Usage

Here we provide a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate function calling with given functions.

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Team-ACE/ToolACE-2-Llama-3.1-8B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype='auto',
    device_map='auto'
)


# You can modify the prompt for your task
system_prompt = """You are an expert in composing functions. You are given a question and a set of possible functions. Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function, also point it out.
You should only return the function call in tools call sections.

If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.\n{functions}\n
"""

# User query
query = "Find me the sales growth rate for company XYZ for the last 3 years and also the interest coverage ratio for the same duration."

# Availabel tools in JSON format (OpenAI-format)
tools = [
    {
        "name": "financial_ratios.interest_coverage", "description": "Calculate a company's interest coverage ratio given the company name and duration",
        "arguments": {
            "type": "dict",
            "properties": {
                "company_name": {
                    "type": "string",
                    "description": "The name of the company."
                }, 
                "years": {
                    "type": "integer",
                    "description": "Number of past years to calculate the ratio."
                }
            }, 
            "required": ["company_name", "years"]
        }
    },
    {
        "name": "sales_growth.calculate",
        "description": "Calculate a company's sales growth rate given the company name and duration",
        "arguments": {
            "type": "dict", 
            "properties": {
                "company": {
                    "type": "string",
                    "description": "The company that you want to get the sales growth rate for."
                }, 
                "years": {
                    "type": "integer",
                    "description": "Number of past years for which to calculate the sales growth rate."
                }
            }, 
            "required": ["company", "years"]
        }
    },
    {
        "name": "weather_forecast",
        "description": "Retrieve a weather forecast for a specific location and time frame.",
        "arguments": {
            "type": "dict",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city that you want to get the weather for."
                }, 
                "days": {
                    "type": "integer",
                    "description": "Number of days for the forecast."
                }
            },
            "required": ["location", "days"]
        }
    }
]

messages = [
    {'role': 'system', 'content': system_prompt.format(functions=tools)},
    {'role': 'user', 'content': query}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

Then you should be able to see the following output functional calls:

[sales_growth.calculate(company="XYZ", years=3), financial_ratios.interest_coverage(company_name="XYZ", years=3)]
Downloads last month
362
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for neural-coder/llama-2-asit-1

Finetuned
(1390)
this model

Dataset used to train neural-coder/llama-2-asit-1