|
import argparse |
|
import datetime |
|
import numpy as np |
|
import os |
|
import time |
|
from pathlib import Path |
|
import yaml |
|
import glob |
|
|
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torchvision.transforms as transforms |
|
import torchvision.datasets as datasets |
|
from data import cityscapes |
|
|
|
from util.crop import center_crop_arr |
|
import util.misc as misc |
|
from util.misc import NativeScalerWithGradNormCount as NativeScaler |
|
from util.loader import CachedFolder |
|
|
|
from models.vae import AutoencoderKL |
|
from models import mar |
|
import copy |
|
from tqdm import tqdm |
|
|
|
import util.lr_sched as lr_sched |
|
|
|
import logging |
|
|
|
|
|
|
|
def update_ema(target_params, source_params, rate=0.99): |
|
""" |
|
Update target parameters to be closer to those of source parameters using |
|
an exponential moving average. |
|
|
|
:param target_params: the target parameter sequence. |
|
:param source_params: the source parameter sequence. |
|
:param rate: the EMA rate (closer to 1 means slower). |
|
""" |
|
for targ, src in zip(target_params, source_params): |
|
targ.detach().mul_(rate).add_(src, alpha=1 - rate) |
|
|
|
def logger_file(path): |
|
logger = logging.getLogger() |
|
logger.setLevel(logging.DEBUG) |
|
handler = logging.FileHandler(path,"w", encoding=None, delay="true") |
|
handler.setLevel(logging.INFO) |
|
formatter = logging.Formatter("%(message)s") |
|
handler.setFormatter(formatter) |
|
logger.addHandler(handler) |
|
return logger |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser('MAR training with Diffusion Loss', add_help=False) |
|
parser.add_argument('--batch_size', default=2, type=int, |
|
help='Batch size per GPU (effective batch size is batch_size * # gpus') |
|
parser.add_argument('--epochs', default=2000, type=int) |
|
|
|
|
|
parser.add_argument('--model', default='mar_base', type=str, metavar='MODEL', |
|
help='Name of model to train') |
|
parser.add_argument('--ckpt_path', default="pretrained_models/mar/city768.16.pth", type=str, |
|
help='model checkpoint path') |
|
|
|
|
|
parser.add_argument('--img_size', default=768, type=int, |
|
help='images input size') |
|
parser.add_argument('--vae_path', default="pretrained_models/vae/modelf16.ckpt", type=str, |
|
help='images input size') |
|
parser.add_argument('--vae_embed_dim', default=16, type=int, |
|
help='vae output embedding dimension') |
|
parser.add_argument('--vae_stride', default=16, type=int, |
|
help='tokenizer stride, default use KL16') |
|
parser.add_argument('--patch_size', default=1, type=int, |
|
help='number of tokens to group as a patch.') |
|
parser.add_argument('--config', default="ldm/config.yaml", type=str, |
|
help='vae model configuration file') |
|
|
|
|
|
parser.add_argument('--num_iter', default=64, type=int, |
|
help='number of autoregressive iterations to generate an image') |
|
parser.add_argument('--num_images', default=3000, type=int, |
|
help='number of images to generate') |
|
parser.add_argument('--cfg', default=1.0, type=float, help="classifier-free guidance") |
|
parser.add_argument('--cfg_schedule', default="linear", type=str) |
|
parser.add_argument('--label_drop_prob', default=0.1, type=float) |
|
parser.add_argument('--eval_freq', type=int, default=40, help='evaluation frequency') |
|
parser.add_argument('--save_last_freq', type=int, default=5, help='save last frequency') |
|
parser.add_argument('--online_eval', action='store_true') |
|
parser.add_argument('--evaluate', action='store_true') |
|
parser.add_argument('--eval_bsz', type=int, default=64, help='generation batch size') |
|
|
|
|
|
parser.add_argument('--weight_decay', type=float, default=0.02, |
|
help='weight decay (default: 0.02)') |
|
|
|
parser.add_argument('--grad_checkpointing', action='store_true') |
|
parser.add_argument('--lr', type=float, default=None, metavar='LR', |
|
help='learning rate (absolute lr)') |
|
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR', |
|
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') |
|
parser.add_argument('--min_lr', type=float, default=0., metavar='LR', |
|
help='lower lr bound for cyclic schedulers that hit 0') |
|
parser.add_argument('--lr_schedule', type=str, default='constant', |
|
help='learning rate schedule') |
|
parser.add_argument('--warmup_epochs', type=int, default=100, metavar='N', |
|
help='epochs to warmup LR') |
|
parser.add_argument('--ema_rate', default=0.9999, type=float) |
|
|
|
|
|
parser.add_argument('--mask_ratio_min', type=float, default=0.7, |
|
help='Minimum mask ratio') |
|
