File size: 16,081 Bytes
ce12a8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:164
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
base_model: BAAI/bge-small-zh-v1.5
widget:
- source_sentence: qa_234
sentences:
- 1客戶主軸馬達編碼器異常主軸馬達送修拿備品安裝聯軸器廠商安裝並校正動平衡我司協助裝回
- 故障狀況 追加皮帶式油水分離機 處理狀況 備料為客戶追加
- 追加皮帶式油水分離機
- source_sentence: qa_97
sentences:
- 故障狀況 1C軸轉盤整修 處理狀況 1XYZC軸伺服濾波及增益調整 2主軸測試棒精度確認發現主軸偏擺過大4條半主軸需檢修 3角尺精度調整及確認XYXZYZ符合精度要求1條內
4確認C軸盤面偏擺符合精度要求1條內 5確認工作台平面精度需再處理將工作台墊片拆回座精度上的調整X軸光學尺關閉
- 1C軸轉盤整修
- 1客戶機台移廠房協助定位校正水平精度
- source_sentence: qa_202
sentences:
- 1客戶反應油冷機跳EX1038 OIL COOLER ALARM EX1014 OIL COOLER OVERLOAD
- 故障狀況 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷 處理狀況 1修改PLC並測試所有sensor異常時需刀臂停止測試給用戶確認ok
- 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷
- source_sentence: qa_60
sentences:
- 1客戶反應吊桿太矮要求更換 2切削液馬達有異音
- 上滑軌有磨損以及塊的C釦及內部零件已掉落
- 故障狀況 上滑軌有磨損以及塊的C釦及內部零件已掉落 處理狀況 備料為客戶更換
- source_sentence: qa_217
sentences:
- 1客戶反應跳主軸異警協助西門子檢修
- 油壓箱table spin clamp油管壓接不良有漏油現象
- 故障狀況 油壓箱table spin clamp油管壓接不良有漏油現象 處理狀況 備油管為客戶更換
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on BAAI/bge-small-zh-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) on the train dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) <!-- at revision 7999e1d3359715c523056ef9478215996d62a620 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'qa_217',
'油壓箱table spin clamp油管壓接不良有漏油現象',
'故障狀況 油壓箱table spin clamp油管壓接不良有漏油現象 處理狀況 備油管為客戶更換',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### train
* Dataset: train
* Size: 164 training samples
* Columns: <code>question</code>, <code>chunk</code>, and <code>label</code>
* Approximate statistics based on the first 164 samples:
| | question | chunk | label |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 23.19 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 79.21 tokens</li><li>max: 176 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
| question | chunk | label |
|:--------------------------|:----------------------------------------------------------------------------------------|:-----------------|
| <code>1中噴箱體壓力表異常</code> | <code>故障狀況 1中噴箱體壓力表異常 處理狀況 1依照廠商檢查方案過濾灌乾淨未阻塞濾心乾淨壓力表洩氣未改善 2更換壓力表安裝測試中噴壓力已改善客戶確認OK</code> | <code>1.0</code> |
| <code>1用戶反應機台有漏水現象</code> | <code>故障狀況 1用戶反應機台有漏水現象 處理狀況 1查修後危機台左後立柱位置漏出拆開Y後伸縮護罩鈑金重新填上矽利康測試確認已無漏水</code> | <code>1.0</code> |
| <code>風槍的管路破裂會漏風</code> | <code>故障狀況 風槍的管路破裂會漏風 處理狀況 備風槍管為客戶更換</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### train
* Dataset: train
* Size: 40 evaluation samples
* Columns: <code>question</code>, <code>chunk</code>, and <code>label</code>
* Approximate statistics based on the first 40 samples:
| | question | chunk | label |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 22.3 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 69.75 tokens</li><li>max: 144 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
| question | chunk | label |
|:------------------------------------------------|:---------------------------------------------------------------------------------------------|:-----------------|
| <code>冷氣機結冰</code> | <code>故障狀況 冷氣機結冰 處理狀況 經威士頓評估後 同意保固提供一片冷氣控制板給客戶更換</code> | <code>1.0</code> |
| <code>1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷</code> | <code>故障狀況 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷 處理狀況 1修改PLC並測試所有sensor異常時需刀臂停止測試給用戶確認ok</code> | <code>1.0</code> |
| <code>更換鏈條以及鏈條軸承</code> | <code>故障狀況 更換鏈條以及鏈條軸承 處理狀況 備料為客戶更換</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `max_steps`: 500
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: 500
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | train loss |
|:-------:|:----:|:-------------:|:----------:|
| 9.0909 | 100 | 2.3557 | 2.8228 |
| 18.1818 | 200 | 0.3241 | 2.9318 |
| 27.2727 | 300 | 0.0786 | 3.0996 |
| 36.3636 | 400 | 0.0408 | 3.1550 |
| 45.4545 | 500 | 0.0328 | 3.1758 |
| 9.0909 | 100 | 0.2424 | 0.0369 |
| 18.1818 | 200 | 0.0199 | 0.0374 |
| 27.2727 | 300 | 0.0231 | 0.0395 |
| 36.3636 | 400 | 0.0178 | 0.0387 |
| 45.4545 | 500 | 0.0157 | 0.0385 |
| 9.0909 | 100 | 0.0172 | 0.0000 |
| 18.1818 | 200 | 0.002 | 0.0000 |
| 27.2727 | 300 | 0.0016 | 0.0000 |
| 36.3636 | 400 | 0.0014 | 0.0000 |
| 45.4545 | 500 | 0.0013 | 0.0000 |
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |