max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/conftest.py
natpacket/curl-impersonate
1,065
144299
def pytest_addoption(parser): # Where to find curl-impersonate's binaries parser.addoption("--install-dir", action="store", default="/usr/local") parser.addoption("--capture-interface", action="store", default="eth0")
utils/queuer.py
anoidgit/zero
111
144339
<reponame>anoidgit/zero # coding: utf-8 """ The Queue function mainly deals with reading and preparing dataset in a multi-processing manner. We didnot use the built-in tensorflow function Dataset because it lacks of flexibility. The function defined below is mainly inspired by https://github.com/ixlan/machine-learning-data-pipeline. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from multiprocessing import Process, Queue TERMINATION_TOKEN = "<DONE>" def create_iter_from_queue(queue, term_token): while True: input_data_chunk = queue.get() if input_data_chunk == term_token: # put it back to the queue to let other processes that feed # from the same one to know that they should also break queue.put(term_token) break else: yield input_data_chunk def combine_reader_to_processor(reader, preprocessor): for data_chunk in reader: yield preprocessor(data_chunk) class EnQueuer(object): def __init__(self, reader, preprocessor, worker_processes_num=1, input_queue_size=5, output_queue_size=5 ): if worker_processes_num < 0: raise ValueError("worker_processes_num must be a " "non-negative integer.") self.worker_processes_number = worker_processes_num self.preprocessor = preprocessor self.input_queue_size = input_queue_size self.output_queue_size = output_queue_size self.reader = reader # make the queue iterable def __iter__(self): return self._create_processed_data_chunks_gen(self.reader) def _create_processed_data_chunks_gen(self, reader_gen): if self.worker_processes_number == 0: itr = self._create_single_process_gen(reader_gen) else: itr = self._create_multi_process_gen(reader_gen) return itr def _create_single_process_gen(self, data_producer): return combine_reader_to_processor(data_producer, self.preprocessor) def _create_multi_process_gen(self, reader_gen): term_tokens_received = 0 output_queue = Queue(self.output_queue_size) workers = [] if self.worker_processes_number > 1: term_tokens_expected = self.worker_processes_number - 1 input_queue = Queue(self.input_queue_size) reader_worker = _ParallelWorker(reader_gen, input_queue) workers.append(reader_worker) # adding workers that will process the data for _ in range(self.worker_processes_number - 1): # since data-chunks will appear in the queue, making an iterable # object over it queue_iter = create_iter_from_queue(input_queue, TERMINATION_TOKEN) data_itr = combine_reader_to_processor(queue_iter, self.preprocessor) proc_worker = _ParallelWorker(data_chunk_iter=data_itr, queue=output_queue) workers.append(proc_worker) else: term_tokens_expected = 1 data_itr = combine_reader_to_processor(reader_gen, self.preprocessor) proc_worker = _ParallelWorker(data_chunk_iter=data_itr, queue=output_queue) workers.append(proc_worker) for pr in workers: pr.daemon = True pr.start() while True: data_chunk = output_queue.get() if data_chunk == TERMINATION_TOKEN: term_tokens_received += 1 # need to received all tokens in order to be sure that # all data has been processed if term_tokens_received == term_tokens_expected: for pr in workers: pr.join() break continue yield data_chunk class _ParallelWorker(Process): """Worker to execute data reading or processing on a separate process.""" def __init__(self, data_chunk_iter, queue): super(_ParallelWorker, self).__init__() self._data_chunk_iterable = data_chunk_iter self._queue = queue def run(self): for data_chunk in self._data_chunk_iterable: self._queue.put(data_chunk) self._queue.put(TERMINATION_TOKEN)
tests/builtins/test_callable.py
akubera/batavia
1,256
144348
<reponame>akubera/batavia from .. utils import TranspileTestCase, BuiltinFunctionTestCase class CallableTests(TranspileTestCase): pass class BuiltinCallableFunctionTests(BuiltinFunctionTestCase, TranspileTestCase): function = "callable"
evosax/restarts/simple_restart.py
mahi97/evosax
102
144376
import chex from .restarter import RestartWrapper from .termination import spread_criterion class Simple_Restarter(RestartWrapper): def __init__( self, base_strategy, stop_criteria=[spread_criterion], ): """Simple Restart Strategy - Only reinitialize the state.""" super().__init__(base_strategy, stop_criteria) @property def restart_params(self) -> chex.ArrayTree: """Return default parameters for strategy restarting.""" re_params = {"min_num_gens": 50, "min_fitness_spread": 0.1} return re_params def restart_strategy( self, rng: chex.PRNGKey, state: chex.ArrayTree, params: chex.ArrayTree, ) -> chex.ArrayTree: """Simple restart by state initialization.""" new_state = self.base_strategy.initialize(rng, params) return new_state
cloudmarker/test/test_main.py
TinLe/cloudmarker
208
144393
"""Tests for package execution.""" import importlib import unittest from unittest import mock class MainTest(unittest.TestCase): """Tests for package execution.""" @mock.patch('sys.argv', ['cloudmarker', '-c', '-n']) def test_main(self): # Run cloudmarker package with only the default base # configuration and ensure that it runs without issues. module = importlib.import_module('cloudmarker.__main__') self.assertEqual(type(module).__name__, 'module')
jobtastic/tests/test_settings.py
Praseetha-KR/jobtastic
467
144407
<reponame>Praseetha-KR/jobtastic from __future__ import print_function import mock import django from unittest import skipIf from celery import Celery, states from celery.backends.cache import DummyClient from django.conf import settings from django.test import TestCase from jobtastic.task import JobtasticTask from werkzeug.contrib.cache import MemcachedCache try: from django.core.cache import caches except ImportError: pass def add(self, key, value, timeout=None): """ Fake atomic add method for memcache clients """ self.set(key, value, timeout) return True @skipIf(django.VERSION < (1, 7), "Django < 1.7 doesn't support django.core.cache.caches") class DjangoSettingsTestCase(TestCase): def setUp(self): # Define the class in setup so it has the same cache # scope as the test class ParrotTask(JobtasticTask): """ Just return whatever is passed in as the result. """ significant_kwargs = [ ('result', str), ] herd_avoidance_timeout = 0 def calculate_result(self, result, **kwargs): return result self.task = ParrotTask self.kwargs = {'result': 42} self.key = self.task._get_cache_key(**self.kwargs) def test_sanity(self): # The task actually runs with self.settings(CELERY_ALWAYS_EAGER=True): async_task = self.task.delay(result=1) self.assertEqual(async_task.status, states.SUCCESS) self.assertEqual(async_task.result, 1) def test_default_django_cache(self): with self.settings(CELERY_ALWAYS_EAGER=False): app = Celery() app.config_from_object(settings) self.task.bind(app) app.finalize() async_task = self.task.delay(**self.kwargs) self.assertEqual(async_task.status, states.PENDING) self.assertTrue('herd:%s' % self.key in caches['default']) def test_custom_django_cache(self): with self.settings( CELERY_ALWAYS_EAGER=False, JOBTASTIC_CACHE='shared', CACHES={'default': {'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'default'}, 'shared': {'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'shared'}}): app = Celery() app.config_from_object(settings) self.task.bind(app) app.finalize() async_task = self.task.delay(**self.kwargs) self.assertEqual(async_task.status, states.PENDING) self.assertTrue('herd:%s' % self.key in caches['shared']) self.assertTrue('herd:%s' % self.key not in caches['default']) @mock.patch('jobtastic.cache.CACHES', ['Werkzeug']) @mock.patch.object(DummyClient, 'add', add, create=True) def test_default_werkzeug_cache(self): with self.settings(CELERY_ALWAYS_EAGER=False): app = Celery() app.config_from_object(settings) self.task.bind(app) app.finalize() async_task = self.task.delay(**self.kwargs) cache = MemcachedCache(app.backend.client) self.assertEqual(async_task.status, states.PENDING) self.assertNotEqual(cache.get('herd:%s' % self.key), None)
ChatBot/chatbot_search/chatbot_tfserving/indexAnnoy.py
yongzhuo/nlp_xiaojiang
1,379
144409
<reponame>yongzhuo/nlp_xiaojiang<filename>ChatBot/chatbot_search/chatbot_tfserving/indexAnnoy.py # !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2021/4/18 21:04 # @author : Mo # @function: annoy search from annoy import AnnoyIndex import numpy as np import os class AnnoySearch: def __init__(self, dim=768, n_cluster=100): # metric可选“angular”(余弦距离)、“euclidean”(欧几里得距离)、 “ manhattan”(曼哈顿距离)或“hamming”(海明距离) self.annoy_index = AnnoyIndex(dim, metric="angular") self.n_cluster = n_cluster self.dim = dim def k_neighbors(self, vectors, k=18): """ 搜索 """ annoy_tops = [] for v in vectors: idx, dist = self.annoy_index.get_nns_by_vector(v, k, search_k=32*k, include_distances=True) annoy_tops.append([dist, idx]) return annoy_tops def fit(self, vectors): """ annoy构建 """ for i, v in enumerate(vectors): self.annoy_index.add_item(i, v) self.annoy_index.build(self.n_cluster) def save(self, path): """ 存储 """ self.annoy_index.save(path) def load(self, path): """ 加载 """ self.annoy_index.load(path) if __name__ == '__main__': ### 索引 import random path = "model.ann" dim = 768 vectors = [[random.gauss(0, 1) for z in range(768)] for i in range(10)] an_model = AnnoySearch(dim, n_cluster=32) # Length of item vector that will be indexed an_model.fit(vectors) an_model.save(path) tops = an_model.k_neighbors([vectors[0]], 18) print(tops) del an_model ### 下载, 搜索 an_model = AnnoySearch(dim, n_cluster=32) an_model.load(path) tops = an_model.k_neighbors([vectors[0]], 6) print(tops) """ # example from annoy import AnnoyIndex import random dim = 768 vectors = [[random.gauss(0, 1) for z in range(768)] for i in range(10)] ann_model = AnnoyIndex(dim, 'angular') # Length of item vector that will be indexed for i,v in enumerate(vectors): ann_model.add_item(i, v) ann_model.build(10) # 10 trees ann_model.save("tet.ann") del ann_model u = AnnoyIndex(dim, "angular") u.load('tet.ann') # super fast, will just mmap the file v = vectors[1] idx, dist = u.get_nns_by_vector(v, 10, search_k=50 * 10, include_distances=True) print([idx, dist]) """ ### 备注说明: annoy索引 无法 增删会改查
source/paraphrase.py
xl8-ai/LASER
2,941
144419
#!/usr/bin/python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # # LASER Language-Agnostic SEntence Representations # is a toolkit to calculate multilingual sentence embeddings # and to use them for document classification, bitext filtering # and mining # # -------------------------------------------------------- # # Python tool to search for paraphrases in FAISS index import re import sys import os.path import tempfile import argparse import faiss import time import pdb import numpy as np from collections import namedtuple # get environment assert os.environ.get('LASER'), 'Please set the enviornment variable LASER' LASER = os.environ['LASER'] sys.path.append(LASER + '/source/lib') from indexing import IndexLoad, IndexTextOpen, IndexTextQuery, SplitOpen, SplitAccess from embed import SentenceEncoder, EncodeLoad, EncodeFile, EncodeTime from text_processing import Token, BPEfastApply SPACE_NORMALIZER = re.compile("\s+") Batch = namedtuple('Batch', 'srcs tokens lengths') # calculate L2 distance between [x] # and the vectors referenced in idxs # x should be already normalized def IndexDistL2(X, E, D, I, thresh=1.0, dtype=np.float32, sort=True): nb, nK = I.shape dim = X.shape[1] dist_l2 = np.empty((nb, nK), dtype=np.float32) y = np.empty((1, dim), dtype=dtype) for i in range(nb): for k in range(nK): if D[i, k] <= thresh: # get embedding from disk np.copyto(y, SplitAccess(E, I[i, k])) faiss.normalize_L2(y) dist_l2[i, k] = 1.0 - np.dot(X[i], y[0]) else: # exclude sentences which already have a huge FAISS distance # (getting embeddings from disk is very time consumming) dist_l2[i, k] = 1.0 if sort: # re-sort according to L2 idxs = np.argsort(dist_l2[i], axis=0) dist_l2[i] = dist_l2[i][idxs] I[i] = I[i][idxs] return dist_l2, I ############################################################################### # # Apply an absolute threshold on the distance # ############################################################################### def MarginAbs(em, ofp, params, args, stats): D, I = params.idx.search(em, args.kmax) thresh = args.threshold_faiss if args.embed: D, I = IndexDistL2(em, params.E, D, I, args.threshold_faiss) thresh = args.threshold_L2 for n in range(D.shape[0]): prev = {} # for deduplication for i in range(args.kmax): txt = IndexTextQuery(params.T, params.R, I[n, i]) if (args.dedup and txt not in prev) and D[n, i] <= thresh: prev[txt] = 1 ofp.write('{:d}\t{:7.5f}\t{}\n' .format(stats.nbs, D[n, i], txt)) stats.nbp += 1 # display source sentece if requested if (args.include_source == 'matches' and len(prev) > 0): ofp.write('{:d}\t{:6.1f}\t{}\n' .format(stats.nbs, 0.0, sentences[n].replace('@@ ', ''))) if args.include_source == 'always': ofp.write('{:d}\t{:6.1f}\t{}\n' .format(stats.nbs, 0.0, sentences[n].replace('@@ ', ''))) stats.nbs += 1 ############################################################################### # # Apply an threshold on the ratio between distance and average # ############################################################################### def MarginRatio(em, ofp, params, args, stats): D, I = params.idx.search(em, args.margin_k) thresh = args.threshold if args.embed: D, I = IndexDistL2(em, params.E, D, I, args.threshold_faiss) thresh = args.threshold_L2 Mean = D.mean(axis=1) for n in range(D.shape[0]): if D[n, 0] / Mean[n] <= args.threshold: if args.include_source == 'matches': ofp.write('{:d}\t{:6.1f}\t{}\n' .format(stats.nbs, 0.0, sentences[n].replace('@@ ', ''))) txt = IndexTextQuery(params.T, params.R, I[n, 0]) ofp.write('{:d}\t{:7.5f}\t{}\n'.format(stats.nbs, D[n, 0], txt)) stats.nbp += 1 stats.nbs += 1 if args.include_source == 'always': ofp.write('{:d}\t{:6.1f}\t{}\n' .format(stats.nbs, 0.0, sentences[n].replace('@@ ', ''))) ############################################################################### def MarginDist(em, ofp, params, args, stats): print('ERROR: MarginAbs not implemented') sys.exit(1) ############################################################################### def buffered_read(fp, buffer_size): buffer = [] for src_str in fp: buffer.append(src_str.strip()) if len(buffer) >= buffer_size: yield buffer buffer = [] if len(buffer) > 0: yield buffer ############################################################################### parser = argparse.ArgumentParser('LASER: paraphrase tool') parser.add_argument('--encoder', type=str, required=True, help='encoder to be used') parser.add_argument('--encoding', default='utf-8', help='Character encoding for input/output') parser.add_argument('--token-lang', type=str, default='--', help="Language of tokenizer ('--' for no tokenization)") parser.add_argument('--bpe-codes', type=str, default=None, required=True, help='BPE codes') parser.add_argument('--buffer-size', type=int, default=100, help='Buffer size (sentences)') parser.add_argument('--max-tokens', type=int, default=12000, help='Maximum number of tokens to process in a batch') parser.add_argument('--max-sentences', type=int, default=None, help='Maximum number of sentences to process in a batch') parser.add_argument('--cpu', action='store_true', help='Use CPU instead of GPU') parser.add_argument('--index', type=str, required=True, help='FAISS index') parser.add_argument('--nprobe', type=int, default=128, help='FAISS: value of nprobe') parser.add_argument('--text', type=str, required=True, help='File with indexed texts') parser.add_argument( '--dim', type=int, default=1024, help='Dimension of specified sentence embeddings') parser.add_argument( '--embed', type=str, default=None, help='Sentence embeddings, true L2 distance will be calculated when specified') parser.add_argument('-i', '--input', type=str, required=True, help='Input text file') parser.add_argument('-p', '--output', type=str, default='--', help='Output paraphrases') parser.add_argument('--kmax', type=int, default=10, help='Max value of distance or margin of each paraphrase') parser.add_argument('--dedup', type=int, default=1, help='Deduplicate list of paraphrases') parser.add_argument('--include-source', default='never', choices=['never', 'matches', 'always'], help='Include source sentence in the list of paraphrases') parser.add_argument('--margin', choices=['absolute', 'distance', 'ratio'], default='ratio', help='Margin function') parser.add_argument('-T', '--threshold-margin', type=float, default=0.9, help='Threshold on margin') parser.add_argument('--threshold-faiss', type=float, default=0.4, help='Threshold on FAISS distance') parser.add_argument('--threshold-L2', type=float, default=0.2, help='Threshold on L2 distance') parser.add_argument('--margin-k', type=int, default=4, help='Number of nearest neighbors for margin calculation') parser.add_argument('--verbose', action='store_true', help='Detailed output') print('\nLASER: paraphrase tool') args = parser.parse_args() # index, # memory mapped texts, references and word counts # encoder params = namedtuple('params', 'idx T R W M E enc') # open text and reference file params.T, params.R, params.W, params.M = IndexTextOpen(args.text) # Open on-disk embeddings for L2 distances if args.embed: params.E = SplitOpen(args.embed, ['en'], args.dim, np.float32, verbose=False) # load FAISS index params.idx = IndexLoad(args.index, args.nprobe) # load sentence encoder params.enc = EncodeLoad(args) margin_methods = {'absolute': MarginAbs, 'distance': MarginDist, 'ratio': MarginRatio} with tempfile.TemporaryDirectory() as tmpdir: ifile = args.input if args.token_lang != '--': ifile = os.path.join(tmpdir, 'tok') Token(args.input, ifile, lang=args.token_lang, romanize=True if args.token_lang == 'el' else False, lower_case=True, gzip=False, verbose=args.verbose, over_write=False) if args.bpe_codes: bpe_file = os.path.join(tmpdir, 'bpe') BPEfastApply(ifile, bpe_file, args.bpe_codes, verbose=args.verbose, over_write=False) ifile = bpe_file print(' - processing (batch size is {:d})'.format(args.buffer_size)) ifp = open(ifile, 'r', encoding=args.encoding, errors='surrogateescape') if args.output == '--': ofp = sys.stdout else: ofp = open(args.output, 'w', encoding=args.encoding, errors='surrogateescape') stats = namedtuple('stats', 'ns np') stats.nbs = 0 stats.nbp = 0 t = time.time() for sentences in buffered_read(ifp, args.buffer_size): embed = params.enc.encode_sentences(sentences) faiss.normalize_L2(embed) # call function for selected margin method margin_methods.get(args.margin)(embed, ofp, params, args, stats) if stats.nbs % 1000 == 0: print('\r - {:d} sentences {:d} paraphrases' .format(stats.nbs, stats.nbp), end='') ifp.close() if args.output != '--': ofp.close() print('\r - {:d} sentences {:d} paraphrases' .format(stats.nbs, stats.nbp), end='') EncodeTime(t)
autoelective/client.py
lhydave/PKUAutoElective
566
144424
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # filename: client.py # modified: 2019-09-09 from requests.models import Request from requests.sessions import Session from requests.cookies import extract_cookies_to_jar class BaseClient(object): default_headers = {} default_client_timeout = 10 def __init__(self, *args, **kwargs): if self.__class__ is __class__: raise NotImplementedError self._timeout = kwargs.get("timeout", self.__class__.default_client_timeout) self._session = Session() self._session.headers.update(self.__class__.default_headers) @property def user_agent(self): return self._session.headers.get('User-Agent') def _request(self, method, url, params=None, data=None, headers=None, cookies=None, files=None, auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None, stream=None, verify=None, cert=None, json=None): # Extended from requests/sessions.py for '_client' kwargs req = Request( method=method.upper(), url=url, headers=headers, files=files, data=data or {}, json=json, params=params or {}, auth=auth, cookies=cookies, hooks=hooks, ) prep = self._session.prepare_request(req) prep._client = self # hold the reference to client proxies = proxies or {} settings = self._session.merge_environment_settings( prep.url, proxies, stream, verify, cert ) # Send the request. send_kwargs = { 'timeout': timeout or self._timeout, # set default timeout 'allow_redirects': allow_redirects, } send_kwargs.update(settings) resp = self._session.send(prep, **send_kwargs) return resp def _get(self, url, params=None, **kwargs): return self._request('GET', url, params=params, **kwargs) def _post(self, url, data=None, json=None, **kwargs): return self._request('POST', url, data=data, json=json, **kwargs) def set_user_agent(self, user_agent): self._session.headers["User-Agent"] = user_agent def persist_cookies(self, r): """ From requests/sessions.py, Session.send() Session.send() 方法会首先 dispatch_hook 然后再 extract_cookies_to_jar 在该项目中,对于返回信息异常的请求,在 hooks 校验时会将错误抛出,send() 之后的处理将不会执行。 遇到的错误往往是 SystemException / TipsException ,而这些客户端认为是错误的情况, 对于服务器端来说并不是错误请求,服务器端在该次请求结束后可能会要求 Set-Cookies 但是由于 send() 在 dispatch_hook 时遇到错误而中止,导致后面的 extract_cookies_to_jar 未能调用,因此 Cookies 并未更新。下一次再请求服务器的时候,就会遇到会话过期的情况。 在这种情况下,需要在捕获错误后手动更新 cookies 以确保能够保持会话 """ if r.history: # If the hooks create history then we want those cookies too for resp in r.history: extract_cookies_to_jar(self._session.cookies, resp.request, resp.raw) extract_cookies_to_jar(self._session.cookies, r.request, r.raw) def clear_cookies(self): self._session.cookies.clear()
042_centernet/20_tensorflow_models/openvino_load_test.py
IgiArdiyanto/PINTO_model_zoo
1,529
144427
<reponame>IgiArdiyanto/PINTO_model_zoo<gh_stars>1000+ from openvino.inference_engine import IENetwork, IECore import cv2 import numpy as np import pprint ie = IECore() vino_model_path = f'saved_model/openvino/FP16' vino_model = 'saved_model' net = ie.read_network(model=f'{vino_model_path}/{vino_model}.xml', weights=f'{vino_model_path}/{vino_model}.bin') exec_net = ie.load_network(network=net, device_name='CPU', num_requests=2) input_blob = next(iter(net.input_info)) out_blob = [o for o in net.outputs] pprint.pprint('input_blob:') pprint.pprint(input_blob) pprint.pprint('out_blob:') pprint.pprint(out_blob) cap = cv2.VideoCapture('person.png') ret, frame = cap.read() frame_h, frame_w = frame.shape[:2] width = 320 height = 320 im = cv2.resize(frame.copy(), (width, height)) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = im.transpose((2, 0, 1)) im = im[np.newaxis, :, :, :] inputs = {input_blob: im} exec_net.requests[0].wait(-1) exec_net.start_async(request_id=0, inputs=inputs) if exec_net.requests[0].wait(-1) == 0: res = [ exec_net.requests[0].output_blobs[out_blob[0]].buffer, exec_net.requests[0].output_blobs[out_blob[1]].buffer, exec_net.requests[0].output_blobs[out_blob[2]].buffer, exec_net.requests[0].output_blobs[out_blob[3]].buffer, exec_net.requests[0].output_blobs[out_blob[4]].buffer, exec_net.requests[0].output_blobs[out_blob[5]].buffer, ] pprint.pprint('res:') pprint.pprint(out_blob[0]) pprint.pprint(res[0].shape) pprint.pprint(res[0]) pprint.pprint(out_blob[1]) pprint.pprint(res[1].shape) pprint.pprint(res[1]) pprint.pprint(out_blob[2]) pprint.pprint(res[2].shape) pprint.pprint(res[2]) pprint.pprint(out_blob[3]) pprint.pprint(res[3].shape) pprint.pprint(res[3]) pprint.pprint(out_blob[4]) pprint.pprint(res[4].shape) pprint.pprint(res[4]) pprint.pprint(out_blob[5]) pprint.pprint(res[5].shape) pprint.pprint(res[5]) person = res[5][0][0] print('person:', person) ymin = int(person[0] * frame_h) xmin = int(person[1] * frame_w) ymax = int(person[2] * frame_h) xmax = int(person[3] * frame_w) cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255, 0, 0)) KEYPOINT_EDGES = [ (0, 1), (0, 2), (1, 3), (2, 4), (0, 5), (0, 6), (5, 7), (7, 9), (6, 8), (8, 10), (5, 6), (5, 11), (6, 12), (11, 12), (11, 13), (13, 15), (12, 14), (14, 16), ] print('res1:', res[1].shape) bone_y = res[1][0][0][0] bone_x = res[1][0][1][0] print('bone_x.shape:', bone_x.shape) print('bone_x:', bone_x) print('bone_y.shape:', bone_y.shape) print('bone_y:', bone_y) for keypoint_x, keypoint_y in zip(bone_x, bone_y): cv2.circle( frame, (int(keypoint_x * frame_w), int(keypoint_y * frame_h)), 2, (0, 255, 0)) for keypoint_start, keypoint_end in KEYPOINT_EDGES: cv2.line( frame, (int(bone_x[keypoint_start] * frame_w), int(bone_y[keypoint_start] * frame_h)), (int(bone_x[keypoint_end] * frame_w), int(bone_y[keypoint_end] * frame_h)), (0, 255, 0), 2) cv2.namedWindow('centernet') cv2.imshow('centernet', frame) cv2.waitKey(0) cv2.destroyAllWindows()
lightreid/losses/focal_loss.py
nataliamiccini/light-reid
296
144439
""" @author: <NAME> @contact: <EMAIL> """ import torch import torch.nn as nn from torch.autograd import Variable from .build import LOSSes_REGISTRY @LOSSes_REGISTRY.register() class FocalLoss(nn.Module): """ reference: https://github.com/clcarwin/focal_loss_pytorch """ def __init__(self, gamma=0, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.size_average = size_average def forward(self, input, target): if input.dim() > 2: input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W input = input.transpose(1, 2) # N,C,H*W => N,H*W,C input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C target = target.view(-1, 1) logpt = F.log_softmax(input) logpt = logpt.gather(1, target) logpt = logpt.view(-1) pt = Variable(logpt.data.exp()) loss = -1 * (1 - pt) ** self.gamma * logpt if self.size_average: return loss.mean() else: return loss.sum()
recipes/tinyalsa/all/conanfile.py
dvirtz/conan-center-index
562
144444
<gh_stars>100-1000 from conans import ConanFile, tools, AutoToolsBuildEnvironment from conans.errors import ConanInvalidConfiguration import os class TinyAlsaConan(ConanFile): name = "tinyalsa" license = "BSD-3-Clause" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/tinyalsa/tinyalsa" topics = ("conan", "tiny", "alsa", "sound", "audio", "tinyalsa") description = "A small library to interface with ALSA in the Linux kernel" options = {"shared": [True, False], "with_utils": [True, False]} default_options = {'shared': False, 'with_utils': False} settings = "os", "compiler", "build_type", "arch" @property def _source_subfolder(self): return "source_subfolder" def configure(self): if self.settings.os != "Linux": raise ConanInvalidConfiguration("Only Linux supported") del self.settings.compiler.libcxx del self.settings.compiler.cppstd def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("{name}-{version}".format(name=self.name, version=self.version), self._source_subfolder) def build(self): with tools.chdir(self._source_subfolder): env_build = AutoToolsBuildEnvironment(self) env_build.make() def package(self): self.copy("NOTICE", dst="licenses", src=self._source_subfolder) with tools.chdir(self._source_subfolder): env_build = AutoToolsBuildEnvironment(self) env_build_vars = env_build.vars env_build_vars['PREFIX'] = self.package_folder env_build.install(vars=env_build_vars) tools.rmdir(os.path.join(self.package_folder, "share")) if not self.options.with_utils: tools.rmdir(os.path.join(self.package_folder, "bin")) with tools.chdir(os.path.join(self.package_folder, "lib")): files = os.listdir() for f in files: if (self.options.shared and f.endswith(".a")) or (not self.options.shared and not f.endswith(".a")): os.unlink(f) def package_info(self): self.cpp_info.libs = ["tinyalsa"] if self.options.with_utils: bin_path = os.path.join(self.package_folder, "bin") self.output.info('Appending PATH environment variable: %s' % bin_path) self.env_info.path.append(bin_path)
graphgym/custom_graphgym/optimizer/example.py
Kenneth-Schroeder/pytorch_geometric
12,651
144447
<filename>graphgym/custom_graphgym/optimizer/example.py import torch.optim as optim from torch_geometric.graphgym.register import register_optimizer, \ register_scheduler from torch_geometric.graphgym.optimizer import OptimizerConfig, SchedulerConfig def optimizer_example(params, optimizer_config: OptimizerConfig): if optimizer_config.optimizer == 'adagrad': optimizer = optim.Adagrad(params, lr=optimizer_config.base_lr, weight_decay=optimizer_config.weight_decay) return optimizer register_optimizer('adagrad', optimizer_example) def scheduler_example(optimizer, scheduler_config: SchedulerConfig): if scheduler_config.scheduler == 'reduce': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer) return scheduler register_scheduler('reduce', scheduler_example)
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/common_object_detection.py
TolyaTalamanov/open_model_zoo
2,201
144465
<reponame>TolyaTalamanov/open_model_zoo<filename>tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/common_object_detection.py """ Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from .format_converter import BaseFormatConverter, ConverterReturn from ..utils import read_txt, check_file_existence from ..config import PathField, BoolField from ..representation import DetectionAnnotation class CommonDetectionConverter(BaseFormatConverter): __provider__ = 'common_object_detection' @classmethod def parameters(cls): params = super().parameters() params.update({ 'images_dir': PathField(optional=True, is_directory=True, description='Images directory'), 'annotation_dir': PathField(optional=False, is_directory=True, description='Annotation directory'), 'labels_file': PathField(description='Labels file'), 'pairs_file': PathField( optional=True, description='matching between images and annotations' ), 'has_background': BoolField(optional=True, default=False, description='Indicator of background'), 'add_background_to_label_id': BoolField( optional=True, default=False, description='Indicator that need shift labels' ) }) return params def configure(self): self.images_dir = self.get_value_from_config('images_dir') self.annotation_dir = self.get_value_from_config('annotation_dir') self.labels_file = self.get_value_from_config('labels_file') self.has_background = self.get_value_from_config('has_background') self.shift_labels = self.get_value_from_config('add_background_to_label_id') self.pairs_file = self.get_value_from_config('pairs_file') def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs): content_errors = None if not check_content else [] image_ann_pairs = [] if self.pairs_file: pairs_list = read_txt(self.pairs_file) for line in pairs_list: image_path, annotation_path = line.split(' ') image_path = image_path.split('@')[-1] annotation_path = annotation_path.split('@')[-1] image_ann_pairs.append((image_path, annotation_path)) else: annotation_files = self.annotation_dir.glob('*.txt') for ann_file in annotation_files: image_ann_pairs.append((ann_file.name.replace('txt', 'jpg'), ann_file.name)) num_iterations = len(image_ann_pairs) annotations = [] for idx, (identifier, annotation_file) in enumerate(image_ann_pairs): labels, x_mins, y_mins, x_maxs, y_maxs = self.parse_annotation(annotation_file) annotations.append(DetectionAnnotation(identifier, labels, x_mins, y_mins, x_maxs, y_maxs)) if check_content: if self.images_dir is None: self.images_dir = self.annotation_dir.parent / 'images' check_file_existence(self.images_dir / identifier) content_errors.append('{}: does not exist'.format(self.images_dir / identifier)) if progress_callback and idx % progress_interval == 0: progress_callback(idx * 100 / num_iterations) return ConverterReturn(annotations, self.get_meta(), content_errors) def parse_annotation(self, annotation_file): labels, x_mins, y_mins, x_maxs, y_maxs = [], [], [], [], [] for line in read_txt(self.annotation_dir / annotation_file): label, x_min, y_min, x_max, y_max = line.split() labels.append(int(label) + self.shift_labels) x_mins.append(float(x_min)) y_mins.append(float(y_min)) x_maxs.append(float(x_max)) y_maxs.append(float(y_max)) return np.array(labels), np.array(x_mins), np.array(y_mins), np.array(x_maxs), np.array(y_maxs) def get_meta(self): labels = read_txt(self.labels_file) label_map = {} for idx, label_name in enumerate(labels): label_map[idx + self.has_background] = label_name meta = {'label_map': label_map} if self.has_background: meta['label_map'][0] = 'background' meta['background_label'] = 0 return meta
tests/dataset_tests/preprocessors_tests/test_wle_util.py
pfnet/chainerchem
184
144484
import numpy as np import pytest from chainer_chemistry.dataset.preprocessors import wle_util def test_to_index(): values = ['foo', 'bar', 'buz', 'non-exist'] mols = [['foo', 'bar', 'buz'], ['foo', 'foo'], ['buz', 'bar']] actual = wle_util.to_index(mols, values) expect = np.array([np.array([0, 1, 2], np.int32), np.array([0, 0], np.int32), np.array([2, 1], np.int32)]) assert len(actual) == len(expect) for a, e in zip(actual, expect): np.testing.assert_array_equal(a, e) def test_to_index_non_existence(): values = ['foo', 'bar'] mols = [['strange_label']] with pytest.raises(ValueError): wle_util.to_index(mols, values) def test_compress_relation_axis_2_dim(): arr = np.random.uniform(size=(10, 2)) actual = wle_util.compress_relation_axis(arr) np.testing.assert_array_equal(actual, arr) def test_compress_relation_axis_3_dim(): arr = np.array( [ [ [1, 0], [2, 0], ], [ [1, 1], [0, 0] ] ] ) arr = np.swapaxes(arr, 0, 1) ret = wle_util.compress_relation_axis(arr) actual = ret != 0 expect = np.array( [[True, True], [True, False]] ) np.testing.assert_array_equal(actual, expect) def test_compress_relation_axis_invalid_ndim(): arr = np.zeros(3) with pytest.raises(ValueError): wle_util.compress_relation_axis(arr) arr = np.zeros((1, 2, 3, 4)) with pytest.raises(ValueError): wle_util.compress_relation_axis(arr) @pytest.fixture def small_molecule(): # a-b-c d atom_array = ['a', 'b', 'c', 'd'] neighbors = np.array( [ [0, 1, 1, 2], # first end of edges [1, 0, 2, 1] # second end of edges ] ) return atom_array, neighbors def test_get_neighbor_representation_with_focus_atom(small_molecule): atom_array, neighbors = small_molecule expects = ['a-b', 'b-a.c', 'c-b', 'd-'] for i in range(len(expects)): actual = wle_util.get_neighbor_representation( i, atom_array, neighbors, True) assert actual == expects[i] def test_get_neighbor_representation_without_focus_atom(small_molecule): atom_array, neighbors = small_molecule expects = ['b', 'a.c', 'b', ''] for i in range(len(expects)): actual = wle_util.get_neighbor_representation( i, atom_array, neighbors, False) assert actual == expects[i] @pytest.mark.parametrize('label, expect', [ ('a-b', 'a'), ('a-b.c', 'a'), ('aa-b', 'aa'), ('a-', 'a'), ('aa-', 'aa'), ]) def test_get_focus_node_label(label, expect): actual = wle_util.get_focus_node_label(label) assert actual == expect @pytest.mark.parametrize('label', ['aa', 'a-a-a', 'a--']) def test_get_focus_node_label_invalid(label): with pytest.raises(ValueError): wle_util.get_focus_node_label(label)
tda/client/__init__.py
zhangted/tda-api
986
144504
from .synchronous import Client from .asynchronous import AsyncClient
compressible/problems/hse.py
SebastianoF/pyro2
151
144507
from __future__ import print_function import numpy as np import sys import mesh.patch as patch from util import msg def init_data(my_data, rp): """ initialize the HSE problem """ msg.bold("initializing the HSE problem...") # make sure that we are passed a valid patch object if not isinstance(my_data, patch.CellCenterData2d): print("ERROR: patch invalid in hse.py") print(my_data.__class__) sys.exit() # get the density, momenta, and energy as separate variables dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") gamma = rp.get_param("eos.gamma") grav = rp.get_param("compressible.grav") dens0 = rp.get_param("hse.dens0") print("dens0 = ", dens0) H = rp.get_param("hse.h") # isothermal sound speed (squared) cs2 = H*abs(grav) # initialize the components, remember, that ener here is # rho*eint + 0.5*rho*v**2, where eint is the specific # internal energy (erg/g) xmom[:, :] = 0.0 ymom[:, :] = 0.0 dens[:, :] = 0.0 # set the density to be stratified in the y-direction myg = my_data.grid p = myg.scratch_array() for j in range(myg.jlo, myg.jhi+1): dens[:, j] = dens0*np.exp(-myg.y[j]/H) if j == myg.jlo: p[:, j] = dens[:, j]*cs2 else: p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav # set the energy ener[:, :] = p[:, :]/(gamma - 1.0) + \ 0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :] def finalize(): """ print out any information to the user at the end of the run """ pass
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_list_paths_helper.py
rsdoherty/azure-sdk-for-python
207
144509
<gh_stars>100-1000 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from azure.core.paging import PageIterator from azure.core.exceptions import HttpResponseError from ._deserialize import process_storage_error, get_deleted_path_properties_from_generated_code from ._generated.models import BlobItemInternal, BlobPrefix as GenBlobPrefix from ._shared.models import DictMixin from ._shared.response_handlers import return_context_and_deserialized class DeletedPathPropertiesPaged(PageIterator): """An Iterable of deleted path properties. :ivar str service_endpoint: The service URL. :ivar str prefix: A path name prefix being used to filter the list. :ivar str marker: The continuation token of the current page of results. :ivar int results_per_page: The maximum number of results retrieved per API call. :ivar str continuation_token: The continuation token to retrieve the next page of results. :ivar str location_mode: The location mode being used to list results. The available options include "primary" and "secondary". :ivar current_page: The current page of listed results. :vartype current_page: list(~azure.storage.filedatalake.DeletedPathProperties) :ivar str container: The container that the paths are listed from. :ivar str delimiter: A delimiting character used for hierarchy listing. :param callable command: Function to retrieve the next page of items. """ def __init__( self, command, container=None, prefix=None, results_per_page=None, continuation_token=None, delimiter=None, location_mode=None): super(DeletedPathPropertiesPaged, self).__init__( get_next=self._get_next_cb, extract_data=self._extract_data_cb, continuation_token=continuation_token or "" ) self._command = command self.service_endpoint = None self.prefix = prefix self.marker = None self.results_per_page = results_per_page self.container = container self.delimiter = delimiter self.current_page = None self.location_mode = location_mode def _get_next_cb(self, continuation_token): try: return self._command( prefix=self.prefix, marker=continuation_token or None, max_results=self.results_per_page, cls=return_context_and_deserialized, use_location=self.location_mode) except HttpResponseError as error: process_storage_error(error) def _extract_data_cb(self, get_next_return): self.location_mode, self._response = get_next_return self.service_endpoint = self._response.service_endpoint self.prefix = self._response.prefix self.marker = self._response.marker self.results_per_page = self._response.max_results self.container = self._response.container_name self.current_page = self._response.segment.blob_prefixes + self._response.segment.blob_items self.current_page = [self._build_item(item) for item in self.current_page] self.delimiter = self._response.delimiter return self._response.next_marker or None, self.current_page def _build_item(self, item): if isinstance(item, BlobItemInternal): file_props = get_deleted_path_properties_from_generated_code(item) file_props.file_system = self.container return file_props if isinstance(item, GenBlobPrefix): return DirectoryPrefix( container=self.container, prefix=item.name, results_per_page=self.results_per_page, location_mode=self.location_mode) return item class DirectoryPrefix(DictMixin): """Directory prefix. :ivar str name: Name of the deleted directory. :ivar int results_per_page: The maximum number of results retrieved per API call. :ivar str location_mode: The location mode being used to list results. The available options include "primary" and "secondary". :ivar str file_system: The file system that the deleted paths are listed from. :ivar str delimiter: A delimiting character used for hierarchy listing. """ def __init__(self, **kwargs): self.name = kwargs.get('prefix') self.results_per_page = kwargs.get('results_per_page') self.file_system = kwargs.get('container') self.delimiter = kwargs.get('delimiter') self.location_mode = kwargs.get('location_mode')
tests/cli/tap.py
joshuataylor/great_expectations
6,451
144525
""" A basic generated Great Expectations tap that validates a single batch of data. Data that is validated is controlled by BatchKwargs, which can be adjusted in this script. Data are validated by use of the `ActionListValidationOperator` which is configured by default. The default configuration of this Validation Operator saves validation results to your results store and then updates Data Docs. This makes viewing validation results easy for you and your team. Usage: - Run this file: `python {}`. - This can be run manually or via a scheduler such as cron. """ import sys import great_expectations as ge # tap configuration context = ge.DataContext( "/private/var/folders/_t/psczkmjd69vf9jz0bblzlzww0000gn/T/pytest-of-taylor/pytest-1812/empty_data_context0/great_expectations" ) suite = context.get_expectation_suite("sweet_suite") batch_kwargs = { "path": "/private/var/folders/_t/psczkmjd69vf9jz0bblzlzww0000gn/T/pytest-of-taylor/pytest-1812/filesystem_csv0/f1.csv", "datasource": "1_datasource", } # tap validation process batch = context.get_batch(batch_kwargs, suite) results = context.run_validation_operator("action_list_operator", [batch]) if not results["success"]: print("Validation Failed!") sys.exit(1) print("Validation Succeeded!") sys.exit(0)
venv/Lib/site-packages/numpy/typing/tests/data/fail/flatiter.py
EkremBayar/bayar
603
144527
<reponame>EkremBayar/bayar<gh_stars>100-1000 from typing import Any import numpy as np from numpy.typing import _SupportsArray class Index: def __index__(self) -> int: ... a: "np.flatiter[np.ndarray]" supports_array: _SupportsArray a.base = Any # E: Property "base" defined in "flatiter" is read-only a.coords = Any # E: Property "coords" defined in "flatiter" is read-only a.index = Any # E: Property "index" defined in "flatiter" is read-only a.copy(order='C') # E: Unexpected keyword argument # NOTE: Contrary to `ndarray.__getitem__` its counterpart in `flatiter` # does not accept objects with the `__array__` or `__index__` protocols; # boolean indexing is just plain broken (gh-17175) a[np.bool_()] # E: No overload variant of "__getitem__" a[Index()] # E: No overload variant of "__getitem__" a[supports_array] # E: No overload variant of "__getitem__"
tests/Unit/Elliptic/Systems/Elasticity/BoundaryConditions/LaserBeam.py
nilsvu/spectre
117
144559
# Distributed under the MIT License. # See LICENSE.txt for details. import numpy as np from numpy import sqrt, exp, pi def normal_dot_minus_stress(x, n, beam_width): n /= np.linalg.norm(n) r = sqrt(np.linalg.norm(x)**2 - np.dot(x, n)**2) beam_profile = exp(-(r / beam_width)**2) / pi / beam_width**2 return np.tensordot(-n, beam_profile, axes=0) def normal_dot_minus_stress_linearized(x, n, beam_width): return np.zeros(3)
tests/test_sorted_list.py
mrsndmn/PyGM
169
144563
<reponame>mrsndmn/PyGM<filename>tests/test_sorted_list.py import bisect import random from array import array import pytest from pygm import SortedList def test_len(): assert len(SortedList([1, 2, 3])) == 3 assert len(SortedList([3, 1, 4, 3])) == 4 assert len(SortedList([1] * 10)) == 10 def test_init(): assert SortedList() == [] assert SortedList([]) == [] assert SortedList((1, 2, 3, 2)) == [1, 2, 2, 3] assert SortedList({1: 'a', 2: 'b', 3: 'c'}) == [1, 2, 3] assert SortedList({1, 5, 5, 10}) == [1, 5, 10] assert SortedList(range(5, 0, -1)) == [1, 2, 3, 4, 5] assert SortedList({1, 5, 5, 10}, 'f') == [1., 5., 10.] assert SortedList(array('f', (1, 2, 2, 3))) == [1., 2., 2., 3.] assert SortedList(array('d', (1, 2, 2, 3))) == [1., 2., 2., 3.] assert SortedList(array('H', (1, 2, 2, 3))) == [1, 2, 2, 3] assert SortedList(array('Q', (1, 2, 2, 3))) == [1, 2, 2, 3] assert SortedList([-5, -1, -5, 5], 'h') == [-5, -5, -1, 5] assert SortedList(SortedList([1]), 'H').stats()['typecode'] == 'H' with pytest.raises(TypeError): SortedList([0], '@') with pytest.raises(TypeError): SortedList(lambda x: x + 10) with pytest.raises(ValueError): SortedList("ciao") def test_compare(): assert not SortedList([1] * 10) == SortedList([1] * 100) assert SortedList([-5, -4, -3, -2, -1]) > SortedList([-10, -5]) assert SortedList([2, 4, 8, 10]) >= SortedList([1, 4, 7, 10]) assert SortedList([10, 100, 1000]) != SortedList([10, 100]) assert SortedList([10, 100, 1000]) <= SortedList([10, 100, 10000]) assert SortedList([10, 100, 1000]) < SortedList([100, 1000, 1000]) with pytest.raises(TypeError): SortedList() < (lambda: 5) def test_contains(): assert 5 in SortedList(range(100)) assert 50 not in SortedList(list(range(50)) + list(range(51, 100))) assert 500. in SortedList([1., 1.] * 10 + [500.] * 2 + [1000.] * 5) def test_reversed(): assert list(reversed(SortedList(range(50)))) == list(reversed(range(50))) assert list(reversed(SortedList([1, 3, 3, 2, 1]))) == [3, 3, 2, 1, 1] def test_repr(): assert '1, ..., 1' in repr(SortedList([1] * 10000)) assert '1.5, ..., 1.5' in repr(SortedList([1.5] * 10000)) assert '[-1, 0, 0, 1]' in repr(SortedList([1, 0, 0, -1])) def test_getitem(): assert SortedList([3, 1, 4, 3])[2] == 3 assert SortedList(range(100))[50] == 50 assert SortedList([1, 4, 9, 7] * 10)[2:5] == [1, 1, 1] assert SortedList(range(1, 100))[:5] == [1, 2, 3, 4, 5] assert SortedList(range(1, 10))[1::2] == [2, 4, 6, 8] def test_iter(): assert next(iter(SortedList([0, 1, 4, 10]))) == 0 assert {x for x in SortedList([0, 1, 3, 3, 4, 10])} == {0, 1, 3, 4, 10} assert [x for x in SortedList([-10, 0, 10, 100])] == [-10, 0, 10, 100] def test_bisect(): random.seed(42) l = sorted([random.randint(-100, 100) for _ in range(500)]) sl = SortedList(l) for x in range(-105, 105): assert sl.bisect_left(x) == bisect.bisect_left(l, x) assert sl.bisect_right(x) == bisect.bisect_right(l, x) l = sorted([random.randint(-1000, 1000) for _ in range(100)]) for eps in [16, 32, 64, 128, 256]: sl = SortedList(l, 'i', eps) for x in range(-100, 100): assert sl.bisect_left(x) == bisect.bisect_left(l, x) assert sl.bisect_right(x) == bisect.bisect_right(l, x) def test_find(): l = SortedList([0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233] * 100) assert l.find_lt(5) == 3 assert l.find_lt(22) == 21 assert l.find_le(14) == 13 assert l.find_le(89) == 89 assert l.find_gt(55) == 89 assert l.find_gt(54) == 55 assert l.find_ge(5) == 5 assert l.find_ge(4) == 5 assert l.find_lt(0) is None assert l.find_le(-10) is None assert l.find_gt(233) is None assert l.find_ge(500) is None def test_rank(): l = SortedList([0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233] * 10) assert l.rank(-5) == 0 assert l.rank(0) == 10 assert l.rank(1) == 30 assert l.rank(4) == 50 assert l.rank(500) == len(l) def test_count(): l = SortedList(range(100)) assert l.count(-100) == 0 assert l.count(1000) == 0 for x in l: assert l.count(x) == 1 l = SortedList([1, 2, 4, 8, 16, 32] * 100) assert l.count(-100) == 0 assert l.count(1000) == 0 for x in range(6): assert l.count(2 ** x) == 100 def test_range(): l = SortedList(range(0, 100, 2)) assert list(l.range(10, 20, (False, False))) == [12, 14, 16, 18] assert list(l.range(10, 20, (False, True))) == [12, 14, 16, 18, 20] assert list(l.range(10, 20, (True, False))) == [10, 12, 14, 16, 18] assert list(l.range(10, 20, (True, True))) == [10, 12, 14, 16, 18, 20] def test_index(): l = sorted([0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233] * 10) sl = SortedList(l) for x in set(l): assert sl.index(x) == l.index(x) assert sl.index(1) == 10 assert sl.index(1, 10) == 10 assert sl.index(1, 10, 11) == 10 with pytest.raises(ValueError): sl.index(18) sl.index(233, 10, -20) def test_add(): assert SortedList([1, 1, 3]) + SortedList([5, 1]) == [1, 1, 1, 3, 5] assert SortedList([1, 1, 2, 3]) + [5, 1] == [1, 1, 1, 2, 3, 5] def test_sub(): assert SortedList([1, 1, 3]) - SortedList([5, 1]) == [1, 3] assert SortedList([1, 1, 2, 3, 8]) - [1, 1, 1] == [2, 3, 8] def test_drop_duplicates(): assert SortedList([2, 3, 8]).drop_duplicates() == [2, 3, 8] assert SortedList([2, 3, 8] * 10).drop_duplicates() == [2, 3, 8] def test_copy(): assert len(SortedList().copy()) == 0 assert SortedList([4, 1, 3, 3, 2]).copy() == [1, 2, 3, 3, 4]
AppDB/appscale/datastore/fdb/stats/buffer.py
loftwah/appscale
790
144570
<filename>AppDB/appscale/datastore/fdb/stats/buffer.py import datetime import logging import monotonic import random import time from collections import defaultdict import six from tornado import gen from tornado.ioloop import IOLoop from tornado.locks import Lock as AsyncLock from appscale.datastore.fdb.polling_lock import PollingLock from appscale.datastore.fdb.stats.containers import ProjectStats from appscale.datastore.fdb.stats.entities import fill_entities from appscale.datastore.fdb.utils import ( fdb, MAX_FDB_TX_DURATION, ResultIterator) logger = logging.getLogger(__name__) class ProjectStatsDir(object): """ A ProjectStatsDir handles the encoding and decoding details for a project's stats entries. The directory path looks like (<project-dir>, 'stats'). """ DIR_NAME = u'stats' def __init__(self, directory): self.directory = directory def encode_last_versionstamp(self): return self.directory.pack((u'last-versionstamp',)), b'\x00' * 14 def encode_last_timestamp(self): key = self.directory.pack((u'last-timestamp',)) value = fdb.tuple.pack((int(time.time()),)) return key, value def decode(self, kvs): project_stats = ProjectStats() last_timestamp = None for kv in kvs: path = self.directory.unpack(kv.key) section = path[0] if section == u'last-versionstamp': continue if section == u'last-timestamp': last_timestamp = datetime.datetime.utcfromtimestamp( fdb.tuple.unpack(kv.value)[0]) continue project_stats.update_from_kv(section, path[1:], kv.value) return project_stats, last_timestamp @classmethod def directory_path(cls, project_id): return project_id, cls.DIR_NAME class StatsBuffer(object): AVG_FLUSH_INTERVAL = 30 BATCH_SIZE = 20 SUMMARY_INTERVAL = 120 _LOCK_KEY = u'stats-lock' def __init__(self, db, tornado_fdb, directory_cache, ds_access): self._db = db self._tornado_fdb = tornado_fdb self._directory_cache = directory_cache self._buffer_lock = AsyncLock() self._ds_access = ds_access summary_lock_key = self._directory_cache.root_dir.pack((self._LOCK_KEY,)) self._summary_lock = PollingLock( self._db, self._tornado_fdb, summary_lock_key) # By project self._last_summarized = {} # By project self._buffers = defaultdict(ProjectStats) def start(self): self._summary_lock.start() IOLoop.current().spawn_callback(self._periodic_flush) IOLoop.current().spawn_callback(self._periodic_summary) @gen.coroutine def update(self, project_id, mutations): with (yield self._buffer_lock.acquire()): for old_entry, new_entry, index_stats in mutations: self._buffers[project_id].update(old_entry, new_entry, index_stats) @gen.coroutine def _periodic_flush(self): while True: try: yield gen.sleep(random.random() * self.AVG_FLUSH_INTERVAL) yield self._flush() except Exception: # TODO: Exponential backoff here. logger.exception(u'Unexpected error while flushing stats') yield gen.sleep(random.random() * 2) continue @gen.coroutine def _flush(self): if all(buffer_.empty for buffer_ in six.itervalues(self._buffers)): return with (yield self._buffer_lock.acquire()): tr = self._db.create_transaction() for project_id, buffer_ in six.iteritems(self._buffers): stats_dir = yield self._project_stats_dir(tr, project_id) buffer_.apply(tr, stats_dir.directory) vs_key, vs_value = stats_dir.encode_last_versionstamp() tr.set_versionstamped_value(vs_key, vs_value) ts_key, ts_value = stats_dir.encode_last_timestamp() tr[ts_key] = ts_value yield self._tornado_fdb.commit(tr) logger.debug(u'Finished flushing stats') self._buffers.clear() @gen.coroutine def _periodic_summary(self): while True: try: yield self._summary_lock.acquire() tr = self._db.create_transaction() deadline = monotonic.monotonic() + MAX_FDB_TX_DURATION - 1 last_summarized = {} # TODO: This can be made async. project_ids = self._directory_cache.root_dir.list(tr) summarized_projects = [] for project_id in project_ids: stats_dir = yield self._project_stats_dir(tr, project_id) last_vs_key = stats_dir.encode_last_versionstamp()[0] last_versionstamp = yield self._tornado_fdb.get( tr, last_vs_key, snapshot=True) if (not last_versionstamp.present() or last_versionstamp.value == self._last_summarized.get(project_id)): continue last_summarized[project_id] = last_versionstamp.value results = yield ResultIterator( tr, self._tornado_fdb, stats_dir.directory.range(), snapshot=True).list() project_stats, last_timestamp = stats_dir.decode(results) entities = fill_entities(project_id, project_stats, last_timestamp) for pos in range(0, len(entities), self.BATCH_SIZE): yield [self._ds_access._upsert(tr, entity) for entity in entities[pos:pos + self.BATCH_SIZE]] if monotonic.monotonic() > deadline: yield self._tornado_fdb.commit(tr) tr = self._db.create_transaction() deadline = monotonic.monotonic() + MAX_FDB_TX_DURATION - 1 summarized_projects.append(project_id) yield self._tornado_fdb.commit(tr) self._last_summarized.update(last_summarized) if summarized_projects: logger.debug(u'Finished summarizing stats for ' u'{}'.format(summarized_projects)) yield gen.sleep(self.SUMMARY_INTERVAL) except Exception: logger.exception(u'Unexpected error while summarizing stats') yield gen.sleep(random.random() * 20) @gen.coroutine def _project_stats_dir(self, tr, project_id): path = ProjectStatsDir.directory_path(project_id) directory = yield self._directory_cache.get(tr, path) raise gen.Return(ProjectStatsDir(directory))
pytorch_ipynb/helper_plotting.py
XiaoshengLin/deeplearning-models
16,182
144612
