metadata
license: mit
tags:
- tensor-compression
- code-embeddings
- factorized
- tltorch
base_model: nomic-ai/CodeRankEmbed
CodeRankEmbed-compressed
This is a tensor-compressed version of nomic-ai/CodeRankEmbed using tensor factorization.
Compression Details
- Compression method: Tensor factorization using TLTorch
- Factorization types: cp
- Ranks used: 4
- Number of factorized layers: 60
- Original model size: 136.73M parameters
- Compressed model size: 23.62M parameters
- Compression ratio: 5.79x (82.7% reduction)
Usage
To use this compressed model, you'll need to install the required dependencies and use the custom loading script:
pip install torch tensorly tltorch sentence-transformers
Loading the model
import torch
import json
from sentence_transformers import SentenceTransformer
import tensorly as tl
from tltorch.factorized_layers import FactorizedLinear, FactorizedEmbedding
# Set TensorLy backend
tl.set_backend("pytorch")
# Load the model structure
model = SentenceTransformer("nomic-ai/CodeRankEmbed", trust_remote_code=True)
# Load factorization info
with open("factorization_info.json", "r") as f:
factorized_info = json.load(f)
# Reconstruct factorized layers (see load_compressed_model.py for full implementation)
# ... reconstruction code ...
# Load compressed weights
checkpoint = torch.load("pytorch_model.bin", map_location="cpu")
model.load_state_dict(checkpoint["state_dict"], strict=False)
# Use the model
embeddings = model.encode(["def hello_world():\n print('Hello, World!')"])
Model Files
pytorch_model.bin
: Compressed model weightsfactorization_info.json
: Metadata about factorized layerstokenizer.json
,vocab.txt
: Tokenizer filesmodules.json
: SentenceTransformer modules configuration
Performance
The compressed model maintains good quality while being significantly smaller:
- Similar embedding quality (average cosine similarity > 0.9 with original)
- 5.79x smaller model size
- Faster loading and inference on CPU
Citation
If you use this compressed model, please cite the original CodeRankEmbed model:
@misc{nomic2024coderankembed,
title={CodeRankEmbed},
author={Nomic AI},
year={2024},
url={https://huggingface.co/nomic-ai/CodeRankEmbed}
}
License
This compressed model inherits the license from the original model. Please check the original model's license for usage terms.