gff3(glimmerRaw, output) def glimmer_run_check(Result, training, weights): if checkannotations(Result): log.info('Using existing GlimmerHMM results: {:}'.format(Result)) return False if not checkannotations(training): log.info( 'GlimmerHMM training failed, empty training set: {:}'.format(training)) return False if weights < 1: log.info( 'Skipping GlimmerHMM prediction as weight set to {:}'.format(weights)) return False programs = ['trainGlimmerHMM', 'glimmerhmm', 'glimmhmm.pl'] for x in programs: if not which_path(x): log.info( 'GlimmerHMM failed, dependency not in $PATH: {:}'.format(x)) return False return True def dict2zff(scaffoldDict, GeneDict, output): # take funannotate dictionary convert to zff training format with open(output, 'w') as outfile: for k, v in natsorted(list(scaffoldDict.items())): outfile.write('>{:}\n'.format(k)) for genes in v: gd = GeneDict.get(genes) for i in range(0, len(gd['ids'])): for num, c in enumerate(gd['CDS'][i]): if gd['strand'] == '+': start = c[0] end = c[1] else: start = c[1] end = c[0] if num == 0: outfile.write('Einit\t{:}\t{:}\t{:}\n'.format( start, end, gd['ids'][i])) elif num == len(gd['CDS'][i])-1: outfile.write('Eterm\t{:}\t{:}\t{:}\n'.format( start, end, gd['ids'][i])) else: outfile.write('Exon\t{:}\t{:}\t{:}\n'.format( start, end, gd['ids'][i])) def zff2gff3(input, fasta, output): ''' >scaffold_40 Einit 7104 7391 - 14.809 0 0 1 scaffold_40-snap.1 Eterm 6728 7039 - 1.974 0 0 2 scaffold_40-snap.1 Einit 8935 9070 + 9.578 0 1 0 scaffold_40-snap.2 Exon 9119 9206 + 10.413 2 2 0 scaffold_40-snap.2 Exon 9254 9389 + 21.529 1 0 2 scaffold_40-snap.2 Eterm 9439 10128 + 42.769 0 0 0 scaffold_40-snap.2 Einit 11784 12139 - 38.847 0 2 2 scaffold_40-snap.3 Eterm 11185 11761 - 72.324 1 0 0 scaffold_40-snap.3 Einit 13191 13250 - 7.662 0 0 1 scaffold_40-snap.4 Eterm 12498 13019 - 63.296 0 0 1 scaffold_40-snap.4 Einit 16359 16608 + 41.592 0 1 2 scaffold_40-snap.5 Exon 16628 16712 + 13.780 2 2 0 scaffold_40-snap.5 Exon 16795 17012 + 26.393 1 1 1 scaffold_40-snap.5 Eterm 17224 17381 + 8.331 2 0 2 scaffold_40-snap.5 >scaffold_41 Exon 65 951 - 169.146 1 1 0 scaffold_41-snap.1 ''' # need to load/generate a funannotate dictionary, then output to gff3 format Genes = {} contig = '' with open(input, 'r') as infile: for line in infile: line = line.strip() if line.startswith('#') or line.startswith('\n'): continue elif line.startswith('>'): contig = line[1:] else: feature, start, end, strand, score, fiveo, threeo, phase, ID = line.split( '\t') start = int(start) end = int(end) # phase = int(phase) phase = '?' # phase in GFF3 doesn't seem to be accurate, so guess it by translation of all 3 frames if not ID in Genes: Genes[ID] = {'name': None, 'type': 'mRNA', 'transcript': [], 'cds_transcript': [], 'protein': [], '5UTR': [[]], '3UTR': [[]], 'codon_start': [[]], 'ids': [ID+'-T1'], 'CDS': [[(start, end)]], 'mRNA': [[(start, end)]], 'strand': strand, 'location': (start, end), 'contig': contig, 'product': [[]], 'source': 'snap', 'phase': [[phase]], 'db_xref': [[]], 'EC_number': [[]], 'gene_synonym': [], 'go_terms': [[]], 'note': [[]], 'partialStart': [[]], 'partialStop': [[]], 'pseudo': False} else: Genes[ID]['CDS'][0].append((start, end)) Genes[ID]['mRNA'][0].append((start, end)) Genes[ID]['phase'][0].append(phase) if start < Genes[ID]['location'][0]: Genes[ID]['location'] = ( start, Genes[ID]['location'][1]) if end > Genes[ID]['location'][1]: Genes[ID]['location'] = (Genes[ID]['location'][0], end) # translate, check partial, etc SeqRecords = SeqIO.to_dict(SeqIO.parse(fasta, 'fasta')) for k, v in list(Genes.items()): i = 0 if v['strand'] == '+': sortedExons = sorted(v['mRNA'][i], key=lambda tup: tup[0]) sortedCDS = sorted(v['CDS'][i], key=lambda tup: tup[0]) else: sortedExons = sorted( v['mRNA'][i], key=lambda tup: tup[0], reverse=True) sortedCDS = sorted( v['CDS'][i], key=lambda tup: tup[0], reverse=True) Genes[k]['mRNA'][i] = sortedExons mrnaSeq = getSeqRegions(SeqRecords, v['contig'], sortedExons) Genes[k]['transcript'].append(mrnaSeq) # get the codon_start by getting first CDS phase + 1 indexStart = [x for x, y in enumerate( v['CDS'][i]) if y[0] == sortedCDS[0][0]] cdsSeq = getSeqRegions(SeqRecords, v['contig'], sortedCDS) # this seems to be missing removal of codon_start overhang? Genes[k]['CDS'][i] = sortedCDS protSeq,codon_start = (None,)*2 if '?' in v['phase'][i]: # dont know the phase -- malformed GFF3, try to find best CDS translateResults = [] for y in [1, 2, 3]: protSeq = translate(cdsSeq, v['strand'], y-1) numStops = protSeq.count('*') if protSeq[-1] == '*': numStops -= 1 translateResults.append((y, numStops, protSeq)) sortedResults = sorted(translateResults, key=lambda tup: tup[1]) codon_start = sortedResults[0][0] protSeq = sortedResults[0][2] else: codon_start = int(v['phase'][i][indexStart[0]]) + 1 # translate and get protein sequence cdsSeq = cdsSeq[codon_start-1:] protSeq = translate(cdsSeq, v['strand'], codon_start-1) Genes[k]['codon_start'][i] = codon_start if codon_start > 1: if v['strand'] == '+': cdsSeq = cdsSeq[codon_start - 1:] elif v['strand'] == '-': endTrunc = len(cdsSeq) - codon_start -1 cdsSeq = cdsSeq[0:endTrunc] else: print("ERROR nonsensical strand (%s) for gene %s"%([v['strand'],k])) Genes[k]['cds_transcript'].append(cdsSeq) if protSeq: Genes[k]['protein'].append(protSeq) if protSeq.endswith('*'): Genes[k]['partialStop'][i] = False else: Genes[k]['partialStop'][i] = True if codon_start == 1 and protSeq.startswith('M'): Genes[k]['partialStart'][i] = False else: Genes[k]['partialStart'][i] = True # now write to GFF3 dict2gff3(Genes, output) def cq_run_check(cqResult, bam, stringtie, weight): if checkannotations(cqResult): log.info('Using existing CodingQuarry results: {:}'.format(cqResult)) return False if weight < 1: log.info( 'Skipping CodingQuarry prediction as weight set to {:}'.format(weight)) return False if not bam and not stringtie: log.info('Skipping CodingQuarry as there are no RNA-seq data') return False # check if dependencies installed programs = [] if stringtie and checkannotations(stringtie): programs = ['CodingQuarry'] elif bam and checkannotations(bam): programs = ['stringtie', 'CodingQuarry'] for x in programs: if not which_path(x): log.info( 'CodingQuarry failed, dependency not in $PATH: {:}'.format(x)) return False # if you get here should be good return True def snap_run_check(snapResult, training, weight): if checkannotations(snapResult): log.info('Using existing snap results: {:}'.format(snapResult)) return False if not checkannotations(training): log.info( 'Snap training failed, empty training set: {:}'.format(training)) return False if weight < 1: log.info( 'Skipping snap prediction as weight set to {:}'.format(weight)) return False programs = ['fathom', 'snap', 'forge', 'hmm-assembler.pl'] for x in programs: if not which_path(x): log.info('Snap failed, dependency not in $PATH: {:}'.format(x)) return False return True def runSnap(fasta, gff3, minintron, maxintron, dir, output): from Bio.SeqIO.FastaIO import SimpleFastaParser ''' wrapper to run Snap training followed by prediction input is GFF3 format high quality models, i.e. from PASA/transdecoder output is standard GFF3 format ''' from collections import OrderedDict snapHMM = os.path.join(dir, 'snap-trained.hmm') snapRaw = os.path.join(dir, 'snap-prediction.zff') if not checkannotations(snapRaw): # generate training directory ontop of the dir that is passed tmpdir = os.path.join(dir, 'snaptrain') if os.path.isdir(tmpdir): SafeRemove(tmpdir) os.makedirs(tmpdir) # load gff3 into dictionary Genes = {} Genes = gff2dict(os.path.abspath(gff3), os.path.abspath(fasta), Genes) scaff2genes = {} # sort the dictionary def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) sGenes = sorted(iter(Genes.items()), key=_sortDict) sortedGenes = OrderedDict(sGenes) scaff2genes = {} for k, v in list(sortedGenes.items()): if not v['contig'] in scaff2genes: scaff2genes[v['contig']] = [k] else: scaff2genes[v['contig']].append(k) # get only scaffolds that have gene models for training log.debug('{:} gene models to train snap on {:} scaffolds'.format( len(sGenes), len(scaff2genes))) trainingFasta = os.path.join(dir, 'snap-training.scaffolds.fasta') with open(trainingFasta, 'w') as outfile: with open(os.path.abspath(fasta), 'r') as infile: for title, seq in SimpleFastaParser(infile): if title in list(scaff2genes.keys()): outfile.write('>{:}\n{:}\n'.format( title, softwrap(seq))) # convert to ZFF format origzff = os.path.join(dir, 'snap.training.zff') dict2zff(scaff2genes, Genes, origzff) # now run SNAP training cmd = ['fathom', os.path.abspath(origzff), os.path.abspath( trainingFasta), '-categorize', '1000', '-min-intron', str(minintron), '-max-intron', str(maxintron)] runSubprocess(cmd, tmpdir, log) cmd = ['fathom', 'uni.ann', 'uni.dna', '-export', '1000', '-plus'] runSubprocess(cmd, tmpdir, log) cmd = ['forge', 'export.ann', 'export.dna'] runSubprocess(cmd, tmpdir, log) cmd = ['perl', which_path('hmm-assembler.pl'), 'snap-trained', tmpdir] runSubprocess2(cmd, '.', log, snapHMM) # now run SNAP prediction cmd = ['snap', os.path.abspath(snapHMM), os.path.abspath(fasta)] runSubprocess2(cmd, '.', log, snapRaw) # convert zff to proper gff3 zff2gff3(snapRaw, fasta, output) return os.path.abspath(snapHMM) def runSnapTrained(fasta, hmm, dir, output): snapRaw = os.path.join(dir, 'snap-prediction.zff') # now run SNAP prediction cmd = ['snap', os.path.abspath(hmm), os.path.abspath(fasta)] runSubprocess2(cmd, '.', log, snapRaw) # convert zff to proper gff3 zff2gff3(snapRaw, fasta, output) def MemoryCheck(): import psutil mem = psutil.virtual_memory() RAM = int(mem.total) return round(RAM / 1024000000) def systemOS(): if sys.platform == 'darwin': system_os = 'MacOSX ' + platform.mac_ver()[0] elif sys.platform == 'linux': linux_version = distro.linux_distribution() system_os = linux_version[0] + ' '+linux_version[1] else: system_os = sys.platform return system_os def SystemInfo(): system_os = systemOS() python_vers = str( sys.version_info[0])+'.'+str(sys.version_info[1])+'.'