loggenix_general / README.md
kshitijthakkar's picture
Create README.md
855fafc verified
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# 1. Detect device (GPU or CPU)
DEVICE = 0 if torch.cuda.is_available() else -1
# 2. Load tokenizer & model from Hugging Face Hub
MODEL_NAME = "kshitijthakkar/loggenix_general"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
# 3. Set up a text-generation pipeline (optional but convenient)
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=DEVICE, # GPU if available, else CPU
framework="pt"
)
# 4. Simple generate function
def generate_text(prompt: str, max_length: int = 100, num_return_sequences: int = 1):
output = generator(
prompt,
max_length=max_length,
num_return_sequences=num_return_sequences,
do_sample=True, # enables sampling
top_k=50, # top-k sampling
top_p=0.95, # nucleus sampling
temperature=0.7 # adjust creativity
)
return [item['generated_text'] for item in output]
# 5. Example usage
if __name__ == "__main__":
prompt = input("Enter your prompt: ")
outputs = generate_text(prompt, max_length=512)
for i, text in enumerate(outputs, 3):
print(f"----- Generated Sequence {i} -----")
print(text)
print()