<filename>pytorch_ipynb/helper_plotting.py # imports from installed libraries import os import matplotlib.pyplot as plt import numpy as np import torch def plot_training_loss(minibatch_loss_list, num_epochs, iter_per_epoch, results_dir=None, averaging_iterations=100): plt.figure() ax1 = plt.subplot(1, 1, 1) ax1.plot(range(len(minibatch_loss_list)), (minibatch_loss_list), label='Minibatch Loss') if len(minibatch_loss_list) > 1000: ax1.set_ylim([ 0, np.max(minibatch_loss_list[1000:])*1.5 ]) ax1.set_xlabel('Iterations') ax1.set_ylabel('Loss') ax1.plot(np.convolve(minibatch_loss_list, np.ones(averaging_iterations,)/averaging_iterations, mode='valid'), label='Running Average') ax1.legend() ################### # Set scond x-axis ax2 = ax1.twiny() newlabel = list(range(num_epochs+1)) newpos = [e*iter_per_epoch for e in newlabel] ax2.set_xticks(newpos[::10]) ax2.set_xticklabels(newlabel[::10]) ax2.xaxis.set_ticks_position('bottom') ax2.xaxis.set_label_position('bottom') ax2.spines['bottom'].set_position(('outward', 45)) ax2.set_xlabel('Epochs') ax2.set_xlim(ax1.get_xlim()) ################### plt.tight_layout() if results_dir is not None: image_path = os.path.join(results_dir, 'plot_training_loss.pdf') plt.savefig(image_path) def plot_accuracy(train_acc_list, valid_acc_list, results_dir): num_epochs = len(train_acc_list) plt.plot(np.arange(1, num_epochs+1), train_acc_list, label='Training') plt.plot(np.arange(1, num_epochs+1), valid_acc_list, label='Validation') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.tight_layout() if results_dir is not None: image_path = os.path.join( results_dir, 'plot_acc_training_validation.pdf') plt.savefig(image_path) def show_examples(model, data_loader, unnormalizer=None, class_dict=None): for batch_idx, (features, targets) in enumerate(data_loader): with torch.no_grad(): features = features targets = targets logits = model(features) predictions = torch.argmax(logits, dim=1) break fig, axes = plt.subplots(nrows=3, ncols=5, sharex=True, sharey=True) if unnormalizer is not None: for idx in range(features.shape[0]): features[idx] = unnormalizer(features[idx]) nhwc_img = np.transpose(features, axes=(0, 2, 3, 1)) if nhwc_img.shape[-1] == 1: nhw_img = np.squeeze(nhwc_img.numpy(), axis=3) for idx, ax in enumerate(axes.ravel()): ax.imshow(nhw_img[idx], cmap='binary') if class_dict is not None: ax.title.set_text(f'P: {class_dict[predictions[idx].item()]}' f'\nT: {class_dict[targets[idx].item()]}') else: ax.title.set_text(f'P: {predictions[idx]} | T: {targets[idx]}') ax.axison = False else: for idx, ax in enumerate(axes.ravel()): ax.imshow(nhwc_img[idx]) if class_dict is not None: ax.title.set_text(f'P: {class_dict[predictions[idx].item()]}' f'\nT: {class_dict[targets[idx].item()]}') else: ax.title.set_text(f'P: {predictions[idx]} | T: {targets[idx]}') ax.axison = False plt.tight_layout() plt.show() def plot_confusion_matrix(conf_mat, hide_spines=False, hide_ticks=False, figsize=None, cmap=None, colorbar=False, show_absolute=True, show_normed=False, class_names=None): if not (show_absolute or show_normed): raise AssertionError('Both show_absolute and show_normed are False') if class_names is not None and len(class_names) != len(conf_mat): raise AssertionError('len(class_names) should be equal to number of' 'classes in the dataset') total_samples = conf_mat.sum(axis=1)[:, np.newaxis] normed_conf_mat = conf_mat.astype('float') / total_samples fig, ax = plt.subplots(figsize=figsize) ax.grid(False) if cmap is None: cmap = plt.cm.Blues if figsize is None: figsize = (len(conf_mat)*1.25, len(conf_mat)*1.25) if show_normed: matshow = ax.matshow(normed_conf_mat, cmap=cmap) else: matshow = ax.matshow(conf_mat, cmap=cmap) if colorbar: fig.colorbar(matshow) for i in range(conf_mat.shape[0]): for j in range(conf_mat.shape[1]): cell_text = "" if show_absolute: cell_text += format(conf_mat[i, j], 'd') if show_normed: cell_text += "\n" + '(' cell_text += format(normed_conf_mat[i, j], '.2f') + ')' else: cell_text += format(normed_conf_mat[i, j], '.2f') ax.text(x=j, y=i, s=cell_text, va='center', ha='center', color="white" if normed_conf_mat[i, j] > 0.5 else "black") if class_names is not None: tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names, rotation=90) plt.yticks(tick_marks, class_names) if hide_spines: ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') if hide_ticks: ax.axes.get_yaxis().set_ticks([]) ax.axes.get_xaxis().set_ticks([]) plt.xlabel('predicted label') plt.ylabel('true label') return fig, ax
Tests/test_class.py
psydox/Pyjion
1,137
144634
<reponame>psydox/Pyjion<filename>Tests/test_class.py def test_add(): class Number: def __add__(self, other): return 4 + other def __radd__(self, other): return other + 4 a = Number() assert 3 + a == 7 assert a + 3 == 7 def test_inheritance(): class Node(object): def __init__(self, a, b, c): self.a = a self.b = b self.c = c def add_n(self, n): self.a += n def __repr__(self): value = self.a value = repr(value) return '%s(tag=%r, value=%s)' % (self.__class__.__name__, self.b, value) class ChildNode(Node): def __init__(self, a, b, c): self.a = a self.b = b self.c = c class GrandchildNode(ChildNode): d = 101000 node = GrandchildNode(101001, 101002, 101003) x = repr(node) assert x == "GrandchildNode(tag=101002, value=101001)" node.add_n(10000)
mne/utils/tests/test_testing.py
rylaw/mne-python
1,953
144641
<reponame>rylaw/mne-python import os.path as op import numpy as np import pytest from mne.datasets import testing from mne.utils import (_TempDir, _url_to_local_path, buggy_mkl_svd) def test_buggy_mkl(): """Test decorator for buggy MKL issues.""" from unittest import SkipTest @buggy_mkl_svd def foo(a, b): raise np.linalg.LinAlgError('SVD did not converge') with pytest.warns(RuntimeWarning, match='convergence error'): pytest.raises(SkipTest, foo, 1, 2) @buggy_mkl_svd def bar(c, d, e): raise RuntimeError('SVD did not converge') pytest.raises(RuntimeError, bar, 1, 2, 3) def test_tempdir(): """Test TempDir.""" tempdir2 = _TempDir() assert (op.isdir(tempdir2)) x = str(tempdir2) del tempdir2 assert (not op.isdir(x)) def test_datasets(monkeypatch, tmpdir): """Test dataset config.""" # gh-4192 fake_path = tmpdir.mkdir('MNE-testing-data') with open(fake_path.join('version.txt'), 'w') as fid: fid.write('9999.9999') monkeypatch.setenv('_MNE_FAKE_HOME_DIR', str(tmpdir)) monkeypatch.setenv('MNE_DATASETS_TESTING_PATH', str(tmpdir)) assert testing.data_path(download=False, verbose='debug') == str(fake_path) def test_url_to_local_path(): """Test URL to local path.""" assert _url_to_local_path('http://google.com/home/why.html', '.') == \ op.join('.', 'home', 'why.html')
nsf/nde/transforms/conv_test.py
davidreiman/nsf
231
144642
<filename>nsf/nde/transforms/conv_test.py<gh_stars>100-1000 import torch import unittest from nde import transforms from nde.transforms.transform_test import TransformTest class OneByOneConvolutionTest(TransformTest): def test_forward_and_inverse_are_consistent(self): batch_size = 10 c, h, w = 3, 28, 28 inputs = torch.randn(batch_size, c, h, w) transform = transforms.OneByOneConvolution(c) self.eps = 1e-6 self.assert_forward_inverse_are_consistent(transform, inputs) if __name__ == '__main__': unittest.main()
bplustree/memory.py
EdwardWooCN/bplustree
760
144655
<filename>bplustree/memory.py<gh_stars>100-1000 import enum import io from logging import getLogger import os import platform from typing import Union, Tuple, Optional import cachetools import rwlock from .node import Node, FreelistNode from .const import ( ENDIAN, PAGE_REFERENCE_BYTES, OTHERS_BYTES, TreeConf, FRAME_TYPE_BYTES ) logger = getLogger(__name__) class ReachedEndOfFile(Exception): """Read a file until its end.""" def open_file_in_dir(path: str) -> Tuple[io.FileIO, Optional[int]]: """Open a file and its directory. The file is opened in binary mode and created if it does not exist. Both file descriptors must be closed after use to prevent them from leaking. On Windows, the directory is not opened, as it is useless. """ directory = os.path.dirname(path) if not os.path.isdir(directory): raise ValueError('No directory {}'.format(directory)) if not os.path.exists(path): file_fd = open(path, mode='x+b', buffering=0) else: file_fd = open(path, mode='r+b', buffering=0) if platform.system() == 'Windows': # Opening a directory is not possible on Windows, but that is not # a problem since Windows does not need to fsync the directory in # order to persist metadata dir_fd = None else: dir_fd = os.open(directory, os.O_RDONLY) return file_fd, dir_fd def write_to_file(file_fd: io.FileIO, dir_fileno: Optional[int], data: bytes, fsync: bool=True): length_to_write = len(data) written = 0 while written < length_to_write: written += file_fd.write(data[written:]) if fsync: fsync_file_and_dir(file_fd.fileno(), dir_fileno) def fsync_file_and_dir(file_fileno: int, dir_fileno: Optional[int]): os.fsync(file_fileno) if dir_fileno is not None: os.fsync(dir_fileno) def read_from_file(file_fd: io.FileIO, start: int, stop: int) -> bytes: length = stop - start assert length >= 0 file_fd.seek(start) data = bytes() while file_fd.tell() < stop: read_data = file_fd.read(stop - file_fd.tell()) if read_data == b'': raise ReachedEndOfFile('Read until the end of file') data += read_data assert len(data) == length return data class FakeCache: """A cache that doesn't cache anything. Because cachetools does not work with maxsize=0. """ def get(self, k): pass def __setitem__(self, key, value): pass def clear(self): pass class FileMemory: __slots__ = ['_filename', '_tree_conf', '_lock', '_cache', '_fd', '_dir_fd', '_wal', 'last_page', '_freelist_start_page', '_root_node_page'] def __init__(self, filename: str, tree_conf: TreeConf, cache_size: int=512): self._filename = filename self._tree_conf = tree_conf self._lock = rwlock.RWLock() if cache_size == 0: self._cache = FakeCache() else: self._cache = cachetools.LRUCache(maxsize=cache_size) self._fd, self._dir_fd = open_file_in_dir(filename) self._wal = WAL(filename, tree_conf.page_size) if self._wal.needs_recovery: self.perform_checkpoint(reopen_wal=True) # Get the next available page self._fd.seek(0, io.SEEK_END) last_byte = self._fd.tell() self.last_page = int(last_byte / self._tree_conf.page_size) self._freelist_start_page = 0 # Todo: Remove this, it should only be in Tree self._root_node_page = 0 def get_node(self, page: int): """Get a node from storage. The cache is not there to prevent hitting the disk, the OS is already very good at it. It is there to avoid paying the price of deserializing the data to create the Node object and its entry. This is a very expensive operation in Python. Since we have at most a single writer we can write to cache on `set_node` if we invalidate the cache when a transaction is rolled back. """ node = self._cache.get(page) if node is not None: return node data = self._wal.get_page(page) if not data: data = self._read_page(page) node = Node.from_page_data(self._tree_conf, data=data, page=page) self._cache[node.page] = node return node def set_node(self, node: Node): self._wal.set_page(node.page, node.dump()) self._cache[node.page] = node def del_node(self, node: Node): self._insert_in_freelist(node.page) def del_page(self, page: int): self._insert_in_freelist(page) @property def read_transaction(self): class ReadTransaction: def __enter__(self2): self._lock.reader_lock.acquire() def __exit__(self2, exc_type, exc_val, exc_tb): self._lock.reader_lock.release() return ReadTransaction() @property def write_transaction(self): class WriteTransaction: def __enter__(self2): self._lock.writer_lock.acquire() def __exit__(self2, exc_type, exc_val, exc_tb): if exc_type: # When an error happens in the middle of a write # transaction we must roll it back and clear the cache # because the writer may have partially modified the Nodes self._wal.rollback() self._cache.clear() else: self._wal.commit() self._lock.writer_lock.release() return WriteTransaction() @property def next_available_page(self) -> int: last_freelist_page = self._pop_from_freelist() if last_freelist_page is not None: return last_freelist_page self.last_page += 1 return self.last_page def _traverse_free_list(self) -> Tuple[Optional[FreelistNode], Optional[FreelistNode]]: if self._freelist_start_page == 0: return None, None second_to_last_node = None last_node = self.get_node(self._freelist_start_page) while last_node.next_page is not None: second_to_last_node = last_node last_node = self.get_node(second_to_last_node.next_page) return second_to_last_node, last_node def _insert_in_freelist(self, page: int): """Insert a page at the end of the freelist.""" _, last_node = self._traverse_free_list() self.set_node(FreelistNode(self._tree_conf, page=page, next_page=None)) if last_node is None: # Write in metadata that the freelist got a new starting point self._freelist_start_page = page self.set_metadata(None, None) else: last_node.next_page = page self.set_node(last_node) def _pop_from_freelist(self) -> Optional[int]: """Remove the last page from the freelist and return its page.""" second_to_last_node, last_node = self._traverse_free_list() if last_node is None: # Freelist is completely empty, nothing to pop return None if second_to_last_node is None: # Write in metadata that the freelist is empty self._freelist_start_page = 0 self.set_metadata(None, None) else: second_to_last_node.next_page = None self.set_node(second_to_last_node) return last_node.page # Todo: make metadata as a normal Node def get_metadata(self) -> tuple: try: data = self._read_page(0) except ReachedEndOfFile: raise ValueError('Metadata not set yet') end_root_node_page = PAGE_REFERENCE_BYTES root_node_page = int.from_bytes( data[0:end_root_node_page], ENDIAN ) end_page_size = end_root_node_page + OTHERS_BYTES page_size = int.from_bytes( data[end_root_node_page:end_page_size], ENDIAN ) end_order = end_page_size + OTHERS_BYTES order = int.from_bytes( data[end_page_size:end_order], ENDIAN ) end_key_size = end_order + OTHERS_BYTES key_size = int.from_bytes( data[end_order:end_key_size], ENDIAN ) end_value_size = end_key_size + OTHERS_BYTES value_size = int.from_bytes( data[end_key_size:end_value_size], ENDIAN ) end_freelist_start_page = end_value_size + PAGE_REFERENCE_BYTES self._freelist_start_page = int.from_bytes( data[end_value_size:end_freelist_start_page], ENDIAN ) self._tree_conf = TreeConf( page_size, order, key_size, value_size, self._tree_conf.serializer ) self._root_node_page = root_node_page return root_node_page, self._tree_conf def set_metadata(self, root_node_page: Optional[int], tree_conf: Optional[TreeConf]): if root_node_page is None: root_node_page = self._root_node_page if tree_conf is None: tree_conf = self._tree_conf length = 2 * PAGE_REFERENCE_BYTES + 4 * OTHERS_BYTES data = ( root_node_page.to_bytes(PAGE_REFERENCE_BYTES, ENDIAN) + tree_conf.page_size.to_bytes(OTHERS_BYTES, ENDIAN) + tree_conf.order.to_bytes(OTHERS_BYTES, ENDIAN) + tree_conf.key_size.to_bytes(OTHERS_BYTES, ENDIAN) + tree_conf.value_size.to_bytes(OTHERS_BYTES, ENDIAN) + self._freelist_start_page.to_bytes(PAGE_REFERENCE_BYTES, ENDIAN) + bytes(tree_conf.page_size - length) ) self._write_page_in_tree(0, data, fsync=True) self._tree_conf = tree_conf self._root_node_page = root_node_page def close(self): self.perform_checkpoint() self._fd.close() if self._dir_fd is not None: os.close(self._dir_fd) def perform_checkpoint(self, reopen_wal=False): logger.info('Performing checkpoint of %s', self._filename) for page, page_data in self._wal.checkpoint(): self._write_page_in_tree(page, page_data, fsync=False) fsync_file_and_dir(self._fd.fileno(), self._dir_fd) if reopen_wal: self._wal = WAL(self._filename, self._tree_conf.page_size) def _read_page(self, page: int) -> bytes: start = page * self._tree_conf.page_size stop = start + self._tree_conf.page_size assert stop - start == self._tree_conf.page_size return read_from_file(self._fd, start, stop) def _write_page_in_tree(self, page: int, data: Union[bytes, bytearray], fsync: bool=True): """Write a page of data in the tree file itself. To be used during checkpoints and other non-standard uses. """ assert len(data) == self._tree_conf.page_size self._fd.seek(page * self._tree_conf.page_size) write_to_file(self._fd, self._dir_fd, data, fsync=fsync) def __repr__(self): return '<FileMemory: {}>'.format(self._filename) class FrameType(enum.Enum): PAGE = 1 COMMIT = 2 ROLLBACK = 3 class WAL: __slots__ = ['filename', '_fd', '_dir_fd', '_page_size', '_committed_pages', '_not_committed_pages', 'needs_recovery'] FRAME_HEADER_LENGTH = ( FRAME_TYPE_BYTES + PAGE_REFERENCE_BYTES ) def __init__(self, filename: str, page_size: int): self.filename = filename + '-wal' self._fd, self._dir_fd = open_file_in_dir(self.filename) self._page_size = page_size self._committed_pages = dict() self._not_committed_pages = dict() self._fd.seek(0, io.SEEK_END) if self._fd.tell() == 0: self._create_header() self.needs_recovery = False else: logger.warning('Found an existing WAL file, ' 'the B+Tree was not closed properly') self.needs_recovery = True self._load_wal() def checkpoint(self): """Transfer the modified data back to the tree and close the WAL.""" if self._not_committed_pages: logger.warning('Closing WAL with uncommitted data, discarding it') fsync_file_and_dir(self._fd.fileno(), self._dir_fd) for page, page_start in self._committed_pages.items(): page_data = read_from_file( self._fd, page_start, page_start + self._page_size ) yield page, page_data self._fd.close() os.unlink(self.filename) if self._dir_fd is not None: os.fsync(self._dir_fd) os.close(self._dir_fd) def _create_header(self): data = self._page_size.to_bytes(OTHERS_BYTES, ENDIAN) self._fd.seek(0) write_to_file(self._fd, self._dir_fd, data, True) def _load_wal(self): self._fd.seek(0) header_data = read_from_file(self._fd, 0, OTHERS_BYTES) assert int.from_bytes(header_data, ENDIAN) == self._page_size while True: try: self._load_next_frame() except ReachedEndOfFile: break if self._not_committed_pages: logger.warning('WAL has uncommitted data, discarding it') self._not_committed_pages = dict() def _load_next_frame(self): start = self._fd.tell() stop = start + self.FRAME_HEADER_LENGTH data = read_from_file(self._fd, start, stop) frame_type = int.from_bytes(data[0:FRAME_TYPE_BYTES], ENDIAN) page = int.from_bytes( data[FRAME_TYPE_BYTES:FRAME_TYPE_BYTES+PAGE_REFERENCE_BYTES], ENDIAN ) frame_type = FrameType(frame_type) if frame_type is FrameType.PAGE: self._fd.seek(stop + self._page_size) self._index_frame(frame_type, page, stop) def _index_frame(self, frame_type: FrameType, page: int, page_start: int): if frame_type is FrameType.PAGE: self._not_committed_pages[page] = page_start elif frame_type is FrameType.COMMIT: self._committed_pages.update(self._not_committed_pages) self._not_committed_pages = dict() elif frame_type is FrameType.ROLLBACK: self._not_committed_pages = dict() else: assert False def _add_frame(self, frame_type: FrameType, page: Optional[int]=None, page_data: Optional[bytes]=None): if frame_type is FrameType.PAGE and (not page or not page_data): raise ValueError('PAGE frame without page data') if page_data and len(page_data) != self._page_size: raise ValueError('Page data is different from page size') if not page: page = 0 if frame_type is not FrameType.PAGE: page_data = b'' data = ( frame_type.value.to_bytes(FRAME_TYPE_BYTES, ENDIAN) + page.to_bytes(PAGE_REFERENCE_BYTES, ENDIAN) + page_data ) self._fd.seek(0, io.SEEK_END) write_to_file(self._fd, self._dir_fd, data, fsync=frame_type != FrameType.PAGE) self._index_frame(frame_type, page, self._fd.tell() - self._page_size) def get_page(self, page: int) -> Optional[bytes]: page_start = None for store in (self._not_committed_pages, self._committed_pages): page_start = store.get(page) if page_start: break if not page_start: return None return read_from_file(self._fd, page_start, page_start + self._page_size) def set_page(self, page: int, page_data: bytes): self._add_frame(FrameType.PAGE, page, page_data) def commit(self): # Commit is a no-op when there is no uncommitted pages if self._not_committed_pages: self._add_frame(FrameType.COMMIT) def rollback(self): # Rollback is a no-op when there is no uncommitted pages if self._not_committed_pages: self._add_frame(FrameType.ROLLBACK) def __repr__(self): return '<WAL: {}>'.format(self.filename)
aw_nas/objective/container.py
Harald-R/aw_nas
195
144657
from aw_nas.objective.base import BaseObjective class ContainerObjective(BaseObjective): NAME = "container" def __init__(self, search_space, sub_objectives, losses_coef=None, rewards_coef=None, schedule_cfg=None): super().__init__(search_space, schedule_cfg=schedule_cfg) self.objectives = [ BaseObjective.get_class_(obj["objective_type"])( search_space, **obj["objective_cfg"]) for obj in sub_objectives ] self.losses_coef = losses_coef self.rewards_coef = rewards_coef if self.losses_coef is None: self.losses_coef = [1.] * len(self.objectives) if self.rewards_coef is None: self.rewards_coef = [1.] * len(self.objectives) assert len(self.rewards_coef) == len(self.losses_coef) == len(self.objectives), \ ("expect rewards_coef and losses_coef have the exactly" "same length with objectives, got {}, {} and {} instead.").format( len(rewards_coef), len(self.losses_coef), len(self.objectives)) @classmethod def supported_data_types(cls): return ["image"] def aggregate_fn(self, perf_name, is_training=True): for obj in self.objectives: if perf_name in obj.perf_names(): return obj.aggregate_fn(perf_name, is_training) else: return super().aggregate_fn(perf_name, is_training) def perf_names(self): return sum([obj.perf_names() for obj in self.objectives], []) def get_perfs(self, inputs, outputs, targets, cand_net): perfs = [] for obj in self.objectives: perfs.extend(obj.get_perfs(inputs, outputs, targets, cand_net)) assert len(perfs) == len(self.perf_names()), \ ("expect performances have the exactly " "same length with perf_names, got {} and {} instead.").format( len(perfs), len(self.perf_names())) return perfs def get_loss(self, inputs, outputs, targets, cand_net, add_controller_regularization=True, add_evaluator_regularization=True): losses = [ obj.get_loss( inputs, outputs, targets, cand_net, add_controller_regularization, add_evaluator_regularization ) for obj in self.objectives ] weighted_loss = [l * c for l, c in zip(losses, self.losses_coef)] return sum(weighted_loss) def get_reward(self, inputs, outputs, targets, cand_net): rewards = [ obj.get_reward( inputs, outputs, targets, cand_net ) for obj in self.objectives ] weighted_rewards = [l * c for l, c in zip(rewards, self.rewards_coef)] return sum(weighted_rewards)
control/gcs/return.py
CNRoboComp2020/XTDrone
457
144658
import rospy import PyKDL from geometry_msgs.msg import Twist, Point, PoseStamped, TwistStamped from std_msgs.msg import String import numpy import math import sys import copy from gazebo_msgs.srv import GetModelState class ReturnHome: def __init__(self,uav_id): self.uav_type = 'typhoon_h480' self.id = int(uav_id) self.uav_num = 6 self.f = 30 # pin lv self.count = 0 self.local_pose = PoseStamped() self.following_local_pose = [PoseStamped() for i in range(self.uav_num)] self.following_local_pose_sub = [None]*(self.uav_num) self.uav_current_pose = Point() self.uav_current_yaw = 0.0 self.uav_vel = Twist() self.arrive_point = False self.Kp = 0.5 self.Kpy = 1 self.Kpvel = 1 self.z = 12.0 # height self.velxy_max = 4 self.velz_max = 3 self.angz_max = 3 self.bias = [[-10, 32.7],[100,33.5],[75,30],[60,-3],[-30,-40.5],[45,-15]] self.target_position = Twist() self.target_yaw = 0.0 self.last_yaw = 0.0 self.arrive_count = 0 self.safe_dis = 0.3 self.safe_height = 0.5 self.cmd = '' self.last_ugv0_pose = Point() self.current_ugv0_pose = Point() self.last_ugv1_pose = Point() self.current_ugv1_pose = Point() self.situation_flag = 0 self.change_task_flag = False #variables of rostopic rospy.init_node('uav'+str(self.id)) self.local_pose_sub = rospy.Subscriber(self.uav_type + '_' + str(self.id) + "/mavros/local_position/pose", PoseStamped, self.local_pose_callback) self.vel_enu_pub = rospy.Publisher('/xtdrone/'+self.uav_type+'_'+str(self.id)+'/cmd_vel_flu', Twist, queue_size=10) self.cmd_pub = rospy.Publisher('/xtdrone/'+self.uav_type+'_'+str(self.id)+'/cmd',String,queue_size=10) self.gazeboModelstate = rospy.ServiceProxy('gazebo/get_model_state', GetModelState) def local_pose_callback(self, msg): self.local_pose = msg self.uav_current_pose = self.local_pose.pose.position self.uav_current_pose.x = self.uav_current_pose.x+self.bias[self.id][0] self.uav_current_pose.y = self.uav_current_pose.y+self.bias[self.id][1] self.uav_current_pose.z = self.uav_current_pose.z # change Quaternion to TF: x = self.local_pose.pose.orientation.x y = self.local_pose.pose.orientation.y z = self.local_pose.pose.orientation.z w = self.local_pose.pose.orientation.w rot = PyKDL.Rotation.Quaternion(x, y, z, w) res = rot.GetRPY()[2] while res > math.pi: res -= 2.0*math.pi while res < -math.pi: res += 2.0*math.pi if res < 0: res = res + 2.0 * math.pi self.uav_current_yaw = res # 0 to 2pi def following_local_pose_callback(self, msg, id): self.following_local_pose[id] = msg self.following_local_pose[id].pose.position.x = self.following_local_pose[id].pose.position.x+self.bias[id][0] self.following_local_pose[id].pose.position.y = self.following_local_pose[id].pose.position.y+self.bias[id][1] self.following_local_pose[id].pose.position.z = self.following_local_pose[id].pose.position.z def loop(self): rate = rospy.Rate(self.f) count_situ_one = 0 for i in range(self.uav_num): if not i == self.id: self.following_local_pose_sub[i] = rospy.Subscriber(self.uav_type + '_' + str(i) + "/mavros/local_position/pose", PoseStamped, self.following_local_pose_callback, i) while not rospy.is_shutdown(): self.count += 1 self.velxy_max = 4.0 self.cmd = '' # get position of ugvs: try: get_ugv0_state = self.gazeboModelstate('ugv_0', 'ground_plane') self.last_ugv0_pose = self.current_ugv0_pose self.current_ugv0_pose = get_ugv0_state.pose.position get_ugv1_state = self.gazeboModelstate('ugv_1', 'ground_plane') self.last_ugv1_pose = self.current_ugv1_pose self.current_ugv1_pose = get_ugv1_state.pose.position except rospy.ServiceException as e: print("Gazebo model state service"+" call failed: %s") % e # fly to the same altitude xian offboard hou arm if self.count == 40 or self.count == 42 or self.count == 44: self.cmd = 'OFFBOARD' if self.count == 94 or self.count == 96 or self.count == 98: self.cmd = 'ARM' if self.situation_flag == 0: # ding gao self.target_position.linear.z = self.z self.target_position.linear.x = self.uav_current_pose.x self.target_position.linear.y = self.uav_current_pose.y self.uav_vel.angular.x = self.uav_vel.angular.x self.uav_vel.angular.y = self.uav_vel.angular.y self.uav_vel.angular.z = self.uav_vel.angular.z if self.situation_flag == 1 and self.change_task_flag: # chu shi hua self.change_task_flag = False #if not self.avoid_start_flag: self.init_point() if self.situation_flag == 2 and self.change_task_flag: # chu shi hua self.change_task_flag = False #if not self.avoid_start_flag: self.return_home() print 'flag222222' distance_tar_cur = self.VectNorm3(self.target_position.linear, self.uav_current_pose) if distance_tar_cur < 0.5: self.arrive_count += 1 if self.arrive_count > 5: self.arrive_point = True self.arrive_count = 0 else: self.arrive_point = False else: self.arrive_count = 0 self.arrive_point = False # task changes: if (self.situation_flag == 0) and self.arrive_point: self.change_task_flag = True self.situation_flag = 1 self.arrive_point = False elif (self.situation_flag == 1) and self.arrive_point: self.situation_flag = 2 # self.start_yolo_pub.publish('gogogo') self.arrive_point = False self.change_task_flag = True if self.situation_flag == 2: self.velz_max = 1 if self.uav_current_pose.z < 2.2: self.target_position.linear.x = self.uav_current_pose.x self.target_position.linear.y = self.uav_current_pose.y if self.uav_current_pose.z < 1.9: self.cmd = 'DISARM' self.get_control_vel() # self.obstacle_avoid() self.vel_enu_pub.publish(self.uav_vel) self.cmd_pub.publish(self.cmd) rate.sleep() def get_control_vel(self): # P kong zhi, flu zuo biao xi uav_dis_curtar = self.VectNorm2(self.target_position.linear, self.uav_current_pose) #distance temp = self.VectDiff(self.target_position.linear, self.uav_current_pose) # vector uav_vel_total = self.Kp * uav_dis_curtar # velocity if uav_vel_total > self.velxy_max: uav_vel_total = self.velxy_max ''' if not uav_dis_curtar == 0.0: self.uav_vel.linear.x = (temp.x/uav_dis_curtar) * uav_vel_total self.uav_vel.linear.y = (temp.y/uav_dis_curtar) * uav_vel_total else: self.uav_vel.linear.x = 0.0 self.uav_vel.linear.y = 0.0 ''' self.target_yaw = self.pos2ang(self.target_position.linear.x, self.target_position.linear.y, self.uav_current_pose.x, self.uav_current_pose.y) mid_yaw = self.target_yaw - self.uav_current_yaw if mid_yaw > math.pi: mid_yaw = mid_yaw - 2*math.pi elif mid_yaw < -math.pi: mid_yaw = 2*math.pi + mid_yaw self.uav_vel.angular.z = self.Kpy * mid_yaw if self.uav_vel.angular.z > self.angz_max: self.uav_vel.angular.z = self.angz_max elif self.uav_vel.angular.z < -self.angz_max: self.uav_vel.angular.z = -self.angz_max self.uav_vel.linear.x = uav_vel_total * math.cos(mid_yaw) self.uav_vel.linear.y = uav_vel_total * math.sin(mid_yaw) self.uav_vel.linear.z = self.Kp * (self.target_position.linear.z - self.uav_current_pose.z) if self.uav_vel.linear.z > self.velz_max: self.uav_vel.linear.z = self.velz_max elif self.uav_vel.linear.z < - self.velz_max: self.uav_vel.linear.z = - self.velz_max def init_point(self): if self.id == 0: # middle circle 3 self.target_position.linear.x = self.current_ugv0_pose.x # ugv0 -0.3 self.target_position.linear.y = self.current_ugv0_pose.y-0.2 elif self.id == 1: # middle circle 2 self.target_position.linear.x = self.current_ugv0_pose.x # ugv0 0.5 self.target_position.linear.y = self.current_ugv0_pose.y+0.6 elif self.id == 2: # outer loop 0 self.target_position.linear.x = self.current_ugv0_pose.x #ugv0 1.3 self.target_position.linear.y = self.current_ugv0_pose.y+1.3 elif self.id == 3: # outer loop 4 self.target_position.linear.x = self.current_ugv1_pose.x #ugv1 -0.3 self.target_position.linear.y = self.current_ugv1_pose.y-0.2 elif self.id == 4: # outer loop 1 self.target_position.linear.x = self.current_ugv1_pose.x self.target_position.linear.y = self.current_ugv1_pose.y+0.6 elif self.id == 5: # outer loop 5 self.target_position.linear.x = self.current_ugv1_pose.x self.target_position.linear.y = self.current_ugv1_pose.y+1.3 def return_home(self): self.target_position.linear.z = 0.0 # ji jian bi zhang def obstacle_avoid(self): self.avo_id = [] for i in range(self.uav_num): if not i == self.id: dis_partner = math.sqrt( (self.uav_current_pose.x - self.following_local_pose[i].pose.position.x) ** 2 + (self.uav_current_pose.y - self.following_local_pose[i].pose.position.y) ** 2) if dis_partner < self.safe_dis: if (self.uav_current_pose.z - self.following_local_pose[i].pose.position.z) < self.safe_height: self.avo_id.append(i) avoid_num = len(self.avo_id) heigher_num = 0 if avoid_num > 0: for j in range(avoid_num): if self.following_local_pose[self.avo_id[j]].pose.position.z > self.uav_current_pose.z: heigher_num = heigher_num + 1 if heigher_num == 0: self.target_position.linear.z = self.target_position.linear.z + self.safe_height else: self.target_position.linear.z = self.target_position.linear.z - self.safe_height * heigher_num else: self.target_position.linear.z = self.target_position.linear.z def pos2ang(self, xa, ya, xb, yb): #([xb,yb] to [xa, ya]) if not xa-xb == 0: angle = math.atan2((ya - yb),(xa - xb)) if (ya-yb > 0) and (angle < 0): angle = angle + math.pi elif (ya-yb < 0) and (angle > 0): angle = angle - math.pi elif ya-yb == 0: if xa-xb > 0: angle = 0.0 else: angle = math.pi else: if ya-yb > 0: angle = math.pi / 2 elif ya-yb <0: angle = -math.pi / 2 else: angle = 0.0 if angle < 0: angle = angle + 2 * math.pi # 0 to 2pi return angle def VectNorm3(self, Pt1, Pt2): norm = math.sqrt(pow(Pt1.x - Pt2.x, 2) + pow(Pt1.y - Pt2.y, 2)+ pow(Pt1.z - Pt2.z, 2)) return norm def VectNorm2(self, Pt1, Pt2): norm = math.sqrt(pow(Pt1.x - Pt2.x, 2) + pow(Pt1.y - Pt2.y, 2)) return norm def VectDiff(self, endPt, startPt): temp = Point() temp.x = endPt.x - startPt.x temp.y = endPt.y - startPt.y return temp if __name__ == '__main__': returnhome = ReturnHome(sys.argv[1]) returnhome.loop()
tests/sendpkt.py
mmjiang2019/ovs
2,919
144680
#!/usr/bin/env python3 # Copyright (c) 2018, 2020 VMware, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This program can be used send L2-L7 protocol messages using the hex bytes # of the packet, to test simple protocol scenarios. (e.g. generate simple # nsh packets to test nsh match fields/actions) # # Currently, the script supports sending the packets starting from the # Ethernet header. As a part of future enchancement, raw ip packet support # can also be added, and that's why there is "-t"/"--type" option # import socket import sys from optparse import OptionParser usage = "usage: %prog [OPTIONS] OUT-INTERFACE HEX-BYTES \n \ bytes in HEX-BYTES must be separated by space(s)" parser = OptionParser(usage=usage) parser.add_option("-t", "--type", type="string", dest="packet_type", help="packet type ('eth' is the default PACKET_TYPE)", default="eth") (options, args) = parser.parse_args() # validate the arguments if len(args) < 2: parser.print_help() sys.exit(1) # validate the "-t" or "--type" option if options.packet_type != "eth": parser.error('invalid argument to "-t"/"--type". Allowed value is "eth".') # store the hex bytes with 0x appended at the beginning # if not present in the user input and validate the hex bytes hex_list = [] for a in args[1:]: if a[:2] != "0x": hex_byte = "0x" + a else: hex_byte = a try: temp = int(hex_byte, 0) except: parser.error("invalid hex byte " + a) if temp > 0xff: parser.error("hex byte " + a + " cannot be greater than 0xff!") hex_list.append(temp) if sys.version_info < (3, 0): pkt = "".join(map(chr, hex_list)) else: pkt = bytes(hex_list) try: sockfd = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) except socket.error as msg: print('unable to create socket! error code: ' + str(msg[0]) + ' : ' + msg[1]) sys.exit(2) try: sockfd.bind((args[0], 0)) except socket.error as msg: print('unable to bind socket! error code: ' + str(msg[0]) + ' : ' + msg[1]) sys.exit(2) try: sockfd.send(pkt) except socket.error as msg: print('unable to send packet! error code: ' + str(msg[0]) + ' : ' + msg[1]) sys.exit(2) print('send success!') sys.exit(0)
tests/test_constant.py
civilian/django-business-logic
160
144687
# -*- coding: utf-8 -*- # from .common import * class ConstantTest(TestCase): def test_init(self): integer_const = NumberConstant(value=33) self.assertEqual(33, integer_const.value) def test_str(self): integer_const = NumberConstant(value=33) self.assertEqual(str(33), str(integer_const)) def test_interpret(self): integer_const = NumberConstant(value=33) context = Context() self.assertEqual(33, integer_const.interpret(context))
freeline/freeline_core/cursor.py
xyzmst/rxlist
6,094
144692
# -*- coding:utf8 -*- from terminal import Terminal class Cursor(object): def __init__(self, term=None): self.term = Terminal() if term is None else term self._stream = self.term.stream self._saved = False def write(self, s): self._stream.write(s) def save(self): self.write(self.term.save) self._saved = True def restore(self): if self._saved: self.write(self.term.restore) def flush(self): self._stream.flush() def newline(self): self.write(self.term.move_down) self.write(self.term.clear_bol) def clear_lines(self, num_lines=0): for i in range(num_lines): self.write(self.term.clear_eol) self.write(self.term.move_down) for i in range(num_lines): self.write(self.term.move_up)
test/feature/steps/__init__.py
drakejund/contract
172
144707
# # Copyright IBM Corp. All Rights Reserved. # # SPDX-License-Identifier: Apache-2.0 #
alipay/aop/api/domain/KoubeiCateringOrderInfoCancelModel.py
snowxmas/alipay-sdk-python-all
213
144741
<filename>alipay/aop/api/domain/KoubeiCateringOrderInfoCancelModel.py<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.PosOrderKey import PosOrderKey class KoubeiCateringOrderInfoCancelModel(object): def __init__(self): self._close_time = None self._pos_order_key = None @property def close_time(self): return self._close_time @close_time.setter def close_time(self, value): self._close_time = value @property def pos_order_key(self): return self._pos_order_key @pos_order_key.setter def pos_order_key(self, value): if isinstance(value, PosOrderKey): self._pos_order_key = value else: self._pos_order_key = PosOrderKey.from_alipay_dict(value) def to_alipay_dict(self): params = dict() if self.close_time: if hasattr(self.close_time, 'to_alipay_dict'): params['close_time'] = self.close_time.to_alipay_dict() else: params['close_time'] = self.close_time if self.pos_order_key: if hasattr(self.pos_order_key, 'to_alipay_dict'): params['pos_order_key'] = self.pos_order_key.to_alipay_dict() else: params['pos_order_key'] = self.pos_order_key return params @staticmethod def from_alipay_dict(d): if not d: return None o = KoubeiCateringOrderInfoCancelModel() if 'close_time' in d: o.close_time = d['close_time'] if 'pos_order_key' in d: o.pos_order_key = d['pos_order_key'] return o
PyObjCTest/test_nsoperation.py
Khan/pyobjc-framework-Cocoa
132
144749
from Foundation import * from PyObjCTools.TestSupport import * try: unicode except NameError: unicode = str class TestNSOperation (TestCase): def testConstants(self): self.assertEqual(NSOperationQueuePriorityVeryLow, -8) self.assertEqual(NSOperationQueuePriorityLow, -4) self.assertEqual(NSOperationQueuePriorityNormal, 0) self.assertEqual(NSOperationQueuePriorityHigh, 4) self.assertEqual(NSOperationQueuePriorityVeryHigh, 8) self.assertIsInstance(NSInvocationOperationVoidResultException, unicode) self.assertIsInstance(NSInvocationOperationCancelledException, unicode) self.assertEqual(NSOperationQueueDefaultMaxConcurrentOperationCount, -1) def testMethods(self): self.assertResultIsBOOL(NSOperation.isCancelled) self.assertResultIsBOOL(NSOperation.isExecuting) self.assertResultIsBOOL(NSOperation.isFinished) self.assertResultIsBOOL(NSOperation.isConcurrent) self.assertResultIsBOOL(NSOperation.isReady) self.assertResultIsBOOL(NSOperationQueue.isSuspended) self.assertArgIsBOOL(NSOperationQueue.setSuspended_, 0) @min_os_level('10.6') def testMethods10_6(self): self.assertResultIsBlock(NSOperation.completionBlock, b'v') self.assertArgIsBlock(NSOperation.setCompletionBlock_, 0, b'v') self.assertArgIsBlock(NSBlockOperation.blockOperationWithBlock_, 0, b'v') self.assertArgIsBlock(NSBlockOperation.addExecutionBlock_, 0, b'v') self.assertArgIsBOOL(NSOperationQueue.addOperations_waitUntilFinished_, 1) self.assertArgIsBlock(NSOperationQueue.addOperationWithBlock_, 0, b'v') if __name__ == "__main__": main()
train.py
sharsnik2/grid-cells
206
144802
<gh_stars>100-1000 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Supervised training for the Grid cell network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import matplotlib import numpy as np import tensorflow as tf import Tkinter # pylint: disable=unused-import matplotlib.use('Agg') import dataset_reader # pylint: disable=g-bad-import-order, g-import-not-at-top import model # pylint: disable=g-bad-import-order import scores # pylint: disable=g-bad-import-order import utils # pylint: disable=g-bad-import-order # Task config tf.flags.DEFINE_string('task_dataset_info', 'square_room', 'Name of the room in which the experiment is performed.') tf.flags.DEFINE_string('task_root', None, 'Dataset path.') tf.flags.DEFINE_float('task_env_size', 2.2, 'Environment size (meters).') tf.flags.DEFINE_list('task_n_pc', [256], 'Number of target place cells.') tf.flags.DEFINE_list('task_pc_scale', [0.01], 'Place cell standard deviation parameter (meters).') tf.flags.DEFINE_list('task_n_hdc', [12], 'Number of target head direction cells.') tf.flags.DEFINE_list('task_hdc_concentration', [20.], 'Head direction concentration parameter.') tf.flags.DEFINE_integer('task_neurons_seed', 8341, 'Seeds.') tf.flags.DEFINE_string('task_targets_type', 'softmax', 'Type of target, soft or hard.') tf.flags.DEFINE_string('task_lstm_init_type', 'softmax', 'Type of LSTM initialisation, soft or hard.') tf.flags.DEFINE_bool('task_velocity_inputs', True, 'Input velocity.') tf.flags.DEFINE_list('task_velocity_noise', [0.0, 0.0, 0.0], 'Add noise to velocity.') # Model config tf.flags.DEFINE_integer('model_nh_lstm', 128, 'Number of hidden units in LSTM.') tf.flags.DEFINE_integer('model_nh_bottleneck', 256, 'Number of hidden units in linear bottleneck.') tf.flags.DEFINE_list('model_dropout_rates', [0.5], 'List of floats with dropout rates.') tf.flags.DEFINE_float('model_weight_decay', 1e-5, 'Weight decay regularisation') tf.flags.DEFINE_bool('model_bottleneck_has_bias', False, 'Whether to include a bias in linear bottleneck') tf.flags.DEFINE_float('model_init_weight_disp', 0.0, 'Initial weight displacement.') # Training config tf.flags.DEFINE_integer('training_epochs', 1000, 'Number of training epochs.') tf.flags.DEFINE_integer('training_steps_per_epoch', 1000, 'Number of optimization steps per epoch.') tf.flags.DEFINE_integer('training_minibatch_size', 10, 'Size of the training minibatch.') tf.flags.DEFINE_integer('training_evaluation_minibatch_size', 4000, 'Size of the minibatch during evaluation.') tf.flags.DEFINE_string('training_clipping_function', 'utils.clip_all_gradients', 'Function for gradient clipping.') tf.flags.DEFINE_float('training_clipping', 1e-5, 'The absolute value to clip by.') tf.flags.DEFINE_string('training_optimizer_class', 'tf.train.RMSPropOptimizer', 'The optimizer used for training.') tf.flags.DEFINE_string('training_optimizer_options', '{"learning_rate": 1e-5, "momentum": 0.9}', 'Defines a dict with opts passed to the optimizer.') # Store tf.flags.DEFINE_string('saver_results_directory', None, 'Path to directory for saving results.') tf.flags.DEFINE_integer('saver_eval_time', 2, 'Frequency at which results are saved.') # Require flags tf.flags.mark_flag_as_required('task_root') tf.flags.mark_flag_as_required('saver_results_directory') FLAGS = tf.flags.FLAGS def train(): """Training loop.""" tf.reset_default_graph() # Create the motion models for training and evaluation data_reader = dataset_reader.DataReader( FLAGS.task_dataset_info, root=FLAGS.task_root, num_threads=4) train_traj = data_reader.read(batch_size=FLAGS.training_minibatch_size) # Create the ensembles that provide targets during training place_cell_ensembles = utils.get_place_cell_ensembles( env_size=FLAGS.task_env_size, neurons_seed=FLAGS.task_neurons_seed, targets_type=FLAGS.task_targets_type, lstm_init_type=FLAGS.task_lstm_init_type, n_pc=FLAGS.task_n_pc, pc_scale=FLAGS.task_pc_scale) head_direction_ensembles = utils.get_head_direction_ensembles( neurons_seed=FLAGS.task_neurons_seed, targets_type=FLAGS.task_targets_type, lstm_init_type=FLAGS.task_lstm_init_type, n_hdc=FLAGS.task_n_hdc, hdc_concentration=FLAGS.task_hdc_concentration) target_ensembles = place_cell_ensembles + head_direction_ensembles # Model creation rnn_core = model.GridCellsRNNCell( target_ensembles=target_ensembles, nh_lstm=FLAGS.model_nh_lstm, nh_bottleneck=FLAGS.model_nh_bottleneck, dropoutrates_bottleneck=np.array(FLAGS.model_dropout_rates), bottleneck_weight_decay=FLAGS.model_weight_decay, bottleneck_has_bias=FLAGS.model_bottleneck_has_bias, init_weight_disp=FLAGS.model_init_weight_disp) rnn = model.GridCellsRNN(rnn_core, FLAGS.model_nh_lstm) # Get a trajectory batch input_tensors = [] init_pos, init_hd, ego_vel, target_pos, target_hd = train_traj if FLAGS.task_velocity_inputs: # Add the required amount of noise to the velocities vel_noise = tf.distributions.Normal(0.0, 1.0).sample( sample_shape=ego_vel.get_shape()) * FLAGS.task_velocity_noise input_tensors = [ego_vel + vel_noise] + input_tensors # Concatenate all inputs inputs = tf.concat(input_tensors, axis=2) # Replace euclidean positions and angles by encoding of place and hd ensembles # Note that the initial_conds will be zeros if the ensembles were configured # to provide that type of initialization initial_conds = utils.encode_initial_conditions( init_pos, init_hd, place_cell_ensembles, head_direction_ensembles) # Encode targets as well ensembles_targets = utils.encode_targets( target_pos, target_hd, place_cell_ensembles, head_direction_ensembles) # Estimate future encoding of place and hd ensembles inputing egocentric vels outputs, _ = rnn(initial_conds, inputs, training=True) ensembles_logits, bottleneck, lstm_output = outputs # Training loss pc_loss = tf.nn.softmax_cross_entropy_with_logits_v2( labels=ensembles_targets[0], logits=ensembles_logits[0], name='pc_loss') hd_loss = tf.nn.softmax_cross_entropy_with_logits_v2( labels=ensembles_targets[1], logits=ensembles_logits[1], name='hd_loss') total_loss = pc_loss + hd_loss train_loss = tf.reduce_mean(total_loss, name='train_loss') # Optimisation ops optimizer_class = eval(FLAGS.training_optimizer_class) # pylint: disable=eval-used optimizer = optimizer_class(**eval(FLAGS.training_optimizer_options)) # pylint: disable=eval-used grad = optimizer.compute_gradients(train_loss) clip_gradient = eval(FLAGS.training_clipping_function) # pylint: disable=eval-used clipped_grad = [ clip_gradient(g, var, FLAGS.training_clipping) for g, var in grad ] train_op = optimizer.apply_gradients(clipped_grad) # Store the grid scores grid_scores = dict() grid_scores['btln_60'] = np.zeros((FLAGS.model_nh_bottleneck,)) grid_scores['btln_90'] = np.zeros((FLAGS.model_nh_bottleneck,)) grid_scores['btln_60_separation'] = np.zeros((FLAGS.model_nh_bottleneck,)) grid_scores['btln_90_separation'] = np.zeros((FLAGS.model_nh_bottleneck,)) grid_scores['lstm_60'] = np.zeros((FLAGS.model_nh_lstm,)) grid_scores['lstm_90'] = np.zeros((FLAGS.model_nh_lstm,)) # Create scorer objects starts = [0.2] * 10 ends = np.linspace(0.4, 1.0, num=10) masks_parameters = zip(starts, ends.tolist()) latest_epoch_scorer = scores.GridScorer(20, data_reader.get_coord_range(), masks_parameters) with tf.train.SingularMonitoredSession() as sess: for epoch in range(FLAGS.training_epochs): loss_acc = list() for _ in range(FLAGS.training_steps_per_epoch): res = sess.run({'train_op': train_op, 'total_loss': train_loss}) loss_acc.append(res['total_loss']) tf.logging.info('Epoch %i, mean loss %.5f, std loss %.5f', epoch, np.mean(loss_acc), np.std(loss_acc)) if epoch % FLAGS.saver_eval_time == 0: res = dict() for _ in xrange(FLAGS.training_evaluation_minibatch_size // FLAGS.training_minibatch_size): mb_res = sess.run({ 'bottleneck': bottleneck, 'lstm': lstm_output, 'pos_xy': target_pos }) res = utils.concat_dict(res, mb_res) # Store at the end of validation filename = 'rates_and_sac_latest_hd.pdf' grid_scores['btln_60'], grid_scores['btln_90'], grid_scores[ 'btln_60_separation'], grid_scores[ 'btln_90_separation'] = utils.get_scores_and_plot( latest_epoch_scorer, res['pos_xy'], res['bottleneck'], FLAGS.saver_results_directory, filename) def main(unused_argv): tf.logging.set_verbosity(3) # Print INFO log messages. train() if __name__ == '__main__': tf.app.run()
tests/test_parser.py
transfluxus/jsonpath-ng
339
144805
from __future__ import unicode_literals, print_function, absolute_import, division, generators, nested_scopes import unittest from jsonpath_ng.lexer import JsonPathLexer from jsonpath_ng.parser import JsonPathParser from jsonpath_ng.jsonpath import * class TestParser(unittest.TestCase): # TODO: This will be much more effective with a few regression tests and `arbitrary` parse . pretty testing @classmethod def setup_class(cls): logging.basicConfig() def check_parse_cases(self, test_cases): parser = JsonPathParser(debug=True, lexer_class=lambda:JsonPathLexer(debug=False)) # Note that just manually passing token streams avoids this dep, but that sucks for string, parsed in test_cases: print(string, '=?=', parsed) # pytest captures this and we see it only on a failure, for debugging assert parser.parse(string) == parsed def test_atomic(self): self.check_parse_cases([('foo', Fields('foo')), ('*', Fields('*')), ('baz,bizzle', Fields('baz','bizzle')), ('[1]', Index(1)), ('[1:]', Slice(start=1)), ('[:]', Slice()), ('[*]', Slice()), ('[:2]', Slice(end=2)), ('[1:2]', Slice(start=1, end=2)), ('[5:-2]', Slice(start=5, end=-2)) ]) def test_nested(self): self.check_parse_cases([('foo.baz', Child(Fields('foo'), Fields('baz'))), ('foo.baz,bizzle', Child(Fields('foo'), Fields('baz', 'bizzle'))), ('foo where baz', Where(Fields('foo'), Fields('baz'))), ('foo..baz', Descendants(Fields('foo'), Fields('baz'))), ('foo..baz.bing', Descendants(Fields('foo'), Child(Fields('baz'), Fields('bing'))))])
learn_to_infer/metrics.py
deepneuralmachine/google-research
23,901
144811
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for computing performance metrics of various inference methods. """ import collections import functools import itertools import jax import jax.numpy as jnp import numpy as onp import sklearn import sklearn.cluster import sklearn.metrics import sklearn.mixture def accuracy(preds, labels, unused_num_modes): return onp.mean(preds == labels) @functools.partial(onp.vectorize, signature="(n)->(m)") def to_pairwise(x): pairwise = x[onp.newaxis, :] == x[:, onp.newaxis] return pairwise[onp.tril_indices_from(pairwise, k=-1)] def pairwise_accuracy(preds, labels, unused_num_modes): preds = to_pairwise(preds) labels = to_pairwise(labels) return jnp.mean(preds == labels) def permutation_invariant_accuracy(preds, labels, num_modes): permutations = jnp.array(list(itertools.permutations(range(num_modes)))) permuted_labels = jax.lax.map(lambda p: p[labels], permutations) acc = jnp.max( jax.lax.map(lambda ls: jnp.mean(ls == preds), permuted_labels)) return acc def pairwise_f1(preds, labels, unused_num_modes): preds = to_pairwise(preds) labels = to_pairwise(labels) return binary_f1(preds, labels, unused_num_modes) def pairwise_micro_f1(preds, labels, unused_num_modes): preds = to_pairwise(preds) labels = to_pairwise(labels) return micro_f1(preds, labels, unused_num_modes) def pairwise_macro_f1(preds, labels, unused_num_modes): preds = to_pairwise(preds) labels = to_pairwise(labels) return macro_f1(preds, labels, unused_num_modes) def binary_f1(preds, labels, unused_num_modes): return sklearn.metrics.f1_score(labels, preds, average="binary") def macro_f1(preds, labels, unused_num_modes): return sklearn.metrics.f1_score(labels, preds, average="macro") def micro_f1(preds, labels, unused_num_modes): return sklearn.metrics.f1_score(labels, preds, average="micro") def permutation_invariant_binary_f1(preds, labels, unused_num_modes): f1_pos = binary_f1(preds, labels, unused_num_modes) permuted_predictions = onp.array([1, 0])[preds] f1_neg = binary_f1(permuted_predictions, labels, unused_num_modes) return onp.maximum(onp.mean(f1_pos), onp.mean(f1_neg)) METRIC_FNS = { "accuracy": accuracy, "pairwise_accuracy": pairwise_accuracy, "permutation_invariant_accuracy": permutation_invariant_accuracy, "binary_f1": binary_f1, "permutation_invariant_binary_f1": permutation_invariant_binary_f1, "pairwise_f1": pairwise_f1, "micro_f1": micro_f1, "macro_f1": macro_f1, "pairwise_micro_f1": pairwise_micro_f1, "pairwise_macro_f1": pairwise_macro_f1 } def em_fit_and_predict(xs, num_modes): return sklearn.mixture.GaussianMixture( n_components=num_modes, covariance_type="full", init_params="kmeans", n_init=3).fit_predict(xs) def spectral_rbf_fit_and_predict(xs, num_modes): return sklearn.cluster.SpectralClustering( n_clusters=num_modes, n_init=3, affinity="rbf").fit_predict(xs) def agglomerative_fit_and_predict(xs, num_modes): return sklearn.cluster.AgglomerativeClustering( n_clusters=num_modes, affinity="euclidean").fit_predict(xs) METHODS = {"em": em_fit_and_predict, "spectral_rbf": spectral_rbf_fit_and_predict, "agglomerative": agglomerative_fit_and_predict} def compute_baseline_metrics(xs, cs, num_modes, predict_fns=METHODS, metrics=[ "pairwise_accuracy", "pairwise_f1", "pairwise_micro_f1", "pairwise_macro_f1" ]): batch_size = xs.shape[0] metric_lists = collections.defaultdict(lambda: collections.defaultdict(list)) for i in range(batch_size): for name, predict_fn in predict_fns.items(): predicted_cs = predict_fn(xs[i], num_modes) for metric_name in metrics: m = METRIC_FNS[metric_name](predicted_cs, cs[i], num_modes) metric_lists[name][metric_name].append(m) avg_metrics = collections.defaultdict(dict) for method_name, metric_dict in metric_lists.items(): for metric_name, metric_list in metric_dict.items(): avg_metrics[method_name][metric_name] = onp.mean(metric_list) return avg_metrics def compute_metrics(cs, pred_cs, num_modes, metrics=["pairwise_accuracy", "pairwise_f1", "pairwise_micro_f1", "pairwise_macro_f1"]): batch_size = cs.shape[0] metric_lists = collections.defaultdict(list) for i in range(batch_size): for metric_name in metrics: m = METRIC_FNS[metric_name](pred_cs[i], cs[i], num_modes) metric_lists[metric_name].append(m) avg_metrics = {} for metric_name, metric_list in metric_lists.items(): avg_metrics[metric_name] = onp.mean(metric_list) return avg_metrics def compute_masked_metrics(cs, pred_cs, num_modes, num_points, metrics=["pairwise_accuracy", "pairwise_f1", "pairwise_micro_f1", "pairwise_macro_f1"]): batch_size = cs.shape[0] metric_lists = collections.defaultdict(list) for i in range(batch_size): for metric_name in metrics: m = METRIC_FNS[metric_name](pred_cs[i, :num_points[i]], cs[i, :num_points[i]], num_modes[i]) metric_lists[metric_name].append(m) avg_metrics = {} for metric_name, metric_list in metric_lists.items(): avg_metrics[metric_name] = onp.mean(metric_list) return avg_metrics def compute_masked_baseline_metrics(xs, cs, num_modes, num_points, predict_fns=METHODS, metrics=[ "pairwise_accuracy", "pairwise_f1", "pairwise_micro_f1", "pairwise_macro_f1" ]): batch_size = xs.shape[0] metric_lists = collections.defaultdict(lambda: collections.defaultdict(list)) for i in range(batch_size): for name, predict_fn in predict_fns.items(): predicted_cs = predict_fn(xs[i, :num_points[i]], num_modes[i]) for metric_name in metrics: m = METRIC_FNS[metric_name](predicted_cs, cs[i, :num_points[i]], num_modes[i]) metric_lists[name][metric_name].append(m) avg_metrics = collections.defaultdict(dict) for method_name, metric_dict in metric_lists.items(): for metric_name, metric_list in metric_dict.items(): avg_metrics[method_name][metric_name] = onp.mean(metric_list) return avg_metrics