+str(sys.version_info[2]) log.info("OS: %s, %i cores, ~ %i GB RAM. Python: %s" % (system_os, multiprocessing.cpu_count(), MemoryCheck(), python_vers)) def runtRNAscan(input, tmpdir, output, cpus=1, precalc=False): tRNAout = os.path.join(tmpdir, 'tRNAscan.out') tRNAlenOut = os.path.join(tmpdir, 'tRNAscan.len-filtered.out') if not precalc: if os.path.isfile(tRNAout): # tRNAscan can't overwrite file, so check os.remove(tRNAout) cmd = ['tRNAscan-SE', '-o', tRNAout, '--thread', str(cpus), input] log.debug(' '.join(cmd)) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() if proc.returncode != 0: log.error('CMD ERROR: {}'.format(' '.join(cmd))) if stdout: log.debug(stdout.decode("utf-8")) if stderr: log.debug(stderr.decode("utf-8")) else: shutil.copyfile(precalc, tRNAout) if not checkannotations(tRNAout): log.info('tRNAscan-SE seems to have failed, check logfile for error. You can pass precalculated results to --trnascan') return False # enforce NCBI length rules with open(tRNAlenOut, 'w') as lenOut: with open(tRNAout, 'r') as infile: for line in infile: if line.startswith('Sequence') or line.startswith('Name') or line.startswith('--------'): lenOut.write('%s' % line) else: cols = line.split('\t') start = cols[2] end = cols[3] if int(start) < int(end): length = abs(int(end) - int(start)) else: length = abs(int(start) - int(end)) if length < 50 or length > 150: continue else: lenOut.write('%s' % line) # now convert to GFF3 trna2gff = os.path.join(parentdir, 'aux_scripts', 'trnascan2gff3.pl') with open(output, 'w') as out: subprocess.call(['perl', trna2gff, '--input', tRNAlenOut], stdout=out) return True def runtbl2asn(folder, template, discrepency, organism, isolate, strain, parameters, version): ''' function to run NCBI tbl2asn ''' # get funannotate version fun_version = get_version() # input should be a folder if not os.path.isdir(folder): log.error("tbl2asn error: %s is not a directory, exiting" % folder) sys.exit(1) # based on organism, isolate, strain, construct meta info for -j flag if not organism: log.error("tbl2asn error: organism not specified") sys.exit(1) meta = "[organism=" + organism + "]" if isolate: isolate_meta = "[isolate=" + isolate + "]" meta = meta + " " + isolate_meta if strain: strain_meta = "[strain=" + strain + "]" meta = meta + " " + strain_meta cmd = ['tbl2asn', '-y', '"Annotated using '+fun_version+'"', '-N', str(version), '-p', folder, '-t', template, '-M', 'n', '-Z', discrepency, '-j', '"'+meta+'"', '-V', 'b', '-c', 'fx', '-T', '-a', 'r10u'] # check for custom parameters if parameters: params = parameters.split(' ') cmd = cmd + params runSubprocess(cmd, '.', log) return ' '.join(cmd) def gb2smurf(input, prot_out, smurf_out): with open(smurf_out, 'w') as smurf: with open(prot_out, 'w') as proteins: with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: for f in record.features: name = re.sub('[^0-9]', '', record.name) if f.type == "CDS": proteins.write(">%s\n%s\n" % (f.qualifiers['locus_tag'][0], softwrap( f.qualifiers['translation'][0].rstrip('*')))) locus_tag = f.qualifiers.get( "locus_tag", ["No ID"])[0] product_name = f.qualifiers.get( "product", ["No Description"])[0] mystart = f.location.start myend = f.location.end strand = f.location.strand if strand == 1: smurf.write("%s\t%s\t%s\t%s\t%s\n" % (locus_tag, name.lstrip( "0"), int(mystart), int(myend), product_name)) else: smurf.write("%s\t%s\t%s\t%s\t%s\n" % (locus_tag, name.lstrip( "0"), int(myend), int(mystart), product_name)) def GAGprotClean(input, output): ''' gag.py v1 had headers like: >>evm.model.Contig100.1 protein gag.py v2 has headers like: >protein|evm.model.scaffold_1.169 ID=evm.model.scaffold_1.169|Parent=evm.TU.scaffold_1.169|Name=EVM%20prediction%20scaffold_1.169 ''' with open(output, 'w') as outfile: with open(input, 'ru') as infile: for rec in SeqIO.parse(infile, 'fasta'): if rec.id.startswith('protein|'): ID = rec.id.replace('protein|', '').split(' ')[0] else: ID = rec.id.split(' ')[0] rec.id = ID rec.name = '' rec.description = '' SeqIO.write(rec, outfile, 'fasta') def OldRemoveBadModels(proteins, gff, length, repeats, BlastResults, tmpdir, output): # first run bedtools to intersect models where 90% of gene overlaps with repeatmasker region repeat_temp = os.path.join(tmpdir, 'genome.repeats.to.remove.gff') cmd = ['bedtools', 'intersect', '-f', '0.9', '-a', gff, '-b', repeats] runSubprocess2(cmd, '.', log, repeat_temp) # now remove those proteins that do not have valid starts, less then certain length, and have internal stops remove = [] reason = {} # parse the results from bedtools and add to remove list with open(repeat_temp, 'r') as input: for line in input: if "\tgene\t" in line: ninth = line.split('ID=')[-1] ID = ninth.split(";")[0] remove.append(ID) if not ID in reason: reason[ID] = 'remove_reason=repeat_overlap;' # parse the results from BlastP search of transposons with open(BlastResults, 'r') as input: for line in input: col = line.split('\t') remove.append(col[0]) if not col[0] in reason: ID = col[0].replace('evm.model.', 'evm.TU.') reason[ID] = 'remove_reason=repeat_match;' else: ID = col[0].replace('evm.model.', 'evm.TU.') reason[ID] = 'remove_reason=repeat_overalap|repeat_match;' # I'm only seeing these models with GAG protein translations, so maybe that is a problem? skip enforcing start with M with open(proteins, 'r') as input: SeqRecords = SeqIO.parse(input, 'fasta') for rec in SeqRecords: Seq = str(rec.seq)[:-1] ID = rec.id.replace('evm.model.', 'evm.TU.') if len(Seq) < int(length): remove.append(ID) if not ID in reason: reason[ID] = 'remove_reason=seq_too_short;' if 'XX' in Seq: remove.append(ID) if not rec.id in reason: reason[ID] = 'remove_reason=model_span_gap;' remove = [w.replace('evm.TU.', '') for w in remove] remove = [w.replace('evm.model.', '') for w in remove] remove = set(remove) if len(remove) > 0: remove_match = re.compile(r'\b\evm.(.*?:%s)[\.;]\b' % '|'.join(remove)) with open(output, 'w') as out: with open(os.path.join(tmpdir, 'bad_models.gff'), 'w') as out2: with open(gff, 'r') as GFF: for line in GFF: if '\tstart_codon\t' in line: continue if '\tstop_codon\t' in line: continue matchLine = remove_match.search(line) if not matchLine: # remove the Name attribute as it sticks around in GBK file line = re.sub(';Name=.*$', ';', line) out.write(line) else: # print matchLine.group() # print line if "\tgene\t" in line: bad_ninth = line.split('ID=')[-1] bad_ID = bad_ninth.split(";")[0] bad_reason = reason.get(bad_ID) if bad_reason: line = line.replace( '\n', ';'+bad_reason+'\n') # print bad_reason else: log.debug( "%s was removed in removeBadModels function for unknown reason, please check manually" % bad_ID) line = line.replace( '\n', ';remove_reason=unknown;\n') # print 'uknown' out2.write(line) else: # if nothing to remove, just print out GFF with open(output, 'w') as out: with open(gff, 'r') as GFF: for line in GFF: if '\tstart_codon\t' in line: continue if '\tstop_codon\t' in line: continue # remove the Name attribute as it sticks around in GBK file line = re.sub(';Name=.*$', ';', line) out.write(line) def RemoveBadModels(proteins, gff, length, repeats, BlastResults, tmpdir, methods, output): reason = {} tooShort = 0 repeat = 0 gapspan = 0 if 'overlap' in methods: # first run bedtools to intersect models where 90% of gene overlaps with repeatmasker region repeat_temp = os.path.join(tmpdir, 'genome.repeats.to.remove.gff') gffSorted = os.path.abspath(gff)+'.sorted.gff' bedSorted = os.path.abspath(repeats)+'.sorted.bed' #sortBedproper(repeats, bedSorted) cmd1 = ['bedtools', 'sort', '-i', repeats] with open(bedSorted, 'w') as bedout: subprocess.call(cmd1, stdout=bedout) #sortGFFproper(gff, gffSorted) cmd2 = ['bedtools', 'sort', '-i', gff] with open(gffSorted, 'w') as gffout: subprocess.call(cmd2, stdout=gffout) cmd = ['bedtools', 'intersect', '-sorted', '-f', '0.9', '-a', gffSorted, '-b', bedSorted] runSubprocess2(cmd, '.', log, repeat_temp) # parse the results from bedtools and add to remove list with open(repeat_temp, 'r') as input: for line in input: if "\tgene\t" in line: ninth = line.split('ID=')[-1] ID = ninth.split(";")[0] if not ID in reason: reason[ID] = 'remove_reason=repeat_overlap;' if 'blast' in methods: # parse the results from BlastP search of transposons with open(BlastResults, 'r') as input: for line in input: col = line.split('\t') if not col[0] in reason: ID = col[0].replace('evm.model.', 'evm.TU.') reason[ID] = 'remove_reason=repeat_match;' else: ID = col[0].replace('evm.model.', 'evm.TU.') reason[ID] = 'remove_reason=repeat_overlap|repeat_match;' # always do these checks # Look for models that are too short with open(proteins, 'r') as input: SeqRecords = SeqIO.parse(input, 'fasta') for rec in SeqRecords: Seq = str(rec.seq)[:-1] ID = rec.id.replace('evm.model.', 'evm.TU.') if len(Seq) < int(length): if not ID in reason: reason[ID] = 'remove_reason=seq_too_short;' if 'XX' in Seq: if not rec.id in reason: reason[ID] = 'remove_reason=model_span_gap;' # now read the EVM gene models in Blocks so you can parse gene ID numTotal = len(reason) for k, v in reason.items(): if 'model_span_gap' in v: gapspan += 1 elif 'seq_too_short' in v: tooShort += 1 else: repeat += 1 if numTotal > 0: log.info("Found {:,} gene models to remove: {:,} too short; {:,} span gaps; {:,} transposable elements".format( numTotal, tooShort, gapspan, repeat)) with open(output, 'w') as out: with open(os.path.join(tmpdir, 'bad_models.gff'), 'w') as out2: with open(gff, 'r') as GFF: for gene_model in readBlocks(GFF, '\n'): if len(gene_model) > 1: if gene_model[0].startswith('\n'): ID = gene_model[1].split( 'ID=')[-1].split(';')[0] else: ID = gene_model[0].split( 'ID=')[-1].split(';')[0] if ID in reason: out2.write('#%s removed; %s\n' % (ID, reason.get(ID))) for line in gene_model: if not line.startswith('\n'): out2.write('%s' % (line)) else: for line in gene_model: # remove the Name attribute as it sticks around in GBK file line = re.sub(';Name=.*$', ';', line) out.write('%s' % (line)) else: # if nothing to remove, just print out GFF with open(output, 'w') as out: with open(gff, 'r') as GFF: for line in GFF: if '\tstart_codon\t' in line: continue if '\tstop_codon\t' in line: continue # remove the Name attribute as it sticks around in GBK file line = re.sub(';Name=.*$', ';', line) out.write(line) def CleantRNAtbl(GFF, TBL, output): # clean up genbank tbl file from gag output # try to read through GFF file, make dictionary of tRNA genes and products TRNA = {} matches = [] with open(GFF, 'r') as gff: for line in gff: if line.startswith('#'): continue line = line.replace('\n', '') scaffold, source, feature, start, end, score, orientation, phase, info = line.split( '\t') if feature == 'tRNA': ID = info.split(';')[0].replace('ID=', '') ID = ID.replace('-T1', '') product = info.split('product=')[-1] TRNA[ID] = product matches.append(product) matches = set(matches) tRNAmatch = re.compile(r'\t\t\tproduct\t%s\n' % '|'.join(matches)) with open(output, 'w') as out: with open(TBL, 'r') as input: for line in input: if line.startswith('\t\t\tlocus_tag\t'): out.write(line) geneID = line.split('locus_tag\t')[-1].replace('\n', '') if geneID in TRNA: CurrentProduct = TRNA.get(geneID) if 'tRNA-Xxx' == CurrentProduct: out.write("\t\t\tpseudo\n") elif line.startswith("\t\t\tproduct\ttRNA-Xxx"): out.write(line) out.write("\t\t\tpseudo\n") next(input) next(input) elif tRNAmatch.search(line): out.write(line) next(input) next(input) else: # otherwise just write line out.write(line) def getFailedProductNames(input, GeneDict): # input is NCBI tbl2asn discrepency report, parse to get suspect product names failed = {} with open(input, 'r') as discrep: for block in readBlocks(discrep, 'DiscRep_'): if 'DiscRep_SUB:SUSPECT_PRODUCT_NAMES::' in block[0]: reason = [] for item in block: if item.startswith('DiscRep_SUB:'): bad = item.split('::')[-1].rstrip() if 'features' in bad.lower(): bad = bad.split('features ')[-1] reason.append(bad) elif item.startswith('genome:'): gene = item.split('\t')[-1].strip() if gene.startswith('DiscRep'): continue if gene in GeneDict: hit = GeneDict.get(gene) if not hit[0] in failed: failed[hit[0]] = (hit[1], gene, reason) return failed def ParseErrorReport(input, Errsummary, val, Discrep, output, keep_stops): errors = [] gapErrors = [] remove = [] with open(Errsummary) as summary: for line in summary: if 'ERROR' in line: # there are probably other errors you are unaware of.... if 'SEQ_DESCR.OrganismIsUndefinedSpecies' in line or 'SEQ_DESCR.BadOrgMod' in line or 