AgentCPM-GUI
GitHub | Technical Blog
News
- [2025-05-13] ๐๐๐ We have open-sourced AgentCPM-GUI, an on-device GUI agent capable of operating Chinese & English apps and equipped with RFT-enhanced reasoning abilities.
Overview
AgentCPM-GUI is an open-source on-device LLM agent model jointly developed by THUNLP and ModelBest. Built on MiniCPM-V with 8 billion parameters, it accepts smartphone screenshots as input and autonomously executes user-specified tasks.
Key features include:
- High-quality GUI grounding โ Pre-training on a large-scale bilingual Android dataset significantly boosts localization and comprehension of common GUI widgets (buttons, input boxes, labels, icons, etc.).
- Chinese-app operation โ The first open-source GUI agent finely tuned for Chinese apps, covering 30 + popular titles such as Amap, Dianping, bilibili and Xiaohongshu.
- Enhanced planning & reasoning โ Reinforcement fine-tuning (RFT) lets the model โthinkโ before outputting an action, greatly improving success on complex tasks.
- Compact action-space design โ An optimized action space and concise JSON format reduce the average action length to 9.7 tokens, boosting on-device inference efficiency.
Demo Case (1x speed):
https://github.com/user-attachments/assets/5472a659-cd71-4bce-a181-0981129c6a81
Quick Start
Install dependencies
git clone https://github.com/OpenBMB/AgentCPM-GUI
cd MiniCPM-Agent
conda create -n gui_agent python=3.11
conda activate gui_agent
pip install -r requirements.txt
Download the model
Download AgentCPM-GUI from Hugging Face and place it in model/AgentCPM-GUI
.
Huggingface Inference
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import json
# 1. Load the model and tokenizer
model_path = "model/AgentCPM-GUI" # model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to("cuda:0")
# 2. Build the input
instruction = "่ฏท็นๅปๅฑๅนไธ็โไผๅโๆ้ฎ"
image_path = "assets/test.jpeg"
image = Image.open(image_path).convert("RGB")
# 3. Resize the longer side to 1120 px to save compute & memory
def __resize__(origin_img):
resolution = origin_img.size
w,h = resolution
max_line_res = 1120
if max_line_res is not None:
max_line = max_line_res
if h > max_line:
w = int(w * max_line / h)
h = max_line
if w > max_line:
h = int(h * max_line / w)
w = max_line
img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS)
return img
image = __resize__(image)
# 4. Build the message format
messages = [{
"role": "user",
"content": [
f"<Question>{instruction}</Question>\nๅฝๅๅฑๅนๆชๅพ๏ผ",
image
]
}]
# 5. Inference
ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8"))
items = list(ACTION_SCHEMA.items())
insert_index = 3
items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional"
ACTION_SCHEMA = dict(items)
SYSTEM_PROMPT = f'''# Role
ไฝ ๆฏไธๅ็ๆๅฎๅ็ณป็ป่งฆๅฑGUIๆไฝ็ๆบ่ฝไฝ๏ผๅฐๆ นๆฎ็จๆท็้ฎ้ข๏ผๅๆๅฝๅ็้ข็GUIๅ
็ด ๅๅธๅฑ๏ผ็ๆ็ธๅบ็ๆไฝใ
# Task
้ๅฏน็จๆท้ฎ้ข๏ผๆ นๆฎ่พๅ
ฅ็ๅฝๅๅฑๅนๆชๅพ๏ผ่พๅบไธไธๆญฅ็ๆไฝใ
# Rule
- ไปฅ็ดงๅJSONๆ ผๅผ่พๅบ
- ่พๅบๆไฝๅฟ
้กป้ตๅพชSchema็บฆๆ
# Schema
{json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}'''
outputs = model.chat(
image=None,
msgs=messages,
system_prompt=SYSTEM_PROMPT,
tokenizer=tokenizer,
temperature=0.1,
top_p=0.3,
n=1,
)
# 6. Output
print(outputs)
Expected output:
{"thought":"ไปปๅก็ฎๆ ๆฏ็นๅปๅฑๅนไธ็โไผๅโๆ้ฎใๅฝๅ็้ขๆพ็คบไบๅบ็จ็ๆจ่้กต้ข๏ผ้กถ้จๆไธไธชๅฏผ่ชๆ ใ็นๅปโไผๅโๆ้ฎๅฏไปฅ่ฎฟ้ฎๅบ็จ็ไผๅ็ธๅ
ณๅ
ๅฎนใ","POINT":[729,69]}
vLLM Inference
# Launch the vLLM server
vllm serve model/AgentCPM-GUI --served-model-name AgentCPM-GUI --tensor_parallel_size 1 --trust-remote-code
import base64
import io
import json
import requests
from PIL import Image
END_POINT = "http://localhost:8000/v1/chat/completions" # Replace with actual endpoint
# system prompt
ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8"))
items = list(ACTION_SCHEMA.items())
insert_index = 3
items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional"
ACTION_SCHEMA = dict(items)
SYSTEM_PROMPT = f'''# Role
ไฝ ๆฏไธๅ็ๆๅฎๅ็ณป็ป่งฆๅฑGUIๆไฝ็ๆบ่ฝไฝ๏ผๅฐๆ นๆฎ็จๆท็้ฎ้ข๏ผๅๆๅฝๅ็้ข็GUIๅ
็ด ๅๅธๅฑ๏ผ็ๆ็ธๅบ็ๆไฝใ
# Task
้ๅฏน็จๆท้ฎ้ข๏ผๆ นๆฎ่พๅ
ฅ็ๅฝๅๅฑๅนๆชๅพ๏ผ่พๅบไธไธๆญฅ็ๆไฝใ
# Rule
- ไปฅ็ดงๅJSONๆ ผๅผ่พๅบ
- ่พๅบๆไฝๅฟ
้กป้ตๅพชSchema็บฆๆ
# Schema
{json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}'''
def encode_image(image: Image.Image) -> str:
"""Convert PIL Image to base64-encoded string."""
