File size: 6,563 Bytes
42310ef ec17a5b 42310ef 9e1d36f ec17a5b 42310ef c1793e8 ec17a5b 42310ef b81d9fd 42310ef b81d9fd 42310ef c1793e8 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef ec17a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import argparse
import numpy as np
import cv2 as cv
from db import DB
def str2bool(v):
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
return True
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
return False
else:
raise NotImplementedError
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
backends += [cv.dnn.DNN_BACKEND_TIMVX]
targets += [cv.dnn.DNN_TARGET_NPU]
help_msg_backends += "; {:d}: TIMVX"
help_msg_targets += "; {:d}: NPU"
except:
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
parser = argparse.ArgumentParser(description='Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947).')
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_detection_DB_TD500_resnet18_2021sep.onnx', help='Path to the model.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--width', type=int, default=736,
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
parser.add_argument('--height', type=int, default=736,
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
parser.add_argument('--binary_threshold', type=float, default=0.3, help='Threshold of the binary map.')
parser.add_argument('--polygon_threshold', type=float, default=0.5, help='Threshold of polygons.')
parser.add_argument('--max_candidates', type=int, default=200, help='Max candidates of polygons.')
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0, help=' The unclip ratio of the detected text region, which determines the output size.')
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None):
output = image.copy()
if fps is not None:
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
pts = np.array(results[0])
output = cv.polylines(output, pts, isClosed, box_color, thickness)
return output
if __name__ == '__main__':
# Instantiate DB
model = DB(modelPath=args.model,
inputSize=[args.width, args.height],
binaryThreshold=args.binary_threshold,
polygonThreshold=args.polygon_threshold,
maxCandidates=args.max_candidates,
unclipRatio=args.unclip_ratio,
backendId=args.backend,
targetId=args.target
)
# If input is an image
if args.input is not None:
original_image = cv.imread(args.input)
original_w = original_image.shape[1]
original_h = original_image.shape[0]
scaleHeight = original_h / args.height
scaleWidth = original_w / args.width
image = cv.resize(original_image, [args.width, args.height])
# Inference
results = model.infer(image)
# Scale the results bounding box
for i in range(len(results[0])):
for j in range(4):
box = results[0][i][j]
results[0][i][j][0] = box[0] * scaleWidth
results[0][i][j][1] = box[1] * scaleHeight
# Print results
print('{} texts detected.'.format(len(results[0])))
for idx, (bbox, score) in enumerate(zip(results[0], results[1])):
print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score))
# Draw results on the input image
original_image = visualize(original_image, results)
# Save results if save is true
if args.save:
print('Resutls saved to result.jpg\n')
cv.imwrite('result.jpg', original_image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, original_image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, original_image = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
original_w = original_image.shape[1]
original_h = original_image.shape[0]
scaleHeight = original_h / args.height
scaleWidth = original_w / args.width
frame = cv.resize(original_image, [args.width, args.height])
# Inference
tm.start()
results = model.infer(frame) # results is a tuple
tm.stop()
# Scale the results bounding box
for i in range(len(results[0])):
for j in range(4):
box = results[0][i][j]
results[0][i][j][0] = box[0] * scaleWidth
results[0][i][j][1] = box[1] * scaleHeight
# Draw results on the input image
original_image = visualize(original_image, results, fps=tm.getFPS())
# Visualize results in a new Window
cv.imshow('{} Demo'.format(model.name), original_image)
tm.reset()
|