'SEQ_FEAT.MissingTrnaAA' in line or 'SEQ_INST.TerminalNs' in line: pass elif 'SEQ_FEAT.NoStop' in line: if keep_stops: pass else: err = line.split(" ")[-1].rstrip() errors.append(err) elif 'SEQ_FEAT.FeatureBeginsOrEndsInGap' in line: err = line.split(" ")[-1].rstrip() gapErrors.append(err) else: err = line.split(" ")[-1].rstrip() errors.append(err) # parse the discrepency report and look for overlapping genes, so far, all have been tRNA's in introns, so just get those for now. with open(Discrep, 'r') as discrep: # process discrepency report into blocks, then look for block headers where overlapping genes are, remove only tRNA models right now for block in readBlocks(discrep, 'DiscRep_'): if 'DiscRep_ALL:OVERLAPPING_GENES::' in block[0] or 'DiscRep_SUB:RNA_CDS_OVERLAP::' in block[0]: for item in block: if item.startswith('genome:tRNA'): gene = item.split('\t')[-1].replace('\n', '') if gene.startswith('DiscRep'): continue tRNA = gene + '_tRNA' exon = gene + '_exon' remove.append(gene) remove.append(tRNA) remove.append(exon) if 'DiscRep_ALL:FIND_OVERLAPPED_GENES::' in block[0]: for item in block: gene = item.split('\t')[-1].replace('\n', '') if gene.startswith('DiscRep'): continue tRNA = gene + '_tRNA' exon = gene + '_exon' remove.append(gene) remove.append(tRNA) remove.append(exon) # there are no errors, then just remove stop/start codons and move on if len(errors) < 1 and len(remove) < 1: with open(output, 'w') as out: with open(input, 'r') as GFF: for line in GFF: if '\tstart_codon\t' in line: continue if '\tstop_codon\t' in line: continue out.write(line) else: with open(val) as validate: for line in validate: if any(x in line for x in errors): mRNA = line.split("ncbi|")[-1].replace(']', '').rstrip() gene = mRNA.replace('evm.model', 'evm.TU') exon = mRNA + '.exon' mRNA = mRNA + ';' remove.append(mRNA) remove.append(gene) remove.append(exon) # this is only picking up tRNAs right now, which "probably" is all that it needs to.....but u never know if any(x in line for x in gapErrors): cols = line.split(' ') if 'Gene:' in cols: gene = line.split('Gene: ')[-1] gene = gene.split(' ')[0] tRNA = gene + '_tRNA' exon = gene + '_exon' remove.append(gene) remove.append(tRNA) remove.append(exon) # make sure no empty strings remove = list([_f for _f in remove if _f]) remove = set(remove) remove_match = re.compile(r'\b(?:%s)+\b' % '|'.join(remove)) with open(output, 'w') as out: with open(input, 'r') as GFF: for line in GFF: if '\tstart_codon\t' in line: continue if '\tstop_codon\t' in line: continue if not remove_match.search(line): if '\tgene\t' in line: line = line.replace('Name=;', '') out.write(line) def antismash_version(input): # choose v4, v5 or v6 parser version = 4 with open(input, 'r') as infile: for rec in SeqIO.parse(infile, 'genbank'): if 'structured_comment' in rec.annotations: if 'antiSMASH-Data' in rec.annotations['structured_comment']: version = int( rec.annotations['structured_comment']['antiSMASH-Data']['Version'].split('.')[0]) break return version def ParseAntiSmash(input, tmpdir, output, annotations): smash_version = antismash_version(input) log.info("Now parsing antiSMASH v{:} results, finding SM clusters".format(smash_version)) BackBone = {} SMCOGs = {} bbSubType = {} bbDomains = {} smProducts = {} backboneCount = 0 clusterCount = 0 cogCount = 0 # parse antismash genbank to get clusters in bed format and slice the record for each cluster prediction with open(output, 'w') as antibed: with open(input, 'r') as input: SeqRecords = SeqIO.parse(input, 'genbank') for rec_num,record in enumerate(SeqRecords): for f in record.features: locusTag, ID, Parent = (None,)*3 if smash_version < 6: baseName = 'Cluster' if '_' in record.id: try: numericalContig = '{}_{}'.format(baseName, int(record.id.rsplit('_', 1)[-1])) except ValueError: if '.' in record.id: numericalContig = '{}_{}'.format(baseName, int(record.id.rsplit('.', 1)[0].rsplit('_', 1)[-1])) else: # just get the numbers numericalContig = '{}_{}'.format(baseName, int(''.join(filter(str.isdigit, record.id)))) else: numericalContig = 'Cluster' # parse v4 differently than version 5 if smash_version == 4: if f.type == "cluster": clusterCount += 1 chr = record.id start = f.location.nofuzzy_start end = f.location.nofuzzy_end clusternum = f.qualifiers.get( "note")[0].replace("Cluster number: ", "") antibed.write("%s\t%s\t%s\tCluster_%s\t0\t+\n" % (chr, start, end, clusternum)) Domains = [] if f.type == "CDS": locusTag, ID, Parent = getID(f, f.type) if not ID: continue ID = ID.replace('ncbi_', '') if f.qualifiers.get('sec_met'): for k, v in list(f.qualifiers.items()): if k == 'sec_met': for i in v: if i.startswith('Type:'): type = i.replace('Type: ', '') backboneCount += 1 BackBone[ID] = type if i.startswith('NRPS/PKS subtype:'): subtype = i.replace( 'NRPS/PKS subtype: ', '') bbSubType[ID] = subtype if i.startswith('NRPS/PKS Domain:'): doms = i.replace( 'NRPS/PKS Domain: ', '') doms = doms.split('. ')[0] Domains.append(doms) bbDomains[ID] = Domains for k, v in list(f.qualifiers.items()): if k == 'note': for i in v: if i.startswith('smCOG:'): COG = i.replace('smCOG: ', '') COG = COG.split(' (')[0] SMCOGs[ID] = COG cogCount += 1 elif not i.startswith('smCOG tree'): notes = i smProducts[ID] = notes elif smash_version >= 5: if f.type == "protocluster": clusterCount += 1 chr = record.id start = f.location.nofuzzy_start # if '<' in start: # start = start.replace('<', '') end = f.location.nofuzzy_end # if '>' in end: # end = end.replace('>', '') clusternum = int(f.qualifiers.get( "protocluster_number")[0]) if smash_version >= 6: antibed.write("{:}\t{:}\t{:}\t{:}_{:}\t0\t+\n".format( chr, start, end, numericalContig, clusternum)) else: antibed.write("{:}\t{:}\t{:}\t{:}.{:}\t0\t+\n".format( chr, start, end, numericalContig, clusternum)) Domains = [] if f.type == "CDS": locusTag, ID, Parent = getID(f, f.type) if not ID: continue ID = ID.replace('ncbi_', '') if f.qualifiers.get('NRPS_PKS'): for k, v in list(f.qualifiers.items()): if k == 'NRPS_PKS': for i in v: if i.startswith('type:'): type = i.replace('type: ', '') backboneCount += 1 BackBone[ID] = type if i.startswith('NRPS_PKS subtype:'): subtype = i.replace( 'NRPS_PKS subtype: ', '') bbSubType[ID] = subtype if i.startswith('Domain:'): doms = i.replace( 'Domain: ', '') doms = doms.split('. ')[0] Domains.append(doms) bbDomains[ID] = Domains for k, v in list(f.qualifiers.items()): if k == 'gene_functions': for i in v: if '(smcogs)' in i: COG = i.split( '(smcogs)')[-1].strip() COG = COG.split(' (')[0] SMCOGs[ID] = COG cogCount += 1 elif k == 'gene_kind': if 'biosynthetic' in v: backboneCount += 1 # if smash_version == 4: log.info("Found %i clusters, %i biosynthetic enyzmes, and %i smCOGs predicted by antiSMASH" % ( clusterCount, backboneCount, cogCount)) # now generate the annotations to add to genome with open(annotations, 'w') as out: # add product annotations - use bbSubType --> BackBone for k, v in natsorted(list(BackBone.items())): ID = k if k in bbSubType: hit = bbSubType.get(k) if hit == 'NRPS': hit = 'Nonribosomal Peptide Synthase (NRPS)' if hit == 'Type I Iterative PKS': hit = 'Type I Iterative Polyketide synthase (PKS)' else: hit = v if hit == 'terpene': hit = 'terpene cyclase' elif hit == 'other': hit = 'putative secondary metabolism biosynthetic enzyme' elif hit == 'indole': hit = 'aromatic prenyltransferase (DMATS family)' elif hit == 'alkaloid' or hit == 'lignan' or hit == 'saccharide' or hit == 'polyketide': hit = 'putative ' + hit + ' biosynthetic cluster' elif hit == 'putative': hit = 'putative uncategorized biosynthetic cluster' elif '-' in hit: hit = 'putative ' + hit + ' biosynthetic cluster' if hit != 'none': out.write("%s\tproduct\t%s\n" % (ID, hit)) # add annots from smProducts for k, v in list(smProducts.items()): ID = k if v != 'none' and not 'BLAST' in v: sys.stdout.write("%s\tproduct\t%s\n" % (ID, v)) # add smCOGs into note section for k, v in list(SMCOGs.items()): ID = k if v != 'none': out.write("%s\tnote\t%s\n" % (ID, v)) return bbDomains, bbSubType, BackBone def GetClusterGenes(input, GFF, genome, annotations): # load clusters into InterLap interClust = bed2interlapNames(input) # load GFF3 into Dictionary Genes = {} Genes = gff2dict(GFF, genome, Genes) # loop through genes and check if in Clusters dictClusters = {} for k, v in natsorted(Genes.items()): if v['type'] == 'mRNA': if v['location'] in interClust[v['contig']]: best_hit = list(interClust[v['contig']].find(v['location']))[0] clusterName = best_hit[2] if not clusterName in dictClusters: dictClusters[clusterName] = v['ids'] else: dictClusters[clusterName] += v['ids'] # write the output file with open(annotations, 'w') as annotout: for k, v in list(dictClusters.items()): for i in v: annotout.write("%s\tnote\tantiSMASH:%s\n" % (i, k)) return dictClusters def splitFASTA(input, outputdir): if not os.path.isdir(outputdir): os.makedirs(outputdir) with open(input, 'r') as InputFasta: SeqRecords = SeqIO.parse(InputFasta, 'fasta') for record in SeqRecords: name = str(record.id) outputfile = os.path.join(outputdir, name+'.fa') with open(outputfile, 'w') as output: SeqIO.write(record, output, 'fasta') def genomeStats(input): from Bio.SeqUtils import GC lengths = [] GeeCee = [] Genes = 0 tRNA = 0 Prots = 0 locus_tag = '' organism = None isolate = None strain = None uniqueIso = None with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: lengths.append(len(record.seq)) GeeCee.append(str(record.seq)) organism = record.annotations['organism'].replace( ' Unclassified.', '') for f in record.features: if f.type == "source": isolate = f.qualifiers.get("isolate", [None])[0] strain = f.qualifiers.get("strain", [None])[0] if f.type == "CDS": Prots += 1 if f.type == "gene": Genes += 1 if Genes == 1: locus_tag = f.qualifiers.get("locus_tag")[ 0].split('_')[0] if f.type == "tRNA": tRNA += 1 if strain: log.info("working on %s %s" % (organism, strain)) uniqueIso = strain.replace(' ', '') elif isolate: log.info("working on %s %s" % (organism, isolate)) uniqueIso = isolate.replace(' ', '') else: log.info("working on %s" % organism) GenomeSize = sum(lengths) LargestContig = max(lengths) ContigNum = len(lengths) AvgContig = int(round(GenomeSize / ContigNum)) pctGC = round(GC("".join(GeeCee)), 2) # now get N50 lengths.sort() nlist = [] for x in lengths: nlist += [x]*x if len(nlist) % 2 == 0: medianpos = int(len(nlist) / 2) N50 = int((nlist[medianpos] + nlist[medianpos-1]) / 2) else: medianpos = int(len(nlist) / 2) N50 = int(nlist[medianpos]) # return values in a list return [organism, uniqueIso, locus_tag, "{0:,}".format(GenomeSize)+' bp', "{0:,}".format(LargestContig)+' bp', "{0:,}".format(AvgContig)+' bp', "{0:,}".format(ContigNum), "{0:,}".format(N50)+' bp', "{:.2f}".format(pctGC)+'%', "{0:,}".format(Genes), "{0:,}".format(Prots), "{0:,}".format(tRNA)] def MEROPS2dict(input): dict = {} with open(input, 'r') as fasta: for line in fasta: if line.startswith('>'): cols = line.split(' ') ID = cols[0].replace('>', '') family = cols[1].replace('\n', '') dict[ID] = family return dict def getEggNogfromNote(input): dict = {} with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: for f in record.features: if f.type == 'CDS': try: ID = f.qualifiers['locus_tag'][0] except KeyError: log.debug("%s has no locus_tag, skipping") continue