jstephencorey's picture
Upload README.md with huggingface_hub
6b25db8
|
raw
history blame
69.3 kB
metadata
tags:
  - mteb
model-index:
  - name: pythia-14m_mean
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 70.73134328358208
          - type: ap
            value: 32.35996836729783
          - type: f1
            value: 64.2137087561157
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 62.291220556745174
          - type: ap
            value: 76.5427302441011
          - type: f1
            value: 60.37703210343267
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 67.57871064467767
          - type: ap
            value: 17.03033311712744
          - type: f1
            value: 54.821750631894986
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 62.51605995717344
          - type: ap
            value: 14.367489440317666
          - type: f1
            value: 50.48473578289779
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 29.172000000000004
          - type: f1
            value: 28.264998641170465
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 25.157999999999998
          - type: f1
            value: 23.033533062569987
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 26.840000000000003
          - type: f1
            value: 25.693413738086402
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 26.491999999999997
          - type: f1
            value: 25.6252880863665
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 24.448000000000004
          - type: f1
            value: 23.86460242225935
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 26.412000000000003
          - type: f1
            value: 25.779710231390755
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.761
          - type: map_at_10
            value: 10.267
          - type: map_at_100
            value: 11.065999999999999
          - type: map_at_1000
            value: 11.16
          - type: map_at_3
            value: 8.642
          - type: map_at_5
            value: 9.474
          - type: mrr_at_1
            value: 6.046
          - type: mrr_at_10
            value: 10.365
          - type: mrr_at_100
            value: 11.178
          - type: mrr_at_1000
            value: 11.272
          - type: mrr_at_3
            value: 8.713
          - type: mrr_at_5
            value: 9.587
          - type: ndcg_at_1
            value: 5.761
          - type: ndcg_at_10
            value: 13.055
          - type: ndcg_at_100
            value: 17.526
          - type: ndcg_at_1000
            value: 20.578
          - type: ndcg_at_3
            value: 9.616
          - type: ndcg_at_5
            value: 11.128
          - type: precision_at_1
            value: 5.761
          - type: precision_at_10
            value: 2.212
          - type: precision_at_100
            value: 0.44400000000000006
          - type: precision_at_1000
            value: 0.06999999999999999
          - type: precision_at_3
            value: 4.149
          - type: precision_at_5
            value: 3.229
          - type: recall_at_1
            value: 5.761
          - type: recall_at_10
            value: 22.119
          - type: recall_at_100
            value: 44.381
          - type: recall_at_1000
            value: 69.70100000000001
          - type: recall_at_3
            value: 12.447
          - type: recall_at_5
            value: 16.145
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 13.902183567893395
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 47.93210378051478
          - type: mrr
            value: 60.70318339708921
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 49.57650220181508
          - type: cos_sim_spearman
            value: 51.842145113866636
          - type: euclidean_pearson
            value: 41.2188173176347
          - type: euclidean_spearman
            value: 41.16840792962046
          - type: manhattan_pearson
            value: 42.73893519020435
          - type: manhattan_spearman
            value: 44.384746276312534
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 46.03896103896104
          - type: f1
            value: 44.54083818845286
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 23.113393015706908
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 12.624675113307488
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.105
          - type: map_at_10
            value: 13.364
          - type: map_at_100
            value: 13.987
          - type: map_at_1000
            value: 14.08
          - type: map_at_3
            value: 12.447
          - type: map_at_5
            value: 12.992999999999999
          - type: mrr_at_1
            value: 12.876000000000001
          - type: mrr_at_10
            value: 16.252
          - type: mrr_at_100
            value: 16.926
          - type: mrr_at_1000
            value: 17.004
          - type: mrr_at_3
            value: 15.235999999999999
          - type: mrr_at_5
            value: 15.744
          - type: ndcg_at_1
            value: 12.876000000000001
          - type: ndcg_at_10
            value: 15.634999999999998
          - type: ndcg_at_100
            value: 19.173000000000002
          - type: ndcg_at_1000
            value: 22.168
          - type: ndcg_at_3
            value: 14.116999999999999
          - type: ndcg_at_5
            value: 14.767
          - type: precision_at_1
            value: 12.876000000000001
          - type: precision_at_10
            value: 2.761
          - type: precision_at_100
            value: 0.5579999999999999
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 6.676
          - type: precision_at_5
            value: 4.635
          - type: recall_at_1
            value: 10.105
          - type: recall_at_10
            value: 19.767000000000003
          - type: recall_at_100
            value: 36.448
          - type: recall_at_1000
            value: 58.623000000000005
          - type: recall_at_3
            value: 15.087
          - type: recall_at_5
            value: 17.076
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.249999999999999
          - type: map_at_10
            value: 9.41
          - type: map_at_100
            value: 9.903
          - type: map_at_1000
            value: 9.993
          - type: map_at_3
            value: 8.693
          - type: map_at_5
            value: 9.052
          - type: mrr_at_1
            value: 9.299
          - type: mrr_at_10
            value: 11.907
          - type: mrr_at_100
            value: 12.424
          - type: mrr_at_1000
            value: 12.503
          - type: mrr_at_3
            value: 10.945
          - type: mrr_at_5
            value: 11.413
          - type: ndcg_at_1
            value: 9.299
          - type: ndcg_at_10
            value: 11.278
          - type: ndcg_at_100
            value: 13.904
          - type: ndcg_at_1000
            value: 16.642000000000003
          - type: ndcg_at_3
            value: 9.956
          - type: ndcg_at_5
            value: 10.488
          - type: precision_at_1
            value: 9.299
          - type: precision_at_10
            value: 2.166
          - type: precision_at_100
            value: 0.45399999999999996
          - type: precision_at_1000
            value: 0.089
          - type: precision_at_3
            value: 4.798