selenium__examples/get_html_source.py
DazEB2/SimplePyScripts
117
144818
<reponame>DazEB2/SimplePyScripts #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # pip install selenium from selenium import webdriver driver = webdriver.Firefox() driver.get('https://www.youtube.com/') print('Title: "{}"'.format(driver.title)) html = driver.page_source print('Length:', len(html)) open('driver.page_source.html', 'w').write(html) driver.quit()
torchbenchmark/models/fastNLP/fastNLP/doc_utils.py
Chillee/benchmark
2,693
144835
r"""undocumented 用于辅助生成 fastNLP 文档的代码 """ __all__ = [] import inspect import sys def doc_process(m): for name, obj in inspect.getmembers(m): if inspect.isclass(obj) or inspect.isfunction(obj): if obj.__module__ != m.__name__: if obj.__doc__ is None: # print(name, obj.__doc__) pass else: module_name = obj.__module__ # 识别并标注类和函数在不同层次中的位置 while 1: defined_m = sys.modules[module_name] try: if "undocumented" not in defined_m.__doc__ and name in defined_m.__all__: obj.__doc__ = r"别名 :class:`" + m.__name__ + "." + name + "`" \ + " :class:`" + module_name + "." + name + "`\n" + obj.__doc__ break module_name = ".".join(module_name.split('.')[:-1]) if module_name == m.__name__: # print(name, ": not found defined doc.") break except: print("Warning: Module {} lacks `__doc__`".format(module_name)) break # 识别并标注基类,只有基类也在 fastNLP 中定义才显示 if inspect.isclass(obj): for base in obj.__bases__: if base.__module__.startswith("fastNLP"): parts = base.__module__.split(".") + [] module_name, i = "fastNLP", 1 for i in range(len(parts) - 1): defined_m = sys.modules[module_name] try: if "undocumented" not in defined_m.__doc__ and name in defined_m.__all__: obj.__doc__ = r"基类 :class:`" + defined_m.__name__ + "." + base.__name__ + "` \n\n" + obj.__doc__ break module_name += "." + parts[i + 1] except: print("Warning: Module {} lacks `__doc__`".format(module_name)) break
slack/web/classes/attachments.py
timgates42/python-slack-sdk
2,486
144848
<filename>slack/web/classes/attachments.py from slack_sdk.models.attachments import Attachment # noqa from slack_sdk.models.attachments import AttachmentField # noqa from slack_sdk.models.attachments import BlockAttachment # noqa from slack_sdk.models.attachments import InteractiveAttachment # noqa from slack_sdk.models.attachments import SeededColors # noqa from slack import deprecation deprecation.show_message(__name__, "slack_sdk.models.attachments")
Chapter08_Hardware-Interrupts/capSense/serialScope.py
anseljh/AVR-Programming
608
144853
<gh_stars>100-1000 import serial def readValue(serialPort): return(ord(serialPort.read(1))) def plotValue(value): """ Displays the value on a scaled scrolling bargraph""" leadingSpaces = "-" * int(value*(SCREEN_WIDTH-3) / 255) print(f"{leadingSpaces} {value:03}") def cheapoScope(serialPort): while(1): newValue = readValue(serialPort) plotValue(newValue) if __name__ == "__main__": ## list all serial ports being used: python -m serial.tools.list_ports PORT = '/dev/ttyUSB0' # update to whatever port is listed in serial.tools.list_ports BAUDRATE = 9600 TIMEOUT = None SCREEN_WIDTH = 80 ## Take command-line arguments to override defaults above import sys if len(sys.argv) == 3: port = sys.argv[1] baudrate = int(sys.argv[2]) else: # nothing passed, use defaults print ("Optional arguments port, baudrate set to defaults.") port, baudrate = (PORT, BAUDRATE) serialPort = serial.Serial(port, baudrate, timeout=TIMEOUT) serialPort.flush() cheapoScope(serialPort)
stanza/tests/test_pipeline_ner_processor.py
asears/stanza
3,633
144855
import pytest import stanza from stanza.utils.conll import CoNLL from stanza.models.common.doc import Document from stanza.tests import * pytestmark = [pytest.mark.pipeline, pytest.mark.travis] # data for testing EN_DOCS = ["<NAME> was born in Hawaii.", "He was elected president in 2008.", "Obama attended Harvard."] EXPECTED_ENTS = [[{ "text": "<NAME>", "type": "PERSON", "start_char": 0, "end_char": 12 }, { "text": "Hawaii", "type": "GPE", "start_char": 25, "end_char": 31 }], [{ "text": "2008", "type": "DATE", "start_char": 28, "end_char": 32 }], [{ "text": "Obama", "type": "PERSON", "start_char": 0, "end_char": 5 }, { "text": "Harvard", "type": "ORG", "start_char": 15, "end_char": 22 }]] @pytest.fixture(scope="module") def pipeline(): """ A reusable pipeline with the NER module """ return stanza.Pipeline(dir=TEST_MODELS_DIR, processors="tokenize,ner") @pytest.fixture(scope="module") def processed_doc(pipeline): """ Document created by running full English pipeline on a few sentences """ return [pipeline(text) for text in EN_DOCS] @pytest.fixture(scope="module") def processed_bulk(pipeline): """ Document created by running full English pipeline on a few sentences """ docs = [Document([], text=t) for t in EN_DOCS] return pipeline(docs) def check_entities_equal(doc, expected): """ Checks that the entities of a doc are equal to the given list of maps """ assert len(doc.ents) == len(expected) for doc_entity, expected_entity in zip(doc.ents, expected): for k in expected_entity: assert getattr(doc_entity, k) == expected_entity[k] def test_bulk_ents(processed_bulk): assert len(processed_bulk) == len(EXPECTED_ENTS) for doc, expected in zip(processed_bulk, EXPECTED_ENTS): check_entities_equal(doc, expected) def test_ents(processed_doc): assert len(processed_doc) == len(EXPECTED_ENTS) for doc, expected in zip(processed_doc, EXPECTED_ENTS): check_entities_equal(doc, expected)
objectives.py
ShuaiW/kaggle-heart
182
144865
<filename>objectives.py """Library implementing different objective functions. """ import numpy as np import lasagne import theano import theano.tensor as T import theano_printer import utils class TargetVarDictObjective(object): def __init__(self, input_layers, penalty=0): try: self.target_vars except: self.target_vars = dict() self.penalty = penalty def get_loss(self, average=True, *args, **kwargs): """Compute the loss in Theano. Args: average: Indicates whether the loss should already be averaged over the batch. If not, call the compute_average method on the aggregated losses. """ raise NotImplementedError def compute_average(self, losses, loss_name=""): """Averages the aggregated losses in Numpy.""" return losses.mean(axis=0) def get_kaggle_loss(self, average=True, *args, **kwargs): """Computes the CRPS score in Theano.""" return theano.shared([-1]) def get_segmentation_loss(self, average=True, *args, **kwargs): return theano.shared([-1]) class KaggleObjective(TargetVarDictObjective): """ This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation """ def __init__(self, input_layers, *args, **kwargs): super(KaggleObjective, self).__init__(input_layers, *args, **kwargs) self.input_systole = input_layers["systole"] self.input_diastole = input_layers["diastole"] self.target_vars["systole"] = T.fmatrix("systole_target") self.target_vars["diastole"] = T.fmatrix("diastole_target") def get_loss(self, average=True, other_losses={}, *args, **kwargs): network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs) network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs) systole_target = self.target_vars["systole"] diastole_target = self.target_vars["diastole"] CRPS_systole = T.mean((network_systole - systole_target)**2, axis=(1,)) CRPS_diastole = T.mean((network_diastole - diastole_target)**2, axis=(1,)) loss = 0.5*CRPS_systole + 0.5*CRPS_diastole if average: loss = T.mean(loss, axis=(0,)) CRPS_systole = T.mean(CRPS_systole, axis=(0,)) CRPS_diastole = T.mean(CRPS_diastole, axis=(0,)) other_losses['CRPS_systole'] = CRPS_systole other_losses['CRPS_diastole'] = CRPS_diastole return loss + self.penalty #def get_kaggle_loss(self, *args, **kwargs): # return self.get_loss(*args, **kwargs) class MeanKaggleObjective(TargetVarDictObjective): """ This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation """ def __init__(self, input_layers, *args, **kwargs): super(MeanKaggleObjective, self).__init__(input_layers, *args, **kwargs) self.input_average = input_layers["average"] self.target_vars["average"] = T.fmatrix("average_target") self.input_systole = input_layers["systole"] self.input_diastole = input_layers["diastole"] self.target_vars["systole"] = T.fmatrix("systole_target") self.target_vars["diastole"] = T.fmatrix("diastole_target") def get_loss(self, average=True, other_losses={}, *args, **kwargs): network_average = lasagne.layers.helper.get_output(self.input_average, *args, **kwargs) network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs) network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs) average_target = self.target_vars["average"] systole_target = self.target_vars["systole"] diastole_target = self.target_vars["diastole"] CRPS_average = T.mean((network_average - average_target)**2, axis=(1,)) CRPS_systole = T.mean((network_systole - systole_target)**2, axis=(1,)) CRPS_diastole = T.mean((network_diastole - diastole_target)**2, axis=(1,)) loss = 0.2*CRPS_average + 0.4*CRPS_systole + 0.4*CRPS_diastole if average: loss = T.mean(loss, axis=(0,)) CRPS_average = T.mean(CRPS_average, axis=(0,)) CRPS_systole = T.mean(CRPS_systole, axis=(0,)) CRPS_diastole = T.mean(CRPS_diastole, axis=(0,)) other_losses['CRPS_average'] = CRPS_average other_losses['CRPS_systole'] = CRPS_systole other_losses['CRPS_diastole'] = CRPS_diastole return loss + self.penalty #def get_kaggle_loss(self, *args, **kwargs): # return self.get_loss(*args, **kwargs) class MSEObjective(TargetVarDictObjective): def __init__(self, input_layers, *args, **kwargs): super(MSEObjective, self).__init__(input_layers, *args, **kwargs) self.input_systole = input_layers["systole:value"] self.input_diastole = input_layers["diastole:value"] self.target_vars["systole:value"] = T.fvector("systole_target_value") self.target_vars["diastole:value"] = T.fvector("diastole_target_value") def get_loss(self, average=True, *args, **kwargs): network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0] network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0] systole_target = self.target_vars["systole:value"] diastole_target = self.target_vars["diastole:value"] loss = 0.5 * (network_systole - systole_target )**2 + 0.5 * (network_diastole - diastole_target)**2 if average: loss = T.mean(loss, axis=(0,)) return loss + self.penalty class RMSEObjective(TargetVarDictObjective): def __init__(self, input_layers, *args, **kwargs): super(RMSEObjective, self).__init__(input_layers, *args, **kwargs) self.input_systole = input_layers["systole:value"] self.input_diastole = input_layers["diastole:value"] self.target_vars["systole:value"] = T.fvector("systole_target_value") self.target_vars["diastole:value"] = T.fvector("diastole_target_value") def get_loss(self, average=True, *args, **kwargs): network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0] network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0] systole_target = self.target_vars["systole:value"] diastole_target = self.target_vars["diastole:value"] loss = 0.5 * (network_systole - systole_target) ** 2 + 0.5 * (network_diastole - diastole_target)**2 if average: loss = T.sqrt(T.mean(loss, axis=(0,))) return loss def compute_average(self, aggregate): return np.sqrt(np.mean(aggregate, axis=0)) def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs): if not validation: # only evaluate this one in the validation step return theano.shared([-1]) network_systole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0], lasagne.layers.helper.get_output(self.input_systole_sigma, *args, **kwargs)[:,0]) network_diastole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0], lasagne.layers.helper.get_output(self.input_diastole_sigma, *args, **kwargs)[:,0]) systole_target = self.target_vars["systole"] diastole_target = self.target_vars["diastole"] if not average: CRPS = (T.mean((network_systole - systole_target)**2, axis = (1,)) + T.mean((network_diastole - diastole_target)**2, axis = (1,)) )/2 return CRPS else: CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) + T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2 return CRPS class KaggleValidationMSEObjective(MSEObjective): """ This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation """ def __init__(self, input_layers, *args, **kwargs): super(KaggleValidationMSEObjective, self).__init__(input_layers, *args, **kwargs) self.target_vars["systole"] = T.fmatrix("systole_target_kaggle") self.target_vars["diastole"] = T.fmatrix("diastole_target_kaggle") def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs): if not validation: # only evaluate this one in the validation step return theano.shared([-1]) sigma = T.sqrt(self.get_loss() - self.penalty) network_systole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0], sigma) network_diastole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0], sigma) systole_target = self.target_vars["systole"] diastole_target = self.target_vars["diastole"] if not average: CRPS = (T.mean((network_systole - systole_target)**2, axis = (1,)) + T.mean((network_diastole - diastole_target)**2, axis = (1,)) )/2 return CRPS else: CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) + T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2 return CRPS def _theano_pdf_to_cdf(pdfs): return T.extra_ops.cumsum(pdfs, axis=1) def _crps(cdfs1, cdfs2): return T.mean((cdfs1 - cdfs2)**2, axis=(1,)) class LogLossObjective(TargetVarDictObjective): def __init__(self, input_layers, *args, **kwargs): super(LogLossObjective, self).__init__(input_layers, *args, **kwargs) self.input_systole = input_layers["systole:onehot"] self.input_diastole = input_layers["diastole:onehot"] self.target_vars["systole:onehot"] = T.fmatrix("systole_target_onehot") self.target_vars["diastole:onehot"] = T.fmatrix("diastole_target_onehot") def get_loss(self, average=True, other_losses={}, *args, **kwargs): network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs) network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs) systole_target = self.target_vars["systole:onehot"] diastole_target = self.target_vars["diastole:onehot"] ll_sys = log_loss(network_systole, systole_target) ll_dia = log_loss(network_diastole, diastole_target) ll = 0.5 * ll_sys + 0.5 * ll_dia # CRPS scores cdf = _theano_pdf_to_cdf CRPS_systole = _crps(cdf(network_systole), cdf(systole_target)) CRPS_diastole = _crps(cdf(network_diastole), cdf(diastole_target)) if average: ll = T.mean(ll, axis=(0,)) CRPS_systole = T.mean(CRPS_systole, axis=(0,)) CRPS_diastole = T.mean(CRPS_diastole, axis=(0,)) other_losses['CRPS_systole'] = CRPS_systole other_losses['CRPS_diastole'] = CRPS_diastole return ll + self.penalty class KaggleValidationLogLossObjective(LogLossObjective): """ This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation """ def __init__(self, input_layers, *args, **kwargs): super(KaggleValidationLogLossObjective, self).__init__(input_layers, *args, **kwargs) self.target_vars["systole"] = T.fmatrix("systole_target_kaggle") self.target_vars["diastole"] = T.fmatrix("diastole_target_kaggle") def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs): if not validation: return theano.shared([-1]) network_systole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs), axis=1), 0.0, 1.0) network_diastole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs), axis=1), 0.0, 1.0) systole_target = self.target_vars["systole"] diastole_target = self.target_vars["diastole"] if not average: CRPS = (T.mean((network_systole - systole_target)**2, axis = (1,)) + T.mean((network_diastole - diastole_target)**2, axis = (1,)) )/2 return CRPS else: CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) + T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2 return CRPS def log_loss(y, t, eps=1e-7): """ cross entropy loss, summed over classes, mean over batches """ y = T.clip(y, eps, 1 - eps) loss = -T.mean(t * np.log(y) + (1-t) * np.log(1-y), axis=(1,)) return loss class WeightedLogLossObjective(TargetVarDictObjective): def __init__(self, input_layers, *args, **kwargs): super(WeightedLogLossObjective, self).__init__(input_layers, *args, **kwargs) self.input_systole = input_layers["systole:onehot"] self.input_diastole = input_layers["diastole:onehot"] self.target_vars["systole"] = T.fmatrix("systole_target") self.target_vars["diastole"] = T.fmatrix("diastole_target") self.target_vars["systole:onehot"] = T.fmatrix("systole_target_onehot") self.target_vars["diastole:onehot"] = T.fmatrix("diastole_target_onehot") self.target_vars["systole:class_weight"] = T.fmatrix("systole_target_weights") self.target_vars["diastole:class_weight"] = T.fmatrix("diastole_target_weights") def get_loss(self, *args, **kwargs): network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs) network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs) systole_target = self.target_vars["systole:onehot"] diastole_target = self.target_vars["diastole:onehot"] systole_weights = self.target_vars["systole:class_weight"] diastole_weights = self.target_vars["diastole:class_weight"] if "average" in kwargs and not kwargs["average"]: ll = 0.5 * weighted_log_loss(network_systole, systole_target, weights=systole_weights) + \ 0.5 * weighted_log_loss(network_diastole, diastole_target, weights=diastole_weights) return ll ll = 0.5 * T.mean(weighted_log_loss(network_systole, systole_target, weights=systole_weights), axis = (0,)) + \ 0.5 * T.mean(weighted_log_loss(network_diastole, diastole_target, weights=diastole_weights), axis = (0,)) return ll + self.penalty def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs): if not validation: return theano.shared([-1]) network_systole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs), axis=1), 0.0, 1.0).astype('float32') network_diastole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs), axis=1), 0.0, 1.0).astype('float32') systole_target = self.target_vars["systole"].astype('float32') diastole_target = self.target_vars["diastole"].astype('float32') if not average: CRPS = T.mean((network_systole - systole_target)**2 + (network_diastole - diastole_target)**2, axis = 1)/2 return CRPS else: CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) + T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2 theano_printer.print_me_this("CRPS", CRPS) return CRPS def weighted_log_loss(y, t, weights, eps=1e-7): """ cross entropy loss, summed over classes, mean over batches """ y = T.clip(y, eps, 1 - eps) loss = -T.mean(weights * (t * np.log(y) + (1-t) * np.log(1-y)), axis=(1,)) return loss class BinaryCrossentropyImageObjective(TargetVarDictObjective): def __init__(self, input_layers, *args, **kwargs): super(BinaryCrossentropyImageObjective, self).__init__(input_layers, *args, **kwargs) self.input_layer = input_layers["segmentation"] self.target_vars = dict() self.target_vars["segmentation"] = T.ftensor3("segmentation_target") def get_loss(self, *args, **kwargs): network_output = lasagne.layers.helper.get_output(self.input_layer, *args, **kwargs) segmentation_target = self.target_vars["segmentation"] if "average" in kwargs and not kwargs["average"]: loss = log_loss( network_output.flatten(ndim=2), segmentation_target.flatten(ndim=2) ) return loss return T.mean(log_loss(network_output.flatten(ndim=2), segmentation_target.flatten(ndim=2))) + self.penalty class MixedKaggleSegmentationObjective(KaggleObjective, BinaryCrossentropyImageObjective): def __init__(self, input_layers, segmentation_weight=1.0, *args, **kwargs): super(MixedKaggleSegmentationObjective, self).__init__(input_layers, *args, **kwargs) self.segmentation_weight = segmentation_weight def get_loss(self, *args, **kwargs): return self.get_kaggle_loss(*args, **kwargs) + self.segmentation_weight * self.get_segmentation_loss(*args, **kwargs) def get_kaggle_loss(self, *args, **kwargs): return KaggleObjective.get_loss(self, *args, **kwargs) def get_segmentation_loss(self, *args, **kwargs): return BinaryCrossentropyImageObjective.get_loss(self, *args, **kwargs) class UpscaledImageObjective(BinaryCrossentropyImageObjective): def get_loss(self, *args, **kwargs): network_output = lasagne.layers.helper.get_output(self.input_layer, *args, **kwargs) segmentation_target = self.target_vars["segmentation"] return log_loss(network_output.flatten(ndim=2), segmentation_target[:,fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b,4::8].flatten(ndim=2)) + self.penalty class R2Objective(TargetVarDictObjective): def __init__(self, input_layers, *args, **kwargs): super(R2Objective, self).__init__(input_layers, *args, **kwargs) self.input_systole = input_layers["systole"] self.input_diastole = input_layers["diastole"] self.target_vars["systole"] = T.fvector("systole_target") self.target_vars["diastole"] = T.fvector("diastole_target") def get_loss(self, *args, **kwargs): network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs) network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs) systole_target = self.target_vars["systole"] diastole_target = self.target_vars["diastole"] return T.sum((network_diastole-diastole_target)**2) + T.sum((network_systole-systole_target)**2) + self.penalty
api/v2/serializers/fields/tag.py
simpsonw/atmosphere
197
144866
<reponame>simpsonw/atmosphere from core.models import Tag from rest_framework import serializers from api.v2.serializers.summaries import TagSummarySerializer class TagRelatedField(serializers.RelatedField): def __init__(self, **kwargs): kwargs['read_only'] = True super(TagRelatedField, self).__init__(**kwargs) def to_representation(self, value): serializer = TagSummarySerializer(value, context=self.context) return serializer.data def to_internal_value(self, data): tag = Tag.objects.get(id=data) return tag
pyqt5_lesson_01.py
AnshulPorwal1/pythonprogramming
158
144868
#! /usr/bin/env python3 # -*- coding:utf-8 -*- ############################################################### # kenwaldek MIT-license # Title: PyQt5 lesson 1 Version: 1.0 # Date: 08-01-17 Language: python3 # Description: pyqt5 simple example of empty window # pythonprogramming.net from PyQt4 to PyQt5 ############################################################### # do something import sys from PyQt5.QtWidgets import QApplication, QWidget app = QApplication(sys.argv) window = QWidget() window.setGeometry(50, 50, 500, 300) window.setWindowTitle('pyQt Tuts') window.show() sys.exit(app.exec_())
release/stubs.min/System/__init___parts/DateTime.py
htlcnn/ironpython-stubs
182
144874
<filename>release/stubs.min/System/__init___parts/DateTime.py<gh_stars>100-1000 class DateTime(object,IComparable,IFormattable,IConvertible,ISerializable,IComparable[DateTime],IEquatable[DateTime]): """ Represents an instant in time,typically expressed as a date and time of day. DateTime(ticks: Int64) DateTime(ticks: Int64,kind: DateTimeKind) DateTime(year: int,month: int,day: int) DateTime(year: int,month: int,day: int,calendar: Calendar) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int,kind: DateTimeKind) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int,calendar: Calendar) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int,kind: DateTimeKind) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int,calendar: Calendar) DateTime(year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int,calendar: Calendar,kind: DateTimeKind) """ def Add(self,value): """ Add(self: DateTime,value: TimeSpan) -> DateTime Returns a new System.DateTime that adds the value of the specified System.TimeSpan to the value of this instance. value: A positive or negative time interval. Returns: An object whose value is the sum of the date and time represented by this instance and the time interval represented by value. """ pass def AddDays(self,value): """ AddDays(self: DateTime,value: float) -> DateTime Returns a new System.DateTime that adds the specified number of days to the value of this instance. value: A number of whole and fractional days. The value parameter can be negative or positive. Returns: An object whose value is the sum of the date and time represented by this instance and the number of days represented by value. """ pass def AddHours(self,value): """ AddHours(self: DateTime,value: float) -> DateTime Returns a new System.DateTime that adds the specified number of hours to the value of this instance. value: A number of whole and fractional hours. The value parameter can be negative or positive. Returns: An object whose value is the sum of the date and time represented by this instance and the number of hours represented by value. """ pass def AddMilliseconds(self,value): """ AddMilliseconds(self: DateTime,value: float) -> DateTime Returns a new System.DateTime that adds the specified number of milliseconds to the value of this instance. value: A number of whole and fractional milliseconds. The value parameter can be negative or positive. Note that this value is rounded to the nearest integer. Returns: An object whose value is the sum of the date and time represented by this instance and the number of milliseconds represented by value. """ pass def AddMinutes(self,value): """ AddMinutes(self: DateTime,value: float) -> DateTime Returns a new System.DateTime that adds the specified number of minutes to the value of this instance. value: A number of whole and fractional minutes. The value parameter can be negative or positive. Returns: An object whose value is the sum of the date and time represented by this instance and the number of minutes represented by value. """ pass def AddMonths(self,months): """ AddMonths(self: DateTime,months: int) -> DateTime Returns a new System.DateTime that adds the specified number of months to the value of this instance. months: A number of months. The months parameter can be negative or positive. Returns: An object whose value is the sum of the date and time represented by this instance and months. """ pass def AddSeconds(self,value): """ AddSeconds(self: DateTime,value: float) -> DateTime Returns a new System.DateTime that adds the specified number of seconds to the value of this instance. value: A number of whole and fractional seconds. The value parameter can be negative or positive. Returns: An object whose value is the sum of the date and time represented by this instance and the number of seconds represented by value. """ pass def AddTicks(self,value): """ AddTicks(self: DateTime,value: Int64) -> DateTime Returns a new System.DateTime that adds the specified number of ticks to the value of this instance. value: A number of 100-nanosecond ticks. The value parameter can be positive or negative. Returns: An object whose value is the sum of the date and time represented by this instance and the time represented by value. """ pass def AddYears(self,value): """ AddYears(self: DateTime,value: int) -> DateTime Returns a new System.DateTime that adds the specified number of years to the value of this instance. value: A number of years. The value parameter can be negative or positive. Returns: An object whose value is the sum of the date and time represented by this instance and the number of years represented by value. """ pass @staticmethod def Compare(t1,t2): """ Compare(t1: DateTime,t2: DateTime) -> int Compares two instances of System.DateTime and returns an integer that indicates whether the first instance is earlier than,the same as,or later than the second instance. t1: The first object to compare. t2: The second object to compare. Returns: A signed number indicating the relative values of t1 and t2.Value Type Condition Less than zero t1 is earlier than t2. Zero t1 is the same as t2. Greater than zero t1 is later than t2. """ pass def CompareTo(self,value): """ CompareTo(self: DateTime,value: DateTime) -> int Compares the value of this instance to a specified System.DateTime value and returns an integer that indicates whether this instance is earlier than,the same as,or later than the specified System.DateTime value. value: The object to compare to the current instance. Returns: A signed number indicating the relative values of this instance and the value parameter.Value Description Less than zero This instance is earlier than value. Zero This instance is the same as value. Greater than zero This instance is later than value. CompareTo(self: DateTime,value: object) -> int Compares the value of this instance to a specified object that contains a specified System.DateTime value,and returns an integer that indicates whether this instance is earlier than,the same as,or later than the specified System.DateTime value. value: A boxed object to compare,or null. Returns: A signed number indicating the relative values of this instance and value.Value Description Less than zero This instance is earlier than value. Zero This instance is the same as value. Greater than zero This instance is later than value,or value is null. """ pass @staticmethod def DaysInMonth(year,month): """ DaysInMonth(year: int,month: int) -> int Returns the number of days in the specified month and year. year: The year. month: The month (a number ranging from 1 to 12). Returns: The number of days in month for the specified year.For example,if month equals 2 for February, the return value is 28 or 29 depending upon whether year is a leap year. """ pass def Equals(self,*__args): """ Equals(t1: DateTime,t2: DateTime) -> bool Returns a value indicating whether two System.DateTime instances have the same date and time value. t1: The first object to compare. t2: The second object to compare. Returns: true if the two values are equal; otherwise,false. Equals(self: DateTime,value: DateTime) -> bool Returns a value indicating whether the value of this instance is equal to the value of the specified System.DateTime instance. value: The object to compare to this instance. Returns: true if the value parameter equals the value of this instance; otherwise,false. Equals(self: DateTime,value: object) -> bool Returns a value indicating whether this instance is equal to a specified object. value: The object to compare to this instance. Returns: true if value is an instance of System.DateTime and equals the value of this instance; otherwise,false. """ pass @staticmethod def FromBinary(dateData): """ FromBinary(dateData: Int64) -> DateTime Deserializes a 64-bit binary value and recreates an original serialized System.DateTime object. dateData: A 64-bit signed integer that encodes the System.DateTime.Kind property in a 2-bit field and the System.DateTime.Ticks property in a 62-bit field. Returns: An object that is equivalent to the System.DateTime object that was serialized by the System.DateTime.ToBinary method. """ pass @staticmethod def FromFileTime(fileTime): """ FromFileTime(fileTime: Int64) -> DateTime Converts the specified Windows file time to an equivalent local time. fileTime: A Windows file time expressed in ticks. Returns: An object that represents the local time equivalent of the date and time represented by the fileTime parameter. """ pass @staticmethod def FromFileTimeUtc(fileTime): """ FromFileTimeUtc(fileTime: Int64) -> DateTime Converts the specified Windows file time to an equivalent UTC time. fileTime: A Windows file time expressed in ticks. Returns: An object that represents the UTC time equivalent of the date and time represented by the fileTime parameter. """ pass @staticmethod def FromOADate(d): """ FromOADate(d: float) -> DateTime Returns a System.DateTime equivalent to the specified OLE Automation Date. d: An OLE Automation Date value. Returns: An object that represents the same date and time as d. """ pass def GetDateTimeFormats(self,*__args): """ GetDateTimeFormats(self: DateTime,format: Char) -> Array[str] Converts the value of this instance to all the string representations supported by the specified standard date and time format specifier. format: A standard date and time format string (see Remarks). Returns: A string array where each element is the representation of the value of this instance formatted with the format standard date and time format specifier. GetDateTimeFormats(self: DateTime,format: Char,provider: IFormatProvider) -> Array[str] Converts the value of this instance to all the string representations supported by the specified standard date and time format specifier and culture-specific formatting information. format: A date and time format string (see Remarks). provider: An object that supplies culture-specific formatting information about this instance. Returns: A string array where each element is the representation of the value of this instance formatted with one of the standard date and time format specifiers. GetDateTimeFormats(self: DateTime) -> Array[str] Converts the value of this instance to all the string representations supported by the standard date and time format specifiers. Returns: A string array where each element is the representation of the value of this instance formatted with one of the standard date and time format specifiers. GetDateTimeFormats(self: DateTime,provider: IFormatProvider) -> Array[str] Converts the value of this instance to all the string representations supported by the standard date and time format specifiers and the specified culture-specific formatting information. provider: An object that supplies culture-specific formatting information about this instance. Returns: A string array where each element is the representation of the value of this instance formatted with one of the standard date and time format specifiers. """ pass def GetHashCode(self): """ GetHashCode(self: DateTime) -> int Returns the hash code for this instance. Returns: A 32-bit signed integer hash code. """ pass def GetTypeCode(self): """ GetTypeCode(self: DateTime) -> TypeCode Returns the System.TypeCode for value type System.DateTime. Returns: The enumerated constant,System.TypeCode.DateTime. """ pass def IsDaylightSavingTime(self): """ IsDaylightSavingTime(self: DateTime) -> bool Indicates whether this instance of System.DateTime is within the daylight saving time range for the current time zone. Returns: true if System.DateTime.Kind is System.DateTimeKind.Local or System.DateTimeKind.Unspecified and the value of this instance of System.DateTime is within the daylight saving time range for the current time zone. false if System.DateTime.Kind is System.DateTimeKind.Utc. """ pass @staticmethod def IsLeapYear(year): """ IsLeapYear(year: int) -> bool Returns an indication whether the specified year is a leap year. year: A 4-digit year. Returns: true if year is a leap year; otherwise,false. """ pass @staticmethod def Parse(s,provider=None,styles=None): """ Parse(s: str,provider: IFormatProvider,styles: DateTimeStyles) -> DateTime Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified culture-specific format information and formatting style. s: A string containing a date and time to convert. provider: An object that supplies culture-specific formatting information about s. styles: A bitwise combination of the enumeration values that indicates the style elements that can be present in s for the parse operation to succeed and that defines how to interpret the parsed date in relation to the current time zone or the current date. A typical value to specify is System.Globalization.DateTimeStyles.None. Returns: An object that is equivalent to the date and time contained in s,as specified by provider and styles. Parse(s: str,provider: IFormatProvider) -> DateTime Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified culture-specific format information. s: A string containing a date and time to convert. provider: An object that supplies culture-specific format information about s. Returns: An object that is equivalent to the date and time contained in s as specified by provider. Parse(s: str) -> DateTime Converts the specified string representation of a date and time to its System.DateTime equivalent. s: A string containing a date and time to convert. Returns: An object that is equivalent to the date and time contained in s. """ pass @staticmethod def ParseExact(s,*__args): """ ParseExact(s: str,formats: Array[str],provider: IFormatProvider,style: DateTimeStyles) -> DateTime Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified array of formats,culture-specific format information,and style. The format of the string representation must match at least one of the specified formats exactly or an exception is thrown. s: A string containing one or more dates and times to convert. formats: An array of allowable formats of s. provider: An object that supplies culture-specific format information about s. style: A bitwise combination of enumeration values that indicates the permitted format of s. A typical value to specify is System.Globalization.DateTimeStyles.None. Returns: An object that is equivalent to the date and time contained in s,as specified by formats, provider,and style. ParseExact(s: str,format: str,provider: IFormatProvider,style: DateTimeStyles) -> DateTime Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified format,culture-specific format information,and style. The format of the string representation must match the specified format exactly or an exception is thrown. s: A string containing a date and time to convert. format: A format specifier that defines the required format of s. provider: An object that supplies culture-specific formatting information about s. style: A bitwise combination of the enumeration values that provides additional information about s, about style elements that may be present in s,or about the conversion from s to a System.DateTime value. A typical value to specify is System.Globalization.DateTimeStyles.None. Returns: An object that is equivalent to the date and time contained in s,as specified by format, provider,and style. ParseExact(s: str,format: str,provider: IFormatProvider) -> DateTime Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified format and culture-specific format information. The format of the string representation must match the specified format exactly. s: A string that contains a date and time to convert. format: A format specifier that defines the required format of s. provider: An object that supplies culture-specific format information about s. Returns: An object that is equivalent to the date and time contained in s,as specified by format and provider. """ pass @staticmethod def SpecifyKind(value,kind): """ SpecifyKind(value: DateTime,kind: DateTimeKind) -> DateTime Creates a new System.DateTime object that has the same number of ticks as the specified System.DateTime,but is designated as either local time,Coordinated Universal Time (UTC),or neither,as indicated by the specified System.DateTimeKind value. value: A date and time. kind: One of the enumeration values that indicates whether the new object represents local time,UTC, or neither. Returns: A new object that has the same number of ticks as the object represented by the value parameter and the System.DateTimeKind value specified by the kind parameter. """ pass def Subtract(self,value): """ Subtract(self: DateTime,value: TimeSpan) -> DateTime Subtracts the specified duration from this instance. value: The time interval to subtract. Returns: An object that is equal to the date and time represented by this instance minus the time interval represented by value. Subtract(self: DateTime,value: DateTime) -> TimeSpan Subtracts the specified date and time from this instance. value: The date and time value to subtract. Returns: A time interval that is equal to the date and time represented by this instance minus the date and time represented by value. """ pass def ToBinary(self): """ ToBinary(self: DateTime) -> Int64 Serializes the current System.DateTime object to a 64-bit binary value that subsequently can be used to recreate the System.DateTime object. Returns: A 64-bit signed integer that encodes the System.DateTime.Kind and System.DateTime.Ticks properties. """ pass def ToFileTime(self): """ ToFileTime(self: DateTime) -> Int64 Converts the value of the current System.DateTime object to a Windows file time. Returns: The value of the current System.DateTime object expressed as a Windows file time. """ pass def ToFileTimeUtc(self): """ ToFileTimeUtc(self: DateTime) -> Int64 Converts the value of the current System.DateTime object to a Windows file time. Returns: The value of the current System.DateTime object expressed as a Windows file time. """ pass def ToLocalTime(self): """ ToLocalTime(self: DateTime) -> DateTime Converts the value of the current System.DateTime object to local time. Returns: An object whose System.DateTime.Kind property is System.DateTimeKind.Local,and whose value is the local time equivalent to the value of the current System.DateTime object,or System.DateTime.MaxValue if the converted value is too large to be represented by a System.DateTime object,or System.DateTime.MinValue if the converted value is too small to be represented as a System.DateTime object. """ pass def ToLongDateString(self): """ ToLongDateString(self: DateTime) -> str Converts the value of the current System.DateTime object to its equivalent long date string representation. Returns: A string that contains the long date string representation of the current System.DateTime object. """ pass def ToLongTimeString(self): """ ToLongTimeString(self: DateTime) -> str Converts the value of the current System.DateTime object to its equivalent long time string representation. Returns: A string that contains the long time string representation of the current System.DateTime object. """ pass def ToOADate(self): """ ToOADate(self: DateTime) -> float Converts the value of this instance to the equivalent OLE Automation date. Returns: A double-precision floating-point number that contains an OLE Automation date equivalent to the value of this instance. """ pass def ToShortDateString(self): """ ToShortDateString(self: DateTime) -> str Converts the value of the current System.DateTime object to its equivalent short date string representation. Returns: A string that contains the short date string representation of the current System.DateTime object. """ pass def ToShortTimeString(self): """ ToShortTimeString(self: DateTime) -> str Converts the value of the current System.DateTime object to its equivalent short time string representation. Returns: A string that contains the short time string representation of the current System.DateTime object. """ pass def ToString(self,*__args): """ ToString(self: DateTime,provider: IFormatProvider) -> str Converts the value of the current System.DateTime object to its equivalent string representation using the specified culture-specific format information. provider: An object that supplies culture-specific formatting information. Returns: A string representation of value of the current System.DateTime object as specified by provider. ToString(self: DateTime,format: str,provider: IFormatProvider) -> str Converts the value of the current System.DateTime object to its equivalent string representation using the specified format and culture-specific format information. format: A standard or custom date and time format string. provider: An object that supplies culture-specific formatting information. Returns: A string representation of value of the current System.DateTime object as specified by format and provider. ToString(self: DateTime) -> str Converts the value of the current System.DateTime object to its equivalent string representation. Returns: A string representation of the value of the current System.DateTime object. ToString(self: DateTime,format: str) -> str Converts the value of the current System.DateTime object to its equivalent string representation using the specified format. format: A standard or custom date and time format string (see Remarks). Returns: A string representation of value of the current System.DateTime object as specified by format. """ pass def ToUniversalTime(self): """ ToUniversalTime(self: DateTime) -> DateTime Converts the value of the current System.DateTime object to Coordinated Universal Time (UTC). Returns: An object whose System.DateTime.Kind property is System.DateTimeKind.Utc,and whose value is the UTC equivalent to the value of the current System.DateTime object,or System.DateTime.MaxValue if the converted value is too large to be represented by a System.DateTime object,or System.DateTime.MinValue if the converted value is too small to be represented by a System.DateTime object. """ pass @staticmethod def TryParse(s,*__args): """ TryParse(s: str,provider: IFormatProvider,styles: DateTimeStyles) -> (bool,DateTime) Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified culture-specific format information and formatting style,and returns a value that indicates whether the conversion succeeded. s: A string containing a date and time to convert. provider: An object that supplies culture-specific formatting information about s. styles: A bitwise combination of enumeration values that defines how to interpret the parsed date in relation to the current time zone or the current date. A typical value to specify is System.Globalization.DateTimeStyles.None. Returns: true if the s parameter was converted successfully; otherwise,false. TryParse(s: str) -> (bool,DateTime) Converts the specified string representation of a date and time to its System.DateTime equivalent and returns a value that indicates whether the conversion succeeded. s: A string containing a date and time to convert. Returns: true if the s parameter was converted successfully; otherwise,false. """ pass @staticmethod def TryParseExact(s,*__args): """ TryParseExact(s: str,formats: Array[str],provider: IFormatProvider,style: DateTimeStyles) -> (bool,DateTime) Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified array of formats,culture-specific format information,and style. The format of the string representation must match at least one of the specified formats exactly. The method returns a value that indicates whether the conversion succeeded. s: A string containing one or more dates and times to convert. formats: An array of allowable formats of s. provider: An object that supplies culture-specific format information about s. style: A bitwise combination of enumeration values that indicates the permitted format of s. A typical value to specify is System.Globalization.DateTimeStyles.None. Returns: true if the s parameter was converted successfully; otherwise,false. TryParseExact(s: str,format: str,provider: IFormatProvider,style: DateTimeStyles) -> (bool,DateTime) Converts the specified string representation of a date and time to its System.DateTime equivalent using the specified format,culture-specific format information,and style. The format of the string representation must match the specified format exactly. The method returns a value that indicates whether the conversion succeeded. s: A string containing a date and time to convert. format: The required format of s. provider: An object that supplies culture-specific formatting information about s. style: A bitwise combination of one or more enumeration values that indicate the permitted format of s. Returns: true if s was converted successfully; otherwise,false. """ pass def __add__(self,*args): """ x.__add__(y) <==> x+y """ pass def __cmp__(self,*args): """ x.__cmp__(y) <==> cmp(x,y) """ pass def __eq__(self,*args): """ x.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass @staticmethod def __new__(self,*__args): """ __new__(cls: type,ticks: Int64) __new__(cls: type,ticks: Int64,kind: DateTimeKind) __new__(cls: type,year: int,month: int,day: int) __new__(cls: type,year: int,month: int,day: int,calendar: Calendar) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int,kind: DateTimeKind) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int,calendar: Calendar) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int,kind: DateTimeKind) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int,calendar: Calendar) __new__(cls: type,year: int,month: int,day: int,hour: int,minute: int,second: int,millisecond: int,calendar: Calendar,kind: DateTimeKind) __new__[DateTime]() -> DateTime """ pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass def __rsub__(self,*args): """ __rsub__(d1: DateTime,d2: DateTime) -> TimeSpan Subtracts a specified date and time from another specified date and time and returns a time interval. d1: The date and time value to subtract from (the minuend). d2: The date and time value to subtract (the subtrahend). Returns: The time interval between d1 and d2; that is,d1 minus d2. """ pass def __str__(self,*args): pass def __sub__(self,*args): """ x.__sub__(y) <==> x-yx.__sub__(y) <==> x-y """ pass Date=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the date component of this instance. Get: Date(self: DateTime) -> DateTime """ Day=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the day of the month represented by this instance. Get: Day(self: DateTime) -> int """ DayOfWeek=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the day of the week represented by this instance. Get: DayOfWeek(self: DateTime) -> DayOfWeek """ DayOfYear=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the day of the year represented by this instance. Get: DayOfYear(self: DateTime) -> int """ Hour=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the hour component of the date represented by this instance. Get: Hour(self: DateTime) -> int """ Kind=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value that indicates whether the time represented by this instance is based on local time,Coordinated Universal Time (UTC),or neither. Get: Kind(self: DateTime) -> DateTimeKind """ Millisecond=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the milliseconds component of the date represented by this instance. Get: Millisecond(self: DateTime) -> int """ Minute=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the minute component of the date represented by this instance. Get: Minute(self: DateTime) -> int """ Month=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the month component of the date represented by this instance. Get: Month(self: DateTime) -> int """ Second=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the seconds component of the date represented by this instance. Get: Second(self: DateTime) -> int """ Ticks=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the number of ticks that represent the date and time of this instance. Get: Ticks(self: DateTime) -> Int64 """ TimeOfDay=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the time of day for this instance. Get: TimeOfDay(self: DateTime) -> TimeSpan """ Year=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the year component of the date represented by this instance. Get: Year(self: DateTime) -> int """ MaxValue=None MinValue=None Now=None Today=None UtcNow=None
apps/benchmark_ncs/benchmark_ncs.py
neuralbotnetworks/ncappzoo
968
144880
