|
--- |
|
license: mit |
|
datasets: |
|
- matiss/Latvian-Twitter-Eater-Corpus-Sentiment |
|
language: |
|
- lv |
|
base_model: |
|
- AiLab-IMCS-UL/lvbert |
|
pipeline_tag: text-classification |
|
tags: |
|
- sentiment |
|
--- |
|
|
|
# Latvian Twitter Sentiment Analysis |
|
|
|
This is a BERT-base model trained on ~26,000 manually annotated tweets in Latvian from various sources for sentiment analysis. |
|
|
|
|
|
<b>Labels</b>: </br> |
|
0 -> Neutral;</br> |
|
1 -> Positive;</br> |
|
2 -> Negative. |
|
|
|
This sentiment analysis model has been integrated in [this HF Space](https://huggingface.co/spaces/matiss/Latvian-Twitter-Sentiment-Analysis). |
|
|
|
## Example Pipeline |
|
```python |
|
from transformers import pipeline |
|
model_path = "matiss/Latvian-Twitter-Sentiment-Analysis" |
|
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) |
|
sentiment_task("Man garšo pankūkas ar kotletēm") |
|
``` |
|
``` |
|
[{'label': 'Positive', 'score': 0.9032208919525146}] |
|
``` |
|
|
|
|
|
|
|
## Corpora Used for Training |
|
--------- |
|
* [Twitēdiens](https://huggingface.co/datasets/matiss/Latvian-Twitter-Eater-Corpus-Sentiment) - the Latvian Twitter Eater Corpus of ~5000 manually annotated food-related tweets. |
|
* [Pinnis](https://github.com/pmarcis/latvian-tweet-corpus) - ~ 7000 tweets from politicians and companies |
|
* [Peisenieks](https://github.com/FnTm/latvian-tweet-sentiment-corpus) - ~ 1000 general tweets with sentiment annotated by multiple annotators |
|
* [Vīksna](https://github.com/RinaldsViksna/sikzinu_analize) - ~ 4000 general tweets |
|
* [Nicemanis](https://github.com/nicemanis/LV-twitter-sentiment-corpus) - ~ 2000 general tweets |
|
* [Špats](https://github.com/gatis/om) - ~ 6000 general tweets |
|
|
|
|
|
Publications |
|
--------- |
|
|
|
If you use this corpus or scripts, please cite the following paper: |
|
|
|
Uga Sproģis and Matīss Rikters (2020). "[What Can We Learn From Almost a Decade of Food Tweets.](https://arxiv.org/abs/2007.05194)" In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective ([Baltic HLT 2020](https://klc.vdu.lt/hlt/programme)) (2020). |
|
|
|
```bibtex |
|
@inproceedings{SprogisRikters2020BalticHLT, |
|
author = {Sproģis, Uga and Rikters, Matīss}, |
|
booktitle={In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective (Baltic HLT 2020)}, |
|
title = {{What Can We Learn From Almost a Decade of Food Tweets}}, |
|
address={Kaunas, Lithuania}, |
|
year = {2020} |
|
} |
|
``` |