simplify handler
Browse files- handler.py +3 -22
handler.py
CHANGED
@@ -1,18 +1,9 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
-
from transformers import
|
3 |
-
device = "cuda"
|
4 |
|
5 |
class EndpointHandler:
|
6 |
-
def __init__(self,
|
7 |
-
#
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
"Qwen/Qwen2-1.5B-Instruct",
|
11 |
-
torch_dtype="auto",
|
12 |
-
device_map="auto"
|
13 |
-
)
|
14 |
-
# create inference pipeline
|
15 |
-
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
16 |
|
17 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
18 |
inputs = data.pop("inputs", data)
|
@@ -26,13 +17,3 @@ class EndpointHandler:
|
|
26 |
|
27 |
# postprocess the prediction
|
28 |
return prediction
|
29 |
-
|
30 |
-
# Example usage
|
31 |
-
if __name__ == "__main__":
|
32 |
-
handler = EndpointHandler()
|
33 |
-
data = {
|
34 |
-
"inputs": "Hello, how can I",
|
35 |
-
"parameters": {"max_length": 50, "num_return_sequences": 1}
|
36 |
-
}
|
37 |
-
result = handler(data)
|
38 |
-
print(result)
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
+
from transformers import pipeline
|
|
|
3 |
|
4 |
class EndpointHandler:
|
5 |
+
def __init__(self, model_name="Qwen/Qwen2-1.5B-Instruct"):
|
6 |
+
self.pipeline = pipeline("text-generation", model=model_name) # Note: Model name provided as argument for flexibility
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
9 |
inputs = data.pop("inputs", data)
|
|
|
17 |
|
18 |
# postprocess the prediction
|
19 |
return prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|