|
--- |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: madatnlp/ke-t5-math-py |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# madatnlp/ke-t5-math-py |
|
|
|
This model is a fine-tuned version of [KETI-AIR/ke-t5-base-ko](https://huggingface.co/KETI-AIR/ke-t5-base-ko) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1203 |
|
- Validation Loss: 0.4336 |
|
- Epoch: 47 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 2.0197 | 1.2886 | 0 | |
|
| 1.5642 | 1.1261 | 1 | |
|
| 1.3713 | 1.0296 | 2 | |
|
| 1.2555 | 0.9905 | 3 | |
|
| 1.1708 | 0.9628 | 4 | |
|
| 1.1161 | 0.9133 | 5 | |
|
| 1.0704 | 0.8994 | 6 | |
|
| 1.0297 | 0.8911 | 7 | |
|
| 0.9898 | 0.8570 | 8 | |
|
| 0.9608 | 0.8497 | 9 | |
|
| 0.9326 | 0.8359 | 10 | |
|
| 0.9089 | 0.8387 | 11 | |
|
| 0.8882 | 0.8083 | 12 | |
|
| 0.8627 | 0.8154 | 13 | |
|
| 0.8467 | 0.8058 | 14 | |
|
| 0.8314 | 0.7905 | 15 | |
|
| 0.8071 | 0.7852 | 16 | |
|
| 0.7975 | 0.7873 | 17 | |
|
| 0.8021 | 0.7926 | 18 | |
|
| 0.7754 | 0.7858 | 19 | |
|
| 0.7598 | 0.7941 | 20 | |
|
| 0.7463 | 0.7769 | 21 | |
|
| 0.7266 | 0.7594 | 22 | |
|
| 0.7092 | 0.7744 | 23 | |
|
| 0.6986 | 0.7611 | 24 | |
|
| 0.6818 | 0.7592 | 25 | |
|
| 0.6775 | 0.7718 | 26 | |
|
| 0.6689 | 0.7685 | 27 | |
|
| 0.6474 | 0.7554 | 28 | |
|
| 0.6328 | 0.7601 | 29 | |
|
| 0.6050 | 0.7042 | 30 | |
|
| 0.5296 | 0.5711 | 31 | |
|
| 0.4310 | 0.5227 | 32 | |
|
| 0.3729 | 0.4740 | 33 | |
|
| 0.3353 | 0.4552 | 34 | |
|
| 0.3006 | 0.4375 | 35 | |
|
| 0.2750 | 0.4233 | 36 | |
|
| 0.2494 | 0.4487 | 37 | |
|
| 0.2287 | 0.4294 | 38 | |
|
| 0.2160 | 0.4119 | 39 | |
|
| 0.1980 | 0.4309 | 40 | |
|
| 0.1837 | 0.4182 | 41 | |
|
| 0.1699 | 0.4045 | 42 | |
|
| 0.1577 | 0.4065 | 43 | |
|
| 0.1498 | 0.4247 | 44 | |
|
| 0.1392 | 0.4102 | 45 | |
|
| 0.1282 | 0.4274 | 46 | |
|
| 0.1203 | 0.4336 | 47 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- TensorFlow 2.8.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|