Zero-Shot Wikidata Classifier
This model performs zero-shot text classification by dynamically integrating knowledge from Wikidata. It classifies text into custom categories without requiring training data.
How It Works
- Input: Receives any text input
- Knowledge Expansion: Queries Wikidata for related concepts
- Classification: Uses Wikipedia-trained BART model to match text to concepts
- Output: Returns ranked categories with confidence scores
Capabilities
- 🧠 Dynamic Classification: Adapts to new categories via Wikidata
- ⚡ Zero-Shot Learning: No training required
- 🔍 Knowledge Integration: Leverages Wikipedia's semantic relationships
- 🌐 Multilingual Support: Works with 100+ languages (see multilingual section)
Usage
from transformers import pipeline
from wikidata import get_wikidata_labels
classifier = pipeline("zero-shot-classification",
model="your-username/zero-shot-wikidata-classifier")
# Classify with Wikidata expansion
labels = get_wikidata_labels("renewable energy")
result = classifier("Perovskite solar cells achieve 30% efficiency",
candidate_labels=labels)
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support