          - type: precision_at_5
            value: 3.427
          - type: recall_at_1
            value: 7.249999999999999
          - type: recall_at_10
            value: 14.285
          - type: recall_at_100
            value: 26.588
          - type: recall_at_1000
            value: 46.488
          - type: recall_at_3
            value: 10.309
          - type: recall_at_5
            value: 11.756
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.57
          - type: map_at_10
            value: 15.497
          - type: map_at_100
            value: 16.036
          - type: map_at_1000
            value: 16.122
          - type: map_at_3
            value: 14.309
          - type: map_at_5
            value: 14.895
          - type: mrr_at_1
            value: 13.354
          - type: mrr_at_10
            value: 17.408
          - type: mrr_at_100
            value: 17.936
          - type: mrr_at_1000
            value: 18.015
          - type: mrr_at_3
            value: 16.123
          - type: mrr_at_5
            value: 16.735
          - type: ndcg_at_1
            value: 13.354
          - type: ndcg_at_10
            value: 18.071
          - type: ndcg_at_100
            value: 21.017
          - type: ndcg_at_1000
            value: 23.669999999999998
          - type: ndcg_at_3
            value: 15.644
          - type: ndcg_at_5
            value: 16.618
          - type: precision_at_1
            value: 13.354
          - type: precision_at_10
            value: 2.94
          - type: precision_at_100
            value: 0.481
          - type: precision_at_1000
            value: 0.076
          - type: precision_at_3
            value: 7.001
          - type: precision_at_5
            value: 4.765
          - type: recall_at_1
            value: 11.57
          - type: recall_at_10
            value: 24.147
          - type: recall_at_100
            value: 38.045
          - type: recall_at_1000
            value: 58.648
          - type: recall_at_3
            value: 17.419999999999998
          - type: recall_at_5
            value: 19.875999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.463
          - type: map_at_10
            value: 6.091
          - type: map_at_100
            value: 6.548
          - type: map_at_1000
            value: 6.622
          - type: map_at_3
            value: 5.461
          - type: map_at_5
            value: 5.768
          - type: mrr_at_1
            value: 4.746
          - type: mrr_at_10
            value: 6.431000000000001
          - type: mrr_at_100
            value: 6.941
          - type: mrr_at_1000
            value: 7.016
          - type: mrr_at_3
            value: 5.763
          - type: mrr_at_5
            value: 6.101999999999999
          - type: ndcg_at_1
            value: 4.746
          - type: ndcg_at_10
            value: 7.19
          - type: ndcg_at_100
            value: 9.604
          - type: ndcg_at_1000
            value: 12.086
          - type: ndcg_at_3
            value: 5.88
          - type: ndcg_at_5
            value: 6.429
          - type: precision_at_1
            value: 4.746
          - type: precision_at_10
            value: 1.141
          - type: precision_at_100
            value: 0.249
          - type: precision_at_1000
            value: 0.049
          - type: precision_at_3
            value: 2.448
          - type: precision_at_5
            value: 1.7850000000000001
          - type: recall_at_1
            value: 4.463
          - type: recall_at_10
            value: 10.33
          - type: recall_at_100
            value: 21.578
          - type: recall_at_1000
            value: 41.404
          - type: recall_at_3
            value: 6.816999999999999
          - type: recall_at_5
            value: 8.06
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.521
          - type: map_at_10
            value: 2.439
          - type: map_at_100
            value: 2.785
          - type: map_at_1000
            value: 2.858
          - type: map_at_3
            value: 2.091
          - type: map_at_5
            value: 2.2560000000000002
          - type: mrr_at_1
            value: 2.114
          - type: mrr_at_10
            value: 3.216
          - type: mrr_at_100
            value: 3.6319999999999997
          - type: mrr_at_1000
            value: 3.712
          - type: mrr_at_3
            value: 2.778
          - type: mrr_at_5
            value: 2.971
          - type: ndcg_at_1
            value: 2.114
          - type: ndcg_at_10
            value: 3.1910000000000003
          - type: ndcg_at_100
            value: 5.165
          - type: ndcg_at_1000
            value: 7.607
          - type: ndcg_at_3
            value: 2.456
          - type: ndcg_at_5
            value: 2.7439999999999998
          - type: precision_at_1
            value: 2.114
          - type: precision_at_10
            value: 0.634
          - type: precision_at_100
            value: 0.189
          - type: precision_at_1000
            value: 0.049
          - type: precision_at_3
            value: 1.202
          - type: precision_at_5
            value: 0.8959999999999999
          - type: recall_at_1
            value: 1.521
          - type: recall_at_10
            value: 4.8
          - type: recall_at_100
            value: 13.877
          - type: recall_at_1000
            value: 32.1
          - type: recall_at_3
            value: 2.806
          - type: recall_at_5
            value: 3.5520000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.449999999999999
          - type: map_at_10
            value: 10.065
          - type: map_at_100
            value: 10.507
          - type: map_at_1000
            value: 10.599
          - type: map_at_3
            value: 9.017
          - type: map_at_5
            value: 9.603
          - type: mrr_at_1
            value: 9.336
          - type: mrr_at_10
            value: 12.589
          - type: mrr_at_100
            value: 13.086
          - type: mrr_at_1000
            value: 13.161000000000001
          - type: mrr_at_3
            value: 11.373
          - type: mrr_at_5
            value: 12.084999999999999
          - type: ndcg_at_1
            value: 9.336
          - type: ndcg_at_10
            value: 12.299
          - type: ndcg_at_100
            value: 14.780999999999999
          - type: ndcg_at_1000
            value: 17.632
          - type: ndcg_at_3
            value: 10.302
          - type: ndcg_at_5
            value: 11.247
          - type: precision_at_1
            value: 9.336
          - type: precision_at_10
            value: 2.271
          - type: precision_at_100
            value: 0.42300000000000004
          - type: precision_at_1000
            value: 0.08099999999999999
          - type: precision_at_3
            value: 4.909
          - type: precision_at_5
            value: 3.5999999999999996
          - type: recall_at_1
            value: 7.449999999999999
          - type: recall_at_10
            value: 16.891000000000002
          - type: recall_at_100
            value: 28.050000000000004
          - type: recall_at_1000
            value: 49.267
          - type: recall_at_3
            value: 11.187999999999999
          - type: recall_at_5
            value: 13.587
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.734
