dynamo_ssl / envs /block_pushing /block_pushing.py
jeffacce
initial commit
393d3de
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simple block environments for the XArm."""
import collections
import enum
import math
import time
from typing import Dict, List
import gym
from gym import spaces
from gym.envs import registration
from .utils import utils_pybullet
from .utils import xarm_sim_robot
from .utils.pose3d import Pose3d
from .utils.utils_pybullet import ObjState
from .utils.utils_pybullet import XarmState
import numpy as np
from scipy.spatial import transform
import pybullet
import pybullet_utils.bullet_client as bullet_client
import matplotlib.pyplot as plt
BLOCK_URDF_PATH = "third_party/py/envs/assets/block.urdf"
PLANE_URDF_PATH = "third_party/bullet/examples/pybullet/gym/pybullet_data/" "plane.urdf"
WORKSPACE_URDF_PATH = "third_party/py/envs/assets/workspace.urdf"
ZONE_URDF_PATH = "third_party/py/envs/assets/zone.urdf"
INSERT_URDF_PATH = "third_party/py/envs/assets/insert.urdf"
EFFECTOR_HEIGHT = 0.06
EFFECTOR_DOWN_ROTATION = transform.Rotation.from_rotvec([0, math.pi, 0])
WORKSPACE_BOUNDS = np.array(((0.15, -0.5), (0.7, 0.5)))
# Min/max bounds calculated from oracle data using:
# ibc/environments/board2d_dataset_statistics.ipynb
# to calculate [mean - 3 * std, mean + 3 * std] using the oracle data.
# pylint: disable=line-too-long
ACTION_MIN = np.array([-0.02547718, -0.02090043], np.float32)
ACTION_MAX = np.array([0.02869084, 0.04272365], np.float32)
EFFECTOR_TARGET_TRANSLATION_MIN = np.array(
[0.1774151772260666, -0.6287994794547558], np.float32
)
EFFECTOR_TARGET_TRANSLATION_MAX = np.array(
[0.5654461532831192, 0.5441607423126698], np.float32
)
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MIN = np.array(
[-0.07369826920330524, -0.11395704373717308], np.float32
)
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MAX = np.array(
[0.10131562314927578, 0.19391131028532982], np.float32
)
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MIN = np.array(
[-0.17813862301409245, -0.3309651017189026], np.float32
)
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MAX = np.array(
[0.23726161383092403, 0.8404090404510498], np.float32
)
BLOCK_ORIENTATION_COS_SIN_MIN = np.array(
[-2.0649861991405487, -0.6154364347457886], np.float32
)
BLOCK_ORIENTATION_COS_SIN_MAX = np.array(
[1.6590178310871124, 1.8811014890670776], np.float32
)
TARGET_ORIENTATION_COS_SIN_MIN = np.array(
[-1.0761439241468906, -0.8846937336493284], np.float32
)
TARGET_ORIENTATION_COS_SIN_MAX = np.array(
[-0.8344330154359341, 0.8786859593819827], np.float32
)
# Hardcoded Pose joints to make sure we don't have surprises from using the
# IK solver on reset. The joint poses correspond to the Pose with:
# rotation = rotation3.Rotation3.from_axis_angle([0, 1, 0], math.pi)
# translation = np.array([0.3, -0.4, 0.07])
INITIAL_JOINT_POSITIONS = np.array(
[
-0.9254632489674508,
0.6990770671568564,
-1.106629064060494,
0.0006653351931553931,
0.3987969742311386,
-4.063402065624296,
]
)
DEFAULT_CAMERA_POSE_VIEW0 = (1.0, 0, 0.75)
DEFAULT_CAMERA_POSE_VIEW1 = (0.35, 0.7, 0.75)
DEFAULT_CAMERA_ORIENTATION_VIEW0 = (np.pi / 4, np.pi, -np.pi / 2)
DEFAULT_CAMERA_ORIENTATION_VIEW1 = (np.pi / 4, np.pi, 0)
IMAGE_WIDTH = 224
IMAGE_HEIGHT = 224
CAMERA_INTRINSICS = (
0.803 * IMAGE_WIDTH, # fx
0,
IMAGE_WIDTH / 2.0, # cx
0,
0.803 * IMAGE_WIDTH, # fy
IMAGE_HEIGHT / 2.0, # cy
0,
0,
1,
)