with io.BytesIO() as in_mem_file:
image.save(in_mem_file, format="JPEG")
in_mem_file.seek(0)
return base64.b64encode(in_mem_file.read()).decode("utf-8")
def __resize__(origin_img):
resolution = origin_img.size
w,h = resolution
max_line_res = 1120
if max_line_res is not None:
max_line = max_line_res
if h > max_line:
w = int(w * max_line / h)
h = max_line
if w > max_line:
h = int(h * max_line / w)
w = max_line
img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS)
return img
def predict(text_prompt: str, image: Image.Image):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": [
{"type": "text", "text": f"<Question>{text_prompt}</Question>\nๅฝๅๅฑๅนๆชๅพ๏ผ"},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image)}"}}
]}
]
payload = {
"model": "AgentCPM-GUI", # Your model name
"temperature": 0.1,
"messages": messages,
"max_tokens": 2048,
}
headers = {
"Content-Type": "application/json",
}
response = requests.post(END_POINT, headers=headers, json=payload)
assistant_msg = response.json()["choices"][0]["message"]["content"]
return assistant_msg
image = __resize__(Image.open("assets/test.jpeg"))
instruction = "่ฏท็นๅปๅฑๅนไธ็โไผๅโๆ้ฎ"
response = predict(instruction, image)
print(response)
Fine-tuning
Source code for SFT and RFT training is provided โ see SFT and RFT.
Performance Evaluation
Grounding Benchmark
Model | fun2point | text2point | bbox2text | average |
---|---|---|---|---|
AgentCPM-GUI-8B | 79.1 | 76.5 | 58.2 | 71.3 |
Qwen2.5-VL-7B | 36.8 | 52.0 | 44.1 | 44.3 |
Intern2.5-VL-8B | 17.2 | 24.2 | 45.9 | 29.1 |
Intern2.5-VL-26B | 14.8 | 16.6 | 36.3 | 22.6 |
OS-Genesis-7B | 8.3 | 5.8 | 4.0 | 6.0 |
UI-TARS-7B | 56.8 | 66.7 | 1.4 | 41.6 |
OS-Altas-7B | 53.6 | 60.7 | 0.4 | 38.2 |
Aguvis-7B | 60.8 | 76.5 | 0.2 | 45.8 |
GPT-4o | 22.1 | 19.9 | 14.3 | 18.8 |
GPT-4o with Grounding | 44.3 | 44.0 | 14.3 | 44.2 |
Agent Benchmark
Dataset | Android Control-Low TM | Android Control-Low EM | Android Control-High TM | Android Control-High EM | GUI-Odyssey TM | GUI-Odyssey EM | AITZ TM | AITZ EM | Chinese APP TM | Chinese APP EM |
---|---|---|---|---|---|---|---|---|---|---|
AgentCPM-GUI-8B | 94.39 | 90.20 | 77.70 | 69.17 | 90.85 | 74.96 | 85.71 | 76.38 | 96.86 | 91.28 |
Qwen2.5-VL-7B | 92.11 | 82.12 | 69.65 | 57.36 | 55.33 | 40.90 | 73.16 | 57.58 | 68.53 | 48.80 |
UI-TARS-7B | 93.52 | 88.89 | 68.53 | 60.81 | 78.79 | 57.33 | 71.74 | 55.31 | 71.01 | 53.92 |
OS-Genesis-7B | 90.74 | 74.22 | 65.92 | 44.43 | 11.67 | 3.63 | 19.98 | 8.45 | 38.10 | 14.50 |
OS-Atlas-7B | 73.03 | 67.25 | 70.36 | 56.53 | 91.83* | 76.76* | 74.13 | 58.45 | 81.53 | 55.89 |
Aguvis-7B | 93.85 | 89.40 | 65.56 | 54.18 | 26.71 | 13.54 | 35.71 | 18.99 | 67.43 | 38.20 |
OdysseyAgent-7B | 65.10 | 39.16 | 58.80 | 32.74 | 90.83 | 73.67 | 59.17 | 31.60 | 67.56 | 25.44 |
GPT-4o | - | 19.49 | - | 20.80 | - | 20.39 | 70.00 | 35.30 | 3.67 | 3.67 |
Gemini 2.0 | - | 28.50 | - | 60.20 | - | 3.27 | - | - | - | - |
Claude | - | 19.40 | - | 12.50 | 60.90 | - | - | - | - | - |
*Different train/test splits
All evaluation data and code are open-sourced โ see here for details.
Evaluation Data
We provide CAGUI, an evaluation benchmark for Chinese apps covering grounding and agent tasks. See the dataset on Hugging Face.
License
- Code in this repository is released under the Apache-2.0 license.
Citation
If AgentCPM-GUI is useful for your research, please cite:
@misc{2025,
author = {THUNLP},
title = {AgentCPM-GUI},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/OpenBMB/AgentCPM-GUI}}
}
- Downloads last month
- 13
Model tree for openbmb/AgentCPM-GUI
Base model
openbmb/MiniCPM-V-2_6