Cosmos
Safetensors
NeMo
cosmos-embed1
nvidia
custom_code
Cosmos-Embed1-224p / modeling_vit.py
fferroni's picture
First commit
413fcdd
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2023, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
EVA-CLIP backbone used in BLIP2.
Code adapted from:
https://github.com/salesforce/LAVIS/blob/main/lavis/models/eva_vit.py
"""
import math
from functools import partial
from logging import getLogger
from typing import Any, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
logger = getLogger(__file__)
TRANSFORMER_ENGINE_AVAILABLE = False
try:
import transformer_engine.pytorch as te
from transformer_engine.common.recipe import DelayedScaling, Format
TRANSFORMER_ENGINE_AVAILABLE = True
logger.info("Transformer Engine is available, can set `transformer_engine=True` in config " "for faster inference.")
except ImportError:
pass
def drop_path(x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: float) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Mlp(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: float = 0.0,
transformer_engine: bool = False,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
fn = te.Linear if transformer_engine else nn.Linear
self.fc1 = fn(in_features, hidden_features)
self.act = act_layer()
self.fc2 = fn(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
**kwargs,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
B, N, C = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.relative_position_bias_table is not None:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TransformerEngineAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_scale: Optional[float] = None,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
window_size: Optional[int] = None,
attn_head_dim: Optional[int] = None,
checkpoint_attention: bool = False,
):
super().__init__()
self.num_heads = num_heads
self.checkpoint_attention = checkpoint_attention
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
# QKV projection
self.qkv = te.Linear(dim, all_head_dim * 3, bias=qkv_bias)
if window_size:
raise NotImplementedError("`window_size` not implemented for TE!")
self.te_attn = te.DotProductAttention(
num_attention_heads=num_heads,
kv_channels=head_dim,
attention_dropout=attn_drop,
qkv_format="bshd",
softmax_scale=self.scale,
attn_mask_type="no_mask",
)
# output projection + dropout
self.proj = te.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor, rel_pos_bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
x: [B, N, C]
rel_pos_bias (optional): tensor of shape [num_heads, N, N]
"""
B, N, _ = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # BNHC format
if rel_pos_bias is not None:
raise NotImplementedError("`rel_pos_bias` not implemented for TE!")
# run TE's fused attention
y = self.te_attn(q, k, v, checkpoint_core_attention=self.checkpoint_attention)
# final proj + dropout
return self.proj_drop(self.proj(y))
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
transformer_engine: bool = False,
checkpoint_attention: bool = False,
):
super().__init__()
self.transformer_engine = transformer_engine
self.window_size = window_size
self.checkpoint_attention = checkpoint_attention
if checkpoint_attention and not transformer_engine:
raise ValueError("`checkpoint_attention` needs `transformer_engine`!")
self.norm1 = norm_layer(dim)
attn_fn = TransformerEngineAttention if transformer_engine else Attention
self.attn = attn_fn(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
checkpoint_attention=checkpoint_attention,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
transformer_engine=transformer_engine,
)
if init_values is not None and init_values > 0:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
embed_dim: int = 768,
):
super().__init__()
img_size = (img_size, img_size) if isinstance(img_size, int) else img_size
patch_size = (patch_size, patch_size) if isinstance(patch_size, int) else patch_size
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class VisionTransformer(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=None,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
use_mean_pooling=True,
init_scale=0.001,
checkpoint_activations: bool = False,
checkpoint_attention: bool = False,
transformer_engine: bool = False,
use_fp8: bool = False,
):
super().__init__()
self.image_size = img_size
self.patch_size = patch_size
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.transformer_engine = transformer_engine
self.use_fp8 = use_fp8
self.fp8_recipe = None
if use_fp8 and not transformer_engine:
raise ValueError("`transformer_engine` must be enabled for `use_fp8`.")