          - type: map_at_10
            value: 7.045999999999999
          - type: map_at_100
            value: 7.564
          - type: map_at_1000
            value: 7.6499999999999995
          - type: map_at_3
            value: 6.21
          - type: map_at_5
            value: 6.617000000000001
          - type: mrr_at_1
            value: 5.936
          - type: mrr_at_10
            value: 8.624
          - type: mrr_at_100
            value: 9.193
          - type: mrr_at_1000
            value: 9.28
          - type: mrr_at_3
            value: 7.725
          - type: mrr_at_5
            value: 8.147
          - type: ndcg_at_1
            value: 5.936
          - type: ndcg_at_10
            value: 8.81
          - type: ndcg_at_100
            value: 11.694
          - type: ndcg_at_1000
            value: 14.526
          - type: ndcg_at_3
            value: 7.140000000000001
          - type: ndcg_at_5
            value: 7.8020000000000005
          - type: precision_at_1
            value: 5.936
          - type: precision_at_10
            value: 1.701
          - type: precision_at_100
            value: 0.366
          - type: precision_at_1000
            value: 0.07200000000000001
          - type: precision_at_3
            value: 3.463
          - type: precision_at_5
            value: 2.557
          - type: recall_at_1
            value: 4.734
          - type: recall_at_10
            value: 12.733
          - type: recall_at_100
            value: 25.982
          - type: recall_at_1000
            value: 47.233999999999995
          - type: recall_at_3
            value: 8.018
          - type: recall_at_5
            value: 9.762
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.293
          - type: map_at_10
            value: 6.146999999999999
          - type: map_at_100
            value: 6.487
          - type: map_at_1000
            value: 6.544999999999999
          - type: map_at_3
            value: 5.6930000000000005
          - type: map_at_5
            value: 5.869
          - type: mrr_at_1
            value: 5.061
          - type: mrr_at_10
            value: 7.1690000000000005
          - type: mrr_at_100
            value: 7.542
          - type: mrr_at_1000
            value: 7.5969999999999995
          - type: mrr_at_3
            value: 6.646000000000001
          - type: mrr_at_5
            value: 6.8229999999999995
          - type: ndcg_at_1
            value: 5.061
          - type: ndcg_at_10
            value: 7.396
          - type: ndcg_at_100
            value: 9.41
          - type: ndcg_at_1000
            value: 11.386000000000001
          - type: ndcg_at_3
            value: 6.454
          - type: ndcg_at_5
            value: 6.718
          - type: precision_at_1
            value: 5.061
          - type: precision_at_10
            value: 1.319
          - type: precision_at_100
            value: 0.262
          - type: precision_at_1000
            value: 0.047
          - type: precision_at_3
            value: 3.0669999999999997
          - type: precision_at_5
            value: 1.994
          - type: recall_at_1
            value: 4.293
          - type: recall_at_10
            value: 10.221
          - type: recall_at_100
            value: 19.744999999999997
          - type: recall_at_1000
            value: 35.399
          - type: recall_at_3
            value: 7.507999999999999
          - type: recall_at_5
            value: 8.275
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.519
          - type: map_at_10
            value: 4.768
          - type: map_at_100
            value: 5.034000000000001
          - type: map_at_1000
            value: 5.087
          - type: map_at_3
            value: 4.308
          - type: map_at_5
            value: 4.565
          - type: mrr_at_1
            value: 4.474
          - type: mrr_at_10
            value: 6.045
          - type: mrr_at_100
            value: 6.361999999999999
          - type: mrr_at_1000
            value: 6.417000000000001
          - type: mrr_at_3
            value: 5.483
          - type: mrr_at_5
            value: 5.81
          - type: ndcg_at_1
            value: 4.474
          - type: ndcg_at_10
            value: 5.799
          - type: ndcg_at_100
            value: 7.344
          - type: ndcg_at_1000
            value: 9.141
          - type: ndcg_at_3
            value: 4.893
          - type: ndcg_at_5
            value: 5.309
          - type: precision_at_1
            value: 4.474
          - type: precision_at_10
            value: 1.06
          - type: precision_at_100
            value: 0.217
          - type: precision_at_1000
            value: 0.045
          - type: precision_at_3
            value: 2.306
          - type: precision_at_5
            value: 1.7000000000000002
          - type: recall_at_1
            value: 3.519
          - type: recall_at_10
            value: 7.75
          - type: recall_at_100
            value: 15.049999999999999
          - type: recall_at_1000
            value: 28.779
          - type: recall_at_3
            value: 5.18
          - type: recall_at_5
            value: 6.245
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.098
          - type: map_at_10
            value: 7.918
          - type: map_at_100
            value: 8.229000000000001
          - type: map_at_1000
            value: 8.293000000000001
          - type: map_at_3
            value: 7.138999999999999
          - type: map_at_5
            value: 7.646
          - type: mrr_at_1
            value: 7.090000000000001
          - type: mrr_at_10
            value: 9.293
          - type: mrr_at_100
            value: 9.669
          - type: mrr_at_1000
            value: 9.734
          - type: mrr_at_3
            value: 8.364
          - type: mrr_at_5
            value: 8.956999999999999
          - type: ndcg_at_1
            value: 7.090000000000001
          - type: ndcg_at_10
            value: 9.411999999999999
          - type: ndcg_at_100
            value: 11.318999999999999
          - type: ndcg_at_1000
            value: 13.478000000000002
          - type: ndcg_at_3
            value: 7.837
          - type: ndcg_at_5
            value: 8.73
          - type: precision_at_1
            value: 7.090000000000001
          - type: precision_at_10
            value: 1.558
          - type: precision_at_100
            value: 0.28400000000000003
          - type: precision_at_1000
            value: 0.053
          - type: precision_at_3
            value: 3.42
          - type: precision_at_5
            value: 2.5749999999999997
          - type: recall_at_1
            value: 6.098
          - type: recall_at_10
            value: 12.764000000000001
          - type: recall_at_100
            value: 21.747
          - type: recall_at_1000
            value: 38.279999999999994
          - type: recall_at_3
            value: 8.476
          - type: recall_at_5
            value: 10.707
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.607
          - type: map_at_10
            value: 10.835
          - type: map_at_100
            value: 11.285
          - type: map_at_1000
            value: 11.383000000000001
          - type: map_at_3
            value: 10.111
          - type: map_at_5
            value: 10.334999999999999
          - type: mrr_at_1