# "Realistic" visuals.
X_MIN_REAL = 0.15
X_MAX_REAL = 0.6
Y_MIN_REAL = -0.3048
Y_MAX_REAL = 0.3048
WORKSPACE_BOUNDS_REAL = np.array(((X_MIN_REAL, Y_MIN_REAL), (X_MAX_REAL, Y_MAX_REAL)))
WORKSPACE_URDF_PATH_REAL = "third_party/py/ibc/environments/assets/workspace_real.urdf"
CAMERA_POSE_REAL = (0.75, 0, 0.5)
CAMERA_ORIENTATION_REAL = (np.pi / 5, np.pi, -np.pi / 2)
IMAGE_WIDTH_REAL = 320
IMAGE_HEIGHT_REAL = 180
CAMERA_INTRINSICS_REAL = (
0.803 * IMAGE_WIDTH_REAL, # fx
0,
IMAGE_WIDTH_REAL / 2.0, # cx
0,
0.803 * IMAGE_WIDTH_REAL, # fy
IMAGE_HEIGHT_REAL / 2.0, # cy
0,
0,
1,
)
# pylint: enable=line-too-long
def build_env_name(task, shared_memory, use_image_obs, use_normalized_env=False):
"""Construct the env name from parameters."""
if isinstance(task, str):
task = BlockTaskVariant[task]
env_name = "Block" + task.value
if use_image_obs:
env_name = env_name + "Rgb"
if use_normalized_env:
env_name = env_name + "Normalized"
if shared_memory:
env_name = "Shared" + env_name
env_name = env_name + "-v0"
return env_name
class BlockTaskVariant(enum.Enum):
REACH = "Reach"
REACH_NORMALIZED = "ReachNormalized"
PUSH = "Push"
PUSH_NORMALIZED = "PushNormalized"
INSERT = "Insert"
def sleep_spin(sleep_time_sec):
"""Spin wait sleep. Avoids time.sleep accuracy issues on Windows."""
if sleep_time_sec <= 0:
return
t0 = time.perf_counter()
while time.perf_counter() - t0 < sleep_time_sec:
pass
class BlockPush(gym.Env):
"""Simple XArm environment for block pushing."""
def __init__(
self,
control_frequency=10.0,
task=BlockTaskVariant.PUSH,
image_size=None,
shared_memory=False,
seed=None,
goal_dist_tolerance=0.01,
effector_height=None,
visuals_mode="default",
):
"""Creates an env instance.
Args:
control_frequency: Control frequency for the arm. Each env step will
advance the simulation by 1/control_frequency seconds.
task: enum for which task, see BlockTaskVariant enum.
image_size: Optional image size (height, width). If None, no image
observations will be used.
shared_memory: If True `pybullet.SHARED_MEMORY` is used to connect to
pybullet. Useful to debug.
seed: Optional seed for the environment.
goal_dist_tolerance: float, how far away from the goal to terminate.
effector_height: float, custom height for end effector.
visuals_mode: 'default' or 'real'.
"""
# pybullet.connect(pybullet.GUI)
# pybullet.resetDebugVisualizerCamera(
# cameraDistance=1.5,
# cameraYaw=0,
# cameraPitch=-40,
# cameraTargetPosition=[0.55, -0.35, 0.2],
# )
if visuals_mode != "default" and visuals_mode != "real":
raise ValueError("visuals_mode must be `real` or `default`.")
self._task = task
self._connection_mode = pybullet.DIRECT
if shared_memory:
self._connection_mode = pybullet.SHARED_MEMORY
self.goal_dist_tolerance = goal_dist_tolerance
self.effector_height = effector_height or EFFECTOR_HEIGHT
self._visuals_mode = visuals_mode
if visuals_mode == "default":
self._camera_poses = [DEFAULT_CAMERA_POSE_VIEW0, DEFAULT_CAMERA_POSE_VIEW1]
self._camera_orientations = [
DEFAULT_CAMERA_ORIENTATION_VIEW0,
DEFAULT_CAMERA_ORIENTATION_VIEW1,
]
self.workspace_bounds = WORKSPACE_BOUNDS
self._image_size = image_size
self._camera_instrinsics = CAMERA_INTRINSICS
self._workspace_urdf_path = WORKSPACE_URDF_PATH
else:
self._camera_poses = [CAMERA_POSE_REAL]
self._camera_orientations = [CAMERA_ORIENTATION_REAL]
self.workspace_bounds = WORKSPACE_BOUNDS_REAL
self._image_size = image_size
self._camera_instrinsics = CAMERA_INTRINSICS_REAL
self._workspace_urdf_path = WORKSPACE_URDF_PATH_REAL
self.action_space = spaces.Box(low=-0.1, high=0.1, shape=(2,)) # x, y
self.observation_space = self._create_observation_space(image_size)
self._rng = np.random.RandomState(seed=seed)
self._block_ids = None
self._previous_state = None
self._robot = None
self._workspace_uid = None
self._target_id = None
self._target_pose = None
self._target_effector_pose = None
self._pybullet_client = None
self.reach_target_translation = None
self._setup_pybullet_scene()
self._saved_state = None
assert isinstance(self._pybullet_client, bullet_client.BulletClient)
self._control_frequency = control_frequency
self._step_frequency = (
1 / self._pybullet_client.getPhysicsEngineParameters()["fixedTimeStep"]
)
self._last_loop_time = None
self._last_loop_frame_sleep_time = None
if self._step_frequency % self._control_frequency != 0:
raise ValueError(
"Control frequency should be a multiple of the "
"configured Bullet TimeStep."
)
self._sim_steps_per_step = int(self._step_frequency / self._control_frequency)
self.rendered_img = None
# Use saved_state and restore to make reset safe as no simulation state has
# been updated at this state, but the assets are now loaded.
self.save_state()
self.reset()
@property
def pybullet_client(self):
return self._pybullet_client
@property
def robot(self):
return self._robot
@property
def workspace_uid(self):
return self._workspace_uid
@property
def target_effector_pose(self):
return self._target_effector_pose
@property
def target_pose(self):
return self._target_pose
@property
def control_frequency(self):
return self._control_frequency
@property
def connection_mode(self):
return self._connection_mode
def save_state(self):
self._saved_state = self._pybullet_client.saveState()
def set_goal_dist_tolerance(self, val):
self.goal_dist_tolerance = val
def get_control_frequency(self):
return self._control_frequency
def compute_state(self):
return self._compute_state()
def get_goal_translation(self):
"""Return the translation component of the goal (2D)."""
if self._task == BlockTaskVariant.REACH:
return np.concatenate([self.reach_target_translation, [0]])
else:
return self._target_pose.translation if self._target_pose else None
def get_obj_ids(self):
return self._block_ids
def _setup_workspace_and_robot(self, end_effector="suction"):
self._pybullet_client.resetSimulation()
self._pybullet_client.configureDebugVisualizer(pybullet.COV_ENABLE_GUI, 0)
self._pybullet_client.setPhysicsEngineParameter(enableFileCaching=0)
self._pybullet_client.setGravity(0, 0, -9.8)
utils_pybullet.load_urdf(
self._pybullet_client, PLANE_URDF_PATH, basePosition=[0, 0, -0.001]
)
self._workspace_uid = utils_pybullet.load_urdf(
self._pybullet_client,
self._workspace_urdf_path,
basePosition=[0.35, 0, 0.0],
)
self._robot = xarm_sim_robot.XArmSimRobot(
self._pybullet_client,
initial_joint_positions=INITIAL_JOINT_POSITIONS,
end_effector=end_effector,
color="white" if self._visuals_mode == "real" else "default",
)
def _setup_pybullet_scene(self):
self._pybullet_client = bullet_client.BulletClient(self._connection_mode)
# Temporarily disable rendering to speed up loading URDFs.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 0)
self._setup_workspace_and_robot()
if self._task == BlockTaskVariant.INSERT:
target_urdf_path = INSERT_URDF_PATH
else:
target_urdf_path = ZONE_URDF_PATH
self._target_id = utils_pybullet.load_urdf(
self._pybullet_client, target_urdf_path, useFixedBase=True
)
self._block_ids = [
utils_pybullet.load_urdf(
self._pybullet_client, BLOCK_URDF_PATH, useFixedBase=False
)
]
# Re-enable rendering.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 1)
self.step_simulation_to_stabilize()
def step_simulation_to_stabilize(self, nsteps=100):
for _ in range(nsteps):
self._pybullet_client.stepSimulation()
def seed(self, seed=None):
self._rng = np.random.RandomState(seed=seed)
def _set_robot_target_effector_pose(self, pose):
self._target_effector_pose = pose
self._robot.set_target_effector_pose(pose)
def reset(self, reset_poses=True):
workspace_center_x = 0.4
if reset_poses:
self._pybullet_client.restoreState(self._saved_state)
rotation = transform.Rotation.from_rotvec([0, math.pi, 0])
translation = np.array([0.3, -0.4, self.effector_height])
starting_pose = Pose3d(rotation=rotation, translation=translation)
self._set_robot_target_effector_pose(starting_pose)
