CAM-Seg / train.py
mahmed10's picture
initail upload
31ca592
import argparse
import datetime
import numpy as np
import os
import time
from pathlib import Path
import yaml
import glob
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from data import cityscapes
from util.crop import center_crop_arr
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.loader import CachedFolder
from models.vae import AutoencoderKL
from models import mar
import copy
from tqdm import tqdm
import util.lr_sched as lr_sched
import logging
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def logger_file(path):
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
handler = logging.FileHandler(path,"w", encoding=None, delay="true")
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def get_args_parser():
parser = argparse.ArgumentParser('MAR training with Diffusion Loss', add_help=False)
parser.add_argument('--batch_size', default=2, type=int,
help='Batch size per GPU (effective batch size is batch_size * # gpus')
parser.add_argument('--epochs', default=2000, type=int)
# Model parameters
parser.add_argument('--model', default='mar_base', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--ckpt_path', default="pretrained_models/mar/city768.16.pth", type=str,
help='model checkpoint path')
# VAE parameters
parser.add_argument('--img_size', default=768, type=int,
help='images input size')
parser.add_argument('--vae_path', default="pretrained_models/vae/modelf16.ckpt", type=str,
help='images input size')
parser.add_argument('--vae_embed_dim', default=16, type=int,
help='vae output embedding dimension')
parser.add_argument('--vae_stride', default=16, type=int,
help='tokenizer stride, default use KL16')
parser.add_argument('--patch_size', default=1, type=int,
help='number of tokens to group as a patch.')
parser.add_argument('--config', default="ldm/config.yaml", type=str,
help='vae model configuration file')
# Generation parameters
parser.add_argument('--num_iter', default=64, type=int,
help='number of autoregressive iterations to generate an image')
parser.add_argument('--num_images', default=3000, type=int,
help='number of images to generate')
parser.add_argument('--cfg', default=1.0, type=float, help="classifier-free guidance")
parser.add_argument('--cfg_schedule', default="linear", type=str)
parser.add_argument('--label_drop_prob', default=0.1, type=float)
parser.add_argument('--eval_freq', type=int, default=40, help='evaluation frequency')
parser.add_argument('--save_last_freq', type=int, default=5, help='save last frequency')
parser.add_argument('--online_eval', action='store_true')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--eval_bsz', type=int, default=64, help='generation batch size')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.02,
help='weight decay (default: 0.02)')
parser.add_argument('--grad_checkpointing', action='store_true')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--lr_schedule', type=str, default='constant',
help='learning rate schedule')
parser.add_argument('--warmup_epochs', type=int, default=100, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--ema_rate', default=0.9999, type=float)
# MAR params
parser.add_argument('--mask_ratio_min', type=float, default=0.7,
help='Minimum mask ratio')
parser.add_argument('--grad_clip', type=float, default=3.0,
help='Gradient clip')
parser.add_argument('--attn_dropout', type=float, default=0.1,
help='attention dropout')
parser.add_argument('--proj_dropout', type=float, default=0.1,
help='projection dropout')
parser.add_argument('--buffer_size', type=int, default=64)
# Diffusion Loss params
parser.add_argument('--diffloss_d', type=int, default=6)
parser.add_argument('--diffloss_w', type=int, default=1024)
parser.add_argument('--num_sampling_steps', type=str, default="100")
parser.add_argument('--diffusion_batch_mul', type=int, default=4)
parser.add_argument('--temperature', default=1.0, type=float, help='diffusion loss sampling temperature')
# Dataset parameters
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--resume', default=None,
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# caching latents
parser.add_argument('--use_cached', action='store_true', dest='use_cached',
help='Use cached latents')
parser.set_defaults(use_cached=False)
parser.add_argument('--cached_path', default='', help='path to cached latents')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
log_writer = None
# augmentation following DiT and ADM
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
dataset_train = cityscapes.CityScapes('dataset/CityScapes/trainlist.txt', transform=transform_train, img_size=args.img_size)
