datasetsANDmodels/occupation_extraction

This model is a fine-tuned version of t5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0260

Model description

This model extracts the cocupation's name from text.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
5.0748 1.0 26 3.6708
1.2816 2.0 52 1.5886
1.422 3.0 78 0.7878
0.5729 4.0 104 0.4200
1.007 5.0 130 0.2706
0.2949 6.0 156 0.1751
0.2805 7.0 182 0.1193
0.1689 8.0 208 0.0948
0.1232 9.0 234 0.0717
0.0205 10.0 260 0.0656
0.1277 11.0 286 0.0600
0.0357 12.0 312 0.0550
0.0217 13.0 338 0.0469
0.0201 14.0 364 0.0377
0.0904 15.0 390 0.0320
0.0083 16.0 416 0.0289
0.1448 17.0 442 0.0284
0.2741 18.0 468 0.0276
0.0028 19.0 494 0.0261
0.015 20.0 520 0.0260

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
738M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for datasetsANDmodels/occupation-extraction

Base model

google-t5/t5-large
Finetuned
(123)
this model