File size: 5,829 Bytes
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec17a5b
 
 
 
 
 
 
 
 
 
 
 
42310ef
 
 
8b13820
ec17a5b
 
8b13820
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b13820
42310ef
9e1d36f
8b13820
42310ef
 
 
ec17a5b
 
 
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b13820
42310ef
 
 
 
8b13820
42310ef
 
8b13820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42310ef
 
ec17a5b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import sys
import argparse

import numpy as np
import cv2 as cv

from crnn import CRNN

sys.path.append('../text_detection_db')
from db import DB

def str2bool(v):
    if v.lower() in ['on', 'yes', 'true', 'y', 't']:
        return True
    elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
        return False
    else:
        raise NotImplementedError

backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
    backends += [cv.dnn.DNN_BACKEND_TIMVX]
    targets += [cv.dnn.DNN_TARGET_NPU]
    help_msg_backends += "; {:d}: TIMVX"
    help_msg_targets += "; {:d}: NPU"
except:
    print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')

parser = argparse.ArgumentParser(
    description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Path to the model.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--charset', '-c', type=str, default='charset_36_EN.txt', help='Path to the charset file corresponding to the selected model.')
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()

def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
    output = image.copy()

    pts = np.array(boxes[0])
    output = cv.polylines(output, pts, isClosed, color, thickness)
    for box, text in zip(boxes[0], texts):
        cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    return output

if __name__ == '__main__':
    # Instantiate CRNN for text recognition
    recognizer = CRNN(modelPath=args.model, charsetPath=args.charset)
    # Instantiate DB for text detection
    detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx',
                  inputSize=[736, 736],
                  binaryThreshold=0.3,
                  polygonThreshold=0.5,
                  maxCandidates=200,
                  unclipRatio=2.0,
                  backendId=args.backend,
                  targetId=args.target
    )

    # If input is an image
    if args.input is not None:
        image = cv.imread(args.input)
        image = cv.resize(image, [args.width, args.height])

        # Inference
        results = detector.infer(image)
        texts = []
        for box, score in zip(results[0], results[1]):
            texts.append(
                recognizer.infer(image, box.reshape(8))
            )

        # Draw results on the input image
        image = visualize(image, results, texts)

        # Save results if save is true
        if args.save:
            print('Resutls saved to result.jpg\n')
            cv.imwrite('result.jpg', image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, frame = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            frame = cv.resize(frame, [736, 736])
            # Inference of text detector
            tm.start()
            results = detector.infer(frame)
            tm.stop()
            cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
            tm.reset()

            # Inference of text recognizer
            if len(results[0]) and len(results[1]):
                texts = []
                tm.start()
                for box, score in zip(results[0], results[1]):
                    result = np.hstack(
                        (box.reshape(8), score)
                    )
                    texts.append(
                        recognizer.infer(frame, box.reshape(8))
                    )
                tm.stop()
                cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
                tm.reset()

                # Draw results on the input image
                frame = visualize(frame, results, texts)
                print(texts)

            # Visualize results in a new Window
            cv.imshow('{} Demo'.format(recognizer.name), frame)