|
import sys |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from mp_handpose import MPHandPose |
|
|
|
sys.path.append('../palm_detection_mediapipe') |
|
from mp_palmdet import MPPalmDet |
|
|
|
def str2bool(v): |
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']: |
|
return True |
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: |
|
return False |
|
else: |
|
raise NotImplementedError |
|
|
|
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] |
|
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] |
|
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" |
|
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" |
|
try: |
|
backends += [cv.dnn.DNN_BACKEND_TIMVX] |
|
targets += [cv.dnn.DNN_TARGET_NPU] |
|
help_msg_backends += "; {:d}: TIMVX" |
|
help_msg_targets += "; {:d}: NPU" |
|
except: |
|
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.') |
|
|
|
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe') |
|
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2022may.onnx', help='Path to the model.') |
|
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) |
|
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) |
|
parser.add_argument('--conf_threshold', type=float, default=0.8, help='Filter out hands of confidence < conf_threshold.') |
|
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
|
|
def visualize(image, hands, print_result=False): |
|
output = image.copy() |
|
|
|
for idx, handpose in enumerate(hands): |
|
conf = handpose[-1] |
|
bbox = handpose[0:4].astype(np.int32) |
|
landmarks = handpose[4:-1].reshape(21, 2).astype(np.int32) |
|
|
|
|
|
if print_result: |
|
print('-----------hand {}-----------'.format(idx + 1)) |
|
print('conf: {:.2f}'.format(conf)) |
|
print('hand box: {}'.format(bbox)) |
|
print('hand landmarks: ') |
|
for l in landmarks: |
|
print('\t{}'.format(l)) |
|
|
|
|
|
cv.line(output, landmarks[0], landmarks[1], (255, 255, 255), 2) |
|
cv.line(output, landmarks[1], landmarks[2], (255, 255, 255), 2) |
|
cv.line(output, landmarks[2], landmarks[3], (255, 255, 255), 2) |
|
cv.line(output, landmarks[3], landmarks[4], (255, 255, 255), 2) |
|
|
|
cv.line(output, landmarks[0], landmarks[5], (255, 255, 255), 2) |
|
cv.line(output, landmarks[5], landmarks[6], (255, 255, 255), 2) |
|
cv.line(output, landmarks[6], landmarks[7], (255, 255, 255), 2) |
|
cv.line(output, landmarks[7], landmarks[8], (255, 255, 255), 2) |
|
|
|
cv.line(output, landmarks[0], landmarks[9], (255, 255, 255), 2) |
|
cv.line(output, landmarks[9], landmarks[10], (255, 255, 255), 2) |
|
cv.line(output, landmarks[10], landmarks[11], (255, 255, 255), 2) |
|
cv.line(output, landmarks[11], landmarks[12], (255, 255, 255), 2) |
|
|
|
cv.line(output, landmarks[0], landmarks[13], (255, 255, 255), 2) |
|
cv.line(output, landmarks[13], landmarks[14], (255, 255, 255), 2) |
|
cv.line(output, landmarks[14], landmarks[15], (255, 255, 255), 2) |
|
cv.line(output, landmarks[15], landmarks[16], (255, 255, 255), 2) |
|
|
|
cv.line(output, landmarks[0], landmarks[17], (255, 255, 255), 2) |
|
cv.line(output, landmarks[17], landmarks[18], (255, 255, 255), 2) |
|
cv.line(output, landmarks[18], landmarks[19], (255, 255, 255), 2) |
|
cv.line(output, landmarks[19], landmarks[20], (255, 255, 255), 2) |
|
|
|
for p in landmarks: |
|
cv.circle(output, p, 2, (0, 0, 255), 2) |
|
|
|
return output |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx', |
|
nmsThreshold=0.3, |
|
scoreThreshold=0.8, |
|
backendId=args.backend, |
|
targetId=args.target) |
|
|
|
handpose_detector = MPHandPose(modelPath=args.model, |
|
confThreshold=args.conf_threshold, |
|
backendId=args.backend, |
|
targetId=args.target) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
|
|
|
|
palms = palm_detector.infer(image) |
|
hands = np.empty(shape=(0, 47)) |
|
|
|
|
|
for palm in palms: |
|
|
|
handpose = handpose_detector.infer(image, palm) |
|
if handpose is not None: |
|
hands = np.vstack((hands, handpose)) |
|
|
|
image = visualize(image, hands, True) |
|
|
|
if len(palms) == 0: |
|
print('No palm detected!') |
|
|
|
|
|
if args.save: |
|
cv.imwrite('result.jpg', image) |
|
print('Results saved to result.jpg\n') |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
palms = palm_detector.infer(frame) |
|
hands = np.empty(shape=(0, 47)) |
|
|
|
tm.start() |
|
|
|
for palm in palms: |
|
|
|
handpose = handpose_detector.infer(frame, palm) |
|
if handpose is not None: |
|
hands = np.vstack((hands, handpose)) |
|
tm.stop() |
|
|
|
frame = visualize(frame, hands) |
|
|
|
if len(palms) == 0: |
|
print('No palm detected!') |
|
else: |
|
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
|
|
cv.imshow('MediaPipe Handpose Detection Demo', frame) |
|
tm.reset() |
|
|