|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-reg-biencoder-mae |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-reg-biencoder-mae |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2343 |
|
- Mse: 0.0824 |
|
- Mae: 0.2338 |
|
- Pearson Corr: 0.2477 |
|
- Spearman Corr: 0.1374 |
|
- Cosine Sim: 0.9022 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:| |
|
| 0.2846 | 1.0 | 21 | 0.2617 | 0.1153 | 0.2610 | 0.1327 | 0.0936 | 0.9053 | |
|
| 0.2728 | 2.0 | 42 | 0.2310 | 0.0886 | 0.2304 | 0.0188 | 0.0316 | 0.8994 | |
|
| 0.2511 | 3.0 | 63 | 0.2282 | 0.0847 | 0.2276 | 0.1716 | 0.1111 | 0.9058 | |
|
| 0.2253 | 4.0 | 84 | 0.2333 | 0.0864 | 0.2329 | 0.1906 | 0.1191 | 0.9041 | |
|
| 0.1993 | 5.0 | 105 | 0.2329 | 0.0822 | 0.2326 | 0.2299 | 0.1213 | 0.9016 | |
|
| 0.1845 | 6.0 | 126 | 0.2357 | 0.0829 | 0.2353 | 0.2268 | 0.1254 | 0.9017 | |
|
| 0.165 | 7.0 | 147 | 0.2343 | 0.0824 | 0.2338 | 0.2477 | 0.1374 | 0.9022 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|