for k, v in list(f.qualifiers.items()): if k == 'note': notes = v[0].split('; ') for i in notes: if i.startswith('EggNog:'): hit = i.replace('EggNog:', '') if not ID in dict: dict[ID] = hit return dict def getStatsfromNote(input, word, Database): dict = {} meropsDict = MEROPS2dict(os.path.join(Database, 'merops.formatted.fa')) with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: for f in record.features: if f.type == 'CDS': try: ID = f.qualifiers['locus_tag'][0] except KeyError: log.debug("%s has no locus_tag, skipping") continue for k, v in list(f.qualifiers.items()): if k == 'note': notes = v[0].split('; ') for i in notes: if i.startswith(word+':'): hit = i.replace(word+':', '') if hit.startswith('MER'): # change to family name hit = meropsDict.get(hit) if not hit in dict: dict[hit] = [ID] else: dict[hit].append(ID) return dict def getSMBackbones(input): dict = {'NRPS': 0, 'PKS': 0, 'Hybrid': 0} with open(input, 'r') as gbk: for record in SeqIO.parse(gbk, 'genbank'): for f in record.features: if f.type == 'CDS': product = f.qualifiers['product'][0] if not product == 'hypothetical protein': if product == "Hybrid PKS-NRPS": dict['Hybrid'] += 1 if product == "Nonribosomal Peptide Synthase (NRPS)": dict['NRPS'] += 1 if 'Polyketide synthase (PKS)' in product: dict['PKS'] += 1 return dict def parseGOterms(input, folder, genome): with open(os.path.join(folder, 'associations.txt'), 'a') as assoc: with open(os.path.join(folder, genome+'.txt'), 'w') as terms: with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: for f in record.features: if f.type == 'CDS': try: ID = f.qualifiers['locus_tag'][0] except KeyError: log.debug("%s has no locus_tag, skipping") continue GOS = [] for k, v in list(f.qualifiers.items()): if k == 'note': notes = v[0].split('; ') for i in notes: if i.startswith('GO'): go_term = i.split(' ')[1] GOS.append(go_term) if GOS: assoc.write("%s\t%s\n" % (ID, ";".join(GOS))) terms.write("%s\n" % ID) def getStatsfromDbxref(input, word): dict = {} with open(input, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'genbank') for record in SeqRecords: for f in record.features: if f.type == 'CDS': try: ID = f.qualifiers['locus_tag'][0] except KeyError: log.debug("%s has no locus_tag, skipping") continue for k, v in list(f.qualifiers.items()): if k == 'db_xref': for i in v: if i.startswith(word+':'): hit = i.replace(word+':', '') if not hit in dict: dict[hit] = [ID] else: dict[hit].append(ID) return dict def getGBKannotation(input, Database): ''' Function will loop through GBK file pulling out funannotate functional annotation and returning a list of dictionaries for each annotation class ''' # convert merops on the fly, need database meropsDict = MEROPS2dict(os.path.join(Database, 'merops.formatted.fa')) SMs = {'NRPS': 0, 'PKS': 0, 'Hybrid': 0} pfams = {} iprs = {} nogs = {} cogs = {} merops = {} cazys = {} secreted = {} membrane = {} buscos = {} secmet = {} with open(input, 'r') as infile: for record in SeqIO.parse(infile, 'genbank'): for f in record.features: locusTag, ID, Parent = (None,)*3 if f.type == 'CDS': locusTag, ID, Parent = getID(f, f.type) if not ID: continue product = f.qualifiers['product'][0] if product == "Hybrid PKS-NRPS": SMs['Hybrid'] += 1 if product == "Nonribosomal Peptide Synthase (NRPS)": SMs['NRPS'] += 1 if 'Polyketide synthase (PKS)' in product: SMs['PKS'] += 1 for k, v in list(f.qualifiers.items()): if k == 'db_xref': for i in v: if i.startswith('PFAM:'): hit = i.replace('PFAM:', '') if not hit in pfams: pfams[hit] = [ID] else: pfams[hit].append(ID) elif i.startswith('InterPro:'): hit = i.replace('InterPro:', '') if not hit in iprs: iprs[hit] = [ID] else: iprs[hit].append(ID) if k == 'note': notes = v[0].split('; ') for i in notes: if i.startswith('EggNog:'): hit = i.replace('EggNog:', '') if not ID in nogs: nogs[ID] = hit elif i.startswith('BUSCO:'): hit = i.replace('BUSCO:', '') if not hit in buscos: buscos[hit] = [ID] else: buscos[hit].append(ID) elif i.startswith('MEROPS:'): # change to family name hit = i.replace('MEROPS:', '') hit = meropsDict.get(hit) if not hit in merops: merops[hit] = [ID] else: merops[hit].append(ID) elif i.startswith('CAZy:'): hit = i.replace('CAZy:', '') if not hit in cazys: cazys[hit] = [ID] else: cazys[hit].append(ID) elif i.startswith('COG:'): hit = i.replace('COG:', '') hits = hit.split(',') for x in hits: if not x in cogs: cogs[x] = [ID] else: cogs[x].append(ID) elif i.startswith('SECRETED:'): hit = i.replace('SECRETED:', '') if not hit in secreted: secreted[hit] = [ID] else: secreted[hit].append(ID) elif i.startswith('TransMembrane:'): hit = i.replace('TransMembrane:', '') if not hit in membrane: membrane[hit] = [ID] else: membrane[hit].append(ID) elif i.startswith('antiSMASH:'): hit = i.replace('antiSMASH:', '') if not hit in secmet: secmet[hit] = [ID] else: secmet[hit].append(ID) return [pfams, iprs, nogs, buscos, merops, cazys, cogs, secreted, membrane, secmet, SMs] def annotationtable(input, Database, HeaderNames, InterProDict, output): from collections import OrderedDict ''' Function will create a tsv annotation table from GenBank file trying to capture all annotation in a parsable tsv file or something that could be imported into excel ''' def _sortDict(d): return (d[1]['contig'], d[1]['location'][0]) # convert merops on the fly, need database meropsDict = MEROPS2dict(os.path.join(Database, 'merops.formatted.fa')) # get note new/unique note names uniqueNotes = OrderedDict() for x in HeaderNames: if not x in ['BUSCO', 'CAZy', 'COG', 'EggNog', 'SECRETED', 'GO', 'MEROPS', 'TransMembrane']: uniqueNotes[x] = [] # load genbank into funannotate dictionary (required as we need transcript/cds/etc) Genes = {} with open(input, 'r') as gbk: for record in SeqIO.parse(gbk, 'genbank'): for f in record.features: gb_feature_add2dict(f, record, Genes) SeqRecords = SeqIO.to_dict(SeqIO.parse(input, 'genbank')) sGenes = natsorted(Genes.items(), key=_sortDict) sortedGenes = OrderedDict(sGenes) # input should be fully annotation GBK file from funannotate with open(output, 'w') as outfile: header = ['GeneID', 'TranscriptID', 'Feature', 'Contig', 'Start', 'Stop', 'Strand', 'Name', 'Product', 'Alias/Synonyms', 'EC_number', 'BUSCO', 'PFAM', 'InterPro', 'EggNog', 'COG', 'GO Terms', 'Secreted', 'Membrane', 'Protease', 'CAZyme'] header += uniqueNotes.keys() header += ['Notes', 'gDNA', 'mRNA', 'CDS-transcript', 'Translation'] outfile.write('%s\n' % '\t'.join(header)) for k,v in sortedGenes.items(): for i in range(0,len(v['ids'])): # for each new feature, start with empty lists pfams = [] iprs = [] GOS = v['go_terms'][i] nogs = [] cogs = [] merops = [] cazys = [] secreted = [] membrane = [] therest = [] buscos = [] ecnum = [] alias = [] for key,value in uniqueNotes.items(): uniqueNotes[key] = [] # now grab the data for y in v['db_xref'][i]: if y.startswith('PFAM:'): hit = y.replace('PFAM:', '') pfams.append(hit) elif y.startswith('InterPro:'): hit = y.replace('InterPro:', '') # look up description in dictionary desc = InterProDict.get(hit) iprs.append('{:} {:}'.format(hit, desc)) for y in v['gene_synonym']: alias.append(y) for y in v['EC_number'][i]: ecnum.append(y) for y in v['note'][i]: if y.startswith('EggNog:'): hit = y.replace('EggNog:', '') nogs.append(hit) elif y.startswith('BUSCO:'): hit = y.replace('BUSCO:', '') buscos.append(hit) elif y.startswith('MEROPS:'): # change to family name hit = y.replace('MEROPS:', '') if hit in meropsDict: hit = meropsDict.get(hit) merops.append(hit) else: log.error("MEROPS database inconsistency: %s not found" % hit) elif y.startswith('CAZy:'): hit = y.replace('CAZy:', '') cazys.append(hit) elif y.startswith('COG:'): hit = y.replace('COG:', '') hits = hit.split(',') for x in hits: desc = x + ':'+ resources.COGS.get(x) cogs.append(desc) elif y.startswith('SECRETED:'): hit = y.replace('SECRETED:', '') secreted.append(hit) elif y.startswith('TransMembrane:'): hit = y.replace('TransMembrane:', '') membrane.append(hit) elif y.startswith(tuple(uniqueNotes.keys())): try: n = y.split(':')[0] hit = y.split(':', 1)[1] uniqueNotes[n].append(hit) except IndexError: hit = y therest.append(hit) else: # capture everything else hit = y therest.append(hit) # bring together output result = [k, v['ids'][i], v['type'], v['contig'], str(v['location'][0]), str(v['location'][1]), v['strand'], v['name'], v['product'][i],';'.join(alias), ';'.join(ecnum),';'.join(buscos), ';'.join(pfams),';'.join(iprs), ';'.join(nogs),';'.join(cogs), ';'.join(GOS), ';'.join(secreted), ';'.join(membrane), ';'.join(merops), ';'.join(cazys) ] for key,value in uniqueNotes.items(): result.append(';'.join(value)) gDNA = getSeqRegions(SeqRecords, v['contig'], [v['location']]) try: Transcript = str(v['transcript'][i]) except IndexError: if v['cds_transcript'][i]: Transcript = str(v['cds_transcript'][i]) else: print('{:} has no mrna or cds transcript'.format(k)) pass if v['type'] == 'mRNA': CDSTranscript = str(v['cds_transcript'][i]) try: Protein = v['protein'][i] except IndexError: Protein = '' print('ERROR: No amino acid sequence exists for {}'.format(v['ids'][i])) else: CDSTranscript = '' Protein = '' if v['strand'] == '-': gDNA = RevComp(gDNA) Transcript = RevComp(Transcript) CDSTranscript = RevComp(CDSTranscript) result += [';'.join(therest), gDNA, Transcript, CDSTranscript, Protein] # convert any None's to empty string result = ['' if x is None else x for x in result] # write to file outfile.write('%s\n' % '\t'.join(result)) def annotationtableOld(input, Database, output): ''' Function will create a tsv annotation table from GenBank file trying to capture all annotation in a parsable tsv file or something that could be imported into excel ''' # convert merops on the fly, need database meropsDict = MEROPS2dict(os.path.join(Database, 'merops.formatted.fa')) # input should be fully annotation GBK file from funannotate with open(output, 'w') as outfile: header = ['GeneID', 'Feature', 'Contig', 'Start', 'Stop', 'Strand', 'Name', 'Product', 'BUSCO', 'PFAM', 'InterPro', 'EggNog', 'COG', 'GO Terms', 'Secreted', 'Membrane', 'Protease', 'CAZyme', 'Notes', 'Translation'] outfile.write('%s\n' % '\t'.join(header)) for record in SeqIO.parse(input, 'genbank'): Contig = record.id for f in record.features: if f.type in ['tRNA', 'ncRNA', 'rRNA']: ID = f.qualifiers['locus_tag'][0] Start = f.location.nofuzzy_start End = f.location.nofuzzy_end strand = f.location.strand if strand == 1: Strand = '+' elif strand == -1: Strand = '-' try: Product = f.qualifiers['product'][0] except KeyError: Product = "None" result = [ID, f.type, Contig, str(Start), str( End), Strand, '', Product, '', '', '', '', '', '', '', '', '', '', '', ''] outfile.write('%s\n' % '\t'.join(result)) if f.type == 'CDS': ID = f.qualifiers['locus_tag'][0] Start = f.location.nofuzzy_start End = f.location.nofuzzy_end strand = f.location.strand if strand == 1: Strand = '+' elif strand == -1: Strand = '-' try: Product = f.qualifiers['product'][0] except KeyError: Product = 'hypothetical protein' try: Name = f.qualifiers['gene'][0] except KeyError: Name = '' try: Translation = f.qualifiers['translation'][0] except KeyError: Translation = '' pfams = [] iprs = [] GOS = [] nogs = [] cogs = [] merops = [] cazys = [] secreted = [] membrane = [] therest = [] buscos = [] for k, v in