Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
512
512
label
class label
160 classes
001
001
102
203
203
304
304
406
406
507
507
507
608
70c
80d
90e
90e
100f
100f
100f
1110
1211
1211
1312
1413
1514
1616
1717
1818
1818
1919
1919
201a
211d
221e
2321
2423
2524
2524
2626
2727
2828
2929
302a
312b
312b
312b
322d
322d
332e
342f
3532
3532
3532
3633
3633
3735
3735
3836
3836
3939
403b
403b
413d
423e
433f
4440
4440
4440
4543
4644
4745
4846
4846
4948
5049
5049
514b
524c
534d
534d
544f
544f
5550
5651
5752
5853
5853
5954
5954
6055
6158
625a
625a
635b
635b
645c
645c
655d
655d
End of preview. Expand in Data Studio

This repository contains Edit3D-Bench, a 3D editing benchmark proposed in the paper Feedforward 3D Editing via Text-Steerable Image-to-3D.

Project page: https://glab-caltech.github.io/steer3d/ Code: https://github.com/ziqi-ma/Steer3D

The metadata/ directory stores metadata information (the source and target object guid, and editing text) for texture, removal, and addition - each in a separate .csv file. The data/ directory contains source images (of unedited object), glbs of both source and target objects, and TRELLIS latents of both source and target objects, each indexed with the object guid.

Sample Usage

This dataset is designed to benchmark 3D editing capabilities. To use it for evaluation with the associated Steer3D codebase, follow these steps:

  1. Clone the dataset:

    git lfs install
    git clone https://huggingface.co/datasets/ziqima/Edit3D-Bench
    
  2. Set up the Steer3D environment: The Steer3D model requires a specific environment. Refer to the Steer3D GitHub repository for the latest setup instructions. A typical setup involves:

    conda env create -f environment.yml
    conda activate steer3d
    

    Note that libraries kaolin, nvdiffrast, diffoctreerast, mip-splatting, and vox2seq might need manual installation. Please refer to this setup script from TRELLIS for installation of these dependencies.

  3. Evaluate on the Benchmark (Texture Example): Once the dataset is cloned and the Steer3D environment is active, you can run evaluation scripts. First, ensure PYTHONPATH is set to the path of your Steer3D clone. Then, update the val_dataset path in configs/stage3_controlnet.json within the Steer3D repository to [path-to-Edit3D-Bench-clone]/metadata/texture.csv.

    python inference/inference_texture.py \
            --stage1_checkpoint [path-to-checkpoints]/stage1/base.pt \
            --stage1_config configs/stage1_controlnet.json \
            --stage2_controlnet_checkpoint [path-to-checkpoints]/stage2/controlnet.pt \
            --stage2_base_checkpoint [path-to-checkpoints]/stage2/base.pt \
            --stage2_config configs/stage2_controlnet.json \
            --output_dir visualizations/output \
            --num_examples 150 \
            --num_seeds 3 \
            --split val
    

Citation

If you find our work helpful, please cite using the following BibTeX entry:

@misc{ma2025feedforward3deditingtextsteerable,
      title={Feedforward 3D Editing via Text-Steerable Image-to-3D}, 
      author={Ziqi Ma and Hongqiao Chen and Yisong Yue and Georgia Gkioxari},
      year={2025},
      eprint={2512.13678},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2512.13678}, 
}
Downloads last month
510