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# define the vae and mar model
with open(args.config, "r") as f:
config = yaml.safe_load(f)
args.ddconfig = config["ddconfig"]
print('cofig: ', config)
vae = AutoencoderKL(
ddconfig=args.ddconfig,
embed_dim=args.vae_embed_dim,
ckpt_path=args.vae_path
).cuda().eval()
for param in vae.parameters():
param.requires_grad = False
model = mar.__dict__[args.model](
img_size=args.img_size,
vae_stride=args.vae_stride,
patch_size=args.patch_size,
vae_embed_dim=args.vae_embed_dim,
mask_ratio_min=args.mask_ratio_min,
label_drop_prob=args.label_drop_prob,
attn_dropout=args.attn_dropout,
proj_dropout=args.proj_dropout,
buffer_size=args.buffer_size,
diffloss_d=args.diffloss_d,
diffloss_w=args.diffloss_w,
num_sampling_steps=args.num_sampling_steps,
diffusion_batch_mul=args.diffusion_batch_mul,
grad_checkpointing=args.grad_checkpointing,
)
if args.ckpt_path:
checkpoint = torch.load(args.ckpt_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
print("Model = %s" % str(model))
# following timm: set wd as 0 for bias and norm layers
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Number of trainable parameters: {}M".format(n_params / 1e6))
model.to(device)
model_without_ddp = model
eff_batch_size = args.batch_size * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr
print("base lr: %.2e" % args.blr)
print("actual lr: %.2e" % args.lr)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
# no weight decay on bias, norm layers, and diffloss MLP
param_groups = misc.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
# resume training
if args.resume and glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')):
try:
checkpoint = torch.load(sorted(glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')))[-1], map_location='cpu')
model.load_state_dict(checkpoint['model'])
except:
checkpoint = torch.load(sorted(glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')))[-2], map_location='cpu')
model.load_state_dict(checkpoint['model'])
state_dict = {key.replace("module.", ""): value for key, value in checkpoint['model'].items()}
model_without_ddp.load_state_dict(state_dict)
model_params = list(model_without_ddp.parameters())
ema_params = copy.deepcopy(model_params)
ema_state_dict = {key.replace("module.", ""): value for key, value in checkpoint['model_ema'].items()}
ema_params = [ema_state_dict[name].cuda() for name, _ in model_without_ddp.named_parameters()]
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
del checkpoint
args.output_dir = os.path.join(args.output_dir, args.resume)
logger = logger_file(args.log_dir+'/'+args.resume+'.log')
if os.path.exists(args.log_dir+'/'+args.resume+'.log'):
with open(args.log_dir+'/'+args.resume+'.log', 'r') as infile:
for line in infile:
logger.info(line.rstrip())
else:
logger.info("All the arguments")
for k, v in vars(args).items():
logger.info(f"{k}: {v}")
logger.info("\n\n Loss information")
else:
model_params = list(model_without_ddp.parameters())
ema_params = copy.deepcopy(model_params)
print("Training from scratch")
args.resume = datetime.datetime.now().strftime("%Y.%m.%d.%H.%M")
args.output_dir = os.path.join(args.output_dir, args.resume)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
logger = logger_file(args.log_dir+'/'+args.resume+'.log')
logger.info("All the arguments")
for k, v in vars(args).items():
logger.info(f"{k}: {v}")
logger.info("\n\n Loss information")
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
for epoch in tqdm(range(args.start_epoch, args.epochs), desc="Training Progress"):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
optimizer.zero_grad()
for data_iter_step, (samples, labels, _) in enumerate(data_loader_train):
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
with torch.no_grad():
posterior_x = vae.encode(samples)
posterior_y = vae.encode(labels)
x = posterior_x.sample().mul_(0.2325)
y = posterior_y.sample().mul_(0.2325)
with torch.cuda.amp.autocast():
loss = model(x,y)
loss_value = loss.item()
loss_scaler(loss, optimizer, clip_grad=args.grad_clip, parameters=model.parameters(), update_grad=True)
optimizer.zero_grad()
torch.cuda.synchronize()
update_ema(ema_params, model_params, rate=args.ema_rate)
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
metric_logger.synchronize_between_processes()
logger.info(f"epoch: {epoch:4d}, Averaged stats: {metric_logger}")
if (epoch+1)% args.save_last_freq == 0:
misc.save_model(args=args, model=model, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, ema_params=ema_params, epoch_name=str(epoch).zfill(5))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.log_dir).mkdir(parents=True, exist_ok=True)
main(args)