File size: 10,296 Bytes
d1b601c
 
 
 
 
 
 
 
 
 
 
a4924f7
 
 
 
 
 
 
 
 
 
 
 
d1b601c
 
a4924f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b601c
 
 
 
549df9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b601c
 
 
 
549df9a
 
 
 
 
 
 
d1b601c
 
 
 
 
549df9a
d1b601c
 
549df9a
 
 
 
d1b601c
 
549df9a
 
 
 
d1b601c
549df9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b601c
 
 
a4924f7
 
d1b601c
9464ab9
d1b601c
549df9a
a4924f7
 
d1b601c
 
 
a4924f7
 
d1b601c
 
 
 
 
 
 
549df9a
d1b601c
 
 
 
 
 
 
 
549df9a
d1b601c
 
 
549df9a
 
d1b601c
 
 
 
 
 
 
 
 
 
549df9a
d1b601c
 
 
 
 
 
 
 
 
 
 
 
 
 
549df9a
d1b601c
 
 
 
 
 
 
 
 
 
549df9a
d1b601c
 
 
 
549df9a
d1b601c
 
 
549df9a
d1b601c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import sys
import argparse

import numpy as np
import cv2 as cv

from mp_handpose import MPHandPose

sys.path.append('../palm_detection_mediapipe')
from mp_palmdet import MPPalmDet

# Check OpenCV version
assert cv.__version__ >= "4.7.0", \
       "Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]

parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
parser.add_argument('--input', '-i', type=str,
                    help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2023feb.onnx',
                    help='Path to the model.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--conf_threshold', type=float, default=0.9,
                    help='Filter out hands of confidence < conf_threshold.')
parser.add_argument('--save', '-s', action='store_true',
                    help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
                    help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()


def visualize(image, hands, print_result=False):
    display_screen = image.copy()
    display_3d = np.zeros((400, 400, 3), np.uint8)
    cv.line(display_3d, (200, 0), (200, 400), (255, 255, 255), 2)
    cv.line(display_3d, (0, 200), (400, 200), (255, 255, 255), 2)
    cv.putText(display_3d, 'Main View', (0, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
    cv.putText(display_3d, 'Top View', (200, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
    cv.putText(display_3d, 'Left View', (0, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
    cv.putText(display_3d, 'Right View', (200, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
    is_draw = False  # ensure only one hand is drawn

    def draw_lines(image, landmarks, is_draw_point=True, thickness=2):
        cv.line(image, landmarks[0], landmarks[1], (255, 255, 255), thickness)
        cv.line(image, landmarks[1], landmarks[2], (255, 255, 255), thickness)
        cv.line(image, landmarks[2], landmarks[3], (255, 255, 255), thickness)
        cv.line(image, landmarks[3], landmarks[4], (255, 255, 255), thickness)

        cv.line(image, landmarks[0], landmarks[5], (255, 255, 255), thickness)
        cv.line(image, landmarks[5], landmarks[6], (255, 255, 255), thickness)
        cv.line(image, landmarks[6], landmarks[7], (255, 255, 255), thickness)
        cv.line(image, landmarks[7], landmarks[8], (255, 255, 255), thickness)

        cv.line(image, landmarks[0], landmarks[9], (255, 255, 255), thickness)
        cv.line(image, landmarks[9], landmarks[10], (255, 255, 255), thickness)
        cv.line(image, landmarks[10], landmarks[11], (255, 255, 255), thickness)
        cv.line(image, landmarks[11], landmarks[12], (255, 255, 255), thickness)

        cv.line(image, landmarks[0], landmarks[13], (255, 255, 255), thickness)
        cv.line(image, landmarks[13], landmarks[14], (255, 255, 255), thickness)
        cv.line(image, landmarks[14], landmarks[15], (255, 255, 255), thickness)
        cv.line(image, landmarks[15], landmarks[16], (255, 255, 255), thickness)

        cv.line(image, landmarks[0], landmarks[17], (255, 255, 255), thickness)
        cv.line(image, landmarks[17], landmarks[18], (255, 255, 255), thickness)
        cv.line(image, landmarks[18], landmarks[19], (255, 255, 255), thickness)
        cv.line(image, landmarks[19], landmarks[20], (255, 255, 255), thickness)

        if is_draw_point:
            for p in landmarks:
                cv.circle(image, p, thickness, (0, 0, 255), -1)

    for idx, handpose in enumerate(hands):
        conf = handpose[-1]
        bbox = handpose[0:4].astype(np.int32)
        handedness = handpose[-2]
        if handedness <= 0.5:
            handedness_text = 'Left'
        else:
            handedness_text = 'Right'
        landmarks_screen = handpose[4:67].reshape(21, 3).astype(np.int32)
        landmarks_word = handpose[67:130].reshape(21, 3)