            value: 10.671999999999999
          - type: mrr_at_10
            value: 13.269
          - type: mrr_at_100
            value: 13.729
          - type: mrr_at_1000
            value: 13.813
          - type: mrr_at_3
            value: 12.385
          - type: mrr_at_5
            value: 12.701
          - type: ndcg_at_1
            value: 10.671999999999999
          - type: ndcg_at_10
            value: 12.728
          - type: ndcg_at_100
            value: 15.312999999999999
          - type: ndcg_at_1000
            value: 18.160999999999998
          - type: ndcg_at_3
            value: 11.355
          - type: ndcg_at_5
            value: 11.605
          - type: precision_at_1
            value: 10.671999999999999
          - type: precision_at_10
            value: 2.154
          - type: precision_at_100
            value: 0.455
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 4.941
          - type: precision_at_5
            value: 3.2809999999999997
          - type: recall_at_1
            value: 8.607
          - type: recall_at_10
            value: 16.398
          - type: recall_at_100
            value: 28.92
          - type: recall_at_1000
            value: 49.761
          - type: recall_at_3
            value: 11.844000000000001
          - type: recall_at_5
            value: 12.792
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.826
          - type: map_at_10
            value: 5.6419999999999995
          - type: map_at_100
            value: 5.943
          - type: map_at_1000
            value: 6.005
          - type: map_at_3
            value: 5.1049999999999995
          - type: map_at_5
            value: 5.437
          - type: mrr_at_1
            value: 4.436
          - type: mrr_at_10
            value: 6.413
          - type: mrr_at_100
            value: 6.752
          - type: mrr_at_1000
            value: 6.819999999999999
          - type: mrr_at_3
            value: 5.884
          - type: mrr_at_5
            value: 6.18
          - type: ndcg_at_1
            value: 4.436
          - type: ndcg_at_10
            value: 6.7989999999999995
          - type: ndcg_at_100
            value: 8.619
          - type: ndcg_at_1000
            value: 10.842
          - type: ndcg_at_3
            value: 5.739
          - type: ndcg_at_5
            value: 6.292000000000001
          - type: precision_at_1
            value: 4.436
          - type: precision_at_10
            value: 1.109
          - type: precision_at_100
            value: 0.214
          - type: precision_at_1000
            value: 0.043
          - type: precision_at_3
            value: 2.588
          - type: precision_at_5
            value: 1.848
          - type: recall_at_1
            value: 3.826
          - type: recall_at_10
            value: 9.655
          - type: recall_at_100
            value: 18.611
          - type: recall_at_1000
            value: 36.733
          - type: recall_at_3
            value: 6.784
          - type: recall_at_5
            value: 8.17
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 23.279999999999998
          - type: f1
            value: 19.87865985032945
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.166
          - type: map_at_10
            value: 2.283
          - type: map_at_100
            value: 2.564
          - type: map_at_1000
            value: 2.6519999999999997
          - type: map_at_3
            value: 1.867
          - type: map_at_5
            value: 2.0500000000000003
          - type: mrr_at_1
            value: 2.932
          - type: mrr_at_10
            value: 4.852
          - type: mrr_at_100
            value: 5.306
          - type: mrr_at_1000
            value: 5.4
          - type: mrr_at_3
            value: 4.141
          - type: mrr_at_5
            value: 4.457
          - type: ndcg_at_1
            value: 2.932
          - type: ndcg_at_10
            value: 3.5709999999999997
          - type: ndcg_at_100
            value: 5.489
          - type: ndcg_at_1000
            value: 8.309999999999999
          - type: ndcg_at_3
            value: 2.773
          - type: ndcg_at_5
            value: 2.979
          - type: precision_at_1
            value: 2.932
          - type: precision_at_10
            value: 1.049
          - type: precision_at_100
            value: 0.306
          - type: precision_at_1000
            value: 0.077
          - type: precision_at_3
            value: 1.8519999999999999
          - type: precision_at_5
            value: 1.389
          - type: recall_at_1
            value: 1.166
          - type: recall_at_10
            value: 5.178
          - type: recall_at_100
            value: 13.056999999999999
          - type: recall_at_1000
            value: 31.708
          - type: recall_at_3
            value: 2.714
          - type: recall_at_5
            value: 3.4909999999999997
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 56.96359999999999
          - type: ap
            value: 54.16760114570921
          - type: f1
            value: 56.193845361069116
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 64.39808481532147
          - type: f1
            value: 63.468270818712625
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 53.961679346294744
          - type: f1
            value: 51.6707117653683
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 57.018012008005336
          - type: f1
            value: 54.23413458037234
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 48.84434700908236
          - type: f1
            value: 46.48494180527987
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 39.7669415561133
          - type: f1
            value: 35.50974325529877
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 42.589511754068724
          - type: f1
            value: 40.47244422785889
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 34.01276789785682
          - type: f1
            value: 21.256775922291286
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 33.285432516201745
          - type: f1
            value: 19.841703666811565
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 32.121414276184126
          - type: f1
            value: 19.34706868150749
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 26.088318196053866
          - type: f1
            value: 17.22608011891254
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 15.320903549659375
          - type: f1
            value: 9.62002916015258
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 16.426763110307412
          - type: f1
            value: 11.023799171137183
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 22.08508717069763
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 16.58582885790446
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.2
          - type: map_at_10
            value: 1.6400000000000001
          - type: map_at_100
            value: 1.9789999999999999
          - type: map_at_1000
            value: 2.554
          - type: map_at_3
            value: 1.4449999999999998
          - type: map_at_5
            value: 1.533
          - type: mrr_at_1
            value: 6.811
          - type: mrr_at_10
            value: 11.068999999999999
          - type: mrr_at_100
            value: 12.454
          - type: mrr_at_1000