parser.add_argument('--grad_clip', type=float, default=3.0, |
|
help='Gradient clip') |
|
parser.add_argument('--attn_dropout', type=float, default=0.1, |
|
help='attention dropout') |
|
parser.add_argument('--proj_dropout', type=float, default=0.1, |
|
help='projection dropout') |
|
parser.add_argument('--buffer_size', type=int, default=64) |
|
|
|
|
|
parser.add_argument('--diffloss_d', type=int, default=6) |
|
parser.add_argument('--diffloss_w', type=int, default=1024) |
|
parser.add_argument('--num_sampling_steps', type=str, default="100") |
|
parser.add_argument('--diffusion_batch_mul', type=int, default=4) |
|
parser.add_argument('--temperature', default=1.0, type=float, help='diffusion loss sampling temperature') |
|
|
|
|
|
parser.add_argument('--output_dir', default='./output_dir', |
|
help='path where to save, empty for no saving') |
|
parser.add_argument('--log_dir', default='./output_dir', |
|
help='path where to tensorboard log') |
|
parser.add_argument('--device', default='cuda', |
|
help='device to use for training / testing') |
|
parser.add_argument('--seed', default=1, type=int) |
|
parser.add_argument('--resume', default=None, |
|
help='resume from checkpoint') |
|
|
|
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', |
|
help='start epoch') |
|
parser.add_argument('--num_workers', default=10, type=int) |
|
parser.add_argument('--pin_mem', action='store_true', |
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') |
|
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') |
|
parser.set_defaults(pin_mem=True) |
|
|
|
|
|
parser.add_argument('--world_size', default=1, type=int, |
|
help='number of distributed processes') |
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
parser.add_argument('--dist_on_itp', action='store_true') |
|
parser.add_argument('--dist_url', default='env://', |
|
help='url used to set up distributed training') |
|
|
|
|
|
parser.add_argument('--use_cached', action='store_true', dest='use_cached', |
|
help='Use cached latents') |
|
parser.set_defaults(use_cached=False) |
|
parser.add_argument('--cached_path', default='', help='path to cached latents') |
|
|
|
return parser |
|
|
|
|
|
def main(args): |
|
misc.init_distributed_mode(args) |
|
|
|
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) |
|
print("{}".format(args).replace(', ', ',\n')) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + misc.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
cudnn.benchmark = True |
|
|
|
num_tasks = misc.get_world_size() |
|
global_rank = misc.get_rank() |
|
|
|
log_writer = None |
|
|
|
|
|
transform_train = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) |
|
]) |
|
|
|
dataset_train = cityscapes.CityScapes('dataset/CityScapes/trainlist.txt', transform=transform_train, img_size=args.img_size) |
|
|
|
sampler_train = torch.utils.data.DistributedSampler( |
|
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True |
|
) |
|
print("Sampler_train = %s" % str(sampler_train)) |
|
|
|
data_loader_train = torch.utils.data.DataLoader( |
|
dataset_train, sampler=sampler_train, |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=args.pin_mem, |
|
drop_last=True, |
|
) |
|
|
|
|
|
with open(args.config, "r") as f: |
|
config = yaml.safe_load(f) |
|
args.ddconfig = config["ddconfig"] |
|
print('cofig: ', config) |
|
|
|
vae = AutoencoderKL( |
|
ddconfig=args.ddconfig, |
|
embed_dim=args.vae_embed_dim, |
|
ckpt_path=args.vae_path |
|
).cuda().eval() |
|
|
|
for param in vae.parameters(): |
|
param.requires_grad = False |
|
|
|
model = mar.__dict__[args.model]( |
|
img_size=args.img_size, |
|
vae_stride=args.vae_stride, |
|
patch_size=args.patch_size, |
|
vae_embed_dim=args.vae_embed_dim, |
|
mask_ratio_min=args.mask_ratio_min, |
|
label_drop_prob=args.label_drop_prob, |
|
attn_dropout=args.attn_dropout, |
|
proj_dropout=args.proj_dropout, |
|
buffer_size=args.buffer_size, |
|
diffloss_d=args.diffloss_d, |
|
diffloss_w=args.diffloss_w, |
|
num_sampling_steps=args.num_sampling_steps, |
|
diffusion_batch_mul=args.diffusion_batch_mul, |
|
grad_checkpointing=args.grad_checkpointing, |
|
) |
|
|
|
if args.ckpt_path: |
|
checkpoint = torch.load(args.ckpt_path, map_location='cpu') |
|
model.load_state_dict(checkpoint['model']) |
|
|
|
print("Model = %s" % str(model)) |
|
|
|
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
print("Number of trainable parameters: {}M".format(n_params / 1e6)) |
|
|
|
model.to(device) |
|
model_without_ddp = model |
|
|
|
eff_batch_size = args.batch_size * misc.get_world_size() |
|
|
|
if args.lr is None: |
|
args.lr = args.blr |
|
|
|
print("base lr: %.2e" % args.blr) |
|
print("actual lr: %.2e" % args.lr) |
|
print("effective batch size: %d" % eff_batch_size) |
|
|
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
model_without_ddp = model.module |
|
|
|
|
|
param_groups = misc.add_weight_decay(model_without_ddp, args.weight_decay) |
|
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) |
|
print(optimizer) |
|
loss_scaler = NativeScaler() |
|
|
|
|
|
if args.resume and glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')): |
|
try: |
|
checkpoint = torch.load(sorted(glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')))[-1], map_location='cpu') |
|
model.load_state_dict(checkpoint['model']) |
|
except: |
|
checkpoint = torch.load(sorted(glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')))[-2], map_location='cpu') |
|
model.load_state_dict(checkpoint['model']) |
|
state_dict = {key.replace("module.", ""): value for key, value in checkpoint['model'].items()} |
|
model_without_ddp.load_state_dict(state_dict) |
|
model_params = list(model_without_ddp.parameters()) |
|
ema_params = copy.deepcopy(model_params) |
|
ema_state_dict = {key.replace("module.", ""): value for key, value in checkpoint['model_ema'].items()} |
|
ema_params = [ema_state_dict[name].cuda() for name, _ in model_without_ddp.named_parameters()] |
|
print("Resume checkpoint %s" % args.resume) |
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint: |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
if 'scaler' in checkpoint: |
|
loss_scaler.load_state_dict(checkpoint['scaler']) |
|
print("With optim & sched!") |
|
del checkpoint |
|
|
|
args.output_dir = os.path.join(args.output_dir, args.resume) |
|
|
|
logger = logger_file(args.log_dir+'/'+args.resume+'.log') |
|
if os.path.exists(args.log_dir+'/'+args.resume+'.log'): |
|
with open(args.log_dir+'/'+args.resume+'.log', 'r') as infile: |
|
for line in infile: |
|
logger.info(line.rstrip()) |
|
else: |
|
logger.info("All the arguments") |
|
for k, v in vars(args).items(): |
|
logger.info(f"{k}: {v}") |
|
logger.info("\n\n Loss information") |
|
|
|
|
|
|
|
else: |
|
model_params = list(model_without_ddp.parameters()) |
|
ema_params = copy.deepcopy(model_params) |
|
print("Training from scratch") |
|
args.resume = datetime.datetime.now().strftime("%Y.%m.%d.%H.%M") |
|
args.output_dir = os.path.join(args.output_dir, args.resume) |
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
logger = logger_file(args.log_dir+'/'+args.resume+'.log') |
|
logger.info("All the arguments") |
|
for k, v in vars(args).items(): |
|
logger.info(f"{k}: {v}") |
|
logger.info("\n\n Loss information") |
|
|
|
|
|
print(f"Start training for {args.epochs} epochs") |
|
start_time = time.time() |
|
for epoch in range(args.start_epoch, args.epochs): |
|
if args.distributed: |
|
data_loader_train.sampler.set_epoch(epoch) |
|
|
|
|
|
|
|
for epoch in tqdm(range(args.start_epoch, args.epochs), desc="Training Progress"): |
|
model.train(True) |
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
print_freq = 20 |
|
|
|
optimizer.zero_grad() |
|
|
|
for data_iter_step, (samples, labels, _) in enumerate(data_loader_train): |
|
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args) |
|
samples = samples.to(device, non_blocking=True) |
|
labels = labels.to(device, non_blocking=True) |
|
|
|
with torch.no_grad(): |
|
posterior_x = vae.encode(samples) |
|
posterior_y = vae.encode(labels) |
|
x = posterior_x.sample().mul_(0.2325) |
|
y = posterior_y.sample().mul_(0.2325) |
|
with torch.cuda.amp.autocast(): |
|
loss = model(x,y) |
|
loss_value = loss.item() |
|
loss_scaler(loss, optimizer, clip_grad=args.grad_clip, parameters=model.parameters(), update_grad=True) |
|
optimizer.zero_grad() |
|
torch.cuda.synchronize() |
|
|
|
update_ema(ema_params, model_params, rate=args.ema_rate) |
|
metric_logger.update(loss=loss_value) |
|
|
|
lr = optimizer.param_groups[0]["lr"] |
|
metric_logger.update(lr=lr) |
|
|
|
loss_value_reduce = misc.all_reduce_mean(loss_value) |
|
metric_logger.synchronize_between_processes() |
|
logger.info(f"epoch: {epoch:4d}, Averaged stats: {metric_logger}") |
|
if (epoch+1)% args.save_last_freq == 0: |
|
misc.save_model(args=args, model=model, model_without_ddp=model, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch=epoch, ema_params=ema_params, epoch_name=str(epoch).zfill(5)) |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_args_parser() |
|
args = args.parse_args() |
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
Path(args.log_dir).mkdir(parents=True, exist_ok=True) |
|
main(args) |
|
|