Initial model upload with self-contained custom code
Browse files- modeling_qwen2.py +712 -118
modeling_qwen2.py
CHANGED
@@ -1,130 +1,724 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
with open(config_path, "w", encoding="utf-8") as f:
|
91 |
-
json.dump(config_data, f, indent=2)
|
92 |
-
print("config.json updated successfully.")
|
93 |
-
|
94 |
-
# --- 4. Copy `README.md` ---
|
95 |
-
print("\nCopying README.md...")
|
96 |
-
readme_source = Path(args.readme_path)
|
97 |
-
if not readme_source.exists():
|
98 |
-
print(f"Error: README file not found at {readme_source}")
|
99 |
-
sys.exit(1)
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
119 |
)
|
120 |
-
print("\n🚀 Upload complete! 🚀")
|
121 |
-
print(f"Check out your model at: {repo_url}")
|
122 |
|
123 |
-
|
124 |
-
# --- 6. Clean Up ---
|
125 |
-
print("\nCleaning up temporary staging directory...")
|
126 |
-
shutil.rmtree(staging_dir)
|
127 |
-
print("Cleanup complete.")
|
128 |
|
129 |
-
|
130 |
-
main()
|
|
|
1 |
+
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# This is a fully self-contained version of the model script.
|
16 |
+
# It includes the MDMGenerationMixin and all necessary utilities for public release.
|
17 |
+
|
18 |
+
import logging
|
19 |
+
import warnings
|
20 |
+
import copy
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.distributions as dists
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import functional as F
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
31 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
32 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
33 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
34 |
+
from transformers.modeling_outputs import (
|
35 |
+
BaseModelOutputWithPast,
|
36 |
+
CausalLMOutputWithPast,
|
37 |
+
ModelOutput,
|
38 |
+
)
|
39 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
40 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
41 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
42 |
+
from transformers.processing_utils import Unpack
|
43 |
+
from transformers.utils import (
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
replace_return_docstrings,
|
47 |
+
)
|
48 |
+
|
49 |
+
logger = logging.getLogger(__name__)
|
50 |
+
|
51 |
+
# ==============================================================================
|
52 |
+
# Start of Generation Utilities (Integrated directly into this file)
|
53 |
+
# ==============================================================================
|
54 |
+
|
55 |
+
def top_p_logits(logits, top_p=None):
|
56 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
57 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
58 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
59 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
60 |
+
sorted_indices_to_remove[..., 0] = 0
|
61 |
+
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
62 |
+
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
63 |
+
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
64 |
+
return logits
|
65 |
+
|
66 |
+
def top_k_logits(logits, top_k=None):
|
67 |
+
if top_k is None or top_k == 0:
|
68 |
+
return logits
|
69 |
+
top_k = min(top_k, logits.size(-1))
|
70 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
71 |
+
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
72 |
+
return logits
|
73 |
+
|
74 |
+
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
75 |
+
if temperature > 0:
|
76 |
+
logits = logits / temperature
|
77 |
+
if top_p is not None and top_p < 1:
|
78 |
+
logits = top_p_logits(logits, top_p)
|
79 |
+
if top_k is not None:
|
80 |
+
logits = top_k_logits(logits, top_k)
|
81 |
+
probs = torch.softmax(logits.float(), dim=-1)
|
82 |
+
if temperature > 0:
|
83 |
+
x0 = dists.Categorical(probs=probs).sample()
|
84 |
+
else:
|
85 |
+
_, x0 = probs.max(dim=-1)
|
86 |
+
|
87 |
+
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
88 |
+
|
89 |
+
if margin_confidence:
|
90 |
+
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
91 |
+
top1_probs = sorted_probs[..., 0]
|
92 |
+
top2_probs = sorted_probs[..., 1]
|
93 |
+
confidence = top1_probs - top2_probs
|
94 |
+
elif neg_entropy:
|
95 |
+
log_probs = torch.log(probs.clamp(min=1e-10))
|
96 |
+
confidence = (probs * log_probs).sum(dim=-1)
|
97 |
+
|
98 |
+
return confidence, x0
|
99 |
+
|
100 |
+
|
101 |
+
@dataclass
|
102 |
+
class MDMModelOutput(ModelOutput):
|
103 |
+
sequences: torch.LongTensor = None
|
104 |
+
history: Optional[Tuple[torch.FloatTensor]] = None
|
105 |
+
|
106 |
+
class MDMGenerationConfig(GenerationConfig):
|
107 |
+
def __init__(self, **kwargs):
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
self.temperature: float = kwargs.pop("temperature", 0.0)
|
110 |
+
self.top_p: Optional[float] = kwargs.pop("top_p", None)
|
111 |
+
self.top_k: Optional[int] = kwargs.pop("top_k", None)
|
112 |
+
self.eps: float = kwargs.pop("eps", 1e-3)
|
113 |
+
self.steps: int = kwargs.pop("steps", 512)
|
114 |
+
self.alg: str = kwargs.pop("alg", 'entropy')
|
115 |
+
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", 0.0)
|
116 |
+
self.output_history: bool = kwargs.pop("output_history", False)
|
117 |
+
self.mask_token_id = kwargs.pop("mask_token_id", None)
|
118 |
+
|
119 |
+
|
120 |
+
class MDMGenerationMixin:
|
121 |
+
"""
|
122 |
+
Mixin class for Masked Diffusion Model generation.
|
123 |
+
"""
|
124 |
+
@staticmethod
|
125 |
+
def _expand_inputs_for_generation(
|
126 |
+
expand_size: int = 1,
|
127 |
+
input_ids: Optional[torch.LongTensor] = None,
|
128 |
+
attention_mask: Optional[torch.LongTensor] = None
|
129 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
130 |
+
if expand_size == 1:
|
131 |
+
return input_ids, attention_mask
|
132 |
|
133 |
+
if input_ids is not None:
|
134 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
135 |
+
if attention_mask is not None:
|
136 |
+
attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
|
137 |
+
return input_ids, attention_mask
|
138 |
+
|
139 |
+
def _prepare_generation_config(
|
140 |
+
self, generation_config: Optional[GenerationConfig], **kwargs
|
141 |
+
) -> MDMGenerationConfig:
|
142 |
+
if generation_config is None:
|
143 |
+
generation_config = self.generation_config
|
144 |
|
145 |
+
if not isinstance(generation_config, MDMGenerationConfig):
|
146 |
+
generation_config = MDMGenerationConfig.from_dict(generation_config.to_dict())
|
147 |
+
|
148 |
+
generation_config.update(**kwargs)
|
149 |
+
return generation_config
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def diffusion_generate(
|
153 |
+
self,
|
154 |
+
inputs: Optional[torch.Tensor] = None,
|
155 |
+
generation_config: Optional[MDMGenerationConfig] = None,
|
156 |
+
**kwargs,
|
157 |
+
) -> Union[MDMModelOutput, torch.LongTensor]:
|
158 |
|
159 |
+
generation_config = self._prepare_generation_config(generation_config, **kwargs)
|
160 |
+
input_ids = inputs
|
161 |
+
attention_mask = kwargs.get("attention_mask", None)
|
162 |
+
|
163 |
+
if input_ids is None:
|
164 |
+
raise ValueError("`inputs` must be provided for diffusion generation.")
|
165 |
+
|
166 |
+
if generation_config.max_new_tokens is not None:
|
167 |
+
generation_config.max_length = input_ids.shape[-1] + generation_config.max_new_tokens
|
168 |
|
169 |
+
input_ids, attention_mask = self._expand_inputs_for_generation(
|
170 |
+
expand_size=generation_config.num_return_sequences,
|
171 |
+
input_ids=input_ids,
|
172 |
+
attention_mask=attention_mask
|
173 |
+
)
|
174 |
+
return self._sample(
|
175 |
+
input_ids,
|
176 |
+
attention_mask=attention_mask,
|
177 |
+
generation_config=generation_config
|
178 |
+
)
|
179 |
+
|
180 |
+
def _sample(
|
181 |
+
self,
|
182 |
+
input_ids: torch.LongTensor,
|
183 |
+
attention_mask: Optional[torch.LongTensor],
|
184 |
+
generation_config: MDMGenerationConfig
|
185 |
+
) -> Union[MDMModelOutput, torch.LongTensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
max_length = generation_config.max_length
|
188 |
+
mask_token_id = generation_config.mask_token_id
|
189 |
+
if mask_token_id is None:
|
190 |
+
raise ValueError("`mask_token_id` must be set in the generation config.")
|
191 |
+
|
192 |
+
steps = generation_config.steps
|
193 |
+
eps = generation_config.eps
|
194 |
+
alg = generation_config.alg
|
195 |
+
alg_temp = generation_config.alg_temp
|
196 |
+
temperature = generation_config.temperature
|
197 |
+
top_p = generation_config.top_p
|
198 |
+
top_k = generation_config.top_k
|
199 |
+
|
200 |
+
histories = [] if generation_config.output_history else None
|
201 |
+
x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
|
202 |
+
gen_attention_mask = (x != self.config.pad_token_id).long() if self.config.pad_token_id is not None else None
|
203 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=x.device)
|
204 |
+
|
205 |
+
for i in range(steps):
|
206 |
+
mask_index = (x == mask_token_id)
|
207 |
+
if not mask_index.any():
|
208 |
+
break
|
209 |
+
outputs = self(input_ids=x, attention_mask=gen_attention_mask, is_causal=False)
|
210 |
+
logits = outputs.logits
|
211 |
+
logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1)
|
212 |
+
mask_logits = logits[mask_index]
|
213 |
+
t = timesteps[i]
|
214 |
+
s = timesteps[i + 1]
|
215 |
+
|
216 |
+
confidence_alg_map = {'maskgit_plus': False, 'topk_margin': True, 'entropy': True}
|
217 |
+
is_margin_conf = confidence_alg_map.get(alg, False)
|
218 |
+
is_neg_entropy = alg == 'entropy'
|
219 |
+
|
220 |
+
confidence, x0 = sample_tokens(mask_logits, temperature, top_p, top_k, margin_confidence=is_margin_conf, neg_entropy=is_neg_entropy)
|
221 |
+
num_masked = mask_index.sum(dim=-1, keepdim=True)
|
222 |
+
gamma = 1 - s / t
|
223 |
+
num_to_unmask = (num_masked * gamma).long()
|
224 |
+
full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=confidence.dtype)
|
225 |
+
full_confidence[mask_index] = confidence
|
226 |
+
|
227 |
+
if (alg_temp is not None and alg_temp > 0):
|
228 |
+
unmask_probs = F.softmax(full_confidence / alg_temp, dim=-1)
|
229 |
+
unmask_indices = torch.multinomial(unmask_probs, num_samples=num_to_unmask.max(), replacement=False)
|
230 |
+
else:
|
231 |
+
_, unmask_indices = torch.topk(full_confidence, k=num_to_unmask.max(), dim=-1)
|
232 |
+
|
233 |
+
rows = torch.arange(x.size(0), device=x.device).unsqueeze(1)
|
234 |
+
unmask_selection_mask = torch.zeros_like(x, dtype=torch.bool)
|
235 |
+
unmask_selection_mask[rows, unmask_indices] = True
|
236 |
+
unmask_selection_mask = unmask_selection_mask & (torch.cumsum(unmask_selection_mask.long(), dim=-1) <= num_to_unmask)
|
237 |
+
x_unmasked_proposals = torch.full_like(x, fill_value=mask_token_id)
|
238 |
+
x_unmasked_proposals[mask_index] = x0
|
239 |
+
x[unmask_selection_mask] = x_unmasked_proposals[unmask_selection_mask]
|
240 |
+
|
241 |
+
if histories is not None:
|
242 |
+
histories.append(x.clone())
|
243 |
+
|
244 |
+
if generation_config.return_dict_in_generate:
|
245 |
+
return MDMModelOutput(sequences=x, history=histories)
|
246 |
+
else:
|
247 |
+
return x
|
248 |
+
|
249 |
+
# ==============================================================================
|
250 |
+
# End of Generation Utilities
|
251 |
+
# ==============================================================================
|
252 |
+
|
253 |
+
|
254 |
+
_CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
|
255 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
256 |
+
|
257 |
+
|
258 |
+
class Qwen2MLP(nn.Module):
|
259 |
+
# ... (class unchanged)
|
260 |
+
def __init__(self, config):
|
261 |
+
super().__init__()
|
262 |
+
self.config = config
|
263 |
+
self.hidden_size = config.hidden_size
|
264 |
+
self.intermediate_size = config.intermediate_size
|
265 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
266 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
267 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
268 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
269 |
+
|
270 |
+
def forward(self, x):
|
271 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
272 |
+
return down_proj
|
273 |
+
|
274 |
+
def rotate_half(x):
|
275 |
+
# ... (function unchanged)
|
276 |
+
x1 = x[..., : x.shape[-1] // 2]
|
277 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
278 |
+
return torch.cat((-x2, x1), dim=-1)
|
279 |
+
|
280 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
281 |
+
# ... (function unchanged)
|
282 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
283 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
284 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
285 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
286 |
+
return q_embed, k_embed
|
287 |
+
|
288 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
289 |
+
# ... (function unchanged)
|
290 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
291 |
+
if n_rep == 1:
|
292 |
+
return hidden_states
|
293 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
294 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
295 |
+
|
296 |
+
class Qwen2Attention(nn.Module):
|
297 |
+
# ... (class unchanged)
|
298 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
299 |
+
super().__init__()
|
300 |
+
self.config = config
|
301 |
+
self.layer_idx = layer_idx
|
302 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
303 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
304 |
+
self.scaling = self.head_dim**-0.5
|
305 |
+
self.attention_dropout = config.attention_dropout
|
306 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
|
307 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
308 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
309 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
hidden_states: torch.Tensor,
|
314 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
315 |
+
attention_mask: Optional[torch.Tensor],
|
316 |
+
past_key_value: Optional[Cache] = None,
|
317 |
+
output_attentions: Optional[bool] = False,
|
318 |
+
cache_position: Optional[torch.LongTensor] = None,
|
319 |
+
is_causal: bool = True,
|
320 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
321 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
322 |
+
bsz, q_len, _ = hidden_states.size()
|
323 |
+
hidden_shape = (bsz, q_len, -1, self.head_dim)
|
324 |
+
|
325 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
326 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
327 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
328 |
+
|
329 |
+
full_q_len = query_states.size(2)
|
330 |
+
cos, sin = position_embeddings
|
331 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
332 |
+
|
333 |
+
if past_key_value is not None:
|
334 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
335 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
336 |
+
|
337 |
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get(self.config._attn_implementation, None)
|
338 |
+
if attention_interface is None:
|
339 |
+
raise ValueError(f"Attention implementation {self.config._attn_implementation} not found.")
|
340 |
+
|
341 |
+
if self.config._attn_implementation == "sdpa" and output_attentions:
|
342 |
+
logger.warning_once("Using SDPA with `output_attentions=True` requires eager attention.")
|
343 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS["eager"]
|
344 |
+
|
345 |
+
|
346 |
+
attn_output, attn_weights = attention_interface(
|
347 |
+
query_states,
|
348 |
+
key_states,
|
349 |
+
value_states,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
dropout=self.attention_dropout if self.training else 0.0,
|
352 |
+
is_causal=is_causal,
|
353 |
+
**kwargs,
|
354 |
+
)
|
355 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
356 |
+
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size)
|
357 |
+
attn_output = self.o_proj(attn_output)
|
358 |
|
359 |
+
if not output_attentions:
|
360 |
+
attn_weights = None
|
361 |
|
362 |
+
return attn_output, attn_weights, past_key_value
|
363 |
+
|
364 |
+
class Qwen2RMSNorm(nn.Module):
|
365 |
+
# ... (class unchanged)
|
366 |
+
def __init__(self, hidden_size, eps=1e-6):
|
367 |
+
super().__init__()
|
368 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
369 |
+
self.variance_epsilon = eps
|
370 |
+
|
371 |
+
def forward(self, hidden_states):
|
372 |
+
input_dtype = hidden_states.dtype
|
373 |
+
hidden_states = hidden_states.to(torch.float32)
|
374 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
375 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
376 |
+
return self.weight * hidden_states.to(input_dtype)
|
377 |
+
|
378 |
+
class Qwen2DecoderLayer(nn.Module):
|
379 |
+
# ... (class unchanged)
|
380 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
381 |
+
super().__init__()
|
382 |
+
self.hidden_size = config.hidden_size
|
383 |
+
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
384 |
+
self.mlp = Qwen2MLP(config)
|
385 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
386 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
387 |
+
|
388 |
+
def forward(
|
389 |
+
self,
|
390 |
+
hidden_states: torch.Tensor,
|
391 |
+
attention_mask: Optional[torch.Tensor] = None,
|
392 |
+
position_ids: Optional[torch.LongTensor] = None,
|
393 |
+
past_key_value: Optional[Cache] = None,
|
394 |
+
output_attentions: Optional[bool] = False,
|
395 |
+
use_cache: Optional[bool] = False,
|
396 |
+
cache_position: Optional[torch.LongTensor] = None,
|
397 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
398 |
+
is_causal: bool = True,
|
399 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
400 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
401 |
+
residual = hidden_states
|
402 |
+
hidden_states = self.input_layernorm(hidden_states)
|
403 |
+
|
404 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
405 |
+
hidden_states=hidden_states,
|
406 |
+
attention_mask=attention_mask,
|
407 |
+
past_key_value=past_key_value,
|
408 |
+
output_attentions=output_attentions,
|
409 |
+
cache_position=cache_position,
|
410 |
+
position_embeddings=position_embeddings,
|
411 |
+
is_causal=is_causal,
|
412 |
+
**kwargs,
|
413 |
+
)
|
414 |
+
hidden_states = residual + hidden_states
|
415 |
+
|
416 |
+
residual = hidden_states
|
417 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
418 |
+
hidden_states = self.mlp(hidden_states)
|
419 |
+
hidden_states = residual + hidden_states
|
420 |
+
|
421 |
+
outputs = (hidden_states,)
|
422 |
+
if output_attentions:
|
423 |
+
outputs += (self_attn_weights,)
|
424 |
+
if use_cache:
|
425 |
+
outputs += (present_key_value,)
|
426 |
+
|
427 |
+
return outputs
|
428 |
+
|
429 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
430 |
+
# ... (class unchanged)
|
431 |
+
def __init__(self, config: Qwen2Config, device=None):
|
432 |
+
super().__init__()
|
433 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
434 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
435 |
+
else:
|
436 |
+
self.rope_type = "default"
|
437 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
438 |
+
self.original_max_seq_len = config.max_position_embeddings
|
439 |
+
self.config = config
|
440 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
441 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
442 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
443 |
+
self.original_inv_freq = self.inv_freq
|
444 |
+
|
445 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
446 |
+
seq_len = torch.max(position_ids) + 1
|
447 |
+
if seq_len > self.max_seq_len_cached:
|
448 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
449 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
450 |
+
self.max_seq_len_cached = seq_len
|
451 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:
|
452 |
+
self.original_inv_freq = self.original_inv_freq.to(device)
|
453 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
454 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
455 |
+
|
456 |
+
@torch.no_grad()
|
457 |
+
def forward(self, x, position_ids):
|
458 |
+
if "dynamic" in self.rope_type:
|
459 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
460 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
461 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
462 |
+
device_type = x.device.type
|
463 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
464 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
465 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
466 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
467 |
+
cos = emb.cos()
|
468 |
+
sin = emb.sin()
|
469 |
+
cos = cos * self.attention_scaling
|
470 |
+
sin = sin * self.attention_scaling
|
471 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
472 |
+
|
473 |
+
@add_start_docstrings(
|
474 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
475 |
+
QWEN2_START_DOCSTRING,
|
476 |
+
)
|
477 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
478 |
+
# ... (class unchanged)
|
479 |
+
config_class = Qwen2Config
|
480 |
+
base_model_prefix = "model"
|
481 |
+
supports_gradient_checkpointing = True
|
482 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
483 |
+
_skip_keys_device_placement = ["past_key_values"]
|
484 |
+
_supports_flash_attn_2 = True
|
485 |
+
_supports_sdpa = True
|
486 |
+
_supports_cache_class = True
|
487 |
+
|
488 |
+
def _init_weights(self, module):
|
489 |
+
std = self.config.initializer_range
|
490 |
+
if isinstance(module, nn.Linear):
|
491 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
492 |
+
if module.bias is not None:
|
493 |
+
module.bias.data.zero_()
|
494 |
+
elif isinstance(module, nn.Embedding):
|
495 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
496 |
+
if module.padding_idx is not None:
|
497 |
+
module.weight.data[module.padding_idx].zero_()
|
498 |
+
|
499 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
500 |
+
# ... (class unchanged)
|
501 |
+
def __init__(self, config: Qwen2Config):
|
502 |
+
super().__init__(config)
|
503 |
+
self.padding_idx = config.pad_token_id
|
504 |
+
self.vocab_size = config.vocab_size
|
505 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
506 |
+
self.layers = nn.ModuleList(
|
507 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
508 |
+
)
|
509 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
510 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
511 |
+
self.gradient_checkpointing = False
|
512 |
+
self.post_init()
|
513 |
+
|
514 |
+
def get_input_embeddings(self):
|
515 |
+
return self.embed_tokens
|
516 |
+
|
517 |
+
def set_input_embeddings(self, value):
|
518 |
+
self.embed_tokens = value
|
519 |
+
|
520 |
+
def forward(
|
521 |
+
self,
|
522 |
+
input_ids: torch.LongTensor = None,
|
523 |
+
attention_mask: Optional[torch.Tensor] = None,
|
524 |
+
position_ids: Optional[torch.LongTensor] = None,
|
525 |
+
past_key_values: Optional[Cache] = None,
|
526 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
527 |
+
use_cache: Optional[bool] = None,
|
528 |
+
output_attentions: Optional[bool] = None,
|
529 |
+
output_hidden_states: Optional[bool] = None,
|
530 |
+
return_dict: Optional[bool] = None,
|
531 |
+
cache_position: Optional[torch.LongTensor] = None,
|
532 |
+
is_causal: bool = True,
|
533 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
534 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
535 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
536 |
+
output_hidden_states = (
|
537 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
538 |
+
)
|
539 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
540 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
541 |
+
|
542 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
543 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
544 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
545 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")
|
546 |
+
use_cache = False
|
547 |
+
if inputs_embeds is None:
|
548 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
549 |
+
|
550 |
+
past_key_values_length = 0
|
551 |
+
if use_cache:
|
552 |
+
if past_key_values is None:
|
553 |
+
past_key_values = DynamicCache()
|
554 |
+
past_key_values_length = past_key_values.get_seq_length()
|
555 |
+
|
556 |
+
if cache_position is None:
|
557 |
+
cache_position = torch.arange(
|
558 |
+
past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device
|
559 |
+
)
|
560 |
+
if position_ids is None:
|
561 |
+
position_ids = cache_position.unsqueeze(0)
|
562 |
+
|
563 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, is_causal)
|
564 |
+
hidden_states = inputs_embeds
|
565 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
566 |
+
all_hidden_states = () if output_hidden_states else None
|
567 |
+
all_self_attns = () if output_attentions else None
|
568 |
+
next_decoder_cache = () if use_cache else None
|
569 |
+
|
570 |
+
for decoder_layer in self.layers:
|
571 |
+
if output_hidden_states:
|
572 |
+
all_hidden_states += (hidden_states,)
|
573 |
+
|
574 |
+
layer_outputs = decoder_layer(
|
575 |
+
hidden_states,
|
576 |
+
attention_mask=causal_mask,
|
577 |
+
position_ids=position_ids,
|
578 |
+
past_key_value=past_key_values,
|
579 |
+
output_attentions=output_attentions,
|
580 |
+
use_cache=use_cache,
|
581 |
+
cache_position=cache_position,
|
582 |
+
position_embeddings=position_embeddings,
|
583 |
+
is_causal=is_causal,
|
584 |
+
**flash_attn_kwargs,
|
585 |
+
)
|
586 |
+
hidden_states = layer_outputs[0]
|
587 |
+
if use_cache:
|
588 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
589 |
+
if output_attentions:
|
590 |
+
all_self_attns += (layer_outputs[1],)
|
591 |
+
|
592 |
+
hidden_states = self.norm(hidden_states)
|
593 |
+
if output_hidden_states:
|
594 |
+
all_hidden_states += (hidden_states,)
|
595 |
+
|
596 |
+
next_cache = next_decoder_cache if use_cache else None
|
597 |
+
|
598 |
+
if not return_dict:
|
599 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
600 |
+
return BaseModelOutputWithPast(
|
601 |
+
last_hidden_state=hidden_states,
|
602 |
+
past_key_values=next_cache,
|
603 |
+
hidden_states=all_hidden_states,
|
604 |
+
attentions=all_self_attns,
|
605 |
+
)
|
606 |
+
|
607 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position, is_causal):
|
608 |
+
if not is_causal:
|
609 |
+
return attention_mask
|
610 |
+
|
611 |
+
seq_len = input_tensor.shape[1]
|
612 |
+
if self.config._attn_implementation == "flash_attention_2":
|
613 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
614 |
+
return attention_mask
|
615 |
+
return None
|
616 |
+
|
617 |
+
dtype = input_tensor.dtype
|
618 |
+
device = input_tensor.device
|
619 |
+
|
620 |
+
causal_mask = torch.triu(torch.full((seq_len, seq_len), torch.finfo(dtype).min, device=device), 1)
|
621 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
622 |
+
|
623 |
+
if attention_mask is not None:
|
624 |
+
causal_mask = causal_mask.clone()
|
625 |
+
causal_mask = causal_mask + attention_mask[:, None, None, :]
|
626 |
+
|
627 |
+
return causal_mask
|
628 |
+
|
629 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel, MDMGenerationMixin):
|
630 |
+
_tied_weights_keys = ["lm_head.weight"]
|
631 |
+
|
632 |
+
def __init__(self, config):
|
633 |
+
super().__init__(config)
|
634 |
+
self.model = Qwen2Model(config)
|
635 |
+
self.vocab_size = config.vocab_size
|
636 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
637 |
+
self.post_init()
|
638 |
+
|
639 |
+
def get_input_embeddings(self):
|
640 |
+
return self.model.embed_tokens
|
641 |
+
|
642 |
+
def set_input_embeddings(self, value):
|
643 |
+
self.model.embed_tokens = value
|
644 |
+
|
645 |
+
def get_output_embeddings(self):
|
646 |
+
return self.lm_head
|
647 |
+
|
648 |
+
def set_output_embeddings(self, new_embeddings):
|
649 |
+
self.lm_head = new_embeddings
|
650 |
+
|
651 |
+
def set_decoder(self, decoder):
|
652 |
+
self.model = decoder
|
653 |
+
|
654 |
+
def get_decoder(self):
|
655 |
+
return self.model
|
656 |
+
|
657 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
658 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
659 |
+
def forward(
|
660 |
+
self,
|
661 |
+
input_ids: torch.LongTensor = None,
|
662 |
+
attention_mask: Optional[torch.Tensor] = None,
|
663 |
+
position_ids: Optional[torch.LongTensor] = None,
|
664 |
+
past_key_values: Optional[Cache] = None,
|
665 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
666 |
+
labels: Optional[torch.LongTensor] = None,
|
667 |
+
use_cache: Optional[bool] = None,
|
668 |
+
output_attentions: Optional[bool] = None,
|
669 |
+
output_hidden_states: Optional[bool] = None,
|
670 |
+
return_dict: Optional[bool] = None,
|
671 |
+
cache_position: Optional[torch.LongTensor] = None,
|
672 |
+
is_causal: bool = True,
|
673 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
674 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
675 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
676 |
+
output_hidden_states = (
|
677 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
678 |
+
)
|
679 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
680 |
+
|
681 |
+
outputs = self.model(
|
682 |
+
input_ids=input_ids,
|
683 |
+
attention_mask=attention_mask,
|
684 |
+
position_ids=position_ids,
|
685 |
+
past_key_values=past_key_values,
|
686 |
+
inputs_embeds=inputs_embeds,
|
687 |
+
use_cache=use_cache,
|
688 |
+
output_attentions=output_attentions,
|
689 |
+
output_hidden_states=output_hidden_states,
|
690 |
+
return_dict=return_dict,
|
691 |
+
cache_position=cache_position,
|
692 |
+
is_causal=is_causal,
|
693 |
+
**kwargs,
|
694 |
+
)
|
695 |
+
|
696 |
+
hidden_states = outputs[0]
|
697 |
+
logits = self.lm_head(hidden_states)
|
698 |
+
logits = logits.float()
|
699 |
+
loss = None
|
700 |
+
|
701 |
+
if labels is not None:
|
702 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
703 |
+
shift_labels = labels[..., 1:].contiguous()
|
704 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
705 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
706 |
+
shift_labels = shift_labels.view(-1)
|
707 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
708 |
+
loss = loss_fct(shift_logits, shift_labels)
|
709 |
|
710 |
+
if not return_dict:
|
711 |
+
output = (logits,) + outputs[1:]
|
712 |
+
return (loss,) + output if loss is not None else output
|
713 |
|
714 |
+
return CausalLMOutputWithPast(
|
715 |
+
loss=loss,
|
716 |
+
logits=logits,
|
717 |
+
past_key_values=outputs.past_key_values,
|
718 |
+
hidden_states=outputs.hidden_states,
|
719 |
+
attentions=outputs.attentions,
|
720 |
)
|
|
|
|
|
721 |
|
722 |
+
ModelClass = Qwen2ForCausalLM
|
|
|
|
|
|
|
|
|
723 |
|
724 |
+
__all__ = ["Qwen2ForCausalLM", "Qwen2Model", "Qwen2PreTrainedModel", "MDMGenerationMixin"]
|
|