metadata
language:
- en
tags:
- vision-language
- vqa
- text-to-image-evaluation
license: mit
Tiny Random VQAScore Model
This is a tiny random version of the VQAScore architecture for educational and testing purposes.
Model Architecture
- Vision Encoder: Tiny CNN + Transformer (64 hidden size)
- Language Model: Tiny Transformer (256 hidden size)
- Multimodal Projector: MLP with 256 → 128 → 64 → 1
Usage
from create_tiny_vqa_model import TinyVQAScore
# Load the model
model = TinyVQAScore(device="cpu")
# Score an image
from PIL import Image
image = Image.open("your_image.jpg")
score = model.score(image, "What is shown in this image?")
print(f"VQA Score: {score}")
Model Size
- Parameters: ~50K (vs ~11B for the original XXL model)
- Memory: ~200KB (vs ~22GB for the original XXL model)
Disclaimer
This is a randomly initialized model for testing and educational purposes. It is not trained and will not produce meaningful VQA results.