if use_fp8:
# FP8 Recipe: Hybrid E4M3 forward, E5M2 backward
self.fp8_recipe = DelayedScaling(fp8_format=Format.HYBRID, amax_history_len=16, amax_compute_algo="max")
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
self.checkpoint_activations = checkpoint_activations
self.checkpoint_attention = checkpoint_attention
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
transformer_engine=transformer_engine,
checkpoint_attention=self.checkpoint_attention,
)
for i in range(depth)
]
)
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
self.fix_init_weight()
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
if self.transformer_engine and self.use_fp8:
with te.fp8_autocast(enabled=True, fp8_recipe=self.fp8_recipe):
return self._forward_uncast(x)
return self._forward_uncast(x)
def _forward_uncast(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
if self.checkpoint_activations:
x = checkpoint.checkpoint(blk, x, rel_pos_bias)
else:
x = blk(x, rel_pos_bias)
return x
def forward(self, x):
x = self.forward_features(x)
return x
def get_intermediate_layers(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
features = []
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
x = blk(x, rel_pos_bias)
features.append(x)
return features
def get_num_layer(self, var_name=""):
if var_name in ("cls_token", "mask_token", "pos_embed"):
return 0
elif var_name.startswith("patch_embed"):
return 0
elif var_name.startswith("rel_pos_bias"):
return len(self.blocks) - 1
elif var_name.startswith("blocks"):
layer_id = int(var_name.split(".")[1])
return layer_id + 1
else:
return len(self.blocks)
def interpolate_pos_embed(
pos_embed_key: str,
num_patches: int,
patch_embed_shape: torch.Size,
checkpoint_model: dict[str, torch.Tensor],
target_h: int = None,
target_w: int = None,
) -> None:
if pos_embed_key in checkpoint_model:
pos_embed_checkpoint = checkpoint_model[pos_embed_key].float()
embedding_size = pos_embed_checkpoint.shape[-1]
num_extra_tokens = patch_embed_shape - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# If target dimensions are provided, use them; otherwise assume square
if target_h is not None and target_w is not None:
new_h, new_w = target_h, target_w
else:
# height (== width) for the new position embedding (square assumption)
new_size = int(num_patches**0.5)
new_h, new_w = new_size, new_size
# class_token and dist_token are kept unchanged
if orig_size * orig_size != new_h * new_w:
logger.info("Positional interpolation from %dx%d to %dx%d" % (orig_size, orig_size, new_h, new_w))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_h, new_w), mode="bicubic", align_corners=False
)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_embed_key] = new_pos_embed
class PositionalEmbeddingHook:
def __init__(self, pos_embed_name, num_patches, patch_embed_shape, target_h=None, target_w=None):
self.pos_embed_name = pos_embed_name
self.num_patches = num_patches
self.patch_embed_shape = patch_embed_shape
self.target_h = target_h
self.target_w = target_w
def __call__(self, state_dict, prefix, *args, **kwargs) -> None:
logger.info("Calling `PositionalEmbeddingHook`")
pos_embed_key = f"{prefix}{self.pos_embed_name}"
interpolate_pos_embed(
pos_embed_key, self.num_patches, self.patch_embed_shape, state_dict, self.target_h, self.target_w
)
class EvaViTG(VisionTransformer):
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
drop_path_rate: float = 0.4,
pretrained: bool = False,
checkpoint_path: Optional[str] = None,
checkpoint_activations: bool = False,
checkpoint_attention: bool = False,
transformer_engine: bool = False,
use_fp8: bool = False,
**kwargs: Any,
) -> None:
if not TRANSFORMER_ENGINE_AVAILABLE and transformer_engine:
raise ValueError(
"TransformerEngine is not available, "
"please install transformer-engine or set `transformer_engine=False` in config."
)
if use_fp8 and not transformer_engine:
raise ValueError("`transformer_engine` must be enabled for `use_fp8`.")
super().__init__(
img_size=img_size,
patch_size=14,
use_mean_pooling=False,
embed_dim=1408,
depth=39,
num_heads=1408 // 88,
mlp_ratio=4.3637,
qkv_bias=True,
drop_path_rate=drop_path_rate,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
checkpoint_activations=checkpoint_activations,
checkpoint_attention=checkpoint_attention,
transformer_engine=transformer_engine,
use_fp8=use_fp8,
)
self.checkpoint_path = checkpoint_path
# compatibility with pre-trained checkpoints
self.register_pre_hooks()
# load pre-trained checkpoints
if pretrained:
self.load_checkpoint()
def load_checkpoint(self) -> None:
logger.info(f"Loading checkpoint from {self.checkpoint_path}")
state_dict = torch.load(self.checkpoint_path, map_location="cpu")
incompatible_keys = self.load_state_dict(state_dict, strict=False)
logger.info(f"Incompatible keys: {incompatible_keys}")
logger.info(f"Loaded visual encoder {type(self)} with state dict from {self.checkpoint_path}")
def register_pre_hooks(self) -> None:
"""Register positional embedding interpolation when loading pre-trained checkpoints using different resolution."""
# Calculate target patch dimensions for non-square support
patch_h = self.patch_embed.patch_shape[0]
patch_w = self.patch_embed.patch_shape[1]
embed_hook = PositionalEmbeddingHook(
pos_embed_name="pos_embed",
num_patches=self.patch_embed.num_patches,
patch_embed_shape=self.pos_embed.shape[-2],
target_h=patch_h,
target_w=patch_w,
)
self._register_load_state_dict_pre_hook(embed_hook)
def _initialize_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)