|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: dennisjooo/Birds-Classifier-EfficientNetB2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: train_checkpoints2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.8685894687564659 |
|
- name: Precision |
|
type: precision |
|
value: 0.8781544844044844 |
|
- name: Recall |
|
type: recall |
|
value: 0.8634882138558609 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8686131386861314 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# train_checkpoints2 |
|
|
|
This model is a fine-tuned version of [dennisjooo/Birds-Classifier-EfficientNetB2](https://huggingface.co/dennisjooo/Birds-Classifier-EfficientNetB2) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4826 |
|
- F1: 0.8686 |
|
- Precision: 0.8782 |
|
- Recall: 0.8635 |
|
- Accuracy: 0.8686 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| |
|
| 0.1145 | 1.0 | 15 | 0.5836 | 0.8608 | 0.8776 | 0.8520 | 0.8613 | |
|
| 0.129 | 2.0 | 30 | 0.8019 | 0.8322 | 0.8634 | 0.8192 | 0.8358 | |
|
| 0.2085 | 3.0 | 45 | 0.7550 | 0.8083 | 0.8355 | 0.8042 | 0.8212 | |
|
| 0.1722 | 4.0 | 60 | 0.7524 | 0.8298 | 0.8422 | 0.8357 | 0.8394 | |
|
| 0.19 | 5.0 | 75 | 0.5542 | 0.8743 | 0.8910 | 0.8679 | 0.8723 | |
|
| 0.1612 | 6.0 | 90 | 0.8325 | 0.8114 | 0.8410 | 0.8063 | 0.8066 | |
|
| 0.2009 | 7.0 | 105 | 0.4425 | 0.8900 | 0.8904 | 0.8911 | 0.8942 | |
|
| 0.209 | 8.0 | 120 | 0.6705 | 0.8126 | 0.8482 | 0.8074 | 0.8358 | |
|
| 0.2188 | 9.0 | 135 | 0.5906 | 0.8387 | 0.8551 | 0.8350 | 0.8467 | |
|
| 0.1962 | 10.0 | 150 | 0.4826 | 0.8686 | 0.8782 | 0.8635 | 0.8686 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|