            value: 12.590000000000002
          - type: mrr_at_3
            value: 9.751999999999999
          - type: mrr_at_5
            value: 10.31
          - type: ndcg_at_1
            value: 6.3469999999999995
          - type: ndcg_at_10
            value: 4.941
          - type: ndcg_at_100
            value: 6.524000000000001
          - type: ndcg_at_1000
            value: 15.918
          - type: ndcg_at_3
            value: 5.959
          - type: ndcg_at_5
            value: 5.395
          - type: precision_at_1
            value: 6.811
          - type: precision_at_10
            value: 3.375
          - type: precision_at_100
            value: 2.0709999999999997
          - type: precision_at_1000
            value: 1.313
          - type: precision_at_3
            value: 5.47
          - type: precision_at_5
            value: 4.396
          - type: recall_at_1
            value: 1.2
          - type: recall_at_10
            value: 2.5909999999999997
          - type: recall_at_100
            value: 9.443999999999999
          - type: recall_at_1000
            value: 41.542
          - type: recall_at_3
            value: 1.702
          - type: recall_at_5
            value: 1.9879999999999998
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 45.708
          - type: map_at_10
            value: 55.131
          - type: map_at_100
            value: 55.935
          - type: map_at_1000
            value: 55.993
          - type: map_at_3
            value: 52.749
          - type: map_at_5
            value: 54.166000000000004
          - type: mrr_at_1
            value: 52.44
          - type: mrr_at_10
            value: 59.99
          - type: mrr_at_100
            value: 60.492999999999995
          - type: mrr_at_1000
            value: 60.522
          - type: mrr_at_3
            value: 58.285
          - type: mrr_at_5
            value: 59.305
          - type: ndcg_at_1
            value: 52.43
          - type: ndcg_at_10
            value: 59.873
          - type: ndcg_at_100
            value: 63.086
          - type: ndcg_at_1000
            value: 64.291
          - type: ndcg_at_3
            value: 56.291000000000004
          - type: ndcg_at_5
            value: 58.071
          - type: precision_at_1
            value: 52.43
          - type: precision_at_10
            value: 8.973
          - type: precision_at_100
            value: 1.161
          - type: precision_at_1000
            value: 0.134
          - type: precision_at_3
            value: 24.177
          - type: precision_at_5
            value: 16.073999999999998
          - type: recall_at_1
            value: 45.708
          - type: recall_at_10
            value: 69.195
          - type: recall_at_100
            value: 82.812
          - type: recall_at_1000
            value: 91.136
          - type: recall_at_3
            value: 58.938
          - type: recall_at_5
            value: 63.787000000000006
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 13.142048230676806
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 26.06687178917052
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.46499999999999997
          - type: map_at_10
            value: 0.906
          - type: map_at_100
            value: 1.127
          - type: map_at_1000
            value: 1.203
          - type: map_at_3
            value: 0.72
          - type: map_at_5
            value: 0.814
          - type: mrr_at_1
            value: 2.3
          - type: mrr_at_10
            value: 3.733
          - type: mrr_at_100
            value: 4.295999999999999
          - type: mrr_at_1000
            value: 4.412
          - type: mrr_at_3
            value: 3.183
          - type: mrr_at_5
            value: 3.458
          - type: ndcg_at_1
            value: 2.3
          - type: ndcg_at_10
            value: 1.797
          - type: ndcg_at_100
            value: 3.376
          - type: ndcg_at_1000
            value: 6.143
          - type: ndcg_at_3
            value: 1.763
          - type: ndcg_at_5
            value: 1.5070000000000001
          - type: precision_at_1
            value: 2.3
          - type: precision_at_10
            value: 0.91
          - type: precision_at_100
            value: 0.32399999999999995
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 1.633
          - type: precision_at_5
            value: 1.3
          - type: recall_at_1
            value: 0.46499999999999997
          - type: recall_at_10
            value: 1.8499999999999999
          - type: recall_at_100
            value: 6.625
          - type: recall_at_1000
            value: 20.587
          - type: recall_at_3
            value: 0.9900000000000001
          - type: recall_at_5
            value: 1.315
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 60.78961481918511
          - type: cos_sim_spearman
            value: 54.92014630234372
          - type: euclidean_pearson
            value: 54.91456364340953
          - type: euclidean_spearman
            value: 50.95537043206628
          - type: manhattan_pearson
            value: 55.0450005071106
          - type: manhattan_spearman
            value: 51.227579527791654
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 43.73124494569395
          - type: cos_sim_spearman
            value: 43.07629933550637
          - type: euclidean_pearson
            value: 37.2529484210563
          - type: euclidean_spearman
            value: 36.68421330216546
          - type: manhattan_pearson
            value: 37.41673219009712
          - type: manhattan_spearman
            value: 36.92073705702668
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 57.17534157059787
          - type: cos_sim_spearman
            value: 56.86679858348438
          - type: euclidean_pearson
            value: 54.51552371857776
          - type: euclidean_spearman
            value: 53.80989851917749
          - type: manhattan_pearson
            value: 54.44486043632584
          - type: manhattan_spearman
            value: 53.83487353949481
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 52.319034960820375
          - type: cos_sim_spearman
            value: 50.89512224974754
          - type: euclidean_pearson
            value: 49.19308209408045
          - type: euclidean_spearman
            value: 47.45736923614355
          - type: manhattan_pearson
            value: 48.82127080055118
          - type: manhattan_spearman
            value: 47.20185686489298
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 61.57602956458427
          - type: cos_sim_spearman
            value: 62.894640061838956
          - type: euclidean_pearson
            value: 53.86893407586029
          - type: euclidean_spearman
            value: 54.68528520514299
          - type: manhattan_pearson
            value: 53.689614981956815
          - type: manhattan_spearman
            value: 54.51172839699876
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 56.2305694109318
          - type: cos_sim_spearman
            value: 57.885939000786045
          - type: euclidean_pearson
            value: 50.486043353701994
          - type: euclidean_spearman
            value: 50.4463227974027
          - type: manhattan_pearson
            value: 50.73317560427465
          - type: manhattan_spearman
