Improve model card with Hugging Face paper link
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,18 +1,20 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- zh
|
| 5 |
- en
|
| 6 |
-
pipeline_tag: text-generation
|
| 7 |
library_name: transformers
|
|
|
|
|
|
|
| 8 |
---
|
|
|
|
| 9 |
<div align="center">
|
| 10 |
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
| 11 |
</div>
|
| 12 |
|
| 13 |
<p align="center">
|
| 14 |
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
| 15 |
-
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
|
|
|
|
| 16 |
</p>
|
| 17 |
<p align="center">
|
| 18 |
๐ Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
|
@@ -45,7 +47,7 @@ BitCPM4 are ternary quantized models derived from the MiniCPM series models thro
|
|
| 45 |
## Usage
|
| 46 |
### Inference with Transformers
|
| 47 |
BitCPM4's parameters are stored in a fake-quantized format, which supports direct inference within the Huggingface framework.
|
| 48 |
-
```
|
| 49 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 50 |
import torch
|
| 51 |
|
|
@@ -89,7 +91,7 @@ BitCPM4's performance is comparable with other full-precision models in same mod
|
|
| 89 |
- This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
| 90 |
|
| 91 |
## Citation
|
| 92 |
-
- Please cite our [paper](https://
|
| 93 |
|
| 94 |
```bibtex
|
| 95 |
@article{minicpm4,
|
|
@@ -97,4 +99,4 @@ BitCPM4's performance is comparable with other full-precision models in same mod
|
|
| 97 |
author={MiniCPM Team},
|
| 98 |
year={2025}
|
| 99 |
}
|
| 100 |
-
```
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- zh
|
| 4 |
- en
|
|
|
|
| 5 |
library_name: transformers
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
+
|
| 10 |
<div align="center">
|
| 11 |
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
| 12 |
</div>
|
| 13 |
|
| 14 |
<p align="center">
|
| 15 |
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
| 16 |
+
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a> |
|
| 17 |
+
<a href="https://huggingface.co/papers/2506.07900" target="_blank">Hugging Face Paper</a>
|
| 18 |
</p>
|
| 19 |
<p align="center">
|
| 20 |
๐ Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
|
|
|
| 47 |
## Usage
|
| 48 |
### Inference with Transformers
|
| 49 |
BitCPM4's parameters are stored in a fake-quantized format, which supports direct inference within the Huggingface framework.
|
| 50 |
+
```python
|
| 51 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 52 |
import torch
|
| 53 |
|
|
|
|
| 91 |
- This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
| 92 |
|
| 93 |
## Citation
|
| 94 |
+
- Please cite our [paper](https://huggingface.co/papers/2506.07900) if you find our work valuable.
|
| 95 |
|
| 96 |
```bibtex
|
| 97 |
@article{minicpm4,
|
|
|
|
| 99 |
author={MiniCPM Team},
|
| 100 |
year={2025}
|
| 101 |
}
|
| 102 |
+
```
|