metadata
			library_name: transformers
language:
  - ko
license: apache-2.0
base_model: monologg/koelectra-base-v3-discriminator
tags:
  - text-classification
  - KoELECTRA
  - Korean-NLP
  - topic-classification
  - news-classification
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ynat-model
    results: []
ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4242
 - Accuracy: 0.8607
 - Precision: 0.8552
 - Recall: 0.8675
 - F1: 0.8605
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 64
 - eval_batch_size: 64
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - num_epochs: 3
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | 
|---|---|---|---|---|---|---|---|
| 0.2153 | 1.0 | 714 | 0.4674 | 0.8578 | 0.8608 | 0.8529 | 0.8555 | 
| 0.2429 | 2.0 | 1428 | 0.4242 | 0.8607 | 0.8552 | 0.8675 | 0.8605 | 
| 0.1753 | 3.0 | 2142 | 0.4723 | 0.8558 | 0.8472 | 0.8694 | 0.8578 | 
Framework versions
- Transformers 4.51.3
 - Pytorch 2.6.0+cu124
 - Datasets 3.6.0
 - Tokenizers 0.21.1