Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'인간의 지적',
'인간 관찰',
'사람들이 안에 서 있다',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8481 |
| spearman_cosine |
0.847 |
| pearson_manhattan |
0.8291 |
| spearman_manhattan |
0.8329 |
| pearson_euclidean |
0.8297 |
| spearman_euclidean |
0.8336 |
| pearson_dot |
0.7962 |
| spearman_dot |
0.7997 |
| pearson_max |
0.8481 |
| spearman_max |
0.847 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 568,640 training samples
- Columns:
sentence_0, sentence_1, and sentence_2
- Approximate statistics based on the first 1000 samples:
|
sentence_0 |
sentence_1 |
sentence_2 |
| type |
string |
string |
string |
| details |
- min: 4 tokens
- mean: 19.02 tokens
- max: 156 tokens
|
- min: 4 tokens
- mean: 18.36 tokens
- max: 95 tokens
|
- min: 4 tokens
- mean: 14.31 tokens
- max: 35 tokens
|
- Samples:
| sentence_0 |
sentence_1 |
sentence_2 |
악기를 연주하는 사람. |
여자 옆에서 백파이프를 연주하는 잘 차려입은 남자 |
노숙자가 잔돈을 구걸한다. |
셔츠에 이벤트 번호를 새긴 남자들은 길을 걸어간다. |
멘스 셔츠에 숫자가 적혀 있다. |
남자들이 길에서 자고 있다. |
군인들은 기지에서 함께 어울린다. |
한 무리의 군인들이 그늘을 입고 방에 함께 앉아 있었고, 벽에 있는 작은 틈으로 빛이 최고조에 달했다. |
한 무리의 민간인들이 적의 공격으로부터 움츠러든다. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
256
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
Unnamed Dataset
- Size: 5,749 training samples
- Columns:
sentence_0, sentence_1, and label
- Approximate statistics based on the first 1000 samples:
|
sentence_0 |
sentence_1 |
label |
| type |
string |
string |
float |
| details |
- min: 5 tokens
- mean: 17.15 tokens
- max: 71 tokens
|
- min: 4 tokens
- mean: 16.86 tokens
- max: 76 tokens
|
- min: 0.0
- mean: 0.54
- max: 1.0
|
- Samples:
| sentence_0 |
sentence_1 |
label |
남자가 기타를 치고 있다. |
소뇌는 기타를 치고 있다. |
0.72 |
고양이가 빨판을 핥고 있다. |
한 여성이 오이를 자르고 있다. |
0.0 |
누군가가 파워 드릴로 나무 조각에 구멍을 뚫는다. |
한 남자가 나무 조각에 구멍을 뚫는다. |
0.64 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "CosineSimilarityLoss",
"matryoshka_dims": [
768,
256
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
num_train_epochs: 5
batch_sampler: no_duplicates
multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 8
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: round_robin
Training Logs
| Epoch |
Step |
Training Loss |
sts-dev_spearman_max |
| 0.3477 |
500 |
0.931 |
- |
| 0.6954 |
1000 |
0.7062 |
0.8313 |
| 1.0007 |
1439 |
- |
0.8379 |
| 1.0424 |
1500 |
0.5893 |
- |
| 1.3901 |
2000 |
0.3406 |
0.8343 |
| 1.7378 |
2500 |
0.2514 |
- |
| 2.0007 |
2878 |
- |
0.8450 |
| 2.0848 |
3000 |
0.2252 |
0.8470 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}