# Reset block pose.
block_x = workspace_center_x + self._rng.uniform(low=-0.1, high=0.1)
block_y = -0.2 + self._rng.uniform(low=-0.15, high=0.15)
block_translation = np.array([block_x, block_y, 0])
block_sampled_angle = self._rng.uniform(math.pi)
block_rotation = transform.Rotation.from_rotvec([0, 0, block_sampled_angle])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[0],
block_translation.tolist(),
block_rotation.as_quat().tolist(),
)
# Reset target pose.
target_x = workspace_center_x + self._rng.uniform(low=-0.10, high=0.10)
target_y = 0.2 + self._rng.uniform(low=-0.15, high=0.15)
target_translation = np.array([target_x, target_y, 0.020])
target_sampled_angle = math.pi + self._rng.uniform(
low=-math.pi / 6, high=math.pi / 6
)
target_rotation = transform.Rotation.from_rotvec(
[0, 0, target_sampled_angle]
)
self._pybullet_client.resetBasePositionAndOrientation(
self._target_id,
target_translation.tolist(),
target_rotation.as_quat().tolist(),
)
else:
(
target_translation,
target_orientation_quat,
) = self._pybullet_client.getBasePositionAndOrientation(self._target_id)
target_rotation = transform.Rotation.from_quat(target_orientation_quat)
target_translation = np.array(target_translation)
self._target_pose = Pose3d(
rotation=target_rotation, translation=target_translation
)
if reset_poses:
self.step_simulation_to_stabilize()
state = self._compute_state()
self._previous_state = state
if self._task == BlockTaskVariant.REACH:
self._compute_reach_target(state)
self._init_goal_distance = self._compute_goal_distance(state)
init_goal_eps = 1e-7
assert self._init_goal_distance > init_goal_eps
self.best_fraction_reduced_goal_dist = 0.0
return state
def _compute_goal_distance(self, state):
goal_translation = self.get_goal_translation()
if self._task != BlockTaskVariant.REACH:
goal_distance = np.linalg.norm(
state["block_translation"] - goal_translation[0:2]
)
else:
goal_distance = np.linalg.norm(
state["effector_translation"] - goal_translation[0:2]
)
return goal_distance
def _compute_reach_target(self, state):
xy_block = state["block_translation"]
xy_target = state["target_translation"]
xy_block_to_target = xy_target - xy_block
xy_dir_block_to_target = (xy_block_to_target) / np.linalg.norm(
xy_block_to_target
)
self.reach_target_translation = xy_block + -1 * xy_dir_block_to_target * 0.05
def _compute_state(self):
effector_pose = self._robot.forward_kinematics()
block_position_and_orientation = (
self._pybullet_client.getBasePositionAndOrientation(self._block_ids[0])
)
block_pose = Pose3d(
rotation=transform.Rotation.from_quat(block_position_and_orientation[1]),
translation=block_position_and_orientation[0],
)
def _yaw_from_pose(pose):
return np.array([pose.rotation.as_euler("xyz", degrees=False)[-1]])
obs = collections.OrderedDict(
block_translation=block_pose.translation[0:2],
block_orientation=_yaw_from_pose(block_pose),
effector_translation=effector_pose.translation[0:2],
effector_target_translation=self._target_effector_pose.translation[0:2],
target_translation=self._target_pose.translation[0:2],
target_orientation=_yaw_from_pose(self._target_pose),
)
if self._image_size is not None:
obs["rgb"] = self._render_camera(self._image_size)
return obs
def _step_robot_and_sim(self, action):
"""Steps the robot and pybullet sim."""