#! /usr/bin/env python3 # Copyright(c) 2017-2018 Intel Corporation. # License: MIT See LICENSE file in root directory. GREEN = '\033[1;32m' RED = '\033[1;31m' NOCOLOR = '\033[0m' YELLOW = '\033[1;33m' try: from openvino.inference_engine import IENetwork, ExecutableNetwork, IECore import openvino.inference_engine.ie_api except: print(RED + '\nPlease make sure your OpenVINO environment variables are set by sourcing the' + YELLOW + ' setupvars.sh ' + RED + 'script found in <your OpenVINO install location>/bin/ folder.\n' + NOCOLOR) exit(1) import cv2 import numpy import time import sys import threading import os from sys import argv import datetime import queue from queue import * INFERENCE_DEV = "MYRIAD" sep = os.path.sep DEFAULT_IMAGE_DIR = "." + sep + "images" DEFAULT_MODEL_XML = "." + sep + "googlenet-v1.xml" DEFAULT_MODEL_BIN = "." + sep + "googlenet-v1.bin" cv_window_name = "benchmark_ncs" # how long to wait for queues QUEUE_WAIT_SECONDS = 10 # set some global parameters to initial values that may get overriden with arguments to the application. inference_device = INFERENCE_DEV image_dir = DEFAULT_IMAGE_DIR number_of_devices = 1 number_of_inferences = 1000 run_async = True time_threads = True time_main = False threads_per_dev = 3 # for each device one executable network will be created and this many threads will be simultaneous_infer_per_thread = 6 # Each thread will start this many async inferences at at time. # it should be at least the number of NCEs on board. The Myriad X has 2 # seem to get slightly better results more. Myriad X does well with 4 report_interval = int(number_of_inferences / 10) #report out the current FPS every this many inferences model_xml_fullpath = DEFAULT_MODEL_XML model_bin_fullpath = DEFAULT_MODEL_BIN net_config = {'HW_STAGES_OPTIMIZATION': 'YES', 'COMPUTE_LAYOUT':'VPU_NCHW', 'RESHAPE_OPTIMIZATION':'NO'} INFER_RES_QUEUE_SIZE = 6 def handle_args(): """Reads the commandline args and adjusts initial values of globals values to match :return: False if there was an error with the args, or True if args processed ok. """ global number_of_devices, number_of_inferences, model_xml_fullpath, model_bin_fullpath, run_async, \ time_threads, time_main, num_ncs_devs, threads_per_dev, simultaneous_infer_per_thread, report_interval, \ image_dir, inference_device have_model_xml = False have_model_bin = False for an_arg in argv: lower_arg = str(an_arg).lower() if (an_arg == argv[0]): continue elif (lower_arg == 'help'): return False elif (lower_arg.startswith('num_devices=') or lower_arg.startswith("nd=")): try: arg, val = str(an_arg).split('=', 1) num_dev_str = val number_of_devices = int(num_dev_str) if (number_of_devices < 0): print('Error - num_devices argument invalid. It must be > 0') return False print('setting num_devices: ' + str(number_of_devices)) except: print('Error - num_devices argument invalid. It must be between 1 and number of devices in system') return False; elif (lower_arg.startswith('device=') or lower_arg.startswith("dev=")): try: arg, val = str(an_arg).split('=', 1) dev = val inference_device = str(dev) print("inference device:", inference_device) if (inference_device != "MYRIAD" and inference_device != "CPU" ): print('Error - Device must be CPU or MYRIAD') return False print('setting device: ' + str(inference_device)) except: print('Error - Device must be CPU or MYRIAD') return False; elif (lower_arg.startswith('report_interval=') or lower_arg.startswith("ri=")): try: arg, val = str(an_arg).split('=', 1) val_str = val report_interval = int(val_str) if (report_interval < 0): print('Error - report_interval must be greater than or equal to 0') return False print('setting report_interval: ' + str(report_interval)) except: print('Error - report_interval argument invalid. It must be greater than or equal to zero') return False; elif (lower_arg.startswith('num_inferences=') or lower_arg.startswith('ni=')): try: arg, val = str(an_arg).split('=', 1) num_infer_str = val number_of_inferences = int(num_infer_str) if (number_of_inferences < 0): print('Error - num_inferences argument invalid. It must be > 0') return False print('setting num_inferences: ' + str(number_of_inferences)) except: print('Error - num_inferences argument invalid. It must be between 1 and number of devices in system') return False; elif (lower_arg.startswith('num_threads_per_device=') or lower_arg.startswith('ntpd=')): try: arg, val = str(an_arg).split('=', 1) val_str = val threads_per_dev = int(val_str) if (threads_per_dev < 0): print('Error - threads_per_dev argument invalid. It must be > 0') return False print('setting num_threads_per_device: ' + str(threads_per_dev)) except: print('Error - num_threads_per_device argument invalid, it must be a positive integer.') return False; elif (lower_arg.startswith('num_simultaneous_inferences_per_thread=') or lower_arg.startswith('nsipt=')): try: arg, val = str(an_arg).split('=', 1) val_str = val simultaneous_infer_per_thread = int(val_str) if (simultaneous_infer_per_thread < 0): print('Error - simultaneous_infer_per_thread argument invalid. It must be > 0') return False print('setting num_simultaneous_inferences_per_thread: ' + str(simultaneous_infer_per_thread)) except: print('Error - num_simultaneous_inferences_per_thread argument invalid, it must be a positive integer.') return False; elif (lower_arg.startswith('model_xml=') or lower_arg.startswith('mx=')): try: arg, val = str(an_arg).split('=', 1) model_xml_fullpath = val if not (os.path.isfile(model_xml_fullpath)): print("Error - Model XML file passed does not exist or isn't a file") return False print('setting model_xml: ' + str(model_xml_fullpath)) have_model_xml = True except: print('Error with model_xml argument. It must be a valid model file generated by the OpenVINO Model Optimizer') return False; elif (lower_arg.startswith('model_bin=') or lower_arg.startswith('mb=')): try: arg, val = str(an_arg).split('=', 1) model_bin_fullpath = val if not (os.path.isfile(model_bin_fullpath)): print("Error - Model bin file passed does not exist or isn't a file") return False print('setting model_bin: ' + str(model_bin_fullpath)) have_model_bin = True except: print('Error with model_bin argument. It must be a valid model file generated by the OpenVINO Model Optimizer') return False; elif (lower_arg.startswith('run_async=') or lower_arg.startswith('ra=')) : try: arg, val = str(an_arg).split('=', 1) run_async = (val.lower() == 'true') print ('setting run_async: ' + str(run_async)) except: print("Error with run_async argument. It must be 'True' or 'False' ") return False; elif (lower_arg.startswith('image_dir=') or lower_arg.startswith('id=')): try: arg, val = str(an_arg).split('=', 1) image_dir = val if not (os.path.isdir(image_dir)): print("Error - Image directory passed does not exist or isn't a directory:") print(" passed value: " + image_dir) return False print('setting image_dir: ' + str(image_dir)) except: print('Error with model_xml argument. It must be a valid model file generated by the OpenVINO Model Optimizer') return False; elif (lower_arg.startswith('time_threads=') or lower_arg.startswith('tt=')) : try: arg, val = str(an_arg).split('=', 1) time_threads = (val.lower() == 'true') print ('setting time_threads: ' + str(time_threads)) except: print("Error with time_threads argument. It must be 'True' or 'False' ") return False; elif (lower_arg.startswith('time_main=') or lower_arg.startswith('tm=')) : try: arg, val = str(an_arg).split('=', 1) time_main = (val.lower() == 'true') print ('setting time_main: ' + str(time_main)) except: print("Error with time_main argument. It must be 'True' or 'False' ") return False; if (time_main == False and time_threads == False): print("Error - Both time_threads and time_main args were set to false. One of these must be true. ") return False if ((have_model_bin and not have_model_xml) or (have_model_xml and not have_model_bin)): print("Error - only one of model_bin and model_xml were specified. You must specify both or neither.") return False if (run_async == False) and (simultaneous_infer_per_thread != 1): print("Warning - If run_async is False then num_simultaneous_inferences_per_thread must be 1.") print("Setting num_simultaneous_inferences_per_thread to 1") simultaneous_infer_per_thread = 1 return True def print_arg_vals(): print("") print("--------------------------------------------------------") print("Current date and time: " + str(datetime.datetime.now())) print("") print("program arguments:") print("------------------") print('device: ' + inference_device) print('num_devices: ' + str(number_of_devices)) print('num_inferences: ' + str(number_of_inferences)) print('num_threads_per_device: ' + str(threads_per_dev)) print('num_simultaneous_inferences_per_thread: ' + str(simultaneous_infer_per_thread)) print('report_interval: ' + str(report_interval)) print('model_xml: ' + str(model_xml_fullpath)) print('model_bin: ' + str(model_bin_fullpath)) print('image_dir: ' + str(image_dir)) print('run_async: ' + str(run_async)) print('time_threads: ' + str(time_threads)) print('time_main: ' + str(time_main)) print("--------------------------------------------------------") def print_usage(): print('\nusage: ') print('python3 benchmark_ncs [help][nd=<number of devices to use>] [ni=<number of inferences per device>]') print(' [report_interval=<num inferences between reporting>] [ntpd=<number of threads to use per device>]') print(' [nsipt=<simultaneous inference on each thread>] [mx=<path to model xml file> mb=<path to model bin file>]') print('') print('options:') print(" num_devices or nd - The number of devices to use for inferencing ") print(" The value must be between 1 and the total number of devices in the system.") print(" Default is to use 1 device. ") print(" num_inferences or ni - The number of inferences to run on each device. ") print(" Default is to run 200 inferences. ") print(" report_interval or ri - Report the current FPS every time this many inferences are complete. To surpress reporting set to 0") print(" Default is to report FPS ever 400 inferences. ") print(" num_threads_per_device or ntpd - The number of threads to create that will run inferences in parallel for each device. ") print(" Default is to create 2 threads per device. ") print(" num_simultaneous_inferences_per_thread or nsipt - The number of inferences that each thread will create asynchronously. ") print(" This should be at least equal to the number of NCEs on board or more.") print(" Default is 4 simultaneous inference per thread.") print(" model_xml or mx - Full path to the model xml file generated by the model optimizer. ") print(" Default is " + DEFAULT_MODEL_XML) print(" model_bin or mb - Full path to the model bin file generated by the model optimizer. ") print(" Default is " + DEFAULT_MODEL_BIN) print(" image_dir or id - Path to directory with images to use. ") print(" Default is " + DEFAULT_IMAGE_DIR) print(" run_async or ra - Set to true to run asynchronous inferences using two threads per device") print(" Default is True ") print(" time_main or tm - Set to true to use the time and calculate FPS from the main loop") print(" Default is False ") print(" time_threads or tt - Set to true to use the time and calculate FPS from the time reported from inference threads") print(" Default is True ") def preprocess_image(n:int, c:int, h:int, w:int, image_filename:str) : image = cv2.imread(image_filename) image = cv2.resize(image, (w, h)) image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW preprocessed_image = image.reshape((n, c, h, w)) return preprocessed_image def main(): """Main function for the program. Everything starts here. :return: None """ if (handle_args() != True): print_usage() exit() print_arg_vals() num_ncs_devs = number_of_devices # Calculate the number of number of inferences to be made per thread total_number_of_threads = threads_per_dev * num_ncs_devs inferences_per_thread = int(number_of_inferences / total_number_of_threads) # This total will be the total number of inferences to be made inferences_per_thread = int(inferences_per_thread / simultaneous_infer_per_thread) * simultaneous_infer_per_thread # Total number of threads that need to be spawned total_number_threads = num_ncs_devs * threads_per_dev # Lists and queues to hold data infer_result_queue = queue.Queue(INFER_RES_QUEUE_SIZE) infer_time_list = [None] * (total_number_threads) thread_list = [None] * (total_number_threads) # Threading barrier to sync all thread processing start_barrier = threading.Barrier(total_number_threads + 1) end_barrier = threading.Barrier(total_number_threads + 1) ie = IECore() # Create the network object net = IENetwork(model=model_xml_fullpath, weights=model_bin_fullpath) # Get the input and output blob names and the network input information input_blob = next(iter(net.inputs)) output_blob = next(iter(net.outputs)) n, c, h, w = net.inputs[input_blob].shape # Get a list of all the .mp4 files in the image directory and put them in a list image_filename_list = os.listdir(image_dir) image_filename_list = [image_dir + sep + i for i in image_filename_list if (i.endswith('.jpg') or i.endswith(".png"))] if (len(image_filename_list) < 1): # no images to show print('No image files found (.jpg or .png)') return 1 print("Found " + str(len(image_filename_list)) + " images.") # Preprocess all images in the list preprocessed_image_list = [None]*len(image_filename_list) preprocessed_image_index = 0 for one_image_filename in image_filename_list: one_preprocessed_image = preprocess_image(n,c,h,w,one_image_filename) preprocessed_image_list[preprocessed_image_index] = one_preprocessed_image preprocessed_image_index += 1 # Number of images to be inferred per thread images_per_thread = int(len(preprocessed_image_list) / total_number_threads) exec_net_list = [None] * num_ncs_devs # creates an executable network for each device for dev_index in range(0, num_ncs_devs): exec_net_list[dev_index] = ie.load_network(network = net, num_requests = threads_per_dev * simultaneous_infer_per_thread, device_name=inference_device) # create threads (3) for each executable network (one executable network per device) for dev_thread_index in range(0, threads_per_dev): # divide up the images to be processed by each thread # device thread index starts at 0. device indexes start at 0. 3 threads per device. (0, 1, 2) total_thread_index = dev_thread_index + (threads_per_dev * dev_index) # Find out which index in preprocessed_image_list to start from first_image_index = int(total_thread_index * images_per_thread) # Find out which index in preprocessed_image_list to stop at last_image_index = int(first_image_index + images_per_thread - 1) if (run_async): dev_thread_req_id = dev_thread_index * simultaneous_infer_per_thread thread_list[total_thread_index] = threading.Thread(target=infer_async_thread_proc, args=[net, exec_net_list[dev_index], dev_thread_req_id, preprocessed_image_list, first_image_index, last_image_index, inferences_per_thread, infer_time_list, total_thread_index, start_barrier, end_barrier, simultaneous_infer_per_thread, infer_result_queue, input_blob, output_blob], daemon = True) else: print("run_async=false not yet supported") exit(-1) del net # Start the threads try: for one_thread in thread_list: one_thread.start() except (KeyboardInterrupt, SystemExit): cleanup_stop_thread() sys.exit() start_barrier.wait() # Save the main starting time main_start_time = time.time() interval_start_time = time.time() print("Inferences started...") cur_fps = 0.0 result_counter = 0 accum_fps = 0.0 frames_since_last_report = 0 total_number_inferences = total_number_threads * inferences_per_thread # Report intermediate results while (result_counter < total_number_inferences): # Get the number of completed inferences infer_res = infer_result_queue.get(True, QUEUE_WAIT_SECONDS) infer_res_index = infer_res[0] infer_res_probability = infer_res[1] result_counter += 1 frames_since_last_report += 1 if (report_interval > 0): if ((frames_since_last_report > report_interval)): cur_time = time.time() accum_duration = cur_time - main_start_time cur_duration = cur_time - interval_start_time cur_fps = frames_since_last_report / cur_duration accum_fps = result_counter / accum_duration print(str(result_counter) + " inferences completed. Current fps: " + '{0:.1f}'.format(accum_fps)) frames_since_last_report = 0 interval_start_time = time.time() infer_result_queue.task_done() # wait for all the inference threads to reach end barrier print("Main end barrier reached") end_barrier.wait() # Save main end time main_end_time = time.time() print("Inferences finished.") # wait for all threads to finish for one_thread in thread_list: one_thread.join() total_thread_fps = 0.0 total_thread_time = 0.0 # Calculate total time and fps for thread_index in range(0, (num_ncs_devs*threads_per_dev)): total_thread_time += infer_time_list[thread_index] total_thread_fps += (inferences_per_thread / infer_time_list[thread_index]) devices_count = str(number_of_devices) if (time_threads): print("\n------------------- Thread timing -----------------------") print("--- Device: " + str(inference_device)) print("--- Model: " + model_xml_fullpath) print("--- Total FPS: " + '{0:.1f}'.format(total_thread_fps)) print("--- FPS per device: " + '{0:.1f}'.format(total_thread_fps / num_ncs_devs)) print("---------------------------------------------------------") main_time = main_end_time - main_start_time if (time_main): main_fps = result_counter / main_time print ("\n------------------ Main timing -------------------------") print ("--- FPS: " + str(main_fps)) print ("--- FPS per device: " + str(main_fps/num_ncs_devs)) print ("--------------------------------------------------------") # Clean up for one_exec_net in exec_net_list: del one_exec_net # use this thread proc to try to implement: # 1 plugin per app # 1 executable Network per device # multiple threads per executable network # multiple requests per executable network per thread def infer_async_thread_proc(net, exec_net: ExecutableNetwork, dev_thread_request_id: int, image_list: list, first_image_index:int, last_image_index:int, num_total_inferences: int, result_list: list, result_index:int, start_barrier: threading.Barrier, end_barrier: threading.Barrier, simultaneous_infer_per_thread:int, infer_result_queue:queue.Queue, input_blob, output_blob): # Sync with the main start barrier start_barrier.wait() # Start times for the fps counter start_time = time.time() end_time = start_time handle_list = [None]*simultaneous_infer_per_thread image_index = first_image_index image_result_start_index = 0 inferences_per_req = int(num_total_inferences/simultaneous_infer_per_thread) # For each thread, 6 async inference requests will be created for outer_index in range(0, inferences_per_req): # Start the simultaneous async inferences for infer_id in range(0, simultaneous_infer_per_thread): new_request_id = dev_thread_request_id + infer_id handle_list[infer_id] = exec_net.start_async(request_id = new_request_id, inputs={input_blob: image_list[image_index]}) image_index += 1 if (image_index > last_image_index): image_index = first_image_index # Wait for the simultaneous async inferences to finish. for wait_index in range(0, simultaneous_infer_per_thread): infer_status = handle_list[wait_index].wait() result = handle_list[wait_index].outputs[output_blob] top_index = numpy.argsort(result, axis = 1)[0, -1:][::-1] top_index = top_index[0] prob = result[0][top_index] infer_result_queue.put((top_index, prob)) handle_list[wait_index] = None # Save the time spent on inferences within this inference thread and associated reader thread end_time = time.time() total_inference_time = end_time - start_time result_list[result_index] = total_inference_time print("Thread " + str(result_index) + " end barrier reached") # Wait for all inference threads to finish end_barrier.wait() # main entry point for program. we'll call main() to do what needs to be done. if __name__ == "__main__": sys.exit(main())
aliyun-python-sdk-arms/aliyunsdkarms/request/v20190808/ApplyScenarioRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
144893
<filename>aliyun-python-sdk-arms/aliyunsdkarms/request/v20190808/ApplyScenarioRequest.py<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkarms.endpoint import endpoint_data class ApplyScenarioRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'ARMS', '2019-08-08', 'ApplyScenario','arms') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_SnForce(self): return self.get_query_params().get('SnForce') def set_SnForce(self,SnForce): self.add_query_param('SnForce',SnForce) def get_Sign(self): return self.get_query_params().get('Sign') def set_Sign(self,Sign): self.add_query_param('Sign',Sign) def get_SnStat(self): return self.get_query_params().get('SnStat') def set_SnStat(self,SnStat): self.add_query_param('SnStat',SnStat) def get_Scenario(self): return self.get_query_params().get('Scenario') def set_Scenario(self,Scenario): self.add_query_param('Scenario',Scenario) def get_SnDump(self): return self.get_query_params().get('SnDump') def set_SnDump(self,SnDump): self.add_query_param('SnDump',SnDump) def get_AppId(self): return self.get_query_params().get('AppId') def set_AppId(self,AppId): self.add_query_param('AppId',AppId) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_SnTransfer(self): return self.get_query_params().get('SnTransfer') def set_SnTransfer(self,SnTransfer): self.add_query_param('SnTransfer',SnTransfer) def get_UpdateOption(self): return self.get_query_params().get('UpdateOption') def set_UpdateOption(self,UpdateOption): self.add_query_param('UpdateOption',UpdateOption) def get_Config(self): return self.get_query_params().get('Config') def set_Config(self,Config): self.add_query_param('Config',Config)
sampler/commands.py
crestonbunch/tbcnn
124
144903
"""File for defining commands for the sampler.""" import argparse import logging import sampler.trees as trees import sampler.nodes as nodes def main(): parser = argparse.ArgumentParser( description="Sample trees or nodes from a crawler file.", ) subparsers = parser.add_subparsers(help='sub-command help') tree_parser = subparsers.add_parser( 'trees', help='Sample trees from a data source.' ) tree_parser.add_argument('--infile', type=str, help='Data file to sample from') tree_parser.add_argument('--outfile', type=str, help='File to store samples in') tree_parser.add_argument('--test', default=30, type=int, help='Percent to save as test data') tree_parser.add_argument( '--label-key', type=str, default='label', help='Change which key to use for the label' ) tree_parser.add_argument( '--maxsize', type=int, default=10000, help='Ignore trees with more than --maxsize nodes' ) tree_parser.add_argument( '--minsize', type=int, default=100, help='Ignore trees with less than --minsize nodes' ) tree_parser.set_defaults(func=trees.parse) node_parser = subparsers.add_parser( 'nodes', help='Sample nodes from a data source.' ) node_parser.add_argument('--infile', type=str, help='Data file to sample from') node_parser.add_argument('--outfile', type=str, help='File to store samples in') node_parser.add_argument( '--per-node', type=int, default=-1, help='Sample up to a maxmimum number for each node type' ) node_parser.add_argument( '--limit', type=int, default=-1, help='Maximum number of samples to store.' ) node_parser.set_defaults(func=nodes.parse) args = parser.parse_args() args.func(args)
src/ploomber/executors/__init__.py
MarcoJHB/ploomber
2,141
144938
<gh_stars>1000+ from ploomber.executors.serial import Serial from ploomber.executors.parallel import Parallel __all__ = ['Serial', 'Parallel']
tests/helpers/imports.py
neptune-ml/pytorch-lightning
15,666
144950
<reponame>neptune-ml/pytorch-lightning<gh_stars>1000+ import operator from pytorch_lightning.utilities.imports import _compare_version, _TORCHTEXT_LEGACY if _TORCHTEXT_LEGACY: if _compare_version("torchtext", operator.ge, "0.9.0"): from torchtext.legacy.data import Batch, Dataset, Example, Field, Iterator, LabelField else: from torchtext.data import Batch, Dataset, Example, Field, Iterator, LabelField else: Batch = type(None) Dataset = type(None) Example = type(None) Field = type(None) Iterator = type(None) LabelField = type(None)
tests/conftest.py
chris48s/datapackage-py
183
144964
<reponame>chris48s/datapackage-py # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import mock import pytest import tempfile from datapackage import DataPackage # Fixtures @pytest.yield_fixture() def tmpfile(): with tempfile.NamedTemporaryFile() as file: yield file @pytest.yield_fixture() def txt_tmpfile(): with tempfile.NamedTemporaryFile(suffix='.txt') as file: yield file @pytest.yield_fixture() def csv_tmpfile(): with tempfile.NamedTemporaryFile(suffix='.csv') as file: yield file @pytest.yield_fixture() def json_tmpfile(): with tempfile.NamedTemporaryFile(suffix='.json') as file: yield file
tests/test_warnings.py
vshalts/fastaudio
152
144967
<filename>tests/test_warnings.py import pytest from fastaudio.augment.spectrogram import ( CropTime, Delta, MaskFreq, MaskTime, SGRoll, TfmResize ) from fastaudio.util import test_audio_tensor def invoke_class(cls, **args): audio = test_audio_tensor() with pytest.warns(Warning): cls(**args)(audio) def test_show_warning_with_tfm_on_sig(): """ When we invoke a transform intended for a spectrogram on something that is most likely a signal, we show a warning. Check Issue #17 """ transforms = [CropTime, Delta, MaskFreq, MaskTime, SGRoll, TfmResize] for t in transforms: # Some of the transforms require init arguments if t == CropTime: invoke_class(t, duration=1) elif t == TfmResize: invoke_class(t, size=2) else: invoke_class(t)
test/submit_test.py
mike715/assignment
101
144969
import sys, os, pytest sys.path.append('.') import submit output_worked = 'Your submission has been accepted and will be graded shortly.' from io import StringIO class TestCorrectMetadata: def test_001(self): meta_data = submit.load_metadata('test/_coursera') assert len(meta_data.part_data) == 6 class TestBrokenMetadata: # file not found def test_001(self): with pytest.raises(SystemExit): submit.load_metadata('test/_missing') # bad meta data format def test_002(self): with pytest.raises(SystemExit): submit.load_metadata('test/_empty') class TestLogin: def setup_class(self): self.parser = submit.build_parser() def test_001(self): sys.stdin = StringIO(u'username\ntoken\n') login, token = submit.login_prompt('') assert(login == 'username') assert(token == 'token') def test_002(self): login, token = submit.login_prompt('test/_credentials') assert(login == '<EMAIL>') assert(token == '<KEY>') # testing manual override when credentials file is incorrect # def test_003(self, capfd): # login, token = submit.login_prompt('test/_credentials') # sys.stdin = StringIO(u'1\n%s\n%s\n' % (login, token)) # submit.main(self.parser.parse_args(['-o', './test/model/model.mzn', '-m', './test/_coursera', '-c', './test/_credentials3'])) # resout, reserr = capfd.readouterr() # assert(output_worked in resout) class TestPartsPrompt: def setup_class(self): self.metadata = submit.load_metadata('test/_coursera') def test_001(self, capfd): sys.stdin = StringIO(u'0.1\n1\n') problems = submit.part_prompt(self.metadata.part_data) assert(len(problems) == 1) resout, reserr = capfd.readouterr() assert('It is not an integer.' in resout) def test_002(self, capfd): sys.stdin = StringIO(u'100\n1\n') problems = submit.part_prompt(self.metadata.part_data) assert(len(problems) == 1) resout, reserr = capfd.readouterr() assert('It is out of the valid range' in resout) def test_003(self, capfd): sys.stdin = StringIO(u'-1\n1\n') problems = submit.part_prompt(self.metadata.part_data) assert(len(problems) == 1) resout, reserr = capfd.readouterr() assert('It is out of the valid range' in resout) def test_004(self, capfd): sys.stdin = StringIO(u'1,2\n') problems = submit.part_prompt(self.metadata.part_data) assert(len(problems) == 2) def test_005(self, capfd): sys.stdin = StringIO(u'0\n') problems = submit.part_prompt(self.metadata.part_data) assert(len(problems) == len(self.metadata.part_data)) class TestProblemSubmission: def setup_class(self): self.parser = submit.build_parser() # # tests problem selection # def test_001(self, capfd): # sys.stdin = StringIO(u'1\n') # submit.main(self.parser.parse_args(['-m', './test/_coursera', '-c', './test/_credentials'])) # output = 'Unable to locate assignment file' # resout, reserr = capfd.readouterr() # assert(output in resout) # tests running a problem def test_002(self, capfd): sys.stdin = StringIO(u'1\n') submit.main(self.parser.parse_args(['-m', './test/_coursera', '-c', './test/_credentials'])) resout, reserr = capfd.readouterr() assert(output_worked in resout) # tests running a problem in record mode def test_003(self, capfd): sys.stdin = StringIO(u'1\n') submit.main(self.parser.parse_args(['-m', './test/_coursera', '-c', './test/_credentials', '-rs'])) output = 'writting submission file: _awPVV' resout, reserr = capfd.readouterr() assert(output in resout) assert(not output_worked in resout) os.remove('_awPVV/submission.sub') os.rmdir('_awPVV') # tests running a solver with a int return value def test_004(self, capfd): # sys.stdin = StringIO(u'2\n') # submit.main(self.parser.parse_args(['-m', './test/_coursera', '-c', './test/_credentials'])) # resout, reserr = capfd.readouterr() # assert(output_worked in resout) sys.path.insert(0, 'test/solver') submission = submit.output('./test/_empty', 'int_val_solver.py') assert('0' in submission) resout, reserr = capfd.readouterr() assert('Warning' in resout) # tests running a solver with a unicode return value def test_005(self, capfd): # sys.stdin = StringIO(u'3\n') # submit.main(self.parser.parse_args(['-m', './test/_coursera', '-c', './test/_credentials'])) # resout, reserr = capfd.readouterr() # assert(output_worked in resout) sys.path.insert(0, 'test/solver') submission = submit.output('./test/_empty', 'unicode_solver.py') assert(u'\u03BB' in submission) # class TestBrokenSubmission: # def setup_method(self, _): # self.parser = submit.build_parser() # # should throw incorrect problem parts # def test_001(self, capfd): # sys.stdin = StringIO(u'1\n') # submit.main(self.parser.parse_args(['-m', './test/_coursera3', '-c', './test/_credentials2', '-o', './test/model/model.mzn'])) # output_1 = 'Unexpected response code, please contact the course staff.' # output_2 = 'Expected parts: ' # output_3 = 'but found: ' # resout, reserr = capfd.readouterr() # print(resout) # assert(output_1 in resout) # assert(output_2 in resout) # assert(output_3 in resout) # # should throw incorrect login details # def test_002(self, capfd): # sys.stdin = StringIO(u'1\n') # submit.main(self.parser.parse_args(['-m', './test/_coursera3', '-c', './test/_credentials', '-o', './test/model/model.mzn'])) # output = 'Please use a token for the assignment you are submitting.' # resout, reserr = capfd.readouterr() # print(resout) # assert(output in resout)
benchmark/otb.py
meetdave06/THOR
163
144994
import cv2 import sys, os, glob, re import json from os.path import join, dirname, abspath, realpath, isdir from os import makedirs import numpy as np from shutil import rmtree from ipdb import set_trace from .bench_utils.bbox_helper import rect_2_cxy_wh, cxy_wh_2_rect def center_error(rects1, rects2): """Center error. Args: rects1 (numpy.ndarray): An N x 4 numpy array, each line represent a rectangle (left, top, width, height). rects2 (numpy.ndarray): An N x 4 numpy array, each line represent a rectangle (left, top, width, height). """ centers1 = rects1[..., :2] + (rects1[..., 2:] - 1) / 2 centers2 = rects2[..., :2] + (rects2[..., 2:] - 1) / 2 errors = np.sqrt(np.sum(np.power(centers1 - centers2, 2), axis=-1)) return errors def _intersection(rects1, rects2): r"""Rectangle intersection. Args: rects1 (numpy.ndarray): An N x 4 numpy array, each line represent a rectangle (left, top, width, height). rects2 (numpy.ndarray): An N x 4 numpy array, each line represent a rectangle (left, top, width, height). """ assert rects1.shape == rects2.shape x1 = np.maximum(rects1[..., 0], rects2[..., 0]) y1 = np.maximum(rects1[..., 1], rects2[..., 1]) x2 = np.minimum(rects1[..., 0] + rects1[..., 2], rects2[..., 0] + rects2[..., 2]) y2 = np.minimum(rects1[..., 1] + rects1[..., 3], rects2[..., 1] + rects2[..., 3]) w = np.maximum(x2 - x1, 0) h = np.maximum(y2 - y1, 0) return np.stack([x1, y1, w, h]).T def rect_iou(rects1, rects2, bound=None): r"""Intersection over union. Args: rects1 (numpy.ndarray): An N x 4 numpy array, each line represent a rectangle (left, top, width, height). rects2 (numpy.ndarray): An N x 4 numpy array, each line represent a rectangle (left, top, width, height). bound (numpy.ndarray): A 4 dimensional array, denotes the bound (min_left, min_top, max_width, max_height) for ``rects1`` and ``rects2``. """ assert rects1.shape == rects2.shape if bound is not None: # bounded rects1 rects1[:, 0] = np.clip(rects1[:, 0], 0, bound[0]) rects1[:, 1] = np.clip(rects1[:, 1], 0, bound[1]) rects1[:, 2] = np.clip(rects1[:, 2], 0, bound[0] - rects1[:, 0]) rects1[:, 3] = np.clip(rects1[:, 3], 0, bound[1] - rects1[:, 1]) # bounded rects2 rects2[:, 0] = np.clip(rects2[:, 0], 0, bound[0]) rects2[:, 1] = np.clip(rects2[:, 1], 0, bound[1]) rects2[:, 2] = np.clip(rects2[:, 2], 0, bound[0] - rects2[:, 0]) rects2[:, 3] = np.clip(rects2[:, 3], 0, bound[1] - rects2[:, 1]) rects_inter = _intersection(rects1, rects2) areas_inter = np.prod(rects_inter[..., 2:], axis=-1) areas1 = np.prod(rects1[..., 2:], axis=-1) areas2 = np.prod(rects2[..., 2:], axis=-1) areas_union = areas1 + areas2 - areas_inter eps = np.finfo(float).eps ious = areas_inter / (areas_union + eps) ious = np.clip(ious, 0.0, 1.0) return ious def overlap_ratio(rect1, rect2): ''' Compute overlap ratio between two rects - rect: 1d array of [x,y,w,h] or 2d array of N x [x,y,w,h] ''' if rect1.ndim==1: rect1 = rect1[None,:] if rect2.ndim==1: rect2 = rect2[None,:] left = np.maximum(rect1[:,0], rect2[:,0]) right = np.minimum(rect1[:,0]+rect1[:,2], rect2[:,0]+rect2[:,2]) top = np.maximum(rect1[:,1], rect2[:,1]) bottom = np.minimum(rect1[:,1]+rect1[:,3], rect2[:,1]+rect2[:,3]) intersect = np.maximum(0,right - left) * np.maximum(0,bottom - top) union = rect1[:,2]*rect1[:,3] + rect2[:,2]*rect2[:,3] - intersect iou = np.clip(intersect / union, 0, 1) return iou def calc_curves(ious, center_errors, nbins_iou, nbins_ce): ious = np.asarray(ious, float)[:, np.newaxis] center_errors = np.asarray(center_errors, float)[:, np.newaxis] thr_iou = np.linspace(0, 1, nbins_iou)[np.newaxis, :] thr_ce = np.arange(0, nbins_ce)[np.newaxis, :] bin_iou = np.greater(ious, thr_iou) bin_ce = np.less_equal(center_errors, thr_ce) succ_curve = np.mean(bin_iou, axis=0) prec_curve = np.mean(bin_ce, axis=0) return succ_curve, prec_curve def compute_success_overlap(gt_bb, result_bb): thresholds_overlap = np.arange(0, 1.05, 0.05) n_frame = len(gt_bb) success = np.zeros(len(thresholds_overlap)) iou = overlap_ratio(gt_bb, result_bb) for i in range(len(thresholds_overlap)): success[i] = sum(iou > thresholds_overlap[i]) / float(n_frame) return success def compute_success_error(gt_center, result_center): thresholds_error = np.arange(0, 51, 1) n_frame = len(gt_center) success = np.zeros(len(thresholds_error)) dist = np.sqrt(np.sum(np.power(gt_center - result_center, 2), axis=1)) for i in range(len(thresholds_error)): success[i] = sum(dist <= thresholds_error[i]) / float(n_frame) return success def get_result_bb(arch, seq): result_path = join(arch, seq + '.txt') temp = np.loadtxt(result_path, delimiter=',').astype(np.float) return np.array(temp) def convert_bb_to_center(bboxes): return np.array([(bboxes[:, 0] + (bboxes[:, 2] - 1) / 2), (bboxes[:, 1] + (bboxes[:, 3] - 1) / 2)]).T def test_otb(v_id, tracker, video, args): toc, regions = 0, [] image_files, gt = video['image_files'], video['gt'] for f, image_file in enumerate(image_files): im = cv2.imread(image_file) tic = cv2.getTickCount() if f == 0: init_pos, init_sz = rect_2_cxy_wh(gt[f]) state = tracker.setup(im, init_pos, init_sz) location = gt[f] regions.append(gt[f]) elif f > 0: state = tracker.track(im, state) location = cxy_wh_2_rect(state['target_pos'], state['target_sz']) regions.append(location) toc += cv2.getTickCount() - tic if args.viz and f > 0: # visualization if f == 0: cv2.destroyAllWindows() if len(gt[f]) == 8: cv2.polylines(im, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3) else: cv2.rectangle(im, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3) if len(location) == 8: cv2.polylines(im, [location.reshape((-1, 1, 2))], True, (0, 255, 255), 3) else: location = [int(l) for l in location] # cv2.rectangle(im, (location[0], location[1]), (location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3) cv2.putText(im, "score: {:.4f}".format(state['score']), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) cv2.imshow(video['name'], im) cv2.moveWindow(video['name'], 200, 50) cv2.waitKey(1) cv2.destroyAllWindows() toc /= cv2.getTickFrequency() # save result video_path = join('benchmark/results/', args.dataset, args.save_path) if not isdir(video_path): makedirs(video_path) result_path = join(video_path, '{:s}.txt'.format(video['name'])) with open(result_path, "w") as fin: for x in regions: fin.write(','.join([str(i) for i in x])+'\n') print('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps'.format( v_id, video['name'], toc, f / toc)) return f / toc def eval_otb(save_path, delete_after): base_path = join(realpath(dirname(__file__)), '../data', 'OTB2015') json_path = base_path + '.json' annos = json.load(open(json_path, 'r')) seqs = list(annos.keys()) video_path = join('benchmark/results/OTB2015/', save_path) trackers = glob.glob(join(video_path)) _, _, files = next(os.walk(trackers[0])) num_files = len(files) thresholds_overlap = np.arange(0, 1.05, 0.05) success_overlap = np.zeros((num_files, len(trackers), len(thresholds_overlap))) thresholds_error = np.arange(0, 51, 1) success_error = np.zeros((num_files, len(trackers), len(thresholds_error))) for i, f in enumerate(files): seq = f.replace('.txt', '') gt_rect = np.array(annos[seq]['gt_rect']).astype(np.float) gt_center = convert_bb_to_center(gt_rect) for j in range(len(trackers)): tracker = trackers[j] bb = get_result_bb(tracker, seq) center = convert_bb_to_center(bb) success_overlap[i][j] = compute_success_overlap(gt_rect, bb) success_error[i][j] = compute_success_error(gt_center, center) max_auc = 0.0 max_prec = 0.0 for i in range(len(trackers)): auc = success_overlap[:, i, :].mean() if auc > max_auc: max_auc = auc prec = success_error[:, i, :].mean() if prec > max_prec: max_prec = prec if delete_after: rmtree(trackers[0]) return {'auc': max_auc, 'precision': prec}
bcs-ui/backend/components/ssm.py
schneesu/bk-bcs
599
145028
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 TH<NAME>, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.conf import settings from backend.components import utils from backend.utils import cache from backend.utils.decorators import parse_response_data HEADERS = {"X-BK-APP-CODE": settings.APP_ID, "X-BK-APP-SECRET": settings.APP_TOKEN} @parse_response_data(default_data={}) def get_access_token(params): url = f"{settings.BK_SSM_HOST}/api/v1/auth/access-tokens" return utils.http_post(url, json=params, headers=HEADERS) @cache.region.cache_on_arguments(expiration_time=240) def get_bk_login_access_token(bk_token): """获取access_token""" return get_access_token({"grant_type": "authorization_code", "id_provider": "bk_login", "bk_token": bk_token}) def get_client_access_token(): """获取非用户态access_token""" return get_access_token({"grant_type": "client_credentials", "id_provider": "client"}) @parse_response_data(default_data={}) def get_authorization_by_access_token(access_token): url = f"{settings.BK_SSM_HOST}/api/v1/auth/access-tokens/verify" return utils.http_post(url, json={"access_token": access_token}, headers=HEADERS)
experiments/launcher_exp1_collect.py
MenshovSergey/DetectChess
144
145041
<reponame>MenshovSergey/DetectChess<gh_stars>100-1000 import os from os2d.utils.logger import extract_value_from_os2d_binary_log, mAP_percent_to_points if __name__ == "__main__": config_path = os.path.dirname(os.path.abspath(__file__)) config_job_name = "exp1" log_path = os.path.abspath(os.path.join(config_path, "..", "output/exp1")) def get_result(job_name, sub_index, backbone_arch, init_model_nickname, rand_seed, ): job_name = f"{config_job_name}.{sub_index}.{job_name}_seed{rand_seed}" log_folder = job_name + "_" + backbone_arch + "_init_" + init_model_nickname log_folder = os.path.join(log_path, log_folder) data_file = os.path.join(log_folder, "train_log.pkl") return mAP_percent_to_points(extract_value_from_os2d_binary_log(data_file, "[email protected]_grozi-val-new-cl", reduce="max")) results = [] random_seed = 0 results.append(get_result(\ "lossCL", 0, "ResNet50", "imageNetCaffe2", random_seed, )) results.append(get_result(\ "lossRLL", 1, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_remap", 2, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_remap_mine", 3, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_remap_invFullAffine", 4, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_remap_mine_fullAffine", 5, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_remap_invFullAffine_initTranform", 6, "ResNet50", "imageNetCaffe2", random_seed, )) results.append(get_result(\ "lossRLL_remap_invFullAffine_initTranform_zeroLocLoss", 7, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_remap_invFullAffine_initTranform_zeroLocLoss_mine", 8, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossCL_invFullAffine_initTranform_zeroLocLoss", 9, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossCL_remap_invFullAffine_initTranform_zeroLocLoss", 10, "ResNet50", "imageNetCaffe2", random_seed )) results.append(get_result(\ "lossRLL_invFullAffine_initTranform_zeroLocLoss", 11, "ResNet50", "imageNetCaffe2", random_seed )) for r in results: print(r)
parserator/main.py
timgates42/parserator
785
145066
<filename>parserator/main.py #!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import from builtins import open import argparse import os import shutil import fileinput import sys import glob import textwrap from lxml import etree import chardet from . import manual_labeling from . import training from . import parser_template from . import data_prep_utils def dispatch(): parser = argparse.ArgumentParser(description="") parser_subparsers = parser.add_subparsers() # Arguments for label command sub_label = parser_subparsers.add_parser('label') sub_label.add_argument(dest='infile', help='input csv filepath for the label task', type=file_type) sub_label.add_argument(dest='outfile', help='output xml filepath for the label task', action=XML) sub_label.add_argument(dest='module', help='parser module name', type=python_module) sub_label.set_defaults(func=label) # Arguments for train command sub_train = parser_subparsers.add_parser('train') sub_train.add_argument(dest='traindata', help='comma separated xml filepaths, or "path/to/traindata/*.xml"', type=training_data) sub_train.add_argument(dest='module', help='parser module name', type=python_module) sub_train.add_argument('--modelfile', dest='model_path', help='location of model file', action=ModelFile, required=False) sub_train.set_defaults(func=train) # Arguments for init command sub_init = parser_subparsers.add_parser('init') sub_init.add_argument(dest='modulename', help='module name for a new parser') sub_init.set_defaults(func=init) if len(sys.argv[1:]) == 0: parser.print_help() parser.exit() args = parser.parse_args() args.func(args) def label(args) : manual_labeling.label(args.module, args.infile, args.outfile, args.xml) def train(args) : training_data = args.traindata module = args.module model_path = args.model_path if model_path is None: model_path = module.__name__ + '/' +module.MODEL_FILE if hasattr(module, 'MODEL_FILES'): msg = """ NOTE: this parser allows for multiple model files You can specify a model with the --modelfile argument Models available:""" print(textwrap.dedent(msg)) for m in module.MODEL_FILES: print(" - %s" % m) print("Since no model was specified, we will train the default model") training.train(module, training_data, model_path) def init(args) : name = args.modulename data = "raw" training = "training" tests = 'tests' dirs_to_mk = [name, data, training, tests] print('\nInitializing directories for %s' %name, sys.stderr) for directory in dirs_to_mk: if not os.path.exists(directory): os.mkdir(directory) print('* %s' %directory, sys.stderr) print('\nGenerating __init__.py', sys.stderr) init_path = name + '/__init__.py' if os.path.exists(init_path): print(' warning: %s already exists' %init_path, sys.stderr) else: with open(init_path, "w") as f: f.write(parser_template.init_template()) print('* %s' %init_path) print('\nGenerating setup.py') if os.path.exists('setup.py'): print(' warning: setup.py already exists', sys.stderr) else: with open('setup.py', 'w') as f: f.write(parser_template.setup_template(name)) print('* setup.py', sys.stderr) print('\nGenerating test file', sys.stderr) token_test_path = tests+'/test_tokenizing.py' if os.path.exists(token_test_path): print(' warning: %s already exists' % token_test_path, sys.stderr) else: with open(token_test_path, 'w') as f: f.write(parser_template.test_tokenize_template(name)) print('* %s' %token_test_path, sys.stderr) class XML(argparse.Action): def __call__(self, parser, namespace, string, option_string): try: with open(string, 'r') as f: tree = etree.parse(f) xml = tree.getroot() except (OSError, IOError): xml = None except etree.XMLSyntaxError as e: if 'Document is empty' not in str(e): raise argparse.ArgumentError(self, "%s does not seem to be a valid xml file" % string) xml = None setattr(namespace, self.dest, string) setattr(namespace, 'xml', xml) def file_type(arg): try: f = open(arg, 'rb') except OSError as e: message = _("can't open '%s': %s") raise ArgumentTypeError(message % (arg, e)) else: detector = chardet.universaldetector.UniversalDetector() for line in f.readlines(): detector.feed(line) if detector.done: break f.close() detector.close() f = open(arg, 'r', encoding=detector.result['encoding']) return f def training_data(arg): all_files = [] for path in arg.split(','): all_files.extend(glob.glob(path)) xml_files = [f for f in all_files if (f.lower().endswith('.xml') and os.path.isfile(f))] if not xml_files: raise argparse.ArgumentTypeError('Please specify one or more xml training files (comma separated) [--trainfile FILE]') training_data = set() for xml_file in xml_files: with open(xml_file, 'r') as f: try: tree = etree.parse(f) except etree.XMLSyntaxError: raise argparse.ArgumentTypeError('%s is not a valid xml file' % (f.name,)) file_xml = tree.getroot() training_data.update(data_prep_utils.TrainingData(file_xml)) if not training_data: raise argparse.ArgumentTypeError("No training data found. Perhaps double check " "your training data filepaths?") msg = """ training model on {num} training examples from {file_list} file(s)""" print(textwrap.dedent(msg.format(num=len(training_data), file_list=xml_files))) return training_data class ModelFile(argparse.Action): def __call__(self, parser, namespace, model_file, option_string): module = namespace.module if hasattr(module, 'MODEL_FILES'): try: model_path = module.__name__ + '/' +module.MODEL_FILES[model_file] except KeyError: msg = """ Invalid --modelfile argument Models available: %s""" raise argparse.ArgumentTypeError(text.dedent(msg) % module.MODEL_FILES) else: raise argparse.ArgumentError(self, 'This parser does not allow for multiple models') setattr(namespace, self.dest, model_path) def python_module(arg): module = __import__(arg) return module
dev/Gems/CloudGemDynamicContent/AWS/resource-manager-code/update.py
brianherrera/lumberyard
1,738
145070
<filename>dev/Gems/CloudGemDynamicContent/AWS/resource-manager-code/update.py # # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # $Revision: #1 $ import content_manifest import dynamic_content_migrator import dynamic_content_settings def before_this_resource_group_updated(hook, deployment_name, **kwargs): dynamic_content_migrator.export_current_table_entries(hook.context, deployment_name) def after_this_resource_group_updated(hook, deployment_name, **kwargs): dynamic_content_migrator.import_table_entries_from_backup(hook.context, deployment_name) if not content_manifest.validate_writable(hook.context, None): # Not raising here - we want to continue and let the user upload after return # Pass None to upload whatever is set in the startup/bootstrap manifest and immediately stage it as PUBLIC staging_args = {} staging_args['StagingStatus'] = 'PUBLIC' auto_upload_name = None resource_group = hook.context.resource_groups.get(dynamic_content_settings.get_default_resource_group()) if resource_group: auto_upload_name = resource_group.get_editor_setting('DynamicContentDefaultManifest') content_manifest.upload_manifest_content(hook.context, auto_upload_name, deployment_name, staging_args) def gather_writable_check_list(hook, check_list, **kwargs): this_path = content_manifest.determine_manifest_path(hook.context, None) check_list.append(this_path)
tests/test_timing.py
ruohoruotsi/amen
324
145088
<reponame>ruohoruotsi/amen #!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import librosa from amen.audio import Audio from amen.utils import example_audio_file from amen.utils import example_mono_audio_file from amen.timing import TimeSlice t = 5 d = 10 dummy_audio = None time_slice = TimeSlice(t, d, dummy_audio) def test_time(): assert time_slice.time == pd.to_timedelta(t, 's') def test_duration(): assert time_slice.duration == pd.to_timedelta(d, 's') def test_units(): time_slice = TimeSlice(t, d, dummy_audio, unit='ms') assert time_slice.time == pd.to_timedelta(t, 'ms') EXAMPLE_FILE = example_audio_file() stereo_audio = Audio(EXAMPLE_FILE) time_slice = TimeSlice(t, d, stereo_audio) EXAMPLE_MONO_FILE = example_mono_audio_file() mono_audio = Audio(EXAMPLE_FILE) def test_get_offsets(): left, right = time_slice._get_offsets(3, 4, stereo_audio.num_channels) assert left == (-1, 3) def test_offset_samples_mono(): res = mono_audio.timings['beats'][0]._offset_samples( 1, 2, (-1, 1), (-1, 1), mono_audio.num_channels ) assert res.shape == (2, 3) def test_offset_samples_stereo(): res = stereo_audio.timings['beats'][0]._offset_samples( 1, 2, (-1, 1), (-1, 1), stereo_audio.num_channels ) assert res.shape == (2, 3) def test_get_samples_shape_both_stereo_and_mono(): def get_samples(audio): beat = audio.timings['beats'][0] start = beat.time.delta * 1e-9 duration = beat.duration.delta * 1e-9 starting_sample, ending_sample = librosa.time_to_samples( [start, start + duration], beat.audio.sample_rate ) samples, left_offset, right_offset = beat.get_samples() left_offsets, right_offsets = beat._get_offsets( starting_sample, ending_sample, beat.audio.num_channels ) duration = beat.duration.delta * 1e-9 starting_sample, ending_sample = librosa.time_to_samples( [0, duration], audio.sample_rate ) initial_length = ending_sample - starting_sample left_offset_length = initial_length - left_offsets[0] + left_offsets[1] right_offset_length = initial_length - right_offsets[0] + right_offsets[1] return samples, left_offset_length, right_offset_length mono_samples, mono_left_offset_length, mono_right_offset_length = get_samples( mono_audio ) assert len(mono_samples[0]) == mono_left_offset_length assert len(mono_samples[1]) == mono_right_offset_length stereo_samples, stereo_left_offset_length, stereo_right_offset_length = get_samples( stereo_audio ) assert len(stereo_samples[0]) == stereo_left_offset_length assert len(stereo_samples[1]) == stereo_right_offset_length def test_get_samples_audio(): def get_samples_audio(audio): beat = audio.timings['beats'][0] samples, left_offset, right_offset = beat.get_samples() start = beat.time.delta * 1e-9 duration = beat.duration.delta * 1e-9 starting_sample, ending_sample = librosa.time_to_samples( [start, start + duration], beat.audio.sample_rate ) left_offsets, right_offsets = beat._get_offsets( starting_sample, ending_sample, beat.audio.num_channels ) start_sample = left_offsets[0] * -1 end_sample = len(samples[0]) - left_offsets[1] reset_samples = samples[0][start_sample:end_sample] original_samples = audio.raw_samples[0, starting_sample:ending_sample] return reset_samples, original_samples mono_reset_samples, mono_original_samples = get_samples_audio(mono_audio) assert np.array_equiv(mono_reset_samples, mono_original_samples) stereo_reset_samples, stereo_original_samples = get_samples_audio(stereo_audio) assert np.array_equiv(stereo_reset_samples, stereo_original_samples)
jasmin/protocols/http/endpoints/send.py
paradiseng/jasmin
750
145091