        # Print results
        if print_result:
            print('-----------hand {}-----------'.format(idx + 1))
            print('conf: {:.2f}'.format(conf))
            print('handedness: {}'.format(handedness_text))
            print('hand box: {}'.format(bbox))
            print('hand landmarks: ')
            for l in landmarks_screen:
                print('\t{}'.format(l))
            print('hand world landmarks: ')
            for l in landmarks_word:
                print('\t{}'.format(l))

        # draw box
        cv.rectangle(display_screen, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
        # draw handedness
        cv.putText(display_screen, '{}'.format(handedness_text), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
        # Draw line between each key points
        landmarks_xy = landmarks_screen[:, 0:2]
        draw_lines(display_screen, landmarks_xy, is_draw_point=False)

        # z value is relative to WRIST
        for p in landmarks_screen:
            r = max(5 - p[2] // 5, 0)
            r = min(r, 14)
            cv.circle(display_screen, np.array([p[0], p[1]]), r, (0, 0, 255), -1)

        if is_draw is False:
            is_draw = True
            # Main view
            landmarks_xy = landmarks_word[:, [0, 1]]
            landmarks_xy = (landmarks_xy * 1000 + 100).astype(np.int32)
            draw_lines(display_3d, landmarks_xy, thickness=5)

            # Top view
            landmarks_xz = landmarks_word[:, [0, 2]]
            landmarks_xz[:, 1] = -landmarks_xz[:, 1]
            landmarks_xz = (landmarks_xz * 1000 + np.array([300, 100])).astype(np.int32)
            draw_lines(display_3d, landmarks_xz, thickness=5)

            # Left view
            landmarks_yz = landmarks_word[:, [2, 1]]
            landmarks_yz[:, 0] = -landmarks_yz[:, 0]
            landmarks_yz = (landmarks_yz * 1000 + np.array([100, 300])).astype(np.int32)
            draw_lines(display_3d, landmarks_yz, thickness=5)

            # Right view
            landmarks_zy = landmarks_word[:, [2, 1]]
            landmarks_zy = (landmarks_zy * 1000 + np.array([300, 300])).astype(np.int32)
            draw_lines(display_3d, landmarks_zy, thickness=5)

    return display_screen, display_3d


if __name__ == '__main__':
    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]
    # palm detector
    palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
                              nmsThreshold=0.3,
                              scoreThreshold=0.6,
                              backendId=backend_id,
                              targetId=target_id)
    # handpose detector
    handpose_detector = MPHandPose(modelPath=args.model,
                                   confThreshold=args.conf_threshold,
                                   backendId=backend_id,
                                   targetId=target_id)

    # If input is an image
    if args.input is not None:
        image = cv.imread(args.input)

        # Palm detector inference
        palms = palm_detector.infer(image)
        hands = np.empty(shape=(0, 132))

        # Estimate the pose of each hand
        for palm in palms:
            # Handpose detector inference
            handpose = handpose_detector.infer(image, palm)
            if handpose is not None:
                hands = np.vstack((hands, handpose))
        # Draw results on the input image
        image, view_3d = visualize(image, hands, True)

        if len(palms) == 0:
            print('No palm detected!')
        else:
            print('Palm detected!')

        # Save results
        if args.save:
            cv.imwrite('result.jpg', image)
            print('Results saved to result.jpg\n')

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, image)
            cv.imshow('3D HandPose Demo', view_3d)
            cv.waitKey(0)
    else:  # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, frame = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            # Palm detector inference
            palms = palm_detector.infer(frame)
            hands = np.empty(shape=(0, 132))

            tm.start()
            # Estimate the pose of each hand
            for palm in palms:
                # Handpose detector inference
                handpose = handpose_detector.infer(frame, palm)
                if handpose is not None:
                    hands = np.vstack((hands, handpose))
            tm.stop()
            # Draw results on the input image
            frame, view_3d = visualize(frame, hands)

            if len(palms) == 0:
                print('No palm detected!')
            else:
                print('Palm detected!')
                cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))

            cv.imshow('MediaPipe Handpose Detection Demo', frame)
            cv.imshow('3D HandPose Demo', view_3d)
            tm.reset()