File size: 5,829 Bytes
42310ef ec17a5b 42310ef 8b13820 ec17a5b 8b13820 42310ef 8b13820 42310ef 9e1d36f 8b13820 42310ef ec17a5b 42310ef 8b13820 42310ef 8b13820 42310ef 8b13820 42310ef ec17a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import sys
import argparse
import numpy as np
import cv2 as cv
from crnn import CRNN
sys.path.append('../text_detection_db')
from db import DB
def str2bool(v):
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
return True
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
return False
else:
raise NotImplementedError
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
backends += [cv.dnn.DNN_BACKEND_TIMVX]
targets += [cv.dnn.DNN_TARGET_NPU]
help_msg_backends += "; {:d}: TIMVX"
help_msg_targets += "; {:d}: NPU"
except:
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
parser = argparse.ArgumentParser(
description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Path to the model.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--charset', '-c', type=str, default='charset_36_EN.txt', help='Path to the charset file corresponding to the selected model.')
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
output = image.copy()
pts = np.array(boxes[0])
output = cv.polylines(output, pts, isClosed, color, thickness)
for box, text in zip(boxes[0], texts):
cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
return output
if __name__ == '__main__':
# Instantiate CRNN for text recognition
recognizer = CRNN(modelPath=args.model, charsetPath=args.charset)
# Instantiate DB for text detection
detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx',
inputSize=[736, 736],
binaryThreshold=0.3,
polygonThreshold=0.5,
maxCandidates=200,
unclipRatio=2.0,
backendId=args.backend,
targetId=args.target
)
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
image = cv.resize(image, [args.width, args.height])
# Inference
results = detector.infer(image)
texts = []
for box, score in zip(results[0], results[1]):
texts.append(
recognizer.infer(image, box.reshape(8))
)
# Draw results on the input image
image = visualize(image, results, texts)
# Save results if save is true
if args.save:
print('Resutls saved to result.jpg\n')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
frame = cv.resize(frame, [736, 736])
# Inference of text detector
tm.start()
results = detector.infer(frame)
tm.stop()
cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
tm.reset()
# Inference of text recognizer
if len(results[0]) and len(results[1]):
texts = []
tm.start()
for box, score in zip(results[0], results[1]):
result = np.hstack(
(box.reshape(8), score)
)
texts.append(
recognizer.infer(frame, box.reshape(8))
)
tm.stop()
cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
tm.reset()
# Draw results on the input image
frame = visualize(frame, results, texts)
print(texts)
# Visualize results in a new Window
cv.imshow('{} Demo'.format(recognizer.name), frame)
|