list(f.qualifiers.items()): if k == 'db_xref': for i in v: if i.startswith('PFAM:'): hit = i.replace('PFAM:', '') pfams.append(hit) elif i.startswith('InterPro:'): hit = i.replace('InterPro:', '') iprs.append(hit) elif k == 'note': notes = v[0].split('; ') for i in notes: if i.startswith('GO'): go_term = i.split(' ')[1] GOS.append(go_term) elif i.startswith('EggNog:'): hit = i.replace('EggNog:', '') nogs.append(hit) elif i.startswith('BUSCO:'): hit = i.replace('BUSCO:', '') buscos.append(hit) elif i.startswith('MEROPS:'): # change to family name hit = i.replace('MEROPS:', '') if hit in meropsDict: hit = meropsDict.get(hit) merops.append(hit) else: log.error( "MEROPS database inconsistency: %s not found" % hit) elif i.startswith('CAZy:'): hit = i.replace('CAZy:', '') cazys.append(hit) elif i.startswith('COG:'): hit = i.replace('COG:', '') hits = hit.split(',') for x in hits: desc = x + ':' + resources.COGS.get(x) cogs.append(desc) elif i.startswith('SECRETED:'): hit = i.replace('SECRETED:', '') secreted.append(hit) elif i.startswith('TransMembrane:'): hit = i.replace('TransMembrane:', '') membrane.append(hit) else: # capture everything else hit = i therest.append(hit) result = [ID, 'CDS', Contig, str(Start), str(End), Strand, Name, Product, ';'.join(buscos), ';'.join(pfams), ';'.join(iprs), ';'.join( nogs), ';'.join(cogs), ';'.join(GOS), ';'.join(secreted), ';'.join(membrane), ';'.join(merops), ';'.join(cazys), ';'.join(therest), Translation] outfile.write('%s\n' % '\t'.join(result)) def ncbiCheckErrors(error, validation, genename, fixOut): ncbi_error = 0 actual_error = 0 with open(error, 'r') as errors: for line in errors: line = line.strip() if 'ERROR' in line: num = line.split(' ')[0] ncbi_error += int(num) # if errors in summary, then parse validation report, only get errors with gene names if ncbi_error > 0: # see if we can get the gene models that need to be fixed needFixing = {} with open(validation, 'r') as validationFile: for line in validationFile: line = line.strip() if line.startswith('ERROR') and genename in line: actual_error += 1 parts = line.split(' ') for x in parts: if genename in x: ID = x.split('|')[-1] if '-' in ID: ID = ID.split('-')[0] reason = line.split(' FEATURE:')[0] reason = reason.split('] ')[-1] if not ID in needFixing: needFixing[ID] = reason if actual_error > 0: log.info("There are %i gene models that need to be fixed." % actual_error) print('-------------------------------------------------------') with open(fixOut, 'w') as fix: fix.write('#GeneID\tError Message\n') for k, v in natsorted(list(needFixing.items())): fix.write('%s\t%s\n' % (k, v)) print(('%s\t%s' % (k, v))) return actual_error def convert2counts(input): import pandas as pd Counts = [] for i in range(0, len(input)): dict = {} for k, v in list(input[i].items()): dict[k] = len(v) Counts.append(dict) df = pd.DataFrame(Counts) df.fillna(0, inplace=True) # fill in zeros for missing data return df def gb2proteinortho(input, folder, name): gffOut = os.path.join(folder, name+'.gff') FastaOut = os.path.join(folder, name+'.faa') Transcripts = os.path.join(folder, name+'.transcripts.fa') genes = {} with open(input, 'r') as gbk: for record in SeqIO.parse(gbk, 'genbank'): for f in record.features: gb_feature_add2dict(f, record, genes) # now output the files you need with open(gffOut, 'w') as gff: with open(FastaOut, 'w') as fasta: with open(Transcripts, 'w') as transcripts: for k, v in natsorted(list(genes.items())): if v['type'] == 'mRNA': for i, item in enumerate(v['ids']): transcripts.write(">{:} {:} codon_start={:} strand={:}\n{:}\n".format( item, k, v['codon_start'][i], v['strand'], v['cds_transcript'][i])) fasta.write(">%s %s\n%s\n" % (item, k, v['protein'][i])) gff.write("{:}\t{:}\tCDS\t{:}\t{:}\t.\t{:}\t.\tID={:};Parent={:};product={:};\n".format( v['contig'], v['source'], v['location'][0], v['location'][1], v['strand'], item, k, v['product'][i])) def drawStackedBar(panda, type, labels, ymax, output, colors=False): with warnings.catch_warnings(): warnings.simplefilter('ignore') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches import seaborn as sns import numpy as np from funannotate.stackedBarGraph import StackedBarGrapher as StackedBarGrapher # stackedbargraph from summary data SBG = StackedBarGrapher() # labels d_labels = panda.index.values # y-ticks ticks = np.linspace(0, ymax, 6) ticks = list(ticks) nums = [int(x) for x in ticks] vals = [str(x) for x in nums] yticks = [nums, vals] # colors if not colors: color_palette = sns.hls_palette( len(panda.columns), l=.4, s=.8).as_hex() color_palette = [str(x).upper() for x in color_palette] else: color_palette = colors # set up plot sns.set_style('darkgrid') sns.set_context('paper') fig = plt.figure() ax = fig.add_subplot(111) YLabel = "Number of "+type SBG.stackedBarPlot(ax, panda, color_palette, xLabels=panda.index.values, endGaps=True, gap=0.25, xlabel="Genomes", ylabel=YLabel, yTicks=yticks) plt.title(type+" summary") # get the legend legends = [] i = 0 for column in panda.columns: legends.append(mpatches.Patch( color=color_palette[i], label=panda.columns.values[i] + ": " + labels.get(panda.columns.values[i]))) i += 1 lgd = ax.legend(handles=legends, fontsize=6, loc='upper left', bbox_to_anchor=(1.02, 1), borderaxespad=0) plt.ylim([0, ymax]) # set the font size - i wish I knew how to do this proportionately.....but setting to something reasonable. for item in ax.get_xticklabels(): item.set_fontsize(8) # setup the plot fig.subplots_adjust(bottom=0.4) fig.savefig(output, format='pdf', bbox_extra_artists=( lgd,), bbox_inches='tight') plt.close(fig) def drawHeatmap(df, color, output, labelsize, annotate): with warnings.catch_warnings(): warnings.simplefilter('ignore') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns # get size of table width = len(df.columns) / 2 height = len(df.index) / 4 fig, ax = plt.subplots(figsize=(width, height)) cbar_ax = fig.add_axes(shrink=0.4) if annotate: sns.heatmap(df, linewidths=0.5, cmap=color, ax=ax, fmt="d", annot_kws={"size": 4}, annot=True) else: sns.heatmap(df, linewidths=0.5, cmap=color, ax=ax, annot=False) plt.yticks(rotation=0) plt.xticks(rotation=90) for item in ax.get_xticklabels(): item.set_fontsize(8) for item in ax.get_yticklabels(): item.set_fontsize(int(labelsize)) fig.savefig(output, format='pdf', dpi=1000, bbox_inches='tight') plt.close(fig) def donutplot(df, LongName, output, colors=False): with warnings.catch_warnings(): warnings.simplefilter('ignore') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches import seaborn as sns # create data longnames = [] for x in df.columns.tolist(): if x in LongName: longnames.append(LongName.get(x)) else: longnames.append(x) names = df.columns.tolist() data = df.values.tolist() species = df.index.values # get size of table categories = len(df.columns) total = len(df.index) Rows = total // 2 Rows += total % 2 Position = list(range(1, total+1)) # get colors figured out if not colors: color_palette = resources.pref_colors else: color_palette = colors # draw figure if len(species) < 3: fig = plt.figure(1, figsize=(8, 4)) else: fig = plt.figure(1, figsize=(8, 8)) for k in range(total): ax = fig.add_subplot(Rows, 2, Position[k]) # Create a circle for the center of the plot my_circle = plt.Circle((0, 0), 0.7, color='white') plt.pie(data[0], labels=names, colors=color_palette) p = plt.gcf() p.gca().add_artist(my_circle) plt.title(species[k]) patches = [mpatches.Patch(color=color_palette[i], label="{:s}".format( longnames[i])) for i in range(len(longnames))] plt.legend(handles=patches, bbox_to_anchor=(1, 0.5), bbox_transform=fig.transFigure, loc="center left", ncol=1) fig.savefig(output, format='pdf', dpi=1000, bbox_inches='tight') plt.close(fig) def drawbarplot(df, output): with warnings.catch_warnings(): warnings.simplefilter('ignore') import matplotlib.pyplot as plt import seaborn as sns # num = len(df.columns) + 1 sns.set(style="darkgrid") fig = plt.figure() # colors if len(df) > len(resources.pref_colors): colorplot = sns.husl_palette(len(df), l=.5).as_hex() colorplot = [str(x).upper() for x in colorplot] else: colorplot = resources.pref_colors[:len(df)] ax = sns.barplot(data=df, palette=colorplot) plt.xlabel('Genomes') plt.ylabel('Secreted Proteins') plt.xticks(rotation=90) fig.savefig(output, format='pdf', dpi=1000, bbox_inches='tight') plt.close(fig) def distance2mds(df, distance, type, output): import numpy as np with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn.metrics.pairwise import pairwise_distances from sklearn.manifold import MDS import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns # run distance metric on matrix and then plot using NMDS num = len(df.index) data = np.array(df).astype(int) bc_dm = pairwise_distances(data, metric=distance) mds = MDS(n_components=2, metric=False, max_iter=999, dissimilarity='precomputed', n_init=10, verbose=0) result = mds.fit(bc_dm) coords = result.embedding_ stress = 'stress=' + '{0:.4f}'.format(result.stress_) # get axis information and make square plus some padding xcoords = abs(maxabs(coords[:, 0])) + 0.1 ycoords = abs(maxabs(coords[:, 1])) + 0.1 # setup plot fig = plt.figure() # colors if len(df) > len(resources.pref_colors): colorplot = sns.husl_palette(len(df), l=.5).as_hex() colorplot = [str(x).upper() for x in colorplot] else: colorplot = resources.pref_colors[:len(df)] for i in range(0, num): plt.plot(coords[i, 0], coords[i, 1], 'o', markersize=9, color=colorplot[i], label=df.index.values[i]) plt.xlabel('NMDS axis 1') plt.ylabel('NMDS axis 2') plt.ylim(-ycoords, ycoords) plt.xlim(-xcoords, xcoords) ''' if num < 13: #if number too large, don't plot ''' plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('NMDS analysis of '+type+' domains') plt.annotate(stress, xy=(1, 0), xycoords='axes fraction', fontsize=12, ha='right', va='bottom') fig.savefig(output, format='pdf', dpi=1000, bbox_inches='tight') plt.close(fig) def ReciprocalBlast(filelist, protortho, cpus): ''' function to run reciprocal diamond blast for generating proteinortho input ''' # generate dmnd databases for each input for x in filelist: base = os.path.basename(x) cmd = ['diamond', 'makedb', '--in', x, '--db', base+'.dmnd'] if not checkannotations(os.path.join(protortho, base+'.dmnd')): runSubprocess(cmd, protortho, log) for p in itertools.permutations(filelist, 2): query = p[0] target = p[1] db = os.path.basename(target)+'.dmnd' outname = target+'.vs.'+query+'.bla' cmd = ['diamond', 'blastp', '--query', query, '--db', db, '--outfmt', '6', '--out', outname, '--evalue', '1e-5', '--more-sensitive', '--threads', str(cpus)] if not checkannotations(os.path.join(protortho, outname)): runSubprocess4(cmd, protortho, log) db = os.path.basename(query)+'.dmnd' outname = query+'.vs.'+target+'.bla' cmd = ['diamond', 'blastp', '--query', target, '--db', db, '--outfmt', '6', '--out', outname, '--evalue', '1e-5', '--more-sensitive', '--threads', str(cpus)] if not checkannotations(os.path.join(protortho, outname)): runSubprocess4(cmd, protortho, log) db = os.path.basename(target)+'.dmnd' outname = target+'.vs.'+target+'.bla' cmd = ['diamond', 'blastp', '--query', target, '--db', db, '--outfmt', '6', '--out', outname, '--evalue', '1e-5', '--more-sensitive', '--threads', str(cpus)] if not checkannotations(os.path.join(protortho, outname)): runSubprocess4(cmd, protortho, log) db = os.path.basename(query)+'.dmnd' outname = query+'.vs.'