emeersman's picture
Add custom handler for GF model
fe706b1
raw
history blame
2.13 kB
from typing import Dict, List, Any
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
import base64
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to(device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
inputs = data.pop("inputs", data)
# hyperparamters
num_inference_steps = data.pop("num_inference_steps", 25)
guidance_scale = data.pop("guidance_scale", 7.5)
negative_prompt = data.pop("negative_prompt", None)
height = data.pop("height", None)
width = data.pop("width", None)
manual_seed = data.pop("manual_seed", -1)
generator = torch.Generator(device).manual_seed(manual_seed)
# run inference pipeline
with autocast(device.type):
image = self.pipe(inputs,
generator=generator,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
negative_prompt=negative_prompt,
height=height,
width=width).images[0]
# encode image as base 64
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# postprocess the prediction
return {"image": img_str.decode()}