            value: 50.81397877006027
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 55.52162058025664
          - type: cos_sim_spearman
            value: 59.02220327783535
          - type: euclidean_pearson
            value: 55.66332330866701
          - type: euclidean_spearman
            value: 56.829076266662206
          - type: manhattan_pearson
            value: 55.39181385186973
          - type: manhattan_spearman
            value: 56.607432176121144
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 46.312186899914906
          - type: cos_sim_spearman
            value: 48.07172073934163
          - type: euclidean_pearson
            value: 46.957276350776695
          - type: euclidean_spearman
            value: 43.98800593212707
          - type: manhattan_pearson
            value: 46.910805787619914
          - type: manhattan_spearman
            value: 43.96662723946553
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 16.222172523403835
          - type: cos_sim_spearman
            value: 17.230258645779042
          - type: euclidean_pearson
            value: -6.781460243147299
          - type: euclidean_spearman
            value: -6.884123336780775
          - type: manhattan_pearson
            value: -4.369061881907372
          - type: manhattan_spearman
            value: -4.235845433380353
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 7.462476431657987
          - type: cos_sim_spearman
            value: 5.875270645234161
          - type: euclidean_pearson
            value: -10.79494346180473
          - type: euclidean_spearman
            value: -11.704529023304776
          - type: manhattan_pearson
            value: -11.465867974964997
          - type: manhattan_spearman
            value: -12.428424608287173
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 61.46601840758559
          - type: cos_sim_spearman
            value: 65.69667638887147
          - type: euclidean_pearson
            value: 49.531065525619866
          - type: euclidean_spearman
            value: 53.880480167479725
          - type: manhattan_pearson
            value: 50.25462221374689
          - type: manhattan_spearman
            value: 54.22205494276401
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: -12.769479370624031
          - type: cos_sim_spearman
            value: -12.161427312728382
          - type: euclidean_pearson
            value: -27.950593491756536
          - type: euclidean_spearman
            value: -24.925281959398585
          - type: manhattan_pearson
            value: -25.98778888167475
          - type: manhattan_spearman
            value: -22.861942388867234
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 2.1575763564561727
          - type: cos_sim_spearman
            value: 1.182204089411577
          - type: euclidean_pearson
            value: -10.389249806317189
          - type: euclidean_spearman
            value: -16.078659904264605
          - type: manhattan_pearson
            value: -9.674301846448607
          - type: manhattan_spearman
            value: -16.976576817518577
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 66.16718583059163
          - type: cos_sim_spearman
            value: 69.95156267898052
          - type: euclidean_pearson
            value: 64.93174777029739
          - type: euclidean_spearman
            value: 66.21292533974568
          - type: manhattan_pearson
            value: 65.2578109632889
          - type: manhattan_spearman
            value: 66.21830865759128
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 0.1540829683540524
          - type: cos_sim_spearman
            value: -2.4072834011003987
          - type: euclidean_pearson
            value: -18.951775877513473
          - type: euclidean_spearman
            value: -18.393605606817527
          - type: manhattan_pearson
            value: -19.609633839454542
          - type: manhattan_spearman
            value: -19.276064769117912
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: -4.22497246932717
          - type: cos_sim_spearman
            value: -5.747420352346977
          - type: euclidean_pearson
            value: -16.86351349130112
          - type: euclidean_spearman
            value: -16.555536618547382
          - type: manhattan_pearson
            value: -17.45445643482646
          - type: manhattan_spearman
            value: -17.97322953856309
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 8.559184021676034
          - type: cos_sim_spearman
            value: 5.600273352595882
          - type: euclidean_pearson
            value: -10.76482859283058
          - type: euclidean_spearman
            value: -9.575202768285926
          - type: manhattan_pearson
            value: -9.48508597350615
          - type: manhattan_spearman
            value: -9.33387861352172
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 30.260087169228978
          - type: cos_sim_spearman
            value: 43.264174903196015
          - type: euclidean_pearson
            value: 35.07785877281954
          - type: euclidean_spearman
            value: 43.41294719372452
          - type: manhattan_pearson
            value: 36.74996284702431
          - type: manhattan_spearman
            value: 43.53522851890142
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 5.58694979115026
          - type: cos_sim_spearman
            value: 32.80692337371332
          - type: euclidean_pearson
            value: 10.53180875461474
          - type: euclidean_spearman
            value: 31.105269938654033
          - type: manhattan_pearson
            value: 10.559778015974826
          - type: manhattan_spearman
            value: 31.452204563072044
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 10.593783873928478
          - type: cos_sim_spearman
            value: 50.397542574042006
          - type: euclidean_pearson
            value: 28.122179063209714
          - type: euclidean_spearman
            value: 50.72847867996529
          - type: manhattan_pearson
            value: 28.730690148465005
          - type: manhattan_spearman
            value: 51.019761292483366
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: -1.3049499265017876
          - type: cos_sim_spearman
            value: 16.347130048706084
          - type: euclidean_pearson
            value: 0.5710147274110128
          - type: euclidean_spearman
            value: 16.589843077857605
          - type: manhattan_pearson
            value: 1.1226404198336415
          - type: manhattan_spearman
            value: 16.410620108636557
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: -10.96861909019159
          - type: cos_sim_spearman
            value: 24.536979219880724
          - type: euclidean_pearson
            value: -1.3040190807315306
          - type: euclidean_spearman
            value: 25.061584673761928
          - type: manhattan_pearson
            value: -0.06525719745037804
          - type: manhattan_spearman
            value: 25.979295538386893
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 1.0599417065503314
          - type: cos_sim_spearman
            value: 52.055853787103345
          - type: euclidean_pearson
            value: 23.666828441081776
          - type: euclidean_spearman
            value: 52.38656753170069