<reponame>paradiseng/jasmin from datetime import datetime, timedelta import re import json import pickle from twisted.internet import reactor, defer from twisted.web.resource import Resource from twisted.web.server import NOT_DONE_YET from smpp.pdu.constants import priority_flag_value_map from smpp.pdu.smpp_time import parse from smpp.pdu.pdu_types import RegisteredDeliveryReceipt, RegisteredDelivery from jasmin.routing.Routables import RoutableSubmitSm from jasmin.protocols.smpp.configs import SMPPClientConfig from jasmin.protocols.smpp.operations import SMPPOperationFactory from jasmin.protocols.http.errors import UrlArgsValidationError from jasmin.protocols.http.validation import UrlArgsValidator, HttpAPICredentialValidator from jasmin.protocols.http.errors import (HttpApiError, AuthenticationError, ServerError, RouteNotFoundError, ConnectorNotFoundError, ChargingError, ThroughputExceededError, InterceptorNotSetError, InterceptorNotConnectedError, InterceptorRunError) from jasmin.protocols.http.endpoints import hex2bin, authenticate_user def update_submit_sm_pdu(routable, config, config_update_params=None): """Will set pdu parameters from smppclient configuration. Parameters that were locked through the routable.lockPduParam() method will not be updated. config parameter can be the connector config object or just a simple dict""" if config_update_params is None: # Set default config params to get from the config object config_update_params = [ 'protocol_id', 'replace_if_present_flag', 'dest_addr_ton', 'source_addr_npi', 'dest_addr_npi', 'service_type', 'source_addr_ton', 'sm_default_msg_id', ] for param in config_update_params: _pdu = routable.pdu # Force setting param in main pdu if not routable.pduParamIsLocked(param): if isinstance(config, SMPPClientConfig) and hasattr(config, param): _pdu.params[param] = getattr(config, param) elif isinstance(config, dict) and param in config: _pdu.params[param] = config[param] # Force setting param in sub-pdus (multipart use case) while hasattr(_pdu, 'nextPdu'): _pdu = _pdu.nextPdu if not routable.pduParamIsLocked(param): if isinstance(config, SMPPClientConfig) and hasattr(config, param): _pdu.params[param] = getattr(config, param) elif isinstance(config, dict) and param in config: _pdu.params[param] = config[param] return routable class Send(Resource): isleaf = True def __init__(self, HTTPApiConfig, RouterPB, SMPPClientManagerPB, stats, log, interceptorpb_client): Resource.__init__(self) self.SMPPClientManagerPB = SMPPClientManagerPB self.RouterPB = RouterPB self.stats = stats self.log = log self.interceptorpb_client = interceptorpb_client self.config = HTTPApiConfig # opFactory is initiated with a dummy SMPPClientConfig used for building SubmitSm only self.opFactory = SMPPOperationFactory(long_content_max_parts=HTTPApiConfig.long_content_max_parts, long_content_split=HTTPApiConfig.long_content_split) @defer.inlineCallbacks def route_routable(self, updated_request): try: # Do we have a hex-content ? if b'hex-content' not in updated_request.args: # Convert utf8 to GSM 03.38 if updated_request.args[b'coding'][0] == b'0': if isinstance(updated_request.args[b'content'][0], bytes): short_message = updated_request.args[b'content'][0].decode().encode('gsm0338', 'replace') else: short_message = updated_request.args[b'content'][0].encode('gsm0338', 'replace') updated_request.args[b'content'][0] = short_message else: # Otherwise forward it as is short_message = updated_request.args[b'content'][0] else: # Otherwise convert hex to bin short_message = hex2bin(updated_request.args[b'hex-content'][0]) # Authentication user = authenticate_user( updated_request.args[b'username'][0], updated_request.args[b'password'][0], self.RouterPB, self.stats, self.log ) # Update CnxStatus user.getCnxStatus().httpapi['connects_count'] += 1 user.getCnxStatus().httpapi['submit_sm_request_count'] += 1 user.getCnxStatus().httpapi['last_activity_at'] = datetime.now() # Build SubmitSmPDU SubmitSmPDU = self.opFactory.SubmitSM( source_addr=None if b'from' not in updated_request.args else updated_request.args[b'from'][0], destination_addr=updated_request.args[b'to'][0], short_message=short_message, data_coding=int(updated_request.args[b'coding'][0]), custom_tlvs=updated_request.args[b'custom_tlvs'][0]) self.log.debug("Built base SubmitSmPDU: %s", SubmitSmPDU) # Make Credential validation v = HttpAPICredentialValidator('Send', user, updated_request, submit_sm=SubmitSmPDU) v.validate() # Update SubmitSmPDU by default values from user MtMessagingCredential SubmitSmPDU = v.updatePDUWithUserDefaults(SubmitSmPDU) # Prepare for interception then routing routedConnector = None # init routable = RoutableSubmitSm(SubmitSmPDU, user) self.log.debug("Built Routable %s for SubmitSmPDU: %s", routable, SubmitSmPDU) # Should we tag the routable ? tags = [] if b'tags' in updated_request.args: tags = updated_request.args[b'tags'][0].split(b',') for tag in tags: if isinstance(tag, bytes): routable.addTag(tag.decode()) else: routable.addTag(tag) self.log.debug('Tagged routable %s: +%s', routable, tag) # Intercept interceptor = self.RouterPB.getMTInterceptionTable().getInterceptorFor(routable) if interceptor is not None: self.log.debug("RouterPB selected %s interceptor for this SubmitSmPDU", interceptor) if self.interceptorpb_client is None: self.stats.inc('interceptor_error_count') self.log.error("InterceptorPB not set !") raise InterceptorNotSetError('InterceptorPB not set !') if not self.interceptorpb_client.isConnected: self.stats.inc('interceptor_error_count') self.log.error("InterceptorPB not connected !") raise InterceptorNotConnectedError('InterceptorPB not connected !') script = interceptor.getScript() self.log.debug("Interceptor script loaded: %s", script) # Run ! r = yield self.interceptorpb_client.run_script(script, routable) if isinstance(r, dict) and r['http_status'] != 200: self.stats.inc('interceptor_error_count') self.log.error('Interceptor script returned %s http_status error.', r['http_status']) raise InterceptorRunError( code=r['http_status'], message='Interception specific error code %s' % r['http_status'] ) elif isinstance(r, (str, bytes)): self.stats.inc('interceptor_count') routable = pickle.loads(r) else: self.stats.inc('interceptor_error_count') self.log.error('Failed running interception script, got the following return: %s', r) raise InterceptorRunError(message='Failed running interception script, check log for details') # Get the route route = self.RouterPB.getMTRoutingTable().getRouteFor(routable) if route is None: self.stats.inc('route_error_count') self.log.error("No route matched from user %s for SubmitSmPDU: %s", user, routable.pdu) raise RouteNotFoundError("No route found") # Get connector from selected route self.log.debug("RouterPB selected %s route for this SubmitSmPDU", route) routedConnector = route.getConnector() # Is it a failover route ? then check for a bound connector, otherwise don't route # The failover route requires at least one connector to be up, no message enqueuing will # occur otherwise. if repr(route) == 'FailoverMTRoute': self.log.debug('Selected route is a failover, will ensure connector is bound:') while True: c = self.SMPPClientManagerPB.perspective_connector_details(routedConnector.cid) if c: self.log.debug('Connector [%s] is: %s', routedConnector.cid, c['session_state']) else: self.log.debug('Connector [%s] is not found', routedConnector.cid) if c and c['session_state'][:6] == 'BOUND_': # Choose this connector break else: # Check next connector, None if no more connectors are available routedConnector = route.getConnector() if routedConnector is None: break if routedConnector is None: self.stats.inc('route_error_count') self.log.error("Failover route has no bound connector to handle SubmitSmPDU: %s", routable.pdu) raise ConnectorNotFoundError("Failover route has no bound connectors") # Re-update SubmitSmPDU with parameters from the route's connector connector_config = self.SMPPClientManagerPB.perspective_connector_config(routedConnector.cid) if connector_config: connector_config = pickle.loads(connector_config) routable = update_submit_sm_pdu(routable=routable, config=connector_config) # Set a placeholder for any parameter update to be applied on the pdu(s) param_updates = {} # Set priority priority = 0 if b'priority' in updated_request.args: priority = int(updated_request.args[b'priority'][0]) param_updates['priority_flag'] = priority_flag_value_map[priority] self.log.debug("SubmitSmPDU priority is set to %s", priority) # Set schedule_delivery_time if b'sdt' in updated_request.args: param_updates['schedule_delivery_time'] = parse(updated_request.args[b'sdt'][0]) self.log.debug( "SubmitSmPDU schedule_delivery_time is set to %s (%s)", routable.pdu.params['schedule_delivery_time'], updated_request.args[b'sdt'][0]) # Set validity_period if b'validity-period' in updated_request.args: delta = timedelta(minutes=int(updated_request.args[b'validity-period'][0])) param_updates['validity_period'] = datetime.today() + delta self.log.debug( "SubmitSmPDU validity_period is set to %s (+%s minutes)", routable.pdu.params['validity_period'], updated_request.args[b'validity-period'][0]) # Got any updates to apply on pdu(s) ? if len(param_updates) > 0: routable = update_submit_sm_pdu(routable=routable, config=param_updates, config_update_params=list(param_updates)) # Set DLR bit mask on the last pdu _last_pdu = routable.pdu while True: if hasattr(_last_pdu, 'nextPdu'): _last_pdu = _last_pdu.nextPdu else: break # DLR setting is clearly described in #107 _last_pdu.params['registered_delivery'] = RegisteredDelivery( RegisteredDeliveryReceipt.NO_SMSC_DELIVERY_RECEIPT_REQUESTED) if updated_request.args[b'dlr'][0] == b'yes': _last_pdu.params['registered_delivery'] = RegisteredDelivery( RegisteredDeliveryReceipt.SMSC_DELIVERY_RECEIPT_REQUESTED) self.log.debug( "SubmitSmPDU registered_delivery is set to %s", str(_last_pdu.params['registered_delivery'])) dlr_level = int(updated_request.args[b'dlr-level'][0]) if b'dlr-url' in updated_request.args: dlr_url = updated_request.args[b'dlr-url'][0] else: dlr_url = None if updated_request.args[b'dlr-level'][0] == b'1': dlr_level_text = 'SMS-C' elif updated_request.args[b'dlr-level'][0] == b'2': dlr_level_text = 'Terminal' else: dlr_level_text = 'All' dlr_method = updated_request.args[b'dlr-method'][0] else: dlr_url = None dlr_level = 0 dlr_level_text = 'No' dlr_method = None # QoS throttling if (user.mt_credential.getQuota('http_throughput') and user.mt_credential.getQuota('http_throughput') >= 0) and user.getCnxStatus().httpapi[ 'qos_last_submit_sm_at'] != 0: qos_throughput_second = 1 / float(user.mt_credential.getQuota('http_throughput')) qos_throughput_ysecond_td = timedelta(microseconds=qos_throughput_second * 1000000) qos_delay = datetime.now() - user.getCnxStatus().httpapi['qos_last_submit_sm_at'] if qos_delay < qos_throughput_ysecond_td: self.stats.inc('throughput_error_count') self.log.error( "QoS: submit_sm_event is faster (%s) than fixed throughput (%s), user:%s, rejecting message.", qos_delay, qos_throughput_ysecond_td, user) raise ThroughputExceededError("User throughput exceeded") user.getCnxStatus().httpapi['qos_last_submit_sm_at'] = datetime.now() # Get number of PDUs to be sent (for billing purpose) _pdu = routable.pdu submit_sm_count = 1 while hasattr(_pdu, 'nextPdu'): _pdu = _pdu.nextPdu submit_sm_count += 1 # Pre-sending submit_sm: Billing processing bill = route.getBillFor(user) self.log.debug("SubmitSmBill [bid:%s] [ttlamounts:%s] generated for this SubmitSmPDU (x%s)", bill.bid, bill.getTotalAmounts(), submit_sm_count) charging_requirements = [] u_balance = user.mt_credential.getQuota('balance') u_subsm_count = user.mt_credential.getQuota('submit_sm_count') if u_balance is not None and bill.getTotalAmounts() > 0: # Ensure user have enough balance to pay submit_sm and submit_sm_resp charging_requirements.append({ 'condition': bill.getTotalAmounts() * submit_sm_count <= u_balance, 'error_message': 'Not enough balance (%s) for charging: %s' % ( u_balance, bill.getTotalAmounts())}) if u_subsm_count is not None: # Ensure user have enough submit_sm_count to to cover # the bill action (decrement_submit_sm_count) charging_requirements.append({ 'condition': bill.getAction('decrement_submit_sm_count') * submit_sm_count <= u_subsm_count, 'error_message': 'Not enough submit_sm_count (%s) for charging: %s' % ( u_subsm_count, bill.getAction('decrement_submit_sm_count'))}) if self.RouterPB.chargeUserForSubmitSms(user, bill, submit_sm_count, charging_requirements) is None: self.stats.inc('charging_error_count') self.log.error('Charging user %s failed, [bid:%s] [ttlamounts:%s] SubmitSmPDU (x%s)', user, bill.bid, bill.getTotalAmounts(), submit_sm_count) raise ChargingError('Cannot charge submit_sm, check RouterPB log file for details') ######################################################## # Send SubmitSmPDU through smpp client manager PB server self.log.debug("Connector '%s' is set to be a route for this SubmitSmPDU", routedConnector.cid) c = self.SMPPClientManagerPB.perspective_submit_sm( uid=user.uid, cid=routedConnector.cid, SubmitSmPDU=routable.pdu, submit_sm_bill=bill, priority=priority, pickled=False, dlr_url=dlr_url, dlr_level=dlr_level, dlr_method=dlr_method, dlr_connector=routedConnector.cid) # Build final response if not c.result: self.stats.inc('server_error_count') self.log.error('Failed to send SubmitSmPDU to [cid:%s]', routedConnector.cid) raise ServerError('Cannot send submit_sm, check SMPPClientManagerPB log file for details') else: self.stats.inc('success_count') self.stats.set('last_success_at', datetime.now()) self.log.debug('SubmitSmPDU sent to [cid:%s], result = %s', routedConnector.cid, c.result) response = {'return': c.result, 'status': 200} except HttpApiError as e: self.log.error("Error: %s", e) response = {'return': e.message, 'status': e.code} except Exception as e: self.log.error("Error: %s", e) response = {'return': "Unknown error: %s" % e, 'status': 500} raise finally: self.log.debug("Returning %s to %s.", response, updated_request.getClientIP()) updated_request.setResponseCode(response['status']) # Default return _return = 'Error "%s"' % response['return'] # Success return if response['status'] == 200 and routedConnector is not None: # Do not log text for privacy reasons # Added in #691 if self.config.log_privacy: logged_content = '** %s byte content **' % len(short_message) else: if isinstance(short_message, str): short_message = short_message.encode() logged_content = '%r' % re.sub(rb'[^\x20-\x7E]+', b'.', short_message) self.log.info( 'SMS-MT [uid:%s] [cid:%s] [msgid:%s] [prio:%s] [dlr:%s] [from:%s] [to:%s] [content:%s]', user.uid, routedConnector.cid, response['return'], priority, dlr_level_text, routable.pdu.params['source_addr'], updated_request.args[b'to'][0], logged_content) _return = 'Success "%s"' % response['return'] updated_request.write(_return.encode()) updated_request.finish() def render_POST(self, request): """ /send request processing Note: This method MUST behave exactly like jasmin.protocols.smpp.factory.SMPPServerFactory.submit_sm_event """ self.log.debug("Rendering /send response with args: %s from %s", request.args, request.getClientIP()) request.responseHeaders.addRawHeader(b"content-type", b"text/plain") response = {'return': None, 'status': 200} self.stats.inc('request_count') self.stats.set('last_request_at', datetime.now()) # updated_request will be filled with default values where request will never get modified # updated_request is used for sending the SMS, request is just kept as an original request object updated_request = request try: # Validation (must have almost the same params as /rate service) fields = {b'to': {'optional': False, 'pattern': re.compile(rb'^\+{0,1}\d+$')}, b'from': {'optional': True}, b'coding': {'optional': True, 'pattern': re.compile(rb'^(0|1|2|3|4|5|6|7|8|9|10|13|14){1}$')}, b'username': {'optional': False, 'pattern': re.compile(rb'^.{1,16}$')}, b'password': {'optional': False, 'pattern': re.compile(rb'^.{1,16}$')}, # Priority validation pattern can be validated/filtered further more # through HttpAPICredentialValidator b'priority': {'optional': True, 'pattern': re.compile(rb'^[0-3]$')}, b'sdt': {'optional': True, 'pattern': re.compile(rb'^\d{2}\d{2}\d{2}\d{2}\d{2}\d{2}\d{1}\d{2}(\+|-|R)$')}, # Validity period validation pattern can be validated/filtered further more # through HttpAPICredentialValidator b'validity-period': {'optional': True, 'pattern': re.compile(rb'^\d+$')}, b'dlr': {'optional': False, 'pattern': re.compile(rb'^(yes|no)$')}, b'dlr-url': {'optional': True, 'pattern': re.compile(rb'^(http|https)\://.*$')}, # DLR Level validation pattern can be validated/filtered further more # through HttpAPICredentialValidator b'dlr-level' : {'optional': True, 'pattern': re.compile(rb'^[1-3]$')}, b'dlr-method' : {'optional': True, 'pattern': re.compile(rb'^(get|post)$', re.IGNORECASE)}, b'tags' : {'optional': True, 'pattern': re.compile(rb'^([-a-zA-Z0-9,])*$')}, b'content' : {'optional': True}, b'hex-content' : {'optional': True}, b'custom_tlvs' : {'optional': True}} if updated_request.getHeader(b'content-type') == b'application/json': json_body = updated_request.content.read() json_data = json.loads(json_body) for key, value in json_data.items(): # Make the values look like they came from form encoding all surrounded by [ ] if isinstance(value, str): value = value.encode() if isinstance(key, str): key = key.encode() updated_request.args[key] = [value] # If no custom TLVs present, defaujlt to an [] which will be passed down to SubmitSM if b'custom_tlvs' not in updated_request.args: updated_request.args[b'custom_tlvs'] = [[]] # Default coding is 0 when not provided if b'coding' not in updated_request.args: updated_request.args[b'coding'] = [b'0'] # Set default for undefined updated_request.arguments if b'dlr-url' in updated_request.args or b'dlr-level' in updated_request.args: updated_request.args[b'dlr'] = [b'yes'] if b'dlr' not in updated_request.args: # Setting DLR updated_request to 'no' updated_request.args[b'dlr'] = [b'no'] # Set default values if updated_request.args[b'dlr'][0] == b'yes': if b'dlr-level' not in updated_request.args: # If DLR is requested and no dlr-level were provided, assume minimum level (1) updated_request.args[b'dlr-level'] = [1] if b'dlr-method' not in updated_request.args: # If DLR is requested and no dlr-method were provided, assume default (POST) updated_request.args[b'dlr-method'] = [b'POST'] # DLR method must be uppercase if b'dlr-method' in updated_request.args: updated_request.args[b'dlr-method'][0] = updated_request.args[b'dlr-method'][0].upper() # Make validation v = UrlArgsValidator(updated_request, fields) v.validate() # Check if have content --OR-- hex-content # @TODO: make this inside UrlArgsValidator ! if b'content' not in request.args and b'hex-content' not in request.args: raise UrlArgsValidationError("content or hex-content not present.") elif b'content' in request.args and b'hex-content' in request.args: raise UrlArgsValidationError("content and hex-content cannot be used both in same request.") # Continue routing in a separate thread reactor.callFromThread(self.route_routable, updated_request=updated_request) except HttpApiError as e: self.log.error("Error: %s", e) response = {'return': e.message, 'status': e.code} self.log.debug("Returning %s to %s.", response, updated_request.getClientIP()) updated_request.setResponseCode(response['status']) return b'Error "%s"' % (response['return'] if isinstance(response['return'], bytes) else response['return'].encode()) except Exception as e: self.log.error("Error: %s", e) response = {'return': "Unknown error: %s" % e, 'status': 500} self.log.debug("Returning %s to %s.", response, updated_request.getClientIP()) updated_request.setResponseCode(response['status']) return b'Error "%s"' % response['return'].encode() else: return NOT_DONE_YET def render_GET(self, request): """Allow GET /send for backward compatibility""" return self.render_POST(request)
tests/test_util.py
ThePrez/gunicorn
6,851
145115
<filename>tests/test_util.py<gh_stars>1000+ # -*- coding: utf-8 - # # This file is part of gunicorn released under the MIT license. # See the NOTICE for more information. import os import pytest from gunicorn import util from gunicorn.errors import AppImportError from urllib.parse import SplitResult @pytest.mark.parametrize('test_input, expected', [ ('unix://var/run/test.sock', 'var/run/test.sock'), ('unix:/var/run/test.sock', '/var/run/test.sock'), ('tcp://localhost', ('localhost', 8000)), ('tcp://localhost:5000', ('localhost', 5000)), ('', ('0.0.0.0', 8000)), ('[::1]:8000', ('::1', 8000)), ('[::1]:5000', ('::1', 5000)), ('[::1]', ('::1', 8000)), ('localhost:8000', ('localhost', 8000)), ('127.0.0.1:8000', ('127.0.0.1', 8000)), ('localhost', ('localhost', 8000)), ('fd://33', 33), ]) def test_parse_address(test_input, expected): assert util.parse_address(test_input) == expected def test_parse_address_invalid(): with pytest.raises(RuntimeError) as exc_info: util.parse_address('127.0.0.1:test') assert "'test' is not a valid port number." in str(exc_info.value) def test_parse_fd_invalid(): with pytest.raises(RuntimeError) as exc_info: util.parse_address('fd://asd') assert "'asd' is not a valid file descriptor." in str(exc_info.value) def test_http_date(): assert util.http_date(1508607753.740316) == 'Sat, 21 Oct 2017 17:42:33 GMT' @pytest.mark.parametrize('test_input, expected', [ ('fc00:db20:35b:7399::5', True), ('fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b:fdf8:f53e:61e4::18:7777:1313', False), ('fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b', True), ('1200:0000:AB00:1234:O000:2552:7777:1313', False), ]) def test_is_ipv6(test_input, expected): assert util.is_ipv6(test_input) == expected def test_warn(capsys): util.warn('test warn') _, err = capsys.readouterr() assert '!!! WARNING: test warn' in err @pytest.mark.parametrize( "value", [ "support", "support:app", "support:create_app()", "support:create_app('Gunicorn', 3)", "support:create_app(count=3)", ], ) def test_import_app_good(value): assert util.import_app(value) @pytest.mark.parametrize( ("value", "exc_type", "msg"), [ ("a:app", ImportError, "No module"), ("support:create_app(", AppImportError, "Failed to parse"), ("support:create.app()", AppImportError, "Function reference"), ("support:create_app(Gunicorn)", AppImportError, "literal values"), ("support:create.app", AppImportError, "attribute name"), ("support:wrong_app", AppImportError, "find attribute"), ("support:error_factory(1)", AppImportError, "error_factory() takes"), ("support:error_factory()", TypeError, "inner"), ("support:none_app", AppImportError, "find application object"), ("support:HOST", AppImportError, "callable"), ], ) def test_import_app_bad(value, exc_type, msg): with pytest.raises(exc_type) as exc_info: util.import_app(value) assert msg in str(exc_info.value) def test_import_app_py_ext(monkeypatch): monkeypatch.chdir(os.path.dirname(__file__)) with pytest.raises(ImportError) as exc_info: util.import_app("support.py") assert "did you mean" in str(exc_info.value) def test_to_bytestring(): assert util.to_bytestring('test_str', 'ascii') == b'test_str' assert util.to_bytestring('test_str®') == b'test_str\xc2\xae' assert util.to_bytestring(b'byte_test_str') == b'byte_test_str' with pytest.raises(TypeError) as exc_info: util.to_bytestring(100) msg = '100 is not a string' assert msg in str(exc_info.value) @pytest.mark.parametrize('test_input, expected', [ ('https://example.org/a/b?c=1#d', SplitResult(scheme='https', netloc='example.org', path='/a/b', query='c=1', fragment='d')), ('a/b?c=1#d', SplitResult(scheme='', netloc='', path='a/b', query='c=1', fragment='d')), ('/a/b?c=1#d', SplitResult(scheme='', netloc='', path='/a/b', query='c=1', fragment='d')), ('//a/b?c=1#d', SplitResult(scheme='', netloc='', path='//a/b', query='c=1', fragment='d')), ('///a/b?c=1#d', SplitResult(scheme='', netloc='', path='///a/b', query='c=1', fragment='d')), ]) def test_split_request_uri(test_input, expected): assert util.split_request_uri(test_input) == expected
datalad/core/distributed/tests/test_push.py
DisasterMo/datalad
298
145117
# -*- coding: utf-8 -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test push """ import os import logging from datalad.distribution.dataset import Dataset from datalad.support.exceptions import ( IncompleteResultsError, InsufficientArgumentsError, ) from datalad.tests.utils import ( assert_false, assert_in, assert_in_results, assert_not_in, assert_not_in_results, assert_raises, assert_repo_status, assert_result_count, assert_status, DEFAULT_BRANCH, DEFAULT_REMOTE, eq_, known_failure_githubci_osx, known_failure_githubci_win, neq_, ok_, ok_file_has_content, serve_path_via_http, skip_if_adjusted_branch, skip_if_on_windows, skip_ssh, slow, swallow_logs, with_tempfile, with_tree, SkipTest, ) from datalad.utils import ( Path, chpwd, path_startswith, swallow_outputs, ) from datalad.support.gitrepo import GitRepo from datalad.support.annexrepo import AnnexRepo from datalad.core.distributed.clone import Clone from datalad.core.distributed.push import Push from datalad.support.network import get_local_file_url DEFAULT_REFSPEC = "refs/heads/{0}:refs/heads/{0}".format(DEFAULT_BRANCH) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_invalid_call(origin, tdir): ds = Dataset(origin).create() # no target assert_status('impossible', ds.push(on_failure='ignore')) # no dataset with chpwd(tdir): assert_raises(InsufficientArgumentsError, Push.__call__) # dataset, but outside path assert_raises(IncompleteResultsError, ds.push, path=tdir) # given a path constraint that doesn't match anything, will cause # nothing to be done assert_status('notneeded', ds.push(path=ds.pathobj / 'nothere')) # unavailable subdataset dummy_sub = ds.create('sub') dummy_sub.uninstall() assert_in('sub', ds.subdatasets(fulfilled=False, result_xfm='relpaths')) # now an explicit call to publish the unavailable subdataset assert_raises(ValueError, ds.push, 'sub') target = mk_push_target(ds, 'target', tdir, annex=True) # revision that doesn't exist assert_raises( ValueError, ds.push, to='target', since='09320957509720437523') # If a publish() user accidentally passes since='', which push() spells as # since='^', the call is aborted. assert_raises( ValueError, ds.push, to='target', since='') def mk_push_target(ds, name, path, annex=True, bare=True): # life could be simple, but nothing is simple on windows #src.create_sibling(dst_path, name='target') if annex: if bare: target = GitRepo(path=path, bare=True, create=True) # cannot use call_annex() target.call_git(['annex', 'init']) else: target = AnnexRepo(path, init=True, create=True) if not target.is_managed_branch(): # for managed branches we need more fireworks->below target.config.set( 'receive.denyCurrentBranch', 'updateInstead', where='local') else: target = GitRepo(path=path, bare=bare, create=True) ds.siblings('add', name=name, url=path, result_renderer=None) if annex and not bare and target.is_managed_branch(): # maximum complication # the target repo already has a commit that is unrelated # to the source repo, because it has built a reference # commit for the managed branch. # the only sane approach is to let git-annex establish a shared # history if AnnexRepo.git_annex_version > "8.20210631": ds.repo.call_annex(['sync', '--allow-unrelated-histories']) else: ds.repo.call_annex(['sync']) ds.repo.call_annex(['sync', '--cleanup']) return target @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def check_push(annex, src_path, dst_path): # prepare src src = Dataset(src_path).create(annex=annex) src_repo = src.repo # push should not add branches to the local dataset orig_branches = src_repo.get_branches() assert_not_in('synced/' + DEFAULT_BRANCH, orig_branches) res = src.push(on_failure='ignore') assert_result_count(res, 1) assert_in_results( res, status='impossible', message='No push target given, and none could be auto-detected, ' 'please specify via --to') eq_(orig_branches, src_repo.get_branches()) # target sibling target = mk_push_target(src, 'target', dst_path, annex=annex) eq_(orig_branches, src_repo.get_branches()) res = src.push(to="target") eq_(orig_branches, src_repo.get_branches()) assert_result_count(res, 2 if annex else 1) assert_in_results( res, action='publish', status='ok', target='target', refspec=DEFAULT_REFSPEC, operations=['new-branch']) assert_repo_status(src_repo, annex=annex) eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) # configure a default merge/upstream target src.config.set('branch.{}.remote'.format(DEFAULT_BRANCH), 'target', where='local') src.config.set('branch.{}.merge'.format(DEFAULT_BRANCH), DEFAULT_BRANCH, where='local') # don't fail when doing it again, no explicit target specification # needed anymore res = src.push() eq_(orig_branches, src_repo.get_branches()) # and nothing is pushed assert_status('notneeded', res) assert_repo_status(src_repo, annex=annex) eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) # some modification: (src.pathobj / 'test_mod_file').write_text("Some additional stuff.") src.save(to_git=True, message="Modified.") (src.pathobj / 'test_mod_annex_file').write_text("Heavy stuff.") src.save(to_git=not annex, message="Modified again.") assert_repo_status(src_repo, annex=annex) # we could say since='HEAD~2' to make things fast, or we are lazy # and say since='^' to indicate the state of the tracking remote # which is the same, because we made to commits since the last push. res = src.push(to='target', since="^", jobs=2) assert_in_results( res, action='publish', status='ok', target='target', refspec=DEFAULT_REFSPEC, # we get to see what happened operations=['fast-forward']) if annex: # we got to see the copy result for the annexed files assert_in_results( res, action='copy', status='ok', path=str(src.pathobj / 'test_mod_annex_file')) # we published, so we can drop and reobtain ok_(src_repo.file_has_content('test_mod_annex_file')) src_repo.drop('test_mod_annex_file') ok_(not src_repo.file_has_content('test_mod_annex_file')) src_repo.get('test_mod_annex_file') ok_(src_repo.file_has_content('test_mod_annex_file')) ok_file_has_content( src_repo.pathobj / 'test_mod_annex_file', 'Heavy stuff.') eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) if not (annex and src_repo.is_managed_branch()): # the following doesn't make sense in managed branches, because # a commit that could be amended is no longer the last commit # of a branch after a sync has happened (which did happen # during the last push above # amend and change commit msg in order to test for force push: src_repo.commit("amended", options=['--amend']) # push should be rejected (non-fast-forward): res = src.push(to='target', since='HEAD~2', on_failure='ignore') # fails before even touching the annex branch assert_in_results( res, action='publish', status='error', target='target', refspec=DEFAULT_REFSPEC, operations=['rejected', 'error']) # push with force=True works: res = src.push(to='target', since='HEAD~2', force='gitpush') assert_in_results( res, action='publish', status='ok', target='target', refspec=DEFAULT_REFSPEC, operations=['forced-update']) eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) # we do not have more branches than we had in the beginning # in particular no 'synced/<default branch>' eq_(orig_branches, src_repo.get_branches()) def test_push(): yield check_push, False yield check_push, True def check_datasets_order(res, order='bottom-up'): """Check that all type=dataset records not violating the expected order it is somewhat weak test, i.e. records could be produced so we do not detect that order is violated, e.g. a/b c/d would satisfy either although they might be neither depth nor breadth wise. But this test would allow to catch obvious violations like a, a/b, a """ prev = None for r in res: if r.get('type') != 'dataset': continue if prev and r['path'] != prev: if order == 'bottom-up': assert_false(path_startswith(r['path'], prev)) elif order == 'top-down': assert_false(path_startswith(prev, r['path'])) else: raise ValueError(order) prev = r['path'] @slow # 33sec on Yarik's laptop @with_tempfile @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True, suffix='sub') @with_tempfile(mkdir=True, suffix='subnoannex') @with_tempfile(mkdir=True, suffix='subsub') def test_push_recursive( origin_path, src_path, dst_top, dst_sub, dst_subnoannex, dst_subsub): # dataset with two submodules and one subsubmodule origin = Dataset(origin_path).create() origin_subm1 = origin.create('sub m') origin_subm1.create('subsub m') origin.create('subm noannex', annex=False) origin.save() assert_repo_status(origin.path) # prepare src as a fresh clone with all subdatasets checkout out recursively # running on a clone should make the test scenario more different than # test_push(), even for the pieces that should be identical top = Clone.__call__(source=origin.path, path=src_path) subs = top.get('.', recursive=True, get_data=False, result_xfm='datasets') # order for '.' should not be relied upon, so sort by path sub, subsub, subnoannex = sorted(subs, key=lambda ds: ds.path) target_top = mk_push_target(top, 'target', dst_top, annex=True) # subdatasets have no remote yet, so recursive publishing should fail: res = top.push(to="target", recursive=True, on_failure='ignore') check_datasets_order(res) assert_in_results( res, path=top.path, type='dataset', refspec=DEFAULT_REFSPEC, operations=['new-branch'], action='publish', status='ok', target='target') for d in (sub, subsub, subnoannex): assert_in_results( res, status='error', type='dataset', path=d.path, message=("Unknown target sibling '%s'.", 'target')) # now fix that and set up targets for the submodules target_sub = mk_push_target(sub, 'target', dst_sub, annex=True) target_subnoannex = mk_push_target( subnoannex, 'target', dst_subnoannex, annex=False) target_subsub = mk_push_target(subsub, 'target', dst_subsub, annex=True) # and same push call as above res = top.push(to="target", recursive=True) check_datasets_order(res) # topds skipped assert_in_results( res, path=top.path, type='dataset', action='publish', status='notneeded', target='target') # the rest pushed for d in (sub, subsub, subnoannex): assert_in_results( res, status='ok', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # all corresponding branches match across all datasets for s, d in zip((top, sub, subnoannex, subsub), (target_top, target_sub, target_subnoannex, target_subsub)): eq_(list(s.repo.get_branch_commits_(DEFAULT_BRANCH)), list(d.get_branch_commits_(DEFAULT_BRANCH))) if s != subnoannex: eq_(list(s.repo.get_branch_commits_("git-annex")), list(d.get_branch_commits_("git-annex"))) # rerun should not result in further pushes of the default branch res = top.push(to="target", recursive=True) check_datasets_order(res) assert_not_in_results( res, status='ok', refspec=DEFAULT_REFSPEC) assert_in_results( res, status='notneeded', refspec=DEFAULT_REFSPEC) # now annex a file in subsub test_copy_file = subsub.pathobj / 'test_mod_annex_file' test_copy_file.write_text("Heavy stuff.") # save all the way up assert_status( ('ok', 'notneeded'), top.save(message='subsub got something', recursive=True)) assert_repo_status(top.path) # publish straight up, should be smart by default res = top.push(to="target", recursive=True) check_datasets_order(res) # we see 3 out of 4 datasets pushed (sub noannex was left unchanged) for d in (top, sub, subsub): assert_in_results( res, status='ok', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # file content copied too assert_in_results( res, action='copy', status='ok', path=str(test_copy_file)) # verify it is accessible, drop and bring back assert_status('ok', top.drop(str(test_copy_file))) ok_(not subsub.repo.file_has_content('test_mod_annex_file')) top.get(test_copy_file) ok_file_has_content(test_copy_file, 'Heavy stuff.') # make two modification (sub.pathobj / 'test_mod_annex_file').write_text('annex') (subnoannex.pathobj / 'test_mod_file').write_text('git') # save separately top.save(sub.pathobj, message='annexadd', recursive=True) top.save(subnoannex.pathobj, message='gitadd', recursive=True) # now only publish the latter one res = top.push(to="target", since=DEFAULT_BRANCH + '~1', recursive=True) # nothing copied, no reports on the other modification assert_not_in_results(res, action='copy') assert_not_in_results(res, path=sub.path) for d in (top, subnoannex): assert_in_results( res, status='ok', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # an unconditional push should now pick up the remaining changes res = top.push(to="target", recursive=True) assert_in_results( res, action='copy', status='ok', path=str(sub.pathobj / 'test_mod_annex_file')) assert_in_results( res, status='ok', type='dataset', path=sub.path, refspec=DEFAULT_REFSPEC) for d in (top, subnoannex, subsub): assert_in_results( res, status='notneeded', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # if noannex target gets some annex, we still should not fail to push target_subnoannex.call_git(['annex', 'init']) # just to ensure that we do need something to push (subnoannex.pathobj / "newfile").write_text("content") subnoannex.save() res = subnoannex.push(to="target") assert_in_results(res, status='ok', type='dataset') @slow # 12sec on Yarik's laptop @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_push_subds_no_recursion(src_path, dst_top, dst_sub, dst_subsub): # dataset with one submodule and one subsubmodule top = Dataset(src_path).create() sub = top.create('sub m') test_file = sub.pathobj / 'subdir' / 'test_file' test_file.parent.mkdir() test_file.write_text('some') subsub = sub.create(sub.pathobj / 'subdir' / 'subsub m') top.save(recursive=True) assert_repo_status(top.path) target_top = mk_push_target(top, 'target', dst_top, annex=True) target_sub = mk_push_target(sub, 'target', dst_sub, annex=True) target_subsub = mk_push_target(subsub, 'target', dst_subsub, annex=True) # now publish, but NO recursion, instead give the parent dir of # both a subdataset and a file in the middle subdataset res = top.push( to='target', # give relative to top dataset to elevate the difficulty a little path=str(test_file.relative_to(top.pathobj).parent)) assert_status('ok', res) assert_in_results(res, action='publish', type='dataset', path=top.path) assert_in_results(res, action='publish', type='dataset', path=sub.path) assert_in_results(res, action='copy', type='file', path=str(test_file)) # the lowest-level subdataset isn't touched assert_not_in_results( res, action='publish', type='dataset', path=subsub.path) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_force_checkdatapresent(srcpath, dstpath): src = Dataset(srcpath).create() target = mk_push_target(src, 'target', dstpath, annex=True, bare=True) (src.pathobj / 'test_mod_annex_file').write_text("Heavy stuff.") src.save(to_git=False, message="New annex file") assert_repo_status(src.path, annex=True) whereis_prior = src.repo.whereis(files=['test_mod_annex_file'])[0] res = src.push(to='target', data='nothing') # nothing reported to be copied assert_not_in_results(res, action='copy') # we got the git-push nevertheless eq_(src.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) # nothing moved eq_(whereis_prior, src.repo.whereis(files=['test_mod_annex_file'])[0]) # now a push without forced no-transfer # we do not give since, so the non-transfered file is picked up # and transferred res = src.push(to='target', force=None) # no branch change, done before assert_in_results(res, action='publish', status='notneeded', refspec=DEFAULT_REFSPEC) # but availability update assert_in_results(res, action='publish', status='ok', refspec='refs/heads/git-annex:refs/heads/git-annex') assert_in_results(res, status='ok', path=str(src.pathobj / 'test_mod_annex_file'), action='copy') # whereis info reflects the change ok_(len(whereis_prior) < len( src.repo.whereis(files=['test_mod_annex_file'])[0])) # do it yet again will do nothing, because all is up-to-date assert_status('notneeded', src.push(to='target', force=None)) # an explicit reference point doesn't change that assert_status('notneeded', src.push(to='target', force=None, since='HEAD~1')) # now force data transfer res = src.push(to='target', force='checkdatapresent') # no branch change, done before assert_in_results(res, action='publish', status='notneeded', refspec=DEFAULT_REFSPEC) # no availability update assert_in_results(res, action='publish', status='notneeded', refspec='refs/heads/git-annex:refs/heads/git-annex') # but data transfer assert_in_results(res, status='ok', path=str(src.pathobj / 'test_mod_annex_file'), action='copy') # force data transfer, but data isn't available src.repo.drop('test_mod_annex_file') res = src.push(to='target', path='.', force='checkdatapresent', on_failure='ignore') assert_in_results(res, status='impossible', path=str(src.pathobj / 'test_mod_annex_file'), action='copy', message='Slated for transport, but no content present') @skip_if_on_windows # https://github.com/datalad/datalad/issues/4278 @with_tempfile(mkdir=True) @with_tree(tree={'ria-layout-version': '1\n'}) def test_ria_push(srcpath, dstpath): # complex test involving a git remote, a special remote, and a # publication dependency src = Dataset(srcpath).create() testfile = src.pathobj / 'test_mod_annex_file' testfile.write_text("Heavy stuff.") src.save() assert_status( 'ok', src.create_sibling_ria( "ria+{}".format(get_local_file_url(dstpath, compatibility='git')), "datastore", new_store_ok=True)) res = src.push(to='datastore') assert_in_results( res, action='publish', target='datastore', status='ok', refspec=DEFAULT_REFSPEC) assert_in_results( res, action='publish', target='datastore', status='ok', refspec='refs/heads/git-annex:refs/heads/git-annex') assert_in_results( res, action='copy', target='datastore-storage', status='ok', path=str(testfile)) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_gh1426(origin_path, target_path): # set up a pair of repos, one the published copy of the other origin = Dataset(origin_path).create() target = mk_push_target( origin, 'target', target_path, annex=True, bare=False) origin.push(to='target') assert_repo_status(origin.path) assert_repo_status(target.path) eq_(origin.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) # gist of #1426 is that a newly added subdataset does not cause the # superdataset to get published origin.create('sub') assert_repo_status(origin.path) neq_(origin.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) # now push res = origin.push(to='target') assert_result_count( res, 1, status='ok', type='dataset', path=origin.path, action='publish', target='target', operations=['fast-forward']) eq_(origin.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) @skip_if_adjusted_branch # gh-4075 @skip_if_on_windows # create_sibling incompatible with win servers @skip_ssh @with_tree(tree={'1': '123'}) @with_tempfile(mkdir=True) @serve_path_via_http def test_publish_target_url(src, desttop, desturl): # https://github.com/datalad/datalad/issues/1762 ds = Dataset(src).create(force=True) ds.save('1') ds.create_sibling('ssh://datalad-test:%s/subdir' % desttop, name='target', target_url=desturl + 'subdir/.git') results = ds.push(to='target') assert results ok_file_has_content(Path(desttop, 'subdir', '1'), '123') @with_tempfile(mkdir=True) @with_tempfile() @with_tempfile() def test_gh1763(src, target1, target2): # this test is very similar to test_publish_depends, but more # comprehensible, and directly tests issue 1763 src = Dataset(src).create(force=True) target1 = mk_push_target(src, 'target1', target1, bare=False) target2 = mk_push_target(src, 'target2', target2, bare=False) src.siblings('configure', name='target2', publish_depends='target1', result_renderer=None) # a file to annex (src.pathobj / 'probe1').write_text('probe1') src.save('probe1', to_git=False) # make sure the probe is annexed, not straight in Git assert_in('probe1', src.repo.get_annexed_files(with_content_only=True)) # publish to target2, must handle dependency src.push(to='target2') for target in (target1, target2): # with a managed branch we are pushing into the corresponding branch # and do not see a change in the worktree if not target.is_managed_branch(): # direct test for what is in the checkout assert_in( 'probe1', target.get_annexed_files(with_content_only=True)) # ensure git-annex knows this target has the file assert_in(target.config.get('annex.uuid'), src.repo.whereis(['probe1'])[0]) @with_tempfile() @with_tempfile() def test_gh1811(srcpath, clonepath): orig = Dataset(srcpath).create() (orig.pathobj / 'some').write_text('some') orig.save() clone = Clone.__call__(source=orig.path, path=clonepath) (clone.pathobj / 'somemore').write_text('somemore') clone.save() clone.repo.call_git(['checkout', 'HEAD~1']) res = clone.push(to=DEFAULT_REMOTE, on_failure='ignore') assert_result_count(res, 1) assert_result_count( res, 1, path=clone.path, type='dataset', action='publish', status='impossible', message='There is no active branch, cannot determine remote ' 'branch', ) # FIXME: on crippled FS post-update hook enabling via create-sibling doesn't # work ATM @skip_if_adjusted_branch @with_tempfile() @with_tempfile() def test_push_wanted(srcpath, dstpath): src = Dataset(srcpath).create() (src.pathobj / 'data.0').write_text('0') (src.pathobj / 'secure.1').write_text('1') (src.pathobj / 'secure.2').write_text('2') src.save() # Dropping a file to mimic a case of simply not having it locally (thus not # to be "pushed") src.drop('secure.2', check=False) # Annotate sensitive content, actual value "verysecure" does not matter in # this example src.repo.set_metadata( add={'distribution-restrictions': 'verysecure'}, files=['secure.1', 'secure.2']) src.create_sibling( dstpath, annex_wanted="not metadata=distribution-restrictions=*", name='target', ) # check that wanted is obeyed, since set in sibling configuration res = src.push(to='target') assert_in_results( res, action='copy', path=str(src.pathobj / 'data.0'), status='ok') for p in ('secure.1', 'secure.2'): assert_not_in_results(res, path=str(src.pathobj / p)) assert_status('notneeded', src.push(to='target')) # check the target to really make sure dst = Dataset(dstpath) # normal file, yes eq_((dst.pathobj / 'data.0').read_text(), '0') # secure file, no if dst.repo.is_managed_branch(): neq_((dst.pathobj / 'secure.1').read_text(), '1') else: assert_raises(FileNotFoundError, (dst.pathobj / 'secure.1').read_text) # reset wanted config, which must enable push of secure file src.repo.set_preferred_content('wanted', '', remote='target') res = src.push(to='target') assert_in_results(res, path=str(src.pathobj / 'secure.1')) eq_((dst.pathobj / 'secure.1').read_text(), '1') # FIXME: on crippled FS post-update hook enabling via create-sibling doesn't # work ATM @skip_if_adjusted_branch @slow # 10sec on Yarik's laptop @with_tempfile(mkdir=True) def test_auto_data_transfer(path): path = Path(path) ds_a = Dataset(path / "a").create() (ds_a.pathobj / "foo.dat").write_text("foo") ds_a.save() # Should be the default, but just in case. ds_a.repo.config.set("annex.numcopies", "1", where="local") ds_a.create_sibling(str(path / "b"), name="b") # With numcopies=1, no data is copied with data="auto". res = ds_a.push(to="b", data="auto", since=None) assert_not_in_results(res, action="copy") # Even when a file is explicitly given. res = ds_a.push(to="b", path="foo.dat", data="auto", since=None) assert_not_in_results(res, action="copy") # numcopies=2 changes that. ds_a.repo.config.set("annex.numcopies", "2", where="local") res = ds_a.push(to="b", data="auto", since=None) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "foo.dat")) # --since= limits the files considered by --auto. (ds_a.pathobj / "bar.dat").write_text("bar") ds_a.save() (ds_a.pathobj / "baz.dat").write_text("baz") ds_a.save() res = ds_a.push(to="b", data="auto", since="HEAD~1") assert_not_in_results( res, action="copy", path=str(ds_a.pathobj / "bar.dat")) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "baz.dat")) # --auto also considers preferred content. ds_a.repo.config.unset("annex.numcopies", where="local") ds_a.repo.set_preferred_content("wanted", "nothing", remote="b") res = ds_a.push(to="b", data="auto", since=None) assert_not_in_results( res, action="copy", path=str(ds_a.pathobj / "bar.dat")) ds_a.repo.set_preferred_content("wanted", "anything", remote="b") res = ds_a.push(to="b", data="auto", since=None) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "bar.dat")) # FIXME: on crippled FS post-update hook enabling via create-sibling doesn't # work ATM @skip_if_adjusted_branch @slow # 16sec on Yarik's laptop @with_tempfile(mkdir=True) def test_auto_if_wanted_data_transfer_path_restriction(path): path = Path(path) ds_a = Dataset(path / "a").create() ds_a_sub0 = ds_a.create("sub0") ds_a_sub1 = ds_a.create("sub1") for ds in [ds_a, ds_a_sub0, ds_a_sub1]: (ds.pathobj / "sec.dat").write_text("sec") (ds.pathobj / "reg.dat").write_text("reg") ds_a.save(recursive=True) ds_a.create_sibling(str(path / "b"), name="b", annex_wanted="not metadata=distribution-restrictions=*", recursive=True) for ds in [ds_a, ds_a_sub0, ds_a_sub1]: ds.repo.set_metadata(add={"distribution-restrictions": "doesntmatter"}, files=["sec.dat"]) # wanted-triggered --auto can be restricted to subdataset... res = ds_a.push(to="b", path="sub0", data="auto-if-wanted", recursive=True) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "reg.dat")) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub0.pathobj / "reg.dat")) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub0.pathobj / "sec.dat")) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub1.pathobj / "reg.dat")) # ... and to a wanted file. res = ds_a.push(to="b", path="reg.dat", data="auto-if-wanted", recursive=True) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "reg.dat")) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub1.pathobj / "reg.dat")) # But asking to transfer a file does not do it if the remote has a # wanted setting and doesn't want it. res = ds_a.push(to="b", path="sec.dat", data="auto-if-wanted", recursive=True) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "sec.dat")) res = ds_a.push(to="b", path="sec.dat", data="anything", recursive=True) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "sec.dat")) @with_tempfile(mkdir=True) def test_push_git_annex_branch_when_no_data(path): path = Path(path) ds = Dataset(path / "a").create() target = mk_push_target(ds, "target", str(path / "target"), annex=False, bare=True) (ds.pathobj / "f0").write_text("0") ds.save() ds.push(to="target", data="nothing") assert_in("git-annex", {d["refname:strip=2"] for d in target.for_each_ref_(fields="refname:strip=2")}) @known_failure_githubci_osx @with_tree(tree={"ds": {"f0": "0", "f1": "0", "f2": "0", "f3": "1", "f4": "2", "f5": "2"}}) def test_push_git_annex_branch_many_paths_same_data(path): path = Path(path) ds = Dataset(path / "ds").create(force=True) ds.save() mk_push_target(ds, "target", str(path / "target"), annex=True, bare=False) nbytes = sum(ds.repo.get_content_annexinfo(paths=[f])[f]["bytesize"] for f in [ds.repo.pathobj / "f0", ds.repo.pathobj / "f3", ds.repo.pathobj / "f4"]) with swallow_logs(new_level=logging.DEBUG) as cml: res = ds.push(to="target") assert_in("{} bytes of annex data".format(nbytes), cml.out) # 3 files point to content already covered by another file. assert_result_count(res, 3, action="copy", type="file", status="notneeded") @known_failure_githubci_osx @with_tree(tree={"ds": {"f0": "0"}}) def test_push_matching(path): path = Path(path) ds = Dataset(path / "ds").create(force=True) ds.config.set('push.default', 'matching', where='local') ds.save() remote_ds = mk_push_target(ds, 'local', str(path / 'dssibling'), annex=True, bare=False) # that fact that the next one even runs makes sure that we are in a better # place than https://github.com/datalad/datalad/issues/4888 ds.push(to='local') # and we pushed the commit in the current branch eq_(remote_ds.get_hexsha(DEFAULT_BRANCH), ds.repo.get_hexsha(DEFAULT_BRANCH)) @known_failure_githubci_win # https://github.com/datalad/datalad/issues/5271 @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_nested_pushclone_cycle_allplatforms(origpath, storepath, clonepath): if 'DATALAD_SEED' in os.environ: # we are using create-sibling-ria via the cmdline in here # this will create random UUIDs for datasets # however, given a fixed seed each call to this command will start # with the same RNG seed, hence yield the same UUID on the same # machine -- leading to a collision raise SkipTest( 'Test incompatible with fixed random number generator seed') # the aim here is this high-level test a std create-push-clone cycle for a # dataset with a subdataset, with the goal to ensure that correct branches # and commits are tracked, regardless of platform behavior and condition # of individual clones. Nothing fancy, just that the defaults behave in # sensible ways from datalad.cmd import WitlessRunner as Runner run = Runner().run # create original nested dataset with chpwd(origpath): run(['datalad', 'create', 'super']) run(['datalad', 'create', '-d', 'super', str(Path('super', 'sub'))]) # verify essential linkage properties orig_super = Dataset(Path(origpath, 'super')) orig_sub = Dataset(orig_super.pathobj / 'sub') (orig_super.pathobj / 'file1.txt').write_text('some1') (orig_sub.pathobj / 'file2.txt').write_text('some1') with chpwd(orig_super.path): run(['datalad', 'save', '--recursive']) # TODO not yet reported clean with adjusted branches #assert_repo_status(orig_super.path) # the "true" branch that sub is on, and the gitsha of the HEAD commit of it orig_sub_corr_branch = \ orig_sub.repo.get_corresponding_branch() or orig_sub.repo.get_active_branch() orig_sub_corr_commit = orig_sub.repo.get_hexsha(orig_sub_corr_branch) # make sure the super trackes this commit assert_in_results( orig_super.subdatasets(), path=orig_sub.path, gitshasum=orig_sub_corr_commit, # TODO it should also track the branch name # Attempted: https://github.com/datalad/datalad/pull/3817 # But reverted: https://github.com/datalad/datalad/pull/4375 ) # publish to a store, to get into a platform-agnostic state # (i.e. no impact of an annex-init of any kind) store_url = 'ria+' + get_local_file_url(storepath) with chpwd(orig_super.path): run(['datalad', 'create-sibling-ria', '--recursive', '-s', 'store', store_url, '--new-store-ok']) run(['datalad', 'push', '--recursive', '--to', 'store']) # we are using the 'store' sibling's URL, which should be a plain path store_super = AnnexRepo(orig_super.siblings(name='store')[0]['url'], init=False) store_sub = AnnexRepo(orig_sub.siblings(name='store')[0]['url'], init=False) # both datasets in the store only carry the real branches, and nothing # adjusted for r in (store_super, store_sub): eq_(set(r.get_branches()), set([orig_sub_corr_branch, 'git-annex'])) # and reobtain from a store cloneurl = 'ria+' + get_local_file_url(str(storepath), compatibility='git') with chpwd(clonepath): run(['datalad', 'clone', cloneurl + '#' + orig_super.id, 'super']) run(['datalad', '-C', 'super', 'get', '--recursive', '.']) # verify that nothing has changed as a result of a push/clone cycle clone_super = Dataset(Path(clonepath, 'super')) clone_sub = Dataset(clone_super.pathobj / 'sub') assert_in_results( clone_super.subdatasets(), path=clone_sub.path, gitshasum=orig_sub_corr_commit, ) for ds1, ds2, f in ((orig_super, clone_super, 'file1.txt'), (orig_sub, clone_sub, 'file2.txt')): eq_((ds1.pathobj / f).read_text(), (ds2.pathobj / f).read_text()) # get status info that does not recursive into subdatasets, i.e. not # looking for uncommitted changes # we should see no modification reported assert_not_in_results( clone_super.status(eval_subdataset_state='commit'), state='modified') # and now the same for a more expensive full status assert_not_in_results( clone_super.status(recursive=True), state='modified') @with_tempfile def test_push_custom_summary(path): path = Path(path) ds = Dataset(path / "ds").create() sib = mk_push_target(ds, "sib", str(path / "sib"), bare=False, annex=False) (sib.pathobj / "f1").write_text("f1") sib.save() (ds.pathobj / "f2").write_text("f2") ds.save() # These options are true by default and our tests usually run with a # temporary home, but set them to be sure. ds.config.set("advice.pushUpdateRejected", "true", where="local") ds.config.set("advice.pushFetchFirst", "true", where="local") with swallow_outputs() as cmo: ds.push(to="sib", result_renderer="default", on_failure="ignore") assert_in("Hints:", cmo.out) assert_in("action summary:", cmo.out)
perma_web/perma/migrations/0023_apikey.py
rachelaus/perma
317
145118
<reponame>rachelaus/perma<filename>perma_web/perma/migrations/0023_apikey.py # -*- coding: utf-8 -*- # Generated by Django 1.9.13 on 2017-05-04 20:55 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone def copy_keys(apps, schema_editor): if not schema_editor.connection.alias == 'default': return cursor = schema_editor.connection.cursor() try: # this did not work, as there's a column order mismatch between the two tables # cursor.execute("INSERT INTO perma_apikey SELECT * FROM tastypie_apikey") # instead, we ran this: cursor.execute("INSERT INTO perma_apikey (`id`, `key`, `created`, `user_id`) SELECT `id`, `key`, `created`, `user_id` FROM tastypie_apikey") # and then faked the migration: # ./manage.py migrate --fake perma 0023_apikey except django.db.utils.ProgrammingError: pass # old tastypie api_key table doesn't exist for this deployment class Migration(migrations.Migration): dependencies = [ ('perma', '0022_auto_20170320_2050'), ] operations = [ migrations.CreateModel( name='ApiKey', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('key', models.CharField(blank=True, db_index=True, default=b'', max_length=128)), ('created', models.DateTimeField(default=django.utils.timezone.now)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='api_key', to=settings.AUTH_USER_MODEL)), ], ), migrations.RunPython(copy_keys), ]
glslc/test/option_dash_M.py
janesma/shaderc
2,151
145141
