model documentation

#2
by nazneen - opened
Files changed (1) hide show
  1. README.md +184 -0
README.md ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - bert
4
+
5
+ ---
6
+ # Model Card for bert-small-mm_retrieval-table_encoder
7
+
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+ - **Developed by:** deepset
14
+ - **Shared by [Optional]:** More information needed
15
+ - **Model type:** More information needed
16
+ - **Language(s) (NLP):** More information needed
17
+ - **License:** More information needed
18
+ - **Related Models:**
19
+ - **Parent Model:** More information needed
20
+ - **Resources for more information:**
21
+ - [Associated Paper](https://arxiv.org/abs/1908.08962)
22
+
23
+
24
+ # Uses
25
+
26
+
27
+ ## Direct Use
28
+
29
+ More information needed
30
+
31
+ ## Downstream Use [Optional]
32
+
33
+ More information needed
34
+
35
+ ## Out-of-Scope Use
36
+
37
+ The model should not be used to intentionally create hostile or alienating environments for people.
38
+
39
+ # Bias, Risks, and Limitations
40
+
41
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
42
+
43
+
44
+ ## Recommendations
45
+
46
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
47
+
48
+
49
+ # Training Details
50
+
51
+ ## Training Data
52
+
53
+ More information needed
54
+
55
+ ## Training Procedure
56
+
57
+
58
+ ### Preprocessing
59
+
60
+ More information needed
61
+
62
+ ### Speeds, Sizes, Times
63
+
64
+ More information needed
65
+
66
+ # Evaluation
67
+
68
+
69
+ ## Testing Data, Factors & Metrics
70
+
71
+ ### Testing Data
72
+
73
+ More information needed
74
+
75
+ ### Factors
76
+
77
+
78
+ ### Metrics
79
+
80
+ More information needed
81
+ ## Results
82
+
83
+ More information needed
84
+
85
+ # Model Examination
86
+
87
+ More information needed
88
+
89
+ # Environmental Impact
90
+
91
+
92
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
93
+
94
+ - **Hardware Type:** More information needed
95
+ - **Hours used:** More information needed
96
+ - **Cloud Provider:** More information needed
97
+ - **Compute Region:** More information needed
98
+ - **Carbon Emitted:** More information needed
99
+
100
+ # Technical Specifications [optional]
101
+
102
+ ## Model Architecture and Objective
103
+
104
+ More information needed
105
+
106
+ ## Compute Infrastructure
107
+
108
+ More information needed
109
+
110
+ ### Hardware
111
+
112
+ More information needed
113
+
114
+ ### Software
115
+ More information needed
116
+
117
+ # Citation
118
+
119
+
120
+ **BibTeX:**
121
+ ```
122
+ @misc{bhargava2021generalization,
123
+ title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
124
+ author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
125
+ year={2021},
126
+ eprint={2110.01518},
127
+ archivePrefix={arXiv},
128
+ primaryClass={cs.CL}
129
+ }
130
+
131
+ @article{DBLP:journals/corr/abs-1908-08962,
132
+ author = {Iulia Turc and
133
+ Ming{-}Wei Chang and
134
+ Kenton Lee and
135
+ Kristina Toutanova},
136
+ title = {Well-Read Students Learn Better: The Impact of Student Initialization
137
+ on Knowledge Distillation},
138
+ journal = {CoRR},
139
+ volume = {abs/1908.08962},
140
+ year = {2019},
141
+ url = {http://arxiv.org/abs/1908.08962},
142
+ eprinttype = {arXiv},
143
+ eprint = {1908.08962},
144
+ timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
145
+ biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
146
+ bibsource = {dblp computer science bibliography, https://dblp.org}
147
+ }
148
+
149
+
150
+ ```
151
+
152
+
153
+ # Glossary [optional]
154
+ More information needed
155
+
156
+ # More Information [optional]
157
+
158
+ More information needed
159
+
160
+ # Model Card Authors [optional]
161
+
162
+
163
+ Deepset in collaboration with Ezi Ozoani and the Hugging Face team
164
+
165
+ # Model Card Contact
166
+
167
+ More information needed
168
+
169
+ # How to Get Started with the Model
170
+
171
+ Use the code below to get started with the model.
172
+
173
+ <details>
174
+ <summary> Click to expand </summary>
175
+
176
+ ```python
177
+ from transformers import AutoTokenizer, DPRContextEncoder
178
+
179
+ tokenizer = AutoTokenizer.from_pretrained("deepset/bert-small-mm_retrieval-table_encoder")
180
+
181
+ model = DPRContextEncoder.from_pretrained("deepset/bert-small-mm_retrieval-table_encoder")
182
+
183
+ ```
184
+ </details>