+query+'.bla' cmd = ['diamond', 'blastp', '--query', query, '--db', db, '--outfmt', '6', '--out', outname, '--evalue', '1e-5', '--more-sensitive', '--threads', str(cpus)] if not checkannotations(os.path.join(protortho, outname)): runSubprocess4(cmd, protortho, log) def singletons(poff, name): with open(poff, 'r') as input: count = 0 for line in input: line = line.replace('\n', '') if line.startswith('#'): header = line species = header.split('\t')[3:] i = species.index(name.replace(' ', '_')) + 3 continue col = line.split('\t') if col[0] == '1' and col[i] != '*': count += 1 return count def orthologs(poff, name): with open(poff, 'r') as input: count = 0 for line in input: line = line.replace('\n', '') if line.startswith('#'): header = line species = header.split('\t')[3:] i = species.index(name.replace(' ', '_')) + 3 continue col = line.split('\t') if col[0] != '1' and col[i] != '*': count += 1 return count def iprTSV2dict(file, terms): iprDict = {} with io.open(file, 'r', encoding="utf-8") as infile: for line in infile: if line.startswith('ENTRY_AC') or line.startswith('\n'): continue line = line.rstrip() entry, type, name = line.split('\t') if not entry in iprDict: iprDict[entry] = name return iprDict def iprxml2dict(xmlfile, terms): import xml.etree.cElementTree as cElementTree iprDict = {} for event, elem in cElementTree.iterparse(xmlfile): if elem.tag == 'interpro': ID = elem.attrib['id'] if ID in terms: for x in elem.getchildren(): if x.tag == 'name': description = x.text iprDict[ID] = description elem.clear() else: elem.clear() return iprDict def pfam2dict(file): pfamDict = {} with open(file, 'r') as input: for line in input: try: line = line.decode('utf-8').rstrip() except AttributeError: line = line.rstrip() if line.startswith('PF'): # just check to be sure cols = line.split('\t') ID = cols[0] desc = cols[4] pfamDict[ID] = desc return pfamDict def flipKeyValues(input): flipped = {} for k, v in list(input.items()): for y in v: if not y in flipped: flipped[y] = k return flipped def dictFlip(input): # flip the list of dictionaries outDict = {} for x in input: for k, v in natsorted(iter(x.items())): for i in v: if i in outDict: outDict[i].append(k) else: outDict[i] = [k] return outDict def busco_dictFlip(input): # flip the list of dictionaries output = [] for x in input: outDict = {} for k, v in natsorted(iter(x.items())): for i in v: if i in outDict: outDict[i].append(k) else: outDict[i] = [k] output.append(outDict) return output def dictFlipLookup(input, lookup): outDict = {} for x in input: for k, v in natsorted(iter(x.items())): # lookup description in another dictionary if not lookup.get(k) is None: result = k+': '+lookup.get(k) else: result = k+': No description' result = result.encode('utf-8') for i in v: if i in outDict: outDict[i].append(str(result)) else: outDict[i] = [str(result)] return outDict def copyDirectory(src, dest, overwrite=False): import shutil if overwrite: if os.path.isdir(dest): shutil.rmtree(dest) try: shutil.copytree(src, dest) # Directories are the same except shutil.Error as e: log.debug('Directory not copied. Error: %s' % e) # Any error saying that the directory doesn't exist except OSError as e: log.debug('Directory not copied. Error: %s' % e) def download_buscos(name, Database): if name in resources.busco_links: log.info("Downloading %s busco models" % name) address = resources.busco_links.get(name) filename = address.split('/')[-1] if name == 'fungiv1': foldername = 'fungi' else: foldername = filename.split('.')[0] cmd = ['wget', '-c', '--tries=0', '--read-timeout=20', address] runSubprocess(cmd, '.', log) cmd = ['tar', '-zxf', filename] runSubprocess(cmd, '.', log) copyDirectory(os.path.abspath(foldername), os.path.join(Database, name)) shutil.rmtree(foldername) os.remove(filename) else: log.error("%s not a valid BUSCO database" % name) validBusco = list(resources.busco_links.keys()) log.error("Valid BUSCO DBs: %s" % (', '.join(validBusco))) sys.exit(1) def fasta2dict(Fasta): answer = dict() with open(Fasta, 'r') as gbk: SeqRecords = SeqIO.parse(gbk, 'fasta') for record in SeqRecords: if record.id in answer: print("WARNING - duplicate key!") else: answer[record.id] = str(record.seq) return answer def ortho2phylogeny(folder, df, num, dict, cpus, bootstrap, tmpdir, outgroup, sp_file, name, sc_buscos, ml_method): import pylab from Bio import Phylo from Bio.Phylo.Consensus import get_support if outgroup: # load species fasta ids into dictionary OutGroup = {} with open(sp_file, 'r') as sp: for rec in SeqIO.parse(sp, 'fasta'): OutGroup[rec.id] = rec.seq # single copy orthologs are in a dataframe, count and then randomly select num_species = len(df.columns) species = df.columns.values if len(df) == 0: log.error("0 single copy BUSCO orthologs found, skipping phylogeny") return if len(df) < int(num): number = len(df) log.info( "Found %i single copy BUSCO orthologs, will use all to infer phylogeny" % (len(df))) subsampled = df else: number = int(num) log.info("Found %i single copy BUSCO orthologs, will randomly select %i to infer phylogeny" % ( len(df), number)) subsampled = df.sample(n=number) if outgroup: # passed a list to extract from parent script busco_list = sc_buscos # since you checked for BUSCO id across all previously, loop through first set and print BUSCOs to file with open(os.path.join(tmpdir, 'phylogeny.buscos.used.txt'), 'w') as busco_out: with open(os.path.join(tmpdir, 'phylogeny.concat.fa'), 'w') as proteinout: if outgroup: proteinout.write(">%s\n" % name) for y in busco_list: proteinout.write("%s" % (OutGroup.get(y))) proteinout.write('\n') for i in range(0, num_species): proteinout.write(">%s\n" % species[i]) proteins = fasta2dict(os.path.join(folder, species[i]+'.faa')) for row in subsampled[species[i]].items(): proteinout.write("%s" % proteins.get(row[1])) busco_out.write("%s\t%s\n" % (dict[i].get(row[1]), row[1])) proteinout.write('\n') cmd = ['mafft', '--anysymbol', '--quiet', os.path.join(tmpdir, 'phylogeny.concat.fa')] runSubprocess2(cmd, '.', log, os.path.join(tmpdir, 'phylogeny.mafft.fa')) cmd = ['trimal', '-in', os.path.join(tmpdir, 'phylogeny.mafft.fa'), '-out', os.path.join( tmpdir, 'phylogeny.trimal.phylip'), '-automated1', '-phylip'] runSubprocess(cmd, '.', log) if ml_method == 'raxml': cmd = ['raxmlHPC-PTHREADS', '-T', str(cpus), '-f', 'a', '-m', 'PROTGAMMAAUTO', '-p', '12345', '-x', '12345', '-#', str(bootstrap), '-s', 'phylogeny.trimal.phylip', '-n', 'nwk'] if outgroup: cmd = cmd + ['-o', name] treefile = os.path.join(tmpdir, 'RAxML_bootstrap.nwk') runSubprocess(cmd, tmpdir, log) # parse with biopython and draw trees = list(Phylo.parse(treefile, 'newick')) best = Phylo.read(os.path.join(tmpdir, 'RAxML_bestTree.nwk'), 'newick') support_tree = get_support(best, trees) Phylo.draw(support_tree, do_show=False) pylab.axis('off') pylab.savefig(os.path.join(tmpdir, 'ML.phylogeny.pdf'), format='pdf', bbox_inches='tight', dpi=1000) else: # run iqtree as faster and better than raxml in initial testing cmd = ['iqtree', '-s', 'phylogeny.trimal.phylip', '-nt', 'AUTO', '-ntmax', str(cpus), '-seed', '12345', '-bb', '1000'] if outgroup: cmd = cmd + ['-o', name] runSubprocess(cmd, tmpdir, log) treefile = os.path.join(tmpdir, 'phylogeny.trimal.phylip.treefile') best = Phylo.read(treefile, 'newick') Phylo.draw(best, do_show=False) pylab.axis('off') pylab.savefig(os.path.join(tmpdir, 'ML.phylogeny.pdf'), format='pdf', bbox_inches='tight', dpi=1000) def getTrainResults(input): with open(input, 'r') as train: for line in train: try: line = line.decode('utf-8') except AttributeError: pass line = line.rstrip() if line.startswith('nucleotide level'): line = line.replace(' ', '') values1 = line.split('|') # get [1] and [2] if line.startswith('exon level'): line = line.replace(' ', '') # get [6] and [7] values2 = line.split('|') if line.startswith('gene level'): line = line.replace(' ', '') values3 = line.split('|') # get [6] and [7] return (float(values1[1]), float(values1[2]), float(values2[6]), float(values2[7]), float(values3[6]), float(values3[7])) def count_multi_CDS_genes(input, filterlist): # take funannotate annotation dictionary and return number of genes with more than one CDS counter = 0 counter_inList = 0 for k, v in natsorted(list(input.items())): if len(v['CDS'][0]) > 1: counter += 1 if k in filterlist: counter_inList += 1 return len(input), counter, len(filterlist), counter_inList def selectTrainingModels(input, fasta, genemark_gtf, output): from collections import OrderedDict ''' function to take a GFF3 file and filter the gene models so they are non-overalpping also sort the models by number of exons, the more the better. ''' def _sortDict(d): return (len(d[1]['CDS'][0])) # load gene models into funannotate structured dictionary gene_inter = defaultdict(InterLap) Genes = {} Genes = gff2dict(input, fasta, Genes) # add to InterLap output proteins proteins = 'augustus.training.proteins.fa' ignoreList = [] keeperList = getGenesGTF(genemark_gtf) # check number of multi-cds genes countGenes, countGenesCDS, countKeeper, countKeeperCDS = count_multi_CDS_genes( Genes, keeperList) log.debug('{:,} PASA genes; {:,} have multi-CDS; {:,} from filterGeneMark; {:,} have multi-CDS'.format( countGenes, countGenesCDS, countKeeper, countKeeperCDS)) multiCDScheck, keeperCheck = (False,)*2 if countKeeper >= 200: keeperCheck = True if keeperCheck: if countKeeperCDS >= 200: multiCDScheck = True else: if countGenesCDS >= 200: multiCDScheck = True log.debug('filterGeneMark GTF filter set to {:}; require genes with multiple CDS set to {:}'.format( keeperCheck, multiCDScheck)) with open(proteins, 'w') as protout: for k, v in natsorted(list(Genes.items())): if keeperCheck and not k in keeperList: ignoreList.append(k) continue if multiCDScheck and len(v['CDS'][0]) < 2: ignoreList.append(k) continue # add to interlap object and write protein out gene_inter[v['contig']].add( (v['location'][0], v['location'][1], v['strand'], k, len(v['CDS'][0]))) protout.write('>%s___%i\n%s\n' % (k, len(v['CDS'][0]), v['protein'][0])) # make sure gene models are unique, so do pairwise diamond search @ 80% identity cmd = ['diamond', 'makedb', '--in', 'augustus.training.proteins.fa', '--db', 'aug_training.dmnd'] runSubprocess4(cmd, '.', log) cmd = ['diamond', 'blastp', '--query', 'augustus.training.proteins.fa', '--db', 'aug_training.dmnd', '--more-sensitive', '-o', 'aug.blast.txt', '-f', '6', 'qseqid', 'sseqid', 'pident', '--query-cover', '80', '--subject-cover', '80', '--id', '80', '--no-self-hits'] runSubprocess4(cmd, '.', log) blast_results = [] with open('aug.blast.txt', 'r') as blast: for line in blast: line = line.rstrip() line = line.replace('___', '\t') blast_results.append(line.split('\t')) sortedBlast = natsorted( blast_results, key=lambda x: int(x[1]), reverse=True) blastignore = [] for hit in sortedBlast: if hit[0] in blastignore or hit[2] in blastignore: continue if int(hit[1]) >= int(hit[3]): if not hit[2] in blastignore: blastignore.append(hit[2]) else: if not hit[0] in blastignore: blastignore.append(hit[0]) log.debug('{:,} models fail blast identity