G³Splat: Geometrically Consistent Generalizable Gaussian Splatting
Model Description
G³Splat is a pose-free, self-supervised framework for generalizable Gaussian splatting that achieves state-of-the-art performance in:
- 🎯 Geometry Reconstruction - Accurate depth and mesh reconstructions
- 📐 Relative Pose Estimation - No camera poses required at inference
- 🎨 Novel View Synthesis - High-quality image rendering from new viewpoints
Available Checkpoints
| Model | Gaussian Type | Training Data | File |
|---|---|---|---|
| G³Splat-3DGS | 3DGS | RealEstate10K | g3splat_mast3r_3dgs_align_orient_re10k.ckpt |
| G³Splat-2DGS | 2DGS | RealEstate10K | g3splat_mast3r_2dgs_align_orient_re10k.ckpt |
Quick Start
from huggingface_hub import hf_hub_download
# Download 3DGS model
ckpt_path = hf_hub_download(
repo_id="m80hz/g3splat",
filename="g3splat_mast3r_3dgs_align_orient_re10k.ckpt"
)
# Or download 2DGS model
ckpt_path_2dgs = hf_hub_download(
repo_id="m80hz/g3splat",
filename="g3splat_mast3r_2dgs_align_orient_re10k.ckpt"
)
Usage
# Clone the repository
git clone https://github.com/m80hz/g3splat
cd g3splat
# Run demo
python demo.py --checkpoint pretrained_weights/g3splat_mast3r_3dgs_align_orient_re10k.ckpt
See the GitHub repository for full installation and usage instructions.
Training Details
- Training Data: RealEstate10K
- Resolution: 256×256
- Backbones: MASt3R (ViT-Large) and VGGT
- Hardware: 24× A100 GPUs (6 nodes × 4 GPUs)
- Training Time: ~6 hours
Citation
@inproceedings{g3splat,
title = {G3Splat: Geometrically Consistent Generalizable Gaussian Splatting},
author = {Hosseinzadeh, Mehdi and Chng, Shin-Fang and Xu, Yi and Lucey, Simon and Reid, Ian and Garg, Ravi},
booktitle = {arXiv:2512.17547},
year = {2025},
url = {https://arxiv.org/abs/2512.17547}
}
License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support