changes for testin
Browse files- handler.py +13 -13
handler.py
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
-
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
-
#
|
8 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
"Qwen/Qwen2-1.5B-Instruct",
|
11 |
-
torch_dtype=
|
12 |
-
device_map="
|
13 |
)
|
14 |
-
|
15 |
-
# Create inference pipeline without specifying the device
|
16 |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
17 |
|
18 |
-
def __call__(self, data: Any) -> List[List[Dict[str,
|
19 |
inputs = data.pop("inputs", data)
|
20 |
-
parameters = data.pop("parameters",
|
21 |
-
|
22 |
-
if isinstance(inputs, str):
|
23 |
-
inputs = [inputs]
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
|
|
|
|
27 |
|
|
|
28 |
return prediction
|
29 |
|
30 |
# Example usage
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
device = "cuda"
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
+
# load the model
|
8 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
"Qwen/Qwen2-1.5B-Instruct",
|
11 |
+
torch_dtype="auto",
|
12 |
+
device_map="auto"
|
13 |
)
|
14 |
+
# create inference pipeline
|
|
|
15 |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
16 |
|
17 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
18 |
inputs = data.pop("inputs", data)
|
19 |
+
parameters = data.pop("parameters", None)
|
|
|
|
|
|
|
20 |
|
21 |
+
# pass inputs with all kwargs in data
|
22 |
+
if parameters is not None:
|
23 |
+
prediction = self.pipeline(inputs, **parameters)
|
24 |
+
else:
|
25 |
+
prediction = self.pipeline(inputs)
|
26 |
|
27 |
+
# postprocess the prediction
|
28 |
return prediction
|
29 |
|
30 |
# Example usage
|