threshold'.format( len(blastignore))) SafeRemove('augustus.training.proteins.fa') SafeRemove('aug_training.dmnd') SafeRemove('aug.blast.txt') # now return cleaned genemark GTF file finalIgnoreList = [] for x in ignoreList: if not x in finalIgnoreList: finalIgnoreList.append(x) for y in blastignore: if not y in finalIgnoreList: finalIgnoreList.append(y) log.debug('{:,} models will be ignored for training Augustus'.format( len(finalIgnoreList))) GenesPass = {} for k, v in natsorted(list(Genes.items())): if not k in finalIgnoreList and not k in GenesPass: loc = sorted([v['location'][0], v['location'][1]]) if loc in gene_inter[v['contig']]: hits = list(gene_inter[v['contig']].find(loc)) sortedHits = sorted( hits, key=lambda x: int(x[4]), reverse=True) validHits = [] for y in sortedHits: if not y[3] in finalIgnoreList and y[3] != k: validHits.append(y) if len(validHits) > 0: if not validHits[0][3] in GenesPass: GenesPass[validHits[0][3]] = Genes.get(validHits[0][3]) else: GenesPass[k] = v # now sort dictionary number of exons sGenes = sorted(iter(GenesPass.items()), key=_sortDict, reverse=True) sortedGenes = OrderedDict(sGenes) log.info("{:,} of {:,} models pass training parameters".format( len(sortedGenes), len(Genes))) # x = dict(itertools.islice(sortedGenes.items(), 0, 2500)) final = {} for i, (k, v) in enumerate(natsorted(list(sortedGenes.items()))): v['ids'] = ['g_'+str(i+1)+'-T1'] final['g_'+str(i+1)] = v dict2gff3noUTRs(final, output) return len(final) def getGenesGTF(input): genes = [] with open(input, 'r') as infile: for line in infile: if not line.startswith('\n') or not line.startswith('#'): line = line.rstrip() info = line.split('\t')[-1] attributes = info.split(';') ID = None for x in attributes: if x.startswith('gene_id'): tmp = x.replace('gene_id ', '') ID = tmp.replace('"', '') if ID: if not ID in genes: genes.append(ID) return genes def trainAugustus(AUGUSTUS_BASE, train_species, trainingset, genome, outdir, cpus, num_training, optimize, config_path): if which('randomSplit.pl'): RANDOMSPLIT = 'randomSplit.pl' else: RANDOMSPLIT = os.path.join(AUGUSTUS_BASE, 'scripts', 'randomSplit.pl') if which('optimize_augustus.pl'): OPTIMIZE = 'optimize_augustus.pl' else: OPTIMIZE = os.path.join( AUGUSTUS_BASE, 'scripts', 'optimize_augustus.pl') if which('new_species.pl'): NEW_SPECIES = 'new_species.pl' else: NEW_SPECIES = os.path.join(AUGUSTUS_BASE, 'scripts', 'new_species.pl') aug_cpus = '--cpus='+str(cpus) species = '--species='+train_species aug_log = os.path.join(outdir, 'logfiles', 'augustus_training.log') TrainSet = os.path.abspath(trainingset) onlytrain = '--onlytrain='+TrainSet+'.train' testtrain = TrainSet+'.test' trainingdir = os.path.join( outdir, 'predict_misc', 'tmp_opt_'+train_species) myENV = os.environ myENV['AUGUSTUS_CONFIG_PATH'] = config_path with open(aug_log, 'w') as logfile: if not CheckAugustusSpecies(train_species): subprocess.call([NEW_SPECIES, '--AUGUSTUS_CONFIG_PATH={:}'.format( config_path), species], stdout=logfile, stderr=logfile) # run etraining again to only use best models from EVM for training p1 = subprocess.Popen(['etraining', species, TrainSet], cwd=os.path.join(outdir, 'predict_misc'), stderr=logfile, stdout=logfile, env=dict(myENV)) p1.communicate() # split off num_training models for testing purposes subprocess.call([RANDOMSPLIT, TrainSet, str(num_training)], cwd=os.path.join(outdir, 'predict_misc')) if os.path.isfile(os.path.join(outdir, 'predict_misc', TrainSet+'.train')): with open(os.path.join(outdir, 'predict_misc', 'augustus.initial.training.txt'), 'w') as initialtraining: subprocess.call(['augustus', '--AUGUSTUS_CONFIG_PATH={:}'.format( config_path), species, TrainSet+'.test'], stdout=initialtraining, cwd=os.path.join(outdir, 'predict_misc')) train_results = getTrainResults(os.path.join( outdir, 'predict_misc', 'augustus.initial.training.txt')) trainTable = [['Feature', 'Specificity', 'Sensitivity'], ['nucleotides', '{:.1%}'.format( train_results[0]), '{:.1%}'.format(train_results[1])], ['exons', '{:.1%}'.format( train_results[2]), '{:.1%}'.format(train_results[3])], ['genes', '{:.1%}'.format( train_results[4]), '{:.1%}'.format(train_results[5])] ] log.info('Augustus initial training results:') train_table = print_table(trainTable, return_str=True) sys.stderr.write(train_table) if optimize: # now run optimization subprocess.call([OPTIMIZE, '--AUGUSTUS_CONFIG_PATH={:}'.format(config_path), species, aug_cpus, onlytrain, testtrain], cwd=os.path.join(outdir, 'predict_misc'), stderr=logfile, stdout=logfile) # run etraining again p2 = subprocess.Popen(['etraining', species, TrainSet], cwd=os.path.join( outdir, 'predict_misc'), stderr=logfile, stdout=logfile, env=dict(myENV)) p2.communicate() with open(os.path.join(outdir, 'predict_misc', 'augustus.final.training.txt'), 'w') as finaltraining: subprocess.call(['augustus', '--AUGUSTUS_CONFIG_PATH={:}'.format( config_path), species, TrainSet+'.test'], stdout=finaltraining, cwd=os.path.join(outdir, 'predict_misc')) train_results = getTrainResults(os.path.join( outdir, 'predict_misc', 'augustus.final.training.txt')) trainTable = [['Feature', 'Specificity', 'Sensitivity'], ['nucleotides', '{:.1%}'.format( train_results[0]), '{:.1%}'.format(train_results[1])], ['exons', '{:.1%}'.format( train_results[2]), '{:.1%}'.format(train_results[3])], ['genes', '{:.1%}'.format( train_results[4]), '{:.1%}'.format(train_results[5])] ] log.info('Augustus optimized training results:') train_table = print_table(trainTable, return_str=True) sys.stderr.write(train_table) # clean up tmp folder shutil.rmtree(trainingdir) else: if train_results[4] < 0.50: log.info( "Accuracy seems low, you can try to improve by passing the --optimize_augustus option.") else: log.error("AUGUSTUS training failed, check logfiles") sys.exit(1) def sortList(input, col): return natsorted(input, key=operator.itemgetter(col)) def sortHints(input, output): data = [] with open(input, 'r') as infile: for line in infile: line = line.rstrip() data.append(line.split('\t')) # replicate this: sort -n -k 4,4 | sort -s -n -k 5,5 | sort -s -n -k 3,3 | sort -s -k 1,1 sort1 = sortList(data, 3) sort2 = sortList(sort1, 4) sort3 = sortList(sort2, 2) sort4 = sortList(sort3, 0) with open(output, 'w') as sort_out: for line in sort4: sort_out.write('%s\n' % '\t'.join(line)) def checkgoatools(input): with open(input, 'r') as goatools: count = -1 result = False headercount = 0 for line in goatools: count += 1 if line.startswith('GO\tNS') or line.startswith('#'): headercount = count if line.startswith('GO:'): result = True return (result, headercount) def translatemRNA(input, output): from Bio.SeqIO.FastaIO import SimpleFastaParser with open(output, 'w') as outfile: with open(input, 'r') as fasta: for header, seq in SimpleFastaParser(fasta): codon_start = 1 for x in header.split(' '): if x.startswith('codon_start='): codon_start = int( x.replace('codon_start=', '').rstrip()) # transcripts should already be in proper orientation protSeq = translate(seq, '+', codon_start-1) outfile.write('>{:}\n{:}\n'.format(header, protSeq)) def alignMAFFT(input, output): FNULL = open(os.devnull, 'w') with open(output, 'w') as outfile: subprocess.call(['mafft', '--anysymbol', '--quiet', input], stderr=FNULL, stdout=outfile) def align2Codon(alignment, transcripts, output): FNULL = open(os.devnull, 'w') with open(output, 'w') as outfile: subprocess.call(['perl', os.path.join(parentdir, 'aux_scripts', 'pal2nal.pl'), alignment, transcripts, '-output', 'fasta'], stderr=FNULL, stdout=outfile) if getSize(output) < 1: os.remove(output) log.debug('dNdS Error: pal2nal failed for %s' % alignment) def counttaxa(input): ct = 0 with open(input, 'r') as tree: line = tree.readline() ct = line.count(',')+1 return ct def getMatchFileName(pattern, directory): result = None for f in os.listdir(directory): if pattern in f: result = os.path.join(directory, f) return result def drawPhyMLtree(fasta, tree): FNULL = open(os.devnull, 'w') fc = countfasta(fasta) # need to convert to phylip format base = os.path.basename(fasta).split('.')[0] dir = os.path.dirname(fasta) tmp1 = os.path.join(dir, base+'.draw2tree.phylip') subprocess.call(['trimal', '-in', fasta, '-out', tmp1, '-phylip']) # draw tree subprocess.call(['phyml', '-i', tmp1], stdout=FNULL, stderr=FNULL) tmp2 = getMatchFileName(base+'.draw2tree.phylip_phyml_tree', dir) # check that num taxa in tree = input tc = counttaxa(tmp2) if tc != fc: # something failed... log.debug('dNdS Error: phyml tree failed for %s' % fasta) # retry subprocess.call(['trimal', '-in', fasta, '-out', tmp1, '-phylip']) subprocess.call(['phyml', '-i', tmp1], stdout=FNULL, stderr=FNULL) # rename and clean os.rename(tmp2, tree) SafeRemove(tmp1) stats = getMatchFileName(base+'.draw2tree.phylip_phyml_stats', dir) SafeRemove(stats) def simplestTreeEver(fasta, tree): with open(tree, 'w') as outfile: with open(fasta, 'r') as input: ids = [] for rec in SeqIO.parse(input, 'fasta'): ids.append(rec.id) outfile.write('(%s,%s);' % (ids[0], ids[1])) def rundNdSexhaustive(folder): # setup intermediate files tmpdir = os.path.dirname(folder) name = os.path.basename(folder) transcripts = os.path.join(tmpdir, name+'.transcripts.fa') prots = os.path.join(tmpdir, name+'.proteins.fa') aln = os.path.join(tmpdir, name+'.aln') codon = os.path.join(tmpdir, name+'.codon.aln') tree = os.path.join(tmpdir, name+'.tree') log = os.path.join(tmpdir, name+'.log') finallog = os.path.join(tmpdir, name, name+'.log') if not checkannotations(finallog): num_seqs = countfasta(transcripts) # Translate to protein space translatemRNA(transcripts, prots) # align protein sequences alignMAFFT(prots, aln) # convert to codon alignment align2Codon(aln, transcripts, codon) if checkannotations(codon): if num_seqs > 2: # now generate a tree using phyml drawPhyMLtree(codon, tree) else: simplestTreeEver(transcripts, tree) # now run codeml through ete3 etecmd = ['ete3', 'evol', '--alg', os.path.abspath(codon), '-t', os.path.abspath( tree), '--models', 'M0', 'M1', 'M2', 'M7', 'M8', '-o', name, '--clear_all', '--codeml_param', 'cleandata,1'] with open(log, 'w') as logfile: logfile.write('\n%s\n' % ' '.join(etecmd)) subprocess.call(etecmd, cwd=tmpdir, stdout=logfile, stderr=logfile) # clean up for file in os.listdir(tmpdir): if file.startswith(name+'.'): os.rename(os.path.join(tmpdir, file), os.path.join(tmpdir, name, file)) def rundNdSestimate(folder): # setup intermediate files tmpdir = os.path.dirname(folder) name = os.path.basename(folder) transcripts = os.path.join(tmpdir, name+'.transcripts.fa') prots = os.path.join(tmpdir, name+'.proteins.fa') aln = os.path.join(tmpdir, name+'.aln') codon = os.path.join(tmpdir, name+'.codon.aln') tree = os.path.join(tmpdir, name+'.tree') log = os.path.join(tmpdir, name+'.log') finallog = os.path.join(tmpdir, name, name+'.log') if not checkannotations(finallog): num_seqs = countfasta(transcripts) # Translate to protein space translatemRNA(transcripts, prots) # align protein sequences alignMAFFT(prots, aln) # convert to codon alignment align2Codon(aln, transcripts, codon) if checkannotations(codon): if num_seqs > 2: # now generate a tree using phyml drawPhyMLtree(codon, tree) else: simplestTreeEver(transcripts, tree) # now run codeml through ete3 etecmd = ['ete3', 'evol', '--alg', os.path.abspath(codon), '-t', os.path.abspath( tree), '--models', 