Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| NONE |
|
| KUBIE |
|
| aws_iam |
|
| DOC |
|
| access_management |
|
| Label | Accuracy |
|---|---|
| all | 0.9962 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("How can I reduce stress?")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 8.5408 | 17 |
| Label | Training Sample Count |
|---|---|
| aws_iam | 20 |
| access_management | 20 |
| DOC | 18 |
| KUBIE | 20 |
| NONE | 20 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0021 | 1 | 0.2675 | - |
| 0.1042 | 50 | 0.1143 | - |
| 0.2083 | 100 | 0.0578 | - |
| 0.3125 | 150 | 0.0028 | - |
| 0.4167 | 200 | 0.0032 | - |
| 0.5208 | 250 | 0.0007 | - |
| 0.625 | 300 | 0.0006 | - |
| 0.7292 | 350 | 0.0004 | - |
| 0.8333 | 400 | 0.0005 | - |
| 0.9375 | 450 | 0.0006 | - |
| 1.0 | 480 | - | 0.0027 |
| 1.0417 | 500 | 0.0004 | - |
| 1.1458 | 550 | 0.0002 | - |
| 1.25 | 600 | 0.0003 | - |
| 1.3542 | 650 | 0.0002 | - |
| 1.4583 | 700 | 0.0002 | - |
| 1.5625 | 750 | 0.0002 | - |
| 1.6667 | 800 | 0.0002 | - |
| 1.7708 | 850 | 0.0002 | - |
| 1.875 | 900 | 0.0002 | - |
| 1.9792 | 950 | 0.0001 | - |
| 2.0 | 960 | - | 0.0032 |
| 2.0833 | 1000 | 0.0001 | - |
| 2.1875 | 1050 | 0.0002 | - |
| 2.2917 | 1100 | 0.0001 | - |
| 2.3958 | 1150 | 0.0002 | - |
| 2.5 | 1200 | 0.0002 | - |
| 2.6042 | 1250 | 0.0001 | - |
| 2.7083 | 1300 | 0.0002 | - |
| 2.8125 | 1350 | 0.0001 | - |
| 2.9167 | 1400 | 0.0001 | - |
| 3.0 | 1440 | - | 0.004 |
| 3.0208 | 1450 | 0.0001 | - |
| 3.125 | 1500 | 0.0001 | - |
| 3.2292 | 1550 | 0.0002 | - |
| 3.3333 | 1600 | 0.0002 | - |
| 3.4375 | 1650 | 0.0001 | - |
| 3.5417 | 1700 | 0.0002 | - |
| 3.6458 | 1750 | 0.0001 | - |
| 3.75 | 1800 | 0.0001 | - |
| 3.8542 | 1850 | 0.0001 | - |
| 3.9583 | 1900 | 0.0002 | - |
| 4.0 | 1920 | - | 0.0037 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}