# Copyright 2015 The Shaderc Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import expect import os.path from environment import File, Directory from glslc_test_framework import inside_glslc_testsuite from placeholder import FileShader from glslc_test_framework import GlslCTest MINIMAL_SHADER = '#version 140\nvoid main() {}' EMPTY_SHADER_IN_CURDIR = Directory('.', [File('shader.vert', MINIMAL_SHADER)]) EMPTY_SHADER_IN_SUBDIR = Directory('subdir', [File('shader.vert', MINIMAL_SHADER)]) def process_test_specified_dependency_info_rules(test_specified_rules): """A helper function to process the expected dependency info rules specified in tests before checking the actual dependency rule output. This is required because the filename and path of temporary files created through FileShader is unknown at the time the expected dependency info rules are declared. Note this function process the given rule list in-place. """ for rule in test_specified_rules: # If the 'target' value is not a hard-coded file name but a # FileShader, we need its full path, append extension to it and # strip the directory component from it to get the complete target # name. if isinstance(rule['target'], FileShader): rule['target'] = rule['target'].filename if 'target_extension' in rule: if rule['target_extension'] is not None: rule['target'] = rule['target'] + rule['target_extension'] rule.pop('target_extension') rule['target'] = os.path.basename(rule['target']) # The dependency set may have FileShader too, we need to replace # them with their absolute paths. dependent_file_name_set = set() for dependent_file in rule['dependency']: if isinstance(dependent_file, FileShader): dependent_file_name_set.add(dependent_file.filename) else: dependent_file_name_set.add(dependent_file) rule['dependency'] = dependent_file_name_set def parse_text_rules(text_lines): """ A helper function to read text lines and construct and returns a list of dependency rules which can be used for comparison. The list is built with the text order. Each rule is described in the following way: {'target': <target name>, 'dependency': <set of dependent filenames>} """ rules = [] for line in text_lines: if line.strip() == "": continue rule = {'target': line.split(': ')[0].strip(), 'dependency': set(line.split(': ')[-1].strip().split(' '))} rules.append(rule) return rules class DependencyInfoStdoutMatch(GlslCTest): """Mixin class for tests that can expect dependency info in Stdout. To mix in this class, the subclass needs to provide dependency_rules_expected as a list of dictionaries, each dictionary describes one expected make rule for a target file. A expected rule should be specified in the following way: rule = {'target': <target name>, 'target_extension': <.spv, .spvasm or None>, 'dependency': <dependent file names>} The 'target_extension' field is optional, its value will be appended to 'target' to get complete target name. And the list 'dependency_rules_expected' is a list of such rules and the order of the rules does matter. """ def check_stdout_dependency_info(self, status): if not status.stdout: return False, 'Expect dependency rules on stdout' rules = parse_text_rules(status.stdout.split('\n')) process_test_specified_dependency_info_rules( self.dependency_rules_expected) if self.dependency_rules_expected != rules: return False, ('Incorrect dependency info:\n{ac_rules}\n' 'Expected:\n{ex_rules}\n' 'Stdout output:\n{ac_stdout}\n'.format( ac_rules=rules, ex_rules=self.dependency_rules_expected, ac_stdout=status.stdout)) return True, '' @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputRelativePathNoInclude(DependencyInfoStdoutMatch): """Tests -M with single input file which doesn't contain #include and is represented in relative path. e.g. glslc -M shader.vert => shader.vert.spv: shader.vert """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-M', 'shader.vert'] dependency_rules_expected = [{'target': "shader.vert.spv", 'dependency': {"shader.vert"}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputAbsolutePathNoInclude(DependencyInfoStdoutMatch): """Tests -M with single input file which doesn't contain #include and is represented in absolute path. e.g. glslc -M /usr/local/shader.vert => shader.vert.spv: /usr/local/shader.vert """ shader = FileShader(MINIMAL_SHADER, '.vert') glslc_args = ['-M', shader] dependency_rules_expected = [{'target': shader, 'target_extension': '.spv', 'dependency': {shader}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputRelativePathWithInclude( DependencyInfoStdoutMatch): """Tests -M with single input file which does contain #include and is represented in relative path. e.g. glslc -M a.vert => a.vert.spv: a.vert b.vert """ environment = Directory('.', [ File('a.vert', '#version 140\n#include "b.vert"\nvoid main(){}\n'), File('b.vert', 'void foo(){}\n'), ]) glslc_args = ['-M', 'a.vert'] dependency_rules_expected = [{'target': 'a.vert.spv', 'dependency': {'a.vert', 'b.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputRelativePathWithIncludeSubdir( DependencyInfoStdoutMatch): """Tests -M with single input file which does #include another file in a subdirectory of current directory and is represented in relative path. e.g. glslc -M a.vert => a.vert.spv: a.vert include/b.vert """ environment = Directory('.', [ File('a.vert', ('#version 140\n#include "include/b.vert"' '\nvoid main(){}\n')), Directory('include', [File('b.vert', 'void foo(){}\n')]), ]) glslc_args = ['-M', 'a.vert'] dependency_rules_expected = [{'target': 'a.vert.spv', 'dependency': {'a.vert', 'include/b.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputRelativePathWithDashI(DependencyInfoStdoutMatch): """Tests -M with single input file works with -I option. The #include directive does not specify 'include/' for the file to be include. e.g. glslc -M a.vert -I include => a.vert.spv: a.vert include/b.vert """ environment = Directory('.', [ File('a.vert', ('#version 140\n#include "b.vert"' '\nvoid main(){}\n')), Directory('include', [File('b.vert', 'void foo(){}\n')]), ]) glslc_args = ['-M', 'a.vert', '-I', 'include'] dependency_rules_expected = [{'target': 'a.vert.spv', 'dependency': {'a.vert', 'include/b.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputRelativePathWithNestedInclude( DependencyInfoStdoutMatch): """Tests -M with single input file under nested #include case. The input file is represented in relative path. e.g. glslc -M a.vert => a.vert.spv: a.vert b.vert c.vert """ environment = Directory('.', [ File('a.vert', '#version 140\n#include "b.vert"\nvoid main(){}\n'), File('b.vert', 'void foo(){}\n#include "c.vert"\n'), File('c.vert', 'void bar(){}\n'), ]) glslc_args = ['-M', 'a.vert'] dependency_rules_expected = [{'target': 'a.vert.spv', 'dependency': {'a.vert', 'b.vert', 'c.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMMultipleInputRelativePathNoInclude( DependencyInfoStdoutMatch): """Tests -M with multiple input file which don't contain #include and are represented in relative paths. e.g. glslc -M a.vert b.vert => a.vert.spv: a.vert b.vert.spv: b.vert """ environment = Directory('.', [ File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER), ]) glslc_args = ['-M', 'a.vert', 'b.vert'] dependency_rules_expected = [{'target': 'a.vert.spv', 'dependency': {'a.vert'}}, {'target': 'b.vert.spv', 'dependency': {'b.vert'}}, ] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMMultipleInputAbsolutePathNoInclude( DependencyInfoStdoutMatch): """Tests -M with single input file which doesn't contain #include and is represented in absolute path. e.g. glslc -M /usr/local/a.vert /usr/local/b.vert => a.vert.spv: /usr/local/a.vert b.vert.spv: /usr/local/b.vert """ shader_a = FileShader(MINIMAL_SHADER, '.vert') shader_b = FileShader(MINIMAL_SHADER, '.vert') glslc_args = ['-M', shader_a, shader_b] dependency_rules_expected = [{'target': shader_a, 'target_extension': '.spv', 'dependency': {shader_a}}, {'target': shader_b, 'target_extension': '.spv', 'dependency': {shader_b}}, ] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDashCapMT(DependencyInfoStdoutMatch): """Tests -MT works with -M. User can specify the target object name in the generated dependency info. e.g. glslc -M shader.vert -MT target => target: shader.vert """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-M', 'shader.vert', '-MT', 'target'] dependency_rules_expected = [{'target': 'target', 'dependency': {'shader.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMInputAbsolutePathWithInclude(DependencyInfoStdoutMatch): """Tests -M have included files represented in absolute paths when the input file is represented in absolute path. E.g. Assume a.vert has '#include "b.vert"' glslc -M /usr/local/a.vert => a.vert.spv: /usr/local/a.vert /usr/local/b.vert """ environment = Directory('.', [File('b.vert', 'void foo(){}\n')]) shader_main = FileShader( '#version 140\n#include "b.vert"\nvoid main(){}\n', '.vert') glslc_args = ['-M', shader_main] dependency_rules_expected = [{ 'target': shader_main, 'target_extension': '.spv', 'dependency': {shader_main} # The dependency here is not complete. we can not get the absolute path # of b.vert here. It will be added in check_stdout_dependency_info() }] def check_stdout_dependency_info(self, status): # Add the absolute path of b.vert to the dependency set self.dependency_rules_expected[0]['dependency'].add(os.path.dirname( self.shader_main.filename) + '/b.vert') return DependencyInfoStdoutMatch.check_stdout_dependency_info(self, status) @inside_glslc_testsuite('OptionsCapM') class TestDashCapMSingleInputAbsolutePathWithIncludeSubdir( DependencyInfoStdoutMatch): """Tests -M with single input file which does #include another file in a subdirectory of current directory and is represented in absolute path. e.g. glslc -M /usr/local/a.vert => a.vert.spv: /usr/local/a.vert /usr/local/include/b.vert """ environment = Directory('.', [ Directory('include', [File('b.vert', 'void foo(){}\n')]), ]) shader_main = FileShader('#version 140\n#include "include/b.vert"', '.vert') glslc_args = ['-M', shader_main] dependency_rules_expected = [{ 'target': shader_main, 'target_extension': '.spv', 'dependency': {shader_main} # The dependency here is not complete. we can not get the absolute # path of include/b.vert here. It will be added in # check_stdout_dependency_info() }] def check_stdout_dependency_info(self, status): # Add the absolute path of include/b.vert to the dependency set self.dependency_rules_expected[0]['dependency'].add(os.path.dirname( self.shader_main.filename) + '/include/b.vert') return DependencyInfoStdoutMatch.check_stdout_dependency_info(self, status) @inside_glslc_testsuite('OptionsCapM') class TestDashCapMOverridesOtherModes(DependencyInfoStdoutMatch): """Tests -M overrides other compiler mode options, includeing -E, -c and -S. """ environment = Directory('.', [ File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER), ]) glslc_args = ['-M', '-E', '-c', '-S', 'a.vert', 'b.vert'] dependency_rules_expected = [{'target': 'a.vert.spv', 'dependency': {'a.vert'}}, {'target': 'b.vert.spv', 'dependency': {'b.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMMEquivalentToCapM(DependencyInfoStdoutMatch): """Tests that -MM behaves as -M. e.g. glslc -MM shader.vert => shader.vert.spv: shader.vert """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MM', 'shader.vert'] dependency_rules_expected = [{'target': 'shader.vert.spv', 'dependency': {'shader.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMImpliesDashCapE(DependencyInfoStdoutMatch, expect.NoOutputOnStderr): """Tests that -M implies -E, a .glsl file without an explict stage should not generate an error. e.g. glslc -M shader.glsl => shader.spv: shader.glsl <no error message should be generated> """ environment = Directory('.', [File('shader.glsl', MINIMAL_SHADER)]) glslc_args = ['-M', 'shader.glsl'] dependency_rules_expected = [{'target': 'shader.spv', 'dependency': {'shader.glsl'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMImpliesDashW(DependencyInfoStdoutMatch, expect.NoOutputOnStderr): """Tests that -M implies -w, a deprecated attribute should not generate warning message. e.g. glslc -M shader.vert => shader.vert.spv: shader.vert <no warning message should be generated> """ environment = Directory('.', [File( 'shader.vert', '#version 140\nattribute float x;\nvoid main() {}')]) glslc_args = ['-M', 'shader.vert'] dependency_rules_expected = [{'target': 'shader.vert.spv', 'dependency': {'shader.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMMImpliesDashCapE(DependencyInfoStdoutMatch, expect.NoOutputOnStderr): """Tests that -M implies -E, a .glsl file without an explict stage should not generate an error. e.g. glslc -MM shader.glsl => shader.spv: shader.glsl <no error message should be generated> """ environment = Directory('.', [File('shader.glsl', MINIMAL_SHADER)]) glslc_args = ['-MM', 'shader.glsl'] dependency_rules_expected = [{'target': 'shader.spv', 'dependency': {'shader.glsl'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMMImpliesDashW(DependencyInfoStdoutMatch, expect.NoOutputOnStderr): """Tests that -MM implies -w, a deprecated attribute should not generate warning message. e.g. glslc -MM shader.vert => shader.vert.spv: shader.vert <no warning message should be generated> """ environment = Directory('.', [File( 'shader.vert', '#version 140\nattribute float x;\nvoid main() {}')]) glslc_args = ['-MM', 'shader.vert'] dependency_rules_expected = [{'target': 'shader.vert.spv', 'dependency': {'shader.vert'}}] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMD(expect.ValidFileContents, expect.ValidNamedObjectFile): """Tests that -MD generates dependency info file and compilation output. e.g. glslc -MD shader.vert => <a.spv: valid SPIR-V object file> => <shader.vert.spv.d: dependency info> """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MD', 'shader.vert'] expected_object_filenames = ('a.spv', ) target_filename = 'shader.vert.spv.d' expected_file_contents = ['shader.vert.spv: shader.vert\n'] class DependencyInfoFileMatch(GlslCTest): """Mixin class for tests that can expect dependency info files. To mix in this class, subclasses need to provide dependency_info_filenames and dependency_info_files_expected_contents which are two lists. list dependency_info_filenames contains the dependency info file names and list dependency_info_files_expected_contents contains the expected matching dependency rules. The item order of the two lists should match, which means: dependency_info_files_expected_contents[i] should describe the dependency rules saved in dependency_info_filenames[i] The content of each dependency info file is described in same 'list of dict' structure explained in class DependencyInfoStdoutMatch's doc string. """ def check_dependency_info_files(self, status): dep_info_files = \ [os.path.join(status.directory, f) for f in self.dependency_info_filenames] for i, df in enumerate(dep_info_files): if not os.path.isfile(df): return False, 'Cannot find file: ' + df try: with open(df, 'r') as dff: content = dff.read() rules = parse_text_rules(content.split('\n')) process_test_specified_dependency_info_rules( self.dependency_info_files_expected_contents[i]) if self.dependency_info_files_expected_contents[ i] != rules: return False, ( 'Incorrect dependency info:\n{ac_rules}\n' 'Expected:\n{ex_rules}\n' 'Incorrect file output:\n{ac_out}\n' 'Incorrect dependency info file:\n{ac_file}\n'.format( ac_rules=rules, ex_rules=self.dependency_rules_expected, ac_stdout=content, ac_file=df)) except IOError: return False, ('Could not open dependency info file ' + df + ' for reading') return True, '' @inside_glslc_testsuite('OptionsCapM') class TestDashCapMWorksWithDashO(DependencyInfoFileMatch): """Tests -M works with -o option. When user specifies an output file name with -o, the dependency info should be dumped to the user specified output file. """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-M', 'shader.vert', '-o', 'dep_info'] dependency_info_filenames = ('dep_info', ) dependency_info_files_expected_contents = [] dependency_info_files_expected_contents.append( [{'target': 'shader.vert.spv', 'dependency': {'shader.vert'}}]) @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDMultipleFile(expect.ValidNamedObjectFile, DependencyInfoFileMatch): """Tests that -MD generates dependency info file for multiple files. e.g. glslc -MD a.vert b.vert -c => <a.vert.spv: valid SPIR-V object file> => <a.vert.spv.d: dependency info: "a.vert.spv: a.vert"> => <b.vert.spv: valid SPIR-V object file> => <b.vert.spv.d: dependency info: "b.vert.spv: b.vert"> """ environment = Directory('.', [File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER)]) glslc_args = ['-MD', 'a.vert', 'b.vert', '-c'] expected_object_filenames = ('a.vert.spv', 'b.vert.spv', ) dependency_info_filenames = ['a.vert.spv.d', 'b.vert.spv.d'] dependency_info_files_expected_contents = [] dependency_info_files_expected_contents.append([{'target': 'a.vert.spv', 'dependency': {'a.vert'}} ]) dependency_info_files_expected_contents.append([{'target': 'b.vert.spv', 'dependency': {'b.vert'}} ]) @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDMultipleFilePreprocessingOnlyMode(expect.StdoutMatch, DependencyInfoFileMatch): """Tests that -MD generates dependency info file for multiple files in preprocessing only mode. e.g. glslc -MD a.vert b.vert -E => stdout: preprocess result of a.vert and b.vert => <a.vert.spv.d: dependency info: "a.vert.spv: a.vert"> => <b.vert.spv.d: dependency info: "b.vert.spv: b.vert"> """ environment = Directory('.', [File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER)]) glslc_args = ['-MD', 'a.vert', 'b.vert', '-E'] dependency_info_filenames = ['a.vert.spv.d', 'b.vert.spv.d'] dependency_info_files_expected_contents = [] dependency_info_files_expected_contents.append([{'target': 'a.vert.spv', 'dependency': {'a.vert'}} ]) dependency_info_files_expected_contents.append([{'target': 'b.vert.spv', 'dependency': {'b.vert'}} ]) expected_stdout = ("#version 140\nvoid main(){ }\n" "#version 140\nvoid main(){ }\n") @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDMultipleFileDisassemblyMode(expect.ValidNamedAssemblyFile, DependencyInfoFileMatch): """Tests that -MD generates dependency info file for multiple files in disassembly mode. e.g. glslc -MD a.vert b.vert -S => <a.vert.spvasm: valid SPIR-V assembly file> => <a.vert.spvasm.d: dependency info: "a.vert.spvasm: a.vert"> => <b.vert.spvasm: valid SPIR-V assembly file> => <b.vert.spvasm.d: dependency info: "b.vert.spvasm: b.vert"> """ environment = Directory('.', [File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER)]) glslc_args = ['-MD', 'a.vert', 'b.vert', '-S'] expected_assembly_filenames = ('a.vert.spvasm', 'b.vert.spvasm', ) dependency_info_filenames = ['a.vert.spvasm.d', 'b.vert.spvasm.d'] dependency_info_files_expected_contents = [] dependency_info_files_expected_contents.append([{'target': 'a.vert.spvasm', 'dependency': {'a.vert'}} ]) dependency_info_files_expected_contents.append([{'target': 'b.vert.spvasm', 'dependency': {'b.vert'}} ]) @inside_glslc_testsuite('OptionsCapM') class TestDashCapMT(expect.ValidFileContents, expect.ValidNamedObjectFile): """Tests that -MT generates dependency info file with specified target label. e.g. glslc -MD shader.vert -MT target_label => <a.spv: valid SPIR-V object file> => <shader.vert.spv.d: dependency info: "target_label: shader.vert"> """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MD', 'shader.vert', '-MT', 'target_label'] expected_object_filenames = ('a.spv', ) target_filename = 'shader.vert.spv.d' expected_file_contents = ['target_label: shader.vert\n'] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMF(expect.ValidFileContents, expect.ValidNamedObjectFile): """Tests that -MF dumps dependency info into specified file. e.g. glslc -MD shader.vert -MF dep_file => <a.spv: valid SPIR-V object file> => <dep_file: dependency info: "shader.vert.spv: shader.vert"> """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MD', 'shader.vert', '-MF', 'dep_file'] expected_object_filenames = ('a.spv', ) target_filename = 'dep_file' expected_file_contents = ['shader.vert.spv: shader.vert\n'] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDSpecifyOutputFileName(expect.ValidFileContents, expect.ValidNamedObjectFile): """Tests that -MD has the default dependency info file name and target label correct when -o <output_file_name> appears in the command line. The default dependency info file name and target label should be deduced from the linking-disabled compilation output. e.g. glslc -MD subdir/shader.vert -c -o output => <./output: valid SPIR-V object file> => <./output.d: dependency info: "output: shader.vert"> """ environment = EMPTY_SHADER_IN_SUBDIR glslc_args = ['-MD', 'subdir/shader.vert', '-c', '-o', 'output'] expected_object_filenames = ('output', ) target_filename = 'output.d' expected_file_contents = ['output: subdir/shader.vert\n'] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDWithDashMFDashMTDashO(expect.ValidFileContents, expect.ValidNamedObjectFile): """Tests that -MD, -MF, -MT and -o gernates dependency info file and compilation output file correctly e.g. glslc -MD subdir/shader.vert -c -o subdir/out -MF dep_info -MT label => <subdir/out: valid SPIR-V object file> => <dep_info: dependency info: "label: shader.vert"> """ environment = EMPTY_SHADER_IN_SUBDIR glslc_args = ['-MD', 'subdir/shader.vert', '-c', '-o', 'subdir/out', '-MF', 'dep_info', '-MT', 'label'] expected_object_filenames = ('subdir/out', ) target_filename = 'dep_info' expected_file_contents = ['label: subdir/shader.vert\n'] @inside_glslc_testsuite('OptionsCapM') class TestDashCapMDWithDashMFDashMTDashODisassemblyMode( expect.ValidFileContents, expect.ValidNamedAssemblyFile): """Tests that -MD, -MF, -MT and -o gernates dependency info file and compilation output file correctly in disassembly mode e.g. glslc -MD subdir/shader.vert -s -o subdir/out -MF dep_info -MT label => <subdir/out: valid SPIR-V object file> => <dep_info: dependency info: "label: shader.vert"> """ environment = EMPTY_SHADER_IN_SUBDIR glslc_args = ['-MD', 'subdir/shader.vert', '-S', '-o', 'subdir/out', '-MF', 'dep_info', '-MT', 'label'] expected_assembly_filenames = ('subdir/out', ) target_filename = 'dep_info' expected_file_contents = ['label: subdir/shader.vert\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorSetBothDashCapMAndDashCapMD(expect.StderrMatch): """Tests that when both -M (or -MM) and -MD are specified, glslc should exit with an error message complaining the case and neither dependency info output nor compilation output. This test has -MD before -M flag. """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MD', '-M', 'shader.vert'] expected_stderr = ['glslc: error: both -M (or -MM) and -MD are specified. ' 'Only one should be used at one time.\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorSetBothDashCapMDAndDashCapM(expect.StderrMatch): """Tests that when both -M (or -MM) and -MD are specified, glslc should exit with an error message complaining the case and neither dependency info output nor compilation output. This test has -M before -MD flag. """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-M', '-MD', 'shader.vert'] expected_stderr = ['glslc: error: both -M (or -MM) and -MD are specified. ' 'Only one should be used at one time.\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorDashCapMFWithMultipleInputFiles(expect.StderrMatch): """Tests that when -MF option is specified, only one input file should be provided.""" environment = Directory('.', [File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER)]) glslc_args = ['-MD', 'a.vert', 'b.vert', '-c', '-MF', 'dep_info'] expected_stderr = ['glslc: error: ' 'to specify dependency info file name or dependency ' 'info target, only one input file is allowed.\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorDashCapMTWithMultipleInputFiles(expect.StderrMatch): """Tests that when -MT option is specified, only one input file should be provided.""" environment = Directory('.', [File('a.vert', MINIMAL_SHADER), File('b.vert', MINIMAL_SHADER)]) glslc_args = ['-M', 'a.vert', 'b.vert', '-c', '-MT', 'target'] expected_stderr = ['glslc: error: ' 'to specify dependency info file name or dependency ' 'info target, only one input file is allowed.\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorDashCapMFMissingDashMAndDashMD(expect.StderrMatch): """Tests that when only -MF is specified while -M and -MD are not specified, glslc should emit an error complaining that the user must specifiy either -M (-MM) or -MD to generate dependency info. """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MF', 'dep_info', 'shader.vert', '-c'] expected_stderr = ['glslc: error: ' 'to generate dependencies you must specify either -M ' '(-MM) or -MD\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorDashCapMTMissingDashMAndMDWith(expect.StderrMatch): """Tests that when only -MF and -MT is specified while -M and -MD are not specified, glslc should emit an error complaining that the user must specifiy either -M (-MM) or -MD to generate dependency info. """ environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['-MF', 'dep_info', '-MT', 'target', 'shader.vert', '-c'] expected_stderr = ['glslc: error: ' 'to generate dependencies you must specify either -M ' '(-MM) or -MD\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorMissingDependencyInfoFileName(expect.StderrMatch): """Tests that dependency file name is missing when -MF is specified.""" environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['target', 'shader.vert', '-c', '-MF'] expected_stderr = ['glslc: error: ' 'missing dependency info filename after \'-MF\'\n'] @inside_glslc_testsuite('OptionsCapM') class TestErrorMissingDependencyTargetName(expect.StderrMatch): """Tests that dependency target name is missing when -MT is specified.""" environment = EMPTY_SHADER_IN_CURDIR glslc_args = ['target', 'shader.vert', '-c', '-MT'] expected_stderr = ['glslc: error: ' 'missing dependency info target after \'-MT\'\n']
next_steps/operations/ml_ops/personalize-step-functions/lambdas/list-solutions/list-solutions.py
kamoljan/amazon-personalize-samples
442
145158
<reponame>kamoljan/amazon-personalize-samples<filename>next_steps/operations/ml_ops/personalize-step-functions/lambdas/list-solutions/list-solutions.py from os import environ from loader import Loader import actions import json LOADER = Loader() def lambda_handler(event, context): try: response = LOADER.personalize_cli.list_solutions( datasetGroupArn=event['datasetGroupArn'], maxResults=100 ) return json.loads(json.dumps(response['solutions'], default=str)) except Exception as e: LOADER.logger.error(f'Error listing solutions {e}') raise e
src/oci/identity/models/create_idp_group_mapping_details.py
Manny27nyc/oci-python-sdk
249
145167
<filename>src/oci/identity/models/create_idp_group_mapping_details.py # coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class CreateIdpGroupMappingDetails(object): """ CreateIdpGroupMappingDetails model. """ def __init__(self, **kwargs): """ Initializes a new CreateIdpGroupMappingDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param idp_group_name: The value to assign to the idp_group_name property of this CreateIdpGroupMappingDetails. :type idp_group_name: str :param group_id: The value to assign to the group_id property of this CreateIdpGroupMappingDetails. :type group_id: str """ self.swagger_types = { 'idp_group_name': 'str', 'group_id': 'str' } self.attribute_map = { 'idp_group_name': 'idpGroupName', 'group_id': 'groupId' } self._idp_group_name = None self._group_id = None @property def idp_group_name(self): """ **[Required]** Gets the idp_group_name of this CreateIdpGroupMappingDetails. The name of the IdP group you want to map. :return: The idp_group_name of this CreateIdpGroupMappingDetails. :rtype: str """ return self._idp_group_name @idp_group_name.setter def idp_group_name(self, idp_group_name): """ Sets the idp_group_name of this CreateIdpGroupMappingDetails. The name of the IdP group you want to map. :param idp_group_name: The idp_group_name of this CreateIdpGroupMappingDetails. :type: str """ self._idp_group_name = idp_group_name @property def group_id(self): """ **[Required]** Gets the group_id of this CreateIdpGroupMappingDetails. The OCID of the IAM Service :class:`Group` you want to map to the IdP group. :return: The group_id of this CreateIdpGroupMappingDetails. :rtype: str """ return self._group_id @group_id.setter def group_id(self, group_id): """ Sets the group_id of this CreateIdpGroupMappingDetails. The OCID of the IAM Service :class:`Group` you want to map to the IdP group. :param group_id: The group_id of this CreateIdpGroupMappingDetails. :type: str """ self._group_id = group_id def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
src/you_get/__main__.py
adger-me/you-get
46,956
145169
#!/usr/bin/env python import getopt import os import platform import sys from .version import script_name, __version__ from .util import git, log _options = [ 'help', 'version', 'gui', 'force', 'playlists', ] _short_options = 'hVgfl' _help = """Usage: {} [OPTION]... [URL]... TODO """.format(script_name) # TBD def main_dev(**kwargs): """Main entry point. you-get-dev """ # Get (branch, commit) if running from a git repo. head = git.get_head(kwargs['repo_path']) # Get options and arguments. try: opts, args = getopt.getopt(sys.argv[1:], _short_options, _options) except getopt.GetoptError as e: log.wtf(""" [Fatal] {}. Try '{} --help' for more options.""".format(e, script_name)) if not opts and not args: # Display help. print(_help) # Enter GUI mode. #from .gui import gui_main #gui_main() else: conf = {} for opt, arg in opts: if opt in ('-h', '--help'): # Display help. print(_help) elif opt in ('-V', '--version'): # Display version. log.println("you-get:", log.BOLD) log.println(" version: {}".format(__version__)) if head is not None: log.println(" branch: {}\n commit: {}".format(*head)) else: log.println(" branch: {}\n commit: {}".format("(stable)", "(tag v{})".format(__version__))) log.println(" platform: {}".format(platform.platform())) log.println(" python: {}".format(sys.version.split('\n')[0])) elif opt in ('-g', '--gui'): # Run using GUI. conf['gui'] = True elif opt in ('-f', '--force'): # Force download. conf['force'] = True elif opt in ('-l', '--playlist', '--playlists'): # Download playlist whenever possible. conf['playlist'] = True if args: if 'gui' in conf and conf['gui']: # Enter GUI mode. from .gui import gui_main gui_main(*args, **conf) else: # Enter console mode. from .console import console_main console_main(*args, **conf) def main(**kwargs): """Main entry point. you-get (legacy) """ from .common import main main(**kwargs) if __name__ == '__main__': main()
data/video_utils.py
dexuiz/merlot
148
145171
import sys import numpy as np import skvideo.io import concurrent.futures import time def _detect_black_bars_from_video(frames, blackbar_threshold=16, max_perc_to_trim=.2): """ :param frames: [num_frames, height, width, 3] :param blackbar_threshold: Pixels must be this intense for us to not trim :param max_perc_to_prim: Will trim 20% by default of the image at most in each dimension :return: """ # Detect black bars#################### has_content = frames.max(axis=(0, -1)) >= blackbar_threshold h, w = has_content.shape y_frames = np.where(has_content.any(1))[0] if y_frames.size == 0: print("Oh no, there are no valid yframes") y_frames = [h // 2] y1 = min(y_frames[0], int(h * max_perc_to_trim)) y2 = max(y_frames[-1] + 1, int(h * (1 - max_perc_to_trim))) x_frames = np.where(has_content.any(0))[0] if x_frames.size == 0: print("Oh no, there are no valid xframes") x_frames = [w // 2] x1 = min(x_frames[0], int(w * max_perc_to_trim)) x2 = max(x_frames[-1] + 1, int(w * (1 - max_perc_to_trim))) return y1, y2, x1, x2 def extract_all_frames_from_video(video_file, blackbar_threshold=32, max_perc_to_trim=0.2, every_nth_frame=1, verbosity=0): """ Same as exact_frames_from_video but no times meaning we grab every single frame :param video_file: :param r: :param blackbar_threshold: :param max_perc_to_trim: :return: """ reader = skvideo.io.FFmpegReader(video_file, outputdict={'-r': '1', '-q:v': '2', '-pix_fmt': 'rgb24'}, verbosity=verbosity) # frames = [x for x in iter(reader.nextFrame())] frames = [] for i, frame in enumerate(reader.nextFrame()): if (i % every_nth_frame) == 0: frames.append(frame) frames = np.stack(frames) y1, y2, x1, x2 = _detect_black_bars_from_video(frames, blackbar_threshold=blackbar_threshold, max_perc_to_trim=max_perc_to_trim) frames = frames[:, y1:y2, x1:x2] return frames def extract_single_frame_from_video(video_file, t, verbosity=0): """ Reads the video, seeks to the given second option :param video_file: input video file :param t: where 2 seek to :param use_rgb: True if use RGB, else BGR :return: the frame at that timestep. """ timecode = '{:.3f}'.format(t) input_dict ={ '-ss': timecode, '-threads': '1',} reader = skvideo.io.FFmpegReader(video_file, inputdict=input_dict, outputdict={'-r': '1', '-q:v': '2', '-pix_fmt': 'rgb24', '-frames:v': '1'}, verbosity=verbosity, ) try: frame = next(iter(reader.nextFrame())) except StopIteration: frame = None return frame def extract_frames_from_video(video_file, times, info, use_multithreading=False, use_rgb=True, blackbar_threshold=32, max_perc_to_trim=.20, verbose=False): """ Extracts multiple things from the video and even handles black bars :param video_file: what we are loading :param times: timestamps to use :param use_multithreading: Whether to use multithreading :param use_rgb whether to use RGB (default) or BGR :param blackbar_threshold: Pixels must be this intense for us to not trim :param max_perc_to_prim: Will trim 20% by default of the image at most in each dimension :return: """ def _extract(i): return i, extract_single_frame_from_video(video_file, times[i], verbosity=10 if verbose else 0) time1 = time.time() if not use_multithreading: frames = [_extract(i)[1] for i in range(len(times))] else: frames = [None for t in times] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: submitted_threads = (executor.submit(_extract, i) for i in range(len(times))) for future in concurrent.futures.as_completed(submitted_threads): try: i, img = future.result() frames[i] = img except Exception as exc: print("Oh no {}".format(str(exc)), flush=True) if verbose: print("Extracting frames from video, multithreading={} took {:.3f}".format(use_multithreading, time.time() - time1), flush=True) if any([x is None for x in frames]): print(f"Fail on {video_file}", flush=True) return None frames = np.stack(frames) y1, y2, x1, x2 = _detect_black_bars_from_video(frames, blackbar_threshold=blackbar_threshold, max_perc_to_trim=max_perc_to_trim) frames = frames[:, y1:y2, x1:x2] ############# return frames
attic/strings-bytes/encodings_demo.py
matteoshen/example-code
5,651
145215
import unicodedata encodings = 'ascii latin1 cp1252 cp437 gb2312 utf-8 utf-16le'.split() widths = {encoding:1 for encoding in encodings[:-3]} widths.update(zip(encodings[-3:], (2, 4, 4))) chars = sorted([ 'A', # \u0041 : LATIN CAPITAL LETTER A '¿', # \u00bf : INVERTED QUESTION MARK 'Ã', # \u00c3 : LATIN CAPITAL LETTER A WITH TILDE 'á', # \u00e1 : LATIN SMALL LETTER A WITH ACUTE 'Ω', # \u03a9 : GREEK CAPITAL LETTER OMEGA 'µ', 'Ц', '€', # \u20ac : EURO SIGN '“', '┌', '气', '氣', # \u6c23 : CJK UNIFIED IDEOGRAPH-6C23 '𝄞', # \u1d11e : MUSICAL SYMBOL G CLEF ]) callout1_code = 0x278a # ➊ DINGBAT NEGATIVE CIRCLED SANS-SERIF DIGIT ONE missing_mark = '*' def list_chars(): for char in chars: print('%r, # \\u%04x : %s' % (char, ord(char), unicodedata.name(char))) def show_encodings(): print(end='\t\t') for encoding in encodings: print(encoding.ljust(widths[encoding] * 2), end='\t') print() for lineno, char in enumerate(chars): codepoint = 'U+{:04X}'.format(ord(char)) print(char, codepoint, sep='\t', end='\t') for encoding in encodings: try: bytes = char.encode(encoding) dump = ' '.join('%02X' % byte for byte in bytes) except UnicodeEncodeError: dump = missing_mark dump = dump.ljust(widths[encoding] * 2) print(dump, end='\t') # print(chr(callout1_code + lineno)) print(unicodedata.name(char)) # print() #list_chars() show_encodings()
tests/test_client.py
ZackPashkin/toloka-kit
153
145265
from decimal import Decimal import pickle import pytest import simplejson from toloka.client import TolokaClient import toloka.client as client from .testutils.util_functions import check_headers @pytest.fixture def random_url(): return 'https://testing.toloka.yandex.ru' def test_client_create_exceptions(random_url): with pytest.raises(ValueError): TolokaClient('fake-token', '<PASSWORD>', url=random_url) with pytest.raises(ValueError): TolokaClient('fake-token') def test_client_pickleable(random_url): toloka_client = TolokaClient('fake-token', '<PASSWORD>') dumped = pickle.dumps(toloka_client) # Check that it's possible. loaded = pickle.loads(dumped) assert loaded def test_different_urls(requests_mock, random_url): result = { 'id': '566ec2b0ff0deeaae5f9d500', 'balance': Decimal('120.3'), 'public_name': { 'EN': '<NAME>', 'RU': '<NAME>', }, 'company': { 'id': '1', 'superintendent_id': 'superintendent-1id', }, } def get_requester(request, context): expected_headers = { 'X-Caller-Context': 'client', 'X-Top-Level-Method': 'get_requester', 'X-Low-Level-Method': 'get_requester', } check_headers(request, expected_headers) return simplejson.dumps(result) requests_mock.get(f'{random_url}/api/v1/requester', text=get_requester) toloka_client = TolokaClient('fake-token', url=random_url) requester = toloka_client.get_requester() assert result == client.unstructure(requester) toloka_client = TolokaClient('fake-token', url=f'{random_url}/') requester = toloka_client.get_requester() assert result == client.unstructure(requester)
atlas/foundations_contrib/src/test/test_bucket_pipeline_archive.py
DeepLearnI/atlas
296
145303
from foundations_spec import * class TestBucketPipelineArchive(Spec): @let def bucket_klass(self): klass = ConditionalReturn() klass.return_when(self.bucket, *self.constructor_args, **self.constructor_kwargs) return klass bucket = let_mock() @let def constructor_args(self): return self.faker.words() @let def constructor_kwargs(self): return self.faker.pydict() @let def object_name(self): return self.faker.name() @let def random_data(self): return self.faker.uuid4() @let def random_prefix(self): return self.faker.uuid4() @let def file_listing_with_prefix(self): return [f'{self.random_prefix}/{file}' for file in self.faker.words()] @let def blob_exists(self): return self.faker.boolean() @let def archive(self): from foundations_contrib.bucket_pipeline_archive import BucketPipelineArchive return BucketPipelineArchive(self.bucket_klass, *self.constructor_args, **self.constructor_kwargs) def test_append_binary_uploads_string_to_bucket(self): self.archive.append_binary(self.object_name, self.random_data, self.random_prefix) self.bucket.upload_from_string.assert_called_with(f'{self.random_prefix}/{self.object_name}', self.random_data) def test_list_files_returns_list_of_files(self): self.bucket.list_files = ConditionalReturn() self.bucket.list_files.return_when(self.file_listing_with_prefix, f'{self.random_prefix}/*') result = self.archive.list_files('*', self.random_prefix) self.assertEqual(self.file_listing_with_prefix, result) def test_exists_forwards_to_underlying_bucket(self): self.bucket.exists = ConditionalReturn() self.bucket.exists.return_when(self.blob_exists, f'{self.object_name}') self.assertEqual(self.blob_exists, self.archive.exists(self.object_name)) def test_exists_forwards_to_underlying_bucket_with_prefix(self): self.bucket.exists = ConditionalReturn() self.bucket.exists.return_when(self.blob_exists, f'{self.random_prefix}/{self.object_name}') self.assertEqual(self.blob_exists, self.archive.exists(self.object_name, prefix=self.random_prefix))
src/genie/libs/parser/iosxe/show_mab.py
jacobgarder/genieparser
204
145316
''' show_mab.py IOSXE parsers for the following show commands: * show mab all details ''' # Python import re # Metaparser from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Any, Optional, Or # ==================================================== # Schema for show mab all details # ==================================================== class ShowMabAllDetailsSchema(MetaParser): schema = { 'interfaces': { Any(): { 'mac_auth_bypass': str, 'client_mac':{ Any(): { Optional('session_id'): str, Optional('mab_sm_state'): str, Optional('authen_status'): str, }, }, }, } } # ==================================================== # Parser for show mab all details # ==================================================== class ShowMabAllDetails(ShowMabAllDetailsSchema): """ Parser for show mab all details """ cli_command = 'show mab all details' def cli(self, output = None): cmd = 'show mab all details' # MAB details for GigabitEthernet2/0/2 p1 = re.compile(r'(^MAB\s+details\s+for)\s*(.*)') # Mac-Auth-Bypass = Enabled p2 = re.compile(r'(^Mac-Auth-Bypass)\s*=\s*(?P<mac_auth_bypass>.*)') # MAB Client List p3 = re.compile(r'(^MAB\s+Client\s+List)\s*') # My Client MAC = 0000.0001.0003 # My Session ID = 000000000000000C82FA130E # My Authen Status = SUCCESS p4 = re.compile(r'(^My)\s+(\w+\s+\w+)\s*=\s*(.*)') # My MAB SM state = TERMINATE p5 = re.compile(r'(^My\s*MAB\s*SM\s*state)\s*=\s*(?P<mab_sm_state>.*)') ret_dict = {} interface_dict = {} mac_dict = {} client_dict = {} if output is None: out = self.device.execute(self.cli_command) else: out = output for line in out.splitlines(): line = line.strip() # MAB details for GigabitEthernet2/0/2 res = p1.match(line) if res: interface_dict = ret_dict.setdefault('interfaces', {}).setdefault(res.group(2), {}) continue # Mac-Auth-Bypass = Enabled res = p2.match(line) if res: interface_dict.update(res.groupdict()) continue # MAB Client List res = p3.match(line) if res: mac_dict = interface_dict.setdefault('client_mac', {}) # My Client MAC = 0000.0001.0003 # My Session ID = 000000000000000C82FA130E # My Authen Status = SUCCESS res = p4.match(line) if res: key_string = (re.sub(r'\s+', '_', res.group(2))).lower() if key_string == 'client_mac': client_dict = mac_dict.setdefault(res.group(3), {}) else: client_dict.update({key_string: res.group(3)}) # My MAB SM state = TERMINATE res = p5.match(line) if res: client_dict.update(res.groupdict()) return ret_dict
logomaker/src/Glyph.py
ruxi/logomaker
125
145320
<filename>logomaker/src/Glyph.py # explicitly set a matplotlib backend if called from python to avoid the # 'Python is not installed as a framework... error' import sys if sys.version_info[0] == 2: import matplotlib matplotlib.use('TkAgg') from matplotlib.textpath import TextPath from matplotlib.patches import PathPatch from matplotlib.transforms import Affine2D, Bbox from matplotlib.font_manager import FontManager, FontProperties from matplotlib.colors import to_rgb import matplotlib.pyplot as plt from matplotlib.axes import Axes from logomaker.src.error_handling import check, handle_errors from logomaker.src.colors import get_rgb import numpy as np # Create global font manager instance. This takes a second or two font_manager = FontManager() # Create global list of valid font weights VALID_FONT_WEIGHT_STRINGS = [ 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'] def list_font_names(): """ Returns a list of valid font_name options for use in Glyph or Logo constructors. parameters ---------- None. returns ------- fontnames: (list) List of valid font_name names. This will vary from system to system. """ fontnames_dict = dict([(f.name, f.fname) for f in font_manager.ttflist]) fontnames = list(fontnames_dict.keys()) fontnames.append('sans') # This always exists fontnames.sort() return fontnames class Glyph: """ A Glyph represents a character, drawn on a specified axes at a specified position, rendered using specified styling such as color and font_name. attributes ---------- p: (number) x-coordinate value on which to center the Glyph. c: (str) The character represented by the Glyph. floor: (number) y-coordinate value where the bottom of the Glyph extends to. Must be < ceiling. ceiling: (number) y-coordinate value where the top of the Glyph extends to. Must be > floor. ax: (matplotlib Axes object) The axes object on which to draw the Glyph. width: (number > 0) x-coordinate span of the Glyph. vpad: (number in [0,1]) Amount of whitespace to leave within the Glyph bounding box above and below the actual Glyph. Specifically, in a glyph with height h = ceiling-floor, a margin of size h*vpad/2 will be left blank both above and below the rendered character. font_name: (str) The name of the font to use when rendering the Glyph. This is the value passed as the 'family' parameter when calling the matplotlib.font_manager.FontProperties constructor. font_weight: (str or number) The font weight to use when rendering the Glyph. Specifically, this is the value passed as the 'weight' parameter in the matplotlib.font_manager.FontProperties constructor. From matplotlib documentation: "weight: A numeric value in the range 0-1000 or one of 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'." color: (matplotlib color) Color to use for Glyph face. edgecolor: (matplotlib color) Color to use for Glyph edge. edgewidth: (number >= 0) Width of Glyph edge. dont_stretch_more_than: (str) This parameter limits the amount that a character will be horizontally stretched when rendering the Glyph. Specifying a wide character such as 'W' corresponds to less potential stretching, while specifying a narrow character such as '.' corresponds to more stretching. flip: (bool) If True, the Glyph will be rendered upside down. mirror: (bool) If True, a mirror image of the Glyph will be rendered. zorder: (number) Placement of Glyph within the z-stack of ax. alpha: (number in [0,1]) Opacity of the rendered Glyph. figsize: ([float, float]): The default figure size for the rendered glyph; only used if ax is not supplied by the user. """ @handle_errors def __init__(self, p, c, floor, ceiling, ax=None, width=0.95, vpad=0.00, font_name='sans', font_weight='bold', color='gray', edgecolor='black', edgewidth=0.0, dont_stretch_more_than='E', flip=False, mirror=False, zorder=None, alpha=1, figsize=(1, 1)): # Set attributes self.p = p self.c = c self.floor = floor self.ceiling = ceiling self.ax = ax self.width = width self.vpad = vpad self.flip = flip self.mirror = mirror self.zorder = zorder self.dont_stretch_more_than = dont_stretch_more_than self.alpha = alpha self.color = color self.edgecolor = edgecolor self.edgewidth = edgewidth self.font_name = font_name self.font_weight = font_weight self.figsize = figsize # Check inputs self._input_checks() # If ax is not set, set to current axes object if self.ax is None: fig, ax = plt.subplots(1, 1, figsize=self.figsize) self.ax = ax # Make patch self._make_patch() def set_attributes(self, **kwargs): """ Safe way to set the attributes of a Glyph object parameters ---------- **kwargs: Attributes and their values. """ # remove drawn patch if (self.patch is not None) and (self.patch.axes is not None): self.patch.remove() # set each attribute passed by user for key, value in kwargs.items(): # if key corresponds to a color, convert to rgb if key in ('color', 'edgecolor'): value = to_rgb(value) # save variable name self.__dict__[key] = value # remake patch self._make_patch() def draw(self): """ Draws Glyph given current parameters. parameters ---------- None. returns ------- None. """ # Draw character if self.patch is not None: self.ax.add_patch(self.patch) def _make_patch(self): """ Returns an appropriately scaled patch object corresponding to the Glyph. """ # Set height height = self.ceiling - self.floor # If height is zero, set patch to None and return None if height == 0.0: self.patch = None return None # Set bounding box for character, # leaving requested amount of padding above and below the character char_xmin = self.p - self.width / 2.0 char_ymin = self.floor + self.vpad * height / 2.0 char_width = self.width char_height = height - self.vpad * height bbox = Bbox.from_bounds(char_xmin, char_ymin, char_width, char_height) # Set font properties of Glyph font_properties = FontProperties(family=self.font_name, weight=self.font_weight) # Create a path for Glyph that does not yet have the correct # position or scaling tmp_path = TextPath((0, 0), self.c, size=1, prop=font_properties) # Create create a corresponding path for a glyph representing # the max stretched character msc_path = TextPath((0, 0), self.dont_stretch_more_than, size=1, prop=font_properties) # If need to flip char, do it within tmp_path if self.flip: transformation = Affine2D().scale(sx=1, sy=-1) tmp_path = transformation.transform_path(tmp_path) # If need to mirror char, do it within tmp_path if self.mirror: transformation = Affine2D().scale(sx=-1, sy=1) tmp_path = transformation.transform_path(tmp_path) # Get bounding box for temporary character and max_stretched_character tmp_bbox = tmp_path.get_extents() msc_bbox = msc_path.get_extents() # Compute horizontal stretch factor needed for tmp_path hstretch_tmp = bbox.width / tmp_bbox.width # Compute horizontal stretch factor needed for msc_path hstretch_msc = bbox.width / msc_bbox.width # Choose the MINIMUM of these two horizontal stretch factors. # This prevents very narrow characters, such as 'I', from being # stretched too much. hstretch = min(hstretch_tmp, hstretch_msc) # Compute the new character width, accounting for the # limit placed on the stretching factor char_width = hstretch * tmp_bbox.width # Compute how much to horizontally shift the character path char_shift = (bbox.width - char_width) / 2.0 # Compute vertical stetch factor needed for tmp_path vstretch = bbox.height / tmp_bbox.height # THESE ARE THE ESSENTIAL TRANSFORMATIONS # 1. First, translate char path so that lower left corner is at origin # 2. Then scale char path to desired width and height # 3. Finally, translate char path to desired position # char_path is the resulting path used for the Glyph transformation = Affine2D() \ .translate(tx=-tmp_bbox.xmin, ty=-tmp_bbox.ymin) \ .scale(sx=hstretch, sy=vstretch) \ .translate(tx=bbox.xmin + char_shift, ty=bbox.ymin) char_path = transformation.transform_path(tmp_path) # Convert char_path to a patch, which can now be drawn on demand self.patch = PathPatch(char_path, facecolor=self.color, zorder=self.zorder, alpha=self.alpha, edgecolor=self.edgecolor, linewidth=self.edgewidth) # add patch to axes self.ax.add_patch(self.patch) def _input_checks(self): """ check input parameters in the Logo constructor for correctness """ from numbers import Number # validate p check(isinstance(int(self.p), (float, int)), 'type(p) = %s must be a number' % type(self.p)) # check c is of type str check(isinstance(self.c, str), 'type(c) = %s; must be of type str ' % type(self.c)) # validate floor check(isinstance(self.floor, (float, int)), 'type(floor) = %s must be a number' % type(self.floor)) self.floor = float(self.floor) # validate ceiling check(isinstance(self.ceiling, (float, int)), 'type(ceiling) = %s must be a number' % type(self.ceiling)) self.ceiling = float(self.ceiling) # check floor <= ceiling check(self.floor <= self.ceiling, 'must have floor <= ceiling. Currently, ' 'floor=%f, ceiling=%f' % (self.floor, self.ceiling)) # check ax check((self.ax is None) or isinstance(self.ax, Axes), 'ax must be either a matplotlib Axes object or None.') # validate width check(isinstance(self.width, (float, int)), 'type(width) = %s; must be of type float or int ' % type(self.width)) check(self.width > 0, "width = %d must be > 0 " % self.width) # validate vpad check(isinstance(self.vpad, (float, int)), 'type(vpad) = %s; must be of type float or int ' % type(self.vpad)) check(0 <=self.vpad <1, "vpad = %d must be >= 0 and < 1 " % self.vpad) # validate font_name check(isinstance(self.font_name, str), 'type(font_name) = %s must be of type str' % type(self.font_name)) # check font_weight check(isinstance(self.font_weight, (str, int)), 'type(font_weight) = %s should either be a string or an int' % (type(self.font_weight))) if isinstance(self.font_weight, str): check(self.font_weight in VALID_FONT_WEIGHT_STRINGS, 'font_weight must be one of %s' % VALID_FONT_WEIGHT_STRINGS) elif isinstance(self.font_weight, int): check(0 <= self.font_weight <= 1000, 'font_weight must be in range [0,1000]') # check color safely self.color = get_rgb(self.color) # validate edgecolor safely self.edgecolor = get_rgb(self.edgecolor) # Check that edgewidth is a number check(isinstance(self.edgewidth, (float, int)), 'type(edgewidth) = %s must be a number' % type(self.edgewidth)) self.edgewidth = float(self.edgewidth) # Check that edgewidth is nonnegative check(self.edgewidth >= 0, ' edgewidth must be >= 0; is %f' % self.edgewidth) # check dont_stretch_more_than is of type str check(isinstance(self.dont_stretch_more_than, str), 'type(dont_stretch_more_than) = %s; must be of type str ' % type(self.dont_stretch_more_than)) # check that dont_stretch_more_than is a single character check(len(self.dont_stretch_more_than)==1, 'dont_stretch_more_than must have length 1; ' 'currently len(dont_stretch_more_than)=%d' % len(self.dont_stretch_more_than)) # check that flip is a boolean check(isinstance(self.flip, (bool, np.bool_)), 'type(flip) = %s; must be of type bool ' % type(self.flip)) self.flip = bool(self.flip) # check that mirror is a boolean check(isinstance(self.mirror, (bool, np.bool_)), 'type(mirror) = %s; must be of type bool ' % type(self.mirror)) self.mirror = bool(self.mirror) # validate zorder if self.zorder is not None : check(isinstance(self.zorder, (float, int)), 'type(zorder) = %s; must be of type float or int ' % type(self.zorder)) # Check alpha is a number check(isinstance(self.alpha, (float, int)), 'type(alpha) = %s must be a float or int' % type(self.alpha)) self.alpha = float(self.alpha) # Check 0 <= alpha <= 1.0 check(0 <= self.alpha <= 1.0, 'alpha must be between 0.0 and 1.0 (inclusive)') # validate that figsize is array=like check(isinstance(self.figsize, (tuple, list, np.ndarray)), 'type(figsize) = %s; figsize must be array-like.' % type(self.figsize)) self.figsize = tuple(self.figsize) # Just to pin down variable type. # validate length of figsize check(len(self.figsize) == 2, 'figsize must have length two.') # validate that each element of figsize is a number check(all([isinstance(n, (int, float)) and n > 0 for n in self.figsize]), 'all elements of figsize array must be numbers > 0.')