# Compute target_effector_pose by shifting the effector's pose by the
# action.
target_effector_translation = np.array(
self._target_effector_pose.translation
) + np.array([action[0], action[1], 0])
target_effector_translation[0:2] = np.clip(
target_effector_translation[0:2],
self.workspace_bounds[0],
self.workspace_bounds[1],
)
target_effector_translation[-1] = self.effector_height
target_effector_pose = Pose3d(
rotation=EFFECTOR_DOWN_ROTATION, translation=target_effector_translation
)
self._set_robot_target_effector_pose(target_effector_pose)
# Update sleep time dynamically to stay near real-time.
frame_sleep_time = 0
if self._connection_mode == pybullet.SHARED_MEMORY:
cur_time = time.time()
if self._last_loop_time is not None:
# Calculate the total, non-sleeping time from the previous frame, this
# includes the actual step as well as any compute that happens in the
# caller thread (model inference, etc).
compute_time = (
cur_time
- self._last_loop_time
- self._last_loop_frame_sleep_time * self._sim_steps_per_step
)
# Use this to calculate the current frame's total sleep time to ensure
# that env.step runs at policy rate. This is an estimate since the
# previous frame's compute time may not match the current frame.
total_sleep_time = max((1 / self._control_frequency) - compute_time, 0)
# Now spread this out over the inner sim steps. This doesn't change
# control in any way, but makes the animation appear smooth.
frame_sleep_time = total_sleep_time / self._sim_steps_per_step
else:
# No estimate of the previous frame's compute, assume it is zero.
frame_sleep_time = 1 / self._step_frequency
# Cache end of this loop time, to compute sleep time on next iteration.
self._last_loop_time = cur_time
self._last_loop_frame_sleep_time = frame_sleep_time
for _ in range(self._sim_steps_per_step):
if self._connection_mode == pybullet.SHARED_MEMORY:
sleep_spin(frame_sleep_time)
self._pybullet_client.stepSimulation()
def step(self, action):
self._step_robot_and_sim(action)
state = self._compute_state()
goal_distance = self._compute_goal_distance(state)
fraction_reduced_goal_distance = 1.0 - (
goal_distance / self._init_goal_distance
)
if fraction_reduced_goal_distance > self.best_fraction_reduced_goal_dist:
self.best_fraction_reduced_goal_dist = fraction_reduced_goal_distance
done = False
reward = self.best_fraction_reduced_goal_dist
# Terminate the episode if the block is close enough to the target.
if goal_distance < self.goal_dist_tolerance:
reward = 1.0
done = True
return state, reward, done, {}
@property
def succeeded(self):
state = self._compute_state()
goal_distance = self._compute_goal_distance(state)
if goal_distance < self.goal_dist_tolerance:
return True
return False
@property
def goal_distance(self):
state = self._compute_state()
return self._compute_goal_distance(state)
def render(self, mode="rgb_array"):
if self._image_size is not None:
image_size = self._image_size
else:
# This allows rendering even for state-only obs,
# for visualization.
image_size = (IMAGE_HEIGHT, IMAGE_WIDTH)
view0 = self._render_camera(image_size=image_size, view=0)
view1 = self._render_camera(image_size=image_size, view=1)
data = np.concatenate([view0, view1], axis=1)
if mode == "human":
if self.rendered_img is None:
self.rendered_img = plt.imshow(
np.zeros((image_size[0], image_size[1], 4))
)
else:
self.rendered_img.set_data(data)
plt.draw()
plt.pause(0.00001)
return data
def close(self):
self._pybullet_client.disconnect()
def calc_camera_params(self, image_size, view):
# Mimic RealSense D415 camera parameters.
intrinsics = self._camera_instrinsics
# Set default camera poses.
front_position = self._camera_poses[view]
front_rotation = self._camera_orientations[view]
front_rotation = self._pybullet_client.getQuaternionFromEuler(front_rotation)
# Default camera configs.
zrange = (0.01, 10.0)
# OpenGL camera settings.
lookdir = np.float32([0, 0, 1]).reshape(3, 1)
updir = np.float32([0, -1, 0]).reshape(3, 1)
rotation = self._pybullet_client.getMatrixFromQuaternion(front_rotation)
rotm = np.float32(rotation).reshape(3, 3)
lookdir = (rotm @ lookdir).reshape(-1)
updir = (rotm @ updir).reshape(-1)
lookat = front_position + lookdir
focal_len = intrinsics[0]
znear, zfar = zrange
viewm = self._pybullet_client.computeViewMatrix(front_position, lookat, updir)
fovh = (image_size[0] / 2) / focal_len
fovh = 180 * np.arctan(fovh) * 2 / np.pi
# Notes: 1) FOV is vertical FOV 2) aspect must be float
aspect_ratio = image_size[1] / image_size[0]
projm = self._pybullet_client.computeProjectionMatrixFOV(
fovh, aspect_ratio, znear, zfar
)
return viewm, projm, front_position, lookat, updir
def _render_camera(self, image_size, view):
"""Render RGB image with RealSense configuration."""