'M0', '-o', name, '--clear_all', '--codeml_param', 'cleandata,1'] with open(log, 'w') as logfile: logfile.write('\n%s\n' % ' '.join(etecmd)) subprocess.call(etecmd, cwd=tmpdir, stdout=logfile, stderr=logfile) # clean up for file in os.listdir(tmpdir): if file.startswith(name+'.'): os.rename(os.path.join(tmpdir, file), os.path.join(tmpdir, name, file)) def get_subdirs(a_dir): return [os.path.join(a_dir, name) for name in os.listdir(a_dir) if os.path.isdir(os.path.join(a_dir, name))] def get_subdirs2(a_dir): return [name for name in os.listdir(a_dir) if os.path.isdir(os.path.join(a_dir, name))] def parsedNdS(folder): results = {} hits = get_subdirs2(folder) for x in hits: finallog = os.path.join(folder, x, x+'.log') # parse logfile to get omega dnds = 'NA' m1m2p = 'NA' m7m8p = 'NA' if os.path.isfile(finallog): with open(finallog, 'r') as input: for line in input: line = line.strip() if 'M7' in line and 'M8' in line and '|' in line: m7m8p = line.split('|')[-1].strip() m7m8p = m7m8p.replace('*', '') m7m8p = '{0:.5f}'.format(float(m7m8p)) elif 'M1' in line and 'M2' in line and '|' in line: m1m2p = line.split('|')[-1].lstrip() m1m2p = m1m2p.replace('*', '') m1m2p = '{0:.5f}'.format(float(m1m2p)) elif line.startswith('- Model M0'): nextline = next(input) dnds = nextline.split('tree: ')[1].rstrip() results[x] = (dnds, m1m2p, m7m8p) return results def chunkIt(seq, num): avg = len(seq) / float(num) out = [] last = 0.0 while last < len(seq): out.append(seq[int(last):int(last + avg)]) last += avg return out def getBlastDBinfo(input): ''' function to return a tuple of info using blastdbcmd tuple: (name, date, #sequences) ''' cmd = ['blastdbcmd', '-info', '-db', input] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() if stderr: print((stderr.split('\n')[0])) results = stdout.split('\n\n') results = [x for x in results if x] # parse results which are now in list, look for starts with Database and then Date Name, Date, NumSeqs = (None,)*3 for x in results: if x.startswith('Database:'): hit = x.split('\n\t') Name = hit[0].replace('Database: ', '') NumSeqs = hit[1].split(' sequences;')[0].replace(',', '') if x.startswith('Date:'): Date = x.split('\t')[0].replace('Date: ', '') return (Name, Date, NumSeqs) HEADER = ''' <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags --> <meta name="funannotate comparative genomics output" content=""> <meta name="<NAME>" content=""> <title>Funannotate</title> <!-- Bootstrap core CSS --> <link href="css/bootstrap.min.css" rel="stylesheet"> <!-- Custom styles for this template --> <link href="css/starter-template.css" rel="stylesheet"> <script src="js/ie-emulation-modes-warning.js"></script> </head> <body> <nav class="navbar navbar-inverse navbar-fixed-top"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar"> <span class="sr-only">Toggle navigation</span> </button> <a class="navbar-brand" href="index.html">Funannotate</a> </div> <div id="navbar" class="collapse navbar-collapse"> <ul class="nav navbar-nav"> <li><a href="stats.html">Stats</a></li> <li><a href="phylogeny.html">Phylogeny</a></li> <li><a href="orthologs.html">Orthologs</a></li> <li><a href="interpro.html">InterPro</a></li> <li><a href="pfam.html">PFAM</a></li> <li><a href="merops.html">Merops</a></li> <li><a href="cazy.html">CAZymes</a></li> <li><a href="cogs.html">COGs</a></li> <li><a href="signalp.html">SignalP</a></li> <li><a href="tf.html">TFs</a></li> <li><a href="secmet.html">SecMet</a></li> <li><a href="go.html">GO</a></li> <li><a href="citation.html">Cite</a></li> </ul> </div><!--/.nav-collapse --> </div> </nav> ''' ORTHOLOGS = ''' <div class="container"> <div class="table"> <h2 class="sub-header">Orthologous protein groups</h2> <div class="table-responsive"> ''' INDEX = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Funannotate Results</h2> <br> <p><a href='stats.html'>Genome Summary Stats</a></p> <p><a href='phylogeny.html'>Maximum likelihood Phylogeny (RAxML)</a></p> <p><a href='merops.html'>MEROPS Protease Stats</a></p> <p><a href='cazy.html'>CAZyme carbohydrate activating enzyme Stats</a></p> <p><a href='cogs.html'>COGs Stats</a></p> <p><a href='signalp.html'>Secreted proteins (SignalP)</a></p> <p><a href='interpro.html'>InterProScan Domain Stats</a></p> <p><a href='tf.html'>Transcription Factor Summary</a></p> <p><a href='secmet.html'>Secondary Metabolism Cluster Summary</a></p> <p><a href='pfam.html'>PFAM Domain Stats</a></p> <p><a href='go.html'>Gene Ontology Enrichment Analysis</a></p> <p><a href='orthologs.html'>Orthologous proteins</a></p> <br> ''' SUMMARY = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Genome Summary Stats</h2> <div class="table-responsive"> ''' PHYLOGENY = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">RAxML Maximum Likelihood Phylogeny</h2> <a href='phylogeny/ML.phylogeny.pdf'><img src="phylogeny/ML.phylogeny.pdf" height="500" /></a></div> ''' NOPHYLOGENY = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Number of species too low to generate phylogeny</h2> ''' MEROPS = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">MEROPS Protease Families per Genome Results</h2> <div class='row'> <div class="col-sm-7"><a href='merops/MEROPS.graph.pdf'><img src="merops/MEROPS.graph.pdf" height="350" /></a></div> <div class="col-sm-5"><a href='merops/MEROPS.heatmap.pdf'><img src="merops/MEROPS.heatmap.pdf" height="500" /></a></div> </div> <div class="table-responsive"> ''' INTERPRO = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">InterProScan Domains per Genome Results</h2> <div class='row'> <a href='interpro/InterProScan.nmds.pdf'><img src="interpro/InterProScan.nmds.pdf" height="500" /></a></div> <div class="table-responsive"> ''' PFAM = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">PFAM Domains per Genome Results</h2> <div class='row'> <a href='pfam/PFAM.nmds.pdf'><img src="pfam/PFAM.nmds.pdf" height="500" /></a></div> <div class="table-responsive"> ''' SIGNALP = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Secreted Proteins per Genome Results</h2> <div class='row'> <a href='signalp/signalp.pdf'><img src="signalp/signalp.pdf" height="500" /></a></div> <div class="table-responsive"> ''' TF = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Fungal Transcription Factors per Genome Results</h2> <div class='row'> <a href='tfs/TF.heatmap.pdf'><img src="tfs/TF.heatmap.pdf" height="800" /></a></div> <div class="table-responsive"> ''' SECMET = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Secondary Metabolism Clusters per Genome Results</h2> <div class='row'> <a href='secmet/SM.graph.pdf'><img src="secmet/SM.graph.pdf" height="500" /></a></div> <div class="table-responsive"> ''' CAZY = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">CAZyme Families per Genome Results</h2> <div class='row'> <div class="col-sm-7"><a href='cazy/CAZy.graph.pdf'><img src="cazy/CAZy.graph.pdf" height="350" /></a></div> <div class="col-sm-5"><a href='cazy/CAZy.heatmap.pdf'><img src="cazy/CAZy.heatmap.pdf" height="600" /></a></div> </div> <div class="table-responsive"> ''' COG = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">Clusters of Orthologous Groups (COGs) per Genome Results</h2> <div class='row'> <a href='cogs/COGS.graph.pdf'><img src="cogs/COGS.graph.pdf" height="500" /></a></div> <div class="table-responsive"> ''' GO = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">GO ontology enrichment Results</h2> <div class='row'> ''' MISSING = ''' <div class="container"> <div class="starter-template"> <h2 class="sub-header">These data are missing from annotation.</h2> ''' CITATION = ''' <div class="container"> <div class="starter-template"> <h3 class="sub-header">If you found Funannotate useful please cite:</h3> <p>Palmer JM. 2016. Funannotate: a fungal genome annotation and comparative genomics pipeline. <a href="https://github.com/nextgenusfs/funannotate">https://github.com/nextgenusfs/funannotate</a>.</p> ''' FOOTER = ''' </div> </div> </div><!-- /.container --> <!-- Bootstrap core JavaScript ================================================== --> <!-- Placed at the end of the document so the pages load faster --> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script> <script>window.jQuery || document.write('<script src="js/jquery.min.js"><\/script>')</script> <script src="js/bootstrap.min.js"></script> <!-- IE10 viewport hack for Surface/desktop Windows 8 bug --> <script src="js/ie10-viewport-bug-workaround.js"></script> </body> </html> ''' HEADER2 = ''' <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="funannotate comparative genomics output" content=""> <meta name="<NAME>" content=""> <title>Funannotate</title> <link href="css/bootstrap.min.css" rel="stylesheet"> <link href="css/starter-template.css" rel="stylesheet"> <script src="js/ie-emulation-modes-warning.js"></script> <link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/t/bs/dt-1.10.11/datatables.min.css"/> <script type="text/javascript" src="https://cdn.datatables.net/t/bs/dt-1.10.11/datatables.min.js"></script> </head> <body> <nav class="navbar navbar-inverse navbar-fixed-top"> <div class="container-fluid"> <div class="navbar-header"> <span class="sr-only">Toggle navigation</span> <a class="navbar-brand" href="index.html">Funannotate</a> </div> <div class="navbar-header"> <div id="navbar" class="collapse navbar-collapse"> <ul class="nav navbar-nav"> <li class="active"><a href="stats.html">Stats</a></li> <li><a href="orthologs.html">Orthologs</a></li> <li><a href="interpro.html">InterProScan</a></li> <li><a href="pfam.html">PFAM</a></li> <li><a href="merops.html">Merops</a></li> <li><a href="cazy.html">CAZymes</a></li> <li><a href="signalp.html">SignalP</a></li> <li><a href="go.html">GO ontology</a></li> <li><a href="citation.html">Citation</a></li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Genomes <span class="caret"></span></a> <ul class="dropdown-menu"> '''
Ch16/MRF.py
jason-168/MLCode
146
131092
# Code from Chapter 16 of Machine Learning: An Algorithmic Perspective (2nd Edition) # by <NAME> (http://stephenmonika.net) # You are free to use, change, or redistribute the code in any way you wish for # non-commercial purposes, but please maintain the name of the original author. # This code comes with no warranty of any kind. # <NAME>, 2008, 2014 # Demonstration of the Markov Random Field method of image denoising import pylab as pl import numpy as np def MRF(I,J,eta=2.0,zeta=1.5): ind =np.arange(np.shape(I)[0]) np.random.shuffle(ind) orderx = ind.copy() np.random.shuffle(ind) for i in orderx: for j in ind: oldJ = J[i,j] J[i,j]=1 patch = 0 for k in range(-1,1): for l in range(-1,1): patch += J[i,j] * J[i+k,j+l] energya = -eta*np.sum(I*J) - zeta*patch J[i,j]=-1 patch = 0 for k in range(-1,1): for l in range(-1,1): patch += J[i,j] * J[i+k,j+l] energyb = -eta*np.sum(I*J) - zeta*patch if energya<energyb: J[i,j] = 1 else: J[i,j] = -1 return J I = pl.imread('world.png') N = np.shape(I)[0] I = I[:,:,0] I = np.where(I<0.1,-1,1) pl.imshow(I) pl.title('Original Image') noise = np.random.rand(N,N) J = I.copy() ind = np.where(noise<0.1) J[ind] = -J[ind] pl.figure() pl.imshow(J) pl.title('Noisy image') newJ = J.copy() newJ = MRF(I,newJ) pl.figure() pl.imshow(newJ) pl.title('Denoised version') print np.sum(I-J), np.sum(I-newJ) pl.show()