src/oci/database_management/models/database_storage_aggregate_metrics.py
Manny27nyc/oci-python-sdk
249
145322
<reponame>Manny27nyc/oci-python-sdk # coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class DatabaseStorageAggregateMetrics(object): """ The database storage metric values. """ def __init__(self, **kwargs): """ Initializes a new DatabaseStorageAggregateMetrics object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param storage_allocated: The value to assign to the storage_allocated property of this DatabaseStorageAggregateMetrics. :type storage_allocated: oci.database_management.models.MetricDataPoint :param storage_used: The value to assign to the storage_used property of this DatabaseStorageAggregateMetrics. :type storage_used: oci.database_management.models.MetricDataPoint :param storage_used_by_table_space: The value to assign to the storage_used_by_table_space property of this DatabaseStorageAggregateMetrics. :type storage_used_by_table_space: list[oci.database_management.models.MetricDataPoint] """ self.swagger_types = { 'storage_allocated': 'MetricDataPoint', 'storage_used': 'MetricDataPoint', 'storage_used_by_table_space': 'list[MetricDataPoint]' } self.attribute_map = { 'storage_allocated': 'storageAllocated', 'storage_used': 'storageUsed', 'storage_used_by_table_space': 'storageUsedByTableSpace' } self._storage_allocated = None self._storage_used = None self._storage_used_by_table_space = None @property def storage_allocated(self): """ Gets the storage_allocated of this DatabaseStorageAggregateMetrics. :return: The storage_allocated of this DatabaseStorageAggregateMetrics. :rtype: oci.database_management.models.MetricDataPoint """ return self._storage_allocated @storage_allocated.setter def storage_allocated(self, storage_allocated): """ Sets the storage_allocated of this DatabaseStorageAggregateMetrics. :param storage_allocated: The storage_allocated of this DatabaseStorageAggregateMetrics. :type: oci.database_management.models.MetricDataPoint """ self._storage_allocated = storage_allocated @property def storage_used(self): """ Gets the storage_used of this DatabaseStorageAggregateMetrics. :return: The storage_used of this DatabaseStorageAggregateMetrics. :rtype: oci.database_management.models.MetricDataPoint """ return self._storage_used @storage_used.setter def storage_used(self, storage_used): """ Sets the storage_used of this DatabaseStorageAggregateMetrics. :param storage_used: The storage_used of this DatabaseStorageAggregateMetrics. :type: oci.database_management.models.MetricDataPoint """ self._storage_used = storage_used @property def storage_used_by_table_space(self): """ Gets the storage_used_by_table_space of this DatabaseStorageAggregateMetrics. A list of the storage metrics grouped by TableSpace for a specific database. :return: The storage_used_by_table_space of this DatabaseStorageAggregateMetrics. :rtype: list[oci.database_management.models.MetricDataPoint] """ return self._storage_used_by_table_space @storage_used_by_table_space.setter def storage_used_by_table_space(self, storage_used_by_table_space): """ Sets the storage_used_by_table_space of this DatabaseStorageAggregateMetrics. A list of the storage metrics grouped by TableSpace for a specific database. :param storage_used_by_table_space: The storage_used_by_table_space of this DatabaseStorageAggregateMetrics. :type: list[oci.database_management.models.MetricDataPoint] """ self._storage_used_by_table_space = storage_used_by_table_space def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
scripts/sptk/do_ssl.py
unanan/setk
280
145325
#!/usr/bin/env python # wujian@2019 import argparse import numpy as np from libs.ssl import ml_ssl, srp_ssl, music_ssl from libs.data_handler import SpectrogramReader, NumpyReader from libs.utils import get_logger, EPSILON from libs.opts import StftParser, str2tuple logger = get_logger(__name__) def add_wta(masks_list, eps=1e-4): """ Produce winner-take-all masks """ masks = np.stack(masks_list, axis=-1) max_mask = np.max(masks, -1) wta_masks = [] for spk_mask in masks_list: m = np.where(spk_mask == max_mask, spk_mask, eps) wta_masks.append(m) return wta_masks def run(args): stft_kwargs = { "frame_len": args.frame_len, "frame_hop": args.frame_hop, "round_power_of_two": args.round_power_of_two, "window": args.window, "center": args.center, "transpose": True } steer_vector = np.load(args.steer_vector) logger.info(f"Shape of the steer vector: {steer_vector.shape}") num_doa, _, _ = steer_vector.shape min_doa, max_doa = str2tuple(args.doa_range) if args.output == "radian": angles = np.linspace(min_doa * np.pi / 180, max_doa * np.pi / 180, num_doa + 1) else: angles = np.linspace(min_doa, max_doa, num_doa + 1) spectrogram_reader = SpectrogramReader(args.wav_scp, **stft_kwargs) mask_reader = None if args.mask_scp: mask_reader = [NumpyReader(scp) for scp in args.mask_scp.split(",")] online = (args.chunk_len > 0 and args.look_back > 0) if online: logger.info("Set up in online mode: chunk_len " + f"= {args.chunk_len}, look_back = {args.look_back}") if args.backend == "srp": split_index = lambda sstr: [ tuple(map(int, p.split(","))) for p in sstr.split(";") ] srp_pair = split_index(args.srp_pair) srp_pair = ([t[0] for t in srp_pair], [t[1] for t in srp_pair]) logger.info(f"Choose srp-based algorithm, srp pair is {srp_pair}") else: srp_pair = None with open(args.doa_scp, "w") as doa_out: for key, stft in spectrogram_reader: # stft: M x T x F _, _, F = stft.shape if mask_reader: # T x F => F x T mask = [r[key] for r in mask_reader] if mask_reader else None if args.mask_eps >= 0 and len(mask_reader) > 1: mask = add_wta(mask, eps=args.mask_eps) mask = mask[0] # F x T => T x F if mask.shape[-1] != F: mask = mask.transpose() else: mask = None if not online: if srp_pair: idx = srp_ssl(stft, steer_vector, srp_pair=srp_pair, mask=mask) elif args.backend == "ml": idx = ml_ssl(stft, steer_vector, mask=mask, compression=-1, eps=EPSILON) else: idx = music_ssl(stft, steer_vector, mask=mask) doa = idx if args.output == "index" else angles[idx] logger.info(f"Processing utterance {key}: {doa:.4f}") doa_out.write(f"{key}\t{doa:.4f}\n") else: logger.info(f"Processing utterance {key}...") _, T, _ = stft.shape online_doa = [] for t in range(0, T, args.chunk_len): s = max(t - args.look_back, 0) if mask is not None: chunk_mask = mask[..., s:t + args.chunk_len] else: chunk_mask = None stft_chunk = stft[:, s:t + args.chunk_len, :] if srp_pair: idx = srp_ssl(stft_chunk, steer_vector, srp_pair=srp_pair, mask=chunk_mask) elif args.backend == "ml": idx = ml_ssl(stft_chunk, steer_vector, mask=chunk_mask, compression=-1, eps=EPSILON) else: idx = music_ssl(stft_chunk, steer_vector, mask=chunk_mask) doa = idx if args.output == "index" else angles[idx] online_doa.append(doa) doa_str = " ".join([f"{d:.4f}" for d in online_doa]) doa_out.write(f"{key}\t{doa_str}\n") logger.info(f"Processing {len(spectrogram_reader)} utterance done") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Command to ML/SRP based sound souce localization (SSL)." "Also see scripts/sptk/compute_steer_vector.py", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=[StftParser.parser]) parser.add_argument("wav_scp", type=str, help="Multi-channel wave rspecifier") parser.add_argument("steer_vector", type=str, help="Pre-computed steer vector in each " "directions (in shape A x M x F, A: number " "of DoAs, M: microphone number, F: FFT bins)") parser.add_argument("doa_scp", type=str, help="Wspecifier for estimated DoA") parser.add_argument("--backend", type=str, default="ml", choices=["ml", "srp", "music"], help="Which algorithm to choose for SSL") parser.add_argument("--srp-pair", type=str, default="", help="Microphone index pair to compute srp response") parser.add_argument("--doa-range", type=str, default="0,360", help="DoA range") parser.add_argument("--mask-scp", type=str, default="", help="Rspecifier for TF-masks in numpy format") parser.add_argument("--output", type=str, default="degree", choices=["radian", "degree", "index"], help="Output type of the DoA") parser.add_argument("--mask-eps", type=float, default=-1, help="Value of eps used in masking winner-take-all") parser.add_argument("--chunk-len", type=int, default=-1, help="Number frames per chunk " "(for online setups)") parser.add_argument("--look-back", type=int, default=125, help="Number of frames to look back " "(for online setups)") args = parser.parse_args() run(args)
holocron/utils/data/collate.py
MateoLostanlen/Holocron
181
145348
<reponame>MateoLostanlen/Holocron # Copyright (C) 2019-2021, <NAME>. # This program is licensed under the Apache License version 2. # See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details. import numpy as np import torch from torch import Tensor from torch.utils.data._utils.collate import default_collate from typing import Tuple, List __all__ = ['mixup_collate'] def mixup_collate(data: List[Tuple[Tensor, int]], alpha: float = 0.1) -> Tuple[Tensor, Tensor, Tensor, float]: """Implements a batch collate function with MixUp strategy from `"mixup: Beyond Empirical Risk Minimization" <https://arxiv.org/pdf/1710.09412.pdf>`_ Args: data: list of elements alpha: mixup factor Returns: interpolated input original target resorted target interpolation factor Example:: >>> import torch >>> from holocron import utils >>> loader = torch.utils.data.DataLoader(dataset, batch_size, collate_fn=utils.data.mixup_collate) """ inputs, targets = default_collate(data) # Sample lambda if alpha > 0: lam = np.random.beta(alpha, alpha) else: lam = 1 # Mix batch indices batch_size = inputs.size()[0] index = torch.randperm(batch_size) # Create the new input and targets inputs = lam * inputs + (1 - lam) * inputs[index, :] targets_a, targets_b = targets, targets[index] return inputs, targets_a, targets_b, lam
plugins/hanlp_demo/hanlp_demo/zh/demo_ner_dict.py
huminghe/HanLP
27,208
145352
<gh_stars>1000+ # -*- coding:utf-8 -*- # Author: hankcs # Date: 2021-04-29 11:06 import hanlp HanLP = hanlp.load(hanlp.pretrained.mtl.CLOSE_TOK_POS_NER_SRL_DEP_SDP_CON_ELECTRA_BASE_ZH) HanLP['ner/msra'].dict_whitelist = {'午饭后': 'TIME'} doc = HanLP('2021年测试高血压是138,时间是午饭后2点45,低血压是44', tasks='ner/msra') doc.pretty_print() print(doc['ner/msra']) # See https://hanlp.hankcs.com/docs/api/hanlp/components/mtl/tasks/ner/tag_ner.html
i3pystatus/updates/dnf.py
fkusei/i3pystatus
413
145357
from i3pystatus.updates import Backend import sys # Remove first dir from sys.path to avoid shadowing dnf module from # site-packages dir when this module executed directly on the CLI. __module_dir = sys.path.pop(0) try: import dnf HAS_DNF_BINDINGS = True except ImportError: HAS_DNF_BINDINGS = False finally: # Replace the directory we popped earlier sys.path.insert(0, __module_dir) class Dnf(Backend): """ Gets updates for RPM-based distributions using the `DNF API`_ The notification body consists of the package name and version for each available update. .. _`DNF API`: http://dnf.readthedocs.io/en/latest/api.html .. note:: Users running i3pystatus from a virtualenv may see the updates display as ``?`` due to an inability to import the ``dnf`` module. To ensure that i3pystatus can access the DNF Python bindings, the virtualenv should be created with ``--system-site-packages``. If using `pyenv-virtualenv`_, the virtualenv must additionally be created to use the system Python binary: .. code-block:: bash $ pyenv virtualenv --system-site-packages --python=/usr/bin/python3 pyenv_name To invoke i3pystatus with this virtualenv, your ``bar`` section in ``~/.config/i3/config`` would look like this: .. code-block:: bash bar { position top status_command PYENV_VERSION=pyenv_name python /path/to/i3pystatus/script.py } .. _`pyenv-virtualenv`: https://github.com/yyuu/pyenv-virtualenv """ @property def updates(self): if HAS_DNF_BINDINGS: try: with dnf.Base() as base: base.read_all_repos() base.fill_sack() upgrades = base.sack.query().upgrades().run() notif_body = ''.join([ '%s: %s-%s\n' % (pkg.name, pkg.version, pkg.release) for pkg in upgrades ]) return len(upgrades), notif_body except Exception as exc: self.logger.error('DNF update check failed', exc_info=True) return '?', exc.__str__() else: return '?', 'Failed to import DNF Python bindings' Backend = Dnf if __name__ == "__main__": """ Call this module directly; Print the update count and notification body. """ print("Updates: {}\n\n{}".format(*Backend().updates))
dev/mlsqltestssupport/aliyun/upload_release.py
zhuimengrenweijian/mlsql
1,123
145369
<filename>dev/mlsqltestssupport/aliyun/upload_release.py # -*- coding: utf-8 -*- import os import mlsqltestssupport.aliyun.config as config if not os.environ['MLSQL_RELEASE_TAR']: raise ValueError('MLSQL_RELEASE_TAR should be configured') fileName = os.environ['MLSQL_RELEASE_TAR'] bucket = config.ossClient() bucket.put_object_from_file(fileName.split("/")[-1], fileName) print("success uploaded")
VisualBERT/mmf/datasets/builders/coco2017/masked_dataset.py
Fostereee/Transformer-MM-Explainability
322
145375
<filename>VisualBERT/mmf/datasets/builders/coco2017/masked_dataset.py # Copyright (c) Facebook, Inc. and its affiliates. from VisualBERT.mmf.common.typings import MMFDatasetConfigType from VisualBERT.mmf.datasets.builders.localized_narratives.masked_dataset import ( MaskedLocalizedNarrativesDatasetMixin, ) from VisualBERT.mmf.datasets.mmf_dataset import MMFDataset class MaskedCoco2017Dataset(MaskedLocalizedNarrativesDatasetMixin, MMFDataset): def __init__( self, config: MMFDatasetConfigType, dataset_type: str, index: int, *args, **kwargs, ): super().__init__( "masked_coco2017", config, dataset_type, index, *args, **kwargs )
python/spinn/data/__init__.py
pramitmallick/spinn
103
145384
<gh_stars>100-1000 T_SHIFT = 0 T_REDUCE = 1 T_SKIP = 2
bhagavad_gita_api/cronjobs/celery.py
ayushsoni1010/bhagavad-gita-api
133
145397
import requests from celery import Celery from celery.schedules import crontab from bhagavad_gita_api.config import settings app = Celery( "cronjobs", broker=settings.CELERY_BROKER, backend=settings.CELERY_BACKEND, ) app.conf.timezone = "Asia/Calcutta" @app.task def set_verse(): url = "{}/v2/set-daily-verse/".format(settings.CRONJOB_BASE_URL) data = { "accept": "application/json", "X-API-KEY": settings.TESTER_API_KEY, } r = requests.post(url=url, data=data, headers=data) print(r) app.conf.beat_schedule = { "setup-verse-everyday": { "task": "bhagavad_gita_api.cronjobs.celery.set_verse", "schedule": crontab(hour=0, minute=0), }, } if __name__ == "__main__": app.start()
Contributions/randomPassword.py
OluSure/Hacktoberfest2021-1
215
145411
#!/usr/bin/env python3 #RamSalado | BeeHackers import random # This library it´s necesary k="abcdefghijklmnopqrstuvwxyz123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ#@!][}{?¿%&" # Characters that the password will include len = 12 # Password length p="".join(random.sample(k,len)) print(p)
tensorflow/tools/tilecreator_t.py
fabian57fabian/tempoGAN
158
145412
#****************************************************************************** # # tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow # Copyright 2018 <NAME>, <NAME>, <NAME>, <NAME> # # This program is free software, distributed under the terms of the # Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # #****************************************************************************** import os, math import shutil, sys from random import seed, random, randrange import uniio import numpy as np import scipy.misc import scipy.ndimage import imageio # check whether matplotlib is available to generate vector/quiver plots import imp try: imp.find_module('matplotlib') import matplotlib.pyplot found_matplotlib = True except ImportError: found_matplotlib = False #import matplotlib.pyplot as plt # global channel keys, have to be one char C_KEY_DEFAULT = 'd' C_KEY_VELOCITY = 'v' C_KEY_VORTICITY = 'x' C_KEY_POSITION = 'p' DATA_KEY_LOW = 0 DATA_KEY_HIGH= 1 #keys for augmentation operations AOPS_KEY_ROTATE = 'rot' AOPS_KEY_SCALE = 'scale' AOPS_KEY_ROT90 = 'rot90' AOPS_KEY_FLIP = 'flip' seed( 42 ) # default channel layouts C_LAYOUT = { 'dens':C_KEY_DEFAULT, 'dens_vel':'d,vx,vy,vz' } class TileCreator(object): def __init__(self, tileSizeLow, simSizeLow=64, upres=2, dim=2, dim_t=1, overlapping=0, densityMinimum=0.02, premadeTiles=False, partTrain=0.8, partTest=0.2, partVal=0, channelLayout_low=C_LAYOUT['dens_vel'], channelLayout_high=C_LAYOUT['dens'], highIsLabel=False, loadPN=False, padding=0): ''' tileSizeLow, simSizeLow: int, [int,int] if 2D, [int,int,int] channelLayout: 'key,key,...' the keys are NOT case sensitive and leading and trailing whitespace characters are REMOVED. key: default: d velocity: v[label](x|y|z) label can be arbitrary or empty, key must be unique and x,y must exist while z is optional in 2D, x,y,z must exist in 3D. if x does not exist y,z will be ignored (treaded as 'd'). rest is not yet supported premadeTiles: cut regular tiles when loading data, can't use data augmentation part(Train|Test|Val): relative size of the different data sets highIsLabel: high data is not augmented loadHigh: simPath: path to the uni simulation files loadPath: packed simulations are stored here ''' # DATA DIMENSION self.dim_t = dim_t # same for hi_res or low_res if dim!=2 and dim!=3: self.TCError('Data dimension must be 2 or 3.') self.dim = dim # TILE SIZE if np.isscalar(tileSizeLow): self.tileSizeLow = [tileSizeLow, tileSizeLow, tileSizeLow] elif len(tileSizeLow)==2 and self.dim==2: self.tileSizeLow = [1]+tileSizeLow elif len(tileSizeLow)==3: self.tileSizeLow = tileSizeLow else: self.TCError('Tile size mismatch.') self.tileSizeLow = np.asarray(self.tileSizeLow) #SIM SIZE if np.isscalar(simSizeLow): self.simSizeLow = [simSizeLow, simSizeLow, simSizeLow] elif len(simSizeLow)==2 and self.dim==2: self.simSizeLow = [1]+simSizeLow elif len(simSizeLow)==3: self.simSizeLow = simSizeLow else: self.TCError('Simulation size mismatch.') self.simSizeLow = np.asarray(self.simSizeLow) if upres < 1: self.TCError('Upres must be at least 1.') self.upres = upres if not highIsLabel: self.tileSizeHigh = self.tileSizeLow*upres self.simSizeHigh = self.simSizeLow*upres else: self.tileSizeHigh = np.asarray([1]) self.simSizeHigh = np.asarray([1]) if self.dim==2: self.tileSizeLow[0]=1 self.tileSizeHigh[0]=1 self.simSizeLow[0]=1 self.simSizeHigh[0]=1 if np.less(self.simSizeLow, self.tileSizeLow).any(): self.TCError('Tile size {} can not be larger than sim size {}, {}.'.format(self.tileSizeLow,self.simSizeLow)) if densityMinimum<0.: self.TCError('densityMinimum can not be negative.') self.densityMinimum = densityMinimum self.premadeTiles = premadeTiles self.useDataAug = False #CHANNELS self.c_lists = {} self.c_low, self.c_lists[DATA_KEY_LOW] = self.parseChannels(channelLayout_low) self.c_high, self.c_lists[DATA_KEY_HIGH] = self.parseChannels(channelLayout_high) # print info print('\n') print('Dimension: {}, time dimension: {}'.format(self.dim,self.dim_t)) print('Low-res data:') print(' channel layout: {}'.format(self.c_low)) print(' default channels: {}'.format(self.c_lists[DATA_KEY_LOW][C_KEY_DEFAULT])) if len(self.c_lists[DATA_KEY_LOW][C_KEY_VELOCITY])>0: print(' velocity channels: {}'.format(self.c_lists[DATA_KEY_LOW][C_KEY_VELOCITY])) if len(self.c_lists[DATA_KEY_LOW][C_KEY_VORTICITY])>0: print(' vorticity channels: {}'.format(self.c_lists[DATA_KEY_LOW][C_KEY_VORTICITY])) print('High-res data:') if highIsLabel: print(' is Label') print(' channel layout: {}'.format(self.c_high)) print(' default channels: {}'.format(self.c_lists[DATA_KEY_HIGH][C_KEY_DEFAULT])) if len(self.c_lists[DATA_KEY_HIGH][C_KEY_VELOCITY])>0: print(' velocity channels: {}'.format(self.c_lists[DATA_KEY_HIGH][C_KEY_VELOCITY])) if len(self.c_lists[DATA_KEY_HIGH][C_KEY_VORTICITY])>0: print(' vorticity channels: {}'.format(self.c_lists[DATA_KEY_HIGH][C_KEY_VORTICITY])) #self.channels=len(self.c) self.data_flags = { DATA_KEY_LOW:{ 'isLabel':False, 'channels':len(self.c_low), C_KEY_VELOCITY:len(self.c_lists[DATA_KEY_LOW][C_KEY_VELOCITY])>0, C_KEY_VORTICITY:len(self.c_lists[DATA_KEY_LOW][C_KEY_VORTICITY])>0, C_KEY_POSITION:False }, DATA_KEY_HIGH:{ 'isLabel':highIsLabel, 'channels':len(self.c_high), C_KEY_VELOCITY:len(self.c_lists[DATA_KEY_HIGH][C_KEY_VELOCITY])>0, C_KEY_VORTICITY:len(self.c_lists[DATA_KEY_HIGH][C_KEY_VORTICITY])>0, C_KEY_POSITION:False } } if loadPN: self.TCError('prev and next tiles not supported.') self.hasPN = loadPN self.padding=padding #if self.hasPN: #[z,y,x, velocities an/or position if enabled (density,vel,vel,vel, pos, pos [,pos])] #DATA SHAPES self.tile_shape_low = np.append(self.tileSizeLow, [self.data_flags[DATA_KEY_LOW]['channels']]) self.frame_shape_low = np.append(self.simSizeLow, [self.data_flags[DATA_KEY_LOW]['channels']]) if not self.data_flags[DATA_KEY_HIGH]['isLabel']: self.tile_shape_high = np.append(self.tileSizeHigh, [self.data_flags[DATA_KEY_HIGH]['channels']]) self.frame_shape_high = np.append(self.simSizeHigh, [self.data_flags[DATA_KEY_HIGH]['channels']]) else: self.tile_shape_high = self.tileSizeHigh[:] self.frame_shape_high = self.simSizeHigh[:] self.densityThreshold = (self.densityMinimum * self.tile_shape_low[0] * self.tile_shape_low[1] * self.tile_shape_low[2]) self.data = { DATA_KEY_LOW:[], DATA_KEY_HIGH:[] } all=partTrain+partTest+partVal self.part_train=partTrain/all self.part_test=partTest/all self.part_validation=partVal/all def initDataAugmentation(self, rot=2, minScale=0.85, maxScale=1.15 ,flip=True): ''' set up data augmentation rot: 1: 90 degree rotations; 2: full rotation; else: nop rotation Scale: if both 1 disable scaling ''' self.useDataAug = True """ specify the special augmentation operation needed for some channel types here will only be applyed if the specified channel type is in the data ** Tempo Datum may have multiple channels as coherent frames, [batch, z, y, x, t*channels] ** They are reshaped first before these aops, [batch, z, y, x, t, channels], and then reshape back ** Because of this extra time dimention, all aops can only do isolate calculations, for e.g., value scaling, ** Any calculation relay on neighborhood will be wrong, for e.g., spacial scaling (zoom). """ self.aops = { DATA_KEY_LOW:{ AOPS_KEY_ROTATE:{ C_KEY_VELOCITY:self.rotateVelocities, C_KEY_VORTICITY:self.rotateVelocities }, AOPS_KEY_SCALE:{ C_KEY_VELOCITY:self.scaleVelocities, C_KEY_VORTICITY:self.scaleVelocities }, AOPS_KEY_ROT90:{ C_KEY_VELOCITY:self.rotate90Velocities, C_KEY_VORTICITY:self.rotate90Velocities }, AOPS_KEY_FLIP:{ C_KEY_VELOCITY:self.flipVelocities, C_KEY_VORTICITY:self.flipVelocities } }, DATA_KEY_HIGH:{ AOPS_KEY_ROTATE:{ C_KEY_VELOCITY:self.rotateVelocities, C_KEY_VORTICITY:self.rotateVelocities }, AOPS_KEY_SCALE:{ C_KEY_VELOCITY:self.scaleVelocities, C_KEY_VORTICITY:self.scaleVelocities }, AOPS_KEY_ROT90:{ C_KEY_VELOCITY:self.rotate90Velocities, C_KEY_VORTICITY:self.rotate90Velocities }, AOPS_KEY_FLIP:{ C_KEY_VELOCITY:self.flipVelocities, C_KEY_VORTICITY:self.flipVelocities } } } msg = 'data augmentation: ' if rot==2: self.do_rotation = True self.do_rot90 = False msg += 'rotation, ' elif rot==1: self.do_rotation = False self.do_rot90 = True msg += 'rot90, ' z=(2,1) nz=(1,2) x=(1,0) y=(0,2) nx=(0,1) ny=(2,0) # thanks to http://www.euclideanspace.com/maths/discrete/groups/categorise/finite/cube/ self.cube_rot = {2: [[],[z],[z,z],[nz]], 3: [[],[x],[y],[x,x],[x,y],[y,x],[y,y],[nx],[x,x,y],[x,y,x],[x,y,y],[y,x,x],[y,y,x],[ny],[nx,y],[x,x,y,x],[x,x,y,y],[x,y,x,x],[x,ny],[y,nx],[ny,x],[nx,y,x],[x,y,nx],[x,ny,x]]} else: self.do_rotation = False self.do_rot90 = False self.scaleFactor = [minScale, maxScale] if (self.scaleFactor[0]==1 and self.scaleFactor[1]==1): self.do_scaling = False else: self.do_scaling = True msg += 'scaling, ' self.do_flip = flip if self.do_flip: msg += 'flip' msg += '.' print(msg) self.interpolation_order = 1 self.fill_mode = 'constant' def addData(self, low, high): ''' add data, tiles if premadeTiles, frames otherwise. low, high: list of or single 3D data np arrays ''' # check data shape low = np.asarray(low) high = np.asarray(high) if not self.data_flags[DATA_KEY_HIGH]['isLabel']: if len(low.shape)!=len(high.shape): #high-low mismatch self.TCError('Data shape mismatch. Dimensions: {} low vs {} high. Dimensions must match or use highIsLabel.'.format(len(low.shape),len(high.shape)) ) if not (len(low.shape)==4 or len(low.shape)==5): #not single frame or sequence of frames self.TCError('Input must be single 3D data or sequence of 3D data. Format: ([batch,] z, y, x, channels). For 2D use z=1.') if (low.shape[-1]!=(self.dim_t * self.data_flags[DATA_KEY_LOW]['channels'])): self.TCError('Dim_t ({}) * Channels ({}, {}) configured for LOW-res data don\'t match channels ({}) of input data.'.format(self.dim_t, self.data_flags[DATA_KEY_LOW]['channels'], self.c_low, low.shape[-1]) ) if not self.data_flags[DATA_KEY_HIGH]['isLabel']: if (high.shape[-1]!=(self.dim_t * self.data_flags[DATA_KEY_HIGH]['channels'])): self.TCError('Dim_t ({}) * Channels ({}, {}) configured for HIGH-res data don\'t match channels ({}) of input data.'.format(self.dim_t, self.data_flags[DATA_KEY_HIGH]['channels'], self.c_high, high.shape[-1]) ) low_shape = low.shape high_shape = high.shape if len(low.shape)==5: #sequence if low.shape[0]!=high.shape[0]: #check amount self.TCError('Unequal amount of low ({}) and high ({}) data.'.format(low.shape[1], high.shape[1])) # get single data shape low_shape = low_shape[1:] if not self.data_flags[DATA_KEY_HIGH]['isLabel']: high_shape = high_shape[1:] else: high_shape = [1] else: #single low = [low] high = [high] if self.premadeTiles: if not (self.dim_t == 1): self.TCError('Currently, Dim_t = {} > 1 is not supported by premade tiles'.format(self.dim_t)) if not np.array_equal(low_shape, self.tile_shape_low) or not np.array_equal(high_shape,self.tile_shape_high): self.TCError('Tile shape mismatch: is - specified\n\tlow: {} - {}\n\thigh {} - {}'.format(low_shape, self.tile_shape_low, high_shape,self.tile_shape_high)) else: single_frame_low_shape = list(low_shape) single_frame_high_shape = list(high_shape) single_frame_low_shape[-1] = low_shape[-1] // self.dim_t if not self.data_flags[DATA_KEY_HIGH]['isLabel']: single_frame_high_shape[-1] = high_shape[-1] // self.dim_t if not np.array_equal(single_frame_low_shape, self.frame_shape_low) or not np.array_equal(single_frame_high_shape,self.frame_shape_high): self.TCError('Frame shape mismatch: is - specified\n\tlow: {} - {}\n\thigh: {} - {}, given dim_t as {}'.format(single_frame_low_shape, self.frame_shape_low, single_frame_high_shape,self.frame_shape_high, self.dim_t)) self.data[DATA_KEY_LOW].extend(low) self.data[DATA_KEY_HIGH].extend(high) print('\n') print('Added {} datasets. Total: {}'.format(low.shape[0], len(self.data[DATA_KEY_LOW]))) self.splitSets() def splitSets(self): ''' calculate the set borders for training, testing and validation set ''' length = len(self.data[DATA_KEY_LOW]) end_train = int( length * self.part_train ) end_test = end_train + int( length * self.part_test ) #just store the borders of the different sets to avoid data duplication self.setBorders = [end_train, end_test, length] print('Training set: {}'.format(self.setBorders[0])) print('Testing set: {}'.format(self.setBorders[1]-self.setBorders[0])) print('Validation set: {}'.format(self.setBorders[2]-self.setBorders[1])) def clearData(self): ''' clears the data buffer ''' self.data = { DATA_KEY_LOW:[], DATA_KEY_HIGH:[] } def createTiles(self, data, tileShape, strides=-1): ''' create tiles from a single frame. fixed, regular pattern strides: <=0 or tileShape is normal, otherwise create overlapping tiles ''' dataShape = data.shape #2D sim: [1,res,res,channels] pad = [self.padding,self.padding,self.padding,0] if np.isscalar(strides): if strides <= 0: strides = tileShape else: strides = [strides,strides,strides] if dataShape[0]<=1: pad[0] = 0 strides[0] = 1 channels = dataShape[3] noTiles = [ (dataShape[0]-tileShape[0])//strides[0]+1, (dataShape[1]-tileShape[1])//strides[1]+1, (dataShape[2]-tileShape[2])//strides[2]+1 ] tiles = [] for tileZ in range(0, noTiles[0]): for tileY in range(0, noTiles[1]): for tileX in range(0, noTiles[2]): idx_from=[tileZ*strides[0], tileY*strides[1], tileX*strides[2]] idx_to=[idx_from[0]+tileShape[0], idx_from[1]+tileShape[1], idx_from[2]+tileShape[2]] currTile=data[ idx_from[0]:idx_to[0], idx_from[1]:idx_to[1], idx_from[2]:idx_to[2], :] if self.padding > 0: currTile = np.pad(currTile, pad, 'edge') tiles.append(currTile) return np.array(tiles) def cutTile(self, data, tileShape, offset=[0,0,0]): ''' cut a tile of with shape and offset ''' offset = np.asarray(offset) tileShape = np.asarray(tileShape) tileShape[-1] = data.shape[-1] if np.less(data.shape[:3], tileShape[:3]+offset[:3]).any(): self.TCError('Can\'t cut tile with shape {} and offset{} from data with shape {}.'.format(tileShape, offset, data.shape)) tile = data[offset[0]:offset[0]+tileShape[0], offset[1]:offset[1]+tileShape[1], offset[2]:offset[2]+tileShape[2], :] if not np.array_equal(tile.shape,tileShape): self.TCError('Wrong tile shape after cutting. is: {}. goal: {}.'.format(tile.shape,tileShape)) return tile ##################################################################################### # batch creation ##################################################################################### def selectRandomTiles(self, selectionSize, isTraining=True, augment=False, tile_t = 1): ''' main method to create baches Return: shape: [selectionSize, z, y, x, channels * tile_t] if 2D z = 1 channels: density, [vel x, vel y, vel z], [pos x, pox y, pos z] ''' if isTraining: if self.setBorders[0]<1: self.TCError('no training data.') else: if (self.setBorders[1] - self.setBorders[0])<1: self.TCError('no test data.') if(tile_t > self.dim_t): self.TCError('not enough coherent frames. Requested {}, available {}'.format(tile_t, self.dim_t)) batch_low = [] batch_high = [] for i in range(selectionSize): if augment and self.useDataAug: #data augmentation low, high = self.generateTile(isTraining, tile_t) else: #cut random tile without augmentation low, high = self.getRandomDatum(isTraining, tile_t) if not self.premadeTiles: low, high = self.getRandomTile(low, high) batch_low.append(low) batch_high.append(high) return np.asarray(batch_low), np.asarray(batch_high) def generateTile(self, isTraining=True, tile_t = 1): ''' generates a random low-high pair of tiles (data augmentation) ''' # get a frame, is a copy to avoid transormations affecting the raw dataset data = {} data[DATA_KEY_LOW], data[DATA_KEY_HIGH] = self.getRandomDatum(isTraining, tile_t) if not self.premadeTiles: #cut a tile for faster transformation if self.do_scaling or self.do_rotation: factor = 1 if self.do_rotation: # or self.do_scaling: factor*=1.5 # scaling: to avoid size errors caused by rounding if self.do_scaling: scaleFactor = np.random.uniform(self.scaleFactor[0], self.scaleFactor[1]) factor/= scaleFactor tileShapeLow = np.ceil(self.tile_shape_low*factor) if self.dim==2: tileShapeLow[0] = 1 data[DATA_KEY_LOW], data[DATA_KEY_HIGH] = self.getRandomTile(data[DATA_KEY_LOW], data[DATA_KEY_HIGH], tileShapeLow.astype(int)) #random scaling, changes resolution if self.do_scaling: data = self.scale(data, scaleFactor) bounds = np.zeros(4) #rotate if self.do_rotation: bounds = np.array(data[DATA_KEY_LOW].shape)*0.16 #bounds applied on all sides, 1.5*(1-2*0.16)~1 data = self.rotate(data) #get a tile data[DATA_KEY_LOW], data[DATA_KEY_HIGH] = self.getRandomTile(data[DATA_KEY_LOW], data[DATA_KEY_HIGH], bounds=bounds) #includes "shifting" if self.do_rot90: rot = np.random.choice(self.cube_rot[self.dim]) for axis in rot: data = self.rotate90(data, axis) #flip once if self.do_flip: axis = np.random.choice(4) if axis < 3: # axis < self.dim data = self.flip(data, [axis]) # check tile size target_shape_low = np.copy(self.tile_shape_low) target_shape_high = np.copy(self.tile_shape_high) target_shape_low[-1] *= tile_t target_shape_high[-1] *= tile_t if not np.array_equal(data[DATA_KEY_LOW].shape,target_shape_low) or (not np.array_equal(data[DATA_KEY_HIGH].shape,target_shape_high) and not self.data_flags[DATA_KEY_HIGH]['isLabel']): self.TCError('Wrong tile shape after data augmentation. is: {},{}. goal: {},{}.'.format(data[DATA_KEY_LOW].shape, data[DATA_KEY_HIGH].shape, target_shape_low, target_shape_high)) return data[DATA_KEY_LOW], data[DATA_KEY_HIGH] def getRandomDatum(self, isTraining=True, tile_t = 1): '''returns a copy of a random frame''' if isTraining: randNo = randrange(0, self.setBorders[0]) else: randNo = randrange(self.setBorders[0], self.setBorders[1]) randFrame = 0 if tile_t<self.dim_t: randFrame = randrange(0, self.dim_t - tile_t) else: tile_t = self.dim_t return self.getDatum(randNo*self.dim_t+randFrame, tile_t) def getDatum(self, index, tile_t = 1): '''returns a copy of the indicated frame or tile''' begin_ch = 0 if(self.dim_t > 1): begin_ch = (index % self.dim_t) * self.tile_shape_low[-1] end_ch = begin_ch + tile_t * self.tile_shape_low[-1] begin_ch_y = 0 if(self.dim_t > 1): begin_ch_y = (index % self.dim_t) * self.tile_shape_high[-1] end_c_h_y = begin_ch_y + tile_t * self.tile_shape_high[-1] if not self.data_flags[DATA_KEY_HIGH]['isLabel']: return np.copy(self.data[DATA_KEY_LOW][index//self.dim_t][:,:,:,begin_ch:end_ch]), np.copy(self.data[DATA_KEY_HIGH][index//self.dim_t][:,:,:,begin_ch_y:end_c_h_y]) else: return np.copy(self.data[DATA_KEY_LOW][index//self.dim_t][:,:,:,begin_ch:end_ch]), np.copy(self.data[DATA_KEY_HIGH][index//self.dim_t]) def getRandomTile(self, low, high, tileShapeLow=None, bounds=[0,0,0,0]): #bounds to avoid mirrored parts ''' cut a random tile (low and high) from a given frame, considers densityMinimum bounds: ignore edges of frames, used to discard mirrored parts after rotation ''' if tileShapeLow is None: tileShapeLow = np.copy(self.tile_shape_low) # use copy is very important!!! tileShapeHigh = tileShapeLow*self.upres frameShapeLow = np.asarray(low.shape) if len(low.shape)!=4 or len(tileShapeLow)!=4: self.TCError('Data shape mismatch.') if len(high.shape)!=4 and not self.data_flags[DATA_KEY_HIGH]['isLabel']: self.TCError('Data shape mismatch.') start = np.ceil(bounds) end = frameShapeLow - tileShapeLow + np.ones(4) - start offset_up = np.array([self.upres, self.upres, self.upres]) if self.dim==2: start[0] = 0 end[0] = 1 offset_up[0] = 1 tileShapeHigh[0] = 1 # check if possible to cut tile if np.amin((end-start)[:3]) < 0: self.TCError('Can\'t cut tile {} from frame {} with bounds {}.'.format(tileShapeLow, frameShapeLow, start)) # cut tile hasMinDensity = False i = 1 while (not hasMinDensity) and i<20: offset = np.asarray([randrange(start[0], end[0]), randrange(start[1], end[1]), randrange(start[2], end[2])]) lowTile = self.cutTile(low, tileShapeLow, offset) offset *= offset_up if not self.data_flags[DATA_KEY_HIGH]['isLabel']: highTile = self.cutTile(high, tileShapeHigh, offset) else: highTile = high hasMinDensity = self.hasMinDensity(lowTile) i+=1 return lowTile, highTile ##################################################################################### # AUGMENTATION ##################################################################################### def special_aug(self, data, ops_key, param): """ wrapper to call the augmentation operations specified in self.aops in initAugmentation """ for data_key in data: if self.data_flags[data_key]['isLabel']: continue orig_shape = data[data_key].shape tile_t = orig_shape[-1] // self.data_flags[data_key]['channels'] data_array = data[data_key] if(tile_t > 1): data_array = data[data_key].reshape( (-1, tile_t, self.data_flags[data_key]['channels']) ) for c_key, op in self.aops[data_key][ops_key].items(): if self.data_flags[data_key][c_key]: data_array = op(data_array, self.c_lists[data_key][c_key], param) if (tile_t > 1): data[data_key] = data_array.reshape(orig_shape) return data def rotate(self, data): ''' random uniform rotation of low and high data of a given frame ''' #check if single frame #2D: if self.dim==2: theta = np.pi * np.random.uniform(0, 2) rotation_matrix = np.array([[1, 0, 0, 0 ], [0, np.cos(theta), -np.sin(theta), 0], [0, np.sin(theta), np.cos(theta) , 0], [0, 0, 0, 1] ]) #3D: elif self.dim==3: # random uniform rotation in 3D quat = np.random.normal(size=4) quat/= np.linalg.norm(quat) q = np.outer(quat, quat)*2 rotation_matrix = np.array([[1-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0], [ q[1, 2]+q[3, 0], 1-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0], [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1-q[1, 1]-q[2, 2], 0], [ 0, 0, 0, 1]]) data = self.special_aug(data, AOPS_KEY_ROTATE, rotation_matrix) for data_key in data: if not self.data_flags[data_key]['isLabel']: data[data_key] = self.applyTransform(data[data_key], rotation_matrix.T) return data def rotate_simple(self, low, high, angle): ''' use a different method for rotation. about 30-40% faster than with rotation matrix, but only one axis. ''' if len(low.shape)!=4 or len(high.shape)!=4: self.TCError('Data shape mismatch.') #test rot around z (axis order z,y,x,c) low = scipy.ndimage.rotate(low, angle, [1,2] , reshape=False, order=self.interpolation_order, mode=self.fill_mode, cval=1.0) high = scipy.ndimage.rotate(high, angle, [1,2] , reshape=False, order=self.interpolation_order, mode=self.fill_mode, cval=1.0) return low, high def rotateVelocities(self, datum, c_list, rotationMatrix): ''' rotate vel vectors (channel 1-3) ''' rotation3 = rotationMatrix[:3, :3] rotation2 = rotationMatrix[1:3, 1:3] channels = np.split(datum, datum.shape[-1], -1) for v in c_list: if len(v) == 3: # currently always ends here!! even for 2D, #z,y,x to match rotation matrix vel = np.stack([channels[v[2]].flatten(),channels[v[1]].flatten(),channels[v[0]].flatten()]) vel = rotation3.dot(vel) channels[v[2]] = np.reshape(vel[0], channels[v[2]].shape) channels[v[1]] = np.reshape(vel[1], channels[v[1]].shape) channels[v[0]] = np.reshape(vel[2], channels[v[0]].shape) if len(v) == 2: vel = np.concatenate([channels[v[1]],channels[v[0]]], -1) #y,x to match rotation matrix shape = vel.shape vel = np.reshape(vel, (-1, 2)) vel = np.reshape(rotation2.dot(vel.T).T, shape) vel = np.split(vel, 2, -1) channels[v[1]] = vel[0] channels[v[0]] = vel[1] return np.concatenate(channels, -1) def rotate90(self, data, axes): ''' rotate the frame by 90 degrees from the first axis counterclockwise to the second axes: 2 int, from axis to axis; see np.rot90 0,1,2 -> z,y,x ''' if len(axes)!=2: self.TCError('need 2 axes for rotate90.') for data_key in data: if not self.data_flags[data_key]['isLabel']: data[data_key] = np.rot90(data[data_key], axes=axes) data = self.special_aug(data, AOPS_KEY_ROT90, axes) return data def rotate90Velocities(self, datum, c_list, axes): if len(axes)!=2: self.TCError('need 2 axes for rotate90.') channels = np.split(datum, datum.shape[-1], -1) for v in c_list: #axes z,y,x -> vel x,y,z: 0,1,2 -> 2,1,0 channels[v[-axes[0]+2]], channels[v[-axes[1]+2]] = -channels[v[-axes[1]+2]], channels[v[-axes[0]+2]] return np.concatenate(channels, -1) def flip(self, data, axes, isFrame=True): #axes=list, flip multiple at once ''' flip low and high data (single frame/tile) along the specified axes low, high: data format: (z,x,y,c) axes: list of axis indices 0,1,2-> z,y,x ''' # axis: 0,1,2 -> z,y,x if not isFrame: axes = np.asarray(axes) + np.ones(axes.shape) #flip tiles/frames for axis in axes: for data_key in data: if not self.data_flags[data_key]['isLabel']: data[data_key] = np.flip(data[data_key], axis) data = self.special_aug(data, AOPS_KEY_FLIP, axes) return data def flipVelocities(self, datum, c_list, axes): ''' flip velocity vectors along the specified axes low: data with velocity to flip (4 channels: d,vx,vy,vz) axes: list of axis indices 0,1,2-> z,y,x ''' # !axis order: data z,y,x channels = np.split(datum, datum.shape[-1], -1) for v in c_list: # x,y,[z], 2,1,0 if 2 in axes: # flip vel x channels[v[0]] *= (-1) if 1 in axes: channels[v[1]] *= (-1) if 0 in axes and len(v)==3: channels[v[2]] *= (-1) return np.concatenate(channels, -1) def scale(self, data, factor): ''' changes frame resolution to "round((factor) * (original resolution))" ''' # only same factor in every dim for now. how would it affect vel scaling? # check for 2D scale = [factor, factor, factor, 1] #single frame if self.dim==2: scale[0] = 1 # to ensure high/low ration stays the same scale = np.round(np.array(data[DATA_KEY_LOW].shape) * scale )/np.array(data[DATA_KEY_LOW].shape) if len(data[DATA_KEY_LOW].shape)==5: #frame sequence scale = np.append([1],scale) #apply transform #low = self.applyTransform(low, zoom_matrix) #high = self.applyTransform(high, zoom_matrix) #changes the size of the frame. should work well with getRandomTile(), no bounds needed for data_key in data: if not self.data_flags[data_key]['isLabel']: data[data_key] = scipy.ndimage.zoom( data[data_key], scale, order=self.interpolation_order, mode=self.fill_mode, cval=0.0) #necessary? data = self.special_aug(data, AOPS_KEY_SCALE, factor) return data def scaleVelocities(self, datum, c_list, factor): #scale vel? vel*=factor channels = np.split(datum, datum.shape[-1], -1) for v in c_list: # x,y,[z]; 2,1,0 channels[v[0]] *= factor channels[v[1]] *= factor if len(v)==3: channels[v[2]] *= factor return np.concatenate(channels, -1) def applyTransform(self, data, transform_matrix, data_dim=3): # change axis order from z,y,x to x,y,z? (invert axis order +channel) if len(data.shape)!