viewm, projm, _, _, _ = self.calc_camera_params(image_size, view)
# Render with OpenGL camera settings.
_, _, color, _, _ = self._pybullet_client.getCameraImage(
width=image_size[1],
height=image_size[0],
viewMatrix=viewm,
projectionMatrix=projm,
flags=pybullet.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX,
renderer=pybullet.ER_BULLET_HARDWARE_OPENGL,
)
# Get color image.
color_image_size = (image_size[0], image_size[1], 4)
color = np.array(color, dtype=np.uint8).reshape(color_image_size)
color = color[:, :, :3] # remove alpha channel
return color.astype(np.uint8)
def _create_observation_space(self, image_size):
pi2 = math.pi * 2
obs_dict = collections.OrderedDict(
block_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
block_orientation=spaces.Box(low=-pi2, high=pi2, shape=(1,)), # phi
effector_translation=spaces.Box(
low=self.workspace_bounds[0] - 0.1, # Small buffer for to IK noise.
high=self.workspace_bounds[1] + 0.1,
), # x,y
effector_target_translation=spaces.Box(
low=self.workspace_bounds[0] - 0.1, # Small buffer for to IK noise.
high=self.workspace_bounds[1] + 0.1,
), # x,y
target_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
target_orientation=spaces.Box(
low=-pi2,
high=pi2,
shape=(1,),
), # theta
)
if image_size is not None:
obs_dict["rgb"] = spaces.Box(
low=0, high=255, shape=(image_size[0], image_size[1], 3), dtype=np.uint8
)
return spaces.Dict(obs_dict)
def get_pybullet_state(self):
"""Save pybullet state of the scene.
Returns:
dict containing 'robots', 'robot_end_effectors', 'targets', 'objects',
each containing a list of ObjState.
"""
state: Dict[str, List[ObjState]] = {}
state["robots"] = [
XarmState.get_bullet_state(
self._pybullet_client,
self.robot.xarm,
target_effector_pose=self._target_effector_pose,
goal_translation=self.get_goal_translation(),
)
]
state["robot_end_effectors"] = []
if self.robot.end_effector:
state["robot_end_effectors"].append(
ObjState.get_bullet_state(
self._pybullet_client, self.robot.end_effector
)
)
state["targets"] = []
if self._target_id:
state["targets"].append(
ObjState.get_bullet_state(self._pybullet_client, self._target_id)
)
state["objects"] = []
for obj_id in self.get_obj_ids():
state["objects"].append(
ObjState.get_bullet_state(self._pybullet_client, obj_id)
)
return state
def set_pybullet_state(self, state):
"""Restore pyullet state.
WARNING: py_environment wrapper assumes environments aren't reset in their
constructor and will often reset the environment unintentionally. It is
always recommeneded that you call env.reset on the tfagents wrapper before
playback (replaying pybullet_state).
Args:
state: dict containing 'robots', 'robot_end_effectors', 'targets',
'objects', each containing a list of ObjState.
"""
assert isinstance(state["robots"][0], XarmState)
xarm_state: XarmState = state["robots"][0]
xarm_state.set_bullet_state(self._pybullet_client, self.robot.xarm)
self._set_robot_target_effector_pose(xarm_state.target_effector_pose)
def _set_state_safe(obj_state, obj_id):
if obj_state is not None:
assert obj_id is not None, "Cannot set state for missing object."
obj_state.set_bullet_state(self._pybullet_client, obj_id)
else:
assert obj_id is None, f"No state found for obj_id {obj_id}"
robot_end_effectors = state["robot_end_effectors"]
_set_state_safe(
None if not robot_end_effectors else robot_end_effectors[0],
self.robot.end_effector,
)
targets = state["targets"]
_set_state_safe(None if not targets else targets[0], self._target_id)
obj_ids = self.get_obj_ids()
assert len(state["objects"]) == len(obj_ids), "State length mismatch"
for obj_state, obj_id in zip(state["objects"], obj_ids):
_set_state_safe(obj_state, obj_id)
self.reset(reset_poses=False)
class BlockPushNormalized(gym.Env):
"""Simple XArm environment for block pushing, normalized state and actions."""
def __init__(
self,
control_frequency=10.0,
task=BlockTaskVariant.PUSH_NORMALIZED,
image_size=None,
shared_memory=False,
seed=None,
):
"""Creates an env instance.