          - type: manhattan_pearson
            value: 23.398080463967215
          - type: manhattan_spearman
            value: 52.23849717509109
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: -2.847646040977239
          - type: cos_sim_spearman
            value: 40.5826838357407
          - type: euclidean_pearson
            value: 9.242304983683113
          - type: euclidean_spearman
            value: 40.35906851022345
          - type: manhattan_pearson
            value: 9.645663412799504
          - type: manhattan_spearman
            value: 40.78106154950966
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 17.761397832130992
          - type: cos_sim_spearman
            value: 59.98756452345925
          - type: euclidean_pearson
            value: 37.03125109036693
          - type: euclidean_spearman
            value: 59.58469212715707
          - type: manhattan_pearson
            value: 36.828102137170724
          - type: manhattan_spearman
            value: 59.07036501478588
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 22.281212883400205
          - type: cos_sim_spearman
            value: 48.27687537627578
          - type: euclidean_pearson
            value: 30.531395629285324
          - type: euclidean_spearman
            value: 50.349143748970384
          - type: manhattan_pearson
            value: 30.48762081986554
          - type: manhattan_spearman
            value: 50.66037165529169
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 15.76679673990358
          - type: cos_sim_spearman
            value: 19.123349126370442
          - type: euclidean_pearson
            value: 19.21389203087116
          - type: euclidean_spearman
            value: 23.63276413160338
          - type: manhattan_pearson
            value: 18.789263824907053
          - type: manhattan_spearman
            value: 19.962703178974692
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 11.024970397289941
          - type: cos_sim_spearman
            value: 13.530951900755017
          - type: euclidean_pearson
            value: 13.473514585343645
          - type: euclidean_spearman
            value: 16.754702023734914
          - type: manhattan_pearson
            value: 13.72847275970385
          - type: manhattan_spearman
            value: 16.673001637012348
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 33.32761589409043
          - type: cos_sim_spearman
            value: 54.14305778960692
          - type: euclidean_pearson
            value: 45.30173241170555
          - type: euclidean_spearman
            value: 54.77422257007743
          - type: manhattan_pearson
            value: 45.41890064000217
          - type: manhattan_spearman
            value: 54.533788920795544
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 20.045210048995486
          - type: cos_sim_spearman
            value: 17.597101329633823
          - type: euclidean_pearson
            value: 32.531726142346145
          - type: euclidean_spearman
            value: 27.244772040848105
          - type: manhattan_pearson
            value: 32.74618458514601
          - type: manhattan_spearman
            value: 25.81220754539242
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: -13.832846350193021
          - type: cos_sim_spearman
            value: -8.406778050457863
          - type: euclidean_pearson
            value: -6.557254855697437
          - type: euclidean_spearman
            value: -3.5112770921588563
          - type: manhattan_pearson
            value: -6.493730738275641
          - type: manhattan_spearman
            value: -2.5922348401468365
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 26.357929743436664
          - type: cos_sim_spearman
            value: 37.3417709718339
          - type: euclidean_pearson
            value: 30.930792572341293
          - type: euclidean_spearman
            value: 36.061866364725795
          - type: manhattan_pearson
            value: 31.56982745863155
          - type: manhattan_spearman
            value: 37.18529502311113
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 9.310102041071547
          - type: cos_sim_spearman
            value: 10.907002693108673
          - type: euclidean_pearson
            value: 7.361793742296021
          - type: euclidean_spearman
            value: 9.53967881391466
          - type: manhattan_pearson
            value: 8.017048631719996
          - type: manhattan_spearman
            value: 13.537860190039725
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: -5.534456407419709
          - type: cos_sim_spearman
            value: 17.552638994787724
          - type: euclidean_pearson
            value: -10.136558594355556
          - type: euclidean_spearman
            value: 11.055083156366303
          - type: manhattan_pearson
            value: -11.799223055640773
          - type: manhattan_spearman
            value: 1.416528760982869
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 48.64639760720344
          - type: cos_sim_spearman
            value: 39.440531887330785
          - type: euclidean_pearson
            value: 37.75527464173489
          - type: euclidean_spearman
            value: 39.440531887330785
          - type: manhattan_pearson
            value: 32.324715276369474
          - type: manhattan_spearman
            value: 28.17180849095055
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 44.667456983937
          - type: cos_sim_spearman
            value: 46.04327333618551
          - type: euclidean_pearson
            value: 44.583522824155104
          - type: euclidean_spearman
            value: 44.77184813864239
          - type: manhattan_pearson
            value: 44.54496373721756
          - type: manhattan_spearman
            value: 44.830873857115996
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 49.756063724243
          - type: mrr
            value: 75.29077585450135
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.194
          - type: map_at_10
            value: 18.756999999999998
          - type: map_at_100
            value: 19.743
          - type: map_at_1000
            value: 19.865
          - type: map_at_3
            value: 16.986
          - type: map_at_5
            value: 18.024
          - type: mrr_at_1
            value: 15
          - type: mrr_at_10
            value: 19.961000000000002
          - type: mrr_at_100
            value: 20.875
          - type: mrr_at_1000
            value: 20.982
          - type: mrr_at_3
            value: 18.056
          - type: mrr_at_5
            value: 19.406000000000002
          - type: ndcg_at_1
            value: 15
          - type: ndcg_at_10
            value: 21.775
          - type: ndcg_at_100
            value: 26.8
          - type: ndcg_at_1000
            value: 30.468
          - type: ndcg_at_3
            value: 18.199
          - type: ndcg_at_5
            value: 20.111
          - type: precision_at_1
            value: 15
          - type: precision_at_10
            value: 3.4000000000000004
          - type: precision_at_100
            value: 0.607
          - type: precision_at_1000
            value: 0.094
          - type: precision_at_3
            value: 7.444000000000001
          - type: precision_at_5
            value: 5.6000000000000005
          - type: recall_at_1
            value: 14.194
          - type: recall_at_10
            value: 30
          - type: recall_at_100
            value: 53.911
          - type: recall_at_1000
            value: 83.289
          - type: recall_at_3
            value: 20.556
          - type: recall_at_5
            value: 24.972
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.35544554455446
          - type: cos_sim_ap
            value: 62.596006705300724
          - type: cos_sim_f1
            value: 60.80283353010627
          - type: cos_sim_precision
            value: 74.20749279538906
          - type: cos_sim_recall
            value: 51.5
          - type: dot_accuracy
            value: 99.13564356435643
          - type: dot_ap
            value: 43.87589686325114
          - type: dot_f1
            value: 46.99663623258049
          - type: dot_precision
            value: 45.235892691951896
          - type: dot_recall
            value: 48.9
          - type: euclidean_accuracy
            value: 99.2
          - type: euclidean_ap
            value: 43.44660755386079
          - type: euclidean_f1
            value: 45.9016393442623
          - type: euclidean_precision
            value: 52.79583875162549
          - type: euclidean_recall
            value: 40.6
          - type: manhattan_accuracy
            value: 99.2
          - type: manhattan_ap
            value: 43.11790011749347
          - type: manhattan_f1
            value: 45.11023176936122
          - type: manhattan_precision
            value: 51.88556566970091
          - type: manhattan_recall
            value: 39.900000000000006
          - type: max_accuracy
            value: 99.35544554455446
          - type: max_ap
            value: 62.596006705300724
          - type: max_f1
            value: 60.80283353010627
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 25.71674282500873
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 25.465780711520985
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 35.35656209427094
          - type: mrr
            value: 35.10693860877685
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.074
          - type: map_at_10
            value: 0.47400000000000003
          - type: map_at_100
            value: 1.825
          - type: map_at_1000
            value: 4.056
          - type: map_at_3
            value: 0.199
          - type: map_at_5
            value: 0.301
          - type: mrr_at_1
            value: 34
          - type: mrr_at_10
            value: 46.06
          - type: mrr_at_100
            value: 47.506
          - type: mrr_at_1000
            value: 47.522999999999996
          - type: mrr_at_3
            value: 44
          - type: mrr_at_5
            value: 44.4
          - type: ndcg_at_1
            value: 32
          - type: ndcg_at_10
            value: 28.633999999999997
          - type: ndcg_at_100
            value: 18.547
          - type: ndcg_at_1000
            value: 16.142
          - type: ndcg_at_3
            value: 32.48
          - type: ndcg_at_5
            value: 31.163999999999998
          - type: precision_at_1
            value: 34
          - type: precision_at_10
            value: 30.4
          - type: precision_at_100
            value: 18.54
          - type: precision_at_1000
            value: 7.942
          - type: precision_at_3
            value: 35.333
          - type: precision_at_5
            value: 34
          - type: recall_at_1
            value: 0.074
          - type: recall_at_10
            value: 0.641
          - type: recall_at_100
            value: 3.675
          - type: recall_at_1000
            value: 15.706000000000001
          - type: recall_at_3
            value: 0.231
          - type: recall_at_5
            value: 0.367
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 54.625600000000006
          - type: ap
            value: 9.425323874806459
          - type: f1
            value: 42.38724794017267
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 42.8494623655914
          - type: f1
            value: 42.66062148844617
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 12.464890895237952
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 79.97854205161829
          - type: cos_sim_ap
            value: 47.45175747605773
          - type: cos_sim_f1
            value: 46.55775962660444
          - type: cos_sim_precision
            value: 41.73640167364017
          - type: cos_sim_recall
            value: 52.638522427440634
          - type: dot_accuracy
            value: 77.76718126005842
          - type: dot_ap
            value: 35.97737653101504
          - type: dot_f1
            value: 41.1975475754439
          - type: dot_precision
            value: 29.50165355228646
          - type: dot_recall
            value: 68.25857519788919
          - type: euclidean_accuracy
            value: 79.34076414138403
          - type: euclidean_ap
            value: 45.309577778755134
          - type: euclidean_f1
            value: 45.09938313913639
          - type: euclidean_precision
            value: 39.76631748589847
          - type: euclidean_recall
            value: 52.0844327176781
          - type: manhattan_accuracy
            value: 79.31692197651546
          - type: manhattan_ap
            value: 45.2433373222626
          - type: manhattan_f1
            value: 45.04624986069319
          - type: manhattan_precision
            value: 38.99286127725256
          - type: manhattan_recall
            value: 53.324538258575195
          - type: max_accuracy
            value: 79.97854205161829
          - type: max_ap
            value: 47.45175747605773
          - type: max_f1
            value: 46.55775962660444
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 81.76737687740133
          - type: cos_sim_ap
            value: 64.59241956109807
          - type: cos_sim_f1
            value: 57.83203629255339
          - type: cos_sim_precision
            value: 55.50442477876106
          - type: cos_sim_recall
            value: 60.363412380659064
          - type: dot_accuracy
            value: 78.96922420149805
          - type: dot_ap
            value: 56.11775087282065
          - type: dot_f1
            value: 52.92134831460675
          - type: dot_precision
            value: 51.524212368728115
          - type: dot_recall
            value: 54.39636587619341
          - type: euclidean_accuracy
            value: 80.8611790274382
          - type: euclidean_ap
            value: 61.28070098354092
          - type: euclidean_f1
            value: 54.58334971882497
          - type: euclidean_precision
            value: 55.783297162607504
          - type: euclidean_recall
            value: 53.43393902063443
          - type: manhattan_accuracy
            value: 80.72534637326814
          - type: manhattan_ap
            value: 61.18048430787254
          - type: manhattan_f1
            value: 54.50978912822061
          - type: manhattan_precision
            value: 53.435396790178245
          - type: manhattan_recall
            value: 55.6282722513089
          - type: max_accuracy
            value: 81.76737687740133
          - type: max_ap
            value: 64.59241956109807
          - type: max_f1
            value: 57.83203629255339