=4: self.TCError('Data shape mismatch.') #set transform to center; from fluiddatagenerator.py offset = np.array(data.shape) / 2 - np.array([0.5, 0.5, 0.5, 0]) offset_matrix = np.array([[1, 0, 0, offset[0]], [0, 1, 0, offset[1]], [0, 0, 1, offset[2]], [0, 0, 0, 1]]) reset_matrix = np.array([[1, 0, 0,-offset[0]], [0, 1, 0,-offset[1]], [0, 0, 1,-offset[2]], [0, 0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, transform_matrix), reset_matrix) data = np.rollaxis(data, 3, 0) #channel to front channel_data = [scipy.ndimage.interpolation.affine_transform( channel, transform_matrix[:data_dim,:data_dim], transform_matrix[:data_dim, data_dim], order=self.interpolation_order, mode=self.fill_mode, cval=0.) for channel in data] data = np.stack(channel_data, axis=-1) # stack axis=-1 ?\ return data ##################################################################################### # HELPER METHODS ##################################################################################### def concatTiles(self, tiles, frameShape ,tileBorder=[0,0,0,0]): ''' build a frame by concatenation of the given tiles. tiles: numpy array of same shaped tiles [batch,z,y,x,c] frameShape: the shape of the frame in tiles [z,y,x] tileBorder: cut off borders of the tiles. [z,y,x,c] ''' if len(tiles.shape)!=5 or len(frameShape)!=3 or len(tileBorder)!=4: self.TCError('Data shape mismatch.') tiles_in_frame = frameShape[0]*frameShape[1]*frameShape[2] if tiles_in_frame != len(tiles): self.TCError('given tiles do not match required tiles.') # cut borders tileBorder = np.asarray(tileBorder) if np.less(np.zeros(4),tileBorder).any(): tileShape = tiles.shape[1:] - 2*tileBorder tiles_cut = [] for tile in tiles: tiles_cut.append(self.cutTile(tile, tileShape, tileBorder)) tiles = tiles_cut #combine tiles to image frame = [] for z in range(frameShape[0]): frame_slices = [] for y in range(frameShape[1]): offset=z*frameShape[1]*frameShape[2] + y*frameShape[2] frame_slices.append(np.concatenate(tiles[offset:offset+frameShape[2]],axis=2)) #combine x frame.append(np.concatenate(frame_slices, axis=1)) #combine y frame = np.concatenate(frame, axis=0) #combine z return frame def hasMinDensity(self, tile): return self.getTileDensity(tile) >= (self.densityMinimum * tile.shape[0] * tile.shape[1] * tile.shape[2]) def getTileDensity(self, tile): if self.data_flags[DATA_KEY_LOW]['channels'] > 1: tile = np.split(tile, [1], axis=-1)[0] return tile.sum( dtype=np.float64 ) def getFrameTiles(self, index): ''' returns the frame as tiles''' low, high = self.getDatum(index) return self.createTiles(low, self.tile_shape_low), self.createTiles(high, self.tile_shape_high) ##################################################################################### # CHANNEL PARSING ##################################################################################### def parseChannels(self, channelString): ''' arbitrary channel structure from string, expand if necessary. USE GLOBAL KEYS ^ 'd': default/ density; data that needs no special operations during augmentation 'v[label](x|y|z)': vector/velocity; is transformed according to the augmentation ''' #need this for low and high, +high only labels c = channelString.lower().split(',') for i in range(len(c)): c[i] = c[i].strip() c_types = { C_KEY_DEFAULT:[], #list of indices of default channels. e.g. for normal sim data [0] C_KEY_VELOCITY:[], #list of ordered (x,y,z; chnage to z,y,x to match data?) triples of velocity sets. e.g. for normal sim data [[1,2,3]] C_KEY_VORTICITY:[] } self.parse = { C_KEY_DEFAULT:self.parseCDefault, C_KEY_VELOCITY:self.parseCVelocity, C_KEY_VORTICITY:self.parseCVorticity } for i in range(len(c)): if len(c[i])==0: # check empty key self.TCError('empty channel key.'.format(i)) try: self.parse[c[i][0]](c, i, c_types) except KeyError: self.TCError('channel {}: unknown channel key \"{}\".'.format(i, c[i])) # TODO check unused channels here return c, c_types def parseCDefault(self, c, i, c_types): # check length if c[i]=='d': c_types[C_KEY_DEFAULT].append(i) else: self.TCError('channel {}: unknown channel key \"{}\".'.format(i, c[i])) def parseCVector(self, c, i, c_types, c_key, c_name='vector'): # c_key[label](x|y|z) if c[i][-1] == 'x' or c[i][-1] == 'y' or c[i][-1] == 'z': label = c[i][1:-1] #can be empty #get matching keys v_x = c_key+label+'x' v_y = c_key+label+'y' v_z = c_key+label+'z' #check for duplicates if c.count(v_x)>1: self.TCError('Duplicate {} ({}) x-channel with label \"{}\": {}. Vector keys must be unique.'.format(c_name, c_key, label, v_x)) if c.count(v_y)>1: self.TCError('Duplicate {} ({}) y-channel with label \"{}\": {}. Vector keys must be unique.'.format(c_name, c_key, label, v_y)) if c.count(v_z)>1: self.TCError('Duplicate {} ({}) z-channel with label \"{}\": {}. Vector keys must be unique.'.format(c_name, c_key, label, v_z)) #check missing if c.count(v_x)==0: self.TCError('Missing {} ({}) x-channel with label \"{}\": {}'.format(c_name, c_key, label, v_x)) if c.count(v_y)==0: self.TCError('Missing {} ({}) y-channel with label \"{}\": {}'.format(c_name, c_key, label, v_y)) if self.dim==3 and c.count(v_z)==0: self.TCError('Missing {} ({}) z-channel with label \"{}\": {}'.format(c_name, c_key, label, v_z)) if c[i][-1] == 'x': if(c.count(v_z)==0 and self.dim==2): c_types[C_KEY_VELOCITY].append([c.index(v_x),c.index(v_y)]) else: c_types[C_KEY_VELOCITY].append([c.index(v_x),c.index(v_y),c.index(v_z)]) # check wrong suffix else: self.TCError('Channel {}, \"{}\": unknown {} ({}) channel suffix \"{}\". Valid suffixes are \"x\", \"y\", \"z\".'.format(i, c[i], c_name, c_key, c[i][-1])) def parseCVelocity(self, c, i, c_types): # C_KEY_VELOCITY[label](x|y|z) self.parseCVector(c, i, c_types, C_KEY_VELOCITY, 'velociy') def parseCVorticity(self, c, i, c_types): # C_KEY_VELOCITY[label](x|y|z) self.parseCVector(c, i, c_types, C_KEY_VELOCITY, 'vorticity') ##################################################################################### # ERROR HANDLING ##################################################################################### def TCError(self, msg): raise TilecreatorError(msg) class TilecreatorError(Exception): ''' Tilecreator errors ''' ##################################################################################### # IMAGE OUTPUT ##################################################################################### # save summary images of all channels in a batch generated by the tile creator # projects 3D data onto different axes, data has to be B-ZYX-C format batchCounterGlob=0 def savePngsBatch(low,high, TC, path, batchCounter=-1, save_vels=False, dscale=1., vscale=1.): global batchCounterGlob if(low.shape[1]==1): dim=2 else: dim=3 # figure out good tile size, and project all axes for 3D batch = low.shape[0] tileX = 4 if batch>=4 else batch if batch%tileX != 0: tileX = batch # file names if batchCounter < 0: batchCounter = batchCounterGlob batchCounterGlob += 1 path = path+"batch{:04d}_".format(batchCounter) # show scalar channels, in tiled images aNames = ["xy_","xz_","yz_"] for axis in range(1 if dim==2 else 3): suff = aNames[axis] if dim == 3: highD = np.average(high, axis=axis+1) * dscale lowD = np.average(low, axis=axis+1) * dscale if dim == 2: highD = high*brightness ; lowD = low * dscale lowD.shape = (batch, tll, tll, cl) highD.shape = (batch, tlh, tlh, ch) # note - outputs all channels as images, also vel channels... clout = np.arange(low.shape[4]) savePngsGrayscale(lowD, path+'low_'+suff, tiles_in_image=[batch//tileX,tileX], channels=clout ) chout = np.arange(high.shape[4]) savePngsGrayscale(tiles=highD, path=path+'high_'+suff, imageCounter=0, tiles_in_image=[batch//tileX,tileX], channels=chout ) # plot velocities , for individual samples if save_vels: for i in range(low.shape[0]): saveVelChannels(low[i], TC.c_lists[DATA_KEY_LOW][C_KEY_VELOCITY], path=path+'low_vel_i{:02d}_'.format(i), name="", scale=vscale ) for i in range(high.shape[0]): saveVelChannels(high[i], TC.c_lists[DATA_KEY_HIGH][C_KEY_VELOCITY], path=path+'high_vel_i{:02d}_'.format(i), name="", scale=vscale ) # simpler function to output multiple tiles into grayscale pngs def savePngsGrayscale(tiles, path, imageCounter=0, tiles_in_image=[1,1], channels=[0], save_gif=False, plot_vel_x_y=False, save_rgb=None, rgb_interval=[-1,1]): ''' tiles_in_image: (y,x) tiles: shape: (tile,y,x,c) ''' tilesInImage = tiles_in_image[0]*tiles_in_image[1] if len(tiles)%tilesInImage!=0: print('ERROR: number of tiles does not match tiles per image') return tiles = np.asarray(tiles) noImages = len(tiles)//tilesInImage if save_gif: gif=[] for image in range(noImages): img = [] #combine tiles to image for y in range(tiles_in_image[0]): offset=image*tilesInImage + y*tiles_in_image[1] img.append(np.concatenate(tiles[offset:offset+tiles_in_image[1]],axis=1)) #combine x img = np.concatenate(img, axis=0) #combine y # move channels to first dim. img_c = np.rollaxis(img, -1, 0) if len(img_c)>1 and (plot_vel_x_y or save_rgb!=None): if plot_vel_x_y: saveVel(img, path, imageCounter+image) if save_rgb!=None: saveRGBChannels(img,path, save_rgb,value_interval=rgb_interval, imageCounter=imageCounter+image) if len(channels) == 1: scipy.misc.toimage(img_c[channels[0]], cmin=0.0, cmax=1.0).save(path + 'img_{:04d}.png'.format(imageCounter*noImages+image)) else: for i in channels: scipy.misc.toimage(img_c[i], cmin=0.0, cmax=1.0).save(path + 'img_{:04d}_c{:04d}.png'.format(imageCounter*noImages+image, i)) # store velocity as quiver plot def saveVel(tile, path, imageCounter=0, name='vel-x-y'): # origin is in upper left corner, transform acordingly y, x = np.mgrid[-tile.shape[0]:0, 0:tile.shape[1]] vx = None; vy = None if tile.shape[-1]==4: d, vx, vy, vz = np.split(tile, 4, -1) elif tile.shape[-1]==2: vx, vy = np.split(tile, 2, -1) else: print('ERROR: unknown nr of channels for vel input '+format(tile.shape)) vx = vx[::-1, ...] vy = vy[::-1, ...] if found_matplotlib: matplotlib.pyplot.quiver(x,y,vx.flatten(),vy.flatten(), units = 'xy', scale = 1) matplotlib.pyplot.axis('equal') matplotlib.pyplot.savefig(path + '{}_{:04d}.png'.format(name,imageCounter)) matplotlib.pyplot.clf() # save velocity channels from the tilecreator with multiple axis projections (uses saveVel) def saveVelChannels(data, c_idx, path, average=False, scale=1.0, normalize=True, name=''): channels = np.split(data, data.shape[-1], -1) vpath = path vcnt = 0 for v in c_idx: if(len(c_idx)>1): vpath = path + "vc{}".format(vcnt) vcnt += 1 # compute scale factor vscale = scale if normalize: vavg = np.concatenate( [ channels[v[0]],channels[v[1]] ], -1) if(len(v))>2: vavg = np.concatenate( [ vavg, channels[v[2]] ],-1) vscale *= (1./(np.max( vavg )+1e-10)) # normalize vavg = np.concatenate( [ channels[v[0]],channels[v[1]] ] , -1) vavg = np.average(vavg, axis=0) vavg *= vscale saveVel(vavg, path=vpath, name='_xy' ) if(len(v))>2: # also output xz,yz vavg = np.concatenate( [ channels[v[0]],channels[v[2]] ] , -1) vavg = np.average(vavg, axis=1) vavg *= vscale saveVel(vavg, path=vpath, name='_xz' ) vavg = np.concatenate( [ channels[v[1]],channels[v[2]] ] , -1) vavg = np.average(vavg, axis=2) vavg *= vscale saveVel(vavg, path=vpath, name='_yz' ) def saveRGBChannels(data, path, channel_list, imageCounter=0, value_interval=[-1,1]): """ data: shape[y,x,c] channels: list of triples of channel ids saved as RGB image """ cmin = value_interval[0] cmax = value_interval[1] num_channels = data.shape[-1] channels = np.split(data, num_channels, -1) for i in channel_list: if len(i)==2: img = np.concatenate([channels[i[0]], channels[i[1]], np.ones_like(channels[i[0]])*cmin], -1) else: img = np.concatenate([channels[i[0]], channels[i[1]], channels[i[2]]], -1) scipy.misc.toimage(img, cmin=-1.0, cmax=1.0).save(path + 'img_rgb_{:04d}.png'.format(imageCounter)) def save3DasUni(tiles, path, motherUniPath, imageCounter=0, tiles_in_image=[1,1]): ''' tiles_in_image: (y,x) tiles: shape: (image,y,x,c) ''' tilesInImage = tiles_in_image[0]*tiles_in_image[1] if len(tiles)%tilesInImage!=0: print('ERROR: number of tiles does not match tiles per image') return tiles = np.asarray(tiles) noImages = len(tiles)//tilesInImage tiles = np.reshape(tiles,(len(tiles), tiles.shape[1], tiles.shape[2], tiles.shape[-1])) #only save the average img_all = [] for image in range(noImages): img = [] #combine tiles to image for y in range(tiles_in_image[0]): offset=( image) * tilesInImage + (y)*tiles_in_image[1] img.append(np.concatenate(tiles[offset:offset+tiles_in_image[1]],axis=2)) #combine y img = np.array(img) img = np.concatenate(img, axis=1) #combine x img = np.array(img) # move channels to first dim. img_c = np.rollaxis(img, 0, 0) img_all.append(img_c) img_all = np.array(img_all) img_all = np.concatenate(img_all, axis=0) img_all = np.array(img_all) TDarrayToUni(img_all, path + 'source_{:04d}.uni'.format(imageCounter), motherUniPath, img_all.shape[0], img_all.shape[1], img_all.shape[2]) def TDarrayToUni(input, savePath, motherUniPath, imageHeight, imageWidth, imageDepth, is_vel=False): head, _ = uniio.readUni(motherUniPath) head['dimX'] = imageWidth head['dimY'] = imageHeight head['dimZ'] = imageDepth if not is_vel: fixedArray = np.zeros((imageHeight, imageWidth, imageDepth), dtype='f') for x in range(0, imageHeight): for y in range(0, imageWidth): for z in range(0, imageDepth): fixedArray[x][y][z] = input[imageDepth - 1 - z][y][(imageHeight - 1) - x] else: fixedArray = np.zeros((imageHeight, imageWidth, imageDepth, 3), dtype='f') for x in range(0, imageHeight): for y in range(0, imageWidth): for z in range(0, imageDepth): fixedArray[x][y][z] = input[imageDepth - 1 - z][y][(imageHeight - 1) - x] uniio.writeUni(savePath, head, fixedArray) # ****************************************************************************** # faster functions, batch operations # # grid interpolation method, order: only linear tested # for velocity, macgridbatch.shape should be [b,z,y,x,3] (in 2D, should be [b,1,ny,nx,3]) # for density , macgridsource.shape should be [z,y,x,1] (in 2D, should be [1,ny,nx,1]) def gridInterpolBatch(macgridbatch, targetshape, order=1): assert (targetshape[-1] == macgridbatch.shape[-1]) # no interpolation between channels assert (len(targetshape) == 5 and len(macgridbatch.shape) == 5) dim = 3 if (macgridbatch.shape[1] == 1 and targetshape[1] == 1): dim = 2 x_ = np.linspace(0.5, targetshape[3] - 0.5, targetshape[3]) y_ = np.linspace(0.5, targetshape[2] - 0.5, targetshape[2]) z_ = np.linspace(0.5, targetshape[1] - 0.5, targetshape[1]) c_ = np.linspace(0, targetshape[4] - 1, targetshape[4]) # no interpolation between channels b_ = np.linspace(0, targetshape[0] - 1, targetshape[0]) # no interpolation between batches b, z, y, x, c = np.meshgrid(b_, z_, y_, x_, c_, indexing='ij') # scale fx = float(macgridbatch.shape[3]) / targetshape[3] fy = float(macgridbatch.shape[2]) / targetshape[2] fz = float(macgridbatch.shape[1]) / targetshape[1] mactargetbatch = scipy.ndimage.map_coordinates(macgridbatch, [b, z * fz, y * fy, x * fx, c], order=order, mode='reflect') return mactargetbatch; # macgrid_batch shape b, z, y, x, 3 # return a matrix in size [b,z,y,x,3] ( 2D: [b,y,x,2]), last channel in z-y-x order!(y-x order for 2D) def getMACGridCenteredBatch(macgrid_batch, is3D): _bn, _zn, _yn, _xn, _cn = macgrid_batch.shape valid_idx = list(range(1, _xn)) valid_idx.append(_xn - 1) add_x = macgrid_batch.take(valid_idx, axis=3)[:, :, :, :, 0] # shape, [b,z,y,x] valid_idx = list(range(1, _yn)) valid_idx.append(_yn - 1) add_y = macgrid_batch.take(valid_idx, axis=2)[:, :, :, :, 1] # shape, [b,z,y,x] add_y = add_y.reshape([_bn, _zn, _yn, _xn, 1]) add_x = add_x.reshape([_bn, _zn, _yn, _xn, 1]) if (is3D): valid_idx = list(range(1, _zn)) valid_idx.append(_zn - 1) add_z = macgrid_batch.take(valid_idx, axis=1)[:, :, :, :, 2] # shape, [b,z,y,x] add_z = add_z.reshape([_bn, _zn, _yn, _xn, 1]) resultgrid = 0.5 * (macgrid_batch[:, :, :, :, ::-1] + np.concatenate((add_z, add_y, add_x), axis=-1)) return resultgrid.reshape([_bn, _zn, _yn, _xn, 3]) resultgrid = 0.5 * (macgrid_batch[:, :, :, :, -2::-1] + np.concatenate((add_y, add_x), axis=4)) return resultgrid.reshape([_bn, _yn, _xn, 2]) # macgrid_batch shape b, z, y, x, 3 ( b,1,y,x,3 for 2D ) # return the re-sampling positions as a matrix, in size of [b,z,y,x,3] ( 2D: [b,y,x,2]) def getSemiLagrPosBatch(macgrid_batch, dt, cube_len_output=-1): # check interpolation later assert (len(macgrid_batch.shape) == 5) _bn, _zn, _yn, _xn, _cn = macgrid_batch.shape assert (_cn == 3) is3D = (_zn > 1) if (cube_len_output == -1): cube_len_output = _xn factor = float(_xn) / cube_len_output x_ = np.linspace(0.5, int(_xn / factor + 0.5) - 0.5, int(_xn / factor + 0.5)) y_ = np.linspace(0.5, int(_yn / factor + 0.5) - 0.5, int(_yn / factor + 0.5)) interp_shape = [_bn, int(_zn / factor + 0.5), int(_yn / factor + 0.5), int(_xn / factor + 0.5), 3] if (not is3D): interp_shape[1] = 1 if (is3D): z_ = np.linspace(0.5, int(_zn / factor + 0.5) - 0.5, int(_zn / factor + 0.5)) z, y, x = np.meshgrid(z_, y_, x_, indexing='ij') posArray = np.stack((z, y, x), axis=-1) # shape, z,y,x,3 tarshape = [1, int(_zn / factor + 0.5), int(_yn / factor + 0.5), int(_xn / factor + 0.5), 3] else: y, x = np.meshgrid(y_, x_, indexing='ij') posArray = np.stack((y, x), axis=-1) # shape, y,x,2 tarshape = [1, int(_yn / factor + 0.5), int(_xn / factor + 0.5), 2] posArray = posArray.reshape(tarshape) if (cube_len_output == _xn): return (posArray - getMACGridCenteredBatch(macgrid_batch, is3D) * dt) # interpolate first inter_mac_batch = gridInterpolBatch(macgrid_batch, interp_shape, 1) inter_mac_batch = getMACGridCenteredBatch(inter_mac_batch, is3D) / factor return (posArray - (inter_mac_batch) * dt) # error! muss not shuffle for fluid data loader! def selectRandomTempoTiles(self, selectionSize, isTraining=True, augment=False, n_t=3, dt=0.5, adv_flag = 1.0): ''' main method to create coherent baches Return: shape: [n_t * selectionSize//n_t, z, y, x, channels] if 2D z = 1 channels: density, [vel x, vel y, vel z], [pos x, pox y, pos z] ''' batch_sz = int( max( 1, selectionSize // n_t) ) batch_low, batch_high = self.selectRandomTiles(batch_sz, isTraining, augment, tile_t = n_t) real_batch_sz = batch_sz * n_t ori_input_shape = batch_low.reshape((batch_sz, self.tileSizeLow[0], self.tileSizeLow[1], self.tileSizeLow[2], n_t, -1)) ori_input_shape = np.transpose(ori_input_shape, (0,4,1,2,3,5)) ori_input_shape = ori_input_shape.reshape((real_batch_sz, self.tileSizeLow[0], self.tileSizeLow[1], self.tileSizeLow[2], -1)) vel_pos_high_inter = None if adv_flag: # TODO check velocity channels and 3D macgrid_input = ori_input_shape[:, :, :, :, self.c_lists[DATA_KEY_LOW][C_KEY_VELOCITY][0]] macgrid_input = macgrid_input.reshape( (real_batch_sz, self.tileSizeLow[0], self.tileSizeLow[1], self.tileSizeLow[2], 3)) dtArray = np.array([i * dt for i in range(n_t // 2, -n_t // 2, -1)] * batch_sz, dtype=np.float32) if (self.dim == 2): dtArray = dtArray.reshape((-1, 1, 1, 1)) else: dtArray = dtArray.reshape((-1, 1, 1, 1, 1)) vel_pos_high_inter = getSemiLagrPosBatch(macgrid_input, dtArray, self.tileSizeHigh[1]).reshape((real_batch_sz, -1)) # return reshape_input, selectedOutputs, vel_pos_high_inter batch_high = batch_high.reshape((batch_sz, self.tileSizeHigh[0], self.tileSizeHigh[1], self.tileSizeHigh[2], n_t, -1)) batch_high = np.transpose(batch_high, (0,4,1,2,3,5)) return ori_input_shape.reshape((real_batch_sz, -1)), batch_high.reshape((real_batch_sz, -1)), vel_pos_high_inter TileCreator.selectRandomTempoTiles = selectRandomTempoTiles def pngs_to_gif(path, start_idx=0, end_idx=199, step=1, fps=20, mask="img_%04d.png"): print("creating gif from {} to {} with {} fps".format(mask % start_idx, mask % end_idx, fps)) with imageio.get_writer(path + 'step%d.gif'%step, mode='I', fps=fps) as writer: for i in range(start_idx - 1, end_idx, step): image = imageio.imread(path+(mask % (i+1))) writer.append_data(image)
cpgf/samples/irrlicht/26.occlusionquery.py
mousepawmedia/libdeps
187
145418
<gh_stars>100-1000 cpgf._import(None, "builtin.core"); KeyIsDown = []; def makeMyEventReceiver(receiver) : for i in range(irr.KEY_KEY_CODES_COUNT) : KeyIsDown.append(False); def OnEvent(me, event) : if event.EventType == irr.EET_KEY_INPUT_EVENT : KeyIsDown[event.KeyInput.Key + 1] = event.KeyInput.PressedDown; return False; receiver.OnEvent = OnEvent; def IsKeyDown(keyCode) : return KeyIsDown[keyCode + 1]; def start() : driverType = irr.driverChoiceConsole(); if driverType == irr.EDT_COUNT : return 1; MyEventReceiver = cpgf.cloneClass(irr.IEventReceiverWrapper); makeMyEventReceiver(MyEventReceiver); receiver = MyEventReceiver(); device = irr.createDevice(driverType, irr.dimension2d_u32(640, 480), 16, False, False, False, receiver); if device == None : return 1; driver = device.getVideoDriver(); smgr = device.getSceneManager(); smgr.getGUIEnvironment().addStaticText("Press Space to hide occluder.", irr.rect_s32(10,10, 200,50)); node = smgr.addSphereSceneNode(10, 64); if node : node.setPosition(irr.vector3df(0,0,60)); node.setMaterialTexture(0, driver.getTexture("../../media/wall.bmp")); node.setMaterialFlag(irr.EMF_LIGHTING, False); plane = smgr.addMeshSceneNode(smgr.addHillPlaneMesh("plane", irr.dimension2df(10,10), irr.dimension2du(2,2)), None, -1, irr.vector3df(0,0,20), irr.vector3df(270,0,0)); if plane : plane.setMaterialTexture(0, driver.getTexture("../../media/t351sml.jpg")); plane.setMaterialFlag(irr.EMF_LIGHTING, False); plane.setMaterialFlag(irr.EMF_BACK_FACE_CULLING, True); driver.addOcclusionQuery(node, cpgf.cast(node, irr.IMeshSceneNode).getMesh()); smgr.addCameraSceneNode(); lastFPS = -1; timeNow = device.getTimer().getTime(); nodeVisible=True; while device.run() : plane.setVisible(not IsKeyDown(irr.KEY_SPACE)); driver.beginScene(True, True, irr.SColor(255,113,113,133)); node.setVisible(nodeVisible); smgr.drawAll(); smgr.getGUIEnvironment().drawAll(); if device.getTimer().getTime()-timeNow>100 : driver.runAllOcclusionQueries(False); driver.updateAllOcclusionQueries(); nodeVisible=driver.getOcclusionQueryResult(node)>0; timeNow=device.getTimer().getTime(); driver.endScene(); fps = driver.getFPS(); if lastFPS != fps : tmp = "cpgf Irrlicht Python binding OcclusionQuery Example ["; tmp = tmp + driver.getName(); tmp = tmp + "] fps: "; tmp = tmp + str(fps); device.setWindowCaption(tmp); lastFPS = fps; device.drop(); return 0; start();
tests/codegen/fcode/scripts/tuples.py
dina-fouad/pyccel
206
145431
# pylint: disable=missing-function-docstring, missing-module-docstring/ ai = (1,4,5) ai[0] = 2 bi = ai[0] ci = 2 * ai[0] di = 2 * ai[0] + 3 * ai[1] ei = 2 * ai[0] + bi * ai[1] fi = ai gi = (0,)*2 gi[:] = ai[1:] ad = (1.,4.,5.) ad[0] = 2. bd = ad[0] cd = 2. * ad[0] dd = 2. * ad[0] + 3. * ad[1] ed = 2. * ad[0] + bd * ad[1] fd = ad gd = (0.,)*2 gd[:] = ad[1:]
exchange_calendars/exchange_calendar_aixk.py
rajeshyogeshwar/exchange_calendars
128
145438
<reponame>rajeshyogeshwar/exchange_calendars from datetime import time from itertools import chain import pandas as pd from pandas.tseries.holiday import ( Holiday, next_monday, nearest_workday, next_workday, ) from pytz import timezone from .common_holidays import new_years_day, eid_al_adha_first_day from .exchange_calendar import ( HolidayCalendar, ExchangeCalendar, ) NewYearsDay = new_years_day() NewYearHoliday = Holiday( "New Year Holiday", month=1, day=2, ) OrthodoxChristmasDay = Holiday( "Orthodox Christmas Day", month=1, day=7, ) InternationalWomensDay = Holiday( "International Women's Day", month=3, day=8, observance=nearest_workday, ) NauryzHoliday1 = Holiday( "Nauryz Holiday", month=3, day=21, observance=next_monday, ) NauryzHoliday2 = Holiday( "Nauryz Holiday", month=3, day=21, observance=lambda dt: next_workday(next_monday(dt)), ) NauryzHoliday3 = Holiday( "Nauryz Holiday", month=3, day=21, observance=lambda dt: next_workday(next_workday(next_monday(dt))), ) KazakhstanPeopleSolidarityDay = Holiday( "Kazakhstan People Solidarity Day", month=5, day=1, observance=next_monday, ) DefendersDay = Holiday( "Defender's Day", month=5, day=7, observance=next_monday, start_date=pd.Timestamp("2013-01-01"), ) VictoryDayHoliday = Holiday( "Victory Day Holiday", month=5, day=9, observance=nearest_workday, ) CapitalCityDay = Holiday( "Capital City Day", month=7, day=6, observance=next_monday, ) ConstitutionDay = Holiday( "Constitution Day", month=8, day=30, observance=next_monday, ) FirstPresidentDay = Holiday( "First President Day", month=12, day=1, observance=next_monday, start_date=pd.Timestamp("2013-01-01"), ) IndependenceDay = Holiday( "Independence Day", month=12, day=16, observance=next_monday, ) IndependenceDayHoliday = Holiday( "Independence Day", month=12, day=17, observance=next_monday, ) class AIXKExchangeCalendar(ExchangeCalendar): """ Exchange calendar for the Astana International Exchange (XIST). Available here: https://www.aix.kz/trading/trading-calendar/ Regularly-Observed Holidays: - New Year's Day - New Year Holiday - Orthodox Christmas Day - International Women's Day - Nauryz Holiday - Nauryz Holiday - Nauryz Holiday - Kazakhstan People Solidarity Day - Defender’s Day - Victory Day Holiday - Capital City Day - Capital City Day - Kurban Ait Holiday (Eid-al-Adha) - Constitution Day - First President Day - Independence Day - Independence Day Holiday Early Closes: - None """ name = "AIXK" tz = timezone("Asia/Almaty") open_times = ((None, time(11)),) close_times = ((None, time(17, 00)),) @property def bound_start(self) -> pd.Timestamp: return pd.Timestamp("2017-01-01", tz="UTC") def _bound_start_error_msg(self, start: pd.Timestamp) -> str: msg = super()._bound_start_error_msg(start) return msg + f" (The exchange {self.name} was founded in 2017.)" @property def regular_holidays(self): return HolidayCalendar( [ NewYearsDay, NewYearHoliday, OrthodoxChristmasDay, InternationalWomensDay, NauryzHoliday1, NauryzHoliday2, NauryzHoliday3, KazakhstanPeopleSolidarityDay, DefendersDay, VictoryDayHoliday, CapitalCityDay, ConstitutionDay, FirstPresidentDay, IndependenceDay, IndependenceDayHoliday, ] ) @property def adhoc_holidays(self): # It is common in Kazakhstan to have holidays also on days # between regular holiday and weekend misc_holidays = [ # Bridge Day between Women's day - Weekend pd.Timestamp("2018-03-09"), # Bridge Day between Weekend - Kazakhstan People Solidarity Day pd.Timestamp("2018-04-30"), # Bridge Day between Defender's Day - Victory Day pd.Timestamp("2018-05-08"), # Bridge Day between Constitution Day - Weekend pd.Timestamp("2018-08-31"), # Bridge Day between New Year's Eve - New Year's day pd.Timestamp("2018-12-31"), # Bridge Day between Victory Day - Weekend pd.Timestamp("2019-05-10"), # Bridge Day between New Year's day - Weekend pd.Timestamp("2020-01-03"), # Bridge Day between Independence day - Weekend pd.Timestamp("2020-12-18"), # Bridge Day between Weekend - Capital City day pd.Timestamp("2021-06-05"), # Bridge Day between Weekend - Women's day pd.Timestamp("2022-03-07"), ] return list(chain(misc_holidays, eid_al_adha_first_day))
checkov/common/bridgecrew/integration_features/integration_feature_registry.py
jamesholland-uk/checkov
4,013
145451
<gh_stars>1000+ class IntegrationFeatureRegistry: def __init__(self): self.features = [] def register(self, integration_feature): self.features.append(integration_feature) self.features.sort(key=lambda f: f.order) def run_pre_scan(self): for integration in self.features: if integration.is_valid(): integration.pre_scan() def run_pre_runner(self): for integration in self.features: if integration.is_valid(): integration.pre_runner() def run_post_runner(self, scan_reports): for integration in self.features: if integration.is_valid(): integration.post_runner(scan_reports) integration_feature_registry = IntegrationFeatureRegistry()
mfa/Common.py
soxhub/django-mfa2
135
145465
from django.conf import settings from django.core.mail import EmailMessage try: from django.urls import reverse except: from django.core.urlresolver import reverse def send(to,subject,body): from_email_address = settings.EMAIL_HOST_USER if '@' not in from_email_address: from_email_address = settings.DEFAULT_FROM_EMAIL From = "%s <%s>" % (settings.EMAIL_FROM, from_email_address) email = EmailMessage(subject,body,From,to) email.content_subtype = "html" return email.send(False) def get_redirect_url(): return {"redirect_html": reverse(getattr(settings, 'MFA_REDIRECT_AFTER_REGISTRATION', 'mfa_home')), "reg_success_msg":getattr(settings,"MFA_SUCCESS_REGISTRATION_MSG")}
src/arch/x86/isa/insts/general_purpose/data_transfer/xchg.py
qianlong4526888/haha
135
145486
<filename>src/arch/x86/isa/insts/general_purpose/data_transfer/xchg.py<gh_stars>100-1000 # Copyright (c) 2007 The Hewlett-Packard Development Company # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: <NAME> microcode = ''' # All the memory versions need to use LOCK, regardless of if it was set def macroop XCHG_R_R { # Use the xor trick instead of moves to reduce register pressure. # This probably doesn't make much of a difference, but it's easy. xor reg, reg, regm xor regm, regm, reg xor reg, reg, regm }; def macroop XCHG_R_M { mfence ldstl t1, seg, sib, disp stul reg, seg, sib, disp mfence mov reg, reg, t1 }; def macroop XCHG_R_P { rdip t7 mfence ldstl t1, seg, riprel, disp stul reg, seg, riprel, disp mfence mov reg, reg, t1 }; def macroop XCHG_M_R { mfence ldstl t1, seg, sib, disp stul reg, seg, sib, disp mfence mov reg, reg, t1 }; def macroop XCHG_P_R { rdip t7 mfence ldstl t1, seg, riprel, disp stul reg, seg, riprel, disp mfence mov reg, reg, t1 }; def macroop XCHG_LOCKED_M_R { mfence ldstl t1, seg, sib, disp stul reg, seg, sib, disp mfence mov reg, reg, t1 }; def macroop XCHG_LOCKED_P_R { rdip t7 mfence ldstl t1, seg, riprel, disp stul reg, seg, riprel, disp mfence mov reg, reg, t1 }; '''
2013/Practice Round/Moist/Moist solution.py
prashantsingh2408/Google-Kick-Start
237
145494
T = int(input()) for x in range(1, T + 1): N = int(input()) names = [input() for index in range(N)] y = 0 previous = names[0] for name in names[1:]: if name < previous: y += 1 else: previous = name print(f"Case #{x}: {y}", flush = True)
aws_lambda_powertools/utilities/parameters/exceptions.py
Sordie/aws-lambda-powertools-python
1,208
145517
<gh_stars>1000+ """ Parameter retrieval exceptions """ class GetParameterError(Exception): """When a provider raises an exception on parameter retrieval""" class TransformParameterError(Exception): """When a provider fails to transform a parameter value"""
salt/matchers/grain_pcre_match.py
babs/salt
9,425
145536
<gh_stars>1000+ """ This is the default grains PCRE matcher. """ import logging import salt.utils.data from salt.defaults import DEFAULT_TARGET_DELIM log = logging.getLogger(__name__) def match(tgt, delimiter=DEFAULT_TARGET_DELIM, opts=None, minion_id=None): """ Matches a grain based on regex """ if not opts: opts = __opts__ log.debug("grains pcre target: %s", tgt) if delimiter not in tgt: log.error( "Got insufficient arguments for grains pcre match statement from master" ) return False return salt.utils.data.subdict_match( opts["grains"], tgt, delimiter=delimiter, regex_match=True )
oauth/services/gitlab.py
giuseppe/quay
2,027
145562
<reponame>giuseppe/quay<filename>oauth/services/gitlab.py from oauth.base import OAuthService, OAuthEndpoint from util import slash_join class GitLabOAuthService(OAuthService): def __init__(self, config, key_name): super(GitLabOAuthService, self).__init__(config, key_name) def service_id(self): return "gitlab" def service_name(self): return "GitLab" def _endpoint(self): return self.config.get("GITLAB_ENDPOINT", "https://gitlab.com") def user_endpoint(self): raise NotImplementedError def api_endpoint(self): return self._endpoint() def get_public_url(self, suffix): return slash_join(self._endpoint(), suffix) def authorize_endpoint(self): return OAuthEndpoint(slash_join(self._endpoint(), "/oauth/authorize")) def token_endpoint(self): return OAuthEndpoint(slash_join(self._endpoint(), "/oauth/token")) def validate_client_id_and_secret(self, http_client, url_scheme_and_hostname): # We validate the client ID and secret by hitting the OAuth token exchange endpoint with # the real client ID and secret, but a fake auth code to exchange. Gitlab's implementation will # return `invalid_client` as the `error` if the client ID or secret is invalid; otherwise, it # will return another error. url = self.token_endpoint().to_url() redirect_uri = self.get_redirect_uri(url_scheme_and_hostname, redirect_suffix="trigger") data = { "code": "fakecode", "client_id": self.client_id(), "client_secret": self.client_secret(), "grant_type": "authorization_code", "redirect_uri": redirect_uri, } # We validate by checking the error code we receive from this call. result = http_client.post(url, data=data, timeout=5) value = result.json() if not value: return False return value.get("error", "") != "invalid_client" def get_public_config(self): return { "CLIENT_ID": self.client_id(), "AUTHORIZE_ENDPOINT": self.authorize_endpoint().to_url(), "GITLAB_ENDPOINT": self._endpoint(), }
pypyr/steps/cmd.py
mofm/pypyr
261
145594
"""pypyr step that executes a cmd as a sub-process. You cannot use things like exit, return, shell pipes, filename wildcards, environment,variable expansion, and expansion of ~ to a user’s home directory. """ import logging from pypyr.steps.dsl.cmd import CmdStep # logger means the log level will be set correctly logger = logging.getLogger(__name__) def run_step(context): """Run command, program or executable. Context is a dictionary or dictionary-like. Context must contain the following keys: cmd: <<cmd string>> (command + args to execute.) OR, as a dict cmd: run: str. mandatory. <<cmd string>> command + args to execute. save: bool. defaults False. save output to cmdOut. Will execute the command string in the shell as a sub-process. Escape curly braces: if you want a literal curly brace, double it like {{ or }}. If save is True, will save the output to context as follows: cmdOut: returncode: 0 stdout: 'stdout str here. None if empty.' stderr: 'stderr str here. None if empty.' cmdOut.returncode is the exit status of the called process. Typically 0 means OK. A negative value -N indicates that the child was terminated by signal N (POSIX only). context['cmd'] will interpolate anything in curly braces for values found in context. So if your context looks like this: key1: value1 key2: value2 cmd: mything --arg1 {key1} The cmd passed to the shell will be "mything --arg value1" """ logger.debug("started") CmdStep(name=__name__, context=context).run_step(is_shell=False) logger.debug("done")
week6/dags/03-python_operator_with_context.py
socar-carrot/kyle-school
189
145600
<gh_stars>100-1000 from airflow import DAG from airflow.operators.python_operator import PythonOperator from datetime import datetime, timedelta default_args = { 'owner': 'kyle', 'depends_on_past': False, 'start_date': datetime(2020, 2, 10), 'email': ['<EMAIL>'], 'email_on_failure': False, 'email_on_retry': True, 'retries': 1, 'retry_delay': timedelta(minutes=1), } dag = DAG('python_dag_with_context', default_args=default_args, schedule_interval='30 0 * * *') def print_current_date_provide_context(*args, **kwargs): """ provide_context=True로 지정하면 kwargs 다양한 값들이 저장됨 {'dag': <DAG: python_dag_with_jinja>, 'ds': '2020-02-10', 'next_ds': '2020-02-11', 'next_ds_nodash': '20200211', 'prev_ds': '2020-02-09', 'prev_ds_nodash': '20200209', 'ds_nodash': '20200210', 'ts': '2020-02-10T00:30:00+00:00', 'ts_nodash': '20200210T003000', 'ts_nodash_with_tz': '20200210T003000+0000', 'yesterday_ds': '2020-02-09', 'yesterday_ds_nodash': '20200209', 'tomorrow_ds': '2020-02-11', 'tomorrow_ds_nodash': '20200211', 'end_date': '2020-02-10', 'execution_date': <Pendulum [2020-02-10T00:30:00+00:00]> ...} """ print(f"kwargs :{kwargs}") execution_date = kwargs['ds'] execution_date = datetime.strptime(execution_date, "%Y-%m-%d").date() date_kor = ["월", "화", "수", "목", "금", "토", "일"] datetime_weeknum = execution_date.weekday() print(f"{execution_date}는 {date_kor[datetime_weeknum]}요일입니다") python_task_context = PythonOperator( task_id='print_current_date_with_context_variable', python_callable=print_current_date_provide_context, provide_context=True, dag=dag, ) python_task_context
ioflo/aio/uxd/uxding.py
BradyHammond/ioflo
128
145606
""" uxd async io (nonblocking) module """ from __future__ import absolute_import, division, print_function import sys import os import socket import errno from binascii import hexlify # Import ioflo libs from ...aid.sixing import * from ...aid.consoling import getConsole console = getConsole() class SocketUxdNb(object): """ Class to manage non blocking io on UXD (unix domain) socket. Use instance method .close() to close socket """ def __init__(self, ha=None, umask=None, bufsize = 1024, wlog=None): """ Initialization method for instance. ha = uxd file name umask = umask for uxd file bufsize = buffer size """ self.ha = ha # uxd host address string name self.umask = umask self.bs = bufsize self.wlog = wlog self.ss = None # server's socket needs to be opened self.opened = False def actualBufSizes(self): """ Returns duple of the the actual socket send and receive buffer size (send, receive) """ if not self.ss: return (0, 0) return (self.ss.getsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF), self.ss.getsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF)) def open(self): """ Opens socket in non blocking mode. if socket not closed properly, binding socket gets error socket.error: (48, 'Address already in use') """ #create socket ss = server socket self.ss = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM) # make socket address reusable. # the SO_REUSEADDR flag tells the kernel to reuse a local socket in # TIME_WAIT state, without waiting for its natural timeout to expire. self.ss.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if self.ss.getsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF) < self.bs: self.ss.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, self.bs) if self.ss.getsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF) < self.bs: self.ss.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, self.bs) self.ss.setblocking(0) #non blocking socket oldumask = None if self.umask is not None: # change umask for the uxd file oldumask = os.umask(self.umask) # set new and return old #bind to Host Address Port try: self.ss.bind(self.ha) except socket.error as ex: if not ex.errno == errno.ENOENT: # No such file or directory console.terse("socket.error = {0}\n".format(ex)) return False try: os.makedirs(os.path.dirname(self.ha)) except OSError as ex: console.terse("OSError = {0}\n".format(ex)) return False try: self.ss.bind(self.ha) except socket.error as ex: console.terse("socket.error = {0}\n".format(ex)) return False if oldumask is not None: # restore old umask os.umask(oldumask) self.ha = self.ss.getsockname() #get resolved ha after bind self.opened = True return True def reopen(self): """ Idempotently open socket by closing first if need be """ self.close() return self.open() def close(self): """ Closes socket. """ if self.ss: self.ss.close() #close socket self.ss = None self.opened = False try: os.unlink(self.ha) except OSError: if os.path.exists(self.ha): raise def receive(self): """ Perform non blocking receive on socket. Returns tuple of form (data, sa) If no data then returns ('',None) """ try: #sa = source address tuple (sourcehost, sourceport) data, sa = self.ss.recvfrom(self.bs) except socket.error as ex: # ex.args[0] is always ex.errno for better compat if ex.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK): return (b'', None) #receive has nothing empty string for data else: emsg = "socket.error = {0}: receiving at {1}\n".format(ex, self.ha) console.profuse(emsg) raise #re raise exception ex1 if console._verbosity >= console.Wordage.profuse: # faster to check try: load = data.decode("UTF-8") except UnicodeDecodeError as ex: load = "0x{0}".format(hexlify(data).decode("ASCII")) cmsg = ("Server at {0}, received from {1}:\n------------\n" "{2}\n\n".format(self.ha, sa, load)) console.profuse(cmsg) if self.wlog: self.wlog.writeRx(sa, data) return (data, sa) def send(self, data, da): """Perform non blocking send on socket. data is string in python2 and bytes in python3 da is destination address tuple (destHost, destPort) """ try: result = self.ss.sendto(data, da) #result is number of bytes sent except socket.error as ex: emsg = "socket.error = {0}: sending from {1} to {2}\n".format(ex, self.ha, da) console.profuse(emsg) result = 0 raise if console._verbosity >= console.Wordage.profuse: try: load = data[:result].decode("UTF-8") except UnicodeDecodeError as ex: load = "0x{0}".format(hexlify(data[:result]).decode("ASCII")) cmsg = ("Server at {0}, sent {1} bytes to {2}:\n------------\n" "{3}\n\n".format(self.ha, result, da, load)) console.profuse(cmsg) if self.wlog: self.wlog.writeTx(da, data) return result PeerUxd = SocketUxdNb # alias