Args:
control_frequency: Control frequency for the arm. Each env step will
advance the simulation by 1/control_frequency seconds.
task: enum for which task, see BlockTaskVariant enum.
image_size: Optional image size (height, width). If None, no image
observations will be used.
shared_memory: If True `pybullet.SHARED_MEMORY` is used to connect to
pybullet. Useful to debug.
seed: Optional seed for the environment.
"""
# Map normalized task to unnormalized task.
if task == BlockTaskVariant.PUSH_NORMALIZED:
env_task = BlockTaskVariant.PUSH
elif task == BlockTaskVariant.REACH_NORMALIZED:
env_task = BlockTaskVariant.REACH
else:
raise ValueError("Unsupported task %s" % str(task))
self._env = BlockPush(
control_frequency, env_task, image_size, shared_memory, seed
)
self.action_space = spaces.Box(low=-1, high=1, shape=(2,))
self.observation_space = spaces.Dict(
collections.OrderedDict(
effector_target_translation=spaces.Box(low=-1, high=1, shape=(2,)),
effector_target_to_block_translation=spaces.Box(
low=-1, high=1, shape=(2,)
),
block_orientation_cos_sin=spaces.Box(low=-1, high=1, shape=(2,)),
effector_target_to_target_translation=spaces.Box(
low=-1, high=1, shape=(2,)
),
target_orientation_cos_sin=spaces.Box(low=-1, high=1, shape=(2,)),
)
)
self.reset()
def get_control_frequency(self):
return self._env.get_control_frequency()
@property
def reach_target_translation(self):
return self._env.reach_target_translation
def seed(self, seed=None):
self._env.seed(seed)
def reset(self):
state = self._env.reset()
return self.calc_normalized_state(state)
def step(self, action):
# The environment is normalized [mean-3*std, mean+3*std] -> [-1, 1].
action = np.clip(action, a_min=-1.0, a_max=1.0)
state, reward, done, info = self._env.step(
self.calc_unnormalized_action(action)
)
state = self.calc_normalized_state(state)
reward = reward * 100 # Keep returns in [0, 100]
return state, reward, done, info
def render(self, mode="rgb_array"):
return self._env.render(mode)
def close(self):
self._env.close()
@staticmethod
def _normalize(values, values_min, values_max):
offset = (values_max + values_min) * 0.5
scale = (values_max - values_min) * 0.5
return (values - offset) / scale # [min, max] -> [-1, 1]
@staticmethod
def _unnormalize(values, values_min, values_max):
offset = (values_max + values_min) * 0.5
scale = (values_max - values_min) * 0.5
return values * scale + offset # [-1, 1] -> [min, max]
@classmethod
def calc_normalized_action(cls, action):
return cls._normalize(action, ACTION_MIN, ACTION_MAX)
@classmethod
def calc_unnormalized_action(cls, norm_action):
return cls._unnormalize(norm_action, ACTION_MIN, ACTION_MAX)
@classmethod
def calc_normalized_state(cls, state):
effector_target_translation = cls._normalize(
state["effector_target_translation"],
EFFECTOR_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TRANSLATION_MAX,
)
effector_target_to_block_translation = cls._normalize(
state["block_translation"] - state["effector_target_translation"],
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MAX,
)
ori = state["block_orientation"][0]
block_orientation_cos_sin = cls._normalize(
np.array([math.cos(ori), math.sin(ori)], np.float32),
BLOCK_ORIENTATION_COS_SIN_MIN,
BLOCK_ORIENTATION_COS_SIN_MAX,
)
effector_target_to_target_translation = cls._normalize(
state["target_translation"] - state["effector_target_translation"],
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MAX,
)
ori = state["target_orientation"][0]
target_orientation_cos_sin = cls._normalize(
np.array([math.cos(ori), math.sin(ori)], np.float32),
TARGET_ORIENTATION_COS_SIN_MIN,
TARGET_ORIENTATION_COS_SIN_MAX,
)
# Note: We do not include effector_translation in the normalized state.
# This means the unnormalized -> normalized mapping is not invertable.
return collections.OrderedDict(
effector_target_translation=effector_target_translation,
effector_target_to_block_translation=effector_target_to_block_translation,
block_orientation_cos_sin=block_orientation_cos_sin,
effector_target_to_target_translation=effector_target_to_target_translation,
target_orientation_cos_sin=target_orientation_cos_sin,
)
@classmethod
def calc_unnormalized_state(cls, norm_state):
effector_target_translation = cls._unnormalize(
norm_state["effector_target_translation"],
EFFECTOR_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TRANSLATION_MAX,
)
# Note: normalized state does not include effector_translation state, this
# means this component will be missing (and is marked nan).
effector_translation = np.array([np.nan, np.nan], np.float32)
effector_target_to_block_translation = cls._unnormalize(
norm_state["effector_target_to_block_translation"],
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MAX,
)
block_translation = (
effector_target_to_block_translation + effector_target_translation
)
ori_cos_sin = cls._unnormalize(
norm_state["block_orientation_cos_sin"],
BLOCK_ORIENTATION_COS_SIN_MIN,
BLOCK_ORIENTATION_COS_SIN_MAX,
)
block_orientation = np.array(
[math.atan2(ori_cos_sin[1], ori_cos_sin[0])], np.float32
)
effector_target_to_target_translation = cls._unnormalize(
norm_state["effector_target_to_target_translation"],
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MAX,
)
target_translation = (
effector_target_to_target_translation + effector_target_translation
)
ori_cos_sin = cls._unnormalize(
norm_state["target_orientation_cos_sin"],
TARGET_ORIENTATION_COS_SIN_MIN,
TARGET_ORIENTATION_COS_SIN_MAX,
)
target_orientation = np.array(
[math.atan2(ori_cos_sin[1], ori_cos_sin[0])], np.float32
)
return collections.OrderedDict(
block_translation=block_translation,
block_orientation=block_orientation,
effector_translation=effector_translation,
effector_target_translation=effector_target_translation,
target_translation=target_translation,
target_orientation=target_orientation,
)
def get_pybullet_state(self):
return self._env.get_pybullet_state()
def set_pybullet_state(self, state):
return self._env.set_pybullet_state(state)
@property
def pybullet_client(self):
return self._env.pybullet_client
def calc_camera_params(self, image_size):
return self._env.calc_camera_params(image_size)
def _compute_state(self):
return self.calc_normalized_state(self._env._compute_state()) # pylint: disable=protected-access
# Make sure we only register once to allow us to reload the module in colab for
# debugging.
if "BlockPush-v0" in registration.registry.env_specs:
del registration.registry["BlockInsert-v0"]
del registration.registry["BlockPush-v0"]
del registration.registry["BlockPushNormalized-v0"]
del registration.registry["BlockPushRgbNormalized-v0"]
del registration.registry["BlockReach-v0"]
del registration.registry["BlockReachNormalized-v0"]
del registration.registry["BlockReachRgbNormalized-v0"]
del registration.registry["SharedBlockInsert-v0"]
del registration.registry["SharedBlockPush-v0"]
del registration.registry["SharedBlockReach-v0"]
registration.register(
id="BlockInsert-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.INSERT),
max_episode_steps=50,
)
registration.register(id="BlockPush-v0", entry_point=BlockPush, max_episode_steps=100)
registration.register(
id="BlockPushNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(task=BlockTaskVariant.PUSH_NORMALIZED),
max_episode_steps=100,
)
registration.register(
id="BlockPushRgb-v0",
entry_point=BlockPush,
max_episode_steps=100,
kwargs=dict(image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)),
)
registration.register(
id="BlockPushRgbNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(
task=BlockTaskVariant.PUSH_NORMALIZED, image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)
),
max_episode_steps=100,
)
registration.register(
id="BlockReach-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.REACH),
max_episode_steps=50,
)
registration.register(
id="BlockReachRgb-v0",
entry_point=BlockPush,
max_episode_steps=100,
kwargs=dict(task=BlockTaskVariant.REACH, image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)),
)
registration.register(
id="BlockReachNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(task=BlockTaskVariant.REACH_NORMALIZED),
max_episode_steps=50,
)
registration.register(
id="BlockReachRgbNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(
task=BlockTaskVariant.REACH_NORMALIZED, image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)
),
max_episode_steps=50,
)
registration.register(
id="SharedBlockInsert-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.INSERT, shared_memory=True),
max_episode_steps=50,
)
registration.register(
id="SharedBlockPush-v0",
entry_point=BlockPush,
kwargs=dict(shared_memory=True),
max_episode_steps=100,
)
registration.register(
id="SharedBlockPushNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(task=BlockTaskVariant.PUSH_NORMALIZED, shared_memory=True),
max_episode_steps=100,
)
registration.register(
id="SharedBlockReach-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.REACH, shared_memory=True),
max_episode_steps=50,
)