|  | --- | 
					
						
						|  | base_model: '' | 
					
						
						|  | tags: | 
					
						
						|  | - generated_from_trainer | 
					
						
						|  | model-index: | 
					
						
						|  | - name: glacformer | 
					
						
						|  | results: [] | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- This model card has been generated automatically according to the information the Trainer had access to. You | 
					
						
						|  | should probably proofread and complete it, then remove this comment. --> | 
					
						
						|  |  | 
					
						
						|  | # glacformer | 
					
						
						|  |  | 
					
						
						|  | This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. | 
					
						
						|  | It achieves the following results on the evaluation set: | 
					
						
						|  | - Loss: 0.0333 | 
					
						
						|  | - Mean Iou: 0.9528 | 
					
						
						|  | - Mean Accuracy: 0.9772 | 
					
						
						|  | - Overall Accuracy: 0.9885 | 
					
						
						|  | - Per Category Iou: [0.9855230058020051, 0.8845759711828091, 0.9883964861024538] | 
					
						
						|  | - Per Category Accuracy: [0.9921669407092866, 0.9462930795421282, 0.9931901963885149] | 
					
						
						|  |  | 
					
						
						|  | ## Model description | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Intended uses & limitations | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training and evaluation data | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training procedure | 
					
						
						|  |  | 
					
						
						|  | ### Training hyperparameters | 
					
						
						|  |  | 
					
						
						|  | The following hyperparameters were used during training: | 
					
						
						|  | - learning_rate: 6e-05 | 
					
						
						|  | - train_batch_size: 4 | 
					
						
						|  | - eval_batch_size: 1 | 
					
						
						|  | - seed: 42 | 
					
						
						|  | - gradient_accumulation_steps: 4 | 
					
						
						|  | - total_train_batch_size: 16 | 
					
						
						|  | - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | 
					
						
						|  | - lr_scheduler_type: linear | 
					
						
						|  | - num_epochs: 2 | 
					
						
						|  |  | 
					
						
						|  | ### Training results | 
					
						
						|  |  | 
					
						
						|  | | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou                                             | Per Category Accuracy                                        | | 
					
						
						|  | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------:|:------------------------------------------------------------:| | 
					
						
						|  | | 0.045         | 1.0   | 523  | 0.0421          | 0.9477   | 0.9795        | 0.9869           | [0.9852157890390353, 0.8719898483736556, 0.9857700613925825] | [0.9904340924248899, 0.9587586082053337, 0.9893900149083925] | | 
					
						
						|  | | 0.0372        | 2.0   | 1046 | 0.0333          | 0.9528   | 0.9772        | 0.9885           | [0.9855230058020051, 0.8845759711828091, 0.9883964861024538] | [0.9921669407092866, 0.9462930795421282, 0.9931901963885149] | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Framework versions | 
					
						
						|  |  | 
					
						
						|  | - Transformers 4.31.0 | 
					
						
						|  | - Pytorch 1.14.0.dev20221130+cu117 | 
					
						
						|  | - Datasets 2.13.1 | 
					
						
						|  | - Tokenizers 0.